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Research on Optimal Operation of
Electricity Heat Hydrogen System
Based on Evaluation of New Energy
Consumption Potential
Xinrui Liu* , Xinying Zhao and Weiyang Zhong

Department of Electrical Engineering, College of Information Science and Engineering, Northeastern University, Shenyang,
China

Under the background of the “double high” power system, the electricity heat hydrogen
system (EHHS) plays a significant role in the process of energy decarbonization. In order
to meet the different optimization objectives of the system under different new energy
consumption states, a new energy consumption potential assessment and optimized
operation method based on intuitionistic fuzzy rough set theory is proposed. By using
the intuitionistic fuzzy rough set theory, the continuous attribute data is divided into
different levels and the results of its membership and non-membership are gotten at
different levels. The membership results of real-time consumption data are matched
with the rule sets, and then the system consumption state judgment result is obtained.
In this article, the system consumption situation is divided into five states, and compared
with the traditional division method, so the system state can be described more
comprehensively. At the same time, the fuzzy set is used to deal with the ambiguity of the
boundary between each state. The intuition theory is used to solve the problem of the
uncertainty of the consumption state, and then the accurate judgment can be realized. In
response to different consumption states, an optimal scheduling model is established in
which a hydrogen heat energy system (HHES) is involved to meet different requirements,
and a hybrid particle swarm optimization algorithm is used to solve the model. Adopting
the IEEE-30 bus system as the network structure of EHHS in the simulation, the analysis
shows that the dynamic state division method based on intuitionistic fuzzy rough set
theory can better be used to judge the system state according to real-time variable
factors. The system optimization based on the consumption state division has the
advantages of improving the operating economy and increasing the consumption of
new energy.

Keywords: electricity heat hydrogen hybrid system, intuitionistic fuzzy rough set, determination results of
consumption state, optimal scheduling, new energy consumption

INTRODUCTION

Due to the significant advantages of new energy, the development of wind power technology is the
key direction of new energy technology in China. The output of wind power and other new energy
is random and volatile, and large-scale consumption has always been a worldwide problem. The
consumption of new energy is facing greater challenges due to the problems of resource scheduling
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mechanisms and government subsidies (Shu et al., 2017). In
recent years, the new energy industry has been developing
rapidly. In view of the random interference problem of new
energy, a variety of strategies have been proposed to solve the
existing problems in the consumption (Xi et al., 2019, 2020).
However, due to the limitation of consumption capacity in some
areas, large abandonment has occurred in new energy’s operation,
which has affected the benefits, and whether new energy can be
effectively utilized has become an urgent problem to be solved.

Many experts and scholars have carried out a lot of research
work on the issue of new energy consumption. There have been
studies to configure energy storage to solve the problem of
new energy consumption, including electric energy storage, heat
storage device, etc. In Diao et al. (2020), the complementary and
coordinated relationship between energy and energy storage in
the scenarios of consuming new energy and electric load peak
shaving was analyzed. An integrated energy system optimization
dispatch model was established to improve the capacity of new
energy consumption. In Sun et al. (2019), a hierarchical dispatch
framework was proposed, and wind power was consumed by
dispatching electricity and heat in a cogeneration system with
heat energy storage. In Chen X. et al. (2020), the coordination
of power supply and heat sources was analyzed when the electric
load is low during the heating period. On the premise of ensuring
the maximum amount of wind power to accept and taking the
lowest total operating cost as the scheduling optimization goal,
a multi-source coordinated scheduling strategy was formulated.
In Yang et al. (2020), the coordinated heating strategy between
the electric boiler and the heat storage device was studied,
and a low-carbon economic dispatching model for wind power
consumption was established. In Zhou et al. (2020), the electric
heat flexible load was used to further enhance the wind power
consumption capacity of the system based on the flexible
conversion of the source side. In Zhang Y. et al. (2020), a
coordinated and optimal dispatching model of the integrated
electric heat system was established, including the electric storage,
the low-pressure cylinder removal, the heat storage, and the
electric boiler. The rules of single operation and cooperative
operation of the equipment in the above model are analyzed. The
above research all studied the aspects of electric boilers with heat
storage and electric storage equipment, but researchers seldom
considered that electric storage equipment cannot meet the
regulation requirements of the system. Therefore, the operating
level of the system was still low. In Zhang et al. (2018), a
two-layer optimal dispatching model of a power-natural gas
integrated energy system was proposed, which considered the
rational utilization of abandoned wind power by power-to-
gas, and it was proved that power-to-gas could effectively
improve the wind power consumption capacity through the
analysis of the simulation. In Teng et al. (2019b), a coordinated
optimization model of electricity heat hydrogen storage system
was proposed which was more flexible and economic in grid
regulation. Furthermore, it could be used to replace the battery
energy storage system.

In addition to the research in the above literature, the previous
optimizations were carried out with the goal of maximizing
system consumption or minimizing operating cost, which did not

consider the specific state of new energy fluctuations in different
periods. In Yang et al. (2018), the conclusion showed that it
was not appropriate to use the unified optimization method
when dealing with the optimization of an integrated energy
system. In Wu D. et al. (2019), the consumption method of wind
power segmentation compensation was proposed, which divided
the quality of wind power according to the balance cost and
explored the value of peak shaving generators’ contribution to
the grid-connected wind power. The targeted solution model in
different segments was established to promote the consumption
of wind power effectively. In Ge et al. (2019), the power system
was divided into normal state, alert state, and emergency state
according to the amount of wind curtailment and its change
trend. A staged optimal dispatch model of source-load-storage in
different states was established.

This article uses intuition theory (Zhang et al., 2019; Zhan
and Sun, 2020) to deal with uncertain information. The unclear
boundaries of continuous data were overcome by combining with
the ability of fuzzy sets (Li et al., 2020; Wei et al., 2020; Zhang P.
et al., 2020). A state division method based on the consumption
state of new energy is proposed. The reduction algorithm
(Kumar and Prasad, 2020) is used to deal with uncertain
information and massive data. Meanwhile, considering the actual
situation of each consumption state and the characteristics
of each optimizing adjustment equipment, a hydrogen heat
energy system (HHES) including electric-hydrogen conversion,
hydrogen storage, heat storage, microturbine cogeneration, and
electric boiler is used in the EHHS under different consumption
states to optimize and adjust.

The main innovations of this article are as follows: (1) The
dynamic division method of new energy consumption state
is established by using intuitionistic fuzzy rough set theory;
(2) Considering the shortcomings of traditional energy storage
devices and the advantages of clean hydrogen energy (Sun,
2021),the electric-to-hydrogen equipment is used in the EHHS,
which combined with microturbine cogeneration and electric
boiler to form the HHES to adjust the system; (3) Based on the
division of the system consumption state, specific optimization
goals are set to meet the actual needs in different states.

ELECTRICITY HEAT HYDROGEN
SYSTEM

In this article, an EHHS is constructed, which is composed of
thermal power units, wind power units, cogeneration units, and
the HHES. Figure 1 shows the overall structure of the EHHS.

The HHES is composed of five parts, which are electrolytic
hydrogen unit (EHU), microturbine cogeneration unit (MCU),
hydrogen storage unit (HSU), electric boiler unit (EBU) and
thermal storage unit (TSU) (Teng et al., 2019a).

The energy conversion and storage relations in the HHES are
as follows:

Pdj,H = ηdj · PEd,in (1)

Pdg,T = ηdg · PEg,in (2)
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FIGURE 1 | Electricity heat hydrogen system (EHHS) structure diagram.

Where, Pdj,H is the hydrogen production power of the EHU. Pdg,T
is the heating power of EBU. ηdj,ηdg are the energy conversion
efficiency of electricity to gas and electricity to heat. PEd,in, PEg,in
are the input electric power of the EHU and the input electric
power of the EBU.

SH(t) = [WH(t − 1)+ Psr,H(t) ·1t · ηsr,H − Psc,H(t) ·

1t/ηsc,H]/WH,max (3)

ST(t) = [WT(t − 1)+ Psr,T(t) ·1t · ηsr,T − Psc,T(t) ·

1t/ηsc,T]/WT,max (4)

Where, SH(t), ST(t) are the hydrogen storage and the heat storage
states. WH(t − 1), WT(t − 1) are the hydrogen storage and heat
storage of the HSU and TSU in t-1 period. Psr,H(t), Psr,T(t) are the
input energy for HSU and TSU. ηsr,H , ηsr,T are the energy input
efficiency of the hydrogen and heat storage equipment. Psc,H(t),
Psc,T(t) are the output energy of HSU and TSU. ηsc,H , ηsc,T are
the output efficiency of HSU and TSU. WH,max, WT,max are the
maximum storage capacity of HSU and TSU.

Pwr,E = ηwr,E · Psc,H(t) (5)

Pwr,T = ηwr,T · Psc,H(t) (6)

Where, Pwr,E, Pwr,T are the electrical and thermal power output
of the MCU. ηwr,E, ηwr,T are the hydrogen power transfer and
heat transfer efficiency of the MCU.

POWER SYSTEM OPERATION STATE
DIVISION BASED ON THE LEVEL OF
NEW ENERGY CONSUMPTION

Basis and Principles of System
Operating State Division
Imitating the power system will have different operating states
under different operating conditions. In previous studies, the
power system was divided into three states which are normal
state, alert state, and emergency state according to the amount
of abandoned wind power (Ge et al., 2019), but in fact, it is
inaccurate to delineate the consumption state by the amount of
abandoned wind power, and the method dividing into three states
cannot fully show the consumption state of the EHHS. Since the
fuzzy boundary between each state needs to be considered when
dividing, the problem of control failure caused by the inaccuracy
of the original division requires the use of intuitionistic fuzzy
rough set (Pawlak, 1982; Chen Y. et al., 2020) to solve. Combining
the adjustment capabilities of each unit in the HHES and the
amount of unconsumed wind power, the EHHS is divided into
five states: very suitable (VS), moderately suitable (MS), generally
suitable or unsuitable (GSU), moderately unsuitable (MU) and
very unsuitable for consumption (VU). The division result is
shown in Figure 2.

The Method of Consumption States
Division Based on Intuitionistic Fuzzy
Rough Set Theory
Attribute Data of State Division
Decision attributes that influence the division of state
Decision attribute is the key factor that determines the state
of consumption. Based on the structure of the EHHS, the
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FIGURE 2 | Schematic diagram of state division.

TABLE 1 | Conditional attributes of state division.

Category Conditional attributes

Meteorological data Room temperature, outdoor temperature, wind
speed, wind direction, etc

Time data Time of use, month, etc

Social data Electricity price

proportion of wind power consumption by HHES (η) and
proportion of unit output (δ) are selected as the decision
attributes.

η =
Ptp − Ptr
Pf ,max

× 100% (7)

Where, Pp is the predicted wind power output. Pr is the
actual wind power consumed. Pf ,max is the maximum historical
wind power output.

The higher the η, the more wind power the HHES needs
to consume, and the more the system tends to be unsuitable
for consuming wind power. When η is close to 0, the system
consumption state cannot be further delineated by η. The system
state needs to be delineated by δ.

δ =
Pth + Ptrd

Ptd
(8)

Where, Pd is the electrical load of the system.

Conditional attributes that relate to state division
This article selects a series of data such as weather and load as the
conditional attributes. The result classified by data categories is
shown in Table 1.

Intuitive Fuzzification of Attribute Data
Intuitionistic fuzzification of conditional attributes
There are two types of attribute data: discrete data and
continuous data. For discrete data, rough set can process it
directly, while for continuous data, it must be transformed.
Taking the wind speed attribute as an example, the results of

FIGURE 3 | Trapezoidal membership function.

FIGURE 4 | Trapezoid membership function of decision attribute η.

classification of membership are shown in Figure 3. The attribute
data is divided into five fuzzy sets including extremely low (EL),
low (L), moderate (M), high (H) and extremely high (EH). The
maximum and minimum of historical wind speed are set as a+i ,
a−i , and the remaining are determined according to the statistical
law that µ= 1 accounted for 20% in each rough set.

Taking moderate wind speed as an example, its trapezoidal
membership function is:

µModerate wind speed(xi) =


xi−ai2
ai3−ai2 , ai2 ≤ xi ≤ ai3
ai5−xi
ai5−ai4 , ai4 ≤ xi ≤ ai5
1, ai3 ≤ xi ≤ ai4
0, other

(9)

For conditional attribute data, which has sufficient historical data
records, the intuitive index is small.

The statistical rules of historical data can be given by experts.

Intuitionistic fuzzification of decision attributes
The membership function image of the decision attribute η is
shown in Figure 4. d = Pdg.max

Pf ,max
, f = Pdg.max+Pdj,max

Pf ,max
. The statistical

law that µ= 1 accounted for 20% in each rough set, and the
boundaries of fuzzy sets can be obtained according to the above
law. Pdg,max is set to be approximately 2Pdj,max. Pdg,max is the
maximum wind power that can be consumed by the EBU. Pdj,max
is the maximum wind power that can be consumed by the EHU.

Through the decision attributes η, we can get the membership
situation in GSU, MU, VU. When the system is in the
consumption state of VS and MS, all wind power in the system
can be consumed. So, it is impossible to determine its specific
consumption state. The decision attribute δ was used to further
determine the consumption state through Ph and Prd .

The decision attribute δ is used to determine the consumption
state, as shown in Figure 5. x = Ph,min+Prd,min

Ptd
,k = Ph,max+Prd,max

Ptd
.
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FIGURE 5 | Trapezoidal membership function of decision attribute δ.

The demarcation is related to Pd, and the situation boundary is
determined according to the statistical law that µ= 1 accounted
for 20% in each rough set.

Because the boundaries of each fuzzy set of decision attributes
are related to the maximum and minimum output of equipment,
the intuitive index is small, which is generally less than 0.1.

Construction of State Division Rule Set
Attribute reduction of decision table
Condition attributes and decision attributes can be selected
to form a decision table, then the decision table needs to
reduce the attributes. The dependence is used to determine
the relationship between each condition attribute and decision
attribute. The decision table after reduction is obtained by
removing conditional attributes which are less dependent and
keeping conditional attributes which are more dependent on
decision attributes (Ren and Xue, 2018; Wu Y. et al., 2019).

Value reduction of decision rules
After attributes reduction, there are still a lot of redundancy in
the decision table, so it is necessary to remove the redundancy by
reducing the value of the rule set.

The Determination of the Consumption State
After the rule set is constructed, the real-time data that
have undergone intuition fuzzification are matched with the
obtained historical evaluation rules to determine the real-time
consumption state. In the matching process, if the matching
degree is less than the setting threshold value, then the real-time
data information matches the evaluation rule completely, and
membership degree results of decision attributes can be obtained.
Otherwise, it will return to rematch. The real-time assessment
data are updated to the historical database. In the process of
judging the membership of decision attributes, if η ≥ b, the state
matching results can be directly obtained. The membership result
of η is the elementary result of the situation determination. If
not, the consumption state matching results need to be obtained
through δ. As the HHES is involved in consumption, it is
necessary to consider the consumption potential of the energy
storage units. Combing the intuitive coefficient, the consumption
state will be determined.

For example, when the system consumption state is
GSU, it needs to be combined with real-time HSU data to
determine whether its remaining capacity can meet the current
consumption demand. If it is satisfied, the consumption

state is obtained. If not, it needs to be determined whether it
meets the next state.

OPTIMAL SCHEDULING OPERATION
BASED ON CONSUMPTION STATE
DIVISION METHOD

Optimal Dispatch Model of EHHS Based
on Division Method
The system optimization objectives and constraint requirements
for each consumption state are shown in Figure 6.

Optimization Model of VS System
Optimization objective function
In this state, the system can absorb all the wind power. The
HSU and MCU can be used together to reduce the unit
output. Economic operations should be implemented to reduce
operating costs.

The operation costs include the generating cost of
cogeneration units, the generating cost of thermal power
units, and the work scheduling cost of the HSU and MCU. The
generation cost of cogeneration and thermal power units include
the operation cost and start cost (Liu et al., 2015).

min Ct = Cc + Ch + Cq + Cwr (10)

Where, Cc, Ch, Cq, Cwr are the generation cost of cogeneration
units, thermal power units, the HSU, and the MCU, respectively.

Cc =
∑
t∈Tn

Ic∑
i=1

[ai(Ptc,i)
2
+ biPtc,i + ciPtc,iH

t
c,i + di(Ht

c,i)
2

+eiHt
c,i + fi] + [

∑
t∈Tn

Ic∑
i=1

vi,t(1− vi,t−1)Qi] (11)

Where, Tn represents the number of scheduling periods in VS. Ic
is the number of all cogeneration units. ai, bi, ci, di, ei, fi are the
coal consumption coefficients of the cogeneration unit. Ptc,i is the
electric output of the cogeneration unit i. Ht

c,i is the heat output of
the cogeneration unit i. vi,t is the operating state of unit i at time
t, vi,t = 1 represents the operation of the unit, vi,t = 0 represents
the shutdown of the unit. Qi is the start cost of a conventional
unit i.

Ch =
∑
t∈Tn

Ih∑
i=1

{(αi(Pth,i)
2
+ βiPth,i

+γi)+ [
∑
t∈Tn

Ih∑
i=1

ui,t(1− ui,t−1)Si]} (12)

Where, Ih is the number of all thermal power units. αi,βi,γi are
the coal consumption coefficient of thermal power units. ui,t is
the operating state of unit i in t period, ui,t = 1 represents the
operation of the unit, ui,t = 0represents the shutdown of the unit.
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FIGURE 6 | System optimization objectives and constraints under each consumption state.
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FIGURE 8 | System structure topology diagram.

Si is the start cost of a conventional unit i.

Cq =
∑
t∈Tn

Cq,w ·
∣∣Pq(t)∣∣ (13)

Where, Cq,w is the unit maintenance cost of the HSU. Pq(t) is
the power of hydrogen storage and discharging in time period
t, Pq(t) > 0 represents energy charging, Pq(t) < 0 represents
energy discharging.

Cwr = Ch + Cwq =
CH2

LH2

∑
t∈Tr

[
PE,out(t)
ηwr,E

1t]

+

∑
t∈Tr

[Ui,t(1− Ui,t−1)]Cqd (14)

Where, Ch is the hydrogen cost of the MCU. Cwq is the start cost
of the MCU. CH2 is the unit price of hydrogen. LH2 is the low
calorific value of hydrogen, which is generally 3.1 kW.h/m3. Tr
is the number of running periods of the MCU. PE,out(t) is the
discharge power of the HHES. ηwr,E is the hydrogen-electricity
conversion efficiency of the MCU. 1t is the time interval of each
period. Cqd is the start cost of the MCU.

Constraints
Ignoring the network loss, the power balance constraints satisfy
the following formula:

Ih∑
i

Pth,i + Ptf +
Ic∑
i

Ptc,i + PtE,out = Ptd (15)

Ht
c + PtT,out = Ht

r (16)

Where, Ht
r is the heat load value during t period. PE,outand PT,out

are the output electricity and heating power of the HHES.

Thermal power units constraints:
The uncertainty of wind power output leads to the increase

of system randomness. Positive and negative reserve capacity are
used to eliminate the wind power prediction error:

Ih∑
i=1

min(Pth,i,max − Pth,i, ri,uT3) ≥ Ptd × L%+ Ptf × fu% (17)

Ih∑
i=1

min(Pth,i − Pth,i,min, ri,dT3) ≥ (Pf ,max − Ptf )× fd% (18)

Where, T3 is the rotation standby response time. L% is the
demand for positive rotation reserve due to the load prediction
error. fu%, fd% are demands of positive and negative rotation
reserve for prediction error of wind power output. Pf ,max is the
maximum output of wind power.

Ph,i,min ≤ Pth,i ≤ Ph,i,max (19)

ri,d1t ≤ Pth,i − Pt−1
h,i ≤ ri,u1t (20)

TABLE 2 | Grid installed capacity.

Unit type Installed
capacity/minimum

technical output (MW)

The proportion
(%)

Thermal power units 2 × 10,000; 2 × 8,000 83.3

2 × 6,000; 2 × 4,000

Cogeneration units 2 × 450; 2 × 100 2.3

Wind turbines 5,500 14.3
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FIGURE 9 | Electric load and wind power output forecast curve.

FIGURE 10 | Heat load curve.

TABLE 3 | Historical data of state division.

Data
(Scheduling
period)/1 h

Wind speed
P1/m/s

Wind
direction
P2/angle

Electricity
period P3/t

Electricity
price P4/yuan

Outdoor
temperature

P5/◦C

Room
temperature

P6/◦C

Month P7/t η Q1/% δ Q2

1 1.98 20.5 09:15 0.7 −18 21.2 12 0 0.944

2 2.93 67.5 14:30 0.7 −15.5 22.4 1 0 0.941

3 3.15 87.5 16:15 0.7 −14.2 22.6 2 0 0.807

4 2.1 291.5 12:45 0.7 −10.2 23.4 1 0 0.94

5 1.38 270 18:30 0.7 −11.3 23 1 5.4 0.836

6 2.44 332 22:00 0.3 −10.5 22.8 1 0 0.865

7 3.81 240 02:15 0.3 −16.6 22.3 12 47 0.907

8 3.37 90 07:45 0.5 −13 22.7 1 0 0.924

98 4.25 110 13:15 0.7 −17.4 21 1 0 0.925

99 4.82 180 03:15 0.3 −22.8 19.6 12 52.1 0.908

100 4.73 240 19:15 0.5 −19.2 20.8 12 1.3 0.837
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Cogeneration units constraints:

Ptc = NcHc = Nc(Ht
r − PT,out) (21)

Pc,min ≤ Ptc ≤ Pc,max (22)

hi,d1t ≤ Ptc,i − Pt−1
c,i ≤ hi,u1t (23)

Where, Ptc is the power output of cogeneration units. Nc is
the heat-to-electricity ratio of the cogeneration unit. Pc,min and
Pc,max are the minimum and maximum outputs of the i-th
thermal power unit, Pc,min = 0.

Constraint of the HHES:{
0 ≤ Rtcq ≤ Rcq,max

0 ≤
PtE,out

ηwr,E·ηsc,H
·1t ≤ Rtcq

(24)

Where Rtcq is the hydrogen storage capacity of the HSU in period
t. Rcq,max is maximum storage capacities of the HSU.

Optimization Model of MS System
Optimization objective function
In this state, although the system can fully consume wind power,
the output of conventional units is close to the minimum. In
order to avoid the frequent climbing of units and curb the
fluctuation of wind power, the EHU, HSU, and MCU work at this
state. The system is optimized with the goal of minimizing the
coal consumption of the EHHS.

min f= Cc,m + Ch,m =
∑
tεTv

Ic∑
i=1

(ai(Ptc,i)
2
+ biPtc,i + ciPtc,iH

t
c,i

+di(Ht
c,i)

2
+ eiHt

c,i + fi)+
∑
tεTv

Ih∑
i=1

(α(Pth,i)
2

+βiPth,i + γi) (25)

Where, Tv represents the number of scheduling periods in MS.
Cc,m is the coal consumption of cogeneration units. Ch,m is the
coal consumption of thermal power units.

Constraints
Ignoring the network loss, the power balance constraints satisfy
the following formula:

Ih∑
i

Pth,i + Ptf +
Ic∑
i

Ptc,i + PtE,out = Ptd (26)

Ht
c + PtT,out = Ht

r (27)

PE,out > 0, the EHU works. PE,out < 0, the MCU works.
The HSU capacity constraints:

Rtcq,min ≤ Rtcq ≤ Rtcq,max (28)

Rtcq = Rt−1
cq + Ptdj,H ·1t · ηsr,H − PtE,out ·1t/ηsc,H (29)

Where, Rtcqis the hydrogen storage capacity of the HSU in
period t. Rtcq,min and Rtcq,maxare minimum and maximum storage
capacities of the HSU in period t.

Input and output power constraints of the HHES:

0 ≤ PtE,in · ηdj · ηsr,H ·1t ≤ Rcq,max − Rt−1
cq (30)

0 ≤ PtE,out ·1t ≤ Rtcq · ηsr,H · ηwr,E (31)

Where, Rcq,maxis the maximum hydrogen storage
capacity of the HSU.

Constraints of thermal power units and cogeneration units are
same as the constraints in VS.

Optimization Model of GSU System
Optimization objective function
In this state, the system cannot consume all the wind power.
The EBU starts to work, which has to consume the wind power
to satisfy the heat demand. The optimizing target is the highest
economy that meets the electric and heat demand.

min J = Ch + Cc + Ccr + Cdg (32)

Where, Ccris the operating cost of the TSU. Cdg is the operation
cost of the EBU.

Ccr =
∑
t∈Tm

Ccr,w · |Pr(t)| (33)

Cdg = Cdh + Cq =
∑
t∈Tm

(
Ptdg,T
ηdg
· Sdg)+

∑
t∈Tm

[Gi,t(1− Gi,t−1)]Cgq

(34)
Where, Tm represents the number of scheduling periods in GSU.
Ccr,w is the maintenance cost of the TSU. Pr(t) is the heat storage
and release power in time period t, Pr(t) > 0 represents energy
charging, Pq(t) < 0 represents energy release. Cdh is the electric
to heat cost of the EBU. Cq is the start cost of the EBU. Sdg is
the EBU conversion unit cost. Gi,t is the EBU operating state, 1
represents operation, 0 represents shutdown. Cgq is the starting
cost of the EBU once.

Constraints
Ignoring the network loss, the power balance constraints satisfy
the following formula:

Ih∑
i

Pth,i + Ptf +
Ic∑
i

Ptc,i = Ptd + PtE,in (35)

Ht
c + PtT,out = Ht

r (36)

Where, PtE,in is the power output of the HHES.
Heat demand constraint:

PtT,out ≤ Ht
r (37)

Electric to heat constraint:

Ptc = Nc(Ht
r − PtT,out) (38)
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TABLE 4 | The degree of membership and non-membership of conditions and decision attributes.

Data Conditional attributes

P1 P2 P3 P4

EL L M H EH EN/ES/. . ./WN F/G/P H/L/M

1 (0.056,0.934) (0.94,0.05) (0,0) (0,0) (0,0) NNE F H

2 (0,0) (0.02,0.97) (0.98,0.01) (0,0) (0,0) ENE F H

3 (0,0) (0,0) (1,0) (0,0) (0,0) E F H

4 (0,0) (1,0) (0,0) (0,0) (0,0) WNW F L

5 (1,0) (0,0) (0,0) (0,0) (0,0) W F H

6 (0,0) (0.81,0.18) (0.19,0.8) (0,0) (0,0) NNW G L

7 (0,0) (0,0) (0.1,0.89) (0.9,0.09) (0,0) WSW G L

8 (0,0) (0,0) (0.81,0.18) (0.19,0.8) (0,0) E P M

. . .

98 (0,0) (0,0) (0,0) (0.9,0.09) (0.1,0.89) ESE F H

99 (0,0) (0,0) (0,0) (0,0) (1,0) S G L

100 (0,0) (0,0) (0,0) (0.12,0.87) (0.88,0.11) WSW P M

Data Conditional attributes

P5 P6 P7

EH H M L EL EL L M H EH D/J/F

1 (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (1,0) (0,0) (0,0) (0,0) D

2 (0,0) (0,0) (0,0) (0.7,0.29) (0.3,0.69) (0,0) (0,0) (1,0) (0,0) (0,0) J

3 (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) F

4 (0,0) (0.11,0.88) (0.89,0.1) (0,0) (0,0) (0,0) (0,0) (0.26,0.73) (0.74,0.25) (0,0) F

5 (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0) (0.7,0.29) (0.3,0.69) (0,0) J

6 (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0) (0.92,0.07) (0.08,0.91) (0,0) J

7 (0,0) (0,0) (0,0) (0.2,0.79) (0.8,0.19) (0,0) (0,0) (1,0) (0,0) (0,0) D

8 (0,0) (0,0) (0.34,0.65) (0.66,0.33) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) J

. . .

98 (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (1,0) (0,0) (0,0) (0,0) J

99 (0,0) (0,0) (0,0) (0,0) (1,0) (1,0) (0,0) (0,0) (0,0) (0,0) D

100 (0,0) (0,0) (0,0) (0,0) (1,0) (0.14,0.85) (0.86,0.13) (0,0) (0,0) (0,0) D

Data Decision attributes

Q1 Q2

VU MU GSU GS+VS GSU MS VS

1 (0,0) (0,0) (0,0) (1,0) (0,0) (0.21,0.59) (0.79,0.01)

2 (0,0) (0,0) (0,0) (1,0) (0,0) (0.24,0.56) (0.76,0.04)

3 (0,0) (0,0) (0,0) (1,0) (0,0) (0.55,0.25) (0.45,0.35)

4 (0,0) (0,0) (0,0) (1,0) (0,0) (0.18,0.62) (0.82,0)

5 (0,0) (0,0) (0.24,0.56) (0.76,0.14) (0.24,0.66) (0.76,0.04) (0,0)

6 (0,0) (0,0) (0,0) (1,0) (0,0) (0.43,0.37) (0.57,0.23)

7 (0,0) (0.69,0.11) (0.31,0.49) (0,0) (0.71,0.19) (0,0) (0,0)

8 (0,0) (0,0) (0,0) (1,0) (0,0) (0.28,0.52) (0.72,0.08)

. . .

98 (0,0) (0,0) (0,0) (1,0) (0,0) (0.27,0.53) (0.73,0.07)

99 (0,0) (1,0) (0,0) (0,0) (0.79,0.11) (0,0) (0,0)

100 (0,0) (0,0) (0.16,0.64) (0.84,0.06) (0.18,0.72) (0.84,0) (0,0)
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TABLE 5 | Decision rule attributes table.

Data Conditional attributes Decision attributes

P1 P2 P3 P5 P7 Q

1 EL L * F EL * MS VS

(0.056,0.934) (0.94,0.05) (0.21,0.69) (0.79,0.11)

2 L M * F * J MS VS

(0.02,0.97) (0.98,0.01) (0.24,0.66) (0.76,0.14)

3 M * * c F MS VS

(0.55,0.35) (0.45,0.45)

5 EL W * M * GSU MS

(0.24,0.66) (0.76,0.14)

7 M H * G L EL * MU GSU

(0.1,0.89) (0.9,0.09) (0.2,0.79) (0.8,0.19) (0.69,0.21) (0.31,0.59)

8 M H E P * J MS VS

(0.81,0.18) (0.19,0.8) (0.28,0.62) (0.72,0.18)

. . .

99 EH S G EL * MU

100 H EH * P EL * GSU MS

(0.12,0.87) (0.88,0.11) (0.18,0.72) (0.82,0.08)

“*” can be any value.

FIGURE 11 | The division result of consumption states of the electricity heat hydrogen system (EHHS) in mode 1.

Capacity constraint of TSU:

0 ≤ Rtcr ≤ Rcr,max (39)

Where, Rtcr is the heat storage capacity of the TSU in period t.
Rcr,max is the maximum heat storage capacity of the TSU.

Power constraints of TSU:

PtT,dg · ηdg · ηsr,T ·1t − Ptsc,T/ηsc,T ·1t ≤ Rcr,max − Rt−1
cr (40)

0 ≤ PtT,out ·1t ≤ Rtcr (41)

Where, PtT,dg is the wind power consumed by the EBU.
Constraints of thermal power units and cogeneration units are

same as constraints in VS.

Optimization Model of MU System
Optimization objective function
In this state, the wind power needs to be consumed by the EBU
and the EHU. The optimizing target is maximizing the output of
the EBU.

maxEdg =
∑
t∈Ta

1tPtdg (42)

Where, Ta represents the number of scheduling periods in
MU. Edg is the wind power in MU. Ptdg is the wind power
consumed by the EBU.

Constraints
It is same as the power balance constraints in GSU.
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FIGURE 12 | Units output in mode 1.

FIGURE 13 | Changes in capacity of the hydrogen storage unit (HSU) and thermal storage unit (TSU).

In addition to considering the equipment constraints in the
previous consumption state, it is also necessary to restrict the
capacity of the HSU.

0 ≤ Rtcq ≤ Rcq,max (43)

Rtcq = Rt−1
cq + PtT,dj · ηdj ·1t · ηsr,H (44)

Where, PtT,dj is the wind power consumed by the EHU.

Optimization Model of VU System
Optimization objective function
In this state, the wind power cannot be completely consumed by
the EBU and the EHU. The optimization goal is maximizing the
wind power consumption.

maxEf =
∑
t∈Tb

1tPtfs (45)
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FIGURE 14 | Consumption and output of the electrolytic hydrogen unit (EHU), microturbine cogeneration unit (MCU), and electric boiler unit (EBU).

FIGURE 15 | Wind power consumption results under different modes.

Where, Tb represents the number of scheduling periods in VU.
Pfs is the wind power actually consumed in VU.

Constraints
Power balance constraints:

Ih∑
i

Pth,i + Ptf ,s +
Ic∑
i

Ptc,i = Ptd + PtE,in (46)

Ht
c + PtT,out = Ht

r (47)

The equipment constraints and the HHES constraints are same
as constraints in MU.

Power System Optimal Dispatching
Process Based on State Division Method
The optimal scheduling process of new energy consumption
based on intuitionistic fuzzy rough set theory is shown in
Figure 7.

CASE ANALYSIS

Instance Description
To highlight the advantages in solving the problem of wind
power consumption, the measured condition attributes data of a
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provincial power grid are taken as an example. The IEEE-30 bus
system is used as the network structure of the EHHS. The system
structure diagram is shown in Figure 8.

There are four thermal power units, two cogeneration units
and two wind turbines being used for simulation. The total
installed capacity of the wind farm is 5500 MW, and the installed
capacity of each unit is shown in Table 2.

The heat-to-electricity ratio of the cogeneration unit is 1. The
electro-hydrogen conversion coefficient of the EHU is 0.92, and
the maximum installed power of the EHU is 1000 MW. The
hydrogen storage and release efficiency of the HSU is 0.97, and
the maximum installed capacity of the HSU is 30,000 m3. The
hydrogen-to-electric conversion efficiency of the MCU is 60%.
The electric-to-heat conversion efficiency of the EBU is 0.96,
and the maximum installed power of the EBU is 1,000 MW.
The heat storage and release efficiency of the TSU is 0.9, and
the maximum installed capacity of the TSU is 3,000 MWh. The
selected scheduling period is 1 h, and one day’s data are used for
analysis. Assume that a typical day has stored heat of 1,000 MWh
and hydrogen storage of 30,000 m3.

A typical daily load curve and wind power output curve are
shown in Figure 9. The heat load curve is shown in Figure 10.

Ignoring the line losses, equipment losses, and the effect
of thermal network constraints, the system is simulated and
analyzed in the following two operating modes:

Mode 1: Based on the state division method studied in this
article, the HHES is introduced to participate in the scheduling,
and the hybrid particle swarm optimization algorithm (Jiang
and Ma, 2020; Liu et al., 2020; Lu and Song, 2020) is used
for optimization.

Mode 2: Based on the three-state division method of
the power system, electric energy storages and electric
boilers were introduced to participate in dispatching and
optimizing the system.

Example Demonstration
Consumption states of mode 1 are divided as follows. The
consumption states division method in mode 2 is based on
(Ge et al., 2019).

Related Consumption Data
The consumption data in a certain period of winter is selected to
construct the knowledge base. Table 3 is the part of the sample
set, where P is the condition attribute, Q is the decision attribute.
The value of the decision attributes in Table 3 is the data of
unoptimized scenario.

Intuitionistic Fuzzification of Sample Data
In the process of intuitionistic fuzzification of conditional
attributes, five linguistic variables EL, L, M, H, and EH
are set for the continuous attributes such as wind speed,
outdoor temperature and room temperature. For wind direction
attributes, 16 linguistic variables are used, such as North (N),
North Northeast (NNE), Northeast (NE), East Northeast (ENE),
East (E), East Southeast (ESE), Southeast (SE), South Southeast
(SSE), South (S), South Southwest (SSW), Southwest (SW),
West Southwest (WSW), West (W), West Northwest (WNW),

Northwest (WN), and Northwest (NNW). For the electricity
consumption period, they are divided into three periods, such
as peak period (F), valley period (G), and flat period (P). For
electricity price attributes, they are divided into three levels of
high (H), medium (M), and low (L). For the monthly attribute,
because this article only considers the consumption in the winter
period, the data are divided into three levels: December (D),
January (J), and February (F). Since the historical data of the
above conditional attributes is sufficient, the intuition index of
condition attributes and decision attributes can be 0.01 and 0.1.

If the result can be directly determined by η, then δ is not
considered. Otherwise, the above two decision attributes will be
considered to obtain the result. The results of intuitionistic fuzzy
division are shown in Table 4.

Construction and Law of Decision Rule Set
For the membership results of decision attributes in the decision
rule, it is first determined whether Q1 can get the result, and a
conclusion will be drawn. Otherwise, the state membership result
will be determined through Q2. The decision table obtained after
attributes reduction and values reduction is shown in Table 5.

After obtaining the reduced decision rule table, the first and
second rules are taken as an example: the first rule shows that
when the system is in the peak period of electricity consumption
with extremely low temperature and low wind speed, the system
consumption state is VS. The second rule shows that during the
peak electricity consumption period in January when the wind
speed is moderate, the system consumption state is VS.

Matching the intuitionally fuzzy forecast data with the
decision rule set, and considering the capacity of energy
storage units to further determined the result, the state of the
EHHS can be divided.

Result Analysis
In mode 1, the result of the system consumption state is shown in
Figure 11.

In mode 1, when the state is MS, compared with the previous
division method, the division method can more accurately
determine the system optimization method. Take 7 and 19 as an
example, the membership degrees of these two periods belong to
MS. When the scheduling period is 7, the membership degree of
MS is 0.75 and is closer to VS., so the MCU is used to provide
power. At 19 o’clock, the optimized method is using EHU to
optimize the system.

In addition to the advantage of the above division, at 2 o’clock,
mode 2 determines that the system is in an emergency state
and the electric boiler is used to help consume wind power.
While in mode 1, combined with intuitive judgment, the system
consumption state is MU. From the perspective of the optimized
results after division, the optimization of the system in mode 1
can meet the demand for complete consumption, while there is
a certain amount of abandonment in mode 2. It can be seen that
under the new division method, not only the consumption state
of the system can be divided more comprehensively, but also it
can be judged more accurately.

Dividing the system consumption state based on the
intuitionistic fuzzy rough set theory can comprehensively divide
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the system consumption state, and the optimization method of
the current system can be accurately selected.

In mode 1, the output of each unit in the system is shown in
Figure 12.

In Figure 12, when the system is in a state that is less
suitable for consumption, in order to increase the wind power
consumption, the output of the conventional units is usually
reduced. When in a state that is more suitable for consumption,
the system can consume all the wind power. Because the output of
the thermal power units is not reduced to the minimum output,
the system still has a certain consumption potential. In addition,
due to the participation of the HHES, the TSU can supply the
heat load, and the cogeneration unit output can be reduced, and
the overall economy is improved.

In mode 1, the changes in capacity of the HSU and the TSU are
shown in Figure 13. The consumption and output of the EHU,
MCU, and the EBU are shown in Figures 14.

It can be seen from Figures 13, 14 that when the state is VS,
the MCU is working, but its operation is affected by the capacity
of the HSU. The heat load of the system can also be supplied
by the heat in the TSU. When the capacity of the HSU and the
TSU do not meet the demand for consumption, the wind power
will be abandoned.

Under different modes, the wind power consumption curve is
shown in Figure 15.

From the optimization results in the Figure 15, on the
basis of the new energy consumption state division, the wind
power consumption can be significantly increased. Because the
consumption state is divided before the optimization, the system
is more suitable for consumption. The state in VS, MS, and GSU
can meet the demand for complete consumption. When in MU
and VU, the consumption demand during these periods can also
be improved. Under the new division method, the division is
more accurate and the optimization goals in each state can be
more accurately achieved.

CONCLUSION

Aiming at the problem of blunt and inaccurate state division in
the past, a dynamic state division method based on intuitionistic

fuzzy rough set theory is established. The HHES is introduced
to coordinate and cooperate with each unit, and a staged
optimization model based on the division of the consumption
state is established. Through analysis and comparison, a series of
advantages of this model are obtained.

(1) Because the application of the EHU, HSU, and TSU in the
EHHS has good economic and environmental protection,
it has broad prospects in the application and development
in the future energy market.

(2) Using intuitionistic fuzzy rough set theory to determine the
system state, which can determine the consumption state
more flexibly and accurately, it has obvious advantages in
dealing with uncertain boundaries between various states.

(3) On the basis of dynamic division, the optimization
effect is more obvious, and it has advantages of
improving system operation economy and increasing wind
power consumption.
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Study on a Frequency Fluctuation
Attenuation Method for the Parallel
Multi-VSG System
Zhenao Sun*, Fanglin Zhu and Xingchen Cao

College of Information Science and Engineering, Northeastern University, Shenyang, China

Virtual synchronous generator (VSG) is one of the inverter control methods which can
provide extra virtual moment of inertia and achieve frequency support by mimicking the
output characteristics of a rotating synchronous generator (RSG), which makes VSG
particularly suitable for multi-access point applications, or called the multi-VSG
system. However, frequency fluctuations may often occur in the case of power
variation. In terms of this issue, this study presents the small-signal state-space
model of VSG and analyzes the cause of frequency fluctuation, first. And then, a novel
VSG control method is proposed for frequency fluctuation attenuation. The proposed
method is especially fit for the parallel multi-VSG system because it does not take grid
angular frequency into computation so that it can get rid of the ill effect introduced
through PLL. The damping power item is reconstrued with a new means to judge
whether the system is in a steady state or not. At the same time, the parametric design
method of the proposed method is also figured out. Finally, the simulation experiments
are performed, and the results verify that the proposed method performs better than
the conventional one in terms of dynamic response and power-sharing among the
multi-VSG system.

Keywords: parallel multi-VSG system, frequency fluctuation, grid angular frequency, damping power item, dynamic
performance

INTRODUCTION

In recent years, with the development of distributed energy resources (DERs) and microgrids (DG),
more and more power electronic devices have been added to the grid. However, huge challenges,
such as the problem of lack of inertia, damping, and rotational reserve capacity, have emerged with
a large number of power electronic equipment. In order to solve these issues, virtual synchronous
generator (VSG) has been employed to the control system of distributed energy power generation
equipment (Hafner et al., 2011; Mo et al., 2017; Wang et al., 2020), which can make the equipment
have frequency and voltage regulation characteristics similar to conventional synchronous
generators.

The basic theory of VSG has been explained in the studies by D’Arco and Suul (2014)and Driesen
and Visscher (2008), and the mathematical model and implementation are investigated under the
title of synchronverter (Zhong and Weiss, 2011; Zhong et al., 2014). VSG strategy has been
introduced in frequency, voltage, and active and reactive power flow control (Wang et al., 2020).
Consequently, VSG control strategy has been applied to different devices and occasions, such as
energy storage (Ma et al., 2017), doubly fed induction generators (Hwang et al., 2017), high-voltage
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direct current transmission (Aouini et al., 2016), and direct
current (DC) generators (Wu et al., 2017).

Unfortunately, in the VSG control system, when the
distributed power supply fluctuated drastically, the power and
frequency outputs of the system are prone to oscillations. In order
to effectively eliminate the effects of fluctuations on the system,
various control methods have been proposed (Wu et al., 2016; Li
et al., 2017a; Alsiraji and El-Shatshat, 2017; Shi et al., 2018; Wang
et al., 2018a). In the study by Wu et al. (2016), by adjusting the
damping coefficient, moment of inertia, and other related
parameters of the VSG, the output characteristics can be
directly changed to achieve suppression of power and
frequency fluctuations. A bang–bang control method with
adaptive moment of inertia has been proposed (Shi et al.,
2018) by selecting various rotational inertia under different
operating conditions. In order to design the parameters more
conveniently, a small-signal model has been introduced in
the study byWang et al. (2018a) to determine the best
damping coefficient and moment of inertia in the system.
Moreover, a model that aims at the minimum transient
response time has been established, and the influence of
the frequency amplitude and rate of change has been
considered (Li et al., 2017a). However, the damping
coefficient of the above control method was set to zero
under specific operating conditions, which led to a limited
range of applications. Therefore, an optimal damping ratio
control strategy has been proposed in the study by Alsiraji and
El-Shatshat (2017) to improve the transient frequency, power
response, and stability of the VSG system. Nevertheless, this
method cannot maintain the best damping ratio during the
entire operation of the system.

However, the transient condition tolerance of VSG units is
much less than that of a real synchronous generator (Alipoor
et al., 2015). To solve the issue of frequency fluctuation, at
present, more and more scholars are devoted to the research of
parameter adaptation. Damping and moment of inertia
designed in the study by Li et al. (2017b) follow the law
that damping is reduced in the interval of Δω (dω/dt) > 0 and
remains at D0in in other times, while the moment of inertia
setting rule is opposite. However, the optimal relationship and
extreme values between virtual inertia and damping
coefficient have not been studied in depth. Besides, in the
initial state after the disturbance, virtual inertia and the
damping coefficient are small, which greatly limit the
transient stability. The study by Alipoor et al. (2018) does
not include a theoretical analysis of the influence of the
damping coefficient. In some specific cases, this control
strategy is difficult to implement. Although the study
by Wang et al. (2018b) contains a comprehensive
theoretical analysis of damping and moment of inertia
and optimal parameter selection, there are only two virtual
inertia values in this control strategy, which reduces the
operating performance of the controller during critical
disturbances.

The methods mentioned above, which improve the
oscillation of the VSG system frequency and active power,
were mainly realized by changing the system parameters.

Traditional methods have limited the application of control
strategies that change parameters. At the same time, these
methods all aimed at the operation of a single VSG, failing to
reflect the power and frequency changes of multiple VSGs
operating in parallel. According to the analysis above, this
study proposes a new control strategy to suppress the
attenuation of the frequency and active power of
multiple VSGs.

In summary, the control method of the parallel multi-VSG
system should be different from that of the single VSG system.
However, few of the existing methods can improve the
transient stability according to the characteristics of the
multi-VSG system. Some certain special means should be
taken to enhance the transient performance of the former
system. A frequency fluctuation attenuation method is needed
for the parallel multi-VSG system. Thus, this study aimed to
investigate the parallel operation of VSGs with a damping
correction term added to the swing equation. The addition of
the extra term intends to achieve better oscillation damping in
a multi-VSG environment. The load changing transients and
eigenvalue analysis were employed to validate the transient
and small-signal stability of the system with the proposed
strategy.

The article is arranged as follows. Section Single VSG
Connected to the Infinite Grid presents the model of a single
VSG connected to the infinite grid. Section The Course of
Frequency Fluctuation analyzes the course of frequency
fluctuation in the parallel multi-VSG system. Section The
Proposed Control Method for the Parallel Multi-VSG System
proposes a novel control method for frequency fluctuation
attenuation in the parallel multi-VSG system. Section
Simulation Results exhibits and analyzes the simulation results
to verify that the proposed method performs better than the
conventional one. At last, Section Conclusion summarizes the
article conclusions.

FIGURE 1 | Single VSG connected to infinite grid.
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SINGLE VIRTUAL SYNCHRONOUS
GENERATOR CONNECTED TO THE
INFINITE GRID
TwoControl Loops of a Virtual Synchronous
Generator
Figure 1. illustrates the model of a single VSG connected to the
infinite grid, with the DC side of the VSG ignored. Figure 1 shows
two main control loops: active power control loop (APCL) and
reactive power control loop (RPCL). The P-ω droop, Q-V droop,
and swing equation are contented. Their detailed block diagrams
are shown in Figure 2.

In Figure 2, kp and kq are the droop coefficients of each loop
correspondingly, J is the virtual rotational inertia, D is the
damping factor, ωn is the nominal value of the grid angular
frequency, and ω0 is the grid angular frequency on the steady-
state operating point.

Equations 1–4 describe the APCL:

Pin � Pset − kp(ω − ωn), (1)

PD � D · (ω − ωg), (2)

Pin − Pout − PD � Jω
dω
dt

≈ Jω0
dω
dt

5ω ≈ ωn + 1
Jωn

∫(Pin − Pout − PD)dt,
(3)

θ � ∫ωdt5
dθ
dt

� ω, (4)

and Eqs 5, 6 describe the RPCL (Hafner et al., 2011; Mo et al.,
2017):

Qin � Qset − kq(V − Vn), (5)

E � Vn + KI

s
· (Qin − Qout). (6)

Figure 3 is the vector diagram of Figure 1 (ignore R).
Figure 3 reveals the role of δ, formulated as Eqs 7–9.

Pout � 3EV sin δ
X

, (7)

Qout � 3(EV cos δ − V2)
X

, (8)

δ � ∫(ω − ωg)dt5dδ
dt

� ω − ωg .

It is noticed that APCL is key to VSG control because the main
characteristic of the VSG is to introduce a virtual rotational
inertia J in order to mimic the dynamic performance of an
RSG, and APCL is more complex than RPCL.

Decoupling of the Two Control Loops
The small-signal model of Eqs 7, 8 can be expressed in a matrix as
Eq. 9 (Zhong and Weiss, 2011):

⎡⎣ ΔPout

ΔQout

⎤⎦ � 3
X
·M ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δδ
ΔE
ΔV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
M � ⎡⎣ E0V0 cos δ0 V0 sin δ0 E0 sin δ0

−E0V0 sin δ0 V0 cos δ0 E0 cos δ0 − 2V0

⎤⎦.
(9)

It seems like the two control loops are coupling with each
other, but we can do some approximations to decouple them and
reveal the decoupling conditions.

In engineering practice, the short-circuit radio ISC/In is usually
designed more than 10, formulated as (Ma et al., 2017)

ISC
In

� En/X
Pn/3Vn

� 3EnVn

PnX
> 10. (10)

Substituting Eq. 6 into Eq. 10, we get Eq. 11:

sin δn � PnX
3EnVn

< 0.1. (11)

In this case, δ is usually a tiny angle. For example, a 10-kW
inverter connects to a 380/220 V three-phase grid with a 4-mH

FIGURE 2 | Block diagram of (A) P-ω Droop, (B) Q-V Droop, and (C)
swing equation.

FIGURE 3 | Vector diagram of a VSG.
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filter inductor: sin δ � 0.0862 < 0.1, then δ � 0.0863 and tan δ �
0.865; they are approximately equal, and cos δ � 0.9963 ≈ 1. So, in
VSG control, we consider

{ sin δ ≈ δ ≈ tan δ
cos δ ≈ 1

. (12)

In another word,

E ≈ V . (13)

Substituting Eqs 12, 13 into Eq. 10 and writing the small-
signal model of Eq. 9, we get Eq. 14:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔPout � 3E0V0

X
· Δδ + 3V0δ0

X
· (ΔE + ΔV)

ΔQout � 3E0V0δ0
X

· Δδ + 3V0

X
(ΔE − ΔV)

Δδ � Δω − Δωg

s

. (14)

Substituting Eqs 1, 2 into Eq. 3 and deducing its small-signal
model, we have Eq. 17:

Jω0 · sΔω � ΔPset − kpΔω − D(Δω − Δωg) − ΔPout

0Δω � ΔPset − ΔPout − D · Δωg

Jω0s + kp + D
.

(15)

Similarly, substituting Eqs 5, 13 into Eq. 6 and deducing its
small-signal model, we have Eq. 16:

ΔE � PI · (ΔQset − kqΔE − ΔQout)
0ΔE � ΔQset − ΔQout

kq + (s/KI) .
(16)

Then, the small-signal model of Figures 1, 2 can be illustrated
in Figure 4:

For ΔPout(s), Δδ is the input signal and ΔE and ΔV are the
disturbance input signals. If we can prove the loop gain from Δδ
to ΔPout(s) is much larger than that from ΔE+ΔV to ΔPout(s), we

can overlook the coupling item from RPCL to APCL, and thus
consider that the APCL is decoupled from RPCL.

Overlooking the coupling items, define the forward path gain
of APCL as Ffp(s):

Ffp(s) � 1
Jω0s + kp + D

· 1
s
· 3E0V0

X
. (17)

Then the transfer functions between ΔPout (s) and Δδ (s) or E
(s)+V (s) can be formulated as (Alsiraji and El-Shatshat, 2017;
Alipoor et al., 2015), separately.

F1(s) � ΔPout(s)
Δδ(s) � 3E0V0/X

1 + Fpf (s), (18)

F2(s) � ΔPout(s)
ΔE(s) + ΔV(s) �

3V0δ0/X
1 + Fpf (s). (19)

Since |F1(s)|/|F2(s)| >> 1, compared to F1(s), F2(s) can be
neglected; in another word, APCL is decoupled from RPCL. In
the similar way, RPCL can also be decoupled from APCL
approximately.

So, we can analyze the two control loops separately, in the
condition where short-circuit ratio is more than 10, which is
always satisfied in the inverter design.

THE COURSE OF FREQUENCY
FLUCTUATION

Intrinsic Oscillation Mode
The VSG has a better transient stability because it emulates the
swing equation of an RSG to provide virtual rotational inertia and
extra frequency support to the grid. However, the emulation of
swing equation of a conventional synchronous generator (SG)
also introduces an oscillatory mode, which makes VSG-
controlled inverters subjected to intrinsic low-frequency
oscillation.

Define K as the transient synchronizing power coefficient in
Eq. 22:

K � zPout

zδ
� 3E0V0 cos δ0

X
≈
3V2

0

X
≈
3V2

n

X
. (20)

Arrange Eqs 1–3, 9, 20 in the state-space form shown in
Eq. 21:

{ _x � Ax + Bu
y � x

. (21)

In Eq. 23, the output vector y, the state vector x, the input
vector u, the state matrix A, and the input matrix B are as Eq. 22:

y � x � [Δω ΔPout ]T u � [ΔPset Δωg ]T
A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
kp + D

Jω0
− 1
Jω0

K 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ B �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Jω0

D
Jω0

0 −K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (22)

FIGURE 4 | Small-signal control model.
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Normally, the system operates in the underdamping state, and
the eigenvalues of A can be deduced as Eq. 23:

λ1,2 � −kp + D

2Jω0
± j

��������������
4Jω0 − (kp + D)2√

2Jω0

5λ1,2 �
����
K
Jω0

·
√

ej(π ± arccos((kp+D)/(2 ���
KJω0

√ ))).
(23)

Therefore, the undamped natural frequency ωun and the
damping ratio ζ of the intrinsic oscillation of the VSG can be
represented as Eq. 24.

ωun �
���
K
Jω0

√
, ζ � kp + D

2
�����
KJω0

√ . (24)

From Eq. 24, we can conclude that the undamped natural
frequency ωun will decrease as the virtual rotational inertia J
increases, which is not influenced by the damping factorD. At the
same time, larger J will result in smaller ζ , which may make the
systemmore prone to oscillation. However,D can also influence ζ
positively. Those relations can also be confirmed from the
eigenvalue loci plot in Figure 5. The parameters involved are
presented in Table 1. In Figure 5, J and D vary in proportion.

Frequency Fluctuation in the Parallel
Multi-VSG System
The VSG mimics the output characteristics of the RSG, so the
frequency fluctuation of the parallel multi-VSG system can also
be compared to the state of the multi-RSG system. In the multi-
RSG system, in order to keep in sync, the parallel RSG
continuously adjusts the angular frequency of their respective
rotors, which might cause a frequency fluctuation of the grid. In
this situation, it is even more difficult to keep the RSGs in sync,
resulting in continuous frequency fluctuation.

Similar situation can be seen in the parallel multi-VSG
system. Because of the particularity of power electronic
equipment, the controller of a VSG cannot obtain the grid
angular frequency directly. A frequency detector, such as a
phase-locked loop (PLL), is a must in the conventional VSG
control method.

However, the response rate of digital PLL is much slower
than that of mechanical PLL, which makes the frequency
fluctuation in the parallel multi-VSG system even worse.
Thus, a novel PLL-free VSG control method is needed for
the frequency fluctuation attenuation in the parallel multi-
VSG system.

THE PROPOSED CONTROL METHOD FOR
THE PARALLEL MULTI-VSG SYSTEM
Novel Constitution of Damping Power
Item PD
The damping power item PD is the only item that needs a
frequency detector in the basic VSG control method. In order
to get rid of the PLL, we must reconstruct the item PD without
using a frequency detector. So, we will first analyze the
mechanism of original PD in the basic VSG control, and then
come up with a new way to obtain PD.

From the study by Zhong et al. (2014), we can notice that PD
remains at 0 in a steady state and makes differences only in
transient. The basic method takes the comparison of ω and ωg as a
way to assess whether the system is operating in a steady-state
condition or not. If ω � ωg, the system is operating in a steady-
state condition and PD should remain at 0. If ω ≠ ωg, the system is
in the transient condition.

So that, if we want to obtain PD in a novel way without using
frequency detector, we must find a new way to assess the steady-
state condition. In the system, Pin and Pout share a similar
relationship with ω and ωg. If Pin � Pout, the system is
operating in the steady-state condition; if not, transient.

Thus, we can conclude that PD should satisfy the following
requirements:

(1) It should contain a factor, for example, Pin − Pout, to estimate
whether the system is operating in the steady-state condition.

(2) It must turn to and remain at zero in the steady-state
condition so that it will not affect the steady operating
point of droop relation in the steady-state condition.

FIGURE 5 | Eigenvalue loci when J or D varies in the
underdamping state.

TABLE 1 | Same parameters involved.

Parameter Value Comments

Sn and Sbase 10 kVA
Vn and Vbase 220 V
ωn ≈ ω0 100 π rad/s f � 50 Hz
X 1.26 Ω L � 4 mH, K � 3Vn

2/X � 115,546
kp 637 kp* � kpωn/Sbase, kp* � 20 p.u.
J 0.4 M* � Jω0

2/Sbase, M* � 4 s
D 4,752 ζ � 1/sqrt(2)
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(3) Even if it introduces extra poles, the dominant poles of the
new system should be closed to or coincident with the
original two poles.

(4) It must contain a DΔω item in its small-signal model so that
the state matrix A and its eigenvalues will not change. Since
Pin contains a kp·ω item and it will become a kp·Δω item in its
small-signal model, we do not need to constitute it
dedicatedly and only need to adjust its coefficient.

To meet the four abovementioned requirements, we propose a
novel way to obtain PD, formulated as

PD � H · (Pout − Pin) − KD

s
· PD, (25)

where H is the output power error amplification factor and KD is
the self-integral coefficient.

The first requirement is satisfied obviously. The second
requirement is satisfied through the integral item, which will
force PD to turn to and remain at 0 in the condition of KD > 0. The
third and fourth requirements need proper parameter design,
which will be detailed in the next subsection.

Figure 6 shows the block diagram of the swing equation of
the proposed method using the novel way to obtain PD.
Comparing it with the original one shown in Figure 2C, it
is noticed that the grid frequency does not participate in the
computation; thus, it can avoid the ill effect of frequency
detector.

Parameter Design of the Proposed Control
Method
There are two parameters in Eq. 25,H and KD, whose values need
to be decided, and we can adjust these two parameters to meet the
third and the fourth requirements.

To meet the third requirement, we should first deduce the
eigenvalues of the proposed system. Arrange Eqs 1, 3, 4, 9, 25 in
the state-space form as shown in Eq. 21, and use a superscript to
distinguish the corresponding vector or matrix in Eq. 22; then we
can get Eq. 26.

In Eq. 11, most parameters in A9 are deterministic, except for
H and KD, which correspond to ωun and ζ . We need to find a
combination ofH and KD, which will make the dominant poles of
the new system closed to or to be coincident with the original
ones, as shown in Eq. 23 and Figure 5.

A′ � ⎡⎢⎢⎢⎢⎢⎢⎢⎣−(kp(1 + H))/Jω0 ( − (1 +H)/Jω0) KD/Jω0

K 0 0
Hkp H −KD

⎤⎥⎥⎥⎥⎥⎥⎥⎦
B′ � ⎡⎢⎢⎢⎢⎢⎣ (1 +H)/Jω0 0

0 −K
−H 0

⎤⎥⎥⎥⎥⎥⎦ y′ � x′ � ⎡⎢⎢⎢⎢⎢⎣ Δω
ΔPout

PD

⎤⎥⎥⎥⎥⎥⎦T � [ x
PD

]T

.

(26)

In order to get the eigenvalue expressions of A9, we plot the
eigenvalue loci with varying H and KD to find a fitful
combination, as shown in Figure 7. The eigenvalue loci are
shown in Figure 6. With two parameters to be decided, this is
something like “trial and error.” But later in this section, we will
prove that there is only one parameter that needs to be decided,
and the root locus alike method can be used in this situation.

It is noticed that on the condition that KD � 180 and H � 7.4,
the dominant poles of the new system are almost coincident with
the original poles, and the other pole is assigned much farther to
the left than the dominant, which satisfies the third requirement.

What is more; substituting H � 7.4 into A9, we notice that D �
H·kp and A911 � A11, which means the fourth requirement is also
satisfied. Thus, we know that the conjugate eigenvalues are the
dominant poles of A9. If A911 � A11, then the dominant poles of
A9 will be the same as the original poles of A. So, we can use the
equation A911 � A11 or D � H·kp to obtain H directly, leaving KD

itself to be determined by the eigenvalue loci.
With only one single variable parameter to be determined, we can

use a method similar to the root locus method to choose a suitable
value on eigenvalue loci. The very single variable parameter of the
mentioned method is KD, not the open loop gain in the root locus
method. And this method can be named as root locus alike method.

There are two parameters in the proposed method to be
decided, H and KD. H can be calculated directly, and KD is
picked up by the root locus alike method. No complicated
formula derivation is involved in the parameter design approach,
so this method can simplify the parameter design process.

FIGURE 6 | Block diagram of the swing equation of the proposed
method.

FIGURE 7 | Eigenvalue loci when H or KD varies.
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SIMULATION RESULTS

Simulation I: Single Virtual Synchronous
Generator to Infinite Grid
In the grid-connected mode, the steady-state frequency is
determined by the power grid. Assuming it is an infinite grid,
the steady-state frequency would never change. The simulation
topology is shown in Figure 8, and the control parameters are
shown in Table 1.

In Situation I, the VSG could affect the frequency of PCC only
in the transient state when the power reference Pset changes. Thus,
we set Pset at 5kW at first; after the system reaches a steady state,
Pset is then increased to 8kW. Four different control methods are
applied in the same situation to compare the active power
oscillation and angular frequency fluctuation. The simulation
results are shown in Figure 9.

In Figure 9, the ideal basic VSG control method is not the
“conventional scheme” but the “conventional scheme with an
ideal PLL.” An ideal PLL can only be obtained in simulation but
cannot be realized in practice. A nonideal PLL in practice usually
has an adverse effect on dynamic performance of the system. So,
the simulation of “conventional scheme with an ideal PLL” is
obviously better than that of “conventional scheme” on dynamic
performance.

In the proposed method, the ωun and ζ are also set at the same
values as the ideal basic VSG control to mimic its dynamic
properties.

The dynamic response of the ideal basic VSG control method
is much better than that of the conventional scheme. The former
can be considered as the target of the VSG control method. From
Figure 9, we notice that the dynamic response of the proposed
method is very close to that of the ideal basic method, and some
indicators are even better. Thus, we can conclude that the
proposed method is better than the conventional scheme in
this situation.

Simulation II: Multi-VSGs With the Same
Control Method
We use two parallel VSGs to simulate the parallel multi-VSG
system. The simulation topology is shown in Figure 10.

VSG_1 is a 10-kVA inverter, and its main parameters are
shown in Table 1. VSG_2 is a 5-kVA inverter, and its main
parameters are shown in Table 2. Although the actual values of
their most corresponding parameters are different, the per-unit
values are almost all the same.

FIGURE 8 | Simulation topology of a VSG connected to the infinite grid.

FIGURE 9 | Simulation results I: different VSG methods in the grid-
connected mode.

FIGURE 10 | Simulation topology of two VSGs sharing power in
islanding.

TABLE 2 | Parameters of the 5 kVA inverter.

Parameter Value Comments

Sn and Sbase 5 kVA
Vn and Vbase 220 V
ωn ≈ ω0 100 π rad/s f � 50 Hz
X 0.63 Ω L � 4 mH, K � 3Vn

2/X � 115,546
kp 318.5 kp* � kpωn/Sbase, kp* � 20 p.u.
J 0.2 M* � Jω0

2/Sbase, M* � 4 s
D 3,492 ζ � 1/sqrt(2)
kp’ 3,810.5 k′p � kp + D
H 11 D � H·kp
KD 302.5 From eigenvalue loci similar to Figure 6
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At first, VSG_1 is set to output 8 kW active power, which is
80% of its rated power. The load is set to consume 10 kW active
power. On 3 s, VSG_2 prepares to connect to the grid, and
connects to the grid after about 0.1 s; its output active power
is set to 4 kW, which is also 80% of its rated power. Then, another
2 kW load is connected to the grid on about 5.5 s and the load
steps to 12 kW in total. At last, the target power of VSG_1 is
increased to 10 kW on about 8 s, and the target power of VSG_2 is
maintained at 4 kW.

We did the simulation experiments twice. In the first
simulation, both the VSGs are applied as the VSG ideal basic
control method with an ideal PLL. In the second simulation, both
the VSGs are applied as the proposed control method. In
simulation, we can use an ideal PLL to get rid of the ill effect
introduced through the actual PLL; however, the ideal PLL can
never be realized in actual engineering, which makes the first
simulation results much better than the real system. So, if the
second simulation results are similar to those of the first one, it
can certify that the proposed control method is better than the
ideal basic control method, for the proposed one does not contain
a PLL originally.

The simulation results are shown in Figure 11.

(1) The proposed control method has a similar dynamic
response and steady operating point to the ideal basic
control method.

(2) On about 5.5 s, the load is increased from 10 to 12 kW. At
that very moment, no matter which control method is
launched, each parallel VSG increases its output equally,
which is related to the equal line impedance. Then,
different control methods make differences to adjust the
active power and achieve power-sharing. Finally, in the
ideal basic control method and the proposed one, ΔP1 ≈
2·ΔP2, which also means that the output power ratios to the
rated power of the two VSGs are almost the same; thus,
power-sharing is achieved well when the load is changed.

(3) On about 8 s, the load and the target power of VSG_2 remain
unchanged, and the target power of VSG_1 turns to 10 kW.
We can notice that the output angular frequencies of both
VSGs increase and the VSG_1 increases. Because the angular
frequency of VSG_2 is forced to increase by VSG_1, a few

seconds later, the output power of VSG_1 does not reach
10 kW and the output power of VSG_2 decreases. This is the
result of P-ω droop and power-sharing.

We can conclude from this simulation that the proposed
method performs similarly to the ideal VSG control method.
We can reasonably infer that the proposed method performs
better than the conventional method in the parallel multi-VSG
system.

Simulation III: The Cooperation Between the
Proposed Method and the Ideal Basic One
The most important feature of VSG is that it can achieve power-
sharing without using communication; thus, in this subsection,
we use two parallel VSG-controlled inverters with diffident rated
powers to demonstrate the power-sharing effect. VSG_1
(10 kV A) applies the ideal basic VSG control method, and
VSG_2 (5 kV A) applies the proposed method. The topology
of the simulation is shown in Figure 12. The control parameters
of the two VSGs are listed in Tables 1, 2.

At first, VSG_1 is set to output 8kW active power, which is
80% of its rated power. The load is set to consume 10 kW active
power. On 3 s, VSG_2 starts to prepare to connect to the grid and
completes connecting after about 0.1 s; its output active power is
set to 4 kW, which is also 80% of its rated power. Then another
2 kW load is connected to the grid on about 5.5 s, making the load
step to 12 kW in total. At last, the power reference of VSG_1 steps
up to 10 kW on about 8 s, and the power reference of VSG_2
remains at 4 kW. The simulation results are shown in Figure 13.

(1) On about 5.5 s, the load steps up. The proposed approach finally
achieves power-sharing with the basic VSG control method
because in Figure 10, ΔP1 ≈ 2·ΔP2 and ΔP1/Sbase_1 ≈ ΔP2/Sbase_2.

(2) Similar results can be seen after 8 s; when the power
reference of VSG_1 steps up, the angular frequency

FIGURE 11 | Simulation results II: multi-VSGs with the same control
method.

FIGURE 12 | Simulation topology of two VSGs sharing power in
islanding.
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changes a little, which results that VSG_2 shares some of
the power increase.

Simulation III verifies that the proposed approach has a good
power-sharing ability without using frequency detector.

In practice, the infinite grid is rare; most VSGs are connected to a
non-infinite grid formed mainly by RSGs. Since the ideal basic VSG
control method is the imitation of RSG, this simulation can also be
treated as a VSG connected to an RSG or practical non-infinite grid.

CONCLUSION

This study aimed to investigate the parallel operation of VSGs
with a damping correction term added to the swing equation. The
addition of the extra term intends to achieve better oscillation
damping in a multi-VSG environment. The load changing
transients and eigenvalue analysis were employed to validate
the transient and small-signal stability of the system with the
proposed strategy.

In this article, a novel VSG control method is proposed for
frequency fluctuation attenuation. The proposed method does
not take grid angular frequency into computation, so that it can
get rid of the ill effect introduced through PLL, which makes it
especially fit for the parallel multi-VSG system. The damping
power item is reconstrued with a newmeans to judge whether the
system is in the steady state or not. The parametric design method
is also figured out. At last, the simulation results to verify that the
proposed method performs better than the conventional one.
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Classification of Power Quality
Disturbance Based on S-Transform
and Convolution Neural Network
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The accurate classification of power quality disturbance (PQD) signals is of great significance
for the establishment of a real-time monitoring system of modern power grids, ensuring the
safe and stable operation of the power system and ensuring the electricity safety of users.
Traditional power quality disturbance signal classification methods are susceptible to noise
interference, feature selection, etc. In order to further improve the accuracy of power quality
disturbance signal classification methods, this paper proposes a power quality disturbance
classification method based on S-transform and Convolutional Neural Network (CNN).
Firstly, S-transform is used to extract disturbance signals to obtain the time-frequencymatrix
with characteristics of the disturbance signals. As an extension of wavelet transform and
Fourier transform, S-transform can avoid the disadvantages of difficult window function
selection and fixed window width. At the same time, the feature extracted by S-transform
has better noise immunity. Secondly, CNN is used to perform secondary feature extraction
on the obtained high-dimensional time-frequency modulus matrix to reduce data
dimensions and obtain the main features of the disturbance signal, then the main
features extracted are classified by using the SoftMax classifier. Finally, after a series of
simulation experiments, the results show that the proposed algorithm can accurately classify
single disturbance signals with different signal-to-noise ratios and composite disturbance
signals composed of single disturbance signals, and it also has good noise immunity.
Comparedwith other classificationmethods, the algorithm proposed in this paper has better
timeliness and higher accuracy, and it is an efficient and feasible power quality disturbance
signal classification method.

Keywords: power quality disturbance, s-transform, convolutional neural network, feature extraction, noise immunity

INTRODUCTION

In modern power systems, the rapid development of renewable energy power generation (Huang et al.,
2021; Wang et al., 2021) and related distributed generations and microgrid control strategies (Huang
et al., 2019; Wang et al., 2019) have injected a large number of nonlinear signals into the power system.
At the same time, there are also a large number of nonlinear loads in the power grid (such as automotive
charging piles, power transfer switches). The power grid is showing a power electronic trend, and the
power quality problem of the distribution network is becoming more and more serious (Qiu et al.,
2020). Frequent occurrences of power quality events cause a lot of economic losses and bring great
inconvenience to people’s lives. In order to deal with sudden power quality events, it is necessary to
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accurately identify and classify the power quality disturbance
signals. A convenient, fast and accurate classification algorithm
can provide a higher-level application for modern smart meters
and real-time monitoring system of power grid (Luo et al., 2018).

Current disturbance signal classification methods mainly
include two steps:

1) Extracting characteristics of power quality disturbance signals;
2) Classifying with extracted features.

Feature extractionmethodsmainly include: Fast Fourier Transform
(FFT) (Deng et al., 2020), Wavelet transform (Thirumala et al., 2018),
S-transform (Kumar et al., 2015), Hilbert Huang transform (HHT)
(Sun et al., 2018), short time Fourier transform (STFT) (Dhoriyani and
Kundu, 2020), singular value decomposition (SVD) (Wang et al.,
2017), Kalmanfilter (KF) (Niu et al., 2019). For step 1): due to relatively
fixed length and shape of time window, short-time Fourier transform
cannot reflect the characteristics of high frequency and low frequency.
Although wavelet transform can realize multi-scale focusing, the
relationship between transform scale and frequency is fixed.
Singular value decomposition and Kalman filter lack the frequency
domain characteristics of the signal. S-transform is a reversible time-
spectrum positioning technology combining wavelet transform and
FFT. It uses an analysis window, thewidth of thewindow changes with
frequency to provide frequency-related resolution (Kumar et al., 2015).
The time-frequency characteristics extracted by S-transform have
more significant time-frequency characteristics (Tang et al., 2020).

In comparison, S-transform has higher time resolution and
frequency resolution, and is more suitable for analyzing
nonlinear, non-stationary, and transient power quality
disturbances (Wang et al., 2021a).

The existing classifiers mainly include: artificial neural network
(Haddad et al., 2018), Support Vector Machine (SVM) (Yong et al.,
2015), decision tree (Huang et al., 2015; Long et al., 2018), expert
system (Sai et al., 2015) and Bayesian classifier (Zhou et al., 2011),
etc. For step 2): SVM has a high classification accuracy, but the
amount of calculation in the process of parameter optimization is
relatively large, and the real-time performance is not good. The
expert system is a more flexible classification method, but with the
increasing of different types of disturbance signals, the complexity of
the knowledge base is getting higher and higher, which largely affects
the fault tolerance of the system, and the classification performance
is also restricted. In view of the problems of existing classifiers,
finding a fast and accurate classification method has become the
research focus of many researchers.

As the Frontier content in the field of artificial intelligence,
neural networks have also made some preliminary applications in
the field of power systems, and have achieved some remarkable
results. In the field of electricity price forecasting, the literature
(Jahangir et al., 2020) has greatly reduced the forecast error.
Literature (Jiang et al., 2019) provides an intelligent fault
diagnosis method that can automatically identify different
health conditions of wind turbine gearboxes. Convolutional
neural network (Convolution Neural Network, CNN), as a deep
learning method of supervised learning, has advantages of low
model complexity and fast calculation speed. Its unique
convolution structure can reduce the amount of memory

occupied by the deep network and the number of network
parameters. CNN has been widely used in face recognition, text
recognition and target tracking, as well as semantic segmentation
and other fields (Chang et al., 2016; Chowdhury et al., 2016; Chen
et al., 2018). In addition, CNN has excellent overfitting treatment
methods compared to other classification methods. Methods such
as reducing the number of network layers, using Dropout, and
adding regular items can be used to improve overfitting.

However, in the field of power quality disturbance classification,
the application of CNN is still immature. Only a small amount of
literatures use CNN to solve the problem of power quality disturbance
signal classification (Chen et al., 2018; Hezuo et al., 2018; Zhu et al.,
2019). For example, literature (Chen et al., 2018) uses phase space
reconstruction to reconstruct one-bit time series into a multi-
dimensional space, then further project the obtained disturbance
signal to a two-dimensional phase plane to form a two-
dimensional trajectory image, finally input the trajectory image to
a CNN for classification. Literature (Hezuo et al., 2018) maps the
feature signal into a two-dimensional grayscale image, and then inputs
it into a CNN for classification. Literature (Zhu et al., 2019) uses
encoding and decoding to extract features of power quality
disturbance signals, and then inputs the extracted features into a
CNN for classification. However, it is difficult to distinguish the
disturbance signal features with high similarity (such as
interruption and sag) in the existing methods, and the signal
feature extraction process also extracts many features which are
irrelevant to disturbance signals. Although the existing methods
have high classification accuracy, they still have certain
misclassification phenomena.

In view of the above problems, this paper uses the combination of
S-transform and CNN to classify power quality disturbance signals.
The S-transform is used to extract the characteristic matrix which is
used to represent the power quality disturbance signal. According to
the three-dimensional (3D) network diagram of each disturbance
signal, the sampling range of the feature vector corresponding to
the disturbance signal that best represents the disturbance signal is
determined. The matrix is trimmed to eliminate the eigenvectors that
are useless for specific disturbance signal identification, that is,
irrelevant vectors. And then get a square matrix that can represent
the characteristics of the disturbance signal and the dimension is
125 × 125. Input the obtained square matrix into the CNN, and use
the CNN to classify the power quality disturbance signal. The
combination of S-transform and CNN to classify power quality
disturbance signals ensures the efficiency, accuracy and robustness
of the classification, and at the same time reduces the misclassification
of disturbance signals, which is useful for establishing a real-time
monitoring system formodern power grids. It is of great significance to
ensure the safe and stable operation of the power system and ensure
the safety of users’ electricity.

S-TRANSFORM AND FEATURE
EXTRACTION

The S-transform proposed by Stockwell (Stockwell et al., 1996) can be
regarded as an extension of short-time Fourier transform and wavelet
transform, and it is a reversible time-frequency analysis method.
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S-transform is one of the best techniques for signal processing of non-
stationary signals. It uses the phase information of continuous wavelet
transform to correct the phase of the original wavelet. It can perform
multi-resolution analysis on the signal, just like a set of filters with
constant bandwidths. It uniquely has the frequency-related resolution,
while positioning the real and imaginary spectra of the phase
spectrogram. The time-frequency localization characteristics
provided by S-transform are used for subsequent calculations.

Use the FFT and convolution theorem to calculate the
S-matrix for each power quality disturbance time. The output
of the S-matrix is a complex matrix whose dimension is k × n, and
the matrix expression is as follows

S(τ, f ) � A(τ, f )e−iφ(τ,f ) (1)

where A(τ, f ) represents amplitude, φ(τ, f ) represents the phase.
The rows of the S matrix represent frequency, and the columns

represent time. Each column represents the frequency
component that appears in the signal at a specific time, and
each row represents a specific frequency signal that occurs at the
time from 0 to N−1 on each sampling point. The specific
calculation method of S-transform is as follows.

Continuous S-Transform
The continuous S-transformation of the signal h(t) is

S(t, f ) � ∫+∞

−∞
h(t)w(t − τ, f )e−j2πf τdτ (2)

where w is the Gaussian window function, expressed as

w(t − τ) �
∣∣∣∣f ∣∣∣∣���
2π

√ e
−(t−τ)2 f 2

2 (3)

Discrete S-Transform
The power quality disturbance signal h(t) can be discretized as
h(kT), T is the sampling interval; the Fourier transform form of
the discrete sampling signal is

H[ n
NT

] � 1
N

∑N−1

k�0
h(kT)e−i2πnkN (4)

where n � 0, 1,/N − 1.
Let τ→ jt,f → n

(NT), the improved discrete S-transform
expression is as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S[jT , n
NT

] � ∑N−1

m�0
H[m + n

NT
]G(m, n)ei2πmk

N , n≠ 0

S[jT , 0] � 1
N

∑N−1

m�0
h( m

NT
), n � 0

(5)

where j,m, n � 0, 1, . . .N − 1,G(m, n) � e−(2π2m2

n2
).

Time-Frequency Matrix Extraction and
Cropping
It can be seen from the above that for a given power quality
disturbance signal sequence, using S-transform to perform

feature extraction on the sequence, a 2D matrix can be
extracted, the row information of which represents the
frequency feature and the column information for the time
feature. Then, a 3D mesh graph of disturbance signal is made
according to the extracted 2D matrix.

The dimension setting of the characteristic matrix is based on
certain rules: after feature extraction of the source signal, a large
number of feature vectors will be obtained, most of which are
redundant features. Feature redundancy causes too many
dimensions, will increase the amount of calculation, cause
overlap of the features and misclassification. If the
dimensionality is too few through dimensionality reduction,
characteristics of the disturbance signal will be insignificant
and the classification accuracy will decrease. Therefore,
choosing an appropriate time-frequency matrix dimension is
very important for the subsequent classification accuracy.
Based on the CNN model of the TensorFlow platform, when
reading the feature matrix, each feature matrix needs to be
integrated into a line of a csv file. The maximum number of
columns that the csv file can display is 16,384, and extra data
cannot be displayed. When the maximum number of columns
exceeds 16,384, the data will lead to not insert labels. In summary,
this matrix 126 × 251 is selected for the dimension of a single
input, this dimension can display the characteristics of the time-
frequency matrix well without increasing the computational
complexity.

In order to facilitate the subsequent input of the feature matrix
into the CNN, the extracted initial feature matrix needs to be
trimmed. Figures 1–8 is a 3D mesh graph of each power quality
signal sequence made by S-transform. In the figure, the x-axis
coordinate is the number of sampling points, the y-axis is the
frequency in Hz, and the z-axis is the normalized amplitude of the
signal. Different colors indicate the degree of normalized
amplitude, the lighter the color, the bigger the amplitude.
Take the harmonic signal of Figure 3 as an example, it is
expressed as adding other harmonic components of different
amplitudes on the basis of the normal signal. There are certain
thresholds for the frequency and amplitude of the disturbance
signal. By determining all types of disturbance signals within a
certain range, the 3D mesh graph of each disturbance signal is
compared with the 3D mesh graph of the normal signal, and
finding the sampling range that best represents the characteristics
of the disturbance signal. The feature matrix is trimmed
according to the obtained sampling range. According to the
obtained sampling range, the feature matrix is trimmed to
obtain a square matrix of 125 × 125 as the input to the CNN.
By trimming the feature matrix, the dimensionality of the input
matrix and the interference can be reduced, and the classification
accuracy and calculation speed can be improved.

CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network (CNN), as a deep learning
method, has been widely used in the field of pattern
recognition and image classification. The weight sharing
mechanism of CNN is very similar to the model of biological
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neural network. This mechanism makes the network model
simpler and greatly reduces the number of weights (Chen
et al., 2018). CNN is mainly composed of input layer,
convolutional layer, pooling layer (down-sampling layer), and
fully connected layer.

CNN Network Structure and Principle
The common CNN network is the LeNet-5 network, and its
structure is shown in Figure 9. The first few stages need to extract
features through multi-layer convolution.

The main components of CNN:
Convolutional layer: The purpose of the convolution

operation is to extract different features of the input. The first
convolutional layer may only extract some low-level features such
as edges, lines, and corners. More layers of the network can iterate
from the low-level features Extract more complex features.

Pooling layer: It is a form of downsampling. There are many
different forms of non-linear pooling functions, of which Max-

FIGURE 1 | S-transformation 3D mesh graph of normal signal.

FIGURE 2 | S-transformation 3D mesh graph of transient pulse signal.

FIGURE 3 | S-transformed 3D mesh graph of harmonic signal.

FIGURE 4 | S-transformation 3D mesh graph of the sag signal.

FIGURE 5 | S-transformed 3D mesh graph of the swell signal.
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pooling and average sampling are the most common; the Pooling
layer is equivalent to converting a higher resolution picture into a
lower resolution picture; the pooling layer can Further reduce the
number of nodes in the final fully connected layer, so as to achieve
the purpose of reducing the parameters in the entire neural network.

Fully connected layer: The connection method is the same as
that of a normal neural network, usually in the last few layers.

Generally speaking, CNN is a hierarchical model whose input
is raw data, such as RGB images, raw audio data, etc. CNN
extracts high-level semantic information from the original data
through convolution, pooling, and nonlinear activation function
mapping, and abstracts the original data layer by layer.

Convert the input raw data into the data form of a two-
dimensional matrix, input it to the convolutional layer through
the input layer, and use the convolutional layer to convolve the
two-dimensional matrix. The calculation formula is as follows

ymi � g⎛⎝∑k
j�1

conv2D(ym−1
i ,ωm−1

ij ) + bmi ⎞⎠ (6)

where g() is the activation function, bi is the bias value, ωij is the
weight between neurons, and yi is the ith input of the neuron.

Due to the slow convergence speed of the saturated nonlinear
function, and even the problem of the disappearance of the
gradient in the back propagation stage, the excitation function
in this paper adopts the ReLu nonlinear function, and its
expression is as follows

g(x) � max(0, x) (7)

After the original two-dimensional matrix is convolved by the
convolution layer, the two-dimensional matrix obtained by the
convolution operation is calculated by the ReLu activation
function, and the calculated result is input to the pooling
layer, and the downsampling operation is performed. As
shown in the formula

ymi � down(ym−1
i ) + bmi (8)

where down() represents the downsampling function.
By merging and pooling, the dimensionality of the input

feature matrix is reduced, and the calculation amount of the
network model is reduced. The fully connected layer is used to
transfer the weights and biases between neurons in each layer,
and finally is classified by the SoftMax classification layer.

Network Training Process
The CNN training process consists of two stages: the forward
propagation stage (Forward) and the backward propagation stage
(Backward).

Forward propagation stage: The input signal is continuously
processed by convolution, pooling and activation function in the
forward propagation stage, and the output O of the network is
calculated layer by layer. Network calculation can be expressed as

O � Gn(/(G2(G1(XW1))W2)/Wn) (9)

where Gi represents the nonlinear transformation; and
Wi(i � 1, 2,/, n) represents the weight of each weight layer.

FIGURE 6 | S-transformation 3D mesh graph of transient oscillation
signal.

FIGURE 7 | S-transformed 3D mesh graph of the interrupt signal.

FIGURE 8 | S-transformation 3D mesh graph of sag and harmonic
signal.
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After getting the network output O, use the ideal output Y to
evaluate the CNN network, and the ideal network satisfies Y�O.

Back propagation stage: According to the network output
obtained in the forward propagation stage, the error is
calculated, and the expression is as follows

E � 1
2
‖O − Y‖22 (10)

The gradient descent method is used to update and optimize
the weights and bias coefficients between neurons in each layer of
the network to minimize errors. The update method of weight
and bias in the network model is shown in the following formula

W l−1
ij (t + 1) � W l−1

ij (t) − η
zE
W l−1

ij

(11)

blj(t + 1) � blj(t) − η
zE
zblj

(12)

where η represents the learning efficiency, E represents the error
function.

CNN Parameter Settings
For different classification tasks, the determination of the CNN
structure requires both theoretical analysis and experimental
observation to select appropriate parameters. Each network
contains a different number of convolutional layers and
corresponding pooling layers, and the parameter settings of
each convolutional layer and pooling layer are also different.

The convolution kernel parameters that need to be set are:
stride (sliding step size), padding (convolution method) and the
size of the convolution kernel. Stride should not be set too large,
because too large will result in the loss of the feature amount of
the input data, so stride is generally set to 1 or 2. There are two
modes of padding setting: same and valid, same means that after
the convolution operation, the dimensionality of the input data
remains unchanged (0-padding is performed on the periphery of
the input data according to stride’s value); valid means that the
dimensionality of the input data will be reduced correspondingly
after the convolution operation, and the size of the convolution

kernel is determined according to the dimensions of the input
data. The calculation method of the output data size is as follows

U � [(I − C + 2pP)
S

] + 1 (13)

whereU is the size of the output data, I is the size of the input data,
C is the size of the convolution kernel, P is the number of zero
padding, and S is the size of the stride.

The sole purpose of the pooling layer is to reduce the
dimensionality of the input data, and its parameter settings
are: the selection of the pooling method, the size of the
pooling layer and the sliding step length. Take an example to
introduce the size and sliding step length of the pooling layer:
input a 4×4 data, set the size of the pooling layer to 2×2, and set
the step length to 2, and get an output 2×2 data after pooling.
Figure 10 shows several common pooling methods.

Max-pooling only retains the maximum value in the area.
Mean-pooling preserves the average value of the feature points in

FIGURE 9 | LeNet-5 structure chart.

FIGURE 10 | Common pooling methods.
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the area. Stochastic pooling only needs to randomly select the
elements in the feature map according to their probability value,
and the probability of element selection is positively related to its
value. Among them, Max-pooling retains the maximum value,
ignoring other values, which can reduce the impact of noise,
improve the robustness of the model, reduce the number of
model parameters, help reduce model overfitting problems, and
be more suitable for power quality classification problems.

EXAMPLE CONSTRUCTION

Mathematical Model of Power Quality
Disturbance
The validity of real-time power quality disturbance data is affected
by some other factors. For example, obtaining real-time power
quality disturbance data requires a long monitoring time, and the
location of the power quality disturbance event is uncertain, which
greatly affects work efficiency. Therefore, using MATLAB to
simulate the mathematical model of the power quality
disturbance signal, the disturbance signal obtained by the
simulation can accurately describe the real-time data in
accordance with international standards (Chowdhury et al.,
2016). Voltage sags, swells, spikes, interruptions, flickers,
transient oscillations, harmonics, sags and harmonics, swells
and harmonics are several common power quality disturbance
signals. Attached schedule 1 is the model of 10 kinds of disturbance
signals and standard signals, which are expressed as S0, S1,/S9.
among them f � 50Hz; ω � 2πf ; T � 1

f .

Construction of Simulation Experiment
Platform
This paper uses a two-dimensional CNN structure based on deep
learning, uses TensorFlow deep learning framework, and Python
3.5 programming language to build a network model. The
TensorFlow deep learning framework was built using a laptop
equipped with a 64-bit Ubuntu Linux 16.04LTS system and
NVIDIA GTX1080 graphics card. TensorFlow is an open-
source software library that uses data flow graphs for numerical
calculations. Its workflow is relatively easy, its API is stable, its
compatibility is good, and it can be perfectly combined with
NumPy. TensorFlow’s compilation time is very short, it can be
iterated faster, and its flexibility and efficiency are relatively high.
Using TensorFlow to build a two-dimensional convolutional
neural network model, the program compilation is simple, the
simulation speed is relatively fast, the flexibility is high, and it can
be well adapted to the numerical optimization task.

The CNN Model Used in This Article
The CNN model used in this paper is improved based on the
traditional LeNet-5 architecture model, including two
convolutional layers and two pooling layers. The parameter
settings of two convolution kernels are different, the specific
parameter settings of the first convolution kernel: stride is set to 1,
padding is set to same, the size of the convolution kernel is 3×3.
The parameter settings of the second convolution kernel: stride is

set to 1, padding is set to same, and the size of the convolution
kernel is 5×5. The parameter settings of the two pooling layers are
the same. The specific parameter settings are: Max-pooling is
selected as the pooling method, the size of the pooling layer is
5×5, and the step size is set to 5. The dimension of the data input
in this paper is 125×125, after the convolution and pooling
operation, the dimension of the output data obtained is 5×5,
and the output data obtained is input into the fully connected
layer for normalization processing to avoid the impact of
classification with large data values. Figure 11 shows the
convolutional neural node pair network model used.

The cross-entropy loss function is used as the loss function of
the CNN, and the SoftMax classification layer is used for
classification. Figure 12 shows the system structure model of
this article.

In the field of machine learning, if the model has too many
parameters and the number of training samples is too little, it will
lead to overfitting of the trained model. Overfitting often occurs
in the training process of neural networks, the specific
performance is: the model has a small loss function and high
prediction accuracy on the training data, while on the test data,
the loss function is relatively large and the prediction accuracy is
low. In order to prevent the occurrence of overfitting, the CNN
model used in this paper adds the Dropout function. In the
process of forward propagation, the Dropout function allows a
certain neuron to stop working with a certain probability, which
can make the generalization ability of the neural network model
stronger, so that it will not rely too much on some local features.

The role of the Dropout function:

1) Averaging effect: The Dropout removes neurons in different
hidden layers is similar to training different networks, and the
Dropout is equivalent to averaging multiple different neural
networks.

2) Reduce the complex co-adaptation relationship between
neurons: The update of weights no longer depends on the
joint action of hidden nodes with fixed relationships, forcing
the network to learn more robust features.

3) Dropout is similar to the role of gender in biological evolution:
In order to survive, species tend to adapt to the new
environment and can breed new species that adapt to the
environment. This behavior is similar to training an applicable
network model, which effectively prevents overfitting.

Disturbance Signal Classification Process
The flow diagram of the classification of power quality
disturbance signals is shown in Figure 13.

The specific steps are as follows:

1) Preprocess the power quality disturbance signal generated by
MATLAB, use S-transform to extract the time-frequency
matrix representing the disturbance signal, and draw a 3D
network diagram of the disturbance signal.

2) According to the time-frequency matrix extracted from the
3D network graph of the disturbance signal, a new matrix of
dimension 125×125 is obtained, and the training set is formed
to train the CNN.
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3) The cross-entropy loss function is adopted, and the Dropout
function is added in the forward propagation stage to prevent
the occurrence of overfitting. Use stochastic gradient descent
method to update the parameter model, and optimize the
model through error back propagation.

4) After the input data is convolved and pooled, the
characteristics of the disturbance signal are extracted, and
the SoftMax classification layer is used for classification. Then
the verification and test sets are used for verification and
testing to obtain the final classification results.

SIMULATION AND ANALYSIS

CNN Training
This article uses MATLAB to generate the power quality signals
shown in Supplementary Table S1. Normal signals and every

type of disturbance signal each generates 500 random samples, a
total of 5,000 samples, each signal is added with a signal-to-noise
ratio (SNR) of 20, 30 and 40dB Gaussian white noise. The feature
matrix of all power quality signals is extracted from S-transform,
and the feature matrix is trimmed using a 3D mesh graph. The
trimmed feature matrix is integrated into a row of feature values
by row, and a digital label is added to each row of data (0–9,
respectively represent the labels of 10 disturbance signals). Shuffle
all the data in rows and extract the first 3,000 rows of data from
the disrupted data set to form the training set, the middle 1,000
rows of data form the verification set, and the last 1,000 rows of
data form the test set. Use CNN to read the csv file containing the
disturbance signal data.

In order to evaluate the training status and training effect of
the network, the cross-entropy loss function and the classification
accuracy rate are drawn with the number of iterations (each
epoch represents training 50 times), namely the loss function

FIGURE 11 | CNN model.

FIGURE 12 | System structure model presented in this paper.
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curve and the classification accuracy curve. As shown in
Figure 14, the loss function curve has a relatively large decline
when the network is first trained. As the number of iterations
increases, the loss function curve begins to fluctuate, but gradually
stabilizes. As shown in Figure 15, the classification accuracy
curve gradually increases as the number of iterations increases,
and finally rises to a higher classification accuracy close to 1. As
the number of iterations increases, the two curves gradually tend
to converge, which proves that the entire network is continuously
optimized and improved, and the stability of the network is
gradually increasing. By comparing the classification effects of
disturbance signals with different signal-to-noise ratios, it can be

seen that the network still maintains a high classification accuracy
rate for signals with different noises, indicating that the method
has certain noise immunity and strong robustness.

Classification Effect
In order to further verify the effectiveness of this method, tests are
performed under different noise intensities. The classification
accuracy is shown in Table 1. It can be seen from Table 1 that
CNN has higher accuracy under different noise intensities,
indicating that the proposed method has strong noise
immunity performance in the classification of power quality
disturbance signals. In order to further determine the
misclassification of disturbance signals, take the case of a
signal-to-noise ratio of 40dB as an example, and list the
classification results of each disturbance signal in the table
below. It can be found that the classification accuracy of each
signal is relatively high, and there is no excessive misclassification.
The specific classification results of various disturbance signals
are shown in Table 2.

FIGURE 13 | Process diagram of classification of power quality
disturbance signals.

TABLE 1 | Classification accuracy of CNN with different SNR.

Disturbance type SNR/dB

20 30 40

Sinusoidal signal S0 1.000 1.000 1.000
Swell S1 0.985 0.988 0.995
Sag S2 0.987 0.990 0.991
Flicker S3 1.000 1.000 1.000
Transient pulse S4 0.986 0.989 0.993
Interrupt S5 0.984 0.987 0.989
Harmonics S6 0.983 0.989 0.994
Transient flicker S7 0.987 0.993 0.996
Swell and harmonics S8 0.991 0.993 0.997
Sag and harmonics S9 0.988 0.990 0.994
Average 0.989 0.992 0.995

FIGURE 14 | Training loss function curve.

FIGURE 15 | Classification accuracy curve.
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Comparative Analysis With Existing
Classification Models
The proposed classification model and existing classification
models are compared and analyzed to judge the classification
effect of the classification model proposed in this paper. Models
used for comparison include Probabilistic Neural Networks (PNN)
(Zhengming et al., 2018), Principal Component Analysis-based
Support Vector Machines (PCA-SVM) (Jiang et al., 2019a), and
traditional Convolutional Neural Networks (CNN) (Song et al.,
2018). The parameter setting of each model is set according to the
existing reference documents, and will not be repeated here.

As shown inTable 3, it is the comparison result of the classification
accuracy of different noise disturbance signals for each model.
Comparing and analyzing the accuracy of different classification
algorithms under different noise conditions, it is clear that the
algorithm proposed in this article maintains a high classification
accuracy rate under 20–40dB noise conditions. The results show
that the classification accuracy of PNNandPCA-SVM is slightly lower
than the model proposed in this paper. Since S-transform-CNN has
an additional step of feature extraction using S transform, the model
proposed in this paper has a higher classification accuracy and better
noise immunity than traditional CNN model.

In addition to classification accuracy, this paper also compares
classification time, the comparison results are shown in Table 4.
It can be seen that the training time of PNN is relatively longer,
because its structure is relatively complex and the number of
neurons is relatively large, so the computational complexity is
higher than the proposed method in this paper. The SVM in
PCA-SVM belongs to binary classification, and the training and
testing time is long. Since the proposed model has an extra feature
extraction process compared with the traditional CNN, the
training time is slightly longer.

From the comprehensive analysis results of the above two tables,
it can be seen that when considering the two factors of accuracy and
time consumption, the classification accuracy of the S-transform-
CNN method proposed in this paper is slightly lower than that of
PNN, but the time consumed is much less than that of PNN. The
reason is that the number of neurons in the PNN is relatively large,
which greatly increases the computational complexity and the time
consumed by the network. Among the existing disturbance signal
classification methods, most of the classification methods focus on
off-line detection and disturbance classification of power quality
disturbance signals. As power quality problems become more and

more complex and users have higher and higher requirements for
power quality, it is necessary to conduct online analysis of power
quality problems, and a shorter classification time is even more
important. Considering comprehensively, the method proposed in
this paper has higher classification accuracy and lower Time-
consuming, which indicates that it can reduce the time of
network training and testing and improve work efficiency while
ensuring the classification accuracy.

CONCLUSION

This paper proposes a new method of power quality disturbance
classification based on S-transform and CNN. Use S-transform to
extract characteristics of disturbance signals, extract the time-
frequency matrix representing the characteristics of the disturbance
signal, then use the 3D mesh graph of the disturbance signal to trim
the extractedmatrix, and input the processedmatrix into the CNN for
classification. Under different noise levels, this method obtains
relatively good classification accuracy for power quality disturbance
signals, and has good noise immunity. The difference between this
method and other methods based on CNN is the input form of the
CNN. Traditional methods input the gray image of the disturbance
signal. This paper directly inputs the characteristic matrix of the
disturbance signal into the CNN. Compared with the traditional
method, themethod in this paper is more concise and reduces the loss
of characteristics. Under the premise of ensuring classification
accuracy and noise immunity. Further research will try to improve
the performance of thismethod by introducing new feature extraction
rules, and consider introducing more complex disturbance signals for
classification to meet actual power quality analysis needs.
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TABLE 2 | Classification result details when the SNR is 40dB.

Type S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

S0 100 0 0 0 0 0 0 0 0 0
S1 0 99 0 1 0 0 0 0 0 0
S2 0 1 98 0 0 1 0 0 0 0
S3 0 0 0 100 0 0 0 0 0 0
S4 0 0 0 0 99 0 1 0 0 0
S5 0 0 1 0 0 99 0 0 0 0
S6 0 0 0 0 0 0 99 1 0 0
S7 0 0 0 0 0 0 0 99 0 0
S8 0 1 0 0 0 0 0 0 99 0
S9 0 0 1 0 0 0 0 0 0 99

TABLE 3 | Classification accuracy of different algorithms.

Algorithm Classification accuracy

20dB 30dB 40dB

PNN 0.986 0.989 0.992
PCA-SVM 0.965 0.968 0.971
CNN 0.952 0.954 0.958
S-transform-CNN 0.986 0.992 0.995

TABLE 4 | Time consumption comparisons of different algorithms.

Algorithm Training time(s) Testing time(s) Total time(s)

PNN 637 1.1 638.1
PCA-SVM 468 1.3 469.3
CNN 193 0.6 193.6
S-transform-CNN 205 0.8 205.8
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A Flexible Ensemble Algorithm for Big
Data Cleaning of PMUs
Long Shen, Xin He, Mingqun Liu, Risheng Qin*, Cheng Guo, Xian Meng and Ruimin Duan

Electric Power Research Institute of Yunnan Power Grid Company Ltd., Kunming, China

With an increasing application of Phase Measurement Units in the smart grid, it is
becoming inevitable for PMUs to operate in severe conditions, which results in outliers
and missing data. However, conventional techniques take excessive time to clean outliers
and fill missing data due to lacking support from a big data platform. In this paper, a flexible
ensemble algorithm is proposed to implement a precise and scalable data clean by the
existing big data platform “Apache Spark.” In the proposed scheme, an ensemble model
based on a soft voting approach utilizes principal component analysis in conjunction with
the K-means, Gaussian mixture model, and isolation forest technique to detect outliers.
The proposed scheme uses a gradient boosting decision tree for each extracted feature of
PMUs for the data filling process after detecting outliers. The test results demonstrate that
the proposed model achieves high accuracy and recall by comparing simulated and real-
world Phase measurement unit data using the local outlier factor algorithm and Density-
Based Spatial Clustering of Application with Noise (DBSCAN). The mean absolute error,
root mean square error and R2-score criteria are used to validate the proposed method’s
data filling results against contemporary techniques such as decision tree and linear
regression algorithms.

Keywords: data cleaning, outlier detection (OD), data recovery, phase measurement unit(PMU), apache spark

INTRODUCTION

Due to the increasing demand for accurate control and management in smart grids, many advanced
online monitoring devices have been installed and provide abundant operating data resources using
Phase Measurement Units (PMUs). The data preprocessing is an important step that transforms the
raw operating data used in the load forecasting model, user clustering tool, equipment maintenance,
and energy theft detection technique. The outcome of data preprocessing has a significant impact on
the data modelling process. For instance, a prediction model fed by a raw dataset with noise and bad
data will be inefficient and cause inaccuracy. PMU failures, such as communication errors and noises,
cause irregular packet data and asymmetric magnitude spikes, which are particularly problematic for
smart grid applications. As a result, PMUs’ data cleaning algorithm must maintain high speed and
sensitivity to faulty data in order to deliver a highly reliable data mining model. However, designing a
data cleaning algorithm that balances high speed and sensitivity is a technological challenge that
needs to be addressed.

Data cleaning technologies are a heavily studied domain of data statistics and machine learning.
The whole process of extensive data cleaning is illustrated as outlier detection and data filling. The
outliers which do not follow the main of the data may be produced by inducing random errors and
faulty measurements (Zhao et al., 2019). For outlier detection, with the recent advancement in
machine learning techniques, both unsupervised and supervised methods have been investigated for
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better accuracy, speed, and computation cost. In supervised
models, such as one-class support vector machine (SVM) (Ma
and Perkins, 2003), decision forest (Reif et al., 2008),
convolutional neural network (Ren et al., 2020), and the long
short-term memory network (LSTM) (Wu et al., 2020) can
achieve excellent performance by learning massive labeled
data. However, labeling massive data is very time-consuming
and needs great manual effort, which limits its application at an
industrial scale. In comparison, unsupervised outlier detection
does not need labeling and can achieve good accuracy in most
cases. Even though some of their results are poor in complicated
scenarios, unsupervised methods, namely Kmeans, Gaussian
Mixture Model (GMM), CURE (Lathiya and Rani, 2016),
Density-Based Spatial Clustering of Application with Noise
(DBSCAN) (Manh and Kim, 2011), local outlier factor (LOF)
(Pokrajac et al., 2007) and isolation forest (iForest) (Liu et al.,
2008) are extensively used in real-world scenarios because they
are easy to implement. Subsequently, there have been several
attempts to use an unsupervised model to clean PMU data in the
smart grid. For example, in (Mahapatra et al., 2016), principal
component analysis (PCA) is used to detect outliers in PMU
measurements. Likewise, PCA is incorporated with an artificial
neural network (ANN) to improve detection accuracy
(Mahapatra et al., 2017).

Meanwhile, researchers have been drawn to the drawbacks of
stand-alone approaches, which produce inconsistent results in
complex situations. As a result, various ensemble-based models
have been designed to address deficiencies in real-world
applications and improve their performance. For example, to
improve accuracy, the local outlier factor (LOF) algorithm,
correlation outlier probabilities, and single-linkage-based outlier
detection methods are used (Kummerow et al., 2018). The
DBSCAN, Chebyshev, and linear regression models are
combined to predict PMU outliers (Zhou et al., 2019), but the
approach cannot distinguish abnormal and regular operations. The
Kmeans and local outlier probability methods are used to identify
various types of anomalies based on the iForest anomaly score,
such as fault detection, transient disturbance, etc. (Khaledian et al.,
2020). In complex scenarios, these ensemble methods can present
improved performance. However, the performance of extremely
big data sets that may be computationally analyzed to discover
patterns is rarely mentioned.

With the development and deployment of PMUs, the size of
received data risen exponentially for a data center. (Khan et al.,
2014; Yang et al., 2015). When dealing with vast amounts of data,
conventional data processing methods can take days or weeks,
which is insufficient time for data analysis. As a result, to ensure
successful data processing, some attempts focus on big data
technology. An adaptive hoeffding tree with a transfer learning
approach is proposed (Mrabet et al., 2019) to detect the PMU
data’s events. In another attempt, a feature generation system is
well-designed via Apache Spark core, which successfully fits 400
PMUs from the North American power grid (Kumar et al., 2021).
A streaming interface based on Apache Spark for the
synchrophasor data stream is investigated (Menon et al.,
2018). Despite this, the integration and expansion of detection
algorithms on existing big data platforms have limitations.

Furthermore, data filling is often addressed in publications as
an important step in avoiding missing values. Statistic techniques
and machine learning methods can complete the data filling
processing. For statistic techniques, an improved cubic spline
interpolation method is used to recover the missing data in the
transient state and static state of power systems (Yang et al.,
2019). A feature component extraction-based approach is
proposed to recover a single channel data of PMU, which
accounts for more details of the data waveform (Gao et al.,
2016), but the relationship between PMUs is ignored. By
contrast, an extreme learning machine and a random vector
functional link model are introduced to produce good filling
results (Li et al., 2019). Besides, artificial neural network
technologies are also developed to achieve a good performance
against complex scenarios. For example, a least-squares
generative adversarial network is adopted to generate adequate
monitoring data (Wang et al., 2021). Except for developing a new
method, the researchers utilize the potential information in
power systems’ features to improve the accuracy, such as
network topologies and operation mode. In (Ren and Xu,
2019), the network topologies are considered in a recovery
program based on a generative adversarial network (GAN).
Although the importance of topology in data recovery
processing is investigated, publications seldom cover the whole
data cleaning process, including outlier detection and data
recovery.

Traditional bad data detection algorithms may underperform
when dealing with complex scenarios and take a long time to run
without big data technologies. Our motivation is to investigate
how to apply the complete data cleaning process of PMUs,
including outlier detection and data filling, to existing big data
platforms to achieve expected performance. A flexible ensemble
approach for data cleaning is given in this study to adapt to the
failure of a single technique. In outliers detection, we adopt an
ensemble method that includes three sub-detectors, the Kmeans
combined with PCA, GMM, and iForest. A flexible voting
mechanism then aggregates their results, and the aggregation
is used to label outliers. After the outliers detection, the Gradient
Boost Decision Tree (GBDT) is used and well designed to recover
missing data and observed outliers. Apache Spark platform, Spark
streaming system, Kafka and Hadoop distributed file system is
selected to perform and test the proposed algorithm with massive
datasets. In more detail, the contributions of this paper are listed
as follows. First, a flexible data cleaning algorithm uses Apache
Spark to automate the identification of outliers and retrieve
missing data. Second, we propose a flexible voting mechanism
for outlier detection to aggregate the outputs of PCA-Kmeans,
GMM, and iForest in complex cleaning scenarios.

PROBLEM DESCRIPTIONS

The Framework of Proposed Data Cleaning
via Spark
Figure 1 depicts a hierarchical data-cleaning framework
proposed in this paper. The presented data cleaning algorithm
is deployed in the Spark and Hadoop distributed file systems.
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Master nodes and worker nodes are included in the system (2
nodes, as shown in Figure 1). When the proposed algorithm
interacts with the master node, the master node asks the cluster
manager for computing resources. The cluster manager responds
by allocating jobs to worker nodes, and the worker nodes perform
tasks based on PMU data.

The proposed data cleaning process is divided into three
stages, as shown in Figure 1. The first step is to prepare the
data. In this stage, the PMU data is uploaded to the worker nodes,
preparing them for the next cleaning process. The cleaning
procedure is preceded by a preprocess duplication and missing
values. We remove duplication data and then find missing values.
In this condition, the remaining data with noises are normalized.
After that, the missing values labelled with “−2” and the
normalized data are combined to form the dataset. Choosing
−2 is to distinguish missing values from the normalized data (Liu
et al., 2020). In the second stage, we randomly sample from the
dataset to train PCA-KMeans, GMM, and iForest algorithms to
predict outliers using a soft voting mechanism. Note that outliers
include noise data. In the third stage, the outliers and missing
values with “−2” are replaced with null values due to their
abnormal features. If any record only contains null values,
linear regression is used to recover this record.

Outlier Detection
In general, outlier detection algorithms should be unresponsive to
normal data, resilient and robust to outliers, and capable of
computation. However, only a few algorithms can meet the
requirement in most cases, and the algorithm’s output can
jeopardize the data analysis credibility. To be more specific, 1)
the algorithm may be insensitive to one or more types of outliers,
such as bad data or missing values. 2) the model with adjustable
parameters generates a high computational cost when cleaning a
large dataset and can result in overfitting. 3) The algorithm may
be vulnerable to standard power system manual operations, such
as network topology changes.

To demonstrate more clearly, we take a section of PMU data
shown in Figure 2, where five points are identified as outliers and
highlighted in the figure. The state-of-the-art detecting
algorithms, Kmeans, GMM, iForest, DBSCAN, and LOF, are

compared, with their parameters tuned. Most of the algorithms
miss two outliers due to the topology change. However, only a
small number of algorithms are capable of detecting all outliers.

To overcome these challenges, combining different findings
from different detectors is necessary. The combining model can
take advantage of every detector by aggregation and coherently
achieve better performance. Its aggregation mechanism is the key
to utilize the benefits fully. This paper investigates a flexible
voting aggregation mechanism for the ensemble method to
identify outliers.

Furthermore, in an ensemble algorithm, sub-detector selection
is a critical step. In theory, any outlier detectors can be used for
the ensemble, but since the compute resource is limited, the sub-
detector number is limited. In the sub-detector selection, the
detectors based on different methodologies are welcomed. In this
paper, the density-based method, iForest, is chosen because of its
high scalability and low memory use. The clustering-based
methods, Kmeans and GMM, are used since the Kmeans ease
of implementation in distributed computing. The GMM is
selected because of its fuzzy clustering, which provides the
probability of data points belonging to each cluster and is
more flexible than Kmeans. While starting the cleaning
process, three detectors are trained by the sampling data and
then process the entire data separately and simultaneously using
Spark’s pipeline mechanism which can improve computing
efficiency.

FIGURE 1 | The framework of data cleaning in Spark.

FIGURE 2 | The framework of data cleaning in Spark.
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Data Filling
Standard manual operations, such as network topology changes and
line maintenance, often occur and cause PMU data to drift. Some
filling algorithms, on the other hand, ignore the information and
predict a significant error. As a result, such information should be
considered when training a filling algorithm.

Furthermore, the filling algorithm’s accuracy should be given
more consideration. As a famous filling algorithm, GBDT can
reach a high accuracy than other filling algorithms. The GBDT is
a classic ensemble learning method that creates a strong
regression tree by combining weak regression trees (typically
train classification and regression tree (CART)). Thereupon,
GBDT handles nonlinear relationships well and achieves high
accuracy in fragmented datasets. Therefore, we adopt the GBDT
method against missing data packets.

ENSEMBLE MODELING FOR OUTLIER
DETECTION

Data Preparation
In this subsection, an ensemble method based on sub-detector
PCA-Kmeans, GMM, and the iForest algorithm is proposed in
order to obtain a more accurate detection of an outlier. To clearly
illustrate the process, let D � dk, dk+1, dk+2, . . . , dk+w be the kth
data window with size w, while D is a set of data rows. In which
each data row dicontains seven components: voltage magnitude,
current magnitude, current angle, active power, apparent power,
reactive power, and power factor angle.

PCA-Kmeans Detector
The Kmeans is a classical classifying method that marks the data
into several clusters. By analyzing and classifying the clusters, the

clusters of outliers can be detected. However, given the potential
vulnerability of the Kmeans on high dimensional data, the PCA
approach is combined with Kmeans to reduce the dimension of
the data, called the PCA-Kmeans detector. The PCA approach is
one of the most popular dimensionality reduction techniques
(Mahapatra et al., 2017), aiming to find an orthogonal subspace
whose basis vectors correspond to the maximum-variance
directions in the original space. By using the output of the
PCA model, the Kmeans method can achieve better accuracy.
For clarity, let take B � {b1, b2, . . . , bi, . . . , bw} as the output of
PCA. Each bi has nsub features. In the Kmeans method, each biof
B should be assigned to the cluster which has the least squared
Euclidean distance (Khaledian et al., 2020). To begin with, the k
number of the centroid is selected randomly as m(1)

1 , . . . ,m(1)
k .

Whereas a centroid is a data point at the cluster center. Next,
iterations are implemented to find the nearest centroid for each
bi, as given by Eq. 1.

C(t)
i � {bi: ‖bi −m(t)

i ‖2 ≤ ‖bi −m(t)
j ‖2 ∀j, 1≤ j≤ n} (1)

where C(t)
i is the serial number of the nearest cluster for bi in t

iteration, 1≤C(t)
i ≤ n. m(t)

i is the mass point of C(t)
i . n is the

number of clusters.
After labeling each feature set in every iteration, the centroid in

each step will be updated by Eq. 2.

m(t+1)
i � 1∣∣∣∣C(t)

i

∣∣∣∣ ∑
bi∈C(t)

i

bi (2)

Meanwhile, when the centroid difference in an adjacent
iteration is less than ξ, the iteration comes to a halt and gives
final labels to each feature set in vector B based on Eq. 3.

m(t+1)
i −m(t+1)

i ≤ ξ (3)

FIGURE 3 | The mechanism of iTree.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 6950574

Shen et al. Algorithm for PMUs’ Data Cleaning

45

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


where Ei is the mean of data points in Ci , ξ is a very small positive
number. Here, we take the result of the PCA-Kmeans that is a set
of cluster labels Skmeans.

Gaussian Mixture Model-Based Detector
The GMM is a useful algorithm for detecting outliers based on a
density function (De la Torre et al., 2012). Unlike Kmeans, the
data is assumed to be modelled by several Gaussian density
functions in this method. Each Gaussian density in the kth is
given by a Gaussian function Eq. 4. The GMM model is the
weighted sum of several Gaussian densities, illustrated by Eq. 5.

gk(d∣∣∣∣μk, σk) � 1�����
2πσ2

k

√ e
−(d−μk)2

2σ2
k (4)

g(D; μ,π, σ) � ∑M
k�1

πkgk(D; μk, σk) (5)

where π � {π1, . . . , πM}, μ � {μ1, . . . , μM}, σ � {σ1, . . . , σM}, and
πkis the specific weights of each Gaussianmodel within a mixture.
M is the number of Gaussian function. μk, σkare the means and
the covariance matrix of each model, respectively.

To determine the parameters such as π, μ, σ of the Gaussian
functions, the maximum likelihood function given by Eq. 6 is
used for help by using the Expectation-Maximization (EM
Algorithm) (De la Torre et al., 2012). The log-likelihood is
used as Eq. 7 to determine if a data point belongs to the
Gaussian functions measured earlier. The GMM’s output is
then assigned the weight of each data point to simple
Gaussian density.

L(μ,π, σ) � ∏w
i�1

∑M
k�1

πkgk(di; μk, σk) (6)

log L(μ,π, σ) � ∑M
k�1

∑w
i�1

zki{log( πk) + log(gk(di; μk, σk)) } (7)

Zki contains 0 or 1 depending on whether the data di belongs to
Gaussian function k.

The mean log-likelihood criterion is then used to determine if
the incoming data in the next window matches with the current
GMM or not (Diaz-Rozo et al., 2018); it is calculated using Eq. 8.

log L(μ,π, σ) � 1
w

∑w
i�1

log⎛⎝∑M
k�1

πkgk(d; μk, σk)⎞⎠ (8)

Isolation Forest Detector
In general, anomalies are less common than normal findings and
have different values. The Isolation Forest algorithm takes advantage
of this feature tomeasure a dataset’s anomaly ratings, which are then
used to distinguish outlier points (Liu et al., 2008). In this subsection,
isolation trees (iTree) and path lengths are introduced.

For clarification, let us take a random binary tree as an example;
partitioning observations is repeated recursively until all the
observations are isolated. As shown in Figure 3, the iTree that
uses a binary tree structure is proposed to isolate observations.

Definition 1 (iTree): iTree is a random binary tree with no
more than two children per node. As shown in Figure 3, internal
nodes have exactly two children, while external nodes have none.
Each internal node has a randomly chosen function q and a split
value p, resulting in the node’s split into two child nodes
according to the condition q < p. This process is repeated
until all of the nodes have just one case.

FIGURE 4 | The flowchart of the proposed algorithm.
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We denote a training dataset with N instances by X � {x1, . . . ,
xN}. The subsampled setx⊂X is sampled from Xwith φ instances,
which is utilized for training an iTree. The process of building an
iTree is to divide up the subsampled set x recursively into
subspaces. Note that we adopt only subsampled sets of small
fixed sizes to build iTrees, regardless of the dataset’s size. This
way, we can obtain each iTree very swiftly.

Anomalies are isolated closer to the root node of an iTree and have
short path lengths, as seen in Figure 3. On the other hand, standard
points are isolated at the deep end of an iTree and therefore have long
path lengths. As a result, anomaly scores are a function of path
lengths. The length of the route is determined as follows.

Definition 2 (Path length): l(x) is the number of edges between
the root node and the external node corresponding to an instance
x in the iTree.

For the same dataset X, we can build multiple iTrees that are
constructed by randomly selected features, split values, and
subsampled datasets. To aggregate the results of iTrees and
calculate the anomaly score, we first introduce an average path
length c(φ) for instances φ in an iTree calculated by Eq. 9. This
average path length can represent the length situation of the
instances φ, which is used to normalize the length of each
component x in the instances. Next, the anomaly score of each
component x in the instance φ can be obtained by calculating Eq.
10. The anomaly score ranges from 0 to 1, and the data instance will
be normal if the score is lower than 0.5 (Liu et al., 2008). Further, the
data instance which is closed to 1 can be detected as an outlier.

⎧⎪⎪⎨⎪⎪⎩ c(φ) � 2H(φ − 1) − 2(φ − 1)
φ

H(φ − 1) ≈ log(φ − 1) + e

(9)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
s(x,φ) � 0.5 − 2

− E(l(x))
c(φ)

E(l(x)) � 1
NTree

∑NTree

n�1
ln(x)

(10)

where e is the Euler constant; l(x) is the path length of each
component x in the instance φ. The expected path length is
represented as E (l(x)). NTree is the number of iTrees.

Soft Voting Mechanism
To fully utilize the advantages of sub-detectors, a soft voting
mechanism is used to combine the sub-detectors predictions and
increase robustness to complex scenarios. In particular, compared to
the outlier probability given by GMM and iForest, the prediction of
Kmeans is “hard” and has less elasticity against the scenario because
it only gives a cluster label to each data point. TheKmeans prediction
should be combined with another “soft” approach with a similar
mechanism to deal with the poor results. For example, GMM, a soft
clustering method, is used to multiple the Kmeans results marked as
SkmeansPGMM . Although SKmeans � 1, which means outlier detected in
the Kmeans method, the outlier probability is still driven by GMM.
Furthermore, to account for diversity in our voting mechanism’s
final prediction, the average outlier likelihood of all sub-detectors is
used, as seen in Eq. 11.

P � SkmeansPGMM + PGMM + PiForest

3
(11)

SKmeans, PGMM, and PiForest are the output of the PCA-
KMeans, GMM, and iForest algorithms. SKmeans is a binary
variable, and SKmeans � 0 addresses the normal data, while
abnormal data is annotated as 1. PGMM is the probability of
outliers for an observation, which is closed to 1, meaning outlier.
PiForest is the anomaly score of the data point.

DATA FILLING PROCESS AND DATA
CLEANING FUNCTION
Gradient Boosting Decision Tree-Based
Filler
As discussed in Problem Descriptions, data filling is an important
part of data cleaning, and it is a regression problem by definition.
For PMU data, it is possible to have missing values for each
feature, which presents as single or continuous types in a dataset.
To tackle different types of missing values, the GBDT model is
trained for each feature of PMU data, respectively. In case of
single missing value occurs in a feature, the GBDT model can

TABLE 1 | The details of outlier detection datasets.

Dataset Points Feature Outliers (%)

Satellite 6,435 36 2036 (32%)
Shuttle 49,097 9 3,511 (7%)
BreastW 683 9 239 (35%)
Http 567,479 3 2,211 (0.4%)

TABLE 2 | The results of the proposed method with outlier detection datasets.

Metrics Datasets

Satellite Shuttle BreastW Http

TP 1,343 3,375 222 2,185
FP 145 145 17 84
TN 4,654 45,440 427 565,203
FN 293 137 17 26
Precision 0.90 0.96 0.93 0.96
Recall 0.82 0.96 0.93 0.99

FIGURE 5 | The testing IEEE 14-bus system.
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easily fill it using the other features as input. By contrast, when
facing the continuous missing values loss of all features, the
topology is the first to be recovered using the last instance. Then,
the variables strongly associated with time—such as active
power—are recovered by the linear regression method. Next,
the other features are retrieved by the GBDT method.

The GBDT is used as a filler and to model an approximation
function f(X) of a specified result Y � {y1, y2, . . . , yn} with a set of
the input variable as X � {x1, x2, . . . , xnsp}. nsp is the length.
During the approximation process, a loss function is usually
adopted to search for the most precise approximation function.
As illustrated in Eq. 12, the most precise model is obtained when
the loss function is minimum. Here, we select the squared error
function as the loss function shown in Eq. 13.

F(x) � arg minf (x)L(y, f (x)) (12)

L(y, f (x)) � [y − f (x)]2 (13)

The optimization can be effectively solved by a gradient descent
algorithm, and the approximation function can be updated using
the results of every iteration, illustrated via Eq. 14. In each iteration,
the GBDT model uses the results in the last iteration and a
classification and regression tree (CART), which is updated as
Eq. 14. Especially in the initial iteration, f0(x) � 0.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (x) � ∑M
m�1

f m(x)

f m(x) � f m−1(x) + γm ∑J
j�1

cmjI, x∈ RmJ

(14)

where M is the length of iterations. m is the serial number of

iteration. ∑J
j�1

cmjI is the result of the CART. J is the number of leaf

nodes of the CART. The area disjointed by each leaf node is Rm1,
Rm2, . . . , RmJ. cmj is the prediction value of jth area. γmcan be
calculated by Eq. 15, and yi is the actual value of variable y.

γm � arg minγ∑
i�1
L⎛⎝yi, f m−1(xi) + γ∑J

j�1
cmjI,⎞⎠ (15)

By repeating the above interactive steps, the output of GBDT
can be obtained by the final iteration.

The Proposed Processing of Data Cleaning
A flowchart of the proposed strategy is shown in Figure 4. Step 1:
after eliminating duplication and detecting missing values, normalize
the remaining data. Step 2: replace missing values with ‘-2’ and train
PCA-KMeans, GMM, and iForest algorithms by sampling the
normalized data. Step 3: detect the entire data by Eqs. 1–10 and
combine PCA-KMeans, GMM, and iForest to eliminate outliers via a
soft voting approach. Step 4: if any record only contains null values,
using linear regression recovers the time-dependent features of
records and then employing GBDT recovers the entire data. Step
5: otherwise, GBDT is used to recover the entire data.

NUMERICAL SIMULATION

Experimental Settings
In this simulation, the detailed experimental evaluation is
presented with Spark 2.4.0, Kafka 0.10.1.0, Hadoop 2.4.7 under
Ubuntu 16.04 operation system. Three scenarios are presented to
demonstrate the feasibility of the proposed process. The outlier

TABLE 3 | The noises injection of simulated scenarios.

Abnormal type Anomalies calculation in each feature Abnormal/Data points

Noise 5% 1.p.u *105% + G(x) 569/4,000
Noise 10% 1.p.u *105% + G(x) 1,091/4,000
Noise 15% 1.p.u *105% + G(x) 1,529/4,000

FIGURE 6 | The segment of synthetic noise-5% PMU data.

TABLE 4 | The outlier detection results in simulated scenarios.

Algorithm Metrics Abnormal rate

5% 10% 15%

Proposed FEA TP 564 1,077 1,510
FP 16 14 21
TN 3,415 2,895 2,397
FN 5 14 19

Precision 0.972 0.987 0.986
Recall 0.991 0.987 0.987

DBSCAN TP 568 1,090 1,529
FP 6 15 0
TN 3,425 2,856 2,430
FN 1 38 41

Precision 0.989 0.986 1
Recall 0.998 0.966 0.974

LOF TP 550 1,047 1,484
FP 19 44 45
TN 3,412 2,891 2,455
FN 19 18 16

Precision 0.97 0.960 0.970
Recall 0.97 0.983 0.989
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identification function of the proposed approach is firstly
evaluated by an industrial dataset from the reference (Liu
et al., 2008), considering precision and recall metrics.
Secondly, the outlier detection function is examined using

simulated PMU data and real PMU data. Finally, the mean
absolute error and the root mean squared error are employed
to evaluate the precision of the proposed approach in recovering
data compared with the linear regression algorithm and the
decision tree approach.

Outlier Detection of the Public Industrial
Dataset
The proposed algorithm (FEA) is recommended in this scenario for
detecting real-world datasets from outlier detection datasets and
generating a score. Considering Satellite, Shuttle, Breastw, and Http
datasets (Liu et al., 2008) illustrated in Table 1, a confusion matrix,
which includes false positive (Fp), false negative (Fn), true positive (Tp),
and true negative (Tn), is used to validate the performance of the
proposed algorithm. Following that, we can use Eqs. 18, 19 to measure
the recall and precision ratios for further discussion.

FIGURE 7 | (A) The distribution of normal and abnormal data in noise-5% (B) The range of proposed FEA and DBSCAN.

FIGURE 8 | (A) The distribution of noise-5% data with a range of different detectors (B) The range of proposed FEA and GMM, KMeans and iForest.

FIGURE 9 | A feature of real-world PMU data.

TABLE 5 | The outlier detection results in real-world scenarios.

Algorithm Metrics

TP FP TN FN Precision Recall

FEA 1,077 10 33,811 46 0.991 0.959
DBSCAN 1,082 71 33,769 22 0.982 0.964
LOF 1,102 51 33,740 51 0.956 0.956

TABLE 6 | The data recovery results in real-world scenarios.

Algorithm Metrics

MAE RMSE R2-score

FEA-GBDT 0.354 0.463 0.910
Decision tree 0.366 0.483 0.904
Linear regression 0.378 0.476 0.900

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 6950578

Shen et al. Algorithm for PMUs’ Data Cleaning

49

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


recall � Tp

Tp + TN
(18)

precision � Tp

Tp + FP
(19)

The number of outliers detected as outliers is TP, and the
number of normal data detected as normal data is TN. At the same
time, FP stands for the number of normal data points that have
been identified as outliers. The number of outliers detected as
normal data is given by FN.

As shown in Table 2, the proposed FEA can achieve good
performance while cleaning all types of data with large and highly
polluted information, although this recall is about 82% for Satellite.

Outlier Detection of Synthetic PMU Dataset
Using PMU operational data, the proposed method and other
methods are compared in this subsection. In PSCAD/EMTDC,
simulation data is produced using a model IEEE 14-bus network
system with PMUs installed on bus-2,6,9, as shown in Figure 5.
The length of operation data of PMU is 4,000 points with a
sampling rate of 40 frames per second. The data is polluted by
outliers and missing values using a Gaussian-distributed random
function as z � G(x). Table 3 shows that each PMU data has 5
percent -15 percent noise and 5 percent -15 percent missing
values injected into it. As an example, if a data point has a voltage
feature of 35kV, the noise is calculated as 35*105% + G(x). As
illustrated in Figure 6, one segment of the synthetic data is added
by a noise-5% PMU data.

Changing the ratios of white noises and null values, the
proposed FEA can maintain an expected performance, as
shown in Table 4. For instance, considering the dataset with
15% noise, DBSCAN and FEA have similar results. As illustrated
in Figure 7A, the normal and abnormal data are used to predict
the outliers. As shown in Figure 7B, DBSCAN has a little larger
cover of normal data than FEA does, which means that DBSCAN
can achieve slightly better precision than FEA.

Following that, Figure 8A illustrates the range of sub-detectors
used in our ensemble method. The details indicate that the KMeans
range is the largest but includes some abnormal data, indicating that
this method detects more outliers than normal data (FN), as shown
in Figure 8B iForest has a smaller range than KMeans but perfectly
covers all normal data. GMM has a narrow range and may predict
more normal data as outliers (FP). By combining the advantages of
each sub-detector, the FEA can achieve a normal range size while
maintaining a high level of outlier detection performance.

Outlier Detection of Real-World PMU
Dataset
For performance estimation, real-world PMU data from a specific
region in southwest China is used, and domain experts label
outliers and missing values in the dataset. FEA can detect
outliers and missing values, as shown in Figure 9. As presented
in Table 5, the FEA can efficiently clean data with a precision of
99.1 percent and a recall of 95.9 percent. The good performances in
real-world PMUdata again verify the proposed FEA’s effectiveness.

Data Recovery of Real-World PMU Dataset
The linear regression, decision tree, and GBDT algorithms are
introduced in this sub-section to complete the regression training
process and fill null values with real-world PMU data. The root
squared measurement error (RSME), mean absolute error
(MAE), and R2-score are respectively calculated to evaluate the
performance of the proposed approach in Eqs. 20–22.

MAE � 1
N

∑N
i�1

∣∣∣∣yi − h(xi)
∣∣∣∣ (20)

RSME �

���������������
1
N

∑N
i�1

(yi − h(xi))2
√√

(21)

R2 � 1 −∑N
i�1 (yi − h(xi))2∑N
i�1 (yi − yi)2 (22)

where N is the size of data, yi is data point, H(xi) is the prediction
with the input xi, and yi is the average of data.

As illustrated in Table 6, the performance of the proposed
FEA-GBDT is superior to that of the other algorithms because of
lower MAE and RMSE and larger R2-score.

CONCLUSION

This paper proposes a modular ensemble-based cleaning approach
for PMUs to achieve outlier detection and data filling using big data
technologies. The proposed approach considers and aggregates the
advantages of different methods such as KMeans, GMM, and iForest
for outlier identification, allowing it to perform better. Missing values
due to system error are also investigated and retrieved using the
proposed process. Notably, computational results show that the
proposed approach can effectively process outliers, is resilient to a
high percentage of bad data, and performs well with a large dataset.
The proposed method achieves accurate prediction as compared to
DBSCAN and LOF algorithms. The proposed approach, in
particular, can handle large datasets deployed on Hadoop and
Spark systems. When data filling is taken into account, our model
produces a lowermean absolute error and root squaredmeasurement
error and R2-score. Furthermore, our algorithm results show that
using big data technology, a single detector’s poor performance and
low efficiency can be replaced by a high-efficiency ensemble
approach. PMUs’ outlier detection and data filling functions have
the potential to clean and use data in real-time for fault detection, data
processing, and prediction.

Some factors, such as communication infrastructure and
system maintenance, may have an impact on the proposed
algorithm’s efficiency. As a result, our future work will focus
on taking into account the aforementioned considerations and
refining the proposed approach in these scenarios.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 6950579

Shen et al. Algorithm for PMUs’ Data Cleaning

50

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


AUTHOR CONTRIBUTIONS

Conception and design of study: LS Acquisition of data: ML, XHDrafting
the article: RQ, XH Analysis and interpretation of data: LS, RQ, ML, CG
Revising thearticle critically for important intellectual content:RQ,XM,RD.

FUNDING

This work was supported by the Science and
Technology Foundation of China Southern Power Grid
(YNKJXM20191369).

REFERENCES

De la Torre, F. (2012). A Least-Squares Framework for Component Analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 34 (6), 1041–1055. doi:10.1109/
TPAMI.2011.184

Diaz-Rozo, J., Bielza, C., and Larrañaga, P. (2018). Clustering of Data Streams with
Dynamic Gaussian Mixture Models: An IoT Application in Industrial
Processes. IEEE Internet Things J. 5 (5), 3533–3547. doi:10.1109/
JIOT.2018.2840129

Gao, P., Wang, M., Ghiocel, S. G., Chow, J. H., Fardanesh, B., and Stefopoulos, G.
(2016). Missing Data Recovery by Exploiting Low-Dimensionality in Power
System Synchrophasor Measurements. IEEE Trans. Power Syst. 31 (2),
1006–1013. doi:10.1109/TPWRS.2015.2413935

Khaledian, E., Pandey, S., Kundu, P., and Srivastava, A. K. (2021). Real-Time
Synchrophasor Data Anomaly Detection and Classification Using Isolation
Forest, KMeans, and LoOP. IEEE Trans. Smart Grid 12, 2378–2388. IEEE
Trans. Smart Grid (Early Access)in press. doi:10.1109/TSG.2020.3046602

Khan, M., Li, M., Ashton, P., Taylor, G., and Liu, J. (2014). “Big Data Analytics on PMU
Measurements,” in 2014 11th International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD). Xiamen, China. August 19-21, 2014, 715–719.

Kumar, V. S., Wang, T., Aggour, K. S., Wang, P., Hart, P. J., and Yan, W.
(2021). “Big Data Analysis of Massive PMU Datasets: A Data Platform
Perspective,” in 2021IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference (ISGT). Washington, DC, USA. February 17-20,
2021, 1–5.

Kummerow, A., Nicolai, S., and Bretschneider, P. (2018). “Ensemble Approach for
Automated Extraction of Critical Events from Mixed Historical PMU Data
Sets,” in 2018 IEEE Power & Energy Society General Meeting (PESGM).
Portland, OR. August 20-25, 2018, 1–5.

Lathiya, P., and Rani, R. (2016). “Improved CURE Clustering for Big Data Using
Hadoop and Mapreduce,” in 2016 International Conference on Inventive
Computation Technologies (ICICT). Coimbatore, India. August 26-
272016, 1–5.

Li, Q., Xu, Y., Ren, C., and Zhao, J. (2019). “A Hybrid Data-Driven Method for
Online Power System Dynamic Security Assessment with Incomplete PMU
Measurements,” in 2019 IEEE Power & Energy Society General Meeting
(PESGM). Atlanta, GA, USA. August 4-8, 2019, 1–5.

Liu, F. T., Ting, K. M., and Zhou, Z. (2008). “Isolation Forest,” in 2008 Eighth IEEE
International Conference on Data Mining, December 15-19, 2008. Pisa, Italy,
413–422.

Liu, J., Cao, Y., Li, Y., Guo, Y., and Deng, W. (2020). A Big Data Cleaning Method
Based on Improved CLOF and Random Forest for Distribution Network. CSEE
J. Power Energ. Syst. 1 –10. doi:10.17775/CSEEJPES.2020.04080

Ma, J., and Perkins, S. (2003). “Time-series novelty Detection Using One-Class Support
Vector Machines,” in Proceedings of the International Joint Conference on Neural
Networks. PortlandUSA: OR. July 20-24, 2003, 1741–1745.

Mahapatra, K., Chaudhuri, N. R., and Kavasseri, R. (2016). “Bad Data Detection in
PMU Measurements Using Principal Component Analysis,” in 2016 North
American Power Symposium (NAPS), September 18-20, 2016. Denver, CO,
USA, 1–6.

Mahapatra, K., Chaudhuri, N. R., and Kavasseri, R. (2017). “Online Bad Data
Outlier Detection in PMU Measurements Using PCA Feature-Driven ANN
Classifier,” in 2017 IEEE Power & Energy Society General Meeting (PESGM).
July 16-20, 2017. Chicago, IL, USA, 1–5.

Manh, T. T., and Kim, J. (2011). “TheAnomalyDetection byUsingDBSCANClustering
withMultiple Parameters,” in 2011 International Conference on Information Science
and Applications. April 26-29, 2011. Jeju, Korea (South), 1–5.

Menon, V. K., Variyar, V. S., Soman, K. P., Gopalakrishnan, E. A., Kottayil, S. K.,
Almas, M. S., et al. (2018). “A Spark™ Based Client for Synchrophasor Data

Stream Processing,” in 2018 International Conference and Utility Exhibition on
Green Energy for Sustainable Development (ICUE). Phuket, Thailand. October
1-32018, 1–9.

Mrabet, Z. E., Selvaraj, D. F., and Ranganathan, P. (2019). “Adaptive Hoeffding
Tree with Transfer Learning for Streaming Synchrophasor Data Sets,” in 2019
IEEE International Conference on Big Data (Big Data), December 9-12, 2019.
Los Angeles, CA, USA, 5697–5704.

Pokrajac, D., Lazarevic, A., and Jan, L. L. (2007). “Incremental Local Outlier Detection for
Data Streams,” in 2007 IEEE Symposium on Computational Intelligence and Data
Mining. March 1-April 5.2007. Honolulu, HI, USA, 504–515.

Reif, M., Goldstein, M., Stahl, A., and Breuel, T. M. (2008). “Anomaly Detection by
Combining Decision Trees and Parametric Densities,” in 2008 19th
International Conference on Pattern Recognition, December 8-11, 2008.
Tampa, FL, USA, 1–4.

Ren, C., and Xu, Y. (2019). A Fully Data-Driven Method Based on Generative
Adversarial Networks for Power System Dynamic Security Assessment with
Missing Data. IEEE Trans. Power Syst. 34 (6), 5044–5052. doi:10.1109/
TPWRS.2019.2922671

Ren, H., Hou, Z. J., Vyakaranam, B., Wang, H., and Etingov, P. (2020). Power
System Event Classification and Localization Using a Convolutional Neural
Network. Front. Energ. Res. 8, 607826–607837. doi:10.3389/fenrg.2020.607826

Wang, C., Cao, Y., Zhang, S., and Ling, T. (2021). A Reconstruction Method for
Missing Data in Power System Measurement Based on LSGAN. Front. Energ.
Res. 9, 651807–651820. doi:10.3389/fenrg.2021.651807

Wu, D., jiang, Z., Xie, X., Wei, X., Yu, W., and Li, R. (2020). LSTM Learning with
Bayesian and Gaussian Processing for Anomaly Detection in Industrial IoT.
IEEE Trans. Ind. Inf. 16 (8), 5244–5253. doi:10.1109/TII.2019.2952917

Yang, B., Yamazaki, J., Saito, N., Kokai, Y., and Xie, D. (2015). “Big Data Analytic
Empowered Grid Applications — Is PMU a Big Data Issue?,” in 2015 12th
International Conference on the European Energy Market (EEM). May 19-22,
2015. Lisbon, Portugal, 1–4.

Yang, Z., Liu, H., Bi, T., Yang, Q., and Xue, A. (2019). “A PMU Data Recovery
Method Based on Feature Component Extraction,” in 2019 IEEE Power &
Energy Society General Meeting (PESGM). August 4-8. Atlanta, GA, USA, 1–5.

Zhao, J., Qi, J., Huang, Z., Meliopoulos, A. P. S., Gomez-Exposito, A., Netto, M.,
et al. (2019). Power System Dynamic State Estimation: Motivations,
Definitions, Methodologies, and Future Work. IEEE Trans. Power Syst. 34
(4), 3188–3198. doi:10.1109/TPWRS.2019.2894769

Zhou, M., Wang, Y., Srivastava, A. K., Wu, Y., and Banerjee, P. (2019).
Ensemble-Based Algorithm for Synchrophasor Data Anomaly Detection.
IEEE Trans. Smart Grid 10 (3), 2979–2988. doi:10.1109/
TSG.2018.2816027

Conflict of Interest:Authors LS, XH,ML, RQ, CG, XM, and RDwere employed by
the company Electric Power Research Institute of Yunnan Power Grid
Company Ltd.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Shen, He, Liu, Qin, Guo, Meng and Duan. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 69505710

Shen et al. Algorithm for PMUs’ Data Cleaning

51

https://doi.org/10.1109/TPAMI.2011.184
https://doi.org/10.1109/TPAMI.2011.184
https://doi.org/10.1109/JIOT.2018.2840129
https://doi.org/10.1109/JIOT.2018.2840129
https://doi.org/10.1109/TPWRS.2015.2413935
https://doi.org/10.1109/TSG.2020.3046602
https://doi.org/10.17775/CSEEJPES.2020.04080
https://doi.org/10.1109/TPWRS.2019.2922671
https://doi.org/10.1109/TPWRS.2019.2922671
https://doi.org/10.3389/fenrg.2020.607826
https://doi.org/10.3389/fenrg.2021.651807
https://doi.org/10.1109/TII.2019.2952917
https://doi.org/10.1109/TPWRS.2019.2894769
https://doi.org/10.1109/TSG.2018.2816027
https://doi.org/10.1109/TSG.2018.2816027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Nonintrusive Monitoring for Electric
Vehicles Based on Zero-Shot Learning
Jingwei Hu, Rufei Ren, Jie Hu and Qiuye Sun*

College of Information Science and Engineering, Northeastern University, Shenyang, China

Monitoring the charging behavior of electric vehicle clusters will contribute to developing
more effective energy management strategies for grid operators. A low implementation
cost leads to a wide application prospect in nonintrusive monitoring for EVs. Aiming at the
problem that traditional nonintrusive monitoring methods cannot identify unknown devices
accurately due to the lack of classes, a nonintrusive monitoring method based on zero-
shot learning (ZSL) is proposed in this article, one which can monitor the unknown types of
EVs connected to charging piles. First, the charging characteristics of known EVs and
unknown EVs are extracted by dictionary learning. Then EVs are classified by ZSL based
on sparse coding. Furthermore, EVs are decomposed based on the proposed multimode
factorial hidden Markov model (FHMM). Finally, the EV dataset of Pecan Street is used to
verify the effectiveness and accuracy of the proposed method.

Keywords: nonintrusive monitoring, electric vehicles, zero-shot learning, factorial hidden markov model, long
short-term memory

1 INTRODUCTION

With the continuous improvement of the penetration of renewable energy, the gradual decline in the
electricity price has been making EVs more appealing to consumers (Liu et al., 2013). The promotion
of EVs is regarded as one of the effective means to achieve energy conservation and emission
reduction. When a large number of EVs are connected to the grid for charging and discharging, EVs
are no longer just transport agents but also controllable loads and distributed energy sources in the
energy system (Sun et al., 2019; Wang et al., 2021b). In this sense, EVs are distributed and mobile
energy storage units.

However, the random and uncertain behavior generated by the EVs’ charging demand will have
many negative effects on the grid (Ahmadian et al., 2015; Mehta et al., 2018). These effects include
increased peak power demand and overloads on feeders and transformers, especially in the
distribution network (Li et al., 2019; Wang et al., 2020a). Therefore, it is necessary to monitor
the charging and discharging behavior of EVs.

According to the EV charging environment, EV monitoring can be divided into household EV
monitoring and parking lot EV monitoring (Rastogi et al., 2019). At present, the minimum charging
and discharging power of EVs sold on the market is 3 KW, which is 5–10 times that of most
household appliances. When the household charging pile is connected with EVs, the power
fluctuation is obvious. For parking lots equipped with charging piles, most of them are planned
in buildings, such as apartments, office buildings, and shopping malls. Due to the high power
demand of EVs, it is significant to monitor such EV clusters:

1) For the parking lot with a large number of charging piles, its charging behavior has a certain
regularity and synchronization, and such cluster charging behavior will generate a surge in
the electricity demand (Li et al., 2021). In order to ensure intelligent charging of EVs, the
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power grid/third-party assistance can monitor EV charging
in a more intelligent way (Dickerman and Harrison, 2010;
Rastogi et al., 2019);

2) Charging an EV takes longer than filling up an internal
combustion engine vehicle. The real-time queuing
information for EVs can be provided by monitoring the
parking lot equipped with charging piles, including the
number of EVs being charged and the estimated waiting
time (de Weerdt et al., 2016; Goel et al., 2020);

3) In the long-term vision, one of the goals of the smart grid is to
optimize the power service economy by establishing a two-
way relationship between the power grid and EVs (Zeff, 2016).
EVs can be regarded as energy storage. In the future, the
advantages of short-term storage of EVs can be used to charge
in the trough power demand and feed energy back to the grid
in the peak power demand (Ahmadian et al., 2020; Wang
et al., 2021a).

EV monitoring can be divided into intrusive monitoring and
nonintrusive monitoring (NIM). Measurement data of each
charging pile are required to be collected in intrusive EV
monitoring, so as to realize real-time charging and discharging
power monitoring of EVs. This intrusive monitoring method has
a high cost of installation and maintenance due to the need to
install a data acquisition device on each charging pile. The
nonintrusive monitoring method was proposed by Hart in
1992. This method only needs the aggregated data measured
at a single metering point to effectively realize the monitoring and
identification of EVs.

In recent years, in the field of nonintrusive monitoring, many
scholars have devoted themselves to improving the accuracy and
applicability of NIM technology. Various methods have been
used for NIM. An energy decomposition algorithm based on the
adversarial network and the joint adaptation network is applied
to NIM, which reduces the distribution gap of the feature space
and the label space between the source domain and the target
domain (Liu et al., 2021). A multitask NIM model based on the
deep neural network is proposed, which can simultaneously
analyze energy estimation and load state detection (Cimen et al.,
2021). A hybrid event detection method is used for NIM for
devices with long transients, high fluctuations, and/or near
simultaneous action (Lu and Li, 2020). A multi-label
classification method based on sparse representation
classification is proposed, which can realize a fuzzy clustering
algorithm inspired by NIM competitive-aggregation
constrained by the entropy index through less training data
(Singh and Majumdar, 2020). A low-complexity unsupervised
NIM algorithm is proposed for the use of devices in families (Liu
et al., 2019). In view of device feature representation in event-
based NIM, Faustine et al. combined the adaptive weighted
recursive graph block with the deep neural network architecture
for device identification (Faustine et al., 2021). A convolutional
neural network based on multi-scale features and context
information is used to improve the accuracy of load
decomposition (Chen et al., 2020). In order to improve the
accuracy of new data decomposition, Hasan Rafiq trained the
deep convolutional neural network model through data

expansion (Rafiq et al., 2021). Taking advantage of the fact
that the HMM can model multimode devices separately, a
layered hidden Markov model (HHMM) is used for load
decomposition of household appliances, one which can
conduct nonintrusive monitoring of appliances with multiple
modes and different power consumptions (Kong et al., 2018).

Recently, with the popularity of EVs, nonintrusive EV
monitoring has gradually attracted the attention of scholars.
On the basis of NIM, a training-free, nonintrusive load
extraction algorithm was proposed based on boundary box
fitting and load characteristics (Zhao et al., 2019), which can
automatically identify the start time, end time, and power
amplitude of charging events. Based on the low-frequency
characteristics of the charging load mode, a charging load
extraction method based on residential smart meter data was
proposed to realize the nonintrusive extraction of the residential
EV charging load mode (Xiang et al., 2021). Based on
independent component analysis, an unsupervised EV
charging load extraction method is proposed in the study by
Munshi and Mohamed (2019). The proposed algorithm only
requires the low-frequency active power measurement data. A
nonintrusive identification method for EV charging curve
extraction driven by a depth generation model is proposed in
the study by Wang et al. (2020b). The proposed Markov model
embedded in the presentation layer can solve the likelihood
distribution overlap of learning.

However, there are many types of EVs and various battery
types in EVs, and NIM needs to know the types and
characteristics of monitored objects in advance, which greatly
limits the accuracy of monitoring EVs.

Zero-shot learning (ZSL) provides an effective solution to the
problem of class absence in nonintrusive EV monitoring. ZSL
refers to the technology of using some known category data and
the auxiliary information corresponding to the known category
to train a certain model, so as to realize the classification and
recognition of the data of the unknown category. A ZSL
approach is proposed to simulate knowledge transfer between
classes by learning visually consistent word vectors and tag
embedding models (Demirel et al., 2019). The main idea is to
project the vector space word vectors of attributes and classes
into the visual space, so as to make the word representation of
semantically related classes more close and, furthermore, use the
proposed projection vector embedded in the model to identify
the invisible classes. A transfer-sensing embedded projection
method to solve multi-label ZSL learning was proposed in the
study by Ye and Guo (2019). In this method, the label
embedding vector is projected into a low-dimensional space
to induce a better inter-label relationship, and the multi-label
classifier with the largest boundary is learned via the projection
label embedding. A ZSL classification method is proposed,
which can automatically learn label embedding from input
data in a semi-supervised large-profit learning framework, in
the study by Li et al. (2015). A generation model is proposed,
which simplifies the ZSL problem to a supervised classification
task, in the study by Sariyildiz and Cinbis (2019). A ZSL method
based on unsupervised domain adaptation was proposed in the
study by Kodirov et al. (2015). In order to overcome the problem
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of the domain shift in the process of ZSL projection, the method
regularized sparse coding to regularize the target domain
projection.

In view of this, this study proposes a nonintrusive EV
monitoring method based on the ZSL factor hidden Markov
model. Firstly, the charge–discharge characteristics of known EVs
and unknown EVs connected to the charging pile were extracted
by dictionary learning. Furthermore, ZSL based on sparse coding
is used to classify EVs. Finally, EVs are decomposed based on the
proposed FHMM based on the bilateral long-term and short-
term memory network (Bi-LSTM).

The rest of this article is organized as follows: Section 2
describes the nonintrusive EV monitoring and extracts and
classifies the charging and discharging status of EVs, Section 3
proposes an FHMM-based EV decomposition method, Section 4
discusses the proposed method of performing simulation and
verification, and conclusions are drawn in section 5.

2 EVS’ CHARGE–DISCHARGE STATUS
EXTRACTION AND CLASSIFICATION

A framework of nonintrusive monitoring for EV clusters is
given in Figure 1. The data monitored using the meter include
the building load and the EV charging load. In the study by

Munshi and Mohamed (2019), the existing EV charging loads
are summarized into seven types, as shown in Table 1.
However, as the market for EVs gradually expands, the
charging power of EVs will also be varied. During
nonintrusive monitoring of EVs’ charge–discharge power,
EVs of an unknown charge–discharge model are identified.
In the parking lot of Figure 1, there are seven known-model
EVs and one unknown-model EV.

2.1 Definitions
The total power time series monitored using the meter is
x � {x1, x2, . . . , xT }, where the EVs’ charge–discharge power
time series is P � {P1, P2, . . . , PT}. The parking lot has M
charging piles, one charging pile supports only one EV access,

FIGURE 1 | Framework of nonintrusive monitoring for the electric vehicle cluster.

TABLE 1 | Battery parameters of typical EVs.

Type Power (kW) Capacity (kWh)

Porsche Panamera 3 17.9
Nissan LEAF 3.3 24
e-Golf 3.6 35.8
BYD7009BEV2 7 76.9
ID. 3 Pure 7.2 45/58/75/77
Fiat 500e X 7.4 23.8/42
Tesla Model X 10 100
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and the charge–discharge power time series of the m − th
charging pile is pm � {pm,1, pm,2, . . . , pm,T}. pm,t represents the
magnitude of the charging power at time period t for the m − th
charging pile. In other words, the total power curves ofM charging
piles represent the charge–discharge power time series of EVs in this
region. In addition, a maximum of M EVs are charged and
discharged at time period t.

Furthermore, in the time period t, sm,t represents the
charge–discharge state of the charging pile, that is, if the
charging pile is in the charging state, then sm,t � 1; if the
charging pile is in the stopping state, then sm,t � 0; and if the
EV is in the discharging state, then sm,t � −1. It is worth
noting that one charging pile may successively access
multiple different types of EVs in the time series T.
Although the charge–discharge state of the charging pile is
a time series of (0, 1,−1), the charge–discharge power may
vary in size.

2.2 Description of the Problem
Suppose the time series of the EV charge–discharge power
of the group NEV is known, and the known dataset constituted
by it is DEV � {(pEV ,i, yEV ,i)}NEV

i�1 , where pEV ,i represents the
charge–discharge power time series of the EV of the group
i and yEV ,i represents the corresponding EV label. Each known
class EV label comes from a collection YEV of known class
labels, that is, yEV ,i ∈ YEV � {yi}QEV

i�1 , where QEV is the number
of known-type EVs. In addition, the time series of the
charge–discharge power of the group NX of EVs to be
identified constitutes the unknown dataset DX � {(pX,i, yX,i)}NX

i�1.
For each unknown power time series pX,i, its label yX,i
comes from the unknown class label set YX , that is,
yX,i ∈ YX � {yi}QX

i�1, where QX is the number of unknown-type
EVs. The set YEV of known category labels and the set YX of
unknown category labels constitute the complete set Y of
categories, and the set of known category labels and the set
of unknown category labels do not intersect with each other,
that is, YEV∪YX � Y , YEV∩YX � ∅.

In most studies at home and abroad, the nonintrusive
monitoring problem for low-frequency data is mostly
regarded as a load decomposition problem, and the related
technologies mainly have two subtasks: 1) classification and 2)
reconstruction. First, the operation state of the device can be
divided into known classes by classification, and second, the
time series monitored using the meter can be reconstructed
based on the classification results. Based on the purpose of
nonintrusive monitoring, a nonintrusive EV recognition
method based on zero-sample migration learning is
proposed in this study. The classification model is trained
by using the known dataset DEV � {(pEV ,i, yEV ,i)}NEV

i�1 of EVs and
its auxiliary information, and the knowledge learned by the
known dataset is effectively migrated to the unknown dataset,
so as to realize the classification of the unknown EV dataset.

Considering the case of the unknown type of EVs accessing
charging piles for charge–discharge, there is a mapping offset
problem due to the poor generalization ability of the mapping
model when classifying the operating state of EVs. It is shown
that in the training process, the model maps the time series of

known EVs’ charge–discharge power into the known class
label space in the semantic space, and due to the lack of the
unknown dataset composed of the time series of EVs’
charge–discharge power to be identified, the classification
model will not map the unknown dataset into the unknown
class label space at the time of testing, that is, there is a
mapping offset, and the unknown EV category cannot be
accurately identified.

2.3. Zero-Shot Classification Based on
Sparse Coding
To solve the mapping offset problem of unknown-type EVs in
the recognition process, this study converts the projection
function learning problem into a sparse coding problem
using the unsupervised domain adaptive model proposed
in the study by Kodirov et al. (2015) as follows: each
dimension of the semantic embedding space corresponds
to the dictionary base vector, and the sparse code of each
feature vector is its projection in the semantic embedding
space. Regularity terms are introduced separately for the
dictionary learning problem of the charge–discharge power
time series of known-type EVs and unknown-type EVs. The
known-type EVs’ semantic dictionary learning problem can
be expressed as follows:

LEV � min
LEV

‖PEV − LEVHEV‖2F + λ ‖LEV‖22, s.t. ‖ li‖22 ≤ 1, (1)

where LEV is the semantic dictionary of known-type EVs, HEV is
the semantic representation of known-type EVs, ‖ · ‖F is the
Frobenius norm, and λ controls the strength of the regular term.

Unlike known-type EVs’ semantic dictionary learning, in
unknown-type EVs’ semantic dictionary learning, both the
unknown-type EV semantic dictionary LX and the unknown-
type EV semantic representation SX are unknown. To overcome
the domain offset problem during learning, that is, mapping
offset, LEV and HX time is used to optimize LX . Therefore, the
unknown-type EVs’ semantic dictionary learning problem can be
expressed as follows:

{LX ,HX} � min
LX ,SX

‖PX − LXHX‖2F + λ1‖LX − LEV‖2F
+ λ2∑

i,j
ωij

�����si − qj
�����22 + λ3‖LX‖1,

s.t. ‖li‖22 ≤ 1,

(2)

where ‖LX‖1 � ∑NX
i�1‖li‖1, qj is the representation of yX,j in the

semantic embedding space, and ωij is the probability that the
input time series belongs to the label yX,j, whose size can be
estimated using the IAP model (Lampert et al., 2009). The first
regular term ‖LX − LEV‖ is used to limit the fitness of LX vs. LEV ,
and the second regular term ‖hi − qj‖ is used to limit the
similarity of the representation of unknown-type EVs’
power time series in the semantic embedding space to the
representation of unknown-type EV labels in the semantic
embedding space. Based on Eq. 3, the method of alternating
iteration is used to solve one, and HX and LX are fixed to solve
another, as follows:
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L*X � argmin
LX

‖PX − LXHX‖2F + λ1‖LX − LEV‖2F
H*

X � argmin
HX

‖PX − LXHX‖2F + λ2∑
i,j

ωij

�����hi − qj
�����22 + λ3‖LX‖1 . (3)

3 NONINTRUSIVE HIDDEN MARKOV LOAD
DECOMPOSITION

3.1 FHMM Model
The HMM can well describe the influence of the system
equipment state change on the system output. The traditional
HMM structure is given by, and its model θ can be expressed as
follows:

θ � (A,B, π), (4)

where A is the state transition matrix, B is the observation matrix,
and π is the initial state probability distribution, which is
expressed as follows:

π � φ(s1 � i),
A � [aij] � φ(st � j

∣∣∣∣st−1 � i),
B � φ(xt |st � i) ∼ N(μi, εi), (5)

where φ(xt |st � i) denotes the output probability of the state st � i
to the observation matrix xt , which obeys a normal distribution,
μi is the mean vector, and εi is the covariance matrix of the
observation matrix.

In the HMM-based nonintrusive monitoring problem of
EVs, π and A determine the EVs’ charge–discharge state
sequence, and B determines the EVs’ charge–discharge
power time series P1:T � {p1, p2, . . . , pT}. The nonintrusive
monitoring of EVs based on the HMM can be divided into
two stages: model parameter estimation and observation

matrix decoding. In the model estimation stage, the model
parameters are estimated by unsupervised learning or
supervised learning, so that the probability of observed EVs’
charge–discharge power time series under this model
parameter reaches the largest, that is, θ* � argmaxφ(x|θ); in
the observation matrix decoding stage, the charge–discharge
status and charging power of each charging pile are
decomposed according to the optimal parameter θ* estimated
in the previous stage and the input EV charge–discharge power time
series xt .

The charge–discharge states of EVs can be represented by
Figure 2. EVs’ charge–discharge state can be divided into the
OFF state and the ON state. The OFF state represents that EVs
are in the standby state due to system scheduling or full battery
power, which is equivalent to ending the charge–discharge
behavior, that is, changing from OFF to End; the ON state
represents that EVs are in the charge–discharge state, and there
is a certain probability of ending the charge–discharge state.
According to the EV charge–discharge state transfer rule, the
charge–discharge state of the charging pile during the time
series T can be expressed as S1:T � {s1, s2, . . . , sT }, where st �
{−1, 0, 1}.

According to the EV cluster monitoring framework
depicted in Figure 1, the nonintrusive monitoring
structure based on the FHMM is shown in Figure 3.
Since the observable time series in this FHMM framework
is the total power output containing the building and
parking lot charging stakes, and not the EV
charge–discharge power time series, P1:T needs to be
extracted from X1:T � {x1, x2, . . . , xT}.

3.2. Bi-LSTM Model
In the process of extracting P � {p1, p2, . . . , pT }, upon
considering the state of charge (SOC) of the battery in EVs,
it is not only determined by the current moment t and the
future period t+ charge–discharge power but also by the
charge–discharge power of the past period t−. Conventional
LSTM performs forward transfer updating of the hidden layer
state via one-way time series input when training, while full
epoch data of X1:T are required when extracting EVs’
charge–discharge time series. Based on this, in this study,
P1:T is extracted using Bi-LSTM, and its structure is shown
in Figure 4. The output expression of the bidirectional LSTM
is as follows:

pjoinϑ,t � [pforwϑ,t , pbackϑ,t ], ϑ ∈ [1, υ], (6)

where pforwϑ,t , pbackϑ,t , and pjoinϑ,t are the outputs of the forward
LSTM neural network, the reverse LSTM neural network, and
the Bi-LSTM in the hidden layer of layer ϑ at time t,
respectively; υ is the number of hidden layers. The LSTM
network used in this study contains six layers, in which the
length of the input layer is the length of the time window t, the
second layer is the convolution layer, which is used to extract
features from the signal, the third and fourth layers are Bi-
LSTM, the fifth layer is the convolution layer, and the sixth
layer is the full connection layer. The whole network is

FIGURE 2 | Schematic diagram of EV charging–discharge state transfer.
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trained using the time forward and reverse bidirectional
propagation method.

3.3 Nonintrusive EV Decomposition
In the framework shown in Figure 3, we note that although the
charge–discharge time series of each charging pile are
independent of each other, that is, M parallel Markov chains.
Compared with the 3M state combinations of HMM charging
piles at time t, the decomposition of EVs based on the FHMM
effectively reduces the complexity of the decomposition
algorithm.

Considering that the known types of EVs are limited and
the charge–discharge time series of the same type of EVs are
similar, there may be multiple EVs of the same type for

charge–discharge at time t. Based on the EVs’
charge–discharge characteristics, this study further reduces
the computational complexity of the EV decomposition
model and classifies the same type of EV charge–discharge
state at time t into a Markov chain. The improved HMM
structure in Figure 5 shows that there areQ + 1 types of EVs, of
which Q types of EVs are known, and (Q + 1)th is an unknown
type of EV accessed by the charging pile. Here, the number of
each type of EV accessed by the charging pile is assumed to be
{d1, d2, . . . , dQ}. Therefore, the charge–discharge state of EVs of
type q − th at moment t can be expressed as follows:

s(q)t � {1, 1 − 1
dq
, 1 − 2

dq
, . . . , 0,− 1

dq
,− 2

dq
, . . . ,−1} (7)

FIGURE 3 | Framework of nonintrusive monitoring for the EV cluster.
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In the process of EV decomposition, considering that there are many
unknown types of EVs connected to the charging pile and the
charge–discharge power of unknown types of EVs is different,
because the specific model of unknown types of EVs cannot be
given, all unknown types of EVs’ charge–discharge behavior is
equivalent to a storage battery with unknown charge–discharge
behavior in this study. When one unknown type of EV is
connected to the charging pile, the hidden state is {1, 0,−1}, and
when two unknown types of EVs are connected to the charging pile,
the hidden state is {1, 1 − 1

l1
, 1 − 1

l2
, 1 − l1+l2

l1 l2
, 0,−1

l1
,−1

l2
,−l1+l2

l1 l2
,−1}.

The nonintrusive FHMMmodel parameters based on clusters
of EVs can be expressed as follows:

π � φ(s(1)1 , s(2)1 , . . . , s(Q+1)1 ),
A � φ(s(1)t , s(2)t , . . . , s(Q+1)t

∣∣∣∣s(1)t−1, s
(2)
t−1, . . . , s

(Q+1)
t−1 ),

B � φ(pt ∣∣∣∣s(1)t , s(2)t , . . . , s(Q+1)t ) ∼ N(μi, εi). (8)

The FHMM model is composed of clusters of the same type of
EV, each HMM chain represents the same type of EV, and the
charge–discharge power and charge–discharge status are
independent of each other between each type of EV.
Therefore, the HMM model parameters constituted by each
type of EV cluster are solved one by one, and thus obtain the
total FHMM model parameters, such that the following occurs:

θ* � argmax
θ

∏|P1:T |
j�1

∑
st∈S

φ(P � pt , S � st; θ). (9)

In this study, the EM (expectation maximization) algorithm is
used to estimate the model parameters of Eq. 9. Two auxiliary
variables, one forward variable α(q)t (i) and one backward variable
β(q)t (i), need to be used in the calculation. The forward variable
α(q)t (i) represents the joint probability of an EV charge–discharge
time series p(n)1 , . . . , p(n)t of type q − th at time t and the
charge–discharge state i. Given the initial parameter θ0, α

(q)
t (i)

can be expressed as follows:

α(q)t (i) � φ(s(q)t � i, p(n)1 , . . . , p(n)t , θ0). (10)

Under the initial conditions, α(q)t (i) is expressed as follows:

α(q)1 (i) � φ(s(q)1 � i)φ(p(n)1

∣∣∣∣∣∣s(q)1 � i). (11)

Based on the α(q)1 (i) forward recursion, the following occurs:

α(q)t+1 (j) � ∑
i

α(q)t (i)a(q)ij φ(p(n)t+1
∣∣∣∣∣∣s(q)t+1 � j). (12)

The backward variable β(q)t (i) represents the probability of
observing an EV charge–discharge time series of type q − th
as p(n)t+1, . . . , p

(n)
T at time t and the charge–discharge state i.

Given an initial parameter θ0, β
(q)
t (i) can be expressed as

follows:

β(q)t (i) � φ(p(n)t+1, . . . , p
(n)
T

∣∣∣∣∣∣s(q)t � i, θ0). (13)

Similarly, the backward variable β(q)t (i) can also be calculated
using the recursive formula as follows:

β(q)t (i) � ∑
j

a(q)ij φ(p(n)t+1
∣∣∣∣∣∣s(q)t+1 � j)β(q)t+1 (j), (14)

where the initial value β(q)T (i) � 1.
Based on the two variables above, the FHMM decomposition

process for a given initial parameter θ0 and the observation sequence
P(q) � [p(q)1 , p(q)2 , . . . , p(q)T ] can be divided into the following two
steps:

1) E-Step: Compute the probability ξ(q)t (i, j) of EVs of type q − th
shifting from state s(q)t � i to state s(q)t+1 � j and the
probability c

(q)
t (i) of presenting state s(q)t � i at time t as

follows:

ξ(q)t (i, j) � φ(s(q)t � i, s(q)t+1 � j
∣∣∣∣∣∣P(q), θ0)

�
α(q)t (i)a(q)ij φ(p(n)t+1

∣∣∣∣∣∣s(q)t+1 � j)β(q)t+1 (j)∑
i�1
∑
j�1
α(q)t (i)a(q)ij φ(p(n)t+1

∣∣∣∣∣∣s(q)t+1 � j)β(q)t+1 (j), (15)

FIGURE 4 | Operating characteristics of the MT.
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c
(q)
t (i) � φ(s(q)t � i

∣∣∣∣∣∣P(q), θ0) � α(q)t (i)β(q)t (i)∑jα
(q)
t (j)β(q)t (j). (16)

2) M-Step: Recalculate model parameters for q − thHMMchains
as follows:

π̂(q)i � c
(q)
1 (i), (17)

â(q)ij � ∑T
t�1ξ

(q)
t (i, j)∑T

t�1c
(q)
t (i, j), (18)

μ̂(q)i � ∑T
t�1c

(q)
t (i)p(q)t∑T

t�1c
(q)
t (i)

, (19)

ε̂(q)i �
∑T

t�1c
(q)
t (i)(p(q)t − μ̂(q)i )(p(q)t − μ̂(q)i )T∑T

t�1∑T
t�1c

(q)
t (i)

. (20)

3) Forward variables α(q)1 (i) and backward variables β(q)t (i),
ξ(q)t (i, j), and c

(q)
t (i) are iteratively calculated according to

the new parameter cycle until convergence.

After all the parameters of the FHMM model are obtained,
the hidden state can be decoded by applying the Viterbi
algorithm to the summarized power consumption sequence.
In the Viterbi algorithm, the variable δt(i) is introduced. We
define δt(i) as the probability maximum of all states

FIGURE 5 | Framework of nonintrusive monitoring for the EV cluster.

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 7203918

Hu et al. Nonintrusive Monitoring for Electric Vehicles

59

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


{s1, s1, . . . , st} to the observation sequence {p1, p2, . . . , pT} at the
moment t as follows:

δt+1(i) � max
1≤j≤N

{δt(j)aji}φ(pt+1∣∣∣∣st+1 � i), (21)

where N is the number of hidden layer states of EVs, t � 1, 2, . . . ,T.
The nonintrusive monitoring step of EVs based on the Viterbi

algorithm is as follows:

1) input θ0 � (π̂i, âij, μ̂i, ε̂i) and EV charge–discharge time
series P1:T � {p1, p2, . . . , pT};

2) initialize δ1(i) � πiφ(p1
∣∣∣∣s1 � i);

3) recurrent δt(i) � max
1≤ j≤N

{δt−1(j)aji}φ(pt
∣∣∣∣st � i); and

4) optimal path backtracking for t � T − 1,T − 2, . . . , 1, st(i) �
argmax

1≤j≤N
{δt(j)}.

4 EXPERIMENT AND RESULT

4.1 Dataset Description
In order to verify that the method proposed in this study can
classify unknown types of EVs effectively and, furthermore,
monitor the charging behavior of EVs accurately, the
processed EV dataset of Pecan Street is used for training
and testing. Specifically, the dataset consists of 16,000 sets of
EV charging data belonging to eight types. In the ZSL process,
seven types of known EV data are used for training and one
type of unknown EV data is used for testing, among which
power levels of EVs are used as EV labels, that is,
YEV � {3, 3.3, . . . , 10}. The data sampling interval is 1 min.
Charging services for EVs are provided by 120 primary/
secondary charging piles.

FIGURE 7 | Confusion matrices on different appliances.

FIGURE 6 | Confusion matrices on different types of EVs.
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4.2 Zero-Shot Classification
In order to ensure that the method proposed in this study
can accurately identify the access of unknown types of EVs
in the EV cluster, this study selects seven kinds of EV
charging data commonly available in the market for
training and uses 6-kW EVs for testing. The test results
are shown in Figure 6. It can be seen that zero-sample
classification based on sparse coding can well identify the

access of different types of EVs and has certain classification
functions for unknown types of EVs. It is worth noting that
the EV classification effect with a small power level
difference is weaker than the EV classification effect with
a large power level difference. Therefore, the classification effect
of the {3kW, 3.3kW, 3.6kW} and {7kW, 7.2kW, 7.4kW} sets in
Figure 6 is not very obvious.

Considering the classification problem between EVs and other
devices, this study took REDD centralized electric appliance
equipment and 3.3-kW type EVs as the training set to test the
EVs of {6kW}. The classification effect is shown in Figure 7.

In order to verify the recognition effect of different EV
type combination training sets on unknown EV test sets, this
study selects typical types of EV combinations for testing.
The test sets include from one type of EV to four types of EV
combinations. The recognition effect is shown in Table 2. It
can be seen from Table 2 that the more EV types there are,
the better the recognition effect will be. In the case of a
certain number of EV types, the more dispersed the EV
power level is, the better the recognition effect will be.

To further verify the correctness of the conclusions above, this
article studies the influence of the sample size of each EV type

TABLE 2 | Classification effects of different combinations of EV types.

Combination of EV types (kW) Performance

3/7/10 −11.32/−12.30/−11.51
{3, 7}/{3, 10}/{7, 10} −5.41/−6.37/−6.83
{3, 3.3, 3.6} −3.44
{7, 7.2, 7.4} −3.98
{3, 7, 10} 0.6
{3, 3.3, 3.6, 7} 1.21
{3, 7, 7.2, 7.4} 1.28
{3, 3.3, 3.6, 10} 1.37
{3, 7, 7.2, 7.4} 1.42
{3, 3.3, 7, 7.2} 1.48
{3, 3.6, 7, 10} 1.55

FIGURE 8 | Influence of the EV sample size on the recognition effect.

FIGURE 9 | Charging load decomposition effect of the traditional FHMM. (A) Charging state of 120 charging piles. (B) Charging power of charging piles. (C) Total
charging power of EVs decomposed based on the FHMM.
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training set on the recognition effect. The results are shown in
Figure 8. It can be seen that the greater the number of samples in
the training set, the more obvious the effect. At the same time, the
performance tends to be stable when the sample size of the
training set reaches 300.

4.3 EVs’ Nonintrusive Decomposition
In order to verify the nonintrusive monitoring method of EVs
proposed in this study, the decomposition effects of the
traditional FHMM and the proposed method were
compared. Figure 9 shows the nonintrusive identification
effect of the traditional FHMM, in which Figure 9A shows
the charging state of 120 charging piles, Figure 9B shows the
charging power of charging piles obtained based on LSTM, and
Figure 9C shows the total charging power of EVs decomposed
based on the FHMM.

The nonintrusive decomposition effect of EVs based on the
method proposed in this study is shown in Figure 10. The charging
states of EVs connected by charging piles is shown in Figure 10A,
where the first 7 EVs are the charging status of known EVs, and the
eighth is the charging status of unknown EVs.

Based on the decomposed EV charging state, the charging
power of each type of EV can be obtained using Bi-LSTM. As
shown in Figure 10B, the total power curve is synthesized

according to the decomposed EV charging power. By
comparing with Figure 9C, it can be seen that the
nonintrusive decomposition of EVs proposed in this study has
a higher precision.

5 CONCLUSION

In this study, the FHMM framework is used to develop a
nonintrusive monitoring method based on ZSL. The
charge–discharge characteristics of known EVs and unknown
EVs connected to the charging pile were extracted by dictionary
learning, and furthermore, the ZSL based on sparse coding was used
to classify EVs, which could effectively identify the unknown EVs. In
the validation process, the processed Pecan Street EV dataset was
used for training and testing. Compared with the traditional FHMM,
the nonintrusive decomposition of EVs proposed in this study has a
higher accuracy.
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Design of Decentralized Adaptive
Sliding Mode Controller for the
Islanded AC Microgrid With Ring
Topology
He Jiang1,2*, Mofan Wei1,2, Yan Zhao1,2 and Ji Han1,2

1School of Renewable Energy, Shenyang Institute of Engineering, Shenyang, China, 2Key Laboratory of Regional Multi-energy
System Integration and Control of Liaoning Province, Shenyang, China

Sliding mode control can restrain the perturbations generated from the intermittence of the
renewable energy generation and the randomness of local loads when microgrids are
operating in islanded mode. However, the microgrid consists of several subsystems and
the interactions among them will cause the chattering problems under the overall sliding
mode control. In this paper, the chattering restraint issues for voltage control of the
islanded microgrid with a ring topology structure are investigated based on the
decentralized adaptive sliding mode control strategies. Firstly, we construct a tracking
error system with interconnections considering the power transmission among
subsystems and nominal values of system states. Secondly, we design linear matrix
inequalities (LMIs) according to the H∞ attenuation performance of the system external
disturbances. Then, the tracking error performance and the control precision are
guaranteed via the asymptotic stabilities of integral sliding mode surfaces. Adaptive
laws are utilized to address the chattering problems of the sliding mode control.
Finally, simulation results verify the effectiveness of the proposed decentralized control
methods.

Keywords: islanded microgrid, chattering restraint, voltage control, adaptive control, sliding mode control

INTRODUCTION

Recently, there are abundant distributed generating devices permeating in the modern electric power
systems for achieving the environment protection and the effective and flexible control of grids. In order to
ensure the extensiveness and security of the power supply, microgrids have been the main form to transmit
electricity to local loads for remote regions, which can operate in islanded mode or grid-connected mode
(Mahmoud et al., 2014). Actually, an AC islanded microgrid consisting of distributed generation units
(DGus) and energy storage devices can supply power to local loads steadily in low voltage magnitude
(Kabalan et al., 2017). Because the microgrid contains numerous power electronic facilities, such as voltage
source converters (VSC) et al., it is lack of immense inertia provided by rotating devices comparing with
conventional grids (Zou et al., 2019). Furthermore, the renewable generation devices are usually affected by
weather conditions and the power generated from them is usually intermittent and uncertain, so it is more
complicated to realize the stable control of the multi-area microgrid voltage when it is in islanded mode
(Zhou et al., 2021). At present, there are different control strategies to solve the voltage control problems of
multi-area microgrids and optimize the control performance in islanded mode in order to improve the
reliability and effectiveness of the power supply (Divshali et al., 2012; Sahoo et al., 2018).
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The conventional control methods for multi-area microgrids
operating in islanded mode demonstrate several disadvantages.
The close-loop proportional-integral-derivative (PID) voltage
control strategy can not estimate the errors between state
variables and the nominal sinusoidal voltages accurately.
Additionally, this control strategy presents bad control
performance for restraining the inner parameter perturbations,
such as frequency fluctuations (Vandoorn et al., 2013; Chen et al.,
2015; Sefa et al., 2015). Zeb et al. (2019) combined the PID control
method with fuzzy principles and designed the proportional
resonant harmonic compensator as a current controller.
Moreover, a phase lock loop (PLL) was designed to promote
the speed of the system dynamic response. A comparison between
fuzzy sliding mode control (FSMC) and fuzzy PID control
illustrated that the dynamic response speed was lower and the
tracking error performance was less precise via the fuzzy PID
method. Considering that microgrids are sensitive about the
system parameter variations, so the droop control technology
is proposed to improve the robustness of microgrids via
simulating the droop relationships among different electrical
parameters (Avelar et al., 2012; Beerten and Belmans, 2013;
Eren et al., 2015; Wang et al., 2019; Wang et al., 2021). Mi
et al. (2019) modified traditional linear droop control strategies
and utilized nonlinear droop relationships to describe the
interactions between reactive power and voltages. The T-S
fuzzy theory was applied to approximate the nonlinear model
accurately and coordinate power among each DGu. Nevertheless,
there were also errors between stable values and nominal values of
voltages. Recently, sliding mode control (SMC) strategies are
extensively applied in the stability control of microgrids for the
superior asymptotic stability and robustness against parameter
uncertainties (Hu et al., 2010; Karimi et al., 2010; Liu et al., 2017).
An integration model of microgrids with complex meshed
topology structures and several DGus was constructed to
achieve the power sharing and voltage robust control
(Cucuzzella et al., 2017; Wang et al., 2020). But the integration
model could not represent actual interaction effects in different
subsystems and the chattering was serious. Mi et al. (2020)
proposed an adaptive sliding mode control strategy based on
the sliding mode observer for wind-diesel power systems. The
microgrid bus voltage showed remarkable stability via regulating
the reactive power in terms of this method. Contrarily, the
disturbance observer and adaptive algorithm brought in
numerous parameters and promoted the complexity of the
control system. To figure out the problem of harmonic
disturbance in microgrids, Esparza et al. (2017) proposed a
comprehensive control strategy to restrain the harmonic
currents generated from DGus in AC microgrids. As shown in
the simulation results, this strategy could cause the chattering
phenomenon inherently.

Motivated by the aforementioned discussions, for the multi-
area microgrid with a ring topology, the decentralized voltage
control model will represent more appropriate relationships
among the parameters in each local subsystem comparing with
the integrated one. In addition, the adaptive sliding mode control
(ASMC) strategy, which will be designed according to H∞
attenuation performance of each subsystem, can ensure the

robustness of the interconnected systems against mismatched
uncertainties and external perturbations.

The main contributions of this paper can be summarized as
follows:

1) The established multi-area microgrid model can depict the
interactions among subsystems appropriately;

2) The reliability of solutions and the attenuation performance of
external disturbances can be ensured based on the linear
matrix inequalities (LMIs);

3) The proposed decentralized ASMC can restrain the chattering
of the microgrid.

The rest of research includes four sections. Section Dynamical
Models of Multi-Area Interconnected Microgrids constructs state
functions with interconnections representing the topology
structure of microgrid systems and defines tracking error
models based on the nominal values of the state variables.
Section Proposed Decentralized Adaptive Sliding Mode Voltage
Controller introduces the designed decentralized voltage
controllers in terms of the proposed ASMC theory. Section
Simulation Results provides the simulation results and Section
Conclusion illustrates the conclusion.

DYNAMICAL MODELS OF MULTI-AREA
INTERCONNECTED MICROGRIDS

In order to explain the power transmission among the multi-area
microgrid, the electrical three-phase diagram of the ring topology
system composed four DGus is shown in Figure 1. The researched
microgrid consists of local loads, power transmission lines and
DGus. Because of various energy storage components in
renewable generation systems, the DGus could be represented as
DC voltage sources. The DGus connect with the points of common
coupling (PCC) via VSCs and filters and provide power to local
loads. PCCs can also link one of areas of the microgrids to another
and connect microgrids with main grids.

Considering the ring topology structure of the microgrid and
the power transmission orientations among different areas, the
voltage control model of subsystem i with interconnections in the
dq-coordinates in terms of Kirchhoff’s Curent Law (KCL) and
Kirchhoff’s Voltage Law (KVL) can be obtained as follows,

Cti
_Vdi � ωVqi + Itdi − Ildi − Idi + ∑

j∈N

j≠ i

ξ ijIdj (1)

Cti
_Vqi � −ωVdi + Itqi − Ilqi − Iqi + ∑

j∈N

j≠ i

ξijIqj (2)

Lti
_Itdi � −Vdi − RtiItdi + ωLtiItqi + Udi (3)

Lti _Itqi � −Vqi − RtiItqi − ωLtiItdi + Uqi (4)

Li
_Idi � Vdi − ∑

j∈N

j≠ i

ξijVdj − RiIdi + ωLiIqi (5)

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 7329972

Jiang et al. Decentralized ASMC for Islanded Microgrid

66

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Li
_Iqi � Vqi − ∑

j∈N

j≠ i

ξijVqj − RiIqi − ωLiIdi (6)

y1i � Vdi (7)

y2i � Vqi (8)

where N is the number of DGus in microgrids, Lti, Cti and Rti

represent the inductance, capacitance and resistance of the
filter connected with the DGu in subsystem i, respectively.
The microgrid subsystems in various areas are integrated via
interconnecting lines. Li and Ri are the inductance and resistance
of the interconnecting line between subsystem i and the adjacent
subsystem. ξij is the orientation of the interconnecting line
current between subsystem i and subsystem j (i≠ j). ξij � 1
and ξij � −1 represent the current flows into and flows out the
subsystem i. However, ξij � 0 represents there is no power
exchange between subsystem i and subsystem j. Vdi and Vqi

are the direct and quadrature components of the PCC voltage in
subsystem i. Idi and Iqi are the direct and quadrature components
of interconnecting line i. Itdi, Itqi, Udi and Uqi are the direct and
quadrature components of the current and voltage generated
from DGu in subsystem i. Ildi and Ilqi are the direct and
quadrature components of local loads. The randomness of the
local loads and the power generation intermittence of DGus will
cause frequency fluctuation inmicrogrids. Therefore, we introduce

the parameter uncertainties and donate system frequency
ω � ω0 + Δω. The matrix form of the dynamic (1)–(8) can be
written as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
_xi(t) � (Ai + ΔAi(t))xi(t) + Biui(t) + ∑

j∈N

j≠ i

Eijxj(t) + Fidi(t)

yi(t) � Cixi(t)
(9)

where

Ai �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ω0
1
Cti

0 − 1
Cti

0

−ω0 0 0
1
Cti

0 − 1
Cti

− 1
Lti

0 −Rti

Lti
ω0 0 0

0 − 1
Lti

−ω0 −Rti

Lti
0 0

1
Li

0 0 0 −Ri

Li
ω0

0
1
Li

0 0 −ω0 −Ri

Li

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

FIGURE 1 | The structure of interconnected microgrids with ring topology.
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ΔAi �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 Δω 0 0 0 0
−Δω 0 0 0 0 0
0 0 0 Δω 0 0
0 0 −Δω 0 0 0
0 0 0 0 0 Δω
0 0 0 0 −Δω 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦;

Eij �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
ξ ij
Cti

0

0 0 0 0 0
ξij
Cti

0 0 0 0 0 0

0 0 0 0 0 0

−ξ ij
Li

0 0 0 0 0

0 −ξij
Li

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

Bi �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0 0

1
Lti

0 0 0

0 0 0
1
Lti

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

;

Fi �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−

1
Cti

0 0 0 0 0

0 − 1
Cti

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

;

where xi � [VdiVqiItdiItqiIdiIqi ]
T ∈ R6 is the state variable vector, ui �

[UdiUqi]
T ∈ R2 is the control input vector, di(t) � [IldiIlqi]

T ∈ R2 is
the external disturbance vector and yi � [VdiVqi]

T ∈ R2 is the
output vector. Ai ∈ R6×6, Bi ∈ R6×2 and Fi ∈ R6×2 are the
system matrix, control input matrix and the external
disturbance matrix of the ith voltage control model of the
microgrid. ΔAi ∈ R6×6 is a time-varying matrix representing the
frequency fluctuation and Eij ∈ R6×6 is the interconnection gain
matrix consisting of ξij and the parameters of interconnecting line i.

Assume that the nominal vector of the state vector in
subsystem i is xpi � [Vp

diV
p
qiI

p
tdiI

p
tqiI

p
diI

p
qi]

T and _xpi � 0. We define
the error vector

ei(t) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Vdi − Vp

di

Vqi − Vp
qi

Itdi − Iptdi
Itqi − Iptqi
Idi − Ipdi
Iqi − Ipqi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � xi(t) − xpi . (10)

In view of (9), the corresponding error dynamic model in
subsystem i can be expressed by

_ei(t) � (Ai + ΔAi(t))ei(t) + Biui(t) + ∑
j∈N

j≠ i

Eijej(t) + fi(t) (11)

where fi(t)bFidi(t) + (Ai + ΔAi(t))xpi + ∑
j∈N

j≠ i

Eijxpj represents the

integration term of exogenous disturbance and parameter

uncertainty based on nominal vector, which is Euclidean norm
bounded by

����fi(t)����≤ ρi, in which

����fi(t)���� �
������������������Fidi(t) + (Ai + ΔAi(t))xpi + ∑

j∈N

j≠ i

Eijx
p
j

�������������������
≤
����Fi��������di(t)���� + ����Aix

p
i

���� + ����aixpi ���� +
�������������������
∑
j∈N

j≠ i

Eijx
p
j

�������������������
� ρi.

(12)

For the later proof proceedings, we introduce the following
lemmas, which can be needed to ensure the asymptotic stability of
the system.

Lemma 1: (Mnasri and Gasmi, 2011) Consider the following
unforced system:

{ _x � Ax + Hω
y � Cx

This system is regarded as quadratically stable and satisfies the
H∞ norm

����Tyω

����∞< c. If there exists a quadratic Lyapunov
function V(x) � xTPx, with P > 0, then, for all t > 0,

_V + yTy − c2ωTω< 0

Lemma 2: (Mnasri and Gasmi, 2011) Let x and y be any vectors
with appropriate dimensions. Then, for any scalar ϵ> 0, the
following inequality holds:

2xTy ≤ ∈xTx + ∈−1yT

Lemma 3: (Mnasri and Gasmi, 2011) Consider a partitioned
symmetric matrix

[A BT

B C
],

where A and C are square matrices with appropriate dimensions.
Then, this matrix is negative define if and only if the matrix A and
C − BA−1BT are negative define.

PROPOSED DECENTRALIZED ADAPTIVE
SLIDING MODE VOLTAGE CONTROLLER

The adaptive algorithm can optimize the parameters in controller and
the decentralized strategy can improve the control performance.
Design proceedings of sliding surface need to consider the
stabilizing, tracking and restraining performance of the system. The
sliding mode control law usually contains two parts, the switching
control law and the equivalent control law. The former one can force
the system state to approximate to the sliding surface when it deviates
from the surface and the latter one can ensure the system state to keep
on the sliding surface when it reaches on the surface.

In order to design decentralized adaptive sliding mode voltage
control laws for error dynamic model (11), the following
assumptions are introduced.
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Assumption 1: All the parameter uncertainty matrices caused
by frequency fluctuations are viewed as bounded. That means

‖ΔAi(t)‖≤ ai. (13)

Assumption 2: For each subsystem i,

∑N
j�1,j≠ i

ET
ji Eji > 0. (14)

For improving the dynamic response performance, we define the
following integral sliding mode surface as

si(t) � Hiei(t) − ∫t
0

Hi[(Ai − BiKi)ei(τ)]dτ. (15)

where Hi ∈ R2×6 is a constant matrix satisfying HiBi is non-
singular and HiBi is positive for all i ∈ N . Ki ∈ R2×6 is the
feedback matrix to be obtained via solving LMIs.
Substituting Equation 11 into the derivative of sliding surface
(15) yields

_si(t) � Hi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣(ΔAi(t) + BiKi)ei(t) + Biui(t) + ∑
j∈N

j≠ i

Eijej(t) + fi(t)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(16)
When the state trajectory of the tracking error system arrive and keep
on the sliding mode surface, it would satisfy the following equation.

si(t) � 0 and _si(t) � 0 (17)

Based on Equation 17, equivalent control law can be
represented as

uieq(t) � −Kiei(t) − (HiBi)−1Hi[ΔAi(t)ei(t) + ∑
j∈N

j≠ i

Eijej(t) + fi(t)].
(18)

Substituting Equation (18) into (11), the sliding mode dynamic
equation can further be expressed as

_ei(t) � (Ai − BiKi + B̃iΔAi(t))ei(t) + B̃i ∑
j∈N

j≠ i

Eijej(t) + B̃ifi(t)

(19)
where B̃i � I − Bi(HiBi)

−1Hi. Equation 19 shows amore complicated
tracking error system with parameter uncertainties and external
disturbances. In the following procedures, we utilize the Lyapunov
theory to analysis the system stability and the tracking performance to
the nominal values of currents and voltages in each subsystem.
Furthermore, we consider the H∞ disturbance attenuation
performance of interconnected system and design LMIs in terms of
an H∞ norm ci.

Theorem 1: Assume that the tracking error system (19)
satisfies Assumption 1 and Assumption 2. If there exists a

feasible solution Xi > 0, and Ri satisfies the following LMI (20),
then we consider uncertain system (19) matches the H∞
condition.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ωi B̃iẼi B̃i XiC

T
i aibiXi Xi

p −I 0 0 0 0
p p −c2i I 0 0 0
p p p −I 0 0
p p p p −ε−11 I 0
p p p p −ω0 −E−1

i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0 (20)

where Ωi � XiAT
i + AiXi − BiRi − RT

i B
T
i + εiI and εi > 0 is a

positive scalar. We consider the sliding mode surface

si(t) � Hiei(t) − ∫t
0

Hi[(Ai − BiRiX
−1
i )ei(τ)]dτ (21)

is asymptotic stable.
Proof: Select the following Lyapunov function for tracking error
system (19).

V1i(t) � eTi (t)Piei(t) (22)

Based on an H∞ performance bound for the closed-loop system
(19), one can obtain the following derivative.

Ji � _V1i(t) + yTi yi − c2i f
T
i (t)fi(t)

� 2_eTi (t) Piei(t) + +yTi yi − c2i f
T
i (t)fi(t)

� eTi (t)(AT
i Pi + Pi Ai − KT

i B
T
i Pi − PiBiKi)ei(t)

+2eTi (t)ΔAT
i (t)B̃T

i Piei(t) + 2 ∑
j∈N

j≠ i

eTj (t)ET
ij B̃

T
i Piei(t)

+2f Ti (t)B̃T
i Piei(t) + eTi (t)CT

i Ciei(t) − c2i f
T
i (t)fi(t)

(23)

If
����B̃i

����≤ bi and Assumption one is satisfied, using Lemma 1,
we get

2eTi (t)ΔAT
i (t)B̃T

i Piei(t)
≤ εieTi (t)P2

i ei(t) + ε−11 eTi (t)ΔAT
i (t)B̃T

i B̃iΔAi(t)ei(t)
≤ eTi (t)[εiP2

i + ε−11 a2i b
2
i I]ei(t). (24)

Consider ζTi � [eTi , e
T
i1,/, eTiN , f

T
i ] without eTii . Equation 23 can

be rewritten as

Ji � _V1i(t) + yTi yi − c2i f
T
i (t)fi(t)

� ζTi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Λi PiB̃iEi1 / PiB̃iEiN PiB̃i

p −I 0 0 0
p p 1 0 0
p p p −I 0
p p p p −c2i I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ζ i + ∑
j∈N

j≠ i

eTj ej − eTi Eiei,

(25)
where Λi � AT

i Pi + PiAi − KT
i B

T
i Pi − PiBiKi + εiP2

i + ε−11 a2i b
2
i I

+CT
i Ci + Ei, and Ei � ∑ ET

ij Eij .The system under the equivalent
control law is stable, if there is a feasible solution for the following LMI.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Λi PiB̃iEi1 / PiB̃iEiN PiB̃i

p −I 0 0 0
p p 1 0 0
p p p −I 0
p p p p −c2i I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0 (26)
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Define Ẽi � (Ei1,/, EiN), Xi � P−1
i , and Ri � KiXi. After pre-

multiplying and post-multiplying (26) by diag[Xi, I,/, I ],
Equation 26 can be rewritten as

⎡⎢⎢⎢⎢⎢⎢⎣ Ω̃i B̃iẼi B̃i

* −I 0
* * −c2i I

⎤⎥⎥⎥⎥⎥⎥⎦< 0, (27)

where Ω̃i � XiAT
i + AiXi − BiRi − RT

i B
T
i + εiI + ε−1i a2i b

2
i X

2
i +

XiCT
i CiXi + XiEiXi. Then, the LMI (20) is obtained with the

method of Lemma three and the proof is completed.In the
following section, we design the switching control in terms of
adaptive algorithm to restrain the state chattering.

Theorem 2: Design the following controller (28) for
closed-loop system (11) in terms of the feasible solution
obtained via (20) and the system dynamic is asymptotic stable
based on

ui(t) � −Kiei(t) − H̃iâi(t)ei(t) − H̃i ∑
j∈N

j≠ i

Eijej(t) − ρ̂i(t)H̃i
HT

i si(t)����sTi (t)Hi

����
(28)

where H̃i � (HiBi)
−1Hi and the adaptive laws are

_̂ai(t) � qi1s
T
i (t)Hiei(t) (29)

_̂ρi(t) � qi2
����sTi (t)Hi

���� (30)

where qi1 and qi2 are positive parameters.
Proof: Let us consider the following Lyapunov function:

V2i(t) � 1
2
sTi (t)si(t) +

1
2qi1

ã2i (t) +
1

2qi2
ρ̃2i (t) (31)

where ãi(t) � ai − âi(t), and ρ̃i(t) � ρi − ρ̂i(t). Based on (28), (29)
and (30), its derivative is given by

_V2i(t) � sTi (t)_si(t) +
1
qi1

ãi(t)( − _̂ai(t)) + 1
qi2

ρ̃i(t)( − _̂ρi(t))
� sTi (t)(Hi _ei(t) −Hi(Ai − BiKi)ei(t))
−ãi(t)sTi (t)Hiei(t) − ρ̃i(t)

����sTi (t)Hi

����
� sTi (t)HiΔAi(t)ei(t) − sTi (t)Hiâi(t)ei(t)

+sTi (t)Hifi(t) − ρi(t)sTi (t)Hi
HT

i si(t)����sTi (t)Hi

����
−ãi(t)sTi (t)Hiei(t) − ρ̃i(t)

����sTi (t)Hi

����
� sTi (t)HiΔAi(t)ei(t) − ais

T
i (t)Hiei(t)

+sTi (t)Hifi(t) − ρi
����sTi (t)Hi

����
≤ ‖ΔAi(t)‖sTi (t)Hiei(t) − ais

T
i (t)Hiei(t)

+����fi(t)��������sTi (t)Hi

���� − ρi
����sTi (t)Hi

����≤ 0

(32)

Obviously, the derivative of the Lyapunov function V2i(t)≤ 0 is
verified. That means the system states will reach the designed
sliding mode surface in finite time for arbitrary si(t)≠ 0. Then, the
proof is completed.

SIMULATION RESULTS

In this section, the proposed decentralized ASMC strategy is
applied in the voltage control of microgrid with ring topology.
The microgrid on study contains four DGus (N � 4) and the
nominal frequency is 60Hz, that means ω0 � 120πrad/s. The
electrical parameters of the subsystems and interconnecting lines
are concluded in Table 1 and Table 2, respectively.

The intermittence of the renewable generation and the
uncertaintiy of the local load in microgrid will influence the
power sharing among subsystems and cause frequency
fluctuation indirectly. In this case, we consider the frequency
fluctuation Δω � sin(1000πt), the current generated by DGu in
subsystem one is increased by 20% at t � 1s and recover to the
original state at t � 2s. Furthermore, the current generated by
DGu in subsystem three is reduced by 50% at t � 1s and recover
to the original state at t � 2s. On the contrary, the operation states
in subsystem two and four are constant. In order to ensure the
power sharing, the voltages of PCCs and currents of
interconnecting lines should also change. The reference values
of voltages and currents in each subsystem are expressed in
Table 3.

In the following simulation procedures, we analysis the
simulation results and verify the validity of the proposed
decentralized ASMC strategies under frequency disturbances
and local load uncertainties. Because the system uncertainties
are bounded, we can get ai ≥ 1, bi � 1.7321. The initial states are
e1(0) � [5 − 32 − 0.2 1.5 1.5]T , e2(0) � [4.5 − 3.1 4 − 0.1 1.5 2]T , e3(0) �
[4.4 − 3.2 1.7 − 0.1 2.5 1.7]T and e4(0) � [4.3 3.5 3.2 − 0.2 1.8 2.6]T .
According to Theroem 1, a couple of feasible solutions can be
obtained as follows,

H1 � [ 0.0095 0 0.0095 0 0.0095 0
0 0.0095 0 0.0095 0 0.0095

],
H2 � [ 0.0092 0 0.0092 0 0.0092 0

0 0.0092 0 0.0092 0 0.0092
],

H3 � [ 0.0087 0 0.0087 0 0.0087 0
0 0.0087 0 0.0087 0 0.0087

],
H4 � [ 0.0083 0 0.0083 0 0.0083 0

0 0.0083 0 0.0083 0 0.0083
],

K1 � [ 9214.5902 0 2416.5281 0 −6560.1562 0
0 9214.5902 0 2416.5281 0 −6560.1562 ],

K2 � [ 8795.6529 0 2451.4103 0 −8789.3652 0
0 8795.6529 0 2451.4103 0 −8789.3652 ],

K3 � [ 10225.614 0 2484.2629 0 −12448.709 0
0 10225.614 0 2484.2629 0 −12448.709 ],

K4 � [ 8079.6892 0 2208.2329 0 5562.70592 0
0 8079.6892 0 2208.2329 0 5562.70592

].
In order to restrain the mismatched uncertainties and external

disturbances, for tracking error system (11), the adaptive parameters
are selected as

q11 � 1.2, q21 � 0.9, q31 � 1.1, q41 � 1.5
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TABLE 1 | Electrical parameters of the microgrid.

Subsystems Filter parameters Capacitance

Rti (mΩ) Lti (mH) Cti (μF)

Subsystem 1 40.2 9.5 62.86
Subsystem 2 38.7 9.2 62.86
Subsystem 3 34.6 8.7 62.86
Subsystem 4 31.8 8.3 62.86

TABLE 2 | Electrical parameters of the interconnecting lines.

Line impedance Zi Ri (Ω) Li (mH)

Line 1 7.6 111.9
Line 2 8 140
Line 3 7.3 165
Line 4 7.8 190

TABLE 3 | The reference values of state variables in each subsystem.

Time(s) Subsystem1 Subsystem2

Voltages (V) Currents (A) Voltages (V) Currents (A)

Vp
d1 Vp

q1 Iptd1 Iptq1 Vp
d2 Vp

q2 Iptd2 Iptq2

0–1 390 −0.5 50.2 −10.6 370 −1 100.1 −6.8
1–2 385 −0.5 70.2 −10.6 370 −1 100.1 −6.8
2–3 390 −0.5 50.2 −10.6 370 −1 100.1 −6.8

Time(s) Subsystem3 Subsystem4

Voltages (V) Currents (A) Voltages (V) Currents (A)

Vp
d3 Vp

q3 Iptd3 Iptq3 Vp
d4 Vp

q4 Iptd4 Iptq4

0–1 360 −0.6 40.1 −1.8 350 −1 80.1 −10.4
1–2 365 −0.6 20.1 −1.8 350 −1 80.1 −10.4
2–3 360 −0.6 40.1 −1.8 350 −1 80.1 −10.4

FIGURE 2 | Time evolution of the d-component of currents generated from DGus.
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q12 � 1.0, q22 � 3.2, q32 � 3.7, q42 � 5.74

The voltages and currents of the islanded microgrid
demonstrate superior robustness and tracking error
performance under the proposed decentralized ASMC strategy.
The time evolutions of the dq-components of the currents

generated from each DGu are depicted in Figure 2 and
Figure 3 respectively in the case of load currents mutation.
Ild1 increases 20 A at t � 1s and Itd1 increases 20 A
synchronously, while Itq1 does not change significantly.
Similarly, the current generated from DGu3 varies with the
local load current in subsystem 3, and the current dynamic

FIGURE 3 | Time evolution of the q-component of currents generated from DGus.

FIGURE 4 | Time evolution of the d-component of voltages of PCCs.
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curves illustrate excellent robustness when local load current
mutates.

The time evolutions of the dq-components of the PCC voltages
of each subsystem are shown in Figure 4 and Figure 5.
Considering the load current variations in the interconnected
microgrid system, Vd1 is decreased by 5 V and Vd3 is increased by

5 V. Meanwhile, Id1 provided by subsystem one is reduced and Id3
provided to subsystem four is improved. Then, the power sharing
among each subsystem can be ensured. As shown in Figure 4,
there exist deviations between initial voltage values and nominal
values, but the system voltages can also track to the nominal
values and maintain stable. When the d-components of the

FIGURE 5 | Time evolution of the q-component of voltages of PCCs.

FIGURE 6 | Time evolution of the d-component of currents of interconnecting lines.
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voltages change in small scales, the q-components of the voltages
fluctuate and remain stable in a short time.

The time evolutions of the dq-components of the currents of
interconnecting lines are represented in Figure 6 and Figure 7.
Under the influence of mutations of load currents and PCC

voltages, the currents of interconnecting lines are only influenced
by the voltages of PCCs and do not deviate from the reference
values appreciably, which illustrates the remarkable robustness of
proposed ASMC strategy against the external disturbances and
mismatched uncertainties. That also means the changes of local

FIGURE 7 | Time evolution of the q-component of currents of interconnecting lines.

FIGURE 8 | Three-phase waveforms of currents generated from DGu1 and DGu2.
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load currents will not influence the stability of the general microgrid.
Notably, the current orientation of line four is opposite compared with
the currents of other lines because the voltage of PCC four is lower than
that of PCC1.

Figure 8 and Figure 9 depict the three-phase waveforms of
currents generated from DGus. Figure 10 and Figure 11 depict the
three-phase waveforms of voltages of PCCs in subsystem one and
subsystem 3. In islanded mode, the decentralized controllers are

FIGURE 9 | Three-phase waveforms of currents generated from DGu3 and DGu4.

FIGURE 10 | Three-phase waveforms of PCC1 voltage.
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mainly designed to standardize the voltage and current waves and
improve the power quality of ACmicrogrid. In Figure 8 and Figure 9,
the amplitude of three-phase wave of the current generated from
DGu1 increases 20 A and that of DGu3 decreases 20 A at t � 1s,
which matches with the variations of load currents. In Figure 10 and
Figure 11, it is obvious that the three-phase waves of the voltages of
PCC1 and PCC3maintain in standardwaveform and the effectiveness
and reliability can be proved adequately.

CONCLUSION

In this paper, the chattering restraint issues for voltage
control of the islanded microgrid with a ring topology
structure have been solved via decentralized adaptive
sliding mode control strategies. The constructed tracking
error system with interconnections has depicted the
interaction among each subsystem appropriately. The
control matrices in sliding mode surfaces have been
obtained via solving the LMIs, which combine the H∞
attenuation performance of the system external
disturbances with the asymptotic stabilities of integral
sliding mode surfaces. The controller parameters have
been optimized by means of adaptive algorithms. The
simulation results have illustrated the effectiveness of the

proposed decentralized ASMC strategies. In future, further
research will be extended to the nonlinear and time-delay
system.
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FIGURE 11 | Three-phase waveforms of PCC3 voltage.

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 73299712

Jiang et al. Decentralized ASMC for Islanded Microgrid

76

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


REFERENCES

Avelar, H. J., Parreira, W. A., Vieira, J. B., de Freitas, L. C. G., and Coelho, E. A. A.
(2012). A State Equation Model of a Single-phase Grid-Connected Inverter
Using a Droop Control Scheme with Extra Phase Shift Control Action. IEEE
Trans. Ind. Electron. 59, 1527–1537. doi:10.1109/TIE.2011.2163372

Beerten, J., and Belmans, R. (2013). Analysis of Power Sharing and Voltage
Deviations in Droop-Controlled DC Grids. IEEE Trans. Power Syst. 28,
4588–4597. doi:10.1109/TPWRS.2013.2272494

Chen, Z., Luo, A., Wang, H., Chen, Y., Li, M., and Huang, Y. (2015). Adaptive
Sliding-Mode Voltage Control for Inverter Operating in Islanded Mode in
Microgrid. Int. J. Electr. Power Energ. Syst. 66, 133–143. doi:10.1016/
j.ijepes.2014.10.054

Cucuzzella, M., Incremona, G. P., and Ferrara, A. (2017). Decentralized Sliding
Mode Control of Islanded ACMicrogrids with Arbitrary Topology. IEEE Trans.
Ind. Electron. 64, 6706–6713. doi:10.1109/TIE.2017.2694346

Divshali, P. H., Alimardani, A., Hosseinian, S. H., and Abedi, M. (2012).
Decentralized Cooperative Control Strategy of Microsources for Stabilizing
Autonomous VSC-Based Microgrids. IEEE Trans. Power Syst. 27, 1949–1959.
doi:10.1109/TPWRS.2012.2188914

Eren, S., Pahlevani, M., Bakhshai, A., and Jain, P. (2015). An Adaptive Droop DC-
Bus Voltage Controller for a Grid-Connected Voltage Source Inverter with LCL
Filter. IEEE Trans. Power Electron. 30, 547–560. doi:10.1109/
TPEL.2014.2308251

Esparza, M., Segundo, J., Nunez, C., Wang, X., and Blaabjerg, F. (2017). A
Comprehensive Design Approach of Power Electronic-Based Distributed
Generation Units Focused on Power-Quality Improvement. IEEE Trans.
Power Deliv. 32, 942–950. doi:10.1109/TPWRD.2016.2584616

Hu, J., Nian, H., Hu, B., He, Y., and Zhu, Z. Q. (2010). Direct Active and Reactive
Power Regulation of DFIGUsing Sliding-Mode Control Approach. IEEE Trans.
Energ. Convers. 25, 1028–1039. doi:10.1109/TEC.2010.2048754

Kabalan, M., Singh, P., and Niebur, D. (2017). Large Signal Lyapunov-Based
Stability Studies in Microgrids: A Review. IEEE Trans. Smart Grid 8,
2287–2295. doi:10.1109/TSG.2016.2521652

Karimi, H., Davison, E. J., and Iravani, R. (2010). Multivariable Servomechanism
Controller for Autonomous Operation of a Distributed Generation Unit:
Design and Performance Evaluation. IEEE Trans. Power Syst. 25, 853–865.
doi:10.1109/TPWRS.2009.2031441

Liu, J., Gao, Y., Luo, W., and Wu, L. (2017). Takagi-Sugeno Fuzzy-Model-Based
Control of Three-Phase AC/DC Voltage Source Converters Using Adaptive
SlidingMode Technique. IET Control. Theor. Appl. 11, 1255–1263. doi:10.1049/
iet-cta.2016.0689

Mahmoud, M. S., Azher Hussain, S., and Abido, M. A. (2014). Modeling and
Control of Microgrid: An Overview. J. Franklin Inst. 351, 2822–2859.
doi:10.1016/j.jfranklin.2014.01.016

Mi, Y., Song, Y., Fu, Y., and Wang, C. (2020). The Adaptive Sliding Mode Reactive
Power Control Strategy for Wind-Diesel Power System Based on Sliding Mode
Observer. IEEE Trans. Sustain. Energ. 11, 2241–2251. doi:10.1109/
TSTE.2019.2952142

Mi, Y., Zhang, H., Fu, Y., Wang, C., Loh, P. C., and Wang, P. (2019). Intelligent
Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mode Droop
Control. IEEE Trans. Smart Grid 10, 2396–2406. doi:10.1109/TSG.2018.2797127

Mnasri, C., and Gasmi, M. (2011). LMI-Based Adaptive Fuzzy Integral Sliding
Mode Control of Mismatched Uncertain Systems. Int. J. Appl. Maths. Comput.
Sci. 21, 605–615. doi:10.2478/v10006-011-0047-5

Rui, W., Qiuye, S., Dazhong, M., and Xuguang, H. (2020). Line Impedance
Cooperative Stability Region Identification Method for Grid-Tied Inverters
under Weak Grids. IEEE Trans. Smart Grid 11, 2856–2866. doi:10.1109/
TSG.2020.2970174

Sahoo, S. K., Sinha, A. K., and Kishore, N. K. (2018). Control Techniques in AC,
DC, and Hybrid AC-DC Microgrid: A Review. IEEE J. Emerg. Sel. Top. Power
Electron. 6, 738–759. doi:10.1109/JESTPE.2017.2786588

Sefa, I., Altin, N., Ozdemir, S., and Kaplan, O. (2015). Fuzzy PI Controlled Inverter
for Grid Interactive Renewable Energy Systems. IET Renew. Power Generation
9, 729–738. doi:10.1049/iet-rpg.2014.0404

Vandoorn, T. L., Ionescu, C. M., De Kooning, J. D. M., De Keyser, R., and
Vandevelde, L. (2013). Theoretical Analysis and Experimental Validation of
Single-Phase Direct Versus Cascade Voltage Control in Islanded Microgrids.
IEEE Trans. Ind. Electron. 60, 789–798. doi:10.1109/TIE.2012.2205362

Wang, R., Sun, Q., Hu, W., Li, Y., Ma, D., and Wang, P. (2021). SoC-Based Droop
Coefficients Stability Region Analysis of the Battery for Stand-Alone Supply
Systems with Constant Power Loads. IEEE Trans. Power Electron. 36,
7866–7879. doi:10.1109/TPEL.2021.3049241

Wang, R., Sun, Q., Ma, D., and Liu, Z. (2019). The Small-Signal Stability Analysis of
the Droop-Controlled Converter in Electromagnetic Timescale. IEEE Trans.
Sustain. Energ. 10, 1459–1469. doi:10.1109/TSTE.2019.2894633

Zeb, K., Islam, S. U., Din, W. U., Khan, I., Ishfaq, M., Busarello, T. D. C., et al.
(2019). Design of Fuzzy-PI and Fuzzy-Sliding Mode Controllers for Single-
Phase Two-Stages Grid-Connected Transformerless Photovoltaic Inverter.
Electronics 8, 520–539. doi:10.3390/electronics8050520

Zhou, B., Zou, J., Yung Chung, C., Wang, H., Liu, N., Voropai, N., et al. (2021).
Multi-Microgrid Energy Management Systems: Architecture, Communication,
and Scheduling Strategies. J. Mod. Power Syst. Clean Energ. 9, 463–476.
doi:10.35833/MPCE.2019.000237

Zou, H., Mao, S., Wang, Y., Zhang, F., Chen, X., and Cheng, L. (2019). A Survey of
Energy Management in Interconnected Multi-Microgrids. IEEE Access 7,
72158–72169. doi:10.1109/ACCESS.2019.2920008

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Jiang, Wei, Zhao and Han. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 73299713

Jiang et al. Decentralized ASMC for Islanded Microgrid

77

https://doi.org/10.1109/TIE.2011.2163372
https://doi.org/10.1109/TPWRS.2013.2272494
https://doi.org/10.1016/j.ijepes.2014.10.054
https://doi.org/10.1016/j.ijepes.2014.10.054
https://doi.org/10.1109/TIE.2017.2694346
https://doi.org/10.1109/TPWRS.2012.2188914
https://doi.org/10.1109/TPEL.2014.2308251
https://doi.org/10.1109/TPEL.2014.2308251
https://doi.org/10.1109/TPWRD.2016.2584616
https://doi.org/10.1109/TEC.2010.2048754
https://doi.org/10.1109/TSG.2016.2521652
https://doi.org/10.1109/TPWRS.2009.2031441
https://doi.org/10.1049/iet-cta.2016.0689
https://doi.org/10.1049/iet-cta.2016.0689
https://doi.org/10.1016/j.jfranklin.2014.01.016
https://doi.org/10.1109/TSTE.2019.2952142
https://doi.org/10.1109/TSTE.2019.2952142
https://doi.org/10.1109/TSG.2018.2797127
https://doi.org/10.2478/v10006-011-0047-5
https://doi.org/10.1109/TSG.2020.2970174
https://doi.org/10.1109/TSG.2020.2970174
https://doi.org/10.1109/JESTPE.2017.2786588
https://doi.org/10.1049/iet-rpg.2014.0404
https://doi.org/10.1109/TIE.2012.2205362
https://doi.org/10.1109/TPEL.2021.3049241
https://doi.org/10.1109/TSTE.2019.2894633
https://doi.org/10.3390/electronics8050520
https://doi.org/10.35833/MPCE.2019.000237
https://doi.org/10.1109/ACCESS.2019.2920008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Power Dispatching of Transportable
Energy Storage System for
Post-disaster Restoration Scheme of
Port: The AES-Based Joint
Restoration Scheme
Wenjia Xia1, Qihe Shan1*, Fei Teng2 and Tieshan Li1,3

1Maritime Big Data and Artificial Intelligent Application Centre, Navigation College, Dalian Maritime University, Dalian, China,
2Marine Electrical Engineering College, Dalian Maritime University, Dalian, China, 3College of Automation Engineering, University
of Electronic Science and Technology, Chendu, China

In recent years, the rapid development of artificial intelligence, Big Data, Cloud Computing,
etc., rapidly develops, synergy development of the transportation-energy-information
based triple play has been accelerated. The all-electric ship (AES) is satisfied with the
demand for both the unreasonable resource configuration of port energy system and low
energy efficiency caused by sudden disasters. As a power carrier unit, AES has great
potential in improving the resistance of port power distribution network for large-area
blackout. Therefore, in this paper, a joint post-disaster restoration scheme for AESs and
distribution generation scheduling in ports’ microgrid (MG) is proposed to minimize the
cost of post-disaster restoration including customer interruption cost and AES operation
cost. The time-space network (TSN) model which describes the scheduling of AESs is
applied to compare the grid resilience and flexibility of AES-based joint dispatching and
only relying on distributed generation equipment in post-disaster restoration. The joint
scheduling problem is formulated as a mixed-integer linear programming. The proposed
model and scheme are tested in a system with 3 ports and 4 AESs verified the resilience of
the port power distribution network with AESs.

Keywords: AES, port microgrid, post-disaster restoration, energy scheduling, transportable energy storage system

1 INTRODUCTION

With the acceleration of the global economic integration and the international economic activity
becoming more and more frequent. Port as a national window opening to the outside world plays an
increasingly important role. It is essential to promote coastal cities and has been regarded as the
growth engine of a region or national economy (Li and Dong, 2014), especially in the regional
economy of coastal cities. According to the data provided by the 2010 Shipping Statistical Yearbook,
Shanghai port is the largest port in the world. In the same year, China accounted for six of the top ten
ports in the world (Wang, 2011). Disasters of port could have far-reaching consequences for our
country.

Meanwhile, China is one of the few countries which suffer serious loss from marine disasters
(Wang, 2005). And the seaport is one of the hazard bearing bodies, in which large power facilities
such as container handling machinery, transporting machine and service loads are damaged in
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different degrees, the electricity supply is interrupted, the
application of intelligent diagnosis method in power
transformers are still fall short (Yang et al., 2021) (Zhang
et al., 2021). The post-disaster restoration is hindered which
seriously threaten the lives of people’s and hard to reduce the
economic loss.With increasingly abundant power equipment and
high reliance of electricity, power system, as an important
infrastructure related to security and economy, not only needs
to meet the reliable operation in normal environment, but also
maintains the requisites in the extreme condition (Ren et al.,
2020). Emergency power supply system is essential.

Emergency power supply system is an independent generation
device, which supplies electricity in case of unexpected power
outage, increasing the resilience of microgrid, and protects life
and property from the impact of power failure. Considerable
progress has been made with respect to the utilization of
stationary sources in distributed systems (DSs) restoration
(Chanda and Srivastava, 2016) (Panteli et al., 2017).
Distributed generators (DGs) are widely adopted in the
restoration when the DS is isolated from the main grid (Wang
and Wang, 2015). More scholars turn to the application of
transportable energy storage system for post-disaster restoration.

As the green transportation, clean energy, artificial
intelligence and Internet of Things technology (IoT Tech)
rapidly develops, synergy development of the transportation-
energy-information based triple play has been accelerated, and
gives impetus to modernization of infrastructure. The more
flexible mobile emergency power bringing new challenges and
opportunities for power system recovery has been developed
rapidly (Zhou et al., 2017). With the typical transportable energy
storage system, e.g., electric vehicle, retention increasing
dramatically year by year, V2G technology, self-driving and
other relevant techniques having mature, the development
tendency of the application of transportable energy storage
system in electric power safeguard in the future has realized
(Khodayar et al., 2013) (Chen et al., 2019). In 2000, Kempton and
others first analyzed the feasibility of electric vehicles as
distributed energy storage by coordinating the charging/
discharging process of electric vehicles. For transmission
networks, electric vehicles are applied to realize load shifting
to improve the operation characteristics of grid (Lv, 2018). In
recent years, the United States, Denmark, Japan and other
developed countries and regions have vigorously promoted the
relevant research. Hence, transportable sources, e.g., electric
vehicles, have great potential to enhance the resilience through
optimal scheduling among multiple islands within the DS.

AESs are regarded as transportable energy storage systems.
Under the dual wheel drive of power security and environmental
protection, AES with characteristics of clean, environmental
protection and high energy efficiency continues to thrive in
recent years, which is a kind of new energy ship with wide
application prospects. In the port shore power stations, AESs
are generally the user’s load. The rise of reverse charging
technology promotes the transformation of AES from load to
distributed power source, realizes the bi-directional interaction
between ship grid and port grid. It leave the possibility for AESs to
enhance the resilience of port’s microgrid.

In comparison to the fixed emergency power supply device,
AESs’ flexibility is beyond doubt as a transport. AESs serve as a
bridge for energy dispatching between ports, realizing flexible
energy management as well as meeting the energy demand of
post-disasters port’s microgrid which assist the post-disaster
restoration. As a mobile power storage system, AESs play a
strong role in power supply in the emergency of post-disasters.

AESs obviously have more advantages than electric vehicles in
the specific environment of port grid. Against the electric vehicles
with the identical flexibility, AESs have strong power storage
capacity and diversified energy utilization. Namely, AESs’ single
charging/discharging provide more power accommodation/
energy supplement for the post-disaster port microgrid.

Except for the decided advantage in energy storage capacity,
the AES is more powerful than electric vehicle in integrated
utilization of multiple energy sources. Due to the limitation of
cubage and other factors, the energy utilization types of electric
vehicles are relatively single. However, the AESs utilize multi-
kinds of energy simultaneously, e.g. solar resources, wind power,
tide energy and other clean energy. What’s more, only can electric
vehicles realize the energy dispatching among emergency power
sources in the port, and cannot achieve the energy transportation
management among ports. The AESs not only carry out
dispatching inside the port by using the berthing position, but
also dispatch energy among ports. The AESs highly accords with
the demand of the post-disaster restoration of the ports’
microgrid, which is the excellent choice of the port
uninterrupted power supply.

In recent years, the rapid development of artificial intelligence,
big data, cloud computing and other related information
technology has brought new strategies for energy
interconnection and optimal operation which provides
opportunities to the unreasonable resource allotment and low
resource-efficient of port energy system caused by disasters. In
this context, the AES-based joint energy dispatching comes into
being. As a kind of carrier, AES building a bridge between the
affected port and its neighbor grid realizes the electricity-centered
energy interconnection of multiple ports. The AES-based joint
scheduling build a foundation for the unified dispatching of
multi-port grids and AESs’ energy storage system, maximize
energy utilization, minimize the cost of post-disaster
restoration. Meanwhile, adjustment of using energy from high-
carbon to low-carbon is consilience of the current development
theory and IMO energy conservation and environmental
protection requirements (Fang et al., 2020).

In this paper, the research problems illustrate as follows: the
connection of port grid and the main grid is fault after disasters,
leading to a self-sufficient islanded microgrid of port. When a
port is hit particularly hard, distributed generator are insufficient
to meet the energy requirements, and thus AESs can be
aggregated as a wide range of uninterruptible power sources
for service restoration as far as possible. In this context, a joint
post-disaster restoration scheme is proposed, in which AESs are
dynamically scheduled in coordination with port restoration
through microgrids, to minimize the total cost in the wake of
disasters. Specifically, the islanded microgrid and AESs are
described by using the temporal-spatial network model, and
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the mathematical model of AES operation is established to
optimize the power dispatching scheme.

Main contributions are concluded as follows:

1) This paper proposes a joint post-disaster restoration scheme
for berthing AESs and distribution generation in multi-port
microgrid to minimize the cost of post-disaster restoration.

2) In order to evaluate the necessity and feasibility of AES-based
joint scheduling, the mathematical model of restoration cost
of the affected ports is established and resolve through
MILP mean.

The remainder of the paper consists of four sections. Section 2
illustrates the system architecture in detail. Section 3 presents the
modeling of AESs, ports and joint post-disaster restoration
scheme. Section 4 provides the numerical results and analysis,
and the paper is summarized in Section 5.

2 JOINT POST-DISASTER RESTORATION
SCHEME

In the aftermath of the extreme events, ports’microgrid has being
place on island mode (Parise et al., 2016). AESs, as the power
inter-connection bridge of adjacent ports, transfer the electricity
to the post-disaster port. The total data, including AESs’ position
and ports’ state, are aggregated to the cloud to work out the
dispatching plan to provide guidance for AESs move as shown in
Figure 1.

AESs join in the post-disaster restoration, increasing the
resilience of microgrid of the port. For the sake of the best
restoration scheme of port microgrid, the mathematical
formulation of the joint post-disaster restoration scheme with
the AESs is presented in this section, aiming at both minimizing
the cost of joint post-disaster recovery and maximizing the
efficiency of microgrid restoration. Furthermore, post-disaster
recovery is characterized by the power recovery of local load. The
customer interruption cost is adopted by distinguishing the load

priority. The objective function and port operation constraints
sets are described as follows.

2.1 Objective Function
The objective function considers two aspects: customer
interruption cost and AES operation cost. AES part includes
three aspects: AES transportation cost, DG generation cost and
loss cost of shipborne battery, as follow (Yao et al., 2018):

min∑
t∈T

⎡⎣ ∑
m∈M

Wm PDt
m − PDt

r,m( )ΔT + ∑
m∈M

Cgen,mP
t
DG,mΔT +

∑
ω∈Ω

Ctran,ω ∑
(m,u)∈Z,m≠u

ζ tω,mu + ∑
ω∈Ω

Cbat,ω ∑
m∈M

Pt
ch,ωm + Pt

dch,ωm

∣∣∣∣ ∣∣∣∣ΔT⎤⎦
(1)

The first term of the objective Eq. 1 ∑
m∈M

Wm(PDt
m − PDt

r,m)ΔT
represents the sum of customer interruption costs at time t.Wm is

unit interruption cost for load at port m, PDt
m is load in port m in

time span t and PDt
r,m is load restored at port m in time span t.

The second term ∑
m∈M

Cgen,mPt
DG,mΔT represents the power

generation cost of the shipborne generator of the AES ω in
time span t. Cgen,m is unit generation cost for the DGs in port
m. The last portions are associated with AES,Ctran,ω andCbat,ω are
unit transportation cost for the AES ω and unit battery
maintenance cost for the AES ω respectively. The third part∑
ω∈Ω

Ctran,ω ∑
(m,u)∈Z,m≠u

ζ tω,muΔT indicates the cost of AES

transportation which calculates the AES trace among ports.
ζ tω,mu is binary variables, 1 if AES ω is on arc (m, u) in time span
t, 0 otherwise. The last term ∑

ω∈Ω
Cbat,ω ∑

m∈M
|Pt

ch,ωm + Pt
dch,ωm|ΔT

provides the shipborne power storage system cost, namely
battery maintenance cost. Pt

ch,ωm / Pt
dch,ωmis charging/

discharging power of AES ω from/to port m in time span t.
In order to effectively dispatch the power resources, the travel

of the AES is modeled by using the temporal-spatial network
model (TSN model), which describes the vessels’ path in 24 h and
the exchange of power with each port in detail.

3 THE MODEL OF AES-BASED
DISPATCHING

3.1 Temporal-Spatial Constraints of AES
In the TSN model, the transportation time of AESs among nodes
is a time span. In practice, it makes hard to be consistent for each
transit between ports (nodes). Therefore the virtual port (virtual
node) is introduced, i.e. node 4 is introduced in between node 2

FIGURE 1 | Port-AES model.

FIGURE 2 | TSN model.
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and node 3, so that the travel time of each arc between nodes
(including virtual nodes) is exactly a time span, as shown in
Figure 2 (Yao et al., 2018). The virtual node is similar to others
except that it cannot be used as dock to transfer power. The TSN
model can completely represent the whole process of AESs’
transportation and transmission.

The TSN-based AES model is formulated as follows:∑
(m,n)∈Z

ζ tω,mu � 1 (2)

∑
(m,n)∈Z−

m

ζ tω,mu � ∑
(m,n)∈Z+

m

ζ t+1ω,mu, ∀m ∈ M ∪ Mv (3)

∑
(m,n)∈Z+

m

ζ1ω,mu � ζ0ω,m,∀m ∈ M ∪ Mv (4)

ζ tω,mu + ζ t+1ω,um ≤ 1, (m, n) ∈ Z,m≠ u (5)

(∀ω � Ωt ∈ T)
Eq. 2 ensures that there is only one state for each AES at the

same time, travel or berth, and the range is given. Eq. 3 ensures
the flow of AES in each port that the entering and exiting number
of AESs at any node is equal in sequential time. The constrain
holds true for the virtual node. Particularly, constrain Eq. 4 is a
special case of constrain Eq. 3 which express at the initial time.
The constrain Eq. 5 place restrictions on AESs’ trace that AESs
cannot course reversal immediately, which means it is necessary
to via the intermediate port or berth a time space at the target port
u. The constrain provides possibility for AESs to berth for power
transmission and avoids unnecessary frequent round trip. The
above-mentioned constrains do work for AESs in each time span.

According to the TSN model being in line with discrete time
span in planning horizon of DGs, TSN model is suitable for
scheduling in both representing the location of the AES and
ensuring the AES mobile trajectory. Meanwhile, the AES and port
microgrid operation are also oblige to guarantee.

3.2 Operation Constraints of AESs
When AESs berth at any port for power resource exchange, the
following constraints should be met:

Pt
ω + Pt

B,ω + ζ tω,mm Pt
ch,ωm − Pt

dch,ωm( ) � Pt
SE + 1 − ζ tω,mm( )Pt

PL (6)

0≤ Pt
ch,ωm ≤ ζ tω,mmP

max
ch,ωm (7)

0≤ Pt
dch,ωm ≤ ζ tω,mmP

max
dch,ωm (8)

0≤ ∑
m∈M

Pt
ch,ωm ≤ Itch,ωP

max
ch,ω (9)

0≤ ∑
m∈M

Pt
dch,ωm ≤ Itdch,ωP

max
dch,ω (10)

0≤ Pt
ω ≤ P

max
ω (11)

SOCmin ≤ SOCt
ω ≤ SOCmax (12)

Itch,ω + Itdch,ω ≤ ∑
m∈M

ζ tω,mm (13)

(ω ∈ Ω,m ∈ M, t ∈ T)
Eq. 6 shows the balance of supply and demand of AESs when

berthing for power exchange. Pt
ω, Pt

B,ω are power of diesel
generator in AES ω in time span t and power of battery in

AESω in time span t respectively, part of supplyment. Pt
SE and P

t
PL

are service and propulsion loads of ω-th AES in time span t. The
constraint ensures that AESs can plunge into joint restoration
scheme after meeting their own basic power demand, which
averts the damage of shipborne equipment and underpower.
ζ tω,mm � 1 indicates AESs berth at port m in time span t.
Meanwhile, 1 − ζ tω,mm � 0 cause (1 − ζ tω,mm)P

t
PL � 0 which

presents propulsion is no longer needed while AESs berth at port.
Constraint Eqs. 7–12 represent the bound of the ship borne

equipment to maintain their normal operation individually.
Constraints Eqs. 7, 8 establish the feasible set of charging/
discharging power of AES ω to port m. ζ tω,mm restricts
charging/discharging of AESs after berthing. Constraints Eqs.
9, 10 define the charge/discharge power constraints associated
with AESs’ operation mode. Itch,ω / Itdch,ω, binary variables,
represents charging/discharging state of AES ω in time span t
restricting by ζ tω,mm. Taking DG into account, the power of
shipborne DG is limited, and its bound is shown as constraint
Eq. 11. In addition, the feasible range of single charge/discharge
of shipboard power storage system, i.e. battery, are expressed in
Eq. 12. The constraint Eq. 13 is that the AES either transfers
power with the port microgrids or be idle while it stops at the port.
However, charging and discharging of each AES cannot
cooperate simultaneously.

With regard to AESs’ trajectory and operation constrains are
expressed on above. The constraint set of port microgrid are
described as next section.

3.3 Operation Constrains of Port Microgrid
The port is regarded as a complete microgrid from the grids’
perspective, which is a small power distribution system applied
with equivalent distributed generation, energy storage system,
local load and protection device connected by DC bus and
controlled by grid control centre. While AESs are connected,
the working constraints of microgrid are described as follows:

PDt
DG,m + PDt

r,m + Pt
R,m � Pt

DG,m − ∑
ω∈Ω

Pt
ch,ωm + ∑

ω∈Ω
Pt
dch,ωm (14)

0≤ PDt
r,m ≤ PDt

m (15)

0≤ Pt
DG,m ≤ Pmax

DG,m (16)

Et+1
DG,m � Et

DG,m − Pt+1
DG,mΔT (17)

Emin
DG,m ≤ Et

DG,m ≤ Emax
DG,m (18)

(∀m ∈ M, t ∈ T)
Eq. 14 stands for the co-ordination of supply and demand of

the microgrid when AESs are connected and carry out charging/
discharging operation. PDt

DG,m, PD
t
r,m and Pt

R,m are load of DG in
port m in time span t, load restored at port m in time span t and
power reserve of MG in port m in time span t, respectively. As the
result of actual load restriction, restored load should be bound
which is shown in constrain Eq. 15. Constrain Eq. 16 establish
the feasible set of the equivalent distributed generation power in
the port. Finally, constrain Eq. 17 calculates the energy in Port m
and constrain Eq. 18 restrict the capacity of the energy storage
system in the microgrid to ensure device working in
appropriate range.
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Together with constrains of the AES-based joint post-disaster
restoration scheme in Section IV, the dispatching problems
pertain to a MILP problem, which can be solved by off-the-
shelf business tools effectively, and the constraints are classified
into the following 3 categories.

1) Temporal-spatial constraints of TESSs: Eqs. 2–5;
2) Operation constraints of AESs: Eq. Eqs. 6–13;
3) Operation constraints of port microgrid: Eqs. 14–18.

4 NUMERICAL RESULTS

In this section, the case studies are performed on the test system
composed of three ports and four AESs to verify the validity of the
proposed AES-based joint scheduling scheme. The optimization
model is implemented using MATLAB 2020A, on a computer
equipped with Intel Core i7 3.4 GHz CPU and 8 GB RAM.

All test problems are solved by intlinprog function in the
commercial software MATLAB. “Intlinprog” is a mixed-integer
linear programming solver, the abbreviation of mixed-integer
linear programming (MILP).

4.1 Text System
In this study, the local load in adjoin ports at each time follows the
load profile as given in Figure 3.

Owing to stressing on the difference functions, ports’ loads
show discrepancy, which leading to load classification on supply
side. Study assumes that the load classification of ports from low

to high is port 1, port 2 and port 3, which is represented by load
interruption cost in Table 1, 2.

Ports, shown in Figure 1, are regarded as the microgrid in the
island mode, and the local load of each port follows the curve in
Figure 3. For the sake of simplicity, four AESs with both identical
properties and setting out to scheduling simultaneously are
considered, which means that all the vessels have exactly the
same attributes. The parameters of AESs are shown in Table 1.
The time horizon is set to 24 h after disaster and time step is 1 h.
The unit power generation cost of microgrid is $0.5/kWh. The
unit transportation cost of AES is $80 per transit. The unit battery
maintenance cost is set to $0.2/kWh.

In the remaining part, two cases are investigated to illustrate
the feasibility of joint dispatching of AESs and DSs, as follows.

Case 1) A post-disaster restoration scheme only relies on
distributed emergency generator.

Case 2) A joint post-disaster restoration scheme for AESs and
generation scheduling in microgrids (MGs) is proposed.

FIGURE 3 | Local load profile.

TABLE 1 | Load interruption cost.

Port 1 Port 2 Port 3

Cost ($/kWh) 3 10 100

TABLE 2 | AES parameters.

AES# 1 2 3 4
Initial position 1 1 2 3
Charging/discharging Power (MW) 0.2
Energy Capacity (MWh) 1.0
Initial SOC 0.5
SOCmax/SOCmin 0.90/0.10
Charging/discharging Efficiency 0.95/0.95

TABLE 3 | Economic comparison.

Case 1 Case 2

Cost ($) 2,625.4 2,535.3

FIGURE 4 | AES scheduling.
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FIGURE 5 | Load restoration in case 2.

FIGURE 6 | Generation Dispatch and Load Restored in case 2.
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4.2 Simulation Results
The comparison of the economic results under two cases is shown
in Table 3.

Figure 4 provides the dynamics of AES in 24 h. Taking AES3
for instance to illustrate the schedule, it initially berths at port 2
and then through port 3 arrivals at port 1 (01:00–03:00), stays for
3 hours (03:00–06:00) to charge to port 1. Next, AES3 sails to port
3 (06:00–07:00) via port 2, supplies power to port 3 (07:00–09:00).
Then departing from port 3 through port 1, port 3 and port 2 in
turn (9:00–12:00). Finally moves to port 2 to transit energy to port
2 (12:00–14:00), and then moves to port 3 (14:00–15:00) for
discharging 2 hours (15:00–17:00). After that, it returns to port 2
to discharge for 3 hours (18:00–21:00), moves to port 3 (21:00–22:
00), starts to supply power from 22:00 to 24:00.

Figure 5 denotes the load recovery of joint post-disaster
restoration scheme for AESs and generation scheduling in
microgrids. The line diagram is identical as the load curve in
Figure 3, indicating the change of local load. The variation of the
median value of the column chart are perfectly in tune with
restoring load. Figure 6 shows the stacked generation dispatch for
microgrids and AESs. The lower part of the bar represents the
equivalent active power generated by the distributed emergency
equipment; the opposite depicts the feeding of power fromAES to
the port, which describes the load distribution explicitly.
Therefore, it can be observed that the active power within
each port is balanced along the optimization horizon while
AES participate in restoration.

5 CONCLUSION

As a kind of carrier, AES has the potential to be a distributed
emergency generation profit from its immensity power capacity,
realizing by the two-way interaction between ship grid and port
microgrid through shore power stations. Under the sensible
scheduling, it has served as emergency power supply
equipment for port microgrid restoration in the post-disaster
condition. Therefore, a joint post-disaster restoration scheme for
AESs and generation scheduling in microgrids (MGs) has been
proposed to minimize the cost of port restoration. The TSN
model has been applied to represent AESs in two dimensions:
time and space. The port microgrid restoration cost has been
established as a mixed-integer linear programming model, which
has derived an AES scheduling sequence and generation

dispatches for both AESs and resources in port. Taking three
adjoining ports and four AESs as examples, the effectiveness of
the scheme has been verified.

The comparative simulations have been implemented to
illustrate the availabilities of AES on port microgrid
restoration. The high-capacity and transportability of AES has
guaranteed the feasibility to effectively transfer energy to
microgrids, being adjunct to the local loads’ operation after
disaster, and minimizing losses. The post-disaster island grid
can be regarded as a microgrid operating in island mode while the
cable disconnection of the inlandmain grid. Hence, this paper has
a certain reference significance for the island post-disaster
restoration.
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A Multi-Step Prediction Method for
Wind Power Based on Improved TCN
to Correct Cumulative Error
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Wind power generation is likely to hinder the safe and stable operations of power systems
for its irregularity, intermittency, and non-smoothness. Since wind power is continuously
connected to power systems, the step length required for predicting wind power is
increasingly extended, thereby causing an increasing cumulative error. Correcting the
cumulative error to predict wind power in multi-step is an urgent problem that needs to be
solved. In this study, a multi-step wind power prediction method was proposed by
exploiting improved TCN to correct the cumulative error. First, multi-scale convolution
(MSC) and self-attentiveness (SA) were adopted to optimize the problem that a single-
scale convolution kernel of TCN is difficult to extract temporal and spatial features at
different scales of the input sequence. TheMSC-SA-TCNmodel was built to recognize and
extract different features exhibited by the input sequence to improve the accuracy and
stability of the single-step prediction of wind power. On that basis, the multi-channel time
convolutional network with multiple input and multiple output codec technologies was
adopted to build the nonlinear mapping between the output and input of the TCN multi-
step prediction. The method improved the problem that a single TCN is difficult to tap the
different nonlinear relationships between the multi-step prediction output and the fixed
input. The MMED-TCN multi-step wind power prediction model was developed to
separate linearity and nonlinearity between input and output to reduce the multi-step
prediction error. An experimental comparative analysis was conducted based on the
measured data from two wind farms in Shuangzitai, Liaoning, and Keqi, Inner Mongolia. As
revealed from the results, the MAE and RMSE of the MMED-TCN-based multi-step
prediction model achieved the cumulative mean values of 0.0737 and 0.1018. The
MAE and RMSE metrics outperformed those of the VMD-AMS-TCN and MSC-SA-
TCN models. It can be seen that the wind power prediction method proposed in this
study could improve the feature extraction ability of TCN for input sequences and the ability
of mining the mapping relationship between multiple inputs and multiple outputs. The
method is superior in terms of the accuracy and stability of wind power prediction.

Keywords: improved TCN, cumulative error, multi-step wind power prediction, self-attentiveness, multi-scale
convolution
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INTRODUCTION

The increasing depletion of traditional energy sources (e.g., fossil
fuels and natural gas) has greatly challenged the development of
power systems (Wu et al., 2020). Wind energy will become the
most promising clean energy source for its inexhaustible and
renewable characteristics (Du et al., 2017). The global installed
wind power capacity is expected to reach nearly 800 GW by 2021
(GlobalWind Energy Council, 2021). Because wind power output
is found to be intermittent and stochastic, an accurate wind power
prediction method acts as a vital technical tool to ensure the safe,
stable, and economic operation of the power system (Ye and
Zhao, 2014). Since wind power is continuously connected to the
power system, the requirements for step length of its prediction
are gradually increasing and the accuracy requirements are
gradually becoming higher. However, the conventional multi-
step rolling prediction model should exploit the wind power
predicted at the previous moment to predict the wind power at
the subsequent moment and the prediction result at the
subsequent moment will accumulate the prediction error of
the previous moment. The cumulative error of wind power
will increase as the number of prediction steps rises
continuously (Chen et al., 2017). The phenomenon will
increase the difficulty of the multi-step prediction of wind
power. Accordingly, correcting the cumulative error to
conduct the multi-step prediction of wind power should be
solved urgently.

On the whole, the existing multi-step prediction of wind
power has been conducted based on the single-step prediction.
Relevant researchers have adopted a range of methods for the
single-step and multi-step predictions of wind power. The
mentioned methods can fall into three main categories,
i.e., statistical methods, physical methods (Wu et al., 2017),
and combined prediction methods (Han et al., 2019). The
physical method refers to a wind power prediction method
based solely on the historical wind power data and the
Numerical Weather Prediction (NWP) data (Louka et al.,
2008; De Giorgi et al., 2011; Cassola and Burlando, 2012; Liu
et al., 2020a). The physical methods generally apply to the single-
step prediction. The single-step wind power prediction based on
the physical method exhibits the advantages as follows: the small
amount of data relied on, the simplicity of the model, and the
convenience and speed of prediction. However, large errors exist
between the NWP data and real weather data, and spatial
differences are identified between NWP data and wind farms,
thereby causing the accuracy of the physical method for the
single-step wind power prediction to be generally low. The
statistical method refers to a wind power prediction method,
updating and adjusting the model weights and parameters based
on the error between the predicted and true values. It usually falls
into probabilistic statistical models, machine learning models,
and deep learning models. Probabilistic statistical models consist
of Auto-Regressive Moving Average Model (ARMA) (Wang
et al., 2015a) and Autoregressive Integrated Moving Average
Model (ARIMA) (Cao et al., 2019; Liu et al., 2020b). It can
more effectively follow the wind power forecast than physical
methods. Physical methods can better follow the trend of wind

power, whereas a large get error occurs in the multi-step
prediction. Machine learning models consist of Support Vector
Machine (SVM) (Zhang et al., 2016), Random Forest (RF) (Liu
et al., 2015), and Hidden Markov Model (HMM) (Lahouar and
Ben Hadj Slama, 2017), all of which exhibit better single-step
prediction accuracy than that of conventional probabilistic
models. Deep learning models comprise Neural Network
Model (Zhou et al., 2018), Long Short-Term Memory (LSTM)
(Li et al., 2018; Li et al., 2020; Liu and Liu, 2021), and Gated
Recurrent Unit (GRU) (Hochreiter and Schmidhuber, 1997;
Chung et al., 2014). They are capable of fully exploiting the
temporal and spatial characteristics of the input sequence to
improve further the accuracy of the single-step prediction of wind
power. Statistical methods can effectively extract the linear and
nonlinear relationships of historical data and promote the single-
step prediction of wind power to be more accurate, whereas it is
difficult to conduct an accurate and stable multi-step prediction
of wind power series with strong randomness and obvious noise
signals for their single structure and high data quality
requirements (Tascikaraoglu and Uzunoglu, 2014; Wu et al.,
2019).

The combined prediction method refers to a wind power
prediction method that maintains the advantages of all single
prediction models to achieve more accurate and stable
predictions. It is generally used in wind power multi-step
prediction. The literature (Lin and Liu, 2011; Wang et al.,
2015b; Wang et al., 2020a) has combined VMD (Liu et al.,
2018) and GRU to form a combined model for the multi-step
prediction of wind power. Moreover, compared with a single
model, the combined model single-step prediction results can
better track the variation of wind power; however, it is limited by
the VMD model and the cumulative error occurs in the multi-
step prediction. The literature (Catalao et al., 2010) has employed
a hybrid prediction model with wavelet transform, a particle
swarm algorithm, and an integrated adaptive network fuzzy
inference system. Such a model achieved better mean absolute
percentage error (MAPE) and normalized mean absolute error
(NMAE) of the single-step prediction than those of the single
model; however, the identical problem of cumulative error
existed. The literature (Wang et al., 2020b) has combined
LSTM, RF, VMD, and wavelet transform (WT) to build a
multi-timescale wind power prediction model, and the
combined prediction model outperformed others in multiple
timescales. The above-mentioned combined prediction method
has better prediction performance compared with physical and
statistical methods, while no corresponding solution has been
given for the multi-step prediction cumulative error.

Combined with the above-mentioned methods, given the
cumulative error of existing studies in the wind power multi-
step prediction and the incomplete input sequence feature
extraction of TCN application in the wind power prediction,
this study proposed a wind power multi-step prediction method
based on improved TCN to correct the cumulative error. The
main contributions of this study are as follows:

1) The MSC-SA-TCN model was established to reduce difficulty
in extracting the temporal and spatial features of different
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scales of the input sequence with the single-scale
convolutional kernel of TCN using MSC and SA. It can
recognize and extract different features of the input
sequence to promote the single-step prediction of wind
power to be more accurate and stable.

2) The MMED-TCN multi-step wind power prediction model
was proposed to develop the mapping relationship between
the output and input of TCN multi-step prediction using the
codec of multi-channel time convolutional network with
multiple inputs and multiple outputs. Such an effort aims
to improve the problem that the different nonlinear
relationships between multi-step prediction outputs and
fixed inputs are difficult to mine. It can separate linearity
and nonlinearity between the input and output to reduce the
cumulative error of the multi-step rolling wind power
prediction.

This study is organized as follows. In Design of Multi-Step
Prediction Model Based on Improved TCN, the design of the
improved TCN multi-step prediction model is elucidated. In
Algorithm Flow, the algorithmic process of the wind power
multi-step prediction based on improved TCN for correcting
the cumulative error is illustrated. In Experiment and Analysis,
LSTM, VMD-AMS-TCN, and other models are adopted to
compare the experiments with the MSC-SA-TCN model and
MMED-TCN model proposed in this study. The experimental
results are analyzed specifically to verify the superiority of the
model proposed in this study. In Conclusion, relevant conclusions
and subsequent research directions are given.

DESIGN OF MULTI-STEP PREDICTION
MODEL BASED ON IMPROVED TCN

Introduction to the TCN Model
On the whole, the TCN model consists of causal convolution,
dilated convolution, and residual block. It has a more lightweight
network structure than CNN, LSTM, and GRU (Drdgomiretskiy
and Zosso, 2013; Bai and Koltun, 2018). The perceptual field of
the network can be altered according to the filter size. It is more
conducive to the prediction of time series.

Set the filter F�(f1,f2,...,fK), the number is Fn, and the output
sequence information is Y�(y1,y2,...,ys), where the input is
S�(s1,s2,...,sn), where si,i∈[1,n] is the column vector. The following
equation gives the causal null convolution of st at moment t:

F(st) � (SpdF)(st) � ∑K
k�1

fk · st−d(K−k), (1)

where d denotes the expansion factor, K denotes the filter size, and
the formula for the perceptual field isRF�(K-1)d+1. The causal and
null convolution for K � 3 in TCN are given in Figure 1.

The TCNmodel introduced the residual module. The problem
of gradient explosion and network degradation in deep

FIGURE 1 | Causal convolution and null convolution in TCN.

FIGURE 2 | Residual module of TCN model.
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conventional neural networks was solved. The residual module of
the TCN model is given in Figure 2.

In the figure, zi−1 is the input of the network at layer i-1 and z1

is the output of the network at layer i. The calculation in the figure
can be expressed as follows:

f (x) � W2σ(W1z
i−1 + b1) + b2, (2)

zi � f (x) + zi−1 (3)

where W1, W2, b1, and b2 denote the mapping parameters to be
learned by the TCN; σ(·) is the Rule function.

According to the mentioned brief and literature research, the
current TCN faces difficulty in extracting multi-scale temporal
and spatial features of input sequences and inmining the different
nonlinear mapping relationships between multi-step prediction
outputs and fixed inputs.

MSCSA-TCN Model
To solve the problem that the size of the convolution kernel of the
conventional TCN model is fixed, in order to reduce the difficulty
in extracting themulti-scale temporal and spatial features extracted
from the input sequence, this study proposed an improved TCN
model based onMSC-SA. First, different scales of convolution were
adopted to extract the complete time-space features of wind power
sequences. Subsequently, the self-attentive mechanism was used to
mine the correlation among the features and distinguish the
important features from the non-important ones. Lastly, the
output of MSC-SA acted as the input of TCN. The structure of
the MSC-SA-TCN model is illustrated in Figure 3.

ci is the output of MSC, expressed as follows:

ci � Ki
L×1p[I1×ki pKi,j

1pki] j ∈ [1, n] , (4)

where * is the convolution operation; ki is the layer i convolution
kernel scale; L represents the number of input features; I1xki is the
output of the VMD-AMS module; Ki,n

1×ki denotes the jth temporal
convolution kernel in layer i with size 1xki; Ki

L×1 is the spatial
convolution kernel in layer i with size Lx1.

Q,K,V of the attention mechanism part of the figure can be
expressed as follows:

Q � WQ
n×nISA + bQn×m,

K � (WK
n×nISA + bKn×m)T ,

V � WV
n×nISA + bVn×m,

(5)

where W* and b* represent the weight matrix and bias matrix;
then, the output of theMSC-SAmodule can be derived as follows:

S � softmax(QK)V . (6)

MMED-TCN Model
For the cumulative error in the wind power multi-step prediction
by traditional single TCN, an improved TCN model based on
multiple outputs was proposed in this study. The specific structure
of the model is shown in Figure 4. The model reduced the
cumulative error in the wind power multi-step prediction using
multi-channel TCN to extract the nonlinear mapping relationship
between input and output of different prediction steps.

The input of the multi-output TCN model is the output S of
MSC-SA with dimension kxm, and its individual output is
expressed as TFnx1. Fn is the number of TCN filters, and the
final output was obtained after linear transformation and Relu
function, which can be expressed as follows:

yi � Re lu(W1×Fn,iTFn×1,i + bi) i ∈ [1, s] , (7)

FIGURE 3 | Structure of MSC-SA-TCN model.

FIGURE 4 | Multi-output TCN structure.
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where WFnx1,i, bi are the weights and biases of the predicted
output at step i, respectively.

The MMED-TCNmodel was obtained using the multi-output
TCN model as the decoding layer and using the MSC-SA model
as the coding layer. The structure of the MMED-TCN model is
given in Figure 5.

ALGORITHM FLOW

Based on the design of a multi-step prediction model with
improved TCN, the algorithm flow of wind power multi-step
prediction based on improved TCN to correct cumulative error
proposed in this study is illustrated in Figure 6. The specific steps
are elucidated as follows:

1) First, the input raw wind power sequence P was preprocessed,
mainly including outlier processing (negative value, exceeding
full power value and garbled code) and vacant value filling, and
the wind power sequence after processing is expressed as P′.

2) Then, P′ was decomposed using VMD to obtain the principal
component sequence IMFs� { IMF1, IMF2, ... ,IMFL-1} and the

noise sequence E. The IMFL was obtained by smoothing E
using AMS.

3) Next, theMSC-SAmodel was used to extract the temporal and
spatial features of the IMFs series to obtain the output S.

4) Finally, the final prediction model was selected according to
the number of prediction steps. TheMSC-SA-TCNmodel was
selected for the single-step prediction. The MMED-TCN
model was selected for the multi-step prediction. The
prediction results were evaluated.

EXPERIMENT AND ANALYSIS

Data Source
The wind power data used in this study were obtained from the
actual measurement data of the wind farms in Shuangzitai,
Liaoning, and Kqi, Inner Mongolia, from December 2019 to
October 2020, with a sampling interval of 15 min. Nearly 28,000
data pieces were available for each wind farm, and the first 10,000
were taken as the experimental data in this study, the first 80% of
which acted as the training set and the last 20% as the test set.

FIGURE 5 | MMED-TCN model structure.
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Data Processing
The data employed in this study have negative, overfull, garbled,
and vacant values. In this study, the negative values were processed
by directly setting zero, and the wind power values before and after
the two moments were used to correct or fill the overfull, garbled,
and vacant values. Since the installed capacity of each wind power
station was different, thereby causing the difference of its power
generation, the experimental data were normalized to better assess
the experimental results using the following:

P″i �
P′i −min(P′)

max(P′) −min(P′). (8)

Evaluation Metrics
In this study, six metrics were adopted to assess the performance
of the model, i.e., Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), MAE lift (PMAE), and RMSE lift
(PRMSE) of the prediction results of the two models and MAE

FIGURE 6 | Algorithm flow.
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accumulation (AddeMAE,ij) and RMSE accumulation
(AddeRMSE,ij) from i-step prediction to j-step prediction. The
specific equations are expressed as follows:

MAE � 1
n
∑n
k�1

∣∣∣∣yi − ŷi
∣∣∣∣, (9)

RMSE �
����
1
n
∑n
i�1

√ (yi − ŷi)2, (10)

PMAE � Model2MAE −Model1MAE

Model2MAE
, (11)

PMRE � Model2RMSE −Model1RMSE

Mode12RMSE
, (12)

AddeMAE,ij � MAEi −MAEj i> j , (13)

AddeRMSE,ij � RMSEi − RMSEj i> j , (14)

where yi and ŷi are the true and predicted values at moment i,
respectively. ModelMAE and ModelRMSE represent the MAE and
RMSE of the model, respectively, where Model1 is the combined
model of this study and Model2 is the comparison model. MAEi
and RMSEi denote the MAE and RMSE predicted at step i,
respectively, and MAEj and RMSEj are the MAE and RMSE
predicted at step j , respectively, where i, j ∈ (Chen et al., 2017; Du
et al., 2017) are the prediction steps.

Experimental Analysis ofMSC-SA-TCNModel
Comparison of Experimental Models
To verify the prediction effect of the single-step prediction model
MSC-SA-TCN proposed in this study, five models in Table 1
were used for the experimental comparison in this section, and
the parameter optimization of the mentioned models was not the
focus of this study. For this reason, the main parameters of each
model are listed directly in Table 1.

Experiment and Analysis of VMD-AMS Algorithm
The VMD decomposition algorithm was adopted to decompose
the processed wind power series P″ into 20 main components
IMFs and 1 error component E. Subsequently, the AMS algorithm
was employed to smooth the tracking of the error component E to
determine the 21st IMF component. The results of the VMD
decomposition and the AMS smoothing are presented in Figure 7
(the figure presents the results of 3, 6, 9, 12, 15, 18, 21, and so on

for different IMFs components). As indicated from this figure,
each component processed using the VMD-AMS algorithm was
uniformly distributed in the frequency domain, and the
reconstruction error was negligible below 0.005.

Experiments and Analysis of the Comparison Model
In this study, three single models (i.e., ARIMA, LSTM, and TCN)
were set for the comparative experimental analysis to verify the
superiority of the TCNmodel in the wind power prediction. Next,
two sets of hybrid models (i.e., EMD-TCN and VMD-AMS-
TCN) were set for the comparative experimental analysis to verify
the effectiveness of the VMD-AMS algorithm in improving the
prediction accuracy. Experiments were performed for the
proposed model MSC-SA-TCN and the other five models,
respectively. The experimental results are illustrated in
Figure 8, and the performance of various models under the
evaluation metrics MAE and RMSE is listed in Table 2.

As revealed from the comparison of the prediction
experiments of the two wind farms in Table 2, the MAE of
the single models (e.g., ARIMA, LSTM, and TCN) exceeded 1.5,
and the RMSE reached over 2.0, aking the trend of wind power
difficult to be accurately tracked. The main reason for this
phenomenon was that the single prediction model exhibited
relatively low sensitivity to the noise components in the wind
power series. Among the single models, TCN performs slightly
better than the other two single models in MAE and RMSE due to
the introduction of causal null convolution. Thus, TCN was
endowed with a wider field of perception compared with
ARIMA and LSTM, and it was enabled to more effectively
obtain the temporal characteristics of the wind power series.
Compared with the single model, EMD-TCN and VMD-AMS-
TCN models significantly improved their performance in MAE
and RMSE. The introduction of EMD and VMD-AMS could
effectively separate the noise signals, reduce the effect of noise
signals on the prediction accuracy, and increase the prediction
accuracy. The prediction performance of the VMD-AMS-TCN
model was better than that of the EMD-TCN model. The
prediction performance of the MSC-SA-TCN model proposed
in this study was better than that of the other models, where the
MAE was less than 0.3 and the RMSE was less than 0.4.

To further verify the prediction performance improvement of
the proposed MSC-SA-TCN model compared with other models

TABLE 1 | Experimental comparison model and main parameters.

Number Comparison
model

Main parameters

1 ARIMA LSTM TCN ARIMA VMD

2 LSTM 1) Number of nodes in the input layer: 200.
2) Number of convolution kernels: 10, size: 3.
3) Residual layer: 2.
4) Dilated convolution: Ye and Zhao (2014); Liu et al.
(2015); Du et al. (2017); Liu et al. (2020a); Wu et al. (2020).
5) Training batch size: 32. 6) Maximum number of training
iterations: 100.

1) Number of nodes in the
input layer: 200.
2) Number of implied
layers: 4.
3) Number of nodes in the
output layer: 1.
4) Training batch size: 32.
5) Maximum number of
training iterations: 100.

1) Autocorrelation
order: 24.
2) Moving average
order: 4.
3) Difference order: 1.

1) Number of
decompositions: 20.
2) Penalty factor: 1,000.

3 TCN
4 EMD-TCN
5 VMD-AMS-TCN

Frontiers in Energy Research | www.frontiersin.org September 2021 | Volume 9 | Article 7233197

Luo et al. Introduction Improved TCN Model

92

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


in this study, the performance improvement of the MSC-SA-
TCN model is given in Table 3.

According to Table 3, the proposed MSC-SA-TCN model in
this study improved more than 50% in MAE and more than 40%
in RMSE. The average improvement in MAE compared with
other models was 80.1%. The average improvement in RMSE
reached 80%. The MAE and RMSE predictors of the MSC-SA-
TCN model were significantly improved.

To verify the prediction stability of the MSC-SA-TCN model
proposed in this study, ten comparison experiments were performed
using theVMD-AMS-TCNmodel and theMSC-SA-TCNmodel for
the Nemengkchi wind farm, and the experimental results are shown
in Figure 9. The MAE and RMSE of the MSC-SA-TCN model
fluctuated from 0.1 to 0.3, while those of the VMD-AMS-TCN
model fluctuated from 0.3 to 0.7 and 0.4 to 0.8, respectively. The
fluctuation ranges of the MAE and RMSE of the MSC-SA-TCN
model were smaller than those of the MAE and RMSE.

Experimental Analysis of Multi-Step Wind
Power Prediction
The MMED-TCN wind power multi-step prediction model
proposed in this study reduces the cumulative error of the wind
power multi-step rolling prediction using the multi-channel TCN
technique. To verify the effectiveness of the MMED-TCN model in
reducing the cumulative error, the VMD-AMS-TCN and MSC-SA-
TCN models were employed to compare the 2-step and 5-step

predictions with the MMED-TCN model under two wind farms,
where the VMD-AMS-TCN and MSC-SA-TCN models were used
for rolling prediction. The experimental results are presented in
Figure 10, and the performance comparison of the respective model
is listed in Table 4.

According to Table 4, the 2-step and 5-step wind power
prediction results of the MMED-TCN model proposed in this
study were better than those of the VMD-AMS-TCN and MSC-
SA-TCN models overall under the MAE and RMSE evaluation
metrics. To verify whether the MMED-TCN model could
effectively reduce the cumulative error in the multi-step
prediction, the comparison of the cumulative error of each
model is listed in Table 5.

As indicated from Table 5, the MMED-TCN model proposed
in this study could effectively reduce the cumulative error in the
multi-step prediction, from 2-step prediction to 5-step prediction.
Its AddeMAE,ij was less than 0.16, and its mean value was 0.0737,
which was better than 0.2127 of the VMD-AMS-TCN model and
0.1991 of the MSC-SA-TCN model. Its AddeRMSE ,ij was less than
0.2, and the mean value was 0.1018, which was better than 0.3143
of the VMD-AMS-TCN model and 0.2501 of the MSC-SA-TCN
model. To elucidate the effect of the MMED-TCN model in
reducing the cumulative error of the multi-step prediction, the
histogram of the cumulative error index of eachmodel is presented
in Figure 11. According to Figure 11, the MMED-TCN model
outperformed both the VMD-AMS-TCNmodel and theMSC-SA-
TCN model in terms of AddeMAE,ij and AddeRMSE,ij. The

FIGURE 7 | Experimental results of VMD-AMS algorithm.
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FIGURE 8 | Experimental results of single-step wind power prediction.

TABLE 2 | Comparison of the performance of each prediction model for the two wind farm experiments.

Models Keqi wind farm in inner Mongolia Shuangzitai wind farm in Liaoning

MAE RSME MAE RMSE

ARIMA 1.7022 2.5257 1.8374 2.6323

LSTM 1.6911 2.4964 1.6749 2.4041

TCN 1.6896 2.3118 1.5803 2.3431

EMD-TCN 0.8664 1.2362 1.1458 1.5513

VMD-AMS-TCN 0.3361 0.4036 0.5454 0.6116

MSC-SA-TCN 0.1330 0.1755 0.2585 0.3445
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TABLE 3 | Comparison of the performance improvement of the experimental MSC-SA-TCN model for two wind farms.

Contrast model Keqi wind farm in inner Mongolia Shuangzitai wind farm in Liaoning

PMAE (%) PRSME (%) PMAE (%) PRSME (%)

ARIMA 92.1 93.1 85.9 86.9

LSTM 93.5 92.9 84.6 85.7

TCN 92.1 92.4 82.0 85.3

EMD-TCN 84.6 85.8 77.4 77.8

VMD-AMS-TCN 60.4 56.5 52.6 43.7

FIGURE 9 | Comparison of prediction stability among models.

FIGURE 10 | Multi-step wind power prediction experimental results.
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effectiveness of the MMED-TCNmodel in reducing the multi-step
prediction error was further verified.

CONCLUSION

To cope with the cumulative error in the wind power multi-step
prediction, a wind power multi-step prediction method based on
improved TCN to correct the cumulative error was proposed in
this study. The MMED-TCN multi-step wind power prediction

model was built by optimizing the TCN single-scale convolution
kernel and single input-output mapping relationship. Based on
the model, several experiments were performed on the actual
measured data of Liaoning Shuangzitai wind farm and Inner
Mongolia Keqi wind farm. The following conclusions could be
drawn based on the experimental results.

1) The MSC-SA-TCN model can effectively fix the ability of the
TCN’s single-scale convolution kernel for input sequence feature
extraction and improve the prediction accuracy and stability of

TABLE 4 | Comparison of the performance of each prediction model for the two wind farm experiments.

Models Metrics Keqi wind farm in inner Mongolia Shuangzitai wind farm in Liaoning

2 steps 3 steps 4 steps 5 steps 2 steps 3 steps 4 steps 5 steps

VMD-AMS-TCN MAE 0.6363 0.8623 1.0494 1.3022 0.6434 0.8453 1.0665 1.2528
RMSE 0.8529 1.1338 1.5191 1.8021 0.8618 1.2052 1.5185 1.7985

MSC-SA-TCN MAE 0.5957 0.6935 0.8766 1.1483 0.4087 0.6876 0.8145 1.0508
RMSE 0.7645 0.9580 1.2159 1.6104 0.7273 0.9636 1.0865 1.4418

MMED-TCN MAE 0.3832 0.4075 0.5098 0.6603 0.5586 0.6116 0.6572 0.7237
RMSE 0.5202 0.5485 0.6925 0.8859 0.7273 0.8198 0.9112 0.9724

TABLE 5 | Comparison of error accumulation of each prediction model for the two wind farm experiments.

Models Metrics Keqi wind farm in inner Mongolia Shuangzitai wind farm in Liaoning Mean

I = 2,j = 3 I = 3,j = 4 I = 4,j = 5 Mean1 I = 2,j = 3 I = 3,j = 4 I = 4,j = 5 Mean2

VMD-AMS-TCN AddeMAE,ij 0.2260 0.1871 0.2538 0.2223 0.2019 0.2212 0.1863 0.2031 0.2127
AddeRMSE,ij 0.2809 0.3853 0.2830 0.3164 0.3434 0.3133 0.2800 0.3122 0.3143

MSC-SA-TCN AddeMAE,ij 0.0978 0.1831 0.2717 0.1842 0.2789 0.1269 0.2363 0.2140 0.1991
AddeRMSE,ij 0.1935 0.2579 0.3945 0.2820 0.2363 0.1229 0.3553 0.2382 0.2501

MMED-TCN AddeMAEij 0.0243 0.1023 0.1505 0.0924 0.0530 0.0456 0.0665 0.0550 0.0737
AddeRMSE,ij 0.0283 0.1440 0.1934 0.1219 0.0925 0.0914 0.0612 0.0817 0.1018

FIGURE 11 | Histogram of error accumulation index of each model.
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the model by extracting the temporal and spatial features of the
input sequence at different scales by MSC-SA. TheMAE and the
RMSE of the MSC-SA-TCN model decrease by 0.2450 and
0.2476 on average in the single-step prediction, respectively,
compared with those of the VMD-AMS-TCN model.

2) TheMMED-TCNmodel is capable of effectively fixing the ability
of a single TCN to mine the mapping relationship between
multiple inputs and multiple outputs, reducing the effect of the
previous step prediction error on the prediction using the multi-
channel TCN technique, and effectively reducing the cumulative
error of the multi-step rolling prediction. In the multi-step wind
power prediction, its MAE cumulative mean value reaches
0.0737, and the RMSE cumulative mean value is 0.1018,
better than those of other models.

3) The MMED-TCNmodel introduced in this study can effectively
reduce the cumulative error of the multi-step prediction of wind
power. Since the PV power series exhibits similar characteristics
with the wind power series, the MMED-TCN model can be
adopted to reduce the cumulative error of the multi-part
prediction of PV power in the future.
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Distributed Economic Optimal
Scheduling Scheme for
Ship-Integrated Energy System Based
on Load Prediction Algorithm
Yuxin Zhang1,2, Qihe Shan1,2*, Fei Teng3 and Tieshan Li4

1Navigation College, Dalian Maritime University, Dalian, China, 2Maritime Big Data and Artificial Intelligent Application Centre,
Dalian Maritime University, Dalian, China, 3Marine Electrical Engineering College, Dalian Maritime University, Dalian, China,
4School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China

In order to enhance navigation safety and promote environmental protection, this paper
takes the problem of energy management in a ship-integrated energy system into
consideration. According to the characteristics of navigation, an intelligent ship energy
management model, simultaneously considering the social and economic benefits, has
been proposed. Meanwhile, this paper analyzes a distributed optimal scheduling problem
which considers renewable generation devices and an energy storage system. Combined
with an electricity-power system and thermal-power system, we propose an optimal
scheduling scheme to accurately meet the actual load demand based on the pre-results
analyzed by the ensemble learning short-term load forecasting algorithm. In addition, the
related stability analysis is given. Further, a series of simulation results have been
presented, which denote that the proposed load forecasting algorithm can accurately
analyze the short-term load demand trend, and the proposed optimization algorithm can
effectively coordinate economic and environmental protection.

Keywords: ship integrated energy system, energy management, renewable generation devices, load forecasting
algorithm, distributed optimal scheduling, ensemble learning algorithm

1 INTRODUCTION

As we know, a traditional generator which relies on fossil resources will be accompanied by a large amount
of greenhouse gases (Sun et al., 2019a; Li et al., 2020a). As one of the areas with the highest consumption of
fossil fuels, the shipping industry emits 3–5% of carbon dioxide into the earth every year (Rafiei et al., 2020).
In order to reduce the air pollution caused by the shipping industry, the International Maritime
Organization (IMO) has issued a series of strict regulations (Czermański et al., 2020), such as limiting
the energy efficiency operation index (EEOI) (Fang et al., 2019) and improving energy efficiency, etc. As a
new type of ship energy architecture, the ship-integrated energy system (S-IES) improves the utilization
efficiency of renewable energy and adjusts the utilization rate of energy, which embodies the deep
integration of information technology and energy characteristics. Therefore, with the continuous maturity
of intelligent technology (Peng and Wang, 2018; Liang et al., 2020; Li, J. et al., 2020), how to quickly and
accurately optimize the scheduling of the ship-integrated energy system, which is based on the concept of
sustainable development, has become a hot research topic.

With the continuous development of intelligent technology, its advanced concept has beenwidely used
in various fields (Ye et al., 2018; Liu et al., 2020; Wang et al., 2020; Zhang G. et al., 2020; Lei et al., 2021).
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Compared with the traditional ship energy system, to reduce fossil
energy consumption and pollution emissions, S-IES combines
photovoltaic units (PVs), wind turbine units (WTs) with diesel
generators (DGs), and combined heat and power generations
(CHPs) to form an energy supply system. In addition, unlike
traditional ships which rely on mechanical transmission to
provide power, ships based on S-IES are all electric ships (AES)
which rely on electric propulsion, further improving the
controllability and flexibility of ships. Nowadays, in order to
improve the rationality and reliability of the ship-integrated
energy system, it is essential to establish an optimal scheduling
mechanism model, which can accurately describe the whole voyage
state. A hybrid energy optimization management model with wind
turbines and energy storage equipment is proposed in Li et al.
(2020b), considering charging/discharging efficiency and EEOI
throughout the whole voyage, which takes the economic benefit
as the primary optimization objective to reduce the operation cost. In
order to improve the efficiency of energy utilization and ensure the
safe operation of power supply equipment, Kanellos et al. (2016)
proposes an energy optimization management model to guarantee
that the EEOI of ships in different sailing conditions can meet the
requirements of pollution emission limits proposed by IMO. Based
on the dual consideration of environmental benefits and economic
benefits, according to the actual situation of ship navigation, Wen
et al. (2021) proposes a joint optimal scheduling model which
considers the shore-side electricity system. At present, the
research of ship energy optimal management is mostly based on
the constraint of supply and demand balance, and is then used to
establish a dynamic relationship between the output power of
generators and the actual load demand. Thus, an efficient and
accurate load forecasting method is the key to improve the
reliability of ship energy optimization management.

According to fuel consumption information, meteorological
data, and hydrological information, etc., (Teng et al., 2020), based
on a broad learning system, proposes a load forecasting method,
which can reduce the negative impact of uncertainty in a complex
marine environment during navigation operation. Owing to the
new energy generators such as WTs and PVs, increasing the
uncertainty of the power system, a prediction intervals (PIs)
method based on a neural network is proposed to improve the
accuracy of load forecasting (Quan et al., 2014). However, the
short-term load of a ship has strong nonlinear variation
characteristics, i.e., the ship operation in different periods such
as departure, arrival, and cruise has quite different load demands.
Thus, the traditional method cannot accurately predict the short-
term load variation trend. In addition, in view of the actual
navigation operation, it is unable to obtain the above information
accurately and in a timely manner. Therefore, based on the actual
situation, there are still many challenges in ship short-term load
forecasting.

Owing to the above situations, we can transform the optimal
scheduling problem of the ship-integrated energy system into an
energy planning problem which contains a series of complex
navigation safety constraints. Considering the total lifecycle cost
of a hybrid electric propulsion ship and the storage performance
of the battery, an energy management model which can
effectively extend the service life of the ship is proposed in

Chen et al. (2020) which is based on the depth of the
discharge (DOD) constraint of the battery. Taking the
minimum fuel consumption as the optimization objective, a
power-flow-based energy management model considering a
battery energy storage system (BESS) is established in Balsamo
et al. (2020), which can improve energy efficiency and reduce
pollution emissions, completing ship energy optimal scheduling
simultaneously. Fang et al. (2020) presents an optimal
management model for all electric ships (AES), which can
consider both environmental and economic benefits. It can
ensure the navigation operation of the ship and reduce the
investment of additional equipment, e.g., ESS by increasing the
ship’s power system constraints. However, with the continuous
maturity of renewable-related technologies (Farrok et al., 2018),
more and more renewable energy supply equipment such as PV
units andWT units are connected to the S-IES, which increase the
penetration rate of green energy access gradually. And there are a
lot of “plug and play” load equipment, such as life load,
mechanical, etc. Owing to the above situations, the existing
optimization scheduling methods such as the dynamic
programming algorithm cannot meet the actual needs of S-IES
with strong distributed characteristics. Therefore, it is essential
for us to improve the computing speed of the distributed
algorithm while dealing with the performance of a ship energy
system.

Above all, based on the ship’s navigation characteristics, such as
carrying capacity, voyage, and velocity, combined with the constraints
of the electricity/thermal energy system, such as supply and demand
balance, ramping rate constraints, and energy energy-off constraints,
this paper proposes a distributed optimal scheduling method for the
ship-integrated energy system with load forecasting. The major
contributions of this paper are as follows.

1) This paper proposes a distributed ship-integrated energy system
with renewable generation devices and an energy storage system,
which can obtain environmental and economic benefits at the
same time. Combined with the characteristics of ship navigation,
such as safety-sailing, greenhouse emission, and the requirements
of electricity/thermal load during the whole voyage, we take the
lowest voyage operation cost as the primary optimization objective
to form a distributed energy optimization management model for
multi-energy ships, so as to realize the economic optimization
scheduling of the whole voyage.

2) In order to reduce the waste of fossil energy caused by
redundant capacity and improve the accuracy of load
response in a ship-integrated energy system, this paper
proposes an intelligent algorithm which can quickly and
accurately predict the load of navigation. In addition, for
improving the efficient and reasonable utilization of energy, a
distributed optimal scheduling algorithm for the ship-
integrated energy system is proposed as well, which can
guarantee safe and reliable navigation and quickly respond
to the actual demand of the load equipment simultaneously.

The remainder of this paper is organized as follows. In Section
2, we identify the main features and structures in the ship-
integrated energy system. Section 3 proposes an energy
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management scheme based on load forecasting. Section 4
presents a distributed economic optimal scheduling algorithm
for S-IES. According to the analysis of the example and
simulation results, the correctness of the proposed viewpoint is
fully proved in Section 5. Section 6 summarizes and concludes
the points from the paper.

2 STRUCTURE AND FEATURES IN S-IES

The intelligent ship-integrated energy system considered in this paper
can accurately predict short-term load demand according to historical
navigation information, and owing to the prediction data, combined
with the working characteristics of the ship, we can optimize the
energy output of the energy supply equipment. Figure 1 shows the
basic architecture of the S-IES. According toFigure 1, the S-IES can be
roughly divided into an energy supply system, load demand system,
energy conversion center, load forecasting center, and energy optimal
management center. An energy supply system provides electricity and
thermal power for the ship load to maintain normal operation during
different conditions; as an energy router, the energy conversion center
processes information flow and energy flow simultaneously, and
undertakes the task of mutual conversion of electricity and thermal

energy; based on navigation constraints and energy constraints, the
energy management center adopts a distributed intelligent algorithm
to analyze and calculate the energy optimal scheduling scheme in a
short period.

2.1 Velocity and Voyage Modeling
Ship navigation can be divided into three different operation
conditions, i.e., cruising, anchoring, and docking. Figure 2 is a
typical cross section of the ship, in which the voyage and velocity
range limits of the ship are indicated. As we know, in the course of
sailing, we can adjust the velocity within a certain range based on the
actual demand, but the ship must arrive at the ports or intermediate-
ports at the specified time. In addition, generally, the ship speed
depends on the propulsion power which has a certain relationship
with the resistance of sailing. If the propulsion power has a period of t,
the velocity Vt can be described as

Vt �
���
Lt
pr

pr1

pr2

√
(1)

where, pr1 is a nonnegative constant, which is related to the hull
form type, generally taken as 3 (Kanellos et al., 2014); pr2 is the
matching parameter of propulsion power and ship speed. Owing

FIGURE 1 | Basic structure of the integrated energy system on intelligent ships.
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to above situations, the mathematical expression of voyage and
velocity range limits are as follows, which is given in Feng et al.
(2018).

(1 − σ) · Vt
n ≤V

t ≤ (1 + σ) · Vt
n (2)

Distt � Distt−1 + Vt · Δt, t> 1
Vt · Δt, t � 1

{ (3)

where, Vnt denotes the ship speed at t; σ represents the interval
coefficient of ship speed;Distt−1,Distt represent the voyage at a period
of t − 1 and t, respectively; Δt represents the specified time interval.

2.2 Energy Supply System Modeling
As mentioned before, in order to improve the environmental
friendliness of the ship, we integrate PVs and CHPs into the
S-IES. In addition, owing to the high-power ramps and the
intermittency caused by renewable energy equipment, a
battery energy storage system (BESS) has been considered in
the ship to ensure the stability of power output.

1) CHP System Modeling: With the improvement of energy
saving and efficiency awareness, CHP, as the preferred
equipment which can reduce consumption and increase
efficiency, has been widely applied. CHP can utilize the
after-heat generated by power generation to other heating
loads, such as fuel preheating, etc. It has been considered as
the most energy-saving method for power generation, thus
CHP has a tendency to be installed on intelligent ships. The
operation cost function of CHP, containing fuel
consumption, has been modeled as the following convex
function in Sun et al. (2019b).

C PCHP
t ,HCHP

t( ) � ∑n
i�1

ai,1 · PCHP
i,t( )2 + ai,2 · PCHP

i,t +
bi,1 · HCHP

i,t( )2 + bi,2 ·HCHP
i,t + ci · PCHP

i,t ·HCHP
i,t( ) + κ

(4)

where, n is the number of CHPs; PCHP
i,t denotes the electrical

output of the ith CHP at the period of t; HCHP
i,t represents the

heating output of theithCHP at the period of t; ai,1, ai,2, bi,1, bi,2, ci,
and κ are the operating cost parameters of the ith CHP.

2) PV Modeling: In order to improve the efficiency of energy
utilization and reduce the pollution emissions during the
sailing voyage, PV units have been integrated in the S-IES.
In addition, the production capacity of a PV panel is not only
related to the strength of illumination, degree of angle and
panel area, but also related to the ship route and deck
inclination angle because of the ship characteristics. Owing
to these situations, Long et al. (2020) and Wen et al. (2020)
present a mathematical model which can describe the capacity
of PV units on ships appropriately.

PPV
t � ∑m

i�1
ηPVi · AreaPVi · IPVt · εPVi,t

ηPVi � ηPVref · ηMPPT 1 − β Ti,PV − TPV−ref( )[ ]
εPVi,t � cosθi,t + μi,1cos ϕt/2( )2 + μi,2sin ϕt/2( )2 (5)

where, PPV denotes the power output of PV; ηPV, ηPVref represent
the efficiency and reference efficiency of photovoltaic panels,
respectively; AreaPV denotes the PV panel area; the radiation
intensity can be described as IPV; ηMPPT represents the tracking
efficiency; TPV, TPV−ref denote the temperature and reference
temperature of PV panels, respectively; the angle between PV
panels and radiation can be used as θ; ϕ is the tilt angle; μ1 and μ2
denote the angle parameters.

3) BESS Modeling: Considering that there are many factors
affecting solar energy, taking PV units into the energy
system directly will lead to S-IES volatility. In addition, the
ship energy system will be unstable influenced by the
operation of high-load equipment and sudden speed-
adjusting. Owing to the above situations, we integrate BESS
into the S-IES as additional energy supply generation which
can share the pressure with the other device (Gangatharan
et al., 2020). The model of charging and discharging can be
expressed as follows (Zhang, Y. et al., 2020).

FIGURE 2 | Typical cross section of a sailing voyage with velocity limitation.

Frontiers in Energy Research | www.frontiersin.org September 2021 | Volume 9 | Article 7203744

Zhang et al. Economic-Optimal Scheduling Scheme for S-IES

102

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


ESS
t � ESS

t−1 + PESS
t · Δt, t> 1

Einitial + PESS
t · Δt, t � 1

{
SoCESS

t � ESS
t /Cap

SoCESS
t−1 + PESS

t · ηcht ≤ SoCESS
max

SoCESS
t−1 − PESS

t /ηdist ≥ SoCESS
min

(6)

where, PESS
t is the power outputs of BESS; ESS

t , ESS
t−1 denote the

capacity of BESS during the period of t and t − 1, respectively;
SoCESS

t , SoCESS
t−1 represent the state of charge during the period of t

and t − 1; Cap is the fixed capacity; ηdist , ηcht are the efficiency of
discharging and charging, respectively.

3 OPTIMAL ENERGY DISPATCH SCHEME
AND LOAD FORECASTING ON THE S-IES

Energy supply side of the S-IES proposed in this paper consists of
PVs, CHPs, and BESS. According to the value of load prediction,
the energy management center can obtain an optimal scheduling
scheme within sailing constraints. Assume that the S-IES contains
n-CHPs, m-PVs, a BESS, and other load equipment, such as
service load, propulsion load, mechanical load, etc.

3.1 Load Forecasting Algorithm
In order to realize the optimal scheduling of the S-IES, we need to
know the short-term load-demand information in a timely
manner. Therefore, we need to use the relevance of specific
routes to make a predictive analysis of the load-demand
information, and make a reliable prediction of the trend of
ship load demand. A deep learning algorithm can collect
feature information from ship historical load data through
multiple hidden layers, but it is easy to fall into a
local optimal solution and other problems to some extent

(Zhang, J. et al., 2020; Wang et al., 2021). In order to solve the
above contradictory problems, the ensemble learning theory,
containing the Bagging method and Bossting method which are
two popular algorithms based on resampling for load prediction
problems Feng et al. (2018) has received widespread consideration
because of its excellent performance in numerical prediction
situations. Therefore, this paper proposes a ship short-term load
forecasting algorithmbased on ensemble learning; the basic structure
and framework can be seen in Figure 3.

Considering the proposed load prediction algorithm, the historical
load data set can be arranged as XT, firstly. And then, we can obtain
the load data subsets Xl by resampling which needs to ensure the
samples are not related (i.e., the factors within it without any repeated
data), where l � 1, 2, . . ., L. It is worth noting that in the process of
sampling and resampling for historical ship load, the time dependence
of load data sets should be guaranteed at all times. In addition, for
increasing the accuracy and reliability of the proposed algorithm, this
paper utilizes Moving Block Bootstrap (MBB) during the process of
resampling. Suppose load data subset Xl has H load data factors and
samples H − lX + 1 times continuously and repeatedly, where lX
denotes the length of resampling load data subsets. Then, the sampling
process of ship historical load data at this time can be seen in Figure 4
and Table 1, the resampling load data subsets can be represented as
follows.

Xl � xl
1, x

l
2, . . . , x

l
H−lX+1( ), l � 1, 2, . . . , L (7)

According to the ship-load forecasting problem, we need to repeat the
above processes L times to obtain the independent load data training
subset X � [X1, X2, . . ., XL]. f1

l (·), f2
l (·), fH−lX+1

l (·) are the
corresponding predicted models which can be regarded as weak
predictors as well. Owing to the above models, we can calculate a
set of ship-load forecasting values. In addition, there are L (H − lX + 1)

FIGURE 3 | Structure of load forecasting algorithm.
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predicted models, and we can obtain the corresponding forecasting
ship-load values by them. Thus, according to the proposed ship short-
term load forecasting algorithm, the final predicted ship-load value
can be analyzed by a constructed stronger predictionmodel which can
add them up and take an average. Mathematical expression about the
final forecasting short-term ship load LoadPrel can be represented as
follows.

LoadPre
l � ∑L

l�1f
1
l x1

l( ) + f2
l x2

l( ) +/ + fH−lX+1
l xH−lX+1

l( )
L H − lX + 1( ) (8)

3.2 Optimal Energy Dispatch Scheduling
Scheme
3.2.1 Optimal Goal Function
The S-IES proposed in this paper considers the environmental
and economic benefits comprehensively. And proposes an
optimal management mechanism which takes the lowest
operation cost as the primary optimization objective, to meet
the various load-demand constraints during different working
conditions such as berthing and cruising. Owing to the
generation equipment installed in the ship, in this paper, the
objective function can be separated into three parts which
contain the CHPs-cost, PVs-cost, and excitation parameters
of BESS. The mathematical model can be represented as the
following form.

min CCHP + CPV + YBESS{ }
CCHP � ∑NT

t�1
C PCHP

t ,HCHP
t( )

CPV � ∑NT

t�1
∑m
j�1

dj,1 · PPV
j,t( )2 + dj,0

YBESS � c0 · PBESS
t

(9)

where, CCHP, CPV are the operation cost of CHPs and PVs; NT

denotes the sum of time slots; dj,1, dj,0 are the operating
parameters of PVs;c0 denotes the influence factor; YBESS can
be expressed as a penalty coefficient which can enhance the
participation of BESS and improve the energy efficiency.

Remark. Since the above mentioned equipment has a longer
service life, we assume that they have little loss during the energy
optimizationmanagement scheduling in the single sailing voyage.
Therefore, the cost of equipment maintenance does not need to
be considered in the optimization objective function.

3.2.2 Constraints
Considering the particularity of ship sailing voyages, this paper
does not only consider the conventional constraints in energy
management such as the power balance constraint and power
output constraint, but also the navigation constraints Eqs 1-3,
interruption of electricity/heating constraint, ramping-rate
constraint, and energy efficiency operation index (EEOI)
constraints. The specific descriptions are as follows.

1) Electricity/Heating Power Balance Constraints: In order to ensure
the normal operation of all load equipment such as the propulsion
system and service load, we need to guarantee that the sum of the
electrical power output of CHPs, PVs, and ESS matches the
electrical load, and the thermal power output of CHPs can
meet the thermal-load demand. In addition, the energy
conversion center undertakes the mutual conversion of
electricity and heating power, i.e., when the thermal output
cannot meet the load demand, the electric energy could be
converted into thermal power as an additional heating supplier
to ensure the normal operation of heating-load equipment. We
can express the balance constraints as the following.

∑n
i�1

PCHP
i,t +∑m

j�1
PPV
j,t + PESS

t � LP,t + ΔLP,t

∑n
i�1

HCHP
i,t + ΔLH,t � LH,t,ΔLH,t � ηEXΔLP,t

(10)

where, LP,t, LH,t represent the electricity and thermal load value at
the period of t, respectively; ηEX is the conversion efficiency
parameter; ΔLP,t denotes the conversion of electricity into

FIGURE 4 | Structure of resampling ship-load subsets with MBB.

TABLE 1 | Ship load forecasting algorithm.

Process of ship electricity/thermal-load prediction

Step 1: Summarize the historical data information of ship electricity/thermal load
as XT

Step 2: Intercept the historical load data set XT with Lth, randomly. XT � {X1, Xi,2,
. . ., XL}
Step 3: Resample Xl, l � 1, 2, . . ., L with MBB.
Step 4: Establish weak predictors
Step 5: Obtain corresponding pre-load by weak predictors with Xl for L (H − lX + 1)
times
Step 6: Calculate the final forecasting ship load
Step 7: End
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thermal load value; ΔLH,t is the thermal power supplied by
electricity generators.

Remark. When BESS is discharging as a power supply
equipment, PESS

t has a positive value; on the contrary, when
BESS is charging as a load equipment, PESS

t has a negative value.
In addition, the value of short-term load-demand prediction can
be obtained by the load forecasting algorithm proposed in this
paper through the analysis and calculation of historical sailing
data information.

2) Power Outputs Constraints: It is noted that we should ensure
the reliable and safe working conditions of the power-supply
equipment during the whole sailing voyage. Therefore, it is
essential to restrict its output power to improve the safety of
the energy management model in the S-IES. In this paper,
combined with the actual ship situations, the minimum and
maximum limits on the power outputs of each equipment are
as follows.

PCHP
i,min ≤P

CHP
i,t ≤PCHP

i,max,H
CHP
i,min ≤H

CHP
i,t ≤HCHP

i,max

PPV
j,min ≤PPV

j,t ≤P
PV
j,max, P

BESS
min ≤PBESS

t ≤PBESS
max

(11)

where, PCHP
i,max, P

PV
j,max, P

BESS
max are the maximal electricity power

outputs of CHPs, PVs, and BESS, respectively; PCHP
i,min , P

PV
j,min, P

BESS
min

denote the minimum electricity power outputs working state of
CHPs, PVs, and BESS, respectively;HCHP

i,max H
CHP
i,min are the maximal

and minimal thermal power outputs value of CHPs. In addition,
PCHP
i,max, P

PV
j,max, P

BESS
max , P

CHP
i,min , P

PV
j,min, H

CHP
i,max, H

CHP
i,min are positive

constants and PBESS
min is a negative constant determined by the

operating performance of each equipment.

3) Electricity and Thermal Power-off Constraints: Considering
the difference between the traditional power system, the S-IES
should ensure that the critical equipment operates normally
during the whole voyage owing to the navigation
characteristics. Based on the consideration of ship safety,
we take the restriction of electricity and thermal power
output as an additional constraint, i.e., the anti-power-off
constraint. The mathematical model is as follows.

LP,M ≤ ∑n
i�1

PCHP
i,max +∑m

j�1
PPV
j,max + PBESS

max −max PCHP
i,max, P

PV
j,max, P

BESS
max{ }

LH,M ≤ ∑n
i�1

HCHP
i,max + ΔLH,max −max HCHP

i,max,ΔLH,max{ }
(12)

According to Eq. 10, we can confirm that the electricity/thermal
power canmeet themust-run load demand while the highest capacity
equipment breaks down suddenly. LP,M is the must-run electricity
load such as a propulsion system, communication and navigation
equipment; LH,M is the must-run thermal load such as fuel preheating
equipment;ΔLH,max denotes themaximal thermal power generated by
the electricity power conversion. Owing to Eq. 12, we can ensure that
must-run load devices such as communication equipment, propulsion
system, can maintain normal operation when the highest capacity
generator breaks down.

4) EEOI Constraints: EEOI, as a crucial detection parameter, is
essential to evaluate the greenhouse gas emissions during ship
navigation. Therefore, in order to improve the environmental
protection of sailing operation, the EEOI constraint is added in
this paper to ensure that the pollution emission of each navigation
period is lower than the preset value. Themathematical equation on
the EEOI constraint (Kanellos, 2014) can be expressed as follows.

EEOI1 � CO2

MLoad ·Dist

�
∑n

i�1 c2,i · PCHP
i,t( )2 + c1,i · PCHP

i,t + c0,i( )
MLoad ·Dist

where, EEOI1 is the ship index during sailing;CO2 denotes the value of
carbon dioxide emissions;MLoadmeans the ship carrying capacity; c2,i,
c1,i, and c0,i are the coefficients between power outputs and greenhouse
gas emission. It is noted that the carbon emission function is a
quadratic convex, therefore, this paper enlarges the molecular part to
obtain a better form of calculation, i.e.,

EEOI1 ≤
∑n

i�1 d2,i · PCHP
i,t + d0,i( )

MLoad ·Dist
≤EEOISet (13)

4 DISTRIBUTED ECONOMIC OPTIMAL
SCHEDULING SCHEME ON THE S-IES

Owing to the energy system considered, this paper installed a
large number of new energy equipment, so the system has strong
distributed characteristics. In addition, the energy system and
communication network have been integrated in the system with
the power outputs and load-demand information transmitted
among the devices. Based on the above situations, this paper
proposes a distributed economic optimal scheduling scheme for

TABLE 2 | Operation cost parameters of 3-CHPs and 4-PVs.

ai,1, $/MW2 ai,2, $/MW bi,1, $/MW2 bi,2, $/MW ci, $/MW2 κ, $

CHP-1 250 2000 200 1500 150 20
CHP-2 200 1900 210 1800 200 20
CHP-3 200 1900 210 1800 200 20

di,1, $/MW2 di,0, $ di,1, $/MW2 di,0,$

PV-1 300 29 PV-3 210 10
PV-2 291 19 PV-4 210 10
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the S-IES, which ensures the system can meet the load demand
and obtain the minimal system operation cost, as well.

4.1 Graph Theory Infrastructure
In this paper, V � {1, 2, . . ., N} is regarded as a set of nodes in the
system, and the edge set can be expressed as E4 V × V. Therefore,
based on the edge set and node set, the communication topology in
the system can be expressed as Ξ � (V, E). If node i and node j are
neighbors to each other, thenwe can describe the neighbor node set of
i as Nij � {j4 V|(Vi, Vj)4 E} (Ma et al., 2021). And the connection
weight between two nodes can be expressed as ωij, which should
ensure that ωij > 0 when two nodes are neighbors; ωij � 0 when there
is no communication between two nodes. If the communication
structure Ξ considered in this paper is undirected and connected,
i.e., there is a path between any two nodes then ωij � ωji.

RemarkAccording to the above theory, we can obtain that∑N
j�1ωij � 1 and ∑N

i�1ωji � 1. It is noted that the graph theory
influences the device connection weight during the period of
information exchange. When devices are connected to each other,
their connection weight is greater than zero. On the contrary, the
connection weight is zero when the devices are not connected, which
means they cannot exchange their state information (power-outputs,
operation error, Lagrangemultipliers, etc.) to each other. In this paper,
we assume that ωij � 1

|Ni|+|Nij |+ρ when i ≠ j and ωij � 1 − 1
|Ni |+|Nij |+ρ

when i � j, which is influenced by the number of itself and its
neighboring two parts, where |Ni| denotes the number of energy-
suppliers; |Nij| is the neighbors’ number of node i; ρ is a minimal
positive constant which ensures the denominator cannot be zero.

4.2 Problem Statement and Distributed
Optimization Algorithm
The optimal schedulingmodel on the S-IESmentioned above is based
on the balance of supply and demand which establishes the
relationship between economic benefits and ship operation
constraints. Generally, the optimal scheduling in this paper can be
described as a problem onmin{CCHP + CPV + YBESS}. The alternating
directionmethod ofmultipliers algorithm (ADMM) could be used for
energy management problems with large-scale constraints, and it is
decomposable, as well (Zhang et al., 2017). Therefore, this paper
proposes a distributed economic optimal scheduling scheme based on
ADMM, which will be introduced from three aspects, i.e., problem
transformation, optimizing the iterative process, and convergence
judgment.

4.2.1 Problem Transformation
Owing to the fact that the ADMM algorithm cannot deal with the
optimal scheduling problem with inequality constraints (Falsone
et al., 2021), this paper introduces relaxation variables S � {S1, . . .,
Sm} in the energy management. Thus, inequality constraints can
be changed into equality constraints as HQ � L, where Q � {P1,
. . ., Pn, S1, . . ., Sm}.

4.2.2 Optimizing the Iterative Process
Based on the distributed communication structure, the proposed
algorithm will optimize the power outputs of power-supply
equipment, equipment operation errors, and the Lagrange
multipliers. The K + 1th iteration expression about the above

FIGURE 5 | Physical topology and information communication topology in the S-IES.

TABLE 3 | Error comparison between NN and proposed forecasting algorithm based on 200 sets.

A-MAE (kW) A-MSE A-RMSE Total
absolute error (MW)

NN algorithm 11.0 0.0013 0.0276 77.9738
Proposed algorithm 10.8 0.0012 0.0271 77.2005
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variables are as follows, where c denotes the step size; Ad is the
parameter of the coupling constraint; ΔQK represents the
operation error.

Qk+1 ∈ arg min
Q∈Ω

C(Q) + Wμk( )TAdQ + c

2
‖AdQ − AdQk +WΔQk‖2{ }

ΔQk+1 � WΔQk + AdQk+1 − AdQk

μk+1 � Wμk + cΔQk+1
(14)

4.2.3 Convergence Judgment
It is noted that the objective function C considered in this paper is
convex and the set Q is convex and compact. In addition, we
assume that we can find at least one existing saddle point in the
above optimal scheduling problem. According to the above
assumptions, we find that the sequences of {ΔQk − Δ �Qk},
{μk − �μk}, {Qk}, and {AdQk − Δ �Qk} are all bounded. In addition,

lim
k→∞

ΔQk − Δ �Qk{ } � 0

lim
k→∞

μk − �μk{ } � 0

lim
k→∞

Δ �Qk{ } � 0

Thus, we find that the sequence
{‖�μk − μ*‖2 + c2‖AdQk − AdQ* − Δ �Qk‖2}k≥ 0 is convergent,
where Q* and μ* are the optimal solutions of Q and μ.

5 CASE STUDY

According to the simulation experimental information of the
short-term load forecasting algorithm introduced in Section 3.1,
this chapter will optimize the scheduling of the S-IES based on the
proposed distributed optimal economic scheme, and verify the
effectiveness according to the simulation experimental results.

5.1 Introduction to the Simulation System
This chapter considers a simulation system which contains 3-
CHPs, 4-PVs, and a BESS. According to the short-term load
forecasting algorithm and the distributed optimization
scheme, generation units (i.e., CHPs, PVs, BESS) will
provide energy to the electricity-power network and the
thermal-power network to meet the load demand. In
addition, each device can exchange power information with
their neighbors. The physical and information topology on

TABLE 4 | Parameters of electricity/thermal power outputs and initial value.

E-min, MW E-max, MW T-min, MW T-max, MW Initialvalue, MW

CHP-1 6 20 3 15 6/3
CHP-2 6 20 3 15 6/3
CHP-3 6 20 3 10 6/3
PV-1 5 10 — — 5/-
PV-2 5 10 — — 5/-
PV-3 5 10 — — 5/-
PV-4 5 10 — — 5/-
BESS −10 10 — — 0/-

FIGURE 6 | Load forecasting trajectory of electricity power.
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electricity/thermal power can be seen in Figure 5. The
operation cost parameters are shown in Table 2.

5.2 Analysis on Simulation Results
5.2.1 Ship-Load Forecasting Algorithm Analysis
Based on the data samples of historical ship load, the algorithm
intercepts the data repeatedly first, which obtains the ship-load

resampling subsets. According to the above load data sets, training
networks (i.e., weak predictormodels) based on BPNN are established
in the case study. Meanwhile, the corresponding predicted ship load
can be calculated, and then we can obtain the final forecasting ship-
load value by the stronger predictor which adds them up and takes an
average of them. According to the above process, we can increase the
weight of the weak predictor with a smaller load forecasting error and

FIGURE 7 | Electricity-power outputs error on generators.

FIGURE 8 | Thermal-power outputs error on generators.
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reduce the weight of the weak predictor with a large load
forecasting error.

This paper selects the historical electricity/thermal load data from
the intelligent ship during thewhole sailing voyage (Teng et al., 2020)
to analyze the short-term load forecasting model. According to the
proposed algorithm, the output trajectory of ship-load forecasting
results can be obtained by simulation which is shown in Figure 6. It

can be seen from the figure that the two curves of load forecasting
trajectory and real load trajectory have obvious similarity. In
addition, this paper takes the NN method for load forecasting as
a comparative algorithm. Owing to the simulation, Figure 6 and the
error comparison inTable 3 can verity that the proposed short-term
ship-load forecasting algorithm can accurately predict the trend of
ship-load demand for the S-IES.

FIGURE 9 | Electricity-power outputs on generators.

FIGURE 10 | Thermal-power outputs on generators.
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5.2.2 Distributed Energy Management Scheduling
Analysis
Based on the above simulation system, we carry out two optimal
scheduling simulations according to the load forecasting value. The
virtual electricity-power load demand are 40 and 35MW; the virtual
thermal-power load demand are 10 and 15MW, which have been
predicted by the load forecasting algorithm mentioned above. The
parameters of electricity/thermal power outputs and initial value can
be seen in Table 4.

According to the above virtual load, based on the proposed
distributed economic optimal scheduling algorithm, the
optimal scheduling scheme of each piece of equipment
under the power balance constraints, ship navigation
constraints, and equipment safety constraints
[i.e., (8)–(11)] is solved which satisfies the electricity/
thermal load demand and the constraints of BESS. In this
example, in order to meet the electricity/thermal load
demand, the relevant generation units need to adjust their
output power to cope with the change of load demand.
Figure 7 is the trajectory of the electricity-power outputs
error, and the thermal-power outputs error is shown in
Figure 8. According to the above two figures, it is noted
that after 60 optimization iterations, the total power outputs
of the system satisfy the first virtual load scheduling goal and
after 100 optimization iterations, the system meets the second
virtual load scheduling goal.

The electricity-power and thermal-power outputs trajectories
can be seen in Figures 9, 10. According to the curves of total
power outputs, it is noted that the optimization scheme analyzed
by the proposed algorithm can deal with the energy management
problem based on the S-IES, effectively. The power outputs have
little fluctuation, which can meet the demand of electricity load
and thermal load in a timely manner. The optimal scheduling
scheme based on twice virtual electricity/thermal load energy
management can be seen in Table 5.

According to the above results, BESS is in the charging
state during the twice optimal scheduling, and the total power
outputs of renewable energy equipment, i.e., 4-PVs, are
significantly higher than that of traditional fuel energy
supply equipment, i.e., 3CHPs. Therefore, it can be proved
that the optimal scheduling scheme based on the
optimization method proposed in this paper can effectively

improve the environmental benefits of the ship-integrated
energy system, which can reduce the greenhouse gas emission
during the sailing voyage as well.

It can be seen from the above results that under the reasonable
scheduling strategy, the S-IES could achieve the coordination and
optimization of multiple energy sources, and significantly
improve the flexibility and economic efficiency of the energy
system on an intelligent ship.

6 CONCLUSION

In this paper, an integrated energy system in an intelligent ship,
considering the characteristics of the electricity-power system
and thermal-power system, has been constructed, which
improves the utilization efficiency of energy and reduces
greenhouse gas emissions. Simultaneously, this paper presents
a short-term load forecasting method based on an ensemble
learning algorithm, which can quickly and accurately predict
the load demand during the whole voyage. In addition, for
ensuring reliable and stable navigation, this paper proposes a
distributed optimal scheduling scheme, which can deal with the
problem of energy management in the S-IES suitably. It is noted
that the distributed scheduling scheme proposed in this paper can
obtain the social benefits and ensure safe sailing synchronously,
which can be proved by the simulation results. In future, for
promoting the intellectualization of the maritime industry,
volatility and disturbance factors will be further analyzed.
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An Adaptive Sliding Mode Control
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In the power system, the loads and nonlinearity parameters cause the system frequency
deviation, which complicates the load frequency control (LFC). To deal with the above
problem, an adaptive sliding mode control (SMC) based on disturbance observer is
proposed to eliminate frequency deviation for interconnected power system in this paper.
Firstly, the mathematical model of the power system is established, where the power
exchange between the tie line is considered as the variable of the designed sliding surface.
Secondly, the nonlinear disturbance observer is constructed to estimate the parameter
uncertainty and load of power system. Thirdly, combined with the estimated value of the
disturbance observer and integral sliding mode surface, the SMC is designed. Moreover,
considering the inherent shortcoming of SMC—the chattering problem, an adaptive
strategy is applied to the SMC to ensure the stability of controller. Next, the stability of
the designed SMC is proved by Lyapunov stability theory. Finally, to verify the effectiveness
of the proposed controller, several simulations are presented.

Keywords: load frequency control, interconnected power system, the disturbance observer, the adaptive control,
sliding mode control

INTRODUCTION

LFC is a crucial technology for stable operation of modern large-scale interconnected power systems.
Due to random uncertainty such as the power demand, the power generation, the communication
time lag, the device parameter, etc. The frequency and power exchange in a large range power system
will fluctuate or escape from the planned tolerance. When unexpected uncertainty occurs in power
system, the purpose of frequency control is to quickly stabilize the system frequency and exchange
power between interconnected systems within an acceptable plan (Dou et al., 2017). Driven by the
rapid development of technology, power generation units, electrical equipment, and communication
systems, power systems have become more complex (Wang et al., 2021b). Therefore, an effective
frequency control strategy urgently needs to be proposed to manage the challenge of complex
systems.

Furthermore, micro-grid can fully exploit renewable energy to reduce carbon emission. Based on
the advantages of the micro-grid, the system has been widely established. However, when micro-grid
encounters the intermittency of renewable resource, the rapid fluctuations of load and the
uncertainties of internal parameters, frequency regulation is more complex (Kahrobaeian and
Mohamed, 2012; Khooban et al., 2017; Lu et al., 2017). To stabilize the frequency, many mature
control algorithms have been implemented to solve LFC problems, such as intelligent control,
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adaptive control (Rashidi et al., 2004), robust control (Huang
et al., 2016; Jiang et al., 2012), fuzzy control (Yousef et al., 2014),
proportional-integral differentiation (PID) control
(Khodabakhshian and Edrisi, 2008; Tan, 2010), etc.

PID control is the common control tool to damp frequency
oscillation for micro-grid which is treated as a linear model
(Bevrani and Hiyama, 2008; Kamwa et al., 2001). The PID
controllers are the simple and easy control tool which can
powerfully tuned for several specific operation points
(Wangdee and Billinton, 2006). As the integration of
renewable energy power generation, the characteristics of
power system are non-linear, thus the PID control has no
ability to eliminate frequency deviation, especially when the
actual work point of micro-grid deviates far from the expected
work point (Tang et al., 2015). In (Farahani et al., 2012), the PID
controller were optimized to eliminate frequency deviation. The
main idea is to tune the gains of PID controller by the lozi map-
based chaotic algorithm. Thus, a scheduling PID control strategy
based on optimized parameters was applied to microgrid.
Similarly, T. Chaiyatham proposed the fuzzy logic-PID
controller which utilizes bee colony optimization to tune the
fuzzy logic-PID controllers of micro-grid (Chaiyatham et al.,
2019). For non-reheat thermal system, Gonggui Chen et al.
utilized the fuzzy PID controller based on the Improved Ant
Colony Optimization algorithm against system frequency
deviation (Chen et al., 2020). Lim et al. (Lim et al., 1998)
solved the LFC problem for the unmeasurable state in micro-
grid using the robust control theory. Meanwhile, the adaptive
control schemes were validated with system parameter
uncertainties (Pan and Liaw, 1989).

Generally, as a well-known control method, SMC is a non-
linear variable structure controller, whose control is discontinuity.
As the advantages of strong robustness properties and quick
response, it has been studied extensively (Li et al., 2017; Li
et al., 2018; Ai-Hamouz and AbdeI-Magid, 1993; Wang et al.,
2021a; Mi et al., 2013). Therefore, SMC is an alternative control
strategy to address load frequency problems in micro-grid. Due to

external disturbances of renewable energy and parameter
variations in internal system, SMC has gained significant
research attentions in the field of LFC. AI Hamouz designed a
variable structure controller using linear sliding surface, where a
step disturbance was considered in the simulation (Ai-Hamouz
and AbdeI-Magid, 1993). Therefore, there is a problem with this
control strategy. In Sivaramakrishnan et al. (1984), a SMC was
presented through the pole assignment technique, where the
parametric uncertainties were studied with the matched
condition. However, when the power grid is working normally,
the system parameters cannot always meet the matched condition.
Yang Mi proposed SMC based on proportion-lintegral sliding
mode surface, and this method was proved that micro-grid can
be immune to the external disturbances with matched and
unmatched conditions. However, the aforementioned control
strategy was studied based on the proportional-integral
controller which has overshoot (Mi et al., 2013). In recent years,
considering the parameter uncertainty and the complexity of
external disturbances, the advanced SMC method based on
disturbance observer was proposed (Li et al., 2016; Mu et al.,
2017; Wang et al., 2019; Ma et al., 2017; Liu et al., 2016; Ginoya
et al., 2014). InMu et al. (2017), SMCwith neural network observer
was constructed, where the measured values were used to control
law and it was proven to be superior in the simulation. However,
the uncertainties of system parameters are not demonstrated. Ark
Dev proposed a SMC based on Luenberger observer (Dev and
Sarkar, 2019). However, the Luenberger observer is applied in the
absence of rigorous theoretical proof.

In this paper, a disturbance observer, which estimates the
matched and unmatched disturbances in the power system, is
applied in the LFC. Furthermore, an adaptive SMC strategy based
on disturbance observer is investigated to eliminate frequency
deviation.

The main contributions of this paper are described as.

1) The disturbance observers are proposed and applied to
estimate the disturbances of the multi-area interconnected

FIGURE 1 | Block diagram of interconnected system.
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power system, which effectively track matching and
unmatching disturbances.

2) SMC is improved to eliminate frequency deviation. Firstly,
comparing the traditional proportional-integral sliding mode
surface, the area control error (ACE) and estimated value are
taken as state variables into the novel sliding mode surface,
which ensures that the frequency deviation and the ACE
converge to the equilibrium point. Secondly, to address the
chattering of controller, the adaptive law is designed.

MODEL OF POWER SYSTEM

In the power system, the frequency deviation is caused by the
fluctuation of the load. The function of LFC is to eliminate
frequency deviation. The system proposed in many documents
has been applied to LFC. In this chapter, the mathematical model
of the power system is established where the types of disturbances
are elaborated.

LFC block diagram of i th area power system is illustrated in
Figure 1. Due to the complexity of the power system structure, it
is regarded as a nonlinear system in practice. However, since the
load fluctuation is very small, linearized power system model is
approved for theoretical analysis. In this section, N multi-region
interconnected systems that connect subsystems through tie lines
are studied. When the system is disturbed, the system is adjusted
by primary frequency control, which can restore the system
frequency to the planned tolerance. Then, SMC is adopted to
eliminate frequency deviation.

The mathematical dynamics of N regional systems can be
expressed as

Δ _fi(t) � − 1
Tpi

Δfi(t) + Kpi

Tpi
ΔPTi(t) − Kpi

Tpi
ΔPtie,i(t) − Kpi

Tpi
ΔPLi(t)

Δ _PTi(t) � − 1
Tti

ΔPTi(t) + 1
Tti

ΔPGi(t)

Δ _Ei(t) � KeiKbiΔfi(t) +KeiΔPtie,i(t)
Δ _Ptie,i(t) � 2π∑i∈N

j≠ i
TijΔfi(t) − 2π∑i∈N

j≠ i
TijΔfj(t)

Δ _PGi(t) � − 1
RiTgi

Δfi(t) − 1
Tgi

ΔEi(t) + 1
Tgi

ui(t)
(1)

where Δfi(t), ΔPTi(t), ΔEi(t), ΔPtie,i(t), ΔPGi(t) are the deviation of
frequency, machine mechanical output, integral control, tie-line
power, valve position, respectively; Tpi, Tti, Tgi are power system
time constants, turbine time constants, governor time constants,
respectively; Kei, Kbi and Kpi are integral control gain, frequency
bias factor and power system gain, respectively;Ri is speed regulation
coefficient; Tij is the tie-line co-efficient between area i and j ; i �
1, 2, 3,/,N and N represents the number of subsystems.

In this paper, the i th ACE can be expressed as

ACEi � ΔPtie,i(t) + KbiΔfi(t) (2)

Based on Eq. 1, the matrix form of power system can be
expressed as

_xi(t) � Aixi(t) + Biui(t) + Eijxj(t) + LiΔPLi(t) (3)

where

xi � [Δfi(t) ΔPTi(t) ΔEi(t) ΔPtie,i(t) ΔPGi(t) ]

Ai �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Tpi

Kpi

Tpi
0 −Kpi

Tpi
0

0 − 1
Tti

0 0
1
Tti

KeiKbi 0 0 Kei 0

2π∑i∈N

j≠ i
Tij 0 0 0 0

− 1
RiTgi

0 − 1
Tgi

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bi � [ 0 0 0 0

1
Tgi

]T

,

Eij �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−2π∑i∈N

j≠ i
Tij 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Li � [−Kpi

Tpi
0 0 0 0]T

where Ai is the system matrix; Bi is the input matrix; Eij is the
interconnection matrix; Li is the load disturbance matrix.

When the system is working, there is uncertainty in the system
matrix, which is an important factor leading to frequency deviation. In
this section, the uncertainty of systemparameters and load disturbances
are regarded as concentrated disturbances which are characterized by
linearity and nonlinearity. Then, according to Eq. 3, we get

_xi(t) � Aixi(t) + Biui(t) + Eijxj(t) + Γi(t) (4)

Γi(t) � A∨
i xi(t) + B∨

i ui(t) + E∨
ijxj(t) + LiΔPLi(t) (5)

where A∨
i , B∨

i and E∨
ij are matrices with uncertain parameters.

Furthermore, assume that the integrated disturbance is matched/
mismatched and bounded.

‖Γi(t)‖≤ α.
where α is a positive constant.

DESIGN OF SMC WITH DISTURBANCE
OBSERVER

Design of Disturbance Observer
In the power system, there are matching and mismatching
disturbances, which are unknown. The uncertainty and load
satisfy the following assumption:

Assumption 1. rank[Bi, Γi(t)] � rank[Bi] or rank[Bi, Γi(t)]≠
rank[Bi].

Based on Assumption 1, the concentrated disturbance can be
expressed as follows
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Γi(t) � [ di1 di2 di3 di4 di5 ]T
With the concentrated disturbance composed of system parameter
uncertainty and load, a nonlinear disturbance observer is designed
to estimate the unknown disturbance as follows

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d̂i1

d̂i2

d̂i3

d̂i4

d̂i5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
pi1

pi2

pi3

pi4

pi5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + Lixi (6)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
_pi1
_pi2
_pi3
_pi4
_pi5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦�−Li

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Lixi +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
pi1

pi2

pi3

pi4

pi5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠−Li(Aixi(t)+Biui(t)+Eijxj(t))

(7)

where Γ̂i(t) � [ d̂i1 d̂i2 d̂i3 d̂i4 d̂i5]T is the estimated value
of the disturbance, which is the matched and unmatched
disturbance of the system. Li is the designed observer matrix
gain, [pi1 pi2 pi3 pi4 pi5 ]T is the auxiliary vector.

Design of SMC
SMC has been proven to be a powerful controller inmany documents,
and it is adopted to many fields, such as aircraft, robots, and inverted
pendulums. Traditionally, there are two crucial steps in SMC, which
are the sliding surface and the control law. The sliding surface ensures
that the system state reaches the equilibriumpoint, and the control law
drives the state of the space to the sliding surface. For matching and
matching disturbances, the proportional-integral sliding surface is
generally adopted in SMC.

s(t) � Ci1xi + Ci2 ∫t

0
xidt (8)

where Ci1 and Ci2 are the vectors of design parameters. The
dimensions of vectors are Ci1 ∈ R6×1 and Ci2 ∈ R6×1. In an
interconnected power system, the sliding mode surface is
constructed based on Δfi(t), ΔPTi(t), ΔEi(t), ΔPtie,i(t) and
ΔPGi(t) to ensure that the system state converges in a finite
time. ACE, calculated by the integral, cannot guarantee the
adjustment to zero, which drives the frequency deviation to
escape the scheduled scope. Based on the above analysis, we
improved the sliding surface to meet the LFC of the
interconnected system.

The improved sliding surface is

s
�
i(t) � Ci1xi + Ci2 ∫t

0
xidt + ci11(∫t

0
ACEidt + ∫t

0

× ∫t

0
ACEidt dt) + CiΓ̂i(t) (9)

where Ci1 � [ ci1 ci2 ci3 ci4 ci5 ] and Ci2 �[ ci6 ci7 ci8 ci9 ci10 ] are the designed parameters, and
Ci � [ 1 1 1 1 1 ]. ci11 is a positive constant.

In SMC, the chattering problem is difficult to address. In this
paper, the adaptive control is used to slow down the output

chattering of the controller. Based on Eq. 9, the adaptive
controller can be obtained

ui(t) � −(Ci1Bi)−1(Ci1Aixi(t)+ ci11 _ACE(t)+Ci2xi

+ci11∫t

0
ACEdt+Ci1Eijxj(t)+Ci1Γ̂i(t)+αi s�(t)+ β̂isign(s�(t)))

(10)
where ci11 and αi are the positive constants, sign(p) is the
symbolic function, β̂i is the adaptive control law. The
definition of β̂i is as follows:

_̂βi � k
�����s�i(t)

����� (11)

where k is a positive constant.

STABILITY ANALYSIS

In this section, the stability of disturbance observer and SMC is proved.

Stability Analysis of Disturbance Observer
To prove that the disturbance observer can track matched/
unmatched disturbances, the following assumptions are necessary.

Assumption 2. The derivative of the disturbance in the system
satisfies lim

t→∞
_Γi(t) � 0 .

Assumption 3. The error ei in the system is bounded, that is,
‖ei‖≤

����epi ���� .
ei � Γi(t) − Γ̂i(t) (12)

where epi is a positive constant.
Proof:

Based on Assumption 3, the derivative of the error is given

_ei � _Γi(t) − _̂Γi(t) (13)

Combining Eqs 6, 8, 9, we get

_ei � _Γi(t) − [ _pi1
_pi2

_pi3
_pi4

_pi5 ]T − Li _xi

� _Γi(t) − [ _pi1
_pi2

_pi3
_pi4

_pi5 ]T
−Li(Aixi(t) + Biui(t) + Eijxj(t) + Γi(t))

� _Γi(t) − Li(Lixi + [pi1 pi2 pi3 pi4 pi5 ]T)
+Li(Aixi(t) + Biui(t) + Eijxj(t)) − Li(Aixi(t) + Biui(t)
+Eijxj(t) + Γi(t)) � _Γ i(t) − Li(Γ i(t) − Γ̂i(t))≤ − Li

����epi ����
(14)

By means of Eq. 14, it can be concluded that the observer can
estimate the disturbance in a finite time.

Stability Analysis of Improved SMC
For an adaptive controller Eq. 10, it is necessary to prove the
stability of system Eq. 4. Next, the Lyapunov approach is adopted
to analysis the stability of the system under the controller.
Proof:
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The Lyapunov function is constructed as follows:

Si � 1
2
s
�2

i (t) +
1
2k
β̃
2

i (15)

where β̃i � β̂ − β , _̃βi � _̂βi − _βi � _̂βi . βi is a positive constant.
The derivative of Si becomes

_Si � s
�
i(t) · _s�_i(t) + 1

k
β̃i · _̃βi (16)

Differentiating improved sliding surface Eq. 9, we get

_s
�_
i(t) � Ci1 _x + Ci2xi + ci11 _ACEi(t) + ci11 ∫t

0
ACEidt + Ci

_̂Γi(t)
(17)

Substituting Eq. 4, we get

Si � s
�
i(t) ·⎛⎜⎜⎜⎝Ci1(Aixi(t) + Biui(t) + Eijxj(t) + Γi(t))

+Ci2xi + ci11 _ACEi(t) + ci11 ∫t

0
ACEidt + Ci

_̂Γi(t)⎞⎟⎟⎟⎠ + 1
k
β̃i · _̃βi

(18)

Using Eqs 6, 10, 11, the _S is as

_S � s
�
i(t)(Ci1(Γi(t) − Γ̂i(t)) − αi s

�
i(t) − β̂isign(s�i(t)))

+1
k
(β̂i − βi) · _̂βi ≤ − αi

�����s�i(t)
�����2 − β̂i · s�i(t) · sign(s�i(t))

−1
k
_̂βi · βi + β̂i

�����s�i(t)
����� � −αi

�����s�i(t)
�����2 − βi

�����s�i(t)
�����≤ 0 (19)

where βi ≥
����Ci1epi

����.
From Eq. 19, we can conclude that when the coefficients of the

controller are selected appropriately, the frequency deviation of
system Eq. 4 is eliminated with the controller Eq. 10.

SIMULATION ANALYSIS

Several simulations are presented for improved SMC in this
section. In the simulation, frequency deviation of single and
interconnected systems is analyzed. First, in presence of load
fluctuation, the control performances are presented, such as,
the frequency deviation, the sliding mode surface, and the
controller output. Secondly, when there are parameter
uncertainties and load disturbances in the interconnected
system, the designed SMC performance is analyzed. The
parameters of the system are shown in Table 1 (Mi et al.,
2013).

Single-Area Power System
The step load disturbances are applied to the system. The load
disturbance is applied to the system, which is a −0.1 p.u.
disturbance applied on the system at 0–10 s. Moreover, the

TABLE 1 | The Parameters of interconnection system.

Area Tpi Tti Tgi Kpi Kei Kbi Eij

1 20 0.3 0.08 120 10 0.41 E12 � 0.5
2 25 0.33 0.07 113 9 0.37 E21 � 0.5

FIGURE 2 | The frequency deviation.
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FIGURE 3 | The disturbance observation.

FIGURE 4 | Frequency deviation of interconnected systems.
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FIGURE 5 | The power exchange of tie line.

FIGURE 6 | Sliding mode surface and control law with multiple systems.
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parameter uncertainty in the single system is analyzed. The
parameters of disturbance observer, SMC and parameter
uncertainty are as follows:

C11 � [ 20 9 1 1 1 ]T, C12 � [ 23 8 4 3 2 ]T,
c111 � 1, α1 � 6, k � 10, L1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A∨
1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 e−t 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The frequency deviation with traditional SMC and

improved SMC is shown in Figure 2. Compared with the
traditional SMC, the designed SMC effectively suppresses the
frequency deviation. In addition, the control strategy has
been verified to effectively eliminate the frequency deviation
caused by the uncertainty of the system parameters. From
Figure 3, it concludes that the designed disturbance observer
can track the load disturbance.

Multi-Area Power System
There are linear disturbances and parameter uncertainties in
multi-area systems (N � 2). The load disturbance in area 1 is a
−0.5 p.u., and the load disturbance in area 2 is a 0.4 p.u. The

parameters of disturbance observer, SMC and parameter
uncertainties in multi-area are as follows:

C21 � [ 25 6 3 1 1 ]T, C22 � [ 15 8 1 1 1 ]T,
c211 � 1, α2 � 6, L2 � L1, A

∨
1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 sin(t) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A∨
2 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 −cos(t) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In multi-area systems, it can be concluded that when the

system has disturbances and nonlinear parameter uncertainties,
the system frequency can be eliminated with the designed SMC
from Figure 4. In addition, we can know that the power
exchange of tie line converges to zero at 10 s from Figure 5.
The sliding mode surface and control law in the system are
presented in Figure 6. In Figure 7, the estimated values of the
disturbance observer in area 1 and area 2 can effectively estimate
the load disturbance.

CONCLUSION

In this paper, the frequency in the power system, regarded as the
most basic feature of the power system, is solved by the designed
control strategy. An improved SMC is proposed, which guarantees
the stability of the system with disturbances. Firstly, the

FIGURE 7 | Disturbance estimation.
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disturbance observer is used in LFC, which calculates the
disturbance. Furthermore, it is proved by Lyapunov stability
theory. Secondly, the adaptive SMC based on the disturbance
observer is designed, which destroys the conservativeness of the
traditional SMC. Then, it is proved to ensure the system stability.
Finally, several simulation results are presented. In addition, for
power systems with nonlinear characteristics, the advanced control
strategy will be further studied.
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Improved Genetic Algorithm and
XGBoost Classifier for Power
Transformer Fault Diagnosis
Zhanhong Wu1*, Mingbiao Zhou2, Zhenheng Lin1, Xuejun Chen1 and Yonghua Huang1

1Department of Electrical Engineering, School of Mechatronics and Information Engineering, Putian University, Putian, China,
2State Grid Sanming Electric Power Supply Company, Sanming, China

Power transformer is an essential component for the stable and reliable operation of
electrical power grid. The traditional transformer fault diagnostic methods based on
dissolved gas analysis are limited due to the low accuracy of fault identification. In this
study, an effective transformer fault diagnosis system is proposed to improve identification
accuracy. The proposed approach combines an improved genetic algorithm (IGA) with the
XGBoost to form a hybrid diagnosis network. The combination of the improved genetic
algorithm and the XGBoost (IGA-XGBoost) forms the basic unit of the proposed method,
which decomposes and reconstructs the transformer fault recognition problem into
several minor problems IGA-XGBoosts can solve. The results of simulation
experiments show that the IGA performs excellently in the combined optimization of
input feature selection and the XGBoost parameter, and the proposed method can
accurately identify the transformer fault types with an average accuracy of 99.2%.
Compared to IEC ratios, dual triangle, support vector machine and common vector
approach the diagnostic accuracy of the proposed method is improved by 30.2, 47.2,
11.2, and 3.6%, respectively. The proposed method can be a potential solution to identify
the transformer fault types.

Keywords: transformer fault diagnosis, genetic algorithm, XGBoost, dissolved gas analysis, performance measures

1 INTRODUCTION

Power transformers are one of the most expensive, complex, and momentous equipment in electrical
power systems. The faults of any power transformer online could cause considerable damage to the
power system and lead to the interruption of the power supply. Therefore, the early detection of faults
in transformers is vital to improving the reliability of the power system. Suffered the electrical and
thermal stress during the operation, the transformer oil and organic insulating inside the transformer
will be decomposed and generate different gases. Commonly, these dissolved gases include hydrogen
(H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6) and can provide abundant
information about the internal states of the transformer. Based on the gas chromatography methods,
the composition of the dissolved gases can be qualitatively and quantitatively measured and then
used for the identification of the latent fault. There are three main kinds of chromatographic analysis
method (Cheng and Yu, 2018) of dissolved gases namely the characteristic gas method (Fu et al.,
2012), the gas production rate method (Nogami et al., 1995; Xi Chen et al., 2010; Zeng et al., 2011),
and the three-ratio method (Jiang et al., 2014; Dhote and Helonde, 2012; Liu et al., 2020). The above
methods generally utilize the concentration of a specific gaseous molecule or the ratios of several
different molecules indicate the state of a power transformer (Shang et al., 2019). In addition, several
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improved methods have been proposed and applied for
transformer fault diagnosis, including the Roger method
(Ghoneim et al., 2016), the basic triangular diagram (Singh
and Bandyopadhyay, 2010), the dual triangle method (Shang
et al., 2019), etc. However, these methods have their inherent
shortcomings. For example, most of these traditional
diagnosis methods only make a limited contribution to a
transformer’s fault diagnosis due to low diagnostic accuracy
(Yadaiah and Ravi, 2011). Meanwhile, the three-ratio and
improved three-ratio methods have disadvantages of
incomplete coding and excessively absolute coding boundary
(Cheng and Yu, 2018). Therefore, due to these defects of
traditional methods, it is necessary to investigate new
transformer fault diagnosis methods.

With the rapid development of computer science and
artificial intelligence algorithms, many models are
conducted by combining intelligence techniques with DGA
methods to accurately detect fault types. The utilization of
artificial neural network (ANN) (Colorado et al., 2011; Bhalla
et al., 2012; Yi et al., 2016; Meng et al., 2010; Castro and
Miranda, 2005; Miranda and Castro, 2005; Souahlia et al.,
2012), expert system (Lin et al., 1993; Wang et al., 2000; Saha
and Purkait, 2004; Mani and Jerome, 2014; Li et al., 2009),
fuzzy theory (Huang et al., 1997; Mofizul Islam et al., 2000;
Zhou et al., 1997; Fan et al., 2017; Naresh et al., 2008), grey
system (Dong et al., 2003; Cheng et al., 2018), support vector
machine (SVM) (Fei and Zhang, 2009; Fei et al., 2009; Liu et al.,
2016; Niu Wu et al., 2010; Yin et al., 2011) and other theories
have significantly improved the accuracy of fault
identification. However, deficiencies occur together with
these intelligent diagnostic approaches. Based on the ANN
method, the intelligent fault diagnostic method is susceptible
to be overfitting and may get a local optimum (Yuan et al.,
2019). As for the expert system, the accuracy of this diagnostic
method depends on the completeness of the expert knowledge,
and this method cannot learn from new data samples
automatically (Weigen Chen et al., 2009). In addition, fuzzy
theory depends exceedingly on the experience of the researcher
and is difficult to acquire an appropriate relationship between
the input and output variables (Žarković and Stojković, 2017).
SVM is originally a binary classification algorithm which
makes it difficult to determine the parameters for multi-
classification problem (Zhu et al., 2018). A single intelligent
approach for transformer fault diagnosis has various
shortcomings and can not reflect all the operation status of
the transformer. Various intelligent algorithms can be
combined to form a hybrid network for mutual
complementation to solve complex problems, which has
been applied in electricity. Researchers in (Xi et al., 2020)
proposed a deep-reinforcement-learning-based three-network
double-delay actor-critic (TDAC) control strategy for the
automatic generation control (AGC) to deal with the strong
random disturbance issues caused by renewable energy.
Researchers in (Zhang et al., 2020) proposed a predictive
control (MPC) based model combined with real-time
optimal mileage based dispatch (OMD) for generating
company responding to AGC dispatch signals in real-time.

The above hybrid networks perform excellently in dealing with
complex problems. As for the transformer fault diagnosis, a
diagnostic method can be conducted with a hybrid network
that combines different algorithms.

To achieve the objective of improving the accuracy of
transformer fault diagnosis, a machine learning algorithm
named XGBoost was employed as the classifier for the
transformer fault identification in this paper, which is a
scalable end-to-end tree boosting system (Chen and Guestrin,
2016). An improved genetic algorithm (IGA) is used for input
feature selection and the XGBoost’s optimization. Then an
intelligent diagnostic method based on the combination of the
IGA and the XGBoost classifier (IGA-XGBoost) is built. The
remainder of this paper is organized as follows. Section 2 presents
the details of the proposed method, and section 3 shows the
experimental results and performance analysis. Section 4 is the
conclusion of this paper.

2 PROPOSED METHODS

In this section, the proposed method for power transformer faults
detection and recognition is explained in detail. Different
methods based on the artificial intelligence algorithms and
DGA methods have been proposed to classify transformer
faults, and the most significant issue which impacts the
accuracy of fault classification is the appropriate selection of
input features and classifiers (Tightiz et al., 2020). Consideration
has been given to these two aspects in the proposed method.

2.1 Candidate Input Features
Intelligent transformer faults diagnosis methods proposed by
other researchers commonly combine DGA methods with
artificial intelligence algorithms in the last decades. The gas
ratios or gas concentrations used in DGA methods are
adopted as the inputs of these intelligent fault diagnosis
methods. Nonetheless, not all the gas ratios or gas
concentrations have the same significance for fault
identification. Using uninformative features as inputs leads
to artificial noise and poor performance in transformer faults
diagnosis. Hence, effective features should be selected as the
input, and uninformative features must be removed. In this
study, following the traditional DGA methods, the
concentrations of the dissolved gases or the ratios of
several different gases are collected as candidate feature set
for the input feature selection, as shown in Table 1. In Table 1,
TH � CH4 + C2H4 + C2H2 and TH1 � CH4 + C2H4 +
C2H2 + C2H6.

TABLE 1 | The candidate feature set for intelligent fault diagnosis methods. Gas
concentrations (ppm) and ratio of gas concentrations in the table.

Feature set

H2 CH4 C2H6 C2H4 C2H2 CH4/H2

C2H4/C2H6 C2H2/C2H4 C2H2/C2H6 TH CH4/TH C2H4/TH
C2H2/TH TH1 CH4/TH1 C2H6/TH1 C2H4/TH1 C2H2/TH1
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2.2 Genetic Algorithm
2.2.1 Tradtional Genetic Algorithm and Improved
Genetic Algorithm
It is common practice to separate the process of input feature
selection from the classifier optimization process, which neglects
interaction between the feature selection and the classifier
optimization may lead to unreliable results (Daelemans et al.,
2003). Combined optimization of the feature selection and the
classifier’ parameters can be achieved by genetic algorithm within
a single approach. Since the traditional genetic algorithm (TGA) is
prone to get trapped in the local optimal and fails to find the optimal
global solution. In this paper, some improvements have beenmade to
the TGA to enhance its global search capability, and an IGA is
obtained. The IGA is utilized to combine the feature selection process
with the classifier optimization process and assess which combination
of input features and classifier’s parameters substantially impact the
accuracy of fault diagnosis to gain the optimal input features and the
classifier’s parameters. The difference between the TGA and the IGA
is shown in Figure 1. Figure 1A shows the structure of the TGA, and
Figure 1B shows the structure of the IGA. From 1A, it can be found

that the main processes of the TGA include the population selection
process and the population reproduction process. Twomodifications
make the IGAdiffer from the TGA: the highmutation rate of 0.3, and
the other is the addition of elitist selection in the population selection
process.

In the population selection process of the TGA, the generation
of candidate solutions after initialization is called the population.
Each individual of the generated population has its chromosome
coding to represent the parameters of the classifier and the input
features extracted from DGA data, as shown in Figure 2. Each
chromosome coding contains n bit strings, of which L1 to Ln-1
represent the classifier’s parameters, and the Ln bit string is used
for the input feature selection. For feature selection, the bit with
the value “1” in the Ln bit string represents the corresponding
DGA feature is selected, and “0” means no selection. For the
parameters setting of the classifier, the bit strings of parameters
would be converted from the binary value to decimal value with a
specific range by Eq. 1.

p � minp + maxp −minp
2l − 1

× d (1)

Here p represents chromosome coding of parameter, minp
represents minimum value of the parameter, maxp represents
maximum value of the parameter, d represents decimal value of
bit string, and l represents length of bit string.

The individuals of the population will then be selected for
propagation by weighing their fitness values. The fitness values
measure the population’s performance. The fitness function
described in Eq. 2 uses the average accuracy of cross-
validation for evaluation, and the higher the fitness value
represents a better individual.

FIGURE 1 | The structures of the TGA and the IGA, (A) is TGA’s structure, (B) is IGA’s structure. The IGA differs from GA with two modifications: the high mutation
rate of 0.3, and the other is the addition of elitist selection in the population selection process.

FIGURE 2 | Structure of chromosome coding. Chromosome coding
contains n bit strings, of which L1 to Ln-1 represent the classifier’s
parameters, and the Ln bit string represents the DGA data used for the input
feature.
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fitness � 1
k
∑k
i�1

accuracy(i) (2)

Here, k is the fold number of the cross-validation.
The probability of each individual of the population being

selected is calculated in Eq. 3 by the roulette wheel selection
method.

probability(i) � fitness(i)∑n
i�1 fitness(i)

(3)

Here, n is the total number of individuals in each generation.
Then in the population reproduction process, crossover and

mutation are employed to generate a new generation by the
selected individuals of the population with a randommechanism.
Crossover exchanges chromosome’s segments between two
selected individuals stochastically, and the bit value in the
chromosome will be converted from “0” to “1” or vice versa
occasionally in the mutation process. New individuals are formed
through crossover and mutation, which are different from the
original. A new generation is created in this way. Population
reproduction and selection processes can be repeated under the
“survival of the fittest” to achieve an optimal result.

In the roulette wheel selection method, the greater the
individual’s fitness is, the higher the possibility of such an
individual would survive, but the optimal individual of each
iteration still has a certain probability of being eliminated.
Also, the process of crossover and mutation may lead to the
disappearance of the optimal individual. Compared with TGA,
the optimal individual of each iteration is added directly into the
new generation in the IGA to avoid the disappearance of each
iteration’s optimal individual as shown in Figure 1B, which is
called elitist selection. Besides, the mutation rate is set at 0.3
instead of the conventional low value to make the IGA jump out
of the local optimum. These two modifications can effectively
improve the global search capability of the IGA and the accuracy
of transformer fault identification, as will be discussed in the
Simulation Result.

2.2.2 Performance Measures
The main objective of the IGA is to enhance search capability for
the optimization problem and gain better solutions. To analyze
the enhancement of search capability, the following performance
measures are defined (Sugihara, 1997).

1) Average fitness value f(k): the average of the value obtained
within k generations in n runs.

f(k) � ∑fb(k)
n

(4)

Here, fb(k) is the best fitness values obtained within k generations;
n is the number of independent runs.

2) Likelihood of evolution leap Lel(k): the probability of average
leaps within k generations among n independent runs. When
a solution of one generation is better than the best solution
obtained before the generation, the generation is said to be
a leap.

Lel(k) � l

n
(5)

Here, l is the average number of leaps within k generations; n is
the number of independent runs.

3) Likelihood of optimality Lopt(k): the probability of obtaining
optimal solutions within k generation in n independent runs.

FIGURE 3 | Structure of the IGA-XGBoost. The IGA is used for the
combined optimization of the input features and the XGBoost parameters,
and the trained XGBoost is used to identify the fault types.

FIGURE 4 | Structure of the transformer fault diagnosis system based on
the IGA-XGBoost. Transformer states are classified into six categories, and
four IGA-XGBoost classifiers are used to diagnose the fault type step by step
in the transformer fault diagnosis system.
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Lopt(k) � m

n
(6)

Here, m is the number of runs which produced an optimal
solution within k generations; n is the number of
independent runs.

2.3 Transformer Fault Diagnosis System
The XGBoost is a scalable tree boosting system that has been
successfully applied in world-class machine learning and data
mining competition because it is robust enough to avoid
overfitting (Zhang and Zhan, 2017). In addition, the
XGBoost algorithm can take advantage of the original data
directly without normalization. Thus, the XGBoost is utilized
as the classifier of the transformer fault diagnosis system in
this study. The DGA data is not fed directly into the classifier
in the proposed method. Since 18 features are collected from
DGA methods, as shown in Table 1, the application of
complete input data is too time-consuming and could
lower the accuracy of faults classification due to the
artificial noise. Figure 3 shows the structure of the IGA-
XGBoost. The IGA selects the input features fed to the
XGBoost to decrease the input volume from 18 to a
smaller number in the IGA-XGBoost. In addition, at the
same time as input feature selection, the parameters of the
XGBoost are decided by the IGA. The parameters of the
XGBoost being decided by the IGA include eta,
max_depth, min_child_weight, n_estimators, and
n_gamma. The transformer fault diagnosis system
described in Figure 4 is developed based on the IGA-
XGBoost. Transformer states are classified into six
categories, which contain normal (N), partial discharge
(PD), high-energy discharge (D1), low-energy discharge
(D2), low and middle-temperature overheat (T1&T2), and
high-temperature overheating (T3). The fault recognition
problem is decomposed and reconstructed into several
more minor problems that can be solved one by one. Four
IGA-XGBoost classifiers are used to detect and identify
transformer faults. The IGA-XGBoost1 is trained to
separate the normal samples from the fault samples. The
selected fault samples by the IGA-XGBoost1 are fed to the
trained IGA-XGBoost2 and classified as PD, D, and T. Then,
the IGA-XGBoost3 and the IGA-XGBoost4 are used to
identify the D1, D2, T1&2, and T3.

3 SIMULATION RESULT

The DGA data set employed in this study is originated from Ref
(Kirkbas et al., 2020). The data is divided into the training data set
(125 samples) and the test data set (25 samples). These samples
correspond to six states of the transformer. For each fault state,
the number of samples used for the training and test process is
shown in Table 2.

3.1 Performance of the Proposed Method
The proposed method is used for transformer fault diagnosis and
compared with another transformer fault diagnosis system based
on the TGA and the XGBoost, which has the same structure as the
proposed method shown in Figure 4. The only difference
between these two methods is that one uses the TGA while
the other uses the IGA. To ensure the validity of the selected
features and classifier parameters by IGA in the training process,
the average accuracy of 8-fold cross-validation is taken as the
fitness value. Therefore, the fitness curve is the average accuracy
curve of cross-validation. The maximum generation number was
200. The initial population scale was set at 200, and the fitness of
each iteration’s best individual was collected to form the best
fitness curve shown in Figure 5. Figure 5 portrays the operation
of the proposed method in five different independent
implementations. Figure 6 compares the proposed method
and the transformer fault diagnosis system based on the TGA
and the XGBoost for the global best fitness value in the training
process.

It can be seen from Figure 5 that the proposed method can
achieve the same fitness value for the normal or fault (N-F)
identification in different independent experiments using the
IGA-XGBoost1. The global best fitness value can reach
99.22%. When detecting PD, D, or T fault (PD-D-T), the
IGA-XGBoost2 also can gain the same high global fitness
value of 99.04%. Besides, the proposed method can even 100%
distinguish D1 and D2 faults (D1-D2) using the IGA-XGBoost3.
Although the global fitness value was not as high as that of other
faults identification when detecting T1&2 or T3 fault (T1&2-T3),
most of them reached 97.92%, with only one fitness value
reaching 95.83%. Compared with the method based on the
traditional GA and the XGBoost, as can be seen from
Figure 6A, the global fitness value of the method based on the
traditional GA and the XGBoost varies with independent
implementations, and its global best fitness value is also
significantly lower than that of the proposed method (see
Figure 6B). For N-F identification, the global best fitness value
of the method based on the TGA ranged from 92.8 to 98.4%. As
for T1&2-T3 identification, the global best fitness value of the
method based on the TGA ranged from 86.5 to 98.1%. It can be
seen from the above results that the IGA can achieve better
solutions.

Performance measures such as average fitness value, likelihood of
evolution leap, and likelihood of optimality have been taken into
consideration to measure the enhancement of the IGA in the
optimization problem. Table 3 shows the average fitness value in
the 100th and 200th generations for both the TGA and the IGA.
Table 4 shows the likelihood of evolution leap in the 100th and

TABLE 2 | Numbers of DGA data used in the training and test process.

Transformer states Number
of training samples

Number
of test samples

NF 21 5
PD 16 3
D1 18 4
D2 23 6
T1&T2 23 3
T3 24 4
Total data sets 125 25
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FIGURE 5 | Performance of the transformer fault diagnosis system in training process, (A) is the best fitness curves of the IGA-XGBoost1 for N-F identification, (B) is
the best fitness curves of the IGA-XGBoost2 for PD-D-T identification, (C) is the best fitness curves of the IGA-XGBoost3 for D1-D2 identification, (D) is the best fitness
curves of the IGA-XGBoost4 for T1&2-T3 identification.
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200th generations for both the TGA and the IGA.Table 5 shows the
likelihood of optimality in the 100th and 200th generations for both
TGA and the IGA. As can be seen from Table 3, compared with
TGA, the average fitness values of IGA after 200 generations have

increased 2.4, 1.7, 6.6%when detecting N-F, PD-D-T, and T1&2-T3,
respectively. Besides, the average fitness values of IGA after 100
generations are higher than that of TGA after 200 generations, which
proves that IGA has better search capability than the TGA. Table 4

FIGURE 6 | The comparison of the global best fitness value amongmethods, (A) is the global best fitness value of the TGA, (B) is the global best fitness value of the
IGA. The higher the global fitness value represents a better solution.

TABLE 3 | Average fitness value f(k).

Fault type Traditional GA mutation rate = 0.01 Improved GA

After 100 generations After 100 generations After 100 generations After 100 generations

N-F 0.968 0.968 0.992 0.992
PD-D-T 0.973 0.973 0.987 0.99
D1-D2 1 1 1 1
T1&2-T3 0.908 0.908 0.967 0.974

TABLE 4 | Likelihood of evolution leap Lel(k).

Fault type Traditional GA mutation rate = 0.01 Improved GA

After 100 generations After 100 generations After 100 generations After 100 generations

N-F 0.44 0.48 0.72 0.72
PD-D-T 0.64 0.64 0.88 1
D1-D2 0.2 0.2 0.2 0.2
T1&2-T3 0.48 0.48 1.12 1.2

TABLE 5 | Likelihood of optimality Lopt(k).

Fault type Traditional GA mutation rate = 0.01 Improved GA

After 100 generations After 100 generations After 100 generations After 100 generations

N-F 0.2 0.2 1 1
PD-D-T 0 0 0.6 1
D1-D2 1 1 1 1
T1&2-T3 0 0 0.4 0.8
Average 0.25 0.3 0.75 0.95
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shows the average number of evolution leaps of the IGA is higher
than the TGA, which indicates that the IGA has a continuous
change in solution from one generation to the next. Table 5
shows the probability of obtaining the optimal solution, the
average likelihood of optimality of the IGA is 95%, compared
to 30% of the TGA, which guarantees a feasible solution. The
above results show that the IGA can get the optimal solution
stably and reliably. For the test, Table 6 shows the recognition
accuracy of different methods for the test samples. The results
in Table 6 show that the proposed method has the best
performance in transformer fault diagnosis with an average
identification accuracy of 99.2%, compared to 94.4% of the
method based on the TGA and XGBoost. Combined with the
results of the test samples and the above results, it is shown
that the proposed method can effectively and reliably identify
transformer faults.

3.2 Comparison With Other Methods
In Table 7, the performance of the proposed method is also
compared with other methods. The compared methods include
DGA methods and intelligent transformer fault diagnosis methods,
including IEC ratios, dual triangle, support vector machine, and
common vector approach. The common vector approach has been
recently introduced for the transformer fault diagnosis, and the
support vector machine is a commonly used algorithm for
transformer fault diagnosis. The result shows that the accuracy of
DGA methods is relatively low, such as IEC ratios with an accuracy
of 60% and the dual triangle method with an accuracy of 52%. In
contrast to the DGAmethods, intelligent transformer fault diagnosis
methods based on intelligence algorithms and DGA methods have
remarkable performance. The accuracy of the transformer fault
identified by the proposed method is the highest, reaching 99.2%.
Compared to 88% for support vector machines and 96% for CVA,
the diagnostic accuracy of the proposed method was improved by
11.2 and 3.6%, respectively. The result proves that the proposed
method can effectively improve the accuracy of transformer fault
identification.

4 CONCLUSION

A novel and effective transformer fault diagnosis system based on
the IGA-XGBoost is conducted to diagnose transformer fault
types and verified in this paper. The modifications improve the
global search capability of the IGA, and the IGA can get the
optimal combined solution of input feature selection and the
XGBoost classifier optimization reliably and stably. Based on the
IGA, the IGA-XGBoost can accurately deal with different
recognition problems, including N-F, PD-D-T, D1-D2, and
T1&2-T3. Due to the excellent performance of the IGA-
XGBoost, the average accuracy of the proposed transformer
fault diagnosis system has been improved to 99.2%. Compared
to IEC ratios, Dual triangle, SVM, and CVA, the simulation
results demonstrate that the proposed method can be a reliable
solution for transformer fault diagnosis.
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TABLE 6 | Accuracy of different methods for the test samples.

Accuracy — — Accuracy

Traditional GA mutation rate � 0.01 Run 1 24/25 Improved GA Run 1 25/25
Run 2 24/25 Run 2 25/25
Run 3 24/25 Run 3 24/25
Run 4 23/25 Run 4 25/25
Run 5 23/25 Run 5 25/25

Average Accuracy 94.4% — — 99.2%

TABLE 7 | Result comparison with other methods.

Method IEC ratios
(%)

Dual triangle
(%)

SVM (%) CVA (%) Proposed method
(%)

Accuracy 60 52 88 96 99.2
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An Association Rules-Based Method
for Outliers Cleaning of Measurement
Data in the Distribution Network
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For any power system, the reliability of measurement data is essential in operation,
management and also in planning. However, it is inevitable that the measurement data
are prone to outliers, which may impact the results of data-based applications. In order to
improve the data quality, the outliers cleaning method for measurement data in the
distribution network is studied in this paper. The method is based on a set of
association rules (AR) that are automatically generated form historical measurement
data. First, the association rules are mining in conjunction with the density-based
spatial clustering of application with noise (DBSCAN), k-means and Apriori technique
to detect outliers. Then, for the outliers repairing process after outliers detection, the
proposed method uses a distance-based model to calculate the repairing cost of outliers,
which describes the similarity between outlier and normal data. Besides, the Mahalanobis
distance is employed in the repairing cost function to reduce the errors, which could
implement precise outliers cleaning of measurement data in the distribution network. The
test results for the simulated datasets with artificial errors verify that the superiority of the
proposed outliers cleaning method for outliers detection and repairing.

Keywords: association rules, outliers cleaning, outliers detection, outliers repairing, measurement data, distribution
network

INTRODUCTION

With the evolution of smart grids, the intelligent monitoring equipment and system are becoming an
integral component of the distribution network, collecting a substantial volume of data in order to
manage the status and provide timely updates in the network (Alimardani et al., 2015; Wang et al.,
2018). Among them, the supervisory control and data acquisition (SCADA) system provides a large
number of operation data and analysis results, which brings great convenience for operators to
evaluate the planning and operation of distribution system. For instance, the data structure is
complex, many types of the data, and the sampling period/frequency of data are also different. For
distribution network dispatching control system, poor quality data may lead to wrong decisions,
which will have a great impact on the stable operation of power grid. Hence, it is essential that to
clean the outliers of measurement data in the distribution network.

The distribution network is an important part of production, transmission, and consumption,
which plays a critical role in the delivery of electric power. In the planning and operation of
distribution network, the availability of accurate measurement data has a considerable impact on
dispatching operations and control of the distribution network. For instance, the analysis of
measurement data in the distribution network can assist in taking action against fault detection,
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dispatching, load forecasting, power quality, tariff settings, and so
forth. (Hayes et al., 2018; Cai et al., 2021; Wang et al., 2019).
Moreover, it solves the problems that distribution networks
frequently face in terms of integrated energy planning,
distributed energy storage, and demand-side management,
respectively (Thams et al., 2018; Liu et al., 2019). Generally,
the majority of the researches in the distribution network, for the
analysis and prediction of the measurement data, is focus on the
feature selection or parametric optimization of the model (Liu
et al., 2020). However, due to the complex topology features and
communication disturbances, the accuracy of distribution
network measurement data is not always satisfactory, making
it susceptible to data anomalies such as outliers or missing data
(Shi et al., 2019). To fill in missing data, denoise while detecting
outliers, and repair inconsistencies, data cleaning is the first and
most crucial step. Obviously, it has a decisive influence on the
final result: if the dataset is incomplete in terms of data cleaning
and preprocessing. This means that the established analysis and
prediction model will not be accurate and efficient, which may no
longer be suitable for the planning and operation of distribution
system. For instance, due to external disturbances, data recorded
in smart electric meters is abruptly modified because a
transmission error for control commands, such as electric
quantity or associated parametric information is reset to
outliers, or even data missing (Nascimento et al., 2012). And
in DCmicrogrids, the large-scale converters with inhomogeneous
initial values are widely appeared due to soft-starting operation,
which make the input-output maps error will be large (Wang
et al., 2021). Under these circumstances, efficient preprocessing
via data cleaning aids in improving the quality and accuracy of
subsequent analysis and decision-making outcomes, which can
successfully guide the planning and operation of the distribution
network.

Researchers have extensively conducted many outliers
cleaning studies to improve the data quality and decision-
making results, including outliers detection and repairing. For
outliers detection, with the rapid development of machine
learning technology, many machine learning algorithms have
been utilized to improve the accuracy in power systems. In
literature (Nemati et al., 2018), a constraint and association
rule-based current transmission capability forecasting method
was proposed for outliers detection in substation metering
equipment. However, this model is complex and
computationally intensive, which is not suitable for the
detection of bad data in a large number of transformer
districts. In literature (Esmalifalak et al., 2014), support vector
machine (SVM) has been investigated for detecting the outliers
injected into the measurement data from power grid. Since SVM
is a supervised learning method, it necessitates labeling the data in
order to train the model. However, in practice, obtaining a
considerable volume of tagged data is difficult. In literature
(Thang et al., 2011), a density-based DBSCAN algorithm was
used for detecting the network traffic outliers of electricity meters,
which dataset may include multiple traffic types with different
characteristics. It has a high level of outliers detection
performance, but there are difficulties in finding its parameters
(epsilon and minpts) when the multidimensional feature data is

taken into account. In literature (Li et al., 2018), the isolation
forest (IF) algorithm was proposed to detect the outliers, and the
backpropagation neural network (BPNN) algorithm was used for
predicting and repairing the outliers. However, IF algorithm is
usually suitable for detecting global outliers, but not for detecting
local outliers.

Traditionally, researchers have concentrated more on a basic
and easy to repair statistical estimate method for outliers
repairing. Still, mining a deep relationship between data is
difficult, and the repairing results are not ideal (Waal et al.,
2001). By contrast, machine learning (also includes deep
learning) methods is a very effective technology, which could
easily recognize the outliers through the linear or nonlinear
pattern relationships and the repairing results could more
accurately. For instance, in literature (Qu et al., 2016), a
hierarchical clustering algorithm based on the clustering using
representatives (CURE) was proposed for the outliers detection
the repairing, which could confirm the normal value boundary
samples from historical data. However, when the volume of data
is large, the time complexity is poor and precision is low with the
hierarchical clustering algorithm, which make a challenge to
determine the ideal boundary sample number. In literature
(Hu et al., 2021) a data recovery method based on generative
adversarial networks (GANs) was proposed for safe and efficient
operation in the pipeline network, which could accurately recover
incomplete pressure data caused by the device or communication
aspect. But there are still some difficulties when the complete data
pairs is no provided in the training process. On the other hand, to
produce good repairing results, a metric learning and a cost
functional model are proposed to estimate data repairing
efficiency while taking sample distances into account (Li et al.,
2019). Distance is a term that describes the dissimilarity of two
input samples. Among them, the most frequently used technique
is the Euclidean distance. However, the Euclidean distance takes
neither the correlation of the features nor the different weights of
features into account, which may not reflect the real nature of the
problem, and distorts the true dissimilarity between samples. To
address this issue, in literature (Maesschalck et al., 2000), the
Mahalanobis distance idea was defined to use the similarity
metric as a substitution to perform better. In another example
(Yan et al., 2020), the adoption of the Mahalanobis distance
improves the classic k-nearest neighbor (KNN) outliers
identification method, resulting in increased accuracy and a
lower false detection rate. However, the repair of outliers has
not been considered in this model. Furthermore, most of the
models stated above focus on specific application scenarios and
do not process real-time data from the distribution network
system. Moreover, most of the outliers cleaning methods
aforementioned presumed the underlying population
distribution before the step of data cleaning. However, in real-
word data, a hypothesis about an underlying population is a
statement that may be true or false.

In power grids, a huge amount of historical measurement data
from various distribution stations is available, which could
provide valuable information for detecting and repairing
outliers. Furthermore, the association rules learning is a
popular and well data mining method for discovering relations
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between variable features. Our motivation is to investigate how to
capitalize on the historical data for outliers cleaning, including
outliers detection and repairing, to achieve expected
performance. An association rules-based method for outliers
cleaning is given in this work to mine the information which
whereas the assumptions of underlying population about the data
is not required. In outliers detection, we adopt the density-based
spatial clustering of application with noise (DBSCAN), k-means
and Apriori technique to generate the association rules. After the
outliers detection, the distance-based model is designed with
Mahalanobis distance to repair to outliers. Various tests are
carried out on data sets with simulated errors to evaluate the
good performance of the proposed method. The test results
indicate that the proposed method can effectively identify
outliers in the distribution network’s measurement data while
achieving accurate data repairing. The proposed method detects
the outliers with a F1-Score (a metric combine precision and
recall) of 96%, even in the condition with a high anomaly rate.
The F1-Score indicates how well precision and memory are
balanced. Furthermore, the correlation between features of
measurement data is also computed to detect and repair the
outliers, thus improving the method’s accuracy. The main
contributions of this work could be summarized as follows
two aspects:

1) This paper introduces an outlier detection and repairing
technique based on association rule. The proposed
technique uses the information provided from historical
measurement data, whereas the assumptions of underlying
distribution about the measurement data is not required.

2) The distance-based model is adopt for outliers repairing,
which describes the similarity between outlier and normal
data by the Mahalanobis distance. It estimates the outliers
according to the normal data within historical data, which is
employed to improve the estimation accuracy.

The remainder of the paper is organized in the following
manner. Problem Statement discusses the measurement problems
in the distribution network and data anomalies. The proposed
methodology has been presented in Preliminaries and The
Proposed Model for Outliers Detection and Repairing.
Simulation results are provided in Experiment and Analysis,
and the concluding remarks are summarized in Conclusion.

PROBLEM STATEMENT

Measurement Problems in Distribution
Network
Through SCADA system, a large amount of operating data is
continuously collected, uploaded, and formed into big data for
the distribution network, which provides abundant data
resources for big data analysis (Ye et al., 2010; Song et al.,
2013). And the data collected by SCADA has the following
characteristics: large amount, high dimensions, and complex
data types. Then the most common problems encountered in
measurement data are the absence of data (nulls values and

zeros), change in level and spikes (points more than N times
the standard deviations away from the series mean), and generally
are called outliers. Therefore, in order to improve the accuracy of
the analysis and decision-making results based on measurement
data, how to clean and repair outliers form the measurement data
in distribution network is a challenge faced by distribution
system.

The Source of Abnormal Data in Distribution
Network
The process of collecting measurement data from the distribution
network involves many components such as metering equipment,
metering centers, and communication systems. However, if a
malfunction occurs in any measurement channel, it can lead to
data anomalies (Chen et al., 2010). For example, the failure of
smart electricity meters, noise interference, data transmission
errors, and abnormal power consumption will cause these
collected data to become outliers or data missing. Generally,
there are three potential sources of data anomalies in distribution
network measurement data:

1) Metering equipment. The measuring equipment from
abnormal operating conditions may lead to errors in
measurement (Yan et al., 2015; Chen et al., 2010). In
particular, the magnetic bias phenomenon in potential
transformers (PT) and current transformers (CT)
equipment would cause measurement errors (Mccamish
et al., 2016). Also, the non-synchronous problem on data
collection could cause errors since the sampling time of some
devices is asynchronous (Liu et al., 2020). In particular, all
forms of metering and communication equipment are
constantly exposed to unknown conditions. They are
vulnerable to the effects of real-world circumstances, which
typically have a high failure rate. Meanwhile, the operation in
the monitoring and communication equipment can not be
carried out smoothly when a fault occurs. In that situation,
erroneous or missing data will be recorded.

2) Distribution network. Control operations and faults in the
distribution network have a significant impact on the accuracy
of measurement data. Temporary inrush current interference
caused by switchgear such as circuit breakers may cause
temporary outliers to appear in some measurements when
adjusting the operation of the distribution network. In any
fault event, the metering equipment may fail to function
properly, resulting in measurement issues.

3) Communication systems. Due to the distribution network’s
complex topology and geographical environment, local
communication links usually use low-power and lossy
networks in power distribution networks. This type of
network is prone to data packet loss. Also, the reliability of
distribution network data transmission is affected by the
communication links. The way of communication will also
affect the reliability of data transmission in the distribution
network. Due to cost constraints, most distribution topologies
use communication methods such as distribution carrier
waves, Zigbee wireless technology, and industrial wiring
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(Pei et al., 2010). These communication methods are less
reliable and often break codes when the channel is exposed to
heavy electromagnetic interference, resulting in missing data.

All of the above issues may produce anomalous data, causing
the quality of the data to be inconsistent and reduce usability.
Therefore, it is necessary to clean the data before using it for
analysis and utilization. The prominent data anomalies in the
existing distribution network data are missing data and outliers.
The term “data missing” applies when the collected value is null
or contains an invalid value. In contrast, outliers occur when the
collected value deviates from normal data. The value exceeds the
acceptable range of change (data is too big or too small) and
maintains a certain time pattern without repetition.

Figure 1 illustrates the distribution of abnormal voltage data
in the distribution network for various purposes. Figure 1A
shows the abnormality caused by the malfunction of the
metering equipment. The characteristic feature of this
phenomenon is that some observations are outliers or missing
values, which do not last for a long time but occur frequently.
Figure 1B shows the data abnormality caused by the failure of a
terminal monitoring point. It is characterized by continuous data
anomalies or single-point data anomalies occurring at a single
point of observation. Figure 1C shows the data anomalies caused
by excited inrush disturbances and automation equipment
actions at controller monitoring points. This abnormality is
characterized by short-term outliers in some observations,
i.e., retained for a very small period of time. Figure 1D shows
data anomalies caused by faults in the communication system of
the sub-stations. It is defined by a partial loss of temporal data at
various intervals and is typically retained for a short period
of time.

Outliers Cleaning in Distribution Network
The above issues might pollute the measurement data, which
make it not suitable used directly for distribution system planning
and operation. Therefore, the data preprocessing is an essential
process before using data for analysis and decision-making, and
the outliers detection is the most important part of the process.
Generally speaking, a good outlier detection algorithm should be

able to identify outliers correctly, and would no have any response
to the normal data. As shown in Figure 2, a dataset of the voltage
amplitude, which received from sensors and contains four
outliers and one missing data, and highlight it in the figure.
The aim of the outliers detection is to find the highlight points
and mark it with lables, which is the kernel of the data cleaning.

Association rules learning are a rule-based machine learning
method, which is a research focus of the data mining and analysis.
In an method for automatically generating association rules, it
mainly includes three important steps: data denoising, data
discretization and rule mining. Furthermore, how to select the
sub-algorithm is a critical step. In this paper, the density-based
algorithm, DBSCAN, is chosen in the data denoising step, which
has a excellent result in denoising and high scalability. Then in the
data discretization step, the distance-based algorithm, K-means is
used since its precise classification result and high computation
efficiency. And in the rule mining step, Apriori algorithm is
selected because of its high stability and flexible extension ability.
With that in mind, we presents an outliers cleaning method based
on association rules, which could found the implicit relationship
between features from the historical measurement data and pick
up the valuable information on outliers detection and repairing.
For the outliers detection, the DBSCAN, K-means and Apriori
algorithm are chosen for generating the association rules from
historical data, which make the detector more flexible and
accurate. For the outliers repairing, the repairing cost is
chosen with a distance-based model. And the Mahalanobis
distance is chosen to use for constructing a data repairing cost
function, which could reduce the errors.

PRELIMINARIES

DBSCAN Clustering Algorithm
DBSCAN is an unsupervised machine learning clustering
algorithm that could be used for data classification with a
nonlinear density structure (Chen et al., 2021; Chipade et al.,
2021). The algorithm treats the data as points in space and
clusters them based on density magnitude, allowing clusters of
arbitrary shapes to be found in a noisy space. The basic idea of

FIGURE 1 | The distribution of abnormal voltage data for several reasons: (A) Abnormal voltage data cause by Metering equipment; (B) Abnormal voltage data
cause by faults; (C) Abnormal voltage data cause by operation control; (D) Abnormal voltage data caused by the communication system.
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DBSCAN is to introduce neighborhood and density connectivity
concepts, explore the data points, and use density connectivity to
grow clusters until outliers split them. The DBSCAN clustering
algorithm can be adapted to any form of clustering. It can filter
out noisy outliers in space, making it ideal for outliers detection in
the distribution network.

Assume a historical measurements datasets D �
{x1, x2, . . . , xn} be the numerical attributes of observations
with rows i ϵ [1, 2, . . . , n]. For any observation xi ∈ D has a
timestamp. And it contains m features, as given by Equation 1.

xi � {fi1, fi2, . . . , fim} (1)

where fij represents the jth feature of the ith data.
Meanwhile, let ε be the neighborhood distance parameter of

DBSCAN. For each point xi ∈ D, the ε - neighborhood set is
defined using Eq. 2.

Nε(xi) � {xj εD∣∣∣∣dist(xi, xj)≤ ε} (2)

Then, for any point xi ∈ D, the core point should be satisfied
via Eq. 3.

|Nε(xi)|≥minpts (3)

where, |Nε(xi)| is the count of elements in theNε(xi). Andminpts
is the minimum number of points in ε -neighborhood.

If a point xi ∈ Nε(xi) satisfy Eq. (2), xi is directly-density
reachable from the point xj. As shown in Figure 3, points that are
outside the range of clustering are considered outliers. For clarity,
Algorithm 1 explains the step-by-step procedure of the DBSACN
clustering algorithm.

Algorithm 1. : Density-based spatial clustering of applications
with noise(DBSCAN).

Association Rules Mining
Association rule learning is a rule-based machine learning
method used to mine frequent patterns, correlations, or causal
structures between itemsets. It is intended to determine valuable
rules based on the frequency of occurrence between itemsets in a
database (Rauch, 2005; Chengyu et al., 2016). In data cleaning, the
association rules algorithm is applied for mining the relationship
between various features of the measurement data in the power
system.

At first, the obtained features should be discretized to improve
the robustness of association rules to outliers. After data
discretization, a datasets D with size n ×m, which is a 2-
dimensional real-valued matrix, is converted to a Boolean

FIGURE 2 | The data anomaly plot.

FIGURE 3 | The process of DBSCAN clustering.
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matrix D with size n ×m. When a feature is in the specified
interval, the value in the Booleanmatrix is labelled as 1. If not, it is
labelled as 0. Figure 4 illustrates a portion of the datasets before
and after data discretization.

Let F � {F1, F2, . . . , Fn} be the itemsets ofD. Each observation
xi ∈ D may contain one or more items. The aim is to search for
the most frequent patterns of items from the datasets for
generating association rules. With this in mind, an association
rule between FA and FB, can be defined as Eq. 4.

FA0FB (4)

where FA, FB are itemsets, and FA ⊂ F, FB ⊂ F.
Since the magnitude of support and confidence value is

commonly used to assess the effectiveness of an association
rule. The following Eq. 5 represents a definition to support an
association rule between FA and FB:

Sup(FA0FB ) � coun(FA ∪ FB )∣∣∣∣D∣∣∣∣ (5)

where count is the number of occurrences of an item in data D;
FA ∪ FB is the coexistence of FA and FB; and

∣∣∣∣D∣∣∣∣ is the total
count of itemsets.

The confidence value indicates the reliability of the association
rule. The confidence of an association rule between and can be
defined as follows:

Con(FA0FB ) � coun(FA0FB )
Sup(FA) (6)

In this work, we use Apriori algorithm is employed to search
for the itemsets frequency in the complete transaction set. In this
approach, the ones with more than the minimum support and the
minimum confidence are used as strong association rules. These
rules give high confidence and strong support greater than or
equal to a user-specified minimum confidence threshold and a

minimum support threshold. The process of the algorithm is
explained in Algorithm 2.

Algorithm 2. : Association Rule Mining with Apriori.

Mahalanobis Distance
The Euclidean distance is the most common metric of distance in
data science, which describes the straight-line distance between two
points in Euclidean space. Consider the case where two or more
variables are linked. The axes are no longer at right angles in this

FIGURE 4 | The process of data discretization.

FIGURE 5 | An illustration of Mahalanobis distance.
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situation, and measurements are no longer possible. The Euclidean
distance cannot represent the real distance between feature vectors.
To mitigate this issue, Mahalanobis distance is implemented. The
Mahalanobis distance measures the distance between two points in
multivariate space (Maesschalck et al., 2000). It calculates distances
between points, including correlated points for multiple variables.

For a given sample set, in order to integrate the correlation
between the sample points, the distance between numerical data
features can be calculated using the Mahalanobis distance metric
to measure the similarity between samples (Liu, et al., 2020). For a
feature, the variation between two observations can be specified
by Eq. 7.

Md(x1, x2) �
�������������������
(x1 − x2)TS−1(x1 − x2)

√
�

������������������
(x1 − x2)TM(x1 − x2)

√
(7)

where S is the covariance matrix, andM � S−1, if the two samples
have similar or identical characteristics, the martingale distance
should be small or even zero.

Figure 5 illustrates the transformation in the two-dimension
space. Here, the blue and pink dots represent the original and
transformed data. For presented data points, the correlation of
the two features causes the oval shape of the original distribution.
If we apply the Euclidean distance, it will not reflect the real
dissimilarity of the data. While calculating Mahalanobis distance,
the eclipse is first transformed to a standardized circle with a
radius equal to 1, and then the Euclidean distance in the
transformed space is calculated. Meanwhile, computing the
distance, the influence of correlation is offset by the
transformation.

THE PROPOSED MODEL FOR OUTLIERS
DETECTION AND REPAIRING

Since historical measurement data from SCADAS is required
processing, using this information, the proposed model generates
a list of association rules to evaluate the correlation between

FIGURE 6 | The schema of the proposed method.
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distinct variables. The overall flowchart of the proposed method
is shown in Figure 6. The proposedmodel consists of three stages:
data preparation, outliers detection and outliers repairing.

1) In the data preparation process, it has a task with DBSACN
clustering algorithm to eliminate ineffective information,
which purposes is to find the obvious abnormal data like
null or missing values and so on. Then prepared dataset (D)
will be discretized with k-means clustering algorithm, which
purposes is to get the discrete dataset (D) to generate
association rules.

2) In the outliers detection process, it is necessary to mine the
association rules in historical data for detecting outliers. The
association rules will be mined from the dataset (D) with
Apriori algorithm. Correspondingly, the intervals of the
features will be define by the association rules, which the
features are distributed. The newly obtained observation will
be compared with the intervals which defined from the
association rules. If these real-time observations out of the
intervals (i.e., identified by the association rules), they will be
flagged as outliers. In this paper, we use 1 as the label for
outlier, and 0 as the label for normal data.

3) In the outliers repairing process, all the sample points would
be mapped into a feature space, which determining by the
association rules. Subsequently, a novel cost function is
constructed and used for data repairing, and the outlier
will be repaired with the value which have the minimum
repair cost. In this paper, the distance metric is formed with
Mahalanobis distance, and similar normal data related to the
query outliers are retrieved.

Data Preparation
In practice, there are some anomalies in the historical
measurement data from the distribution network, which may
bring invalid/incorrect information. Therefore, it is necessary to
process the historical data before mining the association rules.We
employ the DBSCAN clustering algorithm as the noise detector
and design a procedure to dispose of the anomalies in the
historical measurement data. The DBSCAN algorithm divides
these observations into several clusters and outliers. The
parameter of and minpts is chosen based on the silhouette
coefficient. Next, the data points in each cluster are labelled as
0, while the outliers are labelled as 1. Furthermore, to generate the
association rules, we use k-means for data discretization.

Outliers Detection
The results from the association rules are used for detecting the
outliers. In any case, the outliers detection of each feature is based
on comparisons between the new real-time observations and the
association rules generated from all historical measurement data.
In the final analysis, if a real-time measurement mismatches the
interval defined by the associated rule, it will be flagged as an
outlier.

For example, assume association rules are generated as
follows:

{FA � [FA1min , FA1max)0 FB � [FB1min , FB1max)}
For a new observation Ot which contains the same

features (FA andFB):
If Ot(FA) ∈ [FA1min, FA1max),whileOt(FB) ∉ [FB1min, FB1max)
According to the association rule, the new observation is

compared to previous observations that have the same
features. The Ot stays out of the intervals, which signify that
Ot is an outlier, and the current observation would be labeled as 1.

Outliers Repairing
As shown in Figure 7, after outliers detection, for any point
xi ∈ D, it would be allocated in a feature space divided by the
association rules, which we called “data binding”. When an
observation of one feature is marked as an outlier, it is
necessary to calculate the estimated value of the outlier. For
an abnormal observation in the “rule box space (RBS)”, the point
with the highest similarity to its attribute should fall in the same
sub-RBS.

For example, assume the presence of outliers for the voltage
magnitude, and the following Rule1 are generated with the
highest confidence:

{Current � [0.2272, 0.2408],Active Power
� [38.5260, 39.9682],Reactive Power
� [42.1306, 44.8896]}0{Voltage � [142.3809, 144.0914)}

FIGURE 7 | The RBS with association rules.

FIGURE 8 | The repairing cost of one outlier.
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According to this rule, the correct value of voltage magnitude
should be in the range of [142.3809,144.0914). It means that after
the outliers are repaired, the point is still in the original sub-RBS.
This is because data repairing can be translated into searching for
normal data with the highest similarity to it within the RBS.

The Mahalanobis distance is used as a metric to account for
the distributional differences between attributes. The repair
results within this RBS are not unique, and each result has a
corresponding repair cost. As shown in Figure 8, in outlier
repairing, the objective is to minimize the repairing cost
function as Eq. 8.

cost(x, x′) � Md(x, x′) (8)

where x′ is the repairing result of the corresponding x.
However, in some cases, the minimum value of the cost

function is more than one. In these cases, the abnormal
observation will be replaced by Ot′ , which calculated by the
following Eq. 9.

Ot′ � mean(DCmin) (9)

whereDCmin ∈ D that corresponds toCmin, andCmin is the set with
the minimize repairing cost.

In addition, we consider the outliers repairing with the data
feedback. When an outlier is cleaned to a normal value after
outliers repairing, the observation would be updated in the RBS
for a new outlier that needs repair. The accuracy of outliers
repairing could be improved with data feedback.

EXPERIMENT AND ANALYSIS

The Metrics Used for Evaluating
Outliers detection of measurement data is an unbalanced
binary classification problem. Data are classified as normal
or abnormal. In this way, accuracy is not an appropriate metric
for evaluating the performance of a method. The detection
results could be classified into four types according to the label
between actual and prediction values: true positive (TP), true
negative (TN), false positive (FP) and false negative (FN). The
confusion matrix of outliers detection is shown in Table 1. In
general, the Precision, Recall and F1-Score are used as the
metrics for evaluating of classification problem. Among them,
the Precision is a metrics reflects the reliability of the detection
results, while the Recall is a metrics reflects how many truly
detection results are returned. And the F1-Score is the
harmonic mean of precision and recall.

According to the confusion matrix of outliers detection, the
Precision, Recall and F1-Score could be calculated by Eqs 10–12.

Precision � TP
TP + FP

(10)

Recall � TP
TP + FN

(11)

F1 − Score � 2 × Precision × Recall
Precision + Recall

(12)

where TP is the count of outlier detected as an outlier, FP is the
count of normal data detected as an outlier, FN is the count of
outlier detected as normal data.

In addition, two metrics used for outliers repairing: the mean
absolute error (MAE) and the root mean square error (RSME).
They are defined as follow Eqs 13, 14 .

MAE � 1
N

∑N
i�1

∣∣∣∣∣x̂i − xj′
∣∣∣∣∣ (13)

RMSE � 1
N

���
∑N
i�1

√√ (x̂i − xi′)2 (14)

where N is the size of data, x̂i is the ith actual value (without
contaminated) of outliers, xi′ is the estimation of the ith outlier.

TABLE 1 | Confusion matrix of outliers detection.

Actual label Detection results

Outlier/1 Normal/0

Outlier/1 TP FN
Normal/0 FP TN

FIGURE 9 | The test system from a region in southwest China.

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7300589

Kuang et al. AR-Based Method for Outliers Cleaning

141

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The Simulated Dataset
Unfortunately, the measurement datasets from real-world
distribution networks are unlabeled. It means that it is not
appropriate to use as a dataset for evaluating the proposed
methods. Hence, we used the simulated datasets with artificial
error. To verify the correctness and effectiveness of the proposed
method, a test system (from a region in southwest China) is
modeled in PSCAD/EMTDC to collect simulation data, as shown
in Figure 9. The operational datasets contain 4000 samples (with
a sampling rate of 40 frames per second) and four features
(voltage magnitude V, current magnitude I, active power P,
reactive power Q) for the distribution network. There are no
outliers in these datasets. We added some synthetic errors to the
simulated measurement data, in which outliers are generated and
injected into the datasets using a normal-distributed random
function as z � G(x). Table 2 shows that each bus data has 5–15%
noise injected into it. As an example, if a data point has a voltage
magnitude feature of 110kV, the noise is calculated as 110*105%
+ G(x). For each sample, three-fourths of the data is taken as
input, and the trained algorithm predicts the rest of the real-
time value.

Outliers Detection
The discretization of the pre-processed datasets is performed
using k-means clustering. The numerical attributes voltage
magnitude, current magnitude, active power and reactive

power are clustered into 8, 5, 6, and 5 categories, respectively.
The clusters are selected based on the quality metric that is finally
estimated. After data discretization, the Apriori algorithm
generates the association rules in the test datasets with
confidence greater than 60%. For each posterior feature, the
association rules are generated separately. Then the rules are
generated for prediction individuals. Some of these rules are
shown in Table 3. If the observation is not within the interval
determined by the rules, it will be marked as an outlier.

For evaluation, the proposed method is compared with other
methods such as decision tree, k-neighbors, and SVM; all
methods are using simulated datasets. The results are shown
in Table 4 and Figure 10, and the comparison is based on
Precision, Recall and F1-Score, respectively. For the Precision,
considering the dataset with 5–15% noise, the above method have
similar results, which means that the change of anomaly rate has
little effect on the Precision. For the Recall, with the anomaly rate
increases, the above method have worse results, which means that
the change of anomaly rate mainly affects the Recall, resulting in
the change of F1-score.

According to Table 4 and Figure 10, the result of decision tree
is not satisfactory, which may mistakenly treats the normal data
as an outlier. And for the datasets with highly contaminated
(more than 15%), the SVM is leaving much to be desired, the
Recall of it even less than 90%. For SVM, the reason may be that
the high anomaly rate makes the training data extremely
unbalanced. Therefore, in the training stage, the type of data
may not meet the requirements of SVM, which limits the
application of SVM in outliers detection. Under the same
conditions, the Precision and Recall of k-neighbors is small
than our proposed method. From the Figure 10, the proposed
method play a good performance, whose F1-Score remains more
than 96% for the datasets with different anomaly rate. The
comparative case studies show that our proposed method
outperformed the other three methods.

TABLE 2 | The noises injection of simulated dataset.

Anomaly rate The outliers calculation
in each feature

Anomaly proportion

Noise 5% 1.p.u *105% + G(x) 569/4000
Noise 10% 1.p.u *105% + G(x) 1091/4000
Noise 15% 1.p.u *105% + G(x) 1529/4000

TABLE 3 | The part of association rules in different anomaly rate (voltage as posterior).

Anomaly rate (%) Prior Posterior Con

5 {Current � [0.2408, 0.2521), Active Power � [38.5260, 39.9682), Reactive Power � [45.6303, 46,6837)} {Voltage � [142.3809, 144.0914)} 0.7692
{Current � [0.2272, 0.2408], Active Power � [38.5260, 39.9682), Reactive Power � [41.1306, 43.8896]} {Voltage � [134.5451, 137.8775]} 0.7222
{Current � [0.2272, 0.2408], Active Power � [38.0519, 38.5260), Reactive Power � [45.6303, 46,6837)} {Voltage � [144.0914, 149.0609)} 0.6818
{Current � [0.2272, 0.2408], Active Power � [38.0519, 38.5260), Reactive Power � [41.1306, 43.8896]} {Voltage � [137.8775, 140.3127)} 0.6800
{Current � [0.2408, 0.2521), Active Power � [38.5260, 39.9682), Reactive Power � [43.8896, 45.6303)} {Voltage � [140.3127, 142.3809)} 0.6800

... ... ...

10 {Current � [0.2272, 0.2408], Active Power � [36.9662, 38.0519], Reactive Power � [46.6837, 48.0561)} {Voltage � [144.0914, 149.0609)} 0.7826
{Current � [0.2408, 0.2521), Active Power � [38.0519, 38.5260), Reactive Power � [45.6303, 46,6837)} {Voltage � [142.3809, 144.0914)} 0.7407
{Current � [0.2408, 0.2521), Active Power � [38.0519, 38.5260), Reactive Power � [45.6303, 46,6837)} {Voltage � [137.8775, 140.3127)} 0.7333
{Current � [0.2272, 0.2408], Active Power � [38.5260, 39.9682), Reactive Power � [45.6303, 46,6837)} {Voltage � [134.5451, 137.8775]} 0.7142
{Current � [0.2272, 0.2408], Active Power � [39.9682, 42.3351), Reactive Power � [41.1306, 43.8896]} {Voltage � [140.3127, 142.3809)} 0.6785

... ... ...

15 {Current � [0.2272, 0.2408], Active Power � [38.5260, 39.9682), Reactive Power � [43.8896, 45.6303)} {Voltage � [140.3127, 142.3809)} 0.8181
{Current � [0.2272, 0.2408], Active Power � [39.9682, 42.3351), Reactive Power � [46.6837, 48.0561)} {Voltage � [137.8775, 140.3127)} 0.7368
{Current � [0.2272, 0.2408], Active Power � [36.9662, 38.0519], Reactive Power � [45.6303, 46,6837)} {Voltage � [134.5451, 137.8775]} 0.7333
{Current � [0.2408, 0.2521), Active Power � [38.5260, 39.9682), Reactive Power � [45.6303, 46,6837)} {Voltage � [142.3809, 144.0914)} 0.7000
{Current � [0.2408, 0.2521), Active Power � [38.5260, 39.9682), Reactive Power � [46.6837, 48.0561)} {Voltage � [144.0914, 149.0609)} 0.6957

... ... ...
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Outliers Repairing
We employ two other widely-used data repairing methods to
make a comparison, which includes decision tree and gradient
boosting decision tree (GBDT). Table 5 and Figure 11 show the
comparison result of the MAE and RSME at different anomaly
rates. The accuracy indices of the decision tree and GBDT is close
under different anomaly rates. And the GBDT algorithm is in a
better position than the decision tree algorithm for each

evaluation indices. The proposed method has been superior in
all the accuracy indices in terms of aggregate, indicating model
robustness.

In these cases, we only showed the result for detection and
repairing the voltage, but the proposed method can also work for
other features. In general, the proposed method outperforms the
other methods in most cases. However, our approach’s
performance may not be good in some situations, especially
when used with little historical data. The reason for the
problem is the insufficiency of association rules. The

FIGURE 10 | The histogram of the comparative analysis in different outliers detection methods.

TABLE 5 | The results of the comparative analysis in different outliers repairing
methods.

Anomaly rate (%) Method MAE RSME

5 Decision Tree 1.1307 2.1325
GBDT 1.0744 2.1315
Proposed 0.8720 1.0871

10 Decision Tree 1.7386 3.5983
GBDT 1.6941 3.5701
Proposed 1.0647 1.4617

15 Decision Tree 1.5002 2.9637
GBDT 1.4785 2.9260
Proposed 0.7751 0.9595

FIGURE 11 | The histogram of the comparative analysis in different outliers repairing methods.

TABLE 4 | The results of the comparative analysis in different outliers detection
method.

Anomaly rate (%) Method Precision Recall F1-score

5 Decision Tree 0.9649 0.9649 0.9649
K-Neighbors 1.00 0.9298 0.9636
SVM 1.00 0.9123 0.9541
Proposed 1.00 0.9649 0.9821

10 Decision Tree 0.9820 0.9646 0.9732
K-Neighbors 1.00 0.9646 0.9820
SVM 1.00 0.9381 0.9680
Proposed 1.00 0.9823 0.9911

15 Decision Tree 0.9630 0.9420 0.9524
K-Neighbors 1.00 0.9275 0.9624
SVM 1.00 0.8551 0.9219
Proposed 1.00 0.9348 0.9663
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association rules can not include all the conditions, which cause
by the value of confidence (more than 60%). One way to improve
the accuracy of the proposed method is to increase the amount of
historical data. So that more association rules can be generated to
mine the correlation between features from the data.

CONCLUSION

In this paper, we developed a association rules-based method
for outliers cleaning. To detect outliers, the association rules
are generated from historical data in conjunction with
DBSCAN, k-means and Apriori technique. For the outliers
repairing, we took into account the repairing cost by a
distance-based model. The Mahalanobis distance was used
for constructing a data repairing cost function to reduce the
errors. The proposed method achieves accurate detection as
compared to decision tree, k-neighbors, and SVM algorithms.
When outliers is taken into account, our model produces a
smaller MAE and RSME, which has a better result than
decision tree and GBDT. The results show that the work
has a positive effect on improving data quality, which
means our works could provide a reliable data base for
distribution network planning and operation. Future work

will focus on combining this approach with Spark parallel
computing technology to improve the efficiency of the
algorithm to satisfy the practical application needs of
distribution network measurement outliers cleaning.
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Wind Turbine Pitch System Fault
Detection Using ssODM-DSTA
Mingzhu Tang1†, Jiahao Hu1, Huawei Wu2* and Zimin Wang3†

1School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, China, 2Hubei Key
Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang, China,
3School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China

A fault detection method of wind turbine pitch system using semi-supervised optimal
margin distribution machine (ssODM) optimized by dynamic state transition algorithm
(DSTA) [ssODM-DSTA] was proposed to solve the problem of obtaining the optimal
hyperparameters of the fault detection model for the pitch system. This method was
adopted to input the three hyperparameters of the ssODM into the dynamic state transition
algorithm in the form of a three-dimensional vector to obtain the global optimal
hyperparameters of the model, thus improving the performance of the fault detection
model. Using a random forest to rank the priority of features of the pitch system fault data,
the features with large weight proportions were retained. Then, the Pearson correlation
method is used to analyze the degree of correlation among features, filter redundant
features, and reduce the scale of features. The dataset was divided into a training dataset
and a test dataset to train and test the proposed fault detection model, respectively. The
real-time wind turbine pitch system fault data were collected from domestic wind farms to
carry out fault detection experiments. The results have shown that the proposed method
had a positive fault rate (FPR) and fault negative rate (FNR), compared with other
optimization algorithms.

Keywords: fault detection, wind turbine, pitch system, dynamic state transition algorithm, semi-supervised optimal
margin distribution machine, random forest

INTRODUCTION

China’s energy structure is unceasingly transforming towards low carbon and environmental
protection by striving to build a new energy system and vigorously advocating the development
of renewable energy industry to achieve the overall objective of carbon emission peak by 2030 and
carbon neutrality by 2060 (Li and Bo, 2020; Qian and Wang, 2020; Sun et al., 2015). Renewable
energy is a kind of clean and green energy that can replace traditional energy. The emergence of this
energy has made a great contribution to reducing pollution and emission in the world. Renewable
energy power systems (Zhang et al., 2021; Zhang and Ruan, 2019) mainly include wind power
generation, solar power generation, and hydropower generation. Wind power, as an indispensable
part of renewable energy, continues to expand in scale. By the end of 2020, China’s installed capacity
of grid-connected wind power has reached 281.53 million kW, increasing by 34.6% year over year,
accounting for 12.79% of the total installed capacity (Blaabjerg et al., 2012; Blaabjerg and Ke Ma,
2013). However, as the wind power industry is rapidly developing, the maintenance and repair
pressure of wind turbines is also increasing. The operating environment of wind turbines is relatively
bad. Abnormal climate, unstable wind speed, and other factors often lead to the faults of wind
turbines and the shutdown (Song et al., 2021; Yang et al., 2021). The fault rate and complexity of the
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pitch system, an important part of the wind turbine, are higher
than those of the main shaft, gearbox, and generator (Wang et al.,
2021). In case of any fault, the power generation rate of the wind
turbine will be directly affected, leading to damage to the wind
turbine and huge economic losses. For this reason, effective fault
detection is of great significance for wind turbine pitch systems.

In the wake of the era of big data and emerging machine
learning, fault detection and fault diagnosis methods for wind
turbines based on machine learning algorithms have gradually
matured in recent years (Hu et al., 2021; Tang et al., 2021; Long
et al., 2020). With the wind turbine fault data in the SCADA
system, which can collect, monitor, and control the operation
data of wind turbines in real-time, it is a common and reliable
method to choose an appropriate machine learning algorithm for
the fault detection of wind turbines. Machine learning algorithms
mainly include supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning. Generally,
classification methods for wind turbine fault detection include
support vector machine (SVM), artificial neural networks
(ANNs) (Xi et al., 2021), and Large margin distribution
machine (LDM) (Zhang and Zhou, 2014). In the literature
(Tuerxun et al., 2021), a SVM based on a sparrow search
algorithm (SSA) was used for wind turbine fault diagnosis and
had achieved excellent results. Moreover, a fault diagnosis
method based on stochastic subspace identification and
multinuclear SVM was proposed to identify bearing faults of
wind turbines (Zhao et al., 2019). The ANNs and empirical mode
decomposition (EMD) were used to effectively identify different
turbine imbalance faults in (Malik and Mishra, 2017). In (Zhang
and Wang, 2014), the artificial neural networks had a great
diagnosis effect on the main bearing of the wind turbine
during early fault prediction. The cost-sensitive large margin
distribution machine (CLDM) proposed in (Tang et al., 2019) can
better deal with the classification imbalance data and
misclassification cost inequality of wind turbine datasets.

The above methods are only applicable to the input data with
characteristic values and tags. However, tags are usually scarce
and expensive in the actual wind turbine data, which can be
effectively dealt with using the semi-supervised learning method.
Commonly used semi-supervised learning methods include
transductive support vector machine (TSVM), safe semi-
supervised support vector machine (S4VM), and Laplacian
support vector machine (LaSVM) (Chong et al., 2020). In
(Shen et al., 2012), a gear reducer fault diagnosis model based
on EMD and TSVM was proposed to solve the problem of
insufficient tags of gear reducer data samples, and results have
shown a high fault diagnosis accuracy. In (Li, 2010), graph theory
and transductive support vector machine (GTSVM) was used to
solve the problem of insufficient fault samples for training in
mechanical fault diagnosis, and results have shown that this
method improved the accuracy of fault diagnosis. A new fault
alarm rule based on the upper bound of S4VM generalized error
proposed in (Mao et al., 2020) can self-adaptively identify the
occurrence of early bearing faults. In (Dai et al., 2017), a rolling
bearing fault diagnosis method based on composite multi-scale
entropy (CMSE), sequential forward modeling selection, and
LaSVM was proposed to solve the problem of the large sample

size of and tagging difficulty in rolling bearing fault diagnosis, and
results have shown that the effect of fault diagnosis was improved.

The semi-supervised optimal margin distribution machine
(Zhang and Zhou, 2018) was a classification algorithm with
high generalization ability, proposed for generalization ability
based on optimal margin distribution machine (ODM) (Tan
et al., 2020). “Lables” were given to the samples without lables
and the semi-supervised learning was transformed into
“supervised learning” via this algorithm. On this basis, on the
premise of optimizing the minimum margin and maximizing the
hyperplane, the distribution of sample margin was fully
considered and the mean value and variance between samples
were introduced to improve the classification ability of the
algorithm.

The reasonable selection of hyperparameters can significantly
affect the fault detection performance during fault detection for
wind turbine pitch systems based on a machine learning
algorithm. For this reason, the optimal hyperparameters of the
fault detection model should be obtained by optimizing the
parameter optimization algorithm (Long et al., 2021a; 2021b).
In (Zhang et al., 2020), a particle swarm optimization algorithm
(PSO) was used to optimize SVM for fault diagnosis of wind
turbine gearbox bearings, and results have shown that the
precision and accuracy of diagnosis were improved. In (Chen,
2020), backpropagation neural network (BPNN) and long short-
term memory network (LSTMN) were combined with PSO and
great fault diagnosis results were obtained in wind turbine rolling
bearing fault diagnosis. In (Odofin et al., 2018), a genetic
algorithm (GA) was adopted to optimize the machine learning
algorithm to improve the reliability of the wind turbine energy
system. In (Zhang et al., 2018), GA was introduced into anomaly
identification of wind turbine state parameters to successfully
optimize the anomaly identification results. In (Yao et al., 2021),
grid search (GS) was used to optimize the fault classification
algorithm during battery fault diagnosis and the fault diagnosis
accuracy was improved. In (Zhang and Sheng, 2021), GS was used
to optimize the hyperparameters and kernel functions of support
vector machines to improve the accuracy of the motor fault
diagnosis.

With a design based on a state transition algorithm (STA)
(Zhou et al., 2012), the DSTA (Zhou et al., 2018) is a dynamic
stochastic intelligent global optimization method with its own
risk prisk and restoration in probability prest adjustment strategy.
For the fault detection model of wind turbine pitch system with
high complexity, using some of the above-mentioned common
optimization algorithms to optimize its hyperparameters is often
easy to fall into local optimization because the scale of
optimization object is too large and the optimization problem
is too complex. Facing these problems, DSTA can use a dynamic
adjustment strategy to surpass local optimization, and the
optimization algorithm provides four search operators and
novel update and selection methods to support its excellent
searchability according to the different needs of optimization
objectives. Using DSTA to optimize the fault detection model of
the wind turbine pitch system can carry out global search and
converge quickly. It is a novel optimal combination of fault
detection models.
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For complex and variable pitch system faults, it is often
difficult to select the optimal parameters for the fault detection
model of the wind turbine pitch system. Meanwhile, variable
pitch fault data without tags will lead to unsatisfactory fault
detection results. For this problem, a method of optimizing a
ssODM based on a DSTA was proposed.

SEMI-SUPERVISED OPTIMAL MARGIN
DISTRIBUTION MACHINE

Suppose the mean margin value of training dataset samples after
normalization is r̂m. The difference between the margin of the
sample (xi, yi) after normalization and themeanmargin value was∣∣∣∣ĉ(xi, yi) − ĉm

∣∣∣∣. So the variance between the maximum mean
margin value and the minimum mean margin value could be
represented in the following form:

max
ω,̂ξi ,̂ϵi

ρĉ2m − 1
m

∑m
i�1

(ξ̂2i + ϵ̂2i )
s.t.ĉ(xi, yi)≥ ĉm − ξ̂ i

ĉ(xi, yi)≤ ĉm + ϵ̂i,∀i ∈ [m],

(1)

where the parameter ρ was used to weigh two priorities. As ĉ(xi, yi)
could not bemore than and less than the mean value at the same time,
there were a nonnegative value and a non-zero value in ξ̂i, ϵ̂i. The
second itemof the objective functionwas themargin variance. ξi � ωξ̂i
and ϵi � ωϵ̂i. The above equation could be rewritten as follows:

max
ω,ξi ,ϵi

ρ
ĉ2m
ω2 −

1
m

∑m
i�1

ξ2i + ϵ2i
ω2

s.t.yiω
Tϕ(xi)≥ cm − ξ i

yiω
Tϕ(xi)≤ cm + ϵi,∀i ∈ [m],

(2)

where cm did not affect the optimization. When cm was scaled,
ω, ξi and ϵi were scaled on the same scale. In this case, the
constraint was still satisfied, and the objective function value
remained unchanged. Set cm � 1; the equation could be further
rewritten as follows:

max
ω,ξi ,ϵi

1

ω2
⎛⎝1 − 1

m
∑m
i�1

ξ2i + ϵ2i⎞⎠s.t.yiω
Tϕ(xi)≥ 1 − ξ iyiω

Tϕ(xi)≤ 1 + ϵi,∀i ∈ [m].

(3)

As themaximumobjective functionwas equal to theminimumω2 and∑m
i�1 ξ

2
i + ϵ2i , there was a constant λ to make the above optimization

equation have the same solution as the following equation:

max
ω,ξi ,ϵi

1
2
ω2 + λ

m
∑m
i�1

(ξ2i + ϵ2i )
s.t.yiω

Tϕ(xi)≥ 1 − ξi

yiω
Tϕ(xi)≤ 1 + ϵi,∀i ∈ [m].

(4)

A parameter μ ∈ (0, 1) was introduced to weigh the deviation loss in
two different directions between the sample margin and the mean

margin value 1. A parameter θ-insensitive loss was introduced to
control model sparsity. Thus, the final equation form was as follows:

max
ω,ξi ,ϵi

1
2
ω2 + λ

m
∑m
i�1

(ξ2i + μϵ2i )
(1 − θ)2

s.t.yiω
Tϕ(xi)≥ 1 − θ − ξ i

yiω
Tϕ(xi)≤ 1 + θ + ϵi,∀i ∈ [m].

(5)

ŷ � [ŷi, . . . , ŷm ∈ { ± 1}m ] was unlabeled. The ssODM could be
converted into the following form:

min
ŷ∈B

min
ω,ξi ,ϵi

1
2
ω2 + λ1

l
∑l
i�1

ξ2i + μϵ2i
(1 − θ)2 +

λ2
u

∑l+u
i�l+1

ξ2i + μϵ2i
(1 − θ)2

s.t.yiω
Tϕ(xi)≥ 1 − θ − ξ i

yiω
Tϕ(xi)≤ 1 + θ + ϵi,∀i ∈ [m].

(6)

where B � {ŷ∣∣∣∣∣∣∣∣eT ŷUm−l � eTyL
l } was equilibrium constraint to prevent

the occurrence of trivial solutions. λi � λ1(m−l)−λ2 l
l(m�l) 1i∈L + λ2

m−l .
λ1 and λ2 were loss parameters to weigh the tagged and untagged
data. The above questions could be further written as follows:

min
ŷ∈B

min
ω,ξi ,ϵi

1
2
ω2 +∑m

i�1
λi
ξ2i + μϵ2i
(1 − θ)2

s.t.ŷiω
Tϕ(xi)≥ 1 − θ − ξi

ŷiω
Tϕ(xi)≤ 1 + θ + ϵi,∀i ∈ [m].

(7)

The final dual form of ssODM is as follows:

min
μ∈M

max
α∈A

φ(μ, α). (8)

When a dataset containing a large number of unlabeled samples is
input into ssODM, the saddle point (μ̂, α̂) of the above problem
can be obtained by the random mirror proximal descent method,
and the category label of unlabeled samples can be predicted
according to sign(∑ k: ŷk∈Bμ

p
k ŷk).

DYNAMIC STATE TRANSITION
ALGORITHM

The expression framework of the dynamic state transition
algorithm is as follows:

{ xk+1 � Akxk + Bkuk

yk+1 � f (xk+1) , (9)

where xk � [x1, x2, . . . , xn]
T is the candidate solution of the

optimization problem and Ak and Bk are the state transformation
operators. uk represents the control variable, that is, the current and
historical state function. f ( · ) represents the fitness function.

The four transformation operators of the dynamic state
transition algorithm covered the fast rotation transformation
operator, translation transformation operator, expansion
transformation operator, and axesion transformation operator.
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Fast Rotation Transformation Operator

xk+1 � xk + αR̂r
u
u2
, (10)

where α represents the rotation factor and R̂r ∈ Rn×n is the
uniformly distributed random matrix. u represents the random
variable that was uniformly distributed on [ − 1, 1]. ‖ · ‖2 is the
second norm of the vector. It was found that the fast rotation
transformation operator was provided with lower computational
complexity, local searchability, and a hypersphere with a radius of
α being the search range through the comparison with the
rotation change operator.

Translation Transformation Operator

xk+1 � xk + βRt
xk − xk−1
xk − xk−12

, (11)

where β represents the translation factor. The values of Rt ∈ R were
uniformly distributed with the range of [0, 1]. The translation
transformation operator was a heuristic search operator
performing the linear search with β being the maximum step length.

Expansion Transformation Operator

xk+1 � xk + cRexk, (12)

where c represents the stretching factor. Re ∈ Rn×n is the diagonal
matrix whose element value was not equal to zero and was in line
with Gaussian distribution. The stretching transformation
operator was a global search operator that could stretch all
elements in xk to ( −∞,+∞) to further search the whole space.

Axesion Transformation Operator

xk+1 � xk + δRaxk, (13)

FIGURE 1 | Flowchart of dynamic state transition algorithm.
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`where δ represents the axesion factor. Ra ∈ Rn×n is the sparse
random diagonal matrix whose value was not equal to zero and
was in line with Gaussian distribution. The axesion

transformation operator was also a heuristic search operator
that could carry out a one-dimensional search along the
coordinate axis.

FIGURE 2 | Fault detection flowchart of wind turbine pitch system based on ssODM-DSTA.
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The flowchart of the DSTA is shown in Figure 1.

FAULT DETECTION FOR WIND TURBINE
PITCH SYSTEM

Concerning the fault detection process of the wind turbine pitch
system, it was roughly made of data screening, data preprocessing,
feature selection, data segmentation, training fault detection model
and hyperparameter optimization, fault detection model testing,
and detection result evaluation. The fault detection flowchart of the
ssODM-DSTA wind turbine pitch system is shown Figure 2.

Dataset Description
The experimental data originated from the real-time operation
data of the SCADA system of 1.5 MW double-fed wind turbines
in the domestic wind farm for one year. The data sampling
interval was 1 s. The data of the wind turbines in the wind farm in
the 12th month were selected and the data of three kinds of wind
turbines’ pitch faults from half an hour before the start of the
faults to half an hour after the end of the faults were intercepted
according to the fault codes. Three kinds of pitch system faults are
used as fault detection targets: emergency stop fault of the pitch
system, CAN communication fault of the blade 1 servo driver,
and low-temperature fault of the blade 2 axle box of the pitch,
respectively.

A pitch emergency stop fault is a fault triggered when the pitch
safety chain acts. The treatment method of this fault is to check
whether the pitch safety chain is closed and check the pitch fault
specifically.

CAN communication fault of the blade 1 servo driver is the
CANBUS communication fault between pitch PLC and
pitchmaster of blade 1. The troubleshooting method is to
check the wiring between the main control cabinet EL6751
and the X5 terminal on the pitchmaster in the shaft cabinet 2;
check whether there is 24V DC voltage between x5-6 and x5-9;
check the resistance between x5-2 and x5-7 (60Ω); check whether
the axis 2 servo driver is normal.

The low-temperature fault of the blade 2 axle box of the pitch
is a temperature fault of the pitch system. The starting reason is
generally the sensor fault. The fault can be eliminated and
handled by checking various indicators of the sensor. The
three fault data structures are shown in Table 1.

Data Cleaning and Preprocessing
The data of the wind turbine pitch system was fed back to the
SCADA system in the form of a signal after the information was
collected through various sensors such as current, voltage, and
speed. The sensors were precision components. They were easily
disturbed by the environment and their abnormalities in the
monitoring process, which often led to abnormalities and
vacancies in the data output of SCADA. The fault detection
model had high requirements for the quality of data, so it was
necessary to preprocess the data such as standardization,
normalization, elimination of outliers, vacancy values, and all
“0” eigenvectors (Tang M et al., 2020; Tang S et al., 2020).

Feature selection belongs to a data dimensionality reduction
process. The commonly used feature selection methods cover the
random forest method (Charvent et al., 2021), extreme gradient
boosting (XGBoost)method (Chen et al., 2020), Pearson’s correlation
analysis method (Jebli et al., 2021), and categorical boosting
(CatBoost) method (Yuan et al., 2021). The random forest
algorithm was used for ranking the importance of all sub-features
of the preprocessed fault data of the pitch systemwith the wind speed
as the target feature. Then, the threshold (mean value of all feature
importance scores) was set to screen the features that were highly
related to the target variable. On the premise of ensuring no loss of
data information content, the number of features of the original data
was reduced from 58 to 30, which effectively reduced the difficulty of
learning the fault detection model of the wind turbine pitch system.
The feature importance ranking of the fault data of the pitch system
based on the random forest is shown in Table 2 (the bold part of No.
1–No. 30 was the 30 features that were saved after screening).

As redundant features with a high correlation may exist
between features and the Pearson-related analysis method
could be used for ensuring the equal relationship between

TABLE 2 | Feature importance ranking of the fault data of the pitch system based on the random forest.

Serial number Feature variable name Random forest feature importance score

1 main_loop_rotor_speed_demand 0.056641
2 pitch_position_1 0.055856
30 converter_power 0.009573
57 pitch_Atech_SG1_error_code_3 0.001598
58 average_wind_speed_30s 0.001518

The bold part of No. 1–30 was the 30 features that were saved after screening.

TABLE 1 | Data structures of three faults of pitch system.

Fault type Number of data samples Number of data features

Emergency stop fault of pitch system 1,158 58
CAN communication fault of blade 1 servo driver 1,679 58
Low-temperature fault of the blade 2 axle box of the pitch 2,144 58
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features and analyzing the correlation degree between features,
the Pearson-related analysis method was adopted to analyze the
feature correlation of 30 pieces of screened fault data of the pitch
system and remove the redundant features with a high correlation
for further reducing the data capacity. The correlation results
between the features are shown in Table 3.

Pearson correlation coefficient was an index describing the
intensity of feature correlation with a value range of [-1, 1]. The
closer the absolute value of the coefficient was to “1”, the stronger
the correlation was. The bold parts of Table 3 show that the
feature correlation between different parts of the pitch systemwas
also extremely high and the correlation coefficient between these
features was close to “1” with basically the same effect in the
dataset. These features that belonged to redundant features were
eliminated in the fault dataset of the pitch system and the
remaining features were constructed into a new sample
dataset. The final data structure is shown in Table 4.

Improved Semi-supervised Optimal Margin
Distribution Machine
The ssODM was equipped with three hyperparameters λ, μ, and
θ representing the margin variance balance hyperparameter,
margin deviation balance hyperparameter, and insensitive loss
function, respectively. The meaning and value range of ssODM
hyperparameters are shown in Table 5.

The dynamic state transition algorithmwas adopted to optimize
the three hyperparameters of ssODM. The classification accuracy
of ssODM was taken as the fitness function to determine the
update and selection of hyperparameters by the dynamic state

transition algorithm. The pseudo-code of the improved ssODM is
shown in Algorithm 1.

Algorithm 1 Improved semi-supervised optimal margin
distribution machine.

1: Best←Best0(λ0; μ0; θ0)
2: repeat
3: if α(β, c, δ)< αmin(βmin, cmin, δmin) then
4: α(β, c, δ)←αmax(βmax, cmax, δmax)
5: end if
6: λ←Best(1)
7: μ←Best(2)
8: θ←Best(3)
9: ssODM←(λ, μ, θ, training dataset)
10: accuracy(ssODM)←testing dataset
11: funfcn←accuracy(ssODM)
12: [Best, fBest]←rotation fast(funfcn,Best, SE, α, β)
13: [Best, fBest]←expansion(funfcn,Best, SE, β, c)
14: [Best, fBest]←axesion(funfcn,Best, SE, β, δ)
15: if fBest < fBestp then
16: Bestp←Best
17: fBestp←fBest
18: end if
19: if rand < prest then #prest : restoration in probability
20: Bestp←Best
21: fBestp←fBest
22: end if
23: α(β, c, δ)←α(β,c,δ)

fc
24: Until the specified termination criterion is met
25: Output Best

TABLE 3 | Correlation results between the features.

Pearson correlation coefficient main_loop_rotor_speed_demand pitch_position_1 pitch_Atech_position_target_1 pitch_position_target_1

converter_motor_speed 0.993101 −0.9962 −0.99644 −0.99646
pitch_Atech_actual_pitch_angle_2 −0.99292 0.999211 0.999689 0.9997
average_pitch_position_blade_10m 0.396733 −0.37188 -0.37148 −0.37142

The bold parts show that the feature correlation between different parts of the pitch systemwas also extremely high and the correlation coefficient between these features was close to “1”
with the basically same effect in the data set.

TABLE 4 | Final data structures of 3 faults of pitch system after feature selection.

Fault type Number of data samples Number of data features

Emergency stop fault of the pitch system 1,158 24
Can communication fault of the blade 1 servo driver 1,679 24
Low-temperature fault of the blade 2 axle box of the pitch 2,144 24

TABLE 5 | Meaning and value range of ssODM Hyperparameters.

Hyperparameter Meaning Value range

λ Adjust the weight of the margin variance of the objective function [20 , 220]
μ Adjust the weight of sample margin deviation from the positive and negative directions of margin mean (0.1, 0.9)
θ Control the sparsity of the model and reduce the number of sample support vectors (0.1, 0.9)
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Performance Evaluation Index of Fault
Detection Model
The correct prediction of the purity of normal samples and fault
samples was deemed to be an index to evaluate the quality of a
model. To verify the effectiveness of fault detection of ssODM-

DSTA, the FPR and the FNR proposed based on the confusion
matrix were taken as the evaluation indexes of the model:

FPR � FP
FP + TN

, (14)

FNR � FN
FN + TP

, (15)

where the specific meanings of TP, FP, TN, and FN are shown in
Table 6.

EXPERIMENTAL RESULTS

For verifying the effectiveness of using DSTA to optimize the
hyperparameters of ssODM, the PSO, GA, and GS were

FIGURE 3 | Boxplot of FPR of fault detection regarding the pitch
emergency stop (5% labeled samples).

FIGURE 4 | Boxplot of FNR of fault detection regarding the pitch
emergency stop (5% labeled samples).

FIGURE 5 | Boxplot of FPR of fault detection regarding the pitch
emergency stop (10% labeled samples).

FIGURE 6 | Boxplot of FNR of fault detection regarding the pitch
emergency stop (10% labeled samples).

TABLE 6 | Names and meanings of evaluation indexes of the model.

Indicator name Meaning

TP Positive samples are predicted to be positive samples
FP Negative samples are predicted to be positive samples
TN Positive samples are predicted to be negative samples
FN Negative samples are predicted to be negative samples
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introduced to carry out the optimization comparison for the
ssODM, respectively. The experimental data were from wind
turbine pitch system fault data (the fault data of pitch system are
set as 5% labeled data and 10% labeled data for experiments,
respectively; the normal sample label is 1 and the fault sample
label is—1), as shown in Table 4.

When the experimental sample was the emergency stop fault
of the pitch, Figures 3, 4 represent the FPR of fault detection and
the FNR of fault detection, respectively (5% labeled samples).
Figures 5, 6 represented the FPR of fault detection and the FNR
of fault detection (10% labeled samples).

When the experimental sample was the CAN communication
fault of blade 1 servo driver, Figures 7, 8 represent the FPR of fault
detection and the FNR of fault detection, respectively (5% labeled

samples). Figures 9, 10 represent the FPR of fault detection and the
FNR of fault detection (10% labeled samples).

When the experimental sample was the low-temperature fault of
the blade 2 axle box of the pitch, Figures 11, 12 represent the FPR of
fault detection and the FNR of fault detection, respectively (5%
labeled samples). Figures 13, 14 represent the FPR of fault
detection and the FNR of fault detection (10% labeled samples).

The above results have demonstrated that the FPR and the
FNR of fault detection regarding the faults for the wind
turbine pitch system by ssODM-DSTA were the lowest
among the four comparison algorithms. It can be
concluded that using DSTA to optimize ssODM can obtain
super parameters that more meet the performance requirements of
the pitch system fault detection model, effectively improve the

FIGURE 7 | Boxplot of FPR of CAN communication fault detection
regarding blade 1 servo driver (5% labeled samples).

FIGURE 8 | Boxplot of FNR of CAN communication fault detection
regarding blade 1 servo driver (5% labeled samples).

FIGURE 9 | Boxplot of FPR of CAN communication fault detection
regarding blade 1 servo driver (10% labeled samples).

FIGURE 10 | Boxplot of FNR of CAN communication fault detection
regarding blade 1 servo driver (10% labeled samples).
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classification performance of ssODM, and reduce the error of wind
turbine pitch system fault detection.

CONCLUSION

In terms of the problem of obtaining the optimal hyperparameters in
the fault detectionmodel of the wind turbine pitch system, the DSTA
was used for optimizing the three hyperparameters of ssODM. To
verify the effectiveness of this method, ssODM-DSTA was compared
with ssODM-PSO, ssODM-GA, and ssODM-GS. The experimental
data originated from the three kinds of pitch system fault data
preprocessed by the random forest method and Pearson
correlation analysis method, including the emergency stop fault

data of the pitch system, CAN communication fault data of the
blade 1 servo driver, and the low-temperature fault data of the blade 2
axle box of the pitch. The experimental results showed that the
ssODM-DSTA had a strong fault detection ability for the fault of the
wind turbine pitch system. It was provided with a lower FPR and
FNR than those of themodel using the other three kinds of parameter
optimization algorithms. It was proved that the fault detection
method of the wind turbine pitch system based on the ssODM-
DSTA had an outstanding performance.

Concerning the wind turbine fault detection based onmachine
learning, the fault detection model could not be fully learned due
to a shortage of labels, seriously affecting the accuracy of fault
detection. Consequently, the application of unsupervised learning
to wind turbine fault detection could further weaken the weight of

FIGURE 11 | Boxplot of FPR of low-temperature fault detection
regarding the blade 2 axle box of the pitch (5% labeled samples).

FIGURE 12 | Boxplot of FNR of low-temperature fault detection
regarding the blade 2 axle box of the pitch (5% labeled samples).

FIGURE 13 | Boxplot of FPR of low-temperature fault detection
regarding the blade 2 axle box of the pitch h (10% labeled samples).

FIGURE 14 | Boxplot of FNR of low-temperature fault detection
regarding the blade 2 axle box of the pitch h (10% labeled samples).
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labels and reduce the cost of fault detection when compared with
supervised learning and semi-supervised learning.
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Wind turbines (WTs) generally comprise several complex and interconnected systems,
such as hub, converter, gearbox, generator, yaw system, pitch system, hydraulic system
control system,integration control system, and auxiliary system. Moreover, fault diagnosis
plays an important role in ensuring WT safety. In the past decades, machine learning (ML)
has showed a powerful capability in fault detection and diagnosis of WTs, thereby
remarkably reducing equipment downtime and minimizing financial losses. This study
provides a comprehensive review of recent studies on MLmethods and techniques for WT
fault diagnosis. These studies are classified as supervised, unsupervised, and semi-
supervised learning methods. Existing state-of-the-art methods are analyzed and
characteristics are discussed. Perspectives on challenges and further directions are
also provided.

Keywords: wind turbines, fault diagnosis, supervised learning, unsupervised learning, semi-supervised learning

INTRODUCTION

Wind power has gained remarkable attention in the past decade because wind energy is one of the
rapidly clean energy sources and has received worldwide support for renewable energy development
(MUA, 2017). In recent years, in order to achieve the goal of carbon peak and carbon neutralization,
China has commercialized the use of renewable energy, expanded the use of renewable energy, and
demonstrated its determination to reach the peak of carbon dioxide emission by 2030 and carbon
neutralization by 2060. As the main force of global renewable energy development, China attaches
great importance to new energy, especially wind power generation. According to the statistics of the
Global Wind Energy Commission (GWEC), the newly installed capacity of the country has reached
65.1 GW 2) in 2019 (Elizondo et al., 2019). The large-scale development and utilization of wind
energy have brought huge opportunities for the development of the market economy, and also raised
important crucial challenges related to reliability, cost-effectiveness, and energy blade images of the
security. On the one hand, wind turbines (WTs) are often located in remote areas, operated in harsh
working environments for a long time, and have withstood randomly varying weather conditions,
wind shear, temperature, wind speed, and load, thereby frequent WT failures. As shown in Figure 1,
the highest proportion of fault rate of WT components is the electrical system (Hahn et al., 2007),
followed by the control system and sensor. On the other hand, the high cost of operation and
maintenance (OM) ofWTs underscores the urgency of fault diagnosis. Evidently, fault diagnosis and
the timely maintenance of WTs can reduce huge financial losses.

Given the preceding reasons, fault warning and fault diagnosis of WTs should be performed. The
fault diagnosis method based on machine learning (ML) is suggested to detect the operating
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conditions of the WT for it can minimize the downtime and
reduce OM costWTs, and extend the service life of these turbines.
With the advent of the era of fault diagnosis technology, many
local and international experts and scholars have proposed some
efficient fault diagnosis methods for various components (Liu
et al., 2015), such as power system (Qiao and Lu, 2015; Zappalá
et al., 2019), mechanical (Wang et al., 2016a; Chen et al., 2016b;
Garg and Dahiya, 2017; Salameh et al., 2018), and driving faults
(Nasiri et al., 2015; Zeng et al., 2015), etc. Among these methods,
generator (Hossain et al., 2015; Yang et al., 2017) and gearbox
faults (Wang et al., 2016b; Igba et al., 2016; Teng et al., 2016;
Wang et al., 2019) are mostly studied. Fault diagnosis methods
are classified into fault diagnosis methods based on analytical
models, knowledge-based methods, and data-driven fault
diagnosis methods (Chen et al., 2016a).

The analytical model-based WT fault diagnosis methods need
to analyze and model the system to achieve real-time diagnoses of
the faults, which are often directly related to WT model
parameters (Gao et al., 2015; Zhong et al., 2018). With a
further understanding of the fault diagnosis mechanism of
WT, modeling is implemented to increase the accuracy of
fault diagnosis. However, in the process of analytical model-
based WT fault diagnosis methods by uses system residuals to
model the internal subsystem of the WTs for state estimation and
online approximation; nevertheless, this process has difficulty in
ensuring the accuracy of fault diagnosis (Liu et al., 2017; Cho
et al., 2018). Consequently, inevitable errors and unknown
interference terms will result, and the aforementioned process
is insufficient to guarantee robustness.

Knowledge-based WT fault diagnosis methods rely on expert
experience in wind power-related fields (da Silva et al., 2012; Yang
et al., 2016). The accuracy of fault diagnosis results depends on
the extensiveness of expert experience and knowledge the level of
WT fault diagnosis experts, which lack self-learning and
recognition abilities. Knowledge-based WT fault diagnosis
methods cannot acquire new knowledge from the diagnosed
engineering examples during the operation of WT. Hence,
poor diagnosis accuracy may be resulted.

Without relying on prior experiences, data-driven WT fault
diagnosis methods uses data mining technology to obtain hidden
useful information to characterize the fault and normal states
of the system, and eventually realize real-time fault diagnosis
(Ding, 2012; Qin, 2012). The WT supervisory control and data
acquisition (SCADA) system contains real-time online data and
extensive offline data. The use and analysis of data mining is
necessary to obtain detailed fault characteristics, thereby realizing
real-time WT fault diagnosis. Data-driven WT fault diagnosis
methods include the ML, multivariate statistical analysis, signal
analysis, and information fusion methods (Yin et al., 2014).

As shown in Figure 2, the fault diagnosis methods of WT
based on ML can be generally divided into supervised,
unsupervised, and semi-supervised learning methods.
Although some literature reviews on WT fault diagnosis (Liu
et al., 2015) and condition monitoring (de Azevedo et al., 2016)
have been published, there still lack of comprehensive review on
the ML-based fault diagnosis method of ML. Therefore, the
current study provides a systemic and pertinent state-of-the-
art review on recent studies on ML methods and techniques that
have been used forWT fault diagnosis. In particular, this research
summarizes the research methods inWT fault diagnosis, presents
the strengths and shortcomings of existing methods, and reveals
the challenges and recommendations of future research direction
in this domain.

Fault Diagnosis of Wind Turbine
Numerous countries have earlier previously conducted research
on WT technology, and European countries and the US have
made some progress in fault diagnosis and prediction (Habibi
et al., 2019). For example, Siemens’ SCADA system is widely used
in major wind power generation industries (Dao et al., 2018).

Compared with European and American countries, China’s
wind power industry started late, but WT fault diagnosis research
has made some progress in recent years. Since the progress and
development of artificial intelligence and ML in recent years, the

FIGURE 1 | Fault rate of wind turbine components (Hahn et al., 2007).

FIGURE 2 | ML methods for WT fault diagnosis.
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fault diagnosis methods ofWT have been intensively studied. The
WT structure is shown in Figure 3. The main components of WT
include wind wheel, gearbox, generator, converter, yaw system,
pitch system, hydraulic system control system, integration
control system, and auxiliary system (Lin et al., 2016).

The wind wheel is key to the energy conversion of WT, and
operational stability directly affects the efficiency and safety of
WT. As the operating time of WT increases, the failure rate of the
wind wheel and other components also increases, which seriously
affects the working performance ofWT. In a non-stationary state,
the frequency component of the WT failure at the generator
output will expand over the bandwidth proportional to the speed,
thereby making its diagnosis capabilities considerably
complicated. Therefore, Dahiya (2018) proposed a fault
diagnosis method of WT based on wavelet analysis, using
electrical signals to diagnose rotor eccentric faults. The
effectiveness of this method under varying speed and load
conditions has been verified through experiments.

Gearboxes are one of the important WT, but the most
expensive WT sub-assemblies. Gearboxes are often operating
under extreme temperature and high speed of rotation, which
will cause a high fault rate and irreversible damage to WT. At
present, many studies and research have been conducted on the
fault diagnosis of WT gearboxes (Salameh et al., 2018). Du et al.
(2015) proposed a convex optimization-based WT generator
gearbox fault diagnosis method. This method considers
identifying multiple features from the superimposed signal of
WT gearbox, and makes full use of the potential a priori
information, that is, multiple faults with similar spectrum
have different morphological waveforms, which can be sparse
represented on the joint of redundant dictionaries. The
proposed framework is verified by diagnosing multiple faults
of gearbox in wind farm. (Zhang et al., 2017) used the Morlet
wavelet-based continuous wavelet transform for actual wind
turbine gear fault diagnosis. This diagnosis uses the signal
analysis method, which has considerably refined time
frequency characteristics and achieved satisfactory results.

A generator is the core equipment for generating electricity
throughWT, which converts kinetic energy into electrical energy.
Generators will also experience a high failure rate owing to the
harsh environment, large load fluctuation, and diverse operating
parameters of this equipment. Numerous publications have
specially reviewed the WT generator fault diagnosis, including
those involved in avoiding incorrect internal pattern recognition
caused by heavy noise, Chen et al. (2016b) extract inherent
modulation information by decomposing the signal into
mono-components on an orthogonal basis using empirical
wavelet transform (EWT). Moreover, before EWT, they
applied wavelet spatial adjacent coefficient denoising with
data-driven threshold to improve signal-to-noise ratio (SNR),
which is considered to be a powerful tool for WT generator fault
diagnosis. Yang et al. (2017) considered the shortcomings of
sparse representation results affected by dictionaries, and
proposed a novel data-driven fault diagnosis method based on
shift-invariant dictionary learning and sparse representation for
WT generator, which can effectively identify the WT generator.
The coefficients obtained can be considerably sparse based on the
learned shift-invariant dictionary, and the impulse signal
extracted nearly approximating to the real signal.

The converter is a critical component of the WT energy
conversion, and the WT outputs current with stable frequency
and amplitude to the grid through the converter. Converters have
poor stability and are often impacted by high-temperature and
high-pressure working circumstances, and the long-term
operation will cause irreversible damage to the WT system.
Toubakh et al. (Toubakh and Sayed-Mouchaweh, 2016)
analyzed the converter fault caused by parameter drift, and
proposed a fault diagnosis method of the WT converter based
on a hybrid dynamic classifier, which can monitor the normal
operation of converters in the discrete mode affected by
parameter failure. The parameter drift under conditions is
used for fault diagnosis in the early period of the WT
converter. Liang et al. (2020) proposed a fault diagnosis
method based on WT converters. A series of inherent mode

FIGURE 3 | Main structure of WT.
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functions are obtained through the overall empirical mode
decomposition processing of the measured output voltage.
Thereafter, the standard entropy is calculated according to the
inherent model functions statistical characteristics, the extracted
information is used to describe the diagnostic characteristics, and
the fault diagnosis of the fan system is performed. The diagnostic
accuracy is 99.57%, and its performance was impressive.

The yaw system is an important WT component and can drive
theWT engine room to revolve around the tower centerline, thereby
maintaining the verticality of the wind wheel scanning surface and
wind direction vertical. Yaw system failures often occur owing to its
harsh operating environment and load fluctuation, thereby affecting
the power generation efficiency ofWTs. To qualitatively evaluate the
zero-offset error of the yaw system, Pei et al. (2018) proposed a data-
driven method for WT yaw system fault diagnosis, which can detect
the zero-point shifting fault by analyzing the power characteristics of
different yaw angles. If the yaw angle measurement error is greater
than a predetermined threshold, then the zero-point shift fault will
be triggered, which can detect the fault in time and improve theWT
performance. In the case of yaw system faults, Ouanas et al. (2018)
proposed a fault diagnosis method of WT yaw system based on the
signal analysis method. By filtering the inverter signal provided by
the yaw drive, the discrete wavelet transform and empirical mode
decomposition method were used to eliminate redundant
information. Faults from the envelope of the Hilbert transform
are detected, thereby verifying its effectiveness.

Pitch control system is the speed control device ofWT and can
adjust power change by changing the blade angle of attack. Given
to the variable external wind conditions of WT and complicated
internal system structure of the pitch system, abnormal output
power, blade damages of the s, and even unit collapse can easily be
caused, in which the failure rate is high. Many studies have
proposed fault diagnosis methods for pitch systems. Habibi et al.
(2017) proposed the fault diagnosis method of the WT pitch
system by using a nonlinear model and presented the problem of
maximizing energy extraction by designing the optimal desired
state. Experiments have been performed to verify the
practicability of the proposed method. Lan et al. (2018)
conducted a study based on the adaptive step-by-step sliding
window observer’s state estimation and fault indicator functions
of a pitch system, which can effectively deal with the nonlinear
fault distribution function and identify the pitch fault of WTs.

A hydraulic system is an important WT component and plays
a essential role in the yaw, pitch, and transmission chain braking
of WTs. Hydraulic system function in all-weather, open-air and
high-altitude running conditions, which is prone to failures such
as oil leakage and spool jamming, thereby making maintenance
difficult. In the case of WT hydraulic system faults, Yang et al.
(2011) proposed a fault detection method for WT hydraulic
system based on the Petri net model. First, Petri net theory is
used to establish a model for each discrete operating state of the
WT hydraulic pitch system, and a fault Petri net model is built.
Thereafter, a system reliability index is obtained based on the
fault qualitative analysis and calculation of the Petri net. The Petri
net model calculation is simple, which is ultilized to the WT
hydraulic system fault diagnosis and has a broad application
prospect.

Machine Learning Methods for Wind
Turbine Fault Diagnosis
ML refers to a computer that learns from a limited amount of
data without specialist intervention to train an inductive
model and uses this model thereafter to guide future
decisions (Clifton et al., 2013; Stetco et al., 2019). The ML
method has been used for fault diagnosis in WT (Leahy et al.,
2016), which consists of inputs, outputs, models, and
objective functions. Given the WT data sample
data x � {x1, x2, . . .xn} (x represents a data set containing n
samples) and fault category y, n represent the total number of
data sample. Thereafter, we use the training sample {xi, yi}M1
({xi, yi}M1 ∈ {x, y}) to train the model and obtain the
approximate value f(x) to fit the real value y. Moreover, yp

represents the mapping relationship between x and y, and M is
the total number of training samples.

FIGURE 4 | Flowchart of WT fault diagnosis based on the supervised
Learning method.
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yp � argminf(ExyL(y, f(x)))
� argminf(Ex(Ey(L(y, f(x)))|x)) (1)

In Equation 1, L represents a loss function, and the average
loss of the training set is called empirical risk. The goal of ML is to
minimize empirical risk. Frequently employed loss functions
include 0–1, square, absolute value, and log loss function.

The problem of overfitting is one of the key issues in the ML
method. Therefore, empirical and structural risks should be
minimized. The regular term J(f) is introduced to measure
the model complexity. The frequently employed regular terms
are Lasso and Ridge regression. The final optimized objective
function can be expressed as follows:

Obj � min
1
M

∑M
i�1

L(y, f(x)) + λ J(f) (2)

ML methods are divided into supervised, unsupervised, and
semi-supervised learning methods (Lei et al., 2020). The current
study also classifies the ML-based WT fault diagnosis methods as
the supervised, unsupervised, and semi-supervised learning
methods, which are analyzed and discussed in the following
sections.

Supervised Learning Methods for Wind
Turbine Fault Diagnosis
Supervised learning is a process of adjusting classifier parameters
using samples of a known class to achieve the desired
performance. In supervised learning (Schwenker and Trentin,
2014; Zhou, 2018), the computer is received the example inputs
and its required outputs, given input and output, and the target is
to learn a general rules of mapping input to output. Supervised
learning methods are widely used in the WT fault diagnosis field.
As shown in Figure 4, supervised learningmethods have different
algorithms for specific problems. First, we take WT fault
diagnosis (Jiménez et al., 2019) as the research object to
obtain data from the SCADA of WTs; divide the training,
validation, and the test sets and perform data preprocessing
on the data set; and normalize the data after processing the
missing values. Second, an ML algorithm is chosen to train the
training set which is used for modeling. Thirdly, the test set is
used to evaluate the model quality. Lastly, an accurate fault
classification is obtained by continuously optimizing the fault
diagnosis model of the WT.

Artificial Neural Network
Artificial neural network (ANN) (Agatonovic-Kustrin et al., 2000;
Xi et al., 2020) is one of the most frequently used supervised
learning algorithms. ANN consists of numerous neurons and is
divided into input layer, hidden layer, and output layer. ANN is
widely used in the fault diagnosis field (Samanta et al., 2003;
Saravanan and Ramachandran, 2010). By learning from known
fault samples, the mapping relationship between fault
characteristics and fault categories is established to detect
whether a device is faulty. Figure 5 shows a three-layer simple
WT fault diagnosis model based on ANN, x1, x2, . . . , xn are the

input characteristics of WT, n is the total sample of input
characteristics, and m is the total fault types of WT.

The frequently employed neural network methods include
adaptive resonance theory (ART), self-organizing map (SOM)
neural network and radial basis function (RBF) neural network.

Zhang et al. (Zhang and Wang, 2014). proposed an ANN-
based fault diagnosis method for the WT main bearing based
on the WT SCADA system data. The difference between the
theoretical and the actual parameter values can identify the early
stage of the main bearing faults of WT. To decrease the time of
ANN for WT fault detection, Bielecki et al. (2014) proposed a
hybrid method of ART and RBF neural networks for online
detection of the operating status of WT, which can monitor the
status of WT in time, identify the early fault conditions and have
good real-time performance. However, the actual engineering in a
wind farm cannot collect all information on the fault, and the
ANN cannot make accurate fault diagnosis. Therefore, Zhao
(Zhao et al., 2015) proposed to apply the SOM neural network
to the fault diagnosis of WT and to train the network through the
sample data of the normal WT state. This is judged whether the
wind turbine malfunctions according to the position of the output
neuron in the output layer. Accordingly, the SOM neural network
method can effectively diagnose the WT fault with good
robustness.

Although the fault diagnosis of ANN has high precision and
good robustness, this method requires numerous parameters for
modeling, and the training model takes a long time. China’s wind
power industry started late, but WT fault diagnosis research has
been developed in the recent years. However, WT fault data
samples are considerably lacking, and the accuracy and
completeness of the WT data samples directly affect the
accuracy of fault diagnosis classification. This issue is currently
the main drawback restricting the development of ANN in WT
fault diagnosis.

Support Vector Machine
Support vector machine (SVM) is a kernel-based ML method
used in regression problems and classification tasks introduced by
Vapnik (2013). The main idea is to find two parallel hyperplanes
to separate two sets of data in a multi-dimensional space and
maximize the margin between the hyperplanes. SVM formulation

FIGURE 5 | ANN-based WT fault diagnosis model.
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ensures that the decision hyperplane is constructed with
structural risk minimization to obtain a balance between
empirical risk and complexity of model (Deka, 2014). SVM is
mainly used in nonlinear problems, by building a classification
hyperplane as a decision plane, in which the isolation boundry
between negative and positive samples is maximized. As shown in
Figure 6, any hyperplane can be represented by a normal vector
W and a constant b (intercept) as follows:

wTx + b � 1 (3)

wTx + b � 0 (4)

wTx + b � −1 (5)

For point A(x1, y1), any two hyperplanes have a geometric
interval d.

SVM is to find a hyperplane to make the data points separable,
in which the minimum geometric distance is the largest. The
SVM solution process can be regarded as the solution process of a
convex quadratic problem, which has a global optimal solution.
Thus, SVM is widely used in the fault diagnosis field.

To solve the local optimal phenomenon caused by the
improper selection of sample parameters, Laouti et al. (2011)
chose a radial basis function as the kernel parameter of SVM,
which can immediately detect the WT blade pitch positionand
generator failureand has good generalization performance. To
further solve the problem of overfitting or underfitting caused by
the improper selection of nuclear parameters, Tang et al. (2014)
proposed a method of WT fault diagnosis based on the Shannon
wavelet SVM (SWSVM) and manifold learning. In this method,
mixed-domain features are extracted to construct a high-
dimensional feature set, manifold learning is used to compress
the high-dimensional feature set into low-dimensional
eigenvectors, and low-dimensional eigenvectors are inputted
into an SWSVM to recognize WT gearbox faults. Gao et al.
(2018) proposed a novel fault diagnosis method of WT that
combines mean decomposition, multi-scale entropy, least
squares, and SVM. In this method, the WT raw vibration
signal is divided into several groups for preprocessing.

Thereafter, the mean decomposition method is applied to
group the signals to obtain the product function. Moreover,
the feature parameters are obtained using the multi-scale
entropy method of processing the main product function to
obtain the feature vector. The characteristic parameters were
input into the least squares SVM, which was trained. This
method can significantly enhance the fault classification ability
of a single SVM and classify the fault type precisely. In the case of
single kernel parameters and parameter optimization, Zhao et al.
(2018) proposed a fault diagnosis method of WT based on
random subspace identification and multi-kernel SVM.
Compared with the traditional SVM, the multi-kernel SVM
can successfully identify the bearing fault of the WT and has
higher fault diagnosis accuracy. In the classification problem,
there are not only two classification problems, but also multi
classification problems. SVM can also show good classification
ability in the face of two classification problems. (Liu K. et al.,
2020) used multi-SVM machine to diagnose the fault of
renewable energy power grid, which effectively improves the
accuracy of fault diagnosis. (Xue et al., 2017). proposed a fault
intelligent diagnosis method combining optimal composition of
symptom parameters (SPOC) and multi-SVM to diagnose the
motor fault, and realized the fault detection and identification of
multiple motor faults. In recent years, with the wide application of
SVM, experts began to optimize and improve SVM, put forward
some machine learning algorithms derived from SVM, put them
into the field of fault diagnosis, and achieved good results. (Zhang
and Zhou, 2014; Tang et al., 2019).introduced margin mean and
margin variance on the basis of SVM and proposed a largemargin
distributed machine (LDM), and this method has better
classification performance than SVM. (Tang et al., 2020a) used
LDM to detect the fault of WT’s pitch system and optimized it
with state transition algorithm (STA), which significantly
improved the accuracy of fault detection.

SVM uses inner product kernel function to turn the raw data
into linear data through mapping the raw data to a high-
dimensional space. However, modeling WT big data is
difficult, and the selection of kernel parameters also affects the
fault diagnosis accuracy. Moreover, guaranteeing the
classification of multi-type WT fault problems is difficult.

Decision Tree
Decision tree (DT) is composed of multiple judgment nodes, and
a classification or regression model is formed by the tree structure
(Safavian and Landgrebe, 1991). The basic idea is simple, and
Figure 7 shows a WT fault diagnosis model based on DT.

Rabah et al. (Benkercha and Moulahoum, 2018) proposed a
fault diagnosis method for a grid-connected WT generator
system based on the DT algorithm with high prediction
performance and high accuracy. Abdallah et al. (2018)
adopted the DT algorithm to perform fault diagnosis on WT,
continuously sampled extensive data from thousands of WT at a
high rate, and trained integrated DT classifier. Compared with
other ML algorithms, DT is easy to implement but it has
limitations in dealing with missing values. The WT fault
diagnosis process, there are few samples of fault type and
more samples of fault-free type. For DT that deals with data

FIGURE 6 | Interval and support vector machine.

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7510666

Tang et al. Review and Perspectives of ML for WT FD

163

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


with inconsistent sample sizes in various categories, information
gain is biased toward features with additional numerical values,
which is easy to overfit and minimally used inWT fault diagnosis.

Ensemble Learning
The basic concept of ensemble learning (Polikar, 2012; Liu et al.,
2019) is to adjust and train multiple base learners as ensemble
members into a strong learner that should have greater
performance on average than any other ensemble member.
Thereafter, a model is estabilshed by optimizing the loss
function to advance the performance of fault classification.
The frequently employed ensemble learning methods include
bagging, boosting.

Bootstrap aggregating, also called bagging (Breiman, 1996)
applied in regression and statistical classification, is an ML
ensemble that obtains a new data set by returning the
samples, trains a better base learner based on each new data
set, and eventually combines the base learners. The algorithm
reduces variance and helps to prevent overfitting. Typical
bagging algorithm including random forest (RF). A diagnosis
method (Cabrera et al., 2015) was presented for detecting the
faults of WT gearboxes, which is based on Random Forest. First,
the condition parameters of the vibration signal are extracted by
wavelet packet decomposition and used as the input feature of
the classification problem. Second, a study approximates the
parameter space to find the best mother wave set, and select the
best feature through the internal ranking of the random forest
classifier. Lastly, the RF algorithm is used to detect the fault of
the WT gearbox. To further improve the fault detection rate, Li
et al. (2016) proposed a method based on deep RF fusion
(DRFF) to improve the fault detection performance of the
WT gearboxes. Two deep Boltzmann machines are used to
characterize the parameter values of the wavelet packet
transform, and the output of the two deep Boltzmann
machines is fused into an integrated DRFF model using an
RF algorithm. The results indicate that DRFF may improve fault

diagnosis capabilities for gearboxes compared with
conventional RF.

Boosting (Freund and Schapire, 1996) adjusts the algorithm by
giving considerable importance to the bad classification that
results in significant improvements in performance of
classification. The bagging algorithm focuses on reducing bias
facilitates prevention of overfitting. Many algorithms are based
on boosting methods, such as XGBoost and LightGBM. Zhang
et al. (2018) proposed an efficient WT fault detection method
based on the RF and XGBoost. RF is used to rank the features by
importance, while XGBoost trains the ensemble classifier for each
specific fault based on the top-ranking features. The proposed
ensemble classifier can protect against overfitting and
experiments verifies the robustness of this method. To
enhance the fault diagnosis accuracy, Tang et al. (2020b)
proposed the adaptive LightGBM method for the WT gearbox
fault detection. The correlation of the WT data samples is
analyzed using the maximum information coefficient to realize
the feature selection of fault detection. Meanwhile, the LightGBM
method after Bayesian hyperparameter optimization is used for
the fault detection of WT gearbox. Experiments prove that this
method has a low false alarm rate and missing detection rates.

Ensemble learning is widely used in fault diagnosis and early
warning of WT with high accuracy. However, some algorithms
have slow convergence speed, weak learners rely heavily on one
another, and over-fitting problems occur. When using the
ensemble methods, the number of iterations, number of base
learners, and weights are the issues that should be considered.

Deep Learning
Deep learning was proposed by Hinton et al. (LeCun et al., 2015),
and the basic idea is a ML process that includes a multi-level deep
network structure through a certain training method based on
sample data. Deep learning combines low level features to form a
considerably abstract high-level representation to discover the
distributed feature representations of data. Deep learning

FIGURE 7 | WT fault diagnosis method based on decision tree.
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(Schmidhuber, 2015; Goodfellow et al., 2016) is widely used in
image processing, data mining, fault diagnosis (Helbing and
Ritter, 2018), and other fields. Different deep learning (Jiang
et al., 2018) configurations have also been introduced such as
deep belief nets (DBNs), deep auto-encoder (DAE) network, and
convolutional neural networks (CNNs).

Toward the WT gearbox faults, Qin et al. (2018) proposed a
novel fault diagnosis method that combines DBNs and improved
logical Sigmoid unit for the WT gearbox. The integrated
approach, which uses the optimized Morlet wavelet transform,
kurtosis index, and soft-thresholding is used to extract impulse
components from original signals to advance the accuracy of
dignosis. Compared with the traditional Sigmoid method, the
WT gearbox fault diagnosis method based on deep confidence
network and improved logical Sigmoid unit has the higher
comprehensive performance. To achieve anomaly diagnosis
and fault analysis of WT components, Zhao et al. (2018)
proposed a deep learning method based on DAE networks
using the WT SCADA data, while the Boltzmann machine
builds a deep automatic encoder network model. This method
can realize the early warning of the faulty component and derive
the physical location of the faulty WT component through the
residual of the deep autoencoder network model. Since the
diverse operating status of WT with a large amount of noise
interference, which leads to a decrease in the accuracy of fault
diagnosis of WT. To solve this problem, Chang et al. (2020)
proposed a fault diagnosis method for WT based on a concurrent
convolution neural network (CeCNN). The raw WT data do not
require any prior knowledge, and the characteristics are learned
adaptively and directly from input with high accuracy and
powerful generalization ability. The convolutional layers of
different branches select kernels of varying scales at the same
level, thereby improving the accuracy of the WT fault diagnosis.
Yi and Jiang (2020) proposed a DAE-based discriminative feature
learning for WT blade icing fault detection.

Although deep learning has a strong learning ability and high
fault diagnosis accuracy, it requires extensive data and computing
power with high cost and high hardware requirements, which are
current issues should be considered.

Unsupervised Learning Methods for Wind
Turbine Fault Diagnosis
The basic idea of unsupervised learning is the process that a
machine learns unlabeled data to reveal the hidden structure,
explain the key features of data, and divides them into several
categories. Representative technique is clustering. Many
algorithms typically used in unsupervised learning are based
on the clustering method. Unlike supervised learning methods
that analyzes class-labeled instances, unsupervised learning
(Figueiredo et al., 2002; Zhang T. and Zhou Z. H., 2018) does
not need all information, but trains the information of unlabeled
samples. The sample set is clustered according to the similarity
between the samples to minimize the intraclass variance and
maximize the interclass variance, thereby establishing the model.
Unsupervised learning methods can classify and predict test data
by extracting hidden concepts and relationships in the data set,

which are widely used in fault diagnosis, data mining, and image
processing among others. Many methods are typically employed
in unsupervised learning, such as the K-means algorithm, fuzzy
C-means (FCM), hierarchical clustering method, Gaussian
mixture model, and other methods (Hastie et al., 2009).

K-Means
K-means clustering (Kanungo et al., 2002; Jain, 2010) is a simple
unsupervised learning method which aims to divide n observations
into K clusters, in which the observation belongs to the cluster with
the nearest mean. First, we initialize cluster centers and determine
K initial points in the data as the center of clustering; Second, we
calculate the distance from each point to the center and assign it to
the nearest cluster. Third, we recalculate the cluster center to
minimize the internal sum. Lastly, the allocation and update
operations are repeated until the centers of all clusters no
longer change. If all points are allocated to the same cluster as
before, then K-means clustering is completed. For example, given
the data set of WTs, K-means algorithm was used for clustering
and the five types of clustering result is shown in Figure 8.

To overcome the sensitivity of K-means to the choice of the
initial cluster centers, Yiakopoulos et al. (2011) proposed a
K-means clustering method for fault diagnosis of rolling
bearings, and the initial centers are selected using features
extracted from simulated signals. The fault detection
experiments on three types of bearings show that this method
can successfully classify faults. Khediri et al. (2012) proposed an
unsupervised learning process based on kernel technology, which
can separate different non-linear process modes, and effectively
detect faults, and reduce the false alarm rate. Kusiak et al. (Kusiak
and Verma, 2012) used three different operating curves
(i.e., power rotor and blade pitch curves) to monitor the
performance of wind farms, and proposed a multivariate
outlier based on Mahalanobis distance and K-means
clustering. This method, uses the skewness and kurtosis of
bivariate data as metrics to evaluate the WT performance,
which is simple to apply and has a rapid convergence speed.

FIGURE 8 | K-means clustering.
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K-means clustering is simple to implement and has a good
effect on WT fault diagnosis. However, the choice of the initial
cluster center K is difficult to grasp and even cause difficulty in
convergence in the case of non-convex data sets. WT has many
fault-free samples and few samples of faults, which will result in
poor clustering effect when the amount of data is unbalanced.

Fuzzy C-Means
The FCM algorithm (Bezdek et al., 1984; Pal et al., 2005) is a
clustering algorithm in which each data point can belong to more
than one cluster. The basic idea is to maximize the similarity
between objects divided into the same cluster while minimizing
the similarity between viaroius clusters.

Given the WT gearboxes fault detection, Luo et al.(Luo and
Huang, 2014) proposed a fault diagnosis method based on global
local mean decomposition and FCM clustering. In this method,
the known sample was clustered using the FCM clustering, and
the test sample was classified and recognized, which has simple
implementation and good diagnosis results. Although the WT
fault diagnosis methods require supervision and training based
on historical samples of known faults, collecting samples of
known faults is time-consuming and expensive. Given the lack
of complete characteristics of known samples in WT, Li et al.
(2015) presented a method based on the kernel FCM (KFCM)
clustering to the fault diagnosis of the WT gearbox. The KFCM
clustering algorithm is used to classify the samples of known
samples, and the classification center of each known fault is
obtained. Similarity parameters are also calculated to diagnose
whether the new data samples belong to the known faults. This
method can accurately and effectively diagnose the known and
unknown faults of WT.

Some issues should be considered when the FCM algorithm is
used in the WT fault diagnosis. For example, a large fault-free
sample size and extremely small fault sample size may lead to
failure, thereby ensuring that the optimal solution of the fault
diagnosis model is found.

Hierarchical Clustering
Hierarchical clustering (Johnson, 1967; Corpet, 1988) is a cluster
analysis method in unsupervised learning, which builds a model

by establishing a hierarchical structure of clusters. The
hierarchical clustering method can be represented as a tree
structure (i.e., “tree diagram”, which includes roots and leaves.
In clustering tree species, the original data points of different
categories are the lowest level of the tree, and the top level of the
tree is the root node of a cluster. As shown in Figure 9, the
hierarchical clustering method (Navarro et al., 1997) involves a
process that starts from the leaves and successively merges
clusters called agglomerative hierarchical clustering; or a
process that begins from the root and recursively splits the
clusters called divisive hierarchical clustering. The hierarchical
clustering method uses Euclidean distance to calculate the
distance between the data points of different categories.

Li Y. et al. (2018) proposed a fault diagnosis method based
on adaptive multi-scale morphological filters and improved
hierarchical arrangement entropy to identify varoius health
situations of gearboxes, and used the hierarchical aggregation
method to reduce noise fault features extracted from the
signal. Liu and Ge (2018) presented a weighted random
forest scheme based on hierarchical clustering selection for
fault classification in complex industrial processes. The
application of the hierarchical clustering method to offline
model selection in RF can reduce the complexity of online
fault classification.

In the fault diagnosis process of WT, the need to calculate the
proximity matrix in the hierarchical clustering algorithm, is time-
consuming, and unsuitable for use in the WT big data sets.
Hierarchical clustering method is appropriate for the
clustering of small data sets, and real-time issues should be
considered when dealing with the WT big data.

Gaussian Mixture Model
The Gaussian mixture model (GMM) (Reynolds, 2009) assumes
that all data points conform to the Gaussian distribution, and is
generated from a mixed finite number of probability models with
unknown parameters. GMM can be regarded as the process of
fitting a linear combination of multiple Gaussian distribution
functions to perform data distribution.

Heyns et al. (2012) proposed a Gaussian hybrid model to detect
WT gearbox failures and calculate the negative log-likelihood of the

FIGURE 9 | Hierarchical clustering method.
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gearbox bearing vibration signal segment, which represents the
healthy gearbox. This method is suitable for nonlinear and non-
stationary wind turbine gearbox vibration signals. Given the highly
complex and unstable operating conditions of WT, Dong et al.
(2013) proposed a multi-parameter WT health assessment
framework that considers dynamic operating conditions. After
the characteristic parameter selection and GMM based multi-
regime modeling, the operation status of WT can be evaluated,
which can effectively detect WT faults. In response to frequentWT
faults, Luis et al. (Avendaño-Valencia et al., 2017) proposed a fault
diagnosis method for WT based on a GMM random coefficient
model. The vibration response signals ofWT that change with time
under the environment and operating conditions are extracted and
the model coefficients are determined through the GMM random
coefficient framework. The method offering significant
performance improvements and most fault levels and types are
represented to be correctly diagnosed.

GMM is effective in handling the big volume of WT data
samples, but it has a large calculation amount and slow
convergence. Selecting the number of sub-models in advance
is difficult and is sensitive to abnormal points. When processing
small data set samples in WT, the result cannot meet the
requirements.

Semi-supervised Learning Methods for
Wind Turbine Fault Diagnosis
Semi-supervised learning (Chapelle et al., 2009; Zhou et al.,
2014) is a learning paradigm that detects some common
features of labeled data samples and unlabeled data samples
to help determine the model characteristics and to
disseminate labels from labeled data to unlabeled ones,
which is an ML method between supervised and
unsupervised learning. In selecting data sets, combining
unlabeled samples and labeled samples in the training
process can improve training accuracy. There are four
mainstream paradigms for semi-supervised learning (Zhu,
2005), are the semi-supervised SVM (S3VM), generative
model-based, disagreement-based, and graph-based
methods. Disagreement-based semi-supervised learning
(Blum and Mitchell, 1998) started with the work on co-
training (Zhou and Li, 2005) by Blum, which is less
affected by the non-convexity of the loss function and the
data size and is mainly used in the field of human-computer
interaction. The graph-based method (Camps-Valls et al.,
2007) was developed by the graph min-cut method (Blum
and Chawla, 2001) proposed by Blum, but it is rarely seen in
WT fault diagnosis. The method based on S3VM and
generative model is also applied in WT fault diagnosis.

S3VM
S3VM (Bennett and Demiriz, 1998) involves the development
of SVM in semi-supervised learning (Wang et al., 2017). The
major idea of S3VM is to mark unlabeled samples to maximize
the interval after the hyperplane is divided. The frequently
used S3VM is a transductive SVM (TSVM). The basic idea of
this method can be presented as five steps. The first step

involves training an SVM classifier with labeled samples. The
second step entails using SVM to predict the classification
results of unlabeled data. The third step aims to find the
opposite label in the predicted unlabeled data that may be
wrong for the labeled sample to swap the label, and use the
existing labeled sample and unlabeled sample to retrain SVM;
The fourth step involves repeating the second and third steps
until the best S3VM classifier is obtained. The fifth step entails
using use the S3VM classifier to label the unlabeled samples
and predict the classification results.

The S3VM methods are widely used in the field of WT fault
diagnosis. Liu C. et al. (2020) proposed a fault diagnosis method
for rolling bearing based on S3VM using only a few labeled
samples to build a model with good classification effect. In order
to reduce false alarm rates and improve the discriminative ability
of incipient fault features, Mao et al. (2020) proposed an online
method for early fault detection of bearings using a semi-
supervised architecture. A safe semi-supervised SVM (S4VM)
is introduced to identify the sequentially arrived data of the goal
bearing as anomalous or normals and fault states and a stacked
noise reduction automatic encoder is used to extract depth
features from the normal state data and fault state data of the
bearing. According to the S4VM generalization error upper
bound to adaptively identify the occurrence of an incipient
fault. Optimal margin distribution learning machine (ODM),
which is also classified based on split hyperplane, has also
appeared semi-supervised ODM(ssODM) in recent years, and
has been applied to wind turbine fault detection with good
performance (Zhang T. and Zhou Z.-H., 2018).

S3VM predicts the unlabeled samples, adds the prediction
results to the labeled data set and improves the fault diagnosis
rate. However, S3VM should determine a few known WT data
samples as a guide. Accordingly, we cannot ensure such WT data
samples with delicate information and it is uncertain to know
how many WT data samples are needed to achieve an effective
S3VM model.

Generative Models
The main idea of the semi-supervised generative model is that the
probability that unlabeled samples belong to each category as a set
of missing parameters. Thereafter, the expectation maximization
(EM) algorithm is used to perform maximum likelihood estimate
on the parameters of the generated model. Generative model
methods (Zhu, 2005; Kingma et al., 2014) includemixed Gaussian
distribution, mixture multinomial distribution, and hidden
Markov model.

Ge et al.(Xin et al., 2018) proposed a semi-automatic fault
detection method based on a probabilistic model in the form of a
hybrid Gaussian with good robustness. Wang et al. (Wang et al.,
2015) proposed a comprehensive method based on semi-
supervised learning, using a small amount of labeled data and
a large amount of unlabeled process data to construct a
neighborhood weighted graph. By solving the optimization
problem, the optimal regression function and the optimal
prediction label matrix of unlabeled data are acquired. This
method can obtain the promised results of fault detection and
fault diagnosis in the monitoring process. To achieve automatic
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detections, Omid et al. (Geramifard et al., 2013) introduced a
semi-parametric method based on the hidden Markov model for
fault detection and diagnosis of synchronous motors. After
training the hidden Markov model classifier (parameter stage),
which is based on each probabilistic (non-parametric stage)
hidden Markov model. Moreover, the probabilistic inference
are used to compute two matrices to solve the efficiency
problem in the fault classification process. Li X. et al. (2018)
presented a fault detection method on a multivariate Bayesian
control scheme and a hidden semi-Markov model to predict early
bearing failures of gearboxes. The method of using the
continuous-time hidden semi-Markov decision process to
characterize the failure process of the gearbox bearing system,
which can predict the early failure of the gearbox bearing and
detect the remaining useful life at each sampling epoch.

The semi-supervised generative model method has good
robustness, but the fault diagnosis model has low accuracy,
long model training time, and many iterations. These issues
must be considered in WT fault diagnosis.

CONCLUSION AND PERSPECTIVES

Given the rapid development of early wind power generation,
wind power equipment has entered a high failure period, and the
fault diagnosis methods of WT have high requirements for their
operation and maintenance stability. Accordingly, the
development fault prediction, fault diagnosis, fault detection,
and condition monitoring of WT have improved. Various
studies have proposed various methods and strategies for the
fault diagnosis and detection of various WT components (Faiz
and Moosavi, 2016). Following studies and research on the most
recent WT fault diagnosis methods, the current study gathers a
review of WT fault diagnosis methods and techniques based
onML. Given the many uncertainties in the WT operation, many
issues should continue to be considered in the ML-based fault
diagnosis of WT.

Improvement of ML algorithms effects. Many types of ML
algorithms have advantages and disadvantages, in which among
the research fields in the future include improving algorithm
performance, optimizing algorithm parameters, combining
algorithms, and studying new algorithms. Given that the
algorithm has advantages and disadvantages, the need to adopt
the advantages and bypass the disadvantages in the algorithm
have become urgent issues to be addressed. Moreover, a single
algorithm cannot detect all WT faults. Hence, the combined
algorithm will become a hot research topic in the future. The
advantages and disadvantages of existing algorithms indicated
that future research involves proposing and improving new
algorithms.

Comprehensive simulation of WT fault conditions. The wind
power generation system is a typical complex system, given
the uncertain severity and probability of faults. In the research
on the WT fault mechanism, only a single fault is modeled, and
the single component faults of WT are accompanied by multiple
faults, which causes serious damage to WT. All WT units are
interconnected and their variables are highly coupled. The

occurrence of a fault in a particular component affects all
remaining units. Therefore, additional compound fault models
should be established to conduct a comprehensive analysis of the
WT system.

Research on the feature selection method. WT have many
characteristic parameters because the operation state of WT is
time-varying Redundant and useless feature parameters will
inevitably exist in WT feature extraction. Given the need to
extract additional fault features, the research on optimized
feature extraction algorithms will become popular in the
future, thereby enabling us to better describe and detect the
status of WT.

Multi-parameter information fusion. A single sensor or piece
of single parameter information cannot acquire dedicated WT
operating status information, which entails difficulty in
accurately reflecting the fault or normal state of each WT
component. Therefore, a multi-parameter information fusion
method is adopted to obtain additional parameter information
from multiple sensors and improve the efficiency of fault
diagnosis.

Establishment of remote WT fault diagnosis system. The WT
fault diagnosis system should be able to predict fault and provide
the period plan maintenance to keep the WT minimum
downtime and maintain long-distance condition monitoring.
Long-term available historical data should be provided by the
WT fault diagnosis system to set the correct alarm for preventive
maintenance. In large wind farms, multiple wind power
generation systems must be installed for fault diagnosis and
early warning. The need to develop a low-cost and high-
efficient remote WT fault diagnosis system should also be
considered in the future.
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Adaptive IES Load Forecasting
Method Based on the Octopus Model
Na Zhang*, Xiao Pan, Yihe Wang, Mingli Zhang, Mengzeng Cheng and Wenying Shang

Economic and Technological Research Institute of State Grid Liaoning Electric Power Co., Ltd, Shenyang, China

Improving the accuracy and speed of integrated energy system load forecasting is a great
significance for improving the real-time scheduling and optimized operation of the
integrated energy system. In order to achieve rapid and accurate forecasting of the
integrated energy system, this paper proposes an adaptive integrate energy system (IES)
load forecasting method based on the octopus model. This method uses long short-term
memory (LSTM), support vector machines (SVMs), restricted Boltzmann machines
(RBMs), and Elman neural network as the octopus model quadrupeds. Through taking
over differences in different data and training principles and utilizing the advantages of the
octopus quadrupedmodel, a special octopus-head and XGBoost algorithmwere adopted
to set the weight of the octopus’ quadruped and prevent local minimum points in the
model. We train the octopus model through RMSProp adaptive learning algorithm,
constrain the learning rate, get the best parameters, and improve the model’s
adaptability to different types of data. In addition, for the incomplete comprehensive
energy load data, the generative confrontation network is used to fill it. The simulation
results show that comparedwith other prediction methods, the effectiveness and feasibility
of the method proposed in this paper are verified.

Keywords: comprehensive energy, generative confrontation network, XGBoost algorithm, RMSProp adaptive
learning, octopus model

INTRODUCTION

An integrate energy system (IES) (AlDahoul et al., 2021) refers to the reasonable distribution and
utilization of electricity, gas, heat, wind, and other energies within a certain range or area, using
professional technology and operating modes, to achieve energy efficiency, interaction, and
complementarity. While ensuring that the energy consumption of individual users meets their
needs, it also improves the energy consumption of the entire range and improves the overall energy
utilization efficiency.

At present, the scale of our country’s integrated energy system continues to expand, and the load
forecast of the integrated energy system affects the operation and planning of the integrated energy
system. Improving the speed and accuracy of load forecasting of the integrated energy system is of
vital importance for realizing the real-time scheduling and optimized operation of the integrated
energy system. In recent years, scholars at home and abroad have conducted some research on load
forecasting; Bian et al. (2020) built gray correlation analysis under the LSTM (Dai and Zhao, 2020)
neural network model, improved the traditional LSTM neural network’s processing method of time
series and nonlinear data, and improved the accuracy of short-term load forecasting, but did not
consider the comprehensive energy relationship. Daniel et al. (2020) used the packet decomposition
and cyclic neural network to decompose the electric, cold, and heat loads in frequency bands and
determined the prediction method by judging the correlation between each frequency band. This
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method can accurately predict the loads with strong and weak
autocorrelation, but does not consider the impact on incomplete
data onto the prediction accuracy. Dong et al. (2021) used Copula
theory to analyze the correlation between the comprehensive
energy load, established a time series, and used the K-means
clustering algorithm to design a radial basis function neural
network. The calculation method of the model is simple and
easy to design, but the prediction accuracy of some outlier data
points and isolated data points is low. Guo et al. (2021)
considered that the training process of the traditional wavelet
neural network (WNN) (Guo et al., 2020) is prone to the
shortcoming of too fast convergence speed and proposed a
WNN prediction method based on improved particle swarm
optimization (IPSO). On the basis of traditional particle swarm
optimization (PSO), chaos algorithm is added, and chaos
algorithm is more random and more general and has deeper
search ability to improve the overall prediction accuracy and
prediction speed of the wavelet neural network. However, this
method needs to continuously optimize the weights and
parameters, and the model establishment is too complicated,
so the speed slows down during the data training process. Jamal
et al. (2020) and Khan et al. (2020) designed a multivariable phase
space reconstruction Kalman filter method, which fully
considered the coupling relationship between various energy
sources, and used the five-step parameter trend method to
dilute the influence of the old parameters on the current load
forecasting. A larger training set was used to train the prediction
models to improve the prediction accuracy. Because the loss
function is set to a convex function, this does not guarantee that
the global optimal solution can be achieved when the optimized
nonconvex function is achieved. The final result will be greatly
affected by the initial value of the parameter. It takes a very long
time to calculate the loss function of all training data at the same
time, so that the prediction accuracy may get a suboptimal
solution. Matrenin et al. (2020) adopted the multitask learning
method of deep structure (Pitchforth et al., 2021) to predict the
complex energy load of the park type, using a combination of
offline and online, but due to the fixed learning rate adopted by
this network, it may cause network oscillations and make the
speed of convergence slower and the prediction accuracy lower,
and the optimal value is also not reached. Verma et al. (2021)
solved the problem of overfitting and limited generalization
ability of a single model, but they could not solve the
application limitation of a single algorithm. The work of
Wang et al. (2019) is composed of a variety of heterogeneous
models, which overcome the shortcomings of the application
limitation of a single algorithm, but the training set of each model
is the same, and there are still problems of single model overfitting
and limited generalization ability. Although, artificial intelligence,
neural networks, support vector machines, and deep learning
methods have made great progress of power system prediction.
However, the abovementioned models have their specific
application scopes, and they are less involved in the field of
integrated energy.

On the basis of the abovementioned research, this paper
proposes an adaptive IES load forecasting method based on
the octopus model. First, this paper uses a generative

adversarial network (GAN) to supplement the incomplete data
in the integrated energy system, thereby reducing the data-
induced inadequate forecasting accuracy. The problem is that
the head mechanism of the octopus model is used to change the
weight of the octopus’ foot, according to the prediction accuracy
to prevent local minimum points and improve the prediction
accuracy. Then, the RMSProp algorithm is used to train the
octopus model, and the adaptive learning rate is used to obtain
the optimal parameters, which not only improves the model’s
adaptability to different types of data but also improves the
prediction speed. Finally, it is based on the operation data
onto the integrated energy system of a residential district in
Shenyang. A simulation analysis of the algorithm proposed to this
paper is carried out. The prediction results show that, in the
comprehensive energy system load forecasting, the octopus
model using RMSProp algorithm, XGBoost algorithm, and

FIGURE 1 | Block diagram of the octopus model adaptive IES load
forecasting method.
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GAN has good prediction accuracy and prediction speed and can
better solve the problem that traditional neural network
prediction models tend to fall into local optimal solutions and
shortcomings such as limited application of predictive models.

OCTOPUS MODEL ADAPTIVE INTEGRATE
ENERGY SYSTEM PREDICTION METHOD

This paper proposes an adaptive long and short-term IES load
forecasting method based on the octopus model. First, we collect
the original sample data and normalize the sample data. Then, the
processed sample dataset is expanded by GAN. When the
generator and the discriminator reach the Nash equilibrium,
the expanded sample dataset can be generated from the
incomplete sample dataset. We divide the extended sample
dataset into six subdatasets according to the time dimension
and ensure that each subdataset does not overlap with each other.
Finally, we build an octopus model. Three of the six subdatasets
are used as the training set, one is used as the test set, and the
remaining 2 validation sets are input into the octopus model
quadrupeds, and the octopus quadruped prediction results are
integrated by weighted average through the octopus-head
mechanism, so as to predict the electrical load, air load, and
thermal load. The load forecasting model used in this paper can
reduce the time for selecting the network model in the early stage
and, at the same time, improve the accuracy of load forecasting.
The overall idea of the forecasting method is shown in Figure 1.

GENERATIVE ADVERSARIAL NETWORK

Generative adversarial networks (GANs) consist of two parts, the
generator and the discriminator. The generator uses the
processing of random noise to generate pseudosamples, and
the pseudosample value is similar to the real sample value.
The discriminator compares the real sample value of the fake
sample value generated by the generator, distinguishes the
difference between the fake sample and the real value, and

improves the recognition ability of its own network. The two
realize the learning optimization processes through the game and
finally reach a Nash equilibrium. The GAN schematic diagram is
shown in Figure 2.

The generated data are generated by the original dataset
training, so the generated data are similar to the original data.
The data expanded by GAN will reduce the isolated points and
discrete points of the original data. Using the data enhanced by
GAN for load prediction will make the prediction accuracy
higher. Since GAN already has good data generation
capabilities, the use of extended data has little effect on the
prediction results.

OCTOPUS FOUR-LEGGED MODEL

Long Short-Term Memory Principle
LSTM is a model that uses back propagation time to train a neural
network. It is not a neuron, but a unit connected by layers. LSTM
is a nonlinear predictionmodel, so it can build a larger and deeper
recurrent neural network, effectively solving the problem of the
disappearance of gradients in the prediction process, and is
suitable for processing time series models. LSTM updates
short-term memory through memory, forgets past memory
information, and updates new information. But, when the
sequence of continuous data becomes longer, the unfolding
time step will be too long. The LSTM neural network has a
long- and short-termmemory structure, and LSTM is suitable for
time series forecasting.

The memory unit memorizes the historical information about
the sequence data together with the hidden state. The information
about the memory unit is controlled by three gate units. The
forget gate deletes the information about the memory unit
according to ht-1 and xt. The forget door is

ft � σ(Wf[ ht−1 xt ]) + bf , (1)

where σ(·) is the sigmoid activation function; bf is the bias of the
forgetting gate; and Wf is the weight of the forgetting gate.

FIGURE 2 | Principle of the generative adversarial network.
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The input gate adds information to the memory unit
according to ht-1 and xt, as shown in Eqs 2 and 3.

it � σ(Wi[ ht−1 xt ]) + bi, (2)

Ĉt � tanh(Wc[ht−1 xt]) + bc . (3)

In the formula, it is the information that needs to be
memorized; Ĉt is the candidate memory unit, used to update
the memory unit; Wi and Wc are the input gate weights; and bi
and bc are the input gate biases.

After the calculation of the forget gate and the output gate is
completed, the memory unit is updated using the following
equation:

Ct � ft+Ct−1 + it+Ĉt , (4)

where + is the product of Hadamard.
The output gate determines ht according to ht-1, xt, and Ct.

ot � σ(W0[ ht−1 xt ]) + bo, (5)

ht � ot+tanhCt , (6)

where Wo is the output gate weight; bo is the output gate bias.
LSTM inherits the advantages of the recurrent neural network

(RNN) well and has a long-term memory function. Compared
with the prediction model constructed by the ordinary RNN,
LSTM can solve the problems of gradient explosion and gradient
disappearance. Therefore, LSTM has better performance in
dealing with models that are highly correlated with time series.

Support Vector Machine Principle
SVM, as a relatively important learning method in machine
learning, is based on statistical theory and supervised learning
and can solve multivariate nonlinear problems well. The principle
is to map the sample data one by one in a high-dimensional space,
and this kind of mapping does not require a clear mapping
function, so as to achieve a conversion from nonlinear to linear.
Simply putting, it is to upgrade the data and linearize the data.

Compared with other linear models, SVM can better solve the
dimension problem with the premise of the same computational
complexity. Therefore, the SVM model requires small storage
space and strong algorithm robustness. SVM is proposed by a
binary classification problem. When making predictions, a
prediction curve is made through linear regression. SVM
predicts data through regression fitting, and it does not have
memory function. Therefore, SVM can reduce the impact of
discrete points and isolated points on the prediction results.

Suppose the training set samples are {(xi,yi), i � 1,2,3, . . . ,l},
where xi is the input column vector of the ith training sample, xi �
[xi

1,xi
2, . . . ,xi

d]T, and yi∊R is the corresponding output value.
Suppose the linear regression function established in the high-

dimensional feature space is

f (x) � wΦ(x) + b. (7)

Among them, Φ(x) is a nonlinear mapping function.
The ε linear insensitive loss function is defined as

L(f (x), y, ε) � { 0
∣∣∣∣y − f (x)∣∣∣∣#ε∣∣∣∣y − f (x) − ε

∣∣∣∣ ∣∣∣∣y − f (x)∣∣∣∣> ε . (8)

Among them, f(x) is the predicted value returned by the
regression function, and y is the corresponding true value.

Restricted Boltzmann Machine Principle
Boltzmann machine (RBM) is a model with a two-layer neural
network, which is a probability distribution model based on
energy.

The Boltzmann machine is divided into a hidden layer h and a
visible layer v (that is, the input layer and the output layer). The
Boltzmann machine can be regarded as a fully connected graph;
that is, each neuron is fully connected with all neurons in this
layer and neurons in other layers. The principle of the RBM is
shown in Figure 3. The RBM layer is not connected and is
connected to all neurons in other layers, where vi is the visible
layer neuron, hj is the hidden layer neuron, ai is the visible layer, bj

FIGURE 3 | RBM schematic.
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is the hidden layer, and the W is the weight matrix. Its visible
nodes are independent of other visible nodes, and there is no
connection between hidden layer nodes. When the observation
data are given in the visible layer, each node of the hidden layer is
independent of each other. The RGM network is relatively simple
and does not have a memory function. Important information
entered early will be forgotten over time.

The hidden layer and visible layer of the RBM used in this
paper are both binary, namely, vi∊{0,1}n, hj∊{0,1}m. The energy
formula is shown as follows:

E(v, h) � −∑n

i�1 ∑m

j�1 wijvihj −∑n

i�1 aivi ∑m

j�1 bjhj. (9)

FIGURE 4 | Adaptive load forecasting method based on the octopus model.
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Among them, w � [wij]
n×m, a � (ai)

n, and b � (bj)
m constituted

the parameter θ of the RBM. m and n represent the number
of visible units and winning units, vi and hj are the ith visible
unit and the jth hidden unit, respectively, and wij is the weight
between the visible unit and the hidden unit. ai and bj,
respectively, represent the bias of the visible unit and the
hidden unit.

The joint probability distribution p (v,h) of the visible unit and
the hidden unit is defined as follows:

P(v, h) � 1∑v,he−E(v,h)
e−E(v,h). (10)

The corresponding two marginal probability distributions are

P(v) � 1
z
∑

h
e−E(r,h), (11)

P(h) � 1
z
∑

v
e−E(v,h). (12)

Elman Neural Network
The Elman neural network is a dynamic neural network. It adds a
layer on the basis of the BP neural network, which is used as a
delay factor. The Elman neural network can use, store, and
feedback historical past time information. To a certain extent,
the Elman neural network can perform load forecasting well. This
paper uses a 4-layer Elman neural network. The connection to the
output layer is similar to the feed forward network. The input
layer unit only plays a role in signal transmission. The transfer
function of the hidden layer unit adopts a nonlinear function. The
receiving layer can be considered as a one-step delay operator.

Elman is a dynamic network, adapts to time-varying
characteristics, has a short-term memory function, can
internally feedback, store, and use the output information of
the past moment, and is better than the BP network in terms of
computing power and network stability.

In this paper, the Elman neural network of particle
swarm optimization (PSO) is used. PSO is an efficient
and rapid optimization method, suitable for solving
continuous weights in Elman. The position and speed
update formulas are

Vk+1
i � ω · Vk

i + c1 · rand1 · (Pbest − Xi) + c2 · rand 2 · (Gbest − Xi),
(13)

Xk+1
i � Xk

i + Vk+1
i , (14)

where Vk
i and Xk

i are the velocity and position of particle i at the
kth iteration, respectively. rand1 and rand2 are randomly
generated in (-1,1), c1 and c2 are the learning factors, and ω is
the particle weight coefficient. Gbest is the global optimum, and
Pbest is the individual optimum.

ADAPTIVE LEARNING

The traditional training method can reach the global optimal
solution only when the loss function is convex. For the concave
function, it cannot ensure that the training of the neural network
will definitely reach the global optimum. On the contrary, the loss
function can easily reach the local optimum. At the same time, the
traditional training process takes a long time, and the
training result is greatly affected by the initial value.

FIGURE 5 | Principle of the octopus-head model.
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Aiming at the shortcomings of traditional training
methods, the octopus model structure uses an adaptive
learning rate algorithm to train four prediction models to

obtain the best parameters of the octopus model. Taking
into account that different parameters require different
learning rates to be adjusted, if the learning rate is too
large, it will cause the training of some parameters to miss
the global optimum and reach the local optimum. If the
learning rate is too small, the convergence speed of the
parameters will be slow, and the training process will take a
long time. Therefore, it is particularly important to set
different learning rates for different parameters in training
of the model.

The RMSProp optimization algorithm can improve the
prediction accuracy of the octopus model and make the
octopus model more adaptive. Compared with the
AdaGrad optimization algorithm, the RMSProp algorithm
uses a new exponential decay algorithm, which reduces the
impact on historical data. At the same time, RMSProp
introduces a new parameter ρ, which can be expressed as
the second derivative of the gradient value, which is used to
control the decay rate of the historical gradient value.
Therefore, RMSProp algorithm has better adaptability than
AdaGrad. The main body of the algorithm executes the
following loop steps and will not stop until the stop
condition is reached.

We take out the small batch of data {x1, x2, . . . , xm}. The target
corresponding to the data is denoted by yi.

We calculate the gradient based on the small batch data
according to the following formula:

g � 1
m
∨ω∑i

L(f (xi;ω), yi). (15)

We accumulate the square gradient and refresh r, and the
process is as follows:

r � ρr + (1 − ρ) g ⊙ g. (16)

We calculate the parameter update amount as follows:

Δω � − σ




δ + r

√ ⊙ g. (17)

We update parameters according to Δω:
ω � ω + Δω. (18)

The traditional stochastic gradient descent maintains a
single learning rate to update all weights, and the learning
rate does not change from the training process. The RMSProp
algorithm uses different learning rates when optimizing deep
neural networks, which is efficient and practical.

OCTOPUS MODEL

The octopus-head model in Figure 4 uses XGBoost, which is an
optimized integrated tree model, improved and extended for the
gradient boosting tree model. The integrated model of the tree is
as follows:

yi � ∑K

k�1 fk(xi), fk ∈ F, (19)

FIGURE 6 | Comprehensive energy long-term forecast results.
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where yi is the predicted value of the ith sample; xi is the feature vector
of the ith data point, fk is the structure q of the kth tree and the leaf
weight w, K is the number of trees, and F is the collection space of trees.

The loss function of the model can be expressed as

L � ∑n

i�1 l(yi, yi) +∑K

k�1 ε(fk). (20)

In the formula, the first half is the error between the predicted value
and the true value, and the second half is the complexity of the tree.

In the process of minimizing the sequence, the loss function is
reduced by adding the increment function fi (xi). The objective
function of the mth round is

L(m) � ∑n

i�1 l(yi, yi) +∑K

k�1 ε(fk)
� ∑n

i�1 l(yi, y(m−1)
i + fm(xi)) + ε(fm). (21)

For Eq. 21, the second-order Taylor expansion is used to
approximate the objective function. This results in

L(m) � ∑T

j�1
⎡⎢⎢⎢⎣⎛⎝∑

i∈Ij
gi⎞⎠⎤⎥⎥⎥⎦wj + 1

2
⎛⎝∑

i∈Ij
hi + λ⎞⎠w2

j ] + μT , (22)

gi � l′(yi, ŷ(t−1)i ),
hi � l″(yi, ŷi(t−1)).

We find the partial derivative of w to get

wj � − Gj

Hj+λ
. (23)

Substituting the weights into the objective function, we
can get

L(m) � − 1
2
∑T

j�1
Gj

Hj+λ
μT . (24)

The octopus-head model mainly uses the weighted average
method to train the octopus’ quadrupeds with initial
weights. The head adopts an integrated learning method to
train the weight parameters according to the prediction
accuracy of the four prediction models. The weights are
changed according to the prediction accuracy of the
octopus’ quadrupeds, so that the weight of high prediction
accuracy increases, and the weight of the other octopus’ feet
with relatively low prediction accuracy decreases, and then,
the octopus’ quadruped after weight adjustment continues to
train and repeats this until the specified number of times is
reached. Finally, these prediction accuracies will be
integrated according to the weight, and the final prediction
result will be obtained.

CASE ANALYSIS

Screening of Related Factors
We use the influencing factors and load data onto m days before
the forecast date to predict the comprehensive energy load data
onto the forecast day, and the model output is the comprehensive
energy data onto the forecast day, as shown in Eq. 20.

FIGURE 7 | Comprehensive energy short-term daily load forecast
results.
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L̂d � {̂l0,d )̂l1,d)/)̂lt,d(/)̂lT ,d}. (25)

In the formula, T is the number of points to be predicted.
The comprehensive energy historical load data are shown in

Eq. 21.

Lt,d−w � {lt,d−1)lt,d−2)/)lt,d−m}. (26)

In the formula, lt,d-m is the load at time t on m days before the
forecast.

The comprehensive energy load influencing factors are

Ft,d � {wt)d(et)d)/)ht,d}. (27)

Data Normalization
Formula (23) is used to normalize the comprehensive energy data
and obtain real sample data of temperature, humidity, date, and
economy.

xstd � x − xmin

xminmax + 1
. (28)

In the formula, x represents each sample data of the integrated
energy system, xmax represents the sample data with the largest
absolute value in each sample data set, xmin represents the sample
data with the smallest absolute value, and xstd represents the
normalized value.

Result Analysis
This paper selects the comprehensive energy system operation
data of a residential district in Shenyang from January 1, 2009, to
January 1, 2020, and the comprehensive energy operation data of
the district in the first week of August 2019 for analysis. The
comprehensive energy data from 2009 to 2018 are used as the
training set quarterly to predict the comprehensive energy
operation data in 2019 and 2020; the data from the first
8 days of August 2019 are used as the training set to predict
the electrical load, air load, and heat load data.

In order to verify the effect of adaptive load forecasting
based on the octopus model, the long-term and short-term
forecasting were carried out separately, and two cases were
set up.

Case 1: considering the long-term forecast of the coupling
of electricity, gas, and heat loads, the octopus model is used
to analyze the comprehensive energy data from 2009 to
2018 to predict the electricity, gas, and heat loads in 2019
and 2020.

Case 2: considering the short-term forecast of the coupling of
electricity, gas, and heat loads, the octopus model is used to
predict one day’s load data.

The long-term and short-term results of comprehensive
energy in the two cases are shown in Figure 5 and Figure 6,
respectively.

It can be seen that whether it is a long-term forecast or a short-
term forecast of electricity, gas, and heat load, the forecast curve
has good tracking ability. Only when the real value fluctuates
greatly, the predicted value will have a large error. From Figure 7,
it can be seen that the electrical load fluctuates greatly throughout
the year and the heat load changes significantly with the seasons.

It can be seen from Figure 5 that the electricity load fluctuates
greatly throughout the day, with little electricity consumption
during the day and large electricity consumption at night.

This article uses MAPE as the error evaluation standard, and
the calculation formula of MAPE is

δMAPE � 1
N

∑N

t�1

∣∣∣∣∣∣∣∣yi − yi
yi

∣∣∣∣∣∣∣∣ × 100%. (29)

In the formula, yt is the actual value; y’t is the predicted value;
and N is the number of predicted points.

Figure 8 shows the comparison between the MAPE value
predicted by the octopus model and the MAPE value predicted by
the ordinary RNN in two cases. The MAPE value of the adaptive
IES load forecasting method is between 4 and 6%. Both of the
MAPE values are not large.

It can be seen from Figure 8 that the accuracy of short-term
forecasts is higher than that of long-term forecasts. In the long-
term and short-term forecasting, the adaptive octopus model has
higher prediction accuracy and smaller error than the traditional
load forecasting and ordinary octopus model and has a small
MAPE value.

Compared with the results of gas and heat load forecasting,
heat load forecasting has higher forecast accuracy, which is
mainly due to the fact that heat load is greatly affected by
temperature, humidity, economy, and date changes, especially

FIGURE 8 | Two prediction types of MAPE.
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with a strong relationship between temperature and relevance.
However, there are many uncontrollable factors of electricity and
gas load, so the prediction accuracy is lower than that of heat load.
From the perspective of long-term and short-term prediction
results, the octopus model has better short-term prediction
results. This is mainly due to the large training sample dataset
for short-term load prediction and the small training error of
the model.

CONCLUSION

Aiming at the background of integrated energy system, this paper
proposes an adaptive integrated energy load forecasting method
based on octopus model. This method not only uses the octopus
model to effectively reduce the risk of model overfitting and
prevents local minima but also improves the convergence speed
of the model through the RMSProp algorithm and improves the
prediction accuracy. It has high application value in the
multielement load forecasting of the integrated energy system.

With the development of the energy Internet, the integrated
energy system will receive more andmore attention. The adaptive

IES load forecasting method based on the octopus model will
have a higher development and application in the energy Internet
system. The model’s adaptive IES load forecast method has
extremely high forecasting accuracy in ultra-short-term
forecasting. In the future, it is hoped that, through further
applications, it can predict abnormal conditions more
accurately and improve the forecasting results.
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Adaptive Droop Control of the
VSC-MTDC Distribution Network
Considering Power–Voltage Deviation
Yang Li1, Jianjun Zhao1, Huan Liu1, Qiankun Kong1, Yanhui Zhao2*, Long Cheng2 and
Zhenhao Wang2

1Smart Distribution Network Center, State Grid Jibei Electric Power Co., Ltd., Qinhuangdao, China, 2Key Laboratory of Modern
Power System Simulation and Control and Renewable Energy Technology, Ministry of Education (Northeast Electric Power
University), Jilin, China

In order to realize the unbalanced power optimally allocated and the DC voltage stably
controlled after disturbance, an adaptive droop control method considering power and
voltage deviation is proposed based on the traditional voltage–power droop control of a
voltage source converter-based multi-terminal direct current (VSC-MTDC) distribution
network. The inherent constraint that the unbalanced power is proportionally distributed
according to its capacity under the traditional droop control is broken in the proposed
method to realize the reasonable transfer of unbalanced power and to reduce the overload
risk of smaller capacity VSCs; the “dead zone” is appropriately set to relax the operating
range of the VSC to a certain extent by a power deviation factor being introduced in the
droop characteristic curve. The corresponding MATLAB/Simulink simulation model of the
five-terminal DC power distribution network is established and compared with the
electromagnetic transient model under the traditional droop control. Finally, the
simulation results verify the effectiveness and control effects of the proposed control
method.

Keywords: VSC-MTDC distribution network, adaptive droop control, power–voltage deviation, unbalanced power,
DC bus voltage

INTRODUCTION

The continuous maturity of flexible DC equipment and control technologies in the field of electricity
transmission has greatly promoted the development of DC power distribution (Li and Lao, 2017;
Liao et al., 2018). Compared with the traditional AC power distribution network, the DC power
distribution network has many advantages, such as lower loss, larger transmission capacity, higher
power quality and power supply reliability, and easier power control, regardless of the frequency and
voltage phase, more convenient for large-scale access to clean energy and lower environmental
pollution (Yang et al., .2015; Jaynendra et al., 2019; Li et al., 2021a), and can effectively isolate AC side
faults and disturbances in parallel with the AC system (Xu et al., 2019; Zhao et al., 2019). As an
important basis of the energy internet and smart grids, a reliable, flexible, and efficient flexible DC
power distribution network has gradually become an important guarantee for the safe and economic
operation of the power system and power supply at a high service level (Gao et al., 2019). Therefore,
the construction and development of the flexible DC power distribution network is of great
significance to meet the needs of energy conservation, emission reduction, and comprehensive
energy utilization in various countries, to improve the intelligent level of power supply, to promote
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the transition from traditional power grids to the energy internet,
and to build a green and environmentally friendly energy society
(Li et al., 2021b; Li et al., 2022).

The three-level VSC-MTDC power distribution network has
the characteristics of multi-source power transmission, multi-
drop power reception, and system power flow flexibly regulation
and control and has become an effective solution to develop and
reform the power supply mode in the future (Li et al., 2019). The
power flow of the DC power distribution network has frequent
fluctuations, and the transient process is very short, so it brings
great challenges to the coordination of VSCs, the power optimal
dispatching, and the voltage stability control (Beerten and
Belmans, 2013; Wang and Barnes, 2014). Therefore, as a
typical multi-point control, the droop control has become the
hot point of the current research for the fast response capability to
the change of power flow. In the aspect of the control strategy,
Pedram and Mohsen, 2018 proposed a distributed control
method of the DC system based on the main controller and
low-bandwidth communication and realized accurate power
allocation by setting droop gain, but this method depends on
the communication between VSCs to a certain extent. Chen et al.,
2018 proposed an adaptive droop control method for the multi-
terminal DC system based on the compensation governor with
synthetically considering the dynamic voltage and power
deviation of the DC network, which improved the system
steady-state characteristics and dynamic response. Wang et al.,
2019a addressed the problem that a fixed droop control
coefficient will reduce the DC voltage control capability of the
entire MTDC system and proposed an adaptive droop control
scheme based on the DC voltage deviation factor and power
distribution factor to ensure that the MTDC system maintains a
high power sharing capability. Wang et al., 2020a derived the
VDM model related to the DC voltage through the VSC-MTDC
generalized linear model and proposed a droop coefficient
adaptive method, which can realize the effective control of the
system DC voltage. Wang et al., 2020b proposed a structure-
changed master–slave control method based on the equal load
rate based on the master–slave control method of DC distribution
systems, which can reduce the DC voltage deviation when
disturbance occurs. In Qusay and Xie, 2018, a transformer less
H-bridge inverter with a series power flow controller is designed
to control the transmission power of PCC, and its power supply
connection interface adopted the U–P droop control strategy,
which improved the control flexibility of the system, but the DC
transient overvoltage is high in the process of fluctuation. Li et al.,
2017 basically realized the reasonable distribution of active power
and the stable control of AC side voltage of each VSC according to
the unified adaptive droop control based on dynamic reactive
power limiter, but the DC side voltage of VSC had not been
deeply analyzed and verified by simulation. In the aspect of model
analysis, Rouzbehi et al., 2014 realized the economic operation of
the DC system by an improved optimal power flow algorithm, but
to some extent, this way of accurately controlling voltage and
power by modifying the droop coefficient accordance with power
flow optimization results reduced the response speed of droop
control to power flow change. Han et al., 2016 proposed a hybrid
MTDC system decentralized autonomous control based on the

consensus algorithm considering actual requirements of wind
power grid connection and power transmission; the model
convergence performed well, and the global information
acquired fast under power fluctuation. The above documents
were the necessary combination and improvement of the
traditional droop control at different angles, which improved
the distribution accuracy of the active power assumed by each
VSC, but none of them really realized the isochronous control of
DC voltage.

In terms of VSC-MTDC system stability modeling, Wang
et al., 2019b proposed a construction method of the characteristic
equation for the microgrid system composed of phase-locked
loop DG. Compared with the traditional state-space matrix
research method, this method can determine the phase angle
margin and stability margin of the system stability, and the Routh
criterion can be used to simply judge the stability. In reference to
the independent power supply system composed of multiple
batteries, Wang et al., 2021a constructed a forbidden zone
criterion based on the regression ratio matrix accordingly to
establish a state matrix and a rate of return matrix and proposed a
sag coefficient stable area analysis method. Wang et al., 2021b, on
the basis of Wang et al., 2021a, proposed a reduced-order
aggregation model based on the Routh criterion and the
balanced truncation method, which can solve the problem of
large input–output mapping errors between the original system
and the reduced-order system. Ma et al., 2021 proposed a dual-
predictive control method based on adaptive error correction
(DPCEC) applied to FW-VSIs for AC microgrids, which can deal
with and correct the influence of different negative factors and
realize the voltage source inverter real-time tracking of the
reference value and the accurate value.

At present, the research on the control strategies of the MTDC
power network mostly focuses on the transmission network, and
the load fluctuation and power flow change of the distribution
network are more complex, which puts forward higher
requirements for the design of the control system.

On the basis of traditional droop control, an adaptive droop
control of the VSC-MTDC distribution network considering
power–voltage deviation is proposed in this article, and the
electromagnetic transient model of the five-terminal VSC-
MTDC distribution network based on the MATLAB/Simulink
platform is built to verify the effectiveness of the proposed
adaptive control strategy by simulation according to different
system operating conditions. The main contributions of this
article are as follows:

1) The proposed control strategy can break the traditional droop
control restriction of the active power distribution according
to a fixed ratio under system disturbance; it can adaptively
adjust the droop coefficient to realize the optimal distribution
of power and effectively prevent the overload of the smaller-
capacity converters.

2) By superimposing the constant voltage control link in the
improved adaptive droop control strategy, the system voltage
stability before and after the transient process can be
effectively guaranteed, and the error adjustment can be
realized without relying on communication.
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TYPICAL STRUCTURE OF THE VSC-MTDC
POWER DISTRIBUTION

The typical structure of the VSC-MTDC distribution network
is shown in Figure 1. Taking the five-terminal power
system as an example, the AC system is connected to the
DC network with equivalent load through the corresponding
VSC. One of the VSCs is set up as the main station and adopts
the constant DC voltage control to maintain the DC bus
voltage stability. The other four VSCs are slave converters,
which adopt the adaptive droop control strategy considering
the power–voltage deviation to realize the system power
optimal distribution and to ensure the stable operation of
the DC system according to the requirement of VSCs, the
equipment connected to the AC side, the topology of the VSC-
MTDC system, and the dispatching plan. The following will
carry on the detailed analysis to the VSCs which adopt the
droop control.

ADAPTIVE DROOP CONTROL OF
VSC-MTDC

The adaptive control of the VSC-MTDC distribution network
requires that each VSC can make independent decisions and
update the decision value in real time. When the loads, power
flow direction, and grid structure of the network change, each
VSC controller should be able to maintain the system stable and
reliable operation between the allowable power and voltage
regions.

DC Voltage Droop Characteristic Analysis
For the traditional voltage droop control, set the positive
direction as the absorption power of VSC, so the relationship
between DC voltage UDCi and output current IDCi can be
expressed as follows

IrefDCi − IDCi +K0
droopi(Uref

DC − UDCi) � 0, (1)
where Uref

DC is the DC side voltage reference value of VSC; IrefDCi is
the internal loop current reference value of VSCi; andK0

droopi is the

droop coefficient defined by the U–I relationship, K0
droopi > 0.

Also, PDCi � UDCiIDCi, so the output power of the VSC is

PDCi � −K0
droopiU

2
DCi + (K0

droopiU
ref
DC + IrefDCi)UDCi. (2)

The U–P characteristic curve of the VSC drawn by Eq. 2 is
shown in Figure 2. As can be seen from Figure 2, the operating
characteristic curve of the VSC is a parabola opening to the left
(only taking the upper half of the symmetrical axis according to
the physical meaning). The limit operating point
M(PiMAX, UiMIN), respectively, corresponds to the power
maximum value and the voltage minimum value, and there is

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
PiMAX � 1

4
K0

droopiU
2ref
DC + 1

2
Pref
DCi +

I2refDCi

4K0
droopi

UiMIN � 1
2
Uref

DC + IrefDCi

2K0
droopi

.

(3)

where Pref
DCi is the output power reference value of VSC,

Pref
DCi � Uref

DCI
ref
DCi; PDCHi and PDCLi are the upper and lower

limits of the operating power of VSCs, respectively; and UDCHi

andUDCLi are the upper and lower limits of the DC side voltage of
VSCs, respectively. The tangent point N(Pref

DCi, U
ref
DC ) of the

operation characteristic curve and the drooping characteristic
curve 1 is the optimal operation state point of VSC.

From Eq. 2 and Eq. 3, it can be seen that the DC voltage
regulation and power allocation of the VSC-MTDC power
distribution network are determined by the droop coefficient.
The selection of its value affects the dynamic performance and
stability of the whole VSC-MTDC distribution network, so it is
necessary to optimize the droop characteristic curve according to
the characteristics of the power node (VSC) and the DC network.

At the same time, the voltage safety margin and power security
margin should be considered in the operation of the VSC-MTDC
distribution network (i.e., the AB section of the operating
characteristic curve in Figure 2), which not only satisfies the

FIGURE 1 | Typical structure of five-terminal DC power distribution-
based VSC.

FIGURE 2 | Characteristic curves of U–P operating.
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power balance equation of the DC network but also satisfies the
fixed boundary conditions of DC nodes’ voltage amplitude and
VSCs’ operating power, that is,

PDCi − UDCi ∑
j∈i

YijUDCj � 0, (4)

{UDCLi ≤UDCi ≤UDCHi

PDCLi ≤PDCi ≤PDCHi.
(5)

where j ∈ i represents the node connected to node i.

Droop Characteristic Optimization of VSC
Considering Power–Voltage Deviation
According to the droop characteristic of the VSC-MTDC power
distribution network, the output error signal χ of the controller is
set as follows:

χ � Pref
DCi − PDCi + Kdroopi(Uref

DC − UDCi). (6)
At steady-state operation, the error signal output by the VSC
controller is 0 (that is χ � 0). We respectively set the upper limit
of operating power of the VSCi and VSCj in the network as PiMAX

and PjMAX; meanwhile, there is PiMAX <PjMAX. In the case of
ignoring the DC line resistance, it can be considered that the
power loss of the DC network is 0 and the voltage drop is 0. When
disturbance occurs, the stable operating point of the VSCi

changes from E(PDCi, UDC) to F(P’
DCi, U

’
DC), as shown in

Figure 3.
It can be seen from Eq. 6 that the DC side voltage change

variable of the VSC is

ΔUDC � U’
DC − UDC � −P

’
DCi − PDCi

Kdroopi
� −ΔPDCi

Kdroopi
. (7)

After ignoring the DC line resistance, the whole DC
network can be regarded as an equipotential point.
Therefore, the total increment of the VSC output power can
be expressed as

ΔPDC � ∑n
i�1
ΔPDCi � −ΔUDC∑n

i�1
Kdroopi � ΔPDCj

Kdroopj
∑n
i�1
Kdroopi, (8)

where Kdroopj is the droop coefficient of VSCj.
Therefore, the output power increment ΔPDCj of VSCj is

ΔPDCj � Kdroopj
ΔPDC∑n
i�1Kdroopi

. (9)

It can be seen from Eq. 9 that when the total unbalanced power
ΔPDC of the VSC-MTDC power distribution system is constant,
the unbalanced power borne by each VSC is proportional to its
droop coefficient.

For conventional droop control, the droop coefficient is set
proportional to the capacity of the VSC and remains constant
during the operation process. When a considerable large
disturbance occurs in the system, the VSC with a smaller
capacity can be overloaded (corresponding to the operation
point G(PiMAX, U}

DC)), while the VSC with a larger capacity
still has a certain margin (corresponding to the operation
point G(P}

DCj, U
}
DC)). If the power balance of each VSC is

broken, make the droop coefficient set by each VSC disobey
the strict proportional relation, and the droop coefficient of the
VSC with a larger power margin is improved to assume more
unbalanced power during the disturbance, the droop coefficient
of the VSC with a smaller power margin is appropriately reduced
to assume less unbalanced power during the disturbance, then the
unbalanced power is reasonably transferred, and the response
capability of the VSC adopting the droop control strategy to the
DC power flow disturbance can be indirectly promoted. In
addition, the traditional droop control can realize the real-time
regulation of the DC side voltage of the VSC with power changing
according to the droop characteristic. However, when there is no
power fluctuation in the transmittance VSC, the acceptance VSC
still performs the differential adjustment according to droop
characteristics, and it is impossible to reasonably realize the
power distribution and to cause the DC voltage to fluctuate.
Consequently, this article proposes an adaptive droop control
strategy of the VSC-MTDC power distribution network taking

FIGURE 3 | Characteristic curves of U–P droop control.
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into account the power–voltage deviation, which can improve the
response capability to DC power flow disturbance and at the same
time can realize the isochronous control of DC voltage.

An improved droop coefficient that takes into account the
power margin of the VSC is defined as

K’
droopi �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μ(PiMAX − |PDCi|)

PiMAX
Kdroopi, UDCi ≥U

ref
DCi

μ|PDCi|
PiMAX

Kdroopi, UDCi <Uref
DCi.

(10)

and satisfies that

∑n
i�1
K’

droopi � ∑n
i�1
Kdroopi. (11)

In Eq. 10, μ is as a constant, responsible for the proper scaling
of K’

droopi, and its values are generally ranging within the region
(Liao et al., 2018; Li et al., 2021a) according to the actual operation
state of the power network (Tao et al., 2018); in this article, μ is
equal to 3; Kdroopi is the traditional droop control coefficient, and
that

Kdroopi � PiMAX − PDCi

UDC − UDCL
. (12)

After the optimization by Eq. 10, the droop coefficient of VSCi

decreases and the droop coefficient of VSCj becomes larger.
Under the condition of a constant reference voltage, the
optimal operating state points of the two VSCs, respectively,
correspond to the points ofM(P’ref

DCi , U
ref
DC ) andM’(P’ref

DCj, U
ref
DC ) in

Figure 3, thus realizing the optimal allocation of
unbalanced power.

However, when the droop coefficient of the VSCwith a smaller
power margin is too low, the slight power fluctuation will lead to a
large deviation between UDCi and Uref

DC , which greatly increases
the difficulty of DC voltage control and is not conducive to system
stability, so a reasonable limit should be imposed on K’

droopi, thus
setting that (Tao et al., 2018)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K’
droopiMAX � μKdroopi,

K’
droopiMIN � 1

3
Kdroopi,

K’
droopiMIN ≤K

’
droopi ≤K’

droopiMAX.

(13)

At the same time, in order to ensure the continuity of DC voltage
in the process of droop controlling, a power deviation factor ζ i
(0< ζ i < 1) is introduced, and the “dead zone” is properly set in
the droop characteristic curve, perpendicular to the voltage shaft
in Figure 3, so

ΔPDC � ∑n
i�1
ΔP}

DCi � ∑n
i�1
ζ iΔPDC. (14)

For VSCi in Figure 3, the adjusted droop characteristic curve is
equivalent to translating the original curve to the right for
ζ iΔPDC, its assumed power increment becomes ΔP}

DCi, the
steady operating state point is M(P’ref

DCi , U
ref
DC ), which only

considers that the power margin is shifted to the point

K(P}ref
DCi , U

ref
DC ) without the reference voltage changing; at

present, the corresponding reference power increase is ζ iΔPDC

up to P}ref
DCi , where the inflection point C is a voltage deviation

control enabling node, and

P}ref
DCi � − Uref

DC − UDCL

K’
droopi

∣∣∣∣∣UDCi�Uref
DC

+ Pref
DCi + ζ iΔPDC, (15)

where

K’
droopi

∣∣∣∣∣UDCi�Uref
DC

� μ(PiMAX − Pref
DCi)2

PiMAX(Uref
DC − UDCL).

After the additional DC voltage deviation control, the droop
coefficient of the controller (corresponding to the slope of the
characteristic curve of droop control) holds in line, and the power
reference value of the optimal operating state point increases,
which expands the operation range of VSC to a certain extent,
alleviates the power margin decrease of the VSC in the case of
only adopting power margin control, and can obviously enhance
system voltage stability. The adaptive droop control block
diagram of the double closed loop based on the PI link is
shown in Figure 4.Here, UDCr is the DC voltage modulation
value;KPi,KIi,K’

Pi, andK
’
Ii are the PI controller coefficients;KGUi

and KGDi are the control identification bits; and the
corresponding control mode is enabled when the value is 1.

RESPONSE CHARACTERISTIC ANALYSIS
OF ADAPTIVE DROOP CONTROL

To clarify the relationship between the output DC voltage and
power of each VSC under the adaptive droop control in the VSC-
MTDC distribution network, it is necessary to analyze the U–P
response characteristics of VSCs. Figure 4 shows that when the
control identification bit coefficientKGUi andKGDi are both 1, the
output power–voltage relationship of the VSC is

P’ref
DCi − PDCi + (K’

droopi + 1)(Uref
DC − UDCi)

� 1

KPi + KIi
s

⎛⎝ 1

K’
Pi + K’

Ii
s

UDCr + IDCi⎞⎠. (16)

Because the response speed of outer loop voltage control and
inner loop current control is much higher than that of droop
control, the DC voltage stability of the system is less affected by
the parameters of the PI controller and more significantly affected
by the droop coefficient (Liu et al., 2019). Therefore, assuming
that the closed loop transfer function of DC voltage is 1, there is

UDCr � UDCi. (17)
With the introduction of unit step response into the steady

operation of the VSC-MTDC distribution network, that is, the
system power demand suddenly increases to 1 kW, the response
relationship of the VSC-MTDC distribution system under
different droop coefficients K’

droopi is obtained by Eqs. 16, 17
and shown in Figure 5, and the response relationship scheme is

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 9 | Article 8144895

Li et al. Adaptive Droop Control of VSC-MTDC

187

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


segmented with the DC voltage reference value (Uref
DC � 750V) as

the critical point. In the limiting range of the droop coefficient
K’

droopi, the DC side voltage of the VSC can basically change in the
range of ±5% of Uref

DC , and for any VSC, the larger the droop
coefficient is, the stronger the stability of the system is.

The set VSC-MTDC distribution network control parameters
for response characteristic analysis are shown in Table 1. Here,
the outer and inner loop control coefficients are calculated
according to the method of Wang et al., 2018, UDC and PDCi

are chosen according to their reference values, the maximum
operating power of the VSC is selected by 70% of the reference
capacity, and the lower limit of DC voltage of the VSC is less than
30% of the reference voltage; therefore,

Kdroopi � 80000 × (1 + 70%) − 80000
750 − 750 × (1 − 30%) � 106.67, (18)

⎧⎪⎪⎨⎪⎪⎩
K’

droopiMAX � μKdroopi � 3 × 106.67 � 320

K’
droopiMIN � 1

3
Kdroopi � 1

3
× 106.67 � 35.56.

(19)

Therefore, the limiting interval of the droop coefficient is
determined to be [35, 320].

When the power fluctuation occurs, to ignore the quadratic
disturbance term and to linearize Eq. 16, the small-signal closed-
loop transfer function T(s) of adaptive droop control can be
expressed as follows

T(s) � ΔUDCi(s)
ΔPDCi(s) �

b2s2 + b1s

a2s2 + a1s + a0
, (20)

where

FIGURE 4 | Block diagram of the control strategy: (A) voltage and current double closed loop control; (B) power deviation control; (C) additional DC voltage
deviation control.

FIGURE 5 | Control system response relationship of VSC-MTDC power
distribution.

TABLE 1 | Parameters of response characteristic analysis.

Parameters Data

DC voltage reference valueUDC 750 V
Output power reference valueP’ref

DCi 80kW
Outer loop control coefficient: KPi and KIi 0.045 and 138
Inner loop control coefficient: K ’

Pi and K ’
Ii 0.015 and 105
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
a0 � KIiK

’
Ii(Uref

DCK
’
droopi + Uref

DC + P’ref
DCi),

a1 � (KIiK
’
Pi + KPiK

’
Ii)(Uref

DCK
’
droopi + Uref

DC + P’ref
DCi),

a2 � KPiK
’
Pi(Uref

DCK
’
droopi + Uref

DC + P’ref
DCi) − Uref

DC ,

b1 � K’
Ii,

b2 � K’
Pi.

Figure 6 shows the zero-pole distribution map of the transfer
function T(s). In the limiting range of the droop coefficient
K’

droopi, all poles are in the left half of the complex plane and
on the real axis, so the VSC-MTDC power distribution
network is always stable, and the system stability is
independent of the inner and outer loop control
coefficients and the power and voltage reference values.
Only when K’

droopi reduces to a value far below its
minimum value, the poles may appear to the right of the
imaginary axis, at which point the system will be unstable. As
shown in Figure 7, when the inner or outer loop control
coefficients change, the pole will shift on the negative half axis
of the real axis, and the larger the pole value is, the farther
away the pole is from the virtual axis and the faster the
response speed of the system is.

SIMULATION VERIFICATION AND
ANALYSIS

Parameters of the Simulation Model
In order to verify the effectiveness and control effect of adaptive
droop control proposed in this article, the electromagnetic
transient model of the five-terminal VSC-MTDC distribution
network is established on the MATLAB/Simulink software
platform, in which the other four VSCs all perform adaptive
droop control considering the power–voltage deviation from the
constant DC voltage control adopted in VSC5. In this section, the
simulation experiments are carried out for three operating
conditions, including the equivalent load fluctuation of the DC
network, VSC3 with droop control exiting operation, and VSC5

with fixed DC voltage control exiting operation, and the
simulation results are compared and analyzed in detail with
traditional droop control. The main parameters of the
simulation model are shown in Table 2.

Analysis of Simulation Results
Operating Condition 1: Equivalent Load Fluctuation in
the DC Network
When t � 1.4s was set, the equivalent load of the DC network
increased from 500kW to 545kW, the resulting power shortage
led to the decrease of DC bus voltage, and then each VSC
increased power output to maintain the stability of DC bus
voltage.

Under the traditional droop control, the power shortage of the
system should be allocated strictly according to the capacity of the
VSC. As shown in Figure 8A, each VSC, that is, VSC1, VSC2,
VSC3, and VSC4, which adopted the droop control strategy,
respectively, increased the power output by 6.67 kwW, 13.33
kwW, 10.62 kW, and 9.38 kW, and the homologous load rates
were 82.72, 60.49, 56.10, and 49.67% apart; VSC1 operated with
heavy load. The time for the system to recover stability is more
than 1.6s, and there was a DC bus voltage deviation of 8.52 V
compared with 1.4s ago, and the voltage deviation rate was 1.14%.
During the period, the peak voltage fluctuation of the DC bus
reached 54.55V, accounting for 7.27% of the rated voltage. As
shown in Figure 8B, under the adaptive droop control, the
unbalanced power borne by each VSC with droop control
broke the fixed proportional constraint and, respectively,

FIGURE 6 | Zero-pole distribution map of T(s) under droop coefficient
variation.

FIGURE 7 | Zero-pole distribution map of T(s): (A) zero-pole distribution map of outer loop control coefficient variation; (B) zero-pole distribution map of inner loop
control coefficient variation.
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increased the power output of 3.27 kW, 21.16 kW, 10.63 kW, and
8.65 kW, and the corresponding load rates were 80.20, 63.39,
56.11, and 49.29%, respectively, and the load rate of VSC1

obviously reduced. The system restored stability after 0.14s,
during which the peak voltage fluctuation of the DC bus
reached 14.10V, accounting for 1.88% of the rated voltage.

Operating Condition 2: VSCWith DroopControl Exiting
Operation
When t � 1.4s was set, with VSC3 with droop control exited
operation, its power output reduced to 0, the resulting power
shortage of 110 kW substantially led to the decrease of DC bus
voltage, and then other VSCs increased the power output to
maintain the stability of DC bus voltage.

As shown in Figure 9A, under the traditional droop control,
the power output increments of the VSC1, VSC2, and VSC4

adopted droop control strategies were 22.96kW, 45.95, and
32.34kW apart, and the homologous load rates were 94.79,

72.57, and 61.76%, respectively, VSC1 is close to the full
load, and there is a great operational risk. There was a DC
bus voltage deviation of about 9.55 V between 1.4s before
and after, and the voltage deviation rate was 1.27%. During
the period, the peak voltage fluctuation of the DC bus reached
95.45V, accounting for 12.73% of the rated voltage. As
shown in Figure 9B, under the adaptive droop control, the
power output increments of the VSC1, VSC2, and VSC4

adopted droop control strategies were 12.49kW, 56.16 and
38.55kW, respectively, and the corresponding load rates were
87.03, 76.36, and 65.03%, respectively, and the load rate of
VSC1 obviously reduced. The system restored stability after
0.19 s, during which the peak voltage fluctuation of the DC
bus reached 30.60V, accounting for 4.08% of the rated
voltage.

Operating Condition 3: VSC With Fixed DC Voltage
Control Exiting Operation
When t � 1.4s was set, with VSC5 with fixed DC voltage control
exited operation, its power output reduced to 0, the resulting
power shortage of 50 kW substantially led to the decrease of DC
bus voltage, and then other four VSCs increased the power output
to maintain the stability of DC bus voltage.

As shown in Figure 10A, under the traditional droop control,
the power output increments of the VSC1, VSC2, VSC3, and VSC4

adopted droop control strategies were 8.33kW, 16.67kW,
13.27kW, and 11.73kW apart and the homologous load rates
were 83.95, 61.73, 57.33, and 50.91%, respectively; VSC1 operated
with heavy load. The time for the system to recover stability is
more than 1.6 s due to the loss of DC voltage support; after
stabilization, there will still be a certain deviation from that before
1.4s. During the period, the DC bus voltage fluctuated violently
with a peak value of 156.82V, accounting for 20.91% of the rated

TABLE 2 | Parameters of response characteristic analysis.

Parameters Data

Rated primary voltage of the AC system 10.5kV
Rated secondary voltage of the AC system 0.4kV
Rated capacity of the AC system 300 kVA
Ratio of equivalent reactance to resistance in the AC
system

5

Rated voltage of the DC network 750 V
Rated capacity of VSCs with droop control 135, 270, 215, and

190 kVA
DC side capacitance of VSC 5000 μF
DC side flat wave reactance of VSC 0.2mH
Initial equivalent load of the DC network 500kW

FIGURE 8 | Simulation waveforms of equivalent load fluctuation in the DC network: (A) simulation waves based on traditional droop control; (B) simulation waves
based on adaptive droop control.
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voltage. As shown in Figure 10B, under the adaptive droop
control, the power output increments of VSC1, VSC2, VSC3, and
VSC4 were 4.76kW, 25.32kW, 11.98kW, and 7.94kW,
respectively, and the corresponding load rates were 81.30,
64.93, 56.73, and 48.92%; the load rate of the VSC1 obviously
reduced. Because of the addition of the DC voltage deviation
control in the droop characteristic, the ability to restore the
system’s stable state obviously enhanced, the time
consumption is about 0.39s, and the peak value of the DC bus

voltage fluctuation during the period is 14.70V, accounting for
1.96% of the rated voltage.

CONCLUSION

In this article, the adaptive drooping characteristic
optimization method considering power–voltage deviation is
applied to the VSC-MTDC distribution network. The

FIGURE 9 | Simulation waveforms of the VSC with droop control exiting operation: (A) simulation waves based on traditional droop control; (B) simulation waves
based on adaptive droop control.

FIGURE 10 | Simulation waveforms of the VSC with fixed DC voltage control exiting operation: (A) simulation waves based on traditional droop control; (B)
simulation waves based on adaptive droop control.
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proposed control strategy is modeled and simulated based on
MATLAB/Simulink under different system operation
conditions and compared with the traditional droop
control. The conclusions are as follows:

1) Based on the analysis of the response characteristics of the
VSC-MTDC distribution network under the proposed control
strategy, the stability of the control system in the limiting
range of droop coefficient is verified.

2) The active power optimal allocation is realized between
each VSC, and when the system is disturbed, the average
load rate of the VSC with a small capacity reduces by about
6.59%, the overload risk debases, and the response ability
of the VSC to DC power flow disturbance obviously
improves.

3) The system DC voltage deviation before and after disturbance
caused by the differential control characteristic of the
conventional droop control is basically eliminated, and the
isochronous control to DC voltage is achieved. At the same
time, the average recovery time of the system is shortened
more than 78.74% and the average transient voltage peak
value during the period reduces about 76.71%, which greatly
improves the reliability and power quality of power supply
to users.
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