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Editorial on the Research Topic
Non-linear analysis and machine learning in cardiology

Cardiovascular diseases remain a major cause of death accounting for about 30% of death
worldwide according to the World Health Organization. Over the past decades, various
interdisciplinary approaches have been developed via close collaboration between clinicians,
engineers and basic scientists to reveal fundamental mechanisms and develop approaches
to perform analysis of cardiac abnormalities. The analysis can be performed on different
available measurements in patients, which can be electrical (via electrode recordings),
mechanical (via imaging), hemodynamic, or even entail overall patient data. As the heart
is a complex dynamical system, the simple linear approaches are not always successful,
and advances in non-linear signal processing and machine learning (ML) guided analysis
techniques could lead to a better understanding, diagnosis and treatment of cardiac diseases.

In addition to traditional methods of ECG analysis based on filtering, spectral analysis
and statistical approaches, various non-linear dynamic modeling and ML approaches have
been recently developed to perform quantitative analysis of electrical signals from the heart.
The contributions to this Research Topic are covering recent advances and novel research
trends in such approaches, aiming to discriminate between normal and abnormal cardiac
rhythms, to offer insights into fundamental processes, or even predict the future evolution
of a cardiac cell from time series.

The fundamental biophysical level is key to understand the collective behaviour of
myocytes during arrhythmias. (Béland et al.) improved the analysis of videomicroscopy
of cultured myocytes, by assessing not only the rate of activity but also the contractile
properties of the beating cells. Such approach is motivated by the use of cell cultures to
high-throughput screening of cardiotoxicity in drug development. (Nowak et al.) performed
numerical simulations to investigate the effect of ephaptic coupling on conduction velocity
in the tissue, and reported a non-linear, biphasic dependency on cell size. They concluded
that developmental changes predict changes in cardiac conduction. Interesting results of
multiscale modeling were presented by (Shahi et al.), who demonstrated that ML offers
a way to construct predictive models for local electrical activity, when cardiac action
potentials are predicted either using recurrent neural networks or reservoir computing.
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At the tissue level, an important characteristic in cardiac
excitation patterns is the activation time. (Ramlugun et al.)
presented a comprehensive framework to extract the activation
time from optical mapping signals, accounting for the
repetitive activation during complex arrhythmia. An alternative
representation of activation times is phase mapping, which
is a well-established technique to determine the location of
phase singularities during recordings of chaotic regimes such
as ventricular fibrillation. However, in a clinical context, the
phase maps are often noisy or sparse. To enable phase singularity
identification in these cases, (Lebert et al.) proposed a self-
supervised deep-learning approach that immediately recovers the
phase maps from short spatio-temporal sequences of electrical data.
Meanwhile, (Arno et al.) assessed shortcomings of traditional phase
analysis, integrated the concepts of linear rotor cores and conduction
block lines into a structure called “phase defect lines”, and showed
their presence in optical mapping recordings.

Moving one step further towards clinical applications, two
contributions focused on image analysis. (Wu et al.) adopted a deep
neural network approach to findobjects of interest inmedical images
without the need for predefined thresholds, and applied it to cardiac
images in movie data. (Yang et al.) described a novel way to extract
the characteristics of vortex flows in the right atrium, from phase-
contrast MRI images.

Non-linear analysis can also be used to support or guide specific
therapy. For instance, (Ravikumar et al.) developed a similarity score
from analysis of clinical intracardiac electrograms to identify active
sites of atrial arrhythmias for potential guiding for ablation therapy.
(Khamzin et al.) presented a predictive model for the outcome
of cardiac resynchronization therapy. They found that including
computational modeling results increased the quality of predictions
compared to a pure ML approach from clinical data only.

Finally, two papers in this Research Topic described advances
in improving the analysis of ECG signals. (Zheng et al.) developed a
ML approach to recover the location of arrhythmia triggers based on
the 12-lead ECG.Theirmethod can help to plan ablation procedures
for triggers near the right or left-ventricular outflow tracts. (Shinoda
et al.) utilized Poincaré mapping and recurrence quantification
analysis to characterize stochasticity vs. chaotic dynamics in the
heart, to distinguish between naturally varying ECG characteristics
and a pathological condition. Their method is then applied to a
Parkinson’s disease animal model.

Non-linear signal processing andMLguided analysis techniques
have played a key role in better understanding, diagnosing, and
treating cardiovascular diseases. The contributions to this Research
Topic cover recent advances and novel research trends in such
approaches, with a focus on discriminating between normal and
abnormal cardiac rhythms, offering insights into fundamental
processes, or even predicting the future evolution of a cardiac cell
from time series. These advances span from analyzing individual
myocytes to improving the analysis of ECG signals, to extracting
the characteristics of vortex flows in the right atrium from phase-
contrast MRI images.

The studies presented in this Research Topic demonstrate
the utility of ML approaches in clinical applications for decision
support and improving patient outcomes. In the future, the
proposed frameworks need to be adjusted to address various
disease monitoring and subsequent disease prediction. Further
development of various signal processing and data analysis
techniques based on different non-linear and ML approaches are
also warranted for multiple wearable sensors.
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Jianwei Zheng1†, Guohua Fu2†, Islam Abudayyeh3, Magdi Yacoub4, Anthony Chang5,
William W. Feaster5, Louis Ehwerhemuepha5, Hesham El-Askary1,6, Xianfeng Du2,
Bin He2, Mingjun Feng2, Yibo Yu2, Binhao Wang2, Jing Liu2, Hai Yao7, Huimin Chu2* and
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1 Computational and Data Science, Chapman University, Orange, CA, United States, 2 Department of Cardiology, Ningbo
First Hospital of Zhejiang University, Hangzhou, China, 3 Department of Cardiology, Loma Linda University, Loma Linda, CA,
United States, 4 Harefield Heart Science Center, Imperial College London, London, United Kingdom, 5 CHOC Children’s
Hospital, Orange, CA, United States, 6 Department of Environmental Sciences, Faculty of Science, Alexandria University,
Alexandria, Egypt, 7 Zhejiang Cachet Jetboom Medical Devices Co., Ltd., Hangzhou, China

Introduction: Multiple algorithms based on 12-lead ECG measurements have been
proposed to identify the right ventricular outflow tract (RVOT) and left ventricular
outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent
premature ventricular complex (PVC) originate. However, a clinical-grade machine
learning algorithm that automatically analyzes characteristics of 12-lead ECGs and
predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective
ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide
evidence to create RVOT and LVOT labels for the machine learning model.

Methods: We randomly sampled training, validation, and testing data sets from
420 patients who underwent successful catheter ablation (CA) to treat VT or PVC,
containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively
trained a machine learning algorithm supplied with 1,600,800 features extracted via
our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The
area under the curve (AUC) of the receiver operating characteristic curve was calculated
from the internal validation data set to choose an optimal discretization cutoff threshold.

Results: The proposed approach attained the following performance: accuracy (ACC)
of 97.62 (87.44–99.99), weighted F1-score of 98.46 (90–100), AUC of 98.99 (96.89–
100), sensitivity (SE) of 96.97 (82.54–99.89), and specificity (SP) of 100 (62.97–100).

Conclusions: The proposed multistage diagnostic scheme attained clinical-grade
precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability
restrictions than prior studies.

Keywords: outflow tract ventricular tachycardia, catheter ablation, electrocardiography, classification, artificial
intelligence algorithm
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INTRODUCTION

One population-based study (Dukes et al., 2015) of 1,139 older
adults without any heart-failure signs or systolic dysfunction
shows that premature ventricular complexes (PVC) and
ventricular tachycardia (VT) burden are significantly associated
with an increased risk of adjusted decreased left ventricular
ejection fraction (odds ratio, 1.13) and increased adjusted risk
of incident heart failure (hazard ratio, 1.06) and death (hazard
ratio, 1.04). Catheter ablation (CA) is a commonly considered
treatment of VT patients with and without structural heart
disease when drugs are ineffective or have unacceptable side
effects (Cronin et al., 2019). It has a class I indication for
treatment of idiopathic outflow tract ventricular tachycardia
(OTVT) (Joshi and Wilber, 2005; Latchamsetty et al., 2015). The
OTVT stems from the right ventricular outflow tract (RVOT)
in 60–80% of the cases and from the left ventricular outflow
tract (LVOT) (Bunch and Day, 2006) in the rest of the cases.
An accurate prediction of RVOT and LVOT origins of OTVT
can optimize the CA strategy, reduce ablation duration, and
avoid operative complications. Previous studies (Kamakura et al.,
1998; Hachiya et al., 2000; Ito et al., 2003; Joshi and Wilber,
2005; Tanner et al., 2005; Haqqani et al., 2009; Zhang et al., 2009;
Betensky et al., 2011; Yoshida et al., 2011, 2014; Cheng et al., 2013,
2018; Nakano et al., 2014; Efimova et al., 2015; He et al., 2018;
Xie et al., 2018; Di et al., 2019; Enriquez et al., 2019; Yamada,
2019) propose several criteria or models to estimate RVOT
and LVOT origins. However, these results have been limited
by sample size, scope of studies, ECG measurement efficiency,
and generalizability of the models. In contrast, we develop an
optimal multistage scheme that automatically extracts features
from standard 12-lead ECGs and incorporates these features
into a machine learning model to predict RVOT and LVOT
origins of VT or PVC with clinical-grade precision and provides
multiprospective analysis for the most important ECG features.

MATERIALS AND METHODS

Study Design
The institutional review board of Ningbo First Hospital of
Zhejiang University has approved this retrospective study and
granted a waiver of the requirement to obtain informed
consent. The study was conducted in accordance with the
Declaration of Helsinki.

From each patient’s entire ECG recorder, three cardiac
electrophysiologists (EPs) unanimously selected one QRS
complex during the sinus rhythm (SR) and one QRS complex
during the PVC or VT as the initial input. The features extracted
from the two QRS complexes are supplied to an optimal
machine learning classification model that provides two possible
prediction outputs: RVOT or LVOT. For the purposes of the
classification scheme, RVOT is considered a positive outcome
and LVOT a negative one. This study employed a training–
validation–testing design to correctly assess the performance
of the algorithm. This study consists of four phases (shown in
Figure 1): (Dukes et al., 2015) a feature extraction phase in which

two feature extraction methods are studied and compared—our
proprietary automated ECG feature extraction method and
a method based on conventional QRS morphological ECG
measurements (Cronin et al., 2019) a training phase in which the
extreme gradient boosting tree classification model is supplied
by the features generated in the feature extraction phase (Joshi
and Wilber, 2005) a validation phase aimed at finding important
features as optimal model input and deciding the optimal
discretization cutoff threshold that was applied in the testing
phase; and (Latchamsetty et al., 2015) a testing phase aimed at
evaluating, interpreting, and reporting the model performance.

Patient Selection
We reviewed patients who underwent mapping and ablation for
frequent PVC or VT that originated from either LVOT or RVOT
at the Ningbo First Hospital of Zhejiang University from March
2007 to September 2019. A PVC or VT burden above 10% of total
test duration was required for a study entry. A total of 420 patients
with OTVT were included in this study. Origin sites of OTVT
were confirmed by a successful CA, which means the frequent
PVC and VT did not occur above 5% of the total test duration in
the first 6-month follow-up after CA.

Classification of Anatomic Sites
The anatomical structure of RVOT and LVOT is depicted in
Figure 2, and the demographic data of the anatomic sites are
shown in Supplementary Section A and Table 1. This study
only focuses on the prediction of RVOT and LVOT rather than
the subsites (shown in Figure 2) under RVOT and LVOT. The
effective ablation sites of RVOT and LVOT confirmed by ablation
provide evidence to create RVOT and LVOT labels for the
subsequent machine learning model development.

Mapping and Ablation Procedure
Anti-arrhythmic drugs were stopped for at least five half-
lives before the inception of the ablation procedure. A 4.0-
mm 7F irrigated ablation catheter (Navistar; Biosense Webster,
Diamond Bar, CA, United States) was initially placed in the
RVOT for mapping. Both fluoroscopy and electroanatomic
mapping systems (CARTO, Biosense Webster, Diamond Bar, CA,
United States or NavX Velocity, St. Jude Medical, St. Paul, MN,
United States) were used to localize the anatomic position of
the ablation catheter within the outflow tract. The intracardiac
echo was used to identify specific anatomical structures, such as
cusps and papillary muscles. For example, Figure 3 presents the
fluoroscopy, 3-D mapping, intracardiac echocardiography, and
activation mapping for a case with the origin site in commissure
of aortic sinus of valsalva LVOT. Using point-by-point mapping,
anatomic aggregated maps were created. Activation mapping was
performed in all patients during VT and PVC. Pace mapping was
also performed with the lowest pacing output (2–20 mA) and
pulse width (0.5–10 ms) to capture the ventricular myocardium
at the site of the earliest activation. If suitable ablation sites for
the RVOT were not located or ablation failed to abolish the
arrhythmia, extended mapping to the LVOT site was deployed
via a retrograde aortic approach. After target sites were located,
radiofrequency energy was delivered up to a maximum power
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FIGURE 1 | Central illustration.

FIGURE 2 | Anatomic structure of LVOT and RVOT. LVOT includes left
coronary cusp (LCC), right coronary cusp (RCC), non-coronary cusp (NCC),
aortomitral continuity (AMC), and LVOT summit. RVOT includes anterior cusp
(AC), left cusp (LC), right cusp (RC), RVOT freewall, and RVOT septal.

of 35 W and a maximum electrode-tissue interface temperature
of 43◦C. If the VT or PVC disappeared or the frequency of
arrhythmias diminished after the first 30 s of ablation, the energy
was delivered continuously from 60 to 180 s. Ablation success was

defined as the absence of spontaneous or induced VT or PVC at
30 min after the last energy delivery and confirmed by continuous
cardiac telemetry in the subsequent 24 h of inpatient care.

The Procedure to Assess the Catheter
Ablation Outcomes
In the subsequent 24 h of inpatient care after the ablation
procedure, every patient received continuous ECG monitoring.
After discharge, the patients underwent a follow-up 2 weeks after
the ablation and then every month at the cardiology clinic. A 12-
lead surface ECG test was obtained on each clinic visit, and
24-h Holter monitoring was also prescribed at 3 and 6 months
after the ablation.

ECG Measurement Protocol
Noise Reduction and QRS Sample Selection
With chest and limb leads placed carefully in a standard
position, the 12-lead surface ECGs were collected by the EP
workmate system (EP-WorkMateTM System, Abbott, Saint Paul,
MI, United States) at a sampling rate of 2,000 Hz before
the ablation procedure. The noise sources impacting the ECG
database were power line interference, baseline wandering,
and random noise. Wavelet transform yields better time–
frequency localization results than windowed Fourier transform
and naturally has an advantage in noise reduction applications
(Abi-Abdallah et al., 2006). Thus, the wavelets technique was
used to remove the noise components mentioned above. The
coif5 Wavelets (Lahmiri, 2014) and Stein’s Unbiased Risk
Estimator (SURE)-based (Stein, 1981; David and Johnstone,
1995) threshold were implemented by MATLAB to carry out
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TABLE 1 | Summary statistics of demographic data and clinical characteristics of all patients.

Training cohort Validation cohort Testing cohort

RVOT LVOT P-value RVOT LVOT P-Value RVOT LVOT P-Value

Patients, n (%) 263 (77) 77 (23) 0.921 30 (79) 8 (21) 0.991 33 (79) 9 (21) <0.01

Age, year, mean ± sd 46.5 ± 10.6 47.5 ± 11.3 0.731 45.1 ± 13.8 46.9 ± 9.2 0.74 43.8 ± 15.0 45.3 ± 17.1 0.652

Male, n (%) 80 (66) 41 (34) <0.01 6 (46) 7 (54) <0.01 7 (58) 5 (42) <0.01

BMI (kg/m2), mean ± sd 28.33 ± 3.24 29.28 ± 2.19 <0.01 30.11 ± 3.17 28.37 ± 4.53 <0.01 27.62 ± 4.15 28.37 ± 4.72 <0.01

PVC, n/24 h mean ± sd , 28,455.5 ± 9,635.8 29,358.5 ± 12,117.4 0.651 30,356.5 ± 18,587.8 276,565 ± 10,997.8 0.531 23,218.5 ± 11,755.6 33,035.6 ± 18,256.3 0.0273

Frequent PVC, n (%) 249 (78) 70 (22) 0.683 22 (76) 7 (24) 0.818 28 (85) 4 (44.5) 0.046

Paroxysm VT, n (%) 14 (78) 4 (22) 1 1 0 1 2 (6) 4 (44.5) 0.023

Sustained VT, n (%) 6 (67) 3 (34) 0.425 1 1 0.398 3 (9) 1 (11) 1

VT cycle length (ms),
mean ± sd

410 ± 57 424 ± 102 0.431 426 ± 74 430 ± 88 0.621 438 ± 93 402 ± 147 0.886

Pre-QRS activation time
(ms), mean ± sd

29.38 ± 10.26 31.27 ± 8.25 0.334 33.40 ± 5.51 31.65 ± 8.76 0.63 28.64 ± 9.69 33.48 ± 8.46 0.5

Prior CA, n 2 1 0.533 0 0 1 2 0 1

Myocardiopathy,n 1 2 0.127 1 0 1 1 1 0.398

Alcoholic cardiomyopathy,
n

1 0 1 0 0 1 0 0 1

ICD (VT), n 1 0 1 0 0 1 1 0 1

Coronary heart disease, n 3 1 1 1 0 1 1 1 0.398

P-values present the probabilities of equal means or proportions of each tested variable. LVOT, left ventricular outflow tract; RVOT, right ventricular outflow tract; BMI, body mass index; LVEF, left ventricular ejection
fraction; PVC, premature ventricular complex; VT, ventricular tachycardia; CA, catheter ablation.
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FIGURE 3 | Activation map and fluoroscopic map for VA originating from commissure of aortic sinus of valsalva in LVOT. (A) Right and left anterior oblique
fluoroscopic views show an ablation catheter in the LVOT. Ablation in the LVOT (LCC–RCC commissure) eliminated the PVC within 3 s. (B) The 3-D anatomic
representation of the RV endocardium, LV endocardium, and venous system with the ablation catheter positioned at the anterior interventricular vein. (C) The green
circle indicates the tip of the ablation catheter in LCC–RCC commisure. (D) The earliest bipolar and unipolar activation time (–30 ms) are shown.

the noise reduction steps. To get a full understanding of the
techniques and schemes that were adopted in this work, please
refer to the code availability section. After noise components
were removed, three cardiac EPs unanimously selected one QRS
complex during the SR and one QRS complex during the PVC or
VT to classify RVOT and LVOT.

Automated ECG Feature Extraction Method
We applied the following measurements and transformation
protocol to automatically extract ECG morphological features
and supply them to the machine learning model. We used
the R-wave peak points of PVC and SR heartbeat in lead
V6 as reference lines because they are easy to identify in
most conditions. At the first step, for one SR heartbeat, 215
data points (0.11 s) before and after the reference line were
truncated, and 335 data points (0.17 s) before and after the
reference line were cut for one PVC. The above lengths of
430 and 670 were the means of QRS complex duration plus
four times the standard deviation of that for SR beat and
PVC. They should cover 99.99% of the QRS complexes in any
data due to the normality of the QRS duration distribution
and the empirical rule. The mean and standard deviation of
QRS duration were computed from the samples in this study;
the maximum length of QRS complex for SR beat is 405
data points, and the maximum for PVC is 607 data points.
Second, for every lead, we selected the first peak/valley (local
maximum or minimum) closest to the reference line (shown
in Figure 4A) defined in the first step. Third, the three peaks
or valleys before the first peak/valley identified in the second
step and the four peaks or valleys after the first peak/valley
were selected from all peaks and valleys of SR heartbeat and
PVC separately. Thus, in every lead, eight peaks and valleys

were extracted to represent the SR heartbeat and PVC basic
features. The zero-padding method was applied for the cases
that did not have eight peaks and valleys around the reference
line. The total number of peaks and valleys, eight, is equal
to the means of the number of peaks and valleys in all leads
plus four times the standard deviation of that for SR beat and
PVC, respectively. This automated feature extraction method
was verified manually to make sure it captured essential QRS
morphological characteristics.

The numerical measurements (shown in Figure 4B) of each
peak and valley include location, prominence, the distance from
peak or valley location to left prominence boundary, the distance
from peak or valley location to right prominence boundary, width
at half of the prominence, the distance from left prominence
boundary to right prominence boundary, amplitude, contour
height, and a logic variable to present peak or trough. The
prominence of a peak or a valley measures how much the peak
or valley stood out due to its intrinsic height and location relative
to neighbor peaks or valleys. Thus, the prominence of a peak
was defined as the vertical distance between the peak point and
its lowest contour line. The measurement of valleys adopted the
same method with peaks.

After the above eight numerical measurements of eight peaks
or valleys for both SR beat and PVC at every lead were
collected, we generated a feature matrix with the size of 192 (2
beats × 12 leads × 8 peaks or valleys) by 8 (the number of
numerical measurements). We transformed the feature matrix
using ratios of features in the rows and columns of the
matrix to create a new level of features that can reveal vital
details of the ECG morphology. Finally, 1,600,800 features were
automatically obtained, and their definitions can be found in
Supplementary Section B.2. The estimated 95% CI of each
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FIGURE 4 | Description of automated ECG feature extraction method. The proposed feature extraction method automatically finds peaks presented by P# and
valleys presented by V# in panel (A) through 430 data points of one SR beat in 12 leads. Panel (B) presents the numerical measurements that capture essential
information of a peak, including location = sample points at P3, prominence = distance from P2 to P3, distance from peak or valley location to left prominence
boundary = distance from P1 to P3, distance from peak or valley location to right prominence boundary = distance from P3 to P4, width at half of the
prominence = the length of green line, distance from left prominence boundary to right prominence boundary = distance from P1 to P4, amplitude = distance from
P2 to zero baseline, contour height = prominence – amplitude. X-axis presents sampling data points, and Y-axis presents voltage.

numerical measurement in the feature matrix is documented in
Supplementary Section B.2 and Supplementary Table 5.

Conventional QRS Morphological Feature Extraction
Even though we intended to develop an automated ECG
measurement system that is favored by the machine learning
algorithm, the conventional QRS morphological ECG
measurement method, such as metrics of Q-, R-, and S-waves;
segments among them; and the ratios among segments, is
studied and compared in this work. The conventional QRS
morphological ECG measurement protocol is defined below.
SR and VT ECG morphology were measured on the same
12-lead ECG by a customized MATLAB program. During the
clinical arrhythmia, the following measurements (presented in
Supplementary Section B.3 and Figure 1) were obtained from
both one SR beat and one PVC: (Dukes et al., 2015) amplitude of
Q-, R-, and S-waves (Cronin et al., 2019) duration of Q-, R-, and
S-waves as well as QRS complex; and (Joshi and Wilber, 2005)
R/S amplitude ratio (Kamakura et al., 1998; Ito et al., 2003),
transitional zone (Hachiya et al., 2000; Tanner et al., 2005), V2
transition ratio (Betensky et al., 2011), transitional zone index
(Yoshida et al., 2011; Di et al., 2019), R-wave deflection interval
(Cheng et al., 2013), V2S/V3R index (Yoshida et al., 2014),
R-wave duration index (Ouyang et al., 2002), and R/S amplitude
index (Ouyang et al., 2002). The T-P segment was considered one
of the isoelectric baselines to measure R- and S-wave amplitudes.

The QRS duration was measured from the site of the earliest
initial deflection from the isoelectric line to the time of the
latest activation. The R-wave length was calculated from the site
of the earliest initial deflection from the isoelectric line to the
time at which the R-wave intersected the isoelectric line. For
all cases, QRS measurements were performed on an isolated
PVC representative of the clinical VT before the induction of
sustained VT and compared with the SR QRS complex. All
measurements above were used to compare our approach against
methods from 12 prior studies (Kamakura et al., 1998; Zhang
et al., 2009; Betensky et al., 2011; Yoshida et al., 2011, 2014;
Cheng et al., 2013, 2018; Nakano et al., 2014; Efimova et al., 2015;
He et al., 2018; Xie et al., 2018; Di et al., 2019).

In addition to the above conventional ECG measurements, we
developed the following protocol to generate features to supply to
the machine learning model. Amplitudes of Q-, R-, and S-waves
based on the voltage at the onset of Q-wave, the offset of S-wave,
the Q-wave, and the S-wave were also input variables in the
machine learning model. To give the same length input to the
machine learning model, we set the measures of Q-, R-, and
S-waves for these waves’ missing cases to zeros, such as QS
morphology in the V1 lead and RS morphology in the V5 or
V6 lead. As we implemented the automated feature extraction
method, we also transformed the measurements mentioned
above into new variables and put them into the machine learning
model. The total number of features generated by this method
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is 155,784, and the entire definition of features can be found
in Supplementary Section B.3. The 95% CI of each numerical
measurement are listed in Supplementary Section B.3 and
Supplementary Table 7.

Statistical Analysis
For the continuous variables of age and ECG measurements,
we calculated the mean and standard deviation. For all count
variables, total sample size, number of males, number of subjects
with frequent PVC, sustained VT, and sublocations under RVOT
or LVOT, we calculated frequency counts and percentages. One-
sample test for proportions, two-sample t test, two-sample test
for proportions, and Fisher’s exact test were adopted to test the
difference of the sample numbers, average ages, genders, and the
number of frequent PVC or sustained VT between RVOT and
LVOT groups. The Cramer Von Mises, Anderson–Darling, and
Shapiro–Wilks tests did not reject the data normality hypothesis,
and a two-sample t test was used to test for equal means
of continuous variables between RVOT and LVOT. Statistical
optimization of the gradient boosting tree model was done
through iterative training using the extreme gradient booster
(XGBoost) package. The following performance measures were
formally analyzed, including the area under the curve (AUC)
of the receiver operating characteristic (ROC) curve, accuracy
(ACC), sensitivity (SE), specificity (SP), and F1-score. A two-
sided 95% CI summarizes the sample variability in the estimates.
The CI for the AUC was estimated using the Sun and Su
optimization of the Delong method implemented in the pROC
package. In contrast, CIs for F1-score, SE, and SP were obtained
by the bootstrap method with 20,000 replications. All analyses
were done by R version 3.5.3.

RESULTS

We analyzed data from 420 patients who underwent CA of
OTVT at the Ningbo First Hospital of Zhejiang University from
March 2007 to September 2019. After the CA procedure, two
(0.5%) patients developed slight ecchymosis. A total of five (1.2%)
patients were excluded from this study because of frequent PVC
or VT recurrence in the first 6-month follow-up.

Patient demographic and clinical characteristics data for the
RVOT and LVOT groups are shown in Table 1. We compare the
distributions of these background characteristics in the RVOT
and LVOT groups and list the associated p-values in the table.
The RVOT cohort consists of 20.95% left cusp, 17.62% posterior
septal, 14.29% anterior septal, 10% anterior cusp, 7.86% free wall,

and 7.14% right cusp. The LVOT cohort consists of 10.71% left
coronary cusp, 5.71% aortomitral continuity, 2.62% left coronary
cusp and right coronary cusp ommisure, 1.67% right coronary
cusp, and 1.43% summit (shown in Supplementary Section A
and Table 1).

The patients were assigned to training, validation, and testing
cohorts, consisting of 340 (81%), 38 (9%), and 42 (10%) patients,
respectively, using random proportional allocation (demographic
summary shown in Table 1). For a fair comparison, the machine
learning model was supplied with different features from two
feature extraction methods. The performance was assessed using
the same training, validation, and testing cohorts.

We used 1,600,800 automatically generated ECG features as
machine learning model input. The proposed approach achieved
an ACC of 97.62 (87.44–99.99); F1-score of 98.46 (90–100);
prediction of RVOT origins with SE of 96.97 (82.54–99.89);
and SP of 100 (62.97–100) (shown in Table 2), respectively;
and AUC of 98.99 (96.89–100) (presented in Figure 5). Among
the 1,600,800 initial automatically generated ECG features, we
found a total of 1,352 critically important features with non-zero
Shapley additive explanations (SHAP) values (Lundberg and Lee,
2017), showing the importance of their contributions to RVOT
and LVOT prediction. The detailed interpretation of SHAP value
is introduced in Supplementary Section C.1. We chose and
analyzed the top three important features (shown in Figure 6)
that have significant classification capability: (Dukes et al., 2015)
the ratio between the location of the 5th peak or valley at the SR
beat V1 lead and the right boundary of the 5th peak or valley at
the V1 lead of PVC, Cronin et al. (2019) the ratio between the
prominence of the 5th peak or valley at the V1 lead of PVC and
the prominence of the 5th peak or valley at the V3 lead of PVC,
and (Joshi and Wilber, 2005) the difference between the distance
of the 5th peak or valley to the left boundary at the V1 lead of PVC
and the distance of the 5th peak or valley to the left boundary at
the V1 lead of the SR beat.

Training the machine learning model using 155,784
features extracted from conventional QRS morphological
ECG measurements, the proposed method attained an ACC of
92.86 (80.35–98.85), F1-score of 95.38 (86.62–98.86), prediction
of RVOT origins with SE of 93.94 (78.64–98.99) and SP of 88.89
(50.86–99.45) (shown in Table 2), and AUC of 95.62 (89.78–100)
(presented in Figure 5). Among the initial 155,784 features, we
found a total of 1,003 critically important features with non-zero
SHAP values (Lundberg and Lee, 2017), showing the importance
of their contributions to RVOT and LVOT prediction. The top
three important features (shown in Supplementary Section C.1
and Figure 2) that show significant classification capability are

TABLE 2 | Classification performance comparison with 95% CI.

AUC SE SP F1-Score ACC

Automated ECG feature extraction 98.99% (96.89–100) 96.97% (82.54–99.89) 100% (62.97–100) 98.46% (90–100) 97.62% (87.44–99.99)

Conventional QRS morphological
feature extraction

95.62% (89.78–100) 93.94% (78.64–98.99) 88.89% (50.86–99.45) 95.38% (86.62–98.86) 92.86% (80.35–98.85)

Cardiologists NA 97.86% 81.72% 96.39% 94.29%

F1-score = 2 × Precision × recall / (precision + recall); SE, sensitivity; SP, specificity; ACC, accuracy; CI, confidence interval.

Frontiers in Physiology | www.frontiersin.org 7 February 2021 | Volume 12 | Article 64106613

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-641066 February 19, 2021 Time: 19:2 # 8

Zheng et al. A High Precision Machine Learning Algorithm

FIGURE 5 | Receiver-operating characteristic curve generated by the optimal machine learning model supplied with two feature extraction methods. The CI for the
AUC was estimated using the Sun and Su optimization of the Delong method. Sensitivity and specificity of RVOT prediction are indicated for different thresholds.

(Dukes et al., 2015) the ratio between R-wave amplitude based
on the zero isoelectric baselines at lead III PVC and the R-wave
amplitude based on the offset of S-wave at V1 lead PVC, Cronin
et al. (2019) the ratio between the R-wave amplitude based on
R-wave onset at V2 lead SR beat and the R-wave amplitude
based on zero isoelectric baseline at V3 lead PVC, and (Joshi and
Wilber, 2005) the ratio between the R-wave amplitude based on
the zero isoelectric baseline at aVL lead SR beat and the R-wave
amplitude based on S-wave offset at V1 lead PVC. The statistical
summary of conventional QRS morphological measurements for
leads V1 to V6 is listed in Supplementary Section A and Table 2.

Finally, the average performance of eight cardiologists who
determined RVOT and LVOT using the same ECG samples
in this study is presented in Table 2. The classification
confusion matrix for these three methods shows correct and
incorrect frequency counts in Supplementary Section A and
Table 3. Furthermore, we compared our approach against related
methods from 12 prior studies (Kamakura et al., 1998; Zhang
et al., 2009; Betensky et al., 2011; Yoshida et al., 2011, 2014;
Cheng et al., 2013, 2018; Nakano et al., 2014; Efimova et al.,
2015; He et al., 2018; Xie et al., 2018; Di et al., 2019). ACC,
F1-score, SE, SP, positive predictive value, negative predictive
value, and AUC were used to compare performances and are
shown in Table 3.

DISCUSSION

We designed and implemented a high-accuracy algorithm
for LVOT and RVOT origins of OTVT classification, using
1,600,800 ECG measurements automatically extracted from

12-lead ECGs using our proprietary method. The prediction
accuracy comparison among our method combined with the
XGBoost classifier, a conventional QRS feature extraction method
combined with XGBoost, and the performance of human experts
(shown in Table 2) shows that the machine learning model with
the automated ECG feature extraction method was uniformly
superior. We used DeLong’s test (DeLong et al., 1988) to
demonstrate that the automated ECG feature extraction method
had a significantly higher AUC compared with that attained by
the conventional QRS morphological feature extraction approach
with a P-value = 0.035. The comparison of our approach against
methods from 12 prior studies (Kamakura et al., 1998; Zhang
et al., 2009; Betensky et al., 2011; Yoshida et al., 2011, 2014;
Cheng et al., 2013, 2018; Nakano et al., 2014; Efimova et al.,
2015; He et al., 2018; Xie et al., 2018; Di et al., 2019) shows that
our algorithm achieved the highest performance scores (shown
in Table 3). Additionally, we evaluated the general classification
capability of each criterion proposed by previous studies using
the database in this study. Not surprisingly, we observed
significant differences between previously reported performances
and the reproduced results of these methods because most of
the prior studies used the univariate analysis to make predictions
(shown in Table 3).

The excellent performance of our machine learning algorithm
demands an enormous volume of data and features. It is an
extremely time- and cost-consuming task to generate such
amount of features by the conventional ECG QRS morphological
measurements introduced in prior studies because these
measurements are manually obtained. Thus, we did not
make any assumptions about ECG criteria before training the
machine learning algorithm and intended to exhaust all possible
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TABLE 3 | Comparison with prior studies to localize the origins of outflow tract arrhythmia.

Author Patients ECG criteria/algorithm Reported performance in the article Performance using the database in
this study

ThisStudy 420 1,600,800 ECG criteria and extreme
gradient boosting tree model

SE 96.97% SP 100%
PPV 100% NPV 90%

AUC 98.99% ACC 97.62%
F1-Score 98.46%

Kamakura et al. (1998) 40 The R/S transition (first precordial lead
with R/S ration >1) in Lead V3 to
predict LVOT

SE 80% PPV 40%
SP 82.86% NPV 96.67%

SE 30.1% PPV 18.92% SP 63.3%
NPV 73.4%

Zhang et al. (2009) 65 (a) Transitional zone ≥ V4 predicts
RVOT origin

SE 94.87%
PPV 100%

SE 60.86%
PPV 72.47%

(b) R-wave duration index<0.5 and R/S
wave amplitude index<0.3 in V1/V2
predicts RVOT origin

SE 94.87%
PPV 100%

SE 80.24%
PPV 73.52%

Betensky et al. (2011) 61 (a) V2 transition ratio (defined as
percentage R wave during VT divided
by percentage R wave in SR) ≥ 0.6
predicts LVOT origin

SE 95% SP 100%
PPV 100% NPV 95%
ACC 91%

SE 78.49% SP 89.6%
PPV 68.22%
NPV 93.61%
ACC 87.14%

(b) PVC precordial transition later than
SR transition predicts RVOT origin

SE 19% SP 100% SE 23% SP81%

Yoshida et al. (2011) 207 V2S/V3R index ≤ 1.5 predicts LVOT
origin

SE 89% SP 94%
PPV 84% NPV 96%

SE 69.89% SP 85.63% PPV 58.04%
NPV 90.9%

Cheng et al. (2013) 94 (a) R/S transition at lead V1/V2 predicts
LVOT origin

SE 52.4% SP 92.1% PPV 72.6% NPV
85.3% ACC 84.2%

SE 76.34% SP 91.43% PPV 71.72%
NPV 93.15% ACC 88.09%

(b) R/S transition at lead V3 predicts
RVOT origin

SE 39% SP 35.2% PPV 74.2% NPV
29.4% ACC 46.3%

SE 33.33% SP 48.93% PPV 15.66%
NPV 72.07% ACC 45.48%

(c) R/S transition at lead V4 or later
predicts RVOT origin

SE 59.3% SP 93.1% PPV 94.6% NPV
46.7% ACC 68.3%

SE 43.01% SP 52.6% PPV 20.51%
NPV 76.44% ACC 50.47%

Yoshida et al. (2014) 112 TZ index = TZ score of OTVT minus TZ
score of a sinus beat

To aortic sinus cusp
SE 88% SP 82% AUC 0.9

SE 76.05% SP 52.59%

Nakano et al. (2014) 63 (a) R > S concordance in synthesized
right-sided chest leads (Syn-V3R,
Syn-V4R, Syn-V5R) predicts an LVOT
origin

SE 100%
SP 100%

Could not be reproduced by standard
12-lead ECG

(b) R/S index (>0.3): A ratio of R-wave
amplitude to S-wave amplitude in leads
V1 or V2 predicts an LVOT origin

SE 90%
SP 98%

SE 53.12%
SP 46.05%

Efimova et al. (2015) 105 A QRS-RVA (right ventricular apex)
interval ≥ 0.49 ms predicts an LVOT
origin. The QRS-RVA interval was
measured from the onset of the QRS
complex to the distal RVA signal.

SE 98%, SP 94.6%, PPR 94.1%, NPR
98.1%, ACC 96.1%

Could not be reproduced by standard
12-lead ECG

Cheng et al. (2018) 94 R-wave deflection interval in lead
V3 > 80 ms and R-wave amplitude
index in lead V1

SE 100% SP 83%
PPV 85.7% NPV 100%
ACC 91.7%

SE 59.14% SP 58.1%
PPV 28.64% NPV 83.33%
ACC 58.33%

He et al. (2018) 488 Y = −1.15*(TZ) − 0.494*(V2S/V3R) SE 90% SP 87% AUC 0.88% SE 78.39% SP 67.23% AUC 0.79%

Xie et al. (2018) 75 R-wave amplitude ≥ 0.1 mV to predict
LVOT

SE 75% SP 98%
PPV 92.3% NPV 93%
AUC 0.85%

SE 67.74% SP 58.1%
PPV 31.5% NPV 86.36%

Di et al. (2019) 184 V1-V3 transition index to predict RVOT SE 93% SP 86%
AUC 0.931
ACC 95%

SE 70.33% SP 67.74%
ACC 69.76%

The first column presents the first author name and the reference number in the main text; TZ, transition zone; SE, sensitivity; SP, specificity; PPV, positive predictive value;
NPV, native predictive value; ACC, accuracy; AUC, area under curve.

relationships among morphological measures of Q-, R-, and
S-waves as well as the entire QRS complex. We designed and
implemented an automated ECG feature extraction method that
can generate 1,600,800 ECG signal characteristics. Not only did
these features contain a considerable amount of the classical

statistics from 12 prior studies (Kamakura et al., 1998; Zhang
et al., 2009; Betensky et al., 2011; Yoshida et al., 2011, 2014; Cheng
et al., 2013, 2018; Nakano et al., 2014; Efimova et al., 2015; He
et al., 2018; Xie et al., 2018; Di et al., 2019), but they also captured
morphological measures not considered by previous studies, such
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FIGURE 6 | Analysis of top three significant ECG measurements found by machine learning model with automated feature extraction method. The univariate analysis
(A) shows that features 1 (A.1) and 2 (A.2) have significant capability to separate RVOT and LVOT. The bivariate analysis (B) indicates the classification ability of
one–one interaction of the top 3 significant features. In the multivariate analysis (C), the smaller feature 1 (C.1), feature 1 (C.2), and feature 3 (C.3) generate a higher
probability of LVOT, but the magnitude of influence varies across features. The color in panel (C) represents the feature value (red high, blue low).

as rsR’ waves and rsr’s’ waves. However, one may be concerned
that such a feature extraction method will include the P- and
T-wave within SR beats and retrograde P-waves within PVC. The
machine learning model captures and analyzes a large amount
of information from every beat but filters out all unimportant

features based on their classification accuracy contribution. As we
can see from the top three important features (shown in Figure 6)
selected by the machine learning model, none of the features that
presented waves mentioned above played a role in the prediction.
The important morphological features of the Rsr’ and rsr’s waves
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may be caused by noise and lead placement of the 12-lead ECG
electrodes because the 12-lead ECG electrodes are frequently
misplaced due to the mapping patches used during the ablation
procedure. In this study, we avoid such a problem because chest
and limb leads were placed carefully in a standard position when
the 12-lead surface ECGs were collected before the procedure.

Moreover, before the machine learning model is safely applied
in practice, an unambiguous interoperation is necessary for
cardiologists to gear this advanced tool, such as explaining what
crucial criteria are and why they play vital roles. For instance, the
machine learning model shows that the smaller the magnitude
of the first important feature (shown in Figure 6C.1), the higher
the possibility of LVOT origin of OTVT. The first important
feature is the ratio of the location of the 5th peak or valley
at the V1 lead SR beat and the right boundary of the 5th
peak or valley at the V1 lead of PVC. In our feature extraction
system, the 5th peak or valley at the V1 lead of PVC is an
S-wave in most cases. The key ECG lead in the initial site
prediction of VT origin is the V1 lead because it is located nearly
orthogonal to the septal plane and, thus, is the best lead to
resolve initial right- vs. left-sided activation. When the V1 lead
has a positive QRS (R > s), the VT is considered to have the
right bundle branch block (RBBB) configuration. Conversely, net
negative QRS (r < S) defines a left bundle branch block (LBBB)
configuration (Haqqani and Marchlinski, 2019). The top three
important features (shown in Figure 6) were exactly measured
activation time, RBBB, and LBBB configuration. Therefore, such
interpretation makes the machine learning decision process not a
black box anymore.

Last but not least, the machine learning model proposed in
this study can be immediately and effortlessly deployed to EP
labs. The pretrained model, source code, and data are available
online and found in the “Data Availability Statement” section.
The model inputs are only two QRS complexes, one for PVC and
one for SR beat, and they can be easily acquired from 12-lead
standard ECG. The analysis of one patient’s data takes less than a
second provided every step of measurement and computation is
automatically done by the model and the preprocessing approach.
The precise prediction of origins can significantly reduce CA
duration and reduce the risk of complications.

Study Limitations
Because the data set did not produce enough well-labeled data
to feed a machine learning model, the algorithm currently
only predicts LVOT and RVOT rather than subsites of them.
For instance, the origin of PVC is sometimes in the middle
of septal RVOT/LVOT. The presence of expertly labeled data
for three categories, RVOT, LVOT, and septal, will allow
the machine learning model to predict the origins with
higher accuracy. Although this study includes patients with

comprehensive anatomy sites under RVOT and LVOT, the
performance of the method could improve in the presence of
more cases of RCC and summit under LVOT. Moreover, some
conditions, such as cardiomyopathies, reentrant VT coronary
heart disease, and prior structural and congenital abnormalities,
are underrepresented or absent from the study. Thus, the
algorithm potentially has a limitation if applied in such scenarios.

CONCLUSION

Considering the performance of prediction, the capacity of
extracting vital information from 12-lead ECG and the
robustness of application, our results provide the promising and
reliable decision support to guide a successful CA treatment of
ventricular arrhythmia by machine learning technology.
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Objective: The measurement of cardiac blood flow vortex characteristics can help to
facilitate the analysis of blood flow dynamics that regulates heart function. However,
the complexity of cardiac flow along with other physical limitations makes it difficult to
adequately identify the dominant vortices in a heart chamber, which play a significant role
in regulating the heart function. Although the existing vortex quantification methods can
achieve this goal, there are still some shortcomings: such as low precision, and ignoring
the center of the vortex without the description of vortex deformation processes. To
address these problems, an optical flow Lagrangian averaged vorticity deviation (Optical
flow-LAVD) method is proposed.

Methodology: We examined the flow within the right atrium (RA) of the participants’
hearts, by using a single set of scans pertaining to a slice at two-chamber short-
axis orientation. Toward adequate extraction of the vortex ring characteristics, a novel
approach driven by the Lagrangian averaged vorticity deviation (LAVD) was implemented
and applied to characterize the trajectory integral associated with vorticity deviation and
the spatial mean of rings, by using phase-contrast magnetic resonance imaging (PC-
MRI) datasets as a case study. To interpolate the time frames between every larger
discrete frame and minimize the error caused by constructing a continuous velocity field
for the integral process of LAVD, we implemented the optical flow as an interpolator and
introduced the backward warping as an intermediate frame synthesis basis, which is
then used to generate higher quality continuous velocity fields.

Results: Our analytical study results showed that the proposed Optical flow-LAVD
method can accurately identify vortex ring and continuous velocity fields, based on
optical flow information, for yielding high reconstruction outcomes. Compared with
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the linear interpolation and phased-based frame interpolation methods, our proposed
algorithm can generate more accurate synthesized PC-MRI.

Conclusion: This study has developed a novel Optical flow-LAVD model to accurately
identify cardiac vortex rings, and minimize the associated errors caused by the
construction of a continuous velocity field. Our paper presents a superior vortex
characteristics detection method that may potentially aid the understanding of medical
experts on the dynamics of blood flow within the heart.

Keywords: vortex identification, Lagrangian averaged vorticity deviation, optical flow, cardiac flow analysis,
vortex rings, vortex volume

INTRODUCTION

The vortex formation in blood flow within the heart plays an
important role in characterizing the function of the blood flow
mechanism and energy transfer to the heart chamber, which are
important indicators that can be used to quantify the overall
heart function. The fluid flow transported by the vortex ring
formation is observed to be more efficient than that transported
by a steady, straight jet flow of fluid, in terms of aiding the
circulation of blood to the various regions of the heart chamber
(Dabiri and Gharib, 2005; Kheradvar and Gharib, 2007, 2009;
Kheradvar et al., 2007; Wong et al., 2009a). As we know, the
cardiac myocardium has inter-twined helical fibers. So when they
contract, the heart chamber twists, and this is how blood is
efficiently ejected out of the chamber. Now this heart chamber
twisting causes the formation of vortex rings of high vorticity in
blood flow in the chamber. In contrast, cardiomyopathic hearts
have impaired contractility, and hence less twisting; hence, they
have smaller vortex rings with lower vorticity (Sengupta et al.,
2006). So, the formation of vortex rings is closely associated
with cardiac function, and the health status of an individual.
This is why, in conjunction with the structural parameters of
the heart, the vortex flow analysis provides an insight into its
functional analysis, and helps distinguish normal subjects from
patients with heart disease (Kheradvar et al., 2019). Therefore,
developing a method that can enable quantification of the vortex
ring characteristics and its dynamic changes during the cardiac
cycle can enable understanding of the vortex ring’s physiological
functions and facilitate exploration of heart diagnostics and its
pathological changes (Kräuter et al., 2020).

Interestingly, phase-contrast magnetic resonance imaging
(PC-MRI) allows three-dimensional MR velocity mapping based
on the intrinsic sensitivity of MRI to flow, and provides a unique
tool for measuring complex blood flow patterns in vivo (Markl
et al., 2007; Dyverfeldt et al., 2015). Earlier Wong et al. (2009a)
conducted a study in which the vorticity of vortex flow was
measured by using the flow field obtained from scanned PC-MRI,
to characterize the location and strengths of vortices within a
cardiac chamber. A major limitation of this study is that it is based
on global estimation, and does not include extraction of localized
information from the vortex region to elucidate the function of
dominant vortexes. The identification of the dominant vortex
ring is the key for the comprehensive description of the resulting

swirling blood flow within a heart chamber (such as the left
ventricle) resulting in blood outflow.

Since there is no uniform definition of vortex (Epps, 2017;
Günther and Theisel, 2018), different vortex criteria have been
used to extract vortex flow information within the heart chamber
(Wong et al., 2010; Töger et al., 2012; Elbaz et al., 2014; Kräuter
et al., 2020). Elbaz et al. (2014) adopted the criterion λ2 for
left ventricular (LV) vortex detection in early and late diastolic
inflow. Kräuter et al. (2020) computed the divergence-free part
of the velocity vector for Q criterion-based identification vortex
throughout the cardiac cycle. The above-mentioned methods
are region-based and used to extract instantaneous vortex rings
in a single frame, which hinders proper exploration of vortex
formation processes. Töger et al. (2012) considered Lyapunov
exponent values higher than 50% as the Lagrangian vortex ring to
identify vortex boundaries. The Lagrangian vortex ring can more
accurately describe the developmental process, but the method
is conservative and does not include the vortex core (Kräuter
et al., 2020). In Yang et al. (2021), we have employed Lagrangian
averaged vorticity deviation (LAVD) to identify the cores and
regions of the Lagrangian vortices and Eulerian vortices, for
measuring the vortex volume and vorticity in the LV blood flow
for more accurate quantification of the vortex formation. Wong
et al. (2010) identified two dominant vortices of opposite rotation
in the right atrium (RA), but they applied an unsupervised data
clustering algorithm without considering the characteristics of
blood flow. This is what has led to our preparing this paper,
to improve the description of the vortex characterization in the
RA by employing LAVD for more accurate identification and
quantification of blood flow vortex rings.

Therefore, for accurate identification and tracking of the
cardiac vortex ring characterization, this study presents a novel
method (Optical flow-LAVD), which is precise in the extraction
of Lagrangian vortex core and associated regions within the heart,
based on the PC-MRI data. The proposed algorithm implements
the trajectory integral of the normed deviation of vorticity from
its spatial mean, for LAVD-based identification and tracking of
the cardiac Lagrangian vortex rings (Haller et al., 2015). At the
same time, we adopt the Horn-Schunck (Horn and Schunck,
1981) brightness constraint to synthesize the intermediate PC-
MRI data for yielding high quality continuous velocity fields
to reduce the error caused by the integral process of LAVD.
Additionally, we have extensively validated the accuracy of the
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proposed Optical flow-LAVD based vortex identification method
concerning synthesized PC-MRI data sequences, and we were
able to characterize the region of the dominant Lagrangian vortex
ring within a cardiac chamber.

MATERIALS AND METHODS

Study Population and PC-MRI Protocol
In order to validate the performance of our proposed method of
vortex ring identification and features, normal and healthy male
subjects with ages around 22 years were recruited for the PC-MRI
dataset collection required for the Optical flow-LAVD model’s
testing. The volunteers had normal blood pressure, and no
history of cardiovascular disease was observed after preliminary
examination. Subsequently, we examined the flow within the
RA of the participants’ hearts, by using a single set of scans
pertaining to a slice at a two-chamber short-axis orientation. In
this study, the RA is considered, because we can verify more
accurately the effectiveness of our novel method, by referring
to our previous research work on cardiac flow analysis within
the atrium (Wong et al., 2009a, 2010). At the same time, our
objective is to analyze the Optical flow-LAVD, and understand
the developmental process of the cardiac Lagrangian vortex ring.
The study was approved by the local ethical review board, and
written informed consent was obtained from the subjects.

The velocity-encoded magnetic resonance imaging was
performed by using a Siemens Avanto, 1.5 Tesla, model-syngo
MRB15 scanner with Numaris-4, Series No: 26406 software.
More precisely, the encoding was set to 100 cm/s in all
directions, and this configuration was applied in the case of
aliasing. In addition, other parameters such as the echo time
(TR) 47.1ms, repetition time (TE) = 1.6 ms, field of view
(FOV) (298 = 340) mm2 at a (134 = 256) pixel matrix were
configured. Further, we have employed an in-plane resolution of
1.54 mm/pixel determined by the pixel spacing, and the through-
plane resolution of 6 mm based on the slice interval. All images
were acquired with retrospective gating and 25 phases or time
frames (for time frame indices from Nt = 1 to 25) for each slice,
as shown in Figure 1.

Computation of Lagrangian Average
Vorticity Deviation
To identify the Lagrangian vortex ring within the right atrium
(RA), the Lagrangian average vorticity deviation (LAVD) was
computed in each image’s plane and consecutive time phase.
Haller et al. (2015) derived the LAVD from a dynamic polar
decomposition of the deformation gradient (Haller, 2016) to
define vortices. The time-dependent motion trajectories of fluid
particles generated by v(x, t) within the heart are governed by the
following differential equation

ẋ (t) = v (x, t) , (1)

defining the cardiac flow map

1F t
t0 : x0 → x (x0; t) t ∈ [to, t1] . (2)

The displacement gradient of F t
t0 can describe the distance of two

particles from time t0 to t1, one at x0 and the other is adjacent to
it at x0 + δx(t0). Using mathematical representation, we have the
following function

1F t
t0 (x0) =

dx (x0, t0, t)
dx0

t ∈ [t0, t1]. (3)

It is to be noted that the 4F t
t0 tensor does not provide

an objective indication of the rotational component of the
deformation, because the polar rotation angle extracting from
this mapping depends on the observer (Haller, 2016). To address
this issue, Haller et al. (2015) used a technique based on the
Dynamic polar Decomposition (DPD) to decompose F t

t0 into
the dynamic rotation tensor Ot

t0 and the right dynamic stretch
tensor Mt

t0 , and this is denoted as follows

1F t
t0 = Ot

t0M
t
t0 t ∈ [t0, t1] . (4)

Then, Ot
t0 can be further factorized into two tensors. Specifically,

we have
1F t

t0 = 8t
t02

t
t0M

t
t0 t ∈ [t0, t1], (5)

wherein, 8t
t0 is relative rotation and 2t

t0 describes the mean
rotation (Haller et al., 2015). The 8t

t0 has a dynamic consistency,
which implies that the total angle swept by this tensor around its
axis of rotation is dynamically consistent. Because of the feature
of any physical rigid body motion, this angle will satisfy the
relationship

ψt
t0 (x0) = ψt

s (x0)+ψs
t0 (x0) s, t ∈ [t0, t1] , (6)

wherein ψt
t0 is the intrinsic rotation angle. Using the result

obtained in Haller (2016), it can be computed as

ψt
t0 (x0) =

1
2

∫ t

t0
|ω (x (x0, s) , s)−$(s)| ds, (7)

where ω(x (x0, s) , s) is the vorticity along a material trajectory,
and $ describes the spatial mean of vorticity. The LAVD is
defined by an integral component of the above Eq. (7), as follows

LAVDt
t0 (x0) =

∫ t

t0
|ω (x (x0, s) , s)−$(s)| ds. (8)

Based on this Eq. (8), a rotationally coherent Lagrangian vortex
is defined as a nested set of outward decreasing tubular level sets
of LAVD. The LAVD is objective, and we note that this measure
is relative to its neighborhood, and its value-range depends on
the flow domain. In this study, the region relative to the vortex
is large, and of the size of RA, based on manual segmentation.
The boundary of the Lagrangian vortex is the outermost closed
convex level surface of LAVD, satisfying convexity deficiency,
while the vortex core is the local maxima of LAVD enclosed by
the boundary (Haller et al., 2015; Yang and Melissa, 2015). Hence,
we define the boundaries of Lagrangian vortex within the heart as
the outermost members of closed families of LAVD level curves
falling below a convexity deficiency threshold.

The LAVD also leads to a difficulty: The Lagrangian vortex
is intrinsically tied to a specific finite time interval over which
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FIGURE 1 | A representation of the MRI scan images through the heart, and PC-MRI based velocity images in a cardiac chamber. The PC-MRI pertains to the
Foot-Head (F-H) and the Anterior-Posterior (A-P) orientations, respectively, the intensity of the whose pixels indicates the magnitude of the velocity component in the
specified orientation. Combining two orthogonal velocity-encoded images can yield a velocity flow field.

they exert their influence on nearby trajectories (Epps, 2017;
Katsanoulis et al., 2017). Short-time variability of flow within a
cardiac chamber is often seen as significant in computing the
LAVD values. Therefore, we adopt the Horn-Schunck (Horn
and Schunck, 1981) optical flow to synthesize the intermediate
PC-MR velocity data in time and space, for producing a more
accurate continuous velocity field v(x, t).

Intermediate PC-MR Velocity Data
Synthesis
As expressed in Eq. (8), the computation of LAVD represents an
integral process, but the PC-MR velocity data are obtained within
the large discrete frames and have a limited temporal resolution.
So in this study, we innovatively introduce the optical flow-based
intermediate PC-MR velocity data synthesis to compute LAVD.

Horn-Schunck Optical Flow
Recent optical flow assessment methods (Wulff et al., 2017; Xu
et al., 2017) take on the variational approach introduced by Horn
and Schunck (HS) (Horn and Schunck, 1981). The HS optical
flow can perform on consecutive frames and predict the motion
of pixels from one frame to the other, by iteratively settling an
optimization issue formulated from two constraints (Afrashteh
et al., 2017). The first constraint is “brightness constancy,” and it
assumes that a pixel has the same brightness level in two frames
after movement,

I
(
x+ u, y+ v, t + dt

)
= I

(
x, y, t

)
, (9)

where (i) I(x, y, t) is the pixel brightness in the first frame at
spatial location (x, y) and time t, and (ii) I(x+ u, y+ v, t+dt)
is the pixel brightness in the next frame at tdt after (u, v)

displacements from (x, y) in x and y directions, respectively.
The second constraint is “spatial smoothness,” which prevents
discontinuities in the flow field, as follows

|∇u|2 = (
∂u
∂x

)
2
+ (

∂u
∂y

)
2
and, |∇v|2 = (

∂v
∂x

)
2
+ (

∂v
∂y

)
2
. (10)

These two constraints are combined to use the first-order form
of Tikhonov’s formulation for solving the minimization problem
(Horn and Schunck, 1981; Liu and Shen, 2008). Mathematically,

min
u, v

{∫
(It + Ixu+ Iyv)2dxdy+ α

∫
(|∇u|2 + |∇v|2)dxdy

}
,

(11)
where (i) It, Ix, and Iy are derivatives of I(x, y, t) with respect to
time, spatial direction x and y, respectively, and (ii) α is the ratio
of weights of the brightness constancy integral to that of spatial
smoothness. This equation is solved numerically to estimate the
values of u and v (Akemann et al., 2012).

Intermediate PC-MRI Synthesis
Given two input PC-MRI I0 and I1 and a time t ∈ (0, 1), our
purpose is to estimate the intermediate PC-MRI Î at time T = t.
Based on HS optical flow and inspired by intermediate video
frame interpolation (Meyer et al., 2015; Jiang et al., 2018), we
propose fusing the warped input PC-MRI at time T = t. Let
(u, v)t→0 and (u, v)t→1 represent the optical flow from It to I0
and It to I1, respectively. We can synthesize the intermediate
PC-MRI Ît as follows

Ît = α0
⊙

g (I0, (u, v)t→0) (1− α0)
⊙

g (I0, (u, v)t→1) ,

(12)
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where g (·, ·) is a backward warping function, which can be
executed using bilinear interpolation and is differentiable (Zhou
et al., 2016). The parameter α0 controls the contribution of
the two input PC-MRI images, and depends on two factors:
temporal consistency and occlusion reasoning (Jiang et al.,
2018). The

⊙
represents element-wise multiplication, implying

content perception weighting of input PC-MRI. For temporal
consistency, the closer the time step T = t is to T = 0, the
greater contribution of I0 makes to Ît ; a similar property holds
for I1 (Jiang et al., 2018). On the other hand, considering
the particularity of PC-MRI acquisition process, the occlusion
question can be neglected. As a result, we can obtain the
intermediate PC-MRI on consecutive frames based on Eq. (12)
to produce a continuous velocity field for computing LAVD.

The pipeline for Optical flow-LAVD based identification of
Lagrangian vortex ring consists of four steps, and these steps are
presented in Figure 2. First, the HS optical flow computation
on consecutive frames is carried out. Second, based on the HS
optical flow, the intermediate PC-MRI can be synthesized to
produce a continuous velocity field. Third, the segmentation of
the interested cardiac chamber is performed. Finally, the LAVD
is computed and used to detect the Lagrangian vortex core and
region within the cardiac chamber.

RESULTS OF ANALYTICAL STUDIES

Optical Flow-LAVD Based Vortex Ring
Identification and Analysis
The proposed algorithm successfully identifies large-scale
Lagrangian vortex rings that appear in the RA and analyzes
their changes and evolution during selected time frame indices
from Nt = 8 to 18, As expressed in our previous research, vortex
within the RA is formed and deformed during this period (Wong
et al., 2009a). The variation of the Lagrangian vortex ring core
and region can be visually examined by using the red circular
markers as shown in Figure 3. The computation of the LAVD
within the RA is based on Eq. (8), and the convexity deficiency
of a closed curve in the plane is defined as the ratio of the area
difference between the curve and its convex hull to the area
enclosed by the curve (Haller et al., 2015). Then we can refer to
our work in Yang et al. (2021) and visualized analysis, for the
convexity deficiency threshold dmax = 1, to ensure the tubular
characteristics in the heart (Yang et al., 2021). In addition, the
volume of each Lagrangian vortex ring can be computed as the
product of the area inside the delineation and the slice thickness,
which is in line with an earlier study by Töger et al. (2012).
Figure 3 illustrates the temporal evolution of vortex volume
within the RA of the healthy subject.

Horn-Schunck Optical Flow Based
Intermediate PC-MRI Synthesis Analysis
Impact of Different Components on the Quality of
PC-MRIs
For evaluation, we performed a number of ground-
truth comparisons using the leave-some-out method

(Meyer et al., 2015), i.e., the intermediate PC-MRIs are
synthesized and compared to the original ones. We reported
the Structural Similarity Index (SSIM) scores of predictions and
ground-truth, as well as the interpolation errors (IE) (Meyer
et al., 2015). To prevent noise and irrelevant content interference,
we just computed SSIM and IE of the interested cardiac chamber.

We analyzed the impact of leaving out an increasing number
of intermediate PC-MRI on decaying in image quality. The plot
in Figure 4A visualizes the variation of IE of synthesized PC-MRI
when skipping increasing frames. At the same time, we derived
the SSIM and IE at different algorithm steps, as shown in Table 1.
It can be seen that the optical flow computed before segmentation
can obtain better intermediate images. Based on Eq. (11), we
also carried out an experimental analysis of the influence of the
main parameter α on the quality of reconstructed intermediate
PC-MRI, as shown in Figure 4B.

Comparison With Other Interpolation Methods
We compared three different views including optical flow
interpolation, phase-based interpolation, and linear interpolation
to deal with the construction of the intermediate PC-MRI. The
most popular methods for finding pixel correspondences across
images are based on optical flow (Sun et al., 2010; Baker et al.,
2011), while using image phase information directly to replace
image brightness in the data term of standard optical flow
formulations has been noticeable (Fleet and Jepson, 1990; Meyer
et al., 2015). The phase-driven frame interpolation concept was
applied to the discrete Fourier transform of an image, and it
decomposes the input images into several oriented frequency
bands Rω,θ by steerable pyramid filters (Meyer et al., 2015).
Then, Linear interpolation in time and space has been adopted
to produce a continuous velocity field based on PC-MR velocity
data (Töger et al., 2012). We have detailed the comparison
of SSIM and IE during the selected time frame indices from
Nt = 8 to 18, as shown in Figures 4B,C. By comparing SSIM
and IE, we find that the HS optical flow method has higher
prediction quality, especially in the case of existence of a large-
scale vortex. Hence, combined with HS optical flow based
Intermediate PC-MRI synthesis to recover a more accurate
continuous velocity field, the LAVD can describe precisely the
evolution of Lagrangian vortex rings within the RA, to help
medical experts enhance their understanding of the physiological
functions of swirling blood flow.

Visual Analysis and the Experiment on
Segmentation Dependence
We have carried out a visualization analysis of the difference
between Optical flow-LAVD and linear interpolation-LAVD, as
shown in Figure 5. The identification results of vortex rings
within the RA based on different methods are represented
by red and orange circular markers, respectively. In order
to clearly reveal the distinction of the visual results, we
selected time frame indices of large-scale vortex existent from
Nt = 8 to 10. It is found that the Optical flow-LAVD can
more accurately describe the complexity of the Lagrangian
vortex ring boundary.
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FIGURE 2 | The pipeline of the proposed Optical flow-LAVD based identification of Lagrangian vortex ring.
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FIGURE 3 | Evolution of Lagrangian vortex rings of a healthy subject. From time frame Nt = 8 to 18, the blood is swirling in both the clockwise (CW) and
counter-clockwise (CCW) directions simultaneously. The LAVD contour map is produced to indicate its strength. The diagram at the lower right shows the vortex
volume measured at the level of the two opposite rotation vortex rings.

In order to assess the sensitivity of Optical flow-LAVD based
vortex ring extraction using different segmentation masks, we
have derived the Dice similarity coefficient (DSC) as

2TP
TP + FP + FN

, (13)

where the TP, FP, TN, and FN represent the number of true
positives, false positives, true negatives, and false negatives,
respectively. We applied two different masks to selected time
frame indices from Nt = 8 to 18 and computed the DSC of the
identification results of vortex rings under manual segmentation
and automatic segmentation. Table 2 provides the DSC and
segmentation time to verify the robustness of the Optical flow-
LAVD to different segmentation masks.

DISCUSSION

We have presented a novel method for the identification of
Lagrangian vortex rings core and region within the RA from
PC-MRI data to allow for quantitative vortex volume. In
particular, we have demonstrated (i) the variation in Lagrangian
vortex rings within the RA during the diastolic phase from
time frame indices Nt = 8 to 18 of one cardiac cycle with 25
phases. (ii) the characteristics of the PC-MRI by constructing

accurate continuous velocity fields, based on an image-optical
flow algorithm for computing LAVD.

Lagrangian Vortex Rings Within RA
Identification and Analysis
We have extracted the large-scare Lagrangian vortex rings
that appear in the RA, and have analyzed their development
and changes during selected time frame indices from Nt =

8 to 18, which is in accordance with the previous publications
(Wong et al., 2009a,b, 2010). The development of the vortex
rings core and region can be visually examined using red
circular as shown in Figure 3. In addition, we superimposed
the corresponding MR images onto these LAVD maps to give
an indication of the location of the vortex features with respect
to the chamber walls. In the beginning during time frame Nt =

8 to 10, two large-scale Lagrangian vortex rings exist in the
chamber simultaneously, and we can note from Figure 3 that one
counter-clockwise (CCW) Lagrangian vortex ring exists in the
atrium along with a second clockwise (CW) Lagrangian vortex
ring approximately to the upper-left of it. At the same time,
the consequences of LAVD based identification are asymmetric,
subject to the asymmetry of the heart as a whole (Kilner et al.,
2000). Then later during time frame Nt = 12 to 14, two typical
vortex rings are partly dissipated, and they cannot remain strictly
toroid and change over time. In particular, the CCW Lagrangian
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FIGURE 4 | Performance of the proposed algorithm. (A) Quality of interpolated PC-MRI vs. the number of skipped images. (B) The influence of parameter α on
SSIM. (C,D) IE and SSIM performances during the selected time frame indices for optical flow interpolation, phase-based interpolation, and linear interpolation, to
deal with the construction of the intermediate PC-MRI.

vortex ring decomposes into two vortex rings of different scales,
one of which moves toward the chamber wall regions. Eventually
during time frame Nt = 16 to 18, we identified two dominant
vortex rings of opposite rotation to grow in scale until the CCW
vortex ring becomes slightly larger than the CW one.

The relative rotation region variation of two vortex rings
is demonstrated by plotting the vortex volume with respect
to cardiac time frames, as shown in Figure 3. Toward the
end-systole from Nt = 8 to 10, the flow slows down and a
corresponding dilation of the RA induces the flow in the
inferior and superior vena cava to accelerate (Kilner et al.,
2000). We note that the volume of two vortex rings of
opposite rotation is increased, and the volume of the CW
vortex ring and CCW vortex ring grow from 6.26 to 7.74 ml
and 3.28 to 3.84 ml, respectively. With the opening of the
atrioventricular valves, the blood surges into the relaxed ventricle

TABLE 1 | Comparison in different segmentation order.

