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Editorial on the Research Topic
 Technological Advances in Microbiological Risk Assessment



This Research Topic focused on current advances of research related to microbiological risk assessment (MRA). To minimize the adverse impact of foodborne pathogens on human health, MRA has been regarded as a structured and effective approach to improve food control systems and evaluate microbial risks. Generally, MRA is conducted in response to well defined risk management questions, requiring huge available data input to provide relevant results. In response to recent scientific and technical advances, and public demands, 10 articles were collected according to the objectives of this topic and could be divided into the following four aspects:


IMPROVING EXPOSURE ASSESSMENT STEP OF MRA

In MRA, predictive models play an important role for exposure assessment of foodborne pathogens to describe the microbial response over time and the growth dynamics affected by environmental conditions during the food chain from farm to table. Hiura et al. developed a Bayesian statistical modeling based on a generalized linear model (GLM) to fit observed bacterial inactivation data and growth data for Bacillus simplex and Listeria monocytogenes, respectively. Accordingly, the bacterial inactivation or growth, considering variability and uncertainty was simulated. The developed models enable a more explicit illustration of the variation in bacterial behavior via probability distributions. The novel method could clearly explain the variability and uncertainty in bacterial population behavior and could provide as useful information for risk assessment related to food borne pathogens. In another study by Zhou et al. the Weibull model was designed to evaluate the effectiveness of a newly developed 360-degree radiation thermosonication system (TS) in inactivating the Staphylococcus aureus in milk. In addition, the Bigelow and Log-linear model with tail were successfully used for describing the thermal inactivation kinetics of Listeria monocytogenes under mild heat, lactic acid, benzalkonium chloride, and nisin treatments, while the model- derived extended lag time of the survivors can be used to evaluate the cell growth kinetics following the treatments (Fang et al.).



SUPPORTING MRA IN HAZARD IDENTIFICATION

In hazard identification, food contamination surveillance data, together with product/process evaluations needs to be collected, appraised, and interpreted to aid the identification of hazard–food combinations. In the study by Yan et al. the serotypes, MLST, and cgMLST of Salmonella enterica isolates from different sources in nine provinces in China from 2004 to 2019 were examined and used to investigate their phenotyping and genotyping diversities and genetic relationships. This article clarifies the temporal and spatial distribution characteristics of phenotyping and genotyping diversity of S. enterica isolates in China in the recent 16 years, which could provide valuable information for prevention and control of Salmonella in China with strain resources and genetic information. In another study by Qu et al. the prevalence of B. cereus in lettuce and farm environments distributed in China was investigated to determine the possible transmission of B. cereus on lettuce farms in China and its enterotoxicity. The results showed that soil and pesticides are the main sources of B. cereus on lettuce farms in China, and the possible transmission routes are as follows: soil-lettuce, manure-lettuce, pesticide-lettuce, manure-soil-lettuce, and water-manure-soil-lettuce. Furthermore, the B. cereus isolates, whether from lettuce or the environment, pose a potential risk to health. Liu et al. focused on the investigation of Escherichia coli strains isolated from raw milk of dairy cattle in Northern China and their antimicrobial susceptibility and essential virulence genes. The importance of this topic comes from the fact that E. coli is commonly associated with animals and is a major cause of toxic mastitis in dairy cows. Results obtained in the study showed that 34.4% of the samples were positive for E. coli, and that among the positive samples, several of them were harboring toxic genes and/or showed antimicrobial resistance. This aligned well with other literature emphasizing that antimicrobial resistance should be of concern to the public health authorities and in this particular case, that antibiotics should be cautiously used for the treatment of E. coli caused mastitis in dairy cows.



IMPROVING MRA AND PREVENTION APPROACHES

Bahk and Lee developed a user-friendly Microbial-MLE Tool, which can be easily used without requiring complex mathematical knowledge of MLE using an Excel spreadsheet. The tool, which is designated to adjust log-normal distributions to observed counts and implemented for food microbial censored data, would provide an accessible and easily comprehensible means for performing MLE and useful calculation to improve the outcome of MRA.



RAPID DETECTION OR APPROACHES REDUCING RISK

Effective and rapid detection of foodborne pathogens based on emerging technologies is critical for reliably assessing the pathogenic factors and reducing microbial risk. The review by Huang et al. explained how the aptasensors have been applied to risk assessment in foodborne pathogens using Staphylococcus aureus as a representation. The review concluded that the aptasensors have a good competitiveness for using as a tool for risk assessment of foodborne pathogens, in terms of time, sensitivity, specificity, and cost, especially with the developments of nanomaterials and portable detection instruments in future. Mustafa et al. assessed the heavy metal resistance in Salmonella Typhimurium and its association with disinfectant and antibiotic resistance. The research conclusion was that excessive use of metals and disinfectants as feed additive in animal care may have the potential to promote antibiotic resistance through co-selection and maintain and promote antibiotic resistance even in the absence of antibiotics. Xu and Zhu investigated the positive effects of complete replacement of nitrite with a Lactobacillus fermentum on the quality and safety of Chinese fermented sausages, and evaluated the risk of this strain. The results showed that replacing nitrite completely with the L. fermentum strain could be a potential strategy to produce healthier and safer acceptable sausages through decreasing the risk of nitrite and improving nutrition and quality of the sausages.

By compiling these 10 articles into this topic, the advances in MRA including development of growth/inactivation model, the rapid detection method, prevalence and molecular characterization of foodborne pathogens from different matrices, as well as emerging technologies on the inactivation of foodborne pathogens were covered, providing useful information for the target audience.
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This study was carried out to investigate the effects of mild heat, lactic acid, benzalkonium chloride and nisin treatments on the inactivation, sublethal injury, and subsequent growth of Listeria monocytogenes. Results showed that the Bigelow model successfully described the thermal inactivation kinetics, while the Log-linear model with tail consistently offered the most accurate fit to LA, BC, and nisin inactivation curves of cells. Differential plating indicated that percentage of sublethal injury for nisin treated cells was significantly higher than that for the other three treatments. Compared to non-treated cells, significant extension of lag time was observed for all treated cells. The longer exposures to heat treatment contributed to the extended lag time of the survivors. While for LA, BC and nisin treated cells, the longest lag time was not observed at the most severe treatment conditions. The correlation analysis of sublethal injury percentage on the duration of lag time revealed that only heat treatment showed the significant correlation. Overall, the lag time analysis could evaluate a wide range of bacterial injury. Lag time of treated cells was significantly influenced by stress treatments and temperatures of recovery, however, there were not any significant changes in the maximum specific growth rate between treated and non-treated cells under isothermal recovery conditions. The information generated from this study is valuable for utilizing intervention strategies in the elimination or growth inhibition of L. monocytogenes.

Keywords: Listeria monocytogenes, inactivation, growth parameters, sublethal injury, pathogens control


INTRODUCTION

Listeria monocytogenes is the causative agent of human listeriosis, a life threatening foodborne disease commonly associated with consumption of contaminated food products, especially ready-to-eat (RTE) foods (Swaminathan and Gerner-Smidt, 2007). Previous studies reported that fatality rate of listeriosis was up to 15.6% in European Union in 2018 (European Centre for Disease Prevention and Control [ECDC], 2019). In China, in spite of rare listeriosis outbreaks, high contamination rate was reported in retail foods, which could also cause a high potential risk to human health (Wu et al., 2016). Due to high fatality rate of listeriosis and high tolerance of L. monocytogenes against food processing stresses such as low temperature, pH, aw or high salinity, the bacterium has been identified as the one of the most dangerous pathogens associated with food products (Ferrentino et al., 2015). Therefore, it is vital to understand the response of L. monocytogenes to multiple food related stresses, and take into account growth kinetic parameters of survivors in different environments in order to design appropriate intervention strategies to control the level of L. monocytogenes in food chain.

Two important parameters inherent to L. monocytogenes growth kinetics are the lag time (λ) and the maximum specific growth rate (μmax), and it is necessary to predict the two parameters accurately because outgrowth of L. monocytogenes is unacceptable in food products. The lag time reflects an adjustment period during which bacterial cells repair injuries caused by any stress, and modify themselves in order to initiate exponential growth in the new environment. Compared to reliable information on the maximum specific growth rate, the lag time is usually difficult to be predicted accurately due to poor understanding of initial physiological state of cells and/or repair of injured cell structures (D’Arrigo et al., 2006). The duration of lag time depends on numerous factors, including actual growth environments such as physical or chemical conditions. In addition, the history (physiological state in previous environments) of cells can also significantly influence the lag time in the actual growth environments, many studies have demonstrated that bacterial cells show shorter lag time when changes are smaller between previous and actual growth conditions (Francois et al., 2007; Yue et al., 2019). However, L. monocytogenes is routinely exposed to bactericidal treatments such as heat, organic acids, quaternary ammonium compounds and bacteriocins stresses (Shi et al., 2013; Humayoun et al., 2018) in food or food processing environments, and mild bactericidal treatments for food preservation are being utilized to obtain microbiologically safe food products and satisfy consumers’ demands for minimally processed foods. The mild process may result in surviving L. monocytogenes cell populations, which most likely exhibited the state of sublethal injury. This suboptimal physiological state of cells could considerably extend the duration of lag time because of self-repairing process of injured cells in the appropriate growth environments (Yuste et al., 2004). After resuscitation, L. monocytogenes possesses full virulence, giving rise to a threat to public health. Therefore, injury induced by exposure to the mild bactericidal treatments influences the growth behavior of surviving cells. This emphasizes the importance of understanding the growth of L. monocytogenes after different mild bactericidal treatments.

In the present study, we investigated the effects of three types of treatments (physical, chemical, and biological bactericidal treatments) with heat, lactic acid (LA), benzalkonium chloride (BC) and nisin on the inactivation, sublethal injury, and subsequent growth of L. monocytogenes. Stress exposure conditions were selected to encompass various potential sublethal stresses encountered by L. monocytogenes in foods or food processing environments. In addition, the effects of various recovery temperatures (20, 25, 30, and 37°C) on growth parameters of treated L. monocytogenes were also determined.



MATERIALS AND METHODS


Bacterial Strain and Culture Conditions

Listeria monocytogenes (ATCC 19112) purchased from the China Center of Industrial Culture Collection (Beijing, China) was used in this study. Frozen stocks of bacteria were maintained in Tryptone Soy Yeast Extract Broth (TSB-YE; Beijing Land Bridge Technology Co., Ltd., Beijing, China) with 50% glycerol at −80°C. Working stocks were stored at 4°C on Tryptone Soy Agar with 0.6% Yeast Extract (TSA-YE; Beijing Land Bridge Technology Co., Ltd., Beijing, China) and were renewed monthly. Prior to each experiment, a single colony was inoculated into 10 mL of TSB-YE and incubated in a shaker with 110 rpm at 37°C for 16–18 h. Then 100 μL of overnight culture was transferred into 10 mL of fresh TSB-YE and incubated at same conditions to yield stationary phase cells which contained approximately 109 CFU/mL cells.



Mild Bactericidal Treatments

Four mild bactericidal treatments included one physical treatment with heat, two chemical treatments with LA and BC, and one biological treatment with nisin. Before each treatment experiment, 1 mL stationary phase cultures were centrifuged at 5,000 g for 10 min (Thermo Fisher Scientific Co., Ltd., Shanghai, China). Harvested cells were washed twice with 0.85% saline solution and re-suspended in 1 mL 0.85% saline solution to yield a cell density of ca. 109 CFU/mL. Stress exposure conditions were adjusted to suitable parameters leading to approximately 1.5–2.5 log CFU/mL reduction in cell counts. After each stress exposure, the surviving cells were placed at 25°C for recovery and subsequent growth. The lag time was monitored by using TTD (Time to Detection) method based on optical measurements (see below).


Heat Treatment

Mild heat treatment of L. monocytogenes was performed at 48°C for different treatment time (30, 60, 90, 120, and 150 min) according to preliminary experiments. It was carried out using thin walled PCR tubes (Shanghai Generay Biotech Co., Ltd., Shanghai, China) containing 30 μL culture and a thermal cycler instrument (Analytik Jena AG, Germany). The heating program was initially set at 37°C for 1 min in order to reduce and standardize the time to reach the target heat treatment temperature, and test tubes were removed at the set time intervals after the cultures had reached 48°C (Wang et al., 2017). After heat treatment, PCR tubes were immersed immediately in an ice-water bath for 1 min. Subsequently, decimal dilutions were made and plated, and then incubated at 37°C for 48 h before surviving cells’ enumeration.



Lactic Acid, Benzalkonium Chloride, and Nisin Treatments

Stress treatments were performed by incubating L. monocytogenes cells with corresponding solutions at 25°C in a static incubator (Keer Equipment Co., Ltd., Nanjing, China). LA (40 mmol/L, Kuling Fine Chemical Co., Ltd., Shanghai, China), BC (70 mg/L, Macklin Biochemical Co., Ltd., Shanghai, China) and nisin solution (900 IU/mL, Meryer Chemical Technology Co., Ltd., Shanghai, China) was separately prepared by dissolving the solute in 0.85% saline, and sterilized by filtration through 0.22 μm membrane filter units. For LA stress exposure, 1 mL harvested stationary cells were re-suspended in 1 mL LA solution for different treatment time (20, 40, 60, 80, and 100 min). For BC treatment, L. monocytogenes cells were incubated for 12, 24, 36, 48, 60, and 72 min, respectively. For nisin, cells were treated from 12 to 60 min and removed at a time interval of 12 min. Treated cells were harvested by centrifugation at 5,000 g for 10 min, and re-suspended in 1 mL TSB-YE for further analysis.



Viable and Sublethally Injured Cell Counts

The counts of L. monocytogenes were enumerated by a traditional plating method. Each sample was serially (1:10) diluted with 0.85% NaCl solution and appropriate dilutions were plated on TSA-YE (the non-selective medium) and TSA-YE with 5% NaCl (the selective medium) (Uyttendaele et al., 2008). Both vital and injured cells were able to grow on TSA-YE, while those which appeared on TSA-YE with 5% NaCl were regarded as only uninjured cells (Ray et al., 1978). Following formula (Busch and Donnelly, 1992) was used to calculate the percentage of sublethally injured cells:
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Time-averaged injured cells coefficient (TICC) was calculated to quantify the sublethally injured cells for the whole treatment time, and the equation is as follows (Miller et al., 2006):

[image: image]

Where t is the bactericidal treatment time, tinitial and tfinal are the first and last sampling time, respectively.



Optical Density Measurements

The effects of heat, LA, BC, and nisin treatments on the subsequent growth of L. monocytogenes were determined by growth curves using an automatic Bioscreen C system (Oy Growth Curves Ab Ltd., Helsinki, Finland). Treated and non-treated cultures were serially diluted (1:10) in TSB-YE, and 200 μL volume of different dilutions with concentrations ranged from 106 to 102 CFU/mL were added to 200 wells of two honeycomb plates. The honeycomb plates were placed in the Bioscreen C at an incubation temperature of 25°C, and the growth of L. monocytogenes was monitored by reading OD600 of the wells at 10 min intervals. For each well, the time to reach an OD600 of 0.15 from the start of incubation (OD600 = 0.10) was determined, and a cell concentration of approximately 107 CFU/mL corresponding to an OD600 value of 0.15 was determined by the count of plated viable cells. Honeycomb plates were shaken at medium intensity for 20 s before every measurement, and each stress experiment was repeated three times. After heat treatment for 150 min, LA treatment for 20 min, BC treatment for 48 min and nisin treatment for 24 min, treated cells were incubated at 20, 25, 30, and 37°C to compare the effects of recovery temperatures on growth parameters of treated L. monocytogenes by using TTD method described above.



Estimation of Growth Parameters of Listeria monocytogenes

The growth parameters of treated and non-treated L. monocytogenes were calculated based on TTD method. The μmax value was calculated as the reciprocal of the absolute value of the regression slope of Td (detection time) versus natural logarithm of initial cell concentration. The initial cell concentration for each dilution was determined by serial dilution and plating on TSA-YE, followed by incubation at 37°C for 48 h. Lag time of L. monocytogenes was estimated based on the following equation (Baranyi and Pin, 1999):
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Where, Nd is the bacterial number at the turbidity detection level (CFU/mL); N0 is the initial concentration of cells (CFU/mL); Td is the turbidity detection time (h); μmax is the maximum specific growth rate (h–1) under the experimental conditions described above.



Modeling Inactivation Kinetics of Listeria monocytogenes

After each treatment time, the counts of L. monocytogenes were converted to log10 values, and the survivors (log10 Nt) were represented vs. the treatment time (min for heat, LA, BC and nisin treatments) to construct survival curves. The Bigelow model and Log-linear model with tail were, respectively, used to fit the linear and non-linear inactivation kinetics obtained in our selected conditions, and inactivation parameters were obtained on the software GInaFiT (version 1.6) (Geeraerd et al., 2005). The goodness of fitting was evaluated by root mean squared error (RMSE). The equations and relevant parameters of the selected models are as follows (Bigelow, 1921; Geeraerd et al., 2000):
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Where, Nt represents the counts of survivors (CFU/mL); N0 represents the initial counts (CFU/mL); kmax is the specific inactivation rate (min–1); t is the exposure time of each treatment (min); Nres represents the residual population (CFU/mL).



Modeling the Effects of Different Temperatures on Growth Parameters

The λ and μmax values of non-treated and treated L. monocytogenes cells were further analyzed as a function of recovery temperatures to develop the secondary model. The equations and relevant parameters of the models are as follows (Ratkowsky et al., 1982):
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Where, λ is the lag time (h); μmax is the maximum specific growth rate (h–1); b is the regression constant; T0 is the minimum temperature required for growth of L. monocytogenes (°C); T is the recovery temperature (°C).



Statistical Analysis

All experiments were repeated three times, means and standard deviations were determined from independent triplicate trials. Single-factor analysis of variance (ANOVA) and Tukey’s test by SPSS 25 (SPSS Inc., Chicago, IL, United States) was used to test for any significant difference between means for sake of multiple comparisons. Correlation coefficients were calculated to conduct the correlation analysis of stresses for λ value. A significant level of 0.05 with p value was used in each case.



RESULTS AND DISCUSSION


Inactivation of Listeria monocytogenes by Mild Bactericidal Treatments

The survival of L. monocytogenes subjected to the four bactericidal treatments was evaluated, and the survival curves obtained from selective and non-selective media are shown in Figure 1. Overall, the inactivation curves exhibited two different patterns, log-linear and log-linear with tail. The Bigelow model successfully described the inactivation curves of heat treated cells. Similar thermal inactivation kinetics were also observed by Wang et al. (2017) and Haskaraca et al. (2019) while performing mild heat treatments of L. monocytogenes. The Bigelow model and relevant D value parameter have been extensively used to describe the microbial thermal inactivation in many studies. However, more and more reports have emphasized that non-linear models are more suitable than log-linear model for describing microbial heat inactivation curves, especially for mild heat treatments (Augustin et al., 2010; Aryani et al., 2015). A study of Marcén et al. (2019) indicated that mild heat (58°C) inactivation curve showed a shoulder. Similar results were also found in the thermal inactivation kinetics of Salmonella enterica (Wang et al., 2017). The Shoulder phenomena can be attributed to the presence of sublethally injured cells in the treated population, and their subsequent accumulation leading to sublethal injury during the manifestation of shoulders (Lou and Yousef, 1997). In fact, many studies have supported that heat inactivation kinetics present shoulders or tails, which are often fitted with the Weibull model (Aryani et al., 2015; Arioli et al., 2019). In this context, when estimating the effectiveness of heat treatments, non-linear kinetics could be taken into account upon existence of shoulders or tails.
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FIGURE 1. Observed survival curves of L. monocytogenes after 48°C (A), LA (B), BC (C), and nisin (D) treatments.


The log-linear model with tail consistently offered the most accurate fit to LA, BC, and nisin inactivation curves of cells recovered from both media based on the small RMSE values (RMSE ≤ 0.133, data not shown). Many authors focused their attention on inactivation level of foodborne pathogens after exposure to a fixed LA or BC treatment time (Shi et al., 2017; Kang et al., 2019; Andrade et al., 2020), but there are limited studies on relevant inactivation kinetics of L. monocytogenes. In this study, tails appeared at an inactivation level of approximate 2 log cycles, especially for nisin treatment. When 900 IU/mL nisin was applied, the L. monocytogenes counts reduced significantly (p < 0.05) as the treatment time increased from 0 to 12 min, and counts of survival cells remained approximate 7 log CFU/mL in 12–60 min stress exposure. The inactivation kinetics of L. monocytogenes cells to nisin treatment obtained in the present study were in agreement with that of Shi’s study (Shi et al., 2013). The occurrence of tails could be attributed to different factors, such as the presence of resistant cells subpopulation, adaptation phenomena along the treatment time.

Results in our study reflected differences among inactivation curves depending on the treatments applied, especially the inactivation kinetics of L. monocytogenes cells exposure to three treatments showing tail phenomena, which indicated possible adaptation phenomena along the treatment time. Therefore, from a practical point of view, when mild bactericidal treatments are designed, determination of inactivation kinetics should be taken into account to select process conditions applicable and avoid overestimation of bactericidal effectiveness, and further studies can be conducted by a deeper knowledge of their mode of action on foodborne pathogens to obtain a better profit of all these bactericidal technologies.



Stresses Induced Sublethal Injury Based on Differential Plating

The percentage of L. monocytogenes injury based on differential plating and TICC values after exposure to heat, LA, BC and nisin stresses are shown in Figure 2. The percentage of injury to heat, LA, BC, and nisin stresses ranged from 24.80–73.79, 20.05–50.93, 6.35–47.70, and 94.98–98.85%, respectively, which indicated the existing of different level of injured cells. Percentage of injury for non-treated cells was equal to zero (data not shown). In case of nisin treatment, the estimated ratio of injured bacterial cells was over 95% after 12 min exposure, and it was close to 100% as the treatment time went on (Figure 2D). As a whole, the percentage of injury in nisin treated cells was significantly higher than that in the other three treatments (p < 0.05), and this is also confirmed by the TICC value for the whole nisin treatment time (87.62%). Nisin has effective antimicrobial activities against Gram-positive bacteria including L. monocytogenes, and the cytoplasmic membrane is the target for nisin action (Martins et al., 2010). The TICC value in the present study revealed that nisin stress caused the high degree of cell membrane damage, which was also an indication of mechanism of relevant antimicrobial action. The possible reason for high sublethal damage rather than direct inactivation is that adaption phenomena along the treatment time induced the emergence of nisin-resistant cells subpopulation. This is demonstrated by Harris et al. (1991), which has described the presence of nisin-resistant mutants after exposure of nisin-sensitive L. monocytogenes cells to relatively high concentrations of nisin. Resistance could be associated with a barrier including changes in fatty acid and phospholipid composition of the cytoplasmic membrane which prevent the nisin from crossing the barrier (Davies et al., 1996). Actually in food matrices, nisin has low solubility and can interact with phospholipids and proteins, which lead the efficacy of nisin to last for only a short time (Chen et al., 2014). From a practical point of view, combination of other bactericidal technologies and nisin could overcome the limitation of nisin. Moreover, the application of nisin at lower concentrations could also reduce the rate of emergence of nisin-resistant cells along the treatment time.
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FIGURE 2. Percentage of sublethal injured L. monocytogenes cells and TICC values (dashed line) after exposure to heat (A), LA (B), BC (C), and nisin (D) stresses based on differential plating.


When subjected to the other three stresses (heat, LA, and BC), L. monocytogenes had low percentage of injury, especially for BC treatment. For heat treatment, the evaluated proportion of heat injured cells had an increasing trend with increasing treatment time (0–150 min). Kawasaki et al. (2018) have reported similar results for Salmonella Enteritidis in PBS and ground beef at 52.5°C for 0–60 min. As is shown in Figure 2, the TICC values of heat, LA and BC induced injured L. monocytogenes cells were only 35.20, 36.60, and 20.89%, respectively. It has been described before that the LA treatment (1,000 mmol/L, 4 min) resulted in almost 100% sublethal injury of E. coli O157:H7 (Smigic et al., 2009). This could be associated with the different bacteria, different concentrations and exposure time of LA used in their studies. The use of LA has been an authorized decontaminating treatment in beef production, which was proposed by the European Food Safety Authority in 2011 (EFSA Panel on Biological Hazards [BIOHAZ], 2011). In addition, BC, as a kind of Quaternary Ammonium Compounds (QACs), has been widely used for disinfecting the surfaces in food production environments (To et al., 2002). In food industry, bacteria are inevitably exposed to sublethal concentrations of sanitizing compounds, and this could induce injured cells subpopulation or adaption of initially susceptible bacteria. Therefore, evaluation of the degree of sublethal injury is critical to the safety of final products that have undergone food processing.



Growth Lag Time of Listeria monocytogenes After Mild Bactericidal Treatments

The lag time prediction of foodborne pathogens is useful for microbial risk assessment. To accurately predict and then control the growth of L. monocytogenes in food products, it is important to understand the effects of various stresses experienced history on the lag time. In the present study, TTD method based on the Baranyi growth model was used to monitor L. monocytogenes growth after mild bactericidal treatments. This method is known for its high efficacy to estimate the λ and μmax values without requirement of calibration between cell numbers and absorbance. The effects of heat, LA, BC, and nisin stresses on the lag time of L. monocytogenes are shown in Figure 3. Compared to non-treated cells, observed significant extension of lag time was a direct consequence of prior sublethal injury (p < 0.05). When the final reductions in the number of viable cells were 1.5–2.5 log units, lag time was significantly different among the four treatments with heat treated cells exhibiting the longest lag time, followed by that of nisin, LA and finally BC treated cells. Heat treated cells showed the lag time in the range of 5.86–9.68 h. The longer time the heat treatment was the longer was the lag time of survivors. In contrast, for LA, BC, and nisin treated cells, longer exposure time did not reveal the longer lag time. Moreover, it did not correspond to the maximum level of injury obtained by differential plating. To compare the effects of sublethal injury percentage on lag time, the correlation coefficients have been evaluated and illustrated in Figure 4. The correlation coefficient of heat treatment for lag time was highest (0.850), and value close to 1 indicated almost linear positive correlations (p < 0.05). Furthermore, the correlation coefficients of LA, BC and nisin treatments were 0.42, 0.51, and 0.52, respectively. However, the results of statistical analysis revealed no significant correlations between percentage of injury and lag time of LA, BC, and nisin treated cells (p > 0.05). As a whole, these results would indicate that only heat induced injury and lag time of L. monocytogenes exhibited a significant correlation.
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FIGURE 3. Effects of different exposure time of heat (A), LA (B), BC (C), and nisin (D) stresses on the lag time of L. monocytogenes.
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FIGURE 4. Correlation coefficients of heat, LA, BC, and nisin treatments induced percentage of injury for lag time.


Four mild bactericidal treatments used in the present study are some of the most studied decontamination treatments with heat, organic acids, quaternary ammonium compounds and peptide antimicrobial agents. As expected, compared to non-treated cells, significant extension of lag time revealed the existence of the injured cells in the surviving population for all conditions tested, which was consistent with the results of other studies. For instance, in the study of Xuan et al. (2017), the effect of injury caused by heat (55°C) on the growth parameters indicated that larger λ value was observed in heat injured L. monocytogenes as compared to control group. Similar results were also found in the λ value of injured L. monocytogenes cells after acid (pH 4.2), osmotic (10% NaCl) and heat (55°C) stresses (Sibanda and Buys, 2017). Up to now, many authors have focused their attention on the lag time of injured foodborne pathogens after exposure to a fixed bactericidal treatment time, however, not much literature is available on how the lag time changes after different treatment time.

Sublethal injury of foodborne pathogens has huge implications on food safety, and ability to detect injured microorganisms is critical since injured cells can resuscitate and then possess full virulence in a favorable environment. To estimate the amount of sublethally injured cells after bactericidal treatments, conventional selective techniques and other detection methods such as flow cytometry and fluorescent metabolic probes have been used in most studies (Uyttendaele et al., 2008; Zhang et al., 2020). According to these methods, the proportion of injured cells in the population can be calculated, with the outcome largely dictated by incubation conditions (such as temperatures and atmospheres) and detection methods. Sibanda and Buys (2017) assessed the degree of stress induced injury by using differential plating and flow cytometry coupled with membrane integrity indicators. The results indicated that both methods showed significant difference among stress treatments, and membrane integrity was not a sufficient indicator of heat stress injury. For differential plating method, due to the differences in recovery ability of bacteria, the percentages of injury also depend on the types of selective media. For instance, selective media based on NaCl supplement can only detect the sublethal membrane damage of cells, while several other damaged cellular targets such as enzymes, RNA and DNA can’t be detected, so this outcome implies a potential for under-estimation of injury (Miller et al., 2006). In addition, calculated percentage of injury based on differential plating method only indicates the portions of amounts of injured cells in the population (it may range from 0 to 100%), which reflect all cells in the population are at the same degree of injury. However, due to individual cell heterogeneity, responses to stress exposures differ among stress sensitive and resistant cell subpopulations, so injured populations are often a mixture of cells in different physiological states (various degree of injury) (Casadesús and Low, 2013), some cells in the population are more damaged than others. Therefore, although differential plating method can evaluate percentage of amounts of injured cells, this method only reflect the level of injury (based on the amounts of injured cells) rather than the degree of injury (based on different physiological states).

It is well known that compared to uninjured cells, injured cells can present the extension of lag time due to the resuscitation behavior, so the lag time length of injured cells might be useful for evaluating the degree of sublethal injury. Kawasaki et al. (2018) described the growth delay time (GDT, the difference of λ value between treated and non-treated cells) of Salmonella Enteritidis by real-time PCR monitoring assay, which was then compared with traditional culture method. Results showed that calculated percentage of injured cells was 100% during 24–48 min treatment since bacterial colonies were not detected on selective medium. The differential plating method was only able to evaluate the degree of injury until a stress exposure time of 12 min. However, the GDT significantly increased with the prolonged treatment time (24–48 min), which indicated that GDT could evaluate a wider range of bacterial injury than the traditional culture method. In the present study, as are shown in Figures 2, 3, a similar finding was also observed in case of nisin treatment, the estimated ratio of injured bacterial cells was 98.71% after 36 min exposure, which was not significantly different among different treatment time (36–60 min), thus indicating constant level of sublethal injury along the treatment time by traditional culture method. However, the λ value obtained by TTD method revealed that injury to microbial cells was still in a dynamic change. The present findings revealed the significance of lag time analysis to evaluate a wide range of bacterial injury, which can quantify the degree of injury more accurately than differential plating method.



Growth Parameters Under Different Recovery Temperatures

The λ and μmax values of L. monocytogenes after heat, LA, BC, and nisin treatments at recovery temperatures of 20, 25, 30, and 37°C were evaluated (Table 1). For all the treatments, significant shorter λ and higher μmax values were observed at higher recovery temperatures. Stress treatments and recovery temperatures had significant effects on λ values (p < 0.05), while regardless of stress treatments, μmax only varied significantly at recovery temperature from 20 to 37°C (p < 0.05). When compared to non-treated cells, λ values for treated cells were significantly higher (p < 0.05) at each recovery temperature, and there were no great change in the μmax values between treated and non-treated cells under isothermal recovery conditions in spite of results of statistical analysis indicating significant difference in some cases.


TABLE 1. Growth parameters of L. monocytogenes at 20, 25, 30, and 37°C after heat, LA, BC, and nisin treatments.

[image: Table 1]
In bacterial growth kinetics, the λ value of cell population is influenced by the physiological state prior to environmental change, especially sublethal injury induced by various stresses (Augustin et al., 2000). From the results of our study, compared to other recovery temperatures, the observed shorter λ values at 37°C for each treatment could be attributed to a quicker repair rate. This could be associated with the relevant protein synthesis, particularly enzymes that contribute to synthesis of membrane lipids necessary for repairing damaged cell membranes (García et al., 2006). In fact, for stress induced injured cells, other functional components such as DNA and RNA of bacterial cells can also be damaged (Chilton et al., 2001), which need to be repaired before cells can commence division again. The μmax of treated L. monocytogenes cells showed no significant variation among treatments and was expectedly decreased from 37 to 20°C, which reflected temperature dependence of bacterial growth in the exponential phase. Similar results were also observed in Francois et al.’s (2007), which showed that recovery temperature affected both λ and μmax values, whereas stresses influenced λ value only. To evaluate the effects of recovery temperatures on growth parameters of stresses treated L. monocytogenes cells, the square root model was tested. As shown in Figure 5, the reciprocal of square root of λ and the square root of μmax showed linear relationships with recovery temperature in the control and all treatments, and the small RMSE values (RMSE ≤ 0.064, data not shown) indicated that the established secondary models showed good performances. Sant’Ana et al. (2012) used the square root model to investigate the changes in growth parameters (λ and μmax) of S. enterica and L. monocytogenes in minimally processed lettuce as a function of temperature. The results also showed that models obtained were accurate and suitable for modeling the growth of S. enterica and L. monocytogenes. In addition, other secondary models such as hyperbolic and polynomial models have also been reported (Swinnen et al., 2004; Aguirre et al., 2013). From a practical point of view, temperature is a major environmental factor affecting bacterial growth parameters in foods. Furthermore, since the L. monocytogenes cells are damaged rather than being entirely killed after mild bactericidal treatments, therefore information on the growth kinetics of injured cells should be developed to help obtain reliable outputs when injured cells of foodborne pathogens are taken into account in the risk assessment.


[image: image]

FIGURE 5. The square root of the μmax (A) and reciprocal of square root of the λ (B) of L. monocytogenes after various treatments as a function of recovery temperatures.




CONCLUSION

This study sought to evaluate the effects of four mild bactericidal treatments (heat, LA, BC, and nisin) on the inactivation, sublethal injury, and subsequent growth of L. monocytogenes cells, and the growth parameters at different recovery temperatures (20, 25, 30, and 37°C) were further determined. The obtained results demonstrated that the four bactericidal treatments induced sublethally injured cells. Percentage of sublethal injury was shown to be dependent on the type of selected bactericidal treatments. Compared to non-treated cells, mild bactericidal treatments induced significant extension of lag time of L. monocytogenes. Based on the correlation analysis of sublethal injury percentage on lag time, it indicated that only heat treatment showed the significant correlation. In addition, information regarding λ value of treated L. monocytogenes from this study was useful for determining a wide range of bacterial injury levels. Once repairing the cellular damage, the μmax parameter of treated L. monocytogenes cells was not different from non-treated cells regardless of different forms of stresses. As a whole, the results obtained in our study are valuable for helping understand the behavior of L. monocytogenes under various mild bactericidal treatments, and the resuscitation behavior of sublethal injured bacterial cells should be taken into account in the predictive modeling and risk assessment studies to reduce the potential food safety risks of stress injured L. monocytogenes cells.
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Conventional regression analysis using the least-squares method has been applied to describe bacterial behavior logarithmically. However, only the normal distribution is used as the error distribution in the least-squares method, and the variability and uncertainty related to bacterial behavior are not considered. In this paper, we propose Bayesian statistical modeling based on a generalized linear model (GLM) that considers variability and uncertainty while fitting the model to colony count data. We investigated the inactivation kinetic data of Bacillus simplex with an initial cell count of 105 and the growth kinetic data of Listeria monocytogenes with an initial cell count of 104. The residual of the GLM was described using a Poisson distribution for the initial cell number and inactivation process and using a negative binomial distribution for the cell number variation during growth. The model parameters could be obtained considering the uncertainty by Bayesian inference. The Bayesian GLM successfully described the results of over 50 replications of bacterial inactivation with average of initial cell numbers of 101, 102, and 103 and growth with average of initial cell numbers of 10–1, 100, and 101. The accuracy of the developed model revealed that more than 90% of the observed cell numbers except for growth with initial cell numbers of 101 were within the 95% prediction interval. In addition, parameter uncertainty could be expressed as an arbitrary probability distribution. The analysis procedures can be consistently applied to the simulation process through fitting. The Bayesian inference method based on the GLM clearly explains the variability and uncertainty in bacterial population behavior, which can serve as useful information for risk assessment related to food borne pathogens.
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INTRODUCTION

Predictive microbiology models explain bacterial number variations over time and how growth/inactivation rates are affected by environmental conditions (Lammerding and Fazil, 2000). In the development process of mathematical or statistical models, experimental data are collected, a model is selected, and curve fitting is applied to the data for parameter estimation. Least-squares estimation has been the most widely used curve fitting procedure (Gil et al., 2017). The least-squares methods in frequentist statistics assume that the experimental error follows a normal distribution, and studies conducted thus far have described the experimental error using a normal distribution (van Boekel, 2020). In the case of bacterial growth or inactivation kinetics, the model residual with respect the logarithmic number of cells has been assumed to follow a normal distribution (Ratkowsky et al., 1996), though the reason for this assumption is unclear given the variability and uncertainty in bacterial population behavior. The current model residual based on the normal distribution cannot clarify the origin of the error, which means that we need to identify what type of error is included, how the error can be separated, and how large the error is.

A predictive model has been employed for exposure assessment in risk assessment to quantify the changes in the number of bacteria along the farm-to-fork chain. Exposure assessment is necessary to qualitatively and/or quantitatively assess the likelihood of ingestion of pathogens (FAO/WHO, 2008). A quantitative exposure assessment requires the development of a model that mathematically describes all the relationships between the factors influencing the exposure (FAO/WHO, 2008). Since point estimation is performed using the mean values in the kinetic model (FAO/WHO, 2008), it is difficult to appropriately estimate the changes in bacterial behavior characterized by individual cell variation. To describe the variation in bacterial behavior considering the variability and uncertainty, the need to distinguish between variability and uncertainty has been pointed out (Nauta, 2000).

The generalized linear model (GLM) is an approach incorporating various probability distributions into a fitting procedure to describe variability. The GLM, introduced by Nelder and Wedderburn (1972), has been used to describe variabilities, including discrete count data. Because a normal distribution is continuous and can take negative values, it is inappropriate for count data, which are discrete and can only take zero and positive integers, such as bacterial cell numbers. A discrete probability distribution integrated into the GLM would be suitable for expressing biological count data instead of a continuous distribution such as a normal distribution. The Poisson distribution is often used to describe death events at certain time intervals in survival analyses (Dickman et al., 2004; Dickman and Coviello, 2015). A negative binomial distribution is used for over dispersal count data in the field of ecology (Ver Hoef and Boveng, 2007). The GLM can be handled by both frequentist statistics and Bayesian inference. A GLM with Bayesian inference is often used to avoid over fitting (Dey et al., 2000). A Bayesian GLM can flexibly integrate various probability distributions as model residuals and parameter uncertainty.

Another problem in the current frequentist statistical fitting procedure is the point estimation of a model parameter. The model parameters in frequentist methods, such as the least-squares method and maximum likelihood, are often estimated by fitting the model to the data. The parameters are determined at one point in the estimation. However, because the experimental data are uncertain in a real situation, the obtained parameters are also uncertain (Garre et al., 2020; van Boekel, 2020). Therefore, the estimated parameters exhibit unexplained fluctuations (van Boekel, 2020), and parameter estimation requires considering parameter errors (Dolan and Mishra, 2013). Furthermore, many types of uncertainties exist, such as model uncertainty and parameter uncertainty (FAO/WHO, 2008). In previous studies, model parameters were estimated using Bayesian inference (Jaloustre et al., 2011; Koyama et al., 2019; van Boekel, 2020). Bayesian inference has been used as a means to quantitatively estimate parameter uncertainty (Pouillot et al., 2003; Crépet et al., 2009; Koyama et al., 2019).

In the present study, a Bayesian GLM was introduced to fit observed bacterial inactivation data and growth data, and simulate bacterial behavior considering variability and uncertainty. Two types of bacteria were investigated to show applicability of the model to spoilage and pathogenic bacteria. For the inactivation data, we used datasets published in literature pertaining to the thermal inactivation of Bacillus simplex. As the growth data, the data obtained by investigating the growth of Listeria monocytogenes at 25°C were used. The data used contained three observed colony count replications for developing kinetic models, and over 50 observed colony count replications for validating bacterial behavior with small initial cell numbers. Individual cell heterogeneity and initial cell numbers were considered as variability and described using several probability distributions integrated into the model residual. The parameter uncertainty was obtained by Bayesian inference. From fitting to prediction, we consistently consider the variability in bacterial behavior. The modeling procedure considering the variability and uncertainty can contribute to improving risk-based processing design and exposure assessment.



MATERIALS AND METHODS


Dataset


Inactivation Dataset

The data reported by Abe et al. (2019) were used in this study. In their study, Bacillus simplex, which is a psychrophilic spore-forming bacterium, originating from pasteurized milk acquired from Hokkaido Research Organization (Japan). The strain was cultured in Nutrient Agar (Eiken, Tokyo, Japan) with some components and then in Nutrient Broth (Merck) with some components at 30°C for 24 h, respectively. Bacillus simplex spores were obtained by culturing in Spo8-agar (Faille et al., 2007; Helmond et al., 2017). The Bacillus simplex in the suspension with 105 cells was thermally inactivated at 94°C for kinetic evaluation. Viable counts were estimated by plating onto nutrient agar (Eiken, Tokyo, Japan) at 30°C after 2 days. Three independent trials were conducted. Furthermore, 60 replications of bacterial inactivation with an initial cell number of 10n (n = 1–3) were used to observe the variation in bacterial inactivation.



Growth Dataset


Bacterial Strain and Inoculum Preparation

Listeria monocytogenes (ATCC 19118) was used in the present study. The bacteria was maintained at –80°C in tryptic soy broth (TSB; Merck, Darmstadt, Germany) containing 10 vol/vol% glycerol. The strain was activated by incubating the cells at 37°C for 24 h on tryptic soy agar (TSA; Merck) and twice at 37°C for 24 h in 5 mL of TSB to obtain a homogeneous and stable cell population. The cells were then collected by centrifugation (3,000 × g for 10 min). The resulting pellet was washed twice with TSB and re-suspended in 5 mL of TSB before the experiments.



Kinetic Evaluation of Bacterial Growth

Bacterial growth was investigated by colony counting methods. The inoculum [1 × 105 colony-forming units (CFU)/mL] was prepared by series 10-fold dilutions in TSB. Aliquots (100 μL) were dispensed into the wells of 8-well polymerase chain reaction (PCR) microplates for cell concentration of 104 CFU/100 μL per well. The high initial cell concentration was investigated for kinetic evaluation to avoid interference of variability derived from low cell concentrations. The microplates were incubated at 25°C. Samples were withdrawn at regular intervals to obtain kinetic data of microbial growth. At each sampling time, 8-well PCR microplates were incubated at 5°C to prevent further bacterial growth. The entire sample (100 μL) from each well was diluted by serial 10-fold dilution in TSB. The bacterial cell number was determined by plating 100 μL of the diluted suspensions on TSA plates, which were then incubated at 37°C for 24 h. The experiment was repeated independently three times.



Stochastic Evaluation of Bacterial Growth

Bacterial growth with a small number of initial cells (n = 50) were examined to evaluate the variation in cell growth. Suspensions with average of 10n (n = −1−1) CFU/100 μL were prepared by 10-fold dilution in TSB. Aliquots (100 μL) from the same inoculum culture were dispensed into wells of an 8-well PCR microplate by using an 8-channel micropipette. Cell growth (n = 50 replicates) was independently assessed in 50 wells of multiple 8-well PCR microplates. The microplates were incubated at 25°C. Samples were withdrawn at regular intervals to obtain probabilistic data of microbial growth. At each sampling time, the 8-well PCR microplates were incubated at 5°C to prevent further bacterial growth. The bacterial cell numbers were determined by direct plating of 100 μL of the culture onto TSA plates without dilution (average of initial cell numbers of 0.1: examined after 0–10 h; 1: 0–6 h; and 10: 0–4 h) or after diluting (1 cells: 8 and 10 h; 10 cells: 6, 8, and 10 h). The plates were incubated at 37°C for 24 h. Fifty independent replicates were analyzed.



Modeling

We introduced a Bayesian GLM instead of the currently used least-squares method. The Bayesian GLM can flexibly integrate various probability distributions as model residuals and parameter uncertainties, unlike the least-squares method. Figure 1 shows a conceptual diagram of the fitting procedure. Because the number of bacteria is count data, we used the Poisson distribution and negative binomial distribution as model residuals instead of the normal distribution.
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FIGURE 1. Comparison of frequentist and Bayesian statistical modeling. Bayesian statistics allows the use of parameters as random variables. The generalized linear model allows to use model residuals with various probability distributions.



Bayesian GLM for Inactivation Dataset

Figure 2A shows the conceptual diagram of the inactivation model. In the least-squares method used in frequentist statistics, the error in the logarithmic number of cells is assumed to follow a normal distribution (Figure 2A). In contrast, the error is assumed to follow a Poisson distribution in the inactivation process when using the GLM (Figure 2B).
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FIGURE 2. Comparison of the differences in the probability distributions assumed to represent bacterial variation during the inactivation process. Each graph shows changes in the probability density of the survival cell number with δ = 1, p = 1.2, and N0 = 103 cells (Equations 1 and 3). The solid line and points represent the inactivation kinetic and mean value of the probability distribution, respectively. The logarithmic survival cell number is assumed to follow a normal distribution (A), whereas the survival cell number is assumed to follow a Poisson distribution (B).


First, we show a kinetic model based on the least-squares method. The data with 105 inactivated cells were fitted to the Weibull model. The Weibull model was fitted to the inactivation data, and the Weibull model is described in Equation (1):
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where t, N_t, N_0, p, and δ denote the inactivation time, bacterial population at time t, initial number of cells, shape parameter, and scale parameter, respectively. Curve regression to the Weibull model was conducted using a non-linear least-squares method.

Next, we construct the GLM. Equation (1) can be transformed into Equation (2):
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Here, the bacterial cell number experimentally obtained via a dilution series was assumed to follow a Poisson distribution (Koyama et al., 2016). Therefore, it can be assumed that the initial cell data follow a Poisson distribution. In addition, we assumed that the inactivation rate of each cell was equal and that a cell inactivation event was independent of another event. The number of surviving cells can also follow a Poisson distribution under the assumption that the initial cells (which follow the Poisson distribution) die at random (Aguirre et al., 2009). Therefore, it can be assumed that the observed values of the number of surviving bacteria obtained at each time are taken from a Poisson distribution with an average of N0×10−(t/δ)p, and the bacterial population at time t (N_t) can be described as in Equation (3):
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In this study, the parameters (δ and p) and the initial bacterial count (N_0) were estimated from the heating time (t) and the number of surviving bacteria at each time (N_t). The random variable in the number of cells is Poisson-distributed, which is equivalent to the model residual of the dependent variable in the GLM. The Bayesian GLM is constructed using Equation (3).



Bayesian GLM for the Growth Dataset

Figure 3 shows a conceptual diagram of the growth model. In the least-squares method used in frequentist statistics, the error in the logarithmic number of cells is assumed to follow a normal distribution (Figure 3A). In contrast, the error in the initial cell number is assumed to follow a Poisson distribution, and the error in the number of divisions during the exponential phase is assumed to follow a negative binomial distribution (Figure 3B).
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FIGURE 3. Comparison of the differences in the probability distributions assumed to represent bacterial variation during the growth process. Each graph shows changes in the probability density of the cell number with μ = 2.5, λ = 0.7, and N0 =  3 cells (Equations 4 and 5). The solid line and points represent the growth kinetics and mean value of the probability distribution, respectively. The logarithmic cell number is assumed to follow a normal distribution at all times (A). The initial cell number is assumed to follow a Poisson distribution, and the growth number of divisions is assumed to follow a negative binomial distribution (B).


First, we show a kinetic model based on the least-squares method. The growth model used in this study was based on a three-phase linear model (Buchanan et al., 1997; McKellar and Lu, 2003) without a stationary phase. In this study, to simplify the calculation, the stationary phase was not included in the data used for the analysis. The kinetic model is described in Equation (4):
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where t, N_0, N_t, μ, and λ denote the incubation time, initial cell number, number of bacteria, maximum growth rate, and lag time, respectively. Curve regression to the growth data was conducted using the least-squares method, and μ and λ were estimated.

Next, we construct the GLM. Here, as with the inactivation model, since the initial cells were experimentally obtained using a dilution series, the initial cells were assumed to follow a Poisson distribution. In addition, we assumed that the exponential growth rate of the individual cells is equal and that cell division is independent of another event (Coleman and Marks, 1999). Under these assumptions, a pure birth process is used to calculate the stochastic growth of bacteria (Renshaw, 1993; Coleman and Marks, 1999). In the pure birth process, the number of divisions can be described as a negative binomial distribution, as in Equation (5):
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where t, D_t, N_0, N_t, μ, and λ denote the incubation time, a total number of cell divisions in bacterial population up to time t, number of initial cells, number of bacteria, maximum growth rate, and lag time, respectively. In this study, Bayesian inference was conducted using the growth dataset in both the lag and exponential phases. The parameters (μ and λ) were estimated from the incubation time (t) and the number of bacteria at each time point (N_t). The Bayesian GLM is constructed using Equation (5).



Computation

In this study, the parameters were estimated using Bayesian inference. In Bayesian inference, the obtained data were considered to have been generated from a probability distribution, and all the parameters were estimated as a probability distribution. Bayesian inference can combine priors, even if no prior information is available. In this study, we used a uniform distribution as a non-informative prior distribution because there was no prior information. For each model, inferences were made on 104 iterations with four independent chains. The first 5,000 iterations of 104 iterations were removed as a warm up period and the rest 5,000 iterations were used as posterior parameters estimation. Convergence was verified by both visually checking the Markov Chain Monte Carlo chain traces and examining the Gelman and Rubin diagnostic called R-hat. The R-hat value should be close to 1.0. Computations were performed using PyStan and Python (version 3.7.7).



Simulation


Inactivation Dataset

Two parameters (δ and p) were obtained in pairs, and 2 × 104 sets (5,000 iterations × 4 chains) were obtained by conducting Bayesian inference. We simulated the inactivation behavior with average of initial cell numbers of 10n (n = 1–3) using 2 × 104 sets of parameters. We assumed that the initial cell number and the survival cell number at each time followed a Poisson distribution. The time t (min) was set from 0 to 6 at 0.05 (min) intervals. The time and parameter values were substituted into Equation (2), and the survival cell numbers (N_t) were calculated corresponding to each time and each parameter. We generated random numbers as many as 2 × 104 sets from the Poisson distribution with mean N0×10−(t/δ)p. The number obtained here was defined as the number of surviving cells at that time. The 2 × 104 predicted results were arranged in an ascending order, and the points corresponding to the top 2.5% and the bottom 2.5% were plotted. These lines were set as the 95% predicted interval, and the predicted results were compared with the observed values for 10n (n = 1–3) cell inactivation. The procedure for evaluating the predicted results was mostly based on a previous study (Hiura et al., 2020). The 2 × 104 prediction results at each time points were arranged in ascending order. If observed colony count was greater than the prediction corresponding to the lower 2.5% and less than the prediction corresponding to the upper 2.5%, the observed colony count was considered to be within the prediction range. The ratio of the number in the 95% prediction interval among the 60 observed values was calculated as the accuracy.



Growth Dataset

The parameters obtained in section “Computation” were used to predict the growth behavior with average of initial cell numbers of 10n (n = −1−1). We predicted the growth behavior at 10n (n = −1−1) initial cells using 2 × 104 sets of parameters.


(1) Simulation of initial bacterial number



The initial number of bacteria was assumed to follow a Poisson distribution. We generated random numbers as many as 2 × 104 sets from the Poisson distribution with mean N_0. The number obtained here was set as the number of initial cells.


(2) Simulation of the growth number of cells



The estimated parameters (μ and λ), the initial number of bacteria, and the time (t_i) to predict the number of bacteria were substituted into Equation (5), and the random number following a negative binomial distribution was generated. At the desired time (t_i), if ti≤ λ, the bacterial population could not grow. When ti > λ, we generated a random number following a negative binomial distribution. The obtained value was the division number at each time. The number of bacteria at each time point was predicted by adding this division number and the initial cell number.

The 2 × 104 simulated results obtained by the above procedure were arranged in an ascending order, and the points corresponding to the top 2.5% and the bottom 2.5% were plotted at each time. These lines were set at 95% predicted intervals, and the simulated results were compared with the observed values for 10n (n = −1−1) cell growth behavior. The procedure for evaluating the predicted results was as with section “Inactivation Dataset.” The ratio of the number in the 95% prediction interval among the 50 observed values was calculated as the accuracy.



RESULTS


Bayesian Inference and Prediction of Bacterial Behavior in the Inactivation Process

Figure 4 shows the dataset of the inactivation of B. simplex with 105 cells, and the fitted results by the least-squares method and Bayesian inference. Both kinetic and Bayesian fitting yielded similar results. As a regression to the Weibull model using the least-squares method in frequentist statistics, δ and p were 1.58 (standard deviation was 0.12) and 1.26 (standard deviation was 0.09), respectively. The root-mean-square error as a goodness-of-fit index was 0.18, which indicates a good fit. Figure 5 shows the posterior distributions of the parameters δ and p with Bayesian inference. Bayesian inference was conducted using data with a survival cell count of 0 colony forming unit (CFU). The R-hat value was 1.0 for each parameter, which indicates a good convergence. The mean values of δ and p were 1.59 (standard deviation was 0.11) and 1.21 (standard deviation was 0.15), respectively. The correlation coefficient between parameters δ and p was 0.18, indicating a poor positive correlation. The average values of the parameters estimated by Bayesian inference were comparable to the results estimated by the least-squares method used in frequentist statistics. However, the parameters were narrowed down to one point in the least-squares method, whereas the parameters were estimated as probability distributions in Bayesian inference.
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FIGURE 4. Survival kinetics of Bacillus simplex with a population of 105 cells, heated at 94°C. Each time has three replications. No colonies are detected at the time indicated by a cross (×). The dashed line indicates the fitted Weibull model by the least-squares method. The solid line indicates the median of the fitting by Bayesian inference.
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FIGURE 5. Histograms (on the diagonal), correlation plots (under the diagonal), and correlation coefficients (over the diagonal) of the estimated parameters δ and p resulting from Bayesian inference.


Figure 6 shows a comparison between the observed data and the simulated results by the model. The rates of validity of the number of cells within the 95% prediction band were 96, 99, and 96% for initial cell numbers of 850, 90, and 8, respectively. This result indicates that the simulation by this model covers almost the entire variation in the inactivation behavior.
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FIGURE 6. Comparison between observed and simulated Inactivation of Bacillus simplex with initial cell numbers of 103 (A), 102 (B), and 10 cells (C). The solid and dashed lines indicate the median of the prediction and the 95% predicted interval, respectively. Observed data are indicated by a circle.




Bayesian Inference and Simulation of Bacterial Behavior in the Growth Process

Figure 7 shows the dataset of the growth behavior of L. monocytogenes with a population of 104 cells incubated at 25°C, and the fitted results by the least-squares method and Bayesian inference. Both kinetic and Bayesian fitting yielded similar results. As a regression to the kinetic model using the least-squares method, μ and λ were 0.68 (standard deviation was 0.01) and 2.18 (standard deviation was 0.15), respectively. The RMSE was 0.05. Figure 8 shows the posterior distributions of the parameters μ and λ with Bayesian inference. The R-hat value was 1.0 for each parameter, which indicates a good convergence. The mean values of μ and λ were 0.71 (standard deviation was 0.14) and 2.72 (standard deviation was 0.01), respectively. The correlation coefficient between the parameters μ and λ was 0.69, indicating a positive correlation. The average values of the parameters estimated by Bayesian inference were comparable to the results estimated by the least-squares method used in frequentist statistics.
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FIGURE 7. Growth kinetics of Listeria monocytogenes with a population of 104 cells incubated at 25°C. Each time has three replications. The dashed line indicates the growth kinetics fitted by the least-squares method used in frequentist statistics. The solid line indicates the median of the fitting by Bayesian inference.
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FIGURE 8. Histograms (on the diagonal), correlation plots (under the diagonal), and correlation coefficients (over the diagonal) of the estimated parameters μ and λ resulting from Bayesian inference.


Figure 9 shows a comparison between the observed data and the results simulated by the model. The rates of validity of the number of cells within the 95% predicted interval were 80, 94, and 96% for average of initial cell numbers of 24, 2, and 0.3 cell, respectively. For 0.3 and 2 cell, the accuracy was calculated for observed values greater than 0 CFU. This result indicates that the model simulation covers almost the entire variation in the growth behavior of the small initial cell number.
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FIGURE 9. Comparison between observed and simulated growths of Listeria monocytogenes with average of initial cell numbers of 10 (A), 1 (B), and 10–1 cell (C). The solid and dashed lines indicate the median of the simulation and the 95% predicted interval, respectively. Observed data are indicated by a circle.




DISCUSSION

In the present study, we introduced Bayesian GLM to incorporate the variability and uncertainty into a predictive model. The estimated results of the parameter uncertainty by both the inactivation and growth models were represented in the form of a probability distribution (Figures 5, 8), which has not been considered in the conventional least-squares method. The estimated parameters enabled to predict the inactivation behavior at various initial cell numbers, such as 103, 102, and 10 cells, with an accuracy of over 90% (Figure 6). The estimated parameters of the growth model enabled to predict the growth behavior at various initial cell numbers, such as 24, 2, and 0.3 cell (Figure 9). In particular, for less than 2 cells, the growth behavior was predicted with a high accuracy of over 90%. The present model expresses the variation in the bacterial behavior at low cell concentrations, which is remarkable given the individual cell heterogeneity (Koutsoumanis and Lianou, 2013; Aspridou and Koutsoumanis, 2015). The Bayesian GLM was able to fit the inactivation and growth of the bacterial population and predict the bacterial behavior considering variability and uncertainty. This modeling procedure allows to consistently consider the variations in the actual bacterial behavior, from fitting to prediction.

As a means of expressing the variation in bacterial behavior, a stochastic model has been developed, that expresses the variability in bacterial behavior with a probability distribution (FAO/WHO, 2008). Several models that can represent variability in bacterial behavior have been developed. Previous studies have clarified that variability due to individual cell heterogeneity can be expressed using a probability distribution and Monte Carlo simulation (Poschet, 2003; Aspridou and Koutsoumanis, 2015). Others have suggested combining kinetic models with computer simulations to demonstrate variability in bacterial behavior (Abe et al., 2019; Hiura et al., 2020). Even if the variability is expressed by a Monte Carlo simulation after fitting the model, such a method is mathematically inappropriate because there are discrepancies in the model residuals during and after fitting. Therefore, in the present study, a consistent procedure, from fitting to prediction, was implemented by introducing the GLM and model fitting to the data considering the variability due to individual cell heterogeneity. The model fitting to the data and the bacterial behavior simulation can be conducted under the assumption of the same probability distribution in the process of fitting the model to the data and the simulation (Equations 3 and 5). It is reasonable to consider variability and uncertainty while fitting to the data instead of doing so after the fitting.

In the least-squares method, the logarithmic number of bacterial populations is treated as a continuous number because a normal distribution is used as the error distribution. The cell count is logarithmically analyzed in data analyses in the field of microbiology. Because the logarithm cannot be taken for 0 CFU, the count of 0 CFU is omitted from the dataset. O’Hara and Kotze (2010) suggested that distributions designed to deal with counts, such as the Poisson distribution or negative binomial distribution, should be used to fit count data instead of using a continuous distribution such as a normal distribution. O’Hara and Kotze (2010) also insisted that a log-transformation of count data should be considered when dealing with zero observations. With a discrete distribution, it is possible to make fitting and predictions, including for data with a cell number of 0 CFU. Therefore, in the present study, the number of bacteria was treated as a discrete number when fitting using the GLM (Equations 3 and 5). We expressed the variability in the bacterial cell number by introducing a discrete distribution, i.e., a Poisson distribution (Equations 3 and 5), and a negative binomial distribution (Equation 5). We were able to use data with a survival cell count of 0 CFU for parameter estimation (Figure 4) and prediction, since the Poisson distribution was used as the error distribution of the cell count. With the use of discrete distributions, the data of bacterial counts, including 0 CFU, can be used for analyses. Thus, data loss during analysis can be prevented. A discrete probability distribution is useful for expressing the number of bacteria counts, particularly in the case of a low dose, including zero.

Variability and uncertainty simultaneously appear experimentally (Poschet, 2003; Park and Lee, 2008). It is necessary to consider both these factors when conducting exposure assessments (FAO/WHO, 2008). Bacterial behavior is characterized by variability and uncertainty, and the need to consider both has been pointed out (Nauta, 2000). It is relatively easier to define variability using an equation than uncertainty, since variability is derived from some exact factors such as individual cell inactivation time as individual cell heterogeneity (Aspridou and Koutsoumanis, 2015). Therefore, the definition of variability such as individual cell inactivation time and between-strains is an important first step, since understanding variability can help determine the degree of uncertainty. The better we know the variability, the clearer the uncertainty. We defined the variability in the number of bacteria during the inactivation and growth processes using the Poisson distribution and negative binomial distribution (Equations 3 and 5), which can be a fundamental assumption for the further analysis of the variability and uncertainty in bacterial behavior.

Some other distributions such as Poisson-lognormal and Poisson-gamma distributions were used to describe number of cells in food production, where many factors affect the heterogeneity of microbial numbers among food units (Gonzales-Barron and Butler, 2011). Poisson-lognormal and Poisson-gamma distributions are used to describe over dispersion of count data (Congdon, 2006). These probability distributions may be possible choice to predict bacterial population behavior in food.

Only colony count data have been used for constructing kinetic models in Bayesian GLM that considers variability and uncertainty in bacterial behavior. Colony count data can be found not only in literature but also in databases such as ComBase1. So far, risk related to food borne pathogens has been assessed using these accumulated data. The model proposed in the present study can help represent the variability and uncertainty in bacterial behavior using existing published data, providing a more realistic quantitative exposure assessment compared to using the conventional least-squares method. The proposed modeling procedure can help account for the variability and uncertainty in risk-based modeling.



CONCLUSION

The present study illustrated the construction of a Bayesian GLM considering the variability and uncertainty in bacterial inactivation and growth behavior. This modeling procedure allowed to consistently assume a probability distribution representing the variation in bacterial behavior throughout the fitting process for simulating bacterial behavior. The developed models enable a more explicit illustration of the variation in bacterial behavior via probability distributions, because the models are based on probabilistic theory. For example, the variation in bacterial numbers following a Poisson distribution was derived from experimentally prepared bacterial cells via a dilution process. In addition, the probability distributions of the growth or inactivation processes were assumed to be independent of other biological events. Thus, the models developed in the present study provide a reliable foundation for representing the variability and uncertainty. The Bayesian GLM can separately describe the variability and uncertainty, which cannot be done using the conventional least-squares methods used in frequentist statistics.
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This study investigated the positive effects of complete replacement of nitrite with a Lactobacillus fermentum on the quality and safety of Chinese fermented sausages, and evaluated the risk of this strain. The effects of the strain on pH, color, nitrite, thiobarbituric acid reactive substances (TBARS), total volatile basenitrogen (TVB-N), metmyoglobin (Met-Mb), biological amines, free amino acid content, and sensory index have been studied. The results revealed that the strain reduced the pH of the sausages, which reduced the risk of food-borne pathogens, and accelerated the acidification and gelation process. The inoculation of the strain produced pink color similar to 50 mg/kg nitrite, significantly reducing the residual risk of nitrite in the sausages. In addition, the strain effectively improved quality and nutrition of the sausages through preventing fat oxidation, protein decomposition, and myoglobin oxidation and increasing free amino acid content. The harmful biogenic amines species of the treated sample were reduced, although the tyramine contents were higher than the control, and the contents of the two groups were all far below the specified limit (800 mg/kg). The sensory analysis showed that the strain enhanced the taste, flavor, sourness, and overall acceptability of the sample sausages. Therefore, replacing nitrite completely with the strain L. fermentum could be a potential strategy to produce healthier and safer acceptable sausages through decreasing the risk of nitrite and improving nutrition and quality of the sausages.
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INTRODUCTION

In food process, specific food additives are often added to prevent corruption and extend the shelf life of the foods. However, the residual of some chemical additives will threaten human health, and they might also form toxic compounds due to the chemical reaction between the reactants (Molognoni et al., 2019). Hence, the development of natural and harmless food additives has become research hotspots in food industry. The natural biopreservatives are ideal natural food preservatives, which are safe, nontoxic, and efficient and have no negative effects. However, there are fewer natural microbial preservatives that can be used in the meat industry, and in-depth explorations are needed.

Chinese fermented sausages have unique flavor and rich nutrition, so they are very popular among people. However, naturally fermented sausages are easily contaminated by bacteria and have a short shelf life. Usually, certain food additives are added in the process of naturally fermented sausages to extend the shelf life. Among them, nitrite is often used in the process because it has color development ability, antioxidant activity, and antibacterial effects. However, the products of protein degradation during meat storage would react with nitrite to produce N-nitrosamine (Drabik-Markiewicz et al., 2011), which has carcinogenic effects to humans. As people pay more and more attention to health, it is very urgent to develop natural preservatives that are harmless to human health in the meat industry.

Lactic acid bacteria (LAB), as a kind of probiotics, are often used as starters for foods, such as sausages and yogurts. A previous report indicated that the LAB inoculated in the meat products could degrade nitrite and scavenge free radicals, and exhibited antioxidant activity and antibacterial effects (Ren et al., 2014). A previous report indicated that the Lactobacillus plantarum P2 isolated from traditional fermented sauerkraut had the ability to scavenge hydroxyl free radicals and superoxide free radicals and could degradate nitrite effectively (Chen et al., 2019). Zhang et al. (2020) found that the L. plantarum LPL-1 inhibited the growth of spoilage bacteria during fermentation and significantly reduced the content of histamine, putrescine, and cadaverine, and the total amount of biogenic amines of sausages. Guimarães et al. (2018) showed that the L. plantarum UM55 CFS could produce lactic acid along with other organic acids during fermentation, which has been confirmed to inhibit the growth of Aspergillus flavus. In addition, the Lactobacillus fermentum R6 was found to have antibacterial ability against the growth of Clostridium perfringens and its spores in chicken meat, so the strain could be used as a potential biopreservatives to prevent the contamination by C. perfringens in meat products (Li et al., 2017).

Some other studies pointed that the LAB had the effect of improving color in fermented sausages. The effect of different concentrations of L. fermentum on the color development of fermented sausages was studied, and the results showed that the strain contributed to the production of nitrosomyoglobin (Mb-NO) and 108 CFU/g meat of the strain could produce the pink color similar to 60 mg/kg nitrite (Zhang et al., 2007). The research of Kawahara et al. (2006) showed that Lactobacillus sakei M32 could produce the red color with high redness (a∗ value) and low yellowness (b∗ value), and the color of the sample was similar to that of the control with nitrite added. Chen et al. (2016) isolated two strains of L. plantarum CMRC6 and L. sakei CMRC15 from traditional fermented pork and found that the two strains promoted nitrosation of myoglobin and produced the pink color in the sausages due to their nitrite reductase activity. In addition, LAB is usually used to improve the flavor and texture of fermented foods as a starter due to its acid production capacity. Moreover, LAB have many other functions, including regulating the intestinal flora, improving immunity, lowering cholesterol, etc. (Khalique et al., 2020; Saravanakumar et al., 2020). Therefore, the inoculation of LAB in foods has great value to improve food nutrition and protect human health (Sharafedtinov et al., 2013; Tu et al., 2018).

The above reports indicated that LAB have color development and antibacterial activity, so they might have the potential to replace nitrite in meat processing. However, no practical LAB strains have yet been found for industrial application as a complete substitute for nitrite. Therefore, the replacement for nitrite with LAB in meat products still requires in-depth exploration. The target of this study was to evaluate the positive effects of complete replacement of nitrite with the L. fermentum (CICC 21828) on the quality and safety of Chinese fermented sausages. The effects of the strain on pH, color, nitrite, thiobarbituric acid reactive substances (TBARS), total volatile basenitrogen (TVB-N), metmyoglobin (Met-Mb), tyramine, free amino acid content, and sensory index have been studied.



MATERIALS AND METHODS


Strains

The LAB used in this experiment were L. fermentum (CICC 21828), which was provided by China Center of Industrial Culture Collection and preserved in the fermentation engineering laboratory, Qingdao Agricultural University.



Sausage Manufacture

The formulation of the sausages includes 75% lean pork meat, 25% pork back fat, 2.3% NaCl, 3% sucrose, and 1% D-sodium erythorbate. The pork and pork casings were obtained from a local retailer in Qingdao (China). In addition, the 0.005% (50 mg/kg) NaNO2 was added in the control (Yoo et al., 2015), and 1010 CFU/g meat of the strain L. fermentum was inoculated in the sample to substrate 50 mg/kg NaNO2. All the raw materials were chopped, mixed, and marinated at 4°C for 24 h. The mixture was then stuffed in natural pork casings, fermented at 37°C in an incubator for 3 h with relative humidity (RH) of 90%, and then hung and dehydrated at 10°C for 20 days, with an RH of 70% according to our previous report (Zhu et al., 2020). Finally, the sausages were baked at 80°C for 1 h, at 65°C for 8 h, and then steamed at 100°C for 30 min.



pH and Chroma

The sausages were minced to small pieces and were homogenized in 90 ml of sterilized saline (0.85%, w/v) in a BagMixer for 90 s, and then the pH was detected using a pH meter (FiveEasy Plus 28, Mettler Toledo, Shanghai, China) with a solid electrode. The sausages were sliced into slices about 2 cm and wrapped with a layer of film, and the chroma measurement was carried out with a Chroma Meter (CR-400, Konica Minolta Co., Tokyo, Japan). The values of lightness (L∗ value), a∗ value, and b∗ value were recorded from different pieces of each sample.



Nitrite Residual

The nitrite residual was measured with the method of hydrochloride naphthodiamide according to a previous report (Zhang et al., 2007) with minor modification. The sausages were minced to small pieces and were pounded with mortar in 25 ml of saturated borax solution. The volume was adjusted to 100 ml with distilled water and boiled in a water bath for 15 min, and then cooled to room temperature. After being filtered, the filtrate (25 ml) was taken out and mixed with 4-aminobenzenesulfonic acid (2 ml, 4 g/L) and N-naphthyl-ethylenediamine dihydrochloride (1 ml, 2 g/L) and set aside for 15 min. The absorbance was measured at the wavelength of 538 nm, and the nitrite residual was expressed with the following formula: NaNO2 = (C ⋅ 2000)/(M ⋅ V). Here, C is the sodium nitrite concentration of the sample obtained from the calibration curve, M is the sample weight, and V is the volume of the extraction solution.



TBARS

According to the method of Geeta and Yadav (2017) with slight modification, minced sausages (10 g) were homogenized with 50 ml of trichloroacetic acid solution (7.5% of trichloroacetic acid, 0.1% of EDTA, w/v), and then were filtered twice with three layers of filter paper. The filtrate was heated, and the distillate was collected. Then, 5 ml of the distillate and 5 ml of the TBA reagent (0.02 mol/L, thiobarbituric acid) were mixed and boiled in a water bath for 35 min. After being cooled, the absorbance was detected at 530 nm with a spectrophotometer (UV-1,200, MAPADA, Shanghai, China), and the TBA value was expressed with the formula below:
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Here, A is the absorbance value of the sample solution, and B is the absorbance value of the blank.



TVB-N

The measurement of the TVB-N content was carried out according to the method of Wang et al. (2016) with some modifications. The sausages were minced to small pieces and were homogenized in 90 ml of distilled water in a BagMixer for 90 s, stirred for 30 min, and filtered with three layers of filter paper. Then, 10 ml of the filtrate was mixed with 10 ml of MgO solution (10 g/L) and distilled for 5 min in semimicro Kjeldahl bottle. The distillate was mixed with 10 ml of boric acid solution (10 g/L) and titrated with 0.01 mol/L HCl. The content of the TVB-N was determined according to the consumption of hydrochloric acid.



Amino Acid

The measurement of amino acid content was carried out by the ninhydrin colorimetric method. The sausages were minced to small pieces and homogenized in 90 ml of distilled water in a BagMixer for 90 s, boiled in a water bath for 10 min, cooled, and filtered. Then, 1 ml of the filtrate was mixed with 1 ml of citric acid buffer solution (0.2 mol/L, pH 6.86) and 1 ml of ninhydrin coloring solution in a test tube, and then the distilled water was added to make the total volume to 5.0 ml, shaken well, capped, and boiled in a water bath for 15 min. After being cooled, the absorbance was measured at 568 nm. Then, the content of amino acid was acquired by the standard curve. The standard curve was established through a series of concentrations of glycine standard solution (10, 20, 30, 40, and 50 μg/ml), and the processing steps were same as above.



Met-Mb

The Met-Mb measurement was carried out according to our previous report (Zhu et al., 2020). Sausage samples (10 g) were homogenized in 25 ml of ice-cold phosphate buffer (0.01 mol/L, pH 6.8), placed in the dark at 4°C for 1 h, and then centrifuged at 4,000 g for 5 min at 4°C. Finally, the supernatant was filtered with a 0.45-μm nitrocellulose filter membrane. The Met-Mb content was determined by measuring the absorbance at 572, 562, 545, and 525 nm, respectively, using a spectrophotometer. The percentage of Met-Mb was determined with the formula below:
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Biogenic Amine

Sausage samples (1 g) were homogenized with 10 ml of trichloroacetic acid solution (5%, v/v) and extracted by ultrasonic extraction for 30 min. After centrifugation, the extraction (1 ml) was taken out and reacted with 0.2 ml of NaOH (2 mol/L) and 100 μl of benzoyl chloride at 40°C for 30 min. Then, the mixture was terminated with methanol and filtered with the membrane (0.22 μm) for high-performance liquid chromatography (HPLC) to determine the biogenic amine content. HPLC analysis was carried out with Syncronis C18 column according to our previous report (Zhu et al., 2020). The temperature of the column was set as 35°C with the injection volume of 20 μl and the UV detection wavelength of 254 nm. The gradient mobile phase contained solvent A and solvent B, and the procedure was started at a ratio of 70:30 (A:B) with a flow rate of 0.8 ml/min; subsequently, solvent B increased gradually to 70% within 38 min, and then maintained for 4 min.



Sensory Analysis

Texture, flavor, slice, color, taste, sourness, and overall acceptability of the samples were evaluated according to a 10-point scale from 1 to 10 (Nassu et al., 2003). The evaluation was performed by 10 people who had experience in sensory evaluation of fermented sausages. The samples were sliced to 5-mm thickness and marked with three-digit random numbers. Then, the numbered slices were placed on white plates, and each sample was evaluated three times. Water and unsalted crackers were supplied to the panel to purify their palate between different samples.



Statistical Analysis

All measurements were performed in triplicate, respectively. The data analysis was carried out using IBM SPSS Statistics 23.0 (IBM, New York, NY, United States). For multiple comparisons between more than three sample groups, the one-way analysis of variance (ANOVA) was applied and the significant difference between the groups were analyzed with Duncan’s multiple range tests. For the comparison between two sample groups, independent-sample t-test was employed. For both analysis methods, the significance was set at the level of p < 0.05.



RESULTS


pH

pH is an important indicator to monitor the fermentation process of fermented sausages. In Figure 1, pH of the control and the sample showed very little decrease at the beginning of the fermentation (within 0.5 h). It might be because L. fermentum was in the growth phase of adapting to the new environment, resulting in low amount of lactic acid production. In the subsequent phase, the pH of the sample decreased sharply, which was much lower than that of the control. The sharp drop of the pH reflected that the anaerobic glycolysis increased and large amounts of lactic acid were produced in the growth of LAB (Chen et al., 2016). However, the pH of the sample was lower than the control during the whole fermentation process. For the sample sausages, when the pH dropped below 5.5, the speed of the pH decrease became slow. The phenomena might be attributed to the generation of non-protein nitrogen in the meat by proteolytic process, which would inhibit the decrease in pH through buffering the lactic acid (Chen et al., 2016). For the cathepsins will be activated and at pH 5.0–5.5 and accelerate the proteolysis (Visessanguan et al., 2003).
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FIGURE 1. The pH of the sausages in fermentation, in which different lowercase letters meant that the pH was significantly different (p < 0.05).




Color Analysis

According to Table 1, the L∗ value of the sample and the control all decreased throughout the ripening process, and the value of the sample was lower than that of the control at the end of the 20th day. The a∗ value of the sample and the control was also affected by ripening time and declined over time. However, at the 20th day, no significant difference (p < 0.05) in a∗ value was found between the sample and the control, indicating that the strain inoculation could produce the pink color in the sausages nitrite-free and could make the color stable. This further indicated that the strain had a similar color development ability to nitrite. Another study also reported that LAB had the color formation ability in meat products nitrite-free (Gao et al., 2014). In addition, LAB application level was important for color development, and 108 CFU/g inoculation of L. fermentum might develop the pink color similar to that produced by 60 mg/kg of nitrite (Zhang et al., 2007). The b∗ value of the sample and the control both increased during the ripening process, which indicated the oxidation of the sausages increased (Xiang et al., 2019). However, the value of the sample was much lower than that of the control in the whole ripening process, which indicated that the sample had good color and could inhibit lipid peroxidation (Xiang et al., 2019).


TABLE 1. The color of the sausages during ripening period.
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The Nitrite Content

In Figure 2, although no nitrite was added to the sample, small amounts (3.22–2.07 mg/kg) of nitrite were detected in the sample sausages during the ripening process. In other study, small amounts of nitrite were also detected in the sausages with L. fermentum inoculation and nitrite free (Zhang et al., 2007). The source of nitrite in the sample was not clear, which might be derived from the curing process of meat. Zhang et al. (2007) regarded that the source of nitrite might be tap water, because it was very difficult to produce tap water of nitrite free. The nitrite content of the two groups decreased during the ripening process. The reduction in nitrite content in the control attributed to the reaction between the nitrite and myoglobin, which resulted in the production of nitrosomyoglobin (Mb-NO). For the sample, it might be that the strain had nitrite degradation ability according to the previous report (Yoo et al., 2015). However, the content of the sample was always significantly lower (p < 0.05) than that of the control during all the ripening process. On the 30th day, the content of the sample was 2.07 mg/kg, and that of the control was 8.1 mg/kg.
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FIGURE 2. The nitrite content of the sausages during ripening period, in which different lowercase letters meant that nitrite content was significantly different (p < 0.05).




TBARS

The TBA value reflects the extent of oxidation and rancidity of lipids in meat products. The TBA value of the two groups both increased constantly with extending ripening time (Figure 3). However, the TBA value of the control remained significantly higher (p < 0.05) than that of the sample during the whole ripening process (Figure 3). A previous study also had the similar result that the strain Lactobacillus pentosus inoculated in sausages had significantly inhibited the oxidation of lipids compared to the control (Sun et al., 2017). Although a previous report pointed out that nitrite could restrain the oxidation of lipids through different channels (Berardo et al., 2016), the result showed that the strain L. fermentum had stronger antioxidant capacity against lipids compared to the nitrite.
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FIGURE 3. The TBARS content of the sausages during ripening period, in which different lowercase letters meant that TBARS content was significantly different (p < 0.05).




TVB-N Content

It could be seen from Figure 4 that the TVB-N content of the two groups increased continuously with time. TVB-N mainly reflects the degree of protein decomposition of meat products by microorganisms (Dabadé et al., 2015). Another study also regarded that TVB-N production might be due to the action of spoilage bacteria and endogenous enzymes (Song et al., 2011). There had been no significant difference (p < 0.05) between the sample and the control at the 20th day, indicating that the strain had a similar ability with that of nitrite in preventing protein decomposition from microorganisms and endogenous enzymes. Hence, the strain had a similar ability as nitrite to reduce protein decomposition and microbial risks.
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FIGURE 4. The TVB-N content of the sausages during ripening period, in which different lowercase letters meant that TVB-N content was significantly different (p < 0.05).




Free Amino Acid and Met-Mb

In Figure 5A, the content of total amino acids in the control was 18.38 mg/100 g, while that of the sample was 53.19 mg/100 g. In fermented sausages, meat proteins are first hydrolyzed into polypeptides by endogenous proteases, and further hydrolyzed into amino acids by microbial protease (Hu et al., 2021). The higher total amino acid contents in the sample inoculated with LAB might due to the proteolytic activity of the strain (Hu et al., 2021). The highest total amino acid concentration was also observed in a previous study of the sausages inoculated with L. plantarum MLK 14-2 (Yoo et al., 2015). Met-Mb was the oxidation product of myoglobin in meat products, which had a negative effect on color (Howes et al., 2019). There had been no significant difference (p < 0.05) in the content of Met-Mb between the control and the sample (Figure 5B), which indicated that replacing nitrite with L. fermentum did not cause an increase in Met-Mb content.
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FIGURE 5. The free amino acid content (A) and the Met-Mb content (B) of the sausages at the end of ripening period, in which different lowercase letters meant that amino acid content or Met-Mb content was significantly different (p < 0.05).




The Content of Biogenic Amines

Biogenic amines are usually found in a wide range of fermented foods and can bring health risks, in which histamine, tyramine, and phenethylamine are the primary cause of food poisoning. The European Union has established certain regulations on histamine with the maximum levels of 100 mg/kg (Sun et al., 2016). According to a previous report, the established maximum limits were 800 mg/kg for tyramine (Ercan et al., 2019) and 30 mg/kg for phenethylamine, respectively (Kandasamy et al., 2021). Seven kinds of biogenic amines including tyramine, putrescine, cadaverine, spermidine, tryptamine, phenylethylamine, and spermine were detected in the control (Table 2). For the sample, only tyramine, putrescine, cadaverine, spermidine, tryptamine, and spermine were detected, and no phenylethylamine was found. A previous report had suggested that the LAB used in the sausages might not contain phenylalanine decarboxylase activities, which resulted in no phenylethylamine produced (Pircher et al., 2007). Although the tyramine contents of sample was higher than the control, the contents of the two groups were all far below the specified limit (800 mg/kg). No histamine was detected both in the sample and the control, so the two group sausages had no histamine risk. In addition, the contents of spermidine and tryptamine decreased, and the contents of putrescine and cadaverine increased in the sample compared to the control. Hence, it is necessary to add other food additives together with the strain to inhibit the production of putrescine and cadaverine in future studies.


TABLE 2. The biogenic amine content of the sausages at the end of ripening period.
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Sensory Analysis

Sensory analysis was performed by evaluating the texture, flavor, slice, color, taste, sourness, and overall acceptability of the sausages. Figure 6 shows that the scores of the sample were similar to the control in the texture, slice, and color. The scores of taste, flavor, and sourness of the sample were better than those of the control. The relatively high acidity might be attributed to the production of lactic acid during fermentation of the LAB, which brought better and proper sourness (Odutayo et al., 2020). The better taste and flavor of the sample might be because the fermentation of the LAB could produce a variety of flavor components (Hu et al., 2019). Moreover, the inoculation of LAB could inhibit the lipid oxidation of the sausages, which prevents the unfavorite flavor (Hu et al., 2019). The result was consistent with the TBARS analysis (Figure 3) that the L. fermentum had stronger antioxidant capacity against lipid oxidation compared to the nitrite. Therefore, the overall acceptability of the sausages was better than the control, which was similar to a previous report that the LAB inoculation could make sausage quality better (Bachtarzi et al., 2020).
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FIGURE 6. The sensory analysis of the sausages.




DISCUSSION

The low pH of the sample sausages fermented by L. fermentum (Figure 1) signified that the acidification of the sample was much stronger than that of the control fermented spontaneously (Wang et al., 2013). The pH sharp drop of the samples might induce conformational changes of proteins and result in acid-induced gelation (Zeng et al., 2013). In addition, low pH might decrease the risk of food-borne pathogens and improve the safety of the sausages (Gao et al., 2014), which would extend shelf life of the sausages (Sun et al., 2017). Because the growth of food borne pathogens and spoilage bacteria would be inhibited under acidic conditions, the spoilage of the sausage might be suppressed.

There had no significance in a∗ value (p > 0.05) between the sample and the control at the 20th day, which indicated that the L. fermentum had the color formation ability in meat products nitrite-free. The color formation ability might be because some LAB had nitric oxide synthase (NOS) activity, resulting in the production of NO, which reacted with myoglobin (Mb) in the inoculated sausages and generated the pink product of Mb-NO (Zhu et al., 2019). Compared to the control, the much lower b∗ value of the sample reflected that the strain inoculation could inhibit lipid peroxidation. The oxidation might result in the oxidation of Fe2+, which would cause the color of the sausages to appear brown (Ganhão et al., 2010). The color formation capacity and the antilipid oxidation ability of the strain indicated that the strain had the potential to replace nitrite for color development. In addition, nitrite can react with secondary amines to form nitrosamines (Sun et al., 2017), which has carcinogenic effects to humans. In this study, replacing nitrite with the L. fermentum significantly reduced the content of nitrite compared to the control (Figure 2). Therefore, replacing nitrite with the strain of L. fermentum decreased the residual of nitrite from the source and eliminate the carcinogenic risk of nitrite.

Lipid peroxidation will produce some harmful substances; therefore, the antioxidant function of the additives and the reduction of TBA value are very important (Gao et al., 2014). The strong antioxidant capacity of the strain L. fermentum against lipid oxidation (Figure 3) might be because the strain could scavenge free radical effectively (Chen et al., 2019). The sausage quality could be improved by preventing fat oxidation (Hu et al., 2019). In addition, the strain could inhibit the production of TVB-N (Figure 4), which is probably because the acidification process inhibited the growth of bacteriaceae and other bacteria (Sun et al., 2017). Because some microorganisms could secrete proteases, which might hydrolyze protein to produce nitrogen compounds including TVB-N (Sun et al., 2017).

The highest total amino acid concentration in the sample (Figure 5A) might be attributed to the strain hydrolyzed proteins forming the necessary amino acids required for growth (Hou et al., 2015). Amino acids play a key role in enhancing the flavor and increasing the nutrition of the sausages. The similar Met-Mb content in the control and the sample (Figure 5B) indicated that the strain L. fermentum had a similar ability as nitrite against Mb oxidation and avoided excessive production of Met-Mb. This ability might be due to the presence of Met-Mb reductase in the strain, which reduced Met-Mb to Mb and further produced Mb-NO (Zhu et al., 2019).

Small amounts of biogenic amines have important physiological effects on the human body, but if accumulated excessively, it would be life-threatening (Silla Santos, 1996). The results showed that substituting nitrite with the strain reduced the species of harmful biological amines and no phenylethylamine was detected in the sample (Table 2). Histamine is the most harmful amine and is closely related to human health problems (Nie et al., 2014). No histamine was detected in the sample, which might be because LAB could inhibit the growth of Enterobacteriaceae, which have been proven to be able to produce large amounts of histamine (Pircher et al., 2007). Even so, if other additives together with the strain were added to inhibit the production of tyramine, putrescine, and cadaverine, the biogenic amines risk could be reduced thoroughly, and the quality and safety of sausages would be greatly improved.

The quality of meat products depends on consumer’ appreciation and acceptance. Therefore, sensory analysis is very important for meat products according to the sensory evaluation test. The inoculation of the L. fermentum enhanced the taste, flavor, sourness, and overall acceptability of the sample sausages (Figure 6). The higher acidification of the sample could inhibit the growth of the pathogens and spoilage bacteria and make the LAB dominate the microflora (Xiao et al., 2020), which further enhanced the flavor of the sausages. On the other hand, the previous report indicated that there was a synergistic effect between sourness and saltiness, and the sourness enhanced the salty taste of the sausages, thereby giving the sausages a better taste (Hu et al., 2021). In addition, the strain has strong antioxidant capacity against lipid oxidation (Figure 3), which might prevent the rancid flavor of lipids oxidation.



CONCLUSION

This study explored the positive effects of complete replacement of nitrite with the strain L. fermentum on the quality and safety of Chinese fermented sausages and evaluated the risk of this strain. The results revealed that the strain reduced the pH and the food-borne pathogens risk, and accelerated the acidification process and gelation formation of the sausages. In addition, the strain could produce the pink color similar to 50 mg/kg nitrite, significantly reducing the residual risk of nitrite in the sausages. In addition, the strain prevented fat oxidation, protein decomposition, and Mb oxidation and increased the free amino acid content. The strain reduced species of biogenic amines, and decreased the phenylethylamine, spermidine, and tryptamine risk. Some other additives that can inhibit the production of tyramine, putrescine, and cadaverine are necessary to replace nitrite with the strain L. fermentum together in the future research. Therefore, the strain has the potential to replace nitrite to produce healthier sausages.
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Metals are widely used in animal feed for their growth-stimulating and antimicrobial effects, yet their use may potentially promote the proliferation of antibiotic resistance through co-selection. We studied the prevalence and associations of metal, antibiotic, and disinfectant resistances of 300 Salmonella Typhimurium isolates from pig meat, pig manure, chicken meat, poultry manure, and human stool from Sichuan, China. Seventy four percent of the 300 Salmonella Typhimurium isolates were considered resistant to Cu, almost 50% to Zn and Cr, over 25% to Mn and Cd, and almost 10% to Co. Most of the isolates carried at least one heavy metal resistance gene (HMRG). The Cr-Zn-Cd-resistance gene czcD was carried by 254 isolates and the Cu-resistance genes pcoR and pcoC by 196 and 179 isolates, respectively. Most of the isolates were resistant to at least one antibiotic and almost 80% were multidrug-resistant. The prevalence of resistance to six antibiotics was higher among the pig meat and manure isolates than among other isolates, and that of streptomycin and ampicillin were highest among the pig meat isolates and that of ciprofloxacin and ofloxacin among the pig manure isolates. From 55 to 79% of the isolates were considered resistant to disinfectants triclosan, trichloroisocyanuric acid, or benzalkonium chloride. The metal resistances and HMRGs were associated with resistance to antibiotics and disinfectants. Especially, Cu-resistance genes were associated with resistance to several antibiotics and disinfectants. The transfer of the Cr-Zn-Cd-resistance gene czcD, Cu-resistance gene pcoC, and Co-Ni-resistance gene cnrA into Escherichia coli and the increased Cu-resistance of the transconjugants implied that the resistance genes were located on conjugative plasmids. Thus, the excessive use of metals and disinfectants as feed additives and in animal care may have the potential to promote antibiotic resistance through co-selection and maintain and promote antibiotic resistance even in the absence of antibiotics.

Keywords: Salmonella Typhimurium, heavy metal resistance, disinfectant resistance, antibiotic resistance, heavy metal resistance gene, conjugation


INTRODUCTION

Salmonella infections are a major public health concern worldwide (Sodagari et al., 2020). Salmonella is the second most common cause of food-borne diseases worldwide and is associated with more deaths than any other food-borne disease in the developed countries (WHO, 2020). Food-borne Disease Active Surveillance Network (Foodnet) reported Salmonella as the leading cause of food-borne disease-related deaths in the United States (Barton Behravesh et al., 2011). Among the food-borne infections caused by a single etiologic agent in the United States in 2015, Salmonella was responsible for 34% of the outbreaks, 39% of the illnesses, 64% of the hospitalizations, and 60% of the deaths (Dewey-Mattia et al., 2018). The European Food Safety Authority (EFSA) confirmed salmonellosis as the second most common zoonosis with over 90,000 confirmed cases in 2017 (EFSA and ECDC, 2018). The food-borne surveillance system in China suggested that Salmonella was the second most common bacteria causing food-borne outbreaks during 2000–2014 (Luo et al., 2017). Thus, the Salmonella infection-related mortality and morbidity burden societies worldwide (Majowicz et al., 2010). For example, in England, the Salmonella infections, characterized by diarrhea, fever, and abdominal cramps, leading to over 11,000 annual GP consultations (Tam et al., 2012; Barr and Smith, 2014).

More than 2,600 serotypes of Salmonella have been identified (Takaya et al., 2020). Salmonella Typhimurium is one of the predominant serotypes in many countries, including China (Ceyssens et al., 2015; Wang Y. et al., 2017; Simpson et al., 2018) and it has held first or second place in China for many years (Ran et al., 2011; Wang Y. et al., 2017). Salmonella Typhimurium was also reported as the most frequently isolated serotype of non-typhoidal Salmonella from food-borne illnesses in different provinces of China (Liang et al., 2015), which represented 25.5, 29.44, and 39.7%, of the isolates obtained from diarrheal disease surveillance between 2006-2010 in Shanghai, 2010–2014 and 2013–2018 in Shenzhen, China (Zhang et al., 2014; Li W. et al., 2017; Shen et al., 2020). Salmonella is associated with a wide variety of foods, yet animal products, especially pig and poultry, are the main source of Salmonella (Hugas and Beloeil, 2014; Antunes et al., 2016; Demirbilek, 2017; Heredia and García, 2018). The routes of transmission for Salmonella Typhimurium include contaminated meat, eggs, and manure (Antunes et al., 2016; Chousalkar et al., 2018; Kumar et al., 2019). With the development of China, the average intake of meat, especially pig increased from 37.1 g/day in 1992 to 64.3 g/day per person in 2012 and was expected to surpass 100 g/day people by 2020 which has indirectly increased the risk of food-borne zoonoses, including salmonellosis (He et al., 2016; CIIN, 2018a,b; Pan et al., 2018, 2019). In China, Salmonella Typhimurium strains are commonly isolated from retail meat, particularly pig, suggesting a link between human infections with this serotype and pig products.

Antibiotics have commonly been used to treat animal diseases and as growth promoters (Allen et al., 2013). However, a substantial amount of the antibiotics are excreted in feces and enter soil via manure (Kumar et al., 2005). Due to food safety and health issues, many countries, e.g., in the European Union, have banned the use of antibiotics in the feed of animals as growth promoters (Burch, 2006). Both WHO and individual countries have introduced guidelines to withdraw medicated feed additives to combat antimicrobial resistance from animal resources (Hu and Cowling, 2020). Metal-containing compounds are also widely used animal feed additives (Cavaco et al., 2011; Argudín et al., 2016). Metals, e.g., copper, zinc, cobalt, chromium, and manganese, are widely used in animal feed for their growth-stimulating and antimicrobial effects; copper and silver are commonly used as disinfectants and preservatives, and mercury, lead, arsenic, and cadmium can be found as contaminants in animal feed (Seiler and Berendonk, 2012; Korish and Attia, 2020). However, the use of heavy metals at high concentrations causes problems due to their toxicity, bioaccumulation, and biomagnification in the food chain (Figure 1; Eisler, 1993). Heavy metal contamination in meat and the prevalence of these pollutants in the environment is a risk for both food safety and human health (Khan et al., 2008; Bamuwamye et al., 2015; Lu et al., 2015). Notably, the use of metals may potentially promote the proliferation of antibiotic resistance through co-selection; the metal and antibiotic resistance are often linked either due to co-location of the resistance genes, a shared resistance mechanism, or co-regulation of resistance pathways (Baker-Austin et al., 2006; Deng et al., 2017; Pal et al., 2017; Yang et al., 2020). The disinfectant resistance genes and heavy metal resistance genes (HMRGs) are commonly located in mobile genetic elements (MGEs) (Frost et al., 2005). The role of metals, antibiotics, and disinfectants in the development and spread of antimicrobial resistance has raised concerns (Bragg et al., 2014; Roosa et al., 2014; Zou et al., 2014; Di Cesare et al., 2016). However, the co-occurrence of heavy metal, antibiotic and disinfectant resistance in Salmonella Typhimurium isolates from retail foods, animal manure, and human stool has not been widely investigated. Therefore, we studied the prevalence and associations of resistances of Salmonella Typhimurium isolates from pig meat, pig manure, chicken meat, poultry manure, and human stool from Sichuan, China.
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FIGURE 1. The associations and transmission routes of metal, antibiotic, and disinfectant resistance.




MATERIALS AND METHODS


Bacterial Strains

The 300 Salmonella Typhimurium strains analyzed in this study were isolated from January 2016 to December 2018 in Sichuan, China, from pig meat (n = 182), pig manure (n = 23), chicken meat (n = 30), poultry manure (n = 27), and stool of hospitalized diarrhea patients (n = 38). The details of sampling and location of the strains are available in Supplementary Tables 4A,B.



Isolates and Serotyping

Collected specimens were tested for Salmonella using the following protocol. Stool samples from diarrhea patients were enriched in Selenite Brilliant Green broth (SBG, CHROMagar, Paris, France) for 16–22 h at 37°C. For the isolation of Salmonella from pig and chicken meat and manure samples, the method described by the United States Department of Agriculture Food Safety and Inspection Service was used (Cui et al., 2006; Guo et al., 2011). Twenty five g portions of meat were used for enrichment and each sample was placed in separate sterile Erlenmeyer flasks with 225 mL buffered peptone water then incubated at 37°C in a water bath with shaking at 120 rpm for 6 h. After pre-enrichment, 1 and 10 mL of pre-enriched solutions were transferred to 100 mL each of the Rappaport-Vassiliadis (RV; Beijing Land Bridge Technology Co., Ltd.) and tetrathionate (TT; Beijing Land Bridge Technology Co., Ltd., Beijing, China) broths, respectively, and incubated at 42°C in a water bath with shaking at 160 rpm for 24 h. One loopful of TT broth and RV broth were streaked onto xylose lysine tergitol agar plates (Beijing Land Bridge Technology Co., Ltd.), and onto agar of xylose lysine deoxycholate (Beijing Land Bridge Technology Co., Ltd.) respectively, and incubated at 37°C for 24 h. Three plausible Salmonella colonies from each plate were inoculated onto urea agar slants (Beijing Land Bridge Technology Co., Ltd.) and triple sugar iron (Beijing Land Bridge Technology Co., Ltd.), and incubated at 35°C for 24 h. Further, typical Salmonella phenotypes were confirmed by polymerase chain reaction (PCR) as described previously (Cui et al., 2006). A 284 bp PCR product targeting invA was amplified using the primers invA 139 (5¢-GTGAAATTATCGCCA CGTTCGGGCAA-3¢) and invA 141 (5¢-TCATCGCACCGT CAAAGGAACC-3¢) (Deng et al., 2017). Only one isolate from each Salmonella positive sample was randomly selected and included in this study (Vo et al., 2006). Confirmed isolates were stored in Tryptone Soya Broth (Hangzhou Microbial Reagent Co., Ltd.) containing 20% glycerol at −80°C until use. Confirmed Salmonella isolates were further serotyped according to the Kauffmann-White scheme, by slides using a microtiter agglutination test for O and H antigens, as described in the manufacturer’s instructions (SSI, Copenhagen, Denmark).



PCR Amplification of Heavy Metal Resistance Genes

The total DNA from Salmonella Typhimurium strains was extracted using TIANamp bacteria DNA kit (TIANGEN Biotect (Beijing) Co., Ltd.) according to the manufacturer’s instructions. DNA extractions were stored at −20°C for further analysis. HMRGs cnrA, nccA, pbrA, pcoA, pcoC, pcoR, chrB, czcB, czcD, arsB, merA, and cadD were amplified using previously published primers (Supplementary Table 1). PCR amplification was carried out in a 25 μL reaction volume, comprising 10 μL of 2 × T5 Super PCR Mix, 2 μL of 5 × Enhancer Buffer, 1 μL of each forward and reverse primer, 2U of Taq-polymerase (Promega, Madison, WI, United States) and 2 μL of template DNA or 2 μL of sterile deionized water as a negative control. The thermal program included initial denaturation at 98°C for 3 min, followed by 34 cycles of denaturation at 98°C for 10 s, annealing at the Tm of primer pair (Supplementary Table 1) for 10 s and extension at 72°C for 20 s, and a final extension at 72°C for 2 min. The success of amplification was verified using electrophoresis in 0.8% agarose gel (GENEI, Bengaluru, India) with a 2,000 bp DNA molecular weight marker as reference (Fermentas, Waltham, MA, United States) and visualized using a gel documentation system (BIO-RAD, Hercules, CA, United States). Appropriate positive controls for amplification were selected from retail meat Salmonella Typhimurium isolates. The positive controls were confirmed by sequencing the amplicons (GENEWIZ, Inc., Germantown, MD, United States). All results were confirmed by at least two independent assays.



Determination of Minimal Inhibitory Concentrations (MICs)

The minimal inhibitory concentrations (MICs) of metal ions, disinfectants, and antibiotics for Salmonella Typhimurium were determined using the agar microdilution method as described by the Clinical and Laboratory Standards Institute (CLSI) (Weinstein and Lewis, 2020). Mueller-Hinton agar plates were inoculated with bacteria suspended in 0.85% NaCl to a turbidity equivalent to a 0.5 McFarland using a multipoint inoculator (Oxoid, Lenexa, KS, United States) with approximately 104 CFU per spot. The plates were incubated at 37°C for 18–24 h. The MICs were determined as the lowest concentration of the metal that inhibited the growth of strains completely after 18–24 h of culture at 37°C. All experiments were run in triplicate.

The MICs of copper (CuCl2.2H2O), chromium (CrCl3.6H2O), cobalt (CoCl2), cadmium (CdCl2), zinc (ZnSO4), and manganese Mn (MnCl2) (Alfa Aesar, Shanghai, China) were determined. Doubling dilutions of the heavy metal stock solutions were incorporated into Mueller-Hinton agar plates with final concentrations ranging from 0.25 to 3200 mg L–1. Escherichia coli ATCC 10536 and Salmonella H9812 were used as the quality control strain in the tests (Zou et al., 2014; Deng et al., 2017; Yang et al., 2020). The MICs of benzalkonium chloride (BC), Trichloroisocyanuric acid (TCCA), (Chengdu Best-Reagent Company, Chengdu, China; > 98% purity), Triclosan (TCS) (J&K Chemical; > 98% purity), were determined at concentration ranges of 0.125-1024 mg L–1 for BC and TCCA and 0.03125–1.0 mg L–1 for TCS. Escherichia coli ATCC 10536 and Salmonella H9812 were used as the quality control strain in the tests (Zou et al., 2014; Deng et al., 2017; Yang et al., 2020). In the MIC assays of streptomycin (S), sulfonamides (S3), tetracycline (TET), ampicillin (AMP), nalidixic acid (NA), chloramphenicol (C), sulfamethoxazole (SXT), trimethoprim (TMP), gentamicin (CN), amoxicillin/clavulanic acid (AMC), ciprofloxacin (CIP), ofloxacin (OFX), ceftazidime (CAZ) and cefotaxime (CTX) (Hangzhou Microbial Reagent Co., Ltd., China), the breakpoints for antibiotic resistance and/or susceptibility were determined as recommended by the Clinical and Laboratory Standards Institute (CLSI). Escherichia coli ATCC 25922 and 35218 strain were used for quality control (Wang J. et al., 2017).



Conjugation Experiment

The transfer of HMRGs was determined in a conjugation experiment using mixed broth cultures as previously described (Cai et al., 2008). Isolates with the highest resistance against copper and other metals were chosen as donors. Plasmid-free Escherichia coli J53 strain resistant to sodium azide and sensitive to the metals used in this study was selected as a recipient. Donor and recipient strains were grown on trypticase soy agar (TSA) plates overnight, single colonies of donor and recipient were inoculated into 30 mL of Mueller Hinton Broth (MHB) and grown at 37°C for 18 h, after which the recipient and donor strains were mixed at 10:1 (v = v) proportion. Subsequently, 1 mL of the mixture was inoculated onto a sterilized membrane on Mueller Hinton Agar (MHA) and incubated at 37°C for 18 h. The trans-conjugant bacteria were suspended into 3 mL of 0.9% NaCl, and serial dilutions were spread on MHA plates containing 200–400 μg/mL copper and 100 μg/mL sodium azide (Wang et al., 2003; Xu et al., 2007). Plates were incubated at 37°C and inspected at 24 and 48 h. The transfer of heavy metal resistance determinants was determined by amplifying the Cr-Zn-Cd-resistance gene czcD, Cu-resistance gene pcoC, and Co-Ni-resistance gene cnrA using DNA from trans-conjugant bacteria as a template. The MIC of copper (CuCl2.2H2O) for the trans-conjugants were determined with final concentrations ranging from 100 to 800 μg L–1. The conjugation experiment was repeated at least twice.



Statistical Analysis

Association of the metal resistances and HMRGs with antibiotic and disinfectant resistance in Salmonella Typhimurium were determined using the χ2-test of independence or Fisher’s exact test was performed to analyze data using SPSS v. 21. P-value less than 0.05 was considered statistically significant.

The data about prevalence were analyzed using one-way analysis of variance (ANOVA) and Duncan’s multiple range tests in SAS statistical software (SAS Institute; Cary, NC, United States). Differences were considered statistically significant at P ≤ 0.05. The results were visualized using GraphPad prism 8.0.1. (GraphPad Software, San Diego, CA, United States).




RESULTS


Metal Resistance

Over 98% of the 300 Salmonella Typhimurium isolates had MICs of 400–800 mg L–1 for Cu, 400–800 mg L–1 for Zn, 800–1600 mg L–1 for Mn, 25–50 mg L–1 for Cd, 200–400 mg L–1 for Co and 400–800 mg L–1 for Cr (Table 1). Compared to E. coli ATCC 10536 and Salmonella H9812, 74% (n = 222), 47.7% (n = 143), 45.7% (n = 137), 27.7% (n = 83), 29.3% (n = 88), and 9% (n = 27) of the isolates had higher MIC for Cu, Zn, Cr, Mn, Cd and Co, respectively, and were considered resistant. The prevalence of Cu resistance was higher among the isolates from pig meat than among the human stool and poultry manure isolates (P < 0.05) (Figure 2). The prevalence of Zn resistance was highest among the isolates from pig manure, poultry manure, and chicken meat, second highest among the pig meat isolates, and lowest among the human stool isolates (P < 0.05).


TABLE 1. Incidence of metal resistance among 300 Salmonella Typhimurium strains isolated from pig meat, pig manure, poultry manure, chicken meat, and human stool samples.
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FIGURE 2. Prevalence of resistance to Cu, Zn, Mn, Cd, Co, and Cr among Salmonella Typhimurium isolates from pig meat, pig manure, poultry manure, chicken meat, and human stool. Different lowercase letters indicate statistically significant differences between groups (P < 0.05).


The prevalence of Cr resistance was highest among the isolates from pig manure and lowest among the human stool isolates (P < 0.05). The prevalence of Cd resistance was higher among the isolates from pig manure than among the other isolates (P < 0.05). The prevalence of Mn resistance was highest among the isolates from pig and poultry manure and lowest among the chicken meat and human stool isolates (P < 0.05). None of the human stool isolates showed Co resistance and among the other isolates, the prevalence of resistance was on the same level.

In total, 97% (n = 291) of the isolates carried at least one heavy metal resistance gene (HMRG). A total of 132 gene combinations were found (Supplementary Table 2). The Cr-Zn-Cd-resistance gene czcD was carried by 254 isolates. The Cu-resistance genes pcoR and pcoC were found in 196 and 179 isolates, respectively. The Co-Ni-resistance gene cnrA, Ni-Cr-Cd-resistance gene nccA, and Cd-resistance gene cadD were carried by 155, 153, and 131 the isolates, respectively. The Hg-resistance gene merA, Pb-resistance gene pbrA, Cu-resistance gene pcoA, and Cr-resistance gene chrB were carried by 104, 63, 61, and 18 isolates, respectively. The Cr-Zn-Cd-resistance gene czcB and As-resistance gene arsB were carried by 17 and 15 isolates (Table 2).


TABLE 2. Prevalence of heavy metal resistance genes among 300 Salmonella Typhimurium isolates.

[image: Table 2]The prevalence of pcoR and cnrA were highest among the pig manure isolates and lowest among the human stool isolates (P < 0.05) (Figure 3). The prevalence of pcoC was highest among the pig meat and manure isolates and lowest among the human stool isolates (P < 0.05). The prevalence of nccA was highest among the chicken meat isolates and lowest among the poultry manure isolates (P < 0.05). The prevalence of cadD was higher among the pig meat, pig manure, and chicken meat isolates than among the poultry manure and human stool isolates (P < 0.05). The prevalence of pbrA was higher among the pig manure isolates than among the poultry manure isolates (P < 0.05). The prevalence of pcoA was higher among the pig meat isolates than among the poultry manure isolates (P < 0.05).
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FIGURE 3. Prevalence of heavy metal resistance genes among Salmonella Typhimurium isolates from pig meat, pig manure, poultry manure, chicken meat, and human stool. Different lowercase letters indicate statistically significant differences between groups (P < 0.05).




Antibiotic Resistance

A total of 287 Salmonella Typhimurium isolates were resistant to at least one antibiotic; all the 23 pig manure isolates, 98.4% of the pig meat isolates (n = 179), 97.4% of the human stool isolates (n = 37), 86.7% of the chicken meat isolates (n = 26) and 81.5% of the poultry manure isolates (n = 22). Over 200 isolates were resistant to streptomycin (S), sulfonamides (S3), tetracycline (TET), or ampicillin (AMP), over 120 isolates to nalidixic acid (NA), chloramphenicol (C), sulfamethoxazole (SXT), trimethoprim (TMP) or gentamicin (CN), and less than 55 to amoxicillin/clavulanic acid (AMC), ciprofloxacin (CIP), ofloxacin (OFX), ceftazidime (CAZ) or cefotaxime (CTX) (Table 3).


TABLE 3. Prevalence of antibiotic resistance among 300 Salmonella Typhimurium isolates.

[image: Table 3]The prevalence of resistance to S and AMP was higher among the pig meat isolates than among the poultry manure, chicken meat, and human stool isolates (P < 0.05) (Figure 4). The prevalence of resistance to S3, TET, C, SXT, TMP, and CN was highest among the pig meat and manure isolates (P < 0.05). The prevalence of resistance to CIP and OFX was highest among the pig manure isolates (P < 0.05). The prevalence of resistance to AMC was higher among the pig meat and manure isolates than among the human stool isolates (P < 0.05). The prevalence of resistance to NA was higher among the pig and chicken meat isolates than among the poultry manure isolates (P < 0.05). None of the pig and chicken meat and poultry manure isolates were resistant to CAZ, and none of the pig meat and pig and poultry manure isolates were resistant to CTX.
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FIGURE 4. Prevalence of antibiotic resistance among Salmonella Typhimurium isolates from pig meat, pig manure, poultry manure, chicken meat, and human stool. Different lowercase letters indicate statistically significant differences between groups (P < 0.05).


A total of 77 resistance profiles were observed among the isolates. A multiple resistance profile TET-AMP-SXT-C-NA-TMP-CN-S3-S was carried by 36 isolates, TET-AMP-SXT-C-TMP-S3-S by 25 isolates, TET-AMC-AMP-SXT-C-NA-TMP-CN-S3-S by 23 isolates, and TET-AMP-S3-S by 16 isolates (Supplementary Table 3).

A total of 238 isolates were multidrug-resistant (MDR) with resistance to at least three classes of antibiotics. The prevalence of MDR was highest among pig manure isolates (100%, n = 23) followed by pig meat isolates (92.3%, n = 168), human stool isolates (68.4%, n = 26), poultry manure isolates (40.7%, n = 11) and chicken meat isolates (36.6%, n = 11).



Disinfectant Resistance

The MICs of E. coli ATCC 10536 and Salmonella H9812 for benzalkonium chloride (BC), trichloroisocyanuric acid (TCCA), and triclosan (TCS) were 8, 256, and 0.0625, mg L–1, respectively. A total of 238, 218, and 164 of the Salmonella Typhimurium isolates had higher MICs for BC, TCCA, and TCS, respectively, than E. coli ATCC 10536 and Salmonella H9812 (Table 4) and were considered resistant. The prevalence of BC and TCS resistance was lowest among the human stool isolates (P < 0.05) (Figure 5). The prevalence of BC resistance was higher among the pig manure isolates than among the chicken meat isolates (P < 0.05), whereas the prevalence of TCS resistance was lower among the pig manure isolates than among the poultry manure isolates (P < 0.05).


TABLE 4. Incidence of disinfectants among 300 Salmonella Typhimurium strains isolated from pig meat, pig manure, poultry manure, chicken meat, and human stool samples.
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FIGURE 5. Prevalence of disinfectant resistance among Salmonella Typhimurium isolates from pig meat, pig manure, poultry manure, chicken meat, and human stool. Different lowercase letters indicate statistically significant differences between groups (P < 0.05).




Association of Metal Resistance and Heavy Metal Resistance Genes With Antibiotic and Disinfectant Resistance

All the six metal resistances were associated with resistance to at least one antibiotic (Table 5 and Supplementary Table 5A). Cr-resistance was associated with resistance to eight antibiotics and to two disinfectants, Cu-resistance was associated with resistance to eight antibiotics, and Zn-resistance was associated with resistance to six antibiotics and to two disinfectants.


TABLE 5. The association of metal resistances with antibiotic and disinfectant resistance in Salmonella Typhimurium.

[image: Table 5]All the 12 HMRGs were associated with resistance to at least two antibiotics (Table 6 and Supplementary Table 5B). The Hg-resistance gene merA was associated with resistance to 12 antibiotics and to three disinfectants, the Cu-resistance gene pcoA with resistance to ten antibiotics and to two disinfectants, the Pb-resistance gene pbrA with resistance to seven antibiotics and to two disinfectants, and the Ni-Cr-Cd-resistance gene nccA and the Cu-resistance gene pcoC with resistance to seven antibiotics and to one disinfectant (P < 0.05).


TABLE 6. The association of HMRGs with antibiotic and disinfectant resistance in Salmonella Typhimurium.
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Transfer of Heavy Metal Resistance Genes

A conjugation experiment was carried out to determine the transferability of HMRGs. The genes cnrA, pcoC, and czcD were successfully transferred from Salmonella Typhimurium isolates S15 and S24 to Escherichia coli J53 (Figure 6). The transfer rate was 1 × 10–3 per donor. The MIC of Cu was 100 μg L–1 for the Escherichia coli J53, 800 μg L–1 for the isolates S15 and S24, 200 μg L–1 for the J53 with genes transferred from S15 and 300 μg L–1 for J53 with genes transferred from S24 (Table 7).
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FIGURE 6. Gel electrophoresis verification of the transfer of cnrA, pcoC and czcD from Salmonella Typhimurium isolates S15 and S24 to Escherichia coli J53.



TABLE 7. Transconjugation of metal resistance genes from Salmonella Typhimurium to Escherichia coli J53.
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DISCUSSION

The increasing resistance of Salmonella strains to antimicrobial agents has become a major public health concern worldwide. However, little information is available on the resistance and co-resistance to heavy metals, disinfectants, and antibiotics among Salmonella Typhimurium from retail meat and manure. Thus, we studied the prevalence and associations of resistances of Salmonella Typhimurium isolate from pig meat, pig manure, chicken meat, poultry manure, and human stool from Sichuan, China.

In our study, 74% of the 300 Salmonella Typhimurium isolates were considered resistant to Cu, almost 50% to Zn and Cr, over 25% to Mn and Cd, and almost 10% to Co. Approximately similar prevalence of Cu resistant isolates has been detected among Salmonella enterica isolates from meat and meat-based products (Figueiredo et al., 2019). The high prevalences of Cu and Zn resistant isolates may have been due to selection by heavy metal micronutrients in the feed; the use of heavy metal micronutrients resulted in high concentrations of Cu and Zn in pig feces in the U.S. (Medardus et al., 2014). Alarmingly, the resistant strains in the feces may contaminate the meat, as suggested by the high Cu resistance prevalence among the pig and chicken meat isolates. The high prevalence of resistant manure isolates suggested that the resistance may spread further by the use of manure as a soil amendment in agriculture. Further studies are needed to ascertain whether the high prevalence of Cu resistance among human stool isolates had resulted from meat products.

In line with the prevalence of metal resistances, most of the isolates carried at least one heavy metal resistance gene (HMRG), and the prevalences of the Cu-resistance genes pcoR and pcoC and Cu resistance were at the same level. HMRGs are found in a wide variety of bacteria from various environments (Li L.-G. et al., 2017; Pal et al., 2017). The czcD gene is involved in the regulation of an efflux system that mediates the resistance to metal ions (Anton et al., 1999). Almost 70% of the Salmonella Typhimurium isolates from pig feed and feces carried czcD (Medardus et al., 2014). In our study, the prevalence of the Cr-Zn-Cd-resistance gene czcD was 85%, higher than that of resistances to those metals. Possibly the gene was not effectively expressed under the test conditions. However, ascertaining this necessitates further analyses.

The metal resistant isolates are often also antibiotic and disinfectant resistant; the resistance genes may be co-located, e.g., on a plasmid, or the resistance mechanism, e.g., an efflux pump, may provide resistance against both metals, and antibiotics (Deng et al., 2017; Pal et al., 2017). In our study, most of the Salmonella Typhimurium isolates were resistant to at least one antibiotic and almost 80% were multidrug-resistant. Similarly, among Salmonella isolates from retail food of animal origin in Romania and China, over 90% were resistant to at least one antibiotic, and from 43 to over 80% were multidrug-resistant (Mihaiu et al., 2014; Deng et al., 2017). The prevalence of resistance to streptomycin, sulfonamides, tetracycline, and ampicillin were all over 70% among our isolates. In agreement with Deng et al. (2017), pigs were a major source of antibiotic-resistant isolates. The prevalence of resistance to six antibiotics was higher among the pig meat and manure isolates than among other isolates, and that of streptomycin and ampicillin were highest among the pig meat isolates and that of ciprofloxacin and ofloxacin among the pig manure isolates. In our study, from 55 to 79% of the isolates were considered resistant to disinfectants triclosan (TCS), trichloroisocyanuric acid (TCCA), or benzalkonium chloride (BC). The MICs for BC resistance were lower than those of the meat Salmonella isolates, among which almost 60% had a MIC of 128 mg L–1 for BC (Deng et al., 2017). For three of the disinfectants, the prevalence of resistance was lowest among the human stool isolates, suggesting that the resistance had not been passed on in the food chain.

Due to the genes and mechanisms shared between metal, antibiotic, and disinfectant resistance, the development of resistance against metals may be associated with the development of antibiotic and disinfectant resistance (Deng et al., 2017; Pal et al., 2017). Similar to previous studies (Deng et al., 2017; Di Cesare et al., 2016; Yang et al., 2018), in our study, the metal resistances and HMRGs were associated with resistance to antibiotics and disinfectants. Especially, Cu-resistance genes were associated with resistance to several antibiotics and disinfectants. Thus, the excessive use of metals and disinfectants as feed additives and in animal care may have the potential to promote antibiotic resistance through co-selection. Alarmingly, this co-selection can maintain and promote antibiotic resistance even in the absence of antibiotics, and e.g., Cu may co-select for resistance to last-resort antibiotics such as colistin (Pal et al., 2017).

Knowing the genetic linkage of resistance genes and their association with MGEs is critical to fully understand the risks of horizontal transfer of resistance genes between bacteria (Martínez et al., 2015; Pal et al., 2015). The operons encoding resistance against different metals have been confirmed to be located on the same plasmid (Fang et al., 2016). In our study, the transfer of the Cr-Zn-Cd-resistance gene czcD, Cu-resistance gene pcoC, and Co-Ni-resistance gene cnrA into Escherichia coli and the increased Cu-resistance of the transconjugants implied that the resistance genes were located on conjugative plasmids and may be expressed in a receiving strain. Similarly, Hasman and Aarestrup (2002) and Amachawadi et al. (2013) reported that the copper resistance gene tcrB is horizontally transferable and linked to macrolide and glycopeptide resistance. Thus, the metal resistance genes may spread between bacteria and, due to the connection between metal and antibiotic resistance, further increase the prevalence of antibiotic resistance in the environment.

The study had the few limitations. Firstly, Salmonella Typhimurium, as a control strain, was not available and therefore we used standard control strains like Escherichia coli ATCC 25922, Escherichia coli ATCC 10536 and Salmonella H9812 as some previous studies who did the same in a scenario where the control strain was not available due to the reason such as faced by us.

Secondly, understanding differences in metal tolerances among pig feces isolates is certainly worthwhile and could have been done. However, group-wise comparison has previously been performed by a few researchers before with some limitations. In the current study, we made group-wise comparison and tried answering some of the limitations that were found in those previous studies. Since our group is constantly working on this particular aspect, future study will certainly be conducted in the subject manner as proposed.



CONCLUSION

We found a co-occurrence of heavy metal, antibiotic and disinfectant resistance in Salmonella Typhimurium isolates originating from retail foods, animal manure, and human stool. Such an increased prevalence of metal resistance and its corresponding genes among Salmonella Typhimurium isolates has not been reported previously and therefore provides a baseline study to further investigate the subject matter. Further, a prevalence of resistance and its genes indicates that meat and manure could be potential sources of human exposure to multiple strains of resistant Salmonella and other food-borne diseases. An excessive as well as an irrational use of metals and disinfectants either as feed additives or in an animal care setting may promote antibiotic resistance through co-selection and the transfer of the resistance genes through MGEs.
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Staphylococcus aureus (S. aureus) is the top ordinary pathogen causing epidemic and food poisoning. The authentication of S. aureus has great significance for pathologic diagnosis and food hygiene supervision. Various biosensor methods have been established for identification. This paper reviews the research progress of aptasensors for S. aureus detection, focusing on the classification of aptamer technologies, including optical aptasensors and electrochemical aptasensors. Furthermore, the feasibility and future challenges of S. aureus detection for aptamer assays are discussed. Combining aptasensors with nanomaterials appears to be the developing trend in aptasensors.
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INTRODUCTION

Foodborne pathogens caused by microorganisms are the main problem of food safety. Staphylococcus aureus (S. aureus), an anaerobic Gram-positive bacterium, is a common cause of foodborne intoxications (Hulme, 2017), with strong adaptability and the ability to tolerate a wide range of pH, temperature, and humidity. S. aureus strains produce one or more extracellular proteins, called staphylococcal enterotoxin (SE), which are composed of staphylococcal enterotoxin A (SEA), staphylococcal enterotoxin B (SEB), staphylococcal enterotoxin C (SEC), etc. (Principato and Qian, 2014). These extracellular proteins may inhibit the host’s immune response to S. aureus; hence, SE is thought to be the typical cause of food poisoning in humans after eating contaminated food. Infected people frequently develop gastrointestinal symptoms such as feeling sick, emesis, and diarrhea within hours. The disease is generally mild and usually resolves within 24–48 h of the onset of symptoms and rarely requires hospitalization. Foods susceptible to staphylococcal intoxication are usually meat, meat and egg products, milk (especially if animals are affected by mastitis), and baked goods (McMillan et al., 2016; Johler et al., 2018). In Spain, 21% of 940 food samples (milk, cheese, meat, baked goods, etc.) were reported to be positive for Staphylococcus spp. in 2016 (European Food Safety Authority and European Centre for Disease Prevention and Control, 2017). In 2017, a total of 4,600 animal specimens were collected in Italy; 28.8% of them were positive. Among these data, the incidence of sheep (37.4%) was significantly high (European Food Safety Authority and European Centre for Disease Prevention and Control, 2018). Salty foods such as ham are also implicated by the ability of S. aureus that grew with low moisture activity (Qi and Miller, 2000). It is critical to detect efficiently and to prevent the occurrence of the disease since S. aureus has become a kind of pathogenic bacteria that caused serious harm to food safety. The risk assessment of foodborne pathogens can quickly and effectively assess the pathogenic factors of different types of foodborne diseases, such as bacterial food poisoning, by constructing early outbreak prediction model. Food safety risk assessment, especially microbial risk assessment (MRA), plays an important role in ensuring food safety and controlling foodborne diseases. An accurate and reliable risk assessment process is essential for people’s health and safety.

Staphylococcus aureus biofilms can form physical barriers that affect the spread and distribution of antibiotics; bacteria are encapsulated in the extracellular biofilm matrix and arranged in multiple layers, which can develop resistance to antimicrobial agents and host immune systems by damaging the action of phagocytes (Prenafeta et al., 2014). The occurrence of the methicillin-resistant Staphylococcus aureus (MRSA) is on account of the excellent capacity of S. aureus to suit antibiotics. Enterotoxin-producing MRSA can also act as a foodborne pathogen under growth conditions favorable for enterotoxin production. MRSA has long been recognized as a major pathogenic factor in human healthcare-related infections (HA-MRSA) (Sergelidis and Angelidis, 2017). MRSA strains have been implicated in community-associated infections (CA-MRSA) in many countries (Deurenberg et al., 2007). It has been reported that MRSA transported on poultries and domestic animals are called LA-MRSA (Macori et al., 2017). Up to now, the presence of LA-MRSA in live domestic animals, wild animals, fresh foods, and ready-to-eat foods has been demonstrated in a number of studies (Sieber et al., 2018; da Silva et al., 2020). A study in Greece examined 367 samples (36 bulk tank milk, 19 milk dairy products, 72 humans, 185 animals, and 55 pieces of equipment), of which 57.8% of the samples tested positive for S. aureus (Papadopoulos et al., 2018). Identical conclusions were obtained from studies that people, animals, and the surrounding environment may be related to MRSA contamination in the dairy production chain (Tegegne et al., 2019).

Tuerk and Gold (1990) established SELEX technology, which successfully screened synthetic oligonucleotides with high affinity and specificity from RNA library. The SELEX process is implemented in DNA library, and single-stranded DNA (ssDNA) was prepared by thermal deformation of DNA library. Generally, the target is fixed on the magnetic beads as the selection object, and then the ssDNA aptamer of the target is selected in vitro. The magnetic beads modified with the target are co-incubated with the DNA library, and the unbound or weakly bound ssDNA is discarded after magnetic separation. The ssDNA combined with the magnetic beads is eluted and collected as the template for polymerase chain reaction (PCR) amplification. After PCR amplification, a new ssDNA library is formed, which will be SSco-incubated with magnetic beads in the next round of screening. In the screening process, negative selection and inverse selection are combined to reduce the enrichment of non-specific ssDNA during selection. The incubation, elution, and amplification steps are repeated continuously, with the increase of screening times, the incubation time will be shorter; ultimately, the ssDNA aptamer of the target will be finally obtained. Multiple SELEX screenings give the aptamer a higher specificity with more stable affinity than antibodies. The concept of aptamer was first proposed by Ellington and Szostak (1990). So far, many aptamers have been developed for S. aureus and its toxins (DeGrasse, 2012; Baumstummler et al., 2014; Huang et al., 2014, 2015).

By virtue of its three-dimensional structure, aptamer is highly selective in binding to targets and has high affinity and strength specificity similar to antigen–antibody reaction, which can detect targeted pathogens in complex food samples. Biosensors consist of recognition elements and sensors. The signal of the sample is amplified by the biometric element, and the sensor transforms the biometric signals into measurable signals. Aptamer-based multi-class materials can be used as signal amplifiers to establish aptasensors, which can obtain higher sensitivity and is more suitable for rapid detection of pathogens in the field, and have become a new method for risk assessment of pathogens.



AVAILABLE METHODS FOR DETECTING S. aureus

In the past two decades, foodborne pathogen detection by conventional ways mostly relies on the culture and identification of microorganisms, which are accurate and reliable; however, it remains challenging due to laborious duty and a long period of experimental operation. With the development of molecular detection technology, PCR has been gradually applied to foodborne pathogenic bacteria detection. However, owing to its inability to distinguish between dead and alive bacteria as well as the fact that the experiment is prone to interference, it is difficult to satisfy the requirements of actual detection (Tao et al., 2020). Compared with traditional antibodies, aptamers, which act as a new molecular recognition element, have the advantages of a wide range of target molecules, fabulous stability, long storage life, and high specificity (Gopinath et al., 2016). Biosensors based on nucleic acid aptamer have proved promising for detecting foodborne pathogens. The aptamer biosensor made by combining the biosensor technology not only has the characteristics of high specificity, strong affinity, easy modification, and good stability but also maintains the advantages of rapid response, simple operation, and low cost of the biosensor. Figure 1 shows a diagram of representative components and techniques that can be integrated into a biosensor in order to detect the pathogens.
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FIGURE 1. Components and measurement methods associated with biosensors for pathogen detection.


Conventionally, the detection methods of foodborne pathogens will be further discussed below, which can be systematized by culture-based, nucleic acid-based and immune-based methods. The culture method is currently the most widespread and sophisticated test method and is generally recognized as the gold standard for microbiological analysis of foodborne pathogens. The culture-based method relies on the cultivation of microorganisms on Agar plates to form visible colonies; next, the colonies are subjected to a standard biochemical identification that provides qualitative or quantitative analysis of pathogen bacteria in food samples. This method remains the preferred method for numerous food testing laboratories since it is 10-cent and easy to use. However, preliminary results can take 2–3 days, while identification of specific pathogenic microorganisms can take more than a week (Zhao et al., 2014). Because of this, it is incapable to handle food safety emergencies.

Nucleic acid-based methods manipulate the DNA or RNA sequence of a target pathogen by detecting specificity. In recent years, it is generally accepted that nucleic acid-based methods are divided into several categories, including simple PCR, multiplex polymerase chain reaction (MPCR), quantitative polymerase chain reaction (qPCR), and loop-mediated isothermal amplification (LAMP). The most widely used nucleic acid amplification method to detect pathogens is PCR. This technique was first reported by Saiki et al. (1985). The principle is that two nucleic acid chains from different sources have complementary base sequences, which can specifically bind to form molecular hybridization chains (Ramesh et al., 1992).

Polymerase chain reaction can detect many toxin genes of S. aureus in a short time. The very first time PCR was utilized to detect S. aureus was reported in 1991 (Wilson et al., 1991). After adding the total DNA of the object to be tested, the sequence of the target gene of SEB is amplified by PCR or real-time fluorescence PCR, and quantitative monitoring can be conducted by electrophoresis bands or fluorescence intensity. Martinon and Wilkinson (2011) established a low-cost, SYBR Green based double-chain real-time PCR for simultaneous detection of Listeria monocytogenes and S. aureus in food. Detection limit was 2 CFU/g in raw meat containing S. aureus (Martinon and Wilkinson, 2011). However, PCR-based tests used alone are unable to provide any indication of the cell viability being examined because they do not distinguish DNA from living and dead cells (Foddai and Grant, 2020). The specificity of the PCR technology depends on the specificity of the primer and template DNA binding; without increasing the fungus, it can detect S. aureus directly from the gene level, and more accurate, rapid, and more sensitive (Smith and Osborn, 2009) detection has been successfully carried out in a variety of pathogens, but the price is higher.

Multiplex PCR provides faster detection by simultaneously amplifying multiple gene targets compared to simple PCR. Tao et al. (2020) established a common primer-mediated MPCR technique for non-qualitative screening of 11 common foodborne pathogens. Park et al. (2006) used MPCR to detect S. aureus in kimchi, and the detection limit was 260 CFU/ml. qPCR, also known as real-time PCR, is a way that continuously monitors the production of PCR products throughout the reaction process, providing rapid, simultaneous amplification and gene detection (Valderrama et al., 2016). LAMP is a DNA isothermal amplification technique proposed by Notomi et al. (2000). This research employed a DNA polymerase and a set of primers specially designed to identify six different sequences in the target DNA and does not require a cyclic process such as transgenesis during the whole process. It is a new DNA amplification method, which is simple, quick, and highly specific (Srividya et al., 2019), and has the possibility of replacing the PCR method. At the same time, in the actual detection work, it was found that PCR technology has high requirements for primers, system establishment, and annealing temperature screening; high requirements for target fragment screening; and high sampling standards. Immunoassay method for detecting foodborne pathogens is based on the antigen–antibody union. It is used to quickly detect pathogens, which have not yet been realized by other conventional methods. The most frequently used immunoassay method is enzyme-linked immunosorbent assay (ELISA), which is widely applied to the detection of foodborne pathogens, fungal toxins, and bacterial toxins. While short detection time and high sensitivity are required compared to traditional culture-based methods, ELISA falls short of being able to detect pathogens in real time (Umesha and Manukumar, 2018). Sandwich ELISA is a modified ELISA that uses two antibodies against a single antigen (Priyanka et al., 2016). The usage of sandwich ELISA for rapid foodborne pathogen detection has been studied, and the sensitivity and specificity of sandwich structure are much higher than before. The presence of the bacteria can also be proved by testing for enterotoxins. Immunoassay has become the main tool for rapid detection of harmful toxigenic bacteria due to its high specificity for toxicity. Nouri et al. (2018) designed a new kit for the detection of SEA in milk, with a detection time of about 15 min and a sensitivity of 15.6 ng of toxin. For instance, Sun et al. (2020) developed a sandwich chemiluminescent immunoassay (CLIA) to detect SEB, an anti-SEB monoclonal antibody was used as the capture antibody, and Nb37-ALP was used as the detector antibody; the detection limit was 1.44 ng/ml. In another sandwich ELISA assay, nano-antibodies acted as capturing antibodies, and the detection antibodies were acted by phage nanoantibodies with amplified signal properties. Under the optimal cases, the quantitative range of this method was 1–512 ng/ml, and the detection limit was 0.3 ng/ml (Ji et al., 2020). In actual detection, this method is highly dependent on equipment; secondly, antibody preparation is difficult and it is prone to false positives; finally, the experiment has certain requirements such as the professional level of the experimenter. Obviously, the methods mentioned above are not sufficient, and most of them are longstanding and laborious jobs. To a large extent, aptasensor detection can alleviate the problems of the above methods. Table 1 summarizes the advantages of conventional methods and aptasensors for S. aureus detection.


TABLE 1. Comparison of conventional methods and aptasensors for detection of S. aureus.
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PRINCIPLES OF APTASENSORS FOR S. aureus DETECTION

Nucleic acid-based aptamers are a ssDNA fragment or short RNA sequences that are obtained by separation of nucleotides synthesized in vitro in libraries using SELEX. They have characteristics that can be easily synthesized in vitro, simple to modify, and can be designed flexibly in a sequence. Compared with traditional antibodies, aptamers have more advantages. As a new molecular recognition element, aptamers can recognize not only single molecules like protein and nucleic acid but also large molecular complexes such as cells, bacteria, microorganisms, and viruses. It has a wider range of target molecules (proteins, nucleic acids, parasites, bacteria, cells, viruses, etc.) and a higher affinity than antigen–antibody reaction; the molecular weight is about 20–100 bp, which makes it easier to enter the cell; the preparation process does not require antibody immunity; and animal experiments can be synthesized in vitro for subsequent experiments. Stable properties and longer storage life make aptamers the ideal experimental material. Massive aptasensors have been logically designed and miscellaneous techniques, including optical and electrochemical aptasensors, have been used and combined to acquire gratifyingly detectable signals. After screening the nucleic acid of foodborne pathogens, the detected signals should be further converted into recognizable output signals. The nucleic acid aptamer can perform signal output through the biosensor, fix the nucleic acid aptamer on the substrate of the biosensor, and transform the chemical, physical, electrical, or optical changes in the adsorption process into detectable signals through sensing technology. This paper introduces the application of these sensors in the detection of nucleic acid aptamer in foodborne pathogenic bacteria.


Optical Aptasensors

With the advantages of high sensitivity, speediness, and specificity, the optical sensor has been widely used in S. aureus detection. It is commonly known that optical aptasensors are classified into surface plasmon resonance (SPR), colorimetric aptasensors, surface-enhanced Raman spectroscopy (SERS), and fluorescence (Rubab et al., 2018). Optical biosensors consist of a biological recognition layer, a transducer, and amplification. Various optical-based aptamer sensors that have emerged in recent years are summarized in Table 2.


TABLE 2. Optical-based aptasensors for detect S. aureus.
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SPR Aptasensors

Surface plasmon resonance has the benefits of no mark detection, real-time supervision of the dynamic process of biological reaction, and non-destructive detection. SPR is the surface plasma produced by light at the interface of two kinds of dielectric constant materials to reduce the intensity of reflected light. Kinetic and equilibrium analysis of the presence of SPR provides access to characterize molecular interactions, for instance, the aptasensor binds to the analyte, the mutual effect between the antibody and the antigen, and the characterization of the receptor (Damborsky et al., 2016). The limit of detection (LOD) of SPR is based on several factors, such as the molecular weight of the target probe, optical properties, and the affinity of the probe (Nguyen et al., 2015). However, the size of pathogenic bacteria can interfere with some measurements, and the detection limit is often too high. Wang’s group assembled aptamers on a gold substrate mediated by polyadenine. The designed aptasensors can only show an SPR signal at concentrations of S. aureus greater than 1 × 106 CFU/ml (Wang et al., 2019). The aptamer was applied to detect S. aureus in milk by resonance combination with localized surface plasmon resonance (LSPR). It should be pointed out that the LOD of aptasensors was 103 CFU/ml, and the analysis time was only 120 s (Khateb et al., 2020).

Colorimetry has been widely used due to the following reasons: low cost, simple, practical, fast, and portable diagnosis. There is no need for an analytical device to easily and immediately verify the presence of pathogens in samples based on color variations (Song et al., 2011). Metal nanoparticles, such as gold and silver, are the subject of attention in aptasensors because of their optical properties related to size and distance. Chang et al. (2016) reported a duplex detection method based on aptamer and gold nanoparticles (AuNPs), which can accurately identify S. aureus from common pathogens. Using AuNPs as an indicator, the bacteria were first incubated with antagonistic S. aureus aptamers, and then aptamers were inserted into AuNPs to avoid the interaction between bacteria and AuNPs. When salt was added, AuNPs that were bound to the bacteria remained red, while those that were not turned blue (Chang et al., 2016). Yuan and coworkers developed colorimetric aptasensors for S. aureus based on AuNPs using tyramine signal amplification (TSA) technology. The method has a detection sensitivity of up to 9 CFU/ml, with a linear range of 10–106 CFU/ml (Yuan et al., 2014). A colorimetric immunoassay is adopted based on immuno-magnetic and signal amplification of AuNPs etching to enhance the activity of peroxidase for S. aureus detection. IgY-Fe3O4/Au nanocomposite was regarded as the capture probe; at the same time, aptamer-AuNPs were used as the signal amplifier, and the S. aureus can be lightly caught by the naked eye at 10 CFU/ml and a linear range of 10–106 CFU/ml (Yao et al., 2020). Yu et al. (2020) developed a colorimetric aptasensor for high-throughput detection of S. aureus catalyzed by aptamers and the dsDNA–SYBR Green I (Sg I) complex. In addition, this method can directly detect S. aureus, and the LOD in PBS buffer was 81 CFU/ml and the detection time was 5.5 h (Yu et al., 2020).



Surface-Enhanced Raman Spectroscopy Aptasensors

Surface-enhanced Raman spectroscopy is a kind of common sensing technology, which involves resonance Raman effect excited by plasmon. When molecules are attached to metallic surfaces, like silver nanoparticles and AuNPs, the light scatter of molecules increases. The mechanism of SERS can be divided into electromagnetic field enhancement and chemical mechanism (CM), which is due to the particular interaction of adsorbed substances between metal surfaces and molecules (Langer et al., 2019). It is generally believed that the electromagnetic field on the metal surface can be expressively raised due to plasma excitation because the electromagnetic mechanism provides most of the enhancement (Payton et al., 2014). Zhu et al. (2021) assembled a S. aureus aptasensor using SERS technology based on an aptamer functionalized polydimethylsiloxane (PDMS) membrane. The aptamer was fixed on the AuNPS-PDMS membrane by Au-S. The gold-core silver-shell nanoflower (Au@AgNFS) revised by mercaptobenzoic acid (4-MBA) and aptamer was used as the signal probe. A sandwich structure used is for taking substrate target-signal molecular probes. Under optimized experimental conditions, LOD is 13 CFU/ml. The linear range of this experiment was 4.3 × 10 to 4.3 × 107 CFU/ml (Zhu et al., 2021). Zhang et al. (2015) used Raman molecule-modified AuNPs and aptamers as signal probes. Fe3O4 magnetic AuNPS (Au-MNP) immobilized with aptamers were designed to capture S. aureus. Under optimal conditions, the LOD was 35 CFU/ml (Zhang et al., 2015). A magnet SERS biosensor was proposed based on the double recognition of pathogens by aptamers and antibiotics. Fe3O4@Au magnetic nanoparticles (Au-MNPs) modified with aptamers were compounded by bacteria-specific magnetism and SERS active substrates, and vancomycin-labeled SERS (Au@MBA) was intended for sensitive quantification of pathogens. S. aureus in real samples, such as milk and orange juice, were detected; the LOD was 3 cells/ml, and the detection of the aptasensor reported ranged from 10 to 107 cells/ml (Pang et al., 2019). Zhang et al. (2018) first reported a dual vancomycin and aptamer identification of a sensitive SERS platform, with Escherichia coli (E. coli) and S. aureus as target bacteria, and, at the same time, detected 20 kinds of pathogenic bacteria. To sum up, the LOD was shown to be 20 cells/ml, and S. aureus was in the range of 20–105 cells/ml (Zhang et al., 2018). It is generally accepted that SERS has overcome the shortcomings of Raman spectroscopy, such as flat Raman signal, poor LOD, and photobleaching (Smolsky et al., 2017).



Fluorescent-Based Aptasensors

Fluorescence has become one of the most commonly used sensing ways for the analysis and detection of low-concentration analytes because of its high sensitivity, high efficiency, and simple and rapid analysis. Fluorescence can be classified as labeled and unlabeled. Labeled fluorescence requires at least one chromophore or fluorescent cluster, and the typically labeled fluorescence assay is Förster (fluorescence) resonance energy transfer (FRET) detection. The realization of fluorescence signal mainly depends on the interaction between a non-radiative energy long-range dipole and a dipole used to transfer from the donor to the recipient, called FRET; there are generally two sensing strategies, namely, a signal on and signal off. Yu et al. (2017) proposed a dual recognition of S. aureus using vancomycin and aptamer nucleic acid based on a bimolecular affinity FRET platform. The donors and the receptors are, respectively, gold nanoclusters that function with vancomycin and aptamer-modified AuNPs, under optimal detection conditions; using this approach, the linear range for monitoring S. aureus was 20–108 CFU/ml, with the LOD as low as 10 CFU/ml (Yu et al., 2017). Tao et al. (2021) designed a one-step FRET assay for S. aureus detection. With aptamer-modified quantum dots (QDs) as donors and antibiotics-modified AuNPs playing the role of acceptors, the detection time was 1 h, and the detection linear range was 10–5 × 108 CFU/ml; the LOD in food samples (milk and orange juice) was 100 CFU/ml (Tao et al., 2021). Lu et al. (2020) introduced the protective binding influence between aptamers and targets, to construct the aptasensors, thus avoiding the optimization of the aptamer probe sequence. Sensitive detection of S. aureus was achieved (LOD was 64 CFU/ml, and the dynamic range was 102–107 CFU/ml). The method mentioned above can be used for high-precision quantification of S. aureus in tap water, milk, and pork (Lu et al., 2020). He et al. (2014) designed to immobilize the aptamer of S. aureus on fluorescent silica nanoparticles to generate Aptamer/FSiNPs. The experiment is described as follows, in a nutshell. Firstly, the sample is grown with the self-assembly, and then the sample was stained with DNA dye and finally detected by two-color flow cytometry. Using this approach, the aptasensor had a LOD of 1.5 × 102 cells/ml in buffer and 7.6 × 102 cells/ml in spiked milk (He et al., 2014). Based on carbon dots (CDs) and gold nanoparticles, Yao et al. (2021) established a one-step fluorescence method for S. aureus detection. When S. aureus occurs, the fluorescence signal is turned off according to the aptamer that preferentially binds to the pathogen phenomenon. The LOD of this unlabeled method was 10 CFU/ml, and the linear range was 10–106 CFU/ml (Yao et al., 2021).

Molecules capable of fluorescing sensing are usually carried by structures called fluorophores and receptors, and in some systems, these two structures can be combined. A method for the detection of S. aureus fluorescence based on a molecular beacon (MB) and chain displacement target cycle has been developed by Cai et al. (2019). The results revealed that the detection range of S. aureus was 80–8 × 106 CFU/ml, and the LOD was 39 CFU/ml (Cai et al., 2019). Hundreds of studies heretofore have focused on nanomaterials; a large number of nanomaterials such as QDs, up-conversion nanoparticles (UCNPs), CDs, AuNPs, graphene oxide (GO), and carbon nanotubes (CNTs) have been applied in fluorescence biosensors. High-sensitivity and multiplex methods have been established to detect simultaneously and specifically three pathogens, using polychromatic UCNPs as markers and aptamers as molecular recognition elements. Under optimum conditions, the bacterial concentration was linearly correlated with the luminescent signal in the range of 50–106 CFU/ml. The LOD of this work was found to be 25 CFU/ml for S. aureus (Wu et al., 2014). Shrivastava et al. (2018) demonstrated a culture-free, rapid, quantitative method to detect S. aureus based on a smartphone. Marked S. aureus are captured by a magnet in a box where light-emitting diodes act as a source of excitement and then smartphone cameras are used to create a fluorescent image. The method allows the detection of S. aureus directly from peanut milk samples for 10 min, with a minimum detection concentration of 10 CFU/ml (Shrivastava et al., 2018).



Electrochemical Aptasensors

Electrochemical biosensors can be widely used in pathogen detection for the safety of food and drinking water, medical diagnosis, environmental monitoring, and biological threats due to their wide variety (Yang et al., 2018). Electrochemical biosensors that can be used for real-time detection, with high specificity and no contamination, have become a bioanalytical method for clinical diagnosis of proteins in point-of-care systems (Chikkaveeraiah et al., 2012). As can be seen from Figure 2, the principle of electrochemical detection is expressed. Electrochemical aptasensors combined with a variety of nanomaterials (CNTs, graphene, GO, etc.) have been widely popularized in food and clinic (Ravalli et al., 2016; Wang et al., 2016; Pourakbari et al., 2019). Electrochemical aptasensors utilize electrodes as the transduction element and aptamers as the biometric identification element to convert signals into electrochemical signals. Ceramic electrodes, metal electrodes [Au and platinum (Pt)], polymer materials electrodes, and carbon electrodes have been widely used as electrodes (Amiri et al., 2020). The following three methods representing electrochemical transducer detection will be introduced: potentiometry, voltammetry, and impedimetry. Table 3 compares the electrochemical detection of S. aureus based on aptasensors.
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FIGURE 2. Schematic illustration of detection principle of electrochemical aptasensors.



TABLE 3. Comparison of analytical features of electrochemically related aptasensors for S. aureus detection.
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Aptasensor Detection Based on Potentiometry

Potentiometry, also known as amperometry, measures the potential by applying a current. One advantage of this method is the ability to use a low-cost measuring instrument. Hernández et al. (2014) synthesized a potentiometric aptasensor using graphene electrodes modified on carbon rods and an aptamer attached to graphene, which can catch a single CFU/ml of S. aureus. Lian et al. (2015) have developed a new piezoelectric sensor that connects S. aureus aptamers with gold electrodes, using aptamers as a recognition element. Using 4-mercaptobenzene-diazonium tetrafluoroborate (MBDT) as a molecular crosslinking agent, graphene was chemically bonded to the interdigital gold electrode (IDE) of a series of electrode piezoelectric quartz crystals (SPQC). At the time when S. aureus appears, the aptamer falls off the surface of graphene (Lian et al., 2015). Cai et al. (2021) designed an electrochemical method for S. aureus detection of three-helix molecular switches. An aptamer modified on the magnetic bead was used to capture the pathogens and release the complementary strand cDNA. In the next step, the gold electrode that modified the triple helix structure controls the release and shutdown of the signal. The system was able to detect water and honey samples, the LOD was 8 CFU/ml, and the linear range was from 30 to 3 × 108 CFU/ml (Cai et al., 2021).



Aptasensor Detection Based on Voltammetry

Voltammetry is a method of measuring current by controlling potential. Recently, Abbaspour et al. (2015) employed a sandwich structure modified with silver nanoparticles and aptamers to detect S. aureus. The primary aptamer was securely fixed to the magnetic bead in order to catch S. aureus, while the secondary aptamer is combined with silver nanoparticles to improve the specific electrochemical properties. In addition, the LOD of this voltammetry was shown to be 1.0 CFU/ml, and the dynamic range was 10–1 × 106 CFU/ml (Abbaspour et al., 2015). Figure 3 shows the schematic of the classical two-aptamer sandwich method for the electrochemical detection of S. aureus. The construction of electrochemical aptasensors is not only applied to the risk assessment of S. aureus in food, but also has a good application in the risk assessment of toxins. Mousavi Nodoushan et al. (2019) detected SEB on screen-printed electrodes modified with graphene oxide (rGO) and nano-gold sea urchins (Aunus). DNA chain probes were connected to aptamers and probes were connected to Aunus electrodes. When the SEB appeared, the aptamer disconnected from the electrode and the peak current is recorded using an electrochemical signal generator. The electrochemical aptasensor developed is highly sensitive in milk, meat, and serum samples. The aptasensor had a LOD of 0.21 fM, with a wide linear range of 5.0–500.0 fM (Mousavi Nodoushan et al., 2019).


[image: image]

FIGURE 3. Schematic display electrochemical dual aptamer sandwich detection of S. aureus.




Aptasensor Detection Based on Impedimetry

Electrochemical impedance spectroscopy (EIS) is a technique used to study electrode systems and to conclude the quantification of electrochemical processes. Despite the complexity of EIS, it has high commercial potential, and has been widely used in environmental monitoring, disease monitoring, and other fields. One of its advantages is small-amplitude homeostatic disturbance, such that it can be realized without damaging the detection of the case. It may also measure, in case of uncertainty, the presence of REDOX pairs (Bahadır and Sezgintürk, 2014). The precision and operation procedure of the instrument has a certain influence on subsequent results. Zhang et al. (2019) used aptamer-magnetic separation in the resistivity method to detect S. aureus. The linear ranges of S. aureus were 4.1 × 103 to 4.1 × 108 CFU/ml, and LOD was 4.0 × 103 CFU/ml in pure water (Zhang et al., 2019). Reich et al. (2017), who combined EIS use with aptamers to detect S. aureus, showed a LOD of 10 CFU/ml. EIS aptasensors also have many applications in the risk assessment of toxins in food. Combining induced release strategy with amplification of HCR signals, Chen et al. (2019) developed an electrochemically competitive nanoprobe for ultrasensitive specificity SEB detection measured with chronocoulometry. Three classical electrodes were used for this experiment, namely, a modified gold electrode, an Ag/AgCl reference electrode, and an auxiliary platinum wire electrode. Under the first-rank conditions, the charge difference of SEB increased linearly with the logarithmic increase of SEB concentration in the range of 5 pg/ml to 100 ng/ml, and the detection limit was as low as 3 pg/ml (Chen et al., 2019).



CONCLUSION

This article reviews how aptasensors have been applied to risk assessment in food, especially for foodborne pathogens such as S. aureus. As a tool of risk assessment of foodborne pathogens, aptasensors have good competitiveness in terms of time, sensitivity, specificity, and cost.

Staphylococcus aureus produces enterotoxin (especially in animal-derived food such as milk and cream, which are easily infected) to cause food poisoning and has become a worldwide foodborne pathogenic factor. It is necessary to establish a method with less time and high sensitivity for S. aureus. It is commonly known that aptasensor detection has been widely applied to foodborne pathogens. However, the sensibility is limited, and it is still the focus of future research to improve the sensitivity and shorten the detection time of foodborne pathogens. In the practical application of aptasensors, there are many problems that need to be solved, for example, finite configuration of aptamers, aptamers with a high negative charge are difficult to combine with a negatively charged target, time-consuming process, and low success rate of SELEX. In the next step, how to quickly obtain excellent aptamers, shorten the specific aptamer screening cycle, improve the success rate of SELEX, and save cost and investment will become a research focus, so as to further promote the application of aptamer technology in the detection of pathogens. In the future, it is hoped that aptamers combined with a variety of nanomaterials to form simpler and faster aptasensors for detection will not only improve the success rate of detection but also provide a variety of data processing methods in different types of food. Figure 4 shows the applications of materials for S. aureus aptasensor detection in food risk assessment. By virtue of its remarkable detection characteristics, simultaneously solving the above-mentioned issues, detection methods are prone to false-positive results and other defects, and there is thus room for the further development of aptamers. New technologies have also been mentioned in the paper, including new applications of signal transduction and the combination of signal transduction and enhancement of signal amplification mode. With these advances, the sensitivity and time of detection have greatly improved. It is predicted that aptamers will be further combined with nanomaterials, and portable detection instruments will be developed.
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FIGURE 4. Applicable materials, methods, and applications of aptamers for S. aureus risk assessment.
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Salmonella enterica (S. enterica) is an important foodborne pathogen, causing food poisoning and human infection, and critically threatening food safety and public health. Salmonella typing is essential for bacterial identification, tracing, epidemiological investigation, and monitoring. Serotyping and multilocus sequence typing (MLST) analysis are standard bacterial typing methods despite the low resolution. Core genome MLST (cgMLST) is a high-resolution molecular typing method based on whole genomic sequencing for accurate bacterial tracing. We investigated 250 S. enterica isolates from poultry, livestock, food, and human sources in nine provinces of China from 2004 to 2019 using serotyping, MLST, and cgMLST analysis. All S. enterica isolates were divided into 36 serovars using slide agglutination. The major serovars in order were Enteritidis (31 isolates), Typhimurium (29 isolates), Mbandaka (23 isolates), and Indiana (22 isolates). All strains were assigned into 43 sequence types (STs) by MLST. Among them, ST11 (31 isolates) was the primary ST. Besides this, a novel ST, ST8016, was identified, and it was different from ST40 by position 317 C → T in dnaN. Furthermore, these 250 isolates were grouped into 185 cgMLST sequence types (cgSTs) by cgMLST. The major cgST was cgST235530 (11 isolates), and only three cgSTs contained isolates from human and other sources, indicating a possibility of cross-species infection. Phylogenetic analysis indicated that most of the same serovar strains were putatively homologous except Saintpaul and Derby due to their multilineage characteristics. In addition, serovar I 4,[5],12:i:- and Typhimurium isolates have similar genomic relatedness on the phylogenetic tree. In conclusion, we sorted out the phenotyping and genotyping diversity of S. enterica isolates in China during 2004–2019 and clarified the temporal and spatial distribution characteristics of Salmonella from different hosts in China in the recent 16 years. These results greatly supplement Salmonella strain resources, genetic information, and traceability typing data; facilitate the typing, traceability, identification, and genetic evolution analysis of Salmonella; and therefore, improve the level of analysis, monitoring, and controlling of foodborne microorganisms in China.
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INTRODUCTION

Salmonella enterica (S. enterica) is one of the primary foodborne pathogens to cause food poisoning and human infection (Zhang et al., 2015). Foodborne salmonellosis is an important public health concern worldwide, and it annually causes about 115 million infections and 370,000 deaths globally (Seif et al., 2018). The primary sources of S. enterica foodborne infection include poultry eggs, meats, and their derived products (Arthur et al., 2008). Therefore, it is crucial to monitor Salmonella from animal food, especially poultry eggs, and their derived food products (Mezal et al., 2014).

Accurate typing and tracing are essential for microbial epidemiological investigation, food safety, and public health. Bacterial typing methods include phenotyping and genotyping. Among them, serotyping and multilocus sequence typing (MLST) are the most frequently used.

Serotyping identification has become the general standard method for Salmonella traceability and phenotypic classification for nearly 100 years. Serotype classification is based on serum agglutination tests of bacterial O and H antigens using the White–Kauffmann–Le Minor (WKL) scheme, which is adopted worldwide by public health organizations (Mezal et al., 2014). Up to now, more than 2610 serovars (also serotypes) of Salmonella have been documented globally (Monte et al., 2021). Moreover, Salmonella serotypes usually relate to their host adaptation and virulence, and the change in serotype proportion could reflect the epidemic status, so serotyping plays an essential role in Salmonella surveillance and outbreak investigations (Fierer and Guiney, 2001; Kumar et al., 2009; Dera-tomaszewska, 2012; Barbour et al., 2015). In the past, more attention has been paid to serovars Typhimurium and Enteritidis (Almeida et al., 2018).

In recent years, gene sequencing-based typing assays have been rapidly developed for bacterial tracing with vigorous vitality, including pulsed-field gel electrophoresis, MLST, core genome MLST (cgMLST), whole genome multilocus sequence typing (wgMLST), and whole gene single nucleotide polymorphism (wgSNP) (Liu et al., 2016, 2019; Radomski et al., 2019; Tiba-Casas et al., 2019). Among these molecular typing methods, MLST was developed to establish analytical microorganism typing (Maiden et al., 1998), recognize evolutionary relationships of Salmonella (Achtman et al., 2012; Ashton et al., 2016; Mairi et al., 2020; Zhang et al., 2020), and determine clonal isolate distributions across various environments and hosts (Wang M. et al., 2020; Zhao et al., 2020). In addition, there is a strong correlation between serotypes and sequence types (STs) of Salmonella (Wang X. et al., 2020). However, MLST cannot obtain accurate traceability of Typhimurium and I 4,[5],12:i:- because Salmonella isolates of these two serovars are often divided into the same STs (Possebon et al., 2020).

With the widespread extension of whole genomic sequencing (WGS), WGS-based high-resolution molecular subtyping methods have become popularized in outbreak investigation and bacterial tracing. As a kind of WGS-based subtyping method, cgMLST has high accuracy and can divide strains with minor sequence differences into different cgMLST sequence types (cgSTs), providing a powerful typing approach for molecular epidemiologic investigations. It is most commonly applied for foodborne disease surveillance in the public health area (Yoshida et al., 2016; Vincent et al., 2018; Ben Hassena et al., 2021). cgMLST is proven to be an adequate tool for cluster definition and has become a routine means in many countries and laboratories (Mellmann et al., 2011; Sabat et al., 2017; Simon et al., 2018; Robertson et al., 2019; Wang Y. J. et al., 2020; Hyeon et al., 2021).

In this article, we examine the serotypes, MLST, and cgMLST of S. enterica isolates from different sources in nine provinces in China from 2004 to 2019 to investigate their phenotyping and genotyping diversities and genetic relationships.



MATERIALS AND METHODS


Salmonella enterica Isolates

A total of 250 S. enterica isolates tested were from different sources in nine provinces in China from 2004 to 2019 except for 2005 and 2013 (Figure 1). The nine provinces, including Guangdong, Guangxi, Fujian, Sichuan, Shaanxi, Henan, Shandong, Shanghai, and Beijing, were major animal-breeding regions in China. The numbers of S. enterica isolates from different sources, years, or provinces were not equivalent. The details of these S. enterica isolates are shown in Supplementary Table 1. Out of these 250 isolates, 197 were from poultry-derived products, 31 from human, 15 from livestock meat, and 7 from infant nutrition rice formula (food); 16 were isolated in 2004, 9 in 2006, 4 in 2007, 11 in 2008, 31 in 2009, 105 in 2010, 27 in 2011, 13 in 2012, 1 in 2014, 10 in 2015, 5 in 2016, 5 in 2017, 7 in 2018, and 5 in 2019; 13 were separated in Guangdong, 19 in Guangxi, 11 in Fujian, 28 in Sichuan, 67 in Shaanxi, 18 in Henan, 10 in Shandong, 29 in Shanghai, and 55 in Beijing.
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FIGURE 1. Distribution of S. enterica isolates in China from 2004 to 2019. The locations where the strains were isolated are shown on the map. The isolates obtained from humans, poultry, livestock, and food are labeled in different colors.


Among the 250 S. enterica isolates, 219 strains were isolated from animal products or nutrition rice formula samples. All food samples were immediately homogenized and subjected to Salmonella isolation following the standard protocol as previously described (World Health Organization (WHO), 2003). In short, the sample homogenates were added into selenite cysteine broth and incubated at 35°C for 24 h to selectively enrich Salmonella. Each enriched broth was streaked onto Salmonella Shigella and xylose lysine deoxycholate agar plates and incubated at 37°C for 24 h. Presumptive Salmonella colonies were picked and cultured in triple sugar iron agar media and then systematically identified by microbiological, biochemistry, and 16S rDNA sequencing analysis to confirm Salmonella strains. Thirty-one Salmonella isolates from humans were isolated and identified by the Beijing Center for Disease Prevention and Control. All identified Salmonella isolates were stored in 25% (v/v) glycerol at −80°C in our lab and reproduced periodically.



Serotyping by Slide Agglutination and Prediction by Genome

Salmonella enterica isolates were cultured in nutrient broth at 37°C overnight. A drop of fermentation broth was taken on glass slides to test somatic O antigen by slide agglutination. Meanwhile, each strain was grown on Swarm agar plates at 37°C overnight, and single colonies were picked to test phases 1 and 2 of H antigens by slide agglutination. Diagnostic sera for Salmonella antigens were purchased from Tianrun Bio-Pharmaceutical Co. (Ningbo, China) and SandA Reagents Lab Ltd. (Bangkok, Thailand). Salmonella serotyping was classified by the WKL scheme. Additionally, O antigen, H antigen, and serovars were predicted based on Salmonella genomes using Salmonella In Silico Typing Resource (SISTR1).



Bacterial Genome Sequencing and Genomic Assembly

The genomic DNA of each S. enterica isolate was extracted with the sodium dodecyl sulfate method using the TIANamp Bacteria DNA Kit DP302-02 (TIANGEN, China) following the manufacturer’s instructions. The extracted genomic DNA quality and integrity were evaluated on 0.5–1% agarose gels, concentration was measured using a fluorimeter (MD2000H, Biofuture), and purity was determined with a spectrophotometer based on the ratio of OD260 to OD280 (OD260/OD280 ≥ 1.8). The sequence libraries were constructed using Illumina’s Nebnext Ultra DNA Library Prep Kit (NEB, United States). According to different attribute sequences, each sample was assigned with an index code. In brief, the DNA sample was first broken into approximately 350 bp fragments by sonication. After end repair, DNA fragments were ligated head-to-tail to a full-length adaptor for further PCR amplification. The PCR products were purified by the AMPure XP system, the size distribution of the libraries was analyzed by the Agilent bioanalyzer, and quantitative analysis was performed by real-time PCR.

The genomic DNA of 250 S. enterica isolates was sequenced using the Illumina NovaSeq PE150 platform at Beijing Novogene Bioinformatics Technology Co., Ltd. Considering the influence of low-quality data in the obtained raw sequencing data on the accuracy and reliability of subsequent information analysis, the original data were filtered to obtain the clean data. The specific processing steps included (1) removal of the reads containing low-quality bases (mass value ≤20) over a certain percentage (the default was 40%), (2) removal of reads containing a higher proportion of N (the default was 10%), (3) removal of sequences overlapping with adapters exceeding a certain threshold (the default was 15 bp) and with fewer than three mismatches, and (4) removal of data that might originate from the host after BLASTing against the host database.

The specific processing steps for genome assembly with clean data included (1) assembling with SOAP de novo software (Li et al., 2008) with different K-mers (the default was 107) first and then with the optimal K-mer after adjusting other parameters (-d -u -R -F, etc.) according to the project type, and the least scaffolds were chosen as the preliminary assembly result; (2) assembling with SPAdes software (Bankevich et al., 2012) with different K-mers (the default was 127) and then with the optimal K-mer according to the project type, and the assembly results as the least scaffolds were obtained; (3) assembling with Abyss software (Simpson et al., 2009) with the 64 nt K-mer to obtain the assembly results; (4) using the CISA software to integrate the above three assembly results, and only the assembly results with the least scaffolds were selected; (5) using GapCloser software to fill the gap of preliminary assembly results and remove the same lane pollution by filtering the reads with low sequencing depth (less than 0.35 of the average depth) to obtain the final assembly results; and (6) counting the final assembly result (without fragments below 500 bp) for gene prediction by GeneMarkS software (Besemer et al., 2001).



MLST, cgMLST, and Phylogenetic Analysis

Salmonella enterica isolates were analyzed based on genomic sequences (clean data) using in silico MLST and cgMLST analysis on the EnteroBase online platform2 for Salmonella. Seven housekeeping gene loci, including aroC, dnaN, hemD, hisD, purE, sucA, and thrA, were chosen for MLST analysis of Salmonella. The neighbor-joining tree of S. enterica was established based on MLST information.

A Salmonella cgMLST v2 scheme comprising 3002 target loci of Salmonella was employed to analyze cgMLST based on genomic sequences, and neighbor-joining was used to make the dendrograms based on cgMLST information. Salmonella GrapeTree was constructed based on the above cgMLST scheme by EnteroBase GreepTree using NINJA neighbor-joining algorithm.

The tanglegram algorithm was applied to compare the MLST and cgMLST phylogenetic trees by placing trees side by side and drawing a straight line (or connector) between corresponding taxa (Scornavacca et al., 2011; Huson and Scornavacca, 2012). Although the algorithm can effectively reduce the number of intersections between connectors, the change of nodes in the evolution of these two types of phylogenetic trees are in the same direction and can lead to multiple short-distance intersections between connectors. If the two types of trees were identical and no connectors crossed, the cluster of phylogenetic tips remains unchanged.



RESULTS


Serotyping Classification of S. enterica in China During 2004–2019

The 250 S. enterica strains tested in the study were divided into 36 serotypes by slide agglutination (Figure 2A). Salmonella serovar Enteritidis (n = 31) was the most common serotype in China from 2004 to 2019, followed by Typhimurium (n = 29), Mbandaka (n = 23), Indiana (n = 22), Derby (n = 21), Thompson (n = 17), Agona (n = 12), and I 4,[5],12:i:- (n = 9). Senftenberg, Rissen, and Albany accounted for 3.2% (n = 8), respectively. Braenderup and Schwarzengrund possessed seven and six isolates, respectively. Cerro and Corvallis both had five isolates. Blockley, Hadar, Infantis, Meleagridis, Newport, and Saintpaul each encompassed four isolates. Havana and Kentucky both had three isolates. Bovismorbificans, Hvittingfoss, Kottbus, and Stanley each contained two isolates. Anatum, Litchfield, London, Pomona, Potsdam, Tennessee, and Uganda each included one isolate. There were 19 serotypes observed in more than two provinces. Albany, Mbandaka, Enteritidis, I 4,[5],12:i:-, and Typhimurium appeared in three provinces.
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FIGURE 2. Distribution of Salmonella enterica isolates of serotypes (A) and STs (B).


The 250 S. enterica isolates were divided into different serotypes based on their sources (Supplementary Table 1). The 197 isolates from poultry belonged to 34 serotypes, among which Typhimurium had the most isolates (n = 24), followed in turn by Indiana (n = 20), Enteritidis (n = 20), Mbandaka (n = 18), Derby (n = 17), and Thompson (n = 16). The 31 isolates from humans belonged to 13 serotypes with Enteritidis accounting for the largest percentage with 32.26% (n = 10). The 15 isolates from livestock contained nine serotypes, among which Derby and Mbandaka each included four stereotypes. In addition, the seven isolates from foods belonged to seven different serotypes.

According to statistics of the isolation years, the number of isolates was different in each year with Typhimurium, Enteritidis, or I 4,[5],12:i:- being the most abundant ones during 2012–2019. Our investigations are similar to those recently reported; Enteritidis and Typhimurium are still major serovars of Salmonella from animal food or humans (Greig and Ravel, 2009; Hendriksen et al., 2011; Yang et al., 2019; Perry et al., 2020; Shen et al., 2020; Xin et al., 2021).

Comparative serotyping analysis of the 250 isolates showed that the serotypes of 245 (98%) isolates based on slide agglutination were consistent with the genome-based prediction, and only five isolates, QLULP2, QLUY902, QLUY914, QLUY931, and QLUY933, were different. Among them, serotype Typhimurium of QLULP2, QLUY902, QLUY914, and QLUY933 based on slide agglutination was wrongly predicted as I 4,[5],12:i:-, and the serotype I 4,[5],12:i:- of QLUY931 based on slide agglutination was wrongly predicted as Typhimurium. It is worth noting that Typhimurium and I 4,[5],12:i:- were rare in genome-based prediction by SISTR in our study. The results proved once again that Salmonella serotype prediction based on the genome is concordant with serovar by the serum agglutination test except Typhimurium and I 4,[5],12:i:-, so WGS-derived serotyping can replace the agglutination assay to some extent and be applied in the typing, traceability, and identification of Salmonella.



Salmonella Draft Genome Analysis

The genomic reads of 250 S. enterica isolates were stored in the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI). SRA serial numbers of the submitted 250 strains are shown in Supplementary Table 1.

A total of 9656 (≥500 bp) contigs varying from 9 to 92 with an average of 38.62 per genome were generated. The average draft genome size was 4.88 Mb, ranging from 4.35 to 5.48 MB. Likewise, the average G + C content observed was 52.04%. Functional annotation of all draft genomes predicted an average of 4692 genes, ranging from 4173 to 5334.



In silico MLST Analysis of S. enterica

The 250 Salmonella isolates were divided into 43 STs and 37 eBurst groups (eBGs) using in silico MLST. However, ST3134 belonged to neither eBG. ST11 was the most common (n = 31), followed in turn by ST413 (n = 23), ST17 (n = 22), ST34 (n = 21), ST40 (n = 19), ST26 (n = 17), ST19 (n = 14), ST14 (n = 8), ST292 (n = 8), and ST469 (n = 8). ST distribution is shown in Figure 2B.

In addition, among the 43 STs identified, a novel ST named ST8016 (QLUY608) was obtained, and it differed from ST40 by 1 SNP in the dnaN locus at position 317 (C → T, named dnaN1076, compared to dnaN20). Compared with the ST40 dnaN locus, this mutation occurred in the second codon position, resulting in a non-synonymous change from C to Y. Our findings enrich MLST data of Salmonella, facilitating the typing, traceability, and identification of Salmonella.

Among the 43 STs, 25 STs were observed in more than two provinces and 18 STs in one province. ST17 and ST40 appeared in seven provinces. The results indicate that these two STs were prevalent and had the possibility of transregional infection.

Statistics of the isolation sources revealed that (1) the 31 isolates from humans consisted of 13 different STs, among which ST11 had the highest number of 10 isolates, followed by ST34 (n = 6); (2) the 197 isolates from poultry belonged to 37 STs, among which ST11 had the highest number (n = 22), followed in turn by ST413 (n = 21), ST17 (n = 16), ST40 (n = 16), and ST26 (n = 15); (3) the 15 isolates from livestock contained 9 STs, among which ST413 had the highest number (n = 4); and (4) the 7 isolates from food belonged to 7 different STs.

Statistics of isolation years found that the major ST of every year was different during 2004–2011. ST413 was the major ST in 2004, 2007, and 2011; ST11 was the major ST during 2012–2019 except 2014; and ST34 was the major ST from 2014 to 2019 except 2018. The results showed that the major ST of Salmonella was not constant in every year.

Comparison of MLST and serotyping showed that each ST only comprised one serotype except ST34. Nine isolates of I 4,[5],12:i:- and 12 isolates of Typhimurium belonged to ST34. In addition, four serovars included more than one ST: 29 isolates with serotype Typhimurium contained four STs (ST19, ST34, ST128, and ST1544), 21 isolates of Derby contained three STs (ST40, ST8016, and ST71), 4 isolates of Newport contained 2 STs (ST50 and ST3134), and 6 isolates of Schwarzengrund contained two STs (ST96 and ST241). The results represent that the accuracy of MLST was higher than that of serotyping.



cgMLST Analysis of Salmonella Based on Genomic Sequences

A total of 3002 target genes were identified from the S. enterica genome using the EnteroBase cgMLST module. The cgMLST analysis of S. enterica isolates is shown in Supplementary Table 1. The cgMLST analysis revealed that the 250 Salmonella isolates were grouped into 185 cgSTs, all of which contained only one serotype. Among them, 243 isolates belonged to 182 novel cgSTs, and 7 belonged to three known cgSTs. Among the 185 cgSTs, cgST235530 contained the most abundant isolates, followed by cgST217495 (n = 6) and cgST234930 (n = 6). We comprehensively analyzed the WGS-based genotypes of Salmonella in China in the past 16 years and found many novel cgSTs, which enriched the genotype data resources and promoted the development of traceability level of Salmonella.

The relationship of cgST with the years, regions, and sources of isolation is shown in Table 1. Among the 185 cgSTs, 33 cgSTs contained more than two isolates, and 15 cgSTs contained strains from different years, provinces, or sources of isolation. In detail, 12 cgSTs isolates were from multiple provinces, 12 cgSTs from different years, and 5 cgSTs from different sources, representing the possibility of cross-outbreaking in different locations, hosts, or years. cgST236211, cgST236321, and cgST236324 contained multiple isolates from human and other sources, indicating a possibility of cross-species infection. In addition, 152 strains had unique cgSTs in this study.


TABLE 1. Salmonella enterica cgSTs from different years, provinces, or sources of isolation.
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A neighbor-joining tree was generated based on the 250 strains’ cgMLST information (Figure 3). Many serovars formed serovar-specific clades in this tree, suggesting that the same serovars were putatively homologous except that isolates of Saintpaul, Derby, and I 4,[5],12:i:- were heterologous. To further investigate the relationship of Saintpaul, Derby, and I 4,[5],12:i:- isolates, the GrapeTrees of each serovar were constructed based on cgMLST information (Figure 4). In the GrapeTrees, Saintpaul contained four isolates belonging to two clades with a long genetic distance, representing that Saintpaul was putatively polyphyletic (Figure 4A). Similarly, Derby contained 21 isolates that did not wholly cluster together. QLUY614 (cgST236253) had a long genetic distance to the other 20 isolates, suggesting Derby was putatively polyphyletic, too (Figure 4B). Differently, the nine isolates of serovar I 4,[5],12:i:- had close genetic distances in the GrapeTree even though they did not completely cluster together (Figure 4C). In a word, isolates of Saintpaul and Derby were putatively polyphyletic and characterized by multilineages (Yin et al., 2020).


[image: image]

FIGURE 3. Core genome MLST-based phylogenetic tree of S. enterica isolates. The neighbor-joining algorithm phylogenetic tree was created by EnteroBase based on cgMLST information and visualized using Evolview. The numbers stand for Branchlength values. The isolates’ serotypes are labeled in color, and most serovars forms serovar-specific clades except Saintpaul, Derby, and I 4,[5],12:i:-, which are signaled by the same color triangles. I 4,[5],12:i:- and Typhimurium may have a close genetic and evolutionary relationship. Further determination of the evolutionary relationship between the abovementioned serovars will be furtherly carried out. Different colors are used in the outermost ring to indicate the separation source to distinguish the specificities of different isolates.
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FIGURE 4. GrapeTree of Salmonella serovar Saintpaul, Derby, and I 4,[5],12:i:- isolates. GrapeTree constructed based on the 3002 core genes by EnteroBase GrapeTree using NINJA neighbor-joining algorithm. (A) GrapeTree among the four serovar Saintpaul isolates, where every node means different cgST and the line between two nodes indicates a long distance (≥1000); (B) GrapeTree of the 21 Derby and 1 cgST (cgST236253) isolates with a long genetic distance (≥1000) to other cgSTs; (C) GrapeTree of the nine serovar I 4,[5],12:i:- and nine cgST isolates with nodes indicating they all have a relatively close genetic distance (≤100).


Additionally, I 4,[5],12:i:- and Typhimurium in a similar genetic distance may have a near genetic relationship (Figure 3). To further investigate the relatedness of I 4,[5],12:i:- and Typhimurium, their GrapeTree was constructed based on cgMLST information of serovar I 4,[5],12:i:- (n = 9) and Typhimurium (n = 28) (Figure 5). In the GrapeTree, Typhimurium isolates were clustered into eight highly clonal clades and four highly clonal clusters (clusters 1–4), and nine isolates of I 4,[5],12:i:- and 12 isolates of Typhimurium were clustered into cluster 4. The low homologous diversity within I 4,[5],12:i:- and Typhimurium in combination with the above cgST tree on coherent clades indicate that these two serovars might have similar genomic sequences.
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FIGURE 5. GrapeTree of Salmonella serovar I 4,[5],12:i:- and Typhimurium isolates. GrapeTree of nine serovar I 4,[5],12:i:- isolates and 29 serovar Typhimurium isolates constructed based on cgMLST information by EnteroBase GrapeTree function and neighbor-joining algorithm. These 38 isolates belong to four clusters in the tree, and all nine serovar I 4,[5],12:i:- isolates belong to cluster 3 with 12 serovar Typhimurium isolates, showing that Salmonella serovar I 4,[5],12:i:- and Typhimurium have a closer genetic relationship.


In addition, only three isolates from patients were in the same genetic position with other strains in the evolutionary tree. As mentioned, isolates of cgST236211, cgST236321, and cgST236324 were in the same genetic position in the tree: QLULY5 (human, Beijing, 2009) with QLULR4 (poultry, Beijing, 2012) of Thompson; QLULY1 (human, Beijing, 2008) with QLULR2 (poultry, Beijing, 2012) of Senftenberg; and QLULN4 (human, Guangdong, 2010) with QLUY510 (poultry, Guangdong, 2010) of Hvittingfoss. There was a strong homology among these isolates and a possibility of cross-species infection in patients although significant differences existed in some isolates from different years of isolation.

Analysis of isolates’ clustering position in the evolutionary tree showed isolates of Hadar, I 4,[5],12:i:-, Saintpaul, Kentucky, and Mbandaka had a strong correlation between genetic position and source (Figure 3). Among the three Kentucky isolates, QLULA8 (Guangxi, 2010) and QLULA5 (Beijing, 2010) isolates from poultry were putatively homologous and had a long genetic distance to the isolate QLUF123 (Beijing, 2018) from patients. What is more, among the 13 Mbandaka isolates, four from livestock were in the same genetic position in the evolutionary tree with high homology and had a long genetic distance to other isolates of different sources. Obviously, serovar I 4,[5],12:i:- isolates from the same hosts were at an adjacent genetic position in the evolutionary tree.



Major Serovars and cgSTs of Salmonella Isolates From Different Sources, Years, and Provinces

A total of 25 major cgSTs and 26 major serovars appeared among the 250 Salmonella isolates from different sources in nine provinces during 2004–2019. Among them, four major serovars from livestock in Fujian province in 2007 and 2011 were clustered in major cgSTs. In detail, 11 major cgSTs belonged to major serovars. For example, four isolates of cgST236240 in 2004 belonged to Mbandaka, and the major serovars in 2004 were Derby (n = 4) and Mbandaka (n = 4). Obviously, the major serovar Typhimurium clustered with 19 isolates in 2009, but the major cgST was cgST236385 (n = 3, Havana). Meanwhile, the major serovar from poultry was Typhimurium (n = 28), and the major cgST was cgST235530 (n = 11, Mbandaka). The 28 Typhimurium isolates were divided into 26 different cgSTs and seven isolates from food belonged to seven serovars and seven cgSTs. The major serotype was always Typhimurium, Enteritidis, or I 4,[5],12:i:- during 2015–2019. However, these three serovar isolates possessed different cgSTs. Major cgSTs and major serovars of Salmonella isolates from different sources in different years and provinces are shown in Table 2.


TABLE 2. Major cgSTs and major serovars of S. enterica isolates.
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Comparative Analysis of MLST and cgMLST Within S. enterica Isolates

Identification of all loci present within Salmonella isolates was performed using MLST and cgMLST schemes. The 250 S. enterica isolates in China from 2004 to 2019 were used to generate a tanglegram for a visual comparison of cgMLST and MLST (Figure 6). Most of the straight lines were parallel, and only some minor straight lines crossed with others, indicating that the majority of STs were parallel to cgSTs. This phenomenon may give rise by differences between the located deeper internal nodes within these two phylogenies. By comparison, most of the isolates were grouped into the same clusters by MLST and cgMLST.
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FIGURE 6. Comparison of phylogenies by MLST (A) and cgMLST (B) based on genomic sequences of 250 Salmonella isolates. Tanglegram linking tips with the same label to each other via a straight line produced within dendroscope 3 of 250 Salmonella isolates. By comparing of N-J trees by MLST and cgMLST, clustering in the two trees was mostly congruent although a few sections show several inversions. This led to some isolates being clustered at the edge of one tree, moving to the center of the other. In addition, the tree by cgMLST was more detailed than that by MLST.


Further analysis shows that the crosslines were mainly due to the differences in the genetic relationships between some different serovar isolates in the evolutionary tree established by MLST and cgMLST. By comparison, the following serovar isolates had close genetic relationships in the MLST-based neighbor-joining tree but not in the cgMLST-based neighbor-joining tree: (1) 1 isolate of Virchow (QLUY603) with 5 Corvallis isolates, (2) 1 isolate of Weltevreden (QLULO6) with all 23 Mbandaka isolates and 8 Albany isolates, (3) 3 isolates of Kentucky with all 8 Rissen isolates, (4) f isolates of Cero with 1 Saintpaul isolate (QLUF115), and (5) 5 isolates of Saintpaul and all 31 Enteritidis isolates. Although MLST and cgMLST clustered two isolates of Stanley (QLUF119, QLUZ101) and two isolates of Hvittingfoss (QLULN4, QLUY510) together, the MLST-based neighbor-joining tree indicated one Virchow isolate (QLUY603) is closely related with five Corvallis isolates, and the cgMLST-based neighbor-joining tree placed them at a longer genetic distance. However, the majority of Salmonella isolates were grouped into the same clusters by both MLST and cgMLST. Obviously, the evolutionary tree by cgMLST was more detailed than that by MLST.



DISCUSSION

In recent years, with increasing demand for food safety, the detection of foodborne Salmonella becomes greatly important, and Salmonella from food is tested more intensively worldwide (Yang et al., 2019). Salmonella typing is essential for microbial determination, epidemiological investigation, and outbreak tracing. Serotyping and MLST are the gold standard bacterial typing methods. However, they both could not accurately trace because they are relatively low-resolution. Thus, it is significant to establish high-resolution and reliable subtyping methods for tracing epidemic strains in pathogenic outbreaks (Jolley et al., 2012).

Serotyping by slide agglutination has been widely adopted for Salmonella classification for nearly 100 years. In this study, we serotyped 250 Salmonella isolates from different sources in China in the past 16 years, and the results show all strains tested in the study were divided into 36 serotypes, and Salmonella serovars Enteritidis and Typhimurium were still the major serovars, which is similar to a recent report (Perry et al., 2020; Shen et al., 2020). Enteritidis is frequently isolated from animal food globally and is one of the most common serovars associated with human salmonellosis (Greig and Ravel, 2009; Hendriksen et al., 2011; Yang et al., 2019).

However, serotyping by slide agglutination has some shortcomings, such as being low-resolution, expensive, and time-consuming. In addition, this serological test requires well-trained personnel to operate it as well as high-quality sera; otherwise, it is prone to error in serotype determination because of artificial discrimination of differences in agglutination profiles and the incomplete phenomenon of H antigen expression (Zhou et al., 2020). However, it does not mean that serotyping will be rapidly replaced because it has become a traditional microbial phenotyping classification method by microorganists and public health organizations. Therefore, it will still play a fundamental role in bacterial tracing in the near future.

We also validated the serotyping by agglutination assay using SISTR prediction based on genomic sequences. The two methods are highly consistent with a consistency rate of 98%, which is similar to recent reports (Robertson et al., 2018; Uelze et al., 2019; Lyu et al., 2021). However, SISTR has a low identification for Typhimurium and I 4,[5],12:i:- in our research. This situation may be because SISTR only predicts serotypes based on related coding genes, and the results of slide agglutination tests are affected by many factors, such as gene mutation or inexpression.

Facing potential food safety risks, serological misidentification may endanger underestimating the occurrence of certain Salmonella serotypes outbreaks. The serotype prediction based on nucleic acid sequences plays an essential role in serotype validation. Therefore, it is essential to validate the slide agglutination assay. Several methods have been developed to predict serotypes based on nucleic acid sequences (Achtman et al., 2012; Inouye et al., 2014; Zhang et al., 2019). MLST is attractive because of being generated with easily replicated protocols and correlated well with the majority of lineages and serovars by means of eBGs. The advantages of MLST are more uniform, well relative with serotypes, and convenient to communicate by databases (Kimura, 2018).

The 250 Salmonella isolates were divided into 43 STs using in silico MLST with ST11 being the most abundant ST (n = 31). Among the 43 STs identified, a novel ST, ST8016 (QLUY608), differs from ST40 by 1 SNP in the dnaN locus at position 317 (C → T, named dnaN1076, compared with dnaN20). According to MLST typing, ST34 contains I 4, [5],12:i:- and Typhimurium. The method cannot distinguish I 4,[5],12:i:- from Typhimurium with the same STs because of similar genomic sequences. Furthermore, a GrapeTree was constructed using the genomic sequences of all isolates of I 4,[5],12:i:- (n = 9) and Typhimurium (n = 29). The results show that the isolates of the two serovars could not be completely clustered together: only nine isolates of I 4,[5],12:i:- and 12 isolates of Typhimurium belong to the same cluster and are in similar genetic positions on the evolutionary tree (Figure 5). However, the MLST approach may cause two main issues to predict serotype using SISTR: (1) a few STs do not have a serovar designation in the MLST database and (2) the unexpected identification of novel STs.

Molecular typing for Salmonella of the same serovars is essential in outbreak investigation and bacterial epidemiology. The increasing availability of analytical approaches for whole genome-based subtyping will continue to fuel the adoption of genomics in the context of epidemiological investigations. With the reduction of sequencing cost and the promotion of genome sequencing, a large amount of bacterial genome data has been generated, and it has become routine to trace microorganisms based on bacterial genomic sequences. Molecular typing methods based on WGS with high resolution and outstanding accuracy are used as routine bacterial trace analysis methods. Each has different advantages and drawbacks that determine its applicability and limitations. In recent years, cgMLST, wgMLST, and SNP have become innovative tracing tools (García-Soto et al., 2020; Gu et al., 2020; Monte et al., 2021). cgMLST well correlates with time and regions of bacterial isolates. Microorganism epidemiological investigation results found that the main pathogens may probably change during outbreaking, and these will be largely muted by conventional low-resolution typing methods (Quick et al., 2015). In this study, cgMLST can distinguish the differences and confirm the extremely minute association of these strains of major serotypes. Although they have been grouped into Enteritidis, Typhimurium, and I 4,[5],12:i:- since 2015, we judged the prevalent Salmonella was not due to continuous spread of individual strains.

It is worth noting that the traceability is influenced by the use of different cgMLST classification schemes (Li et al., 2008). In several cgMLST scheme protocols, 3002 core loci cgMLST schemes of Salmonella promoted in EnteroBase have been widely accepted because of applying the default settings of loci and alleles most likely to be used by many microbiologists to obtain accordant and accurate applications across laboratories and jurisdictions. EnteroBase is well adopted because it covers a large number of isolates’ genomic sequences, and the fixed typing scheme makes the cgMLST results truly comparable among different researchers. EnteroBase covers more than 270,000 Salmonella genomic sequences globally and facilitates cgMLST analysis of Salmonella. The convenience and pertinence of data collection and collation provide strong data support for pathogen evolution analysis. The fixed typing scheme makes it easy to explore the homologous relationship of individual isolates in the database and to invoke more isolates with certain characteristics. Only by retrieving the isolate information, including time, country or region of isolation, serotype, and MLST and cgMLST typing results of the isolate, could the isolate’s relevant information be obtained. The availability of a web-based analysis platform enables users to conduct cgMLST analysis with minimal local hardware requirements. cgMLST analysis based on thousands of genomic alleles has a higher typing accuracy than MLST. The former was verified to be a more realistic reflection of the evolutionary relationship within the species (Ruppitsch et al., 2015).

High-resolution molecular methods for Salmonella typing are not replacing MLST because MLST is relatively convenient for establishing a good relationship with serovars (Kimura, 2018). Comparing evolutionary trees by MLST and cgMLST, the two methods have similar clustering results. However, cgMLST can further distinguish even minor differences between isolates, and the clustering is more detailed. Compared with cgMLST, MLST is generally more discriminatory, but it cannot provide a satisfactory resolution for public health surveillance. Our study also indicates cgMLST is significantly more accurate than MLST, no cgST contains two or more serovars, even I 4,[5],12:i:- and Typhimurium.

According to the evolutionary analysis, the isolates representing the most serovars formed serovar-specific clades in our established neighbor-joining tree except Saintpaul, I 4,[5],12:i:-, and Derby. To explore the genetic and evolutionary relationship among these three serotypes, we further constructed a GrapeTree of the isolates of the three serovars (Figure 4). Only Saintpaul and Derby have multilineages (Yin et al., 2020).

Among the three typing methods, serotyping showed the lowest resolution, and cgMLST had the highest accuracy. Serotyping was based on reactions of antisera to the lipopolysaccharide and flagellar antigens; otherwise, it did not reflect the genetic relatedness between serovars; MLST, based on seven housekeeping genes, was an accurate, reliable typing method, well suited to routine microbial surveillance; WGS-based cgMLST could greatly improve the accuracy of typing and was convenient to share or compare across international labs, so it should be developed in the traceability typing of microorganisms with vitality in the future.



CONCLUSION

We investigated 250 S. enterica isolates from China during 2004–2019 using serotyping, MLST, and cgMLST. All the Salmonella strains were divided into 36 serovars, 43 STs by MLST, and 185 cgSTs by cgMLST. We found the prevalent serovars, STs, and cgSTs of Salmonella from different years, regions, and host sources. In addition, we also discovered a novel ST and 182 novel cgSTs. This article clarifies the temporal and spatial distribution characteristics of phenotyping and genotyping diversity of S. enterica isolates in China in the recent 16 years. Our results supplement the strain resources, genetic information, and typing data of Salmonella; benefit the typing, traceability, determination, and genetic evolution analysis of Salmonella; and therefore, promote the level of analysis, monitoring, and prevention and controlling of Salmonella in China.
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Escherichia coli is a common bacterium in the intestines of animals, and it is also the major important cause of toxic mastitis, which is an acute or peracute disease that causes a higher incidence of death and culling of cattle. The purpose of this study was to investigate E. coli strains isolated from the raw milk of dairy cattle in Northern China, and the antibacterial susceptibility of these strains and essential virulence genes. From May to September 2015, 195 raw milk samples were collected from 195 dairy farms located in Northern China. Among the samples, 67 (34.4%) samples were positive for E. coli. About 67 E. coli strains were isolated from these 67 samples. The prevalence of Shiga toxin-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), and enteroinvasive E. coli (EIEC) were 9, 6, 4.5, and 1.5%, respectively. Among the virulence genes detected, stx1 was the most prevalent (6/67, 9%) gene, followed by eae (3/67, 4.5%), and estB (2/67, 3%). Moreover, the strains exhibited different resistance levels to ampicillin (46.3%), amoxicillin-clavulanic acid (16.4%), trimethoprim-sulfamethoxazole (13.4%), tetracycline (13.4%), cefoxitin (11.9%), chloramphenicol (7.5%), kanamycin (7.5%), streptomycin (6.0%), tobramycin (4.5%), azithromycin (4.5%), and ciprofloxacin (1.5%). All of the E. coli isolates were susceptible to gentamicin. The prevalence of β-lactamase-encoding genes was 34.3% in 67 E. coli isolates and 45% in 40 β-lactam-resistance E. coli isolates. The overall prevalence of blaSHV, blaTEM, blaCMY, and blaCTX-M genes were 1.5, 20.9, 10.4, and 1.5%, respectively. Nine non-pathogenic E. coli isolates also carried β-lactamase resistance genes, which may transfer to other pathogenic E. coli and pose a threat to the farm’s mastitis management projects. Our results showed that most of E. coli were multidrug resistant and possessed multiple virulence genes, which may have a huge potential hazard with public health, and antibiotic resistance of E. coli was prevalent in dairy herds in Northern China, and ampicillin should be used cautiously for mastitis caused by E. coli in Northern China.
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INTRODUCTION

Escherichia coli was a common inhabitant of the intestine of animals (Tark et al., 2016). During parturition and early lactation period, E. coli was found to usually infect mammary gland of cows, which may cause acute and local mastitis (Hinthong et al., 2017). Escherichia coli is the main cause of bacterial mastitis in cows. It is usually short-lived, causing the infection that lasts 2–3days. However, E. coli has been displayed to cause persistent infections in a few cases (Lippolis et al., 2017). Pathogenic E. coli can cause disease in animals and humans due to virious virulence (Ntuli et al., 2016). Based on the epidemiological, clinical, and pathogenic characteristics, E. coli is classified into different pathotypes: Shiga toxin-producing E. coli (STEC), enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), and enteroinvasive E. coli (EIEC; Rugeles et al., 2010). Numerous outbreaks associated with E. coli in milk and other foods have been reported recently (EFSA-ECDC, 2012; EFSA, 2015; Ombarak et al., 2016). For example, STEC can generate two types of Shiga toxins (stx1 and stx2), and EPEC can produce bfp gene, which were involved in pathogenicity of gastrointestinal tract (Hernandes et al., 2009; Douellou et al., 2016). ETEC can express heat-stable est genes that can cause severe diarrhea. EAEC can produce aggR gene, which were associated with the generation of biofilm (Medeiros et al., 2013). The ipaH gene from EIEC can lead to the occurrence of fever, vomiting, and dehydration in infected children. The higher prevalence of E. coli is closely associated with hygiene in raw milk (Radostits et al., 2007). Therefore, the study on E. coli in raw milk is significant.


Escherichia coli is not only with the potential occurrence, but also with the rapid development of antibiotic resistance bacteria (Ntuli et al., 2016). Inappropriate selection and abuse of antibiotics could lead to antibiotic resistance in bacteria (Da Silva and Mendonça, 2012). Moreover, E. coli may develop acquired resistance to other antibiotics by carrying various resistance characteristics on mutation, plasmids, or transposons (Gonggrijp et al., 2016). For example, extended-spectrum β-lactamases E. coli, resistant to β-lactam antibiotics including third- and fourth-generation cephalosporins, acquires ESBL by mutation or plasmid-mediated horizontal gene transfer (Freitag et al., 2016). Acquired antibiotic resistance also has a transmission potential to humans and other animals (Ruegg et al., 2014). Raw milk can also facilitate the transmission of antibiotic resistance genes to the human gastrointestinal tract, In addition to the presence of pathogenic bacteria. A better understanding on the resistance profile of E. coli isolates will improve our understanding of appropriate treatments for pathogen-related management (Tark et al., 2016). Therefore, monitoring the antibiotic resistance of E. coli in raw milk may show the trend or specific characteristics of antibiotic resistance and help to better prevent or more effectively treat mastitis on dairy farm.

Antimicrobial resistance and virulence types in E. coli have been studied on raw milk of healthy dairy cattle and of bovine mastitis in a variety of countries, including Northern Italy, Romania, Brazil, Egypt, South Korea, and Thailand (Trevisani et al., 2014; Ombarak et al., 2016; Ribeiro et al., 2016; Tark et al., 2016; Hinthong et al., 2017; Tabaran et al., 2017). However, incidence on antibiotic resistance of E. coli from raw milk in Northern China were very limited. Continuous monitoring of the antibiotic resistance and virulence type of E. coli could be necessary to evaluate E. coli risk in raw milk. Therefore, the objective of the work was to investigate the rate of E. coli strains isolated from raw milk in Northern China, and to characterize the antimicrobial susceptibility and key virulence genes of these strains.



MATERIALS AND METHODS


Collection of Samples

In total, 195 raw milk were collected from 195 dairy farms from four cities, which was the major dairy-production cities of Northern China (herd size ≥300, no clinical mastitis cow, milking frequency two or three times per day), from May to September in 2015 (average daily temperature >20°C). There were 30 raw milk samples from Jinan, 40 samples from Harbin, 50 samples from Beijing, and 75 samples from Hohhot (Figure 1). The raw milk samples were collected from the top, middle, and bottom of bulk tank, mixed well, and then transferred into sterile bottles and transported to laboratory at 4°C immediately.
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FIGURE 1. Map of sampling locations. In total, 195 samples were collected from Hohhot, Beijing, Harbin, and Jinan.




Isolation and Identification of E. coli

Aliquots (25ml) of each sample were added to 225ml tryptic soy broth, and then incubated at 37°C for 16h with shaking for E. coli detection. The samples were placed onto Eosin Methylene Blue agar plates (Beijing Land Bridge Technology Ltd., Beijing, China). The agar plates were incubated at 37°C for 18–24h. The presumptive colonies (typical blue-black appearance with a metallic green sheen) were picked. All the colonies were sub-cultured onto nutrient agar slants at 37°C for 16h, and then used for biochemical identification. The colonies initially identified as E. coli were examined by Voges-Proskauer negative, methyl-red positive and citrate negative. All isolates were stored at −80°C until use.

All the presumptive colonies were confirmed by PCR on 16S rRNA gene detection (Supplementary Table S1). Genomic DNA was extracted with the InstaGene Matrix DNA extraction kit (Bio-Rad Laboratories), based on the manufacturer’s instruction. PCR were performed with the EmeraldAmp Max PCR Master Mix kit (Takara, Dalian, China) followed the instructions of manufacturer. The primers were synthesized by GeneCreate Biological Engineering Co., Ltd. (Wuhan, China). Briefly, 25μl reactions, which contains 12.5μl of 2×EmeraldAmp Max PCR Master Mix kit, 10pmol of each primer, 1μl of extracted DNA and ultrapure water, were prepared. The amplification conditions were as follows: 94°C for 3min; 30cycles of 94°C for 30s, 55°C for 30s, and 72°C for 1min; and 72°C for 10min for a final extension step. Without genomic DNA as negative control and E. coli ATCC 25922 as positive control were included in all the PCR assays.



Detection of Virulence Determinants

Seven virulence genes for each diarrheagenic E. coli were detected by PCR method: stx1 and stx2 for STEC, estA, estB, and eltB for ETEC, aggR for EAEC, bfp and eae for EPEC, and ipaH for EIEC. Amplified products were analyzed by agarose gel electrophoresis, and then visualized by SYBR Safe DNA Stain gel staining. All the primers were shown in Supplementary Table S1.



Antimicrobial Susceptibility Patterns

Antimicrobial patterns for recovered E. coli were determined by agar disk diffusion method (CLSI, 2012). Gentamicin (10μg), tobramycin (10μg), streptomycin (10μg), amoxicillin-clavulanic acid (20/10μg), ampicillin (10μg), ciprofloxacin (5μg), azithromycin (15μg), cefoxitin (30μg), chloramphenicol (30μg), tetracycline (30μg), kanamycin (30μg), and trimethoprim-sulfamethoxazole (1.25/23.75μg) were used as antibiotic agents (Oxoid, Basingstoke, United Kingdom). Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 6538 were used as quality controls. The experiment was repeated three times.



Antimicrobial Resistance Genes

Four β-lactamase resistance related genes (blaCMY, blaSHV, blaCTX-M, and blaTEM) and two tetracycline genes (tetA and tetB) were detected by multiplex PCR in E. coli strains (Supplementary Table S1). The amplification conditions were as follows: 95°C for 5min, 30cycles of 94°C for 30s, 63°C for 90s, and 72°C for 90s, and 72°C for 7min for a final extension step (Ribeiro et al., 2016). Escherichia coli strains ATCC 25922 was used as a positive control in each run.




RESULTS


Prevalence of E. coli

Out of 195 samples, 67 (34.4%) raw milk samples were positive for E. coli. Among these 67 raw milk samples, 67 E. coli strains were isolated, including 11 strains (36.7%) of 30 Jinan samples, 23 strains (30.7%) of 75 Hohhot samples, 16 strains (40.0%) of 40 Harbin samples, and 17 strains (34.0%) of 50 Beijing samples.



Virulence Genes

About 20.9% of the isolates (14/67) harbored more than one virulence gene, as shown in Table 1. The prevalence of EAEC, EIEC, EPEC, ETEC, and STEC was 0, 1.5, 4.5, 6, and 9%. Among the virulence genes detected, stx1 was the most prevalent gene (6/67, 9%), followed by eae (3/67, 4.5%), estB (2/67, 3%), stx2 (1/67, 1.5%), estA (1/67, 1.5%), elt (1/67, 1.5%), and ipaH (1/67, 1.5%). The aggR and bfp were not discovered in any E. coli strains. Among six STEC isolates, there were three isolates (13.0%) from Hohhot, one isolate (9.1%) from Jinan, one isolate (6.3%) from Harbin, and one isolate (5.9%) from Beijing, respectively. There were two eae-positive isolates from Hohhot (8.7%), one eae-positive isolates from Jinan (9.1%), and no eae-positive isolate from Harbin and Beijing. Moreover, the prevalence of ETEC strains were 9.1% from Jinan, 6.3% from Harbin, 5.9% from Beijing, and 4.3% from Hohhot, respectively. For ETEC-related virulence genes, the prevalence of estB, estA, and elt genes were 3.0% (2/67), 1.5% (1/67), and 1.5% (1/67), and there were one elt-positive isolate from Jinan (9.1%), two estB-positive isolates from Harbin (6.3%) and Hohhot (4.3%), and one estA-positive isolate from Beijing (5.9%). The ipaH was detected in only one E. coli strain from Harbin.



TABLE 1. Virulence genes in Escherichia coli from raw cow milk samples.
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Antimicrobial Susceptibility Testing

The 67 isolates were exanimated by the disk diffusion method for susceptibility to 12 antibiotics. Antibiotic resistance on E. coli was observed to ampicillin (46.3%), amoxicillin-clavulanic acid (16.4%), tetracycline (13.4%), trimethoprim-sulfamethoxazole (13.4%), cefoxitin (11.9%), chloramphenicol (7.5%), kanamycin (7.5%), streptomycin (6.0%), tobramycin (4.5%), azithromycin (4.5%), ciprofloxacin (1.5%), and gentamicin (0; Table 2). Among isolates from Hohhot, the resistant to ampicillin (47.8%) was the most frequently observed, followed by amoxicillin-clavulanic acid (17.4%), tetracycline (13.0%), and sulfamethoxazole-trimethoprim (13.0%), and all investigated strains were sensitive to tobramycin, streptomycin, ciprofloxacin, and gentamicin. Among isolates from Jinan, the resistance to ampicillin and cefoxitin (45.5%) was the most frequently observed, and all investigated strains were sensitive to tobramycin, streptomycin, and gentamicin. Among isolates from Harbin, the resistance to ampicillin (43.8%) was the most frequently observed, followed by amoxicillin-clavulanic acid, tetracycline, sulfamethoxazole-trimethoprim, chloramphenicol, streptomycin, and tobramycin (12.5%), and all investigated strains were sensitive to ciprofloxacin and gentamicin. Among isolates from Beijing, the resistance to ampicillin (47.1%) was the most frequently observed, followed by streptomycin (12.5%), amoxicillin-clavulanic acid (11.8%), tetracycline (11.8%), and sulfamethoxazole-trimethoprim (11.8%), and all the investigated E. coli isolates were sensitive to ciprofloxacin, azithromycin, and gentamicin. Moreover, 38 strains (71.6%) were resistant to at least one antibiotic, and 13 isolates (19.4%) were resistant to more than three kinds of antibiotics.



TABLE 2. Antibiotic resistance of strains.
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Screening of Antibiotic Resistance Genes

The β-lactamase-encoding genes results were presented in Table 3. The prevalence of β-lactamase-encoding genes were 34.3% in 67 E. coli isolates and 45% in 40 β-lactam resistance E. coli isolates. The overall prevalences of blaSHV, blaTEM, blaCMY, and blaCTX-M genes among E. coli isolates, which was narrow spectrum extended-spectrum β-lactamase-encoding genes, β-lactamase-encoding genes, AmpC, and β-lactamase-encoding genes, were 1.5, 1.5, 10.4, and 20.9%, respectively. In total, 71.4% of the isolates, which possessed the blaTEM
 gene, were resistant to ampicillin. Around 57.1% of blaCMY positive isolates were resistant to amoxicillin-clavulanic acid. Five (7.5%) isolates possessing blaTEM or blaCMY did not suggest β-lactamase antibiotic resistance.



TABLE 3. β-lactamase genotypes identified in β-lactam-resistant E. coli.
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Moreover, the presence of the tet genes, which were conferring resistance to tetracycline, were confirmed in seven tetracycline-resistance strains. None of the studied strains possessed tetA (Table 4).



TABLE 4. Antimicrobial resistance genes among E. coli.
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DISCUSSION

In this research, 34.4% (67/195) of samples were positive for E. coli in raw milk. These results are significantly lower than that in previous studies. The incidence of E. coli in raw milk in India was 81.1% (Bhoomika et al., 2016), 75% in Bangladesh (Islam et al., 2016), 64.5% in Malaysia (Jayarao and Henning, 2001), and 45% in Northern China (Lan et al., 2017). In contrast, a much lower incidence (22.4%) of E. coli was discovered in raw milk in Sharkia Governorate (Awadallah et al., 2016). Moreover, our results are comparable with the findings of Ntuli et al. (2016), who reported 36% prevalence rate in bulk milk in South Africa, and Sharma et al. (2015), who reported 35.63% occurrence rate in raw milk in the Jaipur city of Rajasthan. Overall, the results indicated that E. coli is a common strain in raw milk collected from dairy herds of Northern China. The high prevalence of E. coli in raw milk and dairy products is a cause of concern because it is related to contamination from fecal sources and the consequent risk of enteric pathogenic microorganisms in food (Ombarak et al., 2016).

An important factor of E. coli infections is virulence factors. When E. coli carried some virulence genes, they could be potentially harmful to public consumers (Hinthong et al., 2017). In the study, 20.9% (14/67) of the tested raw milk possessing more than one virulence gene tested, may carried potentially pathogenic E. coli, as shown in Table 3. STEC, cause a life-threatening sequel, such as neurological disorder and hemolytic syndrome or HUS (Kaper et al., 2004), was found to be the most common pathogenic E. coli strain in raw milk. It has been reported that the virulence genes of STEC isolates were commonly implicated in many foodborne STEC outbreaks in the world (Beutin and Fach, 2015). In this study, the most common virulence genes in raw milk samples in Northern China were stx genes. The result was in agreement with Suojala et al. (2011), who reported the STEC (stx-positive isolates) was the most common E. coli type of raw milk with subclinical mastitis in Southern Finland, and by Lambertini et al. (2015), who found that the most frequently detected gene in raw milk of the United States northeastern was stx1. However, STEC or stx factors has been detected in the farms of United States and European at a low prevalence (Jayarao et al., 2006; Pradel et al., 2008; Van Kessel et al., 2011; Claeys et al., 2013; Ombarak et al., 2016).

Enteropathogenic E. coli is responsible for diarrhea in both developing and developed countries. As an important foodborne pathogen, EPEC has high isolation rate in retail foods in China (Zhang et al., 2016). EPEC were isolated from many animals, such as cattle, goat, sheep, chicken, gull, and pigeon (Gomez-Aldapa et al., 2016). In the study, three strains were eae genes-positive and bfp gene-negative, which could be classified as EPEC. Cortés et al. (2005) and Gomez-Aldapa et al. (2016) found that atypical EPEC strains were found in raw milk in Egypt, Saudi Arabia, and Slovakia. However, there is no report on the eae-positive E. coli strains found in mastitis cows in Iran and Thailand (Ghanbarpour and Oswald, 2010; Hinthong et al., 2017). Moreover, an increasing frequency of eae-negative isolates were postulated to have other putative adherence and virulence associated factors (Gomez-Aldapa et al., 2016). ETEC strains are usually transmitted by contaminated food. In the study, EPEC and ETEC strains were isolated from Hohhot and Jinan. EPEC/ETEC hybrid isolates were related to EPEC strain, and appeared to have acquired virulence genes by horizontal gene transfer (Hazen et al., 2017).

In the study, antimicrobial resistance was most frequently observed to ampicillin (46.3%). The susceptibility to amoxicillin can be predicted by antimicrobial resistance to ampicillin (CLSI, 2012). So the tested E. coli isolates may showed a high resistance to amoxicillin. Nam et al. (2009) reported that 32.2% E. coli strains from mastitis cow were resistant to ampicillin. However, the resistant rates in the study were much higher than those in South Korea from 2012 to 2015 (Tark et al., 2016) and in Northern Colorado (McConnel et al., 2016). Antibiotic susceptibility of E. coli was more important on choosing a suitable antibiotic for mastitis (Wang et al., 2016). The information of antibiotic use for dairy in Northern China has been investigated in our previous survey. Ampicillin was commonly used in dairy mastitis therapy (Liu et al., 2017). So, ampicillin is not a suitable treatment for mastitis caused by E. coli in Northern China.

In our previous survey, we found that five antibiotics (penicillin, ciprofloxacin, sulfamethoxazole-trimethoprim, streptomycin, and gentamicin) were commonly used in mastitis cow. In the study, most of tested strains showed an obvious antimicrobial resistance to ciprofloxacin, sulfamethoxazole-trimethoprim, and streptomycin. These results also indicated that there was a correlation between antibiotic use and antimicrobial resistance.

In the study, there were four β-lactamase resistance genes detected. The β-lactamase-encoding genes prevalence was 34.3% in 67 E. coli isolates. β-lactamase resistance genes, such as blaCMY, blaSHV, blaCTX-M, and blaTEM were detected in nine non-pathogenic E. coli isolates. So non-pathogenic E. coli can serve as an antibiotic resistance reservoir and could possibly transfer genes to other pathogenic E. coli strains, which can pose a threat to mastitis management programs of farm (Hu et al., 2016). The rate of blaCTX-M, blaCMY, blaTEM, and blaSHV genes among E. coli was 1.5, 1.5, 10.4, and 20.9% in the study, respectively. The blaTEM and blaCMY genes were the most common, which is similar to several previous studies (Navajas-Benito et al., 2016; Gomi et al., 2017; Hinthong et al., 2017). The cephalosporins treatment in mastitis cattle also raised the proportion of blaTEM in milk samples at the period of withdrawal (p<0.05; Dong et al., 2021). The blaCTX-M, which was the most important ESBL-related gene, it was associated with the geographic area (Su et al., 2016). However, blaCTX-M was the most popular gene in Japan, United Kingdom, France, Netherlands, and Germany (Dahmen et al., 2013; Ohnishi et al., 2013; Timofte et al., 2014; Freitag et al., 2016; Santman-Berends et al., 2016).

Around 11.8% of E. coli stains showed resistance to tetracycline in the study. However, Su et al. (2016) reported that the tetracycline-resistance prevalence was 51%. Navajas-Benito et al. (2016) reported that antimicrobial resistance for tetracycline was detected in 19.2% of E. coli strains, which recovered from air and its surroundings in Spain. Antimicrobial resistance genes to tetracycline were tested in all the tetracycline-resistant isolates, and three tetracycline-resistant isolates harbored one tetracycline resistance gene tetB, which was the most frequent gene, and the studied E. coli did not possess tetA. However, Gomi et al. (2017) found that the prevalent of tetA was more than tetB in E. coli isolates. It was reported that one representative E. coli strain (No. JXLQYF114666) contained nine ARGs including aph(3'')-Ib, blaTEM-1B, blaCMY-2, aph(6)-Id, mdfA, sul2, tetB, catA2, and dfrA14, which result in resistance to seven important antibiotics classes (Liu et al., 2020). Moreover, the phenotype-genotype discrepancies on the tetracycline-resistant E. coli were observed in the study. However, resistance genotypes on tetracycline, gentamicin, kanamycin, and oxacillin correlated well with resistance phenotypes in E. coli and S. aureus (Gomi et al., 2017). Therefore, it was still necessary to fully account of testing phenotypic susceptibility for resistance (Zhao et al., 2015). Further research should be carried out to analyze the genetic characteristics on antibiotic resistance by whole-genome approach, which may explain the phenotype-genotype discrepancies observed for many strains.



CONCLUSION

In conclusion, the antibiotic resistance on E. coli isolated from raw milk in Northern China was assessed for the first time. Our data indicated that E. coli isolates were widely present in raw milk samples in Northern China. A total 20.9% of the tested E. coli possessed one or more virulence genes, which showed a potential pathogenicity. Escherichia coli strains exhibited different levels of antimicrobial resistance, except gentamicin. Ampicillin should not be a suitable treatment of dairy herds for mastitis by E. coli in Northern China. Majority of E. coli were multiple-antibiotic resistant and co-carried many virulence genes, and it may pose great potential risk to public health. The possibility of transferring and transmitting resistance genes, between non-pathogenic and pathogenic E. coli isolates, should be evaluated in further studies.
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Bacillus cereus is a well-characterized human pathogen that produces toxins associated with diarrheal and emetic foodborne diseases. To investigate the possible transmission of B. cereus on lettuce farms in China and determine its enterotoxicity, (I) a total of 524 samples (lettuce: 332, soil: 69, water: 57, manure: 57, pesticide: 9) were collected from 46 lettuce farms in five Chinese provinces, (II) multilocus sequence typing (MLST) was used to classify B. cereus isolates and for trace analysis, and (III) the presence of toxin genes and enterotoxins (Hbl and Nhe) was detected in 68 strains. The results showed that one hundred and sixty-one lettuce samples (48.5%) tested positive for B. cereus at levels ranging from 10 to 5.3 × 104 CFU/g. Among the environmental sample categories surveyed, the highest positive rate was that of the pesticide samples at 55.6%, followed by soil samples at 52.2% and manure samples at 12.3%. Moreover, one hundred isolates of B. cereus yielded 68 different sequence types (STs) and were classified into five phylogenetic clades. Furthermore, Nhe toxin genes (nheA, nheB, nheC) were broadly distributed and identified in all 68 strains (100%), while Hbl toxin genes (hblA, hblC, hblD) were present in 61 strains (89.7%), entFM was detected in 62 strains (91.2%), and cytK was found in 29 strains (42.6%). All strains were negative for ces. As for the enterotoxin, Nhe was observed in all 68 isolates carrying nheB, while Hbl was present in 76.5% (52/68) of the strains harboring hblC. This study is the first report of possible B. cereus transmission and of its potential enterotoxicity on lettuce farms in China. The results showed that soil and pesticides are the main sources of B. cereus on lettuce farms in China, and the possible transmission routes are as follows: soil-lettuce, manure-lettuce, pesticide-lettuce, manure-soil-lettuce, and water-manure-soil-lettuce. Furthermore, the B. cereus isolates, whether from lettuce or the environment, pose a potential risk to health.

Keywords: Bacillus cereus, lettuce farm, multilocus sequence typing (MLST), tracing analysis, enterotoxicity


INTRODUCTION

The World Health Organization recommends a daily intake of 400 g of fresh vegetables for improved health (Park et al., 2018). Lettuce is the most widely consumed fresh vegetable and is usually eaten raw with no or minimal processing, increasing the occurrence of lettuce-related foodborne outbreaks, which have gained attention among government agencies, industries, and the public (Bozkurt et al., 2021). Raw lettuce has been reported to harbor foodborne pathogens, such as Bacillus cereus, Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes (Abadias et al., 2008; Park et al., 2018; Yu et al., 2019). A total of 597 outbreaks caused by B. cereus toxins involving 6,221 cases were reported in European Member States (MSs) from 2014 to 2016 due to the diarrhea and emesis (vomiting) caused by B. cereus (Osimani et al., 2018). Thus, the safety of B. cereus strains in lettuce should be considered.

Bacillus cereus is a spore-forming gram-positive species (Ceuppens et al., 2013) that is distributed among seven phylogenetic clades with nine species (Guinebretière et al., 2008), including (I) B. cereus sensu stricto and B. cytotoxicus, which cause foodborne illness (Dierick et al., 2005; Guinebretière et al., 2008); (II) B. weihenstephanensis and B. mycoides, which cause food spoilage (Meer et al., 1991); (III) B. anthracis, which causes anthrax in both humans and animals (Ivanova et al., 2003); (IV) B. thuringiensis, which is used as an insecticide in agriculture (Höfte and Whiteley, 1989); (V) B. pseudomycoides, which is considered a non-pathogenic environmental microorganism; (VI) B. toyonensis, which has recently been recognized as a putative probiotic species (Jiménez et al., 2013); and (VII) B. wiedmannii, which is a psychrotolerant cytotoxic species (Miller et al., 2016). Therefore, it is difficult to identify B. cereus isolates, and multilocus sequence typing (MLST) is recommended in combination with traditional methods to differentiate diverse species of B. cereus (Jung et al., 2011; Maiden et al., 2013; Otlewska et al., 2013; Castiaux et al., 2014; Zhuang et al., 2019).

Farm-to-fork supply chains are considered to be the source of B. cereus in lettuce, including field production, harvest, processing, packaging, transportation, retail, and home storage (Pang et al., 2017), and farm environments are the core source (Drewnowska et al., 2020). Moreover, MLST is a powerful method for tracing analysis based on genetic evolution, which can be determined by comparative analysis of alleles (Forsythe et al., 2014; Hammerum et al., 2015). Processing environments and packing areas have been found to be the sources most likely to be associated with B. cereus contamination in powdered infant formula production (Zhuang et al., 2019). The transmission of B. cereus in lettuce farms must be detected and monitored to promote food safety and human health.

In this study, the prevalence of B. cereus in lettuce and farm environments distributed in China was described. Genetic methods were applied to examine the phylogenetically diverse B. cereus isolates from lettuce and farm environments, and their associations were examined to identify the possible transmission of B. cereus in lettuce farms. In addition, the safety of B. cereus isolates was investigated by identifying virulence factors and enterotoxins from lettuce and in farm environments.



MATERIALS AND METHODS


Sample Collection and Isolation

A total of 524 samples were collected from 46 lettuce farms in five Chinese provinces from April 2019 to November 2020 (Figure 1). These samples were classified as lettuce (Lactuca sativa L.) (n = 332), soil (n = 69), water (n = 57), manure (n = 57), and pesticide (n = 9) samples; more details about the samples can be found in Table 1. The samples were transported to the laboratory in a cold box (4°C) within 2 h.
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FIGURE 1. B. cereus isolates from 46 lettuce farms in five Chinese provinces.



TABLE 1. Prevalence and contamination level of B. cereus in different samples among 46 lettuce farms.

[image: Table 1]The B. cereus strains were isolated in accordance with GB4789.14-2014, the National Food Safety Standard for Food Microbiological Examination used in China. Genomic DNA was extracted from overnight cultures of B. cereus isolates in Luria-Bertani (LB) broth using a TIANamp Bacteria DNA Extraction Kit (Tiangen Biotech, Beijing, China) according to the manufacturer’s protocol for gram-positive bacteria.



Phylogenetic Study

Isolates were characterized by using seven housekeeping genes (glp, gmk, ilvD, pta, pur, pycA, and tpi) with different primers and conditions (Table 2), which are provided in the B. cereus PubMLST database1. The PCR products were sequenced by Sangon Biotech (Shanghai, China) and submitted to the B. cereus PubMLST database to obtain the allele number. By combination of allele numbers for all seven housekeeping genes, a sequence type (ST) clonal complex could be obtained. New allele sequences and STs were submitted to the B. cereus PubMLST database and assigned by the MLST website administrator.


TABLE 2. Primers used in the study.

[image: Table 2]The phylogenetic study included all the isolates and nine references obtained from the NCBI database2 (B. anthracis Ames Ancestor, B. cereus ATCC 1457, B. cytotoxicus NVH 391-98, B. mycoides DSM 2048, B. pseudomycoides DSM 12442, B. thuringiensis ATCC 10792, B. toyonensis BCT-7112, B. weihenstephanensis WSBC 10204, B. wiedmannii FSL W8-1069) (Miller et al., 2018). The phylogenetic tree was constructed using the neighbor-joining (NJ) method in Molecular Evolutionary Genetic Analysis (MEGA-X) based on the concatenated sequences (2,829 bp) of the seven housekeeping genes (Kumar et al., 2018). In addition, 1,000 bootstrap replicates were used for branch quality.



Tracing Analysis

To analyze the relationship between different STs and sample sources, a minimum spanning tree was constructed with PHYLOViZ 2.0 software (Instituto de Microbiologia, Portugal) (Francisco et al., 2012) with the goeBURST algorithm and 1,000 bootstrap resamplings (Feil et al., 2004).



Detection of Virulence Genes

Nine virulence genes, namely, hblA, hblC, hblD, nheA, nheB, nheC, entFM, cytK, and ces, were identified according to a previous study (Stenfors and Granum, 2001; Guinebretière et al., 2002; Ehling-Schulz et al., 2005; Kim et al., 2011), and the primers and conditions are listed in Table 2. The 20 μL PCR mixture consisted of 10 μL of TaqTM PCR Premix (Takara, China), 1 μL of diluted DNA, and 0.2 mM each primer.



Detection of the Enterotoxins

A Duopath® Cereus Enterotoxins kit (Merck, Kenilworth, NJ, United States) was used to detect Hbl (the lytic component L2, a subunit of toxin Hbl) and NheB (the binding component of the Nhe toxin), the detection limits for which were 20.0 and 6.0 ng/mL, respectively. Isolates were maintained on brain heart infusion (BHI; Co. CM1135, Oxoid, Hampshire, United Kingdom) agar plates at 4°C. Single colonies of bacteria were aseptically picked and cultured in 1 mL of CGY broth (with 1% glucose) and incubated for 4 h at 37°C. For testing, the cultures and Duopath® kit were both cooled to room temperature (20°C), and 150 μL of culture was pipetted into the circular sample port on the Duopath® kit. The results could be observed 30 min after applying the culture to the kit at room temperature (Krause et al., 2010).



RESULTS


Prevalence Analysis of B. cereus in Lettuce and Farm Environments

In this study, B. cereus was detected in 210 of the 524 (40.0%) samples from 46 lettuce farms (Table 1) distributed in five Chinese provinces (Figure 1). The positivity rates of B. cereus were 48.5% (161/332) for lettuce, ranging from 10 to 5.3 × 104 lg CFU/g, and the farm environment also contained B. cereus. Of these environmentally positive samples, the highest frequency of B. cereus was found in pesticides (55.6%), followed by soil (52.2%), manure (12.3%), and water (1.8%). Enumeration of B. cereus showed that 60.0% of the lettuce farm samples had counts below 10 CFU/g, 16.6% had counts in the range from 10–102 CFU/g, 22.1% had counts in the range from 102–104 CFU/g, and 1.3% had counts above 104 CFU/g. High counts (>104 CFU/g) were most frequently found in soil and lettuce.



Genetic Structure of B. cereus Populations

Considering the effect of source, location and sampling time, strains collected from the same lettuce or soil on the same farm during different sampling seasons were removed, and only 100 isolates that from lettuce, soil, pesticides, manure and water were selected for genetic structure analysis. A total of 65 different STs and seven clonal complexes (CCs) were identified among the isolates (Figure 2). Thirty-seven isolates were assigned to 31 new STs. Forty-seven of the 65 (72.3%) STs included only one isolate; however, the remaining 18 STs included more than one isolate. The most frequent ST was ST1000, comprising five isolates from lettuce and soil samples, which were found in Shanghai, Beijing, and Tianjin provinces.
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FIGURE 2. Phylogenetic relatedness of B. cereus strains from different provinces within particular phylogenetic groups. Green boxes represent isolates from Shanghai, red boxes represent isolates from Beijing, blue boxes represent isolates from Tianjin, yellow boxes represent isolates from Shandong, and white boxes represent isolates from Sichuan.


The phylogenetic study was based on MLST, which clustered the STs into five phylogenetic clades (II to VI) (Guinebretière et al., 2008), and nine additional B. cereus clade species were included in phylogenetic analyses to serve as a reference (Miller et al., 2018). The most common clade was clade IV (50.8%), followed by clade III (20.0%), clade V (18.5%), clade II (6.2%), and clade VI (4.6%). Clade IV included both B. cereus sensu stricto ATCC 14579T (ST4) and B. thuringiensis ATCC 10792T as well as 33 STs obtained from five provinces that consisted of five CCs: CC8, CC18, CC56, CC229, and CC142. Frequent types of ST1000 and CC142 (11 STs) were observed in this clade. Clade III with 13 STs, in addition to the B. anthracis Ames ancestor, was represented by Shanghai (69.2%), Beijing (23.1%), and Tianjin (7.7%). Only CC205 (1 ST) was included in this clade. Clade V, with the B. toyonensis BCT-7112T reference strain (ST111), contained 12 STs in five provinces and strains mainly from Shanghai (56.2%) and Beijing (25.0%), while other geographic locations were represented by less than 7.0% of isolates. ST1724, ST233, ST223, and ST281 were found in two different provinces, and isolates in clade V were clustered together in CC111 (7 STs). Clade II included the B. wiedmannii FSL W8-0169T (ST1081) reference strain and four STs from Shanghai, Beijing, and Tianjin, while ST378 was found in both Shanghai and Tianjin. Clade VI contained both the B. mycoides DSM 2048T and B. weihenstephanensis WSBC 10204T reference strains as well as three STs in the Shanghai and Sichuan provinces. The isolates in clades II and VI were singletons. None of the B. cereus isolate strains were clustered with B. pseudomycoides DSM 12442T within clade I or with B. cytotoxicus NVH 391-98T within clade VII.



Tracing Analysis

Among the 100 B. cereus isolates, 53 were collected from lettuce, 19 from soil, 14 from pesticide, 13 from manure, and 1 from water. A minimum spanning tree-like structure was drawn to show the link between the sample sources and different STs of B. cereus (Figure 3). The ST type in lettuce was associated with the environmental source, and there was no crossover between environmental samples. Isolates from lettuce and soil had seven identical STs, while manure had five STs, identical to lettuce. Pesticide and water also had one ST, consistent with lettuce. Five STs were associated with lettuce and soil, namely, ST223, ST229, ST378, ST799, and ST1000, while three STs (ST233, ST1724, and ST2692) were commonly recovered from lettuce and manure. Only ST2150 originated from lettuce and pesticide. Moreover, there were other STs from additional source categories: one major ST2498 was a prevalent ST type in lettuce, soil and manure. In addition, ST1210 was found in lettuce, soil, manure, and water.
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FIGURE 3. Minimum spanning tree analysis of 100 B. cereus isolates collected from different sample categories on lettuce farms. The size of each circle indicates the number of STs. Different sample categories are represented by different colors, and the size of each color block represents the number of STs in that source.




Enterotoxic Potential of B. cereus

Sixty-eight strains were selected from lettuce farms, corresponding to sources and phylogenetic groups, for further enterotoxic potential (Figure 4). All isolates were tested via PCR for the presence of key toxin genes. (1) The most frequently distributed genes were those encoding the enterotoxin Nhe, namely, the nheB, nheA and nheC genes, which were detected in 100.0, 91.2, and 80.9% of the tested strains, respectively. While these nheABC genes (the strains were positive for nheA, nheB, and nheC at the same time) genes were all detected in 54 isolates in clades III and IV, nheA and nheC were detected less frequently in clades II, VI, and VI (23.1%∼80.0%). Isolates from lettuce, soil, water, manure, and pesticides all harbored the Nhe toxin genes (Figures 3, 4). (2) Genes encoding Hbl (hblA, hblC, and hblD) were detected in 89.7% of the tested strains, and sixty-one Hbl PCR-positive isolates were distributed in clade II (100.0%), clade V (100.0%), clade IV (100.0%), clade IV (97.4%), and clade III (33.3%). hblD was the most commonly detected Hbl toxin genes (89.7%), while hblA and hblC were detected individually in 76.5 and 73.5% of the isolates, respectively. Fifty strains harbored hblACD (the strains were positive for hblA, hblC, and hblD at the same time). Among the sources, 100.0% of the water and pesticides isolates (1/1 water isolate), 92.0% of the lettuce isolates, 88.9% of the soil isolates, and 75.0% of the manure isolates harbored the Hbl toxin genes. (3) The entFM gene, encoding enterotoxin FM, was also broadly distributed (91.2%). All six PCR-negative isolates were present in clade IV and clade V. In addition, the entFM gene was detected in 100% of the isolates from all sources except lettuce and pesticides. Thus, the positive detection rate was still high in lettuce and pesticides, with values of 80.0 and 91.7%, respectively. (4) The cytK gene, encoding cytotoxin K, was detected in 42.6% of the strains. All PCR isolates positive for cytK represented clades III (88.9%), IV (51.3%), and II (20.0%). The strains harboring the cytK gene were isolated from all five sources. The highest percentage of cytK detected was 100.0%, which was observed in water (1/1 isolate), followed by 58.3% in pesticides, 50.0% in soil, 36.0% in lettuce, and 25.0% in manure. (5) The ces gene, encoding emetic toxin, known as cerulide synthetase, was not detected in the isolates.
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FIGURE 4. Enterotoxic potential of 68 B. cereus strains. The blue color strip represents Nhe (enterotoxin), while green represents Hbl (enterotoxin). The blue square represents NheB (gene), the green square represents nheA (gene), the purple square represents nheC (gene), the orange star represents entFM (gene), the red star represents cytK (gene), the blue circle represents hblA (gene), the green circle represents hblC (gene), and the purple circle represents hblD (gene).


All B. cereus isolates used in this study carried at least 3 of the 8 enterotoxin genes tested. The distribution of virulence genes was divided into 17 different profiles. Eighteen isolates possessed all eight virulence genes, which was one of the main gene profiles. The other main gene profile (18/68 of all isolates) was hblA-hblC-hblD-nheA-nheB-nheC-entFM. Only one isolate, SH-106 (ST2701), harbored the smallest virulence gene profile (nheB-hblD-entFM).

Nhe and Hbl, the most notable enterotoxins, were analyzed to obtain a broader view of the potential B. cereus enterotoxicity (Figure 4). Nhe was observed in the 68 isolates isolated from five sources and all phylogenetic groups, while Hbl was present in 76.5% (52/68) of the strains that were clustered into groups, with the exception of clade VI. The percentages of strains harboring Hbl were 100.0% in clade V, 84.6% in clade IV, 80.0% in clade II, and 22.2% in clade III. Among the sources, 100.0% of the water isolates (1/1), 92.0% of the lettuce isolates, 88.9% of the soil isolates, 66.7% of the manure isolates, and 33.3% of the pesticide isolates harbored Hbl. Figure 4 also reveals the relationship between virulence genes and enterotoxins: (1) Nhe was expressed when the nheB gene was present, and (2) Hbl was detected when the strain harbored the hblC gene.



DISCUSSION

Bacillus cereus is widely distributed around the world, and some studies have evaluated B. cereus in vegetables (Gdoura-Ben Amor et al., 2018; Park et al., 2018; Yu et al., 2019), while few studies have examined it in planting environments (Drewnowska et al., 2020). In this study, we determined the occurrence of B. cereus on lettuce farms in five Chinese provinces and determined the possible contamination pathways. Moreover, the potential of the isolates to cause foodborne disease was evaluated based on their production of diarrheal and emetic toxins.

The overall prevalence (48.5%) of B. cereus observed in the current study was somewhat less than previous research (57.7%) about markets in China (Yu et al., 2019), but much less than that reported in some studies conducted in other countries, e.g., 84.0% in Mexico City (Flores-Urbán et al., 2014), 81.3% in Korea (Park et al., 2018), and 80.0% in Glasgow (Altayar and Sutherland, 2006). These results indicate that B. cereus is common in lettuce. Emetic syndrome and diarrheal diseases are often associated with B. cereus counts of at least 105 CFU/g (Osimani et al., 2018). In our study, concentrations below 105 CUF/g were found in all lettuce samples. Thus, the loads at all levels were considered to be safe for consumption.

Multilocus sequence typing was used to evaluate the evolution and population diversity of B. cereus. The 100 B. cereus isolates from 46 lettuce farms represented 65 STs and seven CCs and were subtyped into five phylogenetic groups. ST233, ST378, ST1724, CC111, and CC142, which were crossed with different provinces, and each province had unique STs. Two strains isolated from lettuce and soil were assigned to ST26 and ST111, which were the same molecular types as those of the clinical isolates E6345 and F4794 (Hoffmaster et al., 2008). Eleven strains, except for those from pesticides, contained ST233, ST243, ST1001, ST1002, ST1210, and ST2171, which are listed as blood isolates in the B. cereus PubMLST database 3. These results reveal a potential risk when consuming these lettuces directly or with minimal processing. ST1000 was the most frequent type in the 100 isolates and in lettuce, and ST177 was also a frequent type in lettuce, thus, these findings were different from the STs in vegetables on the Chinese market, in which ST26, ST770, and ST1605 were the most frequent types (Yu et al., 2019). Group IV was one of the three largest groups in this study, similar to its predominance in soil (Drewnowska et al., 2020). These results indicate the high genetic diversity of B. cereus isolates.

Soil and pesticides were the most frequently detected sources of B. cereus in our study, but the concentration in soil was higher than that in pesticides. In total, 7.3% of the soil samples had concentrations ranging from 2 × 104 to 5 × 105 CFU/g, which was consistent with previous studies (Drewnowska et al., 2020). Tracing analysis showed that soil, manure, pesticide and water had the same STs as lettuce, but soil and manure had more of these STs, indicating that B. cereus in lettuce was mainly from soil and manure. Additionally, the possible mechanism by which B. cereus spreads during lettuce planting were inferred as follows: soil-lettuce, manure-lettuce, pesticide-lettuce, manure-soil-lettuce, and water-manure-soil-lettuce. Quantitative microbial risk assessment of E. coli O157:H7 in lettuce revealed that bacterial concentration in soil, soil transfer by irrigation, and bacterial concentration in water were the most important input factors during lettuce preharvest (Pang et al., 2017; Bozkurt et al., 2021), which were partly consistent with our study and these indicated that the planting process needs to be controlled.

It has been demonstrated that B. cereus is the causative agent of two types of gastrointestinal diseases, namely, emetic syndrome and diarrheal syndrome (Osimani et al., 2018). The emetic form occurs due to a heat-stable toxin (cerulide) that is preformed in the food, while diarrhea is caused by the ingestion of viable cells, which produce enterotoxins in the small intestine (Osimani et al., 2018). In this study, in all the strains isolated from lettuce farms, only enterotoxins were detected, which was consistent with previous research (Park et al., 2018; Drewnowska et al., 2020).

Among the key toxin genes in B. cereus isolates, (1) the genes encoding the Nhe toxin were detected in 100.0% of the isolates in this study, especially nheB, which was distributed broadly. In addition, it has been shown that nearly 100.0% of B. cereus food poisoning outbreak strains harbor the Nhe toxin genes in Austria (Jessberger et al., 2019). (2) The genes encoding the Hbl toxin were present in 89.7% of the 68 isolates, which is somewhat higher than the value in Korea (Park et al., 2018), in which the hblACD genes were detected in 35.7% of lettuce isolates. In previous studies (Chon et al., 2015; Yu et al., 2019), the Hbl toxin genes were detected in 60.0% of B. cereus vegetable and soil isolates. (3) EntFM was detected in 91.2% of the strains, consistent with the results showing that 90.0 to 100.0% of B. cereus isolates harbored the entFM gene in B. cereus outbreak isolation (Jessberger et al., 2019). In total, 42.6% of the B. cereus isolates harbored the cytK gene. In Korea, 71.4% of the strains isolated from lettuce harbored cytK (Park et al., 2018), and cytK was present in 8.0 to 91.0% of the soil isolates (Drewnowska et al., 2020).

The enterotoxins Nhe and Hbl were detected by the Duopath® Cereus Enterotoxins test. Nhe was detected in 100.0% of the 68 isolates, and Hbl was observed in 76.5% of the isolates, thus the rates were higher than those of dairy-associated isolates among which tested positive for Nhe and 30.8% for Hbl (Miller et al., 2018). Moreover, 92.0% of the lettuce isolates harbored Hbl. Additionally, in this study, we found that (1) Nhe was expressed when the nheB gene was present. (2) Hbl was detected when the strain harbored the hblC gene. The Duopath® Cereus Enterotoxins test tracks Nhe by detecting the NheB component (encoded by nheB) in a sandwich complex with immobilized specific antibodies (Krause et al., 2010). NheA and NheC expression did not correlate with toxicity, while the expression of NheB showed a rough correlation with strain toxicity (Jessberger et al., 2019). In addition, the Duopath® Cereus Enterotoxins test detected Hbl based on gold-labeled monoclonal antibodies of Hbl lytic component L2 (Hbl-L2; encoded by hblC).

Taken together, the results of the present study showed that despite the high presence of B. cereus in lettuce and farm environment samples, the loads were at levels considered to be safe for consumption. However, pathogenic STs (ST26 and ST111) were detected in lettuce and soil, and all B. cereus strains tested in this study carried at least 3 of the 8 enterotoxin genes. Nhe and Hbl enterotoxins were the major toxins among the B. cereus strains tested. Additionally, B. cereus present in planting environments (soil, manure, pesticide, and water) could be easily transferred to lettuce. Our study provides useful information for improving the microbiological safety of fresh lettuce.
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Milk is easy to be contaminated by microorganisms due to its abundant nutrients. In this study, a 360-degree radiation thermosonication (TS) system was developed and utilized for the inactivation of Staphylococcus aureus in milk. The 360-degree radiation TS system-induced inactivation kinetics of S. aureus was fitted best by the Weibull model compared with biphasic and linear models. The treatment time, the exposure temperature, and the applied ultrasound power was found to affect the bactericidal efficacy of the 360-degree radiation TS system. Additionally, the TS condition of 200 W and 63°C for 7.5 min was successfully applied to achieve complete microbial inactivation (under the limit of detection value) in raw milk. The treatment of 360-degree radiation TS can enhance the zeta potential and decrease the average particle size of milk. It also exhibited better retainment of the proteins in milk compared with the ultrahigh temperature and conventional pasteurization processing. Therefore, the 360-degree radiation TS system developed in this study can be used as an alternative technology to assure the microbiological safety and retain the quality of milk, and the Weibull model could be applied for the prediction of the inactivation levels after exposure to this technology.
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INTRODUCTION

Milk contains a variety of nutritional compounds, especially high-quality proteins, making it one of the most popular food for human (Vartanian et al., 2007). In 2019, the global production of raw milk reached a value of 883.2 million tons (FAO, 2019). However, milk is also an ideal medium for the proliferation of pathogens, such as Escherichia coli, Salmonella Thyphimurium, and Staphylococcus aureus, making it a potential risk to food safety (Claeys et al., 2013; Zeinhom and Abdel-Latef, 2014; Rainard et al., 2018; Balasubramanian et al., 2019). Therefore, it is essential to control microbial contamination in the milk production process. Thermal treatments are the most widely used methods for the disinfection of milk, such as pasteurization and ultrahigh temperature processing (UHT) (Grant et al., 1996, 1998). However, heat may disrupt the thermosensitive nutrients in milk, which makes it difficult to meet the increasing nutrient requirements of consumers. Therefore, non-thermal processing technologies have emerged as alternatives to thermal methods for milk processing (Aneja et al., 2014; Song et al., 2016; Liao et al., 2018; Makroo et al., 2020).

Ultrasound, as a promising non-thermal technology, has attracted much attention because of its low working temperature and maximum retainment of food quality (Tao and Sun, 2015). The phenomenon of acoustic cavitation is considered as the major contributor to the microbial inactivation induced by ultrasound exposure. When cavitation bubbles collapse in the liquid medium, both mechanical (e.g., shock waves, liquid microjets, and shear forces) and sonochemical (formation of H⋅, OH⋅, and H2O2) effects will be acted on the microbial cells (Ashokkumar, 2011; Chemat et al., 2011; Awad et al., 2012). However, the antimicrobial efficiency of individual ultrasound treatment was limited (Li et al., 2016). Ultrasound combined with mild heat as a novel hurdle technology, also called thermosonication (TS), is of great interest because of efficient microbial inactivation and less damages in food quality (Barba et al., 2017).

Horn probes (also called sonotrodes) are the most commonly used devices for the generation of ultrasound. To use, horn probes, with the diameter ranging 2–12.7 mm, are dipped into the liquid sample. For most of the horn probes, nearly all the ultrasonic energy is transmitted through the tip of the probe with a small area (Campoli et al., 2018; Carrillo-Lopez et al., 2020; Yuksel and Elgun, 2020). Generally, horn probe-based devices are suitable for the treatment of samples with a small volume in the laboratory scale. However, when scaling up to industrial application, the efficacy of the conventional horn probes might be compromised by the uneven radiation of the acoustic field and low ultrasound energy intensity applied in the treated samples with large volumes (Abesinghe et al., 2019).

The objectives of this study were to develop a large-volume 360-degree radiation TS system and to apply this technology for inactivating S. aureus in milk, one of the foodborne pathogens of concern in milk safety. The microbial inactivation efficacy of this novel TS treatment was estimated and compared with conventional UHT and pasteurization processing. The 360-degree radiation TS-induced killing curve of S. aureus was fitted with mathematical models to describe the inactivation kinetics. Additionally, the effect of this TS treatment on the physicochemical characteristics of milk was evaluated.



MATERIALS AND METHODS


Preparation of Bacterial Suspensions

Staphylococcus aureus strains of JPHG05A009-17, JP-GX07, and 5JP-HBA 2020 isolated from milk or milk product in China were used in this study. Bacterial culture was stored at −80°C in a mixture of glycerol and nutrient broth (NB) (Hope Bio-technology Co., Ltd., Qingdao, China) at a ratio of 1:1. Each strain was streaked and maintained on the Baird Parker (BP) (Hope Bio-technology Co., Ltd., Qingdao, China) medium supplemented with egg yolk tellurite emulsion (Hope Bio-technology Co., Ltd., Qingdao, China). A single colony of each strain was transferred into 100-ml NB, followed by incubation in a reciprocal shaker at 150 rpm and 37°C for 18 h. Subsequently, centrifugation (2,320 × g, 4°C, 10 min) was performed to collect S. aureus cells, which were washed twice by resuspension in sterile phosphate buffer solution (PBS) (pH 7.4). The suspensions of three S. aureus strains with the same volume were mixed thoroughly to prepare a cocktail inoculum, and the final concentration of the bacterial inoculum was approximately 109 CFU/ml, with determination through plating on the plate count agar.



Milk Preparation

Sterilized milk sample was purchased from a local market in Hangzhou, China. Raw milk without pasteurization was obtained from a farm in Hangzhou, China, and transported to the laboratory as soon as possible (less than 30 min). Milk samples with a volume of 270 ml were inoculated by S. aureus cocktail suspension (30 ml) to achieve the final bacterial concentration of approximately 108 CFU/ml in milk.



Thermosonication Treatment Conditions

In this study, a 360-degree radiation TS equipment (Ningbo Scientz Co., Ltd., Ningbo, China) was employed to treat the inoculated milk samples and consisted of an electrical power generator, an enclosed cylinder-shaped reactor, a circulating water bath, a transducer, and an ultrasonic probe (Figure 1). The sample reactor is an enclosed chamber covered with a heating jacket chamber, which is equipped with a heating water outlet and inlet and a temperature sensor. There are multiple transmitters distributed on the side surface of the ultrasonic probe, which can emit a more uniform sonication field throughout the liquid sample. All the ultrasonic transmitters are controlled by one ultrasonic transducer, which is fixed on the top of the enclosed chamber and connected with the ultrasonic probe. The transducer comprises a cylindrical barrel, of which a shell is made of stainless steel, and the multiple ultrasonic transduction components are installed in an inner cavity of the barrel along the axis. Each ultrasonic transduction component comprises a supporting block, wherein over two piezoelectric ceramic piece groups are arranged on the sides of each supporting block. Each piezoelectric ceramic piece group consists of over two piezoelectric ceramic wafers, and the electrodes are arranged on the end faces of the piezoelectric ceramic wafers. The piezoelectric ceramic piece groups are fixed with the supporting blocks through pressing the blocks correspondingly, and the ultrasonic transduction components are closely connected with the inner wall of the cylindrical barrel. It can prevent the dropping of the electrodes and the deformation fracture of the piezoelectric ceramics. Additionally, the transducer has the capability of emitting even ultrasonic within the radial direction range of 360-degrees, and a higher transduction efficiency can be achieved.


[image: image]

FIGURE 1. Diagram of the 360-degree radiation thermosonication system.


The milk sample was placed in the cylinder-shaped reactor with a volume of 300 ml and a diameter of 5 cm. The ultrasonic probe has a length of 8 cm and a diameter of 1.2 cm. Four transmitters are longitudinally distributed on the side surface of the ultrasonic probe at an interval of 3.5 cm. The ultrasonic frequency is 20 kHz, and the maximum input ultrasonic power is 900 W. The samples treated by TS conditions were divided into four groups: 200 or 400 W at 55°C for 30 min and 200 or 400 W at 63°C for 15 min. The treatment temperature is achieved by the circulating water bath and controlled by a temperature sensor. The sample without TS treatment was set as the control.



Pasteurization and Ultrahigh Temperature Treatment

The pasteurization of the raw milk samples (300 ml) was performed by the 360-degree radiation TS equipment with an ultrasonic power of 0 W. The treatment temperature was set at 63°C and maintained for 30 min. Regarding UHT treatment, a commercial UHT system (TG-UHT-CH-DJ-nQJ, Shanghai Nanhua Transducer Manufacture Co., Ltd., Shanghai, China) was used for treating the raw milk samples at 121°C for 15 s.



Microbiological Analysis

Plate count method was used for the microbiological analysis. After various treatments, the milk samples were serially diluted with sterile 0.85% (m/v) saline solution. Then, a portion of diluent (0.1 ml) was spread on the BP medium supplemented with egg yolk tellurite emulsion. The plates were subsequently incubated in an incubator at 37°C for 48 h. The bacterial colonies grown on media was enumerated and expressed in log10 CFU/ml.



Establishment of the Inactivation Kinetic Model

The inactivation of S. aureus in milk samples by a 360-degree radiation TS was described using the Weibull model (Eq. 1), biphasic model (Eq. 2), and linear model (Eq. 3) (Chen et al., 2019; Shao et al., 2020; Zhao et al., 2020). The data were analyzed and fitted by non-linear least squares regression method.
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where N0 is the initial counts of S. aureus, Nt is the survival of S. aureus at treatment time t, b represents the time scale parameter, and a is a dimensionless shape parameter.
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where N0 is the initial counts of S. aureus, Nt is the survival of S. aureus at treatment time t, P and Q represent the inactivated rates for two phases, and f and (1-f) are the ratios of TS-resistant and -susceptible S. aureus subpopulations, respectively.
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where N0 is the initial count of S. aureus, Nt is the survival of S. aureus at treatment time t, and a represents the inactivated rate.

The fitness of models was estimated with the following goodness-of-fit indexes: the coefficient of determination (R2, Eq. 4) and the root mean square error (RMSE, Eq. 5).
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where SS represents the residual sum of squares, and SSt is the total sum of squares.
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where the variable yobs was the logarithm value of S. aureus population estimated by the plate count method (log10 CFU/ml) in this study, ypred corresponds to the logarithm value of the bacterial population (log10 CFU/ml) calculated by the fitted model, n is the total number of the observed data points, and p was the number of parameters for the estimated model.



Determination of the Physicochemical Characteristics of Milk


Color Properties

The color properties of milk samples after various treatments were measured using a Konica Minolta CM-600d spectrophotometer (Konica Minolta Holdings, Inc., Tokyo, Japan) in the reflection mode at room temperature (25 ± 1°C). The parameters of L* (lightness), a* (redness and greenness), and b* (yellowness and blueness) were obtained for calculation of the total color difference ΔE by Eq. 6 (Zhao et al., 2019; Feng et al., 2020):
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where L0, a0, and b0 represented the color values of the milk sample before treatments.



pH

The pH of the milk samples was measured with a digital pH meter PHS-550 (Lohand Biological Co., Ltd., Hangzhou, China) at room temperature (25 ± 1°C).



Particle Size and Zeta Potential

After the different treatments, the particle size and zeta potential of the milk samples were determined using the Malvern Zetasizer Nano (ZS90; Malvern Panalytical Ltd., Malvern, United Kingdom) at room temperature (25 ± 1°C).



Total Protein Content

The total protein content (TPC) in the milk samples was measured according to the Kjeldahl method. Copper sulfate (0.4 g), potassium sulfate (6 g), and 20 ml sulfuric acid were added to a portion of milk sample (10 g) for the digestion to convert all the organically bonded nitrogen into ammonium ions. Subsequently, the ammonium ions are reacted with sodium hydroxide and transformed into ammonia, which dissolve in boric acid. Finally, the standard solution of hydrochloric acid (HCl) was used for titration to determine the nitrogen concentration. TPC (g/100 g) was calculated by the following equation:
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where V1 corresponds to the consumed volume (ml) of HCl standard titrant with concentration of c (M), V0 is the consumed volume (ml) of HCl used for the blank sample (water), m was the quantity of the samples (g), V2 represents the volume of the digested solution (ml), and F is the nitrogen-to-protein conversion coefficient, which is 6.38 for milk.




Statistical Analysis

All experiments in this study were performed in triplicate. Determining the statistical significance of the data was carried out using SPSS 22.0 (IBM Corp., Armonk, NY, United States) using one-way analysis of variance with Duncan’s test for the post-hoc multiple comparison. A value of p < 0.05 was considered statistically different. The kinetic models were fitted to the data points with Origin 8.0 (OriginLab Corp., Northampton, MA, United States).




RESULTS AND DISCUSSION


360-Degree Radiation Thermosonication-Induced Heat Transfer Enhancement in Milk

During the 360-degree radiation TS treatment, the milk temperatures are controlled by circulating water in the jacket chamber covering the side surface of the sample reactor (Figure 1). As shown in Figure 2, the core temperature of the milk samples was increased to the target temperatures (55 or 63°C) in 5 min, and it was maintained at a relatively constant value with a deviation of less than 3.33°C from the target temperature. It demonstrated that the 360-degree radiation TS system could efficiently inhibit the perturbation of temperature. Without the ultrasonic effect, it required 18 min for the temperature in the core of milk sample to reach the target pasteurization temperature of 63°C. It might be attributed to the effect of acoustic cavitation during the ultrasound processing, which could accelerate the heat transfer efficiency between the milk samples in the reactor and the heating water in the jacket chamber (Kurbanov and Melkumov, 2003; Legay et al., 2011). When cavitation bubbles collapse, a large amount of energy can be generated, and violent impact and high-speed micro-jet are also formed, which greatly enhance the collision density. The thermal and velocity boundary layers are subsequently disrupted, which decreases the thermal resistance and creates microturbulence to achieve the heat transfer enhancement.
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FIGURE 2. Core temperature changes of samples under different treatment conditions. The black line shows the temperature change without ultrasonic treatment.




Inactivation of S. aureus Cocktail in Milk by 360-Degree Radiation Thermosonication

The survival levels of S. aureus cocktail in milk treated by the 360-degree radiation TS treatment are exhibited in Table 1. The 360-degree radiation TS-induced inactivation of S. aureus was affected by the treatment time, the exposure temperature, and the applied ultrasound power.


TABLE 1. Survival concentrations (log10 CFU/ml) of S. aureus after the 360-degree radiation thermosonication treatment under various conditions.
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As shown in Table 1, there is an inverse correlation between the S. aureus survival population and the treatment time or exposure temperature. With TS treatment at 63°C and 400 W, the survival levels of S. aureus were 8.12, 4.68, 3.79, 3.02, 1.99, and 1.59 log for 0-, 3-, 6-, 9-, 12-, and 15-min treatment time, respectively. When the exposure temperature decreased from 63 to 55°C, the remaining survival level increased from 1.59 to 3.93 logs for a treatment time of 15 min. The effect of ultrasound powers on TS-induced bactericidal efficacy is closely related to the exposure temperature. Under 55°C, the enhancement of ultrasound power contributed to the higher reduction of S. aureus in milk to some extent. When the exposure time was 15 min, the S. aureus cells were decreased by 3.86 log under an applied ultrasound power of 200 W, and it was 4.19 log reduction when the ultrasound power was increased to 400 W. However, when exposing the milk samples to 63°C, the survival levels of S. aureus were independent of ultrasound powers (p > 0.05).

Most of the commonly used ultrasonic horns have only one transmitter on the tip, which transfers nearly all the energy through one direction. In our previous study, it was found that the TS, combined with single-direction ultrasonic radiation (600 W) and 63°C, resulted in less than 99% reduction of S. aureus for 5 min (Li et al., 2019). Individual heat exposure has been reported to activate protective systems in bacteria cells, which could compromise the microbial inactivation level (Liu et al., 2020; Wu et al., 2021). In combination with ultrasonic field, the effect of ultrasound-induced cavitation contributes to the rupture of the microbial outer structure (e.g., cell wall/membranes), which weakened the heat tolerance of microorganisms and led to final cell death.

The 360-degree radiation TS treatment in this work under an applied ultrasound power of 200 W and a temperature of 63°C brought in over 99.9% inactivated level of S. aureus after 3 min of exposure. According to the performance criteria of milk processing published by FAO/WHO, the processing treatment should be designed to achieve at least a 5-log reduction of the target bacteria. In this study, a TS treatment of 63°C and 200/400 W for 9 min resulted in over 5-log reduction of S. aureus, while it required 40 min for an individual thermal treatment at 63°C to decrease S. aureus by over 5 logs. Considering the bactericidal efficacy and the energy consumption (the applied ultrasound power), the 360-degree radiation TS treatment of 63°C and 200 W was selected for further analysis in this study.



Establishment of Inactivation Kinetics

In order to predict the behavior of S. aureus cells in milk when exposed to the 360-degree TS treatment, the survival curve was fitted to linear and non-linear (Weibull and biphasic) models. R2 and RMSE are the most commonly used indexes for the estimation of the goodness-of-fit of the models. A R2 value close to 1 and a low RMSE value indicate that the fitted model exhibits a good fitting to data points.

As shown in Table 2, the values of R2 and RMSE of the linear model are 0.866 and 76.08, respectively, which demonstrated that the inactivation kinetics of S. aureus by the 360-degree radiation TS treatment did not follow a linear pattern. Regarding non-linear models, the obtained values of R2 for the fitted biphasic model and Weibull model are 0.985 and 0.999, respectively, which are close to 1. However, the value of RMSE of the fitted biphasic model is 6.33, which is much higher than that (0.36) of the fitted Weibull model in this study. Overall, the Weibull model is the most suitable model to describe the 360-degree radiation TS-induced inactivation kinetics of S. aureus in milk. Similarly, non-linear curves of TS-induced microbial inactivation have been observed in previous studies (Lee et al., 2009). In the study of Sasikumar et al. (2019), it was found that the inactivation level of E. coli by TS (1.95 W/50°C/21 min) in khoonphal juice was fitted well with the Weibull model, with an R2 value of over 0.99 (Sasikumar et al., 2019).


TABLE 2. The fitted parameters of linear model, biphasic model, and Weibull model.
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The Weibull model is built by two parameters, including the scale parameter a (time) and the dimensionless shape parameter b. The shape parameter b not only accounts for the concavity of a survival curve but also is related to the physiological states of microorganisms (Surowsky et al., 2014). b < 1 indicates the upward concavity of a survival curve and that the remaining microbial subpopulation has the ability to adapt to the applied treatment, and b > 1 reflects the survival curve with a downward concavity and that the treatment results in accumulative damages on the remaining bacterial cells. As shown in Table 2, the b value of the fitted Weibull model in this work is 0.42, less than 1, indicating that the remaining S. aureus cells become increasingly damaged by the 360-degree radiation TS exposure. Based on the established Weibull model, the time to achieve a 5-log reduction is calculated to be 7.5 min. Therefore, the conditions of the 360-degree radiation TS treatment for the sterilization of milk are 200 W at 63°C for 7.5 min.



Application of 360-Degree Radiation Thermosonication for the Sterilization of Raw Milk

In order to validate the application of the 360-degree radiation TS treatment, it was further used for the sterilization of raw milk in comparison to commercial UHT processing (121°C, 15 s) and pasteurization (63°C, 30 min). As shown in Table 3, the initial bacterial contamination level in raw milk was 3.25 log10 CFU/ml. After all the treatments, the bacterial concentrations were decreased to be under the limit of detection (LOD), indicating that the 360-degree radiation TS treatment (200 W, 63°C, 7.5 min) in this work can be used as a promising technology for assurance of the microbiological safety of milk.


TABLE 3. The total viable counts in milk before and after various treatments.
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Physicochemical Property Changes of Raw Milk


Changes in pH, Particle Size, and Zeta Potential

The pH values of milk are stability indices of the casein micelles. The pH value of the untreated raw milk is 6.65, and no significant changes (p > 0.05) in pH values were found in the milk samples treated with the 360-degree radiation TS, UHT, and pasteurization (Table 4).


TABLE 4. pH, zeta potential, and particle size of milk after various treatments.
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The zeta potential is an important index to reflect the stability of a colloidal system because it is generated from the interaction of all charged particles in the system (Shanmugam and Ashokkumar, 2014). As shown in Table 4, the zeta potential of raw milk was −23 mV, and it was significantly (p < 0.05) increased after various treatments. The milk treated with the 360-degree radiation TS exhibited the highest zeta potential, which might be attributed to the ultrasound-induced damage and interruption in the membrane of the fat globule, which could make the membrane more negatively charged and lead to an increase in zeta potential (Scudino et al., 2020). The enhancement of zeta potential caused by the 360-degree radiation treatment could improve the interaction of fat globules and protein micelles and thus strengthen the stability of milk (Shanmugam and Ashokkumar, 2014).

The average particle sizes of milk with various treatments are shown in Table 4. Untreated raw milk has an average particle size of 7.59 μm. It was found that all the treatments significantly reduced the particle size, and the A 360-degree radiation TS-treated milk exhibited the smallest particle size of milk with a value of 4.62 μm. The cavitation phenomenon was considered to be the major contributor to the reduction of the particle size of milk (Ertugay et al., 2004).



Changes in Color Characteristics

Color is one of the most important characteristics for milk sales, which is related to the dispersion of fat globules and casein micelles in the visible spectrum. The changes in the color characteristics of raw milk treated by 360-degree radiation TS, UHT, and pasteurization are shown in Table 5. Compared with the untreated raw milk, the L∗ values (lightness) of milk were significantly increased, while the b∗ values (yellow) of milk were significantly decreased after all the treatments. The more intense acoustic cavitation provides better homogenization of the milk due to the reduction of the fat globule size. Great changes in the size of the fat droplets are enough to change the light reflection (Owens et al., 2001). Regarding the a∗ value (green), it was slightly increased after 360-degree radiation TS treatment, while UHT treatment resulted in a decrease in a∗ value. Overall, the total color difference (ΔE) of 360-degree radiation TS-treated milk is 3.55, which exhibits an insignificant difference from that of UHT-treated milk and significantly higher than that of pasteurized milk.


TABLE 5. The color changes of milk before and after various treatments.
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Changes in the Total Protein Content

Protein is the most important component in milk, but it is sensitive to heat and easy to be denaturized. As shown in Table 6, the initial TPC was 3.53% in untreated raw milk. Both 360-degree radiation TS and UHT resulted in no significant changes of the TPC in milk. However, the TPC of pasteurized milk was significantly decreased to 2.53% (p < 0.05), which might have resulted from the heat-induced denaturation of proteins.


TABLE 6. The total viable counts in milk before and after various treatments.
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CONCLUSION

In the present study, a 360-degree radiation TS system was developed for the sterilization of milk. Compared with conventional pasteurization (63°C), the 360-degree radiation TS system enhanced the heat transfer rate in milk by over two times. Based on the established Weibull inactivation model, the treatment duration for the 360-degree radiation TS system to bring out a 5-log reduction was 7.5 min, which was much shorter than that of the common TS treatment combining the single-direction radiation ultrasonic horn and heat. Additionally, in this work, the 360-degree radiation TS system was successfully applied to achieve complete microbial inactivation (under LOD value) in raw milk. Regarding the effect on the physiochemical properties of milk, it was found that the treatment of 360-degree radiation TS can enhance the zeta potential and decrease the average particle size of milk. It also exhibited better retention of the proteins in milk compared with the UHT and conventional pasteurization processing. The 360-degree radiation TS technology can be utilized as a promising technology to assure the microbiological safety and retain the quality of milk.
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In food microbial measurements, when most or very often bacterial counts are below to the limit of quantification (LOQ) or the limit of detection (LOD) in collected food samples, they are either ignored or a specified value is substituted. The consequence of this approach is that it may lead to the over or underestimation of quantitative results. A maximum likelihood estimation (MLE) or Bayesian models can be applied to deal with this kind of censored data. Recently, in food microbiology, an MLE that deals with censored results by fitting a parametric distribution has been introduced. However, the MLE approach has limited practical application in food microbiology as practical tools for implementing MLE statistical methods are limited. We therefore developed a user-friendly MLE tool (called “Microbial-MLE Tool”), which can be easily used without requiring complex mathematical knowledge of MLE but the tool is designated to adjust log-normal distributions to observed counts, and illustrated how this method may be implemented for food microbial censored data using an Excel spreadsheet. In addition, we used two case studies based on food microbial laboratory measurements to illustrate the use of the tool. We believe that the Microbial-MLE tool provides an accessible and comprehensible means for performing MLE in food microbiology and it will also be of help to improve the outcome of quantitative microbial risk assessment (MRA).

Keywords: microbial measurement, microbial censored data, non-detection (ND), limit of quantification (LOQ), Excel spreadsheet, microbial risk assessment (MRA)


INTRODUCTION

A large number of experiments on the microbiological status of various foods and food products are carried out globally. These experiments involve the collection of large amounts of data. However, in attempts to estimate the concentration of various microorganisms in food samples, those present in quantities below the detection limit are either ignored or a specified value is substituted. The statistical term for such results is “censored data,” i.e., non-zero values which cannot be measured, but are known to be below some threshold level (Hornung and Reed, 1990). Moreover, in food microbiology, since these low bacterial counts are compared to the limit of quantification (LOQ) or the limit of detection (LOD) of the method of analysis, and not reported if found to be lower than these values, only a limited amount of data is available in most cases (Busschaert et al., 2010). In food microbial measurements, there were found to contain some values below the LOQ or LOD of the sampling and analytical methods, and some were very heavily censored; over 90% of the data were below the LOQ in some enumeration data sets (i.e., quantitative methods), with nearly 100% (i.e., totally left-censored results) being lower than the LOD in presence/absence tests (i.e., qualitative methods). When quantification of the microorganisms in these samples is not possible, and assumed positive samples fall below the LOQ or LOD, they are either ignored or a specified value is substituted at or below the LOQ or LOD (Hewett and Ganser, 2007; Lorimer and Kiermeier, 2007). The consequence of these approaches is that they may lead to the over or underestimation of quantitative results. As an example, Lorimer and Kiermeier (2007) and Busschaert et al. (2010) showed that the difference in quantitative results depending on whether or not censored data are considered. It is necessary, therefore, to use a method for calculating the parameters characterizing the statistical distribution, for example, the arithmetic mean exposures that considers the food microbial censored data.

A maximum likelihood estimation (MLE) approach can be applied to deal with these kinds of censored data sets. Hornung and Reed (1990) and Helsel (2005) previously published and implemented an analysis of methods, in which the techniques proposed included an MLE statistical method for estimating dataset descriptors in the presence of non-detectable values in environmental hygiene and chemistry analyses. Recently, in food microbiology, an MLE method that deals with food microbial censored results by fitting a parametric distribution has been introduced for analyzing data with microbial censored observations (Shorten et al., 2006; Lorimer and Kiermeier, 2007; Busschaert et al., 2010, 2011; Chik et al., 2018). These researchers suggested this MLE method to deal with non-detected microbes in food microbiological test results, and focused primarily on applying MLE to deal with quantitative data that are censored on one side due to an LOQ or LOD (Busschaert et al., 2010; Wang and Gui, 2020). This MLE approach can contribute significantly to the quantification of microbial censored data. Furthermore, using censored data is becoming increasingly important as quantitative microbial risk assessment (MRA) methodologies continue to make greater use of quantitative data (Lorimer and Kiermeier, 2007).

However, the current maximum likelihood approach has limited practical application in food microbiology, or in the food industry, and there exists little practical support in terms of implementing the suggested MLE statistical methods. In addition, it is difficult to confirm the results of MLE actually used in food microbial prevalence studies. In order to address these limitations, Lorimer and Kiermeier (2007) suggested using an Excel program (which, at the time, would have been difficult to implement) or a statistical package, such as free and open source statistical software. Boysen et al. (2013) also reported implementation of an MLE approach for estimating the normal distribution parameters using the Solver add-in for Excel 2010. However, this approach was only used for MRA self-performance, and was not released as a publicly available tool. Therefore, there seems to be no dedicated tool that can be used to easily implement MLE-based methods in food microbiology. Considering the growing number of people and food industries using MLE on censored data, the need for user-friendly MLE tools has become increasingly important.

The objective of this study was to develop a user-friendly MLE tool, which could be easily used in food microbiology without the need for understanding the underlying mathematical concepts. Here we report the development the Microbial-MLE tool, using the Solver add-in for Excel 2016. In addition, we illustrated approaches using this tool in case studies based on food microbial laboratory measurements. We believe the Microbial-MLE tool provides an accessible and easily comprehensible means of performing MLE analyses of food microbial censored data.



MATERIALS AND METHODS


Microbial-Maximum Likelihood Estimation Tool Configuration

The Microbial-MLE tool, included MLE techniques, was implemented in the Excel program with the Excel Solver add-in. As shown in Figure 1, the tool is composed of four sub-tools (QN_1, 2, 3, and 4), according to the type of microbiological enumeration test employed, i.e., whether data below the LOQ exists, and whether the data format is quantitative or semi-quantitative (interval data). QN_1 and 2 employ a general microbial concentration calculation method (i.e., no need to use MLE), and QN_3 and 4 are mainly used for MLE because of data occurring which is below the LOQ.


[image: image]

FIGURE 1. Configuration of the Microbial-MLE tool composed of four sub-tools (QN_1, 2, 3, and 4), the blue dashed line indicates the steps in which MLE is used. LOQ, limit of quantification; MLE, maximum likelihood estimation. (Details for QN_1 and 2 can be seen in the Excel program in the supplement, QN_3 and 4 are shown in Figures 3, 4).




Maximum Likelihood Estimation for Microbial Censored Data

Maximum likelihood estimation is a method for estimating the parameters (e.g., mean and standard deviation) of a statistical distribution from observed data (Finkelstein and Verma, 2001) and is also used to fit a statistical distribution to a set of food microbial censored data (Busschaert et al., 2010). The method of MLE, assuming an underlying normal distribution for the logarithm 10 concentration (i.e., lognormal distribution), may be used to estimate the means and standard deviations for microbial censored data (Lorimer and Kiermeier, 2007).

The lognormal distribution has two parameters, the mean (μ) and the standard deviation (σ). Let ln(xi) be the logarithm of the observed data value, x, of microbial sample i. Then, the probability distribution is defined by:

[image: image]

If there are thus n observations, y1 = ln(x1), y2 = ln(x2) …and yn = ln(xn), from a lognormal distribution with the mean (μ) and the standard deviation (σ), the probability (PN) of obtaining these values for the n observations is:

[image: image]

In the enumeration test result, if the LOQ or LOD is DL (CFU/g or ml) with non-detectable observations (m), the probability of observing a value less than DL is PDL, in a normal distribution with mean (μ) and standard deviation (σ).

[image: image]

The probability of the microbial population distribution parameters mean (μ) and standard deviation (σ), given the observed data (n) and non-detectable observations (m), is defined by Finkelstein and Verma (2001); Shorten et al. (2006), and Hewett and Ganser (2007):

[image: image]

In statistical terminology this probability is called a likelihood, and the method of MLE finds those values of mean (μ) and the standard deviation (σ) that maximize this probability (Finkelstein and Verma, 2001).



Maximum Likelihood Estimation in Excel for Microbial Censored Data

We show how the previous MLE-related formulas (Eqs 1–4) are represented in Excel (Microsoft Excel 2016; Microsoft Corp., Redmond, WA, United States) spreadsheet (Figure 2). These probabilities (PDL, PN, and P) are programmed into spreadsheet. In the case of PDL, in Excel, the function is NORMDIST. This function returns the normal cumulative distribution for the specified mean and standard deviation. Figure 2 shows the maximization of the likelihood function using microbial censored data (Column A). The values in F3 and F4 as changing variable cells in Solver tool are the mean and standard deviation of the logarithms (Column C9:C18) of the observed microbial data values in Column A. The Solver tool in Excel will select the proper values in E5 and E6 to maximize the sum of the log-Likelihoods, which can be found in cell F7 as objective cell in Solver tool. In this Microbial MLE Tool, all of these calculations and processes were automated with the Excel macro functions.


[image: image]

FIGURE 2. An Excel spreadsheet showing the structure of a template for Microbial MLE tool for an example of quantitative microbial censored data [n = 15, LOQ = 10 CFU/g or ml, Censored data% = 33.3%, (= 5/15)].




Use of Microbial Maximum Likelihood Estimation Tool

In the Microbial MLE tool, each of these sub-tools is implemented in one spreadsheet and is divided into an input and an output part. As shown in the blue dashed lines on the left in Figures 3, 4, the main input part consists of three input boxes: (1) sample size (g), (2) the volume of diluent used (ml), and (3) the observed measurement data, input as the results of quantitative (Figure 3) or semi-quantitative (Figure 4) enumeration tests (CFU/g or ml). Additionally, for QN_2 and 4 (interval data) there is an input for the dilution factor. Using (1) and (2) values, the LOQ is automatically calculated assuming a plating volume of 1 ml. After inputting these data, the “Calculate” button was clicked. The calculated results immediately appeared in the right-hand Output panel, as shown in Figures 3, 4. In the output panel, the following information is displayed: estimated microbial concentration as mean and standard deviation (SD) with 95% confidence intervals (CI) (Log CFU/g or ml), and a plot showing the probability distribution for the concentration, displaying the mean, LOQ value, 5th and 95th percentile. All of the above can be found in the Excel sheet (Supplementary Data: Microbial-MLE Tool.xlsm) attached to this article.
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FIGURE 3. Input and Output panels of the Microbial-MLE tool for quantitative data (QN_3). Data is entered into the pale-yellow cells (blue dashed lines). The entry values surrounded by blue dashed lines are the hypothetical data.
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FIGURE 4. Input and Output panels of the Microbial-MLE tool for semi-quantitative (interval) data (QN_4). Data is entered into the pale-yellow cells (blue dashed line). The values shown are those used in case 1 (Table 1).





RESULTS

To show the result of Microbial-MLE tool, we used hypothetical data (presented in Figure 3) as an example for analyses involving quantitative left-censored data. This hypothetical data set comprises quantitative results with an LOQ of 10 CFU/g. In 5 of the 15 measurements (33%), the result is left-censored due to the LOQ. Using this tool, a normal distribution is estimated for these including censored data with 1.41 ± 0.93 log CFU/g as mean and standard deviation (Figure 3).

We illustrated, as case studies, microbial concentration estimation of left-censored food microbial data published in the literature (Jang et al., 2013; Chai et al., 2017), based on laboratory measurements using the developed Microbial-MLE tool. These data represented a variety of foods and microorganisms, and consisted mostly of semi-quantitative (interval) data. The LOQ of all these data sets was 10 CFU/g. The results of the estimated microbial concentrations using these data and the Microbial-MLE tool are shown in Table 1.


TABLE 1. The results of the estimated mean and standard deviation (SD) using the Microbial-MLE tool for four data sets (mainly semi-quantitative results) used as case studies.

[image: Table 1]
In cases 1 and 2, the results of the total coliforms and Bacillus cereus analyses in sandwiches (Jang et al., 2013), which were produced on-site and served in bakeries, cafe’s, and sandwich bars in South Korea, were evaluated. The left-censored data due to the LOQ were in 214 (19%) and 1,008 (90%) of 1,120 samples, in the total coliforms and B. cereus analyses, respectively. Using this tool, the logarithms of the including censored data of total coliforms and B. cereus have been estimated to have a normal distribution with 2.34 ± 1.28 and −2.76 ± 2.93 log CFU/g, respectively. In particular, the result of B. cereus showed a high censored percentage (90%), and a large SD with a wide distribution of up to 105∼106 CFU/g due to the presence of outliers.

Cases 3 and 4 consist of 100 measurements of the total coliforms and Escherichia coli in retail beef samples (Chai et al., 2017). The left-censored data due to the LOQ were in 16 (16%) and 81 (81%) of 100 samples, in the total coliforms and E. coli analyses, respectively. Using this tool, the logarithmic values of the analysis results are fitted to a normal distribution with 2.57 ± 1.34 and −0.44 ± 1.63 log CFU/g, respectively.

Cases 1 and 2 did not show self-estimated quantitative results in the reference article and were not compared with the estimated values with this tool. However, in cases 3 and 4 were presented self-estimated quantitative results (Table 1). The estimated mean and SD values (2.57 ± 1.34 log CFU/g) changed very little due to the small amount of censored data, in the order of 2.23 ± 1.32 log CFU/g, in the results of the total coliforms, while the estimated mean and SD values (−0.44 ± 1.63 log CFU/g) changed greatly from 0.37 ± 0.35 log CFU/g due the abundance of censored data in the results of the E. coli analysis (Figure 5 and Table 1). This result shows the difference between the quantitative results when non-detected (left-censored) data is included and when it does not. Moreover, as shown in Figure 5 (case 4), the result (0.37 ± 0.35 log CFU/g) does not converge to the maximum value given in Table 1.
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FIGURE 5. Based on case 3 and three data set (n = 100, LOQ = 10 CFU/g) in Table 1, comparison of the results of estimated concentration of the total coliforms (case 3) and E. coli (case 4) in retail beef samples using the Microbial-MLE tool and the results presented in the cited literature (Chai et al., 2017) (Case 3: 2.57 ± 1.34 and 2.23 ± 1.32 log CFU/g, Case 4: –0.44 ± 1.63 and 0.37 ± 0.35 log CFU/g, estimated by the Microbial-MLE tool and in the cited article, respectively, and percentage of censored data in Case 3 and 4 are 16 and 81%, respectively). The larger the censored rate, the greater the difference, i.e., these results show the difference in quantitative results depending on whether or not censored data are included.




DISCUSSION

To increase the use of MLE in food microbial measurements, a user-friendly Microbial-MLE tool based on an MLE statistical method was developed. This tool estimates the quantitative concentration levels of microorganisms using food microbial censored data from the results of laboratory measurements. The tool works in an easy-to-use Excel spreadsheet and does not require complex mathematical knowledge about MLE on the part of the user. Thus, using this tool, anyone can rapidly and easily estimate the concentration of microorganisms from a variety of measurement results, or from routine monitoring of foodborne pathogens in various foods and food products.

Microbiological tests are generally divided into qualitative (presence/absence test) and quantitative (enumeration test) methods (Jarvis, 2008). Qualitative methods are concerned with investigating the presence or absence of a particular pathogen, such as specific foodborne pathogens (e.g., Salmonella spp. and E. coli O157:H7), even though quantitative method are available. On the other hand, quantitative methods are concerned with estimating microorganism concentrations, which may include total aerobic bacteria, coliforms and E. coli, as well as specific foodborne pathogens, such as Staphylococcus aureus and B. cereus. Currently, the tool we developed is only applicable to quantitative enumeration measurement results, and has not yet been applied to qualitative (presence/absence) test results possessing completely left-censored data (i.e., 100% censored data).

Microbial risk assessment is designed to quantitatively predict the probability of specific foodborne illness, such as pathogenic E. coli infections and salmonellosis, due to presence of causative pathogenic agents in the food products (Romero-Barrios et al., 2013). Thus, MRA have a requirement for quantitative data on the concentration of foodborne pathogens (Cassin et al., 1998; Boysen et al., 2013; Duarte et al., 2015), as microbiological contamination levels are often associated with predicted risk (Busschaert et al., 2010). The MLE method, which estimates values for the parameters that are most likely to have generated the observed measurements, can contribute to improving of the estimation for the concentration of microorganisms in foods, which is an important element of quantitative MRA.

The maximum likelihood method has been shown to produce unbiased estimates of both the mean and SD under a variety of conditions (Finkelstein and Verma, 2001). Moreover, the application of this MLE technique on microbial censored data has already been demonstrated to produce accurate and reliable results in food microbiology (Shorten et al., 2006; Lorimer and Kiermeier, 2007; Busschaert et al., 2010, 2011). However, despite many studies, the use of MLE method in food microbiology was, until recently, impractical, as MLE statistical methods are somewhat complex, and there was a lack of applicable tools with which to perform the necessary analyses. Previously, Lorimer and Kiermeier (2007) reported that MLE calculations could be performed by coding the methods manually and by using the Excel’s Solver add-in. In addition, the “fitdistrplus” R-package is available and allows also fitting statistical distributions to datasets containing censored data (Pouillot and Delignette-Muller, 2010). The estimation results of our Microbial-MLE tool and this R-package were exactly the same. Cases involving more complex data sets (e.g., 100% censored data) require more complex models, e.g., combinations of MLE and bootstrapping methods (Busschaert et al., 2010), and zero-inflated Poisson models (Gonzales-Barron et al., 2010; Duarte et al., 2015). Currently, however, MLE is easily implemented in commonly available spreadsheet software such as Excel. We demonstrate how this MLE method may be implemented using Excel spreadsheet. Once the spreadsheet template is set up, it can be readily used to estimate the concentrations of microorganisms from microbial censored data sets.



CONCLUSION

In conclusion, our newly developed Microbial-MLE tool is simple to use and can rapidly estimate the best estimation concentrations of microorganisms from food microbial censored data, even if the user does not have deep knowledge of MLE. When reporting microbial measurement results, this tool can use censored data for analyzing the effectiveness of microbial interventions (Lorimer and Kiermeier, 2007). In addition, the tool will help improve the outcome of quantitative MRAs and can also be used as an educational tool for demonstrating MLE methods. However, this tool used only the parameters presented and did not take into account other parameters. Additionally, as mentioned above, the current tool is only available for quantitative enumeration test results and has not yet been applied to qualitative presence/absence test results, which are used for detecting the presence of most important foodborne pathogens. For use in various microbiological methods, future improvement and supplementation of to this tool should be undertaken.
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Sample types

Contamination rate?

Contamination level (CFU/g)

<10 10 < value < 102 102 < value < 104 10* < value < 10°
Lettuce 48.5% (161/332) 51.5% (171/332) 22.0% (73/332) 25.9% (86/332) 0.6%(2/332)
Soil 52.2% (36/69) 47.8% (33/69) 10.1% (7/69) 34.8% (24/69) 7.3% (5/69)
Water 1.8% (1/57) 98.3% (56/57) 1.8% (1/57) 0.0% (0/57) 0.0% (0/57)
Manure 12.3% (7/57) 87.7% (50/57) 5.3% (3/57) 7.0% (4/57) 0.0% (0/57)
Pesticide 55.6% (5/9) 44.5% (4/9) 33.3% (3/9) 22.2% (2/9) 0.0% (0/57)
Total 40.0% (210/524) 60.0% (314/524) 16.6% (87/524) 22.1% (116/524) 1.3% (7/524)

aContamination rate = number of positive samples/total samples.
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Primer
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Sequence (50-30)

GCG TTT GTG CTG GTG TAAGT
CTG CAA TCG GAA GGA AGA AG
ATT TAA GTG AGG AAG GGT AGG
GCA ATG TTC ACC AAC CAC AA
CGG GGC AAA CAT TAA GAG AA

GGT TCT GGT CGT TTC CAT TC
GCA GAG CGT TTA GCA AAA GAA

TGC AAT GCG AGT TGC TTC TA
CTG CTG CGA AAA ATC ACA AA

CTC ACG ATT CGC TGC AAT AA
GCG TTA GGT GGA AAC GAA AG

CGC GTC CAA GTT TAT GGA AT
GCC CAG TAG CAC TTA GCG AC
CCG AAA CCG TCA AGA ATG AT

AAGCAATGGAATACAATGGG
ACGAATGTAATTTGAGTCGC
GATACTCAATGTGGCAACTGC
TTGAGACTGCTCGTCTAGTTG
AATCAAGAGCTGTCACGAAT
CACCAATTGACCATGCTAAT
GTTAGGATCACAATCACCGC
ACGAATGTAATTTGAGTCGC
CTATCAGCACTTATGGCAG
ACTCCTAGCGGTGTTCC
CGGTAGTGATTGCTGGG
CAGCATTCGTACTTGCCAA

AAAGAAATTAATGGACAAACTCAAACTCA

GTATGTAGCTGGGCCTGTACGT
GTAACTTTCATTGATGATCC
GAATACTAAATAATTGGTTTCC
GGTGACACATTATCATATAAGGTG

GTAAGCGAACCTGTCTGTAACAACA
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Phenotype Genotype

Antimicrobial No. of positive  Resistant genes  No. of positive
agents strains. or genetic strains.
elements studied

Penicilin G a blacz 30
Cefoxitin 2 cxa 18
Tobramycin 3 antf4)-la 2
Gentamicin 7 aac-aph2” 7
Chioramphenicol 4 fext 0
cath 0
Tetracycline 7 tetk 1
tet+tetl 2
tetM 3
tetM +tetl. 1
tetA 0
Erythromycin 2 emB 3
ermB+emC 3
ermC 4
emC +emA 1
emC +msrA 2
ermC+msrB 1
msrA 1
ermA and/or msrB 0
Kanamycin 8 ant(#)a 8
Lincomycin 28 InA 5
Oxacillin 16 mecA 16
Streptomycin 5 ant(6)-la 0
Quiniprstin; 2 vgah and/or vgaB 0

Dalfopristin
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Case

Microorganisms

No. of samples (CFU/g) Total Reported Estimated Mean +

number Mean + SD SD using this tool
ND' 10~102  102~10° 10%~10* 10*~10°  105~10° (log CFU/g) (log CFU/g)
Case 1 Total coliforms 214 258 368 234 44 2 1,120 - 2.34 £1.28
Case 2 B. cereus 1,008 49 48 12 2 1 1,120 = —2.76+2.93
Case 3 Total coliforms 16 19 34 22 8 1 100 223+1.32 2.57 £1.34
Case 4 E. coli 81 16 2 1 100 0.37 £ 0.35 —0.44 +1.63

ND, not detected; LOQ, 10 CFU/g.
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1,200 >LOQ =LN(A17) =LN{(1/(2*PIQ)*0.5*SFSH))*EXP(-(1/2)*((C(A18)-5F$3)/3F34)~ 2))
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Treatment Recovery X (h) Wmax (h™1)
conditions temperature (°C)
Control 20 5.34 +0.20 Aa 0.430 + 0.009Aa
25 3.72 + 0.09 Ba 0.626 + 0.019Ba
30 3.41 £0.10Ca 0.850 + 0.011Ca
37 2.45 + 0.03Da 0.963 + 0.003Da
Heat 20 11.04 £+ 0.16Ab 0.387 + 0.007Ab
25 9.68 + 0.15Bb 0.641 + 0.007Ba
30 7.82 £0.21Cb 0.837 + 0.039Ca
87 4.39 +0.11Db 0.956 + 0.010Da
LA 20 8.49 + 0.09Ab 0.433 £ 0.011Aa
25 5.38 + 0.16Bb 0.632 + 0.006Ba
30 4.63 + 0.10Cb 0.890 + 0.007Cb
37 3.94 + 0.10Db 0.943 + 0.022Db
BC 20 7.06 &+ 0.47Ab 0.428 + 0.004Aa
25 5.98 + 0.16Bb 0.632 + 0.025Ba
30 4.37 £ 0.10Cb 0.869 + 0.007Ca
37 3.81 £ 0.26Db 0.927 £+ 0.024Db
Nisin 20 12.88 + 0.38Ab 0.435 £ 0.011Aa
25 9.49 + 0.24Bb 0.705 + 0.005Bb
30 8.06 + 0.17Cb 0.873 £ 0.012Ca
37 5.16 + 0.19Db 0.971 £ 0.010Da

Values are expressed as means + standard deviations of three replicate experi-
ments. Means with different uppercase letters in the same column for each
treatment condition indicate significant differences (p < 0.05). For each recovery
temperature, means with different lowercase letters indicate significant differences
(p < 0.05) between control and each stress treatment.
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Treatment time (min) Exposure temperature (°C)/Applied ultrasonic power (W)

55/200 55/400 63/200
3 7.46 £+ 0.50C,b 6.90 £ 0.59D,b 4.79 £ 0.20E,a
6 5.89 + 0.32B,b 5.47 £ 0.33C,b 3.62+£0.33D,a
9 5.38 £ 0.54B,c 4.60 £ 0.19B,b 2,65 +0.22C,a
12 5.00 +£ 0.79B,C,c 410 £ 0.17AB,b 1.92+0.17B,a
15 4.26 + 0.28A,c 3.983 + 0.16Ab 1.33+£0.17A,a

63/400

4.68 4+ 0.41D,a
379+ 0.61Ca
3.02+0.12B,a
1.99 £ 0.24Aa
1.59 £ 0.22A,a

The initial concentration of bacterial cells was about 8.12 + 0.05 log1g CFU/mI. The values are mean of triplicate measurements + standard deviation.

The values with different lowercase letters in the same row and uppercase letters in the same column showed a significant difference at p < 0.05.
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Linear model Biphasic model Weibull model

A B R2 RMSE f P q R2 RMSE a b R2 RMSE

—1.39+0.76 —-0.38+0.07 0.866 76.08 0.996+ 0.001 90091.86 +0.00 0.68+0.17 0985 6.33 0.0214+0.004 0.416+0.001 0999 0.36





OPS/images/fmicb-12-646735/fmicb-12-646735-g005.jpg
1.59 A 0.89 B
—e— Control —e— Control
—— Heat 0.6 — —— Heat
- 1.0 —— TA —— A
] 2. —_—
BC < 0.4 B
['g}
i —=— Nisin cf‘ I —=— Nisin
0.2 -
1 1 T 1 1 0.0 1 1 1 T 1
15 20 25 30 35 40 15 20 25 30 35 40

Temperature (°C) Temperature (°C)





OPS/images/fmicb-12-771770/fmicb-12-771770-e004.jpg
(5)





OPS/images/fmicb-12-771770/fmicb-12-771770-e005.jpg
A= -+ (@ —a) + (-t ©





OPS/images/fmicb-12-771770/fmicb-12-771770-e006.jpg
(Vi — Vo) x ¢ x 0.0140
PO T

x F x 100 @
m x V2/100





OPS/images/fmicb-12-771770/fmicb-12-771770-g001.jpg
N\

out —

Temperature
sensor

Hot water e

Transducer

——— Sample out

- Enclosed reactor

| Ultrasonic probe

—— Transmitters

— — Hot water in
A'lf_

Sample In





OPS/images/fmicb-12-771770/fmicb-12-771770-e001.jpg
log (N ) log [f + (1 - f) ] @





OPS/images/fmicb-12-771770/fmicb-12-771770-e002.jpg
N‘) =at+b
g (3

3)





OPS/images/fmicb-12-771770/fmicb-12-771770-e003.jpg
“)





OPS/xhtml/Nav.xhtml




Contents





		Cover



		TECHNOLOGICAL ADVANCES IN MICROBIOLOGICAL RISK ASSESSMENT



		Editorial: Technological Advances in Microbiological Risk Assessment



		Improving Exposure Assessment step of MRA



		Supporting MRA in Hazard Identification



		Improving MRA and Prevention Approaches



		Rapid Detection or Approaches Reducing Risk



		Author Contributions



		Funding



		Acknowledgments









		Inactivation and Subsequent Growth Kinetics of Listeria monocytogenes After Various Mild Bactericidal Treatments



		INTRODUCTION



		MATERIALS AND METHODS



		Bacterial Strain and Culture Conditions



		Mild Bactericidal Treatments



		Heat Treatment



		Lactic Acid, Benzalkonium Chloride, and Nisin Treatments



		Viable and Sublethally Injured Cell Counts









		Optical Density Measurements



		Estimation of Growth Parameters of Listeria monocytogenes



		Modeling Inactivation Kinetics of Listeria monocytogenes



		Modeling the Effects of Different Temperatures on Growth Parameters



		Statistical Analysis









		RESULTS AND DISCUSSION



		Inactivation of Listeria monocytogenes by Mild Bactericidal Treatments



		Stresses Induced Sublethal Injury Based on Differential Plating



		Growth Lag Time of Listeria monocytogenes After Mild Bactericidal Treatments



		Growth Parameters Under Different Recovery Temperatures









		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		REFERENCES









		Bayesian Generalized Linear Model for Simulating Bacterial Inactivation/Growth Considering Variability and Uncertainty



		INTRODUCTION



		MATERIALS AND METHODS



		Dataset



		Inactivation Dataset



		Growth Dataset



		Bacterial Strain and Inoculum Preparation



		Kinetic Evaluation of Bacterial Growth



		Stochastic Evaluation of Bacterial Growth















		Modeling



		Bayesian GLM for Inactivation Dataset



		Bayesian GLM for the Growth Dataset



		Computation









		Simulation



		Inactivation Dataset



		Growth Dataset















		RESULTS



		Bayesian Inference and Prediction of Bacterial Behavior in the Inactivation Process



		Bayesian Inference and Simulation of Bacterial Behavior in the Growth Process









		DISCUSSION



		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		FOOTNOTES



		REFERENCES









		Complete Replacement of Nitrite With a Lactobacillus fermentum on the Quality and Safety of Chinese Fermented Sausages



		INTRODUCTION



		MATERIALS AND METHODS



		Strains



		Sausage Manufacture



		pH and Chroma



		Nitrite Residual



		TBARS



		TVB-N



		Amino Acid



		Met-Mb



		Biogenic Amine



		Sensory Analysis



		Statistical Analysis









		RESULTS



		pH



		Color Analysis



		The Nitrite Content



		TBARS



		TVB-N Content



		Free Amino Acid and Met-Mb



		The Content of Biogenic Amines



		Sensory Analysis









		DISCUSSION



		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		REFERENCES









		Heavy Metal Resistance in Salmonella Typhimurium and Its Association With Disinfectant and Antibiotic Resistance



		INTRODUCTION



		MATERIALS AND METHODS



		Bacterial Strains



		Isolates and Serotyping



		PCR Amplification of Heavy Metal Resistance Genes



		Determination of Minimal Inhibitory Concentrations (MICs)



		Conjugation Experiment



		Statistical Analysis









		RESULTS



		Metal Resistance



		Antibiotic Resistance



		Disinfectant Resistance



		Association of Metal Resistance and Heavy Metal Resistance Genes With Antibiotic and Disinfectant Resistance



		Transfer of Heavy Metal Resistance Genes









		DISCUSSION



		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		SUPPLEMENTARY MATERIAL



		REFERENCES









		Aptasensors for Staphylococcus aureus Risk Assessment in Food



		INTRODUCTION



		AVAILABLE METHODS FOR DETECTING S. AUREUS



		PRINCIPLES OF APTASENSORS FOR S. AUREUS DETECTION



		Optical Aptasensors



		SPR Aptasensors



		Surface-Enhanced Raman Spectroscopy Aptasensors



		Fluorescent-Based Aptasensors









		Electrochemical Aptasensors



		Aptasensor Detection Based on Potentiometry



		Aptasensor Detection Based on Voltammetry



		Aptasensor Detection Based on Impedimetry















		AUTHOR CONTRIBUTIONS



		FUNDING



		REFERENCES









		Serotyping, MLST, and Core Genome MLST Analysis of Salmonella enterica From Different Sources in China During 2004–2019



		INTRODUCTION



		MATERIALS AND METHODS



		Salmonella enterica Isolates



		Serotyping by Slide Agglutination and Prediction by Genome



		Bacterial Genome Sequencing and Genomic Assembly



		MLST, cgMLST, and Phylogenetic Analysis









		RESULTS



		Serotyping Classification of S. enterica in China During 2004–2019



		Salmonella Draft Genome Analysis



		In silico MLST Analysis of S. enterica



		cgMLST Analysis of Salmonella Based on Genomic Sequences



		Major Serovars and cgSTs of Salmonella Isolates From Different Sources, Years, and Provinces



		Comparative Analysis of MLST and cgMLST Within S. enterica Isolates









		DISCUSSION



		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Prevalence, Antimicrobial Susceptibility, and Molecular Characterization of Escherichia coli Isolated From Raw Milk in Dairy Herds in Northern China



		Introduction



		Materials and Methods



		Collection of Samples



		Isolation and Identification of E. coli



		Detection of Virulence Determinants



		Antimicrobial Susceptibility Patterns



		Antimicrobial Resistance Genes









		Results



		Prevalence of E. coli



		Virulence Genes



		Antimicrobial Susceptibility Testing



		Screening of Antibiotic Resistance Genes









		Discussion



		Conclusion



		Data Availability Statement



		Author Contributions



		Funding



		Supplementary Material



		References









		The Possible Transmission and Potential Enterotoxicity of Bacillus cereus on Lettuce Farms in Five Chinese Provinces



		INTRODUCTION



		MATERIALS AND METHODS



		Sample Collection and Isolation



		Phylogenetic Study



		Tracing Analysis



		Detection of Virulence Genes



		Detection of the Enterotoxins









		RESULTS



		Prevalence Analysis of B. cereus in Lettuce and Farm Environments



		Genetic Structure of B. cereus Populations



		Tracing Analysis



		Enterotoxic Potential of B. cereus









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		FOOTNOTES



		REFERENCES









		Application of a 360-Degree Radiation Thermosonication Technology for the Inactivation of Staphylococcus aureus in Milk



		INTRODUCTION



		MATERIALS AND METHODS



		Preparation of Bacterial Suspensions



		Milk Preparation



		Thermosonication Treatment Conditions



		Pasteurization and Ultrahigh Temperature Treatment



		Microbiological Analysis



		Establishment of the Inactivation Kinetic Model



		Determination of the Physicochemical Characteristics of Milk



		Color Properties



		pH



		Particle Size and Zeta Potential



		Total Protein Content









		Statistical Analysis









		RESULTS AND DISCUSSION



		360-Degree Radiation Thermosonication-Induced Heat Transfer Enhancement in Milk



		Inactivation of S. aureus Cocktail in Milk by 360-Degree Radiation Thermosonication



		Establishment of Inactivation Kinetics



		Application of 360-Degree Radiation Thermosonication for the Sterilization of Raw Milk



		Physicochemical Property Changes of Raw Milk



		Changes in pH, Particle Size, and Zeta Potential



		Changes in Color Characteristics



		Changes in the Total Protein Content















		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		REFERENCES









		Microbial-Maximum Likelihood Estimation Tool for Microbial Quantification in Food From Left-Censored Data Using Maximum Likelihood Estimation for Microbial Risk Assessment



		INTRODUCTION



		MATERIALS AND METHODS



		Microbial-Maximum Likelihood Estimation Tool Configuration



		Maximum Likelihood Estimation for Microbial Censored Data



		Maximum Likelihood Estimation in Excel for Microbial Censored Data



		Use of Microbial Maximum Likelihood Estimation Tool









		RESULTS



		DISCUSSION



		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		SUPPLEMENTARY MATERIAL



		References























OPS/images/fmicb-12-646735/fmicb-12-646735-e001.jpg
Lhinal
— S [%Sublethal Injury (¢)]dt
tfinal —

ial





OPS/images/fmicb-12-688614/fmicb-12-688614-g002.jpg
A Enteritidis
Others 12.4%

20.4%

Typhimurium
11.6%
Corvallis
Cerro = |
2o
Schwarzengrund
2.4%
Braenderup
2.8% Mbandaka
Senftenberg 9.2%
3.2% Rissen
3.2% AlbanyI P, Indiana
0 ol & Isl Lol 0
. 3.6‘EA] Thompson Derby date
6.8% 8.4%
B
STI11
Others 12.4%
ST413
9.2%
ST1593
2%
ST1541
2%
ST96
20 ST17
8.8%
ST22
2.8%
ST469
3.2% ST34
ST292 8.4%

. ST40
32% STI9
5 6% ST26 7.6%
' 6.8%

3.2%

B Enteritidis
B Typhimurium
B Mbandaka
B Indiana

| Derby
I Thompson
B 1 45),12:i-
B Albany
B Risscn
I Scnftenberg
I Braenderup
I Schwarzengrund
B Cerro
I Corvallis
I Others

B ST11
B ST413
B ST17

- ST34
P ST40
B ST26
B ST19
B ST14
B ST292
I ST469
B ST22
B ST96
B ST1541
B ST1593
B Others





OPS/images/fmicb-12-646735/fmicb-12-646735-e002.jpg
Nz Ty — [ W) = In(No) ®

Wmax





OPS/images/fmicb-12-688614/fmicb-12-688614-g003.jpg
Poultry
B Livestock

—_——_— - =X

0_SAL

KOS (/8 & nS
?6@%%4”@ ﬁ@@;sa;.@.w,, 5 %m & g
N O ¥ ¥ e, S S I b 3
F o TV TR0, 7 SASRE ] e ¥ 3
Ko F S XTI /8 7 [ ] L s
PO NGO SR XLy [ [ / 28 ©
P GRS R 2) )] B 58l "
D X NP RE~) T =8 2 | e L S
@w%%@%&oﬂa&w SN L0, T [l 2l |2 ar gl ¢ £
T S S ST T s C 20l | SRS el
R IR SN E RS RS S IO SRR L
~ L 4 i
S OO S S S 3335333335353255%
S e S8 S 8883 S S3SS82L3%R2
o 0 &3 o T Ex
" SF =5 9033 SINEE3 SRS 028
P PEIIFI5290G83333889
T B e T D o
@ VHOGIIZTIIII 222
CO5G5555% 6






OPS/images/fmicb-12-646735/cross.jpg
3,

i





OPS/images/fmicb-12-646735/fmicb-12-646735-e000.jpg
The injury rate (%)

counts on selective medium
=l — ) X 100% (1)
counts on non — selective medium





OPS/images/fmicb-12-646735/fmicb-12-646735-g001.jpg
LOglO CFU/mL

LOglO CFU/mL

A —— Non-selective medium 10— —e— Non-sclective medium
: —— Selective medium 9 —— Selective medium
- ] -
8 E 8
=)
7 o S 7
(=
0
6= 3 6=
5 5
4 T T T T 1 4 T T T T 1
0 30 60 90 120 150 0 20 40 60 80 100
Exposure time (min) Exposure time (min)
104 —— Non-selective medium 10— —e— Non-selective medium
9 —— Selective medium 9 —o— Selective medium
- - -
8 E 8
5 : :
7 = U 7 — ° [
(=
&0
6- S 64 ¢
o Q
5= 5 5
4 T T T T T 1 4 T T T ] 1
0 12 24 36 48 60 72 0 12 24 36 48 60

Exposure time (min)

Exposure time (min)





OPS/images/fmicb-12-714265/fmicb-12-714265-t002.jpg
Advantages

Worthy sensitivity
Label-free detection
Quantification

Simple and rapid
Portability
Cost-effective

Superior sensitivity
Able to characterize more details
Label-free detection

High sensitivity, stable
Simultaneous detection
Nanomaterials applications

Limitations

Limited detection of the whole cell
Requires a relatively large
equipment

Complex analysis system

Low sensitivity

Limited quantification

Finite quantification capability
Complicated analysis spectrum

Requires pretreatment
Complex operation steps

Detection
methods

SPR

Colorimetry
Colorimetry
Colorimetry
Colorimetry

SERS
SERS

SERS
SERS
Fluorescence
Fluorescence
Fluorescence

Detection limit

108 CFU/m

9 CFU/mI
10 CFU/mI

81 CFU/mlin PBS
1.5 x 107 cells/ml

13 CFU/ml
35 CFU/ml

3 cells/ml

1.5 CFU/ml

1.7 CFU/ml

64 CFU/m

7.6 x 102 cells/ml

Linear range

10°-108 CFU/ml

10-108 CFU/ml
10-108 CFU/ml
10%-107 CFU/ml

1.5 x 107-
5.3 x 107 cells/ml

4.3 x 10-4.3 x 107 CFU/m

102-107 CFU/ml

102107 cells/m
10-107 CFU/m
7-7 x 107 CFU/ml
102-107 CFU/m

6.0 x 10°—
6.0 x 10° cells/ml

References

Wang et al., 2019

Yuan et al., 2014
Yao et al., 2020
Yu et al., 2020
Lim et al., 2021

Zhu et al., 2021
Zhang et al.,
2015

Pang et al., 2019
Gao et al., 2017
Yuetal., 2017
Lu etal., 2020
He et al., 2014





OPS/images/fmicb-12-646735/fmicb-12-646735-g002.jpg
1
100

i
]
]
. &
1 (>2]
]
]
]
=)
\o
]
]
]
] )
1 -
]
]
] =
U (g\]
]
]
) 0
1
I T T T T =
(=] [—] [—] [—] [—] [—]
(=] (> ] o A (g\]
]
(2%) Ainfur Jo d3euddI9g
(=]
. —y
(] o
]
]
! (=]
—
o
]
]
]
' -
(=)
]
]
' =)
] \o
]
]
! =
en
]
]
< '
[l
I T T T T =
(= (=] [—] [—] [—) (—]
(=] (> 2] o - o
o

(24) Aanfur Jo ageIuddI9 g

Exposure time (min)

Exposure time (min)

)
£
g
N’
-5}
g
=
L
} S
=
w
(=]
(="
]
=
o
I T T T T i
[—J (= S [—) [—} (]
(—} [° 2] & A o
o
(%) Aanlur Jo 38ejuddIayg
B
f o
]
]
! | ©
' <+ o~
] £
! g
] & ~
] o 5]
' “ g
- p—
) -~
! =
] | =
) o w
1 (=]
. =9
w4
' | o A
o
]
]
(@) ]
A
I T T T | =
S (=3 (—) [—) [—} (=]
w [><] o - [g\]

(2%) L£anlur jo 3gejuddIdg





OPS/images/fmicb-12-714265/fmicb-12-714265-t003.jpg
Detection methods

Potentiometry
Potentiometry
Impedimetry
Voltammetry
Chronocoulometry

Working electrode

GO/rGO aptasensor electrode
Aptamer/graphene interdigitated gold electrode
Glassy carbon electrode

Carbon electrode

Modified gold electrode

Detection limit

1 CFU/ml

41 CFU/ml
1 CFU/ml
0.21 fM
3 pg/ml

Linear range

4.1 x 10-4.1 x 10° CFU/ml
1.2 x 10'-1.2 x 108 CFU/mI
5.0-500.0 fM

0.05-100 ng/ml

References

Hernandez et al., 2014

Lian et al., 2015

Ranjbar and Shahrokhian, 2018
Mousavi Nodoushan et al., 2019
Chenetal., 2019





OPS/images/fmicb-12-646735/fmicb-12-646735-e003.jpg
Logio (Ny) = Logio (No) — kaxt/Ln(10) @)
Togis (ND=: Logio {[IDLagm(Na) = IDLagm(Nm)]

xekmast IDLﬂgm(Nm)} )





OPS/images/fmicb-12-688614/cross.jpg
3,

i





OPS/images/fmicb-12-646735/fmicb-12-646735-e004.jpg
Vimax = b x (T = To) ©)

1
ﬁ:bx(T—To) @)





OPS/images/fmicb-12-688614/fmicb-12-688614-g001.jpg
—

Source

Poultry -
Human I:l

Food -
Livestock -





OPS/images/fmicb-12-714265/fmicb-12-714265-g002.jpg
/

Receptor

[

i

J






OPS/images/fmicb-12-714265/fmicb-12-714265-g003.jpg
h

(alse™

- — ._F.

1
"
l

|

|

7,
‘ J =
A‘ | HNO; s
:l ;,~ ;l '?
|

- N

."r
< s

JWWW»  Primary Aptamer
@ Magnetic beads (MB) \/\ P
. S.aureus

-
>

Sadee
K
i
-
¢ ~
y——r
4 z

3

J

o Silver nanoparticle conjugate with
s S secondary aptamers (Apt-AgNP)





OPS/images/fmicb-12-714265/fmicb-12-714265-g004.jpg
Daﬁy prOdUCtS

SPR

Meat, Eg&®





OPS/images/fmicb-12-714265/fmicb-12-714265-t001.jpg
Detection Basic principle Advantages Limitations Detection Assay time
methods limit (CFU/ml)
Culture-based Traditional culture is the growth of Gold standard Time-consuming >10* 7 days
methods pathogens in the culture medium and Cost-effective Complex operation

the formation of visible colonies Simple
Nucleic acid-based ~ DNA or RNA sequences of target Rapid CostStandardized material 10%-10* 10-24 h
methods pathogens were manipulated by Specific Specialized experiment

specific detection Sensitive
ELISA The basic principle is the combination Highly specific Poor stability 10%-10° 3-10h

of the antibody with the antigen Rapid Existing cross-contamination

followed by the detection of the Cost-effective Equipment required

antigen—antibody complex Automatic machine

application

Aptasensors The detection is based on the Wide target range Limited conformational diversity 101105 0.5-3h

high-affinity and high-specificity binding
of the secondary or tertiary structures
formed by single nucleotides

High affinity and specificity
Good thermal stability
Long storage life

Stable properties

Flexible

Low molecular weight

Time-consuming and low
success rate of SELEX process





OPS/images/fmicb-13-872879/crossmark.jpg
©

2

i

|





OPS/images/fmicb-12-730656/fmicb-12-730656-t003.jpg
Antibiotic

Ampicilin
Amoxicillin-clavulanic acid

Cefoxitin

Ampicilln, amoxicilln-clavulanic acid
Amoxicilin-clavulanic acid, cefoxitin
Ampicilln, amoxicilin-clavulanic acid,
and cefoxitin

None

Total

No. of positive strains

No. of positive strains

blaguy

coocoo

blarey

~~ocow

blacuy

~ocoma

blacrm

-0 o co=o0o

None

o o=mn

a4





OPS/images/fmicb-12-730656/crossmark.jpg
©

2

i

|





OPS/images/fmicb-12-730656/fmicb-12-730656-g001.jpg





OPS/images/fmicb-12-730656/fmicb-12-730656-t001.jpg
Tapes of No. of STEC (%) ETEC (%) EPEC (%) EAEC (%) EIEC (%)

& Total (%)
samples  strains ., s2  stxl&st2  Total estA estB elt Total eae bfp Total aggR ipaH

Hohhot 2 267 00 149 3030 00 143 00 149 262 00 267 0@ 00 66

Jinan 11 1e) 0@ ) 1en 0@ 00 T 1en) 100 0 1en 00 00  3ery

Harbin 16 163 00 00 163 00 163 00 163 00 00 ) 00 163 30188

Beiing 17 169 00 00 169 169 00 00 169 00 00 00 00 0 20117

Total o7 508 00 105 600 1015 200 1015 460 345 00 345 00 105 14209
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Antibiotics

Ampicilin
Amoxicillin-clavulanic acid
Tetracycline
Sulfamethoxazole-trimethoprim
Cefoxitin

Chloramphenicol

Kanamycin

Streptomycin

Tobramycin

Adithromycin

Giprofioxacin

Gentamicin

Hohhot (n=23)

1178
4(17.4)
3(13.0)
3(130)
1(43)
2(8.7)
2(87)
0(0
0(0)
1(43)
0(0
0(0

Jinan (n=11)

5(45.5)
3(27.9)
2(18.2)
2(18.2)
5(45.5)
0(0)
1(0.1)
00
0(0)
1(1)
1(.1)
00

No. (%) of positive strains
Harbin (n=16)

7(438)
2(125)
2(125)
2(125)
163)
2(125)
163
2(125)
2(125)
163
0
0

Beijing (n=17)

8(47.1)
2(118)
2(118)
2(11.8)
16.9)
1(5.9)
1(6.9)
2(118)
1(59)
0(0)
00
000

Total (n=67)

31(46.3)
11(16.4)
9(134)
9(13.4)
8(119)
5(7.5)
5(75)
4(6.0)
3(45)
3(4.5)
1(15)
0
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cgST

cgST42868

cgST217495
cgST234925
cgST234927
cgST234930

cgST234932
cgST235529
cgST235530
cgST235678
cgST235686
cgST235712
cgST235797
cgST236211
cgST236321
cgST236324

Numbers
5
6
3
3
6

3
2

-

1

2
2
2
2
2
2
2

Source

Poultry
Poultry
Poultry
Poultry
Poultry, food

Poultry
Poultry, food
Poultry
Poultry
Poultry
Poultry
Poultry
Poultry, human
Poultry, human
Poultry, human

Province

Shaanxi, Fujian

Beijing, Shaanxi
Sichuan, Fujian
Sichuan, Shaanxi
Sichuan, Shaanxi

Sichuan, Fujian
Sichuan, Shaanxi
Shaanxi, Guangdong
Sichuan, Shaanxi
Guangxi, Shaanxi
Shaanxi, Shanghai
Guangdong, Shaanxi
Guangdong
Beijing
Beijing

Years

2010, 2011
2010, 2012
2010
2006, 2010

2006, 2007,
2010, 2012

2010
2006, 2010
2010, 2011
2010, 2011
2010, 2011

2006
2007, 2011

2010
2008, 2012
2009, 2012
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Year
2004
2006
2007
2008
2009
2010

2011
2012
2014
2015
2016
2017
2018
2019
Province
Beijing
Fujian
Guangdong

Guangxi

Henan
Shandong
Shanghai
Shaanxi
Sichuan
Source
Food
Human
Livestock
Poultry

Number of strains

16

11
32
105

19

18
10
29
67
28

7
31
15

197

Major cgSTs (no., serovar)

cgST236240 (4, Mbandaka)
cgST235712 (2, Infantis)
cgST234930 (2, Mbandaka)
cgST236457 (2, Meleagridis)
cgST236385 (3, Havana)
cgST42868 (4, Braenderup)
cgST234918 (4, Schwarzengrund)
cgST234928 (4, Senftenberg)
cgST235530 (9, Mbandaka)
cgST217495 (4, Derby)

cgST217495 (3, Derby)
€gST234918 (4, Schwarzengrund)
cgST236218 (2, Corvallis)
©cgST236211 (2, Hvittingfoss)
€cgST235530 (2, Mbandaka)
cgST235719 (2, Cerro)
cgST234919 (2, Derby)
cgST236457 (2, Meleagridis)
cgST236458 (2, Newport)
cgST236436 (2, Enteritidis)
cgST236385 (3, Havana)
€cgST234930 (9, Mbandaka)
cgST234928 (4, Senftenberg)

€cgST236240 (4, Mbandaka)
¢cgST235530 (11, Mbandaka)

Major serovars (no.)

Derby (4), Mbandaka (4)
Infantis (2), Thompson (2)
Mbandaka (2)

Corvallis (3)

Typhimurium (19)

Indiana (12)

Mbandaka (9)

Enteritidis (6)

Typhimurium (4)

Enteritidis (2), | 4,[5],12:i:- (2)
Enteritidis (2), 1 4,[5],12:i:- (2)
Enteritidis (2), Typhimurium (2)
Enteritidis (2), 1 4,[5],12:i:- (2)

Enteritidis (15)
Schwarzengrund (4)
Mbandaka (3)

Albany (3)
Cerro (3)
Newport (3)

Enteritidis (3)
Enteritidis (5)
Typhimurium (19)
Mbandaka (18)
Thompson (5)

Enteritidis (10)
Mbandaka (4)
Typhimurium (28)

“_»

~” means no major serovars or major cgSTs.
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Control Sample

X sD X sD
L*
od 59.782A 2.15 54.23PA 1.78
5d 54.3428 1.73 50.452B8 3.12
10d 53.3328 2.37 47 .6108C 2.16
15d 48.422C 2.09 48.5528C 1.40
20d 47.278C 1.03 44 500C 1.14
a*
od 12.343A 1.14 10.712A 0.67
5d 13.678A 0.83 9.890A 0.85
10d 7.632B 0.45 6.3828 0.83
15d 4.792C 1.15 5.18aBC 0.48
20d 5.262C 0.84 4.878C 0.56
b
od 1.252D 0.31 0.44pC 0.08
5d 3.492C 0.56 0.56PBC 0.11
10d 4,128C 0.43 1.40°B 0.67
15d 5.2598 0.21 3.16bA 0.78
20d 6.228A 0.47 3.85bA 0.32

The superscripted letters a b ¢ represent significantly different (p < 0.05) in the
same line, and A B C represent significantly different (o < 0.05) in the same column.
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Biogenic amine (mg/kg) Sausage

Control Sample
Tyramine 78.24P 116.622
Putrescine 6.60P 85.272
Cadaverine 163.30° 462.132
Spermidine 453 2.50P
Tryptamine 5.882 0.19°
Phenylethylamine 6.15 ND
Spermine 28.682 31272
Histamine ND ND

The superscripted letters a b ¢ represent significantly different (p < 0.05) in the

same line.
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Antibiotic resistance Number of isolates Prevalence (%)

S 237 79
S3 234 78
TET 228 76
AMP 216 72
NA 194 64
C 180 60
SXT 171 57
T™MP 165 55
CN 123 41
AMC 54 18
CIP 27 9
OFX 18 6
CAZ 3 1

CTX 3 1
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MIC Resistance

2 4 8 16 32 64 128 256 512 1024 %

BC 17 3 42 181 18 39 79.3
TCCA 33 4 45 149 69 77
MIC Resistance

0.0313 0.0625 0.125 0.25 05 1

Triclosan (TCS) 112 24 46 7 39 2 55

The strains with MIC higher than that of control strain E. coli ATCC 10536 and
Salmonella H9812 were considered resistant. The numbers of resistant strains are
in bold.
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Metal Antibiotic/Disinfectant P-value

Antibiotic
Cd CIP < 0.00001
OFX < 0.00001
CAZ 0.0003
Co AMP 0.0229
Cr AMP 0.0019
SXT < 0.00001
CIP < 0.05
C 0.0329
OFX 0.0002
TMP < 0.05
CN 0.0028
S3 0.0167
Cu TET < 0.00001
AMP 0.0001
SXT < 0.00001
C 0.0007
TMP < 0.00001
CN 0.0002
S3 0.0022
S < 0.00001
Mn AMP 0.044
SXT 0.004
TMP 0.0279
CN 0.0013
Zn SXT 0.0036
CIP 0.0019
C 0.0249
OFX 0.0007
TMP 0.0037
CN 0.0062
Disinfectant
Cd BC 0.0397
Co BC 0.0227
Cr BC 0.0303
TCCA < 0.00001
Mn BC 0.0012
Zn BC < 0.00001

TCCA < 0.05
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HMRG Antibiotic/Disinfectant P-value

Antibiotic
cadD AMP 0.0064
SXT < 0.00001
S3 0.0106
TMP 0.0002
chrB AMP 0.0293
TMP 0.0135
cnrA SXT 0.0003
CIP 0.0075
OFX 0.0101
TMP 0.0001
merA TET < 0.00001
AMC 0.0044
AMP < 0.00001
SXT 0.0033
CIP 0.0003
C 0.0063
OFX 0.0001
NA 0.0079
TMP 0.0286
CN < 0.00001
S3 < 0.00001
S 0.011
nccA TET 0.0313
AMP 0.0144
SXT 0.0072
OFX 0.0356
NA 0.0119
TMP 0.0106
CN 0.001
pbrA SXT 0.0009
CIP 0.0005
C 0.044
OFX 0.0001
NA 0.0012
TMP 0.0069
CN 0.0005
PCOA TET 0.0002
AMC 0.0083
AMP 0.000114
SXT < 0.00001
CIP 0.0375
C 0.0081
NA 0.0369
TMP 0.0003
CN 0.0002
S3 0.0002
pcoC TET 0.000012
AMP < 0.00001
SXT < 0.00001
C < 0.00001
TMP < 0.00001
CN 0.000025
S3 0.000024
pcoR SXT 0.0098
CIP 0.0002
OFX 0.0027
TMP 0.0104
cnrA BC 0.0066
merA BC 0.0349
TCS 0.000027
TCCA 0.0007
NccA BC 0.0016
pbrA BC 0.0013
TCCA <0.00001
pcoA BC 0.0072
TCCA 0.000045
pcoC BC 0.0004
pcoR BC 0.0005
TCCA 0.0214
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MIC Resistance

125 25 50 100 200 400 800 1600 3200 %
Cu 1 1 76 222 74
Zn 4 152 143 47.7
Mn 1 216 83 214
Cd 5 207 88 29.3
Co 1 2 270 27 9
Cr 163 137 45.7

The strains with MIC higher than that of control strains E. coli ATCC 10536 and
Salmonella H9812 were considered resistant. The numbers of resistant strains are
in bold.
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Heavy metal resistance gene Number of isolates (n) Prevalence (%)

czcD 254 84.7
pcoR 196 65.3
pcoC 179 59.7
cnrA 155 51.7
nccA 153 &1
cadD 131 43.7
merA 104 34.7
pbrA 63 21
PCOA 61 20.3
chrB 18 6
czcB 17 5.7

arsB 15 5
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Treatments Protein content (%)

Raw milk 3.28 +£0.19b
360-degree radiation thermosonication (200 W, 3.22 + 0.25b
63°C, 7.5 min)

UHT (121°C, 15 °s) 3.02 +£ 0.16b
Pasteurization (63°C, 30 min) 2.53 +0.38a

Values with different lowercase letters in the same column showed a significant
difference at p < 0.05.
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Treatments

Raw milk

360-degree radiation thermosonication (200 W, 63°C, 7.5 min)
UHT (121°C, 15's)

Pasteurization (63°C, 30 min)

Values with different lowercase letters in the same column showed a significant difference at p < 0.05.

The asterisk is used to differentiate the CIELAB system from ANLAB.

L*

87.38 + 0.23a"
90.75 + 0.42¢
89.39 + 0.08b
89.25 + 0.42b

a*

—2.00 &+ 0.06b
—2.25 £ 0.04a
—1.79 + 0.05¢
—1.98 £ 0.01b

b*

4.67 &+ 0.15a
3.61 &+ 0.04b
2.60 & 0.42¢
4.01 & 0.06b

AE

0
3.55 £ 0.40a
2.91 4 0.26b
1.99 £ 0.41¢c
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Treatments pH

Raw milk 6.65 + 0.04a
360-degree radiation 6.66 £+ 0.02a
thermosonication (200

W, 63°C, 7.5 min)

UHT (121°C, 15's) 6.69 + 0.01a
Pasteurization (63°C, 6.71 £ 0.04a
30 min)

Zeta potential (mV) Particle size (um)

—23.0+ 1.6a
—37.0+ 0.4d

—-30.4+1.2¢c
—26.4+0.7b

7.59 £+ 0.16¢
4.62 &+ 0.14a

6.08 £ 0.06b
6.00 £ 0.08b

Values with different lowercase letters in the same column showed a significant

difference at p < 0.05.
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Treatments Total viable counts (logqo

CFU/mlI)
Raw milk 3.25 £0.77
360-degree radiation thermosonication ND
(200 W, 63°C, 7.5 min)
UHT (121°C, 15 5) ND
Pasteurization (63°C, 30 min) ND

ND, non-detected (i.e., below the limit of detection).
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