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The accurate classification of crop pests and diseases is essential for their prevention and control. However, datasets of pest and disease images collected in the field usually exhibit long-tailed distributions with heavy category imbalance, posing great challenges for a deep recognition and classification model. This paper proposes a novel convolutional rebalancing network to classify rice pests and diseases from image datasets collected in the field. To improve the classification performance, the proposed network includes a convolutional rebalancing module, an image augmentation module, and a feature fusion module. In the convolutional rebalancing module, instance-balanced sampling is used to extract features of the images in the rice pest and disease dataset, while reversed sampling is used to improve feature extraction of the categories with fewer images in the dataset. Building on the convolutional rebalancing module, we design an image augmentation module to augment the training data effectively. To further enhance the classification performance, a feature fusion module fuses the image features learned by the convolutional rebalancing module and ensures that the feature extraction of the imbalanced dataset is more comprehensive. Extensive experiments in the large-scale imbalanced dataset of rice pests and diseases (18,391 images), publicly available plant image datasets (Flavia, Swedish Leaf, and UCI Leaf) and pest image datasets (SMALL and IP102) verify the robustness of the proposed network, and the results demonstrate its superior performance over state-of-the-art methods, with an accuracy of 97.58% on rice pest and disease image dataset. We conclude that the proposed network can provide an important tool for the intelligent control of rice pests and diseases in the field.
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INTRODUCTION

In modern agricultural production, the accurate classification of crop pests and diseases is essential for their prevention and control. China is the largest rice producer and consumer in the world, accounting for one-third of the global total. Rice is the staple food of more than 65% of the Chinese people (Deng et al., 2019). However, pests and diseases always accompany the process of rice planting and production (Laha et al., 2017; Castilla et al., 2021). The prevention and control of rice pests and diseases could be greatly improved through their accurate classification.

Research on deep learning (DL) technology to classify crop pest and disease images has been emerging in recent years, and the relevant experimental results have demonstrated its success in performing classification (Li et al., 2020; Wang et al., 2020; Yang et al., 2020b). However, there is no doubt that these experimental results are inseparable from the high-quality datasets used or constructed by the researchers. We know that the size of the dataset can have a significant impact on the accuracy level of the image classification, because only the use of large-scale datasets can improve the accuracy of any DL model (Hasan et al., 2020). Most previous studies use small-scale, roughly balanced rice pest and disease image datasets created under laboratory conditions (Bhattacharya et al., 2020; Burhan et al., 2020; Chen et al., 2020, 2021; Kiratiratanapruk et al., 2020; Mathulaprangsan et al., 2020; Rahman et al., 2020). These datasets are used to emphasize or reveal the efficiency of the proposed method for diagnosing rice diseases and pests. Because these datasets contain several rice pest and disease categories and a small number of images per category, so the effect on classification is often a better performance. Compared with these image classification datasets, however, the distribution of real-world datasets is usually imbalanced and long-tailed. The number of images varies greatly between categories, and most image categories occupy only a small part of the dataset, such as ImageNet-LT (Liu et al., 2019), Places-LT (Samuel et al., 2021), and iNaturalist (Horn et al., 2018). Since rice pest and disease images collected in the field are affected by many practical factors, such as the incidence of pests and diseases, the region of occurrence, and so on, these factors often lead to an imbalanced distribution of the dataset, as shown in Figure 1. When using this dataset, DL methods cannot achieve high classification accuracy due to the problem of imbalanced distribution.


[image: Figure 1]
FIGURE 1. The imbalanced phenomenon of rice pest and disease images collected in the field.


Most of the researches on DL for rice pest and disease classification uses a convolutional neural network (CNN) based on transfer learning technology (Burhan et al., 2020; Chen et al., 2020, 2021; Mathulaprangsan et al., 2020). Although these models have achieved a high level of accuracy in their respective studies, they rely mainly on two dataset features to achieve their results. First, the limited size of the dataset: the number of images ranges from dozens to hundreds, and image labeling usually requires professional knowledge and much annotation time. Second, there may be large or small differences in the number of images for different categories in the dataset. If these models are applied to real-world datasets, two challenges will inevitably be encountered. First, simple CNN models have difficulties learning the distinguishing features of different rice pests and diseases, and are insensitive to the discriminative regions in the image. It is difficult to locate the various organ parts of the pest object, and the small difference between different diseases will also affect identification of the location distribution. Second, due to the imbalance of different categories in the dataset, it is difficult to achieve a high level of classification accuracy for all rice pests and diseases, using only simple CNN models.

An effective method of solving the problem of dataset imbalance is a category-rebalancing strategy, which aims to alleviate the imbalance of the training data. In general, category rebalancing strategies can be divided into two groups: re-sampling (Lee et al., 2016; Shen et al., 2016; Buda et al., 2018; Pouyanfar et al., 2018) and re-weighting (Huang et al., 2016, 2020; Wang et al., 2017; Cao et al., 2019; Cui et al., 2019). Although rebalancing strategies have been shown to improve accuracy, they have side effects that cannot be ignored. For instance, such methods can, to some extent, impair the ability to represent DL features. Specifically, when the data imbalance is very serious, re-sampling has the risk of over-fitting the tail data (over-sampling) and under-fitting the entire data distribution (under-sampling). As for re-weighting, the original distribution is distorted by directly changing or even reversing the data presentation, which can damage feature representation. Experiments have shown that only the classifier should be rebalanced to rebalance an imbalanced dataset (Kang et al., 2020; Zhou et al., 2020). The distribution of the original categories in the dataset should not be used to change the distribution of image features or the distribution of category labels during feature learning because they are essentially uncoupled.

In order to improve the performance of rice pest and disease classification, we propose a convolutional rebalancing network (CRN), which includes a convolutional rebalancing module (CRM), an image augmentation module (IAM), and a feature fusion module (FFM). In the CRM, a uniform sample is used to extract the features of the images in the dataset, while a reversed sample is used to improve feature extraction of the categories with fewer images in the dataset. Based on these two modules, the IAM is designed to augment the training data effectively. To further enhance the performance of rice pest and disease classification, we also design the FFM, which fuses the image features learned by the CRM and ensures that the feature extraction of the imbalanced dataset is more comprehensive.

We evaluate the proposed network on the newly established large-scale dataset collected in the field, the rice pest and disease image dataset (RPDID), which contains 18,391 wild rice pests and disease images in 51 categories. Experimental results show that our network has a better classification performance than other competing networks on RPDID. In addition, a large number of verification experiments and ablation studies demonstrate the effectiveness of customized designs for solving imbalance problems in the distribution of rice pests and disease images.

The main contributions of this work are the following:

1. Based on the combination of the two sampling methods, we propose a novel convolutional rebalancing module for comprehensively extracting the features of the large-scale imbalanced dataset of rice pests and diseases to exhaustively boosting classification.

2. We design an image augmentation module, which mainly generates attention maps to represent the spatial distribution of discriminative regions, and extracts local features to improve the classification effect. Based on attention maps, we propose two methods of a region crop and a region cover to augment the training data effectively. Correspondingly, a feature fusion module is developed for adjusting feature learning and classifier learning, combined with the training of our network.

3. Experiments in the large-scale imbalanced dataset of rice pests and diseases and five related benchmark visual classification datasets demonstrate our proposed network can significantly improve the classification accuracy of imbalanced image datasets, which surpasses previous competing approaches.



RELATED WORK

In this section, we review related work on image classification of rice pests and diseases, imbalanced datasets, and image augmentation.


Image Classification of Rice Pests and Diseases

The classification of rice pests and diseases has always been a hot topic for researchers, and many methods have been designed to identify different pests and diseases. In recent years, researchers have tended to use convolutional neural networks to solve the problem of identification and classification.

Most of this research has been concerned with only a few rice disease or pest categories (Bhattacharya et al., 2020; Chen et al., 2020, 2021; Kiratiratanapruk et al., 2020; Mathulaprangsan et al., 2020). Only Rahman et al. (2020) studied simultaneously five categories of rice diseases and three categories of rice pests, but these are far from covering common rice pest and disease categories. In addition, it should be noted that the datasets used in these studies are small, generally hundreds to no more than a thousand. Moreover, experimental results show that these methods can only achieve an ordinary classification performance. This is because, without a special network design, it is difficult for them to overcome the impact of an imbalanced dataset on the classification results and the difficulty of locating discriminative regions. We conclude that experiments based on small-scale datasets always achieve ordinary classification results, and, also, that the generalization of the model is often poor.

Among the methods used to identify and classify rice pests and diseases, there are traditional multilayer convolutional neural networks (Lu et al., 2017) and the fine-tuning methods of VGG-16, Inception-V3, DenseNet, and so on, based on transfer learning (Burhan et al., 2020; Chen et al., 2020, 2021; Mathulaprangsan et al., 2020). There is also the direct use of the popular object detection algorithms Faster R-CNN, RetinaNet, YOLOv3, and Mask RCNN, either to experiment with rice pests and diseases or to optimize these algorithms before performing experiments. However, these object detection algorithms depend on the location of parts or related annotations (Kiratiratanapruk et al., 2020). A two-stage strategy has recently been developed to perform a more refined classification of rice pests and diseases (Bhattacharya et al., 2020; Rahman et al., 2020). However, the classification performance of these methods is mostly average, because, without a special design, it is difficult for these methods to locate discriminative regions and to classify pest categories accurately. It is noteworthy that these studies did not investigate whether the balance of the dataset had an impact on the classification results.



Imbalanced Datasets

The most effective method of solving the problem of dataset imbalance is the category rebalancing strategy. As one of the most important category rebalancing strategies, the resampling method is used to achieve a sample balance on the training set. The resampling method can be divided into oversampling of few samples (Shen et al., 2016; Pouyanfar et al., 2018) and undersampling of multiple samples (Lee et al., 2016; Buda et al., 2018). However, oversampling can overfit a category containing a small number of images (a minor category) and cannot easily learn more robust generalization features; therefore, it often performs worse on a seriously imbalanced dataset. On the other hand, undersampling causes serious information loss in categories, containing a large number of images (a major category), leading to underfitting.

The re-weighting method focuses on training loss and is another important category rebalancing strategy. Re-weighting sets different weights for different categories of loss, setting larger weights for minor category loss, for example, and the weights can be adaptive (Huang et al., 2016; Wang et al., 2017). Among the many variants of this kind of method, the simplest is weighting according to the inverse of the number of categories (Huang et al., 2020); weighting according to the number of “effective” samples (Cui et al., 2019); and weighting according to the number of samples to optimize the classification interval (Cao et al., 2019). However, re-weighting is very sensitive to hyperparameters to a certain extent, which often leads to optimization difficulties, and re-weighting also has difficulties in handling large-scale real-world scenarios with imbalanced data (Mikolov et al., 2013).

In dealing with the problem of dataset imbalance, we can also learn from other learning strategies. With meta learning (domain adaptation), minor categories and major categories are processed differently to learn how to reweight adaptively (Shu et al., 2019), or to formulate domain adaptation problems (Jamal et al., 2020). Metric learning essentially models the boundary/margin near minor categories, with the aim of learning better embedding (Huang et al., 2016; Zhang et al., 2017). With transfer learning, major category samples and minor category samples are modeled separately, and the learned informativeness, representation, and knowledge of major category samples are transferred to minor category use (Liu et al., 2019; Yin et al., 2019). The data synthesis method generates “new” data similar to minor category samples (Chawla et al., 2002; Zhang et al., 2018). Decoupling features and classifier strategies can also be used. Recent studies have found out that feature learning and classifier learning can be decoupled, so that imbalanced learning can be divided into two stages. Normal sampling in the feature learning stage and balanced sampling in the classifier learning stage can bring better learning results (Kang et al., 2020; Zhou et al., 2020). This method of learning is the approach adopted in this work.



Image Augmentation

Current random space image augmentation methods, such as image cropping and dropping, have a proven ability to improve effectively the accuracy of crop leaf disease classification. Recent studies have evaluated the image augmentation of image-based crop pest and disease classification, and explored the applicability of the image augmentation effect on specific datasets (Barbedo, 2019; Li et al., 2019). However, random image augmentation faces low efficiency and generates much uncontrolled noise, which may reduce training efficiency or affect feature extraction, such as dropping rice leaf regions, or cropping rice leaf backgrounds.

When using imbalanced datasets in the field of crop pests and diseases, some studies adopt simple image augmentation methods to augment images and balance datasets (Pandian et al., 2019; Kusrini et al., 2020), while other studies adopt GAN to generate related images and balance datasets (Douarre et al., 2019; Cap et al., 2020; Nazki et al., 2020; Zhu et al., 2020). Our image augmentation method focuses on spatially augmenting images of rice pests and diseases.




METHOD

In this section, we describe the proposed CRN in detail. First, to achieve feature learning and imbalance classification, we designed a CRM. The module proceeds as follows: Let x denotes the training sample and y the corresponding category label. Two sets of samples (xi, yi) and (xr, yr) are obtained by instance-balanced sampling and reversed sampling; these samples are then used as the input image of CRN. The corresponding feature maps are obtained after feature extraction, and attention maps are generated. At the same time, in order to augment images during training, we design an IAM. An attention map is chosen randomly to augment the image, including Region Cover and Region Crop. The samples of the two sampling methods and augmented images are used as input data for training. The feature maps undergo global average pooling (GAP) to obtain the corresponding feature vectors fi and fr. Additionally, we design a FFM to fuse feature vectors. Finally, CRN uses SoftMax for predictive classification. The general structure of CRN is shown in Figure 2.


[image: Figure 2]
FIGURE 2. Overview of CRN.



Convolutional Rebalancing Module

We often encounter imbalanced datasets in our work on rice pest and disease classification. For this reason, we designed a CRM to improve classification performance.


Data Sampling

The CRM adopts instance-balanced sampling and reversed sampling to balance the impact of an imbalanced dataset. In instance-balanced sampling, each sample in the training set is only sampled once in an epoch with the same probability. Instance-balanced sampling retains the distribution characteristics of the data in the original dataset, so it is conducive to feature representation learning. Reversed sampling aims to alleviate the extreme imbalance between data samples and to improve the classification accuracy of minor categories. In reversed sampling, the sampling probability of each category is proportional to the inverse of the sample size; the smaller the sample size of a category, the greater the probability of being sampled.

We assume that there are a total of D categories in the dataset. The sample size of category i is Si, and the largest sample size in all categories is Smax. For instance-balanced sampling, the probability pi that each sample in the training set is sampled is as follows:

[image: image]

For reversed sampling, we first calculated the sampling probability [image: image] of the i-th category according to the number of samples, as follows:

[image: image]

We then sampled randomly a category according to [image: image], and finally took a sample from the i-th category to replace it. By repeating this reversed sampling process, we can obtain a mini-batch of training data.



Attention Representation

Here, we introduce the attention mechanism and increase the weight of the attention mechanism in the hidden layer of the neural network to accurately locate disease regions and the components of the pest object in the rice pest image (i.e., the spatial distribution of pest organs). Additionally, discriminative partial features are extracted to solve the classification problem. Our method first predicts partial regions where rice pests and diseases occur. Based on the attention mechanism, only image-level category annotations are used to predict the location of pests and diseases.

We use an advanced pre-trained CNN (EfficientNet-B0) as our backbone and choose the MBConv6 (stage6) layer as feature maps. We denote F ∈ RH×W×C as feature maps, where H, W, and C represent the height, width, and number of channels of the feature layer, respectively. Attention maps are obtained by 1 × 1 convolutional kernel. The attention maps A ∈ RH×W×M obtained from F represent the location distribution of rice pests and diseases, as follows:

[image: image]

In (3), f(·) is a convolution function, and [image: image] represents a part of the rice pest or a visual graphic, such as the pest's head or another organ, and the diseased regions on the leaves. The number of attention maps is M.

We use attention maps instead of a region proposal network (Ren et al., 2017; Sun et al., 2018; Tang et al., 2018) to propose regions where pests and diseases occur in the image, because attention maps are flexible and can be more easily trained end-to-end in rice pest and disease classification tasks.




Image Augmentation Module

Since the attention mechanism is used to better locate diseased regions and the position of the organ parts of the pest object in the image, the classification performance on images collected in the field is enhanced. At the same time, in order to further enhance performance, we design an IAM, which performs two kinds of processing: Region Crop and Region Cover. After the above processing, the raw image and augmented images will be trained as input data.


Augmentation Map

When there is a small number of regions where rice pests and diseases occur, the efficiency of random image augmentation is low, and a higher proportion of background noise is introduced. We use attention maps to augment the training data more effectively. Specifically, for each training image, we randomly select one of its attention maps Ak to guide image augmentation and normalize it as follows to the k-th augmentation map [image: image], as follows:

[image: image]



Region Crop

Based on the augmentation map [image: image], Region Crop randomly crops the discriminative region in the rice pest image and adjusts the size of the region to further extract its features. We obtain the cropping mask Ck from [image: image]. If [image: image] is greater than the threshold θC ∈ [0, 1], and then Ck is set to one; if less than or equal to the threshold, and then Ck is set to zero as in (5).

[image: image]

We then set a bounding box that can cover Ck, and enlarge the region from the original image as the augmented input image. As the proportion of regions in the rice pest and disease images increases, it is possible to better extract more features from the regions where rice pests and diseases occur.



Region Cover

The attention regularization loss function, described below (Section Loss Function), supervises each attention map [image: image] in representing the k-th region in the rice pest and disease images, but different attention maps may pay attention to regions where similar pests and diseases occur. To encourage attention maps to represent multiple occurrence regions of different pests and diseases, we propose Region Cover. Region Cover randomly covers a discriminative region in the rice pest and disease image, and then the image processed by the Region Cover operation is trained again. After that, when extracting features again, the features of other discriminative regions can be extracted, thereby prompting the model to extract more comprehensive feature. Specifically, in order to obtain the Region Cover mask [image: image], we set [image: image] to zero if [image: image] is greater than the threshold [image: image]; otherwise, it is set to one.

[image: image]

We use [image: image] to cover the k-th region in the rice pest and disease images. Since the k-th region is covered, the IAM is required to propose other discriminative partial regions so that the robustness and location accuracy of the image classification can be improved.




Feature Fusion Module

To fuse the features after GAP, we designed a novel FFM. The module controls the feature weight and classification loss L generated by the CRM and the IAM. The CRN first learns the features of the images in the RPDID according to the original distribution (instance-balanced sampling), and then gradually learns the features of the images in minor categories. Although, on the whole, feature representation, learning, and classifier learning should have the same importance, we believe that discriminative feature representation provides a basis for training a more robust classifier. Therefore, we introduce adaptive hyperparameters μ1 and μ2 into the training phase, where μ1 + μ2 = 1. We multiplied the image feature fi extracted by instance-balanced sampling and image augmentation by μ1, and multiplied the image feature fr extracted by inversed sampling and image augmentation by μ2. It should be noted that μ1 and μ2 are changed according to training epochs as in (7), where the current number of training epochs is defined as E and the total number of training epochs as Etotal.

[image: image]

As the number of training epochs increases, μ1 gradually decreases, causing CRN to gradually shift its focus from feature learning to classifier learning, which can exhaustively improve long-tailed classification accuracy; that is, from instance-balanced sampling to reversed sampling. Therefore, introducing the adaptive hyperparameters μ1 and μ2 into the entire training process enables CRN to fully focus on all categories of rice pests and diseases, and to further overcome the impact of an imbalanced dataset on the classification results.



Testing Phase

In the testing process, rice pest and disease images with an unknown category are first sent to the CRM, and the feature vectors fi and fr are generated after GAP. We then set both μ1 and μ2 to 0.5 in FFM to balance the influence of different sampling methods on the prediction results. Additionally, features of equal weight are sent to their corresponding classifiers to obtain two predicted logits, and the two logits are aggregated by element-wise addition. Finally, the result is input into SoftMax to obtain the category of rice pests and diseases to which the image belongs.



Loss Function

We define x as the training sample and y as the corresponding category label, where y ∈ {1, 2, ⋯ , D}, and D represents the total number of categories. First, we used the two sets of samples (xi, yi) and (xr, yr) obtained by instance-balanced sampling and reversed sampling as the input data of CRN. Then, after feature extraction, the corresponding feature maps were obtained and further attention maps were generated.

At the same time, the IAM augmented the image data during training. We randomly selected an attention map to augment the image, including Region Cover and Region Crop. Generally speaking, the samples were sampled in two ways, and the augmented data were used as input data for training. GAP was then performed on feature maps to obtain the corresponding feature vectors fi and fr. Center loss has been proposed as a method of solving the problem of face recognition (Wen et al., 2016, 2019). Based on center loss, we designed a novel attention regularization loss function to supervise attention learning. We penalized variances of features belonging to partial regions of the same rice pest, which means that the partial features fi and fr can be close to the global feature center [image: image], while attention map Ak can be activated at the same k-th partial region. The loss function of the IAM can be defined as follows:

[image: image]

In (8), ck is the feature center of a partial region. We initialized ck as zero and updated as follows:

[image: image]

In (9), β adjusts the update rate of ck. The attention regularization loss function is merely applied to the original image.

As described above, the FFM fuses the features after GAP, where the adaptive hyperparameters are defined as μ1 and μ2. The weighted feature vectors μ1fi and μ2fr are sent to the corresponding classifiers [image: image] and [image: image], and the two outputs integrated together by element-wise addition. Therefore, the output logits l can be formulated as follows:

[image: image]

CRN then uses SoftMax to calculate and output probability distribution as [image: image]. We employed cross-entropy loss as classification loss:

[image: image]

In summary, the loss function of CRN can be defined as (12), where λ is a hyperparameter (In our settings, λ = 1).

[image: image]

The overall algorithm is summarized in Algorithm 1. We used the stochastic gradient method to optimize LCRN.


Algorithm 1: CRN algorithm.

[image: Algorithm 1]




EXPERIMENTS


Datasets

As China is the world's largest rice producer and consumer, the accurate classification of rice pests and diseases is particularly important for their prevention and control. To identify accurately the categories of rice pests and diseases in the field, we constructed the RPDID1 based on rice pests and disease images collected by the Institute of Agricultural Economy and Information, Anhui Academy of Agricultural Sciences, China. It contains 18,391 images of rice pests and diseases collected in the field and 51 categories, each with hundreds to thousands of high-quality images. Because the size of the original images is too large, we preprocess each RPDID image into a 512 × 512 size. Table 1 shows a statistical breakdown of the RPDID dataset. Figure 3 shows examples of rice pests and diseases in RPDID.


Table 1. RPDID dataset of rice pest and disease images collected in the field.

[image: Table 1]


[image: Figure 3]
FIGURE 3. Examples of rice pests and diseases in RPDID. The number under each image corresponds to the category in Table 1, indicating the category to which the image belongs.




Implementation Details

For comparison, our CRN uses EfficientNet-B0 as the backbone network for all experiments by standard mini-batch stochastic gradient descent with a momentum of 0.9 and a weight decay of 1 × 104. For different pretrained networks, RPDID is preprocessed into the input sizes required by different networks (224 × 224; 299 × 299; 380 × 380). Except for the original division of the IP102 dataset, RPDID and other datasets are divided into a common distribution (80% for the training set and 20% for the test set). The attention maps are obtained through a 1 × 1 convolution kernel. We use GAP as the feature pooling function, and the thresholds θC and [image: image] of Region Cover and Region Crop are both set to 0.5. We train all the models on multiple NVIDIA P100 GPUs for 500 epochs with a batch size of 32. The initial learning rate is set to 0.001, with exponential decay of 0.9 after every 10 epochs.




RESULTS

We have conducted extensive experiments on RPDID under imbalanced real-world scenarios. Figure 4 shows the accuracy and loss of our proposed CRN during training and testing. For the test set, when the number of epochs is 48, the loss converges to 0.09, and the accuracy is 97.58%. We find that CRN can achieve convergence and a higher level of accuracy in fewer epochs compared with state-of-the-art models, which proves that CRN has a strong ability to classify rice pest and disease images collected in the field.


[image: Figure 4]
FIGURE 4. Accuracy and loss during CRN training and testing.



Comparison Methods

We fine-tune the pretrained ResNet-50, Inception-V3, EfficientNet-B0, and EfficientNet-B4 as benchmarks for comparison. Due to the lack of publicly available large-scale field crop pest and disease image datasets, we also compare our method with the latest methods on publicly available plant and pest image datasets. The results are shown in Table 2. It can be seen that our CRN has reached the latest level of accuracy on RPDID. In particular, compared with the backbone EfficientNet-B0, we have significantly improved the classification accuracy.


Table 2. Comparison with benchmarks and state-of-the-art methods on the test dataset.

[image: Table 2]

To further evaluate the performance of CRN, we conducted experiments on the publicly available plant image datasets Flavia (Wu et al., 2007), Swedish Leaf (Söderkvist, 2001) and UCI Leaf (Silva et al., 2013), and pest image dataset SMALL (Deng et al., 2018) and IP102 (Wu et al., 2019). Statistical information on the datasets is shown in Table 3. We used the training/test split described in section Implementation Details.


Table 3. Dataset statistics.

[image: Table 3]

As Table 4 shows, our method outperforms current state-of-the-art methods on five datasets. Regardless of the dataset size, CRN can obtain a higher level of classification accuracy. Furthermore, it is proved that CRN has better performance across datasets.


Table 4. Accuracy of CRN on plant image datasets (Flavia, Swedish Leaf, and UCI Leaf) and pest image datasets (SMALL and IP102).

[image: Table 4]



Ablation Studies


Samplers for the CRM

To better understand CRN, we conducted experiments on different samplers used in the CRM. The classification accuracy of the models trained on RPDID with different samplers is shown in Table 5.


Table 5. Ablation study of different samplers used in CRM on RPDID.

[image: Table 5]

We used the following samplers. (1) Instance-balanced sampling, where every training sample has an equal chance of being selected. (2) Class-balanced sampling, where each category has the same probability of being selected. Each category is selected fairly, and samples are selected from the category to construct mini-batch training data. (3) Reversed sampling, where the sampling probability of each category is inversely proportional to the sample size. The smaller the sample size of a certain category, the more likely it is to be sampled. (4) Our CRM combines instance-balanced sampling and reversed sampling.

We can find from Table 5 that when a better sampling strategy is used, the performance can be better. The sampling method we use can provide better results than single instance-balanced sampling. We believe that instance-balanced sampling provides general feature representation. With adaptive hyperparameter μ1 decreasing, the main emphasis of the CMR in CRN turns from the feature learning to the classifier learning (from instance-balanced sampling to reversed sampling), then the reversed sampling can be more concerned with minor categories. Our results for different sampling strategies on training validate our works that try to design a better image sampling method.



Accuracy Contribution

The proposed CRN is composed of three modules: CRM, IAM, and FFM. To study the contribution of the three modules to classification accuracy, we conducted related experiments on RPDID. We fine-tune the pretrained EfficientNet-B0 and use cross entropy (CE) for training to use it as a baseline. Accordingly, we add and adjust other modules for comparison. As shown in Table 6, the results prove that all three modules of our CRN can improve effectively the classification accuracy of rice pests and disease images, and that the attention-guided IAM is more effective than random image augmentation (RIA).


Table 6. Contribution of proposed components and their combinations.

[image: Table 6]



Effect of Number of Attention Maps

Discriminative regions usually help to represent the object; hence, a larger number of discriminative regions can help to improve the classification performance (Wang et al., 2019; Yang et al., 2020a). We use different numbers of attention maps (M) for experiments, as shown in Table 7. It can be seen that as M increases, the classification accuracy also increases. When M reaches 32, the classification accuracy rate reaches 97.72%. However, if M continues to increase, the increase in classification accuracy is limited and the feature dimensionality of a discriminative region almost doubles. IAM in CRN can set the number of discriminative partial regions in rice pest and disease images, and increase M within a certain range to obtain more accurate classification results.


Table 7. Classification accuracy of different numbers of attention maps on RPDID.

[image: Table 7]



Visualization of the Effect of IAM

To analyze the image augmentation effect of IAM in CRN, we draw discriminative regions predicted by IAM through Region Cover and Region Crop. In Figure 5, we perform image augmentation on rice pest and disease images. All images in the first row are original images; all images in the second row are attention maps; the images in the third row are augmentation maps after attention learning; and the images in the fourth and fifth rows are images after image augmentation operations (Region Crop and Region Cover).


[image: Figure 5]
FIGURE 5. Visualization of the effect of image augmentation in CRN on rice pest and disease images. (A) rice pests. (B) rice diseases.


We can see that where pests and diseases occur in certain regions; these discriminative regions are highlighted in augmentation maps. From the fourth row in Figure 5A, we can clearly see that the discriminative region in the image after Region Crop is enlarged. From the fifth row in Figure 5A, the discriminative regions of the pest are the head and body parts, which is consistent with human perception. From the fourth row in Figure 5B, we can see that, although it is quite difficult to identify rice disease regions in the field, IAM can still find discriminative regions from the image. From the fifth row in Figure 5B, we can see that IAM can accurately cover some discriminative regions, thereby prompting CRN to find more discriminative regions, which is especially helpful to the classification effect.





CONCLUSION

This paper has proposed a CRN in order to study the classification of rice pest and disease images in imbalanced datasets. The results show that the combination of the CRM, IAM, and FFM enhances the classification of rice pests and disease images collected in the field. Extensive experiments on common plant datasets and RPDID for imbalanced classification have demonstrated that CRN outperforms state-of-the-art methods. CRN can be further applied in production practice to provide support for the intelligent control of rice pests and diseases.
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Soybean seed purity is a critical factor in agricultural products, standardization of seed quality, and food processing. In this study, laser-induced breakdown spectroscopy (LIBS) as an effective technology was successfully used to identify ten varieties of soybean seeds. We improved the traditional sample preparation scheme for LIBS. Instead of grinding and squashing, we propose a time-efficient method by pressing soybean seeds into rubber sand filled with culture plates through a ruler to ensure a relatively uniform surface height. In our experimental scheme, three LIBS spectra were finally collected for each soybean seed. A majority vote based on three spectra was applied as the final decision judging the attribution of a single soybean seed. The results showed that the support vector machine (SVM) obtained the optimal identification accuracy of 90% in the prediction set. In addition, PCA-ResNet (propagation coefficient adaptive ResNet) and PCSA-ResNet (propagation coefficient synchronous adaptive ResNet) were designed based on typical ResNet structure by changing the way of self-adaption of propagation coefficients. Combined with a new form of input data called spectral matrix, PCSA-ResNet obtained the optimal performance with the discriminate accuracy of 91.75% in the prediction set. T-distributed stochastic neighbor embedding (t-SNE) was used to visualize the clustering process of the extracted features by PCSA-ResNet. For the interpretation of the good performance of PCSA-ResNet coupled with the spectral matrix, saliency maps were further applied to visually show the pixel positions of the spectral matrix that had a significant influence on the discrimination results, indicating that the content and proportion of elements in soybean seeds could reflect the variety differences.
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INTRODUCTION

Soybean is one of the most important agricultural products, which has abundant vegetable protein and oil. The yield and quality of soybeans are directly related to their variety with different genetic purity, physical purity, germination ability, and vigor (John et al., 2016; Mccarville et al., 2017; Zhu et al., 2019a). Mixed and adulterated soybean seeds cause substantial problems for farmers and lead to seed market complexities (Liu et al., 2016). With the increasing requirements for food quality, it is necessary to process different products according to different seed varieties. For instance, the soymilk and tofu made from high-protein soybeans are more delicious (Sato et al., 2014; Yu et al., 2014). Therefore, rapid identification of soybean seed varieties plays an essential role in agricultural products, standardization of seed quality, and food processing. It becomes more and more crucial to build a general discriminant model for distinguishing different soybean seed varieties with large amounts but little difference (Luo et al., 2019).

DNA analysis and protein-based technologies are regarded as powerful tools for specific and precise identification of soybean seed varieties, such as polymerase chain reaction (PCR) (Grohmann et al., 2017), high-performance liquid chromatography (HPLC) (Cho et al., 2013; Kim et al., 2013) and simple sequence repeat (SSR) analysis (Zhang et al., 2014). These genetic methods often require environmentally unfriendly chemical agents to show results. By comparison, the spectroscopy technique does not need any chemical agent and causes minor damage to samples. Therefore, the spectroscopy technique can be an alternative as a non-genetic method to achieve fast genotype discrimination.

Laser-induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy technique which is characteristically fast, micro-damaging, and with simple sample pretreatment (Erler et al., 2020). In a typical LIBS system, a high-energy pulsed laser is transmitted nearly to the surface of the sample. After that, the plasma is created with the vaporization and excitation of the sample (Li et al., 2019). The emitted spectra from the plasma are collected for multi-element analysis (Liu et al., 2019; Wang et al., 2020). So far, LIBS technology has been widely used in qualitative and quantitative analysis in agricultural products such as rice (Luo et al., 2020), psoralea corylifolia seeds (Dhar et al., 2013), cucurbit seeds (Singh et al., 2017), coffee beans (Song et al., 2017), soybean seeds (Gamela et al., 2020; Larios et al., 2020), and grape seeds (He et al., 2020). However, the samples above were grounded and pressed into tablets before collecting LIBS spectra for better signals, which greatly reduced the detection efficiency. This study proposed an innovative method of pressing soybean seeds into a culture plate filled with rubber sand, with a ruler used to ensure a relatively uniform surface in height. Then the soybean seeds could be directly shot by laser beam without any specific pretreatments, markedly reducing the time cost. The LIBS spectra of 2,000 soybeans contributed to establishing a discriminant model with improved generalization due to extensive data.

Much attention has been paid to the traditional machine learning algorithms for modeling LIBS data but little to deep learning and its interpretation (Zhao et al., 2019). For example, support vector machine (SVM) is a commonly used algorithm in machine learning (Liakos et al., 2018). SVM is intrinsically a binary classifier that constructs a linear separating hyperplane to classify data instances (Vapnik and Chapelle, 2000). On account of kernel trick and structural risk minimization principles, SVM usually presents a better performance in classification and regression (Hesami et al., 2020). It has been applied in various fields in agriculture (Ang and Seng, 2021), such as plant breeding (Yoosefzadeh-Najafabadi et al., 2021), pest detection (Ebrahimi et al., 2017), and soil condition prediction (Morellos et al., 2016). However, SVM usually takes a long time to search for optimal parameters. What is more, for multiclass classification, SVM may have a lower classification accuracy than artificial neural network (ANN) (Xia et al., 2018). Therefore, it is necessary to use advanced methods like deep learning. Convolutional neural network (CNN) is one kind of deep learning, which is often used for image and speech recognition. CNN can also be used for spectral data processing (Yan et al., 2021). Compared to ANN, CNN is more likely to reduce the risk of overfitting by sharing the same convolution parameters. Moreover, CNN can identify important spectra regions by applying the same convolutional kernel in a spectrum (Acquarelli et al., 2017). A saliency map is a powerful tool to show the important regions visually (Peruzzi et al., 2021). As we all know, CNN is particularly suitable for image data processing relying on the two-dimensional and self-adaptive characteristics of the convolution kernel. Therefore, we proposed a new form of input data by connecting three spectra of a soybean seed into a spectral matrix. Because of the self-adaptive characteristic of convolution kernel, we expect CNN to learn the important features of the spectral matrix and further improve the modeling effect. At the same time, we can use t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton, 2008) to display the learning effect for different layers in CNN. Thus, the main objectives of this study are: (1) to compare identification accuracy between machine learning and deep learning; (2) to use spectral matrix as the input of CNN; (3) to use t-SNE to visually observe the learning process of CNN; (4) to use saliency maps to find the more influential positions in the spectral matrix on the discriminant results.



MATERIALS AND METHODS


Sample Preparation

The soybean seeds from a single batch were purchased from a seed company in Shuyang Pengyuan horticulture farm, Suqian, Jiangsu, including Guandou 1, Zhoudou 23, Hedou 13, Jiadou 23, Hedou 33, Lvbaoshi, Hedou 25, Qihuang 34, Zhonghuang 13, and Wandou 15, which were correspondingly numbered from variety 1 to variety 10 for convenient description. Two hundred seeds free from damage and disease spots for each variety were selected. Then, without any other pretreatment, every four soybean seeds were pressed into rubber sand in a culture plate using a ruler to ensure a relatively uniform surface height (Figure 1) for the LIBS experiment.
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FIGURE 1. The schematic diagram of the laser-induced breakdown spectroscopy (LIBS) experiment.




Experimental Setup

The experiment was completed using the LIBS system as shown in Figure 1. A Q-switched Nd:YAG pulse laser (Vlite-200, Beamtech Optronics, Beijing, China) was used to generate a pulse laser at 532 nm with a pulse duration of 8 ns, beam diameter of 7 mm, and maximum energy of 200 mJ. Then, the pulse laser was guided to the sample by an optical system, in which a glass slide and a polarizer was combined to control laser energy and a plano-convex lens (f = 100 mm) was fixed to focus the laser beam 2 mm below the surface of the sample. To avoid repeat ablations, an X-Y-Z motorized stage was applied to move the sample every ten accumulation shots. The LIBS spectra were separated by the high-resolution Echelle spectrometer (ME5000, Andor Information Technology Ltd., Belfast, United Kingdom) in the range of 230–904 nm with 0.01 nm resolution and then collected by an intensified charge coupled device (ICCD) camera (DH334, Andor Information Technology Ltd., Belfast, United Kingdom). The delay generator (DG645, Stanford Research Systems Inc., Sunnyvale, CA, United States) was applied to adjust the delay time between the action of the laser ablation and the camera working.

The pulse energy, delay, and integration time were the three important parameters for LIBS, which were optimized as 60 mJ, 2 μs, and 10 μs, respectively, improving the data quality. In the air environment, three different points on a soybean seed were used to be ablated as shown in Figure 1. The horizontal distance between two adjacent points is one millimeter and the middle point is the highest. At each point, the spectra with 10 times accumulation were collected to gather information from the surface to the inside of the soybean seed. The average spectra were taken as the final spectrum. Thus, one soybean seed produced three spectra and a total of 6,000 spectra were produced in this experiment. It only took 30 s to complete the spectral acquisition for one soybean seed.



Data Preprocess

LIBS spectra within soybean seeds contained obvious random noise in the head and end of the spectra. Thus, the wavelengths in the range of 242–882 nm were studied. To reduce fluctuations from point to point, area normalization method was used for each LIBS spectrum following the equation below:
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where xi is the ith variable relative intensity measured by LIBS system, n is the total number of LIBS spectral variables, Xi is the relative intensity by area normalization. Then variables with near-zero standard deviation were removed to reduce the dimension of LIBS spectra (Boucher et al., 2015). All soybean seeds were randomly divided into the calibration set, validation set, and prediction set according to the ratio of 3:1:1. The number of the LIBS spectra in the three data sets was 3,600, 1,200, and 1,200, respectively.



Principal Component Analysis

Principal component analysis (PCA) is a commonly used method to generate an easy visualization of the distribution of samples (Velioglu et al., 2018; Zhu et al., 2019b). The principle of PCA is to find the unit vector to maximize the variance after the original spectral data is projected on the vector, so that the information of the original spectral data can be retained to the greatest extent. The variance can be calculated by the following equation:

[image: image]

Where xi is a LIBS spectrum, v is unit vector and C is covariance matrix of all pixel spectra. So, v = argmax(vT Cv), subjected to vTv−1 = 0. We can use the lagrange multiplier method to solve v. The process is as below:
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Where, λ is the lagrangian multiplier.

Therefore, λ is the eigenvalue of C and v is eigenvector of C. Through PCA, we can get different unit vectors vs with different λs. The larger is, the greater the contribution rate of v is. In this study, the first three vs were used to generate three principal components (PCs). PC1 = Xv1,PC2 = Xv2,PC3 = Xv3. We can intuitively see the clustering of samples by scoring 3-D scatter plots of PC1, PC2, and PC3.



Discriminant Analysis Method


Machine Learning

K-nearest neighbor (KNN) is the simplest classification algorithm in machine learning. The distances between samples are calculated first. Then, k nearest samples are considered to be in the same category. In this study, k is determined by the discriminant accuracy of the validation set and selected in the range of 3–20.

SVM is a stable supervised classification model, which is also suitable for small and high-dimensional data (Vapnik and Chapelle, 2000; Scholkopf et al., 2001). In the process of SVM modeling, the optimal hyperplane is searched to separate the samples by exploring support vector points. At the same time, the structural risks should be minimized. Due to the simplicity of radial basis function (RBF) and its ability to solve complex nonlinear problems, RBF was selected as the kernel function in this study. Kernel function parameter g determines the linearity of the hyperplane and the regularization parameter c determines the capacity of fault tolerance (Yu et al., 2016). In order to guarantee the better performance of SVM, the optimal parameters c and g were selected through grid-search procedure from 10–8 to 108 and determined by classification accuracy of five-fold cross validation.



Deep Learning

Deep learning has become the hottest topic in the field of artificial intelligence. CNN is one of the well-known deep learning structures for classification (Kamilaris and Prenafeta-Boldu, 2018; Ren et al., 2020). In this study, three kinds of common network structures called LeNet (Lecun et al., 1998), DenseNet (Huang et al., 2017) and ResNet (He et al., 2016) were compared firstly. Then according to the discriminant results, two kinds of self-proposed network structures based on ResNet were further studied. The detailed structures based on LeNet and DenseNet are shown in Supplementary Figures 1, 2.

For three kinds of ResNets, basic network architecture is shown in Figure 2. Residual block (RES. Block) is the main characteristic that distinguishes this network structure from others. RES. Block is composed of two convolution layers (Convs), each of which is followed by a batch normalization process and rectified linear unit (Relu) activation function. The two Convs have the same parameters in kernel size, padding, and strides with values of 3, 1, and 1. For four RES. Blocks, the channel number of Convs was 64, 64, 128, and 128, respectively. It is worth noting that the input data can be propagated forward directly to the data before passing through the last layer. For common ResNet, the value of the propagation coefficient W is 1. We proposed the self-adaption of W including propagation coefficient adaptive ResNet (PCA-ResNet) and propagation coefficient synchronous adaptive ResNet (PCSA-ResNet). For PCA-ResNet, there is no limit between the four W and they are updated separately during the back-propagation process. For PCSA-ResNet, the four W are updated synchronously during the back propagation following the equation below:


[image: image]

FIGURE 2. The soybean seeds classification flowchart including data input, ResNet-based classifier, and a majority vote strategy.
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Between the input layer and the RES. Block 1, there was a pretreatment process as shown in Figure 2. In the process, the channel number, kernel_size, padding, and strides of Conv were 64, 7, 3, and 2, respectively, to deal with more information at once. A soybean seed could produce three spectra which could be treated separately or concatenated together into a spectral matrix. Therefore, all the Convs in 1D-CNN had two states including one dimension (1D) or two dimensions (2D) corresponding to different data forms. Additionally, a majority vote was employed to make the final decision for classification when the data form was the first one and the corresponding data transmission flow was marked using gray dotted lines. Another data transmission flow for the spectral matrix was marked using red dotted lines.

VGG is another common network structure for image processing (Simonyan and Zisserman, 2014). The model based on VGG was built as a comparison. The detailed structure is shown in Supplementary Figure 3. In order to compare the modeling effects of different 2D-CNNs, the same pretreatment process as shown in Figure 2 (between the input layer and the RES. Block 1) was added to 2D-LeNet, 2D-DenseNet, and 2D-VGG.

Deep learning models were trained using stochastic gradient descent (SGD) with different learning rates. At the beginning of model training, the learning rate was high and gradually decreased to approximate the optimal accuracy. For each learning rate, there was a threshold for the accuracy of the validation set, which gradually increased with the decrease of the learning rate. When the accuracy of the validation set reached the threshold, the training of the model was stopped. If the accuracy of the validation set could not reach the threshold, the model training would be stopped after 100 iterations. The learning rates and thresholds were set together at different stages of the training process of the model. Taking PCSA-ResNet based on spectral matrix as an example, the learning rates were set as 0.25, 0.124, 0.05, and 0.01, respectively, and the corresponding thresholds were set as 0.84, 0.86, 0.88, and 0.887. The accuracy of the validation set finally converged to 0.887.



Model Evaluation and Visualization

Discriminant accuracy was used to evaluate each model in this study, defined as the ratio of the number of correctly discriminated soybean seed to the total number. To further evaluate model performance, four common evaluation indicators including precision, recall, F-measure, and Matthews correlation coefficient (MCC) were calculated. The corresponding formula refers to the article by Yoosefzadeh-Najafabadi et al. (2021). In this article, the average value of the four indicators was used for a more convenient evaluation.

A confusion matrix was applied to analyze the detailed effects of classification further. The difference between the prediction results and actual results for each soybean seed could be visually observed. The confusion matrix consists of a square matrix whose vertical axis represents the true category and horizontal axis represents the predicted category. Therefore, the number on the diagonal indicated the number of soybean seeds correctly classified.

T-SNE was used to visualize the clustering process of the extracted features from the deep learning model. It could realize the nonlinear dimension reduction of high-dimensional spectra data (Husnain et al., 2019). In t-SNE, the Gaussian distribution’s perplexity was defined as 30, and the initial dimensions of PCA were defined as 12 for layers of Max pooling and RES Block4. For Dense layer, since the length of the feature vector was 10, the dimensions of PCA were set as 6, which should be smaller than 10. The spectral matrix (similar to image data format) was first reshaped into tensor in three dimensions including channel and image, and then each image data of channels was averaged (Zhang et al., 2020).

The deep learning model could calculate the weight of each pixel on the input image (spectral matrix) through the back-propagation algorithm. The graph composed of the weight value of each pixel was called the saliency map. Through the saliency map, we could visually see the pixel positions that had a higher influence on the discrimination results. The calculation formula of the weight of each pixel was as follows:
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Where, I is spectral matrix, Dense is the output vector (ten probability values) of Dense 10, Correct is a vector of 0 and 1 that corresponds to the Dense. For example, if the spectral matrix comes from variety 3, the third position is set as 1 and the others are set as 0.Grad is the gradient of the spectral matrix.



Software and Hardware

The machine learning algorithms were run on Matlab R2014b (The MathWorks, Natick, MA, United States). The software was installed on a Windows7 Desktop with Intel Xeon E5-2620 and 64 GB RAM. CNN was deployed on the framework of Apache MXNet1.4.0 in another computer of Ubuntu Desktop with GTX1080Ti (NVIDIA, California, United States) and 48 GB RAM.



RESULTS AND DISCUSSION


Average Spectral Analysis

The average spectra of soybean seeds from 10 varieties are shown in Figure 3. The ten LIBS spectra showed a high degree of similarity in the position of excitation peak, as they all came from the same agricultural product called soybean. Based on the National Institute of Standards and Technology (NIST), the elements corresponding to the excitation wavelength were marked in the average spectra from variety 1 (Guandou 1). The marked molecular bands CN 0–0 (around 388 nm) are usually associated with organic compounds (Fernandez-Bravo et al., 2013). It is well known that soybeans are rich in calcium, leading to many excitation lines representing calcium that could be observed at 317.93 nm, 393.37 nm, 396.8 nm, 422.67 nm, 430.25 nm, 445.48 and 854.21 nm. In addition, some microelements such as C (247.86 nm), Si (251.61 nm), Mg (279.55 nm, 280.27 nm), H (656.28 nm), K (766.49 nm, 769.90 nm), O (777.54 nm), and N (746.83 nm, 821.63 nm, and 868.03) and microelements like Fe (844.80 nm) and Na (589.59 nm) could also be easily recognized. Although the signal intensity varied among different varieties, it was difficult to distinguish them just by LIBS spectra intuitively. Thus, it was necessary to adopt mathematical data analysis to identify soybean seed varieties.


[image: image]

FIGURE 3. The average spectra of soybean seed samples including different varieties numbered 1–10.




Principal Component Analysis

To test the feasibility of an unsupervised classification, a qualitative analysis of PCA was applied to explore the differences among ten different varieties of soybean seeds. The 3D score scatter plot (X-axis: PC1, Y-axis: PC2, and Z-axis: PC3) is presented in Figure 4. The first three PCs had explained 77.4% of the variation with PC1 of 33.0, PC2 of 25.9, and PC3 of 18.5%. Each variety of soybean seeds was marked with different color or shape for better visualization. We could see a slight distinction among different varieties. But spectra from the same variety could not be completely clustered together. For variety 10 (Wandou 15) marked with a blue circle, two clusters appeared, which indicated that PCA could not explore the variety differences very well. Therefore, supervised data processing was needed to explore the differences among the ten varieties of soybean seeds.


[image: image]

FIGURE 4. 3D scatter plot of 10 different varieties of soybeans based on the first three principal components (PCs).




Machine Learning and 1D-Convolutional Neural Network

Both 1D-LeNet and 1D-DenseNet had poor performances after trying different model parameters. The accuracy in the prediction set is about 10% for them. For machine learning and ResNets, Table 1 shows the results based on a single spectrum and a majority vote. Based on a single spectrum, KNN had the worst performance with the accuracy of 64.33% in the prediction set. SVM had a higher accuracy of 84.67%. Three different kinds of 1D-ResNets were superior to machine learning. The accuracy in the prediction set was 86.42, 86.00, and 86.83%, respectively, for 1D-ResNet, 1D-PCA-ResNet, and 1D-PCSA-ResNet. For 1D-PCA-ResNet, four different propagation coefficients of W1,W2,W3,andW4 had the value of –0.15, –1.06, 0.04, and 3.13, respectively. For 1D-PSCA-ResNet, the shared W∗ had the value of 1.52. Based on a majority vote, the discriminant accuracy of the validation set and prediction set were both improved. For machine learning, SVM obtained the highest accuracy of 90% in the prediction set. For deep learning, 1D-PCA-ResNet obtained the highest accuracy of 89.50% in the prediction set.


TABLE 1. The results of discriminant models based on single spectrum and a majority vote.
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Based on a single spectrum, the discriminant effects from deep learning were superior to machine learning, revealing the advantages and effectiveness of deep learning in spectral analysis. This is because CNN has different principles in data processing from SVM. The output of each convolutional layer of CNN is directly related to small regions of the input spectrum. Thus, CNN can identify important regions of the input spectrum (Acquarelli et al., 2017). The existing research in spectral application showed that CNN might have better performance than machine learning (Brugger et al., 2021; Chen et al., 2021). The network structure based on ResNet had higher accuracy than that based on LeNet and Densenet. Therefore, residual block played a vital role in the soybean genotype discrimination coupled with LIBS spectra. The main feature of the residual block is that the data can be propagated forward more quickly through a cross-layer data path (Moussa and Owais, 2021). However, the propagation coefficient of common ResNet was set directly as 1. We believe that propagation coefficient can also be automatically learned like convolution parameters to achieve better results. The results showed that 1D-PCSA-ResNet obtained higher accuracy for a single spectrum, which aligns with our ideas. In order to determine the variety of soybean seeds, the voting strategy was proposed. The classification accuracy for both validation and prediction sets was further improved. The results illustrated the stability and effectiveness of the voting strategy. However, the optimal classification accuracy was obtained by SVM rather than 1D-PCSA-ResNet. The reason might be that SVM was characterized by minimal structural risk (Yoosefzadeh-Najafabadi et al., 2021). In the three spectra from a soybean seed, one may be misclassified. Through majority vote, the classification accuracy could be improved.



2D-Convolutional Neural Network

2D-DenseNet had the same poor performances as 1D-DenseNet. The accuracy in the prediction set was about 10%. For other 2D-CNNs, Table 2 shows the results. The accuracy in the prediction set of 2D-LeNet and 2D-VGG were 85.25 and 85.75%, respectively. The model based on residual block outperformed them. 2D-ResNet had an accuracy of 89.75%. 2D-PCA-ResNet had a lower accuracy of 89.00%. The four different propagation coefficients had values of –0.15, –0.92, 0.04, and 2.43, respectively. Whereas 2D-PCSA-ResNet obtained the highest accuracy in the prediction set with the value of 91.75%. The four same propagation coefficients had the value of 1.30. For 2D-ResNet and 2D-PCSA-ResNet, the average value of four indicators including precision, recall, F-measure and MCC was calculated. For 2D-ResNet, they were 0.90, 0.90, 0.90, and 0.89, respectively. For 2D-PCSA-ResNet, they were 0.92, 0.92, 0.92, and 0.91, respectively.


TABLE 2. The results of 2D-CNNs based on a spectral matrix.
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The highest accuracy was 91.75% from 2D-PCSA-ResNet, whose result was still 1.75 higher than SVM by voting strategy, demonstrating that taking spectral matrix as the input of CNN could improve the classification accuracy. One spectrum could only contain the information of one point on the soybean seed while the spectral matrix could involve more sufficient information. Moreover, the 2D convolution kernel could automatically learn the joint useful information (Zhang et al., 2020). These might be the reason for a higher accuracy. Also, all four indicators of 2D-PCSA-ResNet had higher values than that of 2D-ResNet, indicating that 2D-PCSA-ResNet performed better, consistent with our idea in 3.3 again.



Training and Testing Curves of 2D-Propagation Coefficient Synchronous Adaptive-ResNet

Figure 5 shows the training and testing curves of 2D-PCSA-ResNet. As the number of iterations increased, the loss value decreases gradually and the accuracy of the modeling set increased gradually. The accuracy of the validation set fluctuated but finally converged just like the calibration set. The accuracy of the modeling set, validation set, and prediction set was 100, 88.75, and 91.75%, respectively. There was no fitting phenomenon in the 2D-PCSA-ResNet model.
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FIGURE 5. Training and testing curves of 2D-PCSA-ResNet.




Feature Clustering Process in 2D-Propagation Coefficient Synchronous Adaptive-ResNet

The clustering effects of features extracted from Max pooling, RES. Block4 and Dense 10 in 2D-PCSA-ResNet are visualized in Figure 6. As the layers went from shallow to deep, the feature clustering phenomenon became more apparent, indicating that the features learned by the deep learning model were more and more representative with the deepening of layers. As shown in Figure 6C, the layer close to the output had successfully learned the soybean seed varieties’ characteristics. Although a small number of data points were misclassified, the classification results were generally satisfactory.
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FIGURE 6. The visualization of clustering effects in layers of (A) Max pooling, (B) RES. Block4 and (C) Dense 10 in 2D-PCSA ResNet by t-SNE.