IE SSIM

Before-segmentation 8.52 0.55

After-segmentation 8.29 0.67

from Nt = 12 to 14 (Kilner et al., 2000). The volume of the two
vortex rings is decreased, and declines from 1.36 to 0.31 ml and
1.22 to 0.90 ml (the volume sum of two CCW vortex rings),
respectively. From time frame Nt = 16 to 18, the volume of
CW and CCW vortex rings change successively and range from
2.66 to 1.35 ml and0.73 to 3.13 ml, respectively. The enlarged
vortex rings can minimize stasis and thereby facilitate the flow
of blood into the ventricle (Töger et al., 2012). After Nt =

18, we do not extract the Lagrangian vortex ring within RA,
as a large amount of blood had flowed into the ventricle and
there was no strict toroid flow. we set the convexity deficiency
threshold to 1 in order to ensure the tubular characteristics
(Haller, 2016; Yang et al., 2021). In conclusion, based on the
statistics of the volume plot, we can describe the Lagrangian
vortex ring development in a quantitative manner. Lagrangian
vortex rings are distinctive material curves that organize the
blood flow (Günther and Theisel, 2018). They present steady
swirling scale flow, and manifest the persistence of Lagrangian
vortex rings within the heart, to enable understanding of the
role of evolution of vortices in the blood flow. We have also
visualized the stretching and diffusion of vortex rings, which give
deeper insight into vortex dynamics, revealing how vortex rings
are weakened or reinforced by the cardiac flow field.
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FIGURE 5 | The identification results of Lagrangian vortex rings based on Optical flow-LAVD (red) and linear interpolation-LAVD (orange).

Intermediate PC-MRI Synthesis Analysis
Impact of Different Components on the Quality of
PC-MRIs
We first investigated whether leaving out an increasing number of
intermediate PC-MRI decays the synthesis quality. We computed
IE under four different conditions: skipping single, two, three,
and four frames. Figure 4A shows the degradation in the quality
of interpolated PC-MRI with increased motion between frames.
In order to estimate it more reliably and accurately, we simply
use two consecutive frames to construct a continuous velocity
field. We have also investigated the contribution of segmentation
in our method, as shown in Table 2. By applying the step
of computing optical flow first and then segmentation, better
interpolated PC-MRI can be acquired, which is caused by the
variation of RA contours and globality of HS optical flow
(Afrashteh et al., 2017). We further studied the influence of the
main parameter α on the quality of interpolated PC-MRI. We
can observe from Figure 4B that as the parameter α increases,
the SSIM score improves. However, there is a specific threshold,
such that over-sizing using larger α has little effect on reliability.

Comparison With Existing Interpolation Methods
We have compared the HS optical flow-based Intermediate
PC-MRI synthesis method with other methods including
linear interpolation (Töger et al., 2012) and phase-based
interpolation (Meyer et al., 2015). They are derived from different
understandings of images. The IE scores and SSIM scores on
each selected time frame from three methods are shown in
Figures 4C,D, and the overall evaluation is shown in Table 3.
Our Optical flow-LAVD model achieves the best performance
on selected time frame indices. Particularly, the HS optical
flow can achieve the best IE and SSIM during the large-scale
vortex existent periods from Nt = 8 to 10. In comparison, the
quality of phase-based interpolated PC-MRI is slightly worse.
This interpolation method captures phase information, but the

irrelevant content and noise of PC-MRI have a negative effect.
The variation in IE and SSIM during selected time frame indices
is typically declining. This is due to larger pixel displacement
and weakly turbulent flow pattern during the end of RA diastole
period (Kheradvar et al., 2019).

Visual Analysis and Segmentation
Dependence
Between the Optical flow-LAVD and linear interpolation-LAVD,
visual analysis finds the differences in their Lagrangian vortex
ring identification results. During the large-scale vortex existence
period, the Optical flow-LAVD detected vortex ring region
is wide and its boundary fits a complex ellipse, especially
in the case of CW vortex rings shown in Figure 5. It can
be found that the Optical flow-LAVD can more realistically
describe the Lagrangian vortex rings formation. Furthermore,
the computation of LAVD is an integral process. Two different
vortex ring identification results boil down to the accumulation of

TABLE 2 | Comparison with different segment masks.

Method DSC Segmentation time (s)

Automatic segmentation 0.89 18

Manual segmentation 1 52

TABLE 3 | Comparisons with different interpolation methods.

IE SSIM

HS optical flow interpolation 8.29 0.67

Linear interpolation 8.56 0.65

Phased-based interpolation 9.17 0.62

Bold values highlight the highest scores.
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numerical integration errors, which also indicates the importance
of the high-performance interpolation method.

Regarding the vortex ring identification results under the
manual segmentation as the reference condition, we compute
the overlap of vortex regions under automatic segmentation and
compare the segmentation time. The automatic segmentation
masks are seen to yield poor agreement for Lagrangian vortex
ring extraction, as shown in Table 2, which demonstrates
the sensitivity of Optical flow-LAVD when using different
segmentation approaches. While the LAVD is objective, we note
that this measure is relative to its neighborhood, and its value-
range depends on the neighborhood size (Günther and Theisel,
2018). Thus, the precision of automatic segmentation to achieve
our algorithm speed-up is needed.

In summary, the HS optical flow-based interpolation method
achieves the best results over the PC-MRI sequence, in generating
a more accurate continuous velocity field. This is remarkable
and interesting, Considering the characteristics of the PC-MRI,
we combine the image-interpolation algorithm to compute the
Lagrangian features of cardiovascular blood flow.

Limitations
There are several works that need to be improved in the proposed
purposed method. Firstly, no reference standard exists for
Lagrangian vortex rings within the cardiac chambers. However,
the numerical simulation model we used is in excellent agreement
with the model of Haller et al. (2015). There are no comparison
experiments between healthy controls and patients. Nevertheless,
the focus of this study is to provide a proof of concept of Optical
flow-LAVD based vortex ring identification and, as discussed
previously, combining optical flow can improve the accuracy
of describing vortex evolution. In our following investigations,
we will consider obtaining the synthetic data based on fluid
dynamics simulations (Rispoli et al., 2015; Rajat et al., 2016)and
diagnosis of additional pathological patients, in order to further
validate the performance of our method, based on Optical Flow-
LAVD. Vortices within the ventricular chambers reflect the
pathophysiological link between the diastolic filling and systolic
ejection, and present a better reproducibility because of their
higher intensity field (Hong et al., 2013; Kheradvar et al., 2019).
For that purpose, identification of vortices within the ventricular
chambers by Optical flow-LAVD is to be the focus of our future
work. Secondly, the blood flow in the heart is accompanied by
the formation of vortex rings which dynamically occupy the 3D
space of the heart chamber (Kräuter et al., 2020). The 3D vortex
ring extraction is significant for a more accurate description of
vortex formation (Wong et al., 2009a). In fact, the computation
of LAVD to identify the 3D vortex ring in the heart has not
been investigated, and remains a topic for our future research.
Thirdly, we have strictly set the convexity deficiency threshold
to ensure the tubular characteristics, leading to ignoring some
vortices with a relative ring shape (Yang et al., 2021). So, future
work is required to establish an adaptive method instead of
setting threshold artificially. We also recognize that LAVD is
relative to its neighborhood, and its value-range depends on the
neighborhood size (Günther and Theisel, 2018). Thus, a high
demand is placed on the method of high-precision segmentation

of the heart chamber. Finally, we have used the HS optical
flow-based interpolation method to achieve the best results
over the PC-MRI sequence. However, the IE scores and SSIM
scores on each selected time frame highlight the insufficiency of
the interpolation model’s capacity to deal with the challenging
motion regions of the heart; the temporal sampling in medical
image sequences are lower than that of natural scene videos
(Guo et al., 2020; Samuel et al., 2020), and the computation of
optical flow is expensive (Meyer et al., 2015; Samuel et al., 2017).
Improving the optical flow-based interpolation performance, and
decreasing the computation time are also key factors for our
future research.

CONCLUSION

In this study, we have proposed a novel cardiac Lagrangian
vortex rings identification method, based on a combination
of LAVD and optical flow. We first estimate the optical flow
between two consecutive PC-MRI, and the intermediate optical
flow fields can be approximated by warping the procedure for
constructing continuous velocity fields. We then compute LAVD
by using the synthesized velocity field to accurately extract the
Lagrangian vortex core and region within RA. The temporal
evolution of Lagrangian vortex rings within RA is described for
the first time; it is found that the optical flow-based interpolation
method achieves the best results over the PC-MRI sequence. Our
method provides a solution for the cardiac vortex ring formation
analysis, and improves understanding of blood flow dynamics
within the heart.
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During cardiac arrhythmias, dynamical patterns of electrical activation form and evolve,

which are of interest to understand and cure heart rhythm disorders. The analysis of these

patterns is commonly performed by calculating the local activation phase and searching

for phase singularities (PSs), i.e., points around which all phases are present. Here we

propose an alternative framework, which focuses on phase defect lines (PDLs) and

surfaces (PDSs) as more general mechanisms, which include PSs as a specific case. The

proposed framework enables two conceptual unifications: between the local activation

time and phase description, and between conduction block lines and the central regions

of linear-core rotors. A simple PDL detection method is proposed and applied to

data from simulations and optical mapping experiments. Our analysis of ventricular

tachycardia in rabbit hearts (n = 6) shows that nearly all detected PSs were found on

PDLs, but the PDLs had a significantly longer lifespan than the detected PSs. Since the

proposed framework revisits basic building blocks of cardiac activation patterns, it can

become a useful tool for further theory development and experimental analysis.

Keywords: cardiac arrhythmia, spiral wave, self-organization, phase defect, non-linear analysis

1. INTRODUCTION

About once per second, a wave of electrical depolarization travels through the heart, coordinating
its mechanical contraction. The heart is a prime example of a dynamical system that can
self-organize across different scales: changes in the flow of ions through the cell membrane affect
the dynamics of the emergent pattern and may lead to life-threatening heart rhythm disorders.
For more than a century, great efforts have been allocated to understand the different dynamical
mechanisms of arrhythmia initiation and maintenance in the heart. It was found that electrical
activity during cardiac arrhythmias may travel in a closed circuit within the cardiac wall, and thus
re-excite the heart (Mines, 1913). Later on, Allessie et al. demonstrated with electrode recordings
that re-excitation of the tissue by the wave itself was also possible without a central obstacle
(Allessie et al., 1973). These rotating vortices, also called rotors, were later demonstrated using
optical mapping techniques, both in ventricular tachycardia (Gray et al., 1995a) and ventricular
fibrillation (Gray et al., 1998).

Gray et al. (1998) also developed the concept of phase analysis to identify structures in the
excitation patterns in the heart. They considered two fields V(Er, t) and R(Er, t) of the system and
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calculated the phase of a point of the medium as the polar angle
in the (V ,R)-plane, see Figure 1:

φact(V ,R) = atan2(R− R∗,V − V∗)+ b. (1)

An additive constant in Equation (1) is included here to fix the
absolute phase, e.g., such that resting state corresponds to φact =
0. To discriminate from an alternative phase definition below,
we call this classical phase the “activation phase” and denote it
as φact.

The application of phase analysis to cardiac electrical signals
during arrhythmia showed that there are few points in the
medium where all possible phases meet each other, such that the
point itself has no well-defined phase, see Gray et al., 1998 and
Figure 1C. Such point is now generally accepted to be a phase
singularity (PS), and since then PSs have been widely used in the
analysis of cardiac excitation patterns. In two dimensions (2D),
PSs are associated with the rotor core, i.e., the regions around
which electrical waves revolve tachycardia or fibrillation.

In three dimensions (3D), the set of PSs in the medium extend
to a dynamical curve, the rotor filament. The rotor filament has
been used in many modeling and theoretical studies, as it allows
for easy visualization of the rotor dynamics (Wellner et al., 2002;
Clayton et al., 2005; Verschelde et al., 2007; Dierckx et al., 2012).

To identify PSs in datasets, different methods have been
developed (Fenton and Karma, 1998; Gray et al., 1998; Bray and
Wikswo, 2003; Clayton et al., 2005; Kuklik et al., 2015, 2017).
However, these methods that look for PSs have limitations when
performing detections near conduction block lines, as illustrated
in Figure 2. A first limitation of the classical PS concept is
non-robustness of PS detection methods. Figure 2A shows an
example of a simulation of a 2D sheet of cardiac tissue using
the S1-S2 stimulation protocol. The second (S2) pulse undergoes
unidirectional block in the wave of the S1 pulse, leading to the
formation of a conduction block line (CBL), rendered in black.
The region excited by the S2 stimulus grows, turning around the
CBL endpoints, but no PSs are detected at its end. Later on, when
the initial S2 region has repolarized, a large number of PSs is
found at the CBL, even though there is no rotor core. Moreover,

FIGURE 1 | Classical phase analysis of cardiac rotors. (A) Circular-core rotor with Aliev-Panfilov kinetics (Aliev and Panfilov, 1996), where in each point an activation

variable u and a recovery variable v are defined. (B) Two observables of the system, V = u and R = v plotted against each other reveal a cycle corresponding to the

action potential. The polar angle with respect to a point (V∗,R∗) situated within the cycle serves as a definition of activation phase. (C) Coloring the rotor using phase

and a periodic colormap reveals a special point where all phases meet, the phase singularity (PS), see white dot. This point has V = V∗, R = R∗.

the precise number of PSs found depends on the algorithm
used, as shown in the third and fourth panel of Figure 2A. In
literature, other false positives of PS identification have been
reported (Podziemski et al., 2018).

A second limitation of classical PS detection algorithms is
related to rotors with so-called linear cores, i.e., rotors which
have a CBL in the central region (core) around which they
rotate, see Figure 2B. If one looks at the point where the wave
front ends on the CBL, this is in the classical picture a PS, see
Figure 2B. However, looking closer, only 3 phases are found in
the neighborhood of this point: excitable tissue (ahead of the
front, blue), recently excited tissue (behind the front, green), and
refractory tissue (across the CBL, red). A point touching three
phases is not necessarily a mathematical PS, as the latter should
touch all phases (Figure 5).

If we represent the same linear core rotor in terms of the
local activation time (LAT), as indicated in the rightmost panel of
Figure 2B, an extended CBL is clearly seen, where isochrones of
activation coincide. However, this extended CBL is not captured
by the classical PS analysis.

A third limitation of the classical PS detection methods
concerns the coincidence of PSs and CBLs. Podziemski et al.
(2018) and our own optical mapping experiments of ventricular
tachycardia in rabbits indicate that the PSs are generally localized
at a CBL, see Figure 2C. When comparing different time frames,
we moreover find that the PSs tend to jump between different
locations on the CBL, while the CBL itself seems to persist longer
in time.

The goal of this paper is to present a new framework for phase
analysis, which will lead to identification of novel structures in
the regions of conduction block: phase defect lines (PDLs) and
phase defect surfaces (PDSs) instead of PSs and filaments. In
the context of cardiac arrhythmia patterns, interpreting linear
rotor cores as a phase defect was only done very recently by
Tomii et al. (2021) and in our preprint to this manuscript (Arno
et al., 2021). Within this paper, we additionally introduce a phase
based on local activation time, which bridges the gap between
the phase viewpoint and LAT viewpoint. We propose a simple
PDL detection method and apply it to data from simulations
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FIGURE 2 | Limitations of current PS detection algorithms. (A) Application of the S1-S2 stimulation protocol in the BOCF (Bueno-Orovio et al., 2008) model to initiate

a rotor. White dots denoted detected PSs with either a 2× 2 ring (third panel) or 2× 2+ 4× 4 ring (fourth panel) using the method of Kuklik et al. (2017). Both

methods identify multiple PS on the CBL (black line). (B) A linear-core rotor in the Fenton Karma model, from 3 perspectives: transmembrane voltage (left), activation

phase (middle panel) with PS indicated (white) and LAT (right). (C) Optical mapping of rabbit hearts during ventricular tachycardia showing that detected PSs are all

located on CBLs.

(in 2D and 3D) and optical mapping experiments. We draw
conclusions from the analysis of our experiments and outline
how future theory development can be initiated from the phase
defect concept.

2. METHODS

2.1. Methods for Data Generation and PS
and CBL Detection
2.1.1. Numerical Simulations
To illustrate our theoretical concepts, numerical simulations
were performed in a cardiac monodomain model:

∂tu = 1Pu+ F(u). (2)

This partial differential equation states how a column matrix
u(Er, t) of m state variables evolves in time. The constant
matrix P = diag(P11, 0, ...0) makes sure that only the

transmembrane potential u1 undergoes diffusion. Note that
our analysis methods are applicable to excitation patterns
in general and are not restricted to reaction-diffusion
systems only.

In this work, we use the reaction-kinetics functions F(u) from
Aliev and Panfilov (1996) (AP model, m = 2), Fenton and
Karma (1998) (FK model, m = 3), and Bueno-Orovio et al.
(2008) (BOCF model, m = 4). The equations are numerically
integrated using the Euler method with the spatial resolution dx
and time step dt as specified in Table 1. Only in the example
with a biventricular geometry, uniaxial anisotropy was included:
the Laplacian in (2) was replaced by ∂i(D

ij∂j) with Dij =
D1δ

ij + (D1 − D2)e
i
f
e
j

f
, with D1 = 1,D2 = 1/5 and Eef

the local fiber orientation as measured by Hren and Stroink
(1995).

The first and second state variables in these different models
were used to calculate φact, see Table 1 for definitions and
threshold values.
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TABLE 1 | Overview of mathematical models of cardiac excitation and parameters used in simulations throughout this work.

Kinetics AP FK BOCF

References Aliev and Panfilov, 1996 Fenton and Karma, 1998 Bueno-Orovio et al., 2008

Parameter set Standard MLRI(2D) and MBR(3D) Epicardial (EPI)

Diffusion coefficient P11 1 0.1 mm2/ms 0.11 mm2/ms

dx (2D) 0.5 0.262 mm 0.25 mm

dx (3D) - 0.31 mm 0.5 mm

dt 0.0029 0.16 ms (2D) and 0.1 ms (3D) 0.1 ms

Domain size (2D) 200 × 200 118 × 118mm 150 × 150mm

Domain size (3D) - 186 × 186 ×6.2mm 168 × 208 ×231 mm

Variable used as V (V∗) u (0.5) u (0.5) u (0.5)

Variable used as R (R∗) v (1) 1-v (0.8) 1-v (0.2)

1t for LAT 1 1.6 ms 5 ms

1tc for CBL detection 10 16 ms 45 ms

1φarr,crit for CBL detection 0.7 rad 2 rad 0.5 rad

τ in φarr 20 70 ms 300ms

Simulation used in Figures 1, 8, 10 Figures 2, 5, 6, 8, 11 Figures 2, 4, 7, 9, 12

FIGURE 3 | Method of PS detection by Kuklik et al. (2017) as used in this paper. Phase differences are considered between pairs of points on a ring of 4 points (Left,

2× 2 method) or 8 points (Right, 4× 4 method), to assess whether a PS is present at the central location.

2.1.2. Optical Mapping Experiments
We applied our new framework to experimentally recorded
movies of rotors in isolated Langendorff-perfused rabbit hearts
(n = 6), as described by Kulkarni and Tolkacheva (2018).
Optical movies corresponding to the fluorescence signal were
recorded from the epicardial surfaces of the left or right
ventricular surface of the heart (LV and RV) at 1,000 frames
per second, with 14-bit, 80 x 80-pixel resolution cameras (Little
Joe, RedShirt Imaging, SciMeasure) after a period of stabilization
of approximately 30 min. Data processing was performed using
a custom-made program in Matlab1. The background was
removed by thresholding, and in each pixel the intensity was
normalized against the minimal and maximal value of optical
intensity attained in that pixel over the full recording. The
characteristic timescale of activation was found as the inverse of

1Matlab. version 9.9.0. (2020). The MathWorks Inc., Natick, Massachusetts.

the dominant frequency of activation was used to evaluate the
Hilbert transform to obtain the activation phase φact (Bray and
Wikswo, 2002).

2.1.3. Methods for PS and CBL Detection
PSs were detected using the method of Kuklik et al. (2017), see
Figure 3. A ring of N = 4 or N = 8 pixels was considered
around each grid cell of the medium, and the phase difference
was computed between adjacent points on the ring. If exactly one
of these phase differences was larger than π in absolute value, a
PS was assigned to that grid element:

PS at Er0 ⇔ #{k|
∣

∣φk(Er0)− φk−1(Er0)
∣

∣ > π} = 1. (3)

In the 2 × 2 method, only the 4 points around each grid cell are
used; in the 2 × 2 + 4 × 4 method, a second ring of 8 pixels was
used and a PS is assigned if both the small ring and large ring have
one phase difference larger than π , see Figure 3.
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FIGURE 4 | Analysis of a simulated linear-core rotor (BOCF model) using activation phase, showing the WF, WB, classical PSs, and CBL/PDL at different times. The

WF and WB were computed as points with V = V∗ with positive or negative dV/dt. The CBL/PDL was computed with Equation (4). (A) Transmembrane potential u.

The classical PS is located near the position where the WF joins the PDL. At t = 195, several PSs are found near this intersection. (B) Same frames colored with the

classical activation phase, showing sudden transitions at WF, WB, and PDL, see gradient of φact in (C).

To localize CBLs, frames were recorded every 1t time units,
and if in the new frame, V rose above V∗, this time was locally
saved as the newest LAT. If an edge connecting two neighboring
points of the grid had two LAT that differed by more than 1tc ≈
dx/c (with c the plane wave velocity in the medium), the middle
of that edge was considered to be part of a CBL:

|tactivation(Er1)− tactivation(Er2))| > 1tc
and tactivation(Er1) > 0
and tactivation(Er2) > 0







⇒ Er1 + Er2
2

∈ CBL.

(4)

Here, the first condition selects the union of theWF and the CBL.
The threshold values 1tc that we used with the different model
kinetics are given in Table 1. The second and third condition are
imposed to obtain CBLs only.

2.2. Theory
2.2.1. Introduction of Phase Defects
In many physical sciences, interfaces are found between regions
of different phase, where they are known as domain walls or

phase defects. In this sub-section, we demonstrate the existence
of phase defects.

Figure 4 shows in each row the time evolution of a simulated
linear-core rotor (at four different times). When applying
classical phase analysis with φact, see Figure 4B, we note that
there are several interfaces that connect excited (Figure 4A,
yellow) to non-excited (Figure 4A, blue) areas. These interfaces
can be shown by plotting the spatial gradient of φact, see
Figure 4C. When taking the spatial gradient, it is important to
disregard phase differences of 2π . We compute spatial derivatives
of phase in the grid point with discrete position (i, j) as:

(∂xφ)ij ≈ U(φi+1,j − φi,j)/dx (5)

with U the unwrap function, which adds an integer multiple of
2π to its argument, to bring the result closest to zero:

U(x) = mink∈Z[x+ 2kπ] = mod(x+ π , 2π)− π . (6)

In the linear-core rotor, we note different steep transitions
between zones of approximately equal phase, and discriminate
between them as follows. We denote by φ1 a phase in the middle
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FIGURE 5 | Closer look at a linear-core rotor. At the location where classical

methods detect a PS, three distinct phases come together: recovered, excited

and refractory tissue. At either side of the CBL, two distinct phases are

present: refractory vs. either excitable or recovered. Therefore, the CBL is a

phase defect line (PDL).

of the upstroke (depolarization), and φ2 a phase in the middle of
the down stroke (repolarization). These values are found as

φ1 = mean{φ(Er, t)|V(Er, t) = V∗ and
dV

dt
(Er, t) > 0},

φ2 = mean{φ(Er, t)|V(Er, t) = V∗ and
dV

dt
(Er, t) < 0}. (7)

Thereafter, the wave front (WF) and wave back (WB) can be
defined as (with ♥ depicting the domain or cardiac tissue):

WF(t) = {Er ∈ ♥|φact(Er, t) = φ1}, (8)

WB(t) = {Er ∈ ♥|φact(Er, t) = φ2}.

In the classical view, the only way to connect WF and WB is in a
PS, where different phases φ1 and φ2 can meet.

However, if a wave hits unrecovered (refractory) tissue,
unidirectional conduction block occurs and a CBL is formed. In
that case, a third kind of interface is seen, in addition to WF
and WB, see Figure 5. Since the tissue at either side of a CBL
was activated at a different time, it also has different phase, see
different colors across the black line in Figure 5. This observation
implies that not only the end point of a wave front (the classical
PS) is a special point, but that all points on a CBL have a non-
trivial phase structure: they are situated on a region where phase
suddenly transitions from one value to another, which we call a
phase defect line (PDL).

Note that the PDL shown here persists in time until either
both sides have fully recovered, or when one side of the line is
re-excited again, while the other is not.

Figure 4C shows the norm of E∇φact, which visualizes the
domain walls between the different zones of similar phase; note
that without further filtering, the transition zones consist of the
union of WF, WB, and PDL.

2.2.2. An Alternative Phase Definition Based on LAT
We find it useful to discriminate WF and WB from CBLs,
since the former are “natural” behavior in an excitable system,
while conduction block can lead to the formation of abnormal
patterns and arrhythmias and therefore, deserves to be detected

separately. Therefore, we now introduce another definition of
phase, which is only sensitive to CBLs.

As we described before, the classical definition of phase is not
unique, as one could make various choices for the observables V
andR, and their threshold valuesV∗,R∗ can be also chosen at will,
as long as they are located within the cycle in the (V ,R)-plane.

The most important feature of the phase is its periodicity.
For convenience, we choose the phase of the resting state to be
phase equal to 0. Apart from that, there is need to let the phase
correspond to the polar angle in one choice of (V ,R)-coordinates:
we can define new equivalent phases φ by a continuous mapping
of φact:

φ = h(φact), h(0) = 0, h(2π) = 2π , h′(φact) > 0. (9)

The last condition ensures that the transformation between the
phases is invertible. In a mathematical sense, fixing a phase is
nothing but introducing coordinates on the inertial manifold
(dynamical attractor) on which the dynamics takes place. As
with coordinates in the plane or on a surface, many choices are
possible, and depending on the circumstances, somemay bemore
appropriate than others.

To link the concept of LAT with phase, we propose to take the
elapsed time

telapsed(Er) = t − tactivation(Er) (10)

as the new phase, since in leading order (neglecting
inhomogeneity, electrotonic effects and long-term memory), the
state of a point will depend on the elapsed time since previous
activation. However, telapsed ∈ R

+, which is an unbound interval,
such that telapsed itself is not a suitable replacement for φact. To
this purpose, we apply a sigmoidal function to telapsed, in order to
define an “arrival time phase”:

φarr(Er, t) = 2π tanh(3telapsed(Er, t)/τ ). (11)

Here, τ is a characteristic time constant of the medium, e.g.,
the mean action potential duration. Figures 6A,B show how
φarr depends on both t and φact for FK reaction kinetics. From
this, it can be seen that, to a good approximation, φarr is a
reparameterization of φact. The new phase φarr is not constant
in time, but gets update at the places where the wave front excites
tissue, just like the updates in LAT. It relies on two parameters,
which we chose manually for now: the timescale τ and the critical
threshold V∗ to consider tissue as excited, see definition (8).

Importantly, φarr unifies the classical phase description (since
φact is a phase) with the LAT description (since it is defined
based on LAT). When a linear-core rotor is plotted using φarr, as
shown in Figure 7, we see that the WF and WB are not strongly
emphasized anymore, since both occur near φarr = 0 (omitting
phase differences of 2π). Still visible as a spatial phase transition
is the region of conduction block, or the PDL, see Figure 6C.

The “wave arrival time phase” φarr is thus a kind of hybrid
between classical phase and the LAT viewpoint. For, the lines
of equal phase will now correspond to the isochrones that
commonly appear in medical literature and our Figure 2B. At
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FIGURE 6 | Phase defects shown using the LAT-based phase φarr. (A) The function φarr(telapsed) from Equation (11). (B) Scatter plot of φarr vs. φact, showing that one is

a reparameterization of the other on the interval [0, 2π ]. (C) Same linear-core rotor in the FK model as in Figure 2B, now shown with φarr. Note that WF and WB are

no longer showing abrupt phase variations, these only happen at the PDL, i.e., the points where conduction block happened. (D) Magnitude of the gradient of φarr.

Due to the discrete sampling of LAT, a staircase artefact in the gradient is seen (no smoothing was applied here).

a CBL, LAT changes discontinuously across the conduction
block site, and this phase defect region now clearly exhibits a
discontinuous phase. So, depending on the definition of phase
used (φact or φarr or another one) the phase defect will be either
a steep but continuous phase transition, or a true discontinuity
in phase.

2.2.3. Interpretation of Phase Defects as Branch Cuts

From Complex Analysis
Here, we demonstrate how phase defects can be interpreted as
a branch cut from complex analysis (Arfken and Weber, 1995).
For any non-zero complex number of the form z = x + iy with
i2 = −1, the phase can be calculated using

arg(z) = atan2(y, x). (12)

Next, one can consider functions of a complex variable: w =
f (z) with both w and z complex numbers, e.g., w = z2. To
make a visual representation of the function value, one can
draw colormaps of the phase arg(w), or show arg(w) as an
XY-dependent elevation in a so-called Riemann surface; see
Figure 8. In case of polynomial or rational functions, such phase
map will reveal point singularities similarly to PSs found in
circular-core spiral waves, see Figure 8A. When the phase of
the simple function w = f (z) = z is shown as a graph
of (x, y) the phase surface resembles a helicoid. If one walks

around the PS once in the XY-plane, the phase will change by
2π , but since phase is measured disregarding terms of 2π , one
ends in the same state. This effect is more easily seen using
a cyclic colormap in 2D, see Figure 8A. Close to the central
axis of the helicoid, the height (phase) is undefined, which is
typical for a PS.

In contrast to polynomial and rational functions, functions f
which include roots, exhibit a discontinuity in their phase, also
called “branch cut” in mathematics. In particular, for the function
w = f (z) =

√
z2 − 1, there is a line of discontinuous phase for

(x, y) between (−1, 0) and (1, 0). This line is easily noticed in the
representation as a color map as a sudden transition in color, see
Figure 8. This situation is in our opinion very similar to the phase
discontinuity in the linear-core rotor throughout this paper.

For, if one regards two neighboring points on both sides of
a conduction block line at the rotor core, they will have distinct
phases. There need not be a single point where all phases spatially
converge (that is, a PS), as on both sides the phases can gradually
change to take the same value at the points where the branch
cut stops.

From this paragraph and Figure 8 it is apparent that the
PSs and PDLs are different topological structures. We argue in
this paper that we and Tomii et al. (2021) are the first to note
this difference in a cardiac electrophysiology context, and that
discriminating between these different structures can be useful
in theory development and applications.
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FIGURE 7 | Analysis of the simulated linear-core rotor from Figure 4 using LAT phase. (A) With φarr, there are no sudden transitions in phase along the WF and WB,

such that only CBLs are shown as phase defects, with large local phase gradient (B).

FIGURE 8 | PSs vs. PDLs in cardiac models and complex analysis. Phases are rendered in-plane (top row) and in 3D, as a Riemannian surface (bottom row). (A)

Rigidly rotating spirals, as in the Aliev-Panfilov (AP) reaction-diffusion model (Aliev and Panfilov, 1996) correspond to a PS (gray), similar to the mathematical function

φ(x, y) = arg(z) shown to the right of it. (B) Linear-core cardiac models, e.g., (Fenton and Karma, 1998) exhibit a PDL or branch cut (black/gray), like the mathematical

function w = f (z) = arg(
√
z2 − 1) shown to the right of it. Gray areas denote a jump in the phase over a quantity not equal to an integer multiple of 2π , i.e., a PDL

(physics) or branch cut (mathematics).

2.3. Methods for Phase Defect Detection
The numerical identification of PDLs in cardiac excitation
patterns can be performed using various methods. Based on
a phase (either φact or φarr), one can assign a PDL to the
midpoint of edges along which the phase gradient exceeds a
predefined value, taking into account that phase differences of

2π are excluded:

|U(φ(Er1)− φ(Er2))| > 1φcrit ⇒
Er1 + Er2
2

∈ PDL. (13)

However, if the LAT is known, this method approximates the
more direct method of identifying a CBL, see Equation (4). A
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FIGURE 9 | Interpretation of a CBL as a phase defect clarifies why a PS detection finds PSs on it. (A) φact, rendered in 2D and 3D as a Riemannian surface. (B) φarr,

rendered in 2D and 3D as a Riemannian surface. At the CBL/PDL, the phase surface has a cliff-like appearance.

FIGURE 10 | Creation of a PS from a PDL using a S1-S2 protocol with AP kinetics, showing coexistence of PDL and PS in models that generate circular-core spirals.

Snapshots (A–D) shown at times t = 20 ms, t = 38 ms, t = 57 ms, and t = 150 ms.

comparison between different manners to numerically compute
PDLs will be deferred to another publication.

Below, we also compare the lifetime of PSs and PDLs in
experimental recordings. To estimate PS lifetime, we calculated
PSs at each time frame between 501 and 1,500ms using the
Hilbert transform of V(t), followed by PS detection using 2×2+
4× 4-method, which is considered as robust in literature (Kuklik
et al., 2017). If a PS moved between two subsequent frames at
most 1 pixel in the horizontal, vertical, or diagonal direction,
while keeping its chirality, it was considered PS. Otherwise the
PS was considered a new one.

A similar approach was taken for PDLs. PDLs in experiments
were computed using Equation (13), with manually chosen
threshold 1φcrit = 2.22. If the middle of an edge was on a PDL,
both neighboring nodes of the Cartesian grid were considered
to be part of the PDL. A PDL was assumed to persist in time if
the PDL at the new time and at the old time had points which
were not further than 1 pixel away from each other (in horizontal,
vertical, or diagonal direction). PDLs were allowed to branch and
merge, and the lifetime was computed as the earliest and latest
time which were connected by this family of PDLs.

A PS was furthermore considered to lie on a PDL if its
distance was less than 0.5 pixels from a point on the PDL.
PDLs in Figures 2C, 13 were visually rendered using splines.
The wave front was added to these figures using Equations (7)–
(8), with V∗ = 0.5.

3. RESULTS

Here we illustrate the appearance and relation between PSs and
PDLs in simulations and an optical mapping experiment.

3.1. Numerical Results in Two Dimensions
3.1.1. Rendering of Cardiac Activation Phase Around

a Conduction Block Line as Riemannian Surfaces
The CBLs presented in Figure 2 are examples of PDLs: to this
purpose, we redraw the rightmost panel of Figure 2A here using
φact and φarr, rendered in 2D and 3D in Figure 9. Here, it can be
seen that the suspected PSs in fact lie on the line where phase is
nearly discontinuous.

We distinguish two cases here. If no rotor is attached to the
phase defect, the Riemann surface looks like a sheet of paper
with a cut in it and both edges shifted relative to each other, see
Figure 9. If a rotor is attached to the phase defect, the Riemann
surface looks like two rising slopes connecting two floors in a
parking lot, see lower right panel in Figure 8B.

3.1.2. Coexistence of PS and PDL in the Same

System
Here we demonstrate that PDLs can also exist in media that
sustain spiral waves with PSs. This is illustrated in simulations
where application of S1S2 pacing induces a PDL at the WB of
the first stimulus, see Figure 10. Since AP reaction kinetics were
used (Aliev and Panfilov, 1996), the PDL will disappear after both
sides have reached full recovery, resulting in a PS at the core of the
spiral wave, see Figure 10D. Hence, we conclude that PDLs and
PSs can coexist in media supporting circular-core spiral waves,
since the PDL is found at conduction block sites and PSs are
found in the spiral wave core.

3.1.3. Absence of a PS at the Edge of a PDL
Although Figure 10 shows a PS situated near the end of a
PDL, this is certainly not always the case. Counter examples
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FIGURE 11 | Analysis of a break-up pattern in a 3D slab geometry with linear-core rotors and rotational anistropy in the FK model. Panels (A–C) show activity at times

t = 30, 35, and 40ms, respectively. The rows show respectively 3D activity with filaments (colors indicate different filaments), normalized transmembrane voltage on

the bottom surface, and analysis of the surface patterns in terms of φarr and φact and 3D activity with filaments colored as above and PDSs indicated in gray. Note that

several phase defects are observed, indicating conduction block near the spiral wave core.

of PSs located away from end points of a PDL can be seen in
Figures 2, 4.

The underlying mathematical reason is the following. At the
edge of a PDL, the phase surface starts to be “torn,” see Figure 8B.
Still, at this point itself, the phase is well-defined. This situation
is different from a PS, see Figure 8A, where the Riemann surface
locally resembles a staircase surface and the phase itself cannot
be determined.

3.1.4. Phase Defect Analysis of Scroll Wave

Turbulence
The phase defect framework was illustrated above on simple
examples, but is designed to analyse much more (complex)
dynamics in excitation patterns. We conducted a 3D simulation
in the FK model with rotational anisotropy-induced break-up, as
detailed in Fenton and Karma (1998). Figure 11 shows snapshots
of the turbulent pattern on the bottom surface of the slab
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(representing endo- or epicardial view in this geometrical model).
Here, it can be seen that multiple PSs are detected on CBLs, that
correspond to the core of cardiac rotors.

3.2. Numerical Results in Three Dimensions
In classical 3D theory, the PS extends to a dynamically varying
curve called the rotor filament. With linear cores in the phase
defect framework, the PDL will also extend in three dimensions,
to form a phase defect surface (PDS). The bottom row of
Figure 11 shows the PDSs for the full 3D break-up patterns in
the FK model. Here, it is seen that the PDLs that we identified on
the myocardial surface extend to surfaces in three dimensions.
From the surface recording (2D) already, it can be seen that these
surfaces can branch and merge in time.

A second example of PDSs is shown in Figure 12A, where
a scroll wave with linear core was initiated by setting initial
conditions with unidirectional block in the left-ventricular and
right-ventricular free wall and the intraventricular septum.When
viewed in terms of phase defects, 3 PDSs are seen. The two PDSs

FIGURE 12 | Numerical simulation of rotors in the BOCF model in a

biventricular human geometry. (A) Snapshot colored according to normalized

transmembrane voltage, showing 2 classical rotor filaments in red. (B) Phase

defect surfaces (PDSs) for the same snapshot. The two leftmost PDS bear a

classical filament in them, the rightmost one (in the right-ventricular free wall) is

a site of conduction block.

on the left correspond to filaments, and the rightmost PDS is a
CBL; no matching filament is seen in Figure 12A.

3.3. Analysis of Rotors From Isolated
Rabbit Hearts
Electrical activity of a Langendorff-perfused rabbit heart was
visualized during ventricular tachycardia via optical mapping
experiments (Kulkarni and Tolkacheva, 2018) as detailed in
section 2.1.2. The processed movies of the different experiments
performed are accessible in the Supplementary Material, and
various characteristics of rotors in these movies are summarized
in Table 2.

A first important observation in Figure 13 and Table 2 is
that in more than 99% of the cases where a PS was found, it
was situated on a PDL. A typical sequence of the activation is
presented in Figure 13. Here, a classical rotor can be recognized
from the progression in time of a wave front (gray line) that starts
in the top-right corner and circles counterclockwise around a line
of conduction block that comprises the center of this rotor. Note
that the PS detection algorithm finds a variable number of PSs on
a PDL over time and therefore, the lifetime of the PSs are smaller
than the mean PDL lifetime, as is shown in Table 2. In contrast,
the mean lifetime of PSs was about 3 frames.

Second, two types of PDLs were observed: approximately two
thirds of them were not associated with any PS during their
lifetime and we recognize these as conduction block lines without
a rotor attached to them. About one third of PDLs/CBLs had
at least one PS on them during their lifetime, and these are
therefore, at the rotor core.

A third observation is that no rotors in the observed
ventricular tachycardia completed a full turn on the epicardial
surface, confirming other results in literature; a representative
example is shown in the rightmost panel of Figure 13. Prior
to completing a full rotation, excitation is surfacing from
deeper layers, leading to a full conduction block. After that,
the excitation loops in the same sequence, leading to a nearly

TABLE 2 | PS and PDL properties observed via optical mapping experiments from n = 6 rabbit hearts using two cameras, such that the entire epicardial wall is imaged.

Exp ID 1 2 3 4 5 6 Average

# PS / frame 6.55 7.38 7.29 5.96 4.85 9.00 6.84

# PDL / frame 11.82 13.14 13.20 13.23 11.54 17.59 13.42

# PS not on a PDL / # PS 0.05 0.07 0.03 0.10 0.04 0.10 0.06

# PDL without a PS /frame 7.29 8.13 8.35 9.04 8.38 11.50 8.78

# new PS/frame 1.45 1.51 1.65 1.47 1.23 2.02 1.55

# new PDL/frame 0.41 0.46 0.42 0.43 0.36 0.66 0.46

Fraction of PS never on PDL 0.35% 0.07% 0.24% 0.61% 0.41% 0.40% 0.34%

Fraction of PDL never hosting PS 61% 60% 63% 64% 66% 64% 63%

Dominant frequency (Hz) 20.57 20.45 17.38 18.59 19.31 20.14 19.40

Dominant period (ms) 48.63 48.89 57.55 53.80 51.80 49.66 51.72

Mean PS lifespan (ms) 3.42 3.75 3.31 2.94 2.83 3.33 3.26

Mean PDL lifespan (ms) 15.22 15.14 16.39 15.25 13.96 12.50 14.74

Here, PSs were computed using the integral method using the “2× 2+ 4× 4” ring of points (Kuklik et al., 2017). Phase was computed for both PSs and PDLs with V (t) the normalized

optical intensity and R(t) its Hilbert transform.
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FIGURE 13 | Analysis of two-sided optical mapping data in rabbit hearts during ventricular tachycardia. Left: normalized optical intensity (transmembrane voltage) V,

together with WF (V* = 0.5, V̇ > 0) and wave back (V* = 0.5, V̇ < 0). Middle: same data series, φact computed with R the Hilbert transform of V, with PSs and PDLs

computed from φact. Right: colormap indicates φarr, computed with τ = 99ms, equal to the inverse dominant frequency. PSs and PDLs computed from φarr are also

shown. PS detection was done using the 2× 2+ 4× 4 method of Kuklik et al. (2017).
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FIGURE 14 | Post-processing of rotors observed via optical mapping

experiments from n = 6 rabbit hearts. Positive correlation (red line) between

number of detected PS and number of points in the PDL for the experiment

shown in Figure 13.

periodic ventricular tachycardia. Note that the fact that the rotor
is not performing a full rotation on the epicardial surface is not
reflected by the PS analysis, but becomes visible only in the PDL
framework. We verified visually that this scenario was true for
most re-entrant activity in the data.

Figure 14 shows that in every recorded frame the number
of PSs correlates with the total length of PDLs in that frame
(data from one experiment is shown, counting PSs observed with
two cameras on both sides of the heart). The intersection of the
trend line with the vertical axis at finite distance shows that even
without PSs, PDLs are found, which we attribute to CBLs without
a rotor connected to it.

4. DISCUSSION

In this manuscript, we proposed a topological framework for
excitable systems that feature conduction block lines.We brought
terminology from complex analysis (Riemann surfaces, branch
cuts) to a cardiac electrophysiology context and demonstrated
that the phase defect concept can describe more structures than
the classical PS. Moreover, we introduced the arrival time phase,
which allows to convert activation time measurements to phase,
and thereby unifies the isochrone and phase description of
cardiac tissue.

Our main findings are the following (1) the distribution of
phase in our cardiac simulations and experiments is organized in
regions with slow spatial variations of phase, separated from each
other by localized interfaces, which we called phase defects; (2)
that when arrival time phase is used, the only aberrant interfaces
occur at CBLs; (3) at these PDLs, classical detectionmethods tend
to localize PSs.

4.1. PDLs vs. PSs
The concept of extended PDLs can in our opinion explain some
limitations associated with classical PS analysis that we presented
in Figure 2. First, near the central region of a PDL, the phase
changes abruptly, and if this phase difference exceeds π , these
points on a PDL can be classified by traditional methods as

PSs, see Figure 2A. One option is to filter the resulting PSs and
remove closely spaced PSs, but another option suggested here
is to recognize the structures as line defects rather than point
defects of phase.

The observation that points on a PDL can be detected as PSs
at once explains why PSs are often found on CBLs, as was seen
in Figure 2C. Here, we conclude that in systems that form linear-
core rotors (even short-lived) do not possess PSs, but only PDLs.
Conversely, systems that sustain circular-core rotors can have PSs
at the spiral core, and PDLs at conduction block lines.

In Figure 2B, we argued that a PS cannot capture the shape of
a linear core. In contrast, a PDL can do so, as it is a line spanning
the entire conduction block region.

Geometrically speaking, PDLs and PSs are related to each
other: a PS can be seen as the limit of a PDL having length
zero. Conversely, a PDL can also be regarded as some kind of
extended PS. Hence, the PDL concept can be seen as a refinement
of a PS. Therefore, we make the suggestion to adapt current
phase analysis methods to accommodate for PDLs, which can
potentially make analysis more robust and accurate.

4.2. Physiological Interpretation of Phase
Defects
In analogy to the term “phase singularity” referring to spiral wave
tips, we here suggested the term “phase defect line” (PDL) to
refer to CBLs when their phase structure needs to be emphasized.
PDLs are ubiquitous in other branches of physics, e.g., magnetism
(Landau and Lifshitz, 1935), liquid crystals (Williams, 1963), and
string theory (Vilenkin, 1985).

Our justification as to why PDLs exist in these systems is based
on biological rather thanmathematical arguments and essentially
traces back to the arguments of Winfree (1974). Consider the
activation cycle of an excitable cell, i.e., its action potential, as
shown in Figure 1B. Now, if one expects a PS in the center of
a vortex, one assumes that the cells can also be in a state that lies
somewhere in the middle of the cycle in state space. However,
this situation may be biologically impossible: electrophysiology
processes during activation will push the cell along its activation
cycle, not necessarily allowing it to occupy the middle state.
In case of a PDL, the “forbidden” state does not need to be
realized. Going back from state space to real space, the region
with forbidden states is mapped to the PDL.

If one, however, models cardiac tissue in the continuum
approximation using a diffusion term, the transmembrane
potential becomes continuous, and if this potential is used as one
of the observables (V ,R) to infer phase, points in the “forbidden
zone” of state space are actually realized by the smoothing effect,
leading to a finite thickness of border between regions of different
phase. Since this diffusive effect acts during one action potential
with duration τ , we estimate the effective thickness of the phase
defect line to be

d =
√
Dτ (14)

with D the diffusion coefficient for transmembrane potential in
the direction perpendicular to the PDL. For the BOCF model
for human ventricle, one has D = 1.171 cm2/s and τ =
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269ms, leading to a PDL thickness of d = 5.6mm if the PDL
is perpendicular to the myofiber direction. With conduction
velocity anisotropy ratio c1/c2 ≈ 2.5, one finds d = 14mm if
the PDL is oriented parallel to the myofiber direction. These are
rough estimates in a minimal monodomain model.

Thus, as with other interfaces between phases in nature, a
boundary layer forms with a thickness related to fundamental
constants of the problem. This boundary layer effect explains why
the common PS detection methods usually do return a result,
even in the region of conduction block.When the new framework
is applied to a linear-core rotor, the classical spiral wave tip or PS
is expected to be the point where a wave front ends on a PDL.
However, this may depend on the precise tip structure, spatial
resolution and PS detection method, see e.g., Figure 4.

4.3. Relation to Other Works
Between the submission of our preprint (Arno et al., 2021)
and acceptance of this paper, a paper was published by Tomii
et al. (2021), who also identify a phase discontinuity at the
center of cardiac vortices, and compares it to a branch cut in
complex analysis. This effect was demonstrated by Tomii et al.
in numerical simulations only. They detected PDLs using

cos(φ(Er1)− φ(Er2)) > A ⇒ Er1 + Er2
2

∈ PDL. (15)

This method is very similar to our Equation (13). However, our
study goes further than their result, as we introduce arrival time
phase to link the phase picture with LAT, we demonstrate the
presence of PDLs in optical mapping experiments, and report
about PDSs in 3D as well.

We are also aware that the concept itself of a CBL is not
new at all, as conduction blocks are mentioned for more than
a century in electrophysiology reports (Mines, 1913). In 3D,
filaments have also been reported as being ribbon-like before
(Efimov et al., 1999). However, these observations have not
been thoroughly integrated in pattern analysis methods (which
is usually based on PSs) or the dynamical systems approach
to better understand arrhythmias (which has long considered
circular-cores only).

Meanwhile, CBLs are routinely localized and visualized during
clinical procedures, e.g., as the result of an ablation. A prime
insight advocated in this manuscript, and by Tomii et al. (2021),
is that the CBL itself is an extended line of abrupt change
between two regions with different activation phase, and that
this resembles more a mathematical branch cut than a PS.
Further studies are recommended to see if the phase defect
concept can help to solve some basic questions in the field,
such as why rotors do not complete full turns in tissue, and
which characteristics of the reaction kinetics determine the
core shape.

4.4. Relevance of Phase Defects for Theory
of Arrhythmias
The recognition that a PS may not be the best option to describe
linear core rotors, is in our opinion opening up several paths for
further analysis and insight in cardiac arrhythmia patterns.

First, by introducing the arrival time phase φarr, we have
unified the LAT description with the phase description, which
allows computing φact. Which phase to use in practice will
depend on the availability of data and their quality. Figure 6
furthermore shows that both phases can be converted into each
other. Hence, activation phase can also be estimated from LAT,
and arrival time phase from a single snapshot of V and R at a
given time.

Second, this work was inspired by localizing the regions where
an external stimulus can affect rotor dynamics. The relevant
sensitivity function is here known as a “response function” (RF)
(Biktasheva and Biktashev, 2003), and these have been computed
recently also for meandering and linear-core rotors (Marcotte
and Grigoriev, 2015; Dierckx et al., 2017). For circular-core
rotors, it has been numerically demonstrated that the RF is
located near the spiral wave tip, or its PS. So, rather than acting
as a point particle, the rotor has a finite extent given by the
spatial decay width of its RFs, with sensitivity localized near the
spiral wave tip or PS, not at its instantaneous rotation center.
For linear-core spirals, the PDL at their core indicates that the
sensitivity is located around this zone of rapidly varying phase.
More specifically, their RF was shown to be localized near the
end points of the PDL (Dierckx et al., 2017) (“turning points”),
suggesting that linear-core rotors resemble a localized particle
that hops from turning point to turning point. That the sensitivity
is lower in the middle part of the PDL can be understood
from the conduction block interpretation: this block line cannot
move much, as the tissue on one side is inexcitable. Hence, the
PDL concept confirms insights from RF theory, and it can be
hoped that combining both may open up ways to deepen the
understanding of how point dynamics (local electrophysiology)
affect the emerging patterns.

Third, it is yet unclear how essential structures such as WBs
and CBLs move under the influence of external stimuli such as
impeding waves or electrotonic currents from boundaries or 3D
effects. To answer this question is a key step toward designing
better methods to control wave patterns, e.g., as in defibrillation.
The identification of the phase defect, with boundary layer, could
allow in the near future to design a quantitative theory of their
dynamics, in analogy to earlier successes on rotor filaments with
circular cores (Keener, 1988) and excitation fronts (Kuramoto,
1980), which have lead to instability criteria for pattern formation
in the heart (Biktashev et al., 1994; Dierckx et al., 2012).

Fourth, a consequence of this investigation is that describing
fibrillation patterns using PSs only (Gray et al., 1995b; Gurevich
and Grigoriev, 2019) may not be sufficient to fully understand
the dynamics if conduction block occurs. Therefore, these studies
could benefit from additional identification of PDLs, of which we
made first steps in Figures 11, 13.

Finally, our preliminary results on 3D dynamics in Figure 11,
and Figure 12 is a first step to extending the filament concept
to the PDSs, like was done here to go from PSs to PDLs. In 2D,
we here demonstrated that circular-core spiral waves are centered
around a PS and linear-core meandering spirals rotate around a
PDL. Since in 3D, the collection of classical PSs forms a filament
curve, linear-core scroll waves extend to PDSs. Therefore, the
study of the dynamics of meandering scroll waves can benefit
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from its description in terms of phase defect surfaces. These
surfaces, as shown in Figures 11, 12 have a ribbon shape (Efimov
et al., 1999), but the meaning of the ribbon is different from
the ribbon model for filaments (Echebarria et al., 2006), where
the surface normal of the ribbon was purely related to scroll
wave twist. In our framework, the width of the PDS (ribbon)
is approximately equal to the length of the PDL in 2D. How
dynamical concepts such as filament tension (Biktashev et al.,
1994) and rigidity (Dierckx et al., 2012) generalize to PDSs is
still an open problem. For the intermediate case of flower-like
meander (Barkley et al., 1990), between the extremes of circular
and linear cores, it still needs to be determined whether the phase
structure is a PS, PDL or a different structure. Further analysis of
complex 3D dynamics in the phase defect framework will be the
topic of further investigation.

4.5. Interpretation of Experimental Results
Our analysis of rotors observed in isolated rabbit hearts during
experiments shows in short two observations. First, that PSs on
the epicardium were in this system always located on conduction
block lines (PDLs). This observation is in line with older and
more recent literature (Efimov et al., 1999; Podziemski et al.,
2018). Second, the rotors were not performing more than one full
rotation. To our knowledge, the question on why rotors are not
performing multiple rotations in ventricular tissue is unresolved.
The phase defect framework may be used to answer this question
in a comprehensive manner, rather than resorting to numerical
simulations only.

Another relevant question is whether the PS or PDL is the
structure that governs the organization of cardiac arrhythmias.
Here, we would answer that both are intricately related to each
other: in systems with linear-core rotors, we think the PS only
arises due to smoothing of the phase field and is therefore
located at a specific spot on the PDL, often where it meets
the wave front. Whether one should localize PSs or PDLs in
experiments or clinical situation, depends on the application and
desired accuracy.

4.6. Limitations and Outlook
The concept of PDLs was illustrated here in a very simple
setting: we mostly considered single rotors or rotor creation in
2D. Our initial results in 3D (see Figure 12) and with break-
up patterns (see Figure 11) show that there is rich dynamics
present that can be further analyzed using the phase defect
framework. We also did not consider alternans here, as in that
case the inertial manifold in state space will be not a simple
closed curve, and may require two or more phase parameters
to describe those states. This effort will be undertaken in
future work.

Also, we have described the framework in a general setting,
without explicit attention to the reason why rotors form in the
system. Future work could be directed to elucidate differences
between rotors formed by dynamical breakup (e.g., in atrial
fibrillation models) or by interaction with inhomogeneities of
the medium.

In this paper, the phase defect concept was used only
to describe the observed patterns, without yet looking into
how the topology determines the evolution of the structures
such as WFs, WBs, and PDLs. Still, we developed the phase
defect framework with the aim of providing a comprehensive
quantitative analysis of excitation patterns, in the line of previous
works on circular-core rotors and filaments (Keener, 1988;
Wellner et al., 2002; Verschelde et al., 2007; Dierckx et al.,
2012). The PDL concept provides not only a terminology
for it, but also a way forward: solutions will need to
be stitched together at the PDL interface, to elucidate
their dynamics, much like was done before for wave front
dynamics (Keener, 1986).

In the optical mapping experiments, the mechanical
uncoupler blebbastatin was used, which however also affects
the physiology of the cardiac cells. Therefore, the phase defect
structures that we observed could be different from real cardiac
tissue where no such uncoupler is present.

Furthermore, we used simple methods to find PDLs and WFs
in the experimental data. As a result of representing the PDL as
a spline curve, it is seen in Figure 13 that the wave fronts are not
exactly touching the PDLs, while this is expected from theory.We
will continue refining our numerical processingmethods to make
this image more consistent.

This study was also set in a fundamental science setting.
Yet, it is inspired by the clinically relevant length and
timescales: how do local dynamics self-organize in complex
patterns with rotors and conduction block lines? In our
opinion, contributions to the answer can be found from
scrutinizing the patterns themselves, and building up a
comprehensive understanding after the correct building blocks
have been identified.

Finally, we suggest to try our methods to clinically relevant
datasets, such as LAT maps derived from local electrograms.
Existing algorithms could be tuned or extended, given that the
classical PS was found in our simulations and experiments on a
line of nearly discontinous phase.

4.7. Conclusion
In summary, the key ideas presented in this manuscript are:

1. Near conduction block lines, the phase of cardiac cells is close
to discontinuous along a line, rather than along a point, as
assumed in classical phase analysis;

2. Therefore, in excitable systems that have a forbidden zone in
the inner region of their typical excursion (action potential) in
state space, detected PSs are located at PDLs;

3. There is more than one definition of phase, and these different
phases can be translated into each other depending on the goal
and available data.

As a historical note, we find that the name of mathematician
Bernhard Riemann is inscribed twice in our hearts: the heart
is not only a Riemannian manifold due to anisotropy of wave
propagation (Wellner et al., 2002; Verschelde et al., 2007; Young
and Panfilov, 2010), but also features phase defect lines showing
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non-trivial Riemannian surfaces that organize the electrical
patterns during arrhythmias.
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The electrical signals triggering the heart’s contraction are governed by non-linear

processes that can produce complex irregular activity, especially during or preceding

the onset of cardiac arrhythmias. Forecasts of cardiac voltage time series in such

conditions could allow new opportunities for intervention and control but would require

efficient computation of highly accurate predictions. Although machine-learning (ML)

approaches hold promise for delivering such results, non-linear time-series forecasting

poses significant challenges. In this manuscript, we study the performance of two

recurrent neural network (RNN) approaches along with echo state networks (ESNs) from

the reservoir computing (RC) paradigm in predicting cardiac voltage data in terms of

accuracy, efficiency, and robustness. We show that these ML time-series prediction

methods can forecast synthetic and experimental cardiac action potentials for at least

15–20 beats with a high degree of accuracy, with ESNs typically two orders of magnitude

faster than RNN approaches for the same network size.

Keywords: reservoir computing, recurrent neural network, echo state network, time series forecasting, cardiac

action potential

1. INTRODUCTION

Cardiac electrical signals, known as action potentials, exhibit complex non-linear dynamics,
including period-doubling bifurcations in their duration (Guevara et al., 1984; Watanabe et al.,
2001) and amplitude (Chen et al., 2017), along with higher-order period-doublings (Gizzi et al.,
2013) and chaotic behavior (Chialvo et al., 1990). Potentially life-threatening states like fibrillation
often are preceded by such long-short oscillations in action potential duration or amplitude
known as alternans in the medical literature (Nolasco and Dahlen, 1968; Pastore et al., 1999;
Gizzi et al., 2013; Chen et al., 2017). A number of methods for control of cardiac alternans
have been developed (Rappel et al., 1999; Christini et al., 2006; Berger et al., 2007; Garzón et al.,
2009; Garzon et al., 2014; Kulkarni et al., 2018), and while some have been demonstrated in
cardiac experimental preparations (Christini et al., 2006; Kulkarni et al., 2018), they have not
yet found clinical application in part because of the limited length scales over which control can
be accomplished (Echebarria and Karma, 2002; Garzon et al., 2014; Otani, 2017). An alternative
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strategy focusing on preventing rather than controlling alternans
could be more attractive clinically, but such an approach would
require accurate prediction of when such dynamics would occur.

Data-driven approaches can be used to forecast systems
like cardiac action potentials by inferring the dynamics from
observed data represented as time series (Kutz, 2013). Along
with conventional techniques for time-series modeling and
forecasting like autoregression approaches (Stock and Watson,
2001; Ing, 2003) and dynamic mode decomposition (Schmid,
2010), machine-learning methods have become increasingly
used for predicting dynamical system states (Kutz, 2013;
Chattopadhyay et al., 2020; Dubois et al., 2020). Recent
years have seen significant advances in the field of machine
learning, especially deep learning techniques. Recurrent neural
networks (RNNs) have been successfully employed in dynamical
domains, as the recurrent connections in the network provide
a notion of memory and allow them to naturally embed
temporal information. However, RNNs are still trained using
the computationally expensive technique of back-propagation
through time and remain prone to vanishing and exploding
gradient problems. Gated RNNs can help overcome some of
these problems; for example, to overcome the vanishing gradient
problem, gated RNNs take advantage of memory cell architecture
and a gating mechanism allowing the network to select which
information should be kept and which forgotten (Hochreiter
and Schmidhuber, 1997). This process enables the network
to learn the long-term dependencies in sequential temporal
data. Two widely used gated RNN approaches include long
short-term memory (LSTM) networks and gated recurrent
units (GRUs).

An alternative approach for modeling and predicting
dynamical systems is reservoir computing (RC) (Lukoševičius
and Jaeger, 2009; Sun et al., 2020), where, in contrast to
other RNN architectures, the training remains limited to
the output layer and the remaining parameters are selected
randomly. Despite this simplification compared to other RNN
architectures, RC techniques, including the commonly used echo
state network (ESN) approach (Jaeger, 2002; Lukoševičius, 2012),
have been used successfully to provide accurate multi-step-ahead
predictions in non-linear and chaotic time series with very low
computational costs (Bianchi et al., 2017; Han et al., 2021).
Variations of ESNs, including clustered ESNs, where the reservoir
consists of multiple sparsely connected sub-reservoirs (Deng and
Zhang, 2006; Junior et al., 2020), and hybrid ESNs, which include
input from a mathematical model and are a type of physics-
informed machine learning technique (Oh, 2020; Willard et al.,
2020), have been shown to have good performance in some cases
(Pathak et al., 2018; Doan et al., 2019).

In this work, we show that it is possible to accurately predict
future sequences of cardiac action potentials from complex
voltage activity obtained in silico and in ex-vivo experiments. We
further compare the performance of several machine-learning
techniques for a multi-step prediction of complex cardiac action
potential time series. In particular, we consider the accuracy and
computational efficiency of LSTMs and GRUs along with ESNs,
including a clustered architecture and a physics-informed hybrid
option, for different network sizes.

2. METHODS

Below we provide a brief overview of machine-learning-based
time series forecasting methods, describe the datasets we use, and
give the details of our specific implementations.

2.1. Time Series Forecasting Methods
In this section, we provide a brief summary of the machine-
learning approaches we use to forecast cardiac action potential
time series.

2.1.1. Gated Recurrent Neural Networks
Recurrent neural networks (RNN) were introduced as a special
class of neural networks in which the recurrent connections
allow information to persist in the network. However, they
suffer from vanishing and exploding gradient problems, which
limit their ability to learn long-term dependencies in temporal
sequences. Gated RNNs like long short-term memory networks
(LSTMs) were developed to remedy such problems. These
networks employ memory cells and a gating mechanism to
address exactly these issues. Supplementary Figure 1A illustrates
the information flow in an LSTM cell. In an LSTM network, a
hidden state ht is calculated using a map formalism:

it = σ (Wixt + Uiht−1 + bi),

ft = σ (Wf xt + Uf ht−1 + bf ),

ot = σ (Woxt + Uoht−1 + bo),

c̃t = tanh(Wcxt + Ucht−1 + bc),

ct = ft ⊙ ct−1 + it ⊙ c̃t ,

ht = tanh(ct)⊙ ot ,

(1)

where it , ft , and ot denote the input, forget, and output gates,
at time t, respectively; xt is the input vector; W and U are the
weight matrices that along with biases b are adjusted during the
learning process, ct is the cell state (the internal memory of the
LSTM unit), and c̃t is the cell input activation vector. In these
equations, each σ function is sigmoidal and⊙ denotes Hadamard
element-wise multiplication.

Gated recurrent units (GRUs) also were introduced to
avoid vanishing and exploding gradient problems and share
many similarities in architecture and performance with LSTM
networks. The GRU memory cell can be considered as a
simplification of an LSTM cell (see Supplementary Figure 1B).
Compared to an LSTM memory cell, in a GRU unit, the input
and forget gates are combined into a single update gate. This
simplification considerably reduces the number of trainable
weights and makes GRUs more computationally efficient; at the
same time, the prediction does not experience a considerable
deterioration in most cases and in some applications may even
improve (Bianchi et al., 2017). The GRU equations are given by

zt = σ (Wzxt + Uzht−1 + bz),

rt = σ (Wrxt + Urht−1 + br),

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1)+ bh),

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t ,

(2)
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where zt and rt are update and reset gates, respectively, and h̃t
is the candidate state. During the training process, the weight
matrices W and U and the bias vector b are adjusted, thereby
enabling the update and reset gates to select which information
should be kept through time and which information is irrelevant
for the problem and can be forgotten.

2.1.2. Echo State Networks
ESNs are a simple yet successful RNN architecture in which most
of the network parameters are initialized randomly and remain
untrained. Supplementary Figures 2A,B demonstrates the main
components of an ESN. The hidden layer in an ESN is called the
reservoir, which is a randomly initialized RNN.

The reservoir state ht is updated according to

ht = (1− α)ht−1 + α tanh (Winxt +Wht−1), (3)

where Win and W are the input weight and reservoir
weight matrices, respectively; both are initialized randomly and
remained untrained. We utilize an extension of the standard ESN
formalism that includes a “leaky” update model, which explicitly
includes a linear history term. The input signal is denoted by
xt and the constant parameter α ∈ [0, 1] is known as the
leaking rate. The output of the network is calculated by the
following equation:

yt = f out
(

Wout
[

xt; ht
])

, (4)

where f out is the output layer activation function, which is
chosen here as a unity function. The output weights Wout

are obtained here by regularized least-square regression with
Tikhonov regularization to avoid overfitting.

Since the initial success of reservoir computing techniques
and ESNs, a variety of network topologies have been proposed
in the literature, including clustered reservoirs and deep ESNs.
The main components of the network are similar to the
baseline ESN architecture except for the reservoir topology;
for clustered ESNs, the randomized connections between
neurons form a set of sub-reservoirs sparsely connected to
each other. The network topology is schematically illustrated
in Supplementary Figures 2C,D and the update and training
equations are the same as those for the baseline ESN (Equations
3 and 4).

We also consider a hybrid ESN approach, which is a
physics-informed machine learning approach in which a
knowledge-based model is integrated into an ESN; the model
and ESN operate simultaneously during the training and
prediction. The architecture of this approach is presented in
Supplementary Figure 2E. For our application, the network
in this design is driven with three input signals: u1(t), the
pacing stimulus exciting the network at prescribed intervals;
u2(t) = VKB(t), the knowledge-based model providing the
voltage dynamics of a cardiac cell; and u3(t) = V(t), the synthetic
or experimental voltage measurements. The knowledge-based
model can be a much simpler (typically imperfect) model
that provides an approximation of the dynamical behavior
of the system, such as the two-variable Mitchell-Schaeffer

(Mitchell and Schaeffer, 2003) or three-variable Fenton-Karma
(Fenton and Karma, 1998) model, to increase the predictive
ability of the network. Consequently, the time evolution of the
reservoir state ht is given by the same Equation 3, where the input
signal vector is formed as follow,

xt =
[

(u1(t); u2(t); u3(t)
]

. (5)

Here we use the Corrado-Niederer update of the Mitchell-
Schaeffer model (Corrado and Niederer, 2016) with τin = 0.3 ms,
τout = 6 ms, τopen = 120 ms, τclose = 150 ms, and vgate = 0.13.

2.2. Datasets
To evaluate and compare the performance of these approaches in
forecasting cardiac action potential time series, the methods are
applied to two synthetic datasets derived from cardiac cell models
and to an experimental dataset. We describe the three datasets
used below.

2.2.1. Fenton-Karma Model-Derived Dataset
As one dataset, we use a time series of randomly timed
action potentials generated using the Fenton-Karma (FK) model
(Fenton and Karma, 1998), which includes a voltage variable and
two gating variables. The model uses the Beeler-Reuter fitting of
the FKmodel (parameter set 3 in Fenton et al., 2002) and is paced
with cycle lengths drawn from a normal distribution using a 2-
ms square stimulus current with magnitude 0.4 for 100 beats. To
ensure a wide range of action potential durations, the cycle length
distribution is centered at 320 ms with a standard deviation of
50 ms. The differential equations of the model are solved using
the forward Euler method with a fixed time step of 0.1 ms; this
time series is coarsened to obtain the synthetic voltage dataset
(see section 2.3.4). The voltage data is then coupled with the
stimulus timing so that amultivariate dataset is used, as explained
in section 2.3.5.

Figure 1A shows the voltage trace that together with the
corresponding stimulus input form the FK dataset; Figure 1B
shows the corresponding action potential duration (APD) values.
Data selected for training are shown in blue and testing data
are shown in black. Just over 80 action potentials are used for
training and about 20 for testing. Because the cycle lengths used
include values both above and below the bifurcation to alternans,
the resulting APDs included in the dataset span a range of about
200 ms. Figure 1C shows a blowup of the shaded regions in
Figures 1A,B to illustrate the irregular timing of stimuli and
variation in voltage responses within the training data.

2.2.2. Noble Model-Derived Dataset
As a different type of model-derived dataset, we use the four-
variable Noble model (Noble, 1962) for a Purkinje cell in
the absence of external pacing. To provide variation in action
potential timing and duration, the Noble model is coupled to
the three-variable Lorenz model (Lorenz, 1963) in the chaotic
regime (ρ = 28, b = 8/3, and σ = 10). Time is effectively
rescaled in the Lorenz system by multiplying each of the three
differential equations by a factor of 0.001. The anionic current
conductance in the Noble model was set to be proportional to
the z variable of the Lorenz model, thereby driving oscillations
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A

B

FIGURE 1 | Synthetic action potential time series generated by the Fenton-Karma (FK) model with randomly distributed cycle lengths. (A) Voltage time series

including unused pre-training data (gray), training data (blue), and testing (prediction) data (black). (B) Corresponding APDs, following the same color scheme as (A).

(C) Zoomed in voltage trace corresponding to the shaded region in (A,B) showing the irregular action potential shapes and durations.

in the anionic current magnitude in concert with the Lorenz
oscillations. Specifically, the conductance was set to 0 for z = 0
and to 0.2 for z = 60. This extension provides two important
features of this dataset: first, the variation in cycle lengths is
driven by a chaotic, rather than a random process, and second,
there is no need for application of an external stimulus, as action
potentials occur when the cell is quiescent and the Lorenz-driven
current brings the voltage above the threshold for excitation.
Therefore, in this case, only a univariate time series of voltage
data is provided, with no external stimulus data. All other model
parameters remain as specified in Noble (1962).

The Noble dataset voltage trace and action potentials are
shown in Figure 2, with the training portion (around 65 action
potentials) shown in blue and the testing portion (14 action
potentials) in black. Because of the inclusion of the chaotic
Lorenz model as a driving force, the Noble model-derived dataset
demonstrates considerable variation in action potentials, with no
consistent pattern. APDs vary between about 310 and 345 ms.

2.2.3. Experimental Dataset
The third dataset consists of irregular activity recorded from
zebrafish hearts subjected to constant diastolic interval (DI)
pacing (Cherry, 2017; Zlochiver et al., 2017); see Figure 3.

All experimental procedures were approved by the office of
Research Integrity Assurance of Georgia Tech under IACUC
A100416. Zebrafish (Danio rerio) of either sex were anesthetized
via cold water bath. Following anesthesia, hearts were quickly
excised and immersed in Tyrode’s solution (in mM: NaCl
124, KCl 4, NaHCO3 24, NaH2PO4·H2O 0.9, MgCl2·6H2O 2,
dextrose 5.5). Blebbistatin, used to stop contraction without
major effects on electrophysiology (Fenton et al., 2008; Kappadan
et al., 2020), was added to Tyrode’s solution 20–30 min
prior to data acquisition to help suppress heart motion. The
heart was held in place by insect pins which attached the
bulbus arteriosus to the bottom of a Sylgard-lined Petri dish.
Stimulation was applied through AgCl bipolar electrodes placed
on opposite sides of the heart close by to stimulate via
electric field.

Intra- and extracellular voltages were acquired by two
glass micropipettes containing 2.5 M KCl solution fastened
into microelectrode holders (MEH3SFW, World Precision
Instruments). Ag/AgCl half cells within the microelectrode
holders sent signals to be buffered by pair of DC-powered
preamplifiers (Electro 705, World Precision Instruments), which
were connected together to output a differential measurement
of transmembrane voltage. This transmembrane voltage was
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A

B C

FIGURE 2 | Synthetic action potential time series generated by the Noble model driven by the chaotic Lorenz model. (A) Voltage time series including unused

pre-training data (gray), training data (blue), and testing (prediction) data (black). (B) Corresponding APDs, following the same color scheme as (A). (C) Zoomed in

voltage trace corresponding to the shaded region in (A,B) showing the irregular action potential shapes and durations.

then split into two paths. One path led through a BNC
breakout board (BNC-2110, National Instruments) to be read
by a DAQ (PCIe-6341, National Instruments) and written to
a file at 10,000 samples/s by a computer running a custom-
built MATLAB script. Transmembrane voltage was also sent
through a custom-built circuit that applied a gain and offset
to the signals before being read by an Arduino Due. The
Arduino Due then interpreted signals on-the-fly and determined
when the heart should be stimulated to enforce a user-set DI,
which was communicated to a current source stimulus isolator
(Isostim A320, World Precision Instruments) that stimulated
the heart.

Although constant-DI pacing can lead to stable and
predictable APDs (Kulkarni et al., 2018), in our recordings
APDs were highly variable despite the constant DI maintained.
This high variability may result from the much smaller
DIs used compared to the values used by Kulkarni et al.
(2018), which were very close to the alternans bifurcation
period. Figure 3 shows the experimental dataset voltage
trace and APDs, including over 100 training (blue)
and over 20 testing (black) action potentials. Stimulus
artifacts were removed using spline interpolation in a
pre-processing step.

2.3. Implementation Details
All methods were implemented in MATLAB (R2020b) and were
run on the same computer equipped with a 1.4 GHz Quad-Core
Intel Core i5 processor and 8 GB of RAM, operating with macOS
Big Sur (Version 11.4).

2.3.1. Hyperparameter Selection
The optimum values of various hyperparameters required for
each method were tuned through an extensive grid search, the
set of values for which are given in Supplementary Table 1.
The ranges of the hyperparameter values used for the grid
search and the number of values tested were chosen according
to the results of initial experiments to generate reasonable
results and also factor in the observed level of sensitivity of
the employed approaches to each hyperparameter. Optimal
hyperparameter values were obtained for each network size and
dataset; see Supplementary Tables 2–6. Therefore, the results
presented reflect the best attainable performance of each method
for a given network size for each dataset.

2.3.2. Gated RNN Implementations
The LSTM and GRU networks are constructed using the
MATLAB Deep Learning toolbox, where the network topologies
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A

B C

FIGURE 3 | Experimental zebrafish action potential time series featuring irregular alternans characterized by action potentials with irregular cycle lengths and

durations. (A) Voltage time series including unused pre-training data (gray), training data (blue), and testing (prediction) data (black). (B) Corresponding APDs, following

the same color scheme as (A). (C) Zoomed in voltage trace corresponding to the shaded region in (A,B) showing the irregular action potential shapes and durations.

are specified by a graph of layers. To predict the action potential
time series multiple steps into the future, a sequence-to-sequence
regression LSTM architecture is employed that entails several
main components. First, a sequential input layer is required to
feed the input time series into the network. Then, an LSTM layer
is used to learn the long-term dependencies between the time
steps of the input sequential data. Finally, a fully connected layer
connects the LSTM layer to a regression output layer to complete
the design. The architecture of the GRU networks is the same as
for the LSTM network except for employing a GRU layer instead
of an LSTM layer. In addition to the single-layer architectures,
multi-layer networks with multiple stacked gated layers are also
tested in this work.

The main hyperparameters to configure in gated RNNs
include the number of hidden layers and hidden units, the
optimizer for the training network, and the hyperparameters
related to the optimization solver, such as the maximum
number of epochs, learning rate, learning rate drop factor,
and regularization factor. Due to the high computational costs
of gated RNNs, running an exhaustive grid search on all
hyperparameters is not pragmatically feasible. Therefore, based
on our initial experiments, some of these hyperparameters are
set while the grid search determines the optimum values of those

demonstrating a more significant role in the performance of the
network. Accordingly, the Adam optimizer (Kingma and Ba,
2014) is employed for training the network with the MATLAB
default training configurations and the maximum number of
30 epochs. Then, the grid search is employed to determine the
optimum number of hidden layers and the initial learning rate
(Supplementary Tables 2, 3).

The trained network then can be used to predict the response
of the system for the next time step. To forecast voltage values
multiple steps ahead, a recursive approach is adopted in which
at each time step, the response is predicted using the trained
network and the network state is updated correspondingly. This
predicted value is featured as the input for the next time step
prediction. This procedure is repeated to predict the voltage
response for the entire prediction horizon.

2.3.3. Echo State Network Implementations
The baseline ESN technique is implemented based on the
original tutorial presented by Jaeger (2002) and the practical
guide presented by Lukoševičius (2012). The reservoir graph
is generated using the Erdős–Rényi algorithm (Bollobás, 2001),
after which it is rescaled and updated to satisfy the echo state
property of the network (Yildiz et al., 2012) ensuring that the
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effect of initial conditions should vanish progressively and the
reservoir state should asymptotically depend only on the input
signals. The same procedure is conducted to construct the
reservoirs in the clustered and hybrid ESNs. More specifically,
in the hybrid ESN, the reservoir graph is generated with the
same randomized approach, while in the clustered ESN, the sub-
reservoir clusters are generated first, then connected to each
other randomly, where an additional hyperparameter specifies
the probability of the inter-cluster connections.

During the training of an ESN, the first initial steps of the
network states are discarded to wash out the initial states and
ensure the network dynamics are fully developed. Here, the
first ten beats are considered as the transient phase and their
corresponding state values are not used for training the networks.

Compared to the gated RNNs, the number of hyperparameters
that play a more significant role in network performance in
RC techniques is considerably higher, and the performance
of the network highly depends on finding a good set of
hyperparameters, including the number of neurons in the
reservoir, connection probability used in the Erdős–Rényi
graph generation step, reservoir spectral radius, input weight
scale, leaking rate, and ridge regression regularization factor.
Additionally, the number of clusters and the knowledge-
based model are additional parameters to consider in clustered
and hybrid ESNs, respectively. Although the size of the
hyperparameter grid search space grows exponentially in RC
techniques and is much higher compared to that of gated RNNs,
because of the lower computational efforts required in ESN
approaches, we obtained grid search results two times faster than
for the gated RNNs.

Note that due to the random nature of ESNs and the intrinsic
sensitivity of the network to the initial values of the parameters,
the results for each network size are averaged over 10 experiments
with different seed values for the random number generator.

2.3.4. Data Resampling
Although it is common to obtain data at a particular fixed time
resolution, such a resolution often is not optimal; for example, it
may contain so many points that it is difficult to obtain a good
fit. More generally, an imbalanced distribution of data points
in a time series can significantly deteriorate the performance of
time-series prediction techniques. In such situations, a certain
range of values are overrepresented compared to the rest of the
time series, giving rise to a bias toward the values or behaviors
that occur more frequently in the sequence. For example, in
the case of an action potential time series, sampling that is
uniform in time causes the upstroke phase, associated with
the rapid depolarization of the cell membrane potential, to
be underrepresented compared to the rest of the time series.
Therefore, it is expected that prediction techniques may fail to
correctly capture the upstroke phase in such cases and thus
may produce a poor forecast overall. A common approach for
tackling such issues is the use of resampling strategies (Moniz
et al., 2017), which operate on the training dataset to make the
distribution of the data points more balanced in terms of their
information content.

In this work, we implement an under-sampling technique in
which each data point is only included in the dataset if its voltage
is sufficiently distinct from the last included data point, thereby
ensuring more data points where the voltage changes rapidly. In
this approach, two consecutive data points are considered distinct
if the difference between the voltage values is greater than or
equal to a threshold. If the threshold is set to zero, the dataset
remains the same. In contrast, a very large threshold will result
in great information loss and important features will be removed
from the action potential time series. Therefore, the resampling
threshold is also treated as a hyperparameter so that its optimum
value is determined along with the other hyperparameters by the
grid search. We also include a data point if the time since the last
included data point exceeds a separate threshold, which is also
treated as a hyperparameter, to ensure there is a sufficient density
of points in portions of the action potential where the voltage
changes slowly. Supplementary Table 1 illustrates the possible
values of the resampling thresholds used in the grid search. We
found a significant increase in the predictive accuracy when using
this resampling strategy and it is used for all results shown here.

2.3.5. Univariate vs. Multivariate Time Series

Prediction
In practice, the action potential forecasting task entails predicting
one variable (voltage) over time, resulting in a univariate time
series. However, the input time series can be either a univariate
or multivariate time series. The former occurs when the input
data is assumed to be endogenous and is not driven by an
external stimulus. The latter portrays cases in which cardiac cells
are stimulated exogenously; in such a case, the pacing stimulus
can also be introduced to the network along with the cardiac
voltage signal. In this work, both scenarios are considered.
Accordingly, the univariate input models are employed for
forecasting the Noble dataset, where the auto-oscillatory nature
of this model eliminates the requirements of applying an external
stimulus. In contrast, both the FK dataset, which uses random
stimulus timings, and the experimental dataset, which uses
varying stimulus timings owing to the constant DIs but variable
APDs, are used with multivariate time series prediction, which
incorporates the pacing stimulus signal. In the case of the
experimental data, the timing of applied stimuli is not directly
available; thus, a pre-processing step is applied to detect the
starting point of each beat in time and then a 2-ms stimulus
current with a relative magnitude of 0.2 is used to generate the
pacing stimulus signal. This process generates a stimulus current
that is then resampled so that stimulus values are available
for each resampled voltage data point. Our initial experiments
demonstrate that the magnitude of the stimulus does not affect
the quality of the predictions in this setup, but introducing the
stimulus signal considerably improves the predictive ability in the
first place.

Supplementary Figures 2A,C illustrate the architectures of
the baseline and clustered ESNs, respectively, that are used
for the univariate input case. To accommodate the pacing
stimulus signal in multivariate input settings, these architectures
are updated to include one more feature in the input
layer (Supplementary Figures 2B,D). Introducing the stimulus
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FIGURE 4 | FK dataset action potential prediction results obtained for the five methods using a fixed network size of 100 neurons. Test data are shown in black for

reference and the predictions in color. (Left) All predicted APs. (Right) Zoomed view of the first three predicted APs.

information into the hybrid ESN approach is inevitable
because in this architecture, the knowledge-based model
should be synchronized with the input action potential
time series to operate simultaneously. Therefore, the hybrid
ESN is essentially developed for a multivariate input case
(Supplementary Figure 2E). Accordingly, the pre-processing
described step can be employed to extract the timing of the
stimulus current. Similarly, in gated RNNs, themultivariate input
case can be handled by adjusting the number of inputs in the
sequential input layer.

2.3.6. Evaluation Metrics
To assess prediction accuracy, we use the root mean square error
(RMSE) metric:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

V̂i − Vi

)2
. (6)

whereVi and V̂i are the target and predicted outputs, respectively,
and n denotes the length of the test dataset. Note that the voltage
values of the Noble and experimental datasets have been linearly
rescaled to be between zero and one. The FK model is already
scaled so that its upstroke reaches a maximum of one; no further
rescaling is performed. As discussed in section 2.3.4, in all cases,
the dataset values used here are not uniformly spaced in time.

We also assess error by comparing action potential durations
(APDs). We define an APD as the time interval over which the
voltage during an action potential is continuously larger than the
threshold value, which is selected as 0.3 for the synthetic datasets
(FK and noble) and 0.35 for the experimental dataset.

3. RESULTS

3.1. FK Model-Derived Dataset
The FK model-derived dataset (hereafter referred to as the FK
dataset), shown previously in Figure 1, includes irregularity in
action potential shapes and durations through the use of cycle
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FIGURE 5 | FK dataset APD prediction results obtained for the five methods using a fixed network size of 100 neurons. APDs from data used for testing are shown in

black for reference and predicted APDs are shown in color. Absolute error in APD prediction is shown in the bottom subplot, with color corresponding to prediction

method.

lengths drawn from a normal distribution. Figure 4 shows the
19 action potentials predicted by the five methods (LSTM, GRU,
ESN, clustered ESN, and hybrid ESN) for a fixed network size
of 100 hidden units. All five methods match the action potential
upstrokes and downstrokes well. As a result, the predictions for
APD by all methods have very low error (below 10 ms) across all
19 beats with no growth over time, as shown in detail in Figure 5,
despite the irregular alternans present in the dataset. However,
different methods exhibit different prediction accuracies for the
plateau and rest phases of the action potentials. Specifically,

the hybrid ESN does the best job of matching voltage values
during these phases; the ESN approaches produce good results
during the plateau but show depolarization preceding each
action potential rather than remaining at a stable rest potential.
The LSTM and GRU methods show the largest discrepancies,
including plateau height mismatches and significant slowing in
repolarization leading to elevated resting potentials.

Network size has a limited effect on overall accuracy as
measured by RMSE. Figure 6 shows that there is no clear trend
in error as the network size is increased, except that the hybrid
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FIGURE 6 | Comparison of RMSE (A) and computational time (B) for each method and network size tested for the FK dataset.

ESN error is much lower for networks with at least 100 neurons.
The hybrid ESN also has the lowest or near lowest error for all
cases with at least 100 neurons, while the ESN and clustered ESN
methods generally achieve slightly lower error than the LSTM
and GRU methods.

The lower plot in Figure 6 demonstrates that for a fixed
network size the ESN and clustered ESNs accomplish the
combination of training and prediction tasks much faster—by
roughly two orders of magnitude—than the LSTM and GRU
methods, with the hybrid ESN placing in between. These timing
differences across the methods are maintained across all network
sizes. However, within each individual method, the time for
training and prediction increases with the number of neurons,
except for the hybrid ESN method, for which such a trend is
less clear.

3.2. Noble Model-Derived Dataset
The results of using the five methods to predict action potentials
in the Noble dataset (shown in Figure 2) using a fixed network
size of 100 can be seen in Figure 7, which shows the voltage
traces, and in Figure 8, which shows the predicted APDs
and absolute error in APD. The LSTM predictions generally
achieve good agreement throughout the testing phase, with some
discrepancies during the plateau and an overestimation of phase
4 depolarization. The GRU predictions are similar except that
they repolarize less completely and consistently underestimate
the peak upstroke voltage. The ESN and clustered ESN methods
show improved accuracy with relatively minor discrepancies. In
contrast, the hybrid ESN exhibits a very different action potential
shape more in line with the capabilities of the knowledge-based
model and consistently overestimates APD.

Figure 9 shows that the ESN and clustered ESNs achieve the
lowest RMSE across different network sizes. The hybrid ESN
and LSTM methods perform relatively well across most network
sizes but produce larger RMSE values for some network sizes.
GRUs have the highest error for most network sizes for this
dataset. It is difficult to discern a clear trend in accuracy with
increased network size; prediction method differences appear to
have stronger effects.

As with the FK model, the RNN approaches consistently
take longer than the ESN and clustered ESN approaches,
with the hybrid ESN in between. For network sizes of
at least 100 hidden units, the ESN and clustered ESN
methods require about two orders of magnitude less
computational time than the RNN methods. For all
approaches, there is a modest increase in computational
time for 100 or more hidden units as the network size
increases, with the exception of the hybrid ESN, for which the
computational time is approximately constant across all network
sizes tested.

3.3. Experimental Dataset
For the experimental dataset, obtained from zebrafish paced
using a constant-DI protocol and shown in Figure 3, all five
methods are able to reconstruct most of the action potential
features, as demonstrated in Figure 10 with 100 hidden units.
With each method, the discrepancies in predicted voltage values
occur mostly during the portions of the action potentials with
smaller voltage derivatives, the plateau and the rest phase. All
methods underestimate the plateau height and fall short of
repolarizing fully, with the hybrid ESN continuing to repolarize
slowly throughout what should be the rest phase while the
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FIGURE 7 | Noble dataset action potential prediction results obtained for the five methods using a fixed network size of 100 neurons. Test data are shown in black for

reference and the predictions in color. (Left) All predicted APs. (Right) Zoomed view of the first three predicted APs.

other methods produce depolarization during this phase. The
performance does not vary significantly over the full prediction
series, although some individual action potentials are not fit well.
As shown in Figure 11, the largest APD differences from the true
values occur for the hybrid ESN, with the clustered ESN yielding
especially good results. The ESN and hybrid ESN consistently
underestimate APD values, and the APD values predicted by the
LSTM and GRUmethods are generally less extreme than the true
APDs (that is, the long APDs are predicted to be shorter and the
short APDs are predicted to be longer).

As the number of neurons is changed, there is no clear
effect on accuracy, except possibly for the hybrid ESN, which
appears to have a slight trend toward lower RMSE with
more neurons; see Figure 12. In contrast, the time required
for training and prediction shows the same trend as for the
other data sets, with the LSTM and GRU approaches requiring
about two orders of magnitude more time for the same
network size than the ESN and clustered ESN approaches, and
the hybrid ESN in between. All the methods show a trend
toward increasing time with increasing network size, except

for the hybrid ESN, which as before appears insensitive to
network size.

4. DISCUSSION

In this paper, we tested five different ML time series prediction
methods, two based on RNNs and three based on a type
of reservoir computing, to predict irregular voltage dynamics
arising from random or chaotic effects for three cardiac datasets.
We found that for clinically relevant intervals (1–3 s, or 6–
19 beats at 160 ms) for the detection of cardiac arrhythmia in
embedded devices (Madhavan and Friedman, 2013), we were able
to predict voltage traces that closely match the true dynamics.
We showed that for all datasets considered, all five prediction
methods could produce accurate forecasts of both voltage and
APD for around 15–20 action potentials (as long as was tested).
With the exception of GRU predictions for the Noble dataset,
RMSE values on the order of 0.1 normalized voltage units or
lower could be attained for every combination of dataset and
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FIGURE 8 | Noble dataset APD prediction results obtained for the five methods using a fixed network size of 100 neurons. APDs from data used for testing are shown

in black for reference and predicted APDs are shown in color. Absolute error in APD prediction is shown in the bottom subplot, with color corresponding to prediction

method.

prediction method. APD errors were typically less than 5 ms
for both the FK and experimental datasets, with larger typical
errors of around 20 ms (sometimes more) for the Noble dataset.
Over the measured interval, none of the methods exhibited any
long-term trend in the APD error, indicating that the methods
have seen sufficient training data to accurately model the real
action potential response to stimulation and the associated
APD distribution.

In addition, we demonstrated that the ESN approaches
achieved lower error than the RNN approaches for the synthetic

datasets and that the hybrid ESN achieved the best accuracy for
the experimental dataset. Furthermore, the accuracy obtained,
as measured by RMSE, was largely independent of network
size. The time required for training and prediction typically was
about two orders of magnitude lower for the ESN and clustered
ESN architectures compared to the LSTM and GRU approaches,
with the hybrid ESN timing in between. Computation time also
generally grew with the network size, with the exception of the
hybrid ESN, where computational time was essentially constant
across all network sizes considered. We expect this insensitivity
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FIGURE 9 | Comparison of RMSE (A) and computational time (B) for each method and network size tested for the Noble dataset.

occurred because the time associated with solving the knowledge-
based model (essentially a set of differential equations describing
a cardiac cell), which is independent of network size, was more
expensive than the cost of the ESN itself and thus dominated the
total training and prediction time.

We investigated different types of dynamics, including those
influenced by underlying randomness and chaos. We found the
lowest RMSE values for the FK and experimental datasets and
the highest RMSE values for the chaotically-driven Noble dataset.
For the FK dataset, the hybrid ESN typically achieved the lowest
error for all but the smallest network size, with the other ESN
approaches achieving slightly less error than the LSTM and
GRU methods. The Noble dataset elicited a particularly poor
performance for the GRU method, with RMSE values typically
three or four times larger than for the other methods; also,
the hybrid ESN did not perform as well as the other ESNs.
However, it is possible that use of a univariate time series in
this case contributed to lower accuracy, rather than just the
chaotic dynamics alone. For the experimental dataset, which
likely has elements of both randomness and chaos, the hybrid
ESN generally achieved the lowest error, with the other methods
producing similar RMSE values. Overall, our results indicate that
the ESN architecture provides better performance than LSTM
and GRU approaches for the voltage forecasting task.

4.1. Effects of Algorithmic Choices
The action potential time series used in this work were highly
imbalanced. In this study, although we found the need to
downsample the original data for use with testing and training,
we did not perform systematic studies regarding how to optimize

this task. As a general observation, starting from the initial
highly imbalanced time series, by increasing the sampling spacing
and reducing the number of data points, the training and
testing errors were reduced. However, the information loss
caused by removing data points is the obvious side effect
if the spacing becomes too large. Our choice of tying the
time spacing to changes in voltage ensured good resolution
during rapidly changing parts of action potentials, including
the upstroke, but led to a lack of points during the rest and
plateau phases, contributing to apparent errors during these
times of slow changes in voltage. Further studies are required to
investigate various spacing and resampling strategies to propose
an optimal approach.

Although our results illustrate that ESNs provide the best
prediction accuracy together with the lowest computational times
in most cases for the methods and datasets considered, the ESN
approach shows the most sensitivity to the hyperparameter and
network parameter values. Our grid search results demonstrated
a wide variability in the prediction performance obtained by
various ESNs with very similar configurations. This motivates
more study to improve the robustness of this approach. Among
the three RC techniques used in this work, the hybrid ESN
showed the least sensitivity to the hyperparameter values. We
expect that the knowledge-based model promotes the predictive
ability of the network by generating an approximate action
potential, which the network perturbs to resolve the precise
AP shape.

Incorporating the pacing stimulus into a multivariate input
setup considerably improved the prediction performance of the
network over using a univariate voltage input and extended the
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FIGURE 10 | Experimental dataset action potential prediction results obtained for the five methods using a fixed network size of 100 neurons. Test data are shown in

black for reference and the predictions in color. (Left) All predicted APs. (Right) Zoomed view of the first two predicted APs.

forecasting horizon to a higher number of beats. In the absence
of the stimulus information, depending on the dynamics of the
system, the predictions remain accurate only for the first few
beats after the training.

4.2. Limitations and Future Work
Our study contains a number of limitations. First, we studied
a limited number of datasets. It is possible that different types
of dynamics (e.g., more strongly chaotic) could lead to different
results, and in particular experimental data from other sources
could prove more difficult to predict. In addition, we did not
study how much training data was needed to obtain good results.
Furthermore, it remains an important open question how long
the action potential predictions will remain accurate without
deteriorating, although in this case we have found lower bounds.

We also considered a small number of time series prediction
methods. There are many variations on these methods (Chandra
et al., 2021; Han et al., 2021) and it is possible that performance
improvements could be achieved. Even choosing different

settings for the methods considered, such as a different number
of clusters for the clustered ESNs, potentially could affect
performance. There are also different types of predictionmethods
that we did not consider. For example, ESNs have been connected
to vector autoregression (VAR) (Bollt, 2021), thereby motivating
additional studies of VAR for prediction. It also would be
interesting to study the accuracy of predictions of APD obtained
by training on APD values only.

For the hybrid ESN, we only considered the use of one
knowledge-based model, the Corrado-Niederer update of the
Mitchell-Schaeffer model. It is possible that different model
choices could affect the accuracy or computational time of
the hybrid method; for example, an even simpler two-variable
model like the FitzHugh-Nagumo model could potentially make
the hybrid ESN approach more competitive with the other
ESNs considered here, while a knowledge-based model that is
matched to the data-generating model might present a near-
trivial prediction task. Additionally, more complex cardiac cell
models with detailed calcium dynamics may have an impact on
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FIGURE 11 | Experimental dataset APD prediction results obtained for the five methods using a fixed network size of 100 neurons. APDs from data used for testing

are shown in black for reference and predicted APDs are shown in color. Absolute error in APD prediction is shown in the bottom subplot, with color corresponding to

prediction method.

long-term tissue memory. In practice, this long-term change in
the cardiac cell may lessen the predictive power of the presented
ML models over long time intervals.

We also note that there is a close connection between ML-
based methods and data assimilation. In the cardiac case, Kalman
filter-based methods including data assimilation have been used
thus far for reconstruction (Muñoz and Otani, 2010, 2013;
Hoffman et al., 2016; Hoffman and Cherry, 2020; Marcotte et al.,
2021), but they also can be used for forecasting, as is more typical
in data assimilation’s original weather forecasting context (Hunt
et al., 2007). It may be beneficial to pursue approaches that seek

to merge data assimilation and machine learning for this task
(Albers et al., 2018; Brajard et al., 2020; Gottwald and Reich,
2021).

Along with extensions of our present work to address the
issues discussed above, in the future we intend to consider
predicting cardiac voltage dynamics during the development
of arrhythmias. We expect this goal may necessitate the
use of spatially extended models of cardiac tissue as part
of the prediction process, although handling the information
from spatial neighbors requires very large networks that
will pose new computational challenges. The combination
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FIGURE 12 | Comparison of RMSE (A) and computational time (B) for each method and network size tested for the experimental dataset.

of ESNs and local states (Pathak et al., 2018; Zimmermann
and Parlitz, 2018) or specialized deep-learning architectures
(Herzog et al., 2018) may be useful in tackling such problems,
but these methods remain computationally demanding and
may require new approaches. In addition, we may need to
carefully consider the types of dynamics included in the
training data in order to accurately predict transitions between
different types of dynamics, such as the transition from normal
rhythm to tachycardia or the transition from tachycardia to
fibrillation. Accurate prediction of such transitions may lead to
advances in control designed to prevent the development of
fatal arrhythmias.
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Electrical conduction in cardiac ventricular tissue is regulated via sodium (Na+) channels

and gap junctions (GJs). We and others have recently shown that Na+ channels

preferentially localize at the site of cell-cell junctions, the intercalated disc (ID), in adult

cardiac tissue, facilitating coupling via the formation of intercellular Na+ nanodomains,

also termed ephaptic coupling (EpC). Several properties governing EpC vary with age,

including Na+ channel and GJ expression and distribution and cell size. Prior work has

shown that neonatal cardiomyocytes have immature IDs with Na+ channels and GJs

diffusively distributed throughout the sarcolemma, while adult cells have mature IDs with

preferentially localized Na+ channels and GJs. In this study, we perform an in silico

investigation of key age-dependent properties to determine developmental regulation

of cardiac conduction. Simulations predict that conduction velocity (CV) biphasically

depends on cell size, depending on the strength of GJ coupling. Total cell Na+ channel

conductance is predictive of CV in cardiac tissue with high GJ coupling, but not

correlated with CV for low GJ coupling. We find that ephaptic effects are greatest for

larger cells with low GJ coupling typically associated with intermediate developmental

stages. Finally, simulations illustrate how variability in cellular properties during different

developmental stages can result in a range of possible CV values, with a narrow range

for both neonatal and adult myocardium but a much wider range for an intermediate

developmental stage. Thus, we find that developmental changes predict associated

changes in cardiac conduction.

Keywords: cardiac electrophysiology, computational models, intercalated disc, development, cardiac conduction

1. INTRODUCTION

It is well-established that conduction in cardiac tissue is regulated by ionic currents and gap
junction (GJ) coupling (Shaw and Rudy, 1997; Kucera et al., 2002). In ventricular tissue, the voltage-
gated sodium (Na+) channel, Nav1.5, is primarily responsible for generating the depolarizing
Na+ current (INa), and connexin43 (Cx43) is the primary GJ protein, facilitating the passive
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current flow between adjacent cells (Veeraraghavan et al., 2014),
both of which mediate conduction. Altering either INa or GJ
coupling can lead to changes in conduction and ultimately
increase the risk of arrhythmias (Quan and Rudy, 1990; Shaw and
Rudy, 1997; Rohr et al., 1998).

We (Veeraraghavan et al., 2015; Veeraraghavan and Gourdie,
2016; Mezache et al., 2020) and others (Kucera et al., 2002;
Rhett et al., 2012; Agullo-Pascual et al., 2014; Leo-Macias et al.,
2016) have shown that Nav1.5 channels preferentially localize
at the intercalated disc (ID), the area of cell-cell junctions in
cardiac tissue. Multiple in silico studies have hypothesized that
INa at the ID can be altered via Na+ nanodomain signaling at
the intercellular cleft space (Kucera et al., 2002; Sperelakis, 2002;
Mori et al., 2008; Lin and Keener, 2010; Wei et al., 2016; Tveito
et al., 2017; Weinberg, 2017; Hichri et al., 2018; Jæger et al., 2019;
Wei and Tolkacheva, 2020). This, in turn, can modulate cell-
cell coupling through a mechanism known as ephaptic coupling
(EpC). In this paper we consider two primary effects of EpC:
electrical field effects and Na+ depletion in the intercellular
cleft (i.e., the narrow extracellular space between electrically
coupled cells at the ID). To elaborate briefly, EpC is governed
by the following: Na+ influx during the action potential upstroke
in an “upstream” or pre-junctional depolarizing cell during
a propagating electrical wave decreases the electrical potential
within the intercellular cleft. This reduction of the potential
within the intercellular cleft then depolarizes the “downstream”
or post-junctional apposing cell from the extracellular, rather
than the intracellular, side of the cell membrane. Additionally,
Na+ influx reduces the Na+ concentration within the intercellular
cleft, which governs the flux of the Na+ channels at the ID
in both cells. The width or volume of the intercellular cleft
space is one of the key properties governing the magnitude
of these effects. When the intercellular cleft is narrow, both
the elevated transmembrane potential (Vm) and locally depleted
Na+ concentration within the intercellular cleft reduce the
Na+ current driving force and, therefore, the Na+ current. This
reduction in INa has been termed “self-attenuation” and has been
shown to slow conduction velocity (CV) (Kucera et al., 2002;
Sperelakis, 2002; George et al., 2016; Hichri et al., 2018).

Several key properties governing EpC and conduction overall
are known to change during development: Cells in neonatal
myocardium do not have fully formed IDs, and Na+ channels
and GJs are distributed diffusively throughout the sarcolemma
(Fromaget et al., 1992; Vreeker et al., 2014). Consistent with
reduced Na+ channel expression, it has been shown that
pediatric cardiomyocytes produce a reduced INa, compared to
adult cardiomyocytes (Cai et al., 2011; Cordeiro et al., 2013).
Cx43 is essentially undetectable until 23 weeks in utero and
remain randomly distributed on the sarcolemma in neonatal
cardiomyocytes (Peters et al., 1994; Hirschy et al., 2006; Vreeker
et al., 2014; Swift et al., 2020). Vreeker et al. showed that Cx43
tends to relocate to the lateral membrane around 5 months
postnatal and does not begin to preferentially localize at the ID
until around 2.5–5 years old, with full preferential localization
occurring at roughly 7 years of age (Vreeker et al., 2014).
Nav1.5 channels, however, reside on the lateral membrane in
neonatal cardiomyocytes and begin to begin to preferentially

localize at the ID around 5 months postnatal, much earlier than
Cx43 (Harrell et al., 2007; Vreeker et al., 2014). Additionally,
studies have shown that adult cardiomyocytes are larger than
neonatal cardiomyocytes (Cordeiro et al., 2013; Vreeker et al.,
2014; Swift et al., 2020). This is especially important given that cell
size broadly influences all electrical activity in the cell by altering
surface area, cell volume, membrane capacitance, ion channel
expression, etc. (Kato et al., 1996; Spach et al., 2000).

We hypothesize that the developmental-associated increase in
both Na+ and GJ current will increase CV from the neonatal
stage to the adult and that this regulation will be influenced by
the relative strength of EpC at different developmental stages. In
the paper, we perform a wide parameter investigation, varying
age-associated parameters including gap junctional conductance
(fgap), cell size (S), Na

+ channel density (ρNa), and Na+ channel
ID localization (IDNa) and measure CV in simulated cardiac
tissue. To our knowledge, no studies have investigated the
interdependence of these parameters on conduction within a
health myocardium during development from neonatal to adult
tissue. While one study investigated the changes on impulse
conduction in the canine myocardium, it was limited to a
comparison of 8 week old postnatal to adult purkinje fibers
(Rosen et al., 1981). Thus, in our study, we investigate conduction
through ventricular tissue in a range of developmental stages
and conditions. We find that CV has a biphasic dependence on
cell size, in a manner that depends on GJ coupling. In addition,
we find that ephaptic effects play a larger role in conduction
for larger cells with low GJ coupling. Interestingly, simulations
predict that variability in cellular properties in intermediate
developmental stage between neonatal cardiomyocytes and adult
cardiomyocytes can lead to a wide range of possible CV values,
but this range narrows to a normal range with adult tissue-
associated parameters.

2. METHODS

Full details of the computational model are provided in
Supplementary Material. Briefly, we simulate a 50-cell cable of
guinea pig ventricular myocytes (Livshitz and Rudy, 2007) that
incorporates a Markov chain model for the wild-type (WT)
Na+ channel (Clancy et al., 2002), shown in Figure 1. We note
that a Markov chain formulation for INa was not necessary to
reproduce our results, as prior studies have shown EpC effects
are reproduced by Hodgkin-Huxley Na+ channel models (Kucera
et al., 2002; Weinberg, 2017; Moise et al., 2021), but rather is
used to facilitate an appropriate comparison with our prior work
simulating Nav1.5 gain-of-function mutations (Nowak et al.,
2021), which were also modeled with a Markov chain. As in our
previous work (Greer-Short et al., 2017; Weinberg, 2017; Nowak
et al., 2020, 2021) and work performed by others (Kucera et al.,
2002), we account for non-uniform Na+ subcellular localization
by spatially discretizing each cell into two ID membrane patches
at the ends of the cell and axial membrane patches along the
length of the cell. The number of axial patches varied with the
size of the cell, as described below, with each axial patch fixed in
length (Lp = 10 µm).
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FIGURE 1 | Schematic of the computational model. (A) Electric circuit representation of coupled myocytes. Intracellular nodes are coupled via a myoplasmic

resistance (Rmyo). End nodes are coupled via a gap junctional resistance (Rgap). Extracellular potentials at the disc and intercellular cleft (φdisc
e and φcleft

e , respectively)

are governed by a T-shaped network of two axial resistances in the intercellular cleft (Rcl ) and one radial resistance (Rradial ). (B) Na
+concentration in diffusively coupled

compartments, including intracellular Na+ in the axial and disc compartments ([Na+]axi and [Na+]disci ) and extracellular Na+ in the intercellular cleft and bulk spaces

([Na+]clefte and [Na+]bulke ). (C) Representation of age-associated change in model parameters, including changes in cell size (S), Na+ channel density (ρNa), and

Na+channel ID localization (IDNa).

Cells are coupled via GJs and EpC: gap junctional coupling
is represented via gap junctional conductances coupling ID
nodes of adjacent cells (ggap, represented by resistor Rgap in the
electrical circuit). EpC is represented by a T-shaped junction
of two intercellular cleft resistances (Rcl) and a radial bulk
(Rradial), which are proportional and inversely proportional to

intercellular cleft width w, respectively. Intracellular nodes are
coupled with a myoplasmic resistance (Rmyo) (Figure 1A). The
nominal value for ggap is defined as g0gap = 1266 nS, and
changes in GJ coupling are accounted for by adjusting the
GJ scaling factor fgap (between 0 and 1), such that ggap =
fgapg

0
gap.
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Awide range ofmacroscopic GJ conductance values have been
measured experimentally, with values ranging from the low 10s
of nanosiemens up to approximately 2,000 nS (Weingart, 1986;
Wittenberg et al., 1986; White et al., 1990; Moreno et al., 1994;
Kwak and Jongsma, 1996; Verheule et al., 1997; Kucera et al.,
2002; Valiunas et al., 2002; Desplantez et al., 2007; McCain et al.,
2012; Nielsen et al., 2012). While studies have shown increases
in Cx43 expression with age, to our knowledge, no studies have
quantified GJ conductances throughout development. Therefore,
we performed simulations with GJ conductance spanning
from the low to high end of physiological measurements and
hypothesized that such a range is qualitatively similar to different
developmental stages and consistent with Cx43 expression
changes. Importantly, the values chosen were consistent with
experimental measurements of conduction for neonatal and
adult myocardium (Rosen et al., 1981; George et al., 2019;
King et al., 2021). We note that age-associated changes in GJ
localization are represented as changes in GJ coupling (i.e.,
changes in fgap), as all GJs are located at cell ends in the one-
dimensional tissue model.

We account for dynamic [Na+] in three spaces: (i) the ID
([Na+]disci ), mediated by IdiscNa and intracellular diffusion, (ii) the

intercellular cleft ([Na+]clefte ), with volume proportional to w and
mediated by ID Na+ current IdiscNa and passive diffusion with the
bulk extracellular space, and (iii) the axial intracellular space
([Na+]axi ), mediated by axial Na+ current IaxNa and intracellular
diffusion. The cable was paced at one end with a specified basic
cycle length (BCL). Unless otherwise stated, for all simulations,
we utilize a BCL = 500 ms or a pacing rate of 2 Hz, which
is normal pacing for the guinea pig model that is utilized

for this study.
In addition to GJ coupling, we perform simulations in which

we adjust several key age-associated properties: (1) We vary

Na+ channel localization at the ID (IDNa) between 0.1 and 1,

to account for Na+ channel redistribution, where IDNa = 1

represents 100% or all Na+ channels localized at the ID. (2)

We define and vary a cell size scaling factor (S) between 0.2

and 1 to account for cell size growth, where 100% cell size

represents an adult cell. The cell geometry is assumed to be
cylindrical, with radius r and length L, defined as r = Sr0 and
L = npLp, where the nominal adult radius r0 = 11 µm, the
number of axial patches np = Sn0p, and the maximum axial

membrane patches n0p = 10. Note, we only consider values of
S such that np is a whole number, and that nominal adult cell
length L0 = n0pLp = 100 µm. Additionally, note that since S
scales both cell length and radius, cell membrane surface area
is scaled by S2, e.g., S = 0.4 corresponds with surface area
scaled by a factor of 0.16. (3) We also vary the Na+ channel
density (ρNa) between 0.2 and 1 to account for age-associated
changes in Na+ channel expression, where 100% ρNa represents
full expression of Na+ channels on the cell membrane. The
total cellular Na+ conductance is proportional to both ρNa and
total cell surface area, such that we can define a normalized
total Na+ channel conductance (GNa = ρNaS

2, also between 0
and 1), where the total Na+ channel conductance (in physical
units) is equal to GNa, scaled by the nominal total Na+ channel

conductance (G0
Na = 21.78 mS/cm2). Thus, for ρNa and S of

100%, total Na+ channel conductance is G0
Na. (4) Finally, we vary

the intercellular cleft width (w) from 10 to 40 nm, consistent
with intercellular cleft width ranges measured at the ID in our
previous work (Veeraraghavan and Gourdie, 2016; Greer-Short
et al., 2017; Nowak et al., 2020, 2021).

3. RESULTS

3.1. Ephaptic Effects Are Enhanced for
Larger Cells With Low Gap Junctional
Coupling
Motivated by findings that both GJ coupling (Peters et al., 1994;
Hirschy et al., 2006; Vreeker et al., 2014; Swift et al., 2020) and
cell size (Kato et al., 1996; Spach et al., 2000; Cordeiro et al.,
2013; Vreeker et al., 2014) increase with age, we first investigate
how changes in cell size and GJ coupling influence conduction.
We first consider moderate localization of Na+ channels at the
ID (IDNa = 50%), high whole cell Na+ channel density (ρNa =
100%), and a nominal intercellular cleft width (w = 20 nm). In
Figure 2, the time series for transmembrane voltage (Vm), pre-

and post-junctional Na+ current (I
pre
Na and I

post
Na , respectively), GJ

current (IGJ), and the cleft voltage (Vcleft) are shown during the
action potential upstroke at the same spatial location within the
cardiac tissue for varying cell size and GJ coupling.

For low GJ coupling (Figure 2, left), the slowed action
potential upstroke for the large cell size indicates that conduction
slows as cell size increases. For tissue with small cell size,
a large pre-junctional current I

pre
Na rapidly activates the post-

junctional current I
post
Na (Figures 2B,C, red), and the smaller

membrane surface area results in a relatively larger GJ current
density IGJ (Figure 2D, red), compared with larger cell size. In
contrast, for tissue with larger cell size, GJ current density is
reduced (Figure 2D, purple), and further cleft hyperpolarization
is enhanced, i.e., Vcleft is more negatively polarized (Figure 2E,
purple). This enhanced EpC effect ultimately drives the self-

attenuation mechanism, in which I
post
Na driving force is reduced.

Collectively, these effects result in slower conduction for tissue
with larger cell size.

For moderately low and moderately high GJ coupling
(Figure 2, center left and center right), these EpC effects are
reduced; however, cleft hyperpolarization is still enhanced for
larger cell sizes (Figures 2B–E). For high GJ coupling (Figure 2,
right), the faster action potential upstroke for large cell size
indicates that conduction is enhanced as cell size increases. In
this case, IGJ is sufficiently large, such that the self-attenuation
effects on post-junctional Na+ current are counterbalanced, in
a manner that conduction is faster for tissue with larger cell
size. Additionally, for larger cell size, there are fewer cell-cell
junctions in a given length of tissue, which also results in overall
faster conduction.

3.2. Conduction Velocity Depends on Key
Cellular and Tissue Properties
We next more broadly investigated the interdependence between
cell size, whole cell Na+ channel density (ρNa), Na

+ channel
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FIGURE 2 | Conduction velocity (CV) depends on cell size and GJ coupling. (A) Transmembrane voltage of the post-junctional node of the ID (Vm), (B) Na
+ current at

the pre-junctional node of the ID (I
pre
Na ), (C) Na

+ current at the post-junctional node of the ID (I
post
Na ), (D) GJ current at the ID (IGJ ), and (E) cleft voltage (Vcleft ) are shown in

tissue for low (50.6 nS), moderately low (101 nS), moderately high (253 nS), and high (1,266 nS) GJ coupling. For clarity, traces are shown for the same spatial point of

1.2 mm from the pacing site. Parameters: IDNa= 50%, ρNa= 100%, w = 20 nm.

ID localization (IDNa), and GJ coupling on CV (Figure 3). We
consider a wide range of parameters to assess the age-associated
changes on CV. For all cases investigated, as expected, CV
consistently increases with both increasing GJ coupling and
ρNa. For low GJ coupling (Figure 3A), as illustrated above, CV
decreases as cell size increases, due to both the reducedGJ current
density and the self-attenuation mechanism previously stated.
Increased Na+ channel preferential localization at the ID tends
to moderately increase CV for larger cell sizes due to increased
EpC, which increases conduction for low GJ coupling.

In contrast, for high GJ coupling (Figure 3D), CV increases as
cell size increases due to fewer GJs per unit length, as described
above. As IDNa increases, CV decreases moderately, more so for
larger cell sizes, again due to increased EpC, which decreases
conduction for high GJ coupling. From low to high GJ coupling,
the CV-cell size relationship transitions from decreasing to
increasing, such that for moderate GJ coupling strengths, CV
exhibits a biphasic relationship with cell size (Figures 3B,C).
However, for most conditions, CV only moderately varies across
the wide range of cell sizes, which suggests GJ and EpC effects
that depend on cell size are fairly balanced for these conditions.
Increased Na+ channel ID localization has only small effects,
tending to increase CV for the moderately low GJ coupling cases.

We indicate two key regions of interest: the neonatal regime
and the adult regime. The neonatal regime is indicated by
gray boxes and represents the range of parameters associated
with neonatal myocardium: small cell size, low Na+ channel ID
localization, and low to moderately low GJ coupling (Peters et al.,
1994; Kato et al., 1996; Spach et al., 2000; Vreeker et al., 2014).
The adult regime is indicated by black boxes and represents
the range of parameters associated with adult myocardium:

large cell size, high preferential Na+ channel localization at
the ID, and moderately high to high GJ coupling. In the
neonatal regimes, CV is slow, consistent with the reduced GJ
coupling, and further is sensitive to changes in cell size. In
contrast, in the adult regime, CV is faster, consistent with
the higher GJ coupling, and additionally does not depend
on cell size. In both regimes, CV is highly sensitive to
changes in Na+ channel density. Collectively, this suggests that
developmental changes result in conduction that is more robust
to changes in cell size. Additionally, in Supplementary Material,
we perform a similar broad investigation for a bradycardic
pacing rate (1 Hz, or BCL of 1,000 ms), and we found
that CV has a nearly identical relationship with cell size,
Na+ channel density and localization, and GJ coupling under
these conditions (Supplementary Figure 1), as compared with
the normal pacing rate.

3.3. Conduction Velocity Is Correlated to
Total Cell Na+ Conductance and Gap
Junctional Coupling
The previous analysis shows CV had a consistent positive
dependence on Na+ current density ρNa, yet the relationship
between CV and cell size depends on GJ coupling. As the
total cell Na+ conductance (GNa) depends on both cell size
and Na+ channel density, we next investigate how CV depends
on GNa for varying GJ coupling conditions (Figure 4). For all
GJ coupling strengths, we find discrete vertical “columns” of
points, which correspond to the same GNa value (i.e., same
ρNa and S) and different values of Na+ channel localization
(IDNa). From these data, we observe that increased IDNa typically

Frontiers in Physiology | www.frontiersin.org 5 October 2021 | Volume 12 | Article 73102570

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Nowak et al. Developmental Changes in Cardiac Conduction

FIGURE 3 | Conduction velocity (CV) depends on key cellular and tissue properties. CV is shown as a function of cell size for different values of Na+channel densities

(ρNa) for low (A), moderately low (B), moderately high (C), and high (D) GJ coupling and 10% (left), 50% (middle), and 90% (right) Na+ channel ID localization (IDNa).

Parameters: Cleft width w = 20 nm. Parameter regimes associated with neonatal (gray boxes) and adult (black boxes) tissue are highlighted.

slows conduction, except for cases of moderately low GJ coupling
and larger cell size. Additionally, we observe diagonal “bands” of
points, which correspond with the same cell sizes and different
ρNa values, which illustrate that CV increases with increasing ρNa,
as in Figure 2.

With all of these dependencies within given “columns” or
“bands,” we also consider if there is a distinct relationship
between CV and GNa for a given GJ coupling strength. For low
GJ coupling (Figure 4A), CV is overall very weakly correlated
withGNa (dashed black line), indicating that for these conditions,
the total Na+ channel conductance is not predictive of CV.
However, as GJ coupling increases, the correlation between
CV and GNa increases and approaches 1 for high GJ coupling
(Figures 4B–D), demonstrating a closer relationship between
conduction and total Na+ current conductance.

Prior work from us and others has shown that the intercellular
width (w) is a critical parameter governing the strength of EpC
effects and ultimately conduction (Kucera et al., 2002; Lin and
Keener, 2010; Greer-Short et al., 2017; Nowak et al., 2020),
so we next investigate how the correlation between CV and
GNa depends on w. In Figure 5, we plot the Pearson correlation
coefficient r as a function of GJ coupling for different values of
w. For all cleft widths, the correlation increases from near 0 to
near 1 as GJ coupling increases, as in Figure 4. However, for
narrow clefts (red), the correlation is less sensitive to changes in
GJ coupling, such that the correlation coefficient is more positive
for lower GJ coupling and less positive for higher GJ coupling,
compared with wider clefts. These results are consistent with EpC
playing a larger role governing conduction for lower GJ coupling,

such that there is a stronger relationship between CV andGNa for
these conditions.

3.4. Conduction Velocity Depends on
Developmental Stage
The above results illustrate the complex relationship between
conduction and cellular/tissue properties known to alter with age
and development. As previously discussed, neonatal tissues are
associated with low Na+ channel expression and ID localization
and smaller cell size, while adult tissues have larger cells and
high Na+ channel expression and localization at the ID. We
hypothesize that, during both disease and development, these
properties remain variable in both time and between patients. For
a final analysis, we investigate CV for conditions representing an
age-associated progression, considering neonatal, intermediate
developmental stages, and adult tissue (Figure 6). To account
for variability, we consider a range of values for each of the
key parameters investigated throughout this study: cell size,
Na+ channel density, and Na+ channel localization at the ID.
These parameters were varied over a 20% range. The minimum
and maximum CV values over all parameter conditions for
each stage were plotted (solid black lines), along with the
average over the different parameter values (dashed black
line). Due to lack of evidence of the precise order in which
these parameters change throughout the developmental process,
we consider different possible parameter conditions for the
intermediate stages: uniform ρNa and IDNa increase, staged S and
ρNa increases, staged S and IDNa increases, and staged ρNa and
IDNa increases ranging from neonatal to adult tissue parameter
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FIGURE 4 | Correlation between conduction velocity (CV) and total cell Na+ conductance (GNa) increases as gap junctional coupling increases. Conduction velocity

(CV) is shown as a function of GNa for different cell sizes and Na+ channel ID localization for (A) low, (B) moderately low, (C) moderately high, and (D) high GJ

coupling. Pearson correlation coefficients r for low (r = −0.103), moderately low (r = 0.283), moderately high (r = 0.607), high (r = 0.865) GJ coupling. Parameters:

Cleft width w = 20 nm.

FIGURE 5 | Correlation between conduction velocity (CV) and total cell Na+ conductance depends on gap junctional coupling. The Pearson correlation coefficient r

between CV and total cell Na+ conductance (GNa) is shown as a function of GJ coupling conductance, for four different cleft width w values.

values. The parameter ranges for each developmental stage are
listed in Supplementary Table 2.

For the neonatal stage, the range of CVs is small and
conduction speeds are slow. For the first intermediate
developmental stage, the CV range is moderately larger,

but the conduction remains slow. However, for the second
intermediate developmental stage, the CV range is dramatically
increased, ranging from roughly 20 cm/s to over 50 cm/s,
suggesting that conduction greatly increases and can approach
adult myocardium values, but may be more variable during
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FIGURE 6 | Age-associated ranges of conduction velocity (CV). The range of

CV values (see text for details) are shown as functions of age-dependent

progression. Parameter ranges and markers for each stage are shown in

Supplementary Table 2. The dashed line shown for each stage represents

the average CV value over all conditions within the specified parameter ranges.

Cleft width w = 20 nm.

this intermediate stage. For the adult stage, the range of CVs
decreases, such that conduction is consistently within the
normal faster propagation regime, suggesting robust conduction
regardless of small changes in cellular and tissue properties.

4. DISCUSSION

In this study, we investigate the regulation of key age-
dependent properties, specifically cell size, Na+ channel density
and localization, and GJ coupling, on cardiac conduction. We
summarize our key findings: CV is consistently increased by
increased Na+ current density, across all conditions. However,
simulations predict that CV biphasically depends on cell size,
depending on the strength of GJ coupling. That is, CV increases
with increasing cell size for high GJ coupling, yet decreases
with increasing cell size for low GJ coupling. As a consequence,
CV and total cell Na+ channel conductance are well-correlated
in cardiac tissue with high GJ coupling, but not correlated
with CV for low GJ coupling. We predict that the role of
EpC governing conduction changes during development, such
that neonatal tissue is less sensitive to changes in EpC due to
smaller Na+ channel ID localization. We postulate that even
though GJ coupling is low during this early stage, the small
cell size and therefore small membrane capacitance is such that
the lower Na+ current density is still sufficient to maintain
robust conduction in the myocardium. However, conduction is
very slow during this stage due to the relatively high ratio of
cell-cell junctions for a given length of tissue. These findings
are consistent with Swift et al. (2020), who found slower
atrioventricular conduction in neonatal and early postnatal rats,
compared with adult rat myocardium.

As development progresses, model predictions are consistent
with faster conduction. Further, simulations predict that a wide
range of conduction velocities are possible during intermediate
developmental stages due to variability in cellular/tissue
properties and the relative timing of developmental changes.
However, despite similar variability in parameter values, this

variability in CV prediction narrows in adult tissue and is
consistent with experimental measures (George et al., 2019; King
et al., 2021). Interestingly, we see a larger influence of EpC effects
in larger cell sizes with reduced GJ coupling, as would be the case
in intermediate developmental stages and in adult myocardium
for pathological conditions such heart failure (Smith et al., 1991;
Peters et al., 1997; Yao et al., 2003; Akar et al., 2004; Poelzing
and Rosenbaum, 2004), indicating a possible mechanism for
maintained conduction during such transitional or diseased
states. Additionally, this enhanced variability in conduction
for intermediate developmental stages may be desirable, as this
variability suggests an ability to adapt and modulate cardiac
activity in response to developmental perturbations, which
inherently vary significantly for different individuals.

Previous studies have investigated the properties of
Na+ channels and GJs and their roles in the developing
heart. Work by Harrell et al. (2007) found that Nav1.5 mRNA
was significantly more up-regulated in adult mouse hearts than
in neonatal hearts. Similarly, Cordeiro et al. (2013) find that
both peak and late INa is significantly smaller in neonatal canine
cardiomyocytes compared to that of adults, and Cai et al. (2011)
found the same in human atrial cardiomyocytes. Vreeker et al.
(2014) show that the GJ protein Cx43 transitions from diffusely
distributed on the cardiomyocyte membrane to highly associated
with mechanical junctions at the ID during development in
human samples, as similarly shown in rat myocardium (Angst
et al., 1997). In contrast, Peters et al. (1994) found that GJs
and adherens junctions have a highly correlated distribution
over postnatal development of the ventricle in human samples.
Incorporating developmental changes in GJ distribution, Spach
et al. (2000) previously simulated a neonatal cardiomyocyte
with diffuse GJs and smaller size and found that conduction was
slower in the neonatal tissue, compared with adult myocardium
with GJs primarily localized at the ID and larger size.

While these studies are crucial in understanding cardiac
development, to our knowledge, our study is the first to combine
all these key developmental changes occurring in conjunction
with each other, specifically cellular size, gap junctional
conductance, and Na+ channel expression and distribution.
Thus, we find that ephaptic effects are more pronounced in larger
cells with low GJ coupling. We also find that CV biphasically
depends on cell size in a manner dependent on GJ coupling: CV
is relatively fast for both low GJ coupling and small cell size and
high GJ coupling and large cell size. Interestingly, we find that CV
is correlated total Na+ conductance for high GJ coupling. Finally,
by incorporating previous data on developmental changes (Peters
et al., 1994; Spach et al., 2000; Harrell et al., 2007; Cai et al., 2011;
Cordeiro et al., 2013; Vreeker et al., 2014), we predict how the
variability in the ranges for conduction change in conjunction
with developmental stages.

Recently, we investigated the age-dependent manifestation of
a long QT type 3 (LQT3)-associated gain-of-function mutation
in Nav1.5 (Nowak et al., 2021). LQT3, while relatively rare, has
a high mortality, reaching 49% (Vignati, 2007), and critically
patients tend to remain asymptomatic until well after puberty
(Beaufort-Krol et al., 2005; Wilde et al., 2016; Kutyifa et al.,
2018). Interestingly, in pediatric patients with LQT syndromes,
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Na+ channel blockers are commonly prescribed as a form
of chronic management (Hanisch, 2001), and our results are
consistent with the safety of this approach due to the weak
dependence of conduction on overall total cell Na+ channel
conductance. In our study, we predicted that not only does
the manifestation of arrhythmias depend on developmental
stage, but that the sensitivity to changes in intercellular cleft
width depended on these age-associated properties as well.
Interestingly, Brugada syndrome (BrS), an inherited cardiac
arrhythmia disorder caused a loss-of-function mutation in
Nav1.5, also often manifests later in life; the average first event
occurs around 42 years old (Milman et al., 2017). Our study
is consistent with this clinical manifestation, as simulations
predict that in these early developmental stages with low GJ
coupling, conduction is less sensitive to overall Na+ conductance
(Figure 4), due to the overall small cell sizes in neonatal tissue.

Finally, we acknowledge limitations of our study. To
study developmental changes in Na+ channel distribution, we
incorporate this critical subcellular detail in the representation of
cardiac tissue; however, our model is still a simplification of the
complex cardiac tissue structure. Specifically, our model assumes
a simplified cylindrical cell and uniform intercellular cleft, while
the geometry of individual cells and the ID structure is known to
be complex heterogeneous (Veeraraghavan et al., 2015). Future
work will focus on investigating how ID structure changes
in development and impacts conduction (Moise et al., 2021).
Additionally, cardiac tissue is a three-dimensional structure, and
our one-dimensional cable representation cannot fully represent
all aspects of developmental changes, such as GJ localization
along the lateral membrane. In a two- or three-dimensional
tissue, GJ redistribution from the lateral membrane to the ID
would also be expected to impact conduction heterogeneously
dependent on the direction of wavefront propagation relative to
the underlying tissue geometry, such that early developmental
stages are associated with isotropic conduction while anisotropic
conduction is associated with adult myocardium, consistent
with previous work from Spach et al. (2000). Further, while
we observe minimal differences in CV between normal and

slow pacing rates, Entz et al. (2016) previously showed that CV
slowing at faster pacing rates differed between longitudinal and
transverse conduction, and further was regulated by extracellular
ionic composition, suggesting that properties governing EpC
may similarly modulate heart rate dependence. Additionally,
expression of ion channels vary across individual patients, and
these differences may impact conduction during development.
Further, recent work from the Posnack lab has shown that several
expression of several key ion channel and calcium handling
proteins vary with developmental stage in rats (Swift et al.,
2020).We are particularly interested in similar changes in human
myocardium, and future work will incorporate such details as
available and established in the literature.
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A classic method to evaluate autonomic dysfunction is through the evaluation of
heart rate variability (HRV). HRV provides a series of coefficients, such as Standard
Deviation of n-n intervals (SDNN) and Root Mean Square of Successive Differences
(RMSSD), which have well-established physiological associations. However, using only
electrocardiogram (ECG) signals, it is difficult to identify proper autonomic activity,
and the standard techniques are not sensitive and robust enough to distinguish pure
autonomic modulation in heart dynamics from cardiac dysfunctions. In this proof-of-
concept study we propose the use of Poincaré mapping and Recurrence Quantification
Analysis (RQA) to identify and characterize stochasticity and chaoticity dynamics in
ECG recordings. By applying these non-linear techniques in the ECG signals recorded
from a set of Parkinson’s disease (PD) animal model 6-hydroxydopamine (6-OHDA), we
showed that they present less variability in long time epochs and more stochasticity
in short-time epochs, in their autonomic dynamics, when compared with those of the
sham group. These results suggest that PD animal models present more “rigid heart
rate” associated with “trembling ECG” and bradycardia, which are direct expressions
of Parkinsonian symptoms. We also compared the RQA factors calculated from the
ECG of animal models using four computational ECG signals under different noise and
autonomic modulatory conditions, emulating the main ECG features of atrial fibrillation
and QT-long syndrome.

Keywords: recurrence quantitative analysis, Poincaré map, Parkinson’s disease, computational ECG model, 6-
OHDA animal model, HRV (heart rate variability) and ECG-complexes, cardiac and autonomic dysfunctions
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INTRODUCTION

The autonomic nervous system (ANS) modulates cardiovascular
function via two main pathways, the sympathetic (SNS) and
parasympathetic (PNS) systems that play agonist-antagonist roles
(Cannon, 1939). In general, SNS activation increases the heart
rate and cardiac ventricle contractility, while the PNS mainly
decreases heart rate, with faster local responses in the atrium
transmitted via the vagus nerve (Hopkins and Armour, 1984;
Shivkumar et al., 2016). Since autonomic balance modulates
the heart rate (Sztajzel, 2004), the simplest way to analyze
ANS activity is to measure heart rate variability (HRV) using
ECG recordings. Traditional techniques quantify autonomic
modulations searching for frequency characteristics, namely,
low frequency (LF), high frequency (HF), and their ratio
LF/HF ranges or temporal features, standard deviation of NN
intervals (SDNN), and root mean square of successive R-R
interval differences (RMSSD), on the ECG-tachogram along the
time series constructed (most commonly) from the R-R peak
time distances (RR: interbeat intervals between all successive
heartbeats; NN: interbeat intervals from which artifacts have been
removed) (Malliani et al., 1994; Montano et al., 2009; Akselrod
et al., 2014). However, these techniques are limited and require
assumptions that are difficult to verify, especially for small ECG
samples, which make these quantifications unreliable (Mansier
et al., 1996). Some studies have used non-linear techniques such
as Poincaré Map (PM) (or First Return map) and Recurrence
Quantification Analysis (RQA) to find other ANS and ECG
characteristics associated with heart and ANS disorders (Kamen
and Tonkin, 1995; Tulppo et al., 1997). These methods have
already been applied to ANS dysfunction related to seizures and
sudden death, revealing their capacity to characterize biosignals
in a clinical context (Zbilut and Webber, 1992; Marwan et al.,
2002; Marwan, 2003; Billeci et al., 2018; Khazaei et al., 2018).

To assess the autonomic dysfunction associated with heart
rate dynamics, we propose a proof-of-concept study where
we constructed a set of four artificial ECG patterns modeling
the main ECG features related to the two most common
autonomic-cardiac dysfunctions, atrial fibrillation (AF) and
long-QT syndrome (QT), and two control ECG signals, a
complete periodic regular ECG (DET) activity without noise,
and an ECG pattern with high Gaussian noise (GN). The
AF and long-QT syndrome patterns were chosen mainly
because they are very prevalent in Parkinson’s disease (PD)
(Tysnes and Storstein, 2017).

Parkinson’s disease is a neurodegenerative disorder
characterized by decreased levels of dopamine in the striatum
and substantia nigra (Stephen et al., 1988; Poewe et al., 2017).
Although it is mainly characterized by motor manifestations,
non-motor conditions often precede motor symptoms (Braak
et al., 2003; Schapira et al., 2017). Autonomic dysfunction
(AD) is diagnosed in 80% of patients with PD, and can be
aggravated due to a denervation of autonomic pathways, causing
orthostatic hypotension and cardiac autonomic imbalance
(Orimo et al., 1999; Smit et al., 1999; Goldstein et al., 2000;
Goldstein, 2006; Evatt et al., 2009; Velseboer et al., 2011;
Schapira et al., 2017). In this way, finding a robust and

sensitive quantitative technique that can perform a better
characterization of possible electrophysiological biomarkers
from ECG signals may represent a paradigm shift in the
diagnosis and progression monitoring of this disease (van Dijk
et al., 1993; Cersosimo and Benarroch, 2013).

Through the Poincaré map and RQA factors relative to
the four artificial ECG patterns, we were able to characterize
and identify the main non-linear ECG and HRV features
associated with the AR and QT disorders (Rodrigues et al.,
2019). We then applied the Poincaré map and RQA techniques
on ECG recordings from a small set of animal models of
Parkinson’s disease, using the unilateral 6-hydroxydopamine (6-
OHDA) model that, with lesions of the nigrostriatal pathway,
produce similar motor impairments to those seen in PD and a
sham group (Ungerstedt, 1968). By projecting their non-linear
factors on the artificial ECG factors, we were able to compare
them with the same non-linear features assessed in the ECG
recordings of the PD animal models. This comparison produces
a systematic protocol for better physiological interpretation and
validation of these techniques considering the PD autonomic-
heart dysfunction scenario.

MATERIALS AND METHODS

All experiments were approved by the Animal Care and Use
Committee of the Federal University of São Paulo (protocol:
CAAE 6463110417), and the analysis applied to biological signals
was approved by the Ethics and Research Committee of the
Federal University of São Paulo, under the protocol number
CAAE 7299310719.

To study the possible effects associated with dysautonomia,
we considered three different approaches: (i) PRQRST complex
analysis focusing on the waveform characteristics, such as
their amplitude variations; (ii) HRV analysis by evaluating
the tachogram characteristics through their Poincaré Maps;
and (iii) ECG signal analysis by evaluating their non-linear
dynamics through RQA.

To perform the RQA analysis, we built four simple distinct
artificial ECG signals (aECG), each with a predominant feature:
(1) deterministic (DET), (2) atrial fibrillation (AF), (3) long
QT syndrome (LQT), and (4) Gaussian noise (GN). We then
calculated the low-frequency and high-frequency ratio (LF/HF)
modulation from the R-R tachogram patterns of each aECG.
Finally, we added white noise with different intensities to the R-R
tachograms to simulate different degrees of dysautonomia most
prevalent in PD.

Furthermore, we consider the application of these techniques
to a set of ECG signals recorded from Wistar rats using the
unilateral 6-hydroxidopamine (6-OHDA) model to mimic PD
based on the Ungerstedt protocol (Ungerstedt, 1968). Two
independent groups of rats were studied: the experimental group
(6-OHDA, n = 3) and the control group (Sham, n = 3), which
underwent the same surgical procedure as the 6-OHDA set, free
of any drugs. We performed an exhaustive search in both sets
of ECG signals looking for epochs where the standard ECG
and HRV metrics could not distinguish 6-OHDA features from
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Sham features, but RQA could. Finally, the ECG and HRV
features described by the four aECG patterns, using different
quantification techniques, were compared with ECG signals
recorded from 6-OHDA and from sham animal models to
identify similarities between 6-OHDA models with AF, LQT,
DET, and GN, and establish a better signal interpretation.

Artificial Electrocardiogram Model
To correlate the information from RQA factors with PD
conditions, we implement four distinct computational models of
ECG (aECG), mimicking four special heart conditions that are
most prevalent in PD. These artificial ECG signals were based
on the McSharry model (Mcsharry et al., 2003), which in turn
is based on the tachogram power spectrum and calculated from
the R-R peak intervals of the aECG signals. The tachograms were
built using a heart rate of 350 bpm with a standard deviation of
50 bpm to represent the standard dynamics of rat heartbeats.

By varying the low and high frequency ratio (LF/HF), the
tachograms reflected the temporal distribution of the aECG
complexes over time. In this way, by applying the inverse Fourier
transform to the LF/HF, the power spectrum of the tachogram
is extracted, and the (artificial) ECG signal is reconstructed by
sequentially introducing a standard PQRST complex model. The
standard PQRST complexes were adapted to fit the physiological
patterns of a rat animal model (increasing HR and removing
Q waves), since the standard PQRST complex was designed for
human heart ECG (Mcsharry et al., 2003). Gaussian noise was
added considering 1% of the amplitude of the aECG signals to
describe more realistic patterns.

The aECG patterns were constructed to represent the
following four conditions: (1) a regular, deterministic ECG signal
(DET) without extra noise or any other effect to be used as a
control; (2) atrial fibrillation ECG signal (AF), built by removing
the P waves and replacing them with white noise along the PQ
interval; (3) long QT syndrome (LQT), built by stretching the QT
interval in time and decreasing its amplitude; and (4) a noisy ECG
signal (NSE), created by introducing a high-level white noise
pattern, with 100% amplitude on the DET aECG pattern. The
aECGs (1) and (4) were used as control signals while the aECGs
(2) and (3) were used to represent the heart dysfunction models
described in the literature (Oka et al., 1997; Deguchi et al., 2002;
Çanga et al., 2018). Finally, for each aECG model, four noise
degrees were added to their corresponding tachograms, 0, 33, 66,
and 99% of maximum amplitude, and four different modulation
levels of the LF/HF ratio, given by 0, 0.5, 1, 1.5, to represent
different autonomic balance effects on heart dynamics. Using the
McSharry model (Mcsharry et al., 2003) we adopted:

(1) DET signal was the default model: angles θi (degree)
[P: −70, Q: −15, R: 0, S: 15, T: 100]; ai [P: 1.2, Q: −5, R:
30, S:−7.5, T: 0.75]; bi [P: 0.25, Q: 0.1, R: 0.1, S:0.1, T: 0.4];

(2) LQT signal (long QT waves—it did not emulate arrythmia):
θi [P: −70, Q: −15, R: 0, S: 15, T: 100]; ai [P: 1.2, Q: −5, R:
30, S:−7.5, T: 0.75]; bi [P: 0.25, Q: 0.1, R: 0.1, S: 0.1, T: 0.6];

(3) AF signal (low P-wave peak): θi [P: −70, Q: −15, R: 0, S:
15, T: 100]; ai [P: 0.2, Q: −5, R: 30, S: −7.5, T: 0.75]; bi [P:
0.125, Q: 0.1, R: 0.1, S:0.1, T: 0.4];

(4) NSE signal = (100% of gaussian noise)× DET;

Rat Electrocardiogram
Rat ECG signals were registered from a 6-hydroxydopamine
(6-OHDA) animal model based on the procedure described by
Ungerstedt (1968). This model is based on the degradation of
dopamine neurons in the substantia nigra, mimicking the PD
condition. The sham control group received the same surgical
procedure, but without the addition of 6-OHDA in the brain.

We used a total of six Wistar rats, n = 3 6-OHDA and n = 3
sham, weighing 230–300 g from the experimental animal center
of the Federal University of São Paulo—UNIFESP, maintained
at a temperature of 21◦ ± 2◦C, and light and dark cycle of
12 h with free access to food and water (for more details see
Rodrigues et al., 2019).

All ECG data were recorded using PowerLab 8/35
(Adinstruments, Australia) and recorded at a sampling
rate of 1,000 Hz for 60 min on day 14. The process and
visualization methods were performed using MATLABTM

software and a computer with 8 GB RAM, Intel R© CoreTM i7-6700
processor, 3.4 GHz.

To perform the analysis, all ECG signals were recorded
for approximately 2 h. Due to animal movements and
environmental interference, we opted for a conservative selection
epoch, considering 15 window samples of 20 s sparsely
(Acharya et al., 2006).

Electrocardiogram Waveform Analysis
The waveform analysis applied to the PQRST complexes was
based on Quiroga Spike Sorting (Quiroga, 2012). In this
technique, the main signal changes for a specific event are
searched via principal component analysis (PCA) decomposition.
In this approach, the PCA features correspond to the associated
time window of each PQRST complex, aligned through the
R-peaks as a reference, with an interval of 18 ms for both sides.
If their waveforms covariate along the ECG complexes, clusters
will appear, emphasizing differences and similarities.

Standard Heart Rate Variability Features
To evaluate differences in the autonomic balance activity in
each ECG group, two main features of the heart rate variability
(HRV) were calculated from their tachograms, namely, standard
deviation of NN intervals (which are the standard deviation of
normal intervals of RR, disregarding ectopic beat, known as
SDNN) and root mean square of successive differences (RMSSD).
The SDNN describes the autonomic balance for long periods of
time, whereas RMSSD provides autonomic balance data for short
periods of time (Shaffer and Ginsberg, 2017) (see Figures 1A,B).

Poincaré Map (First Return Map)
We also evaluated the autonomic balance using Poincaré Maps,
which consists of scatter plots given by past R-R intervals
(RRt−1) against present R-R intervals (RRt) (Brennan et al.,
2001). Through Poincaré maps, it is possible to characterize
the tachograms according to their scatter patterns (Woo
et al., 1992). This is done qualitatively by studying cluster
shapes and quantitatively using the deviations SD2 and SD1,
which represent the major axis and the minor axis of an
ellipse, respectively (see Figure 1C). The standard deviation
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FIGURE 1 | Methodology scheme. (A) An example of artificial ECG pattern. By quantifying the R-R intervals from the ECG signals it was built the correspondent
tachogram time-series consisted of R-R sequences. (B) From the ECG tachogram it was quantified two temporal features, standard deviation of n-n intervals
(SDNN) and root mean square of successive differences (RMSSD) and built the Poincaré Map (PM). (C) The PM represents the scatter of points from the
tachogram-space with the axis (RRn, RRn+τ). The phase spaces of the ECG signals were also constructed, given by the coordinates (Xt, Xt+τ, Xt+2τ), which shows
the signal trajectory seen in (D). In (E) is shown the distance matrix, representing the Euclidian distance of each sample-point in relation to all other points in the
phase-space. (F) Shows the recurrence quantification analysis (RQA) characteristics that allowed to select an epsilon threshold. (G) Shows an example of
Recurrence Plot from the distance matrix given an epsilon. The RQA factors calculated in this work were: recurrence rate (RecR), determinism (DTM), mean diagonal
length (<D>), maximum diagonal length (Dmax), Shannon entropy (ENTR), Trapping Time (TT), laminarity (LAM), maximum vertical length (Vmax), and time type 2
(T2). (H) Principal component analysis (PCA) calculated from the RQA factors highlights the differences between PD model and sham groups. (I) ECG waveform
samples (PQRST complexes) extracted from the ECG patterns (considering its mean and SD). (J) PCA calculated from the ECG waveforms highlights the main
differences in the signal morphology.

SD2 quantifies the point distribution across the line of
identity (LOI), and the standard deviation SD1 quantifies the
point distribution across the line perpendicular to the LOI.
Both are directly associated with ECG beat-to-beat interval
distribution (Brennan et al., 2001) and autonomic balance. SD1
is strongly correlated with LF, which represents parasympathetic
modulation (Shaffer and Ginsberg, 2017).

Recurrence Quantification Analysis
To evaluate the non-linear ECG features, we applied RQA. RQA
is a technique applicable to any type of time series that allows
access to time series characteristics that standard techniques
cannot (Eckmann et al., 1995). Through RQA coefficients, it
is possible to categorize a signal according to its level of
stochasticity, chaoticity, and determinism, which can help to
understand the type of physical coupling under its dynamics
(Marwan et al., 2002). RQA is based on signal phase-space
reconstruction, defined by

X : X(x0, x1, x2, . . . , xτm−1; x1, x2, x3, . . . , xm; x0, x1,

x2, . . . , xm) (1)

where τ is a parameter time delay, and the dimension
m is a dimensionality parameter. Any time series can be
described through its phase space in a two-dimensional matrix,
representing the distances from every sample point. Additionally,
a threshold ε must be defined, limiting which higher values are
defined as recurrences, creating a recurrence plot (RP), defined
by:

RP
(
i, j
)
= H

(
ε− DM(i, j)

)
,

{
H > 0 ⇒ RP

(
i, j
)
= 1

H < 0 ⇒ RP
(
i, j
)
= 0

(2)

where H(.) is the Heaviside step function and DM(.)
is the distance matrix that contains all point-to-point
Euclidian distances in the phase space (Marwan et al., 2007)
(Figures 1D,E).

All parameters, τ and m and ε, were calculated individually for
each signal, following the statistical characteristics of each one.
After, using the Sturges Formula to optimize the histogram bins,
the mutual information was determined (Sturges, 1926). Thus,
for each signal, the chosen value of τ was the one that maximize
the time-lag of 10 window samples of 20 s and that minimize the
mutual information lower than 1/e (Kantz and Schreiber, 1997;
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Marwan and Webber, 2015). The dimension m was calculated
using the False Nearest Neighbors (FNN) technique, considering
the 10 window samples with the predefined tau. Following
previous studies, the chosen value of m corresponded to the first
dimension that present a FNN less than 0.1 (Fraser and Swinney,
1986; Zbilut and Webber, 1992; Marwan, 2003). Finally, the value
of ε is based on the maximum phase-space diameter percentage,
using the Euclidian distance, as described in Marwan et al.
(2007). That is, we chose heuristically ε = 9%, from an interval
of 1–15% of the maximum diameter associated with the phase
space, given a value of τ and m that maximized the differences
between the groups of interest. Additionally, the values in DM(i,j)
were normalized by the maximum diameter of the phase space
describing all data at the same scale (see Figures 1F,G).

To quantify the ECG signal recurrences, we chose nine RQA
coefficients calculated on the dot structure patterns displayed
by the recurrent plots (RPs) (Marwan et al., 2007). Only
structures with more than three dots were considered as a proper
recurrence, minimizing spurious effects. All the coefficients are
based on the percentage of dots, horizontal dot-line structures,
and diagonal dot-line structures on RPs, where each one
provides information associated with time recurrences and
trajectories according to the degree of stochasticity, chaoticity,
or determinism (Zbilut and Webber, 1992; Gao, 1999; Marwan
et al., 2002, 2007; Marwan, 2003). The nine coefficients used in
this study are defined as follows:

Recurrence rate (RecR) quantifies the density of recurrences.
This indicates the regularity of signal recurrences in the signal.
Therefore, it is associated with the determinism.

RecR(ε,N) =
1

N2 − N

N∑
i6=j=1

RPm,ε
i,j (3)

where ε is the threshold, N is the total number of elements in RP,
and RPm,ε

i,j are the RP i,j-elements, calculated using Equation (1),
according to the threshold ε and embedded in dimension m.

DTM quantifies the density of recurrence time intervals. This
indicates the regularity in the signal. It is defined by:

DTM =
∑N

d=dmin
d Pd(d)∑N

d=dmin
d RPi,j

(4)

where Pd(.) is the probability of finding a diagonal with length d,
calculated from a histogram, and dmin is the minimum acceptable
distance value (defined as three dots).

The average diagonal length (<D > ) quantifies the weighted
average length of time recurrence. This indicates divergence
of the space-phase trajectory; therefore, it is associated with
stochasticity.

< D > =

∑N
d=dmin

d Pd
(
d
)∑N

d=dmin
Pd(d)

(5)

The maximum diagonal length (Dmax) quantifies the
maximum length of a time recurrence. When inverted, it
indicates the exponential divergence of the phase-space
trajectory.

Dmax = max(d) (6)

The Shannon entropy (ENTR) quantifies the complexity of
interval recurrences. This indicates the stochasticity and
chaoticity of the signal:

ENTR = −
N∑

d=dmin

Pd
(
d
)

ln Pd(d) (7)

where Pd(.) is the probability of obtaining the diagonal with
length d in the diagonal length of the RP, and ln(.) is the natural
logarithm of Pd

(
d
)
.

Laminarity (LAM) quantifies the percentage of fixed events in
each time interval of recurrences. Since it evaluates the relative
number of laminar events, it is associated with chaoticity:

LAM =
∑N

v=vmin
vPv(v)∑N

v=1 vPv(v)
(8)

where v is the length of the vertical line, and vmin is the minimum
length of the vertical line.

Trapping Time (TT) quantifies the mean value of fixed events
in each time interval of recurrence. This indicates fine-scale
irregularity; therefore, it is associated with determinism and
stochasticity.

TT =
∑N

v=vmin
vPv (v)∑N

v=vmin
Pv (v)

(9)

The maximum vertical length (Vmax) quantifies the maximum
vertical length, whose meaning remains unclear, but it can be
related to states with low variability, being locked at a single event:

Vmax = max(v) (10)

Time Type Two (T2) quantifies the average time necessary for
a given event to return to its origin point (arbitrarily close to ε) in
the phase space. This indicates signal dispersion and, therefore, is
associated with stochasticity and chaoticity.

T(2)k

=< jk+1 − jk >, with Ri = {xj1, xj2, . . .
∣∣Ri,jk = 1}, ∀i, j, k

(11)

Statistics
We applied the Kolmogorov-Smirnov normality test to all
sample data, and because samples could not be considered from
a normal distribution, non-parametric tests were used (Massey,
2017). Group differences were assessed using cluster analysis and
the Kruskal-Wallis test, followed by the Tukey-Kramer post hoc
test (Kramer, 1956). For two-sample comparisons, we used
the Mann-Whitney test. A multifactorial analysis, clustergram,
was applied to choose which RQA metrics would be optimal
to distinguish both groups. For this analysis, the Euclidean
distance was used to quantify the similarities among the RQA
coefficients considering each condition (6-OHDA and sham).
The significance level for all statistical analyses was established
when p < α, where α = 5%, represented in figures by the
symbol “*”. All analyses were performed using the MATLAB R©

software (v. R2016a).
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Principal Components for Clustering
Analysis
To highlight the global covariations and similarity effects from
the different analyses (RQA on aECG and RQA on ECG animal
models) considering the four different conditions LQT, AFR,
NSE, and DET, when subjected to different noise levels and
different LF/HF ratios, we performed a principal component
analysis (PCA). For PCA, one matrix of 84 rows and 10 columns
comprising four matrices of 41 rows (representing all 41 signal
epochs of 60 s) and 10 columns (representing all RQA factors):
one for LQT condition (41 × 10), another for AF condition
(41 × 10), another for the NSE condition (41 × 10), and one
for the DET condition (41 × 10), each column representing an
RQA factor was measured. Therefore, these RQA factors were
considered as PCA features and aECG conditions (LQT, AFR,
NSE, and DET) as trial effects. This method was repeated for each
noise level and LF/HF conditions (Figure 1H).

For all PCA spaces analyzed here, we use only the first two
components, PC1 and PC2 (Figures 1I,J), since they were able to
explain more than 80% of the data covariances (Figure 2F uses
three PCs only for a better visualization).

Finally, all RQA data from the animal models were projected
onto the RQA space previously obtained from the aECG
conditions through the PCA approach. Once an ECG pattern was
projected onto the aECG PCA space, the Euclidean distance was
calculated considering each centroid cluster related to each aECG
cluster, including the sham group.

RESULTS

To show the possible differences using traditional coefficients
(such as SDRMS) and RQA, we first evaluated the dynamics
associated with the four artificial ECG patterns by varying the
percentage of noise on their HRV with four different LF/HF
ratios. This reveals how the traditional techniques are unstable
under different conjugation of noise and LF/HF imbalance.
By applying RQA to these aECG signals, we were able to
identify and quantify non-linear features associated with each
cardio/autonomic condition. In our results, the RQA technique
has shown to be more robust and sensitive for detecting
autonomic dysfunction under different noises conjugated with
LF/HF imbalances on the aECG signals. We were able to evaluate
HRV and heart dynamics simultaneously with a better resolution
across different temporal scales and under different autonomic-
heart conditions.

Artificial Electrocardiogram
Figure 3A exhibits the electrographic traces related to the four
aECG signals, namely, AF, LQT, DET, and NSE. From their
PQRST-complexes, using R-peak as reference to centralize
them, they were superposed, and then their confidence
interval was calculated (Figure 3B). By using PCA, we were
able to separate each group according to their waveform
patterns (Figure 3C). This result suggests that their waveforms
contain distinct information associated with each heart
condition. However, despite this distinguishability, this

technique does not provide access to the dynamics of the
autonomic system.

To provide a complementary perspective on ANS dynamics,
we also applied Poincaré maps to the aECGs to evaluate their
behavior and their relationship to the different LF/HF ratios
and noise intensities. Figure 4A shows how Poincaré maps of
aECG conditions (xy-axis) vary according to their level of noise
(ellipses on z-axis). This shows that the higher the magnitude of
noise applied to the tachograms, the greater the data dispersion.
Figure 4B shows the sensitivity of the standard HRV coefficients
(SDNN, RMSSD, SD1, and SD2) under different noise levels.
Once again, higher values of noise applied to tachograms yielded
higher values of HRV coefficients, except for the NSE group,
which exhibited a parabolic fluctuation but with indistinct values
among the coefficients. Figure 4C shows the opposite effect,
focusing on how Poincaré Maps vary, for each aECG condition
(xy-axis) as a function of LF/HF modulations (z-axis). Now, the
variation in LF/HF modulations produces subtle restrictions on
the ellipsis-shaped limits. Figure 4D shows how HRV coefficients
vary as a function of LF/HF modulations.

Figure 5A shows all phase-spaces associated with the aECG
patterns considering different regimes of noise and HRV LF/HF
ratios. LQT (blue) has lower amplitude variation than other
groups, decreasing its structure size in comparison to the other
groups. For almost all cases, AF and DET presented the same
information, distinguishing only in their P-wave structure, which
is more visible in DET than AF.

From Figure 5B, it is possible to see that when noise
and LF/HF increase, there are more irregular diagonal dot
structures on the RPs. In this regime, all four conditions
(DET, LQT, AFR, and NSE) present larger and longer periods
of recurrence, and still exhibit a trend. The RP vertical line
structures are also influenced by noise and modulation, meaning
that the ECG signals increase spurious recurrences. When the
LF/HF modulation increases, the diagonal structure sizes become
irregular owing to the fluctuation of the instantaneous heart
rate. These changes represent irregularities in ECG events that
reflect variations in HRV. Conversely, when noise increases, the
periods of the diagonal structures of the RP are irregular but
different from the LF/HF modulations, and the ECG events do
not exhibit a trend. This reflects the irregularities of the ECG
PQRST complexes, which decrease the recurrences and shorten
the rectangles in RP.

Figure 5C shows four distinct clusters for almost all
regimes of noise and LF/HF ratios. This means that RQA
non-linear features, which represent aECG recurrence over
time, are more significant than complex morphological changes
in autonomic dysfunction. It is also possible to see that
the increase in noise level yields an increase in the cluster
size, mixing them.

Application of Recurrence Quantification
Analysis to the Electrocardiogram of
Parkinson’s Disease Animal Models
To show the reliability of RQA to real ECG signals, we applied
it to a set of ECGs recorded from animal models of PD
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FIGURE 2 | RQA from animal model ECG recordings. (A) Phase space trajectories of ECG signals. (B) Phase-space mean trajectories related to both groups.
(C) RP from the ECG signals of both groups. The 6-hydroxydopamine (6-OHDA) signals are more recurrent than ECG from the sham group. (D) Statistical
comparison between each RQA factor from 6-OHDA and sham groups. All factors are revealed to be statistically different (exhibited in logarithm scale).
(E) Clustergram of RQA factors using Euclidian distance as the metric of similarity. Each group presents its own set of RQA coefficient, forming two different clusters,
6-OHDA are rats 1–3, and sham are rats 4–6. In this case, Time type 2 (T2), Shannon entropy (ENTR), Trapping Time (TT), mean diagonal length (<D>), and
maximum diagonal length (Dmax) are the main coefficients to distinguish one group from the other. (F) Principal Component Analysis from RQA factors also reveal
that both groups differ from each other, with two distinct clusters with minimal overlap between them.
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FIGURE 3 | Artificial ECG patterns. (A) Red signals represent the deterministic aECG, the green signal represents the atrial fibrillation (AF) pattern relative to the
aECGs, the blue signal represents the long-QT (LQT) syndrome pattern relative to the aECGs, the black signal represents a deterministic aECG signal embedded of
high noise (NSE). (B) The correspondent PQRST-complexes from each aECG model, showing their average and confidence interval. (C) Scatter-plot relative to the
two first scores from a Principal Component Analysis (PCA) considering all four ECG-complexes shown in (B). Despite the clusters formed from different groups
overlaps each other, it is still possible to identify and distinguish the groups from their ECG-waveforms.

(6-OHDA) and compared their non-linear features with a sham
group and with the four artificial ECG signals. By comparing
the RQA coefficients from the real and artificial signals, we
were able to distinguish PD ECG features from sham ECG
features more effectively than by using ECG waveforms and
traditional HRV factors.

Figure 6A shows two representative ECG signals recorded
from a 6-OHDA animal model (orange) and from a SHAM
animal (lilac). Figures 6B,C show the ECG-complex waveforms
for both groups and their PCA, respectively, highlighting the
differences between ECG waveforms from the 6-OHDA and
sham groups. It is possible to identify two clusters with an
overlap, indicating that PCA was not able to detect statistical
differences between the ECG complex shapes from 6-OHDA and

SHAM groups. Figure 6D displays the clusters from Poincaré
mapping associated with the ECG-tachograms from both groups.
It shows that the 6-OHDA group has a denser cluster than Sham
group, but both present a central dispersion tendency onto the
identity line. This effect occurs since their window samples are
presented R-R intervals do not exhibit drastic variations over
time (such as arrhythmia). Their averages are mainly stationary,
yielding this similarity with the main diagonal. These differences
were detected through the SD1 and SD2 coefficients, and SDNN
and RMSSD, which are different for both groups (Figure 6E).
It also shows that for all HRV factors, 6-OHDA groups exhibit
significant lower values, indicating that both groups are different
in their HRV variability but not necessarily in their ECG
complex waveforms.
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FIGURE 4 | Heart rate variability (HRV) coefficients from aECG signals. (A) Higher noise levels spread the Poincaré Maps, raising both, SD1 and SD2, for all groups
except noisy ECG signal (NSE). This raise is highlighted in (B), where it represents the changes in HRV characteristics according to different noise levels. In this
situation, all coefficients raise linearly according to the increasing of noise levels, where RMSSD showed to be the more sensitive coefficient. (C) Changes in Poincaré
plot according to LF/HF modulation is observed. In this picture, the colors represent the different intensities of LF/HF modulations. Higher LF/HF values produce
higher radius values of Poincaré Map ellipses, emphasizing the differences between SD1 and SD2 coefficients for every group. (D) It shows the HRV coefficient
values variating according to different LF/HF ratio values. Long-time coefficients, SDNN and SD2, become stable as short-time coefficients, SD1 and RMSSD,
decrease their values.

For these groups, these classic HRV features were already
enough to detect the effects of PD on HRV patterns. However,
since we cannot properly distinguish their ECG features, the

possible effects from isolated cardiac dysfunction could be
masked. By applying RQA we can calculate other ECG features
that highlight differences that the standard techniques cannot. As
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FIGURE 5 | Recurrence quantification analysis (RQA) characteristics of aECG signals. (A) The signal recurrences of each group in each condition. Higher values of
LF/HF increase the variability of ECG in the phase-space trajectories. (B) Each recurrent plot (RP) of each group are different. The changes happen not only on
individual dots, but also on the dot-lines and diagonal dot-structures, changing the main characteristics gather from RPs. By increasing the intensity of noise in the
tachograms, it turns the RP pattern less periodic, affecting the main structures related to trajectory recurrences in RPs. The LF/HF modulation turns the
dot-structures less regular, also affecting the value of dot-structures related to recurrences. (C) PCA projections using RQA coefficients (RR, DTM, <D>, Vmax, ENT,
TT, T2) for each aECG condition. In most cases it is possible to differentiate each cluster from each group. The raise of LF/HF modulation changes the clusters from
Long QT syndrome (LQT) and atrial fibrillation (AF), and the raise of noise, let the RQA features less condensed, making it more difficult to differentiate AF from LQT.

we will show, they are more sensible and robust under noise and
LF/HF modulations.

Figure 2A shows the phase-space of the signal embedded
dimension for both groups (6-OHDA and SHAM), highlighting

their recurrences in time. It is possible to see that the SHAM
group has more variance along cycles than 6-OHDA group.
The mean recurrences relative to each group can be seen in
Figure 2B. Even though the ECG recordings have complex

Frontiers in Physiology | www.frontiersin.org 10 November 2021 | Volume 12 | Article 72521886

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-725218 November 24, 2021 Time: 10:7 # 11

Shinoda et al. Cardiac-Autonomic Dysfunctions Assessed Through RQA

FIGURE 6 | ECG and HRV standard features from animal model. (A) ECG signals from both animal models, 6-OHDA in orange and Sham in lilac. (B) Morphologic
differences of PQRST-complexes. (C) Principal Component Analysis of PQRST complex, it is possible to see two clusters, one in orange and one in lilac.
(D) Poincaré plot of both ECG recordings, showing that 6-OHDA group has a denser cluster. (E) HRV coefficients for each group, all characteristics presented
significative difference (ρ < 0.05), by comparing 6-OHDA with Sham groups.

morphological changes (as shown in Figures 6A,B), their
amplitude changes do not affect the recurrences, meaning
that their single event diameters in the phase-space are
not different on average, with minor changes along QRS
complexes. A representative RP for both groups is exhibited in
Figure 2C, where it is shown that 6-OHDA ECG recordings
are more recursive than sham ECG recordings. These
recurrences are evaluated through the RP diagonal lines
that reflect the recurrences of their PQRST complexes,
and through the RP vertical lines that reflect large-scale
temporal recurrences.

In Figure 2D, we can compare each RQA factor, all of which
reveal significant differences between the 6-OHDA and sham
groups. Except for factor T1, group 6-OHDA exhibited higher
values. Considering all RQA factors, we conclude that the 6-
OHDA group presents signals that are less stochastic and less
chaotic than those of the sham group.

The results are presented in Figure 2E corroborate the
statistical pairwise comparisons shown in Figure 2D, considering
a clustergram analysis for both animal groups and all RQA factors
as markers. It can be seen that seven RQA factors can distinguish

both groups, in this case: LAM, DET, T2, ENTR, TT,< D>, and
Dmax. These factors indicate that the main changes in 6-OHDA
ECG signals in comparison with SHAM are more relevant in their
level of periodicity (LAM, TT, T2) and in their waveforms (DET,
ENTR, < D > , and Dmax), as shown in Figure 2D. That is, the
6-OHDA group PQRST complex events stay for longer periods
of time in a single event than the SHAM group, and it takes
more time to return to a single event. This feature can express
bradycardia and lower variability in RR intervals. Furthermore,
the 6-OHDA amplitude values tended to remain stable over time,
with lower variability in signal amplitude.

In Figure 2F, we see the PCA analysis using RQA factors
as PCA features. It is possible to completely distinguish 6-
OHDA from the sham group using RQA factors, corroborating
previous results. In contrast to Figure 6C, which considers
only waveforms, RQA factors simultaneously capture ECG
features and HRV.

These analyses show how RQA can be used to detect
other statistical signal features related to comorbidities that
standard techniques cannot detect, mainly under noise and
LF/HF modulations.
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Recurrence Quantification Analysis
Cluster Analysis: Artificial
Electrocardiogram vs.
Electrocardiogram
To quantify possible similarities between real ECG features with
aECG features, we projected the RQA factors related to 6-OHDA
and sham groups onto the PCA space constructed by the four
RQA factors calculated from aECG (DET, AFR, LQT, and NSE).
Additionally, the Euclidean distance was calculated between
each of the five centroid clusters (DET, AFR, LQT, NSE, and
sham), using the 6-OHDA centroid cluster as the main reference.
These metrics were chosen since we wanted only to quantify
the proximal clusters, and the physiological features attributed
to the aECG were simplified in comparison to the real ECG. By
adopting more rigorous metrics of similarity, we were not able to
evaluate the cluster correspondences.

From Figure 7A, it is possible to see that additional
external noise on signals yields dispersion, making it difficult to
distinguish which group is nearest to 6-OHDA. Figure 7B shows
how the distance values from the 6-OHDA cluster vary according
to each noise and LF/HF modulation. It can be seen that the 6-
OHDA RQA factors stay nearest to the AFR for higher LF/HF
values and nearest to DET for lower LF/HF values. This indicates
that the 6-OHDA ECG patterns exhibit AFR features. Figure 7C
shows the ECG recordings corresponding to the last square
values shown in Figure 7B, with 99% noise and 1.5 of LF/HF
modulation. Figure 7D shows the ECG recordings corresponding
to the second square of Figure 7B, with 99% noise and 0.5 of
LF/HF modulation.

DISCUSSION

In this work, we propose a proof-of-concept study showing
that using only linear properties of ECG recordings may
be insufficient to describe integrally cardiac-autonomic
dysfunctions. Instead, we use the RQA technique that
intrinsically incorporates temporal event recurrences at
different time scales, which can consider heart and autonomic
conditions simultaneously. Through a simplified computational
model, we were able to build two cardiac/autonomic conditions
(and two other controls) that commonly can be detected on the
morphology of ECG-complexes and on their HRV, mainly in PD.
In sequence, we calculated the standard temporal HRV factors
SDNN and RMSSD, SD1, and SD2 coefficients, and applied
PCA to their corresponding waveforms to search for different
physiological ECG patterns. However, neither PCA nor HRV
factors were able to properly distinguish the variations associated
with each condition (especially, atrial fibrillation and long-QT
syndrome). By varying the noise intensity and autonomic LF/HF
ratio associated with their tachograms, we could compare the
sensitivity and robustness of the standard HRV factors.

We verified that all HRV characteristics increased linearly
as noise intensity increased (Figure 4C), indicating that HRV
factors can be disrupted by environmental noise, outliers, or
misdetections. The same effect was observed within Poincaré
plots, whereas the intensity of noise increased the scattering as

well (Figure 4A). However, even with these effects, none of the
coefficients was sensitive enough to properly detect noise and
LF/HF modulations. The SDNN and SD2 factors, for instance,
remained stable for every LF/HF value, and RMSSD and SD1
decreased their values only slightly. These results could be due
to the short term of aECG signals since they were simulated
only for 5 min (Shaffer et al., 2014). However, this means that,
at least, these coefficients always require long ECG recordings to
operate properly.

RQA was more sensitive and robust in detecting non-linear
features related to each of the four conditions expressed on their
aECGs. We calculated nine RQA factors associated with the
four aECG conditions: DET, AF, LQT, and NSE (Figure 5A).
We verified that as the noise intensity increased, the RPs also
increased their number of dot structures, and the number of
spurious correlations increased (correlations of dot length lower
than three; Figure 5B). We can see that the periodicity of the
ECG signals is strongly modulated by the LF/HF ratio changes
(Figure 5C). As the LF/HF ratio increases, the RPs lose vertical
dot structures, indicating an increase in stochasticity (Garfinkel
et al., 1997; Schauerte et al., 2001; Chen et al., 2014). It is
important to mention that a healthy heart does not exhibit a
purely deterministic dynamic. In fact, it presents stochasticity
given by internal and external factors, and non-periodicity is
reported, as chaotic dynamics, which makes the RQA a better
technique to evaluate it (Braak et al., 2007; Pyatigorskaya et al.,
2016; Çanga et al., 2018).

When we analyzed the RQA factors (RecR, DET, LAM,
TREND, T2, ENTR, TT, < D >, and Dmax) as PCA variables,
we were able to explain all the covariations associated with each
specific group under all different noise and HF/LF modulations
(Figure 5C). This indicates that RQA metrics are not only more
sensitive for detecting noise and autonomic modulations on
short-time ECG recordings, but can also explain HRV conditions
more accurately.

Application: Electrocardiogram From
Animal Models of Parkinson’s Disease
By applying PCA to the ECG complex waveforms recorded from
animal models, we verified that they were not able to completely
distinguish 6-OHDA from the SHAM groups (Figure 7E). This
lack of difference in ECG signals gave rise to two questions: (i) Are
RQA and/or Poincaré Map factors capable of differentiating each
one of these conditions?, and (ii) How do HRV features influence
each condition?

To answer these questions, we first analyzed different features
related to heart rate variability (HRV) time series considering
each ECG pattern, associated with 6-OHDA and sham groups,
looking for distinct sympathetic (SNS) and parasympathetic
(PNS) activities. Using Poincaré Maps and standard factors
(SDNN and RMSSD), we verified that the 6-OHDA group had
lower HRV coefficients than the sham group (Figures 6D,E). This
result can also be verified through the smaller cluster of 6-OHDA
group in the Poincaré map (Figure 6D), which comes from the
low variance of R-R time sizes, which is associated with its higher
average value (cluster centroid) in comparison to the SHAM
group. Therefore, the 6-OHDA group had longer RR intervals,
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FIGURE 7 | HRV characteristics combined with RQA metrics from aECG and ECG animal models. (A) Projections of RQA factors calculated from the animal ECGs
onto the principal components space constructed from the RQA factors calculated from the four aECG patterns. (B) The distances calculated from all centroid
clusters in relation to the 6-OHDA centroid cluster, considering the different conditions in terms of HRV modulation and noise intensity. The closest cluster (related to
real ECGs) are the cluster from DET aECG pattern for all conditions of HRV and noise. There is an alternation of the distance values, that occurs mainly for high levels
of noise, where atrial fibrillation (AF) and Long-QT Syndrome (LQT) change their centroid values. It indicates that high noises in tachograms could interfere in
standard metrics. (C) Comparison of AF to 6-OHDA for LF/HF modulation equal to 1.5 and noise equal to 99%. Both signals look similar, where their centroid cluster
distances exhibit the lowest distance values. (D) It shows an example of LQT aECG pattern considering a noise intensity equal to 99% and LF/HF modulation equal
to 0, compared with 6-OHDA ECG signal. The proximity of P-waves and T-waves suggests all signals exhibit only QRS-complexes and one bi-event defined by the
union of P and T waves. (E) Differences between 6-OHDA and Sham ECGs.

indicating bradycardia and decreased sensitivity to fast responses
to external stimuli (Pursiainen et al., 2002; Imrich et al., 2008).
According to the literature, one possible explanation for this low
HRV activity in PD is a lack of sympathetic activity response
(Goldstein et al., 2000).

In terms of RQA, the ECG recordings from the 6-OHDA
group were more recursive than the ECG signal from the sham
group, since its RecR and DTM factors were higher than those
of the sham group. This result indicates that the 6-OHDA group
had a lower ECG amplitude variability over time, with more
recurrent events. This can be checked through its phase space
(Figure 2A) and Poincaré map (Figure 6D). These effects could
be physiologically interpreted mainly by: (i) low concentrations
of Ca+2 in conductive heart cells (Kramer, 1956); (ii) myocardial
changes that lead to atrial fibrillation and yield a periodicity
increase of specific events along the ECG signals (Hong et al.,
2019); and (iii) heart sympathetic denervation, which decreases
HRV and produces regular and periodic ECG (Orimo et al., 1999;
Goldstein et al., 2000).

The higher values of<D> in 6-OHDA ECGs compared with
sham indicates that their signals present higher self-similarity,
which is also revealed by their event periodicities. This RQA
factor indicates that the ECG signals have small perturbations
across time, with one major divergence found in the QRS
complex. Additionally, higher values of Dmax, TT, LAM, and
T2 in 6-OHDA signals compared to sham signals indicate that
their ECG events are more recurrent over time. That is, given
an ECG-reference, such as R-pick, the way it appears along the
signal in time is more regular and similar to the previous ones.
While Dmax and LAM coefficients exhibit a more deterministic
dynamic, hinting at a low autonomic modulation (in both the
PNS and SNS branches), TT and T2 coefficients indicate that
ECG events are more alike and longer. Long events come from
low amplitude changes and represent more “rigid R-R intervals,”
corroborating Poincaré maps (Marwan et al., 2002; Marwan,
2003, 2006). Furthermore, a decrease in heart rate tends to
increase the periodicity of the signal, which can be promoted by
PD bradycardia (Buob et al., 2010).
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Higher values of ENTR indicate that the system itself has
some variation in amplitude and is more complex. In this
way, the values of ENTR for 6-OHDA ECG recordings are
the first indication of greater chaoticity than those of sham
signals, in the sense that they have some physical constraints
that modulate its activity. This chaoticity is also justified by
considering the values of Dmax and TT of 6-OHDA (Wolf et al.,
1991; Shibata et al., 2009). One possible origin of this physical
constraint is the potential fluctuations due to atrial fibrillation
(AF), caused by the decomposition of P-waves into many short
waves (Goldstein, 2006).

The coefficients Vmax and T1, despite presenting a significant
difference, did not help to discriminate the PD condition, using
6-OHDA models, from sham as revealed by the Clustergram
analysis (Figure 2E). Using the seven RQA factors indicated by
the Clustergram (< D >, Dmax ENTR, TT, LAM, DTM, and T2)
as PCA features, this result can be corroborated. Furthermore,
Figure 2F shows that by using the factors, the differences
between both groups are optimized and clarified, indicating
once again that RQA coefficients explain the variations between
both groups.

Considering all RQA coefficients together, we can conclude
that ECG signals from 6-OHDA animal models exhibit higher
irregularity in their morphology over time, including higher
variation in its amplitude, but lower variation in its R-R intervals.
This result is probably a consequence of the effect of Parkinson’s
disease on autonomic control, which promotes a self-paced
rhythm with a strong interference of the parasympathetic path
that decreases HRV (Shaffer and Ginsberg, 2017). This excessive
regularity makes the heart less flexible to changes, which may
be one of the causes of orthostatic hypotension (Smit et al.,
1999; Velseboer et al., 2011). Although RQA exhibited pairwise
statistical differences, when applied to 6-OHDA and SHAM
groups, it was still missing a proper physiological interpretation
associated with a more global and integrated analysis of these
factors, mainly for specific heart and autonomic conditions
related to PD, such as atrial fibrillation and long Q-T.

Finally, we projected all RQA factors calculated from the ECG
animal models, 6-OHDA and SHAM, onto the RQA PCA space
calculated from the four artificial ECG conditions (DET, AF,
LQT, and NS). With these projections, we quantify which of the
four artificial conditions the 6-OHDA group would statistically
resemble. In this way, by evaluating the centroid distances from
each aECG condition to the 6-OHDA conditions, we saw that
the sham cluster was the nearest group and the NSE cluster
was the furthest. Furthermore, for high noise intensity (0.99),
independent of the autonomic frequency ratio, the DET and AF
clusters were the closest clusters. This result is expected because
aECG models are limited and real ECG signals have complex
components (beyond noise and modulation) that differentiate
both from all aECG patterns.

Nevertheless, by looking at AF and LQT clusters (green and
blue), we see how their distances to 6-OHDA vary according
to different noise levels and autonomic modulations. For all
LF/HF ratios, the LQT clusters became closer to 6-OHDA for
a higher level of noise. This effect can occur because of the
addition of noise to the aECG tachograms, which may superpose
T- and P-waves, as shown in Figures 5A, 6C–E. Conversely, AF

clusters are closer to the 6-OHDA clusters for high values of
LF/HF modulation. This can be seen by comparing their ECG
morphologies, as shown in Figures 6C–E. Both signals, aECG AF
and ECG 6-OHDA, present no P-waves. This increases the R-R
intervals, which are expressed by the large vertical lines in their
RP (Figures 4B, 6C).

Although the metrics and model features under this
quantification were simplified (for human beings all parameters
used to construct the aECG must be readjusted), these results
suggest that 6-OHDA signals could be correlated with AF signals,
indicating a possible tendency of this pathology in PD (van Dijk
et al., 1993; Velseboer et al., 2011). Additionally, these results also
suggest that LF/HF modulation could lead to misinterpretations
due to changes in the morphology of ECG signals, making it
difficult to distinguish all groups from low noise values. The main
differences between groups were found for intermediate values
of LF/HF modulation, where the main changes in all groups
occurred, making it easier to pinpoint the cluster condition
closest to the 6-OHDA group. A previous study has already
indicated that AF is possibly related to autonomic imbalance,
especially when one of the branches is highly activated in relation
to others (Marwan, 2003).

It is important to note that the addition of noise in the
aECG tachograms may modify their aECG morphologies, which
may be a limitation of the model. Furthermore, any alteration
of heart calcium flux may also lead to an alteration in the
myocardial dynamics itself (Ren et al., 2004). These changes also
affect heart waveform dynamics, thereby promoting a possible
misinterpretation of HRV factors. Therefore, despite showing
that RQA factors are more sensitive to ECG and tachogram
dynamics, it is still necessary to know if there are well-defined
signatures associated with ECG changes caused by a lack of
autonomic modulation or by a lack of myocardial response.
Both causes can be interpreted as dysautonomia, and the source
of the autonomic imbalance (Shibata et al., 2009; Buob et al.,
2010) is not obvious from the ECG. However, we emphasize
that this issue is a general limitation for HRV analysis that uses
only ECG signals, and through RQA factors, it is possible to
assess not only “static pictures” of the ECG signals or global
coefficients (as averages and deviations along time) but also
a reflection of the recurrences and periodicities of the signals
(Shaffer and Ginsberg, 2017).

In summary, the artificial ECG patterns associated with RQA
factors can be a new approach to help understanding the complex
dynamics found in real ECGs. Here, despite the simplifications,
the RQA factors suggested that the 6-OHDA group can present
atrial fibrillation (AF) mainly for high values of LF/HF ratios.
It also pointed out that 6-OHDA ECG recordings exhibit high
variations in baseline and temporal regular events. These features
have been associated with reduced cerebral blood flow and,
recently, a high risk of sudden death from epilepsy (Billeci et al.,
2018; Khazaei et al., 2018).

This proof-of-concept study indicates that by applying RQA
technique on ECG signals from PD of animal models, they
present lower variability in periodicity (RR intervals) but higher
complexity in their baseline (amplitude). This means that the 6-
OHDA ECG signals exhibit more deterministic event intervals
but more stochastic traces. Most likely, these characteristics
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suggest a lack of autonomic modulation. We interpret it as an
“uncalibrated ANS” where both branches work together, but the
relationship between them is no longer cooperative, producing an
unbalanced heart dynamic. Although the application study was
limited due to the small animal samples, we believe this work
opens a new direction for the application of RQA to ECG signals.
RQA is a very promising technique to advance new studies
of heart-brain dynamics to elucidate other heart or autonomic
changes in PD patients.
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Background: Up to 30–50% of chronic heart failure patients who underwent cardiac

resynchronization therapy (CRT) do not respond to the treatment. Therefore, patient

stratification for CRT and optimization of CRT device settings remain a challenge.

Objective: The main goal of our study is to develop a predictive model of CRT outcome

using a combination of clinical data recorded in patients before CRT and simulations of

the response to biventricular (BiV) pacing in personalized computational models of the

cardiac electrophysiology.

Materials and Methods: Retrospective data from 57 patients who underwent CRT

device implantation was utilized. Positive response to CRT was defined by a 10%

increase in the left ventricular ejection fraction in a year after implantation. For each

patient, an anatomical model of the heart and torso was reconstructed from MRI and

CT images and tailored to ECG recorded in the participant. The models were used to

compute ventricular activation time, ECG duration and electrical dyssynchrony indices

during intrinsic rhythm and BiV pacing from the sites of implanted leads. For building a

predictive model of CRT response, we used clinical data recorded before CRT device

implantation together with model-derived biomarkers of ventricular excitation in the left

bundle branch block mode of activation and under BiV stimulation. Several Machine

Learning (ML) classifiers and feature selection algorithms were tested on the hybrid

dataset, and the quality of predictors was assessed using the area under receiver

operating curve (ROC AUC). The classifiers on the hybrid data were compared with ML

models built on clinical data only.

Results: The best ML classifier utilizing a hybrid set of clinical and model-driven data

demonstrated ROC AUC of 0.82, an accuracy of 0.82, sensitivity of 0.85, and specificity

of 0.78, improving quality over that of ML predictors built on clinical data from much

larger datasets by more than 0.1. Distance from the LV pacing site to the post-infarction
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zone and ventricular activation characteristics under BiV pacing were shown as the most

relevant model-driven features for CRT response classification.

Conclusion: Our results suggest that combination of clinical and model-driven data

increases the accuracy of classification models for CRT outcomes.

Keywords: cardiac resynchronization therapy, machine learning, cardiac modeling, electrophysiology, prediction,

heart failure, hybrid approach

1. INTRODUCTION

Cardiac resynchronization therapy (CRT) is one of the most
effective non-pharmacological therapies for patients with chronic
heart failure (CHF). It enhances the pumping function increasing
the left-ventricular (LV) ejection fraction (EF), promotes reversed
cardiac remodeling, and improves patients’ quality of life
(Abraham et al., 2002; Bristow et al., 2004). Nevertheless, 30–
50% of candidates for CRT have no significant improvement
after implantation (Vernooy et al., 2014), which points to the
importance of clarifying the criteria for patient selection and
optimizing the implantation procedure itself.

Lack of response to CRT is a multifactorial problem associated
with variability in individual characteristics, disease patterns,
and treatment (Mullens et al., 2009). Combined assessment
of multiple factors and individual patient characteristics can
improve prediction of response to CRT. With increasing
availability of electronic databases, Machine Learning (ML)
provides an opportunity to perform such assessment, improving
patient selection for therapy (Krittanawong et al., 2017; Lopez-
Jimenez et al., 2020). Recent studies using ML techniques
have achieved impressive results in preoperative clinical data
analysis for selecting patients for CRT. Predictive models have
been developed to estimate mortality or hospitalization risks
from the baseline clinical parameters (Kalscheur et al., 2018;
Tokodi et al., 2020, 2021), to assess improvements in EF
based on baseline indices and analysis of medical records
(Hu et al., 2019) and to stratify patients by an unsupervised
learning approach implementing ECG traces (Cikes et al.,
2019) and electrocardiography (Feeny et al., 2020). In a
recent study (Feeny et al., 2019), Feeny and co-authors using
supervised ML approaches selected 9 clinical features (QRS
morphology, QRS duration, New York Heart Association CHF
classification, LV EF and end-diastolic diameter (EDD), sex,
ischemic cardiomyopathy, atrial fibrillation, and epicardial LV
lead) that were sufficient to predict patient improvement with
fairly high accuracy.

In addition to advances inML approaches, significant progress

has been made in computer modeling of the heart (Auricchio

and Prinzen, 2017; Lee et al., 2018). Recent work has shown that

patient-specific computer models based on 12-channel ECG and
cardiac anatomy measurements are able to reproduce ventricular
activation (Potse et al., 2014; Lee et al., 2019; Lopez-Perez et al.,
2019; Camps et al., 2021). Moreover, such models may be used to
simulate the effect of CRT and study dyssynchrony characteristics
(Villongco et al., 2016; Lee et al., 2019).

In recent modeling studies, a combination of cardiac imaging
data, personalized models and ML techniques has demonstrated
greater accuracy in predicting the propensity for life threatening
cardiac arrhythmia in patients with coronary artery disease and
cardiac sarcoidosis as compared with current guidelines for ICD
implantation (Sung et al., 2020; Shade et al., 2021). Similar hybrid
approaches have been used to predict arrhythmia recurrence
after pulmonary vein ablation and to target successive ablation
procedures in patients with atrial fibrillation (Shade et al., 2020).
Our study is another facet demonstrating the relevance of using
personalizedmodels as a tool for patient stratification and clinical
decision-making.

In this retrospective proof-of-concept study we have
developed a new technique to predict CRT response prior to the
procedure. First, we developed personalized electrophysiological
models simulating ventricular activation and body-surface ECG
at the intrinsic activation pattern under left bundle branch
block (LBBB) and at BiV pacing mimicking the results of CRT
implantation. Then, we used preoperative clinical data along with
features derived from clinical image analysis and personalized
model simulations to create a supervised multivariable classifier
predicting the probability of patient improvement. To the best of
our knowledge this has been done for the first time.

The main hypothesis of our study is that personalized model
simulations are able to improve ML classification accuracy as
compared with pre-operative clinical data alone. Indeed, if
the coronary sinus anatomy is available for a patient (which
is possible to derive from CT data), one can predict an
accessible area for pacing electrode installation and use this area
in a personalized ventricular model to simulate BiV pacing.
Thus, simulations performed prior to clinical intervention
can be used to directly assess the effects of BiV pacing on
ventricular activation time, ECG biomarkers and electrical
dyssynchrony indices (subject, of course, to the accuracy ofmodel
approximation) and hence to estimate whether the goal of the
CRT procedure—synchronization of ventricular activation in a
particular patient—can be achieved. Importantly, such data can
not be derived from pre-operative clinical data itself. Simulated
BiV features can be used for patient classification (estimation of
CRT response probability) along with other available clinical data
and simulated LBBB features.

The study focuses on the following research aims: to assess
the contribution of simulated indices derived from personalized
modeling to the accuracy of ML predictive models; and to define
important clinical and model-derived features in the hybrid
dataset for CRT response prediction.

Frontiers in Physiology | www.frontiersin.org 2 December 2021 | Volume 12 | Article 75328294

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Khamzin et al. Hybrid Dataset for CRT Responce Prediction

For the first time, we used a hybrid combination of
clinical data and model-derived data on ventricular geometry
and electrical activation at both intrinsic LBBB pattern and
BiV pacing for the development of ML classifier of CRT
response. Here, simulated ECG and electrical dyssynchrony
features at BiV pacing were selected among the most significant
features by means of feature importance algorithms used for
classifier development. The ML classifiers on the hybrid dataset
outperformed classifiers built upon the clinical data.

2. METHODS

The schematic outline of the research pipeline, including patient
cohort selection, clinical indices’ acquisition, electrophysiological
modeling, feature selection, and machine learning model
training, is illustrated in Figure 1.

2.1. Clinical Data
2.1.1. Study Population
In this retrospective non-randomized single-center observational
study, we enrolled 57 CHF patients on optimal drug treatment
who underwent CRT device implantation at Almazov National
Medical Research Centre from August 2016 to August 2019.
Participants signed approved inform consent. The study protocol
was approved by the Institutional Ethical Committee.

The criteria for inclusion into the study were:

1. age over 18;
2. functional class (FC) II-IV of CHF according to the

classification of the New York Heart Association (NYHA) at
the outpatient stage of treatment;

3. LV EF ≤ 35% (Simpson);
4. QRS duration (QRSd) more than 120 ms;
5. sinus rhythm, left bundle branch block (LBBB);
6. optimal drug therapy.

The exclusion criteria were:

1. acute myocardial infarction, transient ischemic attack, acute
cerebrovascular accident less than 3 months before the start of
the study;

2. patients who were scheduled to undergo myocardial
revascularization or heart transplantation during the
observation period;

3. congenital and acquired defects, as well as heart tumors,
LV aneurysm, if scheduled for surgery during the
observation period;

4. active inflammatory and autoimmune diseases of
the myocardium;

5. thyrotoxicosis at the time of inclusion in the study;
6. anemic syndrome: blood hemoglobin level less than 90 g/l;
7. diseases limiting life expectancy to less than 1 year.

2.1.2. Data Collection
Patients were evaluated before CRT device implantation and
during the follow-up period of 12 months after implantation.
Patients underwent investigation according to standard pro

forma with some additional research methods appropriate for
this study.

Standard research methods include:

• clinical examination (complaints, medical history, and
physical examination)-before CRT and 1 year after CRT;

• general blood test, biochemical blood test (glucose, potassium,
sodium, creatinine, urea, total bilirubin and its fractions, total
cholesterol, total protein, AST, and ALT), general urinalysis-
before CRT;

• 12-lead ECG-before and 1 year after CRT; ECG monitoring
during CRT device programming and during the entire
observation period;

• echocardiographic studies before and 1 year after CRT to
assess LV reverse remodeling;

• stress tests to exclude/confirm coronary artery disease: stress
echocardiography, bicycle ergometry or treadmill test, where
clinically indicated;

• coronary angiography, where clinically indicated.

Additional research methods include:

• ECG recording in intrinsic rhythm and under BiV pacing,
while programming the CRT device within 7 days after
implantation.

• Electrocardiographic imaging using an Amycard system
(Amycard, EP Solutions SA, Yverdon, Switzerland). Prior to
ECG imaging, a maximum of 224 unipolar body surface
mapping electrodes were placed on the patient’s torso,
followed by computed tomography (CT) imaging of the heart
and thorax (Somatom Definition 128, Siemens Healthcare,
Germany). Subsequently, the electrodes were connected to
the model 01C multichannel electrophysiology laboratory
system (Amycard) for continuous ECG recordings during the
pacing protocol. CT data were imported into Wave program
version 2.14 (Amycard software) to reconstruct 3-dimensional
geometry of the torso and heart. Finally, epi/endo ventricle
models were manually built with marked active poles of RV
and LV leads for bi-ventricular pacing simulations.

• MRI (MAGNETOM Trio A Tim 3 T, Siemens AG or
INGENIA 1.5 T, Philips) with contrast (Gadovist or
Magnevist) before CRT to detect structural damage of
the myocardium.

• Tissue Doppler echocardiography to record ventricle
mechanical dyssynchrony. Analysis of interventricular
dyssynchrony (IVD) and intraventricular dyssynchrony in
the LV (LVD) was performed using biomarkers suggested
by Yu et al. (2009). IVD was assessed by the time difference
between the start of systolic flows into the aorta and the
pulmonary trunk as measured by a pulse-wave Doppler, a
value of less than 40 ms was taken as an IVD normal value.
LVD was assessed using two biomarkers: dyssynchrony index
defined as the temporal difference between the maximal and
minimal peak systolic velocities between 12 LV segments
(Tsmax–Ts min, 105 ms was taken as threshold normal value),
and standard deviation in the peak systolic velocities for 12
LV segments (SD–12, 34 ms was taken as cutoff value). To
determine the peak systolic velocities, the technique of color
tissue Doppler ultrasonography was used.
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FIGURE 1 | The schematic outline of the data analysis and machine learning pipeline. The pipeline included three major steps: I. CRT patient cohort assembling II.

Preprocessing of clinical data and electrophysiological (EP) modeling III. Machine learning model development. In the clinical data preprocessing stage: features with

missing values were excluded, non-categorical data were normalized by subtracting mean and dividing by standard deviation, collinear features were removed from

the dataset by threshold > 0.85. EP modeling stage included: 1. CT data processing; 2. Segmentation of finite element meshes of the torso and lungs. 2*.

Personalization of the heart model: a) Heart segmentation; b) Assignment of myocardial fibers (Bayer et al., 2012); c) Infarction scar/fibrosis assignment, pacing

protocol selection (LBBB or BiV) and activation map calculation (stars indicate pacing sites), the infarction area is marked in red. 3. Calculation of torso potential map

and ECG signals deriving.

Baseline clinical data for the patients’ cohort is presented in
Supplementary Table S1.

2.2. Personalized Ventricular Models of
Electrophysiology
Patient-specific models were generated for each of the 57 cases.
Semi-automatic CT segmentation approach helped to extract

torso, lungs and ventricles (Figure 1 EP modeling, items 1–
2). Finite-element meshes were smoothed, refined and merged.
Average edge length was 15 mm for torso, 10 mm for lungs and 4
mm for heart.

Then, the LV myocardial tissue in the patient ventricular
model was further annotated as either normal tissue or
disease-induced remodeling area according to the expert’s MRI
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FIGURE 2 | Model validation. Example of a personalized ventricular model for patient #11. (A) Area of fibrosis in the interventricular septum (red zone). (B)

Comparison of model activation maps for LBBB (top) and BiV pacing (bottom). Star indicates LV pacing site for BiV pacing stimulation. The RV stimulating electrode

was located in the apex of the surface. (C) Calculated ECG signals (QRS complexes) for LBBB on the left and BiV pacing on the right. Green line-signals recorded in

the clinic. Blue line-simulated signals. The amplitude of the QRS signals is normalized to the maximum values of the signals. (D) Scatter plots showing correlations of

QRS complex duration for 57 patients. Dots denote individual patients. The blue line is the regression line, Pearson correlation coefficient for LBBB is 0.94 (p < 0.001)

for BiV pacing is 0.99 (p < 0.001).

examination report from the patient’s medical history. The
annotation was made as a schematic map of myocardial
damage (fibrosis/scar remodeling) using the conventional 17-
segment American Heart Association (AHA) model of the LV
(Cerqueira et al., 2002), split into three layers, endocardial,
mid-myocardial and epicardial, in which damaged regions were
highlighted. Each personalized LV geometry computational
model was also segmented into 17 x 3 regions (17 segments
and 3 layers) according to the AHA scheme. The described
areas of scar/fibrosis were labeled on a 17-segment LV
AHA model. The scar regions were then simulated as an
inexcitable area, and fibrosis regions were associated with a low
myocardial conductivity parameter. Supplementary Figure S1

an example of personalized ventricular model with assigned
fibrosis/scars. We also demonstrate a diagram with scar/fibrosis
distribution between the segments and the relative volume
of the infarct/fibrosis in every segment of AHA LV model
(Supplementary Figure S4).

The Infarct/fibrosis volume was calculated according to the
computational model. The relative volume vs. the myocardial
volume was also determined. The compact scar regions were then

simulated as an non-excitable area, therefore such zones were
excluded frommodel calculations. Fibrosis regions were assigned
a low constant conductivity value (1% of normal conductivity).
Figure 2A shows a ventricular geometry model for patient #11
with a zone of intramural fibrosis (red) located in the septum
(AHA segments 2,3,8,9).

For every patient-specific ventricular model, the electrical
activity in the myocardium and ECG on the body-surface
were simulated in several steps. We used an Eikonal model
(Keener, 1991) to calculate the activation time at each point
of the ventricular mesh. An Eikonal model is widely used
to simulate the cardiac activation map as one of the fastest
methods (Franzone and Guerri, 1993; Pullan et al., 2006;
Pezzuto et al., 2017; Camps et al., 2021). To assign fiber
direction at every point of the myocardium, a rule-based
approach was used (Bayer et al., 2012). Cardiac tissue was
simulated as an anisotropic medium with a conductivity ratio
of 4:1 along vs. across the myocardial fibers providing the
conduction velocity ratio 2:1 in the fiber and in the transverse
direction, respectively. A global value of the conductivity
along the fibers was set for the entire myocardial tissue
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and fitted against the clinical data as described in the
next section.

The QRS complexes in 12-lead ECG on the body surface
were computed from the activation time maps simulated by an
Eikonal model using the approach for fast phenomenological
cardiac models proposed by Pezzuto et al. (2017). In this
approach, a predefined cellular action potential is assigned
to each model element at corresponding activation time. The
potential from the myocardium is transformed on the body
surface by utilizing a pseudo-bidomain approach (Bishop and
Plank, 2011). To generate action potentials in cardiomyocytes,
we employed a widely used cellular ionic model TNNP (ten
Tusscher, 2006) for human ventricular cardiomyocytes. We
defined the locations of 12-lead ECG electrodes on the torso
surface and used simulatedQRS complexes of ECG signals for the
analysis (Figure 1 EP modeling, items 2-3). Using this approach
for ECG calculation, we achieved a high correlation between
simulated and experimental QRS durations for our personalized
ventricular models (see Figure 2).

2.2.1. Simulation of LBBB Activation Pattern and BiV

Pacing
We calculated model-driven indices with reference to two types
of ventricular pacing: LBBB activation pattern and BiV pacing.

For LBBB activation, RV sub-endocardial surface was
annotated and a Purkinje network was generated using standard
parameters from a Costabal model (Sahli Costabal et al., 2016).
The right bundle branch was set at about 40 mm length,
originating on the intraventricular septum, reaching the RV
apex, and then splitting into the Purkinje fiber system of RV
(Dobrzynski et al., 2013). His system was isolated from the
working myocardium and connected to it only at the ends of
the Purkinje fibers through Purkinje-myocardial junction points
(PMJs). We set the stimulation time in each PMJ according to the
distance to the origin node divided by the conduction velocity in
the His-Purkinje system, which we assumed to be 3mm/ms (Ono
et al., 2009).

We used a simulated LBBB ventricular activation map to
define an area on late activation time (LAT) in every patient
model. LAT zone is frequently considered as a target area for
LV electrode installation for the best ventricular synchronization
at BIV pacing (Stephansen et al., 2018; Zubarev et al., 2019;
Lahiri et al., 2020). We used the distance from LV active pole to
LAT zone as one of the model-derived features for training CRT
response classifiers.

The location of BiV pacing sites were derived fromCT images.
Active poles of RV and LV leads were annotated manually in
Wave program version 2.14 (Amycard software). For BiV pacing
simulations, we set a zero time delay between the RV and LV
pacing sites as programmed in patients.

The activation time at the stimulation points for LBBB and
BiV mode of activation was considered as a boundary condition
for solving the Eikonal equation.

2.2.2. Personalization of the Electrophysiological

Models
Patient-specific ventricular models in both LBBB and BiV pacing
protocols were fitted to reproduce individual data from recorded

ECG with the ventricular pacing mode switched off (intrinsic
rhythm with LBBB) and switched on (BiV pacing).

For each patient-specific model, we assumed a uniform
conductivity in the myocardial tissue in the entire ventricles and
solved an optimization problem to find a global conductivity
parameter minimizing the discrepancy between simulated and
clinical data recorded in the patient in either LBBB or BiV
stimulation protocol independently. The post-infarction scar
regions were excluded from the model tissue, and a low
conductivity of 1% of normal value was assigned to the fibrotic
tissue regions when solving the optimization problem. The global
conductivity parameter was fitted to minimize the difference
between the means of simulated and clinically measured QRSd
from the 12-lead ECG recorded in the patient. We used L-
BFGS-B algorithm built into SciPy.minimize routine to handle
optimization in the model.

Figures 2B,C shows the personalization results for patient #11
with intramural fibrosis located in the septum (AHA segments
2, 3, 8, 9 depicted in red in Figure 2A). Although the model
parameters were fitted to minimize the difference between the
means of simulated and clinical QRSd, the morphology of
the simulated QRS complexes corresponded well with clinical
ones (see Figure 2C, blue lines show model signals, green lines
show recorded clinical signals). The scatter plots in Figure 2D

demonstrate high correlations between simulated and clinical
QRSd for both LBBB and BiV modes. The higher correlation
coefficient for BiV pacing is explained by precise positioning
of the pacing sites derived from CT imaging data, while for
LBBB we used a synthetic model of ventricular activation that
does not reflect the morpho-anatomical characteristics of the RV
conduction system in a particular patient.

2.2.3. Model-Derived Biomarkers of Myocardial

Damage, Pacing Site Location, and Myocardial

Electrical Activity
Our patient-specific models allowed us to identify several
clinically important features affecting ventricular activation. The
first group of model-derived indices are based on CT and
MRI data coupled with electrophysiology model simulations.
Using a digital ventricular model, we were able to define the
volume of post-infarction scar and non-ischemic fibrosis and
their size relative to the myocardial tissue volume. Knowing RV
and LV active poles positions, we measured distance between
them (DLvRv). Furthermore, distances from LV pacing site
to the infarct/fibrosis area (DLvInfarct) and to the area of
LAT (DLvLATZ) under intrinsic rhythm were calculated. When
calculating distance biomarkers (see DLvLATZ, DLvLesion and
DLvRv in Supplementary Table S1), we solved an isotropic
Eikonal equation as a simplemethod to define the distance from a
certain point on the ventricular surface to the border of a specific
area. The latter distances mimic distances that can be directly
measured from CT or MRI data using a ruler.

The second group of model-derived indices was calculated
in LBBB and BiV mode of myocardial activation. We simulated
the time activation map for both chambers and 12-lead ECG
and calculated the following biomarkers derived from the time-
dependent signals for further analysis of CRT response: total
ventricular activation time (TAT), maximum QRS complex
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TABLE 1 | Model biomarkers.

Index Definition Explanation

TAT, ms TAT = ATmax − ATmin Total ventricular activation time, ATmin (ms) - activation start time, ATmax (ms) - late activation time.

QRSd, ms QRSd = max(TS − TQ) Maximum QRS complex duration in all leads - difference in the Q-S peaks time on the ECG signal.

ATRVLV , ms ATRVLV = ATmaxLV − ATmaxRV Interventricular dyssynchrony index - the difference between the time of late activation of LV and RV.

mATSTLV mATSTLV = LVlatmean−STmean
TAT

LV activation dyssynchrony index, where LVlatmean (ms)- average activation time of LV free wall, STmean - average

activation time of septum.

IntAVSTLV , ms IntAVSTLV =
∫

| AVLAT (t)
VLAT

− AVST (t)
VST

|dt Integral index of LV activation dyssynchrony, AVST (t) - fraction of myocardial volume activated in septum at time t,

AVLAT (t) - fraction of myocardial volume activated in free wall at time t, VLAT - free wall volume, VST - septum volume.

duration, difference between the total LV and RV activation times
(ATLVRV ), relative difference between the mean activation times
of LV free wall and septum (mATSTLV ), integral index of LV
free wall and septum myocardial volume activation (IntAVSTLV ).
The last three indices characterizing inter- and intraventricular
electrical dyssynchrony of myocardial activation were used in
work of Villongco et al. (2016).

These simulated features were used as predictions of the
effects of BiV pacing on ventricular electrical synchronization.
Table 1 presents a complete list of the simulated characteristics
with related definitions and formulas. The average values of
all model-derived indices for our enrolled cohort are shown in
Supplementary Table S1.

Below, changes in feature values under BiV pacing against
the LBBB baseline are expressed in relative units. For clinical
characteristics, 1XCRT = (XCRT-XLBBB)/XLBBB, where XLBBB

and XCRT are feature values before and after CRT device
implantation, respectively. For simulated indices,1XBiV = (XBiV -
XLBBB)/XLBBB, where XLBBB and XBiV are feature values in the
LBBB activation mode and BiV pacing. For the indices that are
initially showed in relative units, e.g., EF and mATSTLV , the
response to pacing is expressed as an absolute increment in
the LBBB value: 1EFCRT = EFCRT-EFLBBB, and 1mATSTLVBiV =
mATSTLVBiV -mATSTLVLBBB.

For some features, we also used normalized characteristics,
i.e., the ratio of the value to the myocardial tissue volume (MTV).
Note, MTV should not be confused with the volume of the cavity
inside the ventricle. We can evaluate MTV using a digital model
of the ventricular geometry based on CT images. When using
such normalization, the volume of the preserved myocardium
only is taken into account, without allowing for the infarct area.
Since the scar tissue is not excited and does not contract, it is
excluded from the volume of the active ventricular myocardium.
Normalized features give a characteristic’s values per unit volume
of the myocardium (analogous to the values per mass unit of
the myocardium). For instance, TAT/MTV indirectly reflects a
reciprocal value of the average velocity of myocardium activation
in the ventricles.

2.3. A Predictive Model of Response to
CRT Based on Preoperative Clinical Data
and Electrophysiology Model Simulations
For classifier development, we applied several supervised
machine learning (ML) approaches to identify an optimal set
of features and learning algorithm combination showing the

best performance characteristics on hybrid data for our patient
cohort. The hybrid dataset for building the classifier contained
clinical and model-derived features as described above. At the
preprocessing step, features with missing values were excluded.
Non-categorical data were normalized by subtracting the mean
and dividing by standard deviation. Collinear features were also
removed from the dataset by threshold > 0.85.

Several criteria for CRT response definition were used for
classification. The primary criterion for responders was more
than 10% increase in LV EF (EF10) (Feeny et al., 2019). The
following criteria were also considered: a reduction in ESV >

15% (ESV15, see Foley et al., 2009; Park et al., 2012); a 5 and
15% increase in LV EF (Feeny et al., 2019), and combined EF10
and ESV15.

We evaluated several classification algorithms: logistic
regression (LR), linear discriminant analysis (LDA), support
vector machine (SVM) with linear kernel, random forest (RF)
classifier; each evaluated in combination with three different
feature sets obtained by feature selection methods. The following
algorithms were used for feature selection: random forest mean
decrease accuracy (MDA), univariate statistical testing (UST,
two-sample t-test for continuous variables and chi-squared test
for categorical variables), and L1-based feature selection (L1,
based on weights of LR). Features were selected in a cross-
validation loop for each subset. The top 8 features chosen by the
algorithms were used to construct the classifiers.

Feature selection and training of classification algorithms
was done using a Leave-One-Out cross-validation loop. Within
the loop, the ML classifier score for each test fold (hear each
consisting of just one observation) was calculated. These ML
scores were combined into one set to build the receiver operating
characteristic (ROC) curve and to calculate the area under the
ROC curve (AUC). The highest-performing combination of the
classifier with feature selecting algorithm was chosen to develop
the final classifier.

In addition, we used repeated stratified five-fold cross-
validation with 1,000 iteration in order to be confident
in assessing the quality of the classifier. We quantified
the classification performance of each feature set–algorithm
combination with ROC AUC across all folds and iterations. The
classifier with the highest ROC AUC was selected as the final
classifier for our hybrid dataset.

2.3.1. Software
Cardiac electrophysiology was modeled with the help of software
written at the Institute of Immunology and Physiology UB RAS
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based on FENICS library (for solving PDE problems) (Logg
and Wells, 2010) and VTK (for working with meshes). For the
machine learning pipeline (see Figure 1): classifier development,
statistical modeling, feature selection, cross validation, and ROC-
AUC calculation we used the sklearn library.

2.3.2. Statistics
Detailed analysis was performed using the IBM SPSS Statistics
23.0.0.0 software package (USA). For qualitative data, the
frequency and percentage of total patients in the cohort were
calculated. Quantitative data are presented as mean ± standard
deviation. Comparisons between two dependent groups were
made using Wilcoxon’s test for quantitative data and McNimar’s
test for qualitative data. Nonparametric Friedman’s two-way
ANOVA was applied to compare related groups. Comparison
between two independent groups was carried out using the
Mann-Whitney test for quantitative data and Pearson’s chi-
square test for qualitative data. Feature dependence was assessed
using the Spearman rank correlation test. The critical level of
statistical significance was taken equal to 0.05.

3. RESULTS

3.1. Responders vs. Nonresponders:
Analysis of Clinical Data Before and After
CRT Device Implantation and Model
Simulations in LBBB and BiV Pacing
We found an average positive response to BiV pacing in all
clinical indicators and corresponding simulated indexes of
the CRT outcome in the entire patient cohort (a summary
of statistics for clinical data, CT/MRI derived data and
model-driven biomarkers is presented in Section S.1,
Supplementary Table S1). High variability of the effects of
BIV pacing on biomarkers in both the clinical and simulated
data suggest a significantly nonuniform output among the
patients. Therefore, the patients were classified into two groups
of responders and nonresponders to the therapy.

We have used several conventional criteria to classify
responders and nonresponders to CRT in the patient cohort
based on clinical data on the post-operative LV reversed
remodeling. Primary classification was defined by a higher than
10% increase in the LV EF for responders (1EFCRT >10%
referred hereafter as EF10 criterion). This criterion was used
in clinical studies, and allowed us to compare qualitatively the
results of our predictive models for CRT response with the
findings reported recently by Feeny et al. (2019). Surprisingly,
the 10% cutoff for EF improvement in responders is close to the
average EF increase of 9 ± 8% observed in our patient cohort.
Classification results based on other CRT response definitions
are described in the Supplementary Materials and discussed in
the section 4.

Table 2 summarizes the clinical and model-derived variables
in the groups with or without LV EF improvement according
to the EF10 criterion. In our patient cohort, 23 (40%) patients
demonstrated an improved EF (referred to as CRT responders)
and 34 (60%) patients were classified as nonresponders. The ratio

seems biased toward nonrespondents, but we have intentionally
raised the LV EF improvement threshold in order to be more
confident in predicting true positive responses. Average EF
is raised in both groups, and the increase is significantly
higher in the responders vs. nonresponders (17 ± 5% vs.
3 ± 5%, respectively). The EF improvement after CRT is
accompanied by a prominent ESV reduction by 47 ± 19%
in the responder group against an insignificant diminishing
by 9 ± 37% in nonresponders. Similarly, a much higher
average EDV reduction is seen in the responders due to
LV postoperative reverse remodeling after CRT. Although
the average QRSd is decreased, no statistical significance
between the groups was found. No difference in the CRT
effect on the mechanical dyssynchrony indices was found
as well.

In consistency with the clinical data, the model simulations
revealed a decrease in both TAT and QRSd under BiV pacing
in each of the two sub-populations of models (Figure 3).
The electrical dyssynchrony indices also reveal a prominent
decrease in the groups, with the highest reduction in the inter-
ventricular dyssynchrony index ATRVLV (Figure 3). Meanwhile,
no difference in the relative decrease in the indexes between the
responder and nonresponder groups was observed (Table 2).

Analyzing CT/MRI derived geometry indexes, we figured out
no difference in the relative volume of infarct/fibrosis in LV
myocardial tissue between the groups (Table 2). At the same
time, we found a shorter distance from the LV pacing site to
the damaged zone in the nonresponder group (28 ± 27 mm in
nonresponders vs. 45 ± 28 mm in responders), suggesting less
effective pacing of the normal tissue in nonresponders. Interlead
spacing does not statistically differ between groups. No difference
in the distance from LV pacing site to the LAT area in LBBB
activation mode was found as well.

It is of note that most of the individual biomarkers in the
intrinsic LBBB activation pattern derived from either clinical, or
CT/MRI, or simulated data do not show a significant difference
in the distribution between the responder and nonresponder
groups. This means that no one single index could be considered
as a diagnostic feature for preoperative classification (Table 2).

Among the pre-operative clinical data, two features, i.e., LV
EFLBBB and the inter-ventricular mechanical dyssynchrony index
IVDLBBB, displayed differences between the groups classified
according to the EF10 criterion. Here, LV EF demonstrated
a bit higher average value along with a bit lower value
of IVD in the nonresponders than in responders. This is
consistent with a low negative correlation between EFLBBB before
and 1EFCRT after implantation (r = –0.48, p = 0.031, see
Supplementary Figure S7). However, high EF variation in each
group comparable with the difference between the group averages
did not allow us to find a valid threshold separating the groups.
The average accuracy of the Logistic Regression classification
with One-Leave-Out cross-validation based on EFLBBB was only
0.62 with rather low values of both sensitivity at 0.69 and
specificity at 0.55. A low positive correlation was also found
between IDVLBBB and 1EFCRT (r = 0.32, p = 0.029), suggesting
its possible predictive power for CRT response. However, we did
not have IDV and other mechanical dyssynchrony indices for all
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TABLE 2 | Clinical, imaging, model data and predictive model scores for responders and nonresponders defined by EF10 criterion.

Patient cohort n = 57

Variable Responders n = 23 (40%) Nonresponders n = 34 (60%)

Clinical data

Gender (male/female) 15/8 23/11

Age, year 64 ± 6 63 ± 7

BMI 27 ± 5 30 ± 5#

IHD/DCM 14 (61%)/9(49%) 22 (65%)/12(35%)

History of AF 4 (17%) 8 (24%)

LBBB CRT 1, % LBBB CRT 1, %

FC CHF : Decrease in FC 17 (70%) Decrease in FC 15 (44%)

I 0 (0%) 7 (30%)* 7 0 (0%) 3 (9%) 3

II 12 (52%) 12 (52%) 0 12 (35%) 19 (56%)** 7

III 11(48%) 2 (8%)* –9 22 (65%) 4 (12%)** –18

QRSd, ms 192 ± 20 143 ± 14** –25 ± 11 190 ± 26 145 ± 21** –22 ± 16

Echocardiography data

EDV, ml 301 ± 69 196 ± 68** –33 ± 22 290 ± 106 263 ± 138## –7 ± 33##

ESV, ml 231 ± 59 119 ± 48** –47 ± 19 207 ± 87 185 ± 118*## –9 ± 37##

EDD, mm 74 ± 8 62 ± 10** –16 ± 10 73 ± 7 69 ± 9 **## –5 ± 8 ##

ESD, mm 64 ± 9 48 ± 13** –26 ± 17 62 ± 9 57 ± 10 **## –7 ± 13##

EF, % 23 ± 5 40 ± 6** 17 ± 5 29 ± 6## 32 ± 7**## 3 ± 5##

IVD, ms (n = 34) 76 ± 17 46 ± 22** –38 ± 29 63 ± 19## 33 ± 14** –44 ± 27

1Ts, ms (n = 34) 82 ± 35 76 ± 34* –20 ± 39 87 ± 44 58 ± 33* –12 ± 78

SD12, ms (n = 34) 31 ± 14 27 ± 12 –20 ± 40 33 ± 16 23 ± 12** –15 ± 74

CT/MRI data

MTV,ml 332 ± 142 377 ± 143

InfarctV, ml 45 ± 39 54 ± 39

InfarctV/MTV 0.14 ± 0.08 0.16 ± 0.13

DLvRv,mm 108 ± 23 105 ± 25

DLvLATZ,mm 44 ± 16 58 ± 27

DLvInfarct,mm 45 ± 28 28 ± 27#

Model data

LBBB BiV 1, % LBBB BiV 1,%

TAT, ms 269 ± 109 141 ± 31** –45 ± 18 246 ± 130 138 ± 46** –45 ± 24

QRSd, ms 192 ± 21 143 ± 14** –30 ± 12 187 ± 24 152 ± 28** –22 ± 20

ATRVLV , ms 103 ± 65 26 ± 26** –75 ± 21 95 ± 79 20 ± 21** –76 ± 27

IntAVSTLV , ms 101 ± 57 34 ± 15** –51 ± 36 106 ± 59 33 ± 16** –53 ± 52

mATSTLV 0.36 ± 0.10 0.29 ± 0.14 –6 ± 20 0.36 ± 0.09 0.27 ± 0.13** –9 ± 17

Predictive model scores

Score by Feeny et al.

(2019)

0.63 ± 0.20 0.55 ± 0.23

MLCD score (EF10) 0.47 ± 0.23 0.37 ± 0.24

MLHD score (EF10) 0.58 ± 0.25 0.29 ± 0.22##

Mean ± SD.

*p < 0.05, **p < 0.01 LBBB vs. CRT or LBBB vs. BiV. Comparisons between two dependent groups were made using Wilcoxon’s test for quantitative data and McNimar’s test for

qualitative data.

#p < 0.05, ##p < 0.01 Responders vs Nonresponders. Comparison between two independent groups was carried out using the Mann-Whitney test for quantitative data and Pearson’s

chi-square test for qualitative data.

1 - Average change in indicator 1X = X CRT - X LBBB / XLBBB or 1X = XBiV - X LBBB / X LBBB. 1 is calculated as the absolute difference for normalized values (EF and mATSTLV )

and FC.

BMI, Body mass index; IHD, Ischemic heart disease; DCM, Dilated cardiomyopathy; AF, Atrial Fibrillation; FC CHF, functional class of congestive heart failure; IVD, interventricular

dyssynchrony; 1Ts, maximum temporary difference in peak systolic velocities between 12 LV segments; SD12, standard deviation of the peak systolic velocities of 12 LV segments;

MTV, myocardial tissue volume; LAT, late activation time; TAT, total ventricular activation time; QRSd, maximal duration of QRS complex on 12 leads; ATRVLV , difference of total LV and RV

activation time; IntAVSTLV , integral index of LV free wall and septum myocardial activation dyssynchrony; mATSTLV , difference between mean activation time of LV free wall and septum;

MLCD score (EF10), ML score on the clinical data for EF10 criterion; MLHD score (EF10), ML score on the hybrid data for EF10 criterion.
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FIGURE 3 | Simulation features in the LBBB activation mode and under BiV pacing for responders and nonresponders. Bar indicates mean. Error bar is SD.

Comparisons between two dependent groups (LBBB vs. BiV) were made using Wilcoxon’stest. No difference in the indexes between the responder and

nonresponder groups was observed. *p < 0.05 LBBB vs. BiV.

57 patients in our cohort and, therefore, decided against using
them in further analysis (see section 5).

Although in this proof-of-the-concept study some data used
for model building were recorded after operation, we consider all
CT/MRI and model-derived features as potentially pre-operative
because all of them can actually be assessed before operation
(see also section 5. on this issue). Among the data derived from
CT/MRI, we found only the distance between the LV pacing
site and the area of myocardial damage showing a significant
difference between the responders and nonresponders (Table 2).
However, this index did not show a significant correlation with
either 1EFCRT (see Supplementary Figure S7) as well.

In consistency with the absence of difference between
clinical QRSd in responders and nonresponders, none of
the simulated electrophysiological biomarkers showed any
significant difference between groups both in the LBBB mode of
activation and under BiV pacing either (Figure 3 and Table 2),
which also did not allow them to be considered as individual
classifying features.

Our dataset analysis suggested a hypothesis that the only
combination of the clinical and MRI/CT derived biomarkers
that can be evaluated before operation together with predictions
on the BiV response simulated using a personalized ventricular
model may increase the predictive power of such a hybrid dataset
for patient classification.

3.2. Predictive Models of CRT Response
Built on Hybrid Dataset of Clinical Data
Before Operation and Personalized Model
Simulations at LBBB and BiV Pacing
We used the hybrid input dataset containing 57 data entries with
features derived from clinical data recorded prior to operation,

CT/MRT derived data and simulated features calculated using
personalized models of ventricular excitation in LBBB and BiV
pacing activation modes for every patient from our cohort as

described in the previous sections. The complete list of features

fed to the feature selection algorithms when developing CRT
response classifiers is shown in Figure 4 (right) in descending

order of the feature importance. We trained supervised classifiers

using an EF10 criterion (1EF > 10%) of CRT response. To
choose the best classifier, we compared 4 different classification
models (classifiers) with Leave-One-Out and five-fold cross-

validation and 3 different feature selection methods inside a
cross-validation loop. A summary of the model ROC AUC
used to characterize the quality of the trained models is
shown in Table 3. It is seen that average ROC AUC vary
from a smallest value of 0.7 to the best one of 0.82 obtained
for SVM and LDA classifiers with Univariate approach for
feature selection.

Figure 4 (left) shows a ROC curve for the best SVM classifier

trained for the EF10 response criterion. Table 4 summarizes

the classifier characteristics. The best SVM classifier for CRT

response demonstrates a high accuracy of 0.82, sensitivity of 0.85,

and specificity of 0.78.
ML scores generated by the best SVM classifier correlate with

post-operational improvement in the EF (r = 0.46, p < 0.001,
see Figure 5). Moreover, the distributions of the average scores
in the responder and nonresponder groups in our patient cohort
significantly differ between each other with a significantly higher
average score in the responder vs. nonresponder group (0.58
± 0.25 vs. 0.29 ± 0.22, p < 0,01, see Figure 6 and Table 2).
A corresponding score threshold of 0.46 was defined for the
responders in our patient cohort for the best classifier according
to the EF10 response definition.

Frontiers in Physiology | www.frontiersin.org 10 December 2021 | Volume 12 | Article 753282102

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Khamzin et al. Hybrid Dataset for CRT Responce Prediction

FIGURE 4 | Best Machine Learning Classifiers for CRT response prediction from the hybrid dataset of clinical and model-drived data for 57 patients. Left panel shows

receiver operating characteristic (ROC) curves for the best classifiers based on the 1EF > 10% criterion of CRT response. Blue line shows ROC curve for Support

Vector Machine Classifier (SVM) using Leave-One-Out cross-validation on hybrid dataset. Yellow line shows a ROC curve with corresponding ROC AUC for a Logistic

Regression(LR) model trained on the data subset containing clinical features as suggested in Feeny et al. (2019). Values of the area under the ROC curve (ROC AUC)

for the models are shown on the panel. Right panel shows clinical and model-drived feature list in descending order of importance ranged using Univariate feature

selection approach for the best classifier.

TABLE 3 | Comparison of ROC AUC for different Machine Learning classifiers using leave-one-out and five-fold cross-validation and different feature selection algorithms

for EF10 criterion of CRT response.

Classifier Leave-one-out Five-fold

Feature selection method Feature selection method

L1 MDA Univariate L1 MDA Univariate

Logistic

regression
0.76 0.78 0.80 0.74 ± 0.15 0.76 ± 0.14 0.80 ± 0.14

Linear

discriminant

analysis

0.73 0.76 0.82 0.71 ± 0.15 0.76 ± 0.15 0.80 ± 0.14

Support vector

machine
0.70 0.73 0.82 0.72 ± 0.15 0.75 ± 0.15 0.80 ± 0.14

Random

forest
0.73 0.72 0.73 0.72 ± 0.16 0.70 ± 0.16 0.72 ± 0.16

L1, Logistic Regression feature selection; MDA, Mean Decrease Accuracy; Univariate, Univariate statistical testing: two-sample t-test for continuous variables and chi-squared test for

categorical variables. Bold text indicates the best classifier.

Figure 4 (right) shows a ranged list of feature importances
selected by the SVM classifier trained on the entire dataset
for the EF10 CRT response criterion. Eight most important
features colored in red were selected for the final classifier.
The pre-operative EFLBBB showed the highest importance
among other inputs, which is in line with our findings
on the correlation between 1EFCRT and EFLBBB. The other
two of the three clinical features contributing to the CRT
response were BMI and NYHA stage. Therefore, the majority
of the selected features were indices derived from CT/MRI
and simulated features in the LBBB and BiV modes of
activation. In particular, the distance between the LV pacing

site and the infarct/fibrosis area was the third in the feature
importance range, and a combination of TAT/MTVLBBB,
TAT/MTVBiV and QRSdBiV showed the highest importance
among simulated features. Corresponding coefficients at the
input variables in the terms of the best LR classifier are given in
Supplementary Table S2.

The yellow line in Figure 4 (left panel) shows the ROC curve
for an LR classifier trained on the clinical data only according to
the EF10 criterion. The sub-set of clinical features used here for
CRT response prediction was the same as selected in the article
by Feeny et al. (2019) for their best LR classifier (see the complete
feature list and corresponding coefficients at the input variables
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TABLE 4 | Performance of the classifiers on hybrid vs. clinical data.

SVM on hybrid dataset

1EF > +10%, cutoff = 0.46

Responder Non-responder

Model responder 18 5

Model Non-responder 5 29

Accuracy Sensitivity Specificity ppv npv

0.82 0.85 0.78 0.78 0.85

LR on hybrid dataset

1EF > +10%, cutoff = 0.46

Responder Non-responder

Model Responder 15 8

Model Non-responder 7 27

Accuracy Sensitivity Specificity ppv npv

0.74 0.65 0.79 0.68 0.77

LR on clinical dataset

1EF > +10%, cutoff = 0.51

Responder Non-responder

Model Responder 8 12

Model Non-responder 15 22

Accuracy Sensitivity Specificity ppv npv

0.53 0.65 0.35 0.40 0.59

Response score by Feeny et al. (2019)

1EF > +10%, cutoff = 0.62

Responder Non-responder

Model Responder 13 15

Model Non-responder 10 19

Accuracy Sensitivity Specificity ppv npv

0.56 0.56 0.57 0.46 0.65

SVM, Support Vector Machine; LR, Logistic Regression; ppv, positive predictive value; npv, negative predictive value.

in Supplementary Table S2). The average ROC AUC for this
predictive model appears to be 0.63 for our patient cohort, with
an average accuracy of 0.53, sensitivity of 0.65, and specificity of
0.35 (Table 4), which are much lower than the characteristics of
the ML model trained on the hybrid input dataset containing
a combination of clinical and model-driven features. Note that
this AUC is close to the AUC value of 0.62 we obtained for the
LR classifier trained on EFLBBB only, suggesting that the rest of
the clinical information does not contribute essentially to the
model predictions.

We compared also the accuracy of EF10 improvement
predictions from our ML classifier on the hybrid data with the
accuracy of predictions based on our patients’ clinical features
fed into a “ML score calculator” presented in Feeny et al. (2019)
(Table 4). This predictor showed an accuracy of 0.56, sensitivity
of 0.56, and specificity of 0.57 on our 57 patient dataset, which
are similar with the performance of the LR classifier trained on
the clinical data, but much lower that the performance of our ML
classifiers on hybrid data.

Figure 6 shows average ML scores generated by the classifier
on the hybrid data for the entire patient cohort and for the
responder and nonresponder groups according to the EF10

definition in comparison with the ML scores predicted by the
LR classifier trained on the clinical data from our patient cohort
and those from the calculator by Feeny et al. (2019). The average
ML score from Feeny et al. (2019) on the entire patient cohort
is seen to be higher than our ML scores, explaining lower
rates of true positive and true negative predictions from the
calculator on our patient cohort. Moreover, the only classifier
on hybrid data generates significantly higher ML scores in
the responder vs. nonresponder group, suggesting its higher
predictive performance. In contrast, the average ML scores did
not differ between responders and nonresponders according for
the LR classifier on the clinical data (0.47 ± 0.23 vs. 0.37 ± 0.24,
p= 0.111) and for the Feeny’s calculator from Feeny et al. (2019)
(0.63± 0.20 vs. 0.55± 0.23, p= 0.213) in our patient cohort (see
also Table 2).

These results clearly highlight the significance of model-
driven features for CRT response prediction.

4. DISCUSSION

The researchers sought ways to predict CRT response for
ensuring more effective patient stratification and different
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outcome end-points for improving state, increasing survival
period and preventing adverse effects (Lahiri et al., 2020). Despite
of intensive research performed in the field, the fraction of
patients with low response to the therapy remains as high as
30–50% depending on which criteria are used for assessing CRT
outcome. New artificial intellegence and ML based approaches to
data analysis have been extensively used in attempts to increase
the accuracy of patient differentiation (Kalscheur et al., 2018;

FIGURE 5 | Relation between the ML score on the hybrid data (MLHD score)

for EF10 criterion and the post-operational change in the EF. Solid line -

regression line 1 EF = 3 + 14 MLHD score; horizontal dotted line shows a

10% threshold for LV EF improvement; vertical dotted line is a MLHD score

cutoff of 0.46 for responders; r is the Spearman correlation coefficient; p is the

significance for the group difference.

Feeny et al., 2019, 2020; Tokodi et al., 2021). Computational
models based on clinical data are also employed to identify
mechanisms responsible for the poor efficacy and develop
approaches improving CRT outcomes (Lumens et al., 2015;
Huntjens et al., 2018; Lee et al., 2018; Isotani et al., 2020).
Recently, a new trend has emerged in this research area, which
uses a combination of clinical and model data together with ML
for solving challenging medical problems (Aronis et al., 2021;
Heijman et al., 2021). As far as we know, there have been no
reports of in-silico studies involving a hybrid approach to predict
CRT response in a cohort that would combine a dataset of
patient-specific features derived from clinical measurements and
simulations on personalized ventricular models.

4.1. Improvement of Classification Models
Built on Hybrid Data vs. Predictors on
Clinical Data
In this study, we combined the MR/CT-imaging and model
derived features with pre-operative clinical data used
conventionally to characterize patient’s state in a hybrid dataset
for building predictive models of CRT response in the patients
by ML techniques. A sub-set of simulated features containing
TAT, QRSd and three electrical dyssynchrony indices generated
by every of 57 patient-specific electrophysiology models under
LBBB and BIV pacing was used as an input to ML algorithms.
The personalized models were also used to define LAT zone
in the LV under LBBB mode of activation and to calculate the
distances between the pacing sites, and from the LV pacing site to
the LAT zone and to the LV infarct/fibrosis area, which were also
used as input features for ML classifiers. The basic hypothesis of
our study was that model-driven simulations of the response to
BiV pacing may essentially enhance the predictive power of the
hybrid dataset for CRT response evaluation.

FIGURE 6 | CRT response scores. Left panel: Average scores. Right panel: Average scores for responders and nonresponders. Score by Feeny et al. (2019);

MLCD–ML score on the clinical data for EF10 criterion; MLHD-ML score on the hybrid data for EF10 criterion. Bar indicates mean. Error bar is SD. Nonparametric

Friedman’s two-way ANOVA was used to compare related groups (Score by Feeny vs. ML scores). Comparison between two independent groups (responders vs.

nonresponders) was performed using the Mann-Whitney test.
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Despite the rather small size of the dataset used for ML
classifier development (57 entries in the entire dataset), we were
able to obtain ML classification models achieving high accuracy
in predicting the response to CRT (see Figure 4 andTable 3). The
ROC AUC value for the best SVM classifier is as high as 0.82 for
1EF > 10% cutoff for responders.

The most significant result of our study is that our best
classification models built on the hybrid dataset outperformed
the ML classifier trained on the pre-operative clinical data only
(see Figure 4 and Table 4). In the latter, we used a subset from
the same 57 patient dataset containing 9 clinical features for
each patient. The features were selected in recent study by Feeny
et al. (2019) as most important for training the best LR model
based on the clinical data from a thousand of patients. So, we
used the same clinical features to train similar LR classifier
on the data from our patient cohort. The best model built on
the clinical data demonstrated a ROC AUC of 0.63, and the
accuracy, sensitivity and specificity much lower than those for
the classifiers built on the hybrid dataset (see Figure 4 and
Table 4). Then we used the same 9 clinical features for every 57
patients as a testing dataset to fed to the ML score calculator
provided by Feeny ea (see the Supplementary Materials in
Feeny et al., 2019). It showed an accuracy of 0.56 for our
patient cohort. The performance of the ML score calculator
tested on the clinical data from our 57 patients is similar with
the performance of the LR classifier we trained on the same
data. Both classifiers showed lower performance as compared
with the classifiers trained on the hybrid data from the same
57 patients. Moreover, our hybrid data classifier outperformed
classifiers reported in Feeny et al. (2019) (see Table 3 ibidem),
which were trained on different sets of clinical data from about
thousand of patients. Note, the clinical data classifiers on a
large dataset demonstrated higher metrics than those built on
57 clinical data inputs. This supports our expectation of further
improvement of the hybrid data classifier with data-set extension.
Therefore, we may conclude that our ML classifiers built on the
combination of clinical and model-derived features significantly
improve CRT prediction quality with higher accuracy, sensitivity
and specificity.

In addition, we compared the average ML CRT response
scores in the responder and non-responder groups provided
by the best SVM classifier on hybrid data, the LR classifier on
the clinical data and that provided by the ML score calculator
from Feeny et al. (2019) (see Figure 6). Noteworthy, for the
SVM classifier based on the hybrid data, we found a significantly
higher average score in the responders vs. nonresponders
confirming the predictive power of the ML model. In contrast,
the average ML scores predicted by the LR classifier on the
clinical data and calculator from Feeny et al. (2019) did not differ
between responders and nonresponders in our patient cohort
(see Table 2).

Therefore, our results clearly show significant
advantages ensured by the use of hybrid data combining
clinical data with simulated features from personalized
electrophysiology models for building ML predictive models of
CRT response.

4.2. Feature Selection for Classification
Models From Hybrid Data
During classifier development, we tested several feature selection
methods for different classifiers and different numbers of features
to define the final model with best characteristics (see Figure 4).
Note that we did not predetermine input features for classifiers
based on prior analysis. Instead, the features were automatically
selected inside the cross-validation loop as described in section
2. The final feature lists selected for the best predictive models
contain 8 inputs. Importantly, the most important feature set
contained fewer clinical features compared with model-derived
ones. In consistency with ESC guidelines on the significance
of pre-operative baseline LV EFLBBB for CRT response, it was
selected as themost important feature for the classificationmodel
based on the EF10 definition (see Figure 4). Interestingly, BMI
was selected at the second position in the feature chart. The latter
result is in line with study by Hsu et al. (2012), who demonstrated
that BMI < 30 kg/m2 predicted LV EF super-response.

We also tested the importance of model-driven characteristics
extracted from the CT/MRI data coupled with model
simulations. In our study, LV myocardial damage volume
(both absolute and relative to the survival myocardium volume)
did not reveal high importance by itself, but the distance from
the LV pacing site to the infarct/fibrosis area was selected as
the third most important feature for classifiers (see Figure 4).
We found no significant correlations between this distance
and the post-operative values of LV EF improvement 1EFCRT
or ESV reduction 1ESVCRT (see Supplementary Figure S7).
However, the role of the distance from the LV pacing site
to the infarct/fibrosis area in CRT response prediction was
supported by a positive correlation between the ML score
and the distance (r = 0.445, p = 0.001). As expected, much
higher average distance in the responder vs. nonresponder
group (45 ± 28 vs. 28 ± 27 mm, p = 0.02, see Table 2)
was found.

Our findings are consistent with the results of clinical studies
which assessed the significance of myocardial infarct size for CRT
response. The extent of scar core and gray zone was automatically
quantified using cardiac MRI analysis (Nguyên et al., 2018a). The
highest percentage of CRT response was observed in patients
with low focal scar values and high QRS area before operation.
Such area was calculated using vector-cardiography. In study by
Marsan et al. (2009) MRI was performed in candidates to derive
LV mechanical dyssynchrony and the extent of scar tissue to
predict CRT response. Higher LV dyssynchronies were strongly
associated with echocardiographic response to CRT, while the
total extent of scar correlates with non-response. Importantly, a
univariable logistic regression analysis showed that the presence
of a match between the LV lead position and a transmural scar
was also significantly associated with non-response to CRT. The
location of scar in the posterolateral region of the LV, which is
empirically thought to be a target site for LV lead implantation,
was associated with lower response rates following CRT (Chalil
et al., 2007). In study by Pezel et al. (2021), no difference was
found in presence and extent of scar between CRT responders
and non-responders. However, in non-responders, the LV lead
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was more often over an akinetic/dyskinetic area suggesting
the presence of tissue lesions, a fibrotic area, or an area with
myocardial thickness < 6 mm.

As seen in Figure 4, the distance from the LV pacing site to
LAT zone was selected as a 4-th feature in the importance list for
EF10 definition of CRT response. Accordingly, we revealed a low
negative correlation between the distance and ML classification
score (r = –0.263, p = 0.048) suggesting its possible role in CRT
response prediction. This was a bit surprising, as no difference
in this feature was found between the responders and non-
responders (see Table 2), as well as no correlation with LV EF
improvement in our patient cohort (r < 0.25, p> 0.05). However,
selection of this distance as an important feature for ML classifier
is in line with clinical studies, where the LAT zone was considered
as a target area for LV lead deployment (Chumarnaya et al., 2017;
Stephansen et al., 2018; Zubarev et al., 2019; Lahiri et al., 2020).
In particular, consistent with clinical data, our results indicate
that optimal electrode deployment should be guided by a kind of
minimum-maximum optimization with respect to the distances
from LAT and disease-induced remodeling area, respectively.
Preoperative model-based prediction of such optimal pacing site
location seems extremely valuable.

Although ventricular mechanical dyssynchrony was
considered with respect to CRT improvements (Duckett et al.,
2011; Heydari et al., 2012; Stankovic et al., 2014; Chumarnaya
et al., 2017), we did not use mechanical dyssynchrony indices
in developing our classifiers because not every patient had these
features indicated in the retrospective dataset. We did not find a
correlation between the ML response scores generated from the
selected hybrid data and the mechanical dyssynchrony indices
measured in 34 patients at the baseline (r < 0.25, p > 0.05
for IVD, Tsmax-Tsmin, SD12). This was not consistent with
a correlation between the IVD index and postoperative 1EF
in the patient cohort (r = 0.32, p = 0.029), and a significant
difference in the average IDV indices between responders
and nonresponders defined by LV EF improvement (75 ±
17 vs. 63 ± 19, p = 0.013, see Table 2). These controversial
findings did not allow us to disprove the possible importance of
mechanical dyssynchrony indices for ML response prediction,
and this hypothesis should be further evaluated on a dataset of
bigger size.

It is especially remarkable that each classification model
included simulated characteristics of myocardial activation and
ECG from the personalized electrophysiology models under
LBBB and BiV pacing selected among the most important
features. Our best SVM classifier for the EF10 response definition
selected three simulated features TAT/MTV under LBBB and
BiV pacing, and QRSd under BIV pacing among the 8 most
important ones for EF improvement prediction (see Figure 4).
In particular, two of the three features TAT/MTV and QRSd
under BIV pacing correlated with EF improvement (r =
0.27 and r = –0.31, p < 0.05, see Supplementary Figure S7),
supporting their importance for ML predictions. Note, the in-
silico indices of electrical dyssynchrony assessed in our study
were not selected as important for ML classifiers. These indices
were previously suggested by Villongco et al. (2016), who
demonstrated a correlation between the post-operational ESV

reduction and the change in the mATSTLV index of inter-
ventricular dyssynchrony under BiV pacing against the LBBB
baseline on data from 8 patients. In study by Lumens et al. (2015),
a combination of clinical data and personalized models of cardiac
mechanics and hemodynamics also demonstrated significant role
of inter-ventricular electrical dissynchrony in predicting CRT
response defined by an improved LV hemodynamic performance
assessed via increase in the maximal derivative of LV pressure
(dP/dtmax). In contrast, we found no significant correlations
between any of the simulated indices of electrical dyssynchrony
and echocardiographic CRT response in our cohort (r < 0.25, p
> 0.05). The role of such simulated indices needs further analysis
to be performed on a dataset of bigger size.

4.3. Hybrid Dataset Size and
Cross-Validation
It is noteworthy that the ML classifiers we developed to predict
LV EF improvement can be considered as powerful, especially
taking into account the database size of less than 60 entries. In
several studies, the ROCAUCwas shown to improve significantly
with increasing the dataset size from tens to thousands of entries
(Feeny et al., 2019). These results allow us to expect further
substantial improvement of the quality of the ML classifiers with
further increasing the training dataset size. Poor reproducibility
of ML results is known as a frequent problem with classifiers
developed on small samples. In our case, the restrictive size of
the dataset did not allow us to divide data into a conventional
80% training sub-set and 20% testing sub-set, so we had to use 57
Leave-One-Out combinations of data for classifier training.

To confirm the good quality of our classifiers, we tested
also a widely-used repeated stratified five-fold cross-validation
method with over 1,000 iterations. In this approach we chose
1,000 combinations of 45 training samples from our dataset
to train classifiers and the rest 12 samples to test the models.
The statistics of the ROC AUC for the five-fold cross-validation
approach is shown in Table 3 (right column) in comparison with
that of Leave-One-Out cross-validation (left column). It is seen
that average ROC AUCs at five-fold cross-validation are slightly
lower than those generated with the Leave-One-Out approach
but the latter values fall in the confidence interval of ROC
AUC distributions shown by five-fold cross-validation on our
dataset. Results demonstrate stability of the ML classifiers we
built on our hybrid dataset and confirm the robustness of the
ML predictions.

When developing our classifiers, we noticed that the list of
features in the cross-validation loop was not steady. This was
mainly due to the small sample size. However, even taking
this factor into account, we obtained a high accuracy of the
constructed classifiers. Testing the SVM classifier for EF10 with a
smaller number of features, we found that even for 5 features,
the classifier showed the same accuracy as for 8 features (for
other criteria of CRT response we observed a lower accuracy
with reduced input data dimension). This suggests that with any
further increase in the dimension, the classifier cannot converge
to optimal solution. Therefore, adding more features to such a
small size dataset does not make classifiers more accurate. We
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hope that with an increase in the size of dataset, the accuracy
of the classifiers will additionally increase due to a more stable
feature selection.

4.4. Classifiers for Various Definitions of
CRT Response
We used different CRT response definitions to build ML
classifiers for our hybrid dataset. Unfortunately, no consensus
has been achieved on how to define “response” to CRT Foley
et al. (2009), making it difficult to compare different clinical trials
and modeling studies. CRT response definition by markers of
LV reverse remodeling following device implantation is widely
used, and a more than 15% reduction in LV end-systolic volume
(1ESV< –15%) is the most widely accepted criterion (Park et al.,
2012). In consistency with that, an optimal cutoff value for1ESV
was defined at 13.5% (sensitivity = 0.719, specificity = 0.719)
for a 1-Year hierarchical clinical composite end point in patients
who underwent CRT (Uhm et al., 2019). Our earlier 278 patients’
study by Chumarnaya et al. (2021) revealed a 9% cutoff value for
ESV reduction for responders. Surprisingly, in our patient cohort,
the grouping by either 10% or 15% cutoff for ESV reduction for
responders was the same. Therefore, we used the latter definition
(ESV15) to determine a positive response to CRT.

A summary of the statistics for the hybrid dataset labeled
according to the ESV15 definition of CRT response is presented
in Supplementary Table S3. ML classifiers with leave-one-out
cross-validation on the hybrid data showed a high performance
with best ROC AUC of 0.74 (see Supplementary Figure S9), and
an accuracy of 0.70, sensitivity of 0.87, specificity of 0.37, ppv
of 0.73 and npv of 0.58. See also the classifier characteristics for
five-fold cross-validation in Supplementary Table S5. The ML
scores generated by the best classifier built on the ESV15 criterion
correlated with post-operational reduction in ESV (r = –0.27, p
= 0.039, see Supplementary Figure S10).

The results are slightly less powerful as compared with
classifiers built on the EF10 criterion. The latter showed higher
ROCAUCs, similar sensitivity, but higher specificity as compared
to ESV15 (see Figure 4 and Supplementary Figure S9, Table 3
and Supplementary Table S5). The ML scores based on ESV15
labeling are higher as compared with EF10 scores (0.69 ± 0.18
vs. 0.40 ± 0.35, p < 0.01, respectively) tending to overestimate
predictions for the negative response. Note that for both CRT
response criteria the average scores are significantly higher in
responders vs. nonresponders, indicating good predictive quality
of the ML classifiers.

Surprisingly, the sub-sets of 8 most important features
selected for classifiers on different response criteria almost
did not intersect. For the ESV15 criterion, the pre-operative
EDVLBBB showed the primary importance among other inputs
in consistency with its correlation with 1ESVCRT (r = –0.36, p
< 0.05). Another clinical feature selected for classification was
IHD/DCM index reflecting the etiology of CHF in patients (see
Supplementary Figure S9). The rest of the selected features were
indices derived from CT/MRI data and simulated features in
LBBB and BiV modes of activation. Similar to EF10, the distance
from the LV pacing site to infarct/fibrosis zone was the third

in the feature importance range, and simulated TAT/MTVLBBB

was selected for both ESV15 and EF10 criteria together with
other model-derived features different between the criteria (see
Figure 4 and Supplementary Figure S9).

Unexpectedly, we were not able to generate a predictive
model for ESV15 criterion from the clinical feature sub-
set suggested in Feeny et al. (2019) with ROC AUC > 0.5
on the dataset for our patient cohort. When we calculated
ML scores using the calculator from Feeny et al. (2019)
for our responders and nonresponders defined by ESV15
criterion, the average ML scores did not differ between the
groups, while the ML scores based on the hybrid data
were significantly different (see Supplementary Table S3). These
findings also point to the power of model-driven data in CRT
response prediction.

We also compared the accuracy of ML classifiers built on
the hybrid dataset for CRT response defined by 5, 10, 15%
LV EF improvement and by coupled EF10 and ESV15 criteria
(see Supplementary Tables S4, S5 in the Materials). For every
response definition, our best classifiers demonstrate improved
performance as compared with all clinical and ML predictors
reported in Feeny et al. (2019). Note again that our hybrid
data classifiers were trained on a dataset of much smaller size
than previously published (Feeny et al., 2019). Like in Feeny
et al. (2019), for different 1EF criteria an average accuracy
of the predictive models increases with the cutoff for the LV
EF improvement for CRT responders. However, the sensitivity
and predictive positive value of the models tend to decrease
with increasing the 1EF cutoff, while both the specificity and
predictive negative value increase. Thus, ML scores tend to
underestimate the probability of a super-response. The best
balance between sensitivity and specificity was shown for
the 1LV EF > 10% definition of CRT response which also
demonstrates the best ROC AUC among other criteria, thus
supporting the choice of this criterion for response evaluation
in patients.

4.5. Principal Coordinate Analysis and
Unsupervised ML Clustering for CRT
Response Prediction
The supervised multi-variable classifiers we discussed in the
previous sections were built using feature selection approaches
where input values are intrinsic functional characteristics of the
processes. Often, in ML algorithms principal component analysis
(PCA) is used for data dimension reduction, which allows more
objective exclusion of collinearity between the input features.
We tested the PCA in combination with Logistic Regression
using different numbers of PCs for classifier development. We
evaluated ROC AUCs using from 2 to 10 PCs, and obtained the
best ROC AUC of 0.70 for 5 PCs (Supplementary Figure S8, left
panel) with explainable variance of 0.58. This ROC AUC is much
lower than the best values demonstrated by other ML classifiers
we developed using row feature values.

As we showed in the previous section, classification results
depend on the positive CRT response definition used for
data labeling. Another ML approach is unsupervised ML
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data clustering based on their similarity without the help
of class labels. We performed clustering by K-means, used
in recent studies for CRT response evaluation (Cikes et al.,
2019; Feeny et al., 2020). Using K-means clustering on the
two first PCs, we differentiated our dataset into 2 clusters
(see Supplementary Figure S8, right panel). However,
mean 1EFCRT were not significantly different between the
groups (8.0 ± 8.6% vs. 10.7 ± 8.3%, p = 0.27), similar to
no difference in mean 1ESVCRT (−20 ± 38% vs. −34 ±
31%, p = 0.15). Moreover, distribution between the two
clusters of CRT responders and non-responders defined by
the EF10 criterion shows random assignment to the groups
(see Supplementary Figure S8, right panel). These findings
suggest that unsupervised learning on a small dataset does not
allow one to reliably differentiate pre-operational data into
groups clearly associated with CRT response characteristics. In
contrast, the supervised ML algorithms we developed provided
valuable predictions of CRT response showing the potential of
model-derived features.

5. LIMITATIONS

There are several limitations in our study that have to be
overcome to make our approach actually usable in clinic. First,
ventricular geometry in our personalized models was derived
from CT images obtained after CRT device implantation, not
before it. This was essential for this proof-of-concept study
because it allowed us to define the precise location of pacing
electrodes and to fit our models to both LBBB and BiV ECG
data for the same ventricular geometry thus demonstrating the
potential of our models for reproducing real clinical data. Despite
supposed difference in the ventricular geometry our simulated
ECGs in the LBBB mode had a high correlation with pre-
operative clinical ECGs (r = 0.84, p < 0.05), thus demonstrating
the effect of ventricular geometry as being secondary. Of course,
the reverse remodeling of the ventricles after CRT may affect
the difference in model simulations before and after operation.
That is why we primarily focused on the CRT response definition
based on the EF improvement which has low-to-moderate
correlation with ventricular remodeling in our patient cohort.
The main idea of using model-derived biomarkers for CRT
response prediction was the possibility to assess the primary effect
of ventricular synchronization itself on the electrophysiological
characteristics of activation, where changes in the geometry seem
less important.

The second limitation is that we used here a simplified
Eikonal equation allowing us to reproduce the QRS complex
of an ECG but not an entire ECG signal. Moreover, we used
a simplified approach to tailor the model to personalized data
focusing on the mean QRSd from 12-lead ECG as a target
for the parameter identification problem. Then we used the
maximal QRSd as a model biomarker for building a classificator.
The QRS morphology may provide much more information
for tailoring personalized electrophysiology models and then
for CRT response predictions. A recent study of Camps et al.
(2021) showed a way toward more accurate personalization

of the activation processes in ventricles based on the QRS
signals recorded in patients, which may be usefull for model
improvement. Feeny et al. (2020) also demonstrated the power
of the entire ECG signal for ML predictions of CRT response,
suggesting that the use of the entire simulated ECG under BiV
pacing may further improve ML predictors. In future studies,
we will use more adequate mono-domain models to reproduce
both activation and repolarisation of myocardium, and will assess
the contribution of entire ECG signals to the accuracy of CRT
predictive models.

Next, we have shown high importance of the distance from
the LV pacing site to the myocardial damage area in ML
predictions. In this study, we did not have access to raw MRI
data from patients to be able to derive accurate information
on post-infarction scar or fibrosis morphology. We used only
textual descriptions of the infarct zone location with a segment
accuracy within a 17-segment AHA LV model from an expert
who evaluated MRI data in patients. There are great examples
of using detailed morphology of myocardial remodeling area in
personalized cardiac models for predicting the risk of cardiac
arrhythmia and patient stratification (Lopez-Perez et al., 2019).
We think more objective information on the scar and fibrosis
morphology may improve predictive models of CRT response
as well.

In this study, for CRT response prediction we used simulated
characteristics of ventricular activation and ECG derived from
electrophysiological models. The use of the model features
characterizing ventricular excitation is justified by the essence
of the therapy, which ensures electrical synchronization of
ventricular activation, and the success of this synchronization
determines the outcome of the operation. However, the goal
of CRT implantation is the synchronization of ventricular
contraction and subsequent improvement in the mechanical
performance of the ventricles. This opens up a further direction
for studies using electromechanical models of cardiac activity
which are being developed in modeling community including
our group (Sugiura et al., 2012; Chabiniok et al., 2016; Isotani
et al., 2020) and which are able to predict directly EF, dP/dtmax
changes and other mechanical biomarkers of CRT response.
Such models were already used for clinical data analysis in
CRT patients by several groups (Sermesant et al., 2012; Okada
et al., 2017; Lee et al., 2018; Isotani et al., 2020), demonstrating
the power of such simulations for CRT response predictions.
In particular, we believe that reduced mechanical models using
regression or ML approaches to reproduce the behavior of
complex 3Dmodels such as developed with our participation (Di
Achille et al., 2018) would be the best choice in terms of possible
clinical application of model simulations.

In this study, the precise RV/LV pacing lead location was
determined from the post-operative CT scans for the patients.
Thus, the same pacing sites were used in our BiV model
simulations to exclude the effects of uncertainty in lead position
on the ML prediction results. This was the first step in the
validation of our new technique suggesting its high potential
in CRT response prediction. In real practice, however, patient
selection should be done before the clinical procedure. The
main advantage of using personalized computational models
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is the possibility to compute characteristics of ventricular
activation from any accessible pacing sites. Indeed, if the
coronary sinus anatomy is appropriate (which is possible to
derive from CT data), one can predict an accessible area for
pacing electrode installation. Hence, this area could be included
in a personalized ventricular model to simulate BiV pacing.
Moreover, RV/LV electrode locations can be varied throughout
the ventricle surfaces. Thus, simulations performed prior to
clinical intervention can be used to directly assess the effects of
BiV pacing on ventricular activation time, ECG biomarkers and
electrical dyssynchrony indices from various pacing sites. Also,
it might be helpful during selection the best possible electrode
location optimizing ventricular synchronization (or any other
optimized function) from model simulations. To sum up, the
next step of our approach development is the prediction of pacing
lead location prior to interventions by using features extracted
from the results of the simulations of BiV pacing.

A number of clinical and simulation studies paid great
attention to the possibility to target pacing lead implantation
(Bakos et al., 2014; Nguyên et al., 2018b; Sieniewicz et al.,
2018). Different criteria for optimal electrode location were
discussed in the literature, including optimization of electrical
synchronization characteristics, e.g., maximal narrowing of
QRSd, or minimization of interventricular dyssynchrony;
maximal proximity to the late activation zone or late contraction
zone; avoiding the match with infarct zone; or maximizing the
mechanical performance characteristics, e.g., dP/dtmax (Bakos
et al., 2014; Nguyên et al., 2018a; Isotani et al., 2020; Albatat et al.,
2021). The use of simulations from personalized models in CRT
response prediction opens the possibility to re-evaluate these
hypotheses and suggest a new strategy for implantation planning
with allowing for model-based prediction of optimal location for
pacing electrodes. We are going to test this hypothesis in a future
prospective study.

The long-term goal of CRT is to reduce morbidity and
mortality in heart failure patients with reduced left ventricular
function and intraventricular conduction delay. Several studies
tested ML approaches for predicting outcomes after CRT in
terms of patient survival and frequency of adverse events in
the longer term after operation (Kalscheur et al., 2018; Tokodi
et al., 2020). We had no sufficient data to perform such analysis
using simulated data, and this could be another new direction of
future studies.

Last but not least, in this study we had a limited data sample
from 57 patients. Of course, this number is quite small for ML
algorithms operating on thousands of entries with a possibility
to use separate subsets for training and testing. However,
our predictive models based on hybrid data from clinic and
computational models of cardiac activity have demonstrated high
performance with accuracy much higher than that demonstrated
by predictors developed on clinical data from a thousand of
patients. We used feature selection within the cross-validation
loop to eliminate any bias factors. The performance of the best
classifier was also higher than that of available classifiers based
on clinical data (which are based on much larger datasets).
In addition, in this study we used simple models that do
not tend to overfit on small datasets. Also, we didn’t do any

hyperparameter search, as a result of which the models could be
overfit. We believe that feature selection in the cross-validation
loop will be more stable on a larger dataset. This inspires
hope that a larger dataset and more informative data from
time-dependent simulated signals may further improve CRT
response predictions.

6. CONCLUSIONS

We have developed a new technology combing personalized
heart modeling and supervised ML techniques to predict CHF
patient improvement under CRT.We constructed 57multimodal
image-based personalized models of ventricular geometry and
myocardial damage area. The models were used to simulate
ventricular activation and ECG on the patient torso at LBBB and
BiV pacing. Supervised ML algorithms used features extracted
from the results of the simulations combined with additional
clinical indices and MRI/CT derived features.

Despite a limited dataset, we have developed several high-
performing ML classifiers from the hybrid dataset. The best SVM
classifier showed an accuracy of 0.82, sensitivity of 0.85, and
specificity of 0.78. The classifier on hybrid data outperformedML
predictors built on clinical data only.

The majority of the most relevant features selected from the
hybrid dataset for the ML classifiers were model-driven indices,
suggesting their great power for CRT response prediction.
Distance from the LV pacing site to the infarct/fibrosis area
and features extracted from simulations under BiV pacing were
shown as the most important features for patient classification.

The novel proposed approach has great potential clinical
implications suggesting patient care improvement. With an
ML classifier on hybrid data created and thoroughly validated,
one would be to assess with a high degree of accuracy the
likelihood of improvement in a particular patient’s condition
prior to a CRT procedure. In this way, ML scores would be
computed for the patient using personalized model simulations
for BIV pacing (or other type of stimulation) from various
accessible pacing site locations. The range of generated ML
scores would classify this patient as a potential responder
or nonresponder to the therapy, thus supporting individual
selection for it. At the same time, the best pacing site
location predicted from the model simulation results and
correspondingML scores could further be used to guide electrode
deployment during CRT procedure optimizing the patient
output. This technology would be especially effective in the
merging of detailed multimodal imaging data on the ventricular
geometry and structure of myocardial damage (infarct, fibrosis,
inflammation, adipose), coronary sinus anatomy, His-Purkinje
conduction system and information on cellular remodeling in the
myocardial tissue.
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The analysis of electrical impulse phenomena in cardiac muscle tissue is important

for the diagnosis of heart rhythm disorders and other cardiac pathophysiology.

Cardiac mapping techniques acquire local temporal measurements and combine them

to visualize the spread of electrophysiological wave phenomena across the heart

surface. However, low spatial resolution, sparse measurement locations, noise and

other artifacts make it challenging to accurately visualize spatio-temporal activity. For

instance, electro-anatomical catheter mapping is severely limited by the sparsity of the

measurements, and optical mapping is prone to noise and motion artifacts. In the past,

several approaches have been proposed to create more reliable maps from noisy or

sparse mapping data. Here, we demonstrate that deep learning can be used to compute

phase maps and detect phase singularities in optical mapping videos of ventricular

fibrillation, as well as in very noisy, low-resolution and extremely sparse simulated data

of reentrant wave chaos mimicking catheter mapping data. The self-supervised deep

learning approach is fundamentally different from classical phase mapping techniques.

Rather than encoding a phase signal from time-series data, a deep neural network

instead learns to directly associate phase maps and the positions of phase singularities

with short spatio-temporal sequences of electrical data.We tested several neural network

architectures, based on a convolutional neural network (CNN) with an encoding and

decoding structure, to predict phase maps or rotor core positions either directly or

indirectly via the prediction of phase maps and a subsequent classical calculation of

phase singularities. Predictions can be performed across different data, with models

being trained on one species and then successfully applied to another, or being trained

solely on simulated data and then applied to experimental data. Neural networks provide

a promising alternative to conventional phase mapping and rotor core localization

methods. Future uses may include the analysis of optical mapping studies in basic

cardiovascular research, as well as the mapping of atrial fibrillation in the clinical setting.

Keywords: atrial fibrillation, cardiac electrophysiology, spiral waves, phase singularity, catheter mapping, optical

mapping, neural networks, artificial intelligence
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1. INTRODUCTION

Cardiacmuscle cells constantly oscillate between an “excited” and
a “resting” electrical state, allowing us to assign a phase φ to the
state of each cell during this cycle. Cardiac mapping techniques,
such as catheter electrode mapping or voltage-sensitive optical
mapping, measure the spread of electrical impulses across the
heart surface and visualize the spatio-temporal evolution of
electrical activity. These visualizations are frequently depicted as
phase maps φ(Ex, t), which uniquely represent the time course
of the action potential in each location of the tissue and
express the synchronicity of the activation in both space and
time. Phase maps are particularly suited to characterize the
spatio-temporal disorganization of the electrical wave dynamics
underlying cardiac fibrillation (Winfree, 1989; Gray et al., 1998;
Witkowski et al., 1998; Nash et al., 2006; Umapathy et al.,
2010; Christoph et al., 2018). During fibrillation, the heart’s
electrophysiology degenerates into a dynamic state driven by
chaotic wave phenomena, which propagate rapidly through the
heart muscle and cause irregular, asynchronous contractions.
These inherently three-dimensional wave phenomena can be
observed on the heart’s surface using optical mapping, where
they often take the shape of rapidly rotating spiral vortex
waves or “rotors”. Phase maps depict these rotors as pinwheel
patterns, with each pinwheel consisting of lines of equal phase
that merge at the rotational center of the vortex wave. The
topological defect at the vortex’s core is referred to as a phase
singularity. During ventricular fibrillation, phase singularities
move across the heart surface, interact with each other, and
undergo pairwise creation and annihilation. Phase singularities
provide a means to automatically localize and track reentrant
vortex waves through the heart muscle. They can be used
to track wavebreaks (Liu et al., 2003; Zaitsev et al., 2003),
or interactions of vortex cores with the underlying substrate
(Valderrabano et al., 2003), to simplify the visualization of
three-dimensional scroll wave dynamics (Fenton and Karma,
1998; Clayton et al., 2006), and to measure fluctuations in the
complexity of the dynamics (Zaritski et al., 2004). In short,
phase singularities are an elegant way to characterize high-
frequency arrhythmias that involve reentrant vortex waves, such
as ventricular fibrillation (VF) or atrial fibrillation (AF) (Nattel
et al., 2017).

Various methods have been proposed to compute phase maps
and phase singularities (PS). These methods have been applied
to both simulations of VF (Fenton and Karma, 1998; Bray et al.,
2001; Clayton et al., 2006) and AF (Hwang et al., 2016; Rodrigo
et al., 2017), as well as experimental data, including electrode
recordings of human VF (Nash et al., 2006; Umapathy et al.,
2010) and human AF (Kuklik et al., 2015; Podziemski et al.,
2018; Abad et al., 2021) optical maps of the transmembrane
potential during VF (Gray et al., 1998; Iyer and Gray, 2001;
Bray and Wikswo, 2002; Rogers, 2004; Christoph et al., 2018)
and AF (Yamazaki et al., 2012; Guillem et al., 2016) in isolated
hearts, optical maps of action potential spiral waves in cardiac
cell cultures (Bursac et al., 2004; Entcheva and Bien, 2006;
Munoz et al., 2007; Umapathy et al., 2010; You et al., 2017),
and time-varying 3D maps of mechanical strain waves measured

during VF in isolated hearts using ultrasound (Christoph et al.,
2018). However, phase maps and PS are prone to measurement
artifacts and deficits caused by inadequate processing of the
measurement data, particularly when the data is noisy or
sparse (King et al., 2017; Kuklik et al., 2017; Rodrigo et al.,
2017; Roney et al., 2017, 2019; You et al., 2017). Noise and
motion artifacts are a frequent issue when analyzing optical
mapping recordings (Zou et al., 2002; Christoph and Luther,
2018). Electrode mapping, used in both basic research and
the clinical setting, is limited by low spatial resolution, or
sparsity, even with the use of multi-electrode arrays and 64-lead
basket catheters.

Mapping fibrillatory wave phenomena at low resolutions
can lead to misrepresentation of the underlying dynamics. For
example, low resolution phase mapping has been shown to create
false positive detections of PS (King et al., 2017; Kuklik et al.,
2017; Roney et al., 2017, 2019; You et al., 2017), contributing to
much uncertainty in the imaging-based diagnosis of AF, a field
in which rotors remain a highly controversial concept (Aronis
et al., 2017; Nattel et al., 2017; Schotten et al., 2020). Mapping
of AF would greatly benefit from computational methods, which
could account for low spatial resolution and produce reliable
visualizations of electrical phenomena from sparse and noisy
spatio-temporal electrical signals.

In this study, we demonstrate that deep convolutional neural
networks (CNNs) can be used to compute phase maps and phase
singularities from short spatio-temporal sequences of electrical
excitation wave patterns, even if these patterns are very sparse
and very noisy. We use variations of two-stage encoder-decoder
CNNs with an encoding stage, a latent space, and a decoding
stage (see Figure 2). The neural network associates electrical
excitation wave patterns with phase maps and phase singularity
(PS) positions during a training procedure. After training, it is
subsequently able to translate electrical excitation wave patterns
into phase maps and PS when applied to new, previously
unseen data. We tested two versions of the neural network with
an integrated convolutional long short-term memory (LSTM)
module in the latent space of the original encoder-decoder
architecture and a U-Net architecture with skip-connections.
Regardless of the particular architecture, the network was able to
predict phase maps and PS in both experimental and synthetic
data robustly and with high accuracy. When presented with
sparse electrical data from a short temporal sequence of only
1–5 snapshots of electrical activity, the network maintained a
robust accuracy level, even in the presence of strong noise. The
approach may supersede more classical approaches due to its
efficiency, its robustness against noise, and its ability to inter- and
extrapolate missing measurement data with only minimal spatial
and temporal information.

1.1. Phase Mapping and Phase Singularity
Detection Techniques
Phase maps and phase singularities (PS) have been used to
characterize cardiac fibrillation for over 30 years (Winfree, 1989),
and various methods were introduced to compute PS either
directly or indirectly (see Figure 1C). In computer simulations,
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FIGURE 1 | Cardiac electrical excitation wave pattern and conversion into

corresponding phase map for the localization of rotor core positions or phase

singularities (PS). (A) Simulated electric spiral wave chaos pattern represented

by transmembrane potential V ∈ [0, 1] (n.u., normalized units) and

corresponding phase pattern with phase angle φ ∈ [−π ,π ]. (B) Time-series

data showing a series of action potentials V (t) and their representation as a

phase signal φ(t) computed using the Hilbert transform. (C) Classical phase

singularity (PS) developed by Iyer and Gray (2001) using a circular integral

(2×2 kernel) for the localization of spiral cores. Here the method is used to

generate PS training data for deep learning-based PS detection (see

Figure 2). Detailed field of view of region highlighted by black box in (A).

the computation of a phase state or PS is straight-forward
as the dynamic variables from the equations describing the
local electrical state are readily available in the simulation
and can be used to define a phase angle instantaneously
(Krinsky et al., 1992). For instance, with V and r for electrical
excitation and refraction, respectively, see Equations (4)–(5), the
phase angle can be defined as φ = arctan2(V , r) (see also
Figure 3A). Likewise, level-set methods using isocontour lines
of two dynamic variables, such as V and r, can be used to
locate PS directly as the intersection points of these isocontours
(Barkley et al., 1990). However, with experimental data, there is
typically only one measured variable, such as the transmembrane
voltage or an electrogram, and it is accordingly not possible
to define a phase without additional temporal information.
With experimental data, it becomes necessary to construct a
phase signal φ(t) from a single measured time-series V(t) using

techniques such as (i) delay embedding (Gray et al., 1998):

φ(t) = arctan2(V(t),V(t + τ ))) (1)

with an embedding delay τ , typically defined as ∼1/4 of
the average cycle length or the first zero-crossing of the
auto-correlation function, or (ii) the Hilbert transform H(t),
which generates the complex analytical signal of a periodic signal
from which in turn the phase

φ(t) = Re(H(t)) (2)

can be derived (Bray and Wikswo, 2002). The most intuitive
approach to compute a time-dependent phase signal φ(t) of a
sequence of action potentials is to detect the upstrokes of two
subsequent action potentials and to define a piecewise linear
continuous function φL(t), which linearly interpolates the phase
angle from −π to π between the two upstrokes. The Hilbert
transform generates a phase signal φH(t) which is very similar
to the linearly interpolated phase signal φL(t) (see Figure 1B).

Phase singularities can then be calculated (see Figure 1C), by
using the circular line integral method developed by Iyer and
Gray (2001) summing the gradient of the phase along a closed
circular path s around a point Ex = (x, y) in the phase plane:

∮

∇φ(x, y; t)ds = ±2π (3)

If the circular path is sufficiently small (typically around 2×2
pixels), the integral yields ±2π when the line integral encloses
a phase singularity (the sign indicates chirality), or 0 if it does not
enclose a phase singularity. As the line integral method calculates
the spatial gradient of the phase, it is very sensitive to noise
and requires continuous and smooth phase maps. Therefore,
much prior work has focused on improving the robustness of
phase mapping and PS detection methods under more realistic
conditions, e.g. with noise or other artifacts that typically
occur with, for instance, contact electrode measurements. Zou
et al. (2002) further refined the line integral method using
convolutions and image analysis. Kuklik et al. (2015) introduced
sinusoidal recomposition to remove undesired high-frequency
components during the computation of phase signals using the
Hilbert transform. In contrast to the line integration method,
Tomii et al. (2016) proposed computing the phase variance
to locate PS. Similarly, Lee et al. (2016) introduced a so-
called “location-centric” method to locate PS, the method only
requiring temporal information about the voltage at the core.
Li et al. (2018) introduced a Jacobian-determinant method
using delay embedding for identifying PS also without explicitly
computing a phase. Marcotte and Grigoriev (2017) and Gurevich
et al. introduced level-set methods to compute PS in noisy
conditions and demonstrated the robustness of the approach
with VF optical mapping data (Gurevich et al., 2017; Gurevich
and Grigoriev, 2019). Vandersickel et al. (2019) proposed to
use graph theory to detect rotors and focal patterns from
arbitrarily positioned measurement sites. Mulimani et al. (2020)
used CNNs to detect the core regions of simulated spiral waves
using a CNN-based classification approach and discriminating
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sub-regions containing spiral wave tips from areas exhibiting
other dynamics, and consequently generated low-resolution heat
maps indicating the likely and approximate core regions of spiral
waves. Very similarly, Alhusseini et al. (2020) used CNNs to
classify and discriminate rotational and non-rotational tiles in
maps of AF acquired with basket catheter electrode mapping.
Lastly, Li et al. (2020) provided a comparison of 4 different PS
detection algorithms applied to AF and found that results can
vary significantly.

2. METHODS

We developed a two-stage deep convolutional neural network
(CNN) with encoder and decoder architecture and trained
the network with pairs of two-dimensional maps showing
electrical excitation wave patterns and corresponding “ground
truth” phase maps and phase singularity (PS) locations.
The training was performed with both simulation data and
experimental data, which was obtained in voltage-sensitive
optical mapping experiments in two different species during
ventricular fibrillation (VF). After training, the network was
applied to new data and used to predict phase maps or the
positions of PS from “unseen” excitation wave patterns.

2.1. Neural Network Architecture
The architecture of our neural networks comprises an encoding
stage, a latent space, and a decoding stage (see Figure 2).
The neural networks are designed to translate an arbitrary
two-dimensional electrical excitation wave pattern or a short

sequence of two-dimensional excitation wave patterns into either
a corresponding two-dimensional phase map, or predict the
positions of phase singular points (PS) in the electrical maps. We
developed three phase map prediction neural network models
M1, M2, andM3, and two different PS prediction neural network
models M1A and M1B which are based on M1. The three phase
map predictionmodels are a basic encoder-decoder CNN version
M1, an LSTM-version M2 and a U-Net version M3, see below for
details. The difference between models M1A and M1B is mainly
the associated loss function and the encoding of the ground
truth PS. M1A uses a pixel-wise cross-entropy loss which does
not account for the distance between predicted PS locations and
ground truth PS locations unless they overlap, whereas M1B uses
a loss function based on the distance between predicted and
ground truth PS locations.

The phase map prediction neural networks are trained
with excitation wave patterns as input and a two-dimensional
trigonometric encoding of the phase map as target (see
Figure 3A). The trigonometric encoding eliminates the
discontinuity of a linear encoding of the cyclic phase φ

by encoding the value onto a two-dimensional unit circle:
φ → (cos(φ), sin(φ)) =:(c, s). Therefore, the two phase mapping
CNNs have a two-dimensional layer with two channels as output,
which are estimates of the sine ŝ and cosine ĉ of the phase
angle φ. The predicted phase φ̂ is decoded as φ̂ := arctan2(ŝ, ĉ).
We use the hyperbolic tangent function as activation function
in the last layer of the phase mapping CNNs to ensure that
ĉ, ŝ ∈ [−1, 1]. All models are based on a convolutional encoder-
decoder architecture (see Figure 2). However, whereas model

FIGURE 2 | Deep convolutional neural network (CNN) with encoding stage, latent space and decoding stage for the computation of either phase maps or phase

singularities (PS) from spatio-temporal maps of electrical excitation. Excitation, phase and PS data is used to train the two neural network, which accordingly learns to

translate a short sequence of excitation maps into a corresponding phase map or PS locations. After training, the networks can predict phase maps and PS positions

from arbitrary unseen excitation data. We used either (i) a plain convolutional encoder-decoder network architecture, (ii) a U-Net variant, or (iii) a variant with a long

short-term memory (LSTM) neural network module integrated into the latent space. The phase values are trigonometrically encoded as x- and y-components (see

also Figure 3).
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FIGURE 3 | Encoding of phase and phase singularities (PS) for deep learning.

(A) Instead of estimating the phase angle φ̂ directly, the phase prediction

network produces two numbers ĉ, ŝ ∈ [−1, 1] for each pixel as output. During

training, these are compared against the trigonometric encoding of the phase

angle φ → (cos(φ), sin(φ)). We define the predicted phase as

φ̂ : = arctan2(ŝ, ĉ). (B) Binary class matrix-encoding (or “one-hot” encoding) of

PS positions. The loss function (categorical cross-entropy) measures the

difference between target PS (red) encoded as a 2×2 kernel (black) and

predicted PS given as pixels (gray) with subsequent thresholding. Information

about the distance between ground truth and predicted PS is not available to

the minimization process during training. (C) Coordinate-based encoding of

PS positions. The loss function is based on the weighted Hausdorff-distance

between ground truth PS coordinates and predicted PS positions given as

pixel positions.

M1 uses a two-dimensional convolutional layer in the latent
space, the latent space of model M2 is a two-dimensional
convolutional long short-term memory (LSTM) neural network
layer (Hochreiter and Schmidhuber, 1997; Shi et al., 2015), and
model M3 is based on the generic convolutional architecture
of model M1, but includes long skip connections at each
maxpooling/upsampling step, similar to U-Net (Ronneberger
et al., 2015). In all models the encoder- and decoder-stage consist
of three two-dimensional convolutional layers, each followed by
a batch normalization layer (Ioffe and Szegedy, 2015), rectified
linear unit (ReLU) activation layer (Nair and Hinton, 2010), and
a maxpooling or upsampling layer. The convolutional layers
use 64, 128, and 256 kernels in the encoding stage, 512 kernels
in the latent space, and 256, 128, and 64 kernels in the decoder
stage. The phase prediction models use the mean squared error
as loss function.

The two PS prediction neural networks M1A and M1B
are trained with excitation wave patterns as input and either
(i) a dense binary class matrix representation of PS positions
or (ii) coordinates of PS positions as target, respectively (see
Figures 3B,C). The ground truth PS are located—by construction
(see Figure 1C)—in the center of a 2×2 kernel. With model
M1A we set 1 as target for all four neighboring pixels of a PS
and 0 for all other pixels. While it is possible to train directly
on such an encoding with a binary cross-entropy loss function,
we achieved better accuracies when using a categorical encoding
of the target image as a 128×128×2 class matrix, where in the
first channel all non-PS pixels are valued 1 and in the second
channel all 2×2 PS pixels are 1 and 0 otherwise. Accordingly,
model M1A uses two output layers with a softmax activation
function, and categorical cross-entropy as a loss function during
training. Note that the loss corresponds to a pixel-wise loss,
which does not take into account distances between ground-
truth and approximated PS positions. With model M1B the
target PS are encoded directly as a list of two-dimensional (x, y)-
coordinates of PS positions and the loss function uses a weighted
Hausdorff-distance with the parameter α = −3 between the
target PS and predicted pixel distributions approximating PS
positions, which was introduced by Ribera et al. (2019) for the
deep learning-based localization of objects (see illustration in
Figure 3C). Note that the loss function includes information
about spatial distances between ground-truth and approximated
PS during training. Model M1B comprises one output layer with
a sigmoid activation function and we used a threshold of 0.5
to obtain a binary PS prediction image. For both models M1A
and M1B the predicted PS positions are computed as sub-pixel
precise PS locations from the center of each connected object in
the binary PS prediction image. Two pixels are connected (belong
to the same object), if both are 1 and when their edges or corners
are adjacent.

All network models analyze either a single, static two-
dimensional excitation wave pattern or a short sequence of
up to 10 excitation wave patterns as input. The patterns
consist of consecutive snapshots of the activity sampled at
the current time step t and at equidistant time intervals at
previous time steps, see also section 2.2. Note that, if we refer
to “video images / frames / excitation patterns” or “samples,”
each of these samples may refer to a single or a short series
of 2 − 10 two-dimensional excitation patterns. For model
M1 and M3 the excitation wave patterns are represented as
input channels, while for model M2 each temporal excitation
wave pattern is processed separately in the neural network as
the LSTM is a recurrent neural network. All neural network
models were implemented in Tensorflow (Abadi et al., 2015)
version 2.6.0.

2.2. Training Data Generation
We generated synthetic training data using a phenomenological
computer model of cardiac electrophysiology (Aliev and
Panfilov, 1996). In short, non-linear waves of electrical
excitation and refractoriness were modeled using partial
differential equations and an Euler finite differences numerical

Frontiers in Physiology | www.frontiersin.org 5 December 2021 | Volume 12 | Article 782176118

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lebert et al. Deep Learning-Based Cardiac Phase Mapping

FIGURE 4 | Simulated and experimental training data. Each training dataset includes 20,000 samples. (A) Random snapshots of simulated electrical spiral wave

chaos. The dynamics are diverse and include both chaotic and laminar episodes with both spiral and plane waves and include longer and shorter wavelengths and

faster and slower conduction speeds, respectively. The simulated training data was further noisified and/or sparsified (see Figures 5B, 10A). (B) Experimental training

data generated in voltage-sensitive optical mapping experiments during ventricular fibrillation (VF) in rabbit (top) and pig (bottom) hearts. The rabbit data contains

about 50% VF episodes with Cromakalim and 50% without. Therefore, both datasets include shorter and longer action potential wavelengths, as well as faster and

slower and more and less complex dynamics, respectively.

integration scheme:

∂V

∂t
= ∇2V − kV(V − a)(V − 1)− Vr (4)

∂r

∂t
= ǫ(V , r)(kV(a+ 1− V)− r) (5)

Here, V and r are dimensionless, normalized dynamic variables
for electrical excitation (voltage) and refractoriness, respectively.
Together with the isotropic diffusive term ∇2V = ∇ · (D∇V)
with the diffusion constant D = 1.0 in Equation (4), the model
produces non-linear waves of electrical excitation and the term
ǫ(V , r) = ǫ0 + µ1r/(V + µ2) in Equation (5) and electrical
parameters k, a, ǫ0, µ1, and µ2 influence properties of the
excitation waves. The size of the two-dimensional simulation
domain was 200×200 cells/pixels. The parameters were set to
a = 0.09, k = 8.2, ǫ0 = 0.01, µ1 = 0.07, µ2 =
0.3 and spiral wave chaos was initiated by applying a series
of point stimulations in random locations. With the chosen
parameters the dynamics exhibit both chaotic spiral wave and
more laminar wave dynamics with strong fluctuations in the
complexity of the wave patterns (see Figures 4A, 9F and
Supplementary Videos 2, 4). We generated 20 episodes with
a series of 2,500 snapshots of the dynamics in each episode.
Figure 1A shows an example of such a snapshot. The 2,500
snapshots show about 25 spiral wave rotations. Correspondingly,
one spiral rotation is resolved by about 100 snapshots. Note that
in the simulation the dynamics are resolved at a 10× higher
temporal resolution than in the series of snapshots, because we
stored a snapshot only in every 10th simulation time step. In
total, we obtained 50,000 snapshots, from which we then created

20,000 training samples (see Figure 4A), where one training
sample comprises a short sequence of snapshots with up to 10
images of the excitation. Within the sequence, the first snapshot,
denoted with t0, corresponds to the snapshot at time t in the
video. The training is performed with the corresponding ground
truth phase maps and PS obtained at this time step t and,
correspondingly, the network also predicts a phase map or PS
at time t. The other snapshots in each sample correspond to
snapshots showing the dynamics at previous time steps t−1, t−2

etc., where t−i = t0− i ·τ with i = 1, . . . ,Nt andNt is the number
of snapshots in the sample and τ is the temporal sampling
distance between the frames over parts of the previous period.
The parameters Nt and τ are discussed in more detail in section
3.5 and in Figure 13. The training samples were shuffled in time,
while the temporal sequence within each sample was kept in its
original order. We generated test data for evaluation that was not
used during training by simulating 5,000 snapshots separately
using the same electrical parameters and generating samples
with the same parameters Nt and τ for testing purposes. We
computed ground truth phase maps from the original series of
excitation snapshots before shuffling using the Hilbert transform

(Bray and Wikswo, 2002) and computed ground truth PS using
the Iyer and Gray (2001) line integral method, as shown in

Figures 1B,C. To simulate noisy excitation wave data, we added

noise to the training data (see Figure 5). The Gaussian white
noise was added to the individual pixels independently in each

frame and independently over time (σ = 0.1, 0.2, . . . , 0.8 states
the standard deviation of the noise). Each excitation snapshot was
optionally additionally sparsified by setting masked excitation
values to 0.
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FIGURE 5 | Preprocessing of data for training of deep learning algorithm for

computation of phase maps and phase singularities. (A) Preprocessing of

noisy optical mapping data: computation of noisy phase maps from raw noisy

optical maps using the Hilbert transform. Subsequent denoising using outlier

removal, inpainting and smoothing to obtain ground truth phase maps for

training. (B) Preprocessing of simulation data: computation of ground truth

phase maps directly from smooth simulated excitation wave patterns and

training with noisy (or sparsified) excitation data.

We generated experimental training data using high-speed
video data obtained in optical mapping experiments with
voltage-sensitive fluorescent dyes (Di-4-ANEPPS). Imaging was
performed during VF in isolated rabbit (N = 2) and porcine
(N = 5) hearts at acquisition speeds of 500 fps, respectively,
using a Teledyne Photometrics Evolve camera (128×128 pixels).
The rabbit data included 6 recordings with 4 different views and
more than 25,000 video frames in total. The pig data included
10 recordings with 8 different views and more than 100,000
video frames in total. About half of the rabbit data shows VF
episodes with the potassium channel opener Cromakalim, which
typically reduces the action potential duration and accelerates
VF dynamics. The raw optical mapping videos were pixel-
wise normalized in time using a sliding-window normalization
(window size 100–120 frames). We used the Hilbert transform to
compute phase maps of the pixel-wise normalized optical maps,
the phase maps were subsequently denoised and smoothed, see
Figure 5A and section 2.5, to obtain ground truth phase maps.
These ground truth phase maps were then used to compute
ground truth PS using the circular integral method as with the
simulation data. 20,000 samples of the pixel-wise normalized
noisy versions of the voltage-sensitive optical maps (without
spatio-temporal smoothing), ground truth phase maps, and PS
were used as training dataset for each species. The test datasets
consisted of 5,000 samples, which were derived from 1-2 separate
recordings, which were left out of the training dataset. Each
training or test sample corresponds to a short series (10 frames)
of voltage-sensitive optical maps showing action potential wave

FIGURE 6 | Deep neural network-based prediction of phase maps from

optical maps measured using voltage-sensitive fluorescent dye Di-4-ANEPPS

during ventricular fibrillation on surface of isolated heart. (A) Optical maps of

transmembrane voltage showing counter-clock-wise rotating action potential

spiral vortex wave (normalized units [0,1], pixel-wise normalization, yellow:

depolarized tissue, blue: refractory tissue). Comparison of predicted (top) and

ground truth (bottom) phase maps with high qualitative and quantitative

agreement. The phase prediction accuracy is 97%± 6% and the predicted

and ground truth phase maps are hard to distinguish. The data was not seen

by the network during training. (B) Exemplary time-series from a single pixel

showing transmembrane voltage V (t) and predicted phase φ̂(t), respectively.

dynamics in analogy to the simulation data. The experimental
samples weremasked withmasks outlining the shape of the heart.
Pixels outside of themask were set to 0. The samemasks were also
applied to simulated data (see Supplementary Video 2).

2.3. Training Procedure
Using the experimental and simulated data described in section
2.2, we generated training datasets consisting of corresponding
two-dimensional electrical excitation wave data and phase maps
as well as (x, y) positions of PS in these maps. The simulated
data was resized from 200×200 pixels to 128×128 pixels to
match the size of the experimental data. All predictions were
performed on a separate dataset, which was not part of the
training. The predictions in Figures 6–15 were only performed
on “unseen” data, which the neural network was not exposed
to during training. A fraction of 5% of the samples of the
training datasets were used for validation during training.
The networks were trained with a batch size of 32 using
the Adam (Kingma and Ba, 2015) optimizer with a learning
rate of 0.001. All models were typically trained for 10 to 15
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FIGURE 7 | Deep learning-based phase mapping of VF in rabbit heart with

neural network trained on either experimental or simulation data. (A)

Voltage-sensitive normalized optical maps showing action potential vortex

waves during VF on rabbit heart and corresponding ground-truth phase maps

computed using the Hilbert transform. (B) Prediction of phase maps using

neural network model M1 trained with either rabbit optical mapping data (top,

data not seen during training) or solely simulated data (bottom) of excitation

spiral wave chaos (noise σ = 0) as shown in Figure 4A but masked as in

Figure 4B. The phase prediction accuracy is 97± 6% and 94± 11% when

training is performed with experimental or simulation data, respectively, see

also Figure 8 for a comparison of prediction accuracies when training across

different species.

epochs on data including 20,000 frames or samples, if not
stated otherwise.

2.4. Phase Mapping and Rotor Localization
Accuracy
The phase prediction accuracy was determined by calculating the
angular accuracy, 1 − 〈|1φ|〉 /π , where |1φ| is the minimum
absolute angle difference between the predicted phase φ̂i(x, y)
and the ground truth phase φi(x, y). The average absolute
angle difference

〈|1φ|〉 = 1

N · Npixels

∑

i,x,y

|1φi(x, y)| (6)

is evaluated over all Npixels pixels (x, y) in all N test samples
i. All uncertainties of the phase prediction accuracies stated
throughout this study correspond to the standard deviation of
the angular accuracy over all Npixels pixels in all N samples

in the entire testing dataset. The PS prediction accuracy was
evaluated with the precision, recall, and F-score based on the
number of true positive tp, false positive fp and false negative fn
PS predictions, as well as the mean absolute error of the number
of predicted PS and the mean average Hausdorff distance. A true
positive estimated PS position is counted if any estimated PS
location is within at most r pixels from the ground truth PS. A
false positive is counted if no ground truth PS is located within
a distance of r from the estimated PS position. A false negative
is counted if a ground truth PS does not have any estimated PS
within a distance of at most r. We chose r = 3 pixels, see also
Figure 9E. We note that this definition is biased in favor of the
prediction when two PS are predicted within r pixels of a single
ground truth PS, as both predicted PS will be counted as true
positive. However, by construction of the prediction method (see
Figure 3 and section 2.1) this case occurs only very rarely. E.g.,
for none of the models presented in Table 1 did this situation
occur for more than 15 PS out of a total of∼ 17,000 predicted PS.
The bias in favor of the model is thus negligible for the precision,
recall and F-score. Precision is tp/(tp + fp), the proportion of
estimated PS locations that are close enough to a ground truth PS
location. Recall is tp/(tp + fn), the proportion of the true phase
singularities the neural network is able to detect. The F-score is
the harmonic mean of precision and recall:

F-score = 2 · Precision · Recall
Precision+ Recall

(7)

Additionally, we compute the mean absolute error (MAE) of the
number of predicted PS

MAE = 1

N

N
∑

i=1

∣

∣n̂i − ni
∣

∣ (8)

where N is the number of dataset samples, ni is the number
of ground truth PS in the i-th sample, and n̂i is the number
of predicted PS for the sample. The average Hausdorff distance
dAHD measures the distance between two point sets X and Y :

dAHD(X,Y)

= 1

2





1

|X|
∑

Ex∈X
min
Ey∈Y

‖Ex− Ey‖ + 1

|Y|
∑

Ey∈Y
min
Ex∈X

‖Ex− Ey‖



 (9)

where |X| and |Y| are the number of points in X and Y ,
respectively and ‖ · ‖ is the Euclidean distance. We report the
mean average Hausdorff distance for PS predictions

MAHD = 1

N

N
∑

i=1

dAHD(Si, Ŝi) (10)

where Si is the set of ground truth PS and Ŝi is the set of predicted
PS for sample i. If either Si or Ŝi is empty and the other set is not
empty we set dAHD(Si, Ŝi) to the image diagonal in pixels.
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2.5. Smoothing and Interpolation
To be able to compare the CNN-based phase predictions
shown in Figure 10B with results obtained with a reference
method, we reconstructed or enhanced the noisy and/or sparse
phase maps shown in Figure 10C using kernel-based spatio-
temporal outlier filter, inpainting and smoothing techniques.
The filtering techniques were also applied to experimental data
(see Figure 5A) and section 2.2. The filtering is performed
on trigonometrically encoded phase values, where each real-
valued phase value in the video is converted into its complex
decomposition:

φ(x, y; t) → cosφ(x, y; t)+ i · sinφ(x, y; t) (11)

Spatio-temporal kernels are then used to average the complex
phase values in space and over time in small disk-shaped sub-
regions Sd,1t with diameter d and with 1t = 3 at times t − 1, t
and t+1. In order to remove outliers in the experimental data and
the noisy simulated data, the Kuramoto order parameter r(x, y; t)
(Kuramoto, 1984) was computed in every pixel at every time step:

r · eφ = 1

N

N
∑

i

eiφj (12)

where j = 1, . . . ,N is the number of complex phase values
within each kernel with diameter d = 5 pixels and 1t = 3.
Phase values were considered outliers if r < 0.9 and accordingly
removed, as shown in Figure 5A. Missing phase values were
replaced with phase values averaged from surrounding phase
values within the spatio-temporal kernel, given that at least 30%
of the entries within the kernel were non-missing or valid phase
entries. The process was repeated until the entire video was filled
with valid phase entries. Lastly, the denoised, inpainted phase
maps were smoothed averaging all phase values within a small
spatio-temporal kernel typically with d = 7 and 1t = 3, if not
stated otherwise. In Figure 10, the noisy data was processed using
the outlier and smoothing filters, the low resolution data was
smoothed with d = 11 pixels, the 8×8 large and small grid data
was inpainted 7 times with d = 11 pixels, and the sparse grid data
was inpainted 10 times with d = 19 pixels, all with 1t = 3. With
the sparse data the denoising was performed after inpainting and
before smoothing.

3. RESULTS

We found that deep encoding-decoding convolutional neural
networks (CNNs) can be used to compute phase maps and
phase singularities (PS) from a short sequence of excitation
wave patterns. The prediction of phase maps can be performed
robustly and accurately (∼ 90 − 99%) with both experimental
and simulated data, even with extremely noisy or sparse patterns
(see Figures 6–13 and Supplementary Videos 1, 4–7). Phase
predictions remained accurate across different species, with
models being trained on one species and then being successfully
applied to another. Additionally, models that were trained solely
on simulation data of VF could be applied to experimental

data, see Figures 7, 8. PS can be predicted either directly from
excitation wave patterns or indirectly by first predicting phase
maps from excitation wave patterns and then computing PS in
the predicted phase maps. While in principle both direct and
indirect PS prediction methods can determine the positions of
PS very precisely (F-scores of ∼97%, see Table 1), direct PS
predictions are very sensitive to noise and sparsity. Indirect PS
predictions are far more robust. Accordingly, with the indirect PS
prediction method we were able to locate PS in optical mapping
recordings of VF sufficiently reliably and accurately, whereas with
the direct PS prediction method this task was more challenging
and produced only moderately successful results (see Table 2).

Figures 6, 7 and Supplementary Video 1 show predictions of
phase maps when the neural network analyzes voltage-sensitive
optical mapping videos showing action potential spiral vortex
waves during ventricular fibrillation (VF) on the surface of rabbit
and porcine hearts. Figure 6A shows raw pixel-wise normalized
optical maps with a counter-clock-wise rotating action potential
spiral vortex wave on the ventricular surface of an isolated
pig heart (close-up, 48×48 pixels cutout from original video
image). The action potential rotor performs one rotation in
about 110ms. The phase maps in the second and third row
in Figure 6A show the predicted phase maps φ̂ obtained with
model M1 and ground truth phase maps φ, respectively. The
action potential rotor is characterized by a pinwheel pattern in
the phase maps, and the rotational core or PS is indicated by
lines of equal phase which merge at the center of the pinwheel
pattern. Predicted and ground truth phase maps are visually
almost indistinguishable and exhibit only minor differences. The
data was not seen by the neural network previously during
training. The predicted phase maps are smooth even though
the optical maps showing the action potential wave patterns are
noisy. The neural network is able to predict more complicated
wave patterns with multiple rotors or phase singularities (see
Figure 7 and Supplementary Videos 1, 3). The upper row in
Figure 7B shows phase map predictions of an action potential
figure-of-eight reentry pattern on the ventricular surface of a
rabbit heart during VF. The predicted and ground truth phase
maps shown in Figure 7A can only be distinguished from each
other upon close inspection. Analyzing a short sequence of 10
optical maps, the neural network provides phase map predictions
which are very accurate and sufficiently smooth in both space
and over time, and the predictions can be retrieved in real-
time at an acquisition speed of 500 fps. Figure 6B shows an
optical trace of a series of action potentials and the corresponding
time-series of the predicted phase, which was obtained from the
sequence of predicted phase maps in Figure 6A using model
M1. Even though each phase map was predicted independently
at each time step, the time-course of the predicted phase signal
φ̂(t) is relatively smooth, see Supplementary Videos 1, 4–7 for
an impression of the temporal smoothness of the predictions.
On average, the accuracy of the phase prediction with model
architecture M1 is 97% ± 8% or 98% ± 6% in terms of angular
accuracy, if the model was trained on pig data and is evaluated
on pig data or, alternatively, trained on rabbit data and evaluated
on rabbit data (evaluation on ∼ 5,000 frames that were not
part of the training data), respectively. We did not find a
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significant difference in the accuracy between models M1, the
LSTM model M2, or the U-Net model M3. For instance, when
trained and evaluated on pig data, the angular accuracy for the
phase prediction was 96.5%±7.9% for M1, 96.1%±8.1% for M2,
and 96.7%± 7.8% for model M3.

3.1. Phase Prediction Across Species and
Dynamical Regimes
We found that phase prediction models that were trained
on pig optical mapping data can also be applied to rabbit
optical mapping data and achieve equally high phase prediction
accuracies on the data (96.5% ± 7.9% vs. 97.0% ± 7.5%), see
Figure 8. With such cross-species training, we observed higher
accuracies when training from one species to another than vice
versa (Rabbit→Pig: 93.4% ± 12.2% vs. Pig→Rabbit: 97.0% ±
7.5%). This is presumably due to differences in the training
data (more hearts, more diverse views in one species than the
other). Surprisingly, we found that even models that were solely
trained with simulation data, as shown in Figure 4A, can be
used to predict phase maps of VF optical mapping data and
that these models achieve acceptable results, see lower row
in Figures 7B, 8 (the simulation data was randomly masked
with masks which were used with the experimental data (see
Supplementary Video 2), all values outside the mask were set
to 0). This demonstrates that the model can be applied to
significantly different data than the data it was trained on. This

FIGURE 8 | Phase prediction accuracies for neural network models trained on

either pig, rabbit or simulation data, or a mixture of all data, cf. Figure 4 and

Supplementary Video 2. Prediction across species or from simulation to

experiment with models trained on either one species and applied to another

species or on simulation data and applied to rabbit or pig optical mapping

data. All models were applied to test data consisting of 5,000 samples from

experimental recordings or simulations, respectively. The prediction is most

accurate when trained on the same data (Pig→Pig 97%± 8%;

Rabbit→Rabbit 98%± 6%; Simulation→Simulation 99%± 4%).

Nevertheless, the models appear to generalize as prediction across species is

possible and achieves accuracies above 90% (Pig→Rabbit 97%± 8%,

Rabbit→Pig 93%± 13%). The pig training data is more diverse than the rabbit

training data (more hearts and different views), which yields higher accuracies

when predicting from pig to rabbit than vice versa. A model that was trained

solely on simulation data can also be used to predict phase maps from

experimental data (e.g., Simulation→Rabbit 95%± 10%).

also hints at the model generalizing and learning to associate
phase maps with spatio-temporal dark-bright patterns in general
rather than memorizing the particular wave dynamics. Note
that the simulation data only includes two-dimensional wave
dynamics, whereas the experimental data corresponds to three-
dimensional wave dynamics which are observed on the surface.
To our surprise, we found that models trained on simulation
data without noise performed better on optical mapping data
than when they were trained on simulation data with noise. The
network performed equally well across the different dynamical
regimes in the simulated data, which includes episodes with
both more laminar and more chaotic spiral wave dynamics with
longer and shorter wavelengths (see Figure 4). Lastly, Figure 8
shows that a neural network that was trained on a mixture of
pig, rabbit and simulation data provides consistently high phase
prediction accuracies of 96− 98% across all three datasets. Taken
together, these results demonstrate that the phase prediction
neural network can be applied to a wide range of VF dynamics
with various wave lengths and frequencies. Note that the rabbit
data contains VF episodes with and without Cromakalim, which
modulates the dynamics significantly. While it was not possible
to create sufficiently large rabbit training datasets to determine
the performance during cross-training (without Cromakalim →
with Cromakalim or vice versa), we did not notice a significant
change in accuracy when evaluating the performance of a general
rabbit model on sub-data types (without Cromakalim vs. with
Cromakalim). The analysis was performed with model M1.

3.2. Phase Singularity Prediction
We found that the prediction of phase singularities (PS) from
electrical excitation wave patterns was less accurate and less
robust than predicting phase maps. This was especially true
with challenging data, such as optical mapping recordings, or
noisy and sparsified simulation data. Here, we compare three
different neural network models M1, M1A, and M1B. Model
M1 predicts PS indirectly by first predicting phase maps and
subsequently calculating PS positions using the line integral
technique. Models M1A andM1B both predict PS directly, where
M1A uses a pixel-wise loss function and M1B uses a distance-
based loss function during training, see section 2.1. Both models
have different drawbacks: model M1A was better than M1B on
simulation data both without and with noise (see Table 1), while
M1B performs slightly better on optical mapping recordings than
M1A (see Table 2 and Supplementary Video 3). Model M1A is
very conservative on challenging data, it occasionally produces
false positives but mostly misses many true PS. Model M1B, on
the other hand, is not as precise as M1A, and predicts more
PS and produces more false detections. Overall, the indirect PS
prediction using model M1 shows a far better performance than
both direct methods with models M1A and M1B.

Figure 9 shows the PS predictions on simulated spiral wave
chaos data. Figures 9A,C show predicted PS (black) and ground
truth (white) PS superimposed onto the corresponding electrical
excitation wave maps (PS were predicted with model M1A).
The maps demonstrate that both predicted and ground truth
PS describe equally well the tips of spiral waves. However, with
noise, one of the six PS was not detected by the neural network

Frontiers in Physiology | www.frontiersin.org 10 December 2021 | Volume 12 | Article 782176123

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lebert et al. Deep Learning-Based Cardiac Phase Mapping

FIGURE 9 | Phase singularities (PS) predicted for neural networks M1 (indirect PS prediction, computing of PS from phase prediction), M1A (pixel-wise cross-entropy

loss), and M1B (weighted Hausdorff distance loss) from simulated maps of electrical excitation. White: ground-truth or true PS. Black: predicted PS. A quantitative

evaluation of the predicted PS is shown in Table 1. (A) Electrical spiral wave chaos without noise with PS superimposed indicating positions of spiral wave tips for

model M1A. (B) Trajectories of ground truth (white) and predicted (black) PS without noise over 60 simulation time steps for the models M1, M1A, and M1B. (C)

Electrical spiral wave chaos with noise (σ = 0.3) with PS superimposed indicating positions of spiral wave tips. (D) Trajectories of ground truth and predicted PS with

noise. Increase in false negative predictions with noise. Model M1B also produces false positive detections. (E) Spatial mismatch of predicted PS (black) and ground

truth PS (white, center) for model M1A. All predicted PS not within 3 pixels (red circle) from true PS are false positives. (F) Number of PS over time predicted with

models M1, M1A, M1B from electrical spiral wave chaos with noise (σ = 0.3).

(false negative detection). Figures 9B,D show the trajectories of
the predicted (black) and ground truth (white) PS over a short
time span (60 simulation time steps), without and with noise
(σ = 0.3), respectively, predicted indirectly with model M1
and directly with the models M1A and M1B. The predictions
were obtained from a short sequence of Nt = 5 excitation frames
(c.f. Figure 13A). The trajectories co-align and demonstrate that
PS are mostly predicted in locations where true PS are located.
However, model M1B produces false positives even without
noise. Moreover, all PS prediction models miss a portion of
ground truth PS, and we counted these mispredictions as false
negatives. Figure 9E shows the spatial distribution of mismatches
between predicted and ground truth PS for model M1A with
noise σ = 0.3, where the positions of the predicted PS are plotted

relative to the position of the ground truth PS at the center. All
predicted PS which lie outside a radius of 3 pixels (red circle)
from the ground truth PS are counted as false positives. The
sub-pixel resolution accuracy of PS is a result of our method:
we calculated PS positions from a series of pixels in the PS
prediction image, see section 2.1. Table 1 shows the evaluation
of the PS prediction for all three models without and with noise
in terms of precision, recall, F-score, MAE andMAHDon the test
data consisting of 5,000 samples with 17,360 ground truth PS in
total. Without noise model M1A is slightly better or equal to the
indirect model M1 (e.g., F-score of 96.8 vs. 96.5%), while model
M1B is significantly worse in all measures (F-score 86.5%). With
noise however, the recall is significantly reduced for model M1A
(85.9 vs. 96.4%, F-score 91.2%), as the number of false negative
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FIGURE 10 | Deep learning-based prediction of phase maps from noisy and/or sparse electrical excitation wave patterns. Left: Corresponding ground-truth phase

map φ(x, y) calculated from original electrical excitation wave pattern (at t = 415) without noise or sparsification via the Hilbert transform, as shown in Figures 11A,B.

(A) Excitation wave patterns with noise (σ = 0.3), low resolution (no-noise excitation pattern down-sampled with averaging to 16×16 pixel then up-sampled to

128×128 pixel), 8×8 grid of large round electrodes or fiber optics (15 pixel diameter, 43% coverage, σ = 0.3), 8×8 grid with small round electrodes or fiber optics (11

pixel diameter, 21% coverage, σ = 0.3) and a sparse star-shaped / ring-shaped grid of large round electrodes or fiber optics (15 pixel diameter, 16% coverage,

σ = 0.3). (B) Corresponding predicted phase maps φ̂(x, y) with 96.8%± 3.2%, 96.8%± 3.4%, 94.6%± 7.4%, 93.1%± 9.1%, and 87.8%± 15.4% angular

accuracies from left to right, respectively. Except with the sparse grid, the predicted phase maps φ̂ are hard to distinguish from the true phase map φ. The data was

not seen by the network during training. Phase maps φ̂(x, y, tp) were predicted from a short spatio-temporal sequence of 5 electrical excitation wave maps

V (x, y, t = t1, t2, t3, t4, t5). (C) Phase maps of the noisy, low resolution and sparse excitation wave patterns calculated via the Hilbert transform. (D) Smoothed and/or

interpolated versions of the phase maps shown in (C) with 97.7%± 2.9%, 96.9%± 5.2%, 93.9%± 10.3%, 90.1%± 13.1%, and 81.9%± 21.0% angular

accuracies from left to right, respectively. Kernel-based phase smoothing and interpolation methods described in section 2.5. Note that the phase maps were

calculated from video data and not from just 5 snapshots like in (B).

predictions increases and the number of true positive predictions
decreases (see Figure 9D). The number of false negatives does
not increase, however, and the precision stays the same without
and with noise with model M1A. This indicates that the model is
rather conservative, insofar as when the difficulty for the model
to predict PS locations increases it rather misses true PS instead
of predicting false positives. This can also be seen in Figure 9F,
which shows the number of predicted (black) and ground truth
(white) PS over time for σ = 0.3.

While the indirect PS predictions obtained with model M1
follow the ground truth PS closely, the direct PS predictions
obtained with models M1A and M1B follow the trend overall but
at times deviate considerably from the ground truth. Model M1A
consistently underestimates the number of PS, whereas model
M1B both under- and overestimates PS. Supplementary Video 5

shows the PS predictions withmodelM1A for different simulated
electrical excitation wave patterns without and with noise as well

as with sparsification. The conservatism of model M1A is caused
by its pixel-wise loss function, which does not account for the
distance between predicted PS locations and true PS positions
unless the pixels overlap. The loss function is used during training
to calculate an error value for every pixel of the predicted image
of probable PS locations. As the likelihood of a pixel containing
a PS is very small, there is a class imbalance (number of pixels
with vs. without PS) for all pixel-wise loss functions and the
network is biased toward not predicting a PS for challenging
cases. Model M1B, on the other hand, uses a loss function which
is directly based on the distance between predicted and ground
truth PS locations. Table 1 shows however, that model M1B is
significantly less accurate for all measures than models M1 and
M1A both with and without noise. Figures 9B,D show that M1B
predicts false positives both without and with noise. In contrast,
the indirect PS prediction with model M1 produces very few false
positives, and the recall as well as the precision decrease only
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FIGURE 11 | Deep learning-based prediction of phase maps and rotor cores

or phase singularities (PS) from sparse electrical excitation wave pattern

mimicking multi-electrode catheter or optical fiber recordings. (A) Sparse

excitation wave pattern with noise (σ = 0.3, 17% coverage). (B) Phase map

φ̂(x, y) predicted by neural network analyzing data in (A). (C) Ground-truth

phase map φ(x, y) obtained with complete, non-sparse, non-noisy data. (D)

Spatially resolved angular accuracy (temporal average in each pixel) shows

that accuracy decreases between electrodes. (E) Trajectories of ground truth

PS (white) and predicted PS (black) using indirect prediction with model M1

(shown over 100 simulation time steps) (see also Supplementary Video 8).

moderately with the addition of noise resulting in an F-score of
94.6%. With regard to the direct PS prediction it is important
to point out that the PS locations are determined by weighting
multiple pixels, which surround the true PS and indicate probable
PS positions (see Figure 3C). With model M1B this position
estimation is especially problematic because a lot more pixels
indicate the PS than with model M1A. Accordingly, two nearby
PS are often not sufficiently resolved in the prediction image
and cannot be separated, which then produces a false positive
detection between two true PS. We tested different methods
designed to extract individual PS positions as proposed by Ribera
et al. (2019), but did not observe an improvement of the PS
prediction performance with model M1B.

Table 2 and Supplementary Video 3 show PS predicted by
the same models when trained and evaluated on rabbit optical
mapping data (see also Figure 4). The indirect PS prediction
with model M1 (F-score of 80.1%) is far more robust than and
superior to the direct PS prediction with experimental data. We
found that these indirectly predicted PS matched the dynamics of

FIGURE 12 | Prediction accuracies with noisy and sparse data. (A) Noisy

simulated electrical excitation wave patterns with noise levels of

σ = 0.1, 0.3, 0.8. (B) Sparse simulated electrical excitation wave patterns with

sparsity levels of ξ = 1, 0.5, 0.25. With ξ = 0.25 all pixels except every 4th

pixel are set to 0 (no signal). (C) High phase prediction accuracies across

broad range of noise and sparsity levels with model M1 (here shown with

Nt = 5 sampled images, which are τ = 5 simulation time steps apart, c.f.

Figure 13). (D) PS prediction accuracy obtained with model M1A is more

sensitive to noise and sparsity. The direct PS prediction fails when data is both

very noisy and/or sparse.

the true PS computed from rabbit optical mapping data very well
(see video). The direct prediction model M1A performs poorly
(F-score of 11.8%), as it misses most true PS (recall 11.8%).
However, it appears to predict some false positives mainly at
the medium boundaries (see video). Model M1B achieves a
significantly better F-score than model M1A of 42.5% on the
optical mapping data, as it does not suffer from the conservatism
exhibited by model M1A. However, overall, the performance of
model M1B is still poor on optical mapping data.

3.3. Prediction of Phase Maps From Noisy,
Low-Resolution or Sparse Excitation Wave
Maps
The phase prediction neural network can predict phase
maps even from very noisy, low-resolution and/or very
sparse electrical excitation wave maps. Figures 10, 11 and
Supplementary Videos 4, 6 show phase predictions obtained
with model M1 with various simulated noisy, low-resolution
or sparse excitation wave patterns, which are very generic
simulations of imaging scenarios with low-resolution or low
signal-to-noise sensors, multi-electrode arrays or (catheter)
mapping electrodes, fiber optics or other similar sensors.
Figure 10A shows exemplary snapshots of the excitation videos
that were analyzed: (1) a noisy (σ = 0.3) excitation pattern with
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FIGURE 13 | Spatio-temporal sampling of excitation wave dynamics. (A)

Schematic drawing illustrating number of sampled frames Nt and sampling

distance τ between the frames with Nt = 3, Nt = 5 and τ = 5, τ = 10,

respectively, shown relative to action potential duration (action potential

duration ∼ 75− 80 time steps, cycle length or period ∼ 100 time steps). (B)

Analyzing longer temporal sequences with Nt = 5 frames increases prediction

accuracy, here shown for very noisy (σ = 0.8) and sparse data (ξ = 0.125 or

16×16 non-zero data points), c.f. Figures 12A–C. In this example, the

sampled excitation snapshots are τ = 5 simulation time steps apart. (C) PS

prediction accuracy (F-score) over number of samples Nt and sparsity ξ . More

samples increase accuracy (here shown for noise σ = 0.2). (D) Phase

prediction accuracy (angular accuracy) over number of samples Nt and

sparsity ξ . More samples increase accuracy (here shown for noise σ = 0.2).

(E) Phase prediction accuracy is not (significantly) affected by variation of

sampling distance τ (all curves overlap, here shown with τ = 1, 5, 10).

128×128 pixels resolution, (2) a low-resolution version of the
same pattern that was derived by down-sampling the original
non-noisy excitation pattern to 16×16 pixels resolution and then
up-sampling the pattern without interpolation to 128×128 pixels
resolution, (3) a 8×8 grid of large round electrodes or fiber optics
16 pixels apart with a diameter of 15 pixels each, the grid covering
43% of the area (with noise σ = 0.3), (4) a 8×8 grid with small
round electrodes or fiber optics 16 pixels apart with a diameter

of 11 pixels each, the grid covering 21% of the area (with noise
σ = 0.3), and (5) a sparse star-shaped / ring-shaped grid of
large round electrodes or fiber optics with a diameter of 15 pixels
each, the grid covering 16% of the area (with noise σ = 0.3).
Figure 10A shows the corresponding predicted phase maps φ̂

predicted using the neural network model M1. The predicted
phase maps φ̂ are visually nearly indistinguishable from the
ground truth phase map φ shown as a reference on the left. The
phasemaps were predicted with angular accuracies of 96.8%±3.2,
96.8% ± 3.4, 94.6% ± 7.4, 93.1% ± 9.1, and 87.8% ± 15.4%
from left to right, respectively. The maps illustrate that the deep-
learning-based phase prediction can suppress noise, enhance
spatial resolution, and interpolate missing data and recover phase
maps even when it only sees a fraction of the electrical data, as
shown in the last example and in Figure 11.

The ground truth phase map φ in Figure 10 was computed
from the original electrical excitation wave pattern without
noise (σ = 0.0) using the Hilbert transform, computing in
each pixel (x, y) individually a phase signal from time-series
data V(t)x,y → φ(t)x,y as shown in Figure 1. The phase maps
shown in Figure 10C were equally computed pixel-by-pixel
using the Hilbert transform, but were computed directly from
the noisy, low-resolution or sparse electrical excitation data
shown in Figure 10A. The phase maps accordingly include the
same features, e.g., they include noise or remain sparse. The
phase maps shown in Figure 10D were reconstructed from
the noisy, low-resolution or sparse phase maps in Figure 10C

using spatio-temporal inpainting and smoothing techniques, as
described in section 2.5. They serve as a reference and allow
the comparison of the deep learning with another interpolation
method. While the reconstructed phase maps in Figure 10D

also provide sufficiently accurate reconstructions with noise,
low-resolution and low sparsity, with further increasing sparsity
the reference method fails to produce accurate results and
is outperformed by the deep learning-based phase prediction.
Note that, even though the accuracy of both approaches are
equally or comparably high, the reconstructed phase maps in
Figure 10D contain noise or distortions, while the deep learning-
based approach in Figure 10B produces consistently very smooth
phase maps.

The neural network’s ability to interpolate and reconstruct
phase maps allows the tracking of PS between sensors
even when they are relatively far apart (see Figure 11 and
Supplementary Video 8). Figures 11A–C show a sparse, star-
shaped electrode/sensor configuration measuring an excitation
wave pattern, and the resulting predicted and ground truth phase
maps with this configuration, respectively. The predicted phase
maps resolve the rotor dynamics very well, particularly toward
the center where the electrode density is higher (average angular
accuracy for entire field of view: ∼ 91%). The average angular
accuracy (temporal average in each pixel) resolved in space in
Figure 11D indicates that the phase prediction accuracy remains
sufficiently high between the electrodes toward the center.
Accordingly, Figure 11E shows how the predicted PS (black)
represent the ground truth PS (white) sufficiently well and follow
their trajectories between and across electrodes (shown over 100
simulation time steps). The total area of the sensor/electrodes
covers only 17% of the entire 2D simulation domain.
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FIGURE 14 | Diverse and augmented training data increases robustness of deep-learning-based phase prediction. (A) The phase prediction accuracy decreases if a

model that was trained with a specific sampling distance τ is applied to data that was sampled with a different sampling distance. (B) Data augmentation (randomly

masking the data as shown in the right panel in Supplementary Video 2) minimizes the effect in (A). (C) Phase prediction fails when neural network is trained on data

with one specific sparsity (see also Figure 12B), and is then applied to data with different sparsity (off diagonal). (D) Phase prediction stays accurate across all noise

levels and sparsities when training data also includes all noise and sparsity levels. Note that, by contrast, in Figure 12C the accuracy map was created by training

separate models individually with each noise and sparsity combination. All results obtained with simulation data and neural network model M1.

FIGURE 15 | Prediction of phase maps in future time steps with simulated electrical spiral wave chaos. Phase prediction accuracies of 98% and 88% predicting 15

and 50 simulation time steps into the future, respectively, analyzing Nt = 5 excitation wave frames at t = 0,−5,−10,−15,−20. The average rotational period of the

spiral waves are about 100 simulation time steps.

3.4. Extreme Sparsity and Noise
The data shown in Figure 12 characterizes the phase and PS
prediction performance with extreme noise and sparsity in

more detail. Figure 12A shows maps with simulated electrical
excitation wave patterns with noise levels of σ = 0.1, 0.3, 0.8,
and Figure 12B shows the same simulated electrical excitation
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TABLE 1 | Evaluation of phase singularity (PS) prediction on simulated electrical spiral wave chaos without (σ = 0) and with noise (σ = 0.3) for the different models M1,

M1A, M1B.

Model M1 M1A M1B

Noise σ = 0 σ = 0.3 σ = 0 σ = 0.3 σ = 0 σ = 0.3

Precision 97.2% 96.2% 97.2% 97.2% 86.7% 82.1%

Recall 95.7% 93.1% 96.4% 85.9% 86.4% 84.3%

F-score 96.5% 94.6% 96.8% 91.2% 86.5% 83.1%

MAE 0.2 0.2 0.2 0.5 0.4 0.5

MAHD 2.3 px 3.1 px 2.0 px 5.0 px 4.0 px 6.6 px

MAHD⋆ 1.4 px 1.8 px 1.4 px 3.1 px 2.4 px 3.6 px

PS predictions were performed from 5 excitation frames and are shown in Figure 9. MAE is the mean absolute error of the number of predicted PS, MAHD is the mean average Hausdorff

distance. The test dataset contains 5,000 frames with 17,360 PS in total, however 420 frames contain no ground truth PS. If the model predicts any PS for a frame which contains no

ground truth PS—or if no PS are predicted for a sample which does contain ground truth PS—we assign a maximum average Hausdorff distance (181 px) for the computation of the

MAHD. This skews the MAHD significantly. Accordingly, MAHD⋆ is the MAHD when we ignore these samples.

TABLE 2 | PS prediction with models M1 (indirect from phase), M1A (pixel-wise

loss), and M1B (distance-based loss) when trained and evaluated on rabbit optical

mapping data using a radius of r = 6px for computation of precision, recall, and

F-score.

Model Precision (%) Recall (%) F-score (%) MAE MAHD

M1 82.9 77.5 80.1 0.7 11.6

M1A 41.9 11.8 18.4 2.2 113.6

M1B 40.4 44.9 42.5 1.4 24.8

Supplementary Video 3 shows the predicted PS for all three models. The indirect PS

estimation (M1) is far more accurate than the direct PS prediction (M1A and M1B).

wave patterns without noise but sparsified with sparsity levels
of ξ = 1.0, 0.5, 0.25. The excitation images were sparsified by
setting all pixels except every n-th pixel in x- and y-direction
to 0 (no signal). Accordingly, a sparsity level of ξ = 0.25
corresponds to setting every pixel but every 4th pixel to 0,
for instance. Figures 12C,D show the prediction accuracies
obtained with different combinations of noise and sparsity for
the phase prediction with model M1 (angular accuracy) and for
the PS prediction with model M1A (F-score), respectively. The
individual prediction accuracies were obtained when training
was performed with each specific combination of σ and ξ . The
map in Figure 12C shows that the phase prediction with model
M1 is highly accurate and remains above 90% angular accuracy
over a wide range of noise and sparsity levels. In particular, with
non-sparse data (ξ = 1.0), the angular accuracy stays above
95% with noise levels of up to σ = 0.8, which corresponds to
the noise level shown on the right in Figure 12A. With ξ =
0.125 sparsification, the information in the image is reduced to
16×16 = 256 non-zero pixels instead of 128×128 = 16, 384
pixels. Therefore, the neural network can analyze only less than
2% of the image. Despite this reduction, the network provides
accuracies of 94–97% with noise levels of σ = 0.1–0.2 (and
at least 90% with noise levels of up to σ = 0.5). While the
phase prediction is accurate over a broad range of noise and
sparsity levels, Figure 12D shows that the direct prediction of
PS using model M1A is less accurate and robust against noise
or sparsity. The F-score stays above 90% only at low noise or

sparsity levels and deteriorates quickly when both increase (e.g.,
sparsity ξ = 0.25 and noise σ = 0.3). The F-score even
drops entirely to 0% in extremely noisy and sparse regimes. The
systematic analysis in Figure 12D confirms the impression given
in Figures 9C,D that the predicted PS trajectories frequently
contain false detections when predicted directly. The angular
accuracies and F-scores were computed over the testing dataset
with 5,000 frames. The data shows that even though noise and
sparsity impair the phase prediction accuracy, overall the phase
predictions remain, in contrast to the PS prediction, robust and
sufficiently accurate in the presence of strong noise and with
extreme sparsity. Autoencoder neural networks have excellent
denoising capabilities and are very effective at interpolating
image data (Vincent et al., 2008; Gondara, 2016), and this
property can be observed at work in Figures 6, 10–12.

3.5. Spatio-Temporal Sampling Over Spiral
Wave’s Period Increases Prediction
Accuracy
The neural network does not require very much information
to be able to predict phase maps or phase singularities (PS).
A short sequence of Nt = 5–10 excitation wave patterns is
sufficient in most situations to make accurate predictions, even
with extreme noise and/or sparsity, as shown in Figure 12. The
results in Figures 6–12 were obtained with either Nt = 5 or
Nt = 10 excitation frames with simulated or experimental data,
respectively. The number of sampled framesNt and the sampling
distance τ , which corresponds to the temporal offset between the
samples (see sketch in Figure 13A), are the two main parameters
determining the phase and PS prediction accuracy.

Regarding the number of sampled frames Nt , we found
that the predictions become more accurate when sampling the
activity with more frames, but the accuracy does not improve
significantly further with more than 5 − 10 frames. Analyzing a
short spatio-temporal sequence (Nt = 4, 5, . . . , 10) rather than
just a single, static (Nt = 1) excitation wave pattern or a few
(Nt = 2, 3) excitation wave patterns does not only increase
the accuracy, but also improves the prediction robustness and
ensures that the neural network is able to make predictions at
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all in difficult environments with high noise or sparsity (see
Figures 13B–D). Figure 13B shows how the prediction fails
entirely if the network only analyzes 1 frame, but becomes
progressively better with each frame and finally succeeds to
produce satisfactory phase predictions (80%) when it analyzes
a short sequence of Nt = 2, 4, 5 frames. In this example, the
phase map was predicted from a very noisy (σ = 0.8) and very
sparse (ξ = 0.125) excitation pattern. The data demonstrates
that the neural network is able to compensate information that
is lacking in space with additional information it retrieves over
time. The multi-frame analysis can also slightly improve the
neural network’s prediction accuracy when it already achieves
high accuracies in less extreme conditions. Figure 13C shows that
the F-score increases from 22% to about 85% when using Nt =
1, 3, 5, 7, 10 frames for the direct PS prediction with model M1A.
Figure 13D shows that the angular accuracy increases slightly
from 93% to 97% when using Nt = 1,2,3,4,5 frames for the phase
prediction with model M1 with low sparsity (ξ = 0.5) and low
noise (σ = 0.2). The PS prediction benefits more from the
multi-frame analysis as it is more sensitive to noise and sparsity.

Regarding the sampling distance τ , we made the following
observations: (1) With experimental data, we were able to mix
the rabbit, pig and simulation data and even though τ was not
perfectly adjusted to all of the different dominant frequencies of
the wave dynamics or imaging speeds, the network was able to
produce accurate predictions across all data (see Figure 8). We
chose a sampling distance of τ = 12ms for both the rabbit
and pig data, resulting in an effective framerate of 83 fps. With
Nt = 10 the series of sampled frames covered 75–140% of the
cycle length or dominant period of the VF dynamics (about 90–
170ms). The phase prediction failed with the experimental data
when we used shorter sampling times Tτ = τ ·Nt , which covered
only a smaller fraction of the cycle length (e.g., 15%). (2)With the
simulation data shown in Figure 4A, the sampling distance τ did
not affect the phase prediction accuracy at all, and we achieved
high accuracies even with short sampling times Tτ (e.g., 5% with
Nt = 5 and τ = 1). Figure 13E shows that the angular accuracy
does not change significantly when the sampling distance is
varied (τ = 1, τ = 5, or τ = 10 with Nt = 5 frames, shown
for 3 different noise and sparsity levels). With these parameters,
the dynamics are sampled over 5, 25, or 50 simulation time steps,
which corresponds to about 5, 25, or 50% of the average cycle
length or dominant period of the spiral wave dynamics of about
100 simulation time steps, respectively.

3.6. Training Data Diversity Increases
Robustness Against Varying Imaging
Parameters
Training the neural network with more diverse data broadens
the distribution of data it can analyze and will prevent
eventual overfitting to a particular feature in a dataset. The
network’s insensitivity to the sampling distance τ with the
simulation data, as discussed in section 3.5 and shown in
Figure 13E, is an indication for overfitting when training and
predicting solely on simulation data, because the same model

trained with and applied to optical mapping data is unable
to produce correct predictions with short τ . The different
behavior with simulation and experimental data suggests that the
network specializes with the simulation data in memorizing the
dynamics based on instantaneous features (moving wavefronts
etc.). However, this approach fails with experimental data,
in which case it only succeeds if it is provided information
that was sampled over a significant portion or the entire
period of the reentry pattern. Interestingly, we also made
the following observation: Figure 14C shows that the phase
prediction accuracy drops if training was performed on the
simulation data with just one specific sampling distance τtrain
and the network is then applied to data that was sampled
with a different sampling distance τ 6= τtrain. Importantly,
the analysis was performed on the simulation data without
data augmentation, as shown in Figure 4A (with σ = 0,
ξ = 1). However, Figure 4D shows that if the same
simulation data is augmented with the masks shown in
Figure 4B, see also Supplementary Video 2, then the network
performs better and achieves higher accuracies at other sampling
distances τ even though it was not trained on these τ

values. For instance, if the network was trained with τtrain
= 5 and achieves an accuracy of 99% at τ = 5, it still
achieves an accuracy of 96–97% with τ = 3 or τ = 7
just because the input data was augmented and includes
other features (arbitrary masked regions) than just the wave
dynamics on a square simulation domain. These findings are
consistent with the finding that a single τ could be used
with a mix of experimental and simulated data, as described
in section 3.1.

Similarly, Figure 14C shows that if the neural network is
trained solely with a particular sparsification, for instance with
ξ = 0.25, then it excels at performing predictions with ξ = 0.25,
but fails with different sparsifications. Accordingly, the phase
prediction only succeeds when the sparsity of the testing dataset
matches the sparsity during training (along the diagonal), and
fails when the sparsities in the training and testing datasets are
different (off the diagonal). However, this issue can be resolved
by training the network with data that includes all sparsifications
(here ξ = 1.0, 0.5, 0.25, 0.17, 0.125). Figure 14D shows that
the same neural network can be applied to arbitrary noise and
sparsification levels and will consistently yield phase prediction
accuracies above 90% when the training was performed with data
that contained all noise and sparsification levels. By contrast, in
Figure 12C the training was performed individually with each
specific combination of noise and sparsification. The broader
training in Figure 14D makes the network more robust and
yields just as high phase prediction accuracies as with each
individual specialized training in Figure 12C.

The anecdotal findings in Figures 8, 14 are representative
of a very general property of neural networks and data driven
approaches. Similar observations would be made with other
parameters, such as noise, blurring or arbitrary sparsification
patterns and we made very similar observations in a previous
study (Christoph and Lebert, 2020) with an architecturally very
similar neural network.
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3.7. Predicting Future Phase Maps or PS
Positions
It is possible to predict phase maps and PS positions in future
time steps, but only within the immediate future. Figure 15
shows predictions of phase maps with simulated spiral wave
chaos, which the neural network M1 predicted 15 and 50
simulation time steps into the future. The network analyzedNt =
5 excitation wave frames at t = 0,−5,−10,−15,−20 to make
each phase prediction and achieved 97.6% ± 2.5, 96.0% ± 3.4,
95.5% ± 4.1, and 87.7% ± 17.6% angular prediction accuracy 5,
10, 15, and 50 simulation time steps into the future, respectively.
As the average cycle length or rotational period of the activity is
about 100 simulation time steps, this corresponds to about half
a rotation within which the prediction yet achieves satisfactory
accuracies and about 1/5 of a rotationwithin which the prediction
achieves very good accuracies.

4. DISCUSSION

We demonstrate that deep neural networks can be used
to compute phase maps and locate the position of phase
singularities (PS) when analyzing cardiac excitation wave
dynamics. PS can be predicted by deep neural networks either
directly from excitation wave patterns or indirectly by predicting
first phase maps from the excitation wave patterns and then
calculating PS in the predicted phase maps using classical
techniques (e.g., the circular line integral method, shown in
Figure 1C). This latter step is possible because the predicted
phase maps are smooth. We found that the direct PS prediction
was less robust than the prediction of phase maps, particularly
with challenging data, and, accordingly, we only succeeded
to reliably predict PS positions in experimental data with
the indirect method. Predictions of phase maps and PS can
be performed almost instantaneously from a short temporal
sequence consisting of 1–10 snapshots of cardiac excitation
waves. We successfully applied this deep learning-based rotor
localization and phase mapping technique to both simulated and
ex-vivo optical mapping data of ventricular fibrillation (VF), and
we expect that the technique can also be applied to catheter
mapping data of cardiac arrhythmias in clinical patients.

A critical issue in the use of neural networks lies in ensuring
that the networks “generalize”. Neural networks are known to
perform very well when applied to data that is very similar to, or
“within the distribution,” of the training data, but their accuracy
and robustness can quickly deteriorate when applied to other,
less similar “out-of-distribution” data. Our results demonstrate
that our deep learning-based phase mapping algorithm can be
developed in one species and then applied to another species. We
even show that the phase mapping algorithm can be developed
with synthetic data generated in computer simulations and
then applied to experimental data. This latter observation is
particularly noteworthy in that the simulation data used to train
the network was 2D, whereas the experimental data to which it
was applied were surface observations of 3D dynamics. These
findings suggest that the algorithm is able to learn the relevant
correlation between patterns in a specific distribution of data, and

then extrapolate this mapping to differently distributed data that
is well outside of the training distribution. From our results it
appears that the deep learning algorithm learns to associate phase
patterns with a broad class of excitable spatio-temporal activity,
and understands the more generalized phase mapping problem,
independent of physiological parameters or species-dependent
wave dynamics.

Based on these findings, we anticipate that it will be possible to
develop a similar deep learning-based phase mapping approach
for clinical mapping of arrhythmias in human patients. Neural
networks can in principle analyze any data, and they will
likely be able to predict phase maps from extracellular field
potential or electrogram measurements, just as they are able to
predict phase maps from optical measurements of the cellular
transmembrane potential. Because neural networks excel at
detecting hidden patterns in data, “ignoring” noise, interpolating
missing data, and enhancing spatial resolution, all of which
they can do simultaneously, they are ideally suited for the
analysis of catheter mapping data of atrial fibrillation. The
application of such a deep learning-based algorithm would
not only be restricted just to phase mapping, but could in
principle also be extended to map any other characterizing
feature of arrhythmias (e.g., activation or conduction velocity
maps). As our results indicate, neural networks would be able
to integrate sparse data acquired with multi-electrode basket
catheters, given that they are trained with adequate high-
resolution imaging data, which could be generated ex vivo or
in computer simulations. Ultimately, deep-learning has great
potential to alleviate some of the shortcomings of catheter
mapping, which are largely associated with limited spatial
resolution and interpolation artifacts (Martinez-Mateu et al.,
2018; Van Nieuwenhuyse et al., 2021), that in turn can lead
to misrepresentations of rotor dynamics and fibrillatory wave
patterns during atrial fibrillation.

Other advantages of our technique are (i) that it can compute
phase maps and PS in real-time with data that was acquired
over a brief interval and (ii) that it can obviate pre-processing
of the raw data (e.g., spatio-temporal smoothing and outlier
removal). The predictions do not require the collection of long
time-series, can be performed within one rotational period of the
wave dynamics (see Figure 13A), and can be calculated in real-
time at 500–1, 000 fps using GPU hardware (at 128×128 pixels
resolution). Predictions can furthermore be performed into the
immediate future, enabling predictions of PS positions within
about the next 1/4 rotation of reentrant wave dynamics (see
Figure 15). The latter aspect ii) makes the technique ideal for the
processing of very noisy video data or data containing artifacts,
such as motion artifacts. This could also make it an attractive
phase mapping approach in other fields beyond cardiovascular
research, for instance, when studying the dynamics of excitation
waves and topological defects in other biological systems (Huang
et al., 2010; Taniguchi et al., 2013; Tan et al., 2020; Liu et al.,
2021). We expect that deep learning-based phase mapping can
be applied to various forms of data. However, it should be
noted that each application may require its own specialized
training dataset and specific deep learning algorithm, despite
the ability of these algorithms to generalize. The routine use
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of the technique across many different laboratories will likely
only be achieved with much larger and more diverse training
datasets (including various species and experimental conditions).
Further, neural networks are not a filtering technique per
se, and will only be able to perform a particular task (e.g.,
denoising) if they are trained on adequate data. In future
applications it will be crucial that training data includes the
features, which are necessary for the neural network to learn
the desired tasks. While we provided a proof-of-concept, we
also acknowledge that there is still potential for improving the
phase mapping and direct PS prediction overall, especially for use
with experimental data. We found that the direct PS prediction
was more sensitive to challenging data than the prediction of
phase maps, especially with optical mapping data or noisy and
sparsified simulation data. We anticipate that better direct PS
predictions or even higher phase mapping accuracies could be
achieved with both more and better training data and more
advanced neural network architectures. We aim to address these
issues in future research.

5. CONCLUSIONS

We demonstrated that convolutional neural networks can be
used to predict phase maps and rotor core positions or
phase singularities (PS) of reentrant cardiac excitation wave
dynamics in both voltage-sensitive optical maps of ventricular
fibrillation and simulated data mimicking low-resolution and/or
sparse multi-electrode mapping data. The predictions can be
made almost instantaneously, robustly and with accuracies of
about 95%, and can be performed even in the presence of
strong noise and highly sparse or incomplete data. Neural
networks used for phase mapping of cardiac excitation waves
are able to analyze data obtained in one species, even if
they were trained on a different species, and can predict
phase maps and PS with experimental data, even if they
were trained solely with simulated data of electrical spiral
wave chaos. In the future, our approach could be used in
electro-anatomic mapping applications for the diagnosis of atrial
fibrillation.
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Supplementary Video 1 | Neural network predictions of phase maps from

voltage-sensitive optical mapping video data. The recording shows action

potential spiral vortex waves during ventricular fibrillation on the left ventricular

surface of a porcine heart, see also Figure 6. The pixel-wise normalized

transmembrane voltage is shown on the left (yellow: depolarized, blue: repolarized

tissue). Center: smoothed ground truth phase map, which was obtained from the

noisy optical maps using the Hilbert transform, see Figure 5A and section 2.2.

Right: phase map predicted by the neural network.

Supplementary Video 2 | Comparison of the neural network input images for the

prediction of a single phase map for the pig, rabbit, and simulation datasets used

in Figures 7, 8. The video shows the Nt = 10 images given as input to the neural

network to predict a single phase map for each type of dataset.

Supplementary Video 3 | PS prediction for rabbit optical mapping data using

neural network models M1 (left), M1A (middle), M1B (right). The PS for model

M1 are predicted indirectly by first predicting phase maps then computing PS in

the phase maps using the circular line integration method.

Supplementary Video 4 | Phase maps predicted by the neural network from

(sparse) simulated electrical excitation wave maps without and with noise

(σ = 0.3). Left: electric excitation wave maps uses as network input (Nt = 5).

Center: ground truth or true phase. Right: neural network output.

Supplementary Video 5 | Phase singularities (PS) predicted by the neural

network M1A from (sparse) simulated electrical spiral wave chaos without and

with noise (σ = 0.2) for Nt = 5. Left: ground truth electrical excitation, Center:

network input, Right: predicted PS (black) and true PS (white) superimposed onto

the corresponding electrical excitation wave maps.

Supplementary Video 6 | Phase maps predicted by the neural network from

(sparse) simulated electrical excitation wave maps without and with noise

(σ = 0.3) for Nt = 5.

Supplementary Video 7 | Neural network prediction of a single phase map. The

5 noisy and sparse electrical wave frames given as input to the neural network, as

well as the predicted phase map and the true phase map are shown.

Supplementary Video 8 | PS prediction using model M1 for the sparse and

noisy excitation patterns shown in Figure 11. The predicted PS are shown in red,

the ground truth in white. Left: The sparse excitation wave pattern with noise

used as neural network input. Right: Ground truth excitation with sparsification

shown in black.
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Background: Atrial fibrillation (AF) is the most common cardiac arrhythmia and
precursor to other cardiac diseases. Catheter ablation is associated with limited success
rates in patients with persistent AF. Currently, existing mapping systems fail to identify
critical target sites for ablation. Recently, we proposed and validated several individual
techniques, such as dominant frequency (DF), multiscale frequency (MSF), kurtosis (Kt),
and multiscale entropy (MSE), to identify active sites of arrhythmias using simulated
intracardiac electrograms (iEGMs). However, the individual performances of these
techniques to identify arrhythmogenic substrates are not reliable.

Objective: This study aimed to develop a similarity score using various iEGM analysis
techniques to more accurately identify the spatial location of active sites of arrhythmia in
patients with AF.

Methods: Clinical bipolar iEGMs were obtained from patients with AF who underwent
either successful (m = 4) or unsuccessful (m = 4) catheter ablation. A similarity score
(0–3) was developed via the earth mover’s distance (EMD) approach based on a
combination of DF, MSF, MSE, and Kt techniques.

Results: Individual techniques successfully discriminated between successful and
unsuccessful AF ablation patients but were not reliable in identifying active spatial
sites of AF. However, the proposed similarity score was able to pinpoint the spatial
sites with high values (active AF sites) that were observed only in patients with
unsuccessful AF termination, suggesting that these active sites were missed during the
ablation procedure.

Conclusion: Arrhythmogenic substrates with abnormal electrical activity are identified
in patients with unsuccessful AF termination after catheter ablation, suggesting clinical
efficacy of similarity score.

Keywords: atrial fibrillation, ablation, signal processing, earth mover’s distance (EMD), similarity score
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INTRODUCTION

According to an estimate in 2014, 2.7–6.1 million people in
the United States are afflicted by atrial fibrillation (AF). AF is
the most common type of supraventricular arrhythmia in the
United States and is associated with an increased risk of stroke
(Go et al., 2001; Miyasaka et al., 2006). AF is characterized by
the chaotic electrical activity in the atria (Munger et al., 2014).
Furthermore, the prevalence of AF has been projected to increase
to nearly 12.1 million people by 2050 (Miyasaka et al., 2006;
Colilla et al., 2013). These reasons make AF a significant public
health concern and underpin the need to develop more efficient
treatment techniques.

Compared with antiarrhythmic drug therapy, catheter
ablation improves AF symptoms and quality of life and reduces
AF recurrence (Wazni et al., 2005; Jaïs et al., 2008; Wilber et al.,
2010). Pulmonary vein (PV) isolation, the most commonly used
catheter ablation approach, alone can be used as a strategy for
catheter ablation in patients with paroxysmal AF (Sawhney et al.,
2009; Ouyang et al., 2010; Chao et al., 2012). However, in the
case of persistent and long-standing AF, electrical initiation of
AF may arise outside the PV regions, which play an essential role
in arrhythmogenesis and maintenance of AF (Elayi et al., 2010).
Hence, it is important to identify AF ablation targets outside
the PV regions for the improved success of catheter-based
ablation therapy.

Several approaches, such as local activation maps, phase
maps, and dominant frequency (DF) maps (Pandit and Jalife,
2013), are commonly used to identify ablation target sites.
In our laboratory, we developed several novel techniques to
identify active sites of AF, especially outside the PV regions,
both in the frequency-domain [multiscale frequency (MSF)
(Arunachalam et al., 2016b)] and time-domain [multiscale
entropy (MSE) (Arunachalam et al., 2018) and kurtosis (Kt)
(Arunachalam et al., 2016a)]. All novel techniques have been
validated using optical mapping studies of ex vivo rabbit
hearts and have been established to accurately identify the
active sites or arrhythmias, such as pivot point of rotors in
experiments where rotors have been visually observed (Annoni
et al., 2018). These techniques were shown to be accurate under
some clinical limitations, such as reduced signal time duration
and decreased spatial resolution. It was also demonstrated
that the novel techniques could differentiate between the
intracardiac electrograms (iEGMs) recorded from patients
with successful and unsuccessful AF ablation (Ravikumar
et al., 2021). However, the use of individual approaches
fails to robustly identify electrically active spatial sites for
ablation (Ravikumar et al., 2021), and therefore, efforts on
developing combinatory approaches to identify the active AF
sites are needed.

In this study, we aimed to develop a similarity score by
combining the various iEGM analysis approaches (DF, MSF,
MSE, and Kt) based on an earth mover’s distance (EMD) method.
We further demonstrated that this similarity score can identify
active spatial sites of AF in patients with unsuccessful AF
termination, while no active sites of AF were present in patients
with successful AF termination.

MATERIALS AND METHODS

Patient Population and Clinical
Intracardiac Electrograms Data
All the patients (m = 8) had persistent AF and underwent
PV isolation (PVI) during ablation therapy. Successful PVI was
defined as the elimination or dissociation of all PV potentials
recorded. Complete isolation of PVs was achieved in all cases.
In patients whose rhythms were reorganized to atrial tachycardia
(AT) or atrial flutter, mapping and ablation of the tachycardia
were performed to restore sinus rhythm. In this study, successful
AF termination was defined as the acute termination of the
AF during PVI or after conversion into organized AT or atrial
flutter before conversion into sinus rhythm, either spontaneous
or with ablating the residual AT. In patients with unsuccessful AF
termination, a further cardioversion procedure was performed
to terminate AF, and therefore, unsuccessful AF termination was
defined in patients who underwent cardioversion to restore sinus
rhythm. The baseline characteristics of all patients are listed in
Supplementary Table 1.

Clinically recorded bipolar iEGMs (BiEGMs) were obtained
from the left atrium (LA) fromm = 8 patients, with prior approval
under the Institutional Review Board (IRB: STUDY00003128) of
the University of Minnesota. All experiments were performed
as per relevant guidelines and regulations, and the consent of
the patient was obtained before obtaining the data. Simultaneous
iEGM collection was carried out using the CARTO (Biosense
Webster, Irvine, CA, United States) system, which has a sensor
position accuracy of 0.8 mm and 5◦. BiEGMs were recorded with
a sample rate of 977 Hz and a duration of 5–15 s at different
spatial sites (N = 16–24) in each patient, using high-resolution
PentaRay catheters (Biosense Webster, Irvine, CA, United States).
A spatial site was defined as the unique placement of the
PentaRay catheter in the atria so that 10 BiEGMs were recorded
and individually analyzed from each spatial site. Furthermore,
the distribution of the metrics obtained from 10 BiEGMs in
each site for the various approaches was compared using the
EMD. Notably, 160–240 BiEGMs were recorded before the PVI
ablation procedure.

Three independent reviews were performed to identify the
noisy, low amplitude, and contact loss signals. BiEGMs with
extremely low amplitude, high noise corruption, loss of contact,
and low signal-to-noise ratio were removed, and only the good
signals were used for the retrospective analysis. BiEGMs were
then filtered with a third-order IIR Butterworth band-pass filter
3–15 Hz to maintain the frequency components of the recorded
signals in the physiological range.

Similarity Score Based on Earth Mover’s
Distance Method
To develop a similarity score, four different approaches that
were previously used in the literature for the BiEGM analysis,
namely, MSF (Arunachalam et al., 2016b), MSE (Arunachalam
et al., 2018), DF (Sanders et al., 2005), and Kt (Arunachalam
et al., 2016a), were used. More details of these techniques are
provided in Supplementary Table 2. We have chosen these
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techniques for the initial development of similarity scores since
they represent different characteristics of the BiEGM signals
such as frequency, information content, and amplitude-based
statistics. In this study, we have not examined the contribution of
each individual approach to the outcomes of similarity score and
therefore assigned equal weights to each approach. Furthermore,
the similarity score can be optimized based on various weighted
contributions from a different signal processing approaches.

The similarity score is based on the EMD approach (Rubner
et al., 2000) and compares the performance of pairs of different
individual techniques at various spatial sites in the atria of the
patient. A high similarity score indicates that the individual
techniques identified the same spatial site as the active site of AF.

The EMD is used to evaluate the similarity between two
multidimensional distributions and is based on a solution to the
well-known transportation problem (Rubner et al., 2000). First,
let P = {pn,1, pn,2, . . ., pn,J} and Q = {qn,1, qn,2, . . ., qn,J} be the
distributions of values from two different approaches for J = 10
BiEGMs, respectively, recorded at each site n. Second, we defined
the Euclidean distance-vector, containing the distance between
P and Q elements. Then, at each spatial site n, we calculated
EMDn (P, Q) as follows:

EMDn (P,Q) =

∑J
i = 1

∑J
j = 1 fijdij∑J

i = 1
∑J

j = 1 fij
(1)

where n = [1, 2, . . ., N] is spatial sites, fij is the flow rate between
elements pni and qnj, and dij is the distance between elements
pni and qnj. For example, using our recorded data from patient
1, we have N = 18 sites. Therefore, we obtained 18 values of
EMDn(P, Q). The value of EMD = 0.2 was considered as a
threshold for similarity, i.e., if two approaches have EMD < 0.2
(Ravikumar et al., 2018), they are similar, i.e., they have a strong
correlation. The threshold was selected based on the minimal
distances between the distributions. Furthermore, this threshold
indicates that matches have a similarity greater than 0.8 on a
scale of 0–1 for the minimal distances between the distributions
to be satisfied.

The EMD values were calculated for all approaches, and the
following pairs were calculated for all the patients at each spatial
site: (1) DF vs. MSF, (2) DF vs. MSE, (3) MSF vs. MSE, (4) DF
vs. Kt, (5) MSF vs. Kt, and (6) MSE vs. Kt. Then, at each spatial
site, the number of pairs satisfying the threshold requirements for
the EMD similarity index (EMD < 0.2) was computed, ranging
from 0 (no pair is above the threshold) to 6 (all pairs are above
the threshold). Finally, a similarity score of 0–3 was assigned to
each spatial site in every patient reflecting the number of pairs
above the threshold: 0 (no pairs), 1 (1–2 pairs), 2 (3–4 pairs), and
3 (5–6 pairs). A high similarity score of 3 indicates that all four
methods identify this specific spatial location as a potential site
for AF abnormal activity and subsequent ablation.

Three-Dimensional Reconstruction
Using VIEgram
A custom VIEgram software (Thakare et al., 2020) was used
to demonstrate the three-dimensional (3D) visualization of

individual approaches using BiEGMs collected from patients with
AF. A custom-built Python script was used for data extraction,
while data processing and 3D mapping were performed using
custom-built MATLAB (MathWorks, Natick, MA, United States)
scripts. The 3D images were constructed by superimposing the
individual measures on a 3D mesh of the LA, and the individual
approaches were correlated using the EMD approach.

Statistical Analysis
All the statistical analyses were performed using the MATLAB
(MathWorks, Natick, MA, United States) software. A statistical
Wilcoxon rank-sum test was performed for significance testing
to determine whether the individual techniques can differentiate
between the iEGMs recorded from patients with successful and
unsuccessful AF termination, with p < 0.05 being considered
as statistically significant. For categorical variables expressed as
number and percentage, a Fisher’s exact test was performed.

RESULTS

First, we aimed to demonstrate whether individual techniques
(MSF, MSE, DF, and Kt) can discriminate between patients with
successful and unsuccessful AF termination when applied to
BiEGMs. In Figure 1, the box plots of the MSF, MSE, DF, and
Kt values are shown for all patients with successful (m = 4)
and unsuccessful (m = 4) AF termination. Notably, all the
methods show statistical significance (p < 0.05) between the
two groups of patients, suggesting the successful discrimination
based on all BiEGMs.

To further demonstrate the performance of the BiEGM
analysis approaches in identifying active sites of AF, the 3D
visualization of individual approaches was performed using
the custom-made VIEgram software. Figures 2, 3 show the
representative examples of 3D maps of DF, MSF, MSE, and Kt
obtained via VIEgram software for patients with unsuccessful and
successful AF termination, respectively. The atria are visualized
to show the left superior PV (LSPV) and the left inferior PV
(LIPV). The corresponding example of a BiEGM signal from
a single electrode (#) is also shown along with the individual
DF, MSF, MSE, and Kt values from this recording. Notably, the
visual inspection of spatial similarity between all four approaches
does not suggest any correlation between the techniques both
in a patient with unsuccessful and successful AF termination.
Therefore, individual approaches alone cannot correctly identify
the active sites of AF that should only be present in patients with
unsuccessful AF termination.

To improve the performance of the various BiEGM analysis
techniques for the identification of active AF sites, a similarity
score was developed based on EMD to quantify the correlation
between various pairs of the techniques at each spatial site. In
Figures 4, 5, the representative examples of the EMD values
calculated for different pairs of approaches at different spatial
sites are shown for patients with unsuccessful and successful
AF termination, respectively. The gray shaded area indicates
the regions with EMD < 0.2, where all pairs are strongly
correlated, and therefore, the similarity score is high. As indicated
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FIGURE 1 | Performance of the different approaches, such as dominant frequency (DF), multiscale frequency (MSF), multiscale entropy (MSE), and kurtosis (Kt), that
were applied to the bipolar intracardiac electrogram (BiEGM) analysis from patients with successful (m = 4) and unsuccessful (m = 4) atrial fibrillation (AF) termination.
Asterisk indicates statistical significance with p < 0.05.

FIGURE 2 | The three-dimensional (3D) visualization of the individual approaches (DF, MSF, MSE, and Kt) generated using VIEgram software for a specific
unsuccessful AF termination patient P1. Sample of BiEGM recorded from the left superior pulmonary vein (LSPV) (#) is shown along with individual DF, MSF, MSE,
and Kt values.
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FIGURE 3 | The 3D visualization of the individual approaches (DF, MSF, MSE, and Kt) generated using VIEgram software for a specific successful AF termination
patient P8. Sample of BiEGM recorded from LSPV (#) is shown along with individual DF, MSF, MSE, and Kt values.

FIGURE 4 | Earth mover’s distance (EMD) values calculated for the different pairs of approaches (DF, MSF, MSE, and Kt) in an unsuccessful AF termination patient
P1. The gray area indicates the region where the correlation between the pairs is high (EMD < 0.2).

in Figures 4, 5, different techniques have a different degree of
correlation with each other, and the degree of correlation is
also different depending on the spatial site. We hypothesized
that the spatial sites in which at least 5 pairs of the techniques
are correlated, i.e., with a high similarity score of 3, might be
associated with active AF sites.

The correlation data from Figures 4, 5 are summarized in
Table 1 (patient P1 with unsuccessful AF termination) and
Table 2 (patient P8 with successful AF termination), respectively,
where the EMD values below (orange) and above (gray) the
threshold (EMD = 0.2) are shown for all the spatial sites. Notably,
in patient P1 with unsuccessful AF termination, there are three
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FIGURE 5 | Earth mover’s distance (EMD) values calculated for the different pairs of approaches (DF, MSF, MSE, and Kt) in a successful AF termination patient P8.
The gray area indicates the region where the correlation between the pairs is high (EMD < 0.2).

spatial sites (# 3, 8, and 14, red color) in which the similarity
score is high (=3). Such a high similarity score indicates that at
least 5 pairs of different approaches are correlated in these sites,
suggesting the presence of active AF drivers, which most probably
were not properly targeted during the AF ablation procedure.
However, the absence of such red sites with a high similarity
score in a patient with successful AF termination (Table 2) was
noted, indicating that all active sites were appropriately targeted
during the AF ablation procedure. Similar tables for all remaining
patients are present in Supplementary Tables 3–8.

In Figures 6, 7, the similarity scores for different spatial sites
are shown for all patients with unsuccessful (m = 4) and successful
(m = 4) AF termination, respectively. Notably, the spatial sites
with high similarity scores (=3, red) are only identified in patients
with unsuccessful AF termination, suggesting that these sites can
be the active AF sites and potential AF ablation targets. The sites
were distributed among the different regions of the heart, namely,
LA appendage, lateral wall, roof wall, posterior wall, inferior wall,
septal wall, LSPV, and LIPV.

DISCUSSION

Some recent studies indicated that a PV isolation alone could
be a strategy for catheter ablation in patients with paroxysmal
AF, while recurrence is not fully prevented (Sawhney et al.,
2009; Ouyang et al., 2010; Chao et al., 2012). However, other
studies suggested the need for mapping-specific ablation therapy
in patients with persistent AF when active AF sites are outside

of the PV regions (Barbhayia et al., 2015; Seitz et al., 2017). For
instance, it has been shown that EGM dispersion occurs in the
vicinity of AF drivers, and this dispersion is present both near
and outside the PV regions. Therefore, it is important to develop
new techniques for identifying AF substrates outside the vicinity
of the PV regions and potentially improving the success rates
of the catheter ablation procedure. Several studies demonstrated
the successful identification of AF driver by the phase mapping
of simultaneous recordings using a basket catheter (Narayan
et al., 2012) and a noninvasive array of body surface electrodes
(Haissaguerre et al., 2013). It was also demonstrated in the study
by Roney et al. (2017) that spatial resolution is essential in
identifying the AF reentrant activity. But the reported success
rates using these guided strategies for patients with persistent
AF remained inconclusive and ranged from 19 to 77% (Narayan
et al., 2014; Miller et al., 2017; Mohanty et al., 2018).

Recently, our laboratory developed and validated the novel
iEGM analysis techniques, such as MSF (Arunachalam et al.,
2016b), MSE (Arunachalam et al., 2018), and Kt (Arunachalam
et al., 2016a), to identify the sites with abnormal AF activity
that can be a potential target for AF ablation. Furthermore, we
demonstrated the feasibility of these techniques in identifying
the active sites of arrhythmia under clinical limitations,
with acceptable levels of specificities and sensitivities using
numerically simulated iEGMs (Ravikumar et al., 2021). Multiple
other studies have analyzed other signal processing-based
ablation techniques (Lin et al., 2010; Okumura et al., 2011;
Kumagai et al., 2013; Atienza et al., 2014) built on the DF- and
PVI-based strategies. This study shows that the performance of
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TABLE 1 | Earth mover’s distance (EMD) correlation between different pairs of approaches for various spatial sites of a representative patient P1 with unsuccessful atrial
fibrillation (AF) termination (from Figures 1, 3).

Spatial Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pairs

DF-MSF

MSE-Kurt

MSF-MSE

DF-MSE

MSF-Kurt

DF-Kurt

EMD < 0.2

EMD > 0.2

High/low correlation with respect to the threshold value of EMD = 0.2 is indicated by the orange/gray color. Red spatial sites indicate active AF sites with a similarity score
>3, indicating that at least 5 pairs are highly correlated.

TABLE 2 | Earth mover’s distance correlation between different pairs of approaches for various spatial sites of a representative patient P8 with successful AF termination
(from Figures 2, 4).

Spatial Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Pairs

DF-MSF

MSE-Kurt

MSF-MSE

DF-MSE

MSF-Kurt

DF-Kurt

EMD < 0.2

EMD > 0.2

High/low correlation with respect to the threshold value of EMD = 0.2 is indicated by the orange/gray color. Red spatial sites indicate active AF sites with a similarity score
>3, indicating that at least 5 pairs are highly correlated.

FIGURE 6 | Similarity scores calculated at different spatial sites in m = 4 patients with unsuccessful AF termination. Notably, the presence of several spatial sites
(potential active AF sites) with a high similarity score (3, red) in all the patients.
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FIGURE 7 | Similarity scores calculated at different spatial sites in m = 4 patients with successful AF termination. Notably, the absence of active AF sites with a high
similarity score (3).

individual techniques alone is insufficient in identifying the active
AF spatial sites (Figures 1, 2). To overcome this, we developed a
similarity score that can help identify the active AF spatial sites
by a combination of multiple methods.

We developed a similarity score that can bring together
various signal processing approaches and successfully identify
active AF sites based on the correlation between all the
approaches. In this study, we demonstrated the performance
of the similarity score based on four approaches, namely, MSF,
MSE, DF, and Kt, to identify abnormal electrical sites in patients
with unsuccessful AF termination. However, the similarity
score might be extended and optimized by incorporating other
iEGM analysis approaches and/or by combining a different
number of approaches.

In this study, we have used a custom 3D visualization
software previously developed (VIEgram) to perform a visual
inspection of clinically recorded iEGMs and implement the
previously developed novel iEGM analysis techniques (DF, MSF,
MSE, and Kt). The recorded sites were distributed in these
anatomical regions of the atria, LA appendage, lateral wall, roof
wall, posterior wall, inferior wall, septal wall, LSPV, and LIPV.
It was observed that the use of these individual approaches
fails to robustly identify spatial sites for ablation; the 3D
representations of individual methods among the same patients
are visually not similar in the distribution of the metrics, thus
increasing the difficulty and time consumed to interpret the
different approaches at the same time, especially in patients
with unsuccessful AF termination. To overcome this, in this
study, we have developed a similarity score that combines

all the individual approaches to provide the identification of
the active AF site.

Limitations
There are several limitations to our study. First, we have
performed only a retrospective analysis of the BiEGMs recorded
from a small cohort of patients (m = 8) with persistent AF,
using a newly developed similarity score. While there is a clear
difference in similarity scores between patients with successful
and unsuccessful AF ablation, we could only suggest that this
method pointed out the active sites of AF. However, to directly
demonstrate that these active sites are, in fact, affecting AF
ablation outcomes, a prospective study in a cohort of larger
patients has to be designed.

Successful AF ablation is defined as the absence of recurrence
in AF episodes longer than 30 s in the long-term follow-ups
ranging from 3 months to 1 year (Calkins et al., 2007), i.e., the
recurrence of the first AF episode, or any atrial tachyarrhythmia
post-ablation is perceived as a failure. In this study, the
primary procedural endpoint for a successful termination was
the termination of AF without electrical cardioversion. The
successful termination of AF was defined as the conversion
of AF into sinus rhythm by ablation and without electrical
cardioversion. The acute success of the procedure was considered
as the endpoint in this study. The long-term success of the
ablation procedure was not the primary focus of this study
but rather the acute success of the ablation procedure in the
termination of the AF rhythms.
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In this retrospective study, the BiEGMs were only from the
LA and were distributed in the following anatomical regions of
the atria: LA appendage, lateral wall, roof wall, posterior wall,
inferior wall, septal wall, LSPV, and LIPV. However, the exact
location of the spatial sites could not be identified due to the
limitation of the data. All the approaches used in this study
identify the AF activity present on the endocardial surfaces but
do not identify intramural abnormal electrical activities. In the
future, a prospective clinical study needs to be performed to
validate the performance of the proposed similarity score and
improve and add more approaches to make it more robust.

In this study, we have not examined the contribution of each
feature but assigned equal weights. In the future, we need to
determine the contribution of the various methods individually,
also add more methods, and then optimize their contributions
toward a final similarity score through a weighted sum approach.
A larger data will be needed for this approach.

In this study, all the iEGMs were between the durations of
5–15 s. We have shown previously that the individual approaches
are robust under reduced time durations (Annoni et al., 2018;
Arunachalam et al., 2018), and therefore, we did not expect
any significant impact of different time series duration of our
results. With respect to spatial samples, the EMD is applied to
the measures from the individual approaches at each spatial site
and, therefore, will have no significant impact on the scores. In
this study, the influence of the duration of the iEGM recordings
on the similarity score was not studied.

CONCLUSION

In this retrospective study, we investigated the performance
of individual BiEGM analysis approaches (DF, MSF, Kt, and
MSE) and newly developed similarity scores to identify potential,
abnormal, electrically active sites in patients with previously
unsuccessful AF termination. The major findings of this study are
as follows: (1) individual approaches can discriminate between
patients with successful and unsuccessful AF termination but
fail to robustly identify spatial sites with active AF drivers, (2) a
novel EMD-based similarity score was developed and validated
to identify the active AF sites in patients with unsuccessful AF
termination, and (3) there was no single common region in the

atria associated with active AF sites in patients with unsuccessful
AF termination, thus indicating the need for patient-specific
mapping and ablation therapy.
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Cell culture of cardiac tissue analog is becoming increasingly interesting for regenerative
medicine (cell therapy and tissue engineering) and is widely used for high throughput
cardiotoxicity. As a cost-effective approach to rapidly discard new compounds with
high toxicity risks, cardiotoxicity evaluation is firstly done in vitro requiring cells/tissue
with physiological/pathological characteristics (close to in vivo properties). Studying
multicellular electrophysiological and contractile properties is needed to assess drug
effects. Techniques favoring process automation which could help in simplifying
screening drug candidates are thus of central importance. A lot of effort has been made
to ameliorate in vitro models including several in vitro platforms for engineering neonatal
rat cardiac tissues. However, most of the initial evaluation is done by studying the rate of
activity. In this study, we present new approaches that use the videomicroscopy video
of monolayer activity to study contractile properties of beating cells in culture. Two new
variables are proposed which are linked to the contraction dynamics and are dependent
on the rhythm of activity. Methods for evaluation of regional synchronicity within the
image field of view are also presented that can rapidly determine regions with abnormal
activity or heterogeneity in contraction dynamics.

Keywords: imaging analysis, contractile activity, cardiomyocyte monolayer, non-linear analysis, heterogeneity,
spatial-temporal activity

INTRODUCTION

Cell culture of cardiac tissue analog is becoming increasingly interesting for regenerative medicine
[conditioning of pre-injected stem cell-derived cardiomyocytes (Pillekamp et al., 2012; Hazeltine
et al., 2014) and tissue engineering (Vunjak-Novakovic et al., 2011; Lu et al., 2013; Nunes et al.,
2013; Wendel et al., 2013; Zhang et al., 2013)] and widely used for high throughput cardiotoxicity
evaluation (Dick et al., 2010; Navarrete et al., 2013). Cardiotoxicity is a leading cause of market
withdrawal for drugs (Stevens and Baker, 2009; Ferri et al., 2013) some because of inducing cardiac
dysfunction. Many drugs demonstrate cardiotoxicity due to chronic exposure to anthracyclines
such as doxorubicin (Menna et al., 2008) which are cytotoxic cancer drugs (Schimmel et al., 2004;
Yeh et al., 2004). Chronic cardiotoxicity is usually evaluated in animal models including adult
rodents (Alderton et al., 1992; Desai et al., 2013) or canine (Herman et al., 1983), over periods
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of months of exposition. As a cost reduction approach to
rapidly discard new compounds with high toxicity, cardiotoxicity
evaluation is done in vitro with neonatal rat ventricular
myocyte cultures and ultimately with human stem cell-derived
cardiomyocyte. In vitro, spontaneous activity and contraction
can be influenced when cardiomyocytes are grown on different
surfaces (Engler et al., 2008). As such, studies typically do
not extend beyond 10 days (Shirhatti et al., 1986; Dorr et al.,
1988), limiting their relevance as models for chronic exposure.
It has been suggested that biologically softer material could
favor more rhythmic activity (Hazeltine et al., 2014) although
it may be material dependent (Boudreau-Beland et al., 2015).
Traditional in vitro systems also do not recapitulate the native
tissue architecture or extracellular microenvironment of the
heart, both of which are known to regulate myocyte phenotype
(Feinberg et al., 2012; Sheehy et al., 2012). Furthermore, studies
with animals and animal-derived cells are not always relevant
to humans due to species-dependent differences (Sham et al.,
1995), indicating a need to develop in vitro systems that are
compatible with human-derived cardiac myocytes (Zhang et al.,
2009). A lot of effort have been made to ameliorate in vitro models
including several in vitro platforms for engineering neonatal rat
cardiac tissues with simultaneous quantification of contractile
function in response to variables such as tissue architecture
(Grosberg et al., 2011; Feinberg et al., 2012), mechanical stretch
(McCain et al., 2013), electrical stimulation (Chiu et al., 2011),
or gelatin hydrogels developed as muscular thin film substrates
(McCain et al., 2014).

Studying multicellular electrophysiological and contractile
properties is needed to assess drug effects and techniques that
can favor the automation of the process helping in simplifying
the screening process. Techniques for imaging contractile activity
has been developed for decades including approaches to measure
spontaneous rhythms in culture (Rohr, 1990) to study the rate
and stability of activity (Boudreau-Beland et al., 2015). Less costly
and more easily distributed imaging chip-scale lensless wide-
field-of-view microscopy imaging technique have been proposed
which can render microscopy images of growing or confluent cell
cultures (Zheng et al., 2011). Long-term culture of engineered
animal and human cardiac tissues coupled to less invasive data
recording on activity and contractility to better predict adverse
or functional effects of drugs on the heart is highly desirable.

In this study, we present new approaches that use the
videomicroscopy video to study contractile properties of beating
cells in culture. Two new variables are proposed which are linked
to the contraction dynamics and are dependent on the rhythms of
activity. Methods for evaluation of regional synchronicity within
the imagined field of view are also presented that can swiftly
determine regions with abnormal activity or heterogeneity in
contraction dynamics.

MATERIALS AND METHODS

Cardiomyocyte Isolation Procedure
All animal-handling procedures were concordant with the
Canadian Council on Animal Care guidelines and were approved

by the institutional Animal Research Ethics Committee. Isolation
was performed according to the protocol of the neonatal
cardiomyocyte isolation kit from Worthington. In summary, 1–
3 days old rats (Sprague-Dawley, Charles River) were sacrificed
by decapitation. Beating hearts were removed from the rats
and immediately put in cold Ca2+ and Mg2+-free Hank’s
Balanced Salt Solution. The ventricular muscle was selected
by excision and the tissue was minced on ice into 1–
3 mm3 pieces. The mixture was subjected to purified enzymatic
digestion (trypsin and collagenase). Isolated cells (enriched
cardiomyocytes) were counted and seeded at a density of 106

cells/mL in the seeding area of the membrane pre-coated with
0.2% porcine-derived gelatin (G1890, Sigma) and 0.00125%
fibronectin solution (F1141, Sigma). Cells were grown for 24 h
in DMEM (319-050-CL, Wisent) with 5% fetal bovine serum
(FBS, SH30396.03, Thermo Fisher Scientific Co., Ltd.) and 1%
penicillin/streptomycin (450-201-EL, Wisent). Cardiomyocytes
were then FBS starved with 1% penicillin/streptomycin in
DMEM 24 h prior to the experiments. For the set of experiments
used to study the effects of electrically pacing the cardiomyocytes
at different pacing cycle length (PCL), the cells were washed and
the medium changed to fresh DMEM without FBS just prior
to record the activity (thus not being starved for 24 h prior to
the experiments).

β-Adrenergic Stimulation
Acute effects of the β-adrenergic agonist, isoproterenol (ISO,
I6504, Sigma-Aldrich) was studied by videomicroscopy with final
concentration of 100 nmol/L at 1 min after injection.

Videomicroscopy Recording
Phase contrast videos of neonatal cardiomyocytes were acquired
after 48 h post seeding in vitro with a Dalsa HM640 camera
(Ny = 640 × Nx = 480 pixels) at rates of 30, 50, or 100 frame
per second (fps) coupled to an inverted Nikon optical microscope
(10× magnification). The field of view (FOV) covered by the
camera was 0.44 mm by 0.33 mm.

Mathematical Models of Cardiomyocyte
Electrophysiology and Contraction
The Morotti et al. (2014) model of mouse ventricular myocyte
modified to integrate the Negroni et al. (2015) model of
myofilament contraction as used by Surdo et al. (2017)1 was
simulated at PCL ranging from 200 to 1,000 ms to study the
effects of period of activity. To account for the duration of
transient solution when starting from the resting steady-state,
simulation output at 30 and 60 s are considered in this study.
The Negroni et al. (2015) of rabbit ventricular myocyte was also
simulated at different PCL for a 30 s duration of simulation.
A modified version of the rabbit model was also studied where
two parameters of the myofilament section were multiplied by
a factor of 5: Yb (binding rate of Ca2+) and f (transition rate
between the 1st and 2nd state of the troponin system). The
parameter Yv (part of the detachment function) was scaled down
by a factor of 5.

1https://somapp.ucdmc.ucdavis.edu/Pharmacology/bers/
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The models were numerically integrated in Matlab (R2008,
MathWorks Inc., Natick, MA) using the variable-step, variable-
order solver based on the numerical differentiation formulas of
orders 1–5 for stiff system (ode15s). Relative error tolerance was
set to 10−5.

Statistical Analysis
All statistical analyses have been done in R (version 3.1.3). Linear
regression was used to test for variable dependency on period
of activity. The analysis of covariance (ANCOVA) was used to
compare group and covariate effects. Means were compared with
Student’s t-test.

ANALYSIS APPROACH AND RESULTS

Studying the Global Contraction
Characteristics
The proposed initial approach is using the raw video signal and
calculating for each pixel the difference between frames separated
by a delay corresponding to a defined frame interval.

Let M(t) be the global camera frame recorded at time t. The
composite signal 1S is calculated using the following Equation:

1S (t) =
1

NxNy

Ny∑
j=1

Nx∑
i=1

∣∣∣∣Mi,j (t)−Mi,j (t − τ)

τ

∣∣∣∣ , (1)

where τ is a discrete time delay (or number of frames for delay
multiplied by the time between frames 1t = 1/fps), Ny and Nx
are, respectively, the number of horizontal and vertical pixels
such that i and j are the pixels coordinates along the horizontal
and vertical axis. An example of the composite signal 1S for a
spontaneously beating sample is shown in Figure 1 for different
delay (τ= 1,4, and 8 multiplied by 1t). The shortest delay τ=1t
corresponding to a frame-by-frame difference shows the highest
noise level (Figure 1A) while increasing τ to 41t (Figure 1B) and
81t (Figure 1C) decreased the amplitude difference between the
high and low amplitude peaks.

Link Between Videomicroscopy Signal
and Cellular Contraction
In silico data and analysis reveal that the composite signal 1S
calculated from Eq. (1) can be interpreted as follow. The absolute
derivative of the time-dependent cell length calculated from
simulated sarcomere length (SL) obtained from the simulation is
given by:

dSLabs (t) =
∣∣∣∣dSL

dt

∣∣∣∣ (2)

where SL is the sarcomere length. The change in SL calculated
with the Surdo et al. (2017) model paced at a PCL of 500 ms is
presented in Figure 2A. The time derivative of this contraction
signal is depicted in Figure 2B which shows the initial contraction
(negative derivative) followed by the positive relaxation signal.
As shown in Figure 2C, there is a clear similarity between the
rectified derivative given by Eq. (2) and the videomicroscopy

signal obtained with Eq. (1) as shown in Figures 1A, 3A
(highlighted in the inset of panel A).

Two specific measures are proposed that are presented in
Figure 2D which corresponds to the amplitude ratio between the
contraction and relaxation peaks (RatioC/R) and the time between
the contraction and relaxation peaks (1R−C). The effects of the
PCL on contraction signal and specific measures are shown in
Figure 2D which highlights the sensitivity of the measures on
rhythm and calcium dynamics. Decreasing the PCL from 500 to
220 ms lead to a decrease of 6% of 1R−C and of 33% of RatioC/R.

Automatic discrimination between contraction and relaxation
peaks is important in the perspective of user-friendliness
and for the approach to have a clear potential in a high
throughput screening/testing system. The approach is based
on the observations of experimental data showing differences
in amplitude and rate of decrease around the peaks between
the contraction and relaxation. Starting from a 1S signal as
shown in Figure 3A, three conditions are being used to detect
and validate classification of the peaks: 1- there is alternance
between contraction and relaxation peaks, 2- clusters are usually
separated in the variable space given by the time difference
between peaks (1tmarkers) and amplitude of the peaks (1Speaks)
as depicted in Figure 3B, 3- experimental data has sharpest peaks
for contraction and widest peaks for relaxation resulting in more
rapid amplitude loss around the maximum 1S peak amplitude.
The last condition can be easily evaluated by taking the amplitude
for 1 sample (first sample before and after the position of the
peak) and 2 samples (second sample before and after the peak)
around the peak divided by the peak amplitude (Ratiodrop: the
ratios given by the value of the first and second samples around
the peak divided by the value of the signal for the peak define).
As such, Ratiodrop serves to evaluate how fast the amplitude
decreases around the peak distinguishing fast changes (narrow
contraction peaks)_and slower changes (wide relaxation peaks).
The obtained data are presented in Figure 3C where a lower
average Ratiodrop is found for the contraction peaks (left circles;
0.77 ± 0.03 and 0.40 ± 0.06 n.u.) compared to the relaxation
peaks (right dots; 0.92 ± 0.02 and 0.78 ± 0.04 n.u.). Using
the second neighboring points (what we labeled drop by two
samples) helps separating the contraction and relaxation groups
of points (the red points behind more clearly separated as a
function of Ratiodrop).

Changes in Contraction Measures
An example of an analyzed acquisition is presented in Figure 4.
The signal 1S is shown in Figure 4A with detected peaks (red
circles) and resulting classification highlighted for contraction
(red dotted lines) and relaxation peaks (red dashed lines). The
resulting series of spontaneous activity shows a constant period
T (Figure 4B: 0.64 ± 0.01 s) almost no variation in 1R−C
(Figure 4C: 0.22 ± 0.01 s). However, RatioC/R shows greater
variability between samples (Figure 4C: 1.89 ± 0.06 n.u.) mainly
due to variations in the maximum amplitude of the contraction
peaks as seen on the signal in Figure 4A.

A set of 8 samples data obtained at PCL ranging from
min. 500 to max. 2,000 ms are presented in Figure 5 (each
color corresponding to a given cell culture sample except for
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FIGURE 1 | An example of composite signals 1S obtained with different delay between frames for a spontaneously beating sample. (A) τ = 1 frame, (B) τ = 4
frames, and (C) τ = 8 frames. The video was recorded at 50 fps.

the black line that corresponds to the mean value of the
samples). <1R−C> (Figure 5A) is the lowest for shortest cycle
length and is augmenting with PCL increasing except for one
sample. The average curve (black line) shows a slight biphasic
shape with intermediate PCL values being slightly higher than for
the highest PCL (6/8 samples clearly showing a biphasic shape).

Data for <RatioC/R> are presented in Figure 5B. The lowest
value is usually found for lower PCL and is increasing with
PCL increasing (7/8 samples). There is again a tendency for a
biphasic shape of the curves which is more visible for the average
curve (black line).

Comparison With Simulation Data
Long-term simulations of the Surdo et al. (2017) mouse
ventricular model ionic model have been done for a comparison
purpose with the experimental data. Simulation results
for <1R−C> are shown in Figure 6A. The general shape
of the curves differs between the experiments and simulations.
Similar to experimental data, simulated <1R−C> is the lowest
for shortest cycle length and is augmenting with PCL increasing
for shortest PCL. There is, however, a particular biphasic shape

(more like a narrow peak) as the maximum value is found
around 240–245 ms before rapidly decreasing followed by a slow
increase with PCL increasing. This narrow peak comes from
the morphology of the |dSL/dt| relaxation phase which has a
double hump shape. The peak in the <1R−C> as a function
of PCL comes from a change from the first hump to be higher
to the second bump thus resulting from an added delay in the
marker for relaxation (∼0.02 s). The maximum (experiments:
0.54 s; simulation: 0.21 s) and range (experiments: 0.14 s;
simulation: 0.05 s) of <1R−C> is also less than in experiments.
We compared the results for two duration of simulation (30
and 60 s of simulation for different constant PCL) to highlight
the possible transient behavior of the model. The rate main
difference between shorter (30 s) and longer (60 s) simulations
are a higher <1R−C> right after the peak resulting in a slower
increase with increasing PCL for PCL > 300 ms.

Simulated data for <RatioC/R> are presented in Figure 6B.
Similar to experimental data, the lowest value is found for lower
PCL and is increasing with PCL increasing. There is a clear
biphasic shape of the curve that seems also to be found in
some experimental samples in Figure 5B. The highest values
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FIGURE 2 | Simulation of contraction and the link to the composite signal 1S. (A) Shortening of the sarcomere length (SL) as a function of time. (B) The time
derivative of SL. The dots correspond to the derivative calculated with a sub-sample signal corresponding to 50 samples/s (1t = 0.02 s). (C) Rectified signal of (B)
showing double peaks corresponding to the contraction and relaxation phases. (D) Explanation of two specific measures (1R-C and RatioC/R) obtained from
simulations at two difference PCL (black curve: PCL = 220 ms; red curve: PCL = 500 ms). A shorter PCL leads to a decreased 1R-C and decreased RatioC/R.

in simulated <RatioC/R> is found near PCL = ∼375 ms.
The biphasic shape comes from the difference in rate of
change between the contraction and relaxation peaks with
increasing PCL. Starting at PCL = 360 ms, the rate of increase
in the amplitude of the relaxation peak as a function of
increasing PCL is greater than the rate of increase of the
contraction peak. As such, the Ratio_C/R for PCL > 360 ms is
decreasing with PCL increasing. There is, however, a decrease
in highest <RatioC/R> for longer simulations (60 s compared
to 30 s) indicating that it is, at least in part, linked to transient
behavior of the model. More importantly is the range of values
which differs from the experimental data. <RatioC/R> is always
less than one for simulated data with the mouse model while
experimental data are mostly greater than one (except for some
cases at lowest PCL). The differences are important because value
lower than one means that the rate of relaxation is faster than the
rate of contraction.

The differences between the experimental and simulated
data lead us to test if it was because of the ionic model.
Thus, the rabbit ventricular model by Negroni et al. (2015)
was simulated with normal parameter values (ctl) and with
two contraction parameters (modified, see “Materials and
Methods” section for details). The change in parameters (between
ctl and modified models) did not significantly impact the

action potential duration when paced at 500 ms as shown
in Supplementary Figure 1A. While the ctl model has a
relaxation rate higher than the contraction rate (black curve
in Supplementary Figure 1C) resulting in a RatioC/R < 1,
the modified model (green curve) shows a faster contraction
than relaxation (RatioC/R> 1). A visual comparison of the
curves clearly shows that the modified model has longer 1R−C
compared to the ctl model. <1R−C> and <RatioC/R> as a
function of PCL for the Negroni et al. (2015) model can be found
in Supplementary Figures 2A,B, respectively. The ctl rabbit
ventricular model shows an increase in <1R−C> compared to
Morotti et al. mouse model (maximum value around 0.25 s vs.
∼0.21 s). Interestingly, simulating the modified Negroni et al.
(2015) rabbit model resulted in even longer <1R−C> (∼0.35 s)
getting closer to the experimental values. While <RatioC/R> for
the ctl Negroni et al. (2015) rabbit ventricular model is always
less than 1 the modified version resulted in <RatioC/R>> over
almost all the PCL range.

Average Values of Samples in
Spontaneous Activity
A set of samples (n = 29) has been analyzed. For each
video of 30 s duration, the average values <T>, <1R−C>,
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FIGURE 3 | Classification of 1S peaks for a spontaneously beating sample. (A) An example of composite signal 1S with detected peaks (red circles) showing
alternation between high amplitude and low amplitude peaks. Inset: blow up of the activity within the dashed black rectangle which highlights the high amplitude
contraction peaks followed by the lower amplitude relaxation peak like the derivative of the simulated contraction model. (B) Contraction and relaxation clusters are
relatively well separated when viewed in the space with x-axis being the time between markers and y-axis being the peak amplitude (1Speaks). (C) Estimation of the
change in 1S around the peaks given by the Ratiodrop (amplitude of 1st and 2nd samples around the peaks divided by the peak amplitude). Lower ratio Ratiodrop is
linked to faster change in 1S around the peaks for the contraction peaks compared to the relaxation.

and <RatioC/R> were calculated as the average of the temporal
values obtained from the signal analysis of individual acquisition.
A clear monotone increase in <1R−C> with increasing <T> is
found as depicted in Figure 7A with ∼40% change between
the minimum and maximum values. The linear regression
(p < 0.001) has a slope of 0.072 s/s (represented as a red
line) and intercept of 0.166 s. As expected, the variability is
greater for <RatioC/R> but a trend to an increasing ratio
as <T> augments is found. However, the variation with the
period is less with ∼23% change between the minimum and
maximum values in the dataset (see Figure 7B). The fitted
regression line (p < 0.005, red line on the panel) has a slope of
0.276 s−1 and an intercept of 1.93.

Influence of β–Adrenergic Stimulation
on <1R−C> and <RatioC/R>
The variation in the contraction measures that can be evaluated
by our videomicroscopy approach has been tested with

isoproterenol (ISO), a β–adrenergic agonist. Results are presented
in Figure 8. As expected, the period of activity is significantly
decreased with ISO compared to CTL (0.9± 0.6 s vs. 1.9± 2.4 s in
CTL, p < 0.05). Similar variation of <1R−C> is found between
CTL and ISO groups as a function of <T> although <T> is in
average smaller with ISO as expected (Figure 8A). Interestingly
the <RatioC/R> showed statistically significant <T> and group
effects with p < 0.001. The slope of the linear regression being
larger for the ISO group compared to CTL (0.146 for CTL
vs. 0.490 for ISO).

Could the Proposed Measures, 1R−C
and RatioC/R, Be Useful for
Cardiotoxicity Testing?
In order to see if 1R−C and RatioC/R may be interesting
to evaluate cardiotoxicity, we used the change in sarcomere
length data presented in Figure 5B in the study by Timolati
et al. (2009) comparing the rat ventricular cardiomyocyte
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FIGURE 4 | Temporal variation in spontaneous activity obtained by analysis of 1S with 50 fps. (A) The composite signal obtained for a representative sample (blue
line). Detected peaks are highlighted by red circles. Post classification results are shown by dotted red lines (contraction peaks) and dashed red lines (relaxation
peaks). (B) The period of activity given the time difference between contraction peaks shows a constant period of activity equal to the pacing cycle length (PCL).
(C) Calculated 1R-C as a function of the period of activity (corresponding here to the time elapse since the last contraction) is only varying by ± one sample.
(D) RatioC/R is more varying compared to 1R-C.

FIGURE 5 | Experimental data obtained for 8 samples electrically paced at different PCL. Each colored line corresponds to a sample results except for the black line
that represent the mean of the 8 culture samples. (A) 1R-C is generally increasing for small PCL. The average curve (black line) exhibits a biphasic morphology which
initially increases followed by a small decrease for large PCL (5/8 samples have similar morphology). (B) RatioC/R usually starts low and is increasing when PCL
increases. A biphasic pattern is also found for RatioC/R (7/8 samples) and is also seen for the average curve (black line).

contraction paced with a period of 500 ms in control and
treated with 1 µmol/L of doxorubicin for 48 h. The data was
digitized and sampled with 10 ms between samples (shown

in Supplementary Figure 3). Using the same approach as
depicted in Figure 2 for the Surdo et al. (2017) ionic model,
we calculated the mean of the last two contractions (skipping
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FIGURE 6 | Similar to Figure 5 but for simulation results obtained after 30 (blue line) and 60 s (red line) of simulation. (A) Rapidly increasing 1R-C for short PCL
increase followed be a rapid decrease and a long and slow increase when increasing the PCL. (B) RatioC/R shows a clear biphasic waveform starting with a small
value for short PCL which rapidly increases to a maximum value for PCL around 420 ms followed by a slower decrease while PCL increases. The maximum value of
RatioC/R is smaller at 60 s compared to 30 s indicating the part of the biphasic shape is due to transient dynamics.

FIGURE 7 | Experimental data obtained for samples in spontaneous rhythm. (A) Mean temporal 1R-C (<1R-C>) is increasing when the mean T (<T>) is
augmenting. The red line corresponds to the linear regression fit (slope of 0.072, p < 0.001, corr. = 0.89). (B) Mean RatioC/R (<RatioC/R>) as a function
of <T> showing a slight augmentation with increasing <T>. The linear regression line (red line) has a slope of 0.276 (p < 0.01, corr = 0.56).

the first one) yielding 1R−C = 0.11 s in control compared to
0.07 s for the doxorubicin-treated cardiomyocyte. RatioC/R
was increased in cardiomyocyte treated with doxorubicin (1.3
in control vs. 1.5 for the doxorubicin-treated cardiomyocyte).
Although this result is very limited, it points to the interest
of the measures in detecting contraction changes and
evaluating cardiotoxicity.

From Global to Regional Analysis
All the previous analyses presented in this study are based
on a global composite signal calculated using the entire FOV.

The same approach can be used for sub-regions of the FOV
by calculating a composite signal for each section. We present
here two additional approaches aiming to study spatial-temporal
differences in videomicroscopy signals.

Finding Areas With Non-correlating Activity in
Spontaneous Activity
The first approach is based on determining how local signal
correlates with the global composite signal. The first step is to
split the image in contiguous regions of Nsub,x and Nsub,y pixels.
The local composite signals are calculated over all sub-regions of
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FIGURE 8 | Comparison between CTL (black points) and ISO (white circles) contraction results in spontaneous rhythm. (A) <1R-C> as a function of <T> does not
shows dissimilarity between groups. (B) <RatioC/R> as a function of <T> differs between CTL and ISO with both a significant <T> and treatment effects (CTL vs.
ISO).

Nsub,x and Nsub,y pixels from the total FOV with Eq. (3) (similar
to Eq. 1).

1Sx′,y′ (t) =
1

Nsub,yNsub,x

Nsub,y∑
u=1

Nsub,x∑
v=1∣∣∣∣∣∣∣∣∣∣

Mu+Nsub.y(y′−1),v+Nsub.x(x′−1) (t)
−Mu+Nsub.y(y′−1),v+Nsub.x(x′−1) (t − τ)

τ

∣∣∣∣∣∣∣∣∣∣
(3)

where Nsub,y = Nsub,x = 10, M(t) is the movie frame at time t,
u and v are the local coordinate within each sub-region of the
FOV and x′ and y′ are the new position within the segmented
FOV (such that x′ = 1, y′ = 1 is the first pixel of the new video
calculated from on the individual signals of the pixels y = 1–10
and x = 1–10 from the original video).

The energy (E) of the local composite signals is calculated
using:

Ex′,y′ =
1

Nt − τ

Nt∑
t=τ

(d1Sx′,y′(t)
dt

)2

(4)

where Nt is the number of frames of the original video. An
example of the spatial distribution of log(Ex ′ ,y ′ ) is displayed in
Figure 9A and the corresponding histogram can be found in
Figure 9B. High energy regions of the FOV are selected using
a thresholding approach.

The correlation coefficient (CC) and lag between the global
signal 1S(t) and local composite signals 1Sx ′ ,y ′ (t) are calculated.
An example of the resulting map of coefficients and lag are
respectively depicted in Figures 9C,D after keeping pixels with
log(E) > 6. In this example, most of the relevant section of the
FOV have a correlation coefficient greater than 0.8 and a lag of
0 s which indicates that the local activity is highly similar between
these regions and the global activity. However, some regions
show lower correlation including regions with a correlation value
of less than 0.4 (regions labeled sub 1 and 2 in Figure 9C).
Interestingly, these regions have also non-zero lags. Using a

thresholding approach on the correlation coefficient map, two
corresponding clusters of low correlation with high energy can
be detected and the average signal from these clusters are shown
in Figure 9E. The signals in both sub 1 and 2 regions (red line)
have strong peaks usually not occurring simultaneously with the
global composite signal (blue dotted line). Please note that lower
amplitude peaks are also found in this signals that correlate with
the global activity.

Digging Deeper in Acquisitions With Complex Global
Signal
Conditions that alter the development and function of cultured
monolayers can affect the spatial-temporal activity. Confluent
monolayers usually show consistent and relatively stationary
signal with the common contraction/relaxation peaks as shown
in Figure 3A. However, more complex global composite signals
can be found such as multiple peak complexes as can be seen in
the example shown in Figure 10A.

To investigate the causes of these complex patterns, a
thresholding on the energy was done as previously showed
[map of log(E) is shown in Figure 10Bi after thresholding with
log(E) > 4]. The method is based on cross correlation between
two time series shifted relatively in time (the time shift being
the lag). Calculation of the correlation coefficient with the global
composite signals does not highlight important regions with low
coefficient (Figure 10Bii). However, calculating the correlation
coefficient and lag between cluster signals [from the average
1Sx ′ ,y ′ (t) of each cluster] results in the matrix plot shown in
Figures 10C (correlation coefficient) and D (lag). Both panels
show a clear difference in correlation and lag between cluster 5
and the others (labeling of the clusters can be found on the map
showing the correlation coefficient between cluster 5 and others
in Figure 10Biii).

The causes of the correlation differences can be investigated by
further studying the differences in the cluster 1Sx ′ ,y ′ (t) signals
represented by a grayscale in Figure 10E. A closer look at the
maps shows that synchronization between cluster 5 and the
others varies over time with almost simultaneous activity within
the orange dashed rectangle (which has a corresponding normal
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FIGURE 9 | Estimation of heterogeneous spontaneous contraction rhythms within the FOV. (A) Map of log(E) with the energy E calculated from Eq. (4) showing area
with no contraction signal in blue. (B) Histogram of log(E) with the dashed line representing the threshold [log(E) > 6] use to select high energy signal regions.
(C) Maximum correlation coefficient and (D) lag between local 1Sx ′ ,y ′ (t) and global 1S(t) for regions having log(E) > 6. Two low CC regions labeled sub 1 and sub 2
are highlighted. Most of the regions show high CC with 0 s lag. (E) Signal from region sub 1 (top axes) and sub 2 (bottom axes) showing the low CC (shown as red
lines vs. global 1S as dotted blue lines) and global 1S.

double peak feature in the global signal shown by the blue
line). However, the complex multi-peaks section encompassed
within the red dashed rectangle corresponds to an earlier
contraction in cluster 5 (with delays between cluster 4 and
5 of 100 and 160 ms for the 2nd and 3rd beats in the
rectangle). The non-stationary aspect of the global signal can
thus be understood by a change in timing of cluster 5 activity
in respect to other clusters where the abnormal added peaks
are found when a long delay between cluster contractions
occurs. Depending on signal quality, the contraction/relaxation
analysis approach presented in the first part of this article could
be done on cluster signals to extract and compare temporal
activity variations.

DISCUSSION AND CONCLUSION

In this study, we proposed novel approaches to study beating
dynamics in cell culture. To our knowledge, the main
contractility analysis method described herein the first to

study the contractility characteristics based on monolayer
videomicroscopy data. Indeed, previous methods focused mainly
on period/frequency of activity (Rohr, 1990; Kim et al., 2011).
Based on a simple composite signal calculated as the variation in
pixels intensity, two main variables can be determined: the time
difference and the ratio between the contraction and relaxation
peaks. These new variables could be interesting to determine
toxic effects on cardiomyocytes more importantly regarding heart
failure risk. Both variables showed to be dependent on the period
of activity (either paced as shown in Figure 5 or spontaneously
beating as in Figure 7). A note that a direct comparison between
the spontaneously beating data and paced data cannot be done as
being two different sets of experiments with different FBS-starved
prior to experiments.

Comparison with simulation results show qualitative
similarities between simulation and experimental data. However,
there are quantitative differences on both variables of interest
as, for example, RatioC/R is less than one in the simulations
but not in experiments. A recent study clearly showed that the
rate of contraction is faster than the rate of relaxation (which
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FIGURE 10 | Analysis of a different global 1S for a different sample with complex activity. (A) Example of a non-stationary global signal with time intervals where
multiple peaks (different to the contraction/relaxation peaks usually found). Two intervals are highlighted by dashed rectangles with the orange one showing the
normal double peak signal and the red rectangle with multiple peaks. (Bi) Map of log(E) after thresholding [log(E) > 4]. (Bii) CC between individual cluster signals and
global 1S. (Biii) Labeled separated clusters with colorscale representing the CC between cluster 5 and other clusters. (C) Matrix of CC between clusters (Pillekamp
et al., 2012; Lu et al., 2013; Wendel et al., 2013; Zhang et al., 2013; Hazeltine et al., 2014) with diagonal equal to 1 and (D) lag for maximum CC. Minimum CC and
maximum lag are found between cluster 5 and all 4 other clusters. (E) Cluster 1S signals for the 5 within the two intervals highlighted by rectangles in (A) is shown
by a grayscale (peaks are darker and lower values whiter). The global 1S is plotted in blue on top for comparison.

would lead to RatioC/R> 1) for both atrial and ventricular
adult rat cardiomyocytes (Nollet et al., 2020). Visual inspection
of published mouse cardiomyocyte shortening seems to also
point to a RatioC/R> 1 (Lim et al., 2000). There is of course
a correlation between the calcium dynamic and contraction
characteristics. An interesting example has been published by
del Monte et al. (1999) in their study on contractile function
in isolated cardiomyocytes from failing human hearts. Failing
heart cardiomyocytes are known to have decreased expression
and function of SERCA2. The data presented show that the
contraction is much slower than relaxation when looking at the
cell shortening. As such, we expect to have a RatioC/R less than 1.
Overexpression of SERCA2 yielded reverted the cell shortening
to a cell shortening similar to the non-failing cardiomyocyte.
The mathematical modeling in our study assumed an isotonic
contraction while a confluent monolayer should probably be
a mixed condition between isometric (on a stiff cell culture
substrate) and isotonic on the free top side of the cells. The
study by Rodriguez et al. (2011) clearly showed that even
isolated (not being a monolayer), the velocity of contraction
measured from displacement of an elastic post show a fastest
contraction compared to relaxation. It is interesting to note that
the force of contraction of an isolated but attached neonatal rat
cardiomyocytes is heterogeneous with the highest forces being
found at the periphery of the cell and lowest at the center (where
the nucleus is found). As such, it is highly probable that the
formation monolayer, by having cardiomyocytes constraining

each other, would have an impact of the proposed measures.
Thus, although there may still be differences between monolayers
vs. isolated cells, it is likely that it is not the cause for the
contraction rate being smaller than the relaxation rate in the
simulations resulting in a RatioC/R smaller than 1. Also, it is
highly probable that differences between culture conditions
(substrate rigidity, microstructure for cardiomyocyte alignment,
mechanical and electrical stimulation) known for influencing
cardiomyocyte function would also influence the contraction
function and thus, possibly change the measures in some way.
The exact link between the contraction waveform and the actual
change in contraction measures obtained from the composite
signal requires further investigation.

It is interesting and promising to see that the proposed
measures is dependent on the rate of activity. We have
shown that adrenergic stimulation (with isoproterenol) which
is well known for its isotropic effect results in a change
in RatioC/R confirming that the proposed measures are of
interest to evaluate contraction changes by pharmacological
agents. Although it remains to be tested experimentally,
analysis of previously published contraction changes induced
by doxorubicin resulted in variations of both RatioC/R and
1R−C. The last two proposed approaches (Figures 9, 10) are
interesting to evaluate the homogeneity of the monolayer activity
and, in case of heterogeneous dynamics, quantify the correlation
between monolayer areas. Conditions inducing partial electrical
decoupling could be detected.
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The proposed approaches may be also interesting in limiting
impact on the beating cells as proposed previously (Kim et al.,
2011; Pushkarsky et al., 2014) which remains to be evaluated.
Light impact on cellular process can be decreased by limiting
exposure and careful selection of wavelength bands to favor
contrast but it is believed to be minimal (Rohr, 1990). Although
extension to lens-free CMOS imaging remains to be tested, our
method can be adjusted to cover various scales of field of view.
The limited time resolution due to the relatively low frame per
second from a reasonably priced sensor could be a limitation.
However, even a slow frame rate of 30 fps (as used for the
CTL vs. ISO experiments) showed a significant difference in the
proposed contraction measures. Recent development in imaging
technology and communication hardware with off-the-shelf USB
3.0 or MIPI CSI-2 cameras open the way to greater than 100 fps
simple sensor solution. Even the Raspberry Pi camera module can
now easily allow up to 90 fps with VGA resolution (640 × 480
pixels) opening the way to simple low-cost high throughput
parallel screening.

The proposed alternative methods described here that aim
to study heterogeneity in contraction signal are interesting
as they can estimate cell culture characteristics impossible to
study directly with classical methods (Rohr, 1990; Kim et al.,
2011). Here, detection of localized abnormal activity (compared
to the global activity) could also be a measure of cell/tissue
sample deterioration. Moreover, the change in synchronization
between regions, an important variable that can be link to
intercellular coupling and be a factor favoring arrhythmia, can
be evaluated. As such, actual application of these approaches and
evaluation of their relevance as appropriate biomarker of new
drug cardiotoxicity could be of great interest.
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Deep neural networks (DNN) have shown their success through computer vision tasks
such as object detection, classification, and segmentation of image data including
clinical and biological data. However, supervised DNNs require a large volume of labeled
data to train and great effort to tune hyperparameters. The goal of this study is to
segment cardiac images in movie data into objects of interest and a noisy background.
This task is one of the essential tasks before statistical analysis of the images.
Otherwise, the statistical values such as means, medians, and standard deviations
can be erroneous. In this study, we show that the combination of unsupervised and
supervised machine learning can automatize this process and find objects of interest
accurately. We used the fact that typical clinical/biological data contain only limited kinds
of objects. We solve this problem at the pixel level. For example, if there is only one
object in an image, there are two types of pixels: object pixels and background pixels.
We can expect object pixels and background pixels are quite different and they can
be grouped using unsupervised clustering methods. In this study, we used the k-means
clustering method. After finding object pixels and background pixels using unsupervised
clustering methods, we used these pixels as training data for supervised learning. In this
study, we used logistic regression and support vector machine. The combination of
the unsupervised method and the supervised method can find objects of interest and
segment images accurately without predefined thresholds or manually labeled data.

Keywords: machine learning, unsupervised learning, k-means clustering, support vector machine, object
detection, image processing, artificial intelligence, cardiac images

INTRODUCTION

Cardiac cells and tissue have complex shapes. In addition, muscle contraction changes their
shapes over time. When we analyze experimental data such as calcium concentration in the cell
or membrane potential in tissue, it is necessary to segment out objects of interest from their
background. If data contain signals from the outside of objects of interest, statistical values such
as means, medians, and standard deviations can be erroneous.

If there are only a few images, it is possible to do it manually. However, for example, movie
data contain many frames. In this case, it is desirable to automatize the process. There have been
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many ways to do it automatically, at least partially. One way
is to use a thresholding method if the background is less noisy
and contrast between objects of interest and the background
is relatively high (Gonzalez and Woods, 2018). However, it is
often difficult to choose an appropriate threshold value, especially
when the image data contain noisy or weak signal parts. Another
way is to use the center of the object, which is confident,
instead of using the whole object. However, the center and the
fringe may have different signals and the signals from the fringe
might be important.

More recently, machine learning, such as deep neural
networks (DNNs), has been greatly improved, especially for
image processing. DNNs have shown their success through
computer vision tasks such as object detection, classification,
and segmentation of image data including clinical and biological
data. However, supervised DNNs require a large volume of
labeled data to train DNNs and tuning of hyperparameters.
For example, without segmentation maps as training data,
convolution neural networks such as U-net (Ronneberger et al.,
2015; Zhou et al., 2018; Khened et al., 2019) cannot be applied
to the problem. In addition, we use various tools and materials
in research experiments. This means we have to re-tune and
re-train the model as we change the experimental settings. The
goal of this study is to segment out objects of interest from the
background automatically.

In this study, we show that the combination of unsupervised
learning and supervised learning can automatize this process and
find objects of interest accurately. Instead of DNNs, we used
simple machine learning methods that require little time to train
and have short inference time. As we show later, we can expect
signals from object pixels and signals from background pixels are
quite different and thus they can be grouped using unsupervised
clustering methods. On the other hand, supervised learning
methods often give better results. We proposed a combined
method that possesses advantages of these two methods. Here,
we used the unsupervised method to extract training data and
the supervised method for prediction to find objects of interest
accurately without the need for manually labeled data.

METHODS

Experimental Data Sets
In this study, we used movie data of action potential wave
propagation in the heart. Each movie contains one heart object
close to the center of the frame. Cardiac tissue was loaded with
a fluorescent indicator (RH237), which changes the recorded
fluorescence with changes in membrane potential. The goal here
is to segment images into the heart and background in these
movies. Data were collected at 1 kHz. Each movie consists of
1,024 frames (= 1,024 ms), while each frame is a 100 px × 100 px
8 bit-grayscale image (Figure 1A). Pixel values were normalized
between 0 and 1. This was done for each pixel. 0 was assigned
to the minimum value of the pixel over time (not the minimum
value of the entire movie). Similarly, 1 was assigned to the
maximum value of the pixel over time. One data point consists
of n frames. n is arbitrary. In this study, we chose n to be

32, 128, 256, 512, and 1,024. For example, when we acquire
boundaries of objects for the first frame with n = 512, we use from
frame 1 to frame 512. Each data point is classified individually.
Then, using the result, we create a mask to hide the background
for the first frame. Similarly, for the n-th frame, we use from
frame n to frame n+511. In general, the larger n gives better
classification performance. On the other hand, the smaller n
gives better motion tracking performance. In this study, since
the image contains 10,000 pixels, there are 10,000 data points
to be classified.

k-Means Clustering
We first used one of the classical unsupervised methods called
k-means clustering (Forgey, 1965; MacQueen, 1967; Hartigan and
Wong, 1979). k-means clustering is originally used for signal
processing that groups x data points into k clusters. Cardiac
cells loaded with a fluorescent indicator show action potential
signals and thus we expect the signals from the heart tissue
would be different from those from the background in the data
space (Figure 1B). We note that the dimension of the data space
represented in Figure 1B is two. The dimension of data space
in this study is n. We sampled pixels from heart tissue and
background and plotted the change in values of these pixels over
time (Figure 2). Figures 2A–D show representative signals from
the heart tissues while Figures 2E–H show representative signals
from the background. These panels demonstrate the distinct
signal patterns in the object of interest and the background areas.
In this study, we use the similarity of time-series data.

Manually Selected Training Data
In addition to unsupervised machine learning, we also used
supervised machine learning which requires training datasets.
We manually selected the heart areas from around the center of
the heart and non-heart areas from around the four corners. Note
that we only selected the regions far from the boundaries to assure
the selected pixels belong to these classes. Since in our movies
the heart/non-heart area do not change radically over time, our
selection of the first frame could be applied to the whole 1,024
frames. The detail of the process is as follows:

1. Draw five polygons, corresponding to the central
heart areas and four corner non-heart areas, avoiding
the marginal areas.

2. Identify the pixel location circled by these polygons,
and extract pixel values from the selected areas of 1,024
frames, respectively.

3. Append heart/non-heart labels (0, 1) to the two types of
extracted values to create a dataset of shape (m, 1,025)
(1,024 frames + 1 label), where m is the number of
selected pixels.

We labeled 5,500 heart and 900 non-heart pixels, that is
m = 6,400. Our training and validation sets are split with a ratio
of 8:1 for both heart and non-heart pixels.

Logistic Regression
In this study, we used logistic regression and support vector
machine (SVM) as supervised learning methods. Logistic
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FIGURE 1 | Data sets and methods. (A) Grayscale image of the heart. The heart is located in the center of the image. We select d frames, and each pixel would
have d values (d-dimensional vector) from the frames. (B) The schematic illustration of the k-means method. Here only two axes are shown. In our case, we
compute in d-dimensional space. k-means is an unsupervised method, and no training is required. (C) The schematic illustration of SVM. SVM will find the best
hyperplane to split the data. SVM requires training. (D) The schematic illustration of the logistic regression. the logistic regression will fit sigmoid function to the data
points and find a middle point (y = 0.5) to split the points to the two classes (tissue and background). The logistic regression classifier requires training. We note that
(B–D) are only for illustration. The actual dimension of the data in this study is n.

regression is one of the simplest yet effective classification
methods (Pregibon, 1981; Peng et al., 2002), which models the
probability of a solid outcome using logistic function. For a binary
logistic regression model, the outcome would be 1/0, true/false,
while in our case, it would be heart/background (Figure 1C).
In terms of solving the problem, let X be the input pixel value
and Y be the label, logistic regression defines a relation of
f (X) = Sigmoid (m∗X+ c) (m and c are weights and bias), where
Sigmoid (t) = 1/[1+ exp(-t)]. The goal is to minimize [Y-f(X)]2.
The procedure is as follows:

1. Using the manually selected training data with dimension
(6,400, 1,025) from 2.3, select n frames (0 < n < = 1,024)
to prepare a new dataset with new dimension (6,400, n+1),
including the label.

2. Train the logistic regression model with the selected data.
Predict any single frame with input shape (10,000, n), and
the output shape of (10,000, 1) can be reshaped to 100
px× 100 px to get the mask.

Support Vector Machine
We also used SVM as another example of supervised machine
leaning. SVM is a robust classification model (Suykens and
Vandewalle, 1999). SVM constructs a hyperplane in the data
space to split the data points into the two classes (Figure 1D).
While we are choosing the hyperplane, we want to maximize
the minimal distance between the classes. When we draw a
hyperplane to split the two classes, each class would have a point
that have the minimal distance to the plane, and what SVM tries
to do is to maximize this distance. We used the linear kernel for all
the cases. The procedure is similar to logistic regression in section
“Logistic Regression,” except we train SVM in step 2.

Combined Method of k-Means
Clustering and Support Vector Machine
As we will show in the “Results” section, SVM gives the
most stable and accurate results within these three methods
(k-means clustering, logistic regression, SVM). However, SVM
requires manually labeled training data. On the other hand, with
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FIGURE 2 | Signals in time domain (Dataset No. 1). (A–D) Representative data from four pixel locations from cardiac tissue. (E–H) Representative data from four
pixel locations from the background. For each plot, the x-axis represents the time, and the y-axis represents the change in values of one pixel location over time. Due
to normalization, noise in background pixels is normally amplified (E–H).

unsupervised machine learning, k-means does not work as well
as SVM, but it does not require training data. Thus, it is natural
to combine these two methods for one that performs well while
does not need labeled training data. We first modify k-means to
retrieve data points for training, and then applied SVM using
those training data.

We first randomly choose a center for each cluster for k-means
clustering, and then assign each data point to the nearest cluster.

In our case, we have two clusters: heart tissue pixels and
background (non-heart) pixels. Since we are using k-means to
prepare data for training, we want to avoid the marginal areas and
select the confident areas, just like when we select manually. We
proposed Distance Discount Factor to help selecting the confident
areas in k -means clustering.

Distance Discount Factor in k-means clustering is as follows.
Let a data point A have a distance D1 to Center 1 and D2 to Center
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2. We compare D1 and D2 to decide to which cluster A belongs.
During this step, we multiply distance D1 with a discount factor
γ ∈ (0, 1] to make D1 smaller, that points are more likely to be
assigned to Center 1 with the discounted distances. Despite the
discount factor, there would still be points assigned to Center
2 with D2 < γD1. These points would be viewed as stubborn
points; they are so close to Center 2 that they cling to that
center even after we posed a discount to D1. Then these stubborn
points would be the confident points that belong to this cluster,
which would be extracted and labeled as training data. Despite
we designed γ here to be in range (0, 1] for convenience, a
more loose range would be γ ∈ (0,∞). Since we have inequity
“D2 < γD1,” multiply one side by γ would be the same to multiply
another side by 1/γ.

The basic algorithm of k-means clustering is not changed with
the discount factor. At each iteration of k-means clustering, the
discount factor would be applied when comparing distances of
each point to the two centroids, which is basically a metric to
decide how the points would be assigned to each centroid. With
discount factor = 1, this is just the original k-means since the
distances would not be changed, while with discount factor = 0,
all points would be assigned to one cluster, since we assign points
to the nearest centroid but distances of all points to this cluster
are multiplied by 0.

The procedure of the combined method is as follows:
Input: A movie consisting of 1,024 frames, while each frame is

a 100 px × 100 px 8 bit-grayscale image. Thus, there are 10,000
(× 1,024) data points.

1. Run k-means with the distance discount factor twice (one
for the tissue and one for the background) on these data
points to find confident heart tissue points (Figure 4B) and
confident background points (Figure 4C), substituting the
step where we manually select data. With these confident
points we form a dataset of m × 1,024 and corresponding
labels of m × 1 (let m be the number of confident points).
Note that the discount factor needs to be tuned with
visual observation only once for a specific task, in our
experiments we tuned the discount factor with grid search
on Dataset No.1 and it can be used for other datasets.

2. Set n to be the number of frames we extract. To segment
the i th frame (n, i ∈ [1, 1, 024]; n + i – 1 < = 1,024), we
extract frame i∼ frame n+ i – 1 and form a training dataset
of m× (n+ 1), with “+ 1” representing the labels.

3. Fit SVM (or other supervised methods) to this labeled
dataset to get a classifier. Then for the i th frame, we
use this classifier to classify each of the 10,000 pixels
and get segments.

Noise Reduction With Modified Median
Filter
We sometimes observed dotted noise in regions where signals
are obscure. At the final stage, we applied a modified median
filter to reduce noise specifically in masks (with only 0s and 1s)
(Supplementary Figure 6). This function is similar to original
median filter, but it is more flexible and is tailored for masks.

After classification, each pixel in the mask has a value of either
1 (heart pixel) or 0 (non-heart pixel). For each pixel location, we
check whether its neighbor’s value is the same as itself. We count
these occurrences to determine whether to change its value. For
example, assuming a pixel A has a value 1, we count the 3 × 3
neighbor pixels surrounding A. With a threshold of 3, if more
than 3 pixels in the grid have the value of 1, we kept A unchanged.
Otherwise, we change A to 0 since its neighbor’s counts does not
satisfy the threshold.

We make the function more flexible by enabling it to be
applied to only one value. That is, if we set remove heart to false,
the counting grid will not be applied if the pixel has a value 1
(heart pixel). Then the 1 s in the mask remain intact, while the 0
s can be changed to 1 if it does not satisfy the filter threshold.

Code Availability
Codes are written in Python and MATLAB and are available from
GitHub1.

RESULTS

In this study, we detected the heart in the experimental
image data using unsupervised and supervised machine learning
methods. We used k-means clustering as an unsupervised
method, and logistic regression and SVM as supervised methods.

Figure 3 shows comparison of results between these three
methods. k-means clustering worked better as the number of
frames increased. On the other hand, logistic regression worked
well when the number of frames was small. SVM worked well
regardless of the number of frames.

Although SVM gave the most stable results among them, it
requires training to use it. For Figure 3, we manually selected
the training data as described in section “Methods.” As the next
step, we considered to prepare training data using unsupervised
learning. Figure 4A is the original image data. We applied the
k-means clustering with the distance discount factor and picked
the heart pixels (Figure 4B) and non-heart pixels (Figure 4C).
Using training data picked by the k-means clustering, we trained
the SVM and classified heart and non-heart pixels. Figure 4D
is the detected heart. Figure 4E shows the detected heart using
manually picked training data for comparison. Here, we used
1,024 frames. We also varied the number of frames and tested the
combined method (Supplementary Figure 1). Supplementary
Figures 2–5 shows all the results and comparisons between the
combined method and SVM using manually selected training
data. In all the cases, both results are very similar.

We also combined k-means clustering and logistic regression.
However, in this case, the results were worse than the combined
method of k-means clustering and SVM. Supplementary Table 1
shows all the cases we did in this study.

SVM has a validation accuracy of 0.999 for all frames on
both manually selected data and k-means selected data. Logistic
regression has a validation accuracy of 0.999 for 128 and 256
frames, 0.59 for 512 frames, 0.5 for 1,024 frames. We calculated

1https://github.com/DSatoLab/Automated-Object-Detection-with-AI
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FIGURE 3 | K-means vs. logistic regression vs. SVM and with 128, 256, 512,
and 1,024 frames (Dataset No. 1). The detected background was masked
with red and only the heart area is shown.

the ratio r = (the number of heart pixels)/(total number of pixels)
with different methods (Supplementary Table 1). To get a clearer
insight into the change of ratio with respect to the change in
frames, we calculated the standard deviation (STD) of the heart
ratios from each method (Supplementary Table 1). We expect
STD would measure the consistency of each method, that is how
the ratio is varied with different number of frames. Our results
show SVM is much more consistent (lower STD) than logistic
regression with either manually labeled data or k-means extracted
data. Both methods have a lower STD with k-means extracted
data than that with manually selected data.

Moving Objects and Boundaries
This algorithm can be applied to the moving objects and
can track moving boundaries. Supplementary Movie 1 shows
the result when tissue is rotating. Supplementary Movie 2
shows the result when tissue is shrinking. We also tested this
algorithm using calcium transient data along with contraction
by Huebsch et al. (2015). In these examples, we chose smaller
frame number (n = 32). In all the cases, we could track moving
boundaries accurately.

DISCUSSION

In this paper, we proposed the combined method of unsupervised
machine learning and supervised machine learning to automatize

FIGURE 4 | Flow chart of combined method. (A–E) Are all from Dataset No.1.
k-means was used to get the training data at the first step. Border zones were
excluded from the training data. We chose data close to the centroids. The
non-red area in (B) is heart and the non-red area in (C) is non-heart part. Then
theses selected areas were labeled with 0 and 1 s to train SVM. (D,E) Are the
results of the SVM model, where SVM of (D) is trained by k-means picked
data and (E) is trained by manually picked data.

the process of object detection mainly focusing on the cardiac
movie data. We used the fact that most experimental data contain
only a few objects and signals from the background are quite
different from those of the objects of interest.

Unsupervised methods and supervised methods have their
own advantages and combined unsupervised and supervised
methods have been used in several areas. For example, Richard
et al. (2007) used combined unsupervised and supervised
methods for segmentation of radiophonic audio streams. Guo
et al. (2015) used them to automatize lesion detection on MRI
scans. In this study, we solved the problem of the heart tissue
segmentation in grayscale movies. We formulated the problem
from the per-pixel level instead of the per-image level. The
advantages of the per-pixel view are: 1. Each pixel would be
classified and thus the precision of the boundaries would be high.
2. The problem could be viewed as a simple binary classification
problem. In one frame of the movie, the 100 × 100 pixels are
viewed as 10,000 datapoints, which are reasonably enough for
training of the model, and all we need is to classify them as heart
or non-heart pixel and form a mask.
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Many segmentation methods have been proposed to find
objects in an image (Gonzalez and Woods, 2018). However, most
of them are for a single image. In this study, we used multiple
frames in the movie data to segment out objects of interest. In
other words, we do not use spatial similarity. Instead, we use
temporal similarity. This makes the algorithm robust for noise. In
fact, due to normalization of signals over time, even if the noise
levels are the same in the tissue pixels and the background pixels,
the noise signals would be amplified in the background pixels
(Figures 2A–D vs. Figures 2E–H). Thus, even during diastole,
we can classify the tissue pixels and the background pixels.

In this study, we compared various methods. We first used
unsupervised and supervised methods individually (Figure 3).
We found that unsupervised learning like k-means clustering
works in most cases, especially when the number of frames
is large. k-means clustering does not require labeled data or
predefined thresholds. However, in some cases, it could not
identify the heart properly. k-means fails to segment the images
when the number of frames is small (Figure 3, 128 frames),
but it worked with more than 256 frames. Since change in the
signal is small with a smaller number of frames, clustering cannot
distinguish these pixels and background pixels where zero signal
plus noise. With more data points, change in the signal from heart
tissue becomes larger and the classification results became better
with 256 frames or more. In other words, the model becomes
more robust with higher dimensional data.

SVM performed better than logistic regression and k-means
clustering. SVM worked with all the number of frames and
the results are quite stable (Figure 3), but it requires labeled
data to train. Thus, we combined the advantages of k-means
clustering and SVM.

To choose reliable training data sets, we developed the
distance discount factor strategy. The distance discount factor
can be between 0 and 1. If the distance discount factor is 1, it is the
same as the original k-means clustering. As the distance discount
factor becomes smaller, we will find smaller subsets of points close
to the centroids. Using this algorithm, we can find more reliable
locations of centroids and exclude outlier data points as well as
data points near the boundaries.

In this study, we chose the distance discount factor manually
so that there would be a reasonable number of training data.
But it is easy to automatize the process if the target number of
training data is given.

Our results showed that the combined method performed well
while it does not require any manual labeling. We confirmed
that the combined method has similar results comparing to SVM
with manually labeled data in almost all cases (Supplementary
Figures 2–5). We also tested this method with a smaller number
of frames (32 frames) (Supplementary Figure 7). Thirty-two
frames are equal to 32 ms as the data acquisition rate is 1 Hz.
In 32 ms, the motion of the heart is limited. Thus, when
this method works, we can track the motion of the heart
(Supplementary Movies 1, 2).

We imagine that logistic regression would have a better fit for
classification problem due to nature of sigmoid function. From
the results, logistic regression worked with 128 and 256 frames
but failed with 512 and 1,024 frames (Figure 3). We tested with

several numbers of frames and found that the effectiveness of
the method decreases gradually as the number of frames (i.e.,
dimension of the data) increases. Regression methods loss its
generality with higher dimensional data, as they are unable to
draw an unregular line or shapes between the two classes in high
dimensional spaces.

Our current task required labels only for one object and thus
there were two classes. It is easy to extend the algorithm to
increase the number of objects. If there are two types of objects in
an image, there are three types of pixels. For a more complicated
scenario, the cost of labeling becomes large. In this paper, we
experimented with grayscale video data, and we combined k-
means clustering with SVM to separate background noise from
object of interest accurately. There are many other unsupervised
and supervised methods. In future studies, we will try other
combinations of unsupervised and supervised methods for more
complicated scenarios.
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Supplementary Figure 4 | Results of the combined method (Dataset No. 3)
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Supplementary Figure 5 | Results of the combined method (Dataset No. 4)
with 128 Frames.
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Supplementary Figure 6 | Comparison between k-means and smoothed
k-means with 128, 256, 512, and 1,024 frames (Dataset No. 1). The detected
background is masked with red and only the heart area is shown.

Supplementary Figure 7 | Results of the combined method (Dataset No.
1) with 32 Frames.

Supplementary Table 1 | Ratio of Predicted Heart Pixels with different frames
(Dataset No. 1). Ratio the number of heart pixels predicted by each method and
different number of frames (Total of 10,000 pixels). STD is the standard deviation
of each method (each row) to see the variation of each method with different

number of frames. k-means used unlabeled data; Logistic regression and SVM
used manually selected data to train; Combined SVM and combined logistic
regression used labeled data from k-means clustering.

Supplementary Movie 1 | The result of the combined method when tissue was
rotated 180 degrees over 1 s. The detected background is masked with red and
only the heart area is shown. n = 32.

Supplementary Movie 2 | The result of the combined method when tissue was
shrunk over one second. The detected background is masked with red and only
the heart area is shown. n = 32.
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Introduction:High pacing frequency or irregular activity due to arrhythmia produces
complex optical mapping signals and challenges for processing. The objective is to
establish an automated activation time-based analytical framework applicable to
optical mapping images of complex electrical behavior.

Methods: Optical mapping signals with varying complexity from sheep (N = 7)
ventricular preparations were examined. Windows of activation centered on each
action potential upstroke were derived using Hilbert transform phase. Upstroke
morphology was evaluated for potential multiple activation components and peaks
of upstroke signal derivatives defined activation time. Spatially and temporally
clustered activation time points were grouped in to wave fronts for individual
processing. Each activation time point was evaluated for corresponding
repolarization times. Each wave front was subsequently classified based on
repetitive or non-repetitive events. Wave fronts were evaluated for activation time
minima defining sites of wave front origin. A visualization tool was further developed
to probe dynamically the ensemble activation sequence.

Results:Our framework facilitated activation timemapping during complex dynamic
events including transitions to rotor-like reentry and ventricular fibrillation. We
showed that using fixed AT windows to extract AT maps can impair interpretation
of the activation sequence. However, the phase windowing of action potential
upstrokes enabled accurate recapitulation of repetitive behavior, providing
spatially coherent activation patterns. We further demonstrate that grouping the
spatio-temporal distribution of AT points in to coherent wave fronts, facilitated
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interpretation of isolated conduction events, such as conduction slowing, and to derive
dynamic changes in repolarization properties. Focal origins precisely detected sites of
stimulation origin and breakthrough for individual wave fronts. Furthermore, a
visualization tool to dynamically probe activation time windows during reentry
revealed a critical single static line of conduction slowing associated with the
rotation core.

Conclusion: This comprehensive analytical framework enables detailed quantitative
assessment and visualization of complex electrical behavior.

KEYWORDS

optical mapping, fibrillation, pacing, electrophysiology, image processing

1 Introduction

Chaotic electrical activity in the ventricles of the heart form the
precursor to sudden cardiac death, a major public health problem. Our
understanding of arrhythmic behavior and electrical remodeling in
cardiac diseases at the organ level continues to grow with
advancements of recording instruments. Optical mapping using
potentiometric fluorescent probes excels in the compromise over
resolution and imaging field of view (Himel and Knisley, 2007).
Yet, spatio-temporal complexity of electrical signals recorded
during chaotic electrical events such as in cardiac arrhythmias,
imposes constraints to accurately interpret the electrical behavior.
Increased frequency of activity often leads to concomitant slowing of
overall conduction, increased variance of conduction velocities and a
loss of synchronization (Kleber et al., 1986; Akar et al., 2007); the
latter, impacting negatively the signal amplitude (Fast and Kleber,
1995). Moreover, multiple complex arrhythmic patterns may co-exist,
originate from numerous sources and transition from one behavior to
another over time. As a result, algorithmic activation time (AT)
detection, visualization and interpretation are challenging and a
unified approach encompassing a broad range of signal
complexities is lacking.

The first 20 s following the induction of ventricular fibrillation in
pig showed chaotic electrical impulse propagation evolving towards
steadily more organized states (Rogers et al., 1997a; Rogers et al.,
1997b). To understand and quantify waveform complexity, a
multiplicity metric was developed to determine the repetitiveness of
propagating wave fronts, which are dependent on their orientation,
size and regularity. Chen et al. (2000) later showed using frequency
analysis and phase mapping that regions of the ventricles in rabbit
maintained periodic activity at frequencies exceeding the surrounding
tissue. From this, they determined that high frequency periodic
sources were responsible for driving complex fibrillatory behavior
in the periphery, underlying ventricular fibrillation. However, the life-
time of rotors when measuring from the epicardial surface are variable
and rarely lasting more than two rotations in healthy myocardium
(Kay et al., 2006). In this case, rotors were identified as the point of
phase singularity, where contours of all phases converge to form the
center of rotation (Winfree, 1989). More recently, it was
demonstrated that the point of phase convergence could also
assume a line, which aligned with functional gradients or structural
boundaries (Arno et al., 2021). The wavelet hypothesis was evaluated
using in silico models and suggested that multiple wavelets could
be sustained in homogeneous tissue, but preferentially block or lead
to wave break with increased heterogeneity (Fenton et al., 2002).
Short-lived and intermittent renewal of rotor sources or the

constant wave break and regeneration of wavelets describe at least
part of the fundamental complexity of fibrillatory behavior. But this
is further confounded in tissue by structural heterogeneities,
particularly in pathological conditions resulting in increased
electrical uncoupling.

Phase analysis of electrograms and optical mapping studies of
tachyarrhythmic events has proven effective at identifying the
substrate region implicated in classical rotor theory, but is less
adapted currently for applications to assess macroreentry or non-
reentrant events. Frequency analysis requires multiple electrical events
to determine the periodicity and regularity of activity. However there
remains an unmet need to provide a unified approach to spatially
resolve electrical propagation patterns and to investigate wave front
behavior in an individualized manner, irrespective of the underlying
mechanism.

AT mapping has been used successfully to track critical excitatory
pathways underlying stable ventricular tachycardia (Takahashi et al.,
2004). Child et al. (2015) developed the reentry vulnerability index
from an activation-repolarization time metric between the proximal
and distal ends of the same wave front. Requiring only a short-coupled
stimulation protocol, the vulnerability index provided maps of the
relative probability of reentry without needing to induce the
arrhythmia. Focal sources of activation can also be readily located
as local sites of AT minima. Although surface mapping methods
cannot distinguish between focal sources originating from the mapped
surface or deeper layers and are therefore termed sites of activation
breakthrough. That being said, optical mapping signals originate from
a near-surface tissue volume and are therefore an integral of electrical
responses from several cell layers (Fedorov et al., 2010). As a result,
optical action potential upstroke morphology depends on the
sequence that the different cell layers are activated and provides an
approximation of the subsurface electrical wave orientation (Hyatt
et al., 2008). Moreover, the depth contribution of optical signals can be
varied by modifying the wavelength of excitation light (Walton et al.,
2010); A palette of voltage-sensitive dyes extending in to the near-
infrared range continue to be developed (Matiukas et al., 2007). The
versatility, effective resolution, signal morphology and additional
depth information afforded by optical mapping necessitates a
dedicated framework for analysis of complex tachyarrhythmia.

The objective of this study was to establish a novel analytical
framework for assessing electrical complexity recorded by optical
mapping. Specifically, aims were to: Conserve image resolution;
avoid temporal signal complexity reduction; conserve multiple
upstroke events; To achieve spatial coherence of AT; To perform
classification of repetitive/non-repetitive activity and to spatially
classify wave fronts by their source. We present a comprehensive
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pipeline based on a novel unified method to assess the activation
sequence adapted for arrhythmic and transitional electrical behavior.
We compared experimental recordings with an in silico model of
reentry induced in a three-dimensional ventricular slab geometry.
Optical mapping signals were derived from the in silicomodel to apply
processing and analyses on signals with appropriate morphology,
consistent with optical mapping experiments (Hyatt et al., 2005;
Walton et al., 2012).

2 Methods and materials

2.1 In silico model

A finite element model of a three-dimensional ventricular wedge,
measuring 5 cm × 5 cm in the epicardial plane and 1 cm transmural
thickness, was created at a spatial resolution of 200 µm isotropic. Fibre
orientation was set to vary by 120from the endocardial to the
epicardial surfaces. The Ten Tusscher ionic model (Ten Tusscher
and Panfilov, 2006) was implemented to simulate ventricular
arrhythmia. Monodomain simulations were performed using the
openCARP simulation environment (Plank et al., 2021) with
baseline conductivity values of 0.03, 0.02 and 0.02 S/m for
longitudinal (σL), transverse (σT) and transmural (σS) directions.
Using time steps of 0.05 ms throughout, a planar wave was
generated by stimulating one transmural surface of the slab with
shortening coupling intervals at 0, 325, 525 and 715 ms. A rotating
wave was then generated by applying a cross field stimulus during the
recovery phase of the central portion of the model at 860 ms
(Skouibine et al., 2002). To emulate experiments and signal
morphology specific to optical mapping, the cardiac arrhythmia
research package (Vigmond et al., 2003) was used to generate epi-
fluorescent optical signals from electrical simulations, as described
previously (Bishop et al., 2006).

2.2 Tissue acquisition

Hearts were obtained from sheep (N = 8, 2 years old) weighing
40–50 kg in accordance with the guidelines from Directive 2010/63/
EU of the European Parliament on the protection of animals used for
scientific purposes and the local ethical committee. Healthy sheep (N =
7) and a sheep (N = 1) with chronic myocardial infarction following
coronary embolization (see Pallares-Lupon et al., 2022) were
premedicated with ketamine (20 mg/kg) and acepromazine
(0.02 mL/kg), anesthesia was induced by propofol (2 mg/kg) and
maintained under isoflurane, 2%, in air/O2 (50/50%) after
intratracheal intubation. Sheep were euthanized by intravenous
injection with pentobarbital (30 mL/50 Kg) and hearts were rapidly
excised, cannulated and flushed with cardioplegic solution, containing
(mM): NaCl, 110; CaCl2, 1.2; KCl, 16; MgCL2, 16; NaHCO3, 10 and
glucose, 9.01 at 4°C.

2.3 Preparations of sheep myocardium

Coronary-perfused ventricular wedges were prepared by
dissection in to two different configurations, based on the major
coronary artery perfused: right ventricle (right coronary artery) and

left ventricle (left anterior descending and circumflex arteries
(Moreno et al., 2019)). In each case, cannulation of the coronary
circulation was applied at the ostia, arising from the aortic root.
Perfusion leaks at cut surfaces were carefully tied-off and
preparations mounted on to a frame, exposing the endocardial
surfaces. Wedges were submersed and perfused with a saline
solution gassed with 95%/5% O2/CO2 and containing (mM):
NaCl, 130; NaHCO3, 24; NH2PO4, 1.2; MgCl2, 1; glucose, 5.6;
KCl, 4; CaCl2, 1.8, at 37°C and pH7.4.

2.4 Optical mapping

Preparations were imaged using optical mapping of the
endocardial surfaces after being mechanically-uncoupled using
15 µM blebbistatin, and loaded with the voltage-sensitive dye, Di-4-
ANEPPS (Cytocybernetics, United States). Endocardial surfaces were
illuminated with monochromatic LEDs at 530 nm (Cairn Research
Ltd, Kent, United Kingdom). Optical images (100 × 100 pixels) of
signals passed through a 650 ± 20 nm band-pass filter were
acquired using a Micam Ultima CMOS camera (SciMedia
United States Ltd, CA, United States) at 1 kHz with a spatial
resolutions of 0.7 × 0.7 mm.

2.5 Pacing protocols

To demonstrate the analysis pipeline, an optical mapping
acquisition for the induction of reentry composed of a single rotor
was recorded from the right ventricle. Figure 1A shows two parallel
4 cm platinum line electrodes (Cardialen Inc, United States) were
sutured to the endocardial surface at the atrioventricular ring and
along the apico-anterior border of the preparation (approximately
5 cm apart). The preparation was paced by a train of pulses at twice the
threshold at a fixed frequency of 2 Hz from the posterior border.
Depolarization and repolarization fronts were near planar in between,
and perpendicular to the line electrodes. With a delay of 220 ms from
the last planar stimulation pulse, an electrical cross-field shock at 80 V
was applied between the parallel electrodes, creating a voltage gradient
of 16 V/cm. This was found to fall in the critical window of
repolarization for induction of self-sustaining arrhythmic activity
by the cross-field shock-on-T wave mechanism (Frazier et al.,
1989) (Figure 1B). Following tachyarrhythmia induction, pacing
was discontinued.

To observe transitioning dynamic electrical behavior from basal
pacing rates to ventricular arrhythmia, left ventricles from a set of
5 sheep were optically mapped during increasingly shortened coupling
intervals of pacing (S1S2S3S4 protocol). Following a stimulus train of
ten beats (S1) at a frequency of 1.5 Hz, short coupled pulses were
delivered just above the effective refractory period (ERP), with a
precision of 5 ms. The ERP was determined by testing stimulation
responses of tissue at decreasing coupling intervals starting from the
interval of the preceding stimulation pulse. Therefore, S2 responses
were tested for the following intervals (ms): 667, 600, 500, 450, 430,
410, 400, 390, . . ., decreasing by 10 ms until loss of capture. Intervals
would then be stepped up 5 ms at a time until capture was
reestablished. The pacing regime was continued, until a maximum
S4 short-coupled stimuli and either ventricular fibrillation was
initiated or a loss of capture.
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2.6 Signal processing methods

All pre-conditioning and post-processing procedures were
performed using custom-built software developed in our lab using
the programming environment PV wave. Each specific processing and
analytical procedure described below is detailed using universal
pseudocode in the Supplementary Material.

2.7 Pre-conditioning of optical mapping
signals

We consider optical mapping data as a time-series containing T
image matrices, each with dimensions X, Y. Prior to initiating the
analysis pipeline described herein, all voltage-sensitive fluorescent
signals (F) first underwent filtering using a forwards-backwards
butterworth digital filter with a low-pass cut-off at 60 Hz, spatial
averaging using a 3 × 3 pixel uniform average filter and a 3-frame
uniform running-average temporal filter. Signals were inverted and
the magnitude of fluorescent changes normalized from 0 to 1 in each
pixel (Figure 1C). A region of interest (Figure 1A) was defined for each
experiment to identify foreground pixels and exclude background
pixels containing noise (set to zero).

The tachyarrhythmia induced by cross-field shock-on-T example
(Figure 1B) is used to illustrate the signal processing pipeline proposed
herein. Phase mapping of the tachyarrhythmia showed a circuitous
activation pattern (Figure 1D; Supplementary Video S1), which
appeared to repeat over several consecutive APs (Figure 1E). ATs
were sought from optical mapping signals during the arrhythmic
episode using a uniform time window across all pixels (green shaded
region in Figure 1E) for comparison with the proposed novel
approach. ATs derived from a uniform window, uAT, failed to
recapitulate a circuitous activation sequence (Figure 1F). The
uniform time window was manually validated to incorporate the
beginning of the earliest AP upstroke and the end (peak) of the
latest upstroke during a single reentrant cycle.

2.8 Novel post-processing pipeline for
analysis of complex optical mapping signals

The proposed method herein is a novel framework for AT-based
processing and analysis of complex signals. The comprehensive
pipeline is summarized in Figure 2 in to three main sections: 1)
Deriving AT; 2) Associating AT points to common wave fronts and
3) classification and quantification of electrical behavior.

FIGURE 1
uAT mapping extracted from a fixed time window during reentry. (A) Background optical mapping image of the endocardial surface from a coronary-
perfused right ventricle. The region of interest lying in between two line electrodes for reentry induction is highlighted by blue shading. (B) Example pre-
processed optical mapping signals extracted from the full region of interest. (C) A snapshot of the dynamic voltage-dependent optical signal (F/dF) during
reentry [time indicated by the red dashed line in (B)]. (D) An instantaneous phase map derived using the Hilbert transform showing evidence for a
repetitive propagating wave front [red dashed line in (B)]. (E) Example pre-processed optical mapping signals extracted from pixels along the circular black
arrow in (D). A green shaded region indicates a uniform timewindow used to derive uAT points using the uniformwindowmethod for calculation of activation
time. The red arrow shows the principle sequence of activation. (F) uAT map corresponding to the fixed time window shown in B during reentry. Isolines are
spaced 10 ms.
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2.8.1 Deriving AT
2.8.1.1 Pixel-independent optical action potential upstroke
windowing

Time windows centered on action potential upstrokes were sought
in a non-uniform, pixel-independent manner. All signals were
temporarily mean-subtracted for computation of phase (φ) using a
Hilbert Transform, with a negative phase-shift of 90°. Considering
φ ranges from 0 to 2 π, taking φ>π, provided positive deflections of
φ coinciding with, and encompassing action potential upstrokes
from an experimental recording (Figure 3A) and a simulation of
myocardial reentry (Figure 3B). Deriving φ using the Hilbert
Transform is robust for periodic signals but fails when signals
are non-periodic. Therefore, phase computation was applied to
signal segments (Supplementary Figure S1). Further splitting of
segments and phase computation was applied iteratively until
segments reached a minimum duration of 128 ms. The resultant
phase of the full-length signal was determined by assigning a value
of 2π at all instances where φ>π was observed in any corresponding
segments. To avoid overpopulation of false positive phase
detection, a second filtering step was applied. Windows where
φ = 2π were rejected if the corresponding optical signals showed
linear regression ≤0 or a maximal derivative below a predefined
derivative threshold (θ(dF⁄dt)), defined either manually, or
through automation (Section 2.8.1.2 Automated definition of a
signal derivative threshold for AT). The time of maximal derivative
of fluorescent signals during each phase-derived upstroke window
defined AT using the novel method (pAT).

2.8.1.2 Automated definition of a signal derivative threshold
for AT

Derivatives of optical mapping signals are highly susceptible to
influences by noise. Thus a minimum, θdF⁄dt (>0) should be assigned to

increase the probability of detecting true depolarizing events. Either a
user-defined threshold can be employed based on the impact of
background noise or alternatively, we propose an automated
approach that approximates a single derivative threshold value that
can be applied across all unmasked pixels and upstroke windows. The
maximal derivative for each phase-derived time window from each
pixel were identified. To reduce the influence of noise, outliers of
maximum derivative values were removed using the False Discovery
Rate method (Motulsky and Brown, 2006), where θ′dF⁄dt equals the
maximum desired false discovery rate of 1%.

2.8.1.3 Defining AT
The fundamental approach of defining pAT by the maximal

derivative is the same as described for conventional methods
(Walton et al., 2012), however we apply two additional
constraints. These are: 1) That ATs are sought on a pixel-
independent and upstroke window-independent basis and 2)
Upstroke morphology is evaluated to identify a maximum of two
AT points per upstroke. For the latter, Upstroke morphology was
characterized from derivative profiles of the upstroke signal. The two
largest first-order derivative maxima exceeding θ′dF⁄dt were
considered potential AT points (Figures 3A, B). If two potential
AT points were detected, the signal derivative was further evaluated
to determine of the derivative maxima are attributed to the same or
separate depolarization events. The valley depth of the signal
derivative between the two largest derivative maxima was
measured relative to the amplitude of the smaller of the two
maxima. The current study assumed a minimum valley depth of
75% to consider the upstroke morphology to be the result of two
independent activation events (Fedorov et al., 2010). Otherwise, only
the time of the largest derivative maxima was determined to be
a pAT.

FIGURE 2
Schematic workflow of the novel pAT mapping framework.

Frontiers in Physiology frontiersin.org05

Ramlugun et al. 10.3389/fphys.2023.734356

170

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.734356


To store and manipulate pAT values, a new pAT matrix with
dimensions X,Y,T was considered. For each pixel and upstroke
window pAT values were soughtafter as described above and the
pAT matrix was updated in the corresponding pixel (x,y) and frame
corresponding to pAT, t, with a value of 1.

2.8.2 Associating pAT points to commonwave fronts
Wave fronts were identified by grouping spatially and

temporally associated pAT points in the pAT matrix using an
adapted connected components algorithm. A wave front was
defined as a single object composed of all propagating fronts

FIGURE 3
Defining phase window-independent upstroke morphology and pAT using the signal derivative. (A) Extraction of the pre-processed optical action
potential signal during reentry from pixel coordinate (20,10). Corresponding phase windows of pAT are superimposed. The derivative of the corresponding
signal is shown. Pronounced derivative peaks falling within phase windows indicate pAT (red lines). (B) Similarly, an optical action potential signal and
corresponding derivative extracted from an in silico model of reentry. (C) Membrane voltage (Vm) map extracted from the epicardial surface of the
electrical in silico model at the time indicated by a black arrow in (B). (D) Corresponding F/dF computed from the in silico model. In silico optical signal in B
extracted from pixel indicated by +.
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that spatially and temporally converge. With this definition, a single
wave front therefore may originate from multiple source locations.
Connectivity within the pATmatrix is assessed by iterating through
pAT points. Connectivity in the spatial domain only considered the
immediate neighboring pixels in an 8-point neighborhood.
However, wave front propagation from one pixel to its neighbor
can be susceptible to conduction delays far exceeding a single time
frame (Figure 4A). This required determining the maximum pAT
gradient that could be considered as slowed but successful impulse
propagation versus conduction block. A threshold of the delay
defining conduction block (θt,CB) may be a user-defined parameter,
based on known literature of the species and conditions applied.
However, we propose an alternative method to compute θt,CB
automatically based on real experimental conditions and
individual behavior of the tissue. First we describe how θt,CB is
obtained automatically, followed by the procedure to derive
adaptive connected component labels of individual wave fronts.

2.8.2.1 Automated definition of the conduction block
parameter

The automated conduction block parameter is defined using an
experiment-specific reference acquisition during progressively
shortened stimuli (Section 2.5 Pacing protocols). An automated
conduction block parameter, θt,CB, assesses local conduction delays
in an 8-point neighborhood. The parameter θt,CB was defined as the
maximum conduction delay (to the nearest 1 ms) observed with a
number of occurrences equal to the number of short-coupled stimuli
applied (i.e., for a S1S2S3S4 stimulation protocol, θt,CB was defined as
the largest common activation gradient observed between four pixel
pairs during all stimuli.

2.8.2.2 Connected components labelling of wave fronts
A connected components labelling scheme was applied to the pAT

matrix (Figure 4). The following iterative procedure was applied
incrementally (looping fastest through X, then Y, then T) across all
detected pAT points.

1) Assign label value 1 to the element corresponding to the first
indexed pAT point.

2) Let the current pAT point be found at (x, y, t). Evaluate
connectivity with adjacent unlabeled pAT points in a local 8-
point spatial neighborhood and over the time interval extending
from t–θt,CB to t + θt,CB. In the absence of unassigned pAT points,
go directly to (3). If pAT points not yet assigned a label exist, assign
the same label value as pAT (x,y,t), and add the neighboring pAT
point coordinates for matrix X,Y,T as the first elements in a queue;
then go to (3).

3) Remove the original indexed pAT element from the queue and
repeat (2) until there are no more elements in the queue.
Go to (4).

4) Increment label by 1. By looping fastest through X, then Y, then
T to the next unassigned pAT point of the pAT matrix; then
go to (2).

2.8.3 Characterisation and classification of electrical
behavior
2.8.3.1 Mapping wave front pAT

Each wave front identified by their unique label number was
assessed independently for activation and repolarization distribution
characteristics. Activation time maps of dimensions X,Y were derived
for individual wave fronts. Iterating through each pixel, the earliest
pAT point with the corresponding wave front label was plotted on the
wave front label AT map. In cases where biphasic upstroke
morphologies identified a second short-coupled pAT point (Section
2.8.1.3 Defining pAT), a second wave front label AT map was created
to conserve information regarding local disassociated conduction
patterns.

2.8.3.2 Mapping wave front repolarization characteristics
Repolarization time (RT) was similarly identified in a pixel- and

label-wise manner. From any given pAT, the corresponding optical
action potential was evaluated for the signal’s recovery from
excitation. The RT is measured from a user-defined percentage

FIGURE 4
Adapted connected components algorithm for wave front clustering. (A) A schematic diagram illustrates pAT points on a space-time plot. In the example,
wave front label assignment has beenmade for all pAT points in the first 4 frames to label #1. Let the current pAT point be evaluated for connectivity be at pixel
4, frame 4 on the space-time plot. The red box illustrates the space-time bounds of eligible connectivity. In this case, the currently unassigned pAT point at
pixel 5, frame 7 lies within the connectivity boundary and will be assigned to wave front label #1. (B) A spatio-temporal distribution of pAT points for the
first 4 s of pacing and reentry induction in experiments (upper panel). pAT points are assigned colors based on their wave front label assignment (lower panel).
(C) Similarly, pAT points of the in silico model from the moment of reentry induction (upper panel) and wave front label assignment (lower panel).
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drop in signal amplitude from the action potential peak (for example,
80% of repolarization). The time window to search for RT was
constrained to APD limits (APD’min and APD’max) measured
from the earliest pAT of the corresponding action potential.
Provisionally, limits used were user-selected for suitability to the
species, state and experimental conditions implemented. However,
for any individual wave front, a second set of minimum andmaximum
action potential duration limits (APD”min and APD”max) were
established for the nth pAT. Universal psuedocode is provided in
the supplemental materials detailing APD”min and APD”max
definitions. Within the refined APD limits the RT was determined
based on the normalized signal amplitude of the full analyzed time
window. It should be noted however that baseline elevation is a
common occurrence when electrical activity becomes increasingly
dyssynchronous at a local level. Therefore, signals during episodes of
ventricular fibrillation, and particularly those capturing a transition from
stable rhythm to fibrillatory behaviormay not necessarily repolarize to the
same baseline as signals during non-arrhythmic events. Therefore signals
during arrhythmia initiation may have dynamic baselines, rendering the
true level of repolarization challenging to define. For such cases, an
alternative definition of RT is proposed based on the time of minimum

signal derivative (Salama et al., 1989; Salama et al., 1994). Similar to pAT,
RTs for each wave front were projected to maps RT [X,Y]. Corresponding
APDmaps were subsequently derived by subtracting pAT from the RT of
corresponding pixels.

2.8.3.3 Classification of repetitive and non-repetitive wave
fronts

Wave fronts were assessed for repeated excitation of the same
regions of tissue over two or more cycles and wave front labels were
classified as either repetitive or non-repetitive, accordingly. Firstly, each
pixel of a given wave front was assessed for incidences of pAT repetition.
If a majority of pixels for a given wave front had repetitiveness of pAT
points, then this wave front was designated with a repetition
classification. This classification scheme imposed the following
criteria: A minimum cycle length between repetitive excitation
events, defined by ERPmin, was necessary to identify as persistent
behavior. ERPmin was defined as the shortest pacing interval during
reference recordings using S1S2S3S4 stimulation where available.
Otherwise, ERPmin was defined manually based on experience with
the relevant species and disease state. If the majority of pAT points do
not show repetition, impulse propagation events were assumed to self-

FIGURE 5
Spatial classification of activation sources. (A) A dynamic pAT map (left panel). (B)Origins of activation for breakthrough (red triangles) and passive (blue
triangles) sources. (C) Leading pAT points of the active wave front (pink squares). (D)Conduction vectors oriented in the direction of local propagation overlaid
on (C). (E) The conduction fields of leading pAT points. (F)Number of accumulated breakthrough or passive origins throughout wave front #4. (G) A pATmap
shows leading wave front pAT sites (purple squares) with conduction fields emanating from a single breakthrough (red triangles) and passively from
outside of the imaged field of view. (H) The leading wave front during tachyarrhythmia was also maintained by reentrant propagation through myocardial
pathways or regions of tortuous propagation. Yellow arrows indicate the local direction of propagation.
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terminatewithout re-excitation and the wave front was classified as non-
repetitive. It should be noted that classification at this stage does not
distinguish classical reentry from macroreentry, for example.
Similarly, there is no inference of the source of the identified
non-repetitive activity, which may have single or multiple
origins, or be driven by sinus rhythm/pacing/automaticity/etc.,
A detailed description in the form of pseudocode for the
implementation of the reentry classification procedure can be
found in the Supplementary Material.

2.8.3.4 Identifying origins of activation
Origins of activation presenting as sites of breakthrough on the

imaged surface were evaluated throughout the full duration of each

wave front label. Provisionally, pAT origins were found by
assessing the spatio-temporal distributions of pAT minima
(Supplementary Figure S3 for an example). Local pAT minima
were determined as sites absent of preceding pAT points during an
interval of ERPmin within the local 8 point neighborhood.
However, considering pAT minima within a local neighborhood
did not discriminate between multiple equivalent pAT points with
a common origin such as when broad regions of tissue are activated
simultaneously. These manifest either as a true breakthrough event
or as false-positives due to continuity of propagation from a source
peripheral to the region. Therefore false positive pAT origins were
assessed using a connected components analysis to spatially group
pAT minima points. Any of the points from the same pAT cluster

FIGURE 6
Dynamic mapping of experimental complex activity. (A) A spatio-temporal distribution of pAT points spanning pacing, induction and reentry phases of
the experimental optical acquisition. pAT maps were dynamically probed for wave front labels (#): 1 (B), 3 (C), 5 (D–F), 6 (G–K), and 7 (L). Lines of conduction
slowing where the direction of maximal gradient exceedes 50 ms are annotated (pink lines). pAT windows are labelled in panel (A) (red). (M) Lines of
conduction slowing superimposed. Lines are colored according to their average AT.
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with preceding pATs in the ERPmin interval and across an 8-point
neighborhood would identify the whole pAT cluster as a false
positive breakthrough sites.

Maps counting the occurrence of origins with dimensions [X,Y]
were generated for each wave front such that Originx,y = Originx,y + 1.
Complementary maps of the same dimensions were generated to show
the location of the breakthrough center. The centeral pixel of origin
pAT clusters were identified by averaging all horizontal and all vertical
components of pAT point coordinates in each cluster to define mean
focal origins.

2.8.3.5 Dynamically probing complex activation and
repolarization sequences

Thus far, we have shown how to compute and visualize activation
and repolarization sequences for individual labels. However, we should
consider that activation or repolarization events can occur
simultaneously for different wave fronts located in distinct regions.
Moreover, we only map the earliest pAT points for each wave front,
ignoring re-excitation in repetitive wave front labels. Therefore, a single
pAT map per wave front does not allow understanding of the
interactions between wave fronts or transitions to persistent
reentrant behavior. Moreover, a single AT map is not compatible
with reentrant activity, which inherently has strong overlap of the
activation sequence between cycles, particularly when wave fronts are
out of phase and discordant. Thus, a dynamic method was developed to
interrogate and visualize the ensemble spatial components in a stack of
maps, each covering sub-windows of time for activation or
repolarization sequences. Firstly, an image stack of dynamic maps
with dimensions [X,Y] were generated based on the following steps:
The first map was constructed by mapping the earliest time points
(using the desired pAT or RT matrix). From the earliest time point,
advancing in time through the matrix, the rest of the map was filled with
time points until the first instance where the map already contained a
time point. A newmap was initialized firstly by populating themapwith

all values from the previous map. Then the time of the next matrix time
points were found and replaced the values in the corresponding pixel of
the new map. A new map was again initialized with the previous map
values and the same procedure repeated until the full time window of
interest of the time point matrix was mapped.

2.8.3.6 Dynamic classification of activation sources of the
leading wave front

Thus far, wave front labels have been broadly classified by their
repetitive or non-repetitive sequences. But this is insufficient to
understand the mechanisms underlying the arrhythmic event, such
as myocardial reentry, macroreentry or short-coupled fast focal
behavior, for example. Moreover, tachyarrhythmia are often unstable
and evolving. Therefore a second detailed classification scheme is
proposed to assess spatially and temporally the underlying source of
activation for each pAT. In other words, which conduction source drove
local propagation? Potential sources of conduction included: Passive
activation from outside of the field of view; a breakthrough site on the
imaged surface; a myocardial reentrant source; sources emanating from
sites of discontinuous (tortuous) propagation and sources emanating
from a wave front boundary.

Each pAT was individually classified by activation source in
dynamic pAT maps (Figure 5A). Prior to classification, we
identified if origins of activation (see Section 2.8.3.4 Identifying
origins of activation) reflect breakthrough sites or origins of passive
activation located at the periphery of the masked region of interest
(Figure 5B). Pixels were selected for classification by identifying
maximum pAT values along the leading wave front edges
(Figure 5C). In addition, as shown in Figure 5D, local vectors of
conduction normal to pAT contours were determined across the
dynamic map using a finite different method (Cantwell et al., 2015).
In order to identify the origin of each pAT value, the full surface area of
tissue involved in the activation sequence (conduction field) leading
directly to each maximum pAT site were identified as follows:

FIGURE 7
Repetitive/non-repetitive classification of wave fronts. (A—D) Wave fronts shown in Figure 5 were classified as repetitive or non-repetitive. The spatial
distribution of the number of repetitions of activation for each wave front (upper panels) and their histograms (lower panels) are shown. Labels were classified
as repetitive if the histogram peak of activation repetitions was ≥1.
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1) The first pAT from the leading wave front, found at (x,y,t) was
annotated with a unique conduction field label.

2) Evaluate connectivity with adjacent unlabeled pAT points in a
local 8-point spatial neighborhood. Neighboring pAT values
within the time interval extending from t–θt,CB to t were
considered. In the absence of eligible pAT neighbors, go
directly to (3). Eligible pAT points were evaluated for
conduction vectors intersecting pAT (x,y,t). Unlabelled
intersecting pAT pixels were assigned the same conduction
field label value as pAT (x,y,t) and the neighboring pAT
point coordinates for matrix X,Y,T were added as the first
elements in a queue; then go to (3).

3) Remove the last pAT coordinates from the queue and repeat (2)
until there are no more elements in the queue. Repeat from (1) for
the next leading wave front pAT value.

A classification scheme determined the origins of each identified
conduction field driving the leading wave front pAT sites (Figure 5E).
Evaluating each pAT point in conduction field, identify pAT points
matching the following criteria for each class.

1) Breakthrough: One or more pAT points co-localize with one or
more breakthrough activation origins (Figures 5F, G).

2) Passive: One or more pAT points co-localize with one or more
passive activation origins (Figures 5F, G).

3) Myocardial reentry: Any number of conduction field pAT points
with neighboring pAT points of the same conduction field with
differences in pAT values > ERPmin (Figure 5H).

4) Tortuous propagation: One or more conduction field pAT points
with neighbors within the time interval extending from t–θt,CB to t,
but absent of intersecting conduction vectors (Figure 5H).

5) Wave front boundary: One or more conduction field pAT points
absent of intersecting conduction field neighbors and neighboring
pAT points from a different wave front label.

2.9 Statistical analyses

The performance and robustness of the signal processing
pipeline was evaluated by varying the signal-to-noise ratio (SNR)
of optical mapping recordings during tachyarrhythmia induction
(N = 5, see Supplementary Figures S4–S8 for examples at baseline
conditions). Non-parametric analyses of variance Friedman tests
were used to identify statistical differences of signal characteristics
and signal processing outputs across SNR populations. A multiple
comparison assessment was also performed to compare results for
individual SNR populations versus the baseline SNR population
(established using a cut-off of 60Hz for a butterworth lowpass
filter). Spatial correlations by pixel-to-pixel linear regression
analyses were used for simulation data to compare eAT with uAT
and pAT maps. Statistical differences of linear regression values
between uAT and pAT performance was evaluated using the paired
t-test. For all tests, statistical significance was determined when
p < 0.05.

3 Results

3.1 AT mapping

Figure 4B showed that the pATmatrix derived from the experimental
example was composed of distinct wave front labels with the conduction
block parameter set to 76 ms. The experimental example acquisition of
tachyarrythmia analyzed was 6,700 ms. The analysed arrhythmic episode
was 5,211 ms in length, 14 out of 28 beats were classified as repetitive
activity. Mean cycle lengths were 186 ms. Image stacks of pAT maps
incrementing through the pAT matrix from the experimental example
recording enabled dynamic visualization of the full activation sequence
(SupplementaryVideo S1). Figure 6 shows extracts of pATmaps from the
image stack and the corresponding time windows (Figure 6A). Figure 6B
shows the pAT map for wave font #1 during steady-state pacing prior to
the induction of reentry. Total pAT across the region of interest was
56 ms and composed of a regular near-planar wave front that propagated
unperturbed from the lower left to upper right of the pAT map. A sub-
region of pAT points from wave front #4, approximately 200 ms after the
shock were projected on to a pAT map (Figure 6C). In contrast to uAT
mapping (Figure 1F) pAT found a preferential activation of the lower left
region of the map, coinciding with the region of early activation during
basal pacing. The wave front subsequently propagated in a counter
clockwise movement with a maximal local pAT gradient of 75 ms/
mm observed between neighboring pixels and where pAT contours
converged to a single site at the core of the circular movement. Over
20 arrhythmic cycle lengths, every second cycle of the arrhythmic episode
was plotted as pAT maps (Figures 6D–6L), until a distinct near-planar
wave front was observed (Figure 6L). The AT sequence was consistently
characterized by a counter clockwise rotation. It was observed that each
reentrant cycle was accompanied by a region of local pAT
gradients >50 ms/mm, indicating conduction slowing. The locally
enhanced pAT gradient was primarily vertically orientated at the
bottom of the pAT map during wave front #4 (Figures 6C–E), but
shifted towards the right border of the pAT map coincided with the
transition to wave front #5 (Figure 6M).

3.2 Origins of activation

In an additional experimental preparation, the ventricular wedge
from sheep was paced at a frequency of 6 Hz (Supplementary Figure
S3). pAT minima were identified for each wave front label
(Supplementary Figure S3). The activation sequence globally
propagated from a single region of the myocardial surface from left
to right (Supplementary Figure S3B). Yet the earliest pAT region was
shared between two sites (Supplementary Figure S3C). These
coincided with two electrodes used for bipolar stimulation.
However, two sites of origin distal to the stimulation location were
also observed. Initial computation revealed pAT origin clusters,
indicating simultaneous activation of areas exceeding a single pixel
(Supplementary Figure S3D). Supplementary Figure S2E shows the
pAT origin clusters reduced to the estimated center-most pixel,
representing a local single pAT origin site.
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3.3 Mapping repolarization properties

Supplementary Figure S4A shows pAT values derived from
recordings of multiple short-coupled stimuli and ectopic activity at
the onset of self-sustained tachyarrhythmia following S1S2S3S4 pacing
(see Section 2.5 Pacing protocols). This pacing regime is composed of
irregular coupling intervals that gave way to highly varying total pATs
ranging from 42 ms (S1) to 334 ms (ectopic beat A). Despite the
irregular coupling intervals and total pAT exceeding the shortest
coupling interval (S3-S4, 215 ms), RTs could be determined across
the imaged field of view (Supplementary Figure S4B). A user-defined
window of 80–400 ms following pAT was used to refine repolarization
time estimates. Resulting RT gradients (maximum–minimum) ranged
from 72 ms (S1) to 424 ms (ectopic beat A). Pixels assigned both pAT
and RT values were subsequently used to derive APD (Supplementary
Figure S4C).

3.4 Wave front classification

Labelled wave fronts derived from the experimental and simulated
acquisitions underwent classification in to repetitive and non-repetitive
activation sequences. Figure 7A shows a map and histogram of pAT
repetitiveness for wave front #2 of the example experimental recording
under basal stimulation. Zero pixels observed repetitive pAT points with
intervals exceeding aminimumERP parameter, whichwas set to 200 ms.
In this case, we did not have recordings of short-coupled stimulation
intervals to identify the local ERP. Therefore, aminimumERP parameter
was estimated to equate 80% of the minimum action potential duration
(250 ms) during basal stimulation. Wave front #2, was consequently
classified as a non-repetitive activation sequence. Wave front #4, which
was initiated by the cross-field shock and the activation sequence was
maintained for a period of 1,018 ms. Wave front #4 was found to have
almost uniform repetitiveness of 5 pAT repetitions across all pixels

FIGURE 8
Simulations of pATmapping and image resolution. (A)Ground truth eAT derived from a simulation of the underlying electrical action potential. (B)Optical
mapping signals were derived from electrical simulations in (A). The effects of image resolution evaluated on uAT and pAT derived from optical mapping
signals. Optical mapping signals were derived from downsampled electrical simulations to simulate reduction of image resolution from 400 μm to 1,000 µm.
(C)Mean ± standard deviation eAT, uAT, and pAT from dynamic ATmaps of the full simulation. (D) Linear regression of pixel-to-pixel correlations of eAT
with uAT and pAT.
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(Figure 7B). A dominance of pAT repetition across pixels underlay
the classification of wave front #4 as repetitive. Similarly, wave
front #5 was classified as repetitive with a predominance of
12 repeated pAT points during a total activation period of
2,297 ms (Figure 7C). Concordantly, a computer model of
repetitive behavior was accurately classified as repetitive through
computation of the dominant pAT repetitiveness factor
(Figure 7D). Local classification of the origin driver provided
insight in to the spatial organization of arrhythmia and the
temporal evolution underlying transitions between activation
sequences, notably from wave front #4 to #5.

In the experimental example, origins of activation were
detected following the onset of the tachyarrhythmic episode
(wave front #4) both as breakthrough sites and at the periphery
of the imaged tissue (Figure 5A). In part, breakthrough sites
contributed to the progression of the wave front in the lower
portion of the pAT map as observed by overlapping conduction
fields with breakthrough sites (Figure 5B). The upper portion of
the pAT map was primarily driven by passive impulse propagation
emanating from outside of the imaged tissue in the upper left
corner. Figure 5C shows that the wave front was also driven by
myocardial reentry and tortuous propagation in the regions of
slowest conduction. Throughout the full arrhythmic episode, there
was a predominance of passively activated wave front (74.1%).
This was primarily attributed to propagation extending from the
top of the mapped area throughout the recorded arrhythmia
episode. However, 22.3% was attributed to breakthrough sites
of origin, observed as an important mechanism for
maintenance of re-excitation of the lower portion of the map
during wave front #4 and #5. To a lesser extent, the tissue was
maintained through myocardial reentrant pathways and sites of
tortuous propagation.

3.5 Robustness of phase window-derived AT
mapping

The core methodology of this processing and analytical pipeline
centers on the capacity of pAT mapping to reliably and
reproducibly detect AT points in complex dynamic electrical
behavior. For comparison to experimental measurements, a
repetitive activation sequence was induced in a computational
model. A pAT matrix was constructed over the duration of the
simulated time window of 2 s (Figure 4C). The activation sequence
was established to be a single wave front (#1), indicating a self-
sustained arrhythmia. Figure 8A shows an activation map of the
underlying electrical action potential (eAT), representing the
ground truth activation sequence. A clockwise rotating
activation sequence was observed on the eAT map. Figure 8B
shows equivalent maps for uAT and pAT at varying image
resolutions. Maps of uAT shows a complex and fragmented
activation sequence with a total AT (95%–5% AT) of 362 ms,
compared to 185 ms for eAT. However, pAT much more closely
resembled the spiral activation sequence of the ground truth. Total
AT for pAT was 192 ms. Sensitivity of the signal processing pipeline
was tested on a series of simulations following down sampling of the
ground truth electrical simulation and generation of optical signals
with reduced resolution from 400 μm to 1,000 µm. Both uAT and
pAT was compared across the down sampled simulated data sets,

but there was no impact on the overall activation sequences
detected using mapping methods (Figure 8C) and linear
regression analysis comparing eAT with uAT and pAT showed
consistently significantly higher correlations with eAT than uAT
(Figure 8D).

Our signal processing framework relies on robust automated
determination of θt,CB using a reference recording during
S1S2S3S4 stimulation, the separation of pAT points in to coherent
wave front labels and the capacity to reliably classify repetitive wave
front activity. Table 1 summarizes the experimental parameters for
implementation in five cases from left ventricles of sheep. The shortest
stimulation interval ranged from 190–260 ms across all cases. Despite
this variation, the conduction block parameter remained consistent
with a mean (±standard deviation) of 59.2 ± 17.0 ms. Supplementary
Figures S5–S9 showed pAT distributions, wave front labelling and
pAT maps of each case during the transition from the end of a train of
S1 pulses to short-coupled stimulation and to post-stimulation events.
Despite broad total pAT events overlapping with stimulation intervals,
activation sequences elicited by each stimulation pulse were
successfully isolated and grouped in to individual wave fronts for
each experimental case. Table 1 shows that signal-to-noise ratios of
recordings were progressively reduced from >37.2 to 12.1 to evaluate
pAT-sensitivity to noise (Figures 9A, B). Lowering signal-to-noise
ratios reduced signal regularity indices significantly when limiting
signal filtering to low pass filter cut-off 180 Hz. Concordantly, phase-
derive AT window estimation also observed marginal reduction of
regularity indices. Despite reduced quality of signals and signal
windowing, output parameters were only significantly influenced by
noise amplification using lowpass filter cut-offs >180Hz. Decreases in
the estimations of θt,CB and augmented θ”dF⁄dt were observed.
Similarly, the number of wave fronts detected, pAT points and
breakthrough sites were preserved using filtering cut-off <180Hz
(Figure 9C).

3.6 pAT mapping of tachyarrhythmia in
chronic myocardial infarction

The endocardial surface of the structurally remodeled was
imaged by optical mapping (Figures 10A, B). Figure 10C
showed that optical mapping signals were observed within the
infarct zone indicating surviving functional myocardium and
conduction within the structurally remodeled region, although
SNR was reduced (Figure 10D). Nevertheless, a pAT matrix was
derived. θt,CB was automatically detected as 62 ms and ERPmin
was 180 ms. These parameters enabled coherent wave front
allocation throughout the mapped surface during
S1S2S3S4 stimulation and tachyarrhythmia onset (Figure 10E).
Planar wave front propagation from the posterior left ventricular
free wall induced by S2 (Figure 10F) was followed by passive
activation from the anterobasal region (Figure 10G).
Simultaneously, impulse propagation from S3 stimulation
collided with the passive wave at the infarct zone (Figure 10H).
This was followed by apex-to-base propagation in to the
posterolateral base (Figure 10I). The excitatory wave front
continued to advance to the anterior base and anterior apex
(Figure 10J), colliding with an S4-driven impulse. From the late
activated apical scar region, the wave front emanated towards the
base along a narrow trajectory with an antero-lateral aspect
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TABLE 1 Repeated use and robustness of the novel pAT mapping framework in experimental cases. Ventricular arrhythmia was induced in five experiments using an S1S2S34 induction protocol.

Lpf cut-off frequency (Hz) 60 80 100 120 140 160 180 200 220 240 p-Value

Stimulation protocol

Minimum interval of short-coupled
S1S2S3S4 stimuli (ms)

224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 NS

Mean signal characteristics

SNR >37.2 37.2 ± 6.1 23.1 ± 4.2 18.4 ± 3.7 16.0 ± 3.4 14.6 ± 3.3 13.7 ± 3.2 13.0 ± 3.2* 12.5 ± 3.1** 12.1 ± 3.1*** <0.0001
AP signal Dominant frequency (Hz) 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 NS

AP signal regularity index 0.62 ± 0.09 0.60 ± 0.09 0.60 ± 0.09 0.59 ± 0.09 0.59 ± 0.09 0.59 ± 0.09 0.59 ± 0.09* 0.58 ± 0.09** 0.58 ± 0.09*** 0.58 ± 0.09**** <0.0001

pAT characteristics

pAT window dominant frequency (Hz) 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 NS

pAT window regularity index 0.37 ± 0.12 0.35 ± 0.12 0.35 ± 0.11 0.33 ± 0.12 0.33 ± 0.12 0.32 ± 0.12 0.32 ± 0.12* 0.31 ± 0.12** 0.33 ± 0.16* 0.33 ± 0.15** 0.0004

θ”dF⁄dt 0.00039 ±
0.00013

0.00045 ±
0.00015

0.00049 ±
0.00016

0.00053 ±
0.00018

0.00057 ±
0.00019

0.00060 ±
0.00020

0.00062 ±
0.00021*

0.00064 ±
0.00023**

0.00066 ±
0.00024***

0.00068 ±
0.00024****

<0.0001

θt,CB (ms) 59.2 ± 17.0 56.2 ± 14.8 53.6 ± 13.7 54.0 ± 13.9 51.6 ± 12.6 52 ± 12.7 49.6 ± 12.3* 48.8 ± 12.1* 48.4 ± 11.6* 44.4 ± 12.3* 0.0002

N wave fronts 19.8 ± 15.0 17.8 ± 15.3 15.4 ± 13.2 14.2 ± 12.9 15.2 ± 13.9 16.4 ± 13.2 11.2 ± 2.7 13.8 ± 13.2* 16.0 ± 12.9 15.6 ± 13.6 0.0156

N AT points 216,810 ±
179,447

223,596 ±
174,066

230,518 ±
167,108

239,869 ±
160,573

248,019 ±
157,367

257,069 ±
155,073

273,621 ±
152,972

275,621 ±
150,720

284,561 ±
151,429

291,159 ±
151,319**

0.0015

N breakthrough sites 2,461 ± 1899 2,580 ± 1839 2,601 ± 1719 2,657 ± 1701 2,733 ± 1,685 2,758 ± 1,698 2,740 ± 1858 2,980 ± 1901 3,112 ± 1846** 3,222 ± 1832*** 0.0004

Wave front repetitiveness

N Non-sustained wave fronts 17.2 ± 15.7 15.2 ± 16.3 12.6 ± 13.8 12.0 ± 12.6 12.2 ± 13.6 13.8 ± 14.3 8.8 ± 3.3 12.0 ± 13.1 13.6 ± 13.3 13.8 ± 14.4 NS

N sustained wave fronts 3.6 ± 1.5 4.2 ± 1.3 3.6 ± 1.5 4.2 ± 1.9 4.2 ± 1; 3 4.2 ± 1.3 3.2 ± 1.3 3.3 ± 1.2 3.4 ± 1.5 4.4 ± 1.3 NS

Classification of the origins of the local wave front

Breakthrough (%) 9.7 ± 1.3 10.6 ± 1.4 10.7 ± 1.1 11.2 ± 1.9 10.4 ± 0.8 10.3 ± 0.6 9.9 ± 0.6 10.1 ± 0.5 10.1 ± 0.6 10.2 ± 0.7 NS

Passive (%) 4.3 ± 1.3 4.5 ± 1.4 4.6 ± 1.3 4.8 ± 1.3 4.6 ± 1.1 4.5 ± 1.1 4.5 ± 1.1 4.6 ± 1.2 4.5 ± 1.0 4.5 ± 0.9 NS

Myocardial reentry (%) 0.5 ± 0.5 1.0 ± 1.2 1.5 ± 1.8 1.9 ± 2.3 2.1 ± 2.6 2.4 ± 3.0 2.6 ± 3.3* 3.1 ± 3.8** 3.1 ± 4.0* 3.6 ± 4.0** 0.0001

Tortuous propagation (%) 85.5 ± 2.7 83.8 ± 3.4 83.2 ± 3.5 82.0 ± 4.1 82.9 ± 4.1 82.9 ± 4.1 82.9 ± 4.4 82.2 ± 4.7 82.3 ± 4.4* 81.6 ± 4.2** 0.0157

Wave front boundary (%) 0.018 ± 0.026 0.008 ± 0.012 0.038 ± 0.076 0.008 ± 0.011 0.015 ± 0.018 0.023 ± 0.024 0.02 ± 0.021 0.019 ± 0.027 0.0273 ± 0.035 NS

Data are mean ± standard deviation and N = 5 for all cases. Statistical significance was considered if p < 0.05. *p < 0.0332, **p < 0.0021, ***p < 0.0002, ****p < 0.0001.
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(Figure 10K). The wave front successfully propagated to the base
where it diverged towards the posterior and anterior left ventricle
(Figure 10L). Figure 10M showed both wave fonts circumventing
the lateral left ventricle to again converge at the apical scar region
in a figure of eight formation. Interestingly, pAT mapping of the
scar tissue region was incomplete in Figure 10H requiring almost
200 ms to maximally activate (Figure 10I). The pAT map could
distinguish individual pathways of fast and slow conduction
within the structurally remodeled tissue.

4 Discussion

The framework for a novel analytical approach has been developed
for AT mapping of complex electrical behavior recorded using optical
mapping. A first critical aspect was to accurately probe activation
events. For each image pixel, a Hilbert Transform phase analysis
revealed the time intervals of action potential upstrokes. In turn, pAT
events were elucidated for each upstroke based on signal morphology
and slope profile. The spatio-temporal distribution of pAT events were

FIGURE 9
Influences of the signal-to-noise ratio. (A) Action potential traceswith varying lowpass filter cut-off frequencies. (B)Mean ± standard deviation signal-to-
noise ratios for experimental optical mapping recordings during S1S2S3S4 stimulation and tachyarrhythmia induction (N = 5). (C) Spatio-temporal distribution
of pAT points corresponding to recordings used in A.
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assigned groups corresponding to individual wave fronts. This enabled
individualized analysis of the conduction properties of wave fronts.
The corresponding time of repolarization and spatial distributions
were also derived. Moreover, each wave front could be classified in to
probable repetitive or non-repetitive propagating fronts. An approach
for dynamically viewing the ensemble activation sequence throughout
complex events was developed. This aided detailed interrogation of
wave front interactions and classification of the wave front progression
based on the underlying source of impulse propagation, irrespective of
the complexity and irregularity of electrical organization. In addition,
the pAT algorithm was thoroughly evaluated for sensitivity to SNR
and image resolution. Finally, the algorithm was further tested on an
experimental model of chronic myocardial infarction in sheep.

The aim of our pAT-based analysis of complex optical mapping
signals is 2-fold: i) To accurately deduce the propagation sequence
while conserving a high spatial resolution and ii) To thereby inform on
the critical properties of arrhythmia and functional pro-arrhythmic
factors. pAT maps can report on the source of activation for any given
pAT point (Figures 5, 8). Moreover, pacing modalities are important
tools for manipulating the AT or RT sequences to characterize
functional substrates, induce arrhythmia or entrain and arrest
arrhythmic behavior. Generally, high pacing frequencies or variable
stimulation intervals are applied, which incurs further complexity to
interpret and isolate the relevant AT events. Generally, AT mapping
relies on adequately selecting a time window of interest, identification
of a suitable time reference and robust interpretation of the signal

FIGURE 10
pAT mapping tachyarrhythmia in chronic myocardial infarction. (A) The endocardial surface was subject to optical mapping, encompassing a region of
scar in the ventricular apex. (B) Background optical mapping signals. (C)Optical mapping traces taken from normal myocardium [black asterisk in (B)] and the
scar region [red asterisk in (B)]. (D) Map of SNR from the same optical mapping recording. (E) pAT matrix with labelled wave fronts and indicating the timing
stimulation pulses (red arrows). (F–M) Progressive pAT maps during the onset of tachyarrhythmia.
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morphology. Depending on the approach selected to probe ATs,
conflicting information can often times be produced (Walton et al.,
2012; Tomek et al., 2021). This effect can be further confounded when
signal complexity increases (Bishop et al., 2007; Asfour et al., 2011;
O’shea et al., 2019). Therefore, identifying a robust approach to
appropriately identify the window of activation and accurately
interpret AT irrespective of the signal complexity underlay signal
processing automation without prior understanding of the signal
morphology.

Enhancing the versatility of our processing pipeline, this
framework provided automatic determination of some critical
properties of optical signals, such as maximal pAT gradients that
determine thresholds of conduction block and tissue refractoriness.
Moreover, automated assignment of such parameters can be derived
on an individual basis for optical mapping images. This will enable the
analytical procedure to adapt dynamically to changing conditions,
such as rhythm or effects of ion channel-targeting drug treatments.
Furthermore, the approach for determination of pAT was developed
to maximally retain propagating wave front information by evaluating
the upstroke morphology and signal derivative (Figure 3). The
maximum derivative of the action potential upstroke is known to
precisely reflect AT on the imaged surface of tissue (Walton et al.,
2012). Moreover, the orientation of the wave front relative to the
imaged surface can be inferred from the normalized amplitude of the
maximal derivative on the upstroke, termed VF* (Zemlin et al., 2008).
VF* is a byproduct of the derivation of pAT in our processing pipeline,
which can therefore be exploited when implementing this framework.
Biphasic upstroke morphologies have been shown to correspond to
propagation through distinct myocardial pathways found within the
tissue volume contributing to the same optical signal (Fedorov et al.,
2010). Secondary pAT components likely inform on remnant late
propagating electrical impulses (Kertes et al., 1984). Clinically, late
potentials with slow conduction are thought to underlie numerous
electrical disorders (Haïssaguerre et al., 2019a; Haïssaguerre et al.,
2019b). In this context, information-loss through signal reduction to a
single AT event for any given upstroke would likely exclude the critical
arrhythmic pathway in favor of the principal propagating wave front.

Optical mapping has seen substantial development over recent
years, particularly in the event of near-infrared voltage-sensitive dyes
(Matiukas et al., 2007). Using near-infrared excitation wavelengths
incur several differences to more conventional blue/green excitation
optical mapping. Firstly, longer wavelength light better penetrates
biological tissue as a result of reduced absorption and scattering
properties. This can more easily result in substantial
transillumination light if a photodetector (CCD/CMOS camera, for
example) was simultaneously imaging the opposite surface to the one
being illuminated (Baxter et al., 2001). Moreover, reduced attenuation
and scatter increases the overall optical integration volume
contributing to fluorescence. This means that a larger sub-surface
volume of tissue contributes to the optical signal in epi-fluorescence
mode and to an even greater extent when imaging transilluminated
light. This further contributes to blurring of the optical action
potential upstroke. Despite this, we showed in (Walton et al., 2012)
that AT, defined as the maximal derivative of the optical action
potential upstroke effectively approximates the true electrical AT
irrespective of the excitation light wavelength in the range of
530 nm (green) to 660 nm (near-infrared). To our knowledge, there
are no known alternatives of the fundamental approach to define AT
that further improves this estimation. This strongly supports the

versatility of the framework that we propose and its compatibility
with near-infrared imaging, as well as transilluminated signals. We
further demonstrated that image resolution has no impact on pAT
computation and that the proposed pipeline is relatively insensitive to
signal noise; an important factor that often depends on the
experimental conditions and choices of voltage-sensitive dyes used.

Arrhythmia events can occur suddenly or as a result of gradual
adaptation over several heart beats. Therefore, to prevent further
information loss our pipeline avoids other forms of signal
reduction such as ensemble averaging of action potentials. Yet,
analysis of each propagation event may be complicated by
interference from adjacent and spatially overlapping wave fronts
and repolarization times. That being said, the interactions of
independent wave fronts and particularly the influence of
repolarization heterogeneity and refractoriness on subsequent
electrical responses is crucial to determine how arrhythmia is
maintained. Therefore, in order to optimize the diagnostic yield
when mapping the arrhythmia mechanism, this framework probes
the pAT matrix (and subsequently derived RT matrix) both at the
individual wave front level and through a customized dynamic
window of the ensemble time-based data fields. This allowed
substantial mechanistic insight in to the causal activation sequence
and origin of the leading wave front at the individual pixel level.
Probing the conduction field of aberrant wave fronts provides deep
understanding of the regions of tissue involved and the source of the
activity. This insight will aid to identify arrhythmia organization and
improve investigations of optimal therapeutic interventions on
arrhythmia sources.

We have presented our own analytical tools to evaluate and
classify arrhythmic behavior within this framework. However, our
tools also serve to extract detailed activation sequence data pertinent to
existing analytical approaches. Isolating wave fronts is a necessary post
processing step for the multiplicity metric (Rogers et al., 1997a;
1997b). Similarly, the reentry vulnerability index depends upon
activation and repolarization times to estimate local sites
susceptible to re-excitation. In our framework, wave front
classification of the repetitiveness of activity rapidly provides
insight of the life-time of persistent versus non-persistent activity,
whichmay be used analogously with rotor life-time analysis (Kay et al.,
2006). Figure 6 showed that local points of rotation of the activation
sequence were associated with large pAT gradients (>50 ms/mm).
Moreover, conduction field analysis of wave front origins did not rely
on the gradient point or line and was therefore not hindered by
complex gradient organization or discontinuity that can hamper phase
singularity detection (Arno et al., 2021). Therefore, our framework
provides a versatile unified solution to analyze spatio-temporal
dynamics of cardiac arrhythmias.

4.1 Limitations

The current framework has been parametrized to analyze optical
mapping signals derived from voltage-sensitive dyes, accommodating
action potential signal morphologies. Yet, the foundational approach
to window individual activation events based on phase responses can
likely be applied more diversely across dynamic imaging and
recording modalities. More so, this proof-of-principle study focused
on data obtained only from sheep ventricles. However, each procedure
of this pipeline was designed on the premise of being applicable to the
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broader spectrum of species or anatomical regions (e.g., atria vs.
ventricles) and therefore action potential morphologies. The
capacity to adapt from the basal action potential to complex and
non-periodic fibrillatory activity within the same recording,
insensitivity to image resolution, noise-handling and application in
pathological settings is a strong indicator of the framework’s versatility
and robustness.

Our analytical framework proposes a novel approach to estimate
the threshold of conduction block, θt,CB, although a single threshold
value generalizes the conduction limitations across the imaged field of
view. However, the maximal electrical impulse transmission delay
across structural substrates is likely heterogeneous. Cases in this study
showed that regions of high pAT gradients represents only a small
subset of the total activation sequence (~5%, Supplementary Figure
S3). The challenge is to identify the excitable gap corresponding to
vulnerable sites. It is assumed that the ERP termination can be
spatially determined as the action potential duration to 80% of
repolarization under conditions of short-coupled stimulation. A
delay of activation of the following paced action potential
(activation latency) approximated excitability for each pixel. As a
result, local activation delays associated with pathological remodeling,
namely post-repolarization refractoriness are addressed (Coronel
et al., 2012). The θt,CB parameter is used to separate wave fronts
temporally. However, in the current framework, wave fronts that
converge, i.e., those originating from independent sources are
considered the same wave front. Convergence will be considered
for wave fronts that are temporally aligned, i.e., wave front
collision sites show pAT gradients inferior to θt,CB. But tissue
generally remains in refractoriness for much longer than θt,CB in
our experience, meaning wave fronts colliding with local pAT
gradients superior to θt,CB will be separated.

4.2 Conclusion

In conclusion, we provide a comprehensive framework for image
processing of complex optical mapping signals, including
tachyarrhythmias. An action potential upstroke-windowing scheme
based on calculations of phase enabled pixel-wise and upstroke-
independent identification of pAT events. This approach is highly
robust against changing signal morphology, signal noise, changes to
the signal baseline and transitional behavior between non-arrhythmic
and arrhythmic states. A crucial component of the image processing
pipeline furthermore identifies the spatial organization of pAT points
and groups them in to individual wave fronts. A series of analytical and
visualization tools permit detailed characterization in a beat-to-beat
basis, irrespective of signal complexity.
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