Saliency Map of the Input Spectral Matrices

Connected saliency maps of spectral matrices of soybean seeds in the prediction set from ten varieties based on 2D-PCSA-ResNet are shown in Figure 7. The darker the color was, the greater the influence of the corresponding pixels on the discrimination results. (1) It could be seen that the saliency pixels for each variety were distributed in strips. This was because the essence of the input image was spectral matrices. The wavelength and the corresponding intensity of the spectrum could reflect the differences of different samples (Liu et al., 2017). (2) For each variety, there were slight differences in color at the same wavelength. The reason might be that the three spectra that made up the spectral matrix came from three different points on the surface of a soybean seed. And the deep learning model could automatically identify the valuable information for the discrimination (Acquarelli et al., 2017). (3) The saliency maps from different soybean varieties were different. For example, saliency maps from variety 4 had significantly more red spots in the number range of 250–1,000 than that of varieties 3 and 2. These differences were the fundamental reason why the 2D-PCSA-ResNet could distinguish different soybean seed varieties. Moreover, these differences had a certain corresponding relationship with the excitation peak of LIBS spectra, indicating that the content and proportion of elements (C, Si, Mg, Ca, Na, H, K, O, N) in soybean seeds played an important role in variety differences.
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FIGURE 7. Connected saliency maps for spectral matrix of soybean seeds in prediction set from ten varieties based on 2D-PCSA-ResNet. The two spectra at the bottom are same and are the average spectra from prediction set.




Confusion Matrix Analysis

Figure 8 shows the confusion matrices of validation and prediction for 2D-PCSA-ResNet. The details of misclassification of each variety of soybean seeds could be observed clearly.
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FIGURE 8. The confusion matrix for the (A) validation and (B) prediction based on 2D-PCSA-ResNet.


Good classification performances could be found for Variety 6 (Lvbaoshi) and Variety 8 (Qihuang 34), for which few samples were misclassified. For the validation set, the classification results of Variety 7 (Hedou 25) and Variety 9 (Zhonghuang 13) were poor, more likely to be misclassified as Variety 4 (Jiadou 23) and Variety 3 (Hedou 13), respectively. For the prediction set, Variety 9 (Zhonghuang 13) had similar poor classification results to those in the validation set and Variety 5 (Hedou 33) was more likely to be misclassified as Variety 7 (Hedou 25).

All the samples from Variety 6 (Lvbaoshi) could be correctly classified, which might be attributed to the fact that Lvbaoshi have a distinct color (green) compared to other varieties (yellow), causing the different element distribution from other varieties. Variety 5 (Hedou 33) and Variety 7 (Hedou 25) are easy to be misclassified as each other. This was probably because they were both a type of Hedou with similar genotypes. Variety 9 (Zhonghuang 13) and Variety 3 (Hedou 13) are easy to be misclassified as each other. The reason might be that the saliency maps of Variety 9 and Variety 3 were similar, which was related to the internal structure of the discriminant model. As for variety 9 with the lowest accuracy of 82.5%, special attention should be paid to actual application. Generally, most soybean seeds could be accurately classified, which indicated that LIBS coupled with CNN could be used as a rapid and small-invasive detection method to identify soybean seed varieties.



CONCLUSION

Laser-induced breakdown spectroscopy combined with deep learning was successfully applied to the fast identification of soybean seed varieties. It only took 30 s to complete the spectral collection for one soybean seed. Considering the two-dimensional and self-adaptive features of the convolution kernel of CNN, the three spectra of a soybean seed were connected into a spectral matrix as the input. Coupled with spectral matrix, 2D-PSCA-ResNet obtained the highest accuracy in the prediction set with an accuracy of 91.75%. In the future, it can be considered to combine with portable LIBS instruments to realize rapid and on-site identification of soybean seed variety. Meanwhile, more ablation schemes (different laser wavelengths, ablation times, more suitable ablation locations, etc.) can be studied to enhance the detection effects further.
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The aim of this study was to better understand the response of ex vitro acclimatized plants grown to a set of mineral nutrient combinations based on Hoagland solution. To reach that, two computer-based tools were used: the design of experiments (DOE) and a hybrid artificial intelligence technology that combines artificial neural networks with fuzzy logic. DOE was employed to create a five-dimensional IV-design space by categorizing all macroelements and one microelement (copper) of Hoagland mineral solution, reducing the experimental design space from 243 (35) to 19 treatments. Typical growth parameters included hardening efficiency (Hard), newly formed shoot length (SL), total leaf number (TLN), leaf chlorophyll content (LCC), and leaf area (LA). Moreover, three physiological disorders, namely, leaf necrosis (LN), leaf spot (LS), and curled leaf (CL), were evaluated for each treatment (mineral formulation). All the growth parameters plus LN were successfully modeled using neuro-fuzzy logic with a high train set R2 between experimental and predicted values (72.67 < R2 < 98.79). The model deciphered new insights using different sets of “IF–THEN” rules, pinpointing the positive role of Mg2+ and Ca2+ to improve Hard, SL, TLN, and LA and alleviate LN but with opposite influences on LCC. On the contrary, TLN and LCC were negatively affected by the addition of NO3– into the media, while NH4+ in complex interaction with Cu2+ or Mg2+ positively enhanced SL, TLN, LCC, and LA. In our opinion, the approach and results achieved in this work are extremely fruitful to understand the effect of Hoagland mineral nutrients on the healthy growth of ex vitro acclimatized plants, through identifying key factors, which favor growth and limit physiological abnormalities.

Keywords: Actinidia arguta, artificial intelligence, ex vitro acclimatization, DOE, kiwiberry, machine learning, healthy plants, physiological disorders


INTRODUCTION

The first studies on the development of mineral nutrient solutions for the cultivation of healthy plants date back to the mid-1800s. They are mainly based on physiologically balanced formulations, i.e., Knop formulation (Loew and Aso, 1907). This approach was substituted by testing serial concentrations of elements of Knop. In this case, a similar osmotic concentration for all the media is tested, but each formulation differs from the others in the proportions of nutrient salts (Tottingham, 1914; Shive, 1915; Jones and Shive, 1921). Subsequently, the variation in the pH range of the formulated mineral solution was introduced (Arnon and Johnson, 1942).

Hoagland and colleagues soon reported outstanding improvements in mineral formulations for healthy commercial plant growth (Hoagland, 1920, 1937; Hoagland and Broyer, 1936; Arnon, 1937; Arnon and Hoagland, 1939), but also some associated physiological problems with those formulations (Hoagland and Arnon, 1941, 1948). In 1950, they established the most widely cited and used plant mineral nutrition formulation: Hoagland solution (Hoagland and Arnon, 1950). The new formulation was based on the quantification of the nutrients absorbed by the plant roots followed mainly by the substation of several mineral nutrients until satisfactory results were obtained (Hoagland, 1920; Arnon, 1938). This procedure made the task time-consuming, intensive, and laborious (Hoagland and Arnon, 1950 and references therein).

Although the Hoagland solution has been commonly used for several crops with good results, ex vitro culture of plants is still one of the most important challenges for researchers. For each case, different strengths of Hoagland solution need to be applied or its elements must be readjusted. For instance, a different strength of Hoagland solution (0.125-2×) was tested by Kang and Iersel (2004) for growing Salvia splendens, pinpointing 1–2 × as optimum levels for healthy plant growth. The half strength of Hoagland solution was determined as the best level for the healthy growth of Citrus sp. (Zhou et al., 2020). Also, the serial concentrations of Ca2+ and BO3– were tested based on the half strength of Hoagland to improve the healthy growth of Actinidia deliciosa L. (Sotiropoulos et al., 1999). However, finding an optimized solution of mineral nutrients remains a time-consuming, costly, and tedious task (Nezami-Alanagh et al., 2014).

Recently, computer-based tools for the design of experiments (DOE) made it possible to drastically reduce the number of combinations to be studied compared with traditional factorial designs (Niedz and Evens, 2016). Although DOE has been widely used to improve in vitro plant tissue culture (PTC) practice (Niedz and Evens, 2007; Poothong and Reed, 2015; Ayuso et al., 2017; Nezami-Alanagh et al., 2018, 2019; Chu et al., 2019; Hameg et al., 2020; Pence et al., 2020), as far as we know, there is no report regarding the application of the DOE to ensure adequate sampling of the design space in plant mineral solution formulations.

The next challenge of mineral nutrient studies is understanding ion-specific effects in n-dimensional design spaces. In this situation, the use of artificial intelligence (AI) tools has been recommended as a suitable alternative computational methodology to extract information from complex databases (Gago et al., 2010a; Gallego et al., 2011). Neuro-fuzzy logic is one of the powerful multiscale analysis systems of AI technology with the ability to model non-linear complex systems by setting simple “IF–THEN” rules together with the identification of the key factors to improve a specific response (Landin et al., 2009). In recent years, several studies have proved the efficacy of neuro-fuzzy logic in in vitro culture media improvements (Nezami-Alanagh et al., 2014, 2017; Ayuso et al., 2017), but despite these advances, the development of an optimal mineral formulation for plant growth continues to be a challenge.

Here, the commercially important kiwiberry or hardy kiwi (Atkinson and Macrae, 2007) plants were selected to establish the response of micropropagated plants to a set of mineral formulations during the ex vitro acclimatization (hardening) process. To that end, we implemented DOE to generate a multifactor design space to simultaneously study the influence of Hoagland mineral nutrients on a set of physiological responses, followed by applying neuro-fuzzy logic to model and unveil the key mineral nutrients to decipher hidden relationships between mineral nutrients and the studied parameters.



MATERIALS AND METHODS


Plant Material and in vitro Culture Conditions

Micropropagated plants of Actinidia arguta (Sieb. and Zucc.) Planch. ex Miq. cv. “Issai” were obtained from the Department of Plant Biology and Soil Sciences (University of Vigo) as described in detail elsewhere (Hameg, 2019; Hameg et al., 2020). Briefly, micro-shoots were proliferated in Cheng medium (Cheng, 1975) containing 1 mg/L N6-benzyladenine (BAP), 1 mg/L gibberellic acid (GA3), 30 g/L sucrose, and 8 g/L agar. Medium pH was adjusted to 5.7 prior to autoclaving (121°C, 1 kg/cm2/s for 20 min). The cultures were kept under 16-h photoperiod (white fluorescent tubes; irradiance of 40 μmol/m2/s) and day/night temperature of 25 ± 1°C and cultured for 50 days (Hameg et al., 2018).



Direct ex vitro Simultaneous Rooting and Acclimatization Culture Conditions

Micro-shoots (∼3 cm in height) obtained from in vitro proliferation medium, after dipping the basal cut end of the micro-shoots in 250 ppm indole-3-butyric acid (IBA) solution for 10 min, were carefully planted into mini-pots (5 × 5 cm2) containing perlite, covered with glass vessels. The mini-pots were transferred into an automated growth room (Sanyo SGC066.CFX.F) under 16-h photoperiod (white fluorescent tubes; irradiance of 200 μmol/m2/s) and 18 ± 3°C. The initial value of relative humidity was set at 100% and decreased gradually during 21 days until 60% was reached (Gago et al., 2010b).

Thereafter, rooted plantlets were watered for 3 months with a set of mineral formulations (Table 1), based on the Hoagland solution (Hoagland and Arnon, 1950). Each replicate consisted of two transplant plastic containers each containing 10 plants. The experiments were carried out in duplicate.


TABLE 1. Composition of the mineral formulations established by the five-factor design (19 treatments) based on Hoagland mineral nutrients plus half strength of Hoagland solution (as control) in mg/L.
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Experimental Design and Data Acquisition

An experimental design was established to study the effects of the combination of six macronutrients (i.e., N, P, Ca, K, S, and Mg) and one micronutrient (Cu) of the Hoagland solution (Hoagland and Arnon, 1950) on the growth and development of acclimatized plants. To this end, the Hoagland salts, namely, (i) NH4H2PO4, (ii) KNO3, (iii) Ca(NO3)2.4H2O, (iv) MgSO4.7H2O, and (v) CuSO4.5H2O, were considered as five independent factors at three levels, expressed as × half-strength Hoagland solution concentrations (Table 1) for ensuring optimal sampling of the design space. In other words, here we select the space delimited by three levels of Hoagland solution varied between 0.01, 0.5, and 1 (×level). This means that various formulations of Hoagland solution were tested: some at a very low concentration of all ions (0.01×); others at middle concentrations (0.5 × level) similar to the control (½ strength), and the rest at full-strength Hoagland solution (1 × level).

The five-factor experimental design was a 19-point using IV-optimal response surface and the software application Design-Expert®8 (Design-Expert, 2010), and another point with half-strength Hoagland salt concentration as control (Table 1). The other salts in the Hoagland solution, including micronutrients and iron, were fixed based on the control medium (Supplementary Table 1).

Samples of plants were irrigated with each mineral formulation. After 3 months, five growth responses and three physiological disorders were evaluated:


1.Hardening efficiency (Hard): percentage of successfully acclimatized plants.

2.Shoot length (SL): length of shoots in cm.

3.Total leaf number (TLN): number of leaves.

4.Leaf chlorophyll content (LCC): measured by SPAD chlorophyll meter (Opti-Sciences CCM-200, United States), expressed as Chlorophyll Content Index (CCI).

5.Leaf area (LA): measured by CI-202 Laser Leaf Area Meter in cm2.

6.Leaf necrosis (LN): number of necrotic leaves per total leaf numbers in %.

7.Curled leaf (CL): number of curled leaves per total leaf numbers in %.

8.Leaf spot (LS): number of spotted leaves per total leaf numbers in %.





Artificial Neural Networks Modeling Tool

FormRules® v4.03 (Intelligensys Ltd., United Kingdom), a neuro-fuzzy logic software that combines artificial neural networks with fuzzy logic, was used to model the results and analyze how the solution components modulate its physiological effects through the simple “IF–THEN” rules that generate with a membership degree, as described in detail previously (Colbourn and Rowe, 2005; Gallego et al., 2011; Landin and Rowe, 2013; Nezami-Alanagh et al., 2018).

Different statistical criteria of software fitting, namely, Cross validation (CV), Leave One Out Cross Validation (LOOCV), Minimum Description Length (MDL), Bayesian Information Criterion (BIC), and the Structural Risk Minimization (SRM), were tested to build the model. Among them, SRM was selected, because it generated the most predictable models along with the minimum generalization error and the simplest and more intelligible rule sets avoiding overtraining (Vapnik, 1992; Shao et al., 2006). All data were used for training since SRM is a statistical significance method; the number of subsets ranged from 1 to 3, and a maximum of 4 inputs per submodel and 15 maximum nodes per input were selected (Table 2) as described elsewhere (García-Pérez et al., 2020; Hameg et al., 2020).


TABLE 2. Training parameters setting with neuro-fuzzy logic.

[image: Table 2]The model quality was assessed using the coefficient of determination of the training set (train set R2), expressed in percentage (for model predictability), and the analysis of variance (ANOVA) parameters (for model accuracy). Train set R2 values are calculated by the following equation (Shao et al., 2006):
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where yi is the experimental value in the database, yi′ is the predicted value generated by the model, and yi″ is the mean of the dependent variable.

Train set R2 values between 70 and 99.9% are indicative of acceptable predictabilities, while values higher than 99.9% have been rejected due to model over fitting (Colbourn and Rowe, 2005; Landin et al., 2009). To test model accuracy, the software uses one-way ANOVA to evaluate statistical differences between predicted and experimental data. Models, which computed ratio f-value in the ANOVA greater than critical f-value for the corresponding degrees of freedom (α = 0.01), show good accuracy and no statistical differences among experimental and predicted values (Colbourn and Rowe, 2009).

Modeling was built according to the methodology described previously by Nezami-Alanagh et al. (2017) using the training parameters shown in Table 2.

To avoid the ion confounding effect (Niedz and Evens, 2007), the mineral composition of every formulation was expressed as ion concentrations instead of salt concentrations and introduced as inputs (NH4+, Ca2+, K+, Mg2+, NO3–, PO42–, SO42–, and Cu2+), while physiological parameters (Hard, SL, TLN, LCC, LA, LN, LS, and CL) were selected as outputs.



RESULTS

The reduced experimental design allowed establishing just 19 treatments (mineral formulations) using different proportions of the mineral nutrients of Hoagland solution in a well-sampled design space. As it can be observed (Table 3), while some formulations promoted the highest plant survival (100% Hard) such as A and B, others such as C, F, H, J, and R were completely unviable (0% Hard), all plants showing 100% of leaf necrosis (C, H, J, and R) or 100% of spots (F) and dying during 3 months of acclimatization. Moreover, some other formulations (e.g., B, G, I, L, P, and S) and the control (½ Hoagland strength) also promoted rates of physiological disorders such as leaf spots, curling, and/or necrosis (Table 3). Thus, it is clear that the mineral composition of each formulation assayed plays an essential role in plant survival during the acclimatization procedure. However, these data are not very informative about which component of each formulation caused those positive or negative effects on plant growth and health, thus not much valuable knowledge can be drawn from these results.


TABLE 3. Dataset used to build the neuro-fuzzy model, including the mineral ion composition as inputs and the experimental data obtained for each growth response and physiological disorder parameters (expressed as the mean ± standard error) as outputs.

[image: Table 3]The use of neuro-fuzzy logic models permitted the successful modeling of six out of eight parameters (outputs): Hard, SL, TLN, LCC, LA, and LN with high predictability (72.67 ≤ R2 ≤ 92.84%) and accuracy (f ratio > f critical). However, the reduced number of degrees of freedom did not allow confirmation of the accuracy of CL and LS models, despite their excellent predictability R2 > 93.71% (Figure 1 and Table 4).
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FIGURE 1. Determination of coefficient (R2) of experimental vs. predicted values obtained by neuro-fuzzy logic models for the different parameters or outputs studied: (A) Hard, (B) SL, (C) TLN, (D) LA, (E) LCC, and (F) LN.



TABLE 4. Neuro-fuzzy logic results for each output model.

[image: Table 4]Neuro-fuzzy logic generated 1–3 submodels for each parameter. Two submodels explain the variability of plant survival (Hard): the interaction of NO3– and Mg2+, highlighted as the inputs with the strongest effect, and the independent effect of Ca2+. The variance found for SL (81.24) TLN (79.77), and LCC (92.84) was mainly due to the interaction of NH4+ and Cu2+ (stronger effect) and the independent influence of Mg2+. For LCC, the independent influence of Ca2+ also played an essential role. For LA, the strongest effect was caused by the interaction of NH4+ and Mg2+ and the independent influence of NO3–. Finally, LN variations are explained by variations in Ca2+ ion concentrations (Table 4).

Neuro-fuzzy logic provides a set of useful “IF–THEN” rules to explain those effects and facilitate their understanding using words (linguistic tags), as well as to help researchers in decision-making. Table 5 summarizes all the rules with their membership degree. The rules showing the ion combination with the strongest effect and highest membership (1.00) for each parameter are in bold.


TABLE 5. Rules generated by neuro-fuzzy logic showing the best combination of inputs to obtain the highest and lowest physiological responses with their membership degree for each output.

[image: Table 5]The “IF–THEN” rules for Hard indicate that the highest survival of the acclimatized plants was obtained if a low amount of NO3– was supplied into the mineral formulation, particularly if combined with high Mg2+ content (rules 4–5; Table 5). Also, the model recommends supplementing the formulation with mid to high amounts of Ca2+ (rules 2–3; Table 5). The meaning of low, mid, or high concentrations for the different inputs can be found elsewhere (García-Pérez et al., 2020; Hameg et al., 2020).

The analysis of “IF–THEN” rules for SL, TLN, and LCC revealed that only Cu2+ and NH4+ supplied at high concentration lead to the longest shoots, the highest leaf number, and high chlorophyll content (rules 13, 17, and 25, respectively; Table 5). As for Hard, only mineral solutions supplemented with a high concentration of Mg2+ (rules 9, 19, and 27; Table 5) promoted high values for SL, TLN, and LCC. According to these rules, the hardy kiwi plants grown on mineral formulation B containing high concentrations of NH4+, Cu2+, and Mg2+, corresponded to the longest SL (7.35 cm), the highest TLN (56.8 cm), and the second highest (almost nine CCI) LCC (Table 2).

Leaf area was essentially predicted by the interaction of NH4+ and Mg2+: if high NH4+ was combined with high Mg2+, then high LA values (rule 33; Table 5) were achieved, but if high NH4+ was combined with low Mg2+, then low LA values were obtained (rule 32; Table 5). Also, the model pinpointed the negative independent influence of NO3–, only promoting the highest LA when low amount of NO3– was supplied into the mineral formulation (rule 34; Table 5; membership 1.00).


Physiological Disorders

In this study, different types of physiological disorders such as LN, CL, and LS during plant acclimatization were observed (Table 3 and Figure 2). However, only LN could be successfully modeled with the neuro-fuzzy logic, due to insufficient predictability of their models (f ratio < f critical, Table 4).


[image: image]

FIGURE 2. Growth quality of A. arguta plants watered with some mineral formulations in addition to physiological disorders observed in suboptimal media. (A–C) plants watered with (A,B), and control formulations, respectively. Physiological disorders detected during plant acclimatization: (D) leaf necrosis, (E) curling leaf, and (F) leaf spot symptoms.


Leaf necrosis variability is explained by Ca2+ concentration. The mid-high concentration of this ion (>1.03 mM) avoids leaf necrosis (rules 37–38; Table 5).



DISCUSSION

Although Hoagland solution (Hoagland and Arnon, 1950) has basically been set up using asparagus, lettuce, tomato, or wheat (Hoagland, 1923; Arnon, 1937; Arnon and Stout, 1939; Hoagland and Arnon, 1948), subsequently, it has been widely used to irrigate almost all genotypes, including several Actinidia spp. (Sotiropoulos et al., 2005; Liang et al., 2018; Liu et al., 2019; Purohit et al., 2020). In this study, we have used an IV-optimal design space using DOE software through dividing all macroelements plus copper of Hoagland solution into five independent factors at three levels (Table 1) to get a better understanding of the responses of acclimatized plants. This approach allowed us to (i) establish a well-sampled design space and (ii) reduce the number of mineral formulations based on Hoagland levels used in the study from 243 to just 19 combinations.

Among the available machine learning algorithms used in plant nutrition studies (García-Pérez et al., 2020; Hameg et al., 2020; Niazian and Niedbała, 2020), here, the commercial neuro-fuzzy logic (FormRules®) that combines artificial neural networks with fuzzy logic was used to build the mathematical models.

Neuro-fuzzy logic has shown a sounding potential for data mining and generates knowledge from complex datasets of plant tissue culture studies (Gago et al., 2011; Nezami-Alanagh et al., 2019). In this work, the efficiency of this tool can be briefly summarized as (i) generating statistical mathematical models with high predictability (train set R2 > 70%) and accuracy (f ratio > f critical), which explain six out of the eight outputs with the related significant inputs (Table 4) as described by Shao et al. (2006) and (ii) constructing a set of “IF–THEN” rules to elucidate the complex non-linear relationships between inputs and outputs expressed in words (Table 5). As an example, all the plants irrigated with C, H, J, and R formulations did not survive and died within the first 3 weeks of the acclimatization process mainly due to the low Ca2+ content (Table 3), all of them showing the highest (100%) leaf necrosis ratios (Table 5: rules 1 and 36).

Nitrogen (N) is considered one of the essential mineral nutrients for plant growth and development (Raven, 2003; Wang et al., 2012; Liu et al., 2014). Among the N sources, NH4+ and NO3– ions are considered the most important, but plant species have different adaptabilities to uptake and utilize both (Crawford, 1995; Boudsocq et al., 2012; Gonçalves Fernandes, 2019; Asim et al., 2020). All the growth parameters studied were critically affected by one of the N sources or both, independently or in complex interactions with other ions such as Cu2+ or Mg2+ (Table 4). NO3– should be supplied at a low concentration within the design space (6 mM) to improve both Hard and LA, whereas NH4+ should be supplied at high concentrations (0.5 < × < 1.0 mM) in combination with high Cu2+ or Mg2+ to improve SL, TLN, LCC, and LA (Table 5). Thus, the results also suggest that the concentrations of NH4+, Cu2+, and Mg2+ in the Hoagland solution are optimal to irrigate Actinidia spp., particularly kiwiberry (A. arguta). However, the concentrations of salts containing NO3– should be reduced. In agreement with our findings, Clark et al. (2003) observed the preference of cranberry plants to absorb NH4+ compared with NO3– when testing different ratios of NO3–:NH4+ based on Hoagland solution. In their study, the plants receiving NO3– exhibited poorer growth and greater foliar chlorosis compared with plants grown with NH4+. In a recent study (Gonçalves Fernandes, 2019), in which Actinidia sp. plants were irrigated with two levels of these ions (0 and 3 mM) while keeping other mineral nutrients of solution at a fixed concentration, an increase in the lengths of shoots and roots was observed when solutions supplemented with 3 mM NO3– were used, while the plants irrigated with 3 mM NH4+ exhibited higher chlorophyll and protein contents. These controversial results may have their origin in the experimental design, which in our case allows us to detect interactions between nitrogen suppliers and other ions, which undoubtedly influence the preference of plants in the absorption of certain nutrients.

Neuro-fuzzy logic also identified Mg2+ as an ion, which positively affected five out of the six parameters (Hard, SL, TLN, LCC, and LA) independently or in complex interaction with other ions (Table 4). Mg2+ was widely described as an essential divalent cation for plant growth and development, being considered as a mobile element (Tang et al., 2012; Blasco et al., 2015; Rehman et al., 2018; Hauer-Jákli and Tränkner, 2019). It is a structural constituent of chlorophyll molecules and the subsequent transport of photo-assimilates, and it is involved in many biochemical and physiological plant processes. It is also required for the activity of many enzymes of respiration and nucleic acid biosynthesis. The absence of magnesium results in interveinal chlorosis and in premature leaf abscission (Bhatla and Lal, 2018).

Recently, it has been shown that Mg2+ uptake by Actinidia sp. is significantly affected by N-sources available in the solutions, thus plants, whose source of N is exclusively NH4+, present lower Mg values in shoots and roots compared with plants irrigated with NO3– (Gonçalves Fernandes, 2019). The antagonistic effect between Mg2+ and NH4+ may have its origin in uptake competition of these cations through the mechanism of charge balance in ion uptake, since N is a dominant macronutrient and its ionic form controls cation and anion uptake (Borgognone et al., 2013; Gonçalves Fernandes, 2019).

Ca2+ significantly affected three out of the six parameters. Despite the inclusion of a mid-high amount of this cation improving Hard and alleviating LN, the LCC was negatively influenced by high Ca2+ concentrations (Table 5). The dual function of calcium in plants, as the divalent cation, can be summarized in (i) contributing to the cell wall structure and strength and (ii) being a second messenger in many physiological and developmental processes (Thor, 2019). On the contrary, the visual symptoms of Ca2+ deficiency vary among species (de Freitas et al., 2016). In grapevine, it has been related to the appearance of necrosis at the margin of young leaves and the development of necrotic dots, rolling up, leaden, and yellow color in adult leaves (Bavaresco et al., 2010). We have observed leaf tip burning along with the development of necrosis in whole leaves when low amounts of Ca2+ were included in the formulations (Figure 2D). Recently, Teixeira da Silva et al. (2020) reviewed the effect of different ions on shoot tip necrosis (STN) in terms of morphological, biochemical, and molecular aspects, revealing that of all the ions, supply of sufficient Ca2+ in vitro cultures can prevent STN by inhibiting the accumulation of phenolic compounds and thus programmed cell death. Furthermore, the excessive synthesis and transport of auxin and ethylene in undesirable conditions were shown to decrease the mobility of Ca2+within a plant, resulting in Ca2+ deficiency and STN. They finally concluded that STN of in vitro shoots and/or plantlets can be hindered or reversed by altering the basal medium, mainly the concentration of Ca2+, adjusting the levels of auxins or cytokinins, or modifying culture conditions.

The copper ion (Cu2+) is considered an essential micronutrient that governs several important physiological roles during plant growth and development, mainly through its catalytic role in photosynthesis, respiration, and formation of lignin in the cell wall (Cuypers et al., 2000; Borghi et al., 2008; Printz et al., 2016). Our results pinpointed that this ion played an essential role in three out of the eight parameters (SL, TLN, and LCC) in interaction with NH4+. Both ions supplied at high concentration always (membership = 1) lead to long shoots, many leaves, and high chlorophyll contents. However, high Cu2+ concentrations combined with low NH4+ contents promote the opposite effect: short shoots, low leaf number, and chlorophyll content. These results suggest that the effect described on those growth and physiological parameters was more related to the level of NH4+ than the effect per se of the Cu2+.

In conclusion, the use of a reduced experimental design together with artificial intelligence tools has allowed us to study the simple or combined effect of nutrients in complex mineral formulations. Moreover, it has allowed us to establish the suitability of the full-strength Hoagland solution or propose its adjustment for better growth of the A. arguta plant during its acclimatization.

The nitrogen ions (NH4+ and NO3–) are essential to maintain plant growth and development. While the mathematical model obtained recommends maintaining the level of NH4+, Ca2+, Mg2+, and Cu2+ established in the full-strength Hoagland solution for irrigating kiwiberry plants, the NO3– concentration should be reduced for improving plant hardening (e.g., at half the KNO3– salt content of Hoagland solution).
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Farmers require diverse and complex information to make agronomical decisions about crop management including intervention tasks. Generally, this information is gathered by farmers traversing their fields or glasshouses which is often a time consuming and potentially expensive process. In recent years, robotic platforms have gained significant traction due to advances in artificial intelligence. However, these platforms are usually tied to one setting (such as arable farmland), or algorithms are designed for a single platform. This creates a significant gap between available technology and farmer requirements. We propose a novel field agnostic monitoring technique that is able to operate on two different robots, in arable farmland or a glasshouse (horticultural setting). Instance segmentation forms the backbone of this approach from which object location and class, object area, and yield information can be obtained. In arable farmland, our segmentation network is able to estimate crop and weed at a species level and in a glasshouse we are able to estimate the sweet pepper and their ripeness. For yield information, we introduce a novel matching criterion that removes the pixel-wise constraints of previous versions. This approach is able to accurately estimate the number of fruit (sweet pepper) in a glasshouse with a normalized absolute error of 4.7% and an R2 of 0.901 with the visual ground truth. When applied to cluttered arable farmland scenes it improves on the prior approach by 50%. Finally, a qualitative analysis shows the validity of this agnostic monitoring algorithm by supplying decision enabling information to the farmer such as the impact of a low level weeding intervention scheme.

Keywords: plant classification, artificial intelligence, deep learning, convolutional neural network, image segmentation, field plant observation


1. INTRODUCTION

Agricultural robotics and automation is a rapidly developing field, driven by advances in artificial intelligence (AI). For agricultural robotics, advances in AI and robotic vision has meant that interaction with crops has been enabled, exemplified by robotic seeding (Utstumo et al., 2018), weed management (Bawden et al., 2017), and harvesting (Lehnert et al., 2017; Arad et al., 2020). To date, agricultural automation researchers have used coarse inputs such as temperature, lighting, and CO2 which are inputs to AI-based approaches to control the outputs (e.g., lighting and nutrients) to the crop (Hemming et al., 2019). Yet, there are obvious gains to be made by providing more frequent and finer-grained inputs about the state of the crop.

From the stakeholder (farmer) perspective, monitoring plants and their ecosystem is a key element to making informed management decisions. Without robotics or automation, a farmer has to physically view (traverse or spot check) their farm multiple times and pay attention to critical markers such as the number of fruit or crop, or the presence of weeds, pests, or diseases, as advised by LWK-Rheinland (2020) in Germany. Robotic platforms have the potential to both automate and enhance these observations by performing these repetitive tasks with a high degree of accuracy, as outlined in Figure 1. This high degree of accuracy comes from recent advances in robotic vision.


[image: Figure 1]
FIGURE 1. The agnostic monitoring algorithm provides up-to-date information to the farmer based on instance segmentation with ripeness or species information and area estimation. This assists in making more informed management decisions such as weeding or harvesting using a tracking-via-segmentation approach for yield estimation. The approach is evaluated on two robotic platforms PATHoBot (Left) and BonnBot-I (Right) which work in significantly different environments: glasshouse or arable fields. Area estimation values are in m2.


From a robotic monitoring, perspective platforms need to be designed to ascertain relevant information, not just all information, simplifying data collection for the end user. From a cost perspective, these monitoring platforms need to reduce the impact of labor on costs (from physical viewing) which is a key expenditure for farming operations (ABARES, 2018). As an example, in arable farming, the farm should be monitored multiple times to measure crop germination and the current growth stage, enabling decisions, such as fertilization, herbicide, fungicide, and insecticide treatments (LWK-Rheinland, 2020). Robotics provides a potential mechanism to automate the crop monitoring process, however, currently, the platforms are designed for a specific purpose or their algorithms are designed for a specific platform, limiting uptake.

From the robotics and robotic vision fields, research has progressed considerably over the past decade with a particular focus on estimating the presence or potential yield of the crop. In the previous decade, specialized vision algorithms were developed for particular crops, such as grapes (Nuske et al., 2011, 2014), apples (Wang et al., 2012), tomatoes (Yamamoto et al., 2014), and almonds (Hung et al., 2013). These methods relied on traditional computer vision approaches and hand crafted features were defined for each crop. However, more recently, deep learning approaches such as DeepFruits have been proposed by Sa et al. (2016). Such approaches are amenable to being deployed to multiple crops. These, more generalizable, approaches are integral if we are to perform automated monitoring without human intervention.

More recently, robots that better integrate vision systems, deep learning, and robotics have been proposed. These robots can perform not only a specific action, or intervention, but also repeatedly estimate the state of the field. An example of this is PATHoBot (Smitt et al., 2021) which aims to combine advances in deep learning with robot (platform) information to provide a more robust crop monitoring approach. In this approach, the camera parameters and wheel odometry were utilized to refine a tracking algorithm based on deep learned semantic masks.

In this article, we present a platform agnostic algorithm for monitoring the state of arable farmland (crop/weed management) and glasshouses (crop management). We propose to improve the AI and tracking components outlined in Halstead et al. (2018, 2020) and evaluate it on both PATHoBot (Smitt et al., 2021) (glasshouse) and BonnBot-I (Ahmadi et al., 2021a) (arable farmland). This approach monitors the crops in the various environments and assists the farmer in making informed management decisions. Our technique is evaluated on two robots across two vastly different environments and demonstrated the potential to

• Perform generalized plant segmentation in arable farmland and provide more fine-grained classification labels;

• Sweet pepper segmentation and ripeness classification using the same network as arable farmland;

• Incorporation of area estimation calculations of both the crop (sugar beet (SB), and sweet pepper) and weeds where appropriate;

• Tracking-via-segmentation matching criterion evaluation and novel approach to alleviate cluttering issues; and,

• Fuse all techniques into a single monitoring technique for agriculture.

The paper is organized as follows: section 2 outlines the prior work in this field; the materials being used are described in section 3; the methods are outlined in section 4; we display and discuss our results in section 5; and finally we conclude the paper in section 6.



2. RELATED WORK

Crop monitoring is an important facet of any farm, from arable farming (wheat, corn, SB, etc.) to horticulture (apples, tomatoes, sweet peppers, etc.). An example in the context of horticultural farming is knowledge about the state of the field, such as the number and quality of fruit by Halstead et al. (2018) or estimating the final yield by Nuske et al. (2011). For arable farming the presence and number of weeds are important, and several platforms have been designed to manage them (Bakker et al., 2010; Peruzzi et al., 2017).

From a monitoring perspective, weed management highlights the need for the entire process to be strategic, from monitoring to intervention. This is because the indiscriminate removal of weeds can have a negative impact on both soil and crop health (Blaix et al., 2018). Therefore, informed monitoring of crop can help improve the bio-diversity by using selective weeding protocols (Blaix et al., 2018; Adeux et al., 2019). Using a well-designed monitoring platform can ensure that the crop can be positively impacted by weeds which can increase pollinators when the herbicide is decreased (Raven and Wagner, 2021). Arable farmland is just one area where careful monitoring paradigms can increase the health of the crop through perceptive information. The key enabling technology for these are agricultural robots and their associated robotic vision algorithms. Below, we briefly describe relevant prior work in terms of robotics in agriculture, the vision systems to enable robotic systems and the object tracking systems that enable them to summarize the content of the field (a key element of this work).


2.1. Robotics in Agriculture

Robotics and robotic vision have long been thought to provide a way to perform regular autonomous crop monitoring. This includes increasing the frequency, both spatially and temporally, of field monitoring to improve management. Several robotic platforms have been proposed with either crop monitoring (Smitt et al., 2021) or intervention (Utstumo et al., 2018) (performing an action on the crop) in mind. Yet, in agriculture (arable and horticultural farming), the robotic platform and their robotic vision algorithms have been inexorably intertwined.

From an arable farming perspective, the most prevalent robotic platforms deal with weed management. Slaughter et al. (2008) produced an early study into various weeding techniques and outlined the negative impact of herbicides. Bakker et al. (2010) developed a weeding platform that was able to operate inside crop-row fields, particularly between the crop. The primary goal of their technique was to replace manual weeding. A review conducted by Peruzzi et al. (2017) outlined many of the possible weeding techniques, along with automated versions, for crop-row fields. While this article did not concentrate specifically on robotic platforms, it does provide a solid overview into weed management techniques not dependent on herbicide. From an automated weeding perspective, AgBot II (Bawden et al., 2017) was able to designate the type of intervention, mechanical or chemical, based on the type of weed and a vision based detection routine. To reduce herbicide use, Utstumo et al. (2018) used machine learning (ML) and computer vision to control a drop-on-demand weeder. Their technique also allowed for more powerful herbicide use as crop health was assured with their spraying approach.

From a horticultural farming perspective, the harvesting of fruit has been a commonly tackled issue. Lehnert et al. (2017) built a sweet pepper harvesting robot that was able to operate independently of the cropping scenario using a mixture of computer vision and ML techniques. To harvest strawberries, Kirk et al. (2020) used a Thorvald robot (Grimstad and From, 2017) with an RGB-D camera and on-board computing with AI components. This technique was able to localize and harvest strawberries with high accuracy using an automatically controlled specialized gripper. Sweeper (Arad et al., 2020) is a robotic platform, built on a lifting trolley with a harvesting arm at the front, capable of harvesting sweet pepper in a commercial greenhouse setting. Their traditional ML technique was able to accurately segment the fruit and detect the stem for harvesting. Despite the intertwined nature of robotic platforms and their algorithms, robotic vision algorithms are becoming more general.



2.2. Vision in Agriculture

In the previous decade, multiple specialized vision algorithms were developed for detecting crops. An early example of this was the work for grapes in a vineyard by Nuske et al. (2011, 2014) who primarily concentrated on predicting yield. To detect the key points of grapes, they explored radial symmetry and their own novel maximal point detection algorithm, along with investigating several other tradition ML and computer vision approaches. Interestingly, these techniques were developed to reduce human impact when surveying the fields. Similarly, while investigating yield, Wang et al. (2012) used stereo cameras at night with controlled artificial light to count apples. Their approach employed traditional computer vision techniques including detection in the HSV space. For detection and yield estimates of tomatoes, Yamamoto et al. (2014) also collected data at night with a known light source. They segmented the tomatoes using a pixel-wise decision tree which they trained using channels from five different color spaces. Overall, they achieved impressive results, particularly for mature (red) tomatoes. Hung et al. (2013) proposed a yield estimation approach for almonds and achieved impressive performance using a combination of a sparse auto-encoder and conditional random fields (CRF). Using a similar pipeline to Hung et al. (2013) and McCool et al. (2016) exploited these techniques for one of the earliest techniques for sweet pepper predictions. Their approach was able to achieve results similar to a human. Object (sweet pepper, tomatoes, and almonds) segmentation is an important component in many state-of-the-art robotic platforms for a number of tasks. Early works such as Nuske et al. (2011) and Hung et al. (2013) aimed to exploit various ML techniques to semantically locate and classify small objects, grapes, or almonds. However, it was noted that these techniques were heavily impacted by occlusions which degraded performance. In an effort to alleviate these occlusion issues, Zabawa et al. (2019) turned a two class problem into a three class segmentation task by incorporating edge information and utilizing deep learning methods.

These methods, excluding Zabawa et al. (2019), all relied on traditional computer vision approaches where hand crafted features were defined for each crop, however, more recently, deep learning approaches, such as DeepFruits, have been proposed by Sa et al. (2016). Such approaches are amenable to being deployed to multiple crops. These, more generalizable, approaches are integral if we are to perform automated monitoring without human intervention.

In recent years, deep learning based approaches are becoming more prevalent due to their accuracy and diversity from classification to segmentation. These are generally data driven approaches that rely heavily on labeled inputs at training time, which drives both a learned feature space and impressive results. Sa et al. (2016) was one of the first to apply Faster region-based convolutional neural network (Faster-RCNN) (Ren et al., 2015) for fruit detection. Koirala et al. (2019) and Tian et al. (2019) compared Faster-RCNN and Yolo (Redmon et al., 2016) for mango and apple detection, respectively, with Yolo capable of real-time performance with high levels of accuracy. Wan and Goudos (2020) proposed methods to speed up Faster-RCNN for fruit detection and achieved similar speed to Yolo-v3 (Redmon and Farhadi, 2018) while obtaining higher accuracy. Again for fruit detection in an orchard, Zhang et al. (2019) used a multi-task cascaded convolutional network and showed that network fusion had benefits for detection, however, the cascaded network structure added system complexity. Bargoti and Underwood (2017) outlined the benefits of convolutional neural networks (CNN) for fruit segmentation. More recently, the potential to perform fruit detection in the wild was explored by Halstead et al. (2020). It was shown that impressive performance for fruit detection could be achieved in vastly different fields by leveraging multi-task learning. In general, these approaches concentrate on detection, however, for yield estimation tracking approaches are necessary to ensure objects are only counted once.



2.3. Object Tracking in Agriculture

Tracking techniques have vast applications from simple particle filters for pedestrians (Denman et al., 2015) to precision agriculture from UAVs (López et al., 2021). These techniques have varying complexity and often rely on intricate hyper-parameter tuning or require innate knowledge about the network being used (Wang et al., 2019).

For tracking sweet pepper in agriculture, Halstead et al. (2018) and Smitt et al. (2021) make similar assumptions. As a robotic platform traverses a row, the scene between two consecutive images can be considered static in nature both spatially and temporally (i.e., objects in the image are spatially similar). These assumptions depend heavily on the frames per second (fps) of the camera and the velocity of the platform, if the fps is low or velocity is high this creates larger displacement between consecutive images and the assumption of a static scene no longer holds. Halstead et al. (2018) exploits this static scene for detection, relying heavily on the overlap between objects at t and the same object at t + 1. Smitt et al. (2021) extends this by creating a more accurate representation of an object in frame t at frame t + 1 using reprojection based on the wheel odometry. This approach was also able to reconcile larger distances between frames (i.e., t to t + N) creating a more robust and accurate tracking approach. While there are significantly more complex tracking algorithms (Jayaraman and Grauman, 2016; Stein et al., 2016; Wang et al., 2019) in our data, we are able to assume and leverage this spatial and temporal consistency.

More recently, robotic platforms that better integrate vision systems, deep learning, and robotics have been proposed. These robots can perform not only a specific action or intervention but also repeatedly estimate the state of the field. An example of this is PATHoBot (Smitt et al., 2021) which we proposed to combine advances in deep learning with robot (platform) information to provide a more robust crop monitoring approach. In this approach, the stereo data and wheel odometry was utilized to improve a tracking algorithm by reprojecting the masks detected by a deep learned model. However, the proposed robotic vision algorithm was applied on a single robot (PATHoBot) and to a single crop (sweet pepper).

We greatly extend our prior work (Smitt et al., 2021) and demonstrate the potential of the algorithms to be crop and robotic platform agnostic. For this, we propose and evaluate extensions to the reprojection for tracking. This is employed on two robots, PATHoBot (Smitt et al., 2021) and BonnBot-I (Ahmadi et al., 2021a), in both an arable farming and horticultural setting.




3. MATERIALS

In this article, we extend our prior work on PATHoBot (Smitt et al., 2021) to develop a platform and environment agnostic monitoring algorithm. The algorithm is deployed on a glasshouse robot (PATHoBot) and an arable farming robot (BonnBot-I), as shown in Figure 1. For each robot, we have collected a dataset and example images that are presented in Figure 2. The data for PATHoBot is used for the monitoring of sweet pepper (BUP20) and BonnBot-I is used for monitoring sugar beet and the associated weeds (SB20).


[image: Figure 2]
FIGURE 2. Two examples (one RGB and one ground truth mask for each example) from each of the two datasets. Top row outlines the sweet pepper dataset (BUP20) where the colors represent the sub-class ripeness labels. Bottom row shows the sugar beet dataset (SB20) where the colored masks represent the plant species.


There are two critical aspects to these datasets. First, they have labeled instance segmentation masks and full temporal sequences for tracking. Second, they have important robot and scene information, such as registered depth images, camera parameters, and wheel odometry information.

For training and evaluation of the instance segmentation algorithm, both datasets consist of non-overlapping annotated images. SB20 consists of 71, 37, and 35 images for the training, validation, and evaluation sets, respectively. BUP20 consists of 124, 63, and 93 images for the training, validation, and evaluation sets, respectively. Furthermore, a specific row is assigned only to training, validation, or evaluation to ensure there is no overlap. This allows us to track an entire row assigned to validation or evaluation without bias from the training data. The tracking set of four rows for the SB20 dataset contains between 1,151 and 1,525 images and the five rows for BUP20 have approximately 1,799 frames.


3.1. Sweet Pepper Dataset (BUP20)

The sweet pepper dataset was captured at the University of Bonn's campus Klein-Altendorf (CKA) in a commercial glasshouse. The dataset was captured by Smitt et al. (2021) on PATHoBot under similar conditions to that captured by Halstead et al. (2020). Figure 2 (top row) outlines two examples of the RGB and masks from the BUP20 dataset. We use the same images as Smitt et al. (2021), which were captured on an Intel RealSense 435i camera (Intel Corporation, Santa Clara, California, USA.) (with a resolution of 1280 × 720), for evaluation purposes.

The BUP20 dataset captured two different cultivars: Mavera (green-yellow) and Allrounder (green-red). A breakdown of the training, validation, and evaluation sub-classes (ripeness/quality) can be seen in Table 1. While green dominates, there is still a rich representation of all the sub-classes.


Table 1. The training, validation, and evaluation breakdown of the two datasets, the sweet pepper dataset (BUP20) and the sugar beet dataset (SB20).

[image: Table 1]

To quantitatively evaluate the performance of the tracking algorithms, we performed further annotation of the data. Using the available video sequences, three annotators visually counted the presence of the five sub-classes in the image sequences and ensured that each sweet pepper was only counted one time. This provided us with the ground truth data with counts for each sub-class over an entire row. These results are summarized in Table 2, where we calculate the average count of the three annotators for each sub-class then rounded up to the nearest integer. BUP20 was a complicated dataset to annotate as fruit could appear in the image from distant rows. Annotators were instructed to use the heat rails, which are approximately 1.05 m from the sensor, as a guide; if fruit appeared beyond this point, it was not counted. This interpretation of fruit location along with juvenile peppers appearing similar to leaves and varying levels of occlusion lead to some ambiguity in the annotations.


Table 2. The yield counts based on the average and rounded values from three annotators for the BUP20 dataset across the validation and evaluation rows.

[image: Table 2]



3.2. Sugar Beet Dataset (SB20)

The sugar beet 2020 dataset was captured using BonnBot-I (Ahmadi et al., 2021a) also at CKA. BonnBot-I is a modified Thorvald robotic platform and the data was captured using a downward facing Intel RealSense D435i camera (Intel Corporation, Santa Clara, California, USA). The D435i provides RGB and registered depth while BonnBot-I provides wheel odometry. Together this makes it ideal for segmentation and tracking.

The sugar beet 2020 dataset, as shown in Figure 2 (bottom row) for example, is a challenging dataset created for weed classification and segmentation purposes with a resolution of 480 × 640. Plants are labeled into seven species plus an unknown label as outlined in Table 1, along with their fine-grained location. The unknown class is used for samples that are too small to classify or where there is high uncertainty about the species. The SB in this dataset primarily range from early youth (two seed leaves) to late youth stage (up to four foliage pairs) as described by Meier (1997), however, outliers exist. A key challenge of this dataset is the large difference in sample numbers, in the training set, there are 388 SB samples while Chenopodiastrum hybridum (10) and Anthemis arvensis (8) contain significantly less.

Similar to BUP20, the video sequences were analyzed to provide a summary of the number of plants present in the field. Three annotators counted the presence of the sub-classes in the sequences and the counts were then averaged over the three annotators; the average count value was rounded up to the nearest integer. A summary of the visual ground truth number of plants in the field is provided in Table 3 where it can be seen that the species' distribution is representative of pixel-level annotations in Table 1 (i.e., poor sample distribution of some classes). Compared to BUP20, the ground plane significantly reduced annotation complexity as plants could not appear beyond this point.


Table 3. The yield counts based on the average and rounded values from three annotators for the SB20 dataset across the validation and evaluation rows.
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3.3. Evaluation Measures

For the task of object detection, we employ the F1 metric, which summarizes the precision-recall curve into a single value. For semantic segmentation, we use the intersection over union (IoU) and for classification, we use confusion matrices with an average accuracy score (confacc). Finally, for tracking, we use the coefficient of determination (R2) and the mean normalized absolute error (μNAE). We provide more details on each of these below.

The precision-recall curve describes the performance of a two-class classifier (e.g., object detector) and can be summarized by the F1 score. The precision [image: image] and recall [image: image] are defined by TP which is the number of true positives (correct detections), FP which is the number of false positives (false detections), and FN which is the number of false negatives (miss detections). The value for P and R will vary as the threshold for the classifier varies and to summarize the resultant curve, we calculate the F1 score. This score is the point at which the precision equals the recall,

[image: image]

The IoU metric describes the accuracy of semantic segmentation. Given the output of a system O and the ground truth GT, the IoU is given by

[image: image]

The maximum IoU is 1.0, which indicates perfect semantic segmentation.

For sub-class performance, we also calculate the average accuracy based on the confusion matrix, such that

[image: image]

where C is a normalized I × I confusion matrix and the accuracy is calculated by summing the diagonals and dividing by the number of rows. This provides the average accuracy of the confusion matrix where a value closer to 1.0 indicates the higher performance.

Finally, for our tracking analysis, we utilize two metrics, the coefficient of determination (R2), and the mean normalized absolute error (μNAE),

[image: image]

where I is the number of rows being evaluated, GT is the ground truth, and P is the predicted count. These results are calculated on the total number of objects counted against the ground truth to allow direct comparison to Smitt et al. (2021). It should be noted that this metric has a lower bound of zero (our desired outcome) but it is unbounded in the opposite direction. This is due to the prediction being scaled by the ground truth; if the prediction is significantly higher than the ground truth, this value can exceed 1.




4. METHODS

We propose extensions to our prior work (Smitt et al., 2021) and demonstrate that the algorithms are both crop and robotic platform agnostic. Figure 1 provides a general overview of our monitoring method. For this, we propose and evaluate extensions to the reprojection for tracking and deploy them on PATHoBot and BonnBot-I in a horticultural and an arable farming setting, respectively.

The robotic vision pipeline is identical for both robots, only the deep learned model varies (with varying sub-classes). First, the robot scans the row, segments the desired objects, and then calculates their individual areas. The next step uses tracklets to aggregate the segmented data using a tracking-via-segmentation approach. Finally, the tracklet information is interpreted to supply a final yield and maximum area estimation.


4.1. Instance-Based Semantic Segmentation

The accurate localization of objects in the scene plays a key role in the overall impact of this technique. To achieve this, we utilize instance segmentation masks from Mask region-based convolutional neural network (Mask-RCNN) (He et al., 2017) as the base network. In its standard form, Mask-RCNN is able to provide classification scores (of N classes), bounded regions, and instance masks.

We enhance our previous work in Halstead et al. (2018, 2020), where the quality (ripeness) was introduced as a parallel classification layer, by extending it to an arable field setting. Our work in Halstead et al. (2018) clearly describes the network architecture and evaluates its performance. Figure 3 outlines the proposed super-class (category) and sub-class (category) layout for both the arable farmland and glasshouse. This fully connected parallel layer is added after the final embedding layer of the network. The super-class represents either plants (SB20) or fruit (BUP20) and the sub-class represents the N finer-grained classes. For SB20, N = 8 species of plants and for BUP20, N = 5 ripeness estimates (red, yellow, green, mixed-red, and mixed-yellow). We use this approach as our previous work (Halstead et al., 2018, 2020) demonstrated that introducing a single super-class provided superior performance for the detection of sweet pepper (compared to N super-classes). This was attributed to the fact that all samples could be used in a single network structure to derive a strong generalized super-class classifier to detect the presence of sweet pepper (BUP20). The benefit of our approach is that we maintain super-class generalizability while also performing fine-grained classification in the sub-class. In this article, we show that our network can also be derived for plants (SB20).
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FIGURE 3. An overview of the Mask-RCNN network with the parallel sub-class classification layer included to calculate the quality (ripeness) of sweet pepper in the glasshouse or the species of crops/weeds in arable farmland.


We implement our Mask-RCNN style network (with sub-class layer - see Figure 3) in PyTorch for 500 epochs and a learning rate of 0.001 using the stochastic gradient descent (SGD) optimizer. For BUP20, similar to Ahmadi et al. (2021b) we resize the images to 704 × 416 and use the full resolution of SB20 (480 × 640). A batch size of six is used during training and the validation set is used to select the best model for evaluation; this means a model can be selected earlier than the 500th epoch. These hyper-parameters are identical for each dataset where the only variation comes from the information and name of the super-class (plant and sweet pepper) and the number of classes for cross entropy loss in the sub-class layer (five for BUP20 and eight for SB20).



4.2. Estimating the Area

Section 4.1 outlined the instance segmentation component of this technique. For intervention decision, the quality or species of the object alone is not enough for truly informed decisions. Area estimation of the object provides an extra layer of information relevant to both weeding and harvesting. This allows for better decision for crop, labor force, and business management (i.e., numerous full size ripe sweet pepper - harvest).

To calculate the object area (plant or sweet pepper), we exploit the stereo vision ability of the sensors on both platforms. Once object segmentation is obtained (section 4.1), we calculate the area using the registered depth and camera focal length. The area (A) of the mth object is calculated such that,

[image: image]

where N is the total number of pixels in the segmented region (1D vector) and the depth values (d- in meters) are taken from the registered depth image. Finally, fx and fy are the two focal length parameters of the camera, taken from the camera intrinsics.

This highlights the advantage of using an RGB-D sensor. By exploiting this sensor framework, we are able to provide richer information about the farm to the end user. No prior assumption to determine the scene scale is required, like height in Lüling et al. (2021), to directly extract depth (and consequently area) information of crop surfaces, since the employed sensors provide pixel-wise depth information.



4.3. Tracking-via-Segmentation

Tracking crop (objects) in a field is imperative if the aim is to count the yield. This ensures that double-counting of the crop is avoided. To achieve this, we propose a tracking-via-segmentation approach based on Halstead et al. (2018) and Smitt et al. (2021). Both approaches exploit the static nature of an agricultural scene as a robot traverses a row where over a short timeframe scenes remain relatively unchanged. Smitt et al. (2021) further expands this by incorporating the wheel odometry and depth images to reproject the masks of the objects at t into a subsequent frame at t + N. Reprojection in conjunction with the instance based segmentor creates a more robust matching framework between frames.

An overview of our IoU based approach is outlined in Algorithm 1. Initially, the algorithm requires three base parameters: γ as the IoU matching threshold between tracklets and new masks, α a parameter to allow missed detections, and an empty tracklets list. The tracklets form the baseline of this approach and are used to maintain the identity of an object (crop/fruit) and aggregate the instance segmentations as the robot traverses the scene. The algorithm starts by iterating over the sequence of images in an ordered manner. Our Mask-RCNN network with sub-classes (Θ) is used on the image to extract the mask and other relevant information (like sub-classes).


Algorithm 1 Tracking-via-segmentation algorithm.

[image: Table 8]

Mask-RCNN (Θ(.)) provides a set of masks which are then processed. First, these masks are compared to a field of view (FOV) operator to ensure the mask is fully visible within the image (initialization and exit zones per, Halstead et al., 2018). The masks from the current frame are compared to all existing tracklets in a greedy manner, where the operator Φ(tracklets, m) outputs a matrix of IoU values; when reprojection is used the last mask in the tracklet is reprojected to the current frame. If no tracklets exist, a new set is initialized based on the current set of masks.

The IoU matrix is used to match between the tracklets and new regions in m. To assign tracklets to new segmented regions in m we calculate the maximum IoU in the matrix, this generates a tracklet and m matched pair. If this IoU value is above γ the tracklet is updated with the assigned m information. To ensure this pair is removed from further consideration their associated IoU values are set to zero (below γ). This matching process continues until the maximum IoU value is below γ or all of the tracklets are exhausted. The unused m detections are used to create new tracklets while Ψ is used to turn off any existing tracklets that have not been updated for α frames.

The matching criteria in Φ is critical to the tracklet updating based on the new information m. We investigate four criteria: intersection-over-union (IoU) with and without reprojection and a novel dynamic radius with and without reprojection. The two primary approaches (IoU and dynamic radius) are described individually and then the reprojection which is common to both, when used, is outlined.


4.3.1. IoU Threshold

The IoU thresholding technique relies heavily on the pixel and shape consistency between images. Halstead et al. (2018) used this technique successfully for detection where they relied on bounding boxes rather than segmented regions. This approach was investigated in Smitt et al. (2021) for a segmentation based approach, however, the unconstrained shape (compared to bounding boxes) was limiting. The IoU criterion compares all active tracklets at t − 1 to all new segmentation masks at t, such that,

[image: image]

where T indicates a tracklet and s is the segmented region from Mask-RCNN. This criterion is then used to match tracklets to segmented regions based on the lower bound threshold γ (i.e., low IoU values are not matched).

The primary issue with the IoU metric is that small shifts can greatly impact this score. This is particularly pronounced for small objects where, due to their size, small shifts can lead to disproportionately large changes in the IoU metric (see Figure 4). For this reason we explore a novel approach which we call dynamic radius.


[image: Figure 4]
FIGURE 4. The dynamic radius calculation, far left is the original RGB image where we select two of the plants in the scene. Top row is a large crop example and the bottom row is a small weed. From left to right (after the RGB) the segmentation map, finding the center of mass location, calculating the radius of the search, the IoU after a small shift (5 pixels in each direction), and finally the centroid locations and the search radius. Bottom row has been scaled up in resolution to match the top row and is in fact a significantly smaller plant.




4.3.2. Dynamic Radius

The dynamic radius (DR) aims to overcome the limitations of a pixel-wise IoU approach. This is achieved by representing each object as a center point with a radius that is proportional to its size. Such an approach no longer relies on precise alignment which is central to the IoU approach. A visual comparison between DR and IoU is provided in Figure 4 with both small (bottom row) and large (top row) objects; the smaller plant is zoomed in further for visualization. The final two images of Figure 4 show the matching potential of DR with a small shift of five pixels in each direction. The IoU version (second from the right) has minimal overlap in the smaller plant, while the DR (right most image) still easily reconciles the new location within the matching region. Furthermore, even in the larger example, the unconstrained nature of the shapes makes it more difficult to match based on the IoU criterion.

The DR approach consists of the following steps. The center point is calculated directly as the center of mass (i.e., mean of x samples and mean of y samples). Next, we calculate the DR as the greatest distance based on the bounding box in either the x or y direction (Figure 4 - the third set of images from the right). This DR is then used to filter (i.e., cannot be matched) objects outside of this radius value using a Euclidean distance. For the tracking approach, the center of mass of a mask which is located closest to the tracklet (and inside the DR) will be matched.



4.3.3. Reprojection

In both the IoU and DR metrics, there is a strong reliance on limited spatial shifts between frames and this can be confounded by several factors. For example, if the spatial shift is large enough, then the objects will not be tracked or if there is misalignment between the tracklets (between t − 1 and t), new objects can be instantiated. To alleviate some of these issues, Smitt et al. (2021) proposed to use reprojection so that the tracklets from t − 1 would be better aligned to the new segmented instances at t. This reprojection technique was able to increase tracking-via-segmentation performance in sweet pepper scenes.

To reproject a segmented tracklet mask from the previous frame i to the current frame j, the wheel odometry information is used. We calculate the camera homogeneous transform (Hij), such that,
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where W and E represent the wheel odometry transform and camera extrinsics to the odometry frame, respectively. Now pixel coordinates m at frame i belonging to a detection mask [image: image] can be reprojected to frame j with,
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where k = [1, …, N], π(.) is the camera projection function, dm is each mask coordinate's depth value, and H(.) applies a homogeneous transform between frames.

The appearance of sweet pepper in distant rows is an additional complicating factor in BUP20. Depth filtering was found to help the tracking algorithm in Smitt et al. (2021). This ensures that only objects in the current row are tracked, regardless of the segmentation output. To do this, we count the number of pixels in the segmentation mask that fall between a lower depth threshold (τl) and an upper depth threshold (τh), such that,

[image: image]

which returns q as a percentage of depth pixels within the range τl and τh. In this case, P represents the total number of pixels in the segmented region and d represents the registered depth values associated with that region. The function g(.) returns a one if di is within τl and τh else it returns zero. The value q can then be compared to a static threshold indicating whether the region falls within the filtered depth range.





5. EVALUATION AND DISCUSSION

Our platform agnostic agricultural monitoring approach is deployed on two robots, PATHoBot and BonnBot-I, for horticultural and arable farming systems, respectively. We perform extensive evaluations for each component of our proposed approach. First, we evaluate the performance of the instance-based semantic segmentation algorithm. This includes the performance of crop detection as well as instance-based segmentation and sub-class classification accuracy. Second, the performance of the tracking approaches with and without reprojection are explored. We highlight the robustness of the reprojection approach by analysis the impact of large skips between subsequent frames. Third, a qualitative analysis of the results for two considerably different crops (sweet pepper and SB) is presented to highlight the potential of our approach.


5.1. Instance-Based Semantic Segmentation

Instance based segmentation forms the backbone of our proposed approach. We use Mask-RCNN and add a parallel layer for sub-class classification. The parallel structure ensures both general (super) and specific (sub) classification information is learned. Halstead et al. (2018, 2020) showed that using this parallel layer had considerable advantages when applied to sweet pepper detection (super-class) and ripeness estimation (sub-class). We demonstrate, for the first time, that this parallel layer can also be applied to plants in the field to perform plant detection (super-class) and species (sub-class) classification. Our models are evaluated in three steps: first, how well we detect objects in the scene; second, how well do we segment objects; and third, how accurate is our sub-class layer.


5.1.1. Object Detection

Object detection is a common metric for evaluating localization techniques. If the detected object overlaps sufficiently with its ground truth position, then it is considered to be a true detection, TP. The top row of Figure 5 (BUP20 left and SB20 right) outlines detection performance at different IoU values across the two datasets.


[image: Figure 5]
FIGURE 5. Evaluation results. Top row is the precision recall curves of the detection only system, left hand side is the BUP20 and right is SB20. Bottom row outlines the sub-class confusion matrix results based on the extended Mask-RCNN network, left is the BUP20 dataset, and right is SB20.


From this figure, it is evident that IoU values up to 0.4 perform well with noticeable degradation beyond. For system performance, we evaluate at an IoU of 0.4 as this reflects high performance and also ensures considerable overlap between the ground truth and the prediction. For the SB20 dataset, we are able to achieve a precision, recall, and F1-score of 0.865, 0.752, and 0.804 for plant detection alone. The BUP20 accuracy is somewhat less with scores of 0.783, 0.638, and 0.703 for precision, recall, and F1-score respectively, although the F1-Score was commensurate with Halstead et al. (2020) who achieved 0.762 on a similar sweet pepper dataset. We attribute this performance difference to the fact that BUP20 has high levels of occlusion and a more complicated scene with crop present across multiple depths (both near and far), as can be seen in the top row of Figure 2. By comparison, SB20 has a relatively easy to detect background with a simpler scene structure, as shown in the bottom row of Figure 2. For both environments, the result of object detection can be considered to be quite promising for extracting useful in-field information.



5.1.2. Instance Segmentation

Instance segmentation relates not only if an object is detected (found) but also if all of the pixels relating to that object are found. For matching a ground truth and segment pair, similar to Halstead et al. (2018, 2020), we use an IoU threshold of 0.4. This threshold also outlined the best trade-off between overlap and accuracy from Figure 5. Once a ground truth and detection pair are matched using this threshold, we use the segmented pixel-wise IoU to determine performance. We report three metrics: background IoU (BG IoU), foreground IoU (FG IoU), and the average of the two μIoU. The BG IoU is the pixel-wise comparison between the ground truth background and the predicted background. Similarly, the FG IoU describes the super-class segmentation accuracy (ground truth to prediction). This pixel-wise comparison provides a more complete evaluation of the systems, performance by directly comparing the output from Mask-RCNN with the ground truth masks. The segmentation results are displayed in Table 4.


Table 4. Instance and semantic segmentation results for the two datasets.

[image: Table 4]

The parallel layer based Mask-RCNN approach achieves interesting instance based segmentation performance. From Table 4, for SB20, we achieve a foreground IoU (FG IoU) performance of 0.498 and 0.433 for BUP20. This outlines the impact that false and missed detections have on instance based performance. If we neglect these two properties (false and missed detections), we achieve FG IoU values of 0.765 for SB20 and 0.754 for BUP20. This indicates, on a pixel-wise level, that when we accurately predict a region our segmentation performance is high. However, the presence of both missed and false detections deteriorates the performance considerably.

To further illustrate this, we consider the two class semantic segmentation problem using the same network output (i.e., plant vs. background or sweet pepper vs. background). To achieve semantic evaluation, we create a single binary ground truth map where any pixel assigned to an object is scored as the positive class. Similarly, for the prediction, we use the calculated instances and assign positive pixels to the semantic prediction mask. This creates two binary masks, one based on the ground truth instances and one based on the predicted instances.

This result is shown in Table 4 where the μIoU is above 0.85 for both SB20 and BUP20. Furthermore, for semantic segmentation, the FG IoU performance is high and in fact, is similar to the instance-based segmentation results when missed and false detections are removed. This indicates two things. First, that the lower performance of the instance-based segmentation is due to errors from the detection module. Second, because the instance-based metric is an average of IoUs from instances (even false ones), this can give the impression that the quality of the pixel-wise segmentation is low. Therefore, this further analysis shows that even though the detection module can introduce errors the overall quality of the pixel-wise segmentation is high.



5.1.3. Sub-class Accuracy

In our previous work (Halstead et al., 2018, 2020), we exploited the super-class and sub-class properties of sweet pepper. Generally, sweet pepper share similar features in terms of shape and reflection with only color differences. For the first time, we extend this to arable farmland to investigate its performance for classifying specific species of crop and weed (plants). This is a considerably more difficult problem as these species have different growth properties, including unconstrained shapes. In these confusion matrices, we only compare IoU (i.e., above 0.4) matches between the ground truth and predictions which removes the impact of false positives (FP) and missed detections (FN). While both FP and FN play an important role in the overall accuracy of the system, the previous sections outline the limitations of the detection routine. The metric displayed in Figure 5 (bottom row) outlines our sub-class performance when we accurately detect an object.

Figure 5 (bottom right) outlines the sub-class performance for plant species classification using a confusion matrix. Overall, we achieve a confusion matrix average accuracy of 0.619. Chenopodiastrum hybridum (Cy) and Anthemis arvensis (An) are the worst performing species with accuracies of 0.256 and 0.333, respectively. Overall, we can attribute this low accuracy to the lack of samples both in the training (8 and 10) and evaluation (47 and 3) sets. By contrast, the species with a higher number of training samples achieve higher accuracy. For instance, SB and Persicaria lapathifolia (Pe) which have 388 and 313 training samples achieve accuracies of 0.930 and 0.964, respectively. The high accuracy for SB is of particular importance as both crop monitoring and precision weeding are primarily concerned with identfying the crop (in this case SB) and thus misclassifying weeds is less detrimental.

For the under represented sub-classes, data collection and annotation was a considerable bottleneck. To create a more even distribution, the weeds need to be present in the field, and this was not the case for the SB20 dataset. To alleviate the impact on a trained model, two key possibilities exist that could be explored in the future. First, data augmentation has been shown to improve networks while maintaining a small sample size by reproducing the same images with small augmentations. This approach could be considered in the future, however, it does not solve the skewed distribution of the dataset. Second, the data can be balanced through a weighting scheme at the sub-class classification layer. Weighting can create a more robust classification by focusing on accuracy for under represented classes creating a more even distribution.

For the BUP20 results, we refer to the confusion matrix on the left hand side of Figure 5 (bottom row). In this setting, we achieve an average accuracy of 0.772, which is considerably higher than SB20. We attribute this to the fact that color is a dominant factor and also to the fact that for SB20, there are two classes with a low number of samples. However, we do note that color is also a cause for confusability for BUP20. In particular, the mixed-red and mixed-yellow classes are often confused with full red and full yellow sweet pepper, respectively.

In summary, both SB20 and BUP20 were able to achieve promising performance for super-class and sub-class classification. This includes the novel environment of arable farmlands where species have significantly different visual properties. Overall, the pixel-wise object location along with the species (arable farmland) or ripeness (glasshouse) estimation is able to provide important additional phenotypic information to the farmer.




5.2. Tracking

Based on section 4.3, this section evaluates the performance of the tracker on both the BUP20 and in a novel environment SB20. From our previous work (Halstead et al., 2018; Smitt et al., 2021), we define the following hyper-parameters for the tracker. The keep running parameter which allows the tracklet to miss frames are set to 5. A minimum of 10 segmentation matches is required for a tracklet to be considered a valid track. For the IoU based criterion, we use a minimum threshold of 0.1 for reconciling tracklets to new regions. We also empirically evaluated values of 0.5, 0.75, and 1.0 for weighting the DR and found that a value of 1.0 was optimal.


5.2.1. Sweet Pepper Tracking Evaluation

Table 5 outlines our BUP20 performance where we use the μNAE metric described in section 3.3. This evaluation is performed over three maximum depth filtering values τh = [1.0, 1.4, None], and the minimum depth value τl is constant at 0.4 m. The value of 1.0 was selected as it approximated the distance from the heating rails to the sensors and 1.4 and None as a direct comparison to Smitt et al. (2021). For filtering out objects based on the depth we set a threshold such that q > 50, ensuring that at least 50% of the pixels appear in the depth range.


Table 5. BUP20 tracking results using the four criteria at three different depth filtering values, 1.0 m, 1.4 m, and no filtering.
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These results reflect the annotation directive to not count objects appearing beyond the heat rails. From this, depth filtering plays a crucial role in obtaining accurate yield estimations. At a depth of 1.0, our best approach scored 0.039 compared to 1.252 for no depth filtering. While the no depth filtering score appears to indicate poor performance it more reflects the ability of Mask-RCNN to accurately reconcile small objects (such as those past the heat rails). From a segmentation perspective, the changes in illumination due to the position of the sun and platform had a minor impact, particularly in row six where the greatest illumination variation existed.

Overall, from Table 5, a depth filtering value of 1.0 achieved the best results, where even the worst performing approach (IoU only) scored 0.125. Interestingly at a depth of 1.0 m, the technique both under and over estimated the total yield across the four techniques, somewhat explaining the slightly low R2 values. While the DR approach scored similarly with and without reprojection its impact with IoU is clear improving the μNAE score from 0.125 to 0.045. For DR, we attribute the reduced performance with reprojection to the limitations of the spatial criterion, it can match 360 degrees around the center mass.



5.2.2. SB Tracking Evaluation

A benefit of the SB20 dataset is that the objects only appear on the ground plane, and there is little impact from the weather (both sun and wind). This enables a single tracking evaluation without depth filtering requirements, the results are displayed in Table 6. The high R2 values (all greater than 0.93) consistently explain the differences between our predictions and the ground truth using a linear model. Contrasting with BUP20, the SB20 yield consistently under counted, which could explain the higher R2 values. To better understand the performance of the different tracking criteria, we once again use the μNAE score.


Table 6. SB tracking results using the four different criteria.
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Based on the μNAE score, it can be seen that incorporating reprojection considerably improves performance. Incorporating reprojection into the IoU and DR criteria improves their absolute μNAE score by 0.122 and 0.077, respectively. This is a relative improvement in estimating the number of plants present of 30.8 and 36.0% for IoU and DR, respectively. Also, in all cases, the DR approach outperforms the IoU approach (with or without reprojection). DR with reproejection achieves a score of 0.137, which is an improvement of 50% over IoU with reprojection.



5.2.3. Tracking Over Large Skips

In the previous tracking evaluations, it was assumed that the frame rate was consistent. To fully analyze the reprojection performance, we evaluate the system performance when there is a skip of five frames between segmentation. This five frame skip explores the robustness of the approaches to inconsistencies such as faster or slower moving vehicles. In these experiments, we reduce the minimum tracks parameter to three due to the shorter amount of time objects remain in the scene. Table 7 clearly outlines the benefits of reprojection when the frame jump is large or inconsistent. The R2 value for the DR is high and misleading for two reasons, first it counts significantly less sweet pepper than actually exists. Second, due to the frame skip, tracklets reconcile with new objects passing through their stored region. For BUP20, the μNAE value for IoU and DR both with reprojection scored 7.6 and 6.6%, respectively. This is considerable when contrasted to the standard IoU which has the worst performance at 73.1%. Overall, the ability to reconcile tracks over larger spatial distances, allowing for frame drops or faster vehicle motion, is a key benefit in using the reprojection based techniques.


Table 7. The impact of skipping five frames on the four different criteria in the BUP20 and SB20 datasets.
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5.2.4. Current Limitations

Despite the impressive and robust performance that we have presented, there is a limitation with the proposed approach. The main limitation is the low performance with sub-class counting accuracy. For sugar beet, when we compare the total yield (or super-class) to species specific (sub-class) performance for DR reprojected, the μNAE is degrades to 0.440 (from 0.137). Similarly for sweet pepper, for the best performing systems, the μNAE for the sub-classes degrades from 0.039 to 0.35. This indicates that while we are able to achieve accurate localization, our fine-grained species classification, while promising, still requires improvement.




5.3. Qualitative Analysis

In parallel with our quantitative evaluations, we also perform two qualitative analyses. First, we evaluate the accuracy of our area estimation component. Second, we analyze the impact our monitoring technique could have on informed decision making.


5.3.1. Area Estimation

For a qualitative analysis of the area estimation, we coarsely measured then recorded ten sweet pepper on PATHoBot. Both the depth and RGB images were captured, and sweet pepper were manually segmented in the image. An example of these images with their annotations can be seen in Figure 6.


[image: Figure 6]
FIGURE 6. An example image from the area estimation analysis, from right to left, the original RGB image, depth for visualization, manual segmentation, and a visual approximation of the manual measuring points.


The coarse ground truth was measured with vernier calipers at the approximate positions shown in Figure 6. First, the maximum height (h) and width (wmax) were measured, then, a value near the bottom of the sweet pepper (wmin) that created a trapezoid shape were also measured. Using these distances, we create two area values for each sweet pepper, an upper bound of the sweet pepper area,

[image: image]

and a lower area bound measured such that,

[image: image]

which creates the trapezoid shape. We assert that this is the lower bound of the object area as it does not include volumetric information about the object nor the rounded shape.

It can be seen from our results in Table 8 that our vision system consistently falls within the upper and lower bounds of the ground truth. This indicates that our vision only area estimation component is able to accurately define the seen area of the sweet pepper.


Table 8. Qualitative analysis of the area estimation of manually segmented sweet pepper.
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5.3.2. Monitoring Algorithm

The individual components of our approach perform well on two different robots, one in arable farmland and the other in a glasshouse. The final qualitative analysis fuses these components into a single monitoring algorithm in both environments. We evaluate two rows from each environment with data captured a week apart, in between the captures, various crop management tasks were manually performed which augmented results. In all experiments, we used the DR with reprojection for tracking as it performed the best for SB20 and had a similar performance with the best in BUP20.

From the BUP20 dataset, captured on PATHoBot, we investigate two captures of rows four and five. We review this for both the sub-class yield and the area estimation. During this time periods some pruning and minor harvesting was completed by the staff.

Overall, harvestable yield counts went from 33 to 39 for row four and 24 to 38 for row five. Similarly, green sweet pepper broke to the mixed color with 243 to 236 (row four) and 184 to 151 (row five) resulting green peppers between the monitoring days. Interestingly, for green sweet pepper, for row four, the area increases from in 38.1 to 44 cm2, while row five stayed somewhat consistent 38.1 cm2 then 37.7 cm2. We attribute this to the almost ripe sweet pepper breaking color to mixed red/yellow and juvenile sweet pepper growing. This monitoring technique also provides marketing information; for row four, a total of 289 sweet pepper existed to potentially sell, compared to 220 for row five.

For the SB20 analysis, we choose data that was in the lowest controlled herbicide group (0–30%). This limited the intervention on the weeds ensuring they grew in size and amount. Overall, the average weed area grew for both row one and row eleven: 76 to 101 cm2, and 98.3 to 138 cm2. While there was not an increase in weed count for row one, row eleven increased from 292 to 351. Both of these values indicate the potential impact on crop growth as the weeds are growing which creates competition for soil nutrients.

The impact of the weed growth, and the nature of the DR criterion, is outlined in the row, one crop yield estimate which reduces from 111 to 99. Figure 7 outlines two of the reasons for this drop in yield based on the DR criterion. The green bounding box indicates a missed detection when tracking, irrespective of Mask-RCNN accurately segmenting it. This is primarily due to the large objects surrounding it confusing the DR. Similarly, the red dashed lines outline a key limitation of DR, which matches based on the smallest Euclidean distance within the radius, regardless of the previous trajectory of the tracklet or the robot (i.e., it can match 360 degrees). While DR is generally a more accurate matching criterion, there are issues associated with the methodology, and future work can alleviate these.


[image: Figure 7]
FIGURE 7. Examples of where the dynamic radius criterion fails. The green box indicates a completely missed SB plant, and the red dashed lines show how the criterion can change directions rapidly regardless of the direction of travel.


Overall, this platform and environment agnostic monitoring algorithm provided important information to farmers to inform decisions. This approach also included marketing information about the crop or fruit yields and the impact of weeding paradigms on the crop in arable farmland.





6. CONCLUSION

In this article, we show that robotic monitoring algorithms can be designed to be platform and environment agnostic. We show that this deep learning approach, once data is provided, can be accurately segmented in either an arable farm or horticultural setting. Using the segmented output, we are also able to calculate phenotypic information in the form of plant size. This is a first step toward providing a summary of the state of the field.

Our crop agnostic monitoring algorithm extends a parallel classification structure in Mask-RCNN. This parallel structure was previously applied to sweet pepper in a glasshouse for crop detection (super-class) and ripeness estimation (sub-class). We show for the first time, that this parallel structure can be used to perform plant detection (super-class) and species-level classification (sub-class). This demonstrates the generalizability of our approach.

To accurately provide information to the farmer, we evaluated varying matching criteria for a tracking-via-segmentation approach. The key benefit of our novel dynamic radius with reprojection approach was its ability to match unstructured shapes more accurately than a pixel-matching based approach. While similar performance was achieved for sweet pepper, the strength of this spatial matching approach was seen in an arable farmland where the scenes were cluttered and the growth of objects unconstrained; we achieved a performance boost of 50% over the pixel dependent approach. This agnostic monitoring algorithm leveraged computer vision, deep learning, and robotics to reduce physical monitoring of fields by farmers. The fusion of these techniques provided raw information, such as the impact of weeding paradigms, to support intervention and management decisions.
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The mobilization of large-scale datasets of specimen images and metadata through herbarium digitization provide a rich environment for the application and development of machine learning techniques. However, limited access to computational resources and uneven progress in digitization, especially for small herbaria, still present barriers to the wide adoption of these new technologies. Using deep learning to extract representations of herbarium specimens useful for a wide variety of applications, so-called “representation learning,” could help remove these barriers. Despite its recent popularity for camera trap and natural world images, representation learning is not yet as popular for herbarium specimen images. We investigated the potential of representation learning with specimen images by building three neural networks using a publicly available dataset of over 2 million specimen images spanning multiple continents and institutions. We compared the extracted representations and tested their performance in application tasks relevant to research carried out with herbarium specimens. We found a triplet network, a type of neural network that learns distances between images, produced representations that transferred the best across all applications investigated. Our results demonstrate that it is possible to learn representations of specimen images useful in different applications, and we identify some further steps that we believe are necessary for representation learning to harness the rich information held in the worlds’ herbaria.
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INTRODUCTION

Herbarium collections provide primary data for scientific activities across plant science (Page et al., 2015; Meineke et al., 2019). The push toward digitizing collections has made this data more widely available and has increasingly enabled studies encompassing larger groups of species and a greater proportion of the world. However, current digitization workflows focus on capturing information from specimen labels, leaving a wealth of data in hard-to-browse specimen images. New technologies, like deep learning, can help researchers make full use of this rich data source (Pearson et al., 2020; Orr et al., 2021).


Digitized Herbarium Specimens

A herbarium specimen is a physical record of an individual plant, providing verifiable data for reproducible science (Nic Lughadha et al., 2019). Pieces of a plant are dried, pressed, and mounted to display the specimen’s features clearly. Information about the collection event is recorded on a specimen label, including who collected it, when, and where. However, this collection metadata is often incompletely recorded or not recorded at all, especially for older specimens. Taxonomic determinations are recorded on the specimen sheet and may comprise multiple revisions long after the specimen was collected. During digitization, both images of specimens and the details on specimen labels are captured.

The past two decades have seen initiatives for digitizing natural history collections established at institutional, national, and international levels (Nelson and Ellis, 2019). These initiatives have mobilized a vast amount of biodiversity data held in the estimated 396 million specimens across 3,500 herbaria (Thiers, 2021), making it available to researchers through aggregated portals like GBIF (2021) and iDigBio (2021), and virtual herbaria like the Reflora Virtual Herbarium (Reflora - Virtual Herbarium, 2021). The increasing pace of digitization and data mobilization enables more and newer studies each year; in 2019, more than two studies a day cited data published through GBIF (Paton et al., 2020).

Despite this progress, specimen data is not entirely digitally mobilized. Variation in approaches to digitization projects (Dillen et al., 2019) means different amounts of data are captured and made available; images may be available with minimal metadata, full metadata may be available with no image, or anything in between. As a result, while digital aggregators hold tens and hundreds of millions of records from preserved specimens, only two-fifths of those in GBIF (2021) and one-half of those in iDigBio (2021) have images available. This situation is only exacerbated for smaller herbaria not part of well-funded digitization projects, which undoubtedly contain many important specimens for local flora (Marsico et al., 2020).



Deep Learning

Deep learning, a branch of machine learning that uses neural network models composed of many stacked layers, is particularly effective for image-based tasks. The stacked network layers can learn patterns from images that correspond to details like edges, circles, or even eyes—features that would need to be manually extracted for other machine learning or modeling techniques (LeCun et al., 2015). Recent studies demonstrate good performance for tasks that populate or enrich collection metadata from digitized specimen images, including species identification (Wäldchen and Mäder, 2018; Little et al., 2020), masking specimen labels (White et al., 2020), extracting traits (Mirnezami et al., 2020), and classifying the phenological state of a specimen (Lorieul et al., 2019).

One disadvantage of deep learning is its data-hungry nature, usually requiring numerous carefully curated and labeled images to train models that achieve good performance. This problem is especially acute for fine-grained classification problems, like species identification, that have many potential classes with only a few images available for training. Similarly, it can take a lot of time and expertise to label a training dataset for more complex tasks like counting the number and type of organs on a specimen. This problem is exacerbated by the fact that some herbaria have so far digitized only a fraction of their collections, limiting the number of specimens available for some plant groups.



Representation Learning

Deep neural networks can be viewed as being composed of two parts—an encoder network that automatically extracts features from an input and a head that uses those features to perform a particular task (Figure 1). Visual representation learning focuses on training neural networks to extract features from images that transfer across different tasks (Bengio et al., 2014). Learning generalized representations from readily available benchmarking datasets like ImageNet reduces the need to assemble large sets of labeled images for each problem.


[image: image]

FIGURE 1. Schematic diagrams of the three types of neural networks used to learn representations of specimen images in this study: a classifier trained to predict genus, an autoencoder, and a triplet network. The schematic demonstrates the different parts of a neural network: the encoder, or feature extraction layers, that produces a lower-dimensional representation of the input and the head, which uses the representation to perform a task like predicting the genus (classifier) or reconstructing the original image (autoencoder). Representation learning focuses on training neural networks to extract features from images that transfer across different tasks. Unlike the other two networks, the triplet network takes three images as input: an anchor (a), a positive example (p) from the same class as the anchor, and a negative example (n) from a different class to the anchor. The network learns features that minimize the distance between examples from the same class (dap) and maximize the distance between examples from different classes (dan). Inset specimen images © RBG Kew.


Two popular methods for learning these representations differ in the type of task used to train the neural network. In supervised learning, neural networks are trained to classify images using a labeled dataset. Self-supervised networks, on the other hand, are trained to perform tasks where the labels are created from the images themselves, such as reconstructing the original image after some transformation or identifying which of two images is a transformed version of a target. Although supervised models have historically performed better, self-supervised models have recently achieved comparable performance (Chen et al., 2020b).

Self-supervised representation learning has gained popularity with researchers that use wildlife images from community platforms and camera traps. Both these sources produce a high volume of images with few or uncertain labels, and assembling high-quality labeled datasets presents a bottleneck for training models to mine these images for novel information. Recent work by Van Horn et al. (2021) has demonstrated the need for domain-specific datasets for learning effective representations.

Unlike natural world images, representation learning has had little attention in the realm of natural history specimens. Two recent examples include using representations learned by classifying the genera of fern images to explore morphological diversity (White et al., 2019) and using a triplet network to test evolutionary hypotheses about mimicry in butterflies (Hoyal Cuthill et al., 2019).

Efforts from herbaria like the New York Botanical Garden (NYBG) to provide datasets of herbarium specimens for species identification challenges (Little et al., 2020; de Lutio et al., 2021) offer ideal training sets for both supervised and self-supervised representation learning. However, unlike images of plants in the wild, digitized herbarium specimens are almost always accompanied by some determination of the taxon’s identity. Therefore, there may be little benefit to using self-supervision to learn representations of herbarium specimens.

Self-supervision may, however, avoid potential problems caused by the estimated large number of mislabeled specimens. Similarly, self-supervision may handle the long-tail of species represented by very few specimens (Enquist et al., 2019).

An alternative to both these methods is metric learning, where a neural network is trained to learn a distance function between different classes of images. In a triplet network (Figure 1), one implementation of metric learning (Hoffer and Ailon, 2018), a neural network is presented with three images: an anchor, a positive example from the same class as the anchor, and a negative example from a different class than the anchor. During training, the triplet network learns representations that minimize the distance between images in the same class while maximizing the distance between images in different classes. As such, metric learning offers a balance between self-supervised and supervised neural networks.



Herbarium Specimen Representations

Here, we evaluate the potential for using a publicly available dataset of herbarium specimen images to learn generalizable representations. To do this, we train three different neural networks that serve as a progression from self-supervised to supervised learning: an autoencoder, a triplet network that selects training examples based on the specimen’s genus, and a classifier trained to predict the genus of a specimen. We explore the differences between these representations using visualizations and evaluate their potential generalizability using three downstream tasks relevant to work in herbaria.




MATERIALS AND METHODS


Learning Representations


Data

We used images from the Herbarium 2021 “Half-Earth Challenge” (de Lutio et al., 2021) of the Eighth Fine-Grained Visual Categorization workshop (FGVC8) for training neural networks to learn generalized representations. The “Half-Earth” dataset—so named because it covers half of the world’s continents—contains over 2 million images of specimens collected from 5 herbaria, representing nearly 65,000 species of vascular plants across the Americas, Oceania, and the Pacific.

The challenge provides a labeled set of images for participants to develop, train, and validate their models and an unlabeled set to assess their performance in the competition. We used the labeled dataset for our study, which comprises 2,257,759 images covering 64,500 species in 6,437 genera across 451 families and 81 orders of vascular plants (Figure 2A).
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FIGURE 2. (A) A visual representation of the Herbarium 2021: Half-Earth Challenge dataset, released as part of the FGVC8 workshop illustrating the distribution of images within categories of the taxonomic hierarchy, where each dot represents the relative number of images associated with a category. (B) A schematic diagram of the steps we took to split the Half-Earth dataset into the training and test sets used in this study, highlighting their relative sizes.


The Half-Earth dataset reproduces the empirical long-tailed distribution for plant species observations (Enquist et al., 2019); almost three-quarters of species have fewer than 25 images, and nearly a third have fewer than 5. To avoid over-representing a small number of species and reduce neural network training times, we downsampled the dataset to limit species to at most 25 images. We randomly sampled 25 images for species that exceeded this limit.

We subsequently split this labeled dataset sequentially to give 3 distinct test sets (Figure 2B):


1.All images from herbaria other than NYBG, by far the most represented herbarium in the dataset (139,529 images). It may seem natural for an institution to train a neural network on only their digitized images, but specimens relevant to a particular study may be distributed across herbaria. We chose this test set to examine how well representations learned from one institution will transfer to others. Hereafter referred to as test set H.

2.All images for a random sample of 10% of the remaining species (62,997 images). New species are still regularly discovered in the wild, and continuing digitization of a collection makes images available for species that were not used to learn the representations. We chose this test set to examine how well representations generalize to unseen species. Hereafter referred to as test set S.

3.A random sample of 10% of the remaining specimens (58,886 images). Herbarium collections hold multiple specimens for many taxa, but time and funding constraints mean they may focus digitization on a subset of these, such as only type specimens. We chose this test to examine how well representations learned from a set of species generalize to unseen specimens from those species. Hereafter referred to as test set R.



We used the remaining specimens to train the neural networks (424,544 images), reserving 20% for validation (106,136 images) during model development (Table 2). We removed images from the 3 test sets that represented genera not present in the training data to prevent the need to make predictions for classes present in the training data but missing in the test data when testing the classification network.


TABLE 1. Description of the three neural networks used for representation learning.
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TABLE 2. Description of image datasets used.
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We pre-sized images to 526 × 526 pixels before applying standard random transformations (flipping, rotating, zooming, warping, and brightening) during training and resizing to the final size of 256 × 256 pixels for both training and evaluation.



Neural Networks

All neural networks used a pre-trained ResNet-18 architecture as an encoder, producing feature representations of 512 units. We trained three different neural networks to compare the representations resulting from self-supervised learning, supervised metric learning, and supervised classification (Figure 1 and Table 1).

We chose to use the specimen images’ genus as the target for classification and for selecting positive and negative examples for the triplet network. We felt this provided a good balance between reducing the total number of classes and minimizing the variation within each class.

We trained all networks for 25 epochs on a Tesla V100 GPU and measured the performance of the final models on the 3 test sets described above.



Comparing Representations

We compared the separability of taxonomic groups in the extracted representations using silhouette scores, a measure of the average distance between members of the same group compared to the average distance to members of the nearest other group used in cluster analysis (Shahapure and Nicholas, 2020). We visualized and compared specimen representations with UMAP, a non-linear dimensionality reduction method that preserves local neighborhoods in a dataset but not absolute distances between points (McInnes et al., 2020).

We examined the activations of the final layer in the ResNet-18 encoder for each network to gain insights into the representation they learned. Each encoder produced specimen representations of 512 units and, therefore, had 512 channels. To limit the number of channels we looked at, we selected the channel from each network with the greatest standard deviation in representations of the training specimens. We produced images optimized to give the maximum and minimum activation for these channels (Olah et al., 2017). We also selected example specimens from the training dataset that produced a range of activations from the lowest to the highest.




Applying Representations

We assessed how well the representations learned by the networks generalized by applying them to three potential applications.


Taxonomic Identification at Different Scales

Identification of herbarium specimens is a common taxonomic task at herbaria for both research and curation. Despite significant recent progress, practical details still need to be resolved before automated specimen identification is incorporated into day-to-day research and curation workflows. Generalized specimen representations may help resolve some of these details, potentially allowing researchers to build smaller, bespoke identification models that could be beneficial where limited computing resources are available.

During curation in herbaria, incoming specimens are often sorted at a higher taxonomic level before fine-scaled determination by an expert. Therefore, specimen representations should perform well across the taxonomic hierarchy, from order down to genus and, ideally, species.


Application Data

We used the three test sets split from the Half-Earth dataset (Table 2) to represent settings where the specimens are from herbaria not used to train the feature-extractor neural network (test set H), the specimens are for newly digitized species (test set S), and the specimens are from the same herbarium and species used to train the feature-extractor (test set R).



Application Method

We extracted representations of specimens for each of the three test sets using the three trained feature-extractor networks, resulting in nine groups of specimen representations. We then used multinomial logistic regressions to predict the order, family, and genus of a specimen for each group of representations, resulting in 27 models.

We measured the top-1 accuracy, macro-averaged precision, and macro-averaged F1-score of each model by fivefold cross-validation. We used L2 normalization to prevent overfitting and sample weighting to balance the classes in the datasets.




Discrimination of Similar and Distinct Genera

Often a researcher will want to know if a specimen belongs to one of two possible taxa rather than all possibilities. The differences between these two taxa may be fairly obvious, but the specimens need to be sorted quickly, or the differences may be difficult even for an expert to tell apart. Generalized specimen representations should allow successful discrimination in both cases. Syzygium and Eugenia are two closely related and visually similar genera in the family Myrtaceae that are often misidentified as each other, while Dendrobium is a large genus of orchids from Southeast Asia and is therefore easily distinguished from Syzygium.


Application Data

We downloaded all available images held at Royal Botanic Gardens, Kew for Syzygium (1,996), Eugenia (8,358), and Dendrobium (1,004) from iDigBio (Table 2). We resized all images to 256 × 256 pixels but did not subject them to any of the pre-processing steps of the Half-Earth dataset, like label blurring.



Application Method

After extracting representations for the three genera using the three feature-extractor networks, we trained one logistic regression model to distinguish between Syzygium and Eugenia (similar genera) and one to distinguish between Syzygium and Dendrobium (distinct genera) for each set of representations from the networks. We evaluated the accuracy and f1-score of the models using fivefold cross-validation and used L2 normalization and sample weighting, as before.




Identification of Mislabeled Specimens

Recent estimates suggest that over half of specimens for some plant groups may be mislabeled in digitized collections (Goodwin et al., 2015) due to genuine misidentifications, mistakes during digitization, or delays in updating names to the latest determination. However, identifying mislabeled specimens is difficult without expert taxonomic inspection of each image. Representations of specimen images could be used as the input for methods to identify such errors rapidly.


Application Data

We used the same representations of images for Syzygium, Eugenia, and Dendrobium as in the previous task. However, to simulate mislabeled specimens, we swapped the labels of 10% of specimens in each genus, between Syzygium and Eugenia, and Syzygium and Dendrobium.



Application Method

We predicted the probability of a specimen belonging to one of the two genera in each pair using an L2 penalized logistic regression, with representations extracted by each of our three neural networks as the inputs. To prevent over-confident predictions, we made these predictions on the validation fold of each split in a fivefold cross-validation. We then used the method implemented in cleanlab (Northcutt et al., 2021) for identifying the most likely mislabeled specimens based on the joint distribution of noisy and true labels in the data.





Software

We used Python version 3.8 to perform all analyses in this study. We used fastai to load and transform the image data and pytorch lightning to build and train the models. We sub-classed the ResNet-18 autoencoder architecture from pytorch lightning bolts. We used lucent, a pytorch port of lucid, to visualize neural network channel activations. We used scikit-learn to build all linear models, implement cross-validation, and calculate silhouette scores.




RESULTS


Learning Representations

All neural networks appeared to converge after 25 epochs (Figure 3), with final validation losses of 0.011 (autoencoder, MSE), 0.358 (triplet network, triplet loss), and 1.758 (classifier, cross-entropy loss). These final networks achieved comparable losses on held-out test sets comprising randomly selected specimens (0.010; 0.354; 1.745) and specimens for unseen species (0.010; 0.323; 2.308) but higher losses for the held-out images from unseen herbaria (0.0136; 0.442; 6.520).
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FIGURE 3. Performance of the (A) autoencoding neural network, (B) triplet network, and (C) classifier after training for 25 epochs on the validation data, a held-out test data set of randomly selected images, a held out test data set of all images for randomly selected species, a held out test data set of all images from institutions other than New York Botanic Gardens.


2-dimensional embeddings of the representations extracted by each network (Figure 4) appeared to show decreasing structure in the representations as supervision increased. Overlaying values of the channel with the greatest standard deviation from the feature extraction layer of each network also showed clear gradient in the embeddings from the autoencoder and triplet network but not for the embeddings from the classifier. However, the average silhouette score showed the opposite trend (Table 3), suggesting supervised learning increases the separability of classes at all levels of the taxonomic hierarchy. Overall, silhouette scores were negative, indicating a high degree of overlap for all taxonomic groupings.
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FIGURE 4. 2-dimensional visualizations of feature vectors extracted from the training and validation images derived from the Half-Earth dataset by an autoencoding neural network, a triplet network, and a classifier. The 2-dimensional embeddings were generated using UMAP, a non-linear dimensionality reduction technique that aims to preserve that local neighborhoods in a dataset rather than absolute distances between points. Each visualization is colored by the relative value of the channel with the greatest standard deviation in the feature extraction layer of the corresponding network.



TABLE 3. Silhouette scores for taxonomic groupings in representations of the Half-Earth dataset from three different neural networks.
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We visualized the optimized activations for the representation channel with the largest standard deviation for the training and validation images (Figure 5). These channels all appeared to pick up on textures across the images rather than well-defined features. Example images with contrasting high and low activations make it clear the channel with the greatest variation for the autoencoder was discriminating between light, thin specimens at low activation and dark, broad-leaved specimens at high activation. The activations for the triplet network and classifier were harder to interpret but may have separated images based on the presence of long blade-like sections and repeating feathery structures, respectively.
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FIGURE 5. A visualization of the features that are extracted by the (A) autoencoding neural network, (B) triplet network, and (C) classification network after training on the Half-Earth dataset of herbarium specimen images. Only one out of the 512 channels in the extracted features are visualized for each network, chosen as the channel with the greatest standard deviation in the training dataset. We generated images optimized to produce the minimum (left) and maximum (right) output from these channels and selected example images from the training dataset that had the most negative, slightly negative, slightly positive, and most positive activations. Activations and examples for the autoencoder (A) suggest it is separating specimens based on how much of the image is covered, while the triplet network (B) and classification network (C) separate specimens using finer-scale details.





APPLYING REPRESENTATIONS


Taxonomic Identification at Different Scales

Models trained on the autoencoder representations were the most sensitive to the coarseness of the task, with accuracy improving from genus to order for all held out test sets (Figure 6A). Models trained on the triplet and classifier representations were less affected by the coarseness of the task, with their highest accuracies being achieved when predicting the genus of the held-out herbaria images (47.3%) and the randomly held-out specimen images (33.9%), respectively. Overall, the models trained on the triplet representations performed the best across all test sets.
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FIGURE 6. The performance of features extracted by our pre-trained autoencoder, triplet, and classifier networks in three applications: (A) identifying the order, family, and genus for the held-out test sets of random specimen images (R), images from unseen herbaria (H), and images of unseen species (S) from the Half-Earth dataset; (B) discriminating between specimens of two similar (Syzygium and Eugenia) and two distinct (Syzygium and Dendrobium) genera; (C) identifying mislabeled specimens in these two sets of specimens. All three applications used logistic regression models for classification and were evaluated by fivefold cross-validation using: (A) accuracy, macro-averaged precision, and macro-averaged F1-score; (B) accuracy. Application (C) used the cross-validated predictions to identify likely mislabeled specimens and was assessed using the proportion of mislabeled specimens correctly identified (true positive rate; TPR) and the proportion of correctly labeled specimens wrongly identified as mislabeled (false positive rate; FPR).




Discrimination of Similar and Distinct Genera

All models showed high accuracy when discriminating between two representations of two genera extracted from images from Kew’s herbarium (Figure 6B). The models trained on autoencoder and triplet representations achieved near-perfect accuracy for both the similar and distinct genera. However, the models trained with the classifier did not perform as well and showed higher accuracy discriminating between Syzygium and Dendrobium (95.3%) than between Syzygium and Eugenia (87.9%).



Identification of Mislabeled Specimens

Similarly, models trained on the classifier representations correctly identified the fewest mislabeled specimens (Figure 6C) for both the similar (66.4%) and distinct genera (80.0%). Models trained on the autoencoder and triplet representations identified over 80% of mislabeled specimens in both sets of genera while incorrectly flagging fewer than 5% of correctly labeled specimens. The triplet representations were the best for identifying mislabeled specimens between similar genera (85.2%), while the autoencoder representations were slightly better with distinct genera (88.0%).




DISCUSSION


Learning Representations

Our results highlight the differences between the representations learned by the three neural networks under different levels of supervision. Evaluating the separability of taxa in this representation space, we found that the Classifier produced the most separable representations. This result is perhaps expected, as supervised training aims to maximize the differences between the target classes. Perhaps more surprising, though, was that the representations produced by the Triplet network were the least separable.

Visualizations of the optimized activations for the channel from each network with the highest variation in the training data confirmed that the level of supervision influenced the information encoded in the representations. While the most active channel of the Autoencoder appeared to pick up on the amount of an image filled by the specimen, both the Triplet and Classifier networks discriminated between thin branching structures and repeating blob-like shapes. Despite the subjective interpretations that these visualizations necessitate, we found them vital for contrasting between the different networks and diagnosing any potential problems with the representations learned.

Although there was no indication from the activation visualizations that the neural networks were encoding spurious information, like the presence of a scale bar, in the representations, we did not investigate all channels of the feature extraction layer. With more investigation, the need to mask the specimen from the rest of the image may become apparent. We should be able to build on a recently published workflow which generates masks for specimens of ferns, though this will need evaluation to ensure that features seen in other vascular plant groups (such as flowers and fruits) are properly handled. A comprehensive masking strategy effective across vascular plant groups will allow us to determine the effect of masking specimens on the applications of their representations.



Applying Representations

We have demonstrated that representations from all three networks generalize well to different classification tasks through our three application tasks. Although the accuracies achieved in the first application (taxonomic identification across scales) were all below 50%, this was the most challenging task. The best performing models, trained on representations extracted by the Triplet network, had a similar accuracy across all held-out test sets and at all levels of the taxonomic hierarchy. These results are encouraging for the prospect of using specimen representations to build lightweight models for identifying herbarium specimens where computational resources are limited.

The better performance in this task from representations extracted by the Classifier and Triplet networks over those from the Autoencoder aligns with the reported advantage of supervised over self-supervised methods for representation learning. However, the Autoencoder and Triplet representations achieved better results than those from the Classifier in the other two application tasks. Overall, the Triplet network gave the best results across all tasks, suggesting that although some supervision is beneficial, too much might overfit the representations to the task they were trained on.



Improving Representations

Our study presents the first steps in applying representation learning to herbarium collections, and there is much we can try to improve these representations. While we used an autoencoding network as our example of self-supervision, contrastive methods like SimCLR (Chen et al., 2020a) offer an alternative that can approach the performance of supervised methods in some applications. However, these contrastive models can be expensive to train and, despite their promise, may not work well across all domains (Cole et al., 2021).

Recent work in the camera trap literature has generated improved representations from self-supervised learning by using context information about the time and location of images to develop spatio-temporal priors (Mac Aodha et al., 2019) and identify likely related images (Pantazis et al., 2021). Herbarium specimens are accompanied by rich context about their collection and identification histories and how they relate to each other through duplicates deposited across different herbaria and co-citation networks (Nicolson et al., 2018). As in the camera trap applications, this context could be used to improve representations learned by self-supervision. However, it could also be used to define novel methods for sampling triplets of images during training of a triplet network, as could information about the geographic or phylogenetic distance between specimens.

Specimen representations worked surprisingly well for discriminating between two genera and identifying mislabeled specimens. However, we need to evaluate their use across a broader range of tasks like counting organs on a specimen sheet, detecting phenology, and picking out low-quality specimens. As these are frequent tasks across different research projects and herbarium collections, we could usefully define a set of tasks as a resource to evaluate future approaches. The NeWT dataset for benchmarking representation learning using natural world images offers a template for achieving this goal (Van Horn et al., 2021).




CONCLUSION

Our investigation has demonstrated the potential benefits of representation learning in the setting of herbarium collections. By contrasting different levels of supervision, we have identified metric learning through a triplet network as providing the best balance between fully and self-supervised representation learning. We evaluated the use of herbarium specimen representations across three tasks and found they were particularly effective for discriminating between genera and identifying mislabeled specimens. Although our representations achieved only mediocre performance in fine-grained taxonomic identification, we have identified several routes for improving the learning of herbarium specimen representations. Overall, we believe representation learning offers a way of harnessing large-scale digitized collections for the benefit of researchers working across all 3,500 herbaria worldwide. We intend to further investigate how we can use the rich context surrounding herbarium specimens to construct task sets and datasets to further develop this research area.
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Community science image libraries offer a massive, but largely untapped, source of observational data for phenological research. The iNaturalist platform offers a particularly rich archive, containing more than 49 million verifiable, georeferenced, open access images, encompassing seven continents and over 278,000 species. A critical limitation preventing scientists from taking full advantage of this rich data source is labor. Each image must be manually inspected and categorized by phenophase, which is both time-intensive and costly. Consequently, researchers may only be able to use a subset of the total number of images available in the database. While iNaturalist has the potential to yield enough data for high-resolution and spatially extensive studies, it requires more efficient tools for phenological data extraction. A promising solution is automation of the image annotation process using deep learning. Recent innovations in deep learning have made these open-source tools accessible to a general research audience. However, it is unknown whether deep learning tools can accurately and efficiently annotate phenophases in community science images. Here, we train a convolutional neural network (CNN) to annotate images of Alliaria petiolata into distinct phenophases from iNaturalist and compare the performance of the model with non-expert human annotators. We demonstrate that researchers can successfully employ deep learning techniques to extract phenological information from community science images. A CNN classified two-stage phenology (flowering and non-flowering) with 95.9% accuracy and classified four-stage phenology (vegetative, budding, flowering, and fruiting) with 86.4% accuracy. The overall accuracy of the CNN did not differ from humans (p = 0.383), although performance varied across phenophases. We found that a primary challenge of using deep learning for image annotation was not related to the model itself, but instead in the quality of the community science images. Up to 4% of A. petiolata images in iNaturalist were taken from an improper distance, were physically manipulated, or were digitally altered, which limited both human and machine annotators in accurately classifying phenology. Thus, we provide a list of photography guidelines that could be included in community science platforms to inform community scientists in the best practices for creating images that facilitate phenological analysis.

Keywords: phenology, deep learning, citizen science, iNaturalist, Alliaria petiolata (garlic mustard), convolutional neural network


INTRODUCTION

The study of phenology, or the timing of life cycle events, provides researchers with key insights into the role of time, as an axis, in ecological communities. Studies that monitor shifts in phenology are important for predicting the effects of environmental drivers, such as climate change, on species’ fitness, ecological interactions, ecosystem processes, and evolution (Forrest and Miller-Rushing, 2010). New frontiers in phenological research seek to assess the effects of large-scale environmental drivers on phenology and must be able to evaluate across multiple temporal and spatial scales (Cleland et al., 2007; Gallinat et al., 2021). This endeavor requires access to sources of phenological data that are both temporally and spatially extensive. However, owing to the high data requirement of phenological studies, previous researchers have been limited in their ability to assess phenological questions which are spatially and temporally explicit in tandem (Wolkovich et al., 2014). Studies that assess a large temporal period of phenology, such as those that utilize historic herbarium records of phenology, are typically spatially limited to the local-scale or to a defined number of sites across a larger region (Primack et al., 2004; Cook et al., 2012; Hart et al., 2014; Park and Schwartz, 2015; Reeb et al., 2020). By contrast, studies that assess a large spatial area (such as at continental scales), are typically restricted to a short frame in time or phenological observations are aggregated across years (Li et al., 2019, but see Templ et al., 2018).

Up to this point, such sources of phenological data have not been easily available (Tang et al., 2016). However, community science platforms designed to document species diversity, such as iNaturalist, or eBird, provide a rich source of spatially and temporally extensive phenology data (Sullivan et al., 2009; Barve et al., 2020; Li et al., 2021). In 2020 alone, iNaturalist users logged 12.6 million research-grade observations and eBird users logged 169 million observations (eBird, 2021; iNaturalist, 2021)1,2. However, because these biodiversity-focused community science programs are not designed to track species’ phenology, images in biodiversity-focused databases must be manually annotated for phenology. Though images from community science platforms have been powerfully leveraged in phenology research (Barve et al., 2020; Li et al., 2021), it requires much effort to visually score many thousands of images. Currently, the most common practice for rapidly annotating large numbers of images is by employing non-expert scorers, such as undergraduate students and volunteers, or through crowdsourcing platforms like Mechanical Turk (Willis et al., 2017). Not all researchers are able to utilize this method, as it can be costly or require access to a skilled labor pool (McDonough MacKenzie et al., 2020). The effort and costs associated with sorting and categorizing images into phenological stages means these community science biodiversity databases are underutilized in phenological research. A low-cost, precise, and efficient method for categorizing images in community science biodiversity databases would complement data available in other community science datasets that are specifically generated for phenological research, such as the National Phenology Network’s Nature’s Notebook, which are more limited in their spatial coverage (2.8 million observations in 2020) (Crimmins, 2021), as well as initiatives combining disparate phenological datasets (e.g., Brenskelle et al., 2019)3.

A promising solution to accessing the copious phenological data embedded in community science biodiversity datasets lies in automated image classification. Convolutional neural networks (CNNs) are a widely used machine learning technique for image classification (Affonso et al., 2017; Wäldchen and Mäder, 2018; Christin et al., 2019). These neural networks extract important features like lines, shapes, and colors and uses these features to classify an image into pre-designated categories (Rawat and Wang, 2017). Researchers can train CNNs to classify novel image sets by providing a training data set of pre-classified images. The CNN network then learns by iteratively predicting the classification labels of samples, comparing its classification labels to the true labels, and updating parameters within the network accordingly (Rawat and Wang, 2017). Once trained, CNNs can classify novel images rapidly and accurately. Researchers have employed CNNs to classify large image datasets including identifying animal species in wildlife camera trapping images (Tabak et al., 2019) or quantifying herbivory damage and leaf area on herbarium specimens (Meineke et al., 2020; Weaver et al., 2020).

Recently, immense progress has been made in applying deep learning models to phenological studies using herbarium specimens (Pearson et al., 2020) and aerial images (Pearse et al., 2021). Pearse et al. (2021) utilized a CNN approach to classify tree species from aerial images and found that tree phenology substantially influenced model accuracy. Lorieul et al. (2019) utilized a CNN approach to classify images of herbarium specimens into specific phenophases, while Davis et al. (2021) and Goëau et al. (2020) utilized a mask R-CNN approach to detect and count the number of reproductive structures on herbarium specimens. In these applications, researchers demonstrated that deep learning models are highly useful and with accuracy rates that rival manual (human) annotation (Lorieul et al., 2019). However, the classification of plant phenology in community science images presents a new challenge for CNNs. Unlike images of herbarium records that are mounted and photographed in a standardized fashion, images of plants in the field vary widely in the background environment, the distance of a plant to the camera, the resolution of an image, and light conditions (Barve et al., 2020). Increased image variability could reduce the accuracy, and thus utility, of using deep neural networks to classify plant phenology. Additionally, high image variability might inflate the required size of the training dataset to an unreasonably large number of images (Willi et al., 2019). Thus, it remains to be seen what the true threshold of neural network performance is when annotating phenology in community science images.

Here, we evaluate the potential use of deep neural networks to automatically classify the phenology of community science images uploaded to the iNaturalist platform. We focus on Alliaria petiolata (Brassicaceae; garlic mustard), a biennial herb that is common in Europe, western Asia, and widely naturalized in forests of eastern North America. In its first year, A. petiolata is a low-growing rosette of leaves and reproduces in mid-spring of its second year (Anderson et al., 1996). We selected A. petiolata because it is the fourth-most observed plant species on iNaturalist (over 40,000 research-grade observations between 1995 and 2020) and has distinct reproductive structures that can be identified from images. We ask the following questions: (1) How effective are CNNs in identifying phenology in a 2-phase and a 4-phase classification scheme? (2) How does CNN performance compare against the current best-practice, non-expert human scoring? Finally, based upon CNN performance, we recommend “best practices” for community scientists uploading images into community science platforms to enhance future phenology research.



MATERIALS AND METHODS


Creating a Training and Validation Image Set

We downloaded 40,761 research-grade observations of A. petiolata from iNaturalist, ranging from 1995 to 2020. Observations on the iNaturalist platform are considered “research-grade if the observation is verifiable (includes image), includes the date and location observed, is growing wild (i.e., not cultivated), and at least two-thirds of community users agree on the species identification. From this dataset, we used a subset of images for model training. The total number of observations in the iNaturalist dataset are heavily skewed toward more recent years. Less than 5% of the images we downloaded (n = 1,790) were uploaded between 1995 and 2016, while over 50% of the images were uploaded in 2020. To mitigate temporal bias, we used all available images between the years 1995 and 2016 and we randomly selected images uploaded between 2017 and 2020. We restricted the number of randomly selected images in 2020 by capping the number of 2020 images to approximately the number of 2019 observations in the training set. The annotated observation records are available in the Supplementary Data Sheet 1. The majority of the unprocessed records (those which hold a CC-BY-NC license) are also available on GBIF.org (2021).

One of us (RR) annotated the phenology of training and validation set images using two different classification schemes: two-stage (non-flowering, flowering) and four-stage (vegetative, budding, flowering, and fruiting). For the two-stage scheme, we classified 12,277 images and designated images as “flowering” if there was one or more open flowers on the plant. All other images were classified as non-flowering. For the four-stage scheme, we classified 12,758 images. We classified images as “vegetative” if no reproductive parts were present, “budding” if one or more unopened flower buds were present, “flowering” if at least one opened flower was present, and “fruiting” if at least one fully-formed fruit was present (with no remaining flower petals attached at the base). Phenology categories were discrete; if there was more than one type of reproductive organ on the plant, the image was labeled based on the latest phenophase (e.g., if both flowers and fruits were present, the image was classified as fruiting).

For both classification schemes, we only included images in the model training and validation dataset if the image contained one or more plants with clearly visible reproductive parts were clear and we could exclude the possibility of a later phenophase. We removed 1.6% of images from the two-stage dataset that did not meet this requirement, leaving us with a total of 12,077 images, and 4.0% of the images from the four-stage leaving us with a total of 12,237 images. We then split the two-stage and four-stage datasets into a model training dataset (80% of each dataset) and a validation dataset (20% of each dataset).



Training a Two-Stage and Four-Stage Convolutional Neural Network

We adapted techniques from studies applying machine learning to herbarium specimens for use with community science images (Lorieul et al., 2019; Pearson et al., 2020). We used transfer learning to speed up training of the model and reduce the size requirements for our labeled dataset. This approach uses a model that has been pre-trained using a large dataset and so is already competent at basic tasks such as detecting lines and shapes in images. We trained a neural network (ResNet-18) using the PyTorch machine learning library (Paszke et al., 2019) within Python. We chose the ResNet-18 neural network because it had fewer convolutional layers and thus was less computationally intensive than pre-trained neural networks with more layers. In early testing we reached desired accuracy with the two-stage model using ResNet-18. ResNet-18 was pre-trained using the ImageNet dataset, which has 1,281,167 images for training (Deng et al., 2009). We utilized default parameters for batch size (4), learning rate (0.001), optimizer (stochastic gradient descent), and loss function (cross entropy loss). Because this led to satisfactory performance, we did not further investigate hyperparameters.

Because the ImageNet dataset has 1,000 classes while our data was labeled with either 2 or 4 classes, we replaced the final fully-connected layer of the ResNet-18 architecture with fully-connected layers containing an output size of 2 for the 2-class problem and 4 for the 4-class problem. We resized and cropped the images to fit ResNet’s input size of 224 × 224 pixels and normalized the distribution of the RGB values in each image to a mean of zero and a standard deviation of one, to simplify model calculations. During training, the CNN makes predictions on the labeled data from the training set and calculates a loss parameter that quantifies the model’s inaccuracy. The slope of the loss in relation to model parameters is found and then the model parameters are updated to minimize the loss value. After this training step, model performance is estimated by making predictions on the validation dataset. The model is not updated during this process, so that the validation data remains “unseen” by the model (Alexander et al., 1995; Rawat and Wang, 2017). This cycle is repeated until the desired level of accuracy is reached. We trained our model for 25 of these cycles, or epochs. We stopped training at 25 epochs to prevent overfitting, where the model becomes trained too specifically for the training images and begins to lose accuracy on images in the validation dataset (Alexander et al., 1995).

We evaluated model accuracy and created confusion matrices using the model’s predictions on the labeled validation data. This allowed us to evaluate the model’s accuracy and which specific categories are the most difficult for the model to distinguish. For using the model to make phenology predictions on the full, 40,761 image dataset, we created a custom dataloader function in PyTorch using the Custom Dataset function, which would allow for loading images listed in a csv and passing them through the model associated with unique image IDs.



Hardware Information

Model training was conducted using a personal laptop (Ryzen 5 3500U cpu and 8 GB of memory) and a desktop computer (Ryzen 5 3600 cpu, NVIDIA RTX 3070 GPU and 16 GB of memory).



Comparing Convolutional Neural Network Accuracy to Human Annotation Accuracy

We compared the accuracy of the trained CNN to the accuracy of seven inexperienced human scorers annotating a random subsample of 250 images from the full, 40,761 image dataset. An expert annotator (RR, who has over a year’s experience in annotating A. petiolata phenology) first classified the subsample images using the four-stage phenology classification scheme (vegetative, budding, flowering, and fruiting). Nine images could not be classified for phenology and were removed. Next, seven non-expert annotators classified the 241 subsample images using an identical protocol. This group represented a variety of different levels of familiarity with A. petiolata phenology, ranging from no research experience to extensive research experience (two or more years working with this species). However, no one in the group had substantial experience classifying community science images and all were naïve to the four-stage phenology scoring protocol. The trained CNN was also used to classify the subsample images. We compared human annotation accuracy in each phenophase to the accuracy of the CNN using students t-tests. The model and human annotated subsample data can be found in the Supplementary Data Sheet 2. This research is exempt from University of Pittsburgh IRB approval according to the University’s Exempt Criteria 45 CFR 46.104(d)(2).



Unclassifiable Images

Within the four-stage training and validation dataset, we removed 4% of plant images that could not be classified into a phenological stage. To quantitatively assess the cause of unclassifiable images, the experienced annotator (RR) labeled these images in one of six categories: (1) camera distance (camera was too far or too close to the plant to classify phenology), (2) physical manipulation (the plant was no longer rooted in the ground), (3) digital manipulation (the image was digitally altered or was copied from a secondary source), (4) senesced plant (no remaining leaves), (5) misidentified species (image did not contain A. petiolata), and 6) duplicate entry (an image had been logged two or more times by the same user).




RESULTS


Accuracy of a Two-Stage and Four-Stage Convolutional Neural Network

The two-stage CNN we trained to identify flowering vs. non-flowering images was able to correctly categorize 95.9% of images in a 2,415-image test dataset (Figure 1). The four-stage CNN we trained to identify vegetative, budding, flowering, and fruiting images was able to identify 86.4% of images from a 2,448-image test dataset (Figure 2). The drop in accuracy from the two-stage CNN is largely attributable to confusion between flowering and fruiting images. The four-stage CNN incorrectly classified 131 fruiting images as flowering, and 81 flowering images as fruiting. Confusion of a flowering plant for a fruiting plant or vice versa accounted for 64% of incorrectly classified images. All other mistaken classification happened much less frequently, the next most common mistake being 33 budding plants classified as vegetative.
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FIGURE 1. A confusion matrix showing model predictions vs. expert assigned labels for a CNN predicting 2-stage phenology of A. petiolata in a validation set of 2,415 iNaturalist images. Rows represent true labels of images, assigned by an expert annotater, columns represent label assigned by the CNN, and the numbers in cells represent the number of images within each category. Cells on the diagonal from the top left to bottom right represent correct model classifications. Overall CNN accuracy was 95.9%. The CNN was constructed using ResNet 18 and trained on 9,662 images of A. petiolata from iNaturalist.
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FIGURE 2. A confusion matrix showing model predictions vs. expert assigned labels for a CNN predicting 4-stage phenology of A. petiolata in a validation set of 2,448 iNaturalist images. Rows represent true labels of images, assigned by an expert scorer, columns represent label assigned by the CNN, and the numbers in cells represent the number of images within each category. Cells on the diagonal from the top left to bottom right represent correct CNN classifications. Overall CNN accuracy was 86.3%. The neural network was constructed using ResNet 18 and trained on 9,789 test images of A. petiolata from iNaturalist.




Comparing Convolutional Neural Network Accuracy to Human Annotation Accuracy

To evaluate the usefulness of image classification by CNNs, we compared the accuracy of the trained four-stage CNN in classifying a random subsample of 241 images from the full dataset to a group of seven non-expert human annotators. Overall, the accuracy of the CNN did not differ significantly from humans (p = 0.383; Figure 3). The CNN correctly classified 81.7% of images while the non-expert group correctly classified 78.6% of images on average, with individual non-expert accuracy ranging from 60.9 to 86.6%. Evaluating individual phenophases, we found that the CNN was marginally less accurate than humans at identifying vegetative images (8% higher human accuracy, p = 0.053), but significantly more accurate in identifying budding images (23% lower human accuracy, p = 0.003). For flowering and fruiting phenophases, we found no difference in accuracy between the CNN and humans (p = 0.89 and p = 0.23, respectively).
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FIGURE 3. Heat map comparing non-expert human accuracy to CNN accuracy in annotating a dataset of 241 A. petiolata iNaturalist images. Accuracy was calculated as the percent of correctly annotated images in each phenophase. Each row represents the accuracy of a non-expert individual, with the exception of the bottom row (dashed line box) which represents the accuracy of the CNN.




Fully Annotated Dataset

We finally used the trained CNN to annotate the full A. petiolata dataset, which contained 40,761 images. This set of community science images represented observations spanning the entire species range, 48 countries, and 15 years (Figure 4). The vast majority of observations (>80%) were recorded between the months of March and June, encapsulating the reproductive season for this species (Figure 4). The CNN classified 24.5% of images as vegetative, 9.3% as budding, 34.0% as flowering, and 32.2% as fruiting.
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FIGURE 4. A. petiolata phenology progression, by calendar week. Weekly maps depict A. petiolata phenology using the full, CNN-annotated iNaturalist image set. Date ranges from early March (week 12) to mid-may (week 21). Observations have been combined across years (1995–2020). Color depicts phenophase: vegetative observations are white, budding observations are blue, flowering observations are yellow, and fruiting observations are red.




Unclassifiable Images

Among unclassifiable images that were removed from the 4-stage training and validation dataset, the majority were removed owing to issues with the image quality for phenology use. We removed 57.1% of the images (n = 366) because the camera was too close or too far from the plant to determine the plant’s phenology, 21.2% (n = 136) because the photo captured a physically manipulated plant, and 1.4% (n = 9) because the photographer digital alterated the image. A minority of images were removed owing to other reasons. We removed 15.6% (n = 100) of images because the plant was senesced, 4.1% (n = 26) because the image did not contain the correct species, and 0.6% (n = 4) because the image was a duplicate entry.

The proportion of “unclassifiable” images has roughly declined over time (Supplementary Figure 1), signaling an overall improvement in image quality over time. Within the expert-annotated training image set, the annual proportion of unclassifiable images was 21% in 2010, 6% in 2015, and 4% in 2020.




DISCUSSION

Community science biodiversity databases are rich with observations of species phenology. However, a researchers’ ability to use this phenological information is limited because it is contained within images that require manual classification, which is a time-consuming and costly endeavor. Here, we determine the effectiveness of CNNs to automatically classify the phenology of a widespread plant, Alliaria petiolata (garlic mustard), using images uploaded to the community science platform iNaturalist. We find that CNNs are efficient and effective at classifying images into both a coarse two-phase classification scheme and a finer four-phase classification scheme. We also demonstrate that the CNN performed similarly to annotation by non-experts, which is currently the most popular method for large-scale phenology annotation. Thus, we conclude that CNNs, once trained, hold immense potential to serve as an inexpensive, rapid method of phenological data extraction from large community science image databases like iNaturalist.

This neural network does not require an extensive background in deep learning techniques to be utilized by researchers. It utilizes an open-source CNN (ResNet-18) that is pre-trained to identify images into 1000 object categories. By using a pre-trained model, we reduced the computing power necessary for training the algorithm to classify images of plants into specific phenophases. By using open-source machine learning functions from the PyTorch libraries in Python (Paszke et al., 2019), we also reduced our coding time. PyTorch is an open-source machine learning library, which provides functions for model-building and evaluation as well as an extensive array of tutorials for learning (Pytorch, 2021)4. Thus, the CNN presented in this project could be re-trained to classify phenology for another set of images, even for researchers with limited deep learning knowledge or computing resources. Based on our informal observations during model development, we found that a coarse and simple two-stage phenology classifier (such as flowering/non-flowering) can be trained using as few as 2,000 images and, in our experience, requires the computing power of a modern personal laptop. Our four-stage phenology classifier required a significantly larger training set of 12,758 images to reach the existing level of performance (86.4% accuracy). We did not evaluate whether the performance of the four-stage classifier would improve with a larger training and validation sets. In our experience, training a model of this size can be accomplished on a standard modern desktop. The usefulness of CNNs for phenological data extraction will depend on the phenology classification scheme and the number of images in the dataset. We were able to extract four-stage phenological information from the full, 40,761 image set of A. petiolata using a model trained off a subsample of 12,758 images; reducing the time for human annotation by 68.7%. Researchers who wish to utilize a finer-scale phenology classification scheme (ex 6-stage) will likely require a larger training image set.

The CNN’s accuracy in classifying images hinged on the quality of the images, not the quality of the model. While some failures in image quality are unavoidable, such as a mistaken species identity or images taken of senesced plants, the majority of failures can be attributed to avoidable photographer choices. We found that iNaturalist images were highly variable in the following three aspects: the distance between the photographer and the plant, the level of physical manipulation of the plant, and the degree of digital alteration of the photograph (Figure 5). The distance from the camera to the plant varied from a few decimeters (for example, close-up pictures of a single flower) to several meters. At both ends of this range, a plant’s phenology can be misidentified. For example, when photographers upload close-up images of a single flower, other reproductive organs may be left out of the image frame. If a plant is also developing fruits, but those reproductive organs are not captured in an image of flowers, the image may be incorrectly classified as “flowering” instead of “fruiting.” Likewise, when photographers upload images of a plant from too far away, the reproductive organs may be too small or too blurry to accurately classify. Some photographers remove plants and move them to a new location (such as indoors) or press them for herbarium records. When photographers move or manipulate plants, reproductive organs can fall off the plant or be missed in the image, reducing the CNN’s accuracy of image classification. Lastly, some photographers will upload non-original images that are either digitally altered or are copies of pre-existing images. This can lead to distortion of the image and difficulty in identifying reproductive organs. Researchers are also unable to trust the geospatial information associated with these images because there is no way to verify where the coordinates were generated.
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FIGURE 5. Description of preferred vs. non-preferred community science images for use in phenology research. Example images were sourced from iNaturalist. Image credit (iNaturalist username): (a) szuwarek; (b) deannahunt; (c) midnight_jim; (d) pedropedreiro; (e) pleasethetrees; (f) ny_wetlander; (g) r_rogge; (h) chuckt2007.


We were unable to manually classify the four-stage phenology of 4.0% of A. petiolata images because they did not contain the key features required to classify phenology. While expert human annotators can manually remove unclassifiable images from analysis, our trained CNN was forced to label them into a pre-defined category. This ultimately increases the number of incorrect classifications within the annotated dataset when using deep neural networks. However, as long as the occurrence rate of unclassifiable images is small, it is unlikely to introduce substantial error within large datasets. The higher quality the community science image, the greater the ability for the model to annotate phenology accurately without encountering unclassifiable images. In our analysis, we found that the percentage of unclassifiable images has roughly decreased over time, having declined from 21% of images in 2010 to just 4% of images in 2020. We expect image quality to continue to improve, owing to the widespread use of smartphones with ever-increasing associated camera capabilities and an increasing public awareness of proper photography techniques.

We outline a set of simple recommendations to improve the quality of community science images for phenology research (Figure 5). If adopted by community photographers, these recommendations would greatly improve the accessibility of community science images for phenological research by making it easier for both deep neural networks and human annotators alike to accurately annotate phenology. We hope that these will be useful to community science platforms for informing their educational material, or directly useful to community scientists who wish to individually contribute their images to research. First, the organism of interest should take up the entire frame. Second, the image should be angled to allow the viewer to identify all reproductive organs (ex. buds, flowers, and fruits). Third, the image should be taken of the organism in its original location, so as not to disturb important phenological features and to ensure that the image’s geolocation is accurate. Fourth, images should be uploaded in their original form; not digitally altered nor uploaded as copies of the original photo. Ideally, additional images are uploaded to show additional features of interest, including detailed characters needed for identification or otherwise worth documenting, as well as images showing the population, community, and environmental context of the individual plant. However, the first picture uploaded should capture the standardized recommendations we suggest to specifically capture the individual at the whole organism level.

Importantly, we found that a CNN performed similarly to non-expert human annotators in their phenology classification accuracy. Human annotators had the lowest accuracy in the budding and fruiting phases (61.8 and 67.1%, respectively). While the bright white flowers of A. petiolata are easy to identify, the green buds and fruits are substantially easier to miss without a trained eye, leading to an increase in error for inexperienced human annotators. The trained CNN had equal difficulty in identifying fruits but was substantially better at identifying budding images than human annotators. Budding images are uncommon among A. petiolata images (roughly 10%). We predict that human annotators had more difficulty in identifying buds due to an unconscious cognitive bias in searching for common features and overlooking rare ones. The CNN may have been less susceptible to bias introduced by an underrepresented class such as budding phase A. petiolata; suggesting an advantage to using this tool.

Furthermore, CNNs can be a substantially faster and less-expensive method of data collection when compared to inexperienced human annotators. In general, we found that inexperienced humans could annotate 2–5 images per minute. This would translate to at least 135 h of paid labor if a person were to manually annotate the full 40,761 image dataset of A. petiolata. By contrast, the CNN annotated the full image dataset in under 2 h. After the initial time investment required to annotate a training dataset and write the code for a CNN, images can be annotated more rapidly using CNNs than with manual annotation. While the initial time investment in the development of a machine learning model is steep, the speed at which a CNN can annotate a large dataset produces exponential gains in efficiency as dataset size increases.

It will be imperative for CNN-generated phenological data to align with standardized phenological ontologies like the standardized herbarium specimen digitization protocol developed by Yost et al. (2018) and the Plant Phenology Ontology developed by Stucky et al. (2018). This alignment would allow researchers to compare iNaturalist, herbarium, or in situ phenology data and promote the inclusion of iNaturalist phenological data in larger compiled databases. For example, the two-stage phenology scheme used in this study provides a coarse level of phenological information, akin to first-order scoring as described in Yost et al. (2018). The four-stage scheme provides a finer scale of phenological information, akin to second-order scoring (Yost et al., 2018). The integration of standardized ontologies will allow CNN-generated data to be ingested into larger phenology databases such as plantphenology.org (Brenskelle et al., 2019), enabling future data reuse and interoperability.

We successfully trained a CNN to extract phenological data from community science images of A. petiolata. We note that we intentionally selected A. petiolata because its reproductive organs are visible from a distance (and can be identified in photos) and it was abundant within the iNaturalist database. For researchers who wish to study species that have lower availability of images in community science databases or hard-to-distinguish reproductive organs, they may need to find ways to supplement the training set so that the CNN can continue to learn phenological features. This can be achieved by pooling images from multiple public datasets, data augmentation techniques, or supplementation with images of related species (Christin et al., 2019). For this reason, future endeavors could evaluate the accuracy of CNNs trained on community science image sets that contain multiple species.

Since its inception in 2013, the iNaturalist platform has seen explosive growth in the number of images uploaded to the platform. More than 12 million research-grade observations were recorded in 2020, up from 7 million observations in 2019 and 3 million in 2018 (iNaturalist, 2019, 2020, 2021)5,6,7. These records are extensive and allow phenology researchers to study phenology across entire species ranges, climate regions, ecoregions, and more (Di Cecco et al., 2021). Community science datasets will become even more valuable to phenology researchers over time as new images come online and extend the temporal coverage of the data (Mayer, 2010). However, in order to take full advantage of community science datasets, new tools are needed to extract phenological data inexpensively and efficiently from images. We have shown that CNNs can successfully extract phenological data from iNaturalist image sets, with comparable accuracy to manual annotation by humans, but at a lower labor cost and higher speed. This tool offers a promising solution to integrate community science datasets with cutting-edge phenological research and expand the scope of this field.
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Availability of and access to wood identification expertise or technology is a critical component for the design and implementation of practical, enforceable strategies for effective promotion, monitoring and incentivisation of sustainable practices and conservation efforts in the forest products value chain. To address this need in the context of the multi-billion-dollar North American wood products industry 22-class, image-based, deep learning models for the macroscopic identification of North American diffuse porous hardwoods were trained for deployment on the open-source, field-deployable XyloTron platform using transverse surface images of specimens from three different xylaria and evaluated on specimens from a fourth xylarium that did not contribute training data. Analysis of the model performance, in the context of the anatomy of the woods considered, demonstrates immediate readiness of the technology developed herein for field testing in a human-in-the-loop monitoring scenario. Also proposed are strategies for training, evaluating, and advancing the state-of-the-art for developing an expansive, continental scale model for all the North American hardwoods.
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INTRODUCTION

North American hardwoods are utilised in a multitude of applications including furniture (household, office, and institutional), construction and remodeling (e.g., flooring, millwork, and kitchen cabinets), and industrial products (e.g., pallets, access mats, and crossties). In 2016, the total US output1 of hardwood products was US$135.6 billion including US$39.8 billion in exports (Hardwood Federation, 2016). Proper identification of hardwoods along this value chain is essential for ensuring that contractual obligations have been met, detecting and preventing commercial fraud (Wiedenhoeft et al., 2019), determining appropriate drying schedules (Simpson, 1991), deciding on suitable methods of chemical treatment (Kirker and Lebow, 2021), and assessing the condition of in-service structures (Ross and White, 2014). Whether in the context of in-service wood or new wood-based products, identification of the material is germane both in an engineering context, and in terms of interrogating or verifying claims of legality and/or sustainability of the wood in a final product. Material identification is a necessary requirement for the design of practical strategies for designing, monitoring, and incentivizing sustainable wood product value chains.

Legality and sustainability of wood and wood-based products are two disparate concepts, the former being a matter of jurisdiction and legislation and thus essentially referring to de facto claims or criteria, whereas the latter is a topic of scholarly, practical, economic, and environmental debate (Giovannoni and Fabietti, 2013; Magnus Boström et al., 2015). For wood and wood-based products, legality can be governed by international treaties (e.g., the Convention on the International Trade in Endangered Species of Flora and Fauna [CITES, 27 U.S.T. §1087]) and by national laws and policies (e.g., the United States’ Lacey Act [18 U.S.C. §42-43; 16 U.S.C. §3371-3378]) and wood identification can play a critical role in enforcement. Sustainability is a more elusive concept and legitimate disagreements as to what constitutes sustainability can occur between otherwise similarly minded parties (Miller and Bush, 2015; Ruggerio, 2021). In addition to the conceptual or theoretical differences that may exist between the principles and details subtending sustainability criteria, there is also the question of real-world implementation and enforcement of sustainability measures along supply chains (Bush et al., 2015; Chappin et al., 2015; Dieterich and Auld, 2015) to ensure that a product labelled as sustainable is in fact sustainably sourced. Confirming the sustainability of a consumer product may not be possible by testing the final product, but rather may depend more upon the supply chain and sustainability regime employed to produce and guarantee that product claim. Disproving sustainability, however, can sometimes happen readily by testing consumer products, for example by determining that the wood used in a product is from a threatened or protected species (Wiedenhoeft et al., 2019), or from a region with a high overall prevalence of unmanaged forest harvest. For establishing claims of legality and sustainability for wood-products there is a critical need for developing and scaling wood identification capacity.

Presently, wood identification is primarily performed by wood anatomy experts who have spent months or years training to acquire this skill; who typically carry out this function in a laboratory setting; and whose accuracy depends on the ability to recognize and distinguish a wood specimen’s anatomical features and interpret them in the context of established methods (e.g., dichotomous keys, multiple entry keys, comparison to reference specimens) for wood identification (Wheeler and Baas, 1998). Despite the efficacy of such human-based anatomical identification, trained experts are rare, competence varies, and overall capacity for this task in the United States (Wiedenhoeft et al., 2019)–and presumably globally–is critically limited. For example, respondents to the proficiency test in Wiedenhoeft et al. (2019), when confronted with US domestic woods, demonstrated in-laboratory accuracies (with access to the full gamut of traditional wood identification resources such as light microscopy, reference specimens, keys, online resources, etc.) ranging from as low as 7% of the 28 specimens to as high as 86%-when considering only the specimens attempted, accuracies ranged from 25 to 92% (Table 3, Wiedenhoeft et al., 2019). There is the expectation that macroscopic field identification would achieve substantially lower accuracies (Wiedenhoeft, 2011; Ruffinatto et al., 2015).

To overcome the dearth of human expertise in wood identification, various teams have developed computer vision-based systems which can be implemented in the laboratory or in the field (Khalid et al., 2008; Martins et al., 2013; Filho et al., 2014; Figueroa-Mata et al., 2018; Ravindran et al., 2018, 2019, 2021; Damayanti et al., 2019; de Andrade et al., 2020; Ravindran and Wiedenhoeft, 2020; Souza et al., 2020). Even with microscopic inspection and complete access to reference collections, human-based wood identification is typically accurate only to the genus level with reliable species-level identification being rare (Gasson, 2011). Machine learning, on the other hand, either alone (Martins et al., 2013; Filho et al., 2014; Barmpoutis et al., 2017; Kwon et al., 2017, 2019; Rosa da Silva et al., 2017; Figueroa-Mata et al., 2018; Ravindran et al., 2018, 2019, 2020, 2021; de Geus et al., 2020; Hwang et al., 2020; Ravindran and Wiedenhoeft, 2020; Souza et al., 2020; Fabijańska et al., 2021) or in combination with human expertise (Esteban et al., 2009, 2017; He et al., 2020), has shown promise that species-level identification might be possible, when the woods in question allow resolution at this granularity. Recent work involving the open-source XyloTron platform (Ravindran et al., 2020) has shown promise for real-time, field-deployable, screening-level wood identification (Ravindran et al., 2019, 2021; Ravindran and Wiedenhoeft, 2020; Arévalo et al., 2021) with the hardware to transition to smartphone-based systems now available (Tang et al., 2018; Wiedenhoeft, 2020). Affordability and democratization make computer vision wood identification (CVWID) an attractive technology for robust, multi-point monitoring of the full sustainable wood products value chain from producers to consumers. While multiple platforms for imaging biological specimens in natural history collections are available (e.g., Hedrick et al., 2020; Pearson et al., 2020; von Baeyer and Marston, 2021), it should be noted that the XyloTron, XyloPhone, and similar systems for CVWID have been designed for affordability, field screening, human-in-the-loop deployment, and also have the potential (especially given the comparative affordability of the XyloPhone system) for crowd-sourcing data collection, citizen-science efforts (Goëau et al., 2013), and use in secondary education, all of which have the potential to enrich image datasets if images can be vetted and curated.

Putting forth a field-deployable computer vision model for the identification of commercially important North American hardwoods requires on the order of 50 classes, which far exceeds anything published to date for this region, either at the naked eye level (Wu et al., 2021) or using macroscopic images (Lopes et al., 2020). Increasing the number of classes in a model has the potential to influence model accuracy (Bilal et al., 2018; Shigei et al., 2019), and unpublished work on the expansion of a 15-class Ghanaian timber model (Ravindran et al., 2019), using the same model training methodology, to 39 and 43 classes showed a reduction in model accuracy. While these data might suggest a negative relationship between number of classes and accuracy, the literature does not provide consensus on how increasing the number of classes impacts the performance of classification models. Abramovich and Pensky (2019) suggest that increasing the number of classes could positively influence model accuracy while other sources suggest, in general, an inverse relationship (e.g., Bilal et al., 2018; Shigei et al., 2019). Whether additional classes improve or reduce model accuracy undoubtedly depends on multiple factors including the degree to which the additional classes are similar to each other and to those already in the model. Greatly increasing the number of classes is presumed to have a non-trivial effect on model accuracy; thus, larger multi-class models should be handled with care, paying close attention to factors that might negatively impact model performance. An option for building practical, high performing models with a large number of classes is to leverage domain-based factors for informed model selection, label space design, and filtering of the model predictions, thus taking advantage of human expertise in determining the breadth and scope of the model implementation, evaluation, and deployment.

In the case of North American hardwoods, one such factor, commonly used for human-based macroscopic identification, that could affect accuracy might be wood anatomical spatial heterogeneity as it relates to porosity (IAWA, 1989; Ruffinatto et al., 2015). Classically ring-porous woods exhibit large and abrupt differences in vessel diameter and often in parenchyma patterns between earlywood and latewood. In addition, the macroscopic appearance of vessel and parenchyma patterns in the latewood can vary greatly among specimens exhibiting slow growth, medium growth, and fast growth. In cases of fast-grown ring-porous specimens, the growth rings can be so wide that images captured at the macroscopic level might include nothing but latewood, completely excluding earlywood features important for identification. This greater spatial heterogeneity of ring-porous woods contrasts with the lesser spatial heterogeneity of classically diffuse-porous woods, which exhibit little macroscopic anatomical variation both between and within growth rings regardless of variations in radial growth rate. As shown in Figure 1, the radial growth rate of a ring-porous wood imparts greater spatial heterogeneity at the macroscopic scale (Figures 1B,D,F) compared to the lower spatial heterogeneity of a diffuse-porous wood growing at similar radial growth rates (Figures 1A,C,E).
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FIGURE 1. Images of transverse surfaces of Betula alleghaniensis (A,C,E) and Robinia pseudoacacia (B,D,F) showing similar slow-growth conditions (A,B) medium-growth conditions (C,D), and faster-growth conditions (E,F). Note that Betula alleghaniensis shows comparatively lesser wood anatomical spatial heterogeneity than Robinia pseudoacacia. The nearly three complete growth rings in panels (C,D) present wood anatomical detail sufficient to facilitate an identification. The slow growth in panels (A,B) and partial growth rings in panels (E,F) demonstrate the comparatively lesser spatial heterogeneity of the diffuse porous Betula alleghaniensis. In Robinia pseudoacaia there is a lack of latewood characters in the slow-grown image (B), and only latewood anatomy in panel (F). By contrast, Betula alleghaniensis shows substantially similar anatomy across the three images (A,C,E).


This study presents the design and implementation of 22-class deep learning models for image-based, macroscopic identification of North American diffuse porous hardwoods. The main highlights of this study include:


•Providing the first continental scale model for the identification of an important set of North American hardwoods, which is the largest wood identification model reported across all available wood identification technologies (Schmitz et al., 2020);

•Reporting on the first multi-site, multi-operator, multi-instantiation study of computer vision identification for North American woods that has been evaluated using a practical field testing surrogate (Ravindran et al., 2020);

•Using wood anatomy-driven label space design (the grouping and partition of species into classes) and model performance evaluation;

•Establishing a strong baseline using a simple machine learning methodology for the quantitative comparison of advances in wood identification across all modalities; and,

•Discussing practical strategies for field-testing and model deployment for empowering sustainability and conservation efforts in wood product value chains.





MATERIALS AND METHODS


Dataset Details


Taxa and Sample Selection

105 unique species from 24 prominent genera of North American diffuse porous woods were selected based on the commercial importance and specimen availability among four scientific wood collections. The four wood collections and details of their specimen contributions are summarised in Table 1.


TABLE 1. The four xylaria providing wood specimen images for the data sets used to train and test the wood identification models.
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Sample Preparation and Imaging

The transverse surfaces of 788 wood specimens from the selected taxa were progressively sanded from coarse to fine grit (240, 400, 600, 800, 1000, 1500) with dust removal from cell lumina using compressed air and adhesive tape when possible. The prepared surfaces were imaged using multiple instantiations of the XyloTron system (Ravindran et al., 2020) to produce a data set with 6393 non-overlapping images. The 2048 × 2048-pixel images obtained with the XyloTron had a linear resolution of 3.1 microns/pixel and each image shows 6.35 mm × 6.35 mm of tissue. The sample preparation and image collection were done by multiple operators with varying levels of wood anatomy expertise and specimen preparation experience (undergraduate students, graduate students, postdoctoral researchers, and technical specialists). A summary of the collected dataset is provided in Table 2.


TABLE 2. Image data set summary.
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Label Assignment

Wood identification is typically accurate only to the genus level when the full gamut of light microscopic characters is employed (Gasson, 2011). For the taxa in this study, a combination of suprageneric, generic, and sub-generic granularity for classification is appropriate for macroscopic wood identification. To facilitate machine learning, the taxa were grouped into 22 classes based on their macroscopic anatomical similarity in the following manner:


1.The genera Aesculus, Alnus, Arbutus, Betula, Carpinus, Fagus, Frangula, Liquidambar, Liriodendron, Magnolia, Nyssa, Ostrya, Oxydendrum, Platanus, Populus, Rhamnus, Salix, and Tilia were assigned to 18 genus-level classes (with genus names as labels).

2.The genus Acer was split into two classes, “hard” and “soft,” with labels “AcerH” and “AcerS,” respectively, as within North American Acer, hard maple (A. saccharum) is separable from the soft maples (e.g., A. macrophyllum, A. saccharinum, A. rubrum) based on ray widths observed macroscopically and microscopically (Panshin and de Zeeuw, 1980; Hoadley, 1990).

3.Species from the genera Crataegus, Malus, Prunus, Pyrus, and Sorbus were grouped into one class, with the label “Fruitwood,” with the exception of Prunus serotina which was its own class with the label “Prunus” as P. serotina is wood anatomically distinct from the other fruitwoods.



A listing of the 105 taxa, their class labels and their training/testing set membership can be found in Supplementary Material 1.




Machine Learning Details


Model Architecture and Training

While multiple deep learning architectures for image classification exist (e.g., Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015; Huang et al., 2017), we employed a convolutional neural network (CNN; LeCun et al., 1989) with a ResNet34 (He et al., 2016) backbone and a custom 22-class classifier head (see Figure 2), based on prior success using this architecture for wood identification (e.g., Ravindran et al., 2019, 2021). The CNN backbone was initialised with ImageNet (Russakovsky et al., 2015) trained weights and He weight initialization (He et al., 2015) was employed for the custom classifier head. In the first stage of training, the backbone weights were frozen, and the weights of the custom head were optimised. The weights of the entire network were fine-tuned during the second training stage. For both the stages, the Adam optimizer (Kingma and Ba, 2015) with a two-phase simultaneous cosine annealing (Smith, 2018) of the learning rate and momentum was employed. Each mini-batch (of size 16) was composed of 2048 × 768 pixel random image patches extracted from each of 16 images, down-sampled to 512 × 192 pixels, randomly augmented using horizontal/vertical flips, small rotations, and cutout (Devries and Taylor, 2017), and input to the network. Complete details about the architecture and the adopted two-stage (Howard and Gugger, 2020) transfer learning (Pan and Yang, 2010) training methodology can be found in Ravindran et al. (2019) and Arévalo et al. (2021). Models with a ResNet50 backbone were also trained and evaluated, with the results presented in Supplementary Material 2. Scientific Python tools (Pedregosa et al., 2011) and the PyTorch deep learning framework (Paszke et al., 2019) were used for model definition, training, and evaluation.
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FIGURE 2. Model schematic. (A) The CNN architecture for our 22-class wood identification models consisted of a ResNet34 backbone with a custom classifier head. The custom head shown in panel (B) is comprised of global average (A) and max (M) pooling (Goodfellow et al., 2016) layers that are concatenated (C) to form a 1024-vector. This is followed by two fully connected blocks (B1, B2) each with batchnorm (Ioffe and Szegedy, 2015) and dropout (Srivastava et al., 2014) layers. The dropout layers had parameters p = 0.5 and p = 0.25 in the B1 and B2 blocks, respectively. ReLU activation was used in B1, while B2 had a softmax activation. The status of the weights of the backbone and custom head, whether they are modified or not during the two stages of training, are represented by the lock and unlock symbols, respectively.




Model Evaluation

The predictive performance of the trained models was evaluated using specimen level top-k accuracies with k = 1 and k = 2. The top-1 prediction for a specimen was the majority of the class predictions for the images contributed by the specimen. The top-2 prediction for a specimen was obtained by equally weighted voting of the top-2 image level predictions for the images contributed by the specimen and the specimen was considered correctly identified if its true class was one of the top-2 predicted classes. The specimen level top-1 and top-2 performance of the trained models were evaluated using fivefold cross-validation (5184 images from 504 specimens; MADw, SJRw, and Tw collections) and an independent test set (1209 images from 284 specimens; PACw collection). The PACw images: (i) were obtained by a different operator using a different instantiation of the XyloTron, (ii) were not used to train the field or cross-validation models, and (iii) serve as a valid, practical proxy for real field testing (Ravindran et al., 2021). Each PACw specimen contributed up to five images for evaluation and this maximum number of images per specimen was fixed before any model evaluation was performed i.e., the number of images per PACw test specimen was not tuned. Specifically, the following analyses were performed:


(1)Five fold cross-validation analysis was performed with label stratified folds and specimen level separation between the folds i.e., each specimen contributed images to exactly one fold. Specimen level mutual exclusivity between the folds is necessary for the valid evaluation of any machine learning based classifier for wood identification (e.g., Ravindran et al., 2019, 2020, 2021 and as discussed in Hwang and Sugiyama, 2021). Model predictions over the five folds were aggregated to compute the (top-1) prediction accuracy and a confusion matrix.

(2)The (mean) top-1 and top-2 predictive performance of the five trained models from the cross-validation analysis on the PACw data was computed. It should be noted that each of the five models was trained on four folds (80%) of the training data.

(3)All the images from the cross-validation analysis (i.e., 100% of the training data) were used to train a separate model (field model) which was then evaluated on the independent PACw data. The top-1 and top-2 prediction accuracy and the confusion matrix were computed to evaluate the efficacy of the field model.





Misclassified Specimens

All images of the misclassified specimens in the fivefold cross-validation model and field model were evaluated and reported as in Ravindran et al. (2021), assigning each to one of three types of misclassification: (1) taxa were anatomically consistent and the test specimen was typical; (2) the individual test specimen was atypical for the taxon (i.e., it is not an archetypal specimen for the taxon); or, (3) the taxa and test specimen were anatomically typical, but the classes are not anatomically consistent with each other, and errors of this type would not be expected to be made by a human identifier. It is important to note that these attributions are made on a specimen basis, so while Types 1 and 3 are mutually exclusive, the remaining combinations are possible (e.g., class A misclassified as class B with 5 such misclassifications could show all Type 1, all Type 2, all Type 3, combinations of Types 1 and 2 or Types 2 and 3, but never a combination of Type 1 and Type 3).





RESULTS

The specimen level prediction accuracies for the cross-validation and field models are presented in Table 3. While the cross-validation accuracy was 95.2%, the (mean) top-1 and top-2 accuracies were 73.5 and 85.1%, respectively, when the models were tested on the PACw test specimens. The top-1 accuracy of the field model was 80.6%, and the top-2 accuracy was 90.5%. Figures 3, 4 display the confusion matrices for the cross-validation (accumulated over the five folds) and field models, respectively.


TABLE 3. Specimen level model prediction accuracies.
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FIGURE 3. Confusion matrix for the cross-validation model predictions on 504 specimens. The specimen-level top-1 prediction accuracy accumulated over the fivefolds was 95.2%.
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FIGURE 4. Confusion matrix for the field model predictions on 284 PACw specimens. The top-1 and top-2 specimen-level accuracies were 80.6 and 90.5%, respectively.


Figure 5 presents example images of Type 1, Type 2, and Type 3 misclassifications, and summary of misclassification data for both the fivefold cross-validation model and the field model are presented in Table 4.
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FIGURE 5. Images of the transverse surface of test specimens (B–D) and an exemplar (A) of the class (Populus) to which each was assigned in the field model. All images are 6.35 mm on a side. An anatomically representative specimen of Salix scouleriana (B) was misclassified as the wood anatomically similar class Populus (A), a Type 1 misclassification. An anatomically atypical specimen of Betula nigra (C) was classified as (A), a Type 2 misclassification. An anatomically typical specimen of Platanus occidentalis (D) was misclassified as the anatomically disparate class (A), a Type 3 misclassification. Note the anatomical similarities between panels (A,B), and to a lesser extent panels (A,C), and the anatomical dissimilarity between panels (A,D), especially with regard to the wide rays in panel (D).


TABLE 4. Number and proportion of misclassified specimens from Figure 4 by type of misclassification.
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When considering top-1 accuracy of the field model, 9 classes showed no misclassifications when input into the trained model for field testing with PACw specimens: Acer (hard), Acer (soft), Carpinus, Fagus, Frangula, Fruitwood, Ostrya, Rhamnus, and Tilia, with the other 13 classes showing at least one specimen misclassification (Figure 4). Of the 55 misclassified specimens, 80% were Type 1 or Type 2 misclassifications, with only 20% being anatomically inconsistent (Type 3) misclassifications (Table 4). While specimens from 13 classes were misclassified, they were attributed only to 7 classes: Alnus, Frangula, Fruitwood, Liquidambar, Nyssa, Populus, and Salix (Figure 4). Seven classes neither contributed nor drew misclassifications: Acer (hard), Acer (soft), Carpinus, Fagus, Ostrya, Rhamnus, and Tilia.



DISCUSSION

For a field-deployable image-based CVWID model for North American diffuse porous hardwoods to make the greatest real-world impact in law enforcement, industrial compliance, and supply chain verification, it is critical to establish the ways in which the model succeeded in identifying the woods and to dissect the ways in which it failed. Prior work in the field of CVWID has largely limited its analysis of results to reports of overall model accuracy (e.g., Martins et al., 2013; Filho et al., 2014; Rosa da Silva et al., 2017; Figueroa-Mata et al., 2018; Ravindran et al., 2019; de Geus et al., 2020; Souza et al., 2020) with comparatively little prior work addressing wood anatomical details of the misclassifications (Lens et al., 2020; Ravindran et al., 2021). More detailed analyses of the types of misclassifications can yield insights that improve the state-of-the-art in the performance and interpretability of CVWID technologies.


Accuracy of Cross-Validation and Field Models

Top-1 cross-validation accuracy (Table 3, row 1) was ∼22 points higher than when the same fivefold models were tested with the PACw specimens (Table 3, row 2). The increase in top-1 performance of the field model (trained on 100% of the training data) when compared to the fivefold models trained on 80% of the data suggests that the wood anatomy variability captured within the full training dataset contributes to a field model with better predictive power. Moreover, this suggests that the wood anatomical data space may not have been fully represented by 80% of the data, and in fact even the field model (trained with 100% of the data) may not fully represent the wood anatomical data space. One contributor to a richer data space is provision of a representative and robust selection of specimens from which images can be captured. The question of how top-k specimen level accuracy varies with the number of image-level predictions used to compute the specimen level prediction is an open problem [but see Supplementary Material 2 for the impact of the number of images per specimen (1–5) on model prediction accuracy], but certainly should be informed by deployment context and the wood anatomy of classes in the model. Top-k accuracy can also be informative in a field-deployed CVWID system when done in a human-in-the-loop context where a human user can make a visual comparison of the unknown to reference images of the top-k predictions. Here the number of image-level predictions used to derive a specimen level prediction was fixed a priori, but for a practical system this should be informed by model calibration (Niculescu-Mizil and Carauna, 2005; Guo et al., 2017), inter- and intra-class anatomical variability of the woods in the model (Ravindran et al., 2018), and probably adaptively based on predictions being performed.



Analysis of Misclassifications

When considering a confusion matrix (e.g., Figure 4), the off-diagonal results are misclassifications, and can further be evaluated as the propensity for an input class to be misclassified, and/or the propensity for a predicted class to pull or draw misclassifications, each of which can display any of the three misclassification types (1, 2, 3), or combinations thereof, excluding Type 1 + Type 3, as they are mutually exclusive. To codify this concept, the terms “source” and “sink” misclassifications are introduced, where the input misclassified specimens are sources (i.e., the sum of the off-diagonal predictions for each row), and the classes that draw misclassifications are sinks (i.e., the sum of the off-diagonal predictions for each column). For example, in a confusion matrix with four classes A, B, C, and D (Figure 6), the on-diagonal cells (e, j, o, t) are correct predictions. For class B, i + k + l would be the source misclassifications, and f + n + r would be its sink misclassifications. If classes A and B were anatomically similar, source misclassification f and sink misclassification i would both be Type 1 misclassifications. If A and C were anatomically disparate, source misclassification g and sink misclassification m would both be Type 3 misclassifications. The anatomical characteristics of the classes and test images therefore determine which type of misclassification is found in each cell, and this finer grained analysis of the misclassifications may assist in designing cost-aware loss functions for improved training (Elkan, 2001; Chung et al., 2016) in the future, making more robust inferences about model performance, and possibly using these insights to inform protocols for real-world model deployment.


[image: image]

FIGURE 6. Example 4-class confusion matrix, with classes A–D. Correct predictions are on the main diagonal (e, j, o, t, shown shaded) and off-diagonal cells are the misclassifications. Sums of off-diagonal elements along a row (column) are the source (sink) misclassifications for the class.


Table 5 presents a summary of the analysis of source/sink misclassifications by the field model for the confusion matrix in Figure 4. With regard to source misclassifications, it is noteworthy that in three of thirteen classes with misclassifications–Aesculus, Liriodendron, and Magnolia (yellow cells)–half or more of the source specimens are misclassified. Of particular note in source misclassifications is the class Liriodendron (green cell), which accounts for over 63% (7 of 11) of all Type 3 source misclassifications, though it contributes only 14 of 284 (∼5%) specimens to the entire test data set. Of the seven classes showing sink misclassifications, three are responsible for more than 85% - Fruitwood, Nyssa, and Populus (blue cells). Fruitwood is a composite multi-generic class (see Supplementary Material 1) but interestingly contributes no source misclassifications while drawing nearly a quarter of sink misclassifications.


TABLE 5. A class-wise assessment of misclassifications for the top-1 misclassified specimens in the field model.

[image: Table 5]
The inter-class variability is largely limited to variations in the vessels and the rays, as the diffuse-porous North American woods we included have comparatively limited macroscopically visible variation in axial parenchyma patterns. In Figure 5, the Type 3 misclassification between Populus (A) and Platanus (D) suggests that the model’s feature detection is perhaps less sensitive to ray width and abundance than a human identifier would be, as the rays in Platanus are much wider and less numerous than the abundant, uniseriate rays in Populus. A human identifier would be expected to note this distinct difference with little trouble. Similarly, in Figure 4, seven Liriodendron are misidentified as class Populus, which would appear to be another instance of the feature detection either failing to detect or the classifier failing to weight the wider rays of Liriodendron sufficient to make a correct classification, an error that would not be expected of human identifier. Tools adapted from research on feature visualization (e.g., Zeiler and Fergus, 2014; Olah et al., 2017; Qin et al., 2018) and model interpretability (e.g., Chen et al., 2020) may enable further understanding of the misclassifications and spur richer methodologies that guide the CNN to emphasize human recognised features.



On Datasets and Architectures for Computer Vision Wood Identification

In this work strict adherence to specimen level splits was maintained to encourage learning of generalisable features (vs. memorizing the dataset) and for model evaluation based on specimen identification which is the desired real world capability. This practically relevant constraint means that despite combining data from three xylaria at multiple institutions, our dataset is still modest in size–even though we have hundreds of images per class, there are only tens of unique representatives (the specimens) per class. Unlike other datasets (e.g., Horn et al., 2018), images used in CVWID are fully composed of the wood tissue being imaged and do not have a foreground and background. Additionally, for the classes considered in this study the wood anatomical spatial heterogeneity is low. Given these characteristics of CVWID data, though our ResNet34 based model trained on the modest sized dataset (by sampling random patches with a fixed size) yields a practically useful model, the interplay between inter- and intra-class wood anatomical feature variability, dataset size, architecture depth (or capacity), and hyperparameter optimization is yet largely unexplored (an area that we are actively exploring–Supplementary Material 2 provides results for a ResNet50 based model trained with the same epoch budget that suggests that our dataset size may be insufficient to leverage the higher capacity afforded by the deeper ResNet50 architecture).

Unique scientifically collected and properly identified specimens are a limited resource, typically found only in xylaria, many of which are underfunded, effectively closed, or gone altogether, though the World Forest ID project (Gasson et al., 2021) is a noteworthy effort in opposition to this trend. The intent of the open-source XyloTron (Ravindran et al., 2020) and XyloPhone (Wiedenhoeft, 2020) projects is the democratization of CVWID technology to enable research groups across the world to contribute to a frequently updated and globally relevant standardised wood dataset, but finding the resources to establish, curate, and maintain such a repository remains a challenge. Crowdsourcing technology may aid in the construction of such curated datasets but paucity of expertise in vetting non-scientific specimens (Wiedenhoeft et al., 2019) must be adequately addressed to optimally leverage citizen science resources such as Pl@ntNet (Goëau et al., 2013).



Towards Real Field Evaluation

Model evaluation with a surrogate for field testing, i.e., specimens from a xylarium not used for model training, was a first step towards real field testing which is the gold standard for evaluating any wood identification technology. The polished specimens used to train the models reflect a different surface preparation to what occurs in the field, but prior work with the XyloTron on Ghanaian woods (Ravindran et al., 2019) demonstrated a similar deployment gap (drop in accuracy from the cross validation to field testing results) even though field specimens were prepared by knife-cut of the transverse surface (as described in Wiedenhoeft, 2011). Based on these results with Ghanaian woods, it is expected that the trained models described herein can be deployed effectively in a human-in-the-loop setting for field testing where the top predictions of the model along with exemplar images for the predicted classes are presented to the user for verification of the predictions (e.g., as in the xyloinf interface for the XyloTron platform of Ravindran et al., 2020). To derive maximum insights enabling real deployment, any performance metric must be evaluated in the contexts of taxonomic ambiguity, discriminative anatomical features among the woods, and commercially or practically relevant granularity to facilitate the formulation of practical, useful models. To make best use of such models, strategies for deploying them along wood product value chains to promote sustainability should consider context-specific requirements for each use-case. The performance of our trained models (in cross-validation, surrogate, and future field testing scenarios) can also serve as a strong baseline for developing and comparing future state-of-the-art models or systems.




CONCLUSION

Employing practical, wood anatomy-driven strategies for the development and evaluation of CVWID technologies, we presented the first continental-scale, image-based identification model for North American diffuse porous hard woods. Ongoing work tackles the development of a complementary model for the ring porous North American hardwoods and a unified North American hardwood identification model. Operationalization of CVWID technologies with market-relevant scale will require the rigorous exploration of machine learning architecture and hyperparameters, model training paradigms, performance evaluation protocols, and evidence-based deployment strategies. This work is a first step towards the realization of such a practical, field-deployable, wood identification technology with the potential to inform and impact strategies for the promotion, monitoring, and monetization of sustainable North American and global wood product value chains, and for enabling biodiversity and conservation efforts.
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FOOTNOTES

1 Defined as “the summation of the business revenues and industry sales” (Hardwood Federation, 2016).
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Poaceae represent one of the largest plant families in the world. Many species are of great economic importance as food and forage plants while others represent important weeds in agriculture. Although a large number of studies currently address the question of how plants can be best recognized on images, there is a lack of studies evaluating specific approaches for uniform species groups considered difficult to identify because they lack obvious visual characteristics. Poaceae represent an example of such a species group, especially when they are non-flowering. Here we present the results from an experiment to automatically identify Poaceae species based on images depicting six well-defined perspectives. One perspective shows the inflorescence while the others show vegetative parts of the plant such as the collar region with the ligule, adaxial and abaxial side of the leaf and culm nodes. For each species we collected 80 observations, each representing a series of six images taken with a smartphone camera. We extract feature representations from the images using five different convolutional neural networks (CNN) trained on objects from different domains and classify them using four state-of-the art classification algorithms. We combine these perspectives via score level fusion. In order to evaluate the potential of identifying non-flowering Poaceae we separately compared perspective combinations either comprising inflorescences or not. We find that for a fusion of all six perspectives, using the best combination of feature extraction CNN and classifier, an accuracy of 96.1% can be achieved. Without the inflorescence, the overall accuracy is still as high as 90.3%. In all but one case the perspective conveying the most information about the species (excluding inflorescence) is the ligule in frontal view. Our results show that even species considered very difficult to identify can achieve high accuracies in automatic identification as long as images depicting suitable perspectives are available. We suggest that our approach could be transferred to other difficult-to-distinguish species groups in order to identify the most relevant perspectives.

Keywords: deep learning, machine learning, accuracy, Poaceae, plant perspective, image recognition, fine-grained image classification, automated plant identification


1. INTRODUCTION

Automated species identification is becoming an important and widely used tool to monitor the occurrence of species across a wide taxonomic range (Durso et al., 2021; Høye et al., 2021; Joly et al., 2021; Mahecha et al., 2021). While a lot of literature on automated identification of plants in general is published, little is known about how well certain difficult taxonomic groups are recognized by automated identification algorithms and how this might be improved. Most notably, species belonging to the plant family of Poaceae are all characterized by a uniform visual appearance, making it a major challenge in image based plant identification. About 12,000 species and 780 genera of Poaceae are described (Christenhusz and Byng, 2016; Soreng et al., 2017) which ranks them among the most diverse plant families worldwide. Species of this family are circumpolar distributed and are of great ecologic and economic value. Many species are cultivated as important food and forage plants while others are frequent and abundant weeds in various crops (Schroeder et al., 1993). With only a few exceptions all Poaceae species are characterized by a unique set of characters that allows an easy attribution of individuals as members of the this family (). This more or less uniform morphology leads to the common perception of “grass” as a single species in the public (Jäkel and Schaer, 2004; Thomas, 2019). The sometimes very subtle differences between species or even genera can only be recognized by careful examination, especially if no flowers are present.

Automated identification applications achieve moderate to high accuracies in both, plant recognition from images (Wäldchen et al., 2018; Joly et al., 2021) and in vivo in the field (Bonnet et al., 2018; Jones, 2020; Pärtel et al., 2021). Reliable identifications are crucial for the credibility of the collected data and also for professional users such as farmers, foresters or teachers. However, detailed evaluations of identification accuracy across broader taxonomic groups have identified Poaceae to be among the families achieving lowest accuracies (Rzanny et al., 2019; Pärtel et al., 2021). In order to generate valid plant species distribution data via automated plant identification apps (e.g., Bonnet et al., 2020; Mahecha et al., 2021) it is of vital importance to enable users to reliably differentiate Poaceae species which are often not recognized on species level. Poaceae species are ubiquitous, often dominate entire landscapes (Veen et al., 2009) and their occurrence and distribution provide invaluable information on the condition and development of the habitat (e.g., Diekmann et al., 2019). Experiments to evaluate fine-grained classification within a group of visually very similar plant species have been performed e.g., for Chenopodiaceae, which represent another plant family with mainly wind- or self pollinated and inconspicuous flowers (Heidary-Sharifabad et al., 2021). The developed classifier is able to differentiate between 30 species of Chenopodiaceae with an accuracy of about 90%. The study by Golzarian and Frick (2011) was an earlier attempt to distinguish seedlings of ryegrass and bromegrass from wheat based on a combination of color, texture and shape feature vectors which were represented as three descriptors derived from principal component analysis. The authors were able to distinguish ryegrass from wheat with an accuracy of 88% and bromegrass from wheat with an accuracy of 83%. Another recent study (Rzanny et al., 2019) distinguished 12 Poaceae species as part of a larger species subset with an accuracy of 90% when all considered perspectives were fused. Combinations of only some of these perspectives yielded slightly better results (up to 92.5%) and the authors noted that the utilized perspectives were not sufficient to reliably identify the species under consideration. Images of reproductive plant parts are generally more often identified correctly than non-reproductive parts such as leaves or stems (Rzanny et al., 2019; Pärtel et al., 2021). We expect the classification of images depicting inflorescences to achieve better results than images from vegetative parts. However, it is often not sufficient for a valid identification to solely rely on the images of flowers or inflorescences. Especially for a number of congeneric species, images of more specific characters might be required to allow a reliable identification.

An important aspect of this study is to assess the predictive value of vegetative parts of Poaceae species which are present for longer time periods throughout the year. Here, we consider images depicting the collar region, the adaxial and abaxial parts of the lamina and the nodes, which all might display species-specific characters. However, it is unknown what kind of perspective and which region of a Poaceae species provides the most relevant information in a single image or which combination of multiple perspectives allows a reliable identification of the species even in the absence of flowers. In order to draw general conclusions from our experiment we decided to distribute the image analysis over a range of deep neuronal networks for feature extraction and the classification of these feature vectors over multiple methods as well. If certain perspectives provide important information for the determination of a species, this perspective should also achieve a high relative accuracy across different feature extraction and classification algorithms. Although we expect a CNN trained on plant images to achieve higher absolute values of accuracy, we expect the relative rank of the different perspectives to remain comparable across the array of methods if the results are not influenced by overfitting of certain highly specialized CNNs.

Consequently, the aims of this study are fourfold: (1) We evaluate six image perspectives regarding the information they convey for Poaceae species identification. (2) We seek to find the most accurate combination of image perspectives for the identification of Poaceae species. (3) We assess how the accuracy of each perspective differs across the range of used feature extraction algorithms and classifiers. (4) We explore the potential of identifying Poaceae species without the presence of flowers.



2. MATERIALS AND METHODS


2.1. Poaceae Morphology

All Poacaeae, and therefore also the largest subfamily Pooideae, which all considered species belong to, are characterized by common morphological characters which are responsible for the uniform appearance of different species (Figure 1). The stems (culms) are round with solid nodes and hollow internodes. Leaf position is distichous and alternate and they are attached to the nodes of the culm. The leaves are lineal with parallel veins and consist of a culm-enclosing sheath at the lower part and a free lamina at the upper part. At the junction of sheath and lamina a translucent, membranous outgrowth is located. This structure is referred to as ligule. It can also be developed as a fringe of hairs in some genera and in rare cases it is missing. Some species additionally exhibit a pair of claw-like or ear-like appendages at the base of the lamina (auricles). The transition of sheath and lamina is called collar region and is highly indicative for species identification through often unique combinations of characters. Poaceae have reduced flowers. Their inflorescences can be grouped as panicles, spikes or racemes, depending on the presence and branching of the pedicels. The inflorescence is composed of spikelets. They represent the flowering unit and are covered by two glumes. Each spikelet in turn is composed of one or more florets which form the reproductive unit. The flower itself is covered by two bracts (palea + lemma) where the midrib of the latter may or may not be prolonged into a fibrous bristle termed awn.


[image: Figure 1]
FIGURE 1. (A) Illustration of the structure of a typical Poaceae species: Arrhenatherum elatius; drawing by Rita Lüder (Lüder and Lüder, 2011). (B) Two full observations per species depicted for four different species. The perspective names and their abbreviations are denoted on the right.




2.2. Image Acquisition

We collected 80 observations for each of the studied 31 Poaceae species (Table 1) in two consecutive years (2019 and 2020). All images analyzed in this study were collected in different regions of Germany using the Flora Capture app (Boho et al., 2020). This smartphone app is designed to collect plant images from several perspectives. Species taxonomy in this app basically follows (Roskov et al., 2019) but in some cases very similar species are summarized to aggregates (Table 1). The following six perspectives were photographed at minimal focusing distance: (1) Node (N) - depicts the culm node from lateral position. (2) - Inflorescence (F) - a lateral image of the entire inflorescence. If the entire inflorescence exceeded the image at minimal focusing distance, the distance was increased until the entire inflorescence could be photographed. (3) Leaf back (LeB)-abaxial side of a leaf at medium length and in vertical direction. (4) Leaf top (LeT)-adaxial side of a leaf at medium length and in vertical direction. (5) Ligule side (LiS)-an image of the ligule in lateral perspective. If the leaf was also in vertical position and would conceal the ligule, the leaf was slightly pulled down to ensure visibility of the ligule. (6) Ligule front (LiF) - image of the ligule in frontal position (i.e from a position of the lamina). Again, the leaf was slightly pulled down to ensure visibility of the ligule if necessary. Whenever possible, more than one species was sampled at a each location. All images were obtained from flowering individuals by five different persons using a range of smartphone models (iOS+Android). Exemplary observations of four different species are shown in Figure 1.


Table 1. List of all species that were used in the identification experiment.
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2.3. Feature Extraction

Since our dataset consists of a comparatively small number of samples, we approach the expected difficulties of training a classification model with a high number of parameters end-to-end, i.e., overfitting, by separating feature learning and classification tasks. Our pipeline therefore includes two stages: feature extraction, for which we compare the use of different neural networks, trained on data from different problem domains, and supervised classification using a number of well-established algorithms. In the feature extraction stage we project the high-dimensional data of our Poaceae observation images into a lower-dimensional feature space more convenient for classification.

We compare different state-of-the art architectures of deep convolutional neural networks, pre-trained on datasets from various domains, using the feature maps from their final layer as representation to train classifiers on. The goal is to evaluate how well features learned on different problems can be transferred to our independent classification problem. We use the following three architectures of deep convolutional neural networks in our experiments. Inception-v3 (Szegedy et al., 2016) is a 42-layer convolutional neural network that builds on Inception modules, each applying multiple differently-sized convolution filters and pooling operations to the same input in parallel. The network has 23.8M trainable parameters and an input resolution of 299x299 pixels. ResNet (He et al., 2016) uses identity shortcut connections to tackle the problem of vanishing gradients in deep networks. The variant ResNet-101 is 101 layers deep, has 44.5M trainable parameters and operates on images of 224 x 224 pixels. NASNet (Zoph et al., 2018) is a convolutional neural network for which the architecture of the convolutional layers themselves has been optimized in an automated process instead of being designed by experts. The specific version we use has 88.9M trainable parameters and takes input images with a resolution of 331 x 331 pixels. Our observations images are resized to the network's respective input resolution before feature extraction. The neural networks have been trained for supervised classification tasks on the following datasets:

• Open Images (Krasin et al., 2017). The dataset consists of 9.4M labeled training images of a great variety of objects, plants, animals etc. taken in different surroundings without any systematic process that were originally uploaded by users of the image-hosting website Flickr under CC-BY license. They span 5K classes which the authors consider trainable based on the number of human-verified class labels.

• Leafsnap (Kumar et al., 2012). The dataset consists of 25K labeled training images depicting leaves from 184 species of trees from the Northeastern United States. Most images were taken of pressed leaves front- and backlit under controlled lab conditions with uniform background, supplemented by less than 10 percent of field images taken by mobile devices in outdoor environments.

• Birdsnap (Berg et al., 2014). The dataset consists of 50K labeled images of 500 species of birds common in North America. The images show birds in natural surroundings and were taken under various conditions.

• PlantCLEF 2016 (Goëau et al., 2016). The dataset consists of 113K images of 1K species of trees, herbs and ferns distributed in West European regions. Images depict plants under a wide variety of conditions in different surroundings and were taken by different users on their mobile devices.

• Flora Incognita (Mäder et al., 2021). The dataset consists of more than 1M images of 4.8K plant taxa common in Western Europe. It comprises user-contributed images taken from well-defined perspectives via the Flora Incognita app (Boho et al., 2020) as well as images taken by experts in the field of botany. Among the taxa included are multiple species of Poaceae.



2.4. Image Classification and Evaluation

We trained four widely used and established classifiers (Zhang et al., 2017) on the feature vectors extracted by five CNNs from our image data (Figure 2). These five CNNs specifically are Inception-v3 for the Leafsnap, Birdsnap and PlantCLEF datasets, NASNet for Flora Incognita and ResNet-101 for OpenImages. Our dataset was split into a training (75%) and a test (25%) subset with the same split used for all subsequent experiments to calculate classification accuracy. Splitting was stratified by species to ensure that the number of images for training (65) and test (15) were the same for each species. All classifiers were trained and tuned within the caret framework (Kuhn, 2021) in R 4.1.1 (R Core Team, 2020) using the defaults for each classifier but allowing a greater number of parameter combinations (ten instead of three) to be evaluated for model tuning. We used bootstrap resampling (25 iterations) to evaluate the accuracy of the classifier in order to find the best tuning parameters for each classifier. Accuracy was calculated as the percentage of correctly identified images for each species and as the average across all species (recall). We use the following algorithms for classification:

• Support vector machines (SVM) (Cortes and Vapnik, 1995) find an optimal linear hyperplane that separates the classes in the feature space. SVMs are known to be reliable, robust and well-performing learning models (Zhang et al., 2017). We used an SVM classifier with a linear kernel provided by package e1071 (Meyer et al., 2020).

• Random forests (RF) (Breiman, 2001) are ensembles of decision trees, each individually trained on randomly drawn samples of the dataset via bootstrap aggregation, thereby generating multiple uncorrelated models whose predictions are combined through voting. We used the implementation provided by package ranger (Wright and Ziegler, 2017)

• The k-Nearest Neighbors (KNN) algorithm (Altman, 1992) assigns a sample's class membership based on the majority class of its k nearest neighbors in feature space. We used the implementation provided by package class (Venables and Ripley, 2002)

• Naive Bayes (NB) classifiers use Bayes' rule to estimate the probability of new data belonging to each of the possible classes in a given dataset, thereby assuming independence and gaussian distribution of the descriptors. We used the implementation provided by package naivebayes (Majka, 2019).


[image: Figure 2]
FIGURE 2. General approach for feature extraction, classification and score fusion used in this study. We used each of the five CNNs (details in the text) to extract features from all images. In the following four different classifiers are trained on the feature vectors of same subset of training images separately for each perspective. The resulting scores for the single perspectives were than fused via sum rule, i.e., as the arithmetic mean of the scores for this species for the considered combination of perspectives. The steps were repeated for all CNN - Classifier combinations.


To combine the predicted results for multiple perspectives we use score-level fusion based on a simple (normalized) sum rule, an easily comprehensible method that allows for a straightforward interpretation of the results. The fused score S over the set P of selected perspectives p∈P is calculated as the sum of the individual scores sp:
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3. RESULTS


3.1. Single Perspectives

The Top-1 accuracies for the individual perspectives averaged across all species range from 87.5 to 26% (inflorescence), 75.3 to 17.2% (ligule front), 70.1 to 18.2% (ligule side), 64.9 to 17.6% (node), 63.7 to 13.1% (leaf back), and 62.3 to 17.6% (leaf top) (Figure 8). In general, the features derived from the Flora Incognita CNN combined with an SVM classifier always achieve the highest accuracies, while the Open Images features combined with the Naive Bayes classifier always achieve the lowest accuracies for all single perspectives. This also holds true for the accuracies of almost all different fused combinations. For two combinations (N_F_LiS and N_F_LeB_LiS) the random forest classifier performs slightly better on the Flora Incognita feature vectors than SVM. The inflorescence perspective always achieves the highest accuracy no matter which features are used. The different feature sources maintain a consistent ranking irrespective of the classifier used. Flora Incognita achieves the best accuracies, followed by PlantCLEF, Birdsnap, Leafsnap and Open Images (Figure 8). The difference in accuracy between the inflorescence and the remaining perspectives seem to decrease in this order as well.



3.2. Perspective Combinations

The accuracy for the inflorescence perspective alone in the best-performing feature extractor-classifier combination (Flora Incognita + SVM) is 87.5% and can be increased by 8.6–96.1% through a combination of all six perspectives (Figure 5 and Table 2). If considering only those images depicting vegetative plant parts, i.e., excluding inflorescence, the improvement from the best individual perspective (ligule front; 75.3%) to a combination of all five (90.3%) is 15% (Figure 6 and Table 2). The ranking of the classifiers is largely the same across the entire array of combinations (Figures 6–8). Also, the differences in usefulness between features from different neural networks are only of quantitative instead of qualitative nature. The same perspective combinations that achieve high accuracies with Flora Incognita features (e.g., N_LiF) also achieve high accuracies with features from the remaining extractors. On the other hand, combinations that perform comparably poorly in Flora Incognita (e.g., LeT_LeB) are also performing poorly with features derived from the other networks (Figure 6). In general, the Open Images features not only perform worst in overall accuracies but also show the lowest variation across the perspectives and their combinations (Figures 6–8).


Table 2. Classification results achieved from the best-performing feature extractor (Flora Incognita) and best-performing classifier (SVM).
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3.3. Species Accurracies

A few species are consistently recognized well based on a single image perspective regardless of feature extractor and classifier. Examples for this are Agrostis capillaris, Festuca altissima, Holcus lanatus and Sesleria varia (Figure 3). For some species, certain perspectives provide highly inaccurate information, e.g., the perspective node for Arrhenatherum elatius, which performs poorly across all feature extractors and classifiers (Figure 3). The fusion of all perspectives leads to very few misidentifications (Figure 4). The only species with three misidentifications out of 15 test observations is Poa nemoralis (two misidentifations: Arrhenaterum elatius, Brachypodium sylvaticum, Bromus erectus). 19 of 31 species are always correctly identified in all test observations. In general, the strip-like patterns that continues for many species throughout the entire array of feature descriptors and the classifiers in Figure 6 indicate that the feature descriptors and the classifiers largely agree on which species are easy to classify and which are not. To compare the species accuracies across the different feature extractors we calculated relative accuracies as each species accuracy divided by the maximum of all species for this particular feature - classifier combination (Figure 7).


[image: Figure 3]
FIGURE 3. Comparison of accuracies per species for all single perspectives across all CNNs and all classifiers. Species codes are explained in Table 1.



[image: Figure 4]
FIGURE 4. Confusion matrices (Reference vs. Prediction) for the best performing combinations of feature vectors and classifier (Flora Incognita neuronal network features combined with the SVM classifier) for the single perspectives, for the fusion of all perspectives but Inflorescence and for the fusion of all perspectives. Species abbreviations are explained in Table 1.





4. DISCUSSION

The main goal of this study was to determine which image perspectives convey the most information to identify 31 species belonging to the Poaceae family. We found individual perspectives to be ranked in the following order: inflorescence (87.3%), ligule front (75.1%), ligule side (70.3%), node (64.9%), leaf back (63.9%) and leaf top (62.6%). Our results show that combining images taken from multiple perspectives further increases the success rate of identifying Poaceae species. Fusing all perspectives via sum rule we achieve an accuracy of 96.3%. Even without inflorescences, the 31 species under consideration in this study can still be identified with an overall accuracy of about 90% (Table 2). Combining only three perspectives (node, leaf top side, ligule frontal) turns out to be a reasonable compromise of taking as few pictures as possible while still achieving a high accuracy of 87.1% (Table 2).

Combining different perspectives has shown to be effective for improving overall accuracy before (Do et al., 2017; Rzanny et al., 2019; Nhan et al., 2020; Seeland and Mäder, 2021). A study using images of 12 Poaceae species from various perspectives found a maximum accuracy of 90% when all perspectives were combined (Rzanny et al., 2019). That study used a different approach and different perspectives compared to this study, e.g., an image of the ligule was not considered. The results of the present study, however, show that the frontal perspective of the ligule (LiF) is the second most informative one after the inflorescence (F). The ligule, and more generally the collar region of Poaceae, is also known to be of utmost importance for manual identification, since shape and size of the ligule, as well as presence, shape and hairiness of auricles are important distinctive characters (). Consequently, it is highly plausible that images of the ligule are also important for automated identification.

Different combinations of feature extractors and classifiers achieve a consistent ranking in the results for the same perspectives (Figure 5). This holds also true if accuracy is averaged across all species and also for individual species (Figures 6, 7), although there are larger differences in the absolute values. The example for the best performing classification algorithm (SVM) on all fused perspectives shows that none of the species that achieve less than 100% accuracy in the Flora Incognita feature extractor achieve 100% relative accuracy in any other feature extractor, indicating that all feature extractors more or less agree which species are difficult to identify and which are not (Figure 7). Similarly, there is a general agreement on the degree of importance of different perspectives for the identification of Poaceae species (Figures 3, 8). The fact that the ranking of classification accuracy among different classifiers is largely unaffected by the choice of the feature extractor is an indication that our results are not likely to be influenced by switching to another classification algorithm, therefore making our findings more generally valid by being largely classifier-independent. Even though we observe SVM to generally achieve highest accuracies, followed by RF, this may be explained by the fact that the features are derived from CNNs where they would originally be classified in a single fully-connected linear layer, making the problem more tractable for other linear classifiers such as SVMs. The differences in absolute values among feature extractors can be explained by the varying similarity of the domains and datasets used to train the original neuronal networks to our Poaceae images. While a number of grass species observations with partly detailed images are used to train e.g., the Flora Incognita network and the PlantCLEF network, such images did not or only marginally contribute to the training data of BirdSNAP and OpenImages. LeafSnap in turn is trained on cropped tree leaf images which do not share many features with the highly structured Poaceae images used in this study.


[image: Figure 5]
FIGURE 5. Accuracies achieved for combinations of image perspectives (columns) and feature extractors (rows). The presence or absence of the respective perspective in each combination combinations are indicated through the matrix at the top. The results are shown separately for each CNN with the classifiers color coded.



[image: Figure 6]
FIGURE 6. Accuracy per species for individual perspectives and all combinations for all feature extractor (colums) and classifiers (rows). The perspective combinations are subdivided into two sections: combinations containing inflorescences (upper section) and combinations that do not contain inflorescences (lower section). Within these sections the combinations are sorted along the number of perspectives combined. Species codes are explained in Table 1.
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FIGURE 7. Relative accuracy per species for fusion of all perspectives and the best-performing classifier (SVM). Relative accuracy is calculated as species accuracy divided by the highest accuracy of all species for the particular feature/classifier combination.



[image: Figure 8]
FIGURE 8. Accuracies achieved for the six single image perspectives. Values are shown for five different CNNs (columns) and four different classification algorithms (rows).



4.1. Limitations

Our study considers 31 Central European distributed species of Poaceae. However, there are more than 200 Poaceae species occurring in Germany (Müller et al., 2021) where all the images were taken. It is important to note, that the absolute accuracies for certain species are dependent on the number of species that need to be discriminated from each other. Here, we can only consider a small subset of all Poaceae species. Therefore, the achieved absolute accuracies need to be interpreted within the context of the considered species set. On the other hand, as Poaceae are characterized by a consistent morphological structure we think that the relative contribution of information content per perspective is transferable to other Poaceae species.

Our main aim is to show how identification accuracy within a certain group of species can be increased through an adequate choice of suitable perspectives. And our results imply that certain combinations of perspectives are consistently more informative across many different types of CNNs and classification algorithms.

In practice, it is difficult and requires some effort to take informative and focused images of specific Poaceae organs using a smartphone in the field. Poaceae have lineal leaves and often fuzzy, indistinctive inflorescences (Figure 1). Accordingly, plant parts only encompass small portions of the entire image while comparably large parts are covered by background. Additionally, some species have bristle-like, involute or even convolute leaves (e.g., Festuca spp., Corynephoros canescens, or Nardus stricta) which can render certain perspectives less useful and further diminish the leaf-background ratio of leaf images. Some taxa, e.g., within the Festuca ovina and Festuca rubra aggregates, are usually distinguished based on branching type of the tillers, leaf cross-sections or cytological differences (Stace et al., 1992; Dengler, 1998) which limits attempts to automatically identify taxa based on images below a certain threshold of taxonomic resolution. In other words, there are limits to certain taxa within Poaceae where a reliable automated identification based on macroscopic images is highly unlikely.




5. CONCLUSIONS

While Poaceae are a widespread, highly diverse and ubiquitous plant family that is shaping entire landscapes, they are very difficult to identify because its species closely resemble each other. Our observations show that, within a limited species pool even for those species, an accurate automated identification is possible as long as it is based on suitable images. Even if the most distinctive perspective, i.e., inflorescence, with which an overall identification accuracy of 96% can be achieved, is not available, accuracy only slightly decreases to 90%, which still leads to accurate predictions in most cases. These results imply that automated recognition of Poaceae is already useful for monitoring purposes or smart weeding approaches where the species pool is known. It remains to be explored further how reliable image recognition of Poaceae is in situations, where hundreds of species needs to be discriminated from each other. Poaceae represent only a single example of a species group that is difficult to identify. Other families such as Cyperaceae, Juncaceae, Equisetaceae, Cactaceae or certain genera such as Alchemilla, Orobanche or Rosa require their own unique perspectives of specific distinctive regions for a reliable identification. Many of these often apomictic and taxonomically challenging plant taxa (Dressler et al., 2017) have unique ecological requirements and are of great interest for monitoring and biodiversity conservation. It is therefore desirable to develop specific customized recording schemes for certain plant families to guide users of automated identification devices in taking images of these distinctive features during the identification process.
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Herbarium sheets present a unique view of the world's botanical history, evolution, and biodiversity. This makes them an all–important data source for botanical research. With the increased digitization of herbaria worldwide and advances in the domain of fine–grained visual classification which can facilitate automatic identification of herbarium specimen images, there are many opportunities for supporting and expanding research in this field. However, existing datasets are either too small, or not diverse enough, in terms of represented taxa, geographic distribution, and imaging protocols. Furthermore, aggregating datasets is difficult as taxa are recognized under a multitude of names and must be aligned to a common reference. We introduce the Herbarium 2021 Half–Earth dataset: the largest and most diverse dataset of herbarium specimen images, to date, for automatic taxon recognition. We also present the results of the Herbarium 2021 Half–Earth challenge, a competition that was part of the Eighth Workshop on Fine-Grained Visual Categorization (FGVC8) and hosted by Kaggle to encourage the development of models to automatically identify taxa from herbarium sheet images.

Keywords: herbarium specimen image, fine-grained visual categorization, machine learning competition, hierarchical classification, datasets


1. INTRODUCTION

Herbaria, like other natural history collections, are immense primary data repositories documenting biodiversity across space and time over the last 500 years (Stefanaki et al., 2019). Each specimen contains a wealth of information including geographic occurrence data, phenotype, genotype, phenological status, and biotic interactions (Funk, 2003; Heberling and Burke, 2019). Collectively herbarium specimens are analyzed for studies in taxonomy, systematics, floristics, ecology, phenology, conservation, and global environmental change (Funk, 2003; Calinger et al., 2013; Willis et al., 2017; Lang et al., 2019; Albani Rocchetti et al., 2021).

Worldwide efforts to digitize and electronically mobilize biodiversity data for the estimated 396 million herbarium specimens, housed in 3,400 herbaria (Thiers, 2021), have greatly amplified their use in research (Heberling et al., 2019; Nelson and Ellis, 2019), including projects to understand, predict, and ameliorate increasing environmental threats to biodiversity (Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services, 2019; Lang et al., 2019). Plants are essential to life on Earth, yet an estimated 37–44% of all vascular plant species are threatened with extinction (Nic Lughadha et al., 2020), underscoring the urgency to identify and classify the estimated 70,000 flowering plant species not yet described (Bebber et al., 2010; Joppa et al., 2011). Half of these new species are predicted to be already preserved in herbaria, awaiting an average of 35 years for detection and description from the date of first specimen collection (Bebber et al., 2010). Contributing to this delay is the dwindling number of taxonomists with broad plant identification skills to recognize new species, who are under ever increasing demands on their time and expertise (Secretariat of the Convention on Biological Diversity, 2007).

Recent advances in machine learning and computer vision as well as increased biodiversity data mobilization through global data aggregators, such as the Global Biodiversity Information Facility (GBIF), enable the development of models to address a variety of plant–science–related questions and potentially overcome such “taxonomic impediments” (Secretariat of the Convention on Biological Diversity, 2007; Heberling et al., 2021). For example, the automatic identification of specimens has shown particularly promising results from learning–based approaches (review by Wäldchen and Mäder, 2018). Many studies have focused on small sets of closely–related plant taxa (Clark et al., 2012; Nasir et al., 2014; Unger et al., 2016; Kho et al., 2017; Schuettpelz et al., 2017; Pryer et al., 2020) whereas others tackle the more challenging problem of automatic identification of a large number of taxa (Carranza-Rojas et al., 2017; Younis et al., 2018; Little et al., 2020). Many automatic identification studies focus on recognition from leaves alone (Wijesingha and Marikar, 2012; Nasir et al., 2014; Unger et al., 2016; Wilf et al., 2016; Kho et al., 2017). Similar techniques have also been used for phenological studies and trait recognition (Clark et al., 2012; Ubbens and Stavness, 2017; Younis et al., 2018; Lorieul et al., 2019; Brenskelle et al., 2020; Davis et al., 2020; Goëau et al., 2020; Pearson et al., 2020; Pryer et al., 2020).

Citizen science initiatives, such as iNaturalist (Horn et al., 2018), Pl@ntNet (Joly et al., 2016), and ObsIdentify (Hogeweg et al., 2019), have popularized species recognition as a challenging real–world classification task among the computer vision community. They are particularly popular because of the size as well as the imbalanced and fine–grained nature of their respective datasets. Through a series of online algorithm competitions (e.g., Horn et al., 2018; Little et al., 2020), automated identification techniques have become increasingly accurate.

Existing digitized herbarium specimen datasets designed for computer vision approaches present some limitations: they are either small, targeted at specific taxa, representative of only a small geographic region, or contain images produced using only one imaging protocol (generally institution specific; Table 1). In this paper we introduce the Herbarium 2021 Half–Earth dataset, which aims to address the limitations aforementioned and is the largest and most diverse dataset of herbarium specimen images for automatic taxon recognition to date. We also present the results from the challenge of the same name: the Herbarium 2021 Half–Earth challenge, a competition that was organized as part of the 8th workshop for Fine–Grained Visual Categorization at the Computer Vision and Pattern Recognition conference (CVPR) in 2021. The competition was hosted on Kaggle1 and took place between March 10th and May 27th 2021.


Table 1. Summary of existing herbarium sheet image datasets.
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The goal of the competition was to encourage the development of models to automatically identify a very large number of taxa from herbarium sheet images, and evaluate which deep learning approaches have the best performance in this setting. This is the third iteration of the Herbarium challenge: the Herbarium 2019 challenge (Tan et al., 2019; Little et al., 2020) focused on the flowering plant family Melastomataceae and contained 46,469 digitally imaged herbarium specimens representing 683 species. The Melastomataceae is a large family with 166 recognized genera and 5,892 species (Freiberg et al., 2020). The Herbarium 2020 dataset contained 1,169,039 images representing 32,094 plant species. This challenge focused on vascular land plants of the Americas. Compared to the previous datasets the 2021 Half–Earth dataset is larger in terms of both number of taxa, and number of images, with 2,500,779 images and 64,500 taxa. After introducing the dataset and presenting the results of the competition, we discuss possible outlooks in order to leverage the full potential of deep learning models and herbarium data.



2. METHODS


2.1. The Herbarium 2021 Half–Earth Dataset

The Herbarium 2021 Half–Earth dataset2 includes more than 2.5 million images of vascular plant specimens (including lycophytes, ferns, gymnosperms, and flowering plants) representing 64,500 taxa from the Americas, Oceania, and Pacific3. The images are provided by the New York Botanical Garden (NY), Bishop Museum (BPBM), Naturalis Biodiversity Center (NL), Queensland Herbarium (BRI), and Auckland War Memorial Museum (AK). The most exact labels are, in many cases, infraspecific (subspecies, varieties, forms, etc.) or nothospecies (hybrids), neither of which can be characterized as “species”, thus the terms “taxon” and “taxa” are used as generic descriptors of taxonomic labels. In addition to labels for species–level and below, labels at higher levels in the taxonomic hierarchy are also included: family and order. This allows for experimentation with methods that address label hierarchy and label similarity. These labels may also be supplemented by more fine–grained estimates of difference among taxa available from other sources (e.g., Jin and Qian, 2019). The dataset is characterized by a skewed long tail distribution (Figure 1). Whereas some taxa can be represented by more than 1,000 images, other taxa have only three images. This dataset includes only images of vascular plants—the group of plants that includes lycophytes, ferns, gymnosperms, and flowering plants (Figure 2).


[image: Figure 1]
FIGURE 1. Distribution of training images per taxon. The Herbarium 2021 Half–Earth dataset is highly imbalanced. Featured taxa are from top to bottom: Ericameria nauseosa (Pall. ex Pursh) G.L. Nesom & G.I. Baird (Asteraceae), Bidens sulphurea (Cav.) Sch. Bip. (Asteraceae), and Solanum rixosum A.R. Bean (Solanaceae). Taxon names are usually followed by name of person(s) first formally describing the taxon in the scientific literature. Here, higher level hierarchy of each taxon is followed by family name in parentheses.



[image: Figure 2]
FIGURE 2. Example of images in the Herbarium 2021 Half–Earth dataset.



2.1.1. Dataset Challenges

The Herbarium 2021 Half–Earth dataset is challenging for multiple reasons. First, of course, the large imbalance (Figure 1): the imbalance factor (ratio of the number of images for the most represented class to the number of images for the least represented class) for the dataset is 1,654.5. Second, the variation within species is high: herbarium specimens capture plants at different growth–stages (e.g., juvenile vs. adult), with different sets of plant parts (e.g., leaves and flowers vs. leaves and fruit; Figure 3) or simply different individuals can present different visual appearances. In addition, the techniques used to press, dry, and mount specimens vary among collectors and collecting expeditions—these differences can change the appearance of specimens dramatically (e.g., collecting in alcohol often causes leaves to turn black). Arbitrary aesthetic decisions made while processing specimens can result in specimens that differ dramatically in appearance even though they are simply different parts of the same individual plant (Figure 4). In a herbarium collection, every attempt to conserve dried specimens is made, but in practice older specimens become more fragile and suffer damage as they age leading to some specimens being less complete and more damaged than others. Third, the visual similarity among species can be high (Figure 5). Finally, the diagnostic morphological features that botanists use to identify species are often very small and thus require a model that is able to handle high–resolution images and can focus on specific details (Cope et al., 2012; Wäldchen and Mäder, 2018).


[image: Figure 3]
FIGURE 3. Example of visually different images corresponding to the same species: Abarema brachystachya (DC.) Barneby and J. W. Grimes (Fabaceae). The observed differences are primarily due to different reproductive stages: early flowering, late flowering, and fruit.



[image: Figure 4]
FIGURE 4. Different specimens of Arbutus xalapensis Kunth (Ericaceae) made from the same individual plant at the same time by the same collector using the same pressing, drying, and mounting protocol.



[image: Figure 5]
FIGURE 5. Example of visually similar images from different Alyssum species (Brassicaceae): A. alyssoides (L.) L., A. desertorum Stapf, A. simplex Rudolphi, A. szovitsianum Fisch. and C. A. Mey.




2.1.2. Data Preprocessing

In this section, we give an overview of how the Herbarium 2021 Half–Earth dataset was preprocessed. Figure 6 presents some example herbarium sheet images before and after the preprocessing steps.


[image: Figure 6]
FIGURE 6. Example of images before (left) and after (right) preprocessing.



2.1.2.1. Label Alignment

Herbarium specimens of the same taxon may have been labeled in various ways due to differences in the interpretation of taxon circumscriptions, nomenclature changes, and/or errors. For example, over time Pilosella piloselloides (Vill.) Soják (Asteraceae) has been known by at least 526 different names (Freiberg et al., 2020). To ameliorate this situation as much as possible, image labels are standardized to the Leipzig Catalogue of Vascular Plants (LCVP v1.0.2; Freiberg et al., 2020). Labels in the dataset have an LCVP status of either “accepted” or “unresolved”. The data exported from the institutional databases were first processed to find labels that exactly matched LCVP. For labels that did not precisely match, we then searched for long unambiguous partial matches to LCVP: the label was shortened by removing the rightmost word and then searched for a match that produced only one LCVP output taxon; if no match was found, this was repeated until the label contained only two words. Labels that still did not unambiguously match LCVP, were matched using tre-agrep (Wu and Manber, 1992) allowing an increasing amount of mismatch (10–30% of label length; all weights were set to 1). Matches returned by tre-agrep were manually reviewed (8,430 labels passed manual review). Images with labels that could not be coerced into matching LCVP were excluded from the dataset (c. 73 thousand images).



2.1.2.2. Image Blurring

Herbarium specimens always have a hand–written or printed label on the sheet (usually lower right–hand corner), which includes information about the name of the taxon, the geographic location where it was collected, the date of collection, and the person or team of people who collected it. In addition, annotation labels are often added to the specimen to correct or update information on the original label—these are sequentially added in the empty space above the original label. Specimens often also have institutional labels or stamps indicating the herbarium in which the specimen is archived and a barcode label corresponding to an institutional database entry. Specimens may also include field tags with identification numbers attached directly to the plant. Images usually include color and measurement scales as well as institutional logos. All of these labels can of course, help identify the specimen, thus this information in the dataset was blurred in order to force models to learn about the plants themselves rather than the label text. A pretrained EAST text detection model (Zhou et al., 2017) was used to detect these labels. This model outputs bounding boxes around the detected text. The bounding boxes that overlapped by a sufficient margin were merged and those that were too small were filtered out. The resulting regions were then heavily blurred. First, a mean blur was applied, then a single Gaussian blur with added noise, and then a smooth alpha map to blend into the original (Figure 6). Finally, images where more than 25% of the image was blurred were excluded from the dataset, as those represent, in most cases, wrong predictions from EAST. The text detection model was deliberately tuned to have a high specificity, in order to avoid unnecessarily blurring plant parts. Even though, this means that there are images where part of the labels are missed by the blurring algorithm.



2.1.2.3. Image Resizing

Herbarium sheets are digitized as very high–resolution images to preserve as much of the detail as possible. A common image size is around 6000 × 4000 pixels. This is very large even for networks that are designed to work with higher resolutions. All images in the dataset are resized to a dimension of 1,000 pixels (while preserving the aspect ratio), in order to make the overall size of the dataset more accessible.



2.1.2.4. Dataset Split

Herbarium 2021 contains images from 64,500 taxa at the species–level or below with 2,257,759 in the training set and 243,020 in the test set. The data has been split to obtain an approximately even number of images across taxa in the test set by capping the maximum number of images per taxon at 10. For taxa that have few images a 80%/20% split for training/test is used—each category has a minimum of three images: at least one in the test set and two in the training set.



2.1.2.5. Hierarchical Labels

In addition to the name of the taxon, labels for the family and order are provided. The herbarium sheet images provided in this dataset represent 64,500 different taxa, belonging to 451 families and 81 orders. This enables the development of methods that utilize hierarchical information. Ideally, mistakes between closely related taxa should not be treated equal to mistakes between very distant taxa. See Section 2.2 for an example of a loss function that leverages hierarchical labels.





2.2. Baselines

In order to have a reference value for the dataset performance, a standard ResNet-50 (He et al., 2016) was trained as a baseline method. A balanced sampling strategy was used to mitigate the impact of the imbalance on the classifier. The images were resized to 256 × 256 pixels and standard data augmentations were applied (small rotations, horizontal flips, color–jitter, and center–crop to 224 × 224 pixels). The model was initialized with weights pretrained on ImageNet (Deng et al., 2009). Finally, the model was trained using the standard cross–entropy loss, a batch size of 32, a stochastic gradient descent with a learning rate of 1 × 10−3 which is further reduced when a plateau was reached and a momentum factor of 0.9. The model was trained for a total of 10 epochs (with 70,555 batches per epoch).

To integrate hierarchical labels, the marginalization loss function proposed in Kumar and Zheng (2017) was adopted. The basic idea behind the marginalization loss is to simultaneously apply a classification loss at all the levels of the hierarchy. In order to compute the marginalization loss the label and the predicted distribution at each level of the hierarchy are needed: the label can simply be obtained by looking up the family and order; the predicted distribution for the family (or order) can be estimated from the sum of scores for all the taxa in each family (or order) in what resembles a marginalization procedure. Note that if the network predicts a distribution over the taxa, the marginalization over family and order also leads to a valid categorical distribution. A cross–entropy loss at the taxa level as well as the family and order level of hierarchy can be applied—this should ideally improve the regularization power of the network.



2.3. Evaluation Metrics

In order to evaluate the classification performance the main metric chosen for the Herbarium 2021 challenge was the F1 score, which is equal to:

[image: image]

where Pre denotes the precision and Rec the recall. This score is computed for every taxon separately and then averaged across all taxa to get the final score. Accuracy Acc and mean class accuracy Mca (also know as per–class accuracy) are also reported.

As an additional performance metric, the patristic distance between the expected and the predicted classes is also reported. Patristic distances were extracted from a dated genus–level phylogeny pruned to include only the taxa in the dataset (Jin and Qian, 2019). Within genera, distances among taxa were crudely interpolated by adding 10% of the distance between each genus and its sister genus.




3. RESULTS



3.1. Competition Results

The Herbarium 2021 Half–Earth challenge received 573 entries submitted by 108 competitors divided across 80 teams. As seen in Figure 7, there are large gaps in performance between the competitors. Focusing on the top–five teams of the competition: all had F1 performance above 0.680 on the test set. The teams are (in order of decreasing F1 scores): CIPP (0.757), HaeC (0.735), Brendan Rapazzo (0.689), Qidian213 (0.687), Undergrad & Botany Joe (0.682; Table 2). All of the top–five approaches used relatively high resolution images (352 × 352 pixels or higher). The top–three solutions were ensembles of models, with the top–two teams combining the predictions from different models and the third place team combining predictions made by the same model at the different stages of the training process.


[image: Figure 7]
FIGURE 7. F1 scores of the 50 best performing teams.



Table 2. Summary of the top competitors' solutions and performance.
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Collectively, the top–five teams used seven different base neural network architectures:

• ResNeXt The ResNeXt architecture introduced by Xie et al. (2017) is a popular network architecture that extends ResNet (He et al., 2016). It leverages the split–transform–merge (proposed in Inception; Szegedy et al., 2015) to split the input into multiple blocks and then merge those blocks after convolution.

• ResNeXt-IBN-a Pan et al. (2018) proposed IBN-Net as an extension to any existing network—in this case the ResNeXt architecture. IBN stands for Instance and Batch Normalization—the main modifications used in IBN-Net to achieve domain/appearance invariance. This modificaiton is a simple way to increase both modeling and generalization capacity without increasing computational burden.

• SE-ResNeXt The SE network introduced by Hu et al. (2018) focuses on channel relationships instead of the spatial component of convolutional blocks. This is done by using the “Squeeze–and–Excitation” (SE) block, that adaptively recalibrates channel–wise feature responses by explicitly modeling interdependencies among channels. In this case the standard convolutional blocks in the ResNeXt architecture are replaced by these new SE blocks.

• ResNeSt The ResNeSt architecture proposed by Zhang et al. (2020) is a variant of the ResNet model which instead stacks Split–Attention blocks which are effectively channel–wise attention on different network branches.

• TResNet The TResNet architecture proposed by Ridnik et al. (2020) is designed to be highly efficient in training time and inference time while achieving a better performance than a comparable ResNet.

• ECA-NFNet-L0 The ECA-NFNet is a variant of the Normalization–Free neural Network (NFNet; Brock et al., 2021) with Efficient Channel Attention (ECA) layers (Wang et al., 2020) instead of SE blocks, which results in one third of the number of parameters of the original NFNet.

• GENet The GENet proposed by Lin et al. (2020) is designed to be efficient when trained on a GPU. In fact, it achieves a similar performance, but is up to 6.4 times faster than EfficientNet (Tan and Le, 2019).

Interestingly, the top–two teams leveraged recently proposed deep metric learning losses in addition to the standard cross–entropy loss used for classification. The goal of deep metric learning is to learn an embedding where the features extracted from examples of the same class (in this case, the same taxon) are closer than the ones extracted from examples of different classes. The issue with standard cross–entropy loss preceded by a softmax is that it learns separable features that are not discriminative enough—this problem is exacerbated in the Herbarium 2021 dataset where the training set is extremely long–tailed and performance is measured on a relatively well-balanced test set. One way to produce a deep metric learning embedding is to cast it as an optimization problem with triplet constraints, which correspond to the Triplet loss: learning is performed on a set of three images, the anchor (the baseline image), the positive image (another image belonging to the same class as the anchor), and the negative image (an image belonging to a different class). The goal is then to have features which correspond to the anchor and the positive image (or images) close in the embedding space while the anchor and the negative image (or images) are far in the embedding space. However, this procedure is time consuming and it is very sensitive to the selection of anchor, positive, and negative images. As a result there has been a number of loss functions proposed as extensions of the standard cross–entropy loss, that achieve the objective of the distance metric learning paradigm without having to compare multiple image samples in embedding space: Additive Margin Softmax loss (AM–softmax; Wang et al., 2018), Balanced Meta–Softmax loss (BM–softmax; Ren et al., 2020), and SoftTriple loss (Qian et al., 2019) are examples. Finally the Label–Distribution–Aware Margin Loss (LDAM; Cao et al., 2019) is designed to replace the cross–entropy loss—it is designed specifically for the case in which the training dataset is heavily imbalanced while the testing criterion requires good generalization on less frequent classes.

Regarding the losses, unfortunately none of the teams leveraged the provided hierarchical labels. In Table 3, we highlight the potential increase in performance that could be achieved by using them. In fact, there is clearly a substantial improvement when comparing the performance of the baseline model trained with a standard cross–entropy loss to the performance achieved when training the same model with the marginalization loss (Section 2.2). The marginalization loss is trivial to extend to any of the loss functions used by the competitors other than cross–entropy loss (Table 2).


Table 3. Ablation study for marginalization loss utilizing hierarchical label information.
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3.2. Performance on Difficult Examples

The top–five competition models accurately predicted the correct taxa for the examples presented in Section 2.1.1: Abarema brahcystahya (Figure 3), used to illustrate different reproductive stages, had an average top-1 accuracy of 0.914 (test images n = 10; training images n = 33); Arbutus xalapensis, used to illustrate variation in specimen preparation (Figure 4) had an average top-1 accuracy of 0.94 (test images n = 7; training images n = 297); and the Alyssum species, used to illustrate similar morphology among closely related taxa (Figure 5), had an average top-1 accuracy of 0.926 (test images n = 38; average training images per species n = 40.22, range = 2–154).



3.3. Patristic Classification Error

The magnitude of classification error can be measured by the patristic distance between the expected and predicted taxa. When the predictions of the top–five models are incorrect, the wrongly predicted taxon is usually one that is phylogenetically close to the expected taxon (i.e., low patristic distance between predicted and expected taxa). For instance, if all model predictions within a maximum patristic distance of 10 million years (My) from the expected taxon are considered correct, then all five top models display similar accuracy (0.77–0.86; Figure 8). On the other hand, when the threshold is 30 My, which is close to the median patristic distance between sister genera (31.628 My), the error rate is less than 10% for the top–two models (Figure 8). Thus, the models are generally correct at the genus–level and more than half of the original error is due to incorrect classification of taxa within genera.


[image: Figure 8]
FIGURE 8. Model performance measured by different phylogenetic proximity thresholds. Top-1 error is calculated by counting all predictions that are within the patristic distance threshold as successes. The vertical dashed lines represent top-1 error at 0.01, 0.05, and 0.10, respectively.


When evaluated in the light of patristic classification error, the third place model does not appear to behave like the other top–five models (Figure 8): perhaps the features it extracts are less correlated with phylogeny than the features extracted by the other top models. Given that the fifth place model uses the same SE-ResNeXt base architecture and cross–entropy loss function, the deviant performance could, perhaps, be attributed to training parameters.

Examination of the erroneous predictions made by the top performing model do not indicate any phylogenetic clustering of errors—demonstrating that the top model performs equally well (or equally poorly) on all types of plants in the dataset (Figure 9). If a botanist was to be provided with the low–resolution input images used by the top model, they would be unlikely to perform as uniformly as the model: taxa in some orders are almost exclusively differentiated by features occupying only a fraction of a pixel at that resolution (e.g., Poales) while taxa in other orders are more easily differentiated at that resolution (e.g., Rosales).


[image: Figure 9]
FIGURE 9. The relationship among dataset properties and incorrect model predictions for the top performing model. The phylogenetic relationship among the expected taxa (x–axis) is represented by the right ladderized phylogenetic tree for all genera in the dataset (Jin and Qian, 2019). The y–axis indicates the identification error—expressed as patristic distance between the expected and predicted classifications. The number of training images for each expected taxon is indicated by marker color and visualized as a histogram in the right panel. The median patristic distance between sister genera is represented by a solid horizontal gray line with gray boxes indicating the 10–90, 20–80, 30–70, and 40–60 decile ranges. The top ten angiosperm, top gymnosperm, top fern, and top lycophyte orders, as measured by the number of training images, are labeled. Results for 628 of 243,020 (0.26%) test images are not displayed because those taxa could not be located in the reference phylogenetic tree (Jin and Qian, 2019).


Prediction errors less than the median patristic distance between sister genera (31.628 My; solid horizontal gray line in Figure 9), are the sorts of errors that botanists commonly make (i.e., misidentifying taxa within genera). Some of these model errors may be the result of uncaught labeling errors in our dataset. Prediction errors above the 90th decile of the patristic distance between sister genera (112.160 My; outer gray box in Figure 9) are errors that botanists rarely make and, thus, are unlikely to be attributable to incorrect dataset labeling.



3.4. Factors Contributing to Prediction Error

For the top performing model, the number of expected taxon training images appears to be associated with prediction failure, but the relationship is not absolute: there are cases, particularly common in the Polypodiales, in which the number of training images is high (dark blue circles in Figure 9) and the patristic classification error is high. The relationship between model accuracy and number of training images is more straightforward (Figure 10): the top performing model shows poor accuracy for taxa with only two training images (accuracy = 56.0%, n = 7,745), while the accuracy substantially increases with more training images (e.g., accuracy = 79.8% for taxa with eight training images, n = 2,147). The top-1 accuracy of the second and fifth place models is less than 50% (42.7–46.7%, n = 7,745) with two training images, while a similar boost in accuracy with more training data is observed (66.3–77.1% with eight training images, n = 2,147). Model accuracy increases with the number of training images to different degrees across the top–five models. The top–two model shows a consistent boost in its performance as training images increases (n = 2–3309), whereas other models display inconsistent performance boosts after n = 100 training images—the top–four model shows a consistent decrease in performance after n = 100 training images.


[image: Figure 10]
FIGURE 10. Mean performance of the top–five models by number of training images. Taxa are aggregated based on their corresponding number of training images. The test time performance is then visualized as the mean of the top-1-accuracy for all taxa in a specific bin, the error bars correspond to the average standard error for each bin.


Another factor affecting model predication accuracy is specimen quality: we examined the 144 specimen images in the test dataset that produced egregiously incorrect (i.e., patristic classification error greater than 600 My) predictions from the top performing model, and compared them to an equally sized randomly–sampled set of images with correct predictions. About 9.1% of the egregiously misclassified images were not good plant specimens: 0.7% were photographs of living plants, 0.7% were botanical illustrations, 3.5% lack plant materials entirely, and 4.2% were closed packets that obscured all plant materials from view. None of the correctly predicted specimen images had the above issues. Among the egregiously misclassified specimen images with visible plant materials (90.9%), nearly half (46.6%) consist entirely of plant fragments (e.g., single organs like fruits, buds, leaves, inflorescence, etc.) and a quarter (25.7%) are diminutive plant taxa—that remain small at full maturity—and therefor cover only a tiny fraction of specimen image. In contrast, 3.6% of correctly predicted specimen images consist entirely of plant fragments and none were diminutive plants.



4. DISCUSSION



4.1. Competition Results

The Herbarium 2021 Half–Earth challenge is the richest plant dataset in the world for fine–grained visual categorization, but it pushes the limits of contemporary machine learning—automated herbarium specimen image classification is a challenge that involves differentiating among plant taxa with subtle differences in color, texture, and shape. When compared to other fine–grained image datasets such as ImageNet (distinct classes easily classified by the general public; Deng et al., 2009) or iNaturalist (distinct classes that are easier to classify due to their spread across different kingdoms of life; Horn et al., 2021), the difficulty of classifying herbarium specimen images is apparent. The high number (64,500) and imbalanced distribution (imbalance factor = 1,654.5) of classes in the Herbarium 2021 dataset, makes this task especially challenging given the numerous classes with few images—nearly half (49.1%) of the taxa have less than 10 training images. Despite these challenges, the deep learning models submitted to the competition demonstrated performance far beyond our expectations: macro F1-score = 0.76 and top-1-error = 15.5%.

Most recently ViT-G/14 (Dosovitskiy et al., 2021) achieved a top-1-error of 9.55% on ImageNet—the most widely used image classification dataset. Considering that our dataset is much more unevenly distributed and has 60 times more classes than ImageNet,the top-1-error of 15.5% for the Herbarium 2021 Half–Earth challenge is quite remarkable (Table 2). For taxa with more than 50 training images (n = 10,355 taxa), the top-1-error (10.4%) of the top performance model is comparable to the state-of-the-art top-1-error of ImageNet (9.55%)—even with 10 times more classes and 7.8 times fewer parameters than ViT-G/14 (230 M vs. 1,800 M). The iNaturalist 2021 (Horn et al., 2021) fine–grained visual categorization dataset is similar to Herbarium 2021 in many ways, but it includes only ten thousand taxa with a more balanced training data distribution (>100 training images per taxon) and incorporates image geo–locations. In contrast, Herbarium 2021 does not include collection locations. In the Kaggle competition, the best model for iNaturalist 2021 had a top-1-error rate of 4.4%. If the Herbarium 2021 dataset had a more balanced distribution of training images, we see it having the potential to become another rich source of fine–grained visual categorization tests.

Finally we would like to point out that the competition was particularly difficult for competitors who did not have the computational resources to train large models on this amount of data—training a large model on this dataset is quite time consuming: for example training the baseline model took around 120h on an NVIDIA Titan X GPU. As can be seen in Table 2, the top-5 competitors' performance seems to be correlated with the number of parameters of the feature extractor.



4.2. Future Directions

There a multiple future directions that can be explored within the scope of fine–grained herbarium classification:

• Automated analysis of digitized natural history collections may help reduce the bottlenecks in identifying new species held in collections: herbaria are thought to already house specimens of half of the plant species that have not yet been formally described in the scientific literature (Bebber et al., 2010). There is an incredible backlog in specimen identification and curation in herbaria and many lack staff and taxonomic expertise to readily identify all of their specimens. With this urgent need in mind, we believe that there is an opportunity to facilitate the work of botanical experts to enable them to focus on the most critical tasks that cannot be automated. One useful approach may be to build a dataset that includes unlabeled data so that competitors could explore approaches related to semi–supervised learning or active learning rather than limiting competitions to straightforward supervised learning tasks. Furthermore, systems to accurately estimate well-calibrated uncertainties linked to the taxon prediction task would be extremely useful to make sure that we prioritize specimens most needing attention from expert botanists.

• It may be possible to leverage the digitized data stored in the herbaria to classify pictures of living plants. Overcoming the distribution shift between training on herbarium sheet images and testing on images of live plants is non-trivial, nevertheless recent advancements in generative models and domain adaptation can be effectively applied to such a scenario.

• Future Kaggle challenges should encourage engagement between different research communities, such as computer vision scientists and botanists. Computer vision scientists often adopt an approach aimed at maximizing algorithm performance in terms of the evaluation metrics, but they may be unaware of domain specific knowledge, such as the patristic distance, that can be used to both improve model interpretability and performance. On the other hand, botanists may not be aware of the latest advances in computer science that may boost model performance.

• Although large datasets increase the difficulty of the competition and push the boundaries of automatic taxon recognition, they exclude participants without access to a large computational resources for training machine learning models. As a result, future Kaggle challenges could be designed so that they can be split in multiple parts with at least some of the parts computationally accessible to all (e.g., a dataset of selected families or orders, or a dataset with a cap on the maximum number of images per taxon).



5. CONCLUSION

We have created the Herbarium 2021 Half–Earth dataset to enable the development of better automatic taxon recognition models. The development of models to automatically identify specimens will reduce the species identification bottleneck and has the potential to improve both the quality and accelerate the pace of biodiversity research.

In the future, we would like to expand the dataset to include specimens collected world–wide. There are more than 35 million digitized specimens in electronic databases representing more than 80% of the known vascular plant diversity.
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FOOTNOTES

1https://www.kaggle.com

2https://github.com/visipedia/herbarium_comp

3Images of specimens from American Samoa, Anguilla, Antigua and Barbuda, Argentina, Aruba, Australia, Bahamas, Barbados, Belize, Bermuda, Bolivia, Brazil, Canada, Cayman Islands, Chile, Colombia, Cook Islands, Costa Rica, Cuba, Curaçao, Dominica, Dominican Republic, Ecuador, El Salvador, Falkland Islands, Fiji, French Guiana, French Polynesia, Greenland, Grenada, Guadeloupe, Guatemala, Guyana, Haiti, Honduras, Indonesia (island of New Guinea only), Jamaica, Kiribati, Marshall Islands, Martinique, Mexico, Micronesia, Montserrat, Nauru, New Caledonia, New Zealand, Nicaragua, Niue, Norfolk Island, Northern Mariana Islands, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Pitcairn, Puerto Rico, Saint Barthélemy, Saint Kitts and Nevis, Saint Lucia, Saint Martin, Saint Pierre and Miquelon, Saint Vincent and the Grenadines, Samoa, Solomon Islands, Suriname, Tokelau, Tonga, Trinidad and Tobago, Turks and Caicos Islands, Tuvalu, United States Minor Outlying Islands, United States of America, Uruguay, Vanuatu, Venezuela, Virgin Islands (both British and US), and Wallis and Futuna were included in the dataset.
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Manual assessment of flower abundance of different flowering plant species in grasslands is a time-consuming process. We present an automated approach to determine the flower abundance in grasslands from drone-based aerial images by using deep learning (Faster R-CNN) object detection approach, which was trained and evaluated on data from five flights at two sites. Our deep learning network was able to identify and classify individual flowers. The novel method allowed generating spatially explicit maps of flower abundance that met or exceeded the accuracy of the manual-count-data extrapolation method while being less labor intensive. The results were very good for some types of flowers, with precision and recall being close to or higher than 90%. Other flowers were detected poorly due to reasons such as lack of enough training data, appearance changes due to phenology, or flowers being too small to be reliably distinguishable on the aerial images. The method was able to give precise estimates of the abundance of many flowering plant species. In the future, the collection of more training data will allow better predictions for the flowers that are not well predicted yet. The developed pipeline can be applied to any sort of aerial object detection problem.

Keywords: unmanned aerial vehicle (UAV), abundance mapping, faster R-CNN, object detection, aerial image, machine learning, remotely piloted aerial vehicles (RPAS), meadow


1. INTRODUCTION

The service done by pollinators in farmlands is estimated to value more than 150 billion euros a year worldwide (Gallai et al., 2009). Their declining numbers (Hallmann et al., 2017) motivate many ecologists to study their interplay with the environment. Such studies include the assessment of flower abundance and distribution, which is an extremely time-consuming task. At the same time, quantification of floral resources is an increasingly important topic in ecological research with implications for both theoretical and applied ecological issues (Benadi and Pauw, 2018; Bergamo et al., 2020; Biella et al., 2020; Fantinato et al., 2021).

Many remote sensing technologies exist to assess plant diversity (Wang and Gamon, 2019; Lausch et al., 2020). In the last 10 years, rapid developments in sensor technology and robotics have enhanced the capabilities of unmanned aerial vehicles (UAVs) (Anderson and Gaston, 2013; Pajares, 2015; Sanchez-Azofeifa et al., 2017; Aasen et al., 2018b). Today, it is both technologically possible and financially affordable to take ultra-high spatial resolution images of large areas (several deka-hectares with a ground resolution of 1 cm per pixel). When UAVs are flying at a lower height and slower speed, even resolutions of down to millimeters per pixel can be reached. Consequently, UAVs have also been used in many ecological settings. These include invasive species mapping (Hill et al., 2017; Müllerová et al., 2017; de S et al., 2018; Martin et al., 2018; Kattenborn et al., 2019), wildlife assessment (Andrew and Shephard, 2017; Rey et al., 2017; Hollings et al., 2018; Christiansen et al., 2019; Eikelboom et al., 2019), and plant biodiversity estimation (Getzin et al., 2012), including object-based species classification (Lu and He, 2017). Moreover, UAVs have been used to track spatial patterns in phenology (Neumann et al., 2020) and flowering of invasive species (de S et al., 2018).

Remote flower mapping in a grassland containing many species is a challenging task because the structures are fine and flowers might be occluded by other plants. Current approaches of automated flower mapping work with image resolutions in the range of centimeters or even meters per pixel (Abdel-Rahman et al., 2015; Landmann et al., 2015; Chen et al., 2019) and are therefore not suited to detect individual flowers and differentiate between flower species of similar color. Other approaches are tailored to a single species (Horton et al., 2017; Campbell and Fearns, 2018) and are not applicable to a wide range of use cases.

Recently, deep-learning-based classification methods that are able to utilize the details of ultra-high-resolution image data have been developed. In particular, deep convolutional neural networks (CNNs) have revolutionized image interpretation by improving the accuracy of object detection and classification tasks. A deep CNN is a network with many layers. It takes the pixels of an image as input and, as output, predicts the likelihood for each class label it has been trained on. Internally, it applies thousands of learned filters to all regions of the image and in the end combines them to find the likelihood for each class label. The end-to-end approach of deep learning methods allows automatic detection of important features without human interaction because the networks automatically learn which features are the most important ones. Recently, such approaches have been introduced to detect and count animals (Rey et al., 2017; Eikelboom et al., 2019) and plants (Eikelboom et al., 2019; Kattenborn et al., 2019; Osco et al., 2020) in an ecological context.

In this article, we present a deep-learning-based method to collect information about flower abundance and distribution in grasslands from drone-based aerial images. To evaluate its performance, we addressed several questions:

1. How does manual counting of flowers compare with tablet-assisted annotations on high-resolution aerial imagery?

2. How does drone-based, automated deep learning flower counting compare with a manual assessment?

3. How does a drone-based, automated flower mapping of a whole meadow compare with extrapolation from the counting of flowers in distinct sample squares?



2. MATERIALS AND METHODS


2.1. Overview

The proposed method can be divided into the three main phases of data collection (Section 2.2), the model training (Section 2.3), and the application to unseen images (Section 2.4) as depicted in Figure 1.


[image: Figure 1]
FIGURE 1. Overview of the proposed method. Gray-colored steps might not be necessary for some use cases. For a comprehensive explanation of the main phases data collection (Section 2.2), model training (Section 2.3) and application (Section 2.4) please refer to the corresponding section.




2.2. Data Collection


2.2.1. Dataset

The dataset on which the method was evaluated consisted of 10,000 annotated flowers. The aerial images were captured at two sites and on 5 days from a flight height of 19 m and a ground sampling distance of approximately 1.5 mm per pixel. For the collection of the flower dataset, a drone model called Transformer UAV (Copting GmbH, 2017) and a DJI Matrice 600 PRO (SZ DJI Technology Co., Ltd., 2018) were used. Both drones were programmed to fly along a predefined route such that the area was fully covered and the images had an overlap of 90%. Attached to the drone was a Sony ILCE-7RM2 (Sony Corporation, 2015) camera that took 42.2-megapixel photos in combination with a Zeiss Batis 1.8/85 telephoto lens (Carl Zeiss AG, 2017). The weather was sunny on all flight days. One of the two sites has been managed extensively during the last 15 years such that the plant diversity in this meadow was very high. Forty flowering plant species were found between May 23rd and July 3rd of 2019. Approximately half of these species were omitted in the analysis because too few samples (less than 50) were present in the survey plots. As summarized in Table 1, some flowers were combined into groups because they had few annotated samples or they looked similar to other flowers. Because the individual flowers within an inflorescence could rarely be identified in the drone-based images, all inflorescences were annotated as one flower instance. Subsequently, when we refer to the term flower, inflorescences were included as well.


Table 1. Groups of plant species that were combined into one group (table header).
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2.2.2. Traditional Data Acquisition

Traditionally, the most commonly applied method to obtain information about flower abundance in the flowering vegetation of a focal land use area is a direct visual assessment of the flowering vegetation by an observer in the field; the observer counts or estimates the flowers of each flowering plant “by hand” (i.e., manually) within survey plots of appropriate numbers and sizes for the specific study, which are distributed within the area of interest (Albrecht et al., 2007; Szigeti et al., 2016; Bartual et al., 2019). In our study, flower types ranged from simple (e.g., Violaceae) to more complex types in which flowers are arranged in clusters of various sizes and shapes (e.g., Apiaceae, Asteraceae). These inflorescences were classified according to Pywell et al. (2004) and Bartual et al. (2019) and were counted for each flowering dicotyledon plant species in each survey plot. Once the flowers present within the survey plots were counted or estimated, these numbers were extrapolated to the size of the whole area of interest by multiplying the counts by a factor corresponding to the relative size of the plots to the total area of the field. When applied with adequate numbers and sizes of plots, this method has been shown to provide reliable estimates of the abundance of flowers in an area of interest (Szigeti et al., 2016). In the present study, we randomly located 15 survey plots (1 m by 1 m) in the study grassland. This large number of plots was used to account for the typically high heterogeneity in the composition of the flowering plant communities and their spatial distribution in grasslands (Bartual et al., 2019). We carried out this traditional approach of manual counting in parallel to each iteration of the drone-based data acquisition method and used it as a baseline.



2.2.3. Drone-Based Data Acquisition

Because one aim of this study was to carry out a multi-temporal analysis of the flower abundance, we placed ground control points (GCPs) within the test region to geographically align the results of subsequent flights. The placement of the GCPs was simulated with the PhenoFly flight planning tool described by Roth et al. (2018b) to get an intuition on how to distribute the GCPs. The GCPs were then distributed across the meadow with a squared layout with the distance between the GCPs ranging between 4 and 7 m. With this setup, one to two GCPs were visible in each image. Each GCP had a size of 0.15 m, which corresponds to approximately 150 pixels. The exact coordinates of all these GCPs were collected with a Differential Global Navigation Satellite System (R10, Trimble Ltd., Sunnyvale, CA) with swipos-GIS/GEO RTK (real-time kinematic) correction (Federal Office of Topography Swisstopo, Wabern, Switzerland), resulting in a horizontal accuracy of 0.008 m and a vertical accuracy of 0.015 m. Later, they were used in the software Agisoft (Agisoft, 2019) as described below. Having the GCPs in place, the drone was flown along a predefined route across the field.

After the flight, the relative positions and orientation of the aerial images were reconstructed and merged together into a large orthomosaic. An orthomosaic is a visual representation of an area, created from many photos that were stitched together in a geometrically corrected way. We used the Structure from Motion approach (Ullman, 1979; Harwin and Lucieer, 2012) implemented in the software Agisoft Metashape Version 1.5.3 (Agisoft, 2019). Agisoft takes all aerial images as input and aligns them via bundle adjustment. This procedure allows generating a point cloud of the topography of the surveyed area. From the point cloud, a digital surface model was generated to orthorectify the orthomosaic. During orthomosaic generation, we used the option blending disabled to prohibit smearing of the original information of the images in the orthomosaic. The orthomosaic was georeferenced based on the GCP position.

Agisoft automatically detects the unique pattern on the GCPs to map the GPS coordinates to each of them. The advantage of providing the positions of the GCPs in the field is that the resulting orthomosaic is georeferenced. The georeferenced orthomosaic was later used to display the user's position in the Android application FieldAnnotator and to be able to copy annotations to the single orthorectified images that were georeferenced (refer to Sections 2.2.4 and 2.2.5 for further information).



2.2.4. Annotation

On the georeferenced orthomosaic, the areas of all sample squares were extracted and all flowers annotated. For annotating, we used the program LabelMe (Wada, 2016) and an Android tablet application called PhenoAnnotator (Figure 2) that we specifically developed for this purpose (for a detailed description, refer to Supplementary Section A.1). The FieldAnnotator can be found at https://github.com/tschutli/Phenotator-Toolbox or at the Google Play Store. Android tablets were not capable of handling large orthomosaics (around 50, 000 times 50, 000 pixels for an area of 30 m by 30 m). Therefore, the orthomosaics were tiled into small chunks of 256 times 256 pixels at various zoom levels before these tiles were then imported into the FieldAnnotator application. The resulting annotations were stored in a json file.


[image: Figure 2]
FIGURE 2. (Left) Example of area extracted from a sample square to be annotated. (Right) Screenshot of the FieldAnnotator during the annotation process. The numbers highlight the controles of the FieldAnnotator. For a detailed description please refer to Supplementary Section A.1.




2.2.5. Leveraging Overlapping Images

Because the camera attached to the drone captures a large number of highly overlapping images, the overlapping images can be used to create additional training data with flowers pictured from a slightly different angle on each image. We transferred the geolocation of each flower mapped on one image to the other images. Because grasslands have a very complex structure, some of the copied annotations were slightly shifted within the overlapping images. To correct for the shift, an additional script was written to let the user view and adjust all annotations in the LabelMe application. These slight adjustments of the annotations took significantly less time than annotating the data from scratch.




2.3. Model Training


2.3.1. Selecting Regions of Interest in Annotated Images

In case the images were only partly annotated, we developed a script that allows the user to cut out certain regions (polygon shaped) from the images. Only the image pixels within these selected regions were kept while the rest of the image pixels were over-written with black. This procedure ensured that the TensorFlow model (Abadi et al., 2015) did not learn to classify non-annotated flowers as the background class.



2.3.2. Image Preparation for TensorFlow

As a result of these preparations, the training data consisted of image files alongside with json files containing the annotations. To prepare the data to be imported into TensorFlow, we first split up the images into tiles. The default tile size was set to 450 times 450 pixels. These image tiles were then upscaled by a factor of two to tiles of 900 times 900 pixels as suggested by Hu and Ramanan (2017) and as justified in the Supplementary Section A.2. The tiles were overlapping such that flowers positioned on the edge of two tiles were not lost as training data but were always present as a whole in at least one tile. Additionally, all annotations (including point and polygon annotations) were converted to bounding boxes. Finally, the images were split up into training, test and validation sets.



2.3.3. Neural Network Training

The core of the pipeline consisted of a CNN. We used the Faster R-CNN architecture (Ren et al., 2015). This architecture outputs the bounding box coordinates of the objects it recognizes on an input image. The Faster R-CNN architecture requires more computing power than other architectures do, but it has been shown to perform well on aerial and other high-resolution images (Carlet and Abayowa, 2017; Huang et al., 2017). Because the default configuration of the Faster R-CNN architecture is not optimized to detect very small objects (Huang et al., 2017; Zhang et al., 2017) of only a few pixels in diameter (as it is the case for flowers in aerial images), we adjusted some parameters (refer to Supplementary Section A.2 for experiment results on different parameter combinations). Additionally, we used some typical data augmentation techniques to increase the diversity of our dataset, namely, random horizontal and vertical flips, random brightness adjustments, random contrast adjustments, random saturation adjustments, and random box jittering1.

During training, the validation set was used to decide when to change the learning rate and when to stop training. Every 2,500 steps, the training was paused and the prediction algorithm followed by the evaluation algorithm was run on the validation set. The learning rate was adjusted if for the last 15,000 steps no further improvements were made. After adjusting the learning rate two times, from 3E-04 to 3E-05 and from 3E-05 to 3E-06, the training was stopped if for 15,000 steps no improvement in the performance was seen. The number of 15,000 steps was chosen empirically based on an evaluation of initial results that showed that no model was further improved after it did not improve for 15,000 steps. Reducing the learning rate two times by a factor of 10 was adapted from the Faster R-CNN default configuration. The evaluation metric could be chosen as either the F1 score or the mean average precision (mAP). Section 2.4 further explains the prediction and evaluation processes.

The number of training examples can vary greatly from class to class. Therefore, each class was assigned a weight. The weight was inversely proportional to the number of training examples and influenced the loss function during training. This weighting ensured that the network did not just optimize to detect the most common classes. As a consequence, each mistake in a less common class had a much higher penalty to the loss function. Once a network was fully trained, it was exported as an inference graph. This exported inference graph could then be used by the prediction and evaluation scripts described in Section 2.4.




2.4. Application to Unseen Images


2.4.1. Predictions

The trained network can be used to make predictions on images of arbitrary size (e.g., orthomosaics) provided they have a ground sampling distance similar to that of the training images. The pipeline handles the tiling of large images as well as the reassembling of the prediction results from the single tiles. Optionally, a region of interest can be selected within an image. As a consequence, only the flower abundance within this region of interest is assessed by the prediction algorithm.

The prediction algorithm draws the bounding boxes of all detected flowers onto the image and saves the statistics about the flower abundance to a json file. To improve the prediction accuracy, the tiles had an overlap of 100 pixels by default. This overlap ensured that as long as a flower was not larger than 100 pixels in diameter, it was fully visible on at least one tile. Error-prone predictions close to or on the edge of a tile could therefore be ignored because they were fully covered on the adjacent tile. Nevertheless, having this overlap introduced the problem of duplicate predictions. This problem was mitigated by applying non-maximum suppression with an intersection-over-union (iou) threshold of 0.3, similar to the threshold applied by Ozge Unel et al. (2019), such that for all predictions that had an overlap of more than 30%, only the one with the highest confidence score was kept.



2.4.2. Evaluations

To evaluate the performance of a model, the predictions on the test set were compared with the validation annotations of the test set. The main metrics of interest were precision and recall. To compute precision and recall values, the true positive (TP), false positive (FP), and false negative (FN) predictions had to be known. To obtain these values, the predictions were sorted by their confidence. Then, all predictions were compared with ground truth bounding boxes of the same label. To compare two bounding boxes, the iou formula was used:

[image: image]

If the highest iou value was greater than a given threshold value (default of 0.3), the corresponding ground truth box was marked as used and the prediction was marked as TP. If the highest iou value was less than the threshold value, the prediction was marked as FP. After this process was done for each prediction, all ground truth entries that were not marked as used were counted as FN. Having the TP, FP and FN numbers, the precision and recall values were calculated using the following formulas:

[image: image]

Additionally, we calculated the F1 score as follows:

[image: image]

The better the precision and recall values, the better is the F1 score. It rates precision and recall equally and reaches its maximum of one at perfect precision and recall. As an alternative to the F1 score, the mAP as defined in the PASCAL Visual Object Classes Challenge Development Kit (Everingham and Winn, 2011) was used to rate a model's performance.



2.4.3. Visualizations

The pipeline offers various options for visualizing the results. Apart from drawing the predictions as colored bounding boxes onto the images, erroneous predictions can be highlighted. Additionally, heatmaps that visualize the density distribution of the flowers can be generated from the prediction output. The size of the kernel for the flower density mapping is customizable. Optionally, the heatmap can be drawn directly onto the image. The heatmaps can be generated for an individual class or for all classes. If the input images are georeferenced, there is the option to generate one heatmap from a collection of images. If the images are overlapping, the heatmap indicates the average number of flowers found at a particular position. Furthermore, the user can provide the geocoordinates of the upper left and lower right corner of the desired output region. The script will then output a heatmap of exactly that region. This option allows for time series generations. Example results of such time series generations can be viewed in Section 3.4.




2.5. Impact of Ground Sampling Distance

To investigate the impact of different ground sampling distances, the training, test, and validation images were first scaled down to the desired ground resolution and then scaled up again to their original resolution. After upscaling, all datasets had the same ground sampling distance as the original images. This procedure ensured that the flowers' sizes (in image pixels) were large enough to be detectable by the Faster R-CNN network architecture and prevented performance losses caused by this problem as described by Hu and Ramanan (2017). For each ground resolution, a network was trained and evaluated with the processed training images.




3. RESULTS

Comparing human counting with drone-based automated mapping has three aspects. First, we assessed the differences between the manual counting and the tablet annotations within patches of vegetation marked with wooden squares (vegetation squares). Second, we evaluated the performance of the deep-learning-based flower detection algorithm on the images within the vegetation squares. Third, we compared the automated estimates for the whole meadow with the extrapolation from the manual counts within the vegetation squares to the whole area of the meadow.


3.1. Manual Counting vs. Drone-Based Image Tablet Annotations

We compared the flower heads annotated within the vegetation squares on the drone-based aerial images via the tablet application with those manually counted by an observer. Table 2 lists the results for a representative subset of all flowers found within the test fields. For Salvia pratensis, Ranunculus species, and Centaurea jacea, the tablet and manual counts aligned well. For Leucanthemum vulgare and Knautia arvensis, more flowers were annotated on the tablet. For the other four species, fewer flowers were annotated on the tablet. For Medicago lupulina, only very few instances were annotated on the tablet. Refer to Figure 3 for visualizations of 25 flower species found within the test fields.


Table 2. Comparison of selected manually counted total numbers with tablet annotations.

[image: Table 2]


[image: Figure 3]
FIGURE 3. Excerpts from aerial images of the most common flower species. Please note that the images have been scaled to show the flower heads, and thus the pixel size is not consistent between the excerpts. (For images with real relative scaling, please refer to Supplementary Section A.3).




3.2. Algorithm Performance Inside Survey Plots

We compared the tablet annotations with the deep learning predictions within the survey plots. The prediction performance for each flower species can be obtained from Table 4. A prediction was considered for the comparison if its confidence score was greater than 0.2. The overall precision and recall were 87.0 and 84.2%, respectively. The vast majority of the flowers present in the test data of June 14th were Knautia arvensis, Leucanthemum vulgare, and Lotus corniculatus. These three flower species performed well, and, therefore, the good overall score was mainly determined by these three flower species. All the other flower species performed worse than the overall performance indicates.

Table 3 shows the confusion matrix of this experiment. It was striking that there were only a few confusions between different flower species. The much more common cases of confusion were that flowers were predicted where there was none and flowers were not predicted where they should be. The green entries denote the correctly predicted flowers.


Table 3. The table shows the confusion matrix.

[image: Table 3]

Table 4 shows that the flowers with little training data tended to not perform well. The question is whether this low performance was due to the lack of enough training data or because assigning an inversely proportional weight to each class during training is not sufficient to regularize the loss function. Therefore, we trained a separate network in which the three best performing flowers (Leucanthemum vulgare, Lotus corniculatus and Knautia arvensis) were ignored and treated as background. With the mAP rising from 25.2 to 31.5% (F1 score improving from 47.0 to 51.3%), a certain improvement could be seen. Therefore, the possibility of leveraging two separately trained networks was not further evaluated.


Table 4. Performance of the prediction algorithm on all flower species present in the field on June 14th.

[image: Table 4]

When looking at the predictions, there were various sources of errors apparent. Some examples can be seen in Figure 4. For Leucanthemum vulgare, a typical error occurred where two instances were very close to each other as in image a). In that case, often only one of the two flowers was detected. The missing annotation was not caused by the non-maximum suppression algorithm, as a closer look disclosed. Another typical source of errors was flowers that were on the verge of fading. In the case of image b), two flowers were detected that were not annotated in the ground truth because the botanical expert considered the flowers to be faded already. Even when manually counting the flowers, it was sometimes difficult to decide if a flower should be counted or not because of the seamless transition from blooming to faded. Two main problems existed for Lotus corniculatus. First, the blooms of Lotus corniculatus were often arranged as small inflorescences, as visible in the image a) to the bottom left or in image c). In some cases, the network predicted the blooms of an inflorescence as individual instances whereas in the ground truth, the whole inflorescence was annotated as one instance. The opposite case was common as well. The second problem of Lotus corniculatus was FP predictions caused by missing ground truth annotations [as in image d)]. These problems are further discussed in Section 4.1. The main error source for Knautia arvensis were blooms that looked different because they were wilting as for example in image e). In image f), the model erroneously predicted a Knautia arvensis where there was an Anacamptis pyramidalis flower. Anacamptis pyramidalis was not included in the training because too few training instances existed.


[image: Figure 4]
FIGURE 4. Selection of typical mispredictions. All thin bounding boxes are correct predictions. The bold red bounding boxes denote false positive and the bold violet bounding boxes denote false negative predictions. There are various explanations for the mispredictions: Overlapping flowers (A), partially withered flowers (B,E), collections of flowers (C), missing ground truth annotations (D) and flowers that are missing in the training data (F).




3.3. Prediction on a Whole Meadow

Counting flowers in small, representative areas of a field and extrapolating these counts to the area of the whole field is a common method in field ecology. We compared the predictions of the deep learning model on the whole test field with the extrapolation of the flowers manually counted within the vegetation squares. The numbers of manually counted flowers were extrapolated to the size of the whole field, which was 730 m2. Table 5 lists all flowers that were detected reasonably well inside the survey plots by the deep learning model. For each flower species, the number of deep learning detections in the whole field was listed as well as the number of flowers predicted by the extrapolation of the manual counts.


Table 5. Predictions on the whole field of 730 square meters.

[image: Table 5]

For Centaurea jacea, Knautia arvensis, and Lotus corniculatus, the number of drone-based predictions was very similar to the extrapolation of the manually counted number of flowers. The results were within 11, 3, and 2%, respectively. According to heatmaps generated from the drone-based predictions (see Section 3.4), these were also the flowers that were relatively evenly distributed. The extrapolation of the manually counted number of Leucanthemum vulgare flowers was 53% higher than the number of drone-based predictions.



3.4. Density Distribution Maps

The heatmaps in Figure 5 depict the abundance of selected individual flowers in one of our test fields on June 14th. The three heatmaps for Leucanthemum vulgare, Lotus corniculatus, and Knautia arvensis were generated from the orthomosaic.


[image: Figure 5]
FIGURE 5. Heatmaps of our main test site showing the abundance density for (A) Knautia arvensis, (B) Leucanthemum vulgare, and (C) Lotus corniculatus. Image (D) depicts the image coverage of the field.


Figure 6 contains a time series of an excerpt of our main test site. It illustrates the difference in the abundance evolution of Leucanthemum vulgare and Lotus corniculatus. It is conspicuous that the Lotus corniculatus population was much more evenly distributed than the Leucanthemum vulgare population. Leucanthemum vulgare had a peak population on June 6th, whereas on July 3rd, the population was almost completely faded. The peak population of Lotus corniculatus was much less pronounced.


[image: Figure 6]
FIGURE 6. Time series of the distribution of Leucanthemum vulgare and Lotus corniculatus in our main test field.




3.5. Impact of Ground Sampling Distance

Figure 7 demonstrates the effect of decreasing ground sampling distance on an exemplary excerpt of an aerial image containing a Leucanthemum vulgare flower and a Lotus corniculatus inflorescence. Figures 8, 9 illustrate the effect of decreasing ground resolution on the F1 score and the mAP, respectively. Both figures show that down to a ground sampling distance (GSD) of 5 mm, there was a marginal decrease in prediction performance. Further decreasing the GSD to 10 and 20 mm per pixel had noticeable negative effects on the model's performance. As expected, the performance of small flowers such as those of Lotus corniculatus decreased disproportionately because at a certain ground resolution they simply became indistinguishable. The average size of a Lotus corniculatus flower was around 16 mm. The performance of larger flowers such as those of Leucanthemum vulgare (40 mm) and Knautia arvensis (34 mm) degraded notably more slowly. The graphs for the precision and recall metrics were omitted because the trends were equivalent to the trends of the F1 score and the mAP metric.


[image: Figure 7]
FIGURE 7. Ground sampling distance degradation on an excerpt of an aerial image.



[image: Figure 8]
FIGURE 8. Evolution of the F1 score over various simulated ground resolutions.



[image: Figure 9]
FIGURE 9. Evolution of the mean average precision (mAP) over various simulated ground resolutions.





4. DISCUSSION


4.1. Tablet-Assisted Annotations in Vegetation Squares

We evaluated different approaches to map flowers in grasslands. We used manual counting within survey plots as a baseline and compared it with tablet annotations on drone-based aerial images of the survey plots and automated deep-learning-based mapping within the survey plots. The advantage of being able to annotate the images on a tablet is that some flowers can be very hard to distinguish on the images. If one can compare the image with the actual flowers on site, the quality of the training data can be improved, and the number of false annotations is thus minimized.

Section 3.1 shows that some flowers had more tablet annotations on the images than were manually counted by an observer within the survey plots. These were flowers of Leucanthenum vulgare, Ranunculus species, Knautia arvensis, and Centaurea jacea. An explanation for this finding is that manually counting flowers requires a high level of concentration. Mistakes happen very easily when many flowers are present within a small area. Annotating on an image has the advantage that flowers are marked and therefore the risk of counting a flower twice or overlooking a flower is minimized. On the other hand, some flowers were hardly visible on the drone-based images, and therefore significantly fewer instances were counted in the tablet annotations compared with the manually counted data. Onobrychis viciifolia, Medicago lupulina and to some extent Trifolium pratense fall in this category. The flowers of Medicago lupulina were too small to be reliably identifiable on the drone-based images. Those of Trifolium pratense and Onobrychis viciifolia would be large enough but were often hardly distinguishable from the background.



4.2. Performance of the Detection Algorithm

Whether it is possible to achieve reliable predictions for a certain flower on drone-based images depends on several factors. First, enough training data on the flower in question needs to be available. Our results suggest that with a few hundred instances, good performance can be achieved. Second, also the morphology of the flower has an impact. Flowers such as those of Galium mollugo are difficult for an object detection network to predict reliably. The cause seems to be that these flowers can sometimes be very small and, in other cases, multiple instances of the same flower species can cover a large area of partly overlapping inflorescences, making it difficult to separate the single instances. In such cases, it would be interesting to see how an image segmentation network such as U-Net (Ronneberger et al., 2015), which predicts regions (pixels) that belong to a certain class, would perform. Third, the size of a flower should span a certain minimum number of pixels. The good results for Lotus corniculatus suggest that a diameter of around 5–10 pixels is sufficient. Besides, these results are likely to be positively influenced by the distinct color and the strong contrast to the background of Lotus corniculatus flowers. Other flowers of similar size such as those of Onobrychis viciifolia or Trifolium pratense performed significantly worse. These flowers were much harder to distinguish from the background. It is evident that distinguishability (mainly driven by contrast) is the fourth main factor that determines the prediction performance of a network for a particular flower.

Generally, it is advised to scale up all images with objects that are smaller than 40 pixels in diameter by a factor of two to improve the performance of a network (Hu and Ramanan, 2017). This is the case for the vast majority of flowers dealt with in this study. The Faster R-CNN architecture is not designed to detect very small objects, such as flowers of just a few pixels in diameter (Huang et al., 2017; Zhang et al., 2017). Therefore, scaling up the images is an appropriate counter measure that helped to improve our results.

When taking a closer look at the results, we found that a substantial portion of mispredictions that negatively influenced the assessed model performance scores (mAP and F1 score) was not fatal. These mispredictions include, for example, FP predictions that were in fact missing annotations in the ground validation data such as the examples in Figure 4. The FP predictions of flowers that were on the verge of fading also fall in this category. The mispredictions caused by the confusion between single flowers and inflorescences of Lotus corniculatus as described in Section 3.2 were also not severe.

These mispredictions exemplify the challenges that exist for the training data collection. Even when it is possible to directly compare the image on the tablet with the flowers on site, it is sometimes not clear how to annotate a flower. Lotus corniculatus is a good example. Its flowers are often arranged as inflorescences. However, it is not uncommon that there are single flowers that do not belong to the same inflorescence. Because it is often not possible to distinguish the single flowers within an inflorescence, the whole inflorescence is consequently annotated as one flower instance. Unfortunately, there are border cases in which a single flower very close to another inflorescence is annotated as a separate instance in the ground validation but the prediction algorithm includes that flower in the inflorescence and predicts only one bounding box. This situation results in FN predictions for the single flowers very close to each other, as the examples on Figure 4C show. The opposite case that multiple single flowers are predicted separately although they are annotated as an inflorescence with a single bounding box is common as well. The second main problem for Lotus corniculatus is that some instances are hardly visible on the images because they are very small. Sometimes they are partly hidden by other vegetation, and occasionally weak motion blur is present and makes it even harder to distinguish between flower and background. This problem also manifests itself in FP and FN predictions. The FP predictions are mainly caused by background areas that look similar to a blurred flower and by real flowers that are not present in the validation annotations (as in Figure 4D). The FN predictions are often flowers that are small and hardly distinguishable. As demonstrated in the example of Lotus corniculatus in Table 4, an average number of flowers per annotation can be calculated from the training data and the manually counted data. This value can then be multiplied with the total number of predictions to get the number of flowers.

Data augmentation options are a convenient way of artificially increasing the amount of training data. One should be careful with applying too many augmentation options. Because the flowers do not span a large number of pixels, they are predicted based on minuscule details. Changing these details too much might be counterproductive. Flips and random box jittering can be applied without hesitation. They do not alter the important details but alter only the orientation or the position of the bounding box. Brightness, contrast, and saturation adjustments should be applied moderately. In our experiments, the maximal change rate was a delta of 25%.



4.3. Automated Drone-Based Flower Mapping of a Whole Meadow


4.3.1. Comparison With Extrapolations From Vegetation Squares

For some species, we found differences between the extrapolation from the manual counts within the vegetation squares and the drone-based estimations (Table 4). Assuming that the performance of the prediction algorithm on the whole field was similar to the performance within the annotated survey plots, the extrapolation of the manual count data must have been inaccurate. Even when we added 8% to the number of drone-based predictions to compensate for the relatively low recall value of Leucanthemum vulgare, the results still had a 47% gap. The extrapolation was based on the manually counted number of flowers, which was less than the number of tablet annotations within the survey plots (as pointed out in Section 3.1). If the tablet-based numbers had been taken, the result of the extrapolation would have been an additional 51% higher, making it in total 131% higher than the drone-based prediction.

The main reason for the bad results for Onobrychis viciifolia was that its flowers were very hard to distinguish on the drone-based images. The most probable reason for the unsatisfactory results for Salvia pratensis was that the amount of training data was too small to accomplish good results. A likely additional reason could be an unrepresentative choice of survey plot locations for these flowers. When these falsely counted numbers are combined with non-optimally chosen survey plot locations, the extrapolations of the manually counted flowers have the potential to be very inaccurate.

With a reliable flower detection model, the results can be much more accurate than with the extrapolation from the manual counting. Moreover, the drone-based approach has other advantages beyond what can be done with the traditional approach of extrapolating the manually counted numbers of flowers within the survey plots. The combination of deep learning with very-high resolution drone-based remote sensing allows to map objects through space and time (e.g., Figures 5, 6, 10). Moreover, once a trained network is available, manually labeling the species to train the network is no longer necessary. It is sufficient to fly the drone over the meadow and let the deep learning algorithm predict the species. The prediction time of the trained deep learning network for one square meter is approximately 7.4 s when using a GTX 1080 GPU graphics card (Nvidia Corporation, 2016). By contrast, manually counting the flowers within a survey plot can take between 1 and 10 min, depending on the flower density. The predictions of the network have to be controlled by a good botany expert.


[image: Figure 10]
FIGURE 10. Typical prediction example.




4.3.2. Practical Considerations

Our main test grassland site was around 30 m by 30 m in size. To have enough overlapping images to generate an orthomosaic of this area with a sufficient ground sampling distance, a drone has to fly over the meadow for about 20 min. This requirement means that it is difficult to scale this approach to larger areas. A way of overcoming this problem would be to take images with less or no overlap at specific locations and to omit the generation of an orthomosaic. Knowing the flight height and the lens angle of the camera, one can calculate the covered area of the image. Running the prediction algorithm on these sample images would correspond to a stratified or random sampling of a larger area. This approach would also allow a higher flight height. With a longer focal length and eventually with a higher-resolution camera, the same ground sampling distance could be obtained while lowering the chance for potential disturbances of wildlife.

The advantage of the automated over the manual flower abundance determination approach is that much larger sample size can be collected. The effort to collect the vegetation data is smaller and more precise. This efficiency allows spending more time on controlling, extrapolating, and analyzing the data, which finally yields a better result. What remains to be evaluated is whether the prediction algorithm generates similar results close to the edges of an image as compared with the center. The viewing angle changes across an image and thus alters the appearance of the imaged objects (Aasen, 2016; Aasen and Bolten, 2018; Roth et al., 2018a). Consequently, there could be a degradation in prediction performance. The orthomosaics are created from only the center regions of the single images.

Various metrics are used to describe a model's performance. Precision, recall, F1 score, and mAP all describe a certain aspect of a model's performance. It depends on the application case which metric is most important. Precision and recall can easily be controlled with the minimum confidence parameter. The higher the minimum confidence parameter of the prediction script is set, the higher the precision becomes. Lowering the minimum confidence score increases the recall. For an abundance determination use-case as in this study, a balanced precision-to-recall ratio is advantageous because FN and FP predictions are likely to cancel each other out, and therefore a good estimate of the abundance can be given. The F1 score is mainly determined by precision and recall. The higher these two values are, the higher is the F1 score. A balanced precision-to-recall ratio improves the F1 score even more. Consequently, the F1 score is a good indicator of a model's performance.

We found that phenology impacted the results and that the model did not generalize well when flowers went into senescence. Besides, training a model with images from different ground sampling distances did not yield good performance. These findings suggest that the model does not generalize well over different sizes of the same flower and that keeping the ground sampling distance close to constant is important. However, when we trained the model for different ground sampling distances, the model worked well for a decrease in ground sampling distance down to 5 mm per pixel (Section 4.5; Figure 7). Still, the effect depends on the size of the flower, as shown by the example of Lotus corniculatus, for which the performance decreased significantly faster than for the larger flowers of Leucanthemum vulgare and Knautia arvensis. In the future, the results should be validated in more ways, e.g., by using cross-validation or by testing the models on more unseen test sites as well as including data with different environmental conditions.

The method developed in this study opens a wide range of use cases beyond the substitution of manual flower counting. Weed control could be realized in a precision agriculture setting. Detecting invasive neophyte plants in difficult-to-access areas could replace manual checks. The multi-temporal abundance maps have the potential to map flowering dynamics quantitatively and spatially, to assess co-occurrence of different flower species, and to assess the influence of climate conditions of different years on the abundance. By detecting certain indicator species, conclusions may be drawn about the soil properties. For example, the presence of Leucanthemum vulgare is an indicator of nutrient-poor meadows. In the context of quality assessment of meadows in connection with direct payments by the state, drone usage is imaginable. Apart from flowering plant detection, the method can be applied to other areas such as monitoring of wildlife aggregations as described by Lyons et al. (2019).

For some use cases, it might be beneficial to have real-time detections. The method developed in this study is not designed for that. By using the default configuration of the Faster R-CNN architecture without upscaling the images, the prediction algorithm can be sped up by a factor of four (at least). The drawback is that the accuracy is reduced with increased speed. Nevertheless, for some use cases, this reduction in accuracy might be acceptable. Using a lighter-weight object detection network design such as the single-shot detector architecture (Liu et al., 2016) can deliver further speed-ups. However, the accuracy is expected to be lower than with Faster R-CNN.

More training data would have been beneficial to better train the model on underrepresented flowers and catch flowers during their entire phenology. Unfortunately, this was not possible due to the failure of the initially used drone. However, with the now designed framework, new training data can be created and pooled with the current training data to expand the training dataset and allow better predictions in the future. The suite of tools developed in this study is easy to install and can be applied to any sort of object detection problem on aerial images. The time-consuming task of collecting training data by annotating aerial images can be carried out on the FieldAnnotator application for Android or with the widely used LabelMe application for desktop operating systems. The script that copies annotations onto overlapping images can be a powerful way of increasing the amount of training data without major efforts.




4.4. Very-High Resolution Remote Sensing and Deep Learning as a New Tool for Biodiversity Monitoring

Plant diversity can be estimated on different scales and granularity—from space-borne sensors down to in-situ measurements (Lausch et al., 2016, 2020; Wang and Gamon, 2019). Remote sensing based approaches cannot offer the same number of measurable traits as in-site measurements (Homolov et al., 2013). On the other hand, remote sensing allows mapping traits spatially explicit on larger scales. However, most often these traits are mapped on via proxies such as spectral data. For species identification, this brings some uncertainty since—in particular for objects relatively small to the GSD—the signature of a species can easily be diluted. With the advent of very- and ultra-high resolution remote sensing approaches (Aasen and Roth, 2016; Aasen et al., 2018a) in combination with deep learning, objects can now directly be identified and classified within the data based on their spatial and spectral features. As shown in this study, such approaches hold great promise for diversity monitoring.

Common deep learning network architectures are built to be feed with three band data (commonly RGB). First approach now also uses other spectral bands and even 3D information (Nezami et al., 2020) and we expect that these approaches will become more common when more very-high resolution spectral data is available.
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FOOTNOTES

1jittering refers to random changes in some parameters. For an illustrative overview of data augmentation one may refer to https://towardsdatascience.com/tagged/data-augmentation.
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Climate change represents one of the most critical threats to biodiversity with far-reaching consequences for species interactions, the functioning of ecosystems, or the assembly of biotic communities. Plant phenology research has gained increasing attention as the timing of periodic events in plants is strongly affected by seasonal and interannual climate variation. Recent technological development allowed us to gather invaluable data at a variety of spatial and ecological scales. The feasibility of phenological monitoring today and in the future depends heavily on developing tools capable of efficiently analyzing these enormous amounts of data. Deep Neural Networks learn representations from data with impressive accuracy and lead to significant breakthroughs in, e.g., image processing. This article is the first systematic literature review aiming to thoroughly analyze all primary studies on deep learning approaches in plant phenology research. In a multi-stage process, we selected 24 peer-reviewed studies published in the last five years (2016–2021). After carefully analyzing these studies, we describe the applied methods categorized according to the studied phenological stages, vegetation type, spatial scale, data acquisition- and deep learning methods. Furthermore, we identify and discuss research trends and highlight promising future directions. We present a systematic overview of previously applied methods on different tasks that can guide this emerging complex research field.
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1. INTRODUCTION

Phenology is the study of changes in the timing of seasonal events, such as budburst, flowering, fructification, and senescence (Lieth, 2013). Plant phenology has received increasing public and scientific attention due to the growing evidence that the timing of developmental stages is largely dependent on environmental conditions. Temperate vegetation, in particular, shows extreme sensitivity to climate variability (Menzel et al., 2006; Schwartz et al., 2006). Phenology is directly related to climatic conditions and plays an essential role in ecosystem processes, such as carbon- and nutrient cycling. At the individual plant level, phenology has been shown to influence fitness and reproductive success (Ehrlén and Münzbergová, 2009) and thus plays a vital role in species dispersal (Chuine, 2010). Ultimately, changes in phenology can have far-reaching consequences, from affecting species dispersal and disrupting species interactions to altering the carbon cycle and in turn influencing global climate itself (Visser and Holleman, 2001; Peñuelas and Filella, 2009; Chuine, 2010; Rafferty and Ives, 2011; Piao et al., 2019). Therefore, modeling, assessing, and monitoring phenological dynamics are vital requirements to understand how plants respond to a changing world and how this influences vegetated ecosystems. While vegetation undeniably responds to environmental variability, our current understanding of phenology is limited by the extreme difficulty of documenting phenological processes usually occurring on large spatial and temporal scales.

There are different methods of monitoring phenology, e.g., (1) human visual observations usually conducted on the individual scale (Lancashire et al., 1991; Meier, 1997; Koch et al., 2007; Denny et al., 2014; Nordt et al., 2021), (2) near-surface measurements, which are carried out on a regional to local scale (Richardson et al., 2009; Brown et al., 2016; Richardson, 2019), and (3) satellite remote sensing which is applied on regional to global scales (Cleland et al., 2007; White et al., 2009; Richardson et al., 2013; Zeng et al., 2020). With the help of sensors and cameras, it has become increasingly easy to collect large amounts of phenological monitoring data, both ground-based and through remote sensing technologies. The implementation of large-scale phenology observation methods leads to a crucial paradigm shift. Data availability and data generation are no longer problems. Vast amounts of data are generated in a relatively short time at a low cost. The feasibility of phenological monitoring today and in the future depends heavily on the development of tools capable of efficiently analyzing these enormous amounts of data (Correia et al., 2020). In addition, standardized methods and metrics for data acquisition and the development of plant phenology ontologies in order to provide standardized vocabulary and semantic frameworks need to be developed for large-scale integration of heterogeneous plant phenology data (Stucky et al., 2018).

By constructing computational models with multiple processing layers and allowing the models to learn representations of data from multiple levels of abstraction (LeCun et al., 2015), deep learning (DL) techniques have gained importance in many research and application domains. Deep learning methods have been widely used for image processing in, e.g., computer vision, speech recognition, and natural language processing (Deng and Yu, 2014; LeCun et al., 2015). In ecology, deep learning is used for species identification, behavioral studies, population monitoring, or ecological modeling (Wäldchen and Mäder, 2018a; Christin et al., 2019). In earth system science, deep learning finds application in pattern classification, anomaly detection, and space- or time-dependent state prediction (Reichstein et al., 2019). Compared to traditional classification methods, deep learning models often provide higher processing accuracy when large samples for model training and testing are available. This systematic literature review explicitly focuses on studies involving deep learning for phenology monitoring and presents an overview of the methods and technologies used. We discuss possible scientific and technical advances that can further boost the potential of deep learning for monitoring phenology in the future.

We organized the remaining sections of this article as follows: Section 2 gives an overview of the current methods for monitoring plant phenology. Section 3 introduces our research questions and the methodology of this systematic review. In section 4, we present and discuss findings for each research question. We discuss trends and future directions in section 5. Section 6 concludes the review.



2. PLANT PHENOLOGY MONITORING METHODS

Phenological stages can be detected using different methods corresponding to their spatial scale: (1) individual based observations, (2) near-surface measurements, and (3) satellite remote sensing, which are often collected across large temporal and local scales (Figure 1).


[image: Figure 1]
FIGURE 1. Overview of methods monitoring phenology.



2.1. Individual Based Observations

Observing the date of onset and the duration of particular pheno-phases is used to quantify the phenology of individual plants, including both vegetative and reproductive events. Across different phenology monitoring projects, there is no universal definition of pheno-phases. A well-known and widely used recording scheme is the BBCH scale, which is commonly used in agricultural systems in Europe (Lancashire et al., 1991; Meier, 1997; Koch et al., 2007). Other recording schemes are the USA National Phenology Network (USA-NPN) scale (Denny et al., 2014) and the recently established scale by the PhenObs network, a phenology research initiative undertaking coordinated phenology monitoring in a network of botanical gardens distributed across many bioclimatic regions (Nordt et al., 2021). The main pheno-phases that can be found in all mentioned scales are the day-of-year (DOY) observations, e.g., breaking of leaves, breaking of buds, initial growth for annual plants, expansion of leaves, appearance of flowers, appearance of fruits, senescence (coloring), and leaf abscission (Koch et al., 2007; Morisette et al., 2009; Denny et al., 2014; Berra and Gaulton, 2021; Nordt et al., 2021).

Human observations. The primary method for capturing plant phenology relies on human observations of plants in phenological periods. In addition to the professional networks, such as the European Phenology Network (EPN), the USA National Phenology Network (USA-NPN) or the the PhenObs network, a number of world-wide citizen science networks strives to capture high-quality ground-based phenology observations on a voluntarily basis (Beaubien and Hamann, 2011; Taylor et al., 2019). Although these efforts are critical and acquire detailed plant phenology information at species or individual plant scale, they can typically only cover small localized areas and are limited in number.

Below canopy cameras. Besides cameras being installed above the canopy, capturing an entire landscape, cameras installed below the canopy are increasingly being used. These cameras can take accurate measurements on the specific individuals and record the same phenological stages as the ground-based manual recordings described above. So far, digital cameras have only been used in individual projects, and there is no larger network or association to collect an extensive image dataset of phenological stages for several species (Correia et al., 2020).

Herbaria. Researchers recently started to use the vast collections of plant specimens available from the world's herbaria for phenological analyses (Willis et al., 2017; Pearson et al., 2020). Pressed, preserved plant specimens collected over centuries and around the globe can serve as snapshots of plant phenology contributing to a wealth of research relating to the timing of phenological events (Jones and Daehler, 2018). Although most herbarium specimens were not collected to detect phenological stages, phenological data from specimens have proven reliable and irreplaceable for understanding plant phenology (Davis et al., 2015). The collection of phenological data from herbarium specimens is fundamentally based on the presence and absence of key reproductive or vegetative traits. Most often, the presence and occasionally the quantity of these traits are then used to score the specimens as being in a particular pheno-phase and representative of a particular phenological event (Willis et al., 2017). A comprehensive overview of how machine learning and digitized herbarium specimens can advance phenological research is given by Pearson et al. (2020).



2.2. Near-Surface Measurements

Phenology monitoring has been increasingly realized by remote sensing on scales comprising single research plots to regional, continental, and global scales (Cleland et al., 2007; Richardson et al., 2013), often referred to as land surface phenology (LSP). Over the last decade, ground and near-surface sensors have been increasingly used to collect data for LSP assessment purposes in place of or in complement to traditional plant phenology (Berra and Gaulton, 2021). This level of observation typically includes digital cameras, such as PhenoCams and below canopy cameras, sensing visible-light wavelengths, spectral radiometers detecting reflected radiance, continuous carbon flux measurements, and more recently cameras carried by Unmanned Aerial Vehicles (UAVs) (Berra and Gaulton, 2021). Phenology stages are typically estimated as the day of the year corresponding to the start of the season (SOS), end of the season (EOS), the peak of the season (POS) and the length of the growing season (LOS) (Yang et al., 2019, 2020; Tian et al., 2020).

PhenoCams. PhenoCams are near-surface digital cameras located at positions just above the canopy (Richardson et al., 2007, 2009) (Figure 1). They capture a valuable visual record of vegetation phenology across different ecosystems on landscape level, but at a spatial resolution that typically makes it impossible to discern individual plants (Reed et al., 2009). Digital cameras networks including PhenoCam, European Phenology Network (EPN), and Phenological Eyes Network (PEN) are already covering a wide range of ecosystems in the world (Richardson et al., 2013). Many of these data are now accessible online. PhenoCams detect leaf phenological events through the analysis of color changes over time. By quantifying the red, green, and blue (RGB) color channels, it is possible to estimate, for instance, leaf flushing and senescence, using the green and red channels, respectively (Keenan et al., 2014; Richardson et al., 2018).

Unmanned aerial vehicles (UAVs). Beside fixed installed cameras, drones are also playing an increasing role in phenological monitoring (Candiago et al., 2015; Klosterman et al., 2018; Lee et al., 2018; Park et al., 2019; Budianti et al., 2021; Thapa et al., 2021). A drone typically carries either a standard digital camera or a multispectral camera while flying above the canopy and capturing aerial images in landscape-scale similar to satellite images but at much higher resolution. Compared to conventional aircraft, drones can be operated at a fraction of the cost, making more frequent observations feasible (Klosterman and Richardson, 2017). Additionally, using photogrammetry techniques on drone images facilitates significant advances over tower-mounted cameras. Orthomosaics or orthoimages simulate an undistorted perspective of the canopy, with a consistent spatial resolution over landscapes. Because of this feature, orthomosaics enable the identification and analysis of more significant numbers of individual organisms than is typically possible using tower-mounted camera imagery.

Overall, near-surface systems such as PhenoCams or UAVs can achieve high temporal resolution of phenological time series. They provide species-specific and/or site-level measurements and play an essential role in filling the “gap of observations” between satellite monitoring and the traditional on-the-ground phenology monitoring (Sonnentag et al., 2012; Klosterman et al., 2014).



2.3. Satellites Remote Sensing

Phenological timing and magnitude are frequently derived from satellite images via indices, such as spectral vegetation indices (VIs) (e.g., normalized difference vegetation index (NDVI) (Tucker, 1979), enhanced vegetation index (EVI) (Huete et al., 2002). Retrieved canopy variables, e.g., leaf area index (LAI) (Myneni et al., 2002), representing the seasonal dynamics of vegetation community in a pixel instead of the features of a specific plant as described above. This aggregation often disassociates the response signal of the landscape from that of the individual species, yet is essential for representing landscape-scale processes (e.g., water, energy, and carbon fluxes) in biosphere-atmosphere interaction and other models (Reed et al., 2009). Due to the requirement of repeated observations to study LSP, most satellite-based phenology studies relied on medium to coarse spatial resolution satellite sensors, such as MODIS and Landsat, or on fusing MODIS and Landsat imagery to improve the temporal and spatial resolution (Younes et al., 2021). The same phenological events assessed by PhenoCams or UAVs are typically also analyzed via satellite images, such as SOS, PGS, and EOS (Zeng et al., 2020). However, the large scale of these sensors limits the resolution of the data they provide, e.g., landscape heterogeneity is unresolved given the relatively coarse pixel resolutions provided by satellites sensors, potentially confounding phenological signals (Klosterman et al., 2018; Richardson et al., 2018). Further, mismatches in scale and specificity of observations between ground based and remote sensing measurements can bring difficulties in interpreting LSP metrics (Berra and Gaulton, 2021).




3. METHODS

We performed a systematic literature review (SLR) according to Kitchenham (2004) and Pautasso (2013). We divided the whole process of the SLR into three fundamental steps: (1) defining research questions, (2) conducting a search process for relevant publications, and (3) extracting relevant data and metadata from identified publications to answer our research questions.


3.1. Research Questions

Our review comprises all published research in the field of deep learning methods applied to phenology stage assessment and thereby attempts to answer the following six research questions:

RQ-1: How is the time of publication, venue, and geographical study site distributed across primary studies?—Motivation: This question aims to retrieve a quantitative overview of the studies and the research locations.

RQ-2: Which type of vegetation was investigated?— Motivation: Phenology can be studied in different vegetation types, e.g., grassland, forest, shrubland, cropland. This question aims to provide an overview of the vegetation types that have been studied so far.

RQ-3: At what spatial scale were the studies conducted?—Motivation: Phenology can be recorded at various scales starting with direct observations on single individuals, through area-based remote sensing observations from a single research plot, to regional, continental, and global scales. This question aims to provide an overview of which spatial scales studies were carried out on.

RQ-4: What kind of phenological expressions were studied?—Motivation: The stages for plant phenology measurements usually include bud break, leaf expansion and maturation, flowering time, senescence (coloring), and leaf abscission for direct measurements or the start of the season and end of the season for land surface phenology measurements. The question aims to provide an overview of which phenology expressions were monitored.

RQ-5: How were training data generated?—Motivation: This question aims to study the utilized training data in detail, particularly the methods used to generate them.

RQ-6: What kind of neural network architecture is used per analysis task?—Motivation: This question aims to categorize, compare, and discuss deep learning methods applied in phenological monitoring.



3.2. Data Sources and Selection Strategy

In order to find relevant publications in the fields of biology, ecology and plant science, and computer science we searched the following popular databases: Web of Science, Science Direct, IEEE Explore, ACM Digital Library, and SpringerLink. We developed a two-part search string to identify relevant literature. “phenolog*” was used to restrict search results to phenology-specific texts, while “deep learning” was added to restrict to the specific nature of machine learning methods. We searched these terms in titles, keywords, and abstracts. We considered literature published from January 2016 until September 2021.

An overview of the search and selection process is given in Figure 2. After an initial search a total of 304 studies were found. Due to the overlap among databases and the repeated search with similar search strings, we identified and excluded 73 duplicate matches. To further filter the relevant studies, we defined and applied the following inclusion and exclusion criteria:

• (IN): The study is published in a peer-review journal or a peer-review conference proceeding.

• (IN): The study is written in English.

• (IN): The study combined phenology research with a deep learning approach.

• (EX): The study used deep learning methods to map crop fields without using phenological features.

• (EX): The study used only shallow-learning methods, e.g., random forest or SVM for phenology research.
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FIGURE 2. Study selection process.


After a first screening of title and abstract, 146 publications were rejected, primarily due to not applying deep learning methods or not truly focussing on phenology analysis. The remaining 85 studies were analyzed in-depth, and we omitted additional 63 papers since they did not fit our IN criteria described above. In conclusion, the systematic search resulted in 22 studies. To further broaden the literature base, we added a one-step forward search starting on the studies identified by the database search based on Google Scholar citations. We checked whether the studies were listed in at least one of the five repositories in this review. Two other relevant studies were found in this search step. Eventually, the results presented in this SLR are based upon 24 primary studies complying to all defined criteria.




4. RESULTS AND DISCUSSION


4.1. Demography and Geography of Publications (RQ-1)

There has been a rapidly increasing interest in using deep learning for phenology research in recent years (Figure 3). The progressively rising number of published papers shows that researchers consider this research topic highly relevant. To get more insights into the geographical distribution of the study sites, we evaluated the country where each study was located. The primary studies were conducted in eleven different countries. Only the authors of one study were located in two different countries (Cao et al., 2021). Three studies have been performed in Europe; nine studies have been performed in North America, two studies in South America, six in Asian countries, and four in Australia and New Zealand. Sixteen studies were located in temperate areas, one in boreal forest, two in mediterranean areas, and two in the tropics. An overview presenting the demography and geography of the publications can be found in Supplementary Table S1. Ten of the 24 primary studies are written solely by researchers with computer science or engineering background. Ten studies were conducted in interdisciplinary groups with researchers from both fields. Four studies were written solely by ecologists. The results show that due to the steady progress in machine learning and computer vision techniques, ecologists and computer scientists are increasingly working together (Soltis et al., 2018, 2020; Wäldchen and Mäder, 2018b; Pearson et al., 2020). However, in order to apply new techniques to answer ecological questions, it is necessary to further strengthen and extend these interdisciplinary collaborations (Craven et al., 2019).
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FIGURE 3. Number of studies per year of publication. In 2021, we only reviewed publications up to September 2021.




4.2. Vegetation Type (RQ-2)

The primary studies were conducted across different vegetation types, i.e., grassland, forest, shrubland, and agricultural land (cp. Figure 4A). Thereby, croplands (seven studies), commercial plantations (five studies), and forests (seven studies) were the most studied vegetation types. Two studies were conducted in grasslands, of which one study focused savanna-like vegetation and the other study studied savanna-like vegetation plots, as well as managed grasslands. Three studies used herbarium specimens and, therefore, adding them into the specific vegetation type category was impossible. Automated phenology stage classification is primarily being promoted in the agricultural sector. Also, it has mainly economic reasons because, e.g., the timing of weed control or harvesting depends on phenology. Additionally, crops usually grown in monocultures make croplands and commercial plantations an exciting target for studying phenology. Focusing on a specific species is more straightforward in building the training data set and evaluating the image data.
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FIGURE 4. (A) Extent of the investigated vegetation types across primary studies. Studies that used herbarium materials are not included. (B) Overview of main phenological stages and the number of studies that investigated them. Some studies investigated several phenological stages.




4.3. Observational Scale (RQ-3)

As discussed in section 2, phenological events can be recorded at different observational scales, i.e., individual scale, plot scale, regional scale, and global scale. The vast majority of the primary studies examine phenological stages on single individuals. Ten studies explored phenology on a regional level. No single study operates on a global level. Therefore, deep learning is primarily intended to simplify the very time-consuming and cost-intensive direct phenological measurements so far. In the long term, it will be possible to automatically generate more in-situ data over a wide geographical range and complement the manual observations by humans. In addition, it will become increasingly important to combine phenological monitoring methods at different observational scales. However, mismatches in scale and precision of observations between ground based and remote sensing measurements complicates the interpretation of phenological metrics (Berra and Gaulton, 2021). With the automation of data acquisition at different scales, it will become even more important to develop unified metrics and ontologies (Stucky et al., 2018).



4.4. Phenological Stages (RQ-4)

Different phenological stages were recorded for phenology studies. The main phenological stages are the breaking of leaf buds or initial growth, expansion of leaves or SOS, the appearance of flowers, appearance of fruits, senescence (coloring), leaf abscission, or EOS (cp. Figure 4B). More than half of the studies focused either on the expansion of leaves (SOS) or on the flowering time. Ten studies recorded several phenological stages during the year. However, most studies record only a single phenological stage, which leads to the fact that we hardly have intra-annual time series of the same individual, but only at a specific phenological time. Autumn pheno-phases, such as leaf coloration and leaf fall, have received considerably less attention compared to their spring counterparts, i.e., budburst and leaf unfolding, but are equally important determinants of the duration of the growing season and thus have a controlling influence on, e.g., the carbon-uptake period.



4.5. Training Data (RQ-5)

To classify phenological stages automatically with the deep learning approach, a large amount of training material is needed. Across the primary studies, different methods were used to acquire these training materials (cp. Figure 5). Most studies used digital repeat photography. Only one study combined different methods and used digital repeat photography and UAV images but not for the same landscape.
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FIGURE 5. Utilization of different methods for acquiring training data across primary studies.


In total, twelve studies used images from digital repeat photography and analyzed those with deep learning methods. More specifically, three studies used handheld cameras where users manually capture images, while eight of the primary studies used automated, repeated image capturing systems. In general, studies were very diverse with respect to the way of installation and the chosen camera model. Table 1 provides a comparative overview of all the studies in terms of training data.


Table 1. Overview of studies used digital repeat photography for phenological study with DL methodology.
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Digital photography under canopy. Correia et al. (2020) used a wildlife camera on three sites in Canada to capture budburst time in black spruce (Picea mariana) and balsam fir (Abies balsamifera) forest stand. They installed the cameras before the growing season, when budburst usually occurs, horizontally under the tree canopy onto nearby trees with approximately 5 m distance from each other. The cameras took RGB images every 30 min during daytime (cp. Figure 6A). Milicevic et al. (2020) had a similar setting for classifying the stage of flower development in an olive orchard in southern Croatia. They also acquired images in an automated manner during springtime at a distance of 40–50 cm from the tree canopy. Kim et al. (2021b) used fixed cameras installed under the canopy to identify the presence of flowers on different forest sites in Seoul's national university forests in South Korea. The investigated forest stands were dominated by broadleaved trees. They did not mention precisely how they installed the cameras, but their images show trees horizontally captured under the canopy. In contrast to the previously mentioned studies, they used the images only as validation and test dataset. The training dataset was acquired from web sources, and binary labels had been assigned indicating whether a depicted tree is in bloom or not. Wang et al. (2020) proposed an autonomous apple flower mapping system in which the image data were collected by a mobile platform automatically. Cameras were installed approximately perpendicular at 2.2 m from the ground to capture the entire canopy. The vehicle traveled forward at approximately 5 km/h with the camera facing the trees to capture images every 0.5 m (cp. Figure 6C). All data were collected within one day. In a second study, Wang et al. (2021) used the same method for data acquisition, but data were collected not only on one but throughout 26 days to classify different flower phenology stages and their distribution on the tree. The flowering stage was also investigated by Pahalawatta et al. (2020). They manually collected images during the flowering season of grapes. In contrast to all other studies, pictures were taken on monochrome background (cp. Figure 6B) and not in natural environment. Ganesh et al. (2019) tried to determine the time of fruiting automatically. They used a dataset of orange fruit images, which were taken manually with a digital camera just ahead of the commercial harvesting season. There was no further information on how the pictures were taken, but the authors report that about 60 oranges are depicted on one image.
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FIGURE 6. Examples of image capturing methods. (A) A wildlife camera was used to capture images for budburst classification in coniferous forests (Correia et al., 2020). (B) Images were taken manually on a plain background (Pahalawatta et al., 2020). (C) Images of apple flowers were collected by a mobile platform (Wang et al., 2020). (D) Digitalized herbarium specimens (Lorieul et al., 2019). (E) Close-up shots of certain areas of agriculture were taken automatically (Yalcin, 2017). (F) Aerial images were taken by high resolution UAVs imagery (Pearse et al., 2021). (G) Sentinel-2 and Worldview-2 satellite images (Wagner, 2021). (H) Camera installed on an 18 m tower using digital timestamps (Nogueira et al., 2019).


Digital photography above canopy. Cao et al. (2021) was one of the pioneers in using phenocam images for leaf phenology prediction with the deep learning (DL) approach. They installed digital cameras in 56 sites in the northeastern United States and Canada in the deciduous broad-leaved forest. Each digital camera took one image every 30 min between 11:30 to 13:30. A second study by Nogueira et al. (2019) used pictures taken from a tower above the tree canopy (cp. Figure 6H). They collected a dataset with a near-remote phenological system composed of a camera set up in an 18 m tower in a savanna-like vegetation in Brazil. The camera was configured to automatically take pictures every hour over 36 days between August and October 2011. The study aimed to identify different plant species by their different greening times.

Digital photography on croplands. Image acquisition methods applied on cropland differ from those applied on forests or tree plantations. Yalcin (2017) collected an image dataset consisting of automatically taken close-up shots of some regions of agricultural fields every 30 min by 1,200 smart ground stations all over Turkey (cp. Figure 6E). They classified nine different phenology stages. Velumani et al. (2020) selected four different sites in the north and southeast of France to install 47 stationary sensor arrays. These sensor arrays consist of a telescopic pole installed vertically, equipped with an RGB camera 1 m above the top of the crop and additional meteorological sensors. The RGB cameras took one image per day at solar noon over three years. The goal of their study was to automatically decide whether spikes are present. Han et al. (2021) used handheld digital cameras to take images manually and classify ten different growth stages automatically. They took images during daytime from July to November 2018. All images were taken at the height of 1.5 m from four vertical and three horizontal directions.

The analyzed studies show that cameras mounted directly in the canopy can provide images that can make individual-based phenological observations in forests and plantations. So far, there is no extensive network of these installations spanning entire regions. However, we can expect such imaging schemes to increase in the future. As digital cameras become cheaper each year, and machine learning (ML) methods make it easier to analyze this amount of imagery, these types of installations will provide important phenological data alongside canopy cameras in the future, supplementing more expensive manual surveys by experts or citizens scientists. They will also become, in particular, more important in areas where it is difficult to access and regularly sample.

Herbarium specimen. Three of the primary studies used herbarium specimens in combination with deep learning to classify phenology stages (cp. Table 2). Lorieul et al. (2019) used four digitized specimen datasets from American herbaria (in total, 163,233 herbarium specimens belonging to 7,782 species) for automated annotation of phenology stages on herbarium specimens (cp. Figure 6D). They first tested the ability of deep learning techniques to recognize fertile material on the specimen. Second, they determine whether it is a flower or a fruit. A third experiment dealt with the automated assessment of nine different predefined phenology stages. Davis et al. (2020) used more than 3000 herbarium specimens from six common wildflower species of the eastern US to count reproductive structures such as buds, fruits, and flowers. Goëau et al. (2020) used 21 herbarium specimens of Streptanthus tortuosus from the Brassicaceae family to automate the detection, segmentation, and classification of four reproductive structures (flower buds, flowers, immature fruits, and mature fruits). All three studies demonstrated success in automating the collection of large amounts of phenology-relevant data from herbarium specimens with DL technologies.


Table 2. Overview of studies that used herbarium materials for phenological study with DL methodology.
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UAV imagery. In total, four primary studies used drone images (cp. Table 3). In two studies, the aim of the investigations was to test the potential to utilize phenology to enhance species identification in RGB aerial imagery. One study estimated the rice grain yield in specific phenological stages. Only in one study specific phenological stages were detected. In Nogueira et al. (2019) images were taken between October 2015 and February 2017, one timestamp (total 15 images). These timestamps were mosaicked into a single orthoimage for spatio-temporal vegetation pixel classification. The goal of the study was to identify species by their different greening times. Pearse et al. (2021) also acquired a large orthoimage. They collected aerial imagery over Tauranga, New Zealand in summer and autumn. Here, the presence of pohutukawa (Metrosideros excelsa) was detected by its red flower (cp. Figure 6F). Yang et al. (2019) and Yang et al. (2020) used a fixed-wing UAV with one RGB camera and one multispectral camera to take images from different rice crop fields. In Yang et al. (2019) rice grain yield was estimated at the ripening stage using deep learning technology. In the second study Yang et al. (2020) propose an approach which identifies eight principal growth stages of rice according to the BBCH scale (Lancashire et al., 1991) and the harvest time directly from RGB images with DL. The extraction of phenological information from drone imagery using DL technology has rarely been performed. There is still a need for more research in this area, as drones have been used more and more for ecological purposes in recent years (Dalla Corte et al., 2020; Corcoran et al., 2021; Mohan et al., 2021).


Table 3. Overview of studies that used UAVs imagery for phenological study with DL methodology.
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Satellite imagery. Six primary studies used satellite imagery in combination with deep learning (CP. Table 4). Tian et al. (2020) used Landsat multispectral imagery to analyze the phenology of the invasive species Spartina alterniflora to predict its occurrence in the Beibu Gulf, located in the northwestern South China Sea. Here, two key phenological periods (green and senescence) of Spartina alterniflora were identified by analyzing the NDVI index. Extracted phenology features were then used in combination with deep learning to detect S. alterniflora. Cai et al. (2018) used Landsat multispectral images to calculate different phenology-related vegetation indices on croplands with the aim to identify different crop species using DL technologies. Also, Li et al. (2020) tried to classify different crop types based on different phenological developmental times using Sentinel-2 and Landsat-8 satellite in combination with different vegetation indices. Kim et al. (2021a) used satellite images from Sentinel-2 to identify deforested areas in North Korea using the NDVI index in combination with DL. Wagner (2021) used satellite imagery to predict the occurrence of in the Pleroma spp. in the entire Brazilian Atlantic Forest (cp. Figure 6G). Here the magenta-to-deep-purple blossoms of the trees are used for the classification tasks. Only Xin et al. (2020) used satellite data in combination with DL technologies to retrieve phenology metrics. They detected SOS and EOS of deciduous broadleaf, evergreen broadleaf, drought-deciduous broadleaf, and graminoid forests in the USA. The primary aim of most studies using satellite data was not to classify phenological stages but to classify the presence of plant species according to species-specific phenological characteristics. Only one study retrieved phenology metrics with DL. The extraction of phenological information from satellite images with DL technology is still underrepresented and shows an open research field.


Table 4. Overview of studies that used satellite imagery for phenological study with DL methodology.
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4.6. Deep Learning Methodology (RQ-6)

Machine learning methods are often categorized depending on the type of task the trained model shall solve. Thereby, one categorization is based on the output a model predicts and therefore distinguishes: (1) classification tasks aiming to predict categorical class labels, e.g., the phenological stage of a plant, from (2) regression tasks aiming to predict continuous values, e.g., the amount of biomass depicted on an image (Goodfellow et al., 2016). Another categorization is based on the model's input type and the performed analysis thereof. Among the primary studies, only image data have been used as input to the trained models and the applied deep learning techniques are used to solve computer vision tasks. These techniques are categorized into: (1) image classification approaches that predict a categorical label based on the entire contents of an image, (2) object detection approaches that first predict the location of sought objects, e.g., flowers or leaves, within an image and then subsequently classify a categorical label for only the contents of this region, and (3) object segmentation approaches that predict a categorical class label for each pixel within an image, e.g., foreground and background, and thereby allow prediction of fine-grained, pixel-precise masks separating the sought objects from the background (Goodfellow et al., 2016). We observed some inconsistencies in the usage of this terminology across the primary studies and scientists with different backgrounds. For example, several studies perform a classification from a machine learning perspective but refer to it as detection. Below, we categorize all primary studies based on the machine learning task they solve into four groups: image classification, object detection, object segmentation, and regression. Figure 7 provides an overview of all DL methods used for different types of landuse, image origin, and type of phenology expression under study. Classification and segmentation methods are most frequently applied to all types of studies.
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FIGURE 7. Overview of all DL methods used for different types of (A) landuse, (B) image origin, and (C) type of phenology expression under study.


Classification approaches. Convolutional neural networks (CNN) are the most common approach to computer vision tasks since they allow to effectively deal with high input dimensionality of images while preserving the spatial relationship of features depicted in these images (Gu et al., 2018). A CNN is a deep neural network inspired by the organization of the natural visual cortex and designed to automatically and adaptively learn spatial hierarchies of features, i.e., a cascade of patterns where lower level features are used to compose higher level patterns. A CNN model is typically composed of three core layer types: convolution, pooling, and fully connected layers. The first two, convolution and pooling layers, perform feature extraction, and the fully connected layer typically maps the extracted features to the network's output and thereby performs the actual classification. Numerous CNN architectures for classification tasks have been proposed in the last decade, with examples of seminal architectures being: AlexNet, VGG, ResNet, Inception, and more recently EfficientNet (Raghu and Schmidt, 2020). These CNNs differ from each other in terms of their layers, their parameterization and other individual concepts, e.g., residual connections, inception blocks, and batch normalization. Ten primary studies used deep learning methods to perform classification tasks (cp. Table 5), such as the presence of certain indicator species, the presence of flowers, open vs. closed flowers, and differentiating phenological stages. Five primary studies systematically compared the performance of deep learning methods with traditional shallow learning methods or vegetation indices. All found that deep learning methods consistently outperformed traditional methods. Han et al. (2021) present the only study where a CNN was composed of four branches to process images from different perspectives separately. They concatenate the four feature vectors retrieved from the four individual perspectives and use an eventually fully connected layer to gain an overall classification score. Among other alternatives, i.e., early fusion and score level fusion, late fusion is often yielding the best performance (Rzanny et al., 2019; Seeland and Mäder, 2021). Yang et al. (2020) proposed a multi-modal analysis of images and accompanying temperature readings and fused the individual features closed to the network's output to classify phenological stages on croplands. Wagner (2021) is the only study that used satellite data for a classification task. For this investigation blossoming Pleroma trees were mapped using Sentinel-2. The tiles were split in images of 1.28 km length per side. Each image was classified whether it contained the blossoming Pleroma trees or not. The authors chose the classification method over the semantic segmentation method (more details below) for two main reasons. First, it enabled the manual production of a training sample relatively quickly. Second, binary classification is more straightforward and less computationally intensive, hence drastically reducing the time of processing and subsequent analysis (Wagner, 2021).


Table 5. Overview of deep learning methods in classification tasks.
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Object detection approaches. While image classification operates on the entire image and aims to assign one or multiple labels (aka classes), object detection first aims at locating objects of interest within an image and then assigning labels to each identified object encircled by a bounding box. Object detection approaches fall into two categories: (1) two-stage approaches, such as R-CNN, and (2) one-stage approaches, such as YOLO and RetinaNet, with the former being more precise and the latter being more computationally efficient. Only a single primary study used an object detection method. Correia et al. (2020) used a RetinaNet to identify and localize multiple open buds per image from time-lapse digital photography in black spruce and balsam fir dominated forests. RetinaNet was chosen due to its outstanding detection performance with dense and small-scale objects (Lin et al., 2017), which is a good match for the small buds analyzed in this study.

Image segmentation approaches. Segmentation reaches the deepest possible level of detail in every single image pixel. Image segmentation is the process of classifying each pixel in the image as belonging to a specific category. This is why the output of the segmentation approach is not a set of class labels or bounding boxes, but a classification for each pixel of an image (Raghu and Schmidt, 2020). Although there are several image segmentation methods, two types of segmentation are predominant in the domain of deep learning. These are semantic segmentation and instance segmentation. Semantic segmentation performs pixel-level labeling with a set of object categories (e.g., land use categories or land cover in remote sensing data) for all image pixels (Goodfellow et al., 2016). Thus it is generally a more complex task compared to image classification, which predicts a single or multiple labels for an entire image. Instance segmentation extends the scope of segmentation further by detecting and delineating each object of interest in the image (e.g., partitioning individual flowers or fruits). Prominent semantic segmentation architectures are fully convolutional networks (FCN), and the more advanced U-Net consisting of a fully convolutional pipeline initially encoding the image via convolution operations before upsampling the desired mask via up-convolution operations. Mask R-CNN is popular deep learning instance segmentation technique that performs pixel-level segmentation on detected objects. The Mask R-CNN algorithm can accommodate multiple classes and overlapping objects. Ten primary studies focused on segmentation tasks related to phenology analysis (cp. Table 6). Semantic segmentation was mainly used for analyzing remote sensing data from satellites (Cai et al., 2018; Li et al., 2020; Tian et al., 2020; Kim et al., 2021a). The principal advantage of using CNNs in remote sensing is their accuracy, which is similar to human-level classification and detection accuracy and enables rapid application over vast areas and through time (Brodrick et al., 2019). All remote sensing studies analyzed multispectral data with different time stamps to segment species or land use categories based on species-specific phenological features. Instance segmentation, on the other hand, has been used, e.g., for the analysis of herbarium specimens (Davis et al., 2020; Goëau et al., 2020) to count phenological characteristics such as fruits or flowers. Mask-RCNN was used in all studies applying instance segmentation.


Table 6. Overview of deep learning methods in segmentation tasks.
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Regression problems. CNN models are mainly used for two-dimensional arrays like image data. However, we can also apply CNN with regression data analysis. A regression layer can be included at the end of the network to predict continuous data, such as yield or days in the year. Three primary studies used deep learning techniques to solve a regression problem (cp. Table 7). Xin et al. (2020) retrieved phenological metrics from a time series of satellite data using a four-layer neural network. Their study was the only to directly predict the phenological events SOS and EOS from satellite images. Their results show that machine learning outperforms rule-based methods, although the authors noted that a random forest algorithm achieves better results than the neural network. Cao et al. (2021) developed a method to predict leaf phenology of deciduous broadleaf forests from individual PhenoCam images using deep learning approaches. They tested four convolutional network architectures (AlexNet-R, VGG-R, ResNet50-R, and ResNet101-R) for their ability to predict vegetation growing dates based on PhenoCam images at 56 different sites. In terms of model performance, ResNet achieved the best accuracy with an RMSE of 4.4 days. Yang et al. (2019) extracted 256 features from RGB images depicting the scene as well as 128 features from multispectral images depicting the same scene. The outputs of these two branches were concatenated into a feature vector and then fed into three consecutive fully connected layers to estimate yield at different phenological stages with a deep regressive approach. Deep learning with different training and testing strategies outperformed the traditional vegetation indices in all their experiments.


Table 7. Overview of deep learning methods for regression problems.
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In summary, the use of deep neural networks to analyze phenology imagery proofed very beneficial across a variety of studies. Researchers experimented with their capability in substituting tedious and error-prone manual tasks, as well as improving traditional analyses performed with shallow learning networks, conventional statistical methods, or via vegetational indices. In general, the reviewed primary studies showed patterns in how they applied DL methods, what type of training images they utilized, the type of studied phenology expression and the studied vegetation type. Figure 8 visualizes these patterns as a diagram. In particular, the following observations can be extracted from this diagram:

• The majority of DL approaches study segmentation and classification tasks.

• There has only been proposed one detection approach.

• Most of the used training images were acquired by near surface digital cameras.

• The most studied part of the phenology cycle was the spring aspect.

• Multiple phenological stages were especially studied on croplands, while in forest and plantation mostly one or two phenological stages were studied.
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FIGURE 8. Diagram describing articles according to the defined categories.





5. RESEARCH TRENDS AND FUTURE DIRECTION


5.1. Automating Ground Based Observation

Increasing the number of ground-based observations is extremely important, especially in countries that lack traditional phenological observing networks. Most existing networks, aside from those in Europe, selected locations in North America, and a few other countries, have a relatively short historical record and often a limited number of stable, consistent monitoring locations. Building a global systematic, long-term monitoring network with unified standards of phenology measures and definitions is essential (Tang et al., 2016). The analysed primary studies in this review show that automated digital repeated photography combined with deep learning technologies for automated image-based phenology stage identification allows phenology monitoring similar to human-based observation. Such installations represent an extraordinary opportunity for phenology projects, like the US National Phenology Network or the European Phenology Network, and countries currently lacking a phenological monitoring network. With standardized recording systems and evaluation methods, ground-based phenological data can be recorded over larger areas in the future. Such data are essential for better understanding and predicting future environmental processes. In addition, ground-based camera systems and automated image analysis can provide high temporal resolution for calibrating satellite-based monitoring initiatives.

It is crucial to test the potentials and limits of different recording methods under different environmental conditions in this research area. In order to be able to evaluate the images created automatically, the recording situation is of great importance. So far, the focus has been on comparing different DL architectures and less on the image acquisition methods. Similar to experiments for automatic plant identification (Unger et al., 2016; Carranza-Rojas et al., 2017; Rzanny et al., 2017, 2019) experiments should also be carried out on different recording conditions for automated ground-based phenology stage monitoring. In addition, most studies so far have only focused on one phenological stage. It is essential to carry out phenological monitoring throughout the year. Therefore, in the future, models that allow monitoring different phenological stages throughout the year should be built and tested.



5.2. Analyzing Images From PhenoCam Networks With Deep Learning

The PhenoCam network provides free, publicly accessible digital imagery at the continental level. To date, most studies use indirect methods to identify phenology variation based on the time series of PhenoCam images. The indirect methods track changes in images by deriving handcrafted features such as green or red chromatic coordinates from PhenoCam images and then apply algorithms to derive the timing of phenological events, such as SOS and EOS. The use of these handcrafted features ignores high-level information in digital images. More importantly, these studies generally required at least two images or even the time series to obtain information related to leaf phenology. The study by Cao et al. (2021) was the first to directly monitor phenological events using deep learning technology and Phenocam Images. They tested deep learning models on predicting leaf growing dates after SOS in a year from a given PhenoCam image. Compared with traditional methods that predict leaf phenology with the mentioned handcrafted features from time-series data, they argued that the use of deep learning methods allows inferring daily leaf phenology from individual PhenoCam images and can potentially improve image processing accuracy and reduce laboratory costs. We expect many more studies to appear in the future evaluationg PhenoCam images beyond the vegetation color indices calculated so far.



5.3. Analysing Citizen Science Image Data With Deep Learning

An alternative set of resources that yet has to be harnessed for phenology studies comprises repositories of citizen science images. Citizen ccientists submit several thousand plant images daily collected with Apps like iNaturalist (Nugent, 2018), Pl@ntNet (Goëau et al., 2014) or Flora Incognita (Mäder et al., 2021). These images have a timestamp and location information and can thus provide important information about, e.g., flowering periods, similar to herbarium material. In a first study (Barve et al., 2020) introduced a method using Yucca flowering phenology as a case study for analyzing flowering phenology from iNaturalist images. In this study, however, the phenological annotation of the images was done manually which is very time-consuming and requires expert knowledge. A first, recently published study shows deep learning technologies can be successfully used to extract phenological information from citizen science images. A CNN classified a two-stage phenology (flowering and non-flowering) with 95.9% accuracy and a four-stage phenology (vegetative, budding, flowering, and fruiting) with 86.4% accuracy based on Alliaria petiolata (Reeb et al., 2022). As also the studies on the herbarium specimens showed, such annotations can also be done automatically with deep learning algorithms. Large image databases such as GBIF (www.gbif.org) and DigBio (www.idigbio.org) provide an excellent database for developing classifiers that not only automatically identify species (Carranza-Rojas et al., 2017; Wäldchen and Mäder, 2018a) but also phenological stages. If citizen scientists simply upload images of specific plants depicting different phenological stages, the obvious synergies between the large amounts of data generated by citizen science projects and the data-demanding analytical power of artificial intelligence could effectively be exploited (Correia et al., 2020).



5.4. Deep Learning for Phenology Modeling

Researchers have developed statistical and process-based models for forecasting the occurrence of vegetation phenological events. The idea of these modeling approaches is to use external climate data as input to predict the timing of key phenology metrics (Zhao et al., 2013; Hufkens et al., 2018). So far, phenology in the land surface models or dynamic global vegetation models (e.g., Biome-BGC (BioGeochemical Cycles) model, Lund-Potsdam-Jena model) generally adopt simple rule-based functions to account for the impacts of meteorological drivers, which can lead to large uncertainties in the modeled terrestrial ecosystem processes (Zhou et al., 2021). With the increase in automatically generated data (e.g., digital repeated photography in PhenoCam networks or satellite images), the amount of data available is constantly growing. It is time to explore new approaches on processing big data for phenology modeling. Only recently a study was published where a one-dimensional convolutional neural network regression (1D-CNNR) model was developed to model global vegetation phenology using meteorological variables and satellite images as inputs. This research by (Zhou et al., 2021) demonstrates that the 1D-CNNR model has the potential for large-scale modeling of vegetation phenology. Future research should integrate deep learning techniques even more into phenology modeling. Hybrid modeling approaches, that couple physical process models with the versatility of data-driven deep learning models, are a most promising future research direction (Reichstein et al., 2019).




6. CONCLUSIONS

Our review provides a comprehensive overview on the status and development of a recently emerging research field: the utilization of deep learning methods in plant phenology research. We describe and briefly summarize the extensive range of methods applied on different spatial and temporal scales concerning data collection and analysis. Altogether, we identified 24 studies meeting our criteria, most of them published in 2020/21. This review indicates that analysing phenology data with deep learning techniques is still in its infancy, compared to other fields such as, e.g., image-based automated species identification, where DL is already indispensable. Given the great potential for improving land surface- or dynamic vegetation models, it is time to develop standardized approaches for different scales and types of input data. So far, for the individual scale, the main focus of the studies was on recognizing phenological stages from images, while only very few monitored these stages over an entire year. However, for satellite and UAV-derived data, the focus was on identifying and localizing plant species based on species-specific phenological characteristics. A wide range of different DL methods was applied in the examined studies, with classification and segmentations being most often employed. Our finding highlights the great potential of DL to take plant phenology research to the next level, and we strongly encourage researchers to realize the enormous potential of DL methods in this research field.
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Tree species identification is critical to support their conservation, sustainable management and, particularly, the fight against illegal logging. Therefore, it is very important to develop fast and accurate identification systems even for non-experts. In this research we have achieved three main results. First, we developed—from scratch and using new sample collecting and processing protocols—an dataset called CRTreeCuts that comprises macroscopic cross-section images of 147 native tree species from Costa Rica. Secondly, we implemented a CNN for automated tree species identification based on macroscopic images of cross-sections of wood. For this CNN we apply the fine-tuning technique with VGG16 as a base model, pre-trained with the IMAGENET data set. This model is trained and tested with a subset of 75 species from CRTreeCuts. The top-1 and top-3 accuracies achieved in the testing phase are 70.5% and 80.3%, respectively. The Same-Specimen-Picture Bias (SSPB), which is known to erroneously increase accuracy, is absent in all experiments. Finally, the third result is COCOBOLO, an Android mobile application that uses the developed CNN as back-end to identify Costa Rican tree species from images of cross-sections of wood.

Keywords: deep learning, convolutional neural network, plant classification, automated image-based tree species identification, costa rican tree species, xylotheques


1. INTRODUCTION

Costa Rica is one of the countries with more tree species in the world. Within its 51, 900 km2 it has around 2, 300 species distributed in approximately 700 genus and 130 families. These figures are even more significant when we compare them to those of other regions. For example, the continental United States of America has about 700 species over a territory of about 10 million square kilometers (Fournier Origgi, 2016).

Trees are essential to sustain life on Earth, particularly, human life. They provide raw material for production of many goods and services, protect watersheds and wildlife, improve air quality, and help counter climate change by removing carbon dioxide from the air, storing carbon, and releasing oxygen into the atmosphere, among many other environmental services. Costa Rica has carried out important conservation efforts, such as the PAS (Pago por Servicios Ambientales) program, which grants financial recognition to farm owners who establish reforestation projects or natural regeneration (ONF, 2020). It has also enacted laws that attempt to prevent illegal logging of tree species (SCIJ, 1996; Quesada-Monge, 2004). Thus, an accurate and fast tree species identification is vital for their conservation and proper management. Accordingly, tree species identification has become a challenge for environmental ministries and environmental organizations in all countries.

Because, the identification of tree species is also of great value in legal, commercial, industrial, forensic, and paleontological contexts, where only samples of wood are present, an identification based solely on wood samples is often needed.

Wood species identification can be performed at a microscopic and/or macroscopic level. The former is more accurate than the latter, but requires special equipment and techniques which are not always available. Thus, in this research we decided to use macroscopic images only. The macroscopic characteristics of wood are those that can be seen with the naked eye or with the help of a small magnification (there is no general agreement on the level of magnification that can be considered “small”). In most cases, the set of macroscopic characteristics unequivocally defines each species, which allows its identification (Díaz-Vaz, 1979). Traditionally, identification at a macroscopic level is a manual process that requires a high degree of knowledge to observe and differentiate certain anatomical structures present in a wood sample. Observations are performed on each of the three cutting planes: transverse (cross) section, radial section and tangential section (see Figure 1), with the help of a hand lens (Wiedenhoeft, 2011a,b). Then, by using an identification key, wood species atlases or field guides and manuals, the expert determines the species of the wood sample. Therefore, the accuracy of such identification critically depends on the observer's expertise.


[image: Figure 1]
FIGURE 1. Cutting planes (taken from Hoadley, 2000).


Wood species identification is a very complex task even for experts. For this reason it has been addressed from a computational view point. The most recent approaches are based on deep learning. This is motivated by the success achieved with these techniques in automatically identifying plant species based on pictures of leaves, flowers and other plant components different from wood cuts (Carranza-Rojas et al., 2017; Goëau et al., 2017). The success achieved from this perspective has been remarkable, for example, the Pl@ntNet application1 is capable of identifying thousands of plant species of the world's flora from an image. However, it has already been documented that image datasets of wood cuts are few, uneven across taxa, and/or small; consequently, not ideal for deep learning approaches (Figueroa-Mata et al., 2018a). Perhaps, the main reason is that the process of acquisition of samples and both macroscopic and microscopic images of wood is complex and expensive. Besides human experts do not require, for example, many wood samples of the same species to make an identification. Nevertheless, the availability of smartphones equipped with high-quality cameras and low-cost digital microscopes that take photographs comparable to microscopic images is making feasible a change.

Below is an overview of the most recent publications in this field. Kwon et al. (2017) proposed six different CNN models (variants of LeNet and MiniVGGNet architetures) to identify five softwood species from Korea. A smartphone camera was used for obtaining macroscopic wood images. The best accuracy achieved was 99.3% with a LeNet3 architecture.

Ravindran et al. (2018) proposed one variant of the VGG16 model pre-trained on IMAGENET to identify 10 neotropical wood species of the Meliaceae family. They tested the proposed model to species and genus levels, achieving an accuracy of 87.4 and 97.5% respectively.

In Apolinario et al. (2018) a small CNN architecture was proposed to identify seven commercial timber species from Peru. From each image, they extracted patches of three different sizes, namely, 32 × 32, 64 × 53 and 128 × 128 pixels, with which they built three datasets for their experiments. A portable digital microscope connected to a personal computer was used to get the wood images. The best accuracy achieved was 94.05% for the 128 × 128 pixels image dataset.

Oktaria et al. (2019) conducted a comparison of four CNN architectures: Kayu30Net, AlextNet, ResNet and GoogNet on a datset composed of 30 species of wood images which were obtained from the Xylarium Bogoriense, Indonesia. However, they did not specify further details about the database or the training process of the models, e.g., if they use some kind of transfer learning.

Ravindran et al. (2019) applied the ResNet34 model pre-trained on IMAGENET to identify 38 wood species corresponding to 15 genus of commercial interest in Ghana. They reported an accuracy of 97.0% in the laboratory and 72.0% in field testing.

In Apolinario et al. (2019) the authors proposed a CNN architecture based on Inverted Residual Mottenecks Blocks (IRB) and depthwise convolutional layers that allow the identification of known species and the clustering of those that are not. In this sense, the proposed architecture is a classifier and clustering algorithm. For their experiments they used two databases, the first one composed of images of 16 wood species from Perú and the second one is the Forest Species Database Macroscopic (FSD-M) 2 composed of images of 41 wood species from Brazil (Filho et al., 2014). Accuracies achieved were higher than 91% for seen and unseen species during the training phase.

Yang et al. (2019) applied transfer learning to the pre-trained VGG19 model on IMAGENET dataset. Then, they used this already tuned model for the classification of 25 wood species, reaching an average accuracy per species of 93.63%. They also applied this strategy to the VGG16 and INCEPTIONV3 models, reaching an accuracy of 92.72 and 92.41% respectively.

Yusof et al. (2020) reported 100% accuracy when applying transfer learning to the RESNET50 model. The database they used was composed of 20 tropical wood species.

In Verly Lopes et al. (2020), an INCEPTIONV4-RESNETV2 model pre-trained on IMAGENET was used to classify 10 North American hardwoods species. The accuracy achieved was 92.6%.

Summarizing, most of the papers published about tree species identification from wood images share the following aspects:

• Use macroscopic wood images, specifically from cross-sectional woodcuts;

• apply transfer learning techniques to train the models proposed;

• the number of species considered is small, not greater than 40;

• do not indicate if their training/testing processes avoid the Same-Specimen-Picture Bias (SSPB), which substantially, but erroneously, increases accuracy, as was reported by Carranza-Rojas et al. (2018);

• have not developed mobile applications capable of accurately and quickly identifying wood samples to prevent illegal logging and mislabeling.

The main goal of this paper is to describe how we have applied deep learning techniques to the identification of Costa Rican native wood species. More specifically, we address the following three problems:

• Develop a new protocol that is practical, non-destructive, uses less space in xylotheques, and more quickly results in a number of samples appropriate for deep learning applications.

• Implement a CNN for automated tree species identification based on macroscopic images of wood cuts that has an average top-1 accuracy higher that 70%, for at least 70 tree species, while avoiding experimental biases such as the SSPB (Same-Specimen -Picture Bias) described in Carranza-Rojas et al. (2018).

• Develop a mobile application that uses the CNN as back-end to identify Costa Rican native tree species from images of wood cuts.



2. MATERIALS AND METHODS

One of the problems researchers face when they attempt to apply deep learning techniques to wood species identification is the lack of macroscopic image databases. To our knowledge, the only open-access database is the Forest Species Database — Macroscopic (FSD-M) of the Laboratório Visão Robótica e Imagem (Filho et al., 2014). It currently comprises 2,942 macroscopic images from 41 different forest species of the Brazilian flora. Because we wanted to test our research on species from Costa Rica and with a larger dataset, we collected wood samples that grow in Costa Rica and integrated them to the Víctor Rojas Xylotheque of the Costa Rica Institute of Technology.

To collect and process the wood samples, as well as to create the image database, we developed new protocols that standardize the involved processes. The following two subsections briefly describe the protocols created and first mentioned in Mata-Montero et al. (2018).


2.1. Sample Collection Protocol

All wood samples were collected from forests located along the Pacific Coast of Costa Rica (see Figure 2); specifically, collections were made at six pre-established sites:

1. Estación Experimental Horizontes, located in Guanacaste (10°42′10″N, 85°33′12″W) at an altitude of 120 m.

2. Cañas, located in Guanacaste (10° 27′ 02″ N, 85° 06′ 22″ W) at an altitude of 100 m.

3. Miramar forests, located in Puntarenas (10°01′29″N, 84°14′04″W) at an altitude of 270 m.

4. Parque Nacional La Cangreja, located in Puriscal (9.69°N, 84.36°W) at an altitude of 800 m..

5. Mogos forest, located in Península de Osa (8°45′00″N,83°22′59″W) at an altitude of 40 m.

6. San Juan, located in Península de Osa (8°39′02″N, 83°27′53″W) at an altitude of 35 m.


[image: Figure 2]
FIGURE 2. Location of forest reserves selected for sample collections.


In this research we do not use the information about altitude because the number of samples is still relatively small. However, this information is very important for other applications and could be used for machine learning applications once a larger dataset is created. If the xylotheque where samples are maintained has access to a GIS system and altitudinal maps, then altitude is generated by the GIS, otherwise it is critical to record it for other uses.

The protocol developed for the extraction of samples in the field includes the following steps:

1. Selection and evaluation of tree specimen. The tree specimen must be a healthy tree with a diameter at breast height (DBH) greater than or equal to 20 cm. The distance between the selected trees must be at least 15 m., in order to increase the variability between species. Once the tree is selected, its features are recorded: species, diameter, number of tree specimen, location, etc. Finally, a picture of the tree is taken from 1 m. distance (Figure 3A).

2. Selection and cleaning of point of perforation. A place is selected on the tree, free of branches and deformities. A 5 cm2 spot is cleaned, 1 m. above ground level, and bark is removed (Figure 3B).

3. Perforation of trunk. A perforation is done by using a battery operated 20v drill. The drill is equipped with a 1/2” diameter plug cutter and the perforation depth is approximately 80 mm. The perforation process is non-destructive. Healing of the tree takes 6–10 months. Once the perforation is finished, the drill is removed and the sample is exposed (Figures 3C,D).

4. Extraction of the sample. A pricker is introduced to break the basis of the cylinder and the sample is removed with needle-nose pliers (Figures 3E–G). Each sample has a length of approximately 75 mm and a 12.5 mm diameter.

5. Sample storage and preservation. The sample is stored in a sealed plastic bag that contains a 10 ml solution of 8 ml of water and 2 ml 95% alcohol. The sample is now ready to be taken to the laboratory (Figure 3H).


[image: Figure 3]
FIGURE 3. (A–H) Extraction process of a sample of wood.




2.2. Sample Processing Protocol

Once a sample has been extracted it is processed in the laboratory to prepare it for photography. This protocol includes the following steps:

1. Cleaning the sample. In the laboratory, each wood sample is cleaned in order to eliminate traces of bark and cambium, leaving only sapwood and heartwood. The sample is measured and weighed (Figure 4A).

2. Sectioning the sample. Depending on the actual length of each wood sample, each one is turned into four or five smaller cylindrical sections of 13 mm length by using a precision blade (Figure 4B).

3. Cutting the sections into cubes. Each face of each smaller cylindrical section is turned into a cube by using a tungsten blade (Figure 4C). The approximate size of each cube is 10 mm3.

4. Taking pictures. Each cube is photographed twice, first in fresh/green condition, then they are subjected to a drying process during 72 h at 65°C, and again are photographed in dry condition (Figure 4D). For each cube, three pictures are taken: one for a cross section, one for a tangential, and one for a radial section. Photographs are taken with a 20X magnification Celestron© 5 Megapixel electronic stereoscope.

5. Building up the database. Finally, metadata such as date and place of extraction, specimen ID, dimensions, and weight, among others, are recorded for each cube (Mata-Montero et al., 2018). Additionally, for each picture, the picture itself, the type of cut (cross, tangential or radial), cube it belongs to, and stage of the wood when the picture was taken (fresh, dry) is recorded and stored.


[image: Figure 4]
FIGURE 4. (A–D) Sample processing.




2.3. Dataset

The complete image database consists of pictures of 656 samples from 147 tree species from Costa Rica. It includes 42 families and 110 genera. It comprises about 3,516 images of each of the three sections, namely, transverse, radial and tangential, in two conditions, dry and fresh; that is, approximately, 3, 516 × 3 × 2 = 21, 096 images. Each image is in uncompressed JPG format with 2, 592 × 1, 944 pixel resolution, although there are some few images of smaller resolution. Appendix 5A lists the scientific names of each of the 147 species. Figure 5 shows some of the images in the database. Because this database is highly imbalanced, with several species having only one specimen, a subset with 75 species, described in Subsection 2.5.2, was used in the experiments.


[image: Figure 5]
FIGURE 5. Some of the images in the database.




2.4. Hardware and Software Used

All experiments were conducted on a desktop computer with an Nvidia TITAN RTX GPU with 24GB GDDR5 of memory and a AMD Ryzen 9 3900X 12-Core Processor with 32 GB of memory. As to software, Tensorflow version 2.2.0 and Keras version 2.3.0-tf were used to develop the CNN.

Photographs are taken with a 20X magnification Celestron© Labs S20 Stereo Microscope. Figma 6.0 was used for the graphic design and Ionic Framework 4.0 for the development of the mobile application COCOBOLO. Node.js 8 (version 12.16.1) was used as an intermediary for user management, database queries and communication between the front and back-end. The creation and management of text and image databases was implemented in MongoDB 4.4. Finally, we used TENSORFLOW SERVING (version 2.0) to deploy the CNN model for production. The back-end runs under UBUNTU 18.04 and was developed using TENSORFLOW (version 2.2) and the KERAS module.



2.5. Convolutional Neural Network Architecture

Since the number of images was small to train a convolutional model from scratch, we applied the fine-tuning technique using VGG16 as a base model, pre-trained with the IMAGENET data set.

For fine-tuning purposes, we removed the softmax layer of the base model and replaced it with our own, adding a Global Average Pooling layer, two dropout layers and two dense layers. In addition, we froze the weights for the first 10 layers so that they remained intact throughout the fine-tuning process.

We also experimented with other base models such as RESNET50 and MOBILENET, both IMAGENET pre-trained, but obtained similar results. For example, with RESNET50 the Voting Rule top-1 accuracy was 49.3%, compared to 70,5% when using VGG16, as described in the Results Section.


2.5.1. Data Augmentation

Deep learning models often implement a data augmentation stage to reduce overfitting and improve performance in imbalanced class problems (Goodfellow et al., 2016; Wong et al., 2016). Because the number of images per species is small for deep learning approaches, we applied two different data augmentation techniques.

First, we divided each original image into several non-overlapping sub-images (patches) that are four pixels apart. For instance, if the resolution of the original image is 1, 600 × 1, 200 pixels, we can obtain 35 sub-images size 224 × 224 pixels. Figure 6 illustrates this technique. We used an input size of 224 × 224 pixels due to physical limitations of the hardware used, specifically the graphics card memory. When there are memory limitations, at least two variables must be balanced: batch size and image dimension. It is recommended to use a relatively large batch size to generate good approximations of the gradient of the loss function. Furthermore, the images must also be large enough to capture a goog number of discriminating features. There is clearly a trade-off between these two variables. We consider 224 × 224 images and batches of 32 images to be a reasonable compromise since smaller images do not capture the multiple anatomical features present and larger images would force us to use smaller batch sizes.


[image: Figure 6]
FIGURE 6. Dividing the original image into sub-images (taken from Figueroa-Mata et al., 2018b).


Secondly, we implemented, on the fly, transformations such as rotation (value = 30), horizontal flip (value = True), vertical flip (value=True), width shift (value = 0.2), height shift (value = 0.2) and zoom (value = 0.3). For this, we used the ImageDataGenerator class of Keras, with the values indicated.



2.5.2. Training and Validation Datasets

Since the number of specimens per species in the database varies from 1 to 19 (see Table 1), we decided to diminish the imbalance by selecting those species with at least 5 specimens. As a result, we obtained 75 species of which, for example, 40 have 5 specimens. Appendix 5A shows, highlighted in bold, the scientific name of the selected species.


Table 1. Number of species and specimens in dataset.

[image: Table 1]

All datasets used in the work described in the Introduction Section use cross section images exclusively. This is possibly because cross sections tend to contain more information than radial and tangential cuts. Additionally, in Figueroa-Mata et al. (2018), it was confirmed that cross sections are more significant when training a convolutional neural network of 40 species from Costa Rica. Those 40 species are a proper subset of the set of species in CRTreeCuts. We are not aware of any other study that compares the relative significance of wood cuts for CNN-based tree species classifiers. Based on these facts we decided to use only cross sections — in dry condition, as this is their condition in xylotheques — to train, validate and test our models, leaving for future research the (combined) use of other cuts.

Images of the these 75 species were divided as follows: 70% for training, 20% for validation, and 10% for testing, resulting, after avoiding the Same-Specimen-Picture Bias (SSPB) (Carranza-Rojas et al., 2018) in approximately 1,712 images for training, 522 for validation and 426 for testing; and finally, after applying the data augmentation techniques described in section 2.5.1, in approximately 95,446 for training, 29,109 for validation and 23,187 for testing. We say that SSPB is avoided (it is absent) if all the images of the dataset are distributed so that, for each sample (specimen) S, its images are used exclusively in one of the following sets: training, validation or testing. Avoiding SSPB is very important, otherwise, it could lead to fictitiously good results as has been documented in Carranza-Rojas et al. (2018) and our own experiments.





3. RESULTS


3.1. Accuracy of CNN

We conducted several experiments with the convolutional model described in Section 2.5. Different values for hyper-parameters such as learning rate and batch size were tested, as well as optimizers such as SGD, Adadelta, Adam, and RMSprop.

The following two definitions of average top-k accuracy were used. The first one applies to image patches (subdivisions) obtained after data augmentation. The second definition applies to complete images.

Let T be the set of images I used for testing after data augmentation is applied. We define Accuracyk, the average top-k accuracy achieved by the model with set T as follows:

[image: image]

where hit(k, I) is a boolean function that indicates if one of the top-k candidate species in the ranking generated by the model is a correct identification of image I. An analogous definition can be given for the average accuracy achieved at the species level.

The average top-k accuracy can also be defined by a voting rule (VR) similar to the one introduced by Siew et al. (2017). More formally, we define VRAccuracyk, the average top-k accuracy with VR, as

[image: image]

where C is the set of complete (not subdivided in patches) images used for testing and VRhit(k, I′) is a boolean function that is true iff the correct species is in the set of k candidate species that more often are predicted correctly when all patches p of image I′ are tested with hit(k, p). This second measure of accuracy is more realistic, as it is associated with a complete image but Accuracyk is useful for training and validation, which is the approach we used.

The best average top-1 accuracy achieved for validation during the training phase was 65.6% (see Figure 7). For this, we used the SGD optimizer with a learning rate automatically fitted according to the change of the validation accuracy. Initially, the learning rate was 0.01 and was fitted by a factor of 0.1. After 10 epochs the validation accuracy did not improve significantly. In the testing phase, the average top-1 and top-3 accuracies were 59.9 and 76.5%, respectively.


[image: Figure 7]
FIGURE 7. Training accuracy and loss for CNN model.


Additionally, we calculated the top-1 and top-3 average accuracies using VR and equation (2). With VR, we achieved a 70.5% top-1 average accuracy and 80.3% top-3 average accuracy (see Appendix 5B).

Appendix 5B also presents the MRR for each species as well as the average over all 75 species. The mean reciprocal rank (MRR) was computed with the following formula:

[image: image]

where Q is the set of testing images and ranki is the ranking position achieved by the i-th image. Q consists of patches (Figure 6) generated in the data augmentation process, i.e., no voting rule is used.

Of the 75 tested species, there were six that the CNN could not identify even once, that is, the average top-1 and top-3 accuracies were both 0, when using the voting rule. The scientific name of these species and the number of specimens per species are shown in Table 2.


Table 2. Species never correctly identified by the CNN.

[image: Table 2]

To clarify what could be happening we analyzed in detail the classification that the CNN carried out for these species. Figure 8 shows an image of each of these six species and the image of the predicted species. It is interesting to highlite that, for each species, the top-1 (incorrectly) predicted species was always the same. For instance, the network always confused the species Pouteria filipes with the species Poulsenia armata, which seems reasonable, since both species images are very similar, as we can see in Figure 8. Besides, there are some close taxonomic relationships for three of the six pairs of species in Table 2 that may help partially explain the failures (even though there are other pairs of species that are also related but predictions are much better). Specifically, three pairs of species belong to the same family, and one of them also belongs to the same genus. Species Garcinia madruno and Symphonia globulifera both belong to the Clusiaceae family, while Pachira aquatica and Hampea appendiculata belong to the Malvaceae family. Finally, Brosimum lactescens and Brosimum alicastrum belong to the Moraceae family and have the same genus.


[image: Figure 8]
FIGURE 8. Images of species never correctly identified and the top-1 predicted species.


Additionally, Table 2 shows that the number of specimens of each of these six species is always 5, except for Tapiria guianensis, which has 9 specimens. However, there are species such as Cordia alliodora, Hymenaea courbaril, Bursera simaruba, Trichilia pleeana, and Lonchocarpus macrophyllum, among others (see Appendix 5B), for which having only 5 specimens is not problem. They are all classified with over 85% top-1 accuracy.

Another interesting result is that the misclassification performed by the CNN for species in Table 2 is one-way, i.e., the network always confuses the species in the first column with the species in the second column (Figure 8), but all the species in the second column are identified with high accuracy, namely, 100% top-3 accuracy and more than 75% top-1 accuracy (see Appendix 5B). This suggests that the number of specimens is not enough for the network to learn how to differentiate species correctly and, therefore, that future collecting efforts should try to focus on those species in order to improve the overall identification accuracy.

As we could see during the training phase (see Figure 7), overfitting was present. This was caused by the restrictions imposed to avoid the SSPB bias (Section 2.5.2). As was mentioned by Carranza-Rojas et al. (2018), if the bias is present in the training, validation and testing phases, the accuracies are fictitiously increased. To highlight this fact, we conducted an experiment in which SSPB was present. Figure 9 shows the top-1 accuracy and loss functions. As we can see, the top-1 accuracy achieved was 97.5% for validation, which is much better than the 65.5% achieved when we avoided the SSPB bias (Figure 7). Once the model was trained we evaluated them on the testing set and achieved a top-1 accuracy of 97.3%, which is also considerably better than the top-1 accuracy achieved in the testing phase if SSPB is avoided. Carranza-Rojas et al. (2018) report differences of around 10%, whereas in this case the differences are larger than 25%. We believe this is because different pictures of one specimen are very similar, as they were all part of the same cylinder that was removed from the tree. Thus, SSPB should definitely be avoided in the development of deep learning tools for the identification of tree species based on wood cut images.


[image: Figure 9]
FIGURE 9. Training accuracy and loss for CNN model with SSPB bias.


In order to test the reliability of the model, it was also trained and tested on a different dataset. For this purpose, we used a dataset of images of species from Brazil (FSD-M) (Filho et al., 2014). Figure 10, shows the accuracy and loss obtained during the training phase of the model. Additionally, once the model was trained, we tested its performance on a subset of images that was not used in the training phase and obtained an average 83.8% top-1 and 95.2% top-3 accuracy.


[image: Figure 10]
FIGURE 10. Training accuracy and loss for CNN model with FSD-M dataset and (possibly) SSPB bias.


As an additional result of this work, preliminary tests show that the samples collected with the proposed methodology can be used not only to develop deep learning applications such as COCOBOLO, but also for the anatomical characterization of Costa Rican timber species (Valverde et al., 2020). This means that samples obtained with the proposed protocol can be used in xylotheques for other applications just like the larger samples they traditionally collect and hold.



3.2. COCOBOLO Mobile Application

An application capable of identifying tree species from a wood image can be of great value in legal, commercial, industrial and forensic contexts, because it can support legal experts, forestry inspectors and customs officials to do field identifications in a simple, fast and accurate way. For example, forestry inspectors could determine if a wooden cargo is properly labeled to ensure compliance with the established regulations.

As a supplement to the convolutional neural network designed for the identification of tree species from Costa Rica, we developed a mobile application for smartphones compatible with the Android operating system. We decided to call the mobile application COCOBOLO (Dalbergia retusa), because it is an endangered native tree species of Central America whose wood is beautiful and of great commercial value.

Unlike mobile tools for plant identification based on flowers, leaves, and other plant components, COCOBOLO is a tool developed for a specialized audience that includes xylotheque users, law-enforcement officials, and tree species taxonomists, among others. Its work flow starts with a set of wood samples that have been already collected, treated, and need to be photographed and identified. Thus, in general, users of Cocobolo are not expected to use it to carry out identifications in the field (unless they take along the specialized equipment described in Sections 2.1 and 2.2 or have access to samples already collected). Most of its functionality can be achieved with a website that uses the developed back-end to do the identifications. We chose to develop a mobile application before a website (currently underway) to facilitate image capturing, to provide a personalized environment to manage pictures and their identifications, and to refine use cases for future versions of both, mobile applications and a website.

Because its back-end has been thoroughly trained and tested, the testing phase of the back-end is a simulation of the expected accuracy of Cocobolo with collected wood samples. All photographs used were taken with a 20X magnification Celestron©, 5 Megapixel electronic stereoscope. However, smartphone cameras are already getting close to that level of magnification and will have that feature in the near future. For the time being, we recommend the use of a clip-type lens. They are very inexpensive and meet the 20X magnification requirement.

COCOBOLO has of two components. First, a front-end, which is the interface that captures queries, takes pictures, and presents the results on the smartphone. Secondly, the CNN that acts as the remote back-end, performing the identification. COCOBOLO was designed following the methodology proposed by Hernández-Castro for the development of software tools (Hernández-Castro, 2016). The software tools employed are described in Section 2.4.

COCOBOLO allows users to identify pictures of wood stored in the phone's gallery or use the camera to take a picture and identify it. The identification process responds with the three most probable species, their scientific name, their common name, an estimated level of accuracy, and one image for each species. Users can also consult general information about the species with which the convolutional neural network was trained and share their identification by email or using WHATSAPP.

Figure 11 shows on common use case. When the user selects the option “Identify,” the screen in Figure 11A is displayed and the user can choose between “Gallery” or “Camera”. The “Camera” option activates the smartphone's camera for the user to take a new picture. The “Gallery” option shows the smartphone's photo gallery which, in this case, contains 8 previously stored photos, as shown in Figure 11B. Once the picture is selected, it is identified after clicking the button “Identify.” For instance, if the user chooses the third photo in the top row in Figure 11B, COCOBOLO responds with the ranking shown in Figure 11C. COCOBOLO has been successfully tested with up to five concurrent users and is being fine-tuned to improve its performance before public deployment.


[image: Figure 11]
FIGURE 11. (A–C) COCOBOLO mobil application.





4. DISCUSSION

An alternative solution to the traditional way of identifying tree species from macroscopic images of wood cuts was presented. The approach has been to build a CNN by applying the fine-tuning technique to a base VGG16 model pre-trained with IMAGENET. The resulting model was then trained with a new database composed of cross-sectional wood images of 75 Costa Rican tree species. The achieved top-1 and top-3 accuracies during the testing phase were 76.5 and 80.3%, respectively. We consider this very good, given that this is the first attempt with this dataset and that the number of species is relatively large compared to previous work in this domain. Consequently, this CNN was used as back-end for a mobile application named COCOBOLO. This mobile application allows the identification pictures of wood stored in the smartphone's gallery or use the camera to take a picture and identify it. COCOBOLO responds with the 3 most probable species, their scientific names, their common names and one image for each species. In addition, it is possible to share the identification results by email or WHATSAPP. COCOBOLO is currently undergoing fine-tunning for efficient integration of its components with larger number of concurrent users.

The methodology used to conduct the training, validation and testing sets avoided the well-known Same-Specimen-Picture Bias. The presence of this bias is often overlooked in similar research. However, in this domain we experimentally confirmed that it would have erroneously increased the average accuracy by more than 25%. Therefore, future work should consider and avoid this type of bias. Consequently, image databases of wood cuts must be documented with enough data to avoid potential biases. Specifically, programmers should be able to always test, for each pair of images {I1, I2}, if specimenID(I1) = specimenID(I2).

We proposed an innovative workflow that defines protocols for—non-destructively—collecting samples in the field, processing the samples, taking photographs, and annotating these pictures in a database. As a result, we have supplemented the Costa Rica Institute of Technology xylotheque with 656 wood samples of 147 tree species from Costa Rica. In addition, a database with 21.096 images was created.

The identification of tree species is critical to support their conservation, sustainable management, and, mostly, to fight illegal logging. However, an immediate challenge to make this approach more effective is to build larger datasets with more species and more specimens per species. In this respect, we are already using the same protocols to enhance CRTreeCuts so that it comprises at least 200 tree species and at least 10 specimens per species. This corresponds to approximately 8.5% of the number of tree species in the country and 15% of timber species. However, even though it is critical to increase the size and taxonomic coverage of datasets, field trips to collect wood samples and lab work on those samples is still slow and costly. Thus, recent approaches to deep learning with small datasets should be explored for this domain, among them, zero-shot (Larochelle et al., 2008), one-shot (Li Fei-Fei et al., 2006; Koch et al., 2015; Vinyals et al., 2016), few-shot or k-shot learning (Chen et al., 2019; Wang et al., 2020), and Siamese networks (Baldi and Chauvin, 1993; Bromley et al., 1993; Figueroa-Mata and Mata-Montero, 2020).



DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary materials, further inquiries can be directed to the corresponding author.



AUTHOR CONTRIBUTIONS

EM-M, DA-A, GF-M, and JC: project design. GF-M and EM-M: drafting and refining the manuscript and experiment design. GF-M: experiment programming and refinement. GF-M, EM-M, and JC: definition of COCOBOLO use cases. GF-M: testing of COCOBOLO versions. JC: design and testing of sample collection protocol, coordination of sampling, sample processing, and digitization. JC and NZ-V: collection of wood samples in the field. All of the authors have read and approved the manuscript.



FUNDING

We acknowledge and thank the financial support from the Vicerretoría de Investigación, Dirección de Posgrados and Programa de Doctorado en Ingeniería of Costa Rica Institute of Technology.



ACKNOWLEDGMENTS

We thank Jean Carlo Paniagua (front-end and middleware software development for COCOBOLO); Sharon López (graphic design of interface of COCOBOLO); and Monserrat Aguilar, Adriana Fallas, Devon Mora, and Óscar Ortega (wood sample and image processing) for their outstanding work in different phases of this research.



FOOTNOTES

1https://plantnet.org/

2https://web.inf.ufpr.br/vri/databases/forest-species-database-macroscopic/



REFERENCES

 Apolinario, M., Huamán Bustamante, S., and Clostre Orellana, G. (2018). “Deep learning applied to identification of commercial timber species from peru,” in 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON) (Lima: IEEE), 1–4.

 Apolinario, M., Paredes, D., and Huaman Bustamante, S. (2019). Open set recognition of timber species using deep learning for embedded systems. IEEE Latin Am. Trans. 17, 2005–2012. doi: 10.1109/TLA.2019.9011545

 Baldi, P., and Chauvin, Y. (1993). Neural networks for fingerprint recognition. Neural Comput. 5, 402–418. doi: 10.1162/neco.1993.5.3.402

 Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). “Signature verification using a siamese time delay neural network,” in Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS'93 (San Francisco, CA: Morgan Kaufmann Publishers Inc), 737–744.

 Carranza-Rojas, J., Goëau, H., Bonnet, P., Mata-Montero, E., and Joly, A. (2017). Going deeper in the automated identification of herbarium specimens. BMC Ecol. Evolut. 17, 181. doi: 10.1186/s12862-017-1014-z

 Carranza-Rojas, J., Mata-Montero, E., and Goëau, H. (2018). “Hidden biases in automated image-based plant identification,” in 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI) (San Carlos: IEEE), 1–9.

 Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F., and Huang, J.-B. (2019). “A closer look at few-shot classification,” in 7th International Conference on Learning Representations, ICLR 2019 (New Orleans, LA), 1–16.

 Díaz-Vaz, J. E. (1979). Claves para la identificación de maderas de árboles nativos y cultivados en chile. Bosque 3, 15–25. doi: 10.4206/bosque.1979.v3n1-03

 Figueroa-Mata, G., and Mata-Montero, E. (2020). Using a convolutional siamese network for image-based plant species identification with small datasets. Biomimetics 5:8. doi: 10.3390/biomimetics5010008

 Figueroa-Mata, G., Mata-Montero, E., Arias-Aguilar, D., and Valverde-Otárola, J. C. (2018a). “Automated image-based identification of forest species: challenges and opportunities for 21st century xylotheques,” in 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI) (San Carlos: IEEE), 1–8.

 Figueroa-Mata, G., Mata-Montero, E., Arias-Aguilar, D., and Valverde-Otárola, J. C. (2018b). “Using deep convolutional networks for species identification of xylotheque samples,” in 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI) (San Carlos: IEEE), 1–9.

 Figueroa-Mata, G., Mata-Montero, E., Valverde-Otárola, J. C., and Arias-Aguilar, D. (2018). “Evaluating the significance of cutting planes of wood samples when training cnns for forest species identification,” in 2018 IEEE 38th Central America and Panama Convention (CONCAPAN XXXVIII) (San Salvador: IEEE), 1–5.

 Filho, P. L. P., Oliveira, L. S., Nisgoski, S., and Britto, A. S. (2014). Forest species recognition using macroscopic images. Mach. Vis. Appl. 25, 1019–1031. doi: 10.1007/s00138-014-0592-7

 Fournier Origgi, L. (2016). Conozcamos los árboles de costa rica. Biocenosis 19, 35–40.

 Goëau, H., Bonnet, P., and Joly, A. (2017). “Plant identification based on noisy web data: the amazing performance of deep learning (lifeclef 2017),” in CLEF 2017 - Conference and Labs of the Evaluation Forum (Dublin), 1–13.

 Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge, MA: MIT Press.

 Hernández-Castro, F. (2016). Metodología para el análisis y diseño de aplicaciones (usability cookbook). Escuela de Diseño Industrial, Instituto Tecnológico de Costa Rica. Cartago, Costa Rica. Available online at: https://repositoriotec.tec.ac.cr/handle/2238/6776.


 Hoadley, R. B. (2000). Understanding Wood: A Craftsman's Guide to Wood Technology. Newtown, CT: The Taunton Press, Inc.

 Koch, G., Zemel, R., and Salakhutdinov, R. (2015). “Siamese neural networks for one-shot image' recognition,” in Proceedings of the 32nd International Conference on Machine Learning, Vol. 37 (Lille), 1–8.


 Kwon, O., Lee, H., Lee, M. R., Jang, S., Yang, S.-Y., Park, S.-Y., et al. (2017). Automatic wood species identification of korean softwood based on convolutional neural networks. J. Korean Wood Sci. Technol. 45, 797–808. doi: 10.5658/WOOD.2017.45.6.797

 Larochelle, H., Erhan, D., and Bengio, Y. (2008). “Zero-data learning of new tasks,” in Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 2, AAAI'08 (Chicago, IL: AAAI Press), 646–651.

 Li, Fei-Fei, Fergus, R., and Perona, P. (2006). One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28, 594–611. doi: 10.1109/TPAMI.2006.79

 Mata-Montero, E., Valverde, J., Arias-Aguilar, D., and Figueroa-Mata, G. (2018). A methodological proposal for collecting and creating macroscopic photograph collections of tropical woods with potential for use in deep learning. Biodiversity Inf. Sci. Standards 2:e25260. doi: 10.3897/biss.2.25260

 Oktaria, A. S., Prakasa, E., and Suhartono, E. (2019). Wood species identification using convolutional neural network (cnn) architectures on macroscopic images. J. Inf. Technol. Comput. Sci. 3:4. doi: 10.25126/jitecs.201943155

 ONF (2020). Decreto Ejecutivo de Políticas y Criterios de Priorización Para el Programa de Pago por Servicios Ambientales n° 39660-Minae. Available online at: https://onfcr.org/psa-2/ (accessed August 03, 2020).

 Quesada-Monge, R. (2004). Especies forestales vedadas y bajo otras categorías de protección en costa rica. Revista Forestal Mesoamericana Kurú 1, 84–88.

 Ravindran, P., Costa, A., Soares, R., and Wiedenhoeft, A. C. (2018). Classification of cites-listed and other neotropical meliaceae wood images using convolutional neural networks. Plant Methods 14, 790–800. doi: 10.1186/s13007-018-0292-9

 Ravindran, P., Ebanyenle, E., Ebeheakey, A. A., Abban, K. B., Lambog, O., Soares, R., et al. (2019). “Image based identification of ghanaian timbers using the xylotron: opportunities, risks and challenges,” in 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 1–10.

 SCIJ (1996). Decreto Ejecutivo de veda n° 25700-Minae. Available online at: http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTCandnValor1=1andnValor2=29811andnValor3=108834andstrTipM=TC (Accessed August 03, 2020).

 Siew, K. F., Tang, X. J., and Tay, Y. H. (2017). “Improved convolutional networks in forest species identification task,” in Proceedings of SPIE 10443, Second International Workshop on Pattern Recognition, Vol. 10443 (Singapore), 10443–10443.

 Valverde, J., Arias, D., Mata, E., Figueroa, G., and Zamora, N. (2020). Determinación de las condiciones fotográficas óptimas para la caracterización anatómica de diez especies maderables de costa rica. Revista Cubana de Ciencias Forestales 8, 439–455.

 Verly Lopes, D., Burgreen, G., and Entsminger, E. (2020). North american hardwoods identification using machine-learning. Forests 3, 298. doi: 10.3390/f11030298

 Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, k., and Wierstra, D. (2016). “Matching networks for one shot learning,” in Advances in Neural Information Processing Systems 29, eds D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (New York, NY: Curran Associates, Inc.), 3630–3638.

 Wang, Y., Yao, Q., Kwok, J., and Ni, L. M. (2020). Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surveys 53:3. doi: 10.1145/3386252

 Wiedenhoeft, A. (2011a). Caracteres básicos usados en la identificación de maderas con lupa de mano, Chapter 5. Madison, WI: Center for Wood Anatomy Research Forest Products Laboratory.

 Wiedenhoeft, A. (2011b). Clave para identificación, Chapter 6, pages 47-60. Madison, WI: Center for Wood Anatomy Research Forest Products Laboratory.

 Wong, S. C., Gatt, A., Stamatescu, V., and McDonnell, M. D. (2016). Understanding data augmentation for classification: when to warp? ArXiv, abs/1609.08764. doi: 10.1109/DICTA.2016.7797091

 Yang, J., Huang, P., Dai, F., Sun, Y., Wang, L., and Bi, H. (2019). “Application of deep learning in wood classification,” in 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI), (Kunming: IEEE), 124–129.

 Yusof, R., Ahmad, A., Salwa Mohd Khairuddin, A., Khairuddin, U., Nik Mohamad Aizuddin Nik, A., and Nenny Ruthfalydia, R. (2020). “Transfer learning approach in automatic tropical wood recognition system,” in Computational and Experimental Simulations in Engineering, eds H. Okada, and S. N. Atluri (Cham: Springer International Publishing), 1225–1233.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Figueroa-Mata, Mata-Montero, Valverde-Otárola, Arias-Aguilar and Zamora-Villalobos. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.









 


	
	
ORIGINAL RESEARCH
 published: 19 April 2022
 doi: 10.3389/fpls.2022.839407






[image: image2]

Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning

Tobias Andermann1,2,3,4*, Alexandre Antonelli1,2,5,6, Russell L. Barrett7,8 and Daniele Silvestro1,2,3,4


1Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden

2Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden

3Department of Biology, University of Fribourg, Fribourg, Switzerland

4Swiss Institute of Bioinformatics, Fribourg, Switzerland

5Department of Plant Sciences, University of Oxford, United Kingdom

6Royal Botanic Gardens, Kew, Richmond, United Kingdom

7Royal Botanic Gardens, Sydney, NSW, Australia

8School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia

Edited by:
 Charles Davis, Harvard University, United States

Reviewed by:
 John Arthur Gamon, University of Nebraska-Lincoln, United States
 Vinod Kumar, Government Degree College, Ramban, India

*Correspondence: Tobias Andermann, tobiasandermann88@gmail.com 

Specialty section: This article was submitted to Plant Systematics and Evolution, a section of the journal Frontiers in Plant Science

Received: 19 December 2021
 Accepted: 24 March 2022
 Published: 19 April 2022

Citation: Andermann T, Antonelli A, Barrett RL and Silvestro D (2022) Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning. Front. Plant Sci. 13:839407. doi: 10.3389/fpls.2022.839407
 

The reliable mapping of species richness is a crucial step for the identification of areas of high conservation priority, alongside other value and threat considerations. This is commonly done by overlapping range maps of individual species, which requires dense availability of occurrence data or relies on assumptions about the presence of species in unsampled areas deemed suitable by environmental niche models. Here, we present a deep learning approach that directly estimates species richness, skipping the step of estimating individual species ranges. We train a neural network model based on species lists from inventory plots, which provide ground truth data for supervised machine learning. The model learns to predict species richness based on spatially associated variables, including climatic and geographic predictors, as well as counts of available species records from online databases. We assess the empirical utility of our approach by producing independently verifiable maps of alpha, beta, and gamma plant diversity at high spatial resolutions for Australia, a continent with highly heterogeneous diversity patterns. Our deep learning framework provides a powerful and flexible new approach for estimating biodiversity patterns, constituting a step forward toward automated biodiversity assessments.

Keywords: neural network, machine learning, species richness, biodiversity, plant, Australia, diversity pattern, deep learning


INTRODUCTION

Since the very beginning of biogeographic research, the estimation and extrapolation of species diversity has been of foremost interest (von Humboldt, 1817; Arrhenius, 1921). It is well established that species diversity is distributed unevenly across space, generally following a latitudinal gradient, with increasing diversity from the poles toward the equator (MacArthur, 1965). On a regional level, it has been found that there are substantial differences in species richness among habitats, such as between a forested area and an open grassland (MacArthur, 1965). These observed spatial patterns have led to the formulation of three levels of species diversity: alpha, beta, and gamma diversity (Whittaker, 1960).

Alpha diversity refers to diversity on a local scale, describing the species diversity (richness) within a functional community. For example, alpha diversity describes the observed species diversity within a defined plot or within a defined ecological unit, such as a pond, a field, or a patch of forest. The scale of such ecological units depends on the organism group of interest; while for birds a defined forest or grassland transect of several hundred m2 to several km2 may be appropriate to describe a species community, for insects this could be a single tree. For plants, alpha diversity is often equated to the count of species identified during the inventory of a vegetation plot of defined size (Revermann et al., 2016).

Beta diversity, on the other hand, describes the amount of differentiation between species communities. Unlike the other levels of species diversity, the exact interpretation and quantification of beta diversity varies substantially across studies (see Tuomisto, 2010a,b for a detailed review on this topic). Originally, beta diversity was defined as the ratio between gamma and alpha diversity ([image: image], sensu Whittaker, 1972). Today, one commonly used measure of beta diversity is the Sørensen dissimilarity index (see section “Materials and Methods” below for more detail), which captures spatial turnover as well as differences in diversity between sites (Koleff et al., 2003).

Gamma diversity describes the overall species diversity across communities within a larger geographic area. It is often summarized across biogeographic or political units, such as ecoregions or countries (Kier et al., 2005; Brummitt et al., 2021). Alternatively, studies commonly summarize gamma diversity within cells of a spatial grid of fixed cell-size (Goldie et al., 2010; Thornhill et al., 2016). While alpha diversity represents the actual species diversity that can be measured at a given site, gamma diversity more broadly and loosely describes the diversity of species that can be found in the whole area. Gamma diversity is the most communicated level of species diversity when referring to biodiversity hotspots, with tropical regions, in particular the Neotropics, showing the globally highest gamma diversity values (Raven et al., 2020). Alpha diversity, on the other hand, shows different areas of maximum diversity, dependent on the size of the area surveyed, with temperate grasslands showing among the highest species richness on small plots (Wilson et al., 2012).

While species diversity can be directly counted for small plot sizes, for example, during species inventories (alpha diversity), this requires much effort and thus cannot be scaled up to large areas or whole continents (gamma diversity). Therefore, many studies apply some form of modeling and estimation to derive diversity maps for larger areas. For example, gamma diversity is often inferred by modeling individual species distributions and adding these up to obtain the total number of species that occur in a given area (Mutke and Barthlott, 2005; Barthlott et al., 2007). However, this approach has been shown to introduce substantial errors, when cross-checking the diversity predictions with actual species counts in selected grid cells (Aranda and Lobo, 2011). A general shortcoming of these methods is that usually the data available is insufficient to reliably model the ranges for each individual species. This problem intensifies with the number of species in the target group for which to estimate diversity patterns. In some cases, total species diversity is extrapolated for larger groups, based on a selected subset of taxa with good data coverage, under the simplistic assumption that the diversity patterns revealed by these taxa are representative for others (Kier et al., 2005), which is however often not the case (Ritter et al., 2019).

Alternative approaches have been applied to the task of diversity estimation and mapping, which skip the step of modeling individual species ranges. These often involve using occurrence records, floras, and checklists to count the total number of species that has been recorded within large biogeographic regions (Mutke and Barthlott, 2005; Kreft and Jetz, 2007). While such approaches do not require modeling distributions of individual species, they are particularly vulnerable to biases in data collection, as some taxa may be better represented in some checklists and biodiversity repositories than others. This method assumes one single diversity value within each of the regions analyzed, without accounting for diversity differences within these (sometimes large) areas. Although it is possible to interpolate diversity values to a finer resolution using spatial autocorrelation of associated variables such as climatic predictors (Kreft and Jetz, 2007), such gap filling may be difficult to verify and often provides a false sense of confidence for data-poor regions.

With the emergence of continental and global vegetation plot databases (Chytrý et al., 2016; Bruelheide et al., 2019; Sabatini et al., 2021), a new data source with extended spatial coverage has become widely, providing point-estimates of species diversity within clearly delimited areas. Recently, Večeřa et al. (2019) showed the potential of machine learning methods (random forest models) to estimate the expected diversity for fixed size vegetation plots (alpha diversity), based on climatic and other predictors, when trained on alpha diversity data from vegetation plot databases. However, to our knowledge, available machine learning models cannot extrapolate vegetation plot data to larger areas and do not provide estimates of multiple metrics of biodiversity.

Here, we present a deep learning framework that uses neural network models to predict alpha, beta, and gamma diversity. The models are trained to predict plant diversity based on climatic and geographic predictors, measures of human impact, and sampling effort. Our approach requires neither specific distribution information about individual species, nor the manual extrapolation of species richness using methods such as species–area curves (Kier et al., 2005). Instead, our models inherently learn the species–area relationships, allowing prediction of the three diversity metrics at user-defined spatial scales. Our approach is purely data-driven and hypothesis-free, including the selection of the best neural network architecture, to avoid confirmation biases in terms of picking models whose diversity predictions best match previous expectations.

We selected plot-based vegetation survey data from Australia (vascular plants; Tracheophyta) to empirically test the effectiveness of our models in predicting diversity patterns and to validate our methodology. Australia, as an island continent, has the advantage of a clear delimitation of natural boundaries; it has high natural diversity and uneven biological sampling (González-Orozco et al., 2014; Cook et al., 2015; Laffan et al., 2016); high spatial heterogeneity with well-defined and contrasting biomes (Byrne et al., 2008, 2011; Macintyre and Mucina, 2021); a relatively well-documented vascular flora with reliable national databases (Sparrow et al., 2021)1 that feed into the Global Biodiversity Information Facility (GBIF)2; good climatic data3; and a large number of freely available plot-based vegetation records suitable for training deep learning frameworks (Sabatini et al., 2021).



MATERIALS AND METHODS


Vegetation Plot Data

The values of alpha, beta, and gamma diversity used in this study to train the neural network models were derived from vegetation plot data (species inventories). We downloaded these data from the sPlotOpen database (Sabatini et al., 2021), only using plots where all vascular plants had been assessed. This resulted in a total of 7,896 vegetation plots for Australia (Figure 1). For each vegetation plot, we compiled its area (which ranged from 50 to 10,000 m2) and the list of plant species identified in the plot (ranging from 1 to 115 species). From each of these sites, we compiled measures for alpha, beta, and gamma diversity as described in more detail below (Figure 1), which we used to train our models.

[image: Figure 1]

FIGURE 1. Sites with vegetation plot data used in this study for model training and evaluation. Most of the vegetation plot sites used in this study (white points, 7,896 sites) are located in the easternmost two Australian states Queensland (northeast) and New South Wales (center east). The panels below the map show the compiled measures of alpha, beta, and gamma diversity for all vegetation plot sites. The satellite image of Australia was downloaded via ggmap (Kahle and Wickham, 2013). The spatial scale of the alpha diversity estimates is defined by the plot size of the underlying vegetation plots and differs among sites. Similarly, the gamma diversity values are based on sets of 50 neighboring vegetation plots; depending on the spatial density of vegetation plots, these diversity values are therefore determined across different spatial scales. Both values, the size of the vegetation plot and the spatial scale of each gamma diversity estimate, are used as features in our models.


Calculating gamma diversity required the definition of a surrounding area, preferably containing other vegetation plots, to determine the overall diversity found within the cumulative species lists of several neighboring vegetation plots (Figure 2). To ensure that the same number of vegetation plots was used for calculating the gamma diversity of each site, we defined as the surrounding area a circle around each site encompassing exactly N nearest neighbors (vegetation plots). The gamma diversity for each site was then determined as the number of unique species names extracted from the species lists of the N nearest neighbors within the encompassing circle. After compiling diversity estimated for different values of N (Supplementary Figures S1–S7), we chose an N of 50 for all models in this study, as this value led to the best compromise between a visually discernible spatial structure in the resulting beta and gamma diversity values, while also highlighting regional heterogeneity (Supplementary Figure S3).

[image: Figure 2]

FIGURE 2. Calculation of diversity measures from vegetation plot data. For a given vegetation plot (VP, solid red square, panel A) we identified the N nearest neighboring vegetation plots in space (N = 3 in this example, represented by plots P1–P3). We exported the radius of the smallest circle encompassing all N neighbors as a feature for model training. Additionally, we exported the number of GBIF occurrences within a square of 10 × 10 km size around the given vegetation plot, as a measure of sampling effort in the general area. Having identified the nearest neighbors (P1–P3), we compared the species lists of these vegetation plots with the focal vegetation plot (VP, panel B). Alpha diversity represents the number of species found in the focal vegetation plot (VP), while gamma diversity represents the total diversity consisting of all species identified among the focal and neighboring vegetation plots. Beta diversity was calculated using the multiple-site Sørensen dissimilarity index (see section “Materials and Methods”), based on the differences in species composition found among the selected vegetation plots.


The radius of this encompassing circle varied between sites, depending on the proximity of other vegetation plots relative to the given site. The extent of the radius itself was used as a feature in our models, allowing the neural network to learn the expected associations between gamma diversity and the size of the area for which it was calculated (the species-area relationship), which we used later when making predictions with this model to adjust the spatial resolution of the predictions.

Finally, beta diversity was calculated using the multiple-site implementation of the Sørensen dissimilarity index ([image: image]), following the definition in (Baselga, 2010). For a given focal site j with N neighbors, we defined the focal site index as j = N + 1. We iterated through the N neighboring sites (i) and applied the formula:

[image: image]

with

[image: image]

where [image: image] and [image: image] are the number of species only present in site i and site j, respectively, [image: image] is the total number of species in site i (alpha diversity from vegetation plot), and [image: image] is the total number of species in all sites combined (gamma diversity).



Feature Generation

The alpha, beta, and gamma diversity metrics described above were used as labels to train three models, one for each diversity metric. The predictors (features) used in these models were compiled from different publicly available data sources. To ensure approximately equal size of all grid cells for the raster-based feature data used in this study, we transformed all spatial data into the cylindrical equal-area (CEA) projection, centered at 30° latitude south of the equator.

As a general measure of sampling effort, we compiled the number of recorded species occurrences, available on GBIF, which were found in the vicinity of a given site. We first downloaded all non-fossil vascular plant (Tracheophyta) occurrences for Australia from GBIF that were based on human observations and were not flagged for geospatial issues.4 This includes both native and naturalized species, the latter having uneven spatial distributions related to broad disturbance histories in Australia (Leishman et al., 2017). This resulted in 13,580,191 occurrence records. We then discarded any records with non-binomial species names and cross-checked names of the remaining records against the World Checklist of Vascular Plants, a continuously updated collection of reviewed plant species names (Govaerts et al., 2021). This resulted in 12,622,786 remaining GBIF records. For each site, we defined a 10 × 10 km window centered on the site’s coordinates; we then counted all GBIF occurrences within this window as a measure of sampling effort (Supplementary Figure S8), as well as the number of species found in the GBIF records as a diversity proxy. Both counts were used as individual features in our models.

We also compiled climatic and anthropogenic features for each site. First, we downloaded raster data for 19 bioclimatic variables (BIO1–BIO19) as well as data on elevation from the WorldClim database (Fick and Hijmans, 2017).5 Second, we downloaded raster data on human footprint from wcshumanfootprint.org (Venter et al., 2016), which reflects the magnitude of human disturbance, including information on human population density, agricultural land use, presence of roads and several other data sources. There is a high correlation between population density, agricultural development, and high biodiversity regions in Australia (Keith and Auld, 2017). All data rasters were downloaded at a resolution of 0.5 min of a degree (~1 × 1 km grid). The complete list of features (n = 27) extracted for each site is shown in Table 1. All feature values were rescaled to range between 0 and 1 before being used as input in the neural network.



TABLE 1. Features used in the neural network models.
[image: Table1]



Neural Network Architecture

We built regression models using fully connected neural networks to learn and then infer species diversity based on the climatic, geographic, human footprint features, as well as general sampling effort reflected by the available GBIF data. While the output values in a neural network regression model can theoretically take any range, rescaling these values to a smaller range generally improves the model convergence and performance. We therefore rescaled our training labels by multiplying the diversity values by the following scaling factors, which were approximated to match the maximum values found in the training data for each diversity metric, thus leading for all values to fall within a range between 0 and 1: alpha scaling factor = 1/100, gamma scaling factor = 1/800 (no rescaling was necessary for beta diversity).

Models differed in the number of hidden layers and number of nodes per layer (see model testing below, Table 2). Further, we applied different fractions of dropout in our models, which leads to randomly removing the specified fraction of nodes in each hidden layer in each training epoch. This has the effect of reducing overfitting toward the training data, as the model is forced to rely less on individual highly optimized weights. We used the rectified linear units function (ReLU) as the activation function within each layer, and a softplus activation function for the output layer. The softplus activation function in the output layer ensures that the output values (diversity estimates) are all within a positive range, while not imposing any restrictions on the possible maximum value.



TABLE 2. Prediction accuracy for test set of all tested models.
[image: Table2]

For training, we used the mean absolute error (MAE) as the loss function to be minimized. Of the 7,896 training instances (vegetation plot sites), we set aside 20% (1,579 instances) as an independent test set. We assigned another 20% (1,579 instances) of the data as a validation set, which we used to determine the optimal number of training epochs that minimizes the validation set MAE, while preventing overfitting toward the training data. All models were trained with the remaining 60% of the data (4,738 instances), using a batch size of 40 instances.



Model Testing and Evaluation

We tested a range of different training configurations for each diversity metric, specifically testing different combinations of input features, different numbers of hidden layers and nodes per layer, and different dropout fractions (Table 2). Based on the diversity predictions for our independent test set, we calculated the mean absolute percentage error (MAPE) for each model, which differs from the MAE in being a relative error, scaled by the absolute values of the predictions. For each diversity metric we determined the best model configuration by picking the model with the lowest MAPE score.

After identifying the most suitable settings through model testing, we retrained this best model for each diversity metric, using all 7,896 training instances. To avoid overfitting towards the training data, we trained these production models only until the optimal epoch determined during model testing. For each diversity metric we trained an ensemble of 50 models with different random starting seeds, using the best model settings. We averaged the predictions across all these 50 models for each diversity metric, and also calculated the coefficient of variation (the standard deviation divided by the mean) as a measure of variation of the predicted diversity values, representing uncertainty.



Prediction Data

To produce the predictions of alpha, beta, and gamma diversity across Australia, we defined a grid with a cell size of 10 × 10 km and extracted the 27 features for each of the cell centroids. We set the plotsize feature for all points to 500 m2 (the most common vegetation plot size in training data, Supplementary Figure S9). Therefore, the predicted alpha diversity values reflect the expected number of plant species to be found in a plot of size 500 m2. The radius feature, describing the size of the surrounding area around a point for which gamma diversity is estimated, was set to 5 km, to approximately match the size of the grid cells (10 km× 10 km square).

By adjusting the radius feature, our trained models can be used to predict beta and gamma diversity at user-defined spatial resolutions, as it can be adapted to match the given cell size. Similarly, adjusting the plot size feature allows us to predict alpha diversity for any given plot size. This enables flexibility in predicting species diversity at different spatial resolutions of the prediction grid, while inherently accounting for species-area relationships, as these are learned by the model. For both the radius feature and the plot size feature, the selected values for prediction should be chosen to be within the range of values present in the training data (Supplementary Figure S9).




RESULTS

An overview of all tested models is shown in Table 2. For alpha diversity, we identified as the best model the following configuration: eight features (see Table 1), two layers with 30, and five nodes, and a dropout rate of 0.1. For beta and gamma diversity, the following configuration was identified as the best model: all 27 features, three layers with 30, 15, and 5 nodes, respectively, and no dropout (dropout rate = 0). We identified the following training epochs as the stopping points for model training, as they constituted the best compromise between minimizing the training loss while avoiding overfitting (rounded to the nearest 50): 1500 epochs (alpha), 750 epochs (beta), and 1700 epochs (gamma, see Supplementary Figure S10). We used these numbers of training epochs to train the ensemble of 50 productions models for each diversity metric.


Alpha Diversity Predictions

The best alpha diversity model predicted the test set, consisting of approximately 1,600 vegetation plots, with a mean absolute percentage error (MAPE) of 58.72% (Figure 3). This means that the predicted diversity for the average test set instance was within an approximately 60% range of the true diversity value. This comparably high prediction error is likely caused by the fact that the alpha diversity training instances show a complex spatial pattern, with no easily discernible areas of high or low diversity (Figure 1). The fact that most of the training features are spatially autocorrelated (such as the BioClim climatic layers) makes it difficult for the model to infer a strong signal from these features during training for predicting alpha diversity. The predictions made by an ensemble of 50 trained alpha models show comparably large uncertainties in some areas (Figure 4), with a median coefficient of variation across all cells of 0.30. The areas of highest uncertainty—exceeding the median value—are located mostly in the western half of Australia (grey areas in Figure 4), presumably due to the limited training data from those regions (Figure 1).

[image: Figure 3]

FIGURE 3. Prediction accuracy of best models as determined on an independent test set. The scatter plots show the predicted diversity (y-axes) plotted against the true diversity (x-axes) for the best alpha, beta, and gamma diversity models. These estimates were made for a randomly selected and independent test set (N = 1,579 instances), exclusively consisting of instances that were not used during model training. The points are colored by the vegetation plot-size associated with each data point (see legend). The red diagonal line shows for reference the best-case scenario, if all labels were predicted 100% accurately. Histograms show the total distribution of values for the true diversity values (top) and the predicted diversity values (right). For each model we calculated the Mean Absolute Percentage Error (MAPE), shown in the top-right corner of each plot.


[image: Figure 4]

FIGURE 4. Neural Network predictions for alpha, beta, and gamma diversity of vascular plants. The neural network models were trained separately on alpha, beta, or gamma diversity estimates, which we compiled from available vegetation plot data (Figure 1). The alpha diversity maps (left column) show the number of vascular plant species expected to be found in a 500-m2 plot (most common plot-size found in the vegetation plot data; Supplementary Figure S2). The beta diversity maps (center column) quantifies the spatial turnover and differences in species compositions (Sørensen dissimilarity index, relative to the total diversity) between such 500 m2 plots within each grid cell (10 × 10 km). The gamma diversity maps (right columns) show the total species richness within each grid cell. The top row shows the predictions averaged across an ensemble of 50 independently trained models, using different starting seeds. The center row shows the coefficient of variation for each grid cell, as a measure of prediction uncertainty. High values (dark grey/black) correspond to grid cells with less consistent diversity predictions. The bottom row shows the average diversity predictions for only those grid cells with the most consistent diversity predictions (coefficient of variation smaller than median across all grid cells), while high-uncertainty grid cells are marked in grey.


The overall highest alpha diversity predictions are found along the eastern coast of Australia, from the northernmost tip of Queensland to the most southwestern part of Victoria (Figure 4). A potential drop in alpha diversity is visible in the area around Cairns, extending about 100 km south from the city area, perhaps corresponding with the Burdekin-Lynd gap, an area that has been shown to constitute a range gap for several species (Edwards et al., 2017). However, these grid cells are predicted with comparably high uncertainty, giving only weak support for this observed pattern. Other areas of medium to high alpha diversity inferred by our model are the top end of the Northern Territory, as well as the north Kimberley in northern Western Australia.



Beta Diversity Predictions

The best beta diversity model resulted in a MAPE of 7.21%, thus yielding a substantially higher accuracy compared to the alpha diversity model. Similarly, the median coefficient of variation across all prediction grid cells was low with (0.09), indicating high consistency in the predicted diversity pattern. The high-uncertainty cells, identified as having a coefficient of variation above the median, largely overlap with those identified for the alpha diversity model, covering the majority of Western Australia (Figure 4). Perhaps being the least intuitive of the three diversity metrics, areas with a high predicted beta diversity within our framework represent sites that are expected to show large differences in species composition between vegetation plots within the defined area (a given grid cell).

Differently to alpha diversity, the majority of the eastern coastal areas show medium to low beta diversity values. Higher beta diversity is inferred for the southeastern part of Australia, particularly in higher elevations between Canberra and Melbourne. High species turnover is also inferred for the arid eastern desert of central Australia, as well as for south-western Australia.



Gamma Diversity Predictions

With a MAPE score of 6.09%, our gamma model yielded the most accurate predictions among the three diversity metrics. The median coefficient of variation of gamma predictions across all of Australia was 0.37. As for the other two models, this variation was largely driven by high uncertainty grid cells in the western half of the continent (Figure 4). Our model predictions of gamma diversity across Australia identify several vascular plant biodiversity hotspots, such as the tropical and subtropical forests in northeastern Queensland, the tropical and subtropical grasslands across northern Australia, as well as the temperate forests and the montane grasslands and shrublands of south-eastern Australia (Figure 5). Below we discuss the specific spatial diversity patterns that were predicted by our models in more detail (see section “Discussion”).

[image: Figure 5]

FIGURE 5. Diversity predictions by biome. The violine plots show the range of diversity predictions across all grid cells within a given biome, excluding high uncertainty predictions (see Figure 4). The horizontal black lines inside the violine plots mark the mean estimate for each biome. The biomes, which are displayed on the map, were compiled from the Terrestrial Ecoregions of the World (TEOW) data (Olson et al., 2001).


When evaluating our model predictions on a per-biome basis, excluding high uncertainty predictions as identified in Figure 4, we identify differences in predicted diversity between biome types (Figure 5). For alpha and gamma diversity, we find the highest average diversity predictions for tropical forests, temperate forests, montane shrublands and grasslands, and tropical and subtropical grasslands and savannas. Our beta diversity estimates, on the other hand, show a rather uniform pattern across biomes, with the exception of montane grasslands and shrublands, which show the highest species turnover. The high beta diversity identified for the montane biome may be driven by the increased elevational gradients in this area, as species turnover has been found to be higher along elevational gradients (Venn et al., 2017; Albrecht et al., 2021).




DISCUSSION


Using Neural Networks for Diversity Predictions

Here we developed and applied a novel approach of estimating species diversity, using neural networks. We showcased our model, using vegetation plot data that are openly available through the sPlotOpen database for Australia, and showed that it can be used to accurately predict diversity on different scales (alpha, beta, and gamma). This enables us to produce maps of species diversity at a wide range of spatial resolutions. The main advantages of our approach, as compared to previous approaches of modeling species diversity, are that (i) it does not require the modeling of distribution ranges for individual species (e.g., Mutke and Barthlott, 2005; Barthlott et al., 2007), (ii) it does not require an a priori definition of species-area relationships (e.g., Kier et al., 2005), (iii) it does not require the assumption of monotonic and usually oversimplifying relationships (e.g., linear or exponential) between predictors and response variable (e.g., Cingolani et al., 2010), and (iv) it allows the direct quantification of uncertainty in the predictions.

Given these advantages, and the easy combination of different features (predictors) of continuous or categorical nature, our deep learning model, represents a promising new tool for the task of predicting diversity. This study and other recent work (e.g., Večeřa et al., 2019) demonstrate how such models can be trained on readily available data from public databases. Further, the versatility in terms of data input into these models allows for new ways of accounting for the effects of sampling effort (GBIF sampling density feature) and of human disturbances (human footprint feature) on diversity estimates. The advantage of these features, as well as the additional climatic features used in our models, is that these data are available on a global, spatially detailed scale (<1 km2). Previous studies have shown the utility of these data for modeling biotic properties of the landscape, such as phylogenetic diversity (Park et al., 2020). Predictors with even higher spatial resolution, such as remote sensing data (e.g., satellite images or 3D point clouds from airborne laser scanning), could help to improve the accuracy of the models presented in this study even further.

Remote sensing data are a promising and potentially highly informative data source for the task of biodiversity estimation (Gholizadeh et al., 2020; Moat et al., 2021). These data have been successfully applied in several recent studies for modeling vegetation attributes such as biomass (Breidenbach et al., 2021), growing stock volume (Lindgren et al., 2021), and plant size (Söderberg et al., 2021), and can be applied for global inventory of habitats and for estimating the trait diversity within these habitats (Cavender-Bares et al., 2020). These data sources, which are already successfully applied for many biodiversity-related purposes (see overview in Cavender-Bares et al., 2020), will likely play a key role for future developments in the field of automated biodiversity assessments, and can be readily added as additional features to neural network models as the ones presented in this study.

The neural network models trained in this study do not allow investigating direct causal relationships between predictors (features) and the response variable (species diversity). As neural networks are very complex models with many parameters, direct relationships cannot be inferred in the same way as with classic mechanistic models (e.g., linear regression models). However, different methods have been developed to increase the interpretability of neural networks (Lundberg and Lee, 2017), which can for example be used to investigate the importance of individual predictors on the overall test accuracy (permutation feature importance, sensu Breiman, 2001).

The gamma diversity predictions reached the overall highest accuracy (Figure 3), likely because they carry the strongest spatial signal and can therefore be predicted more easily with the used features, many of which are themselves spatially autocorrelated. This spatial signal in the gamma diversity values is noticeable when evaluating the training data (Figure 1), where there are spatially coherent areas of overall low and overall high gamma diversity, whereas for alpha and beta diversity the spatial patterns in the data are more disjunct. The reason that alpha and beta diversity cannot be estimated with equally good accuracy is that the model is unable to learn the small spatial differences in alpha or beta diversity shown even among neighboring points (Figure 1) based on the available features.

Here, we focus on the taxonomic aspect of diversity, i.e., species richness. Besides taxonomic diversity, there are other types of biodiversity, such as phylogenetic diversity and functional diversity (e.g., Swenson, 2011). The approach presented in this study can theoretically be applied equally to these other types of biodiversity. However, this would require additional information on the identified species in each vegetation plot. In the case of modeling phylogenetic diversity, information on the phylogenetic relationships and distances of all identified species would be required. In the case of functional diversity, information about species’ ecology and functional traits would be needed, which can be compiled for many species from large databases, such as the TRY database (Kattge et al., 2011). Such data could be further complemented by automated machine learning methods for functional trait compilation, for example from digitized herbarium specimen (Davis et al., 2020). Alternatively, similar deep learning models could be designed that rely on training data other than vegetation plots, such as functional diversity estimates informed by sites for which different functional attributes have been compiled (e.g., Bagousse-Pinguet et al., 2019). Particularly for functional diversity, several suitable predictors are readily available that could be used as features in such models, such as soil data (Commonwealth Scientific and Industrial Research Organisation, 2014), hydrological data (Australian Government, 2021), as well as the climate predictors used in our models (Fick and Hijmans, 2017).5



Correlation Between Diversity Metrics

Previous studies have found all three diversity metrics to be correlated (Cingolani et al., 2010). Here, we find that the maps produced for alpha and for gamma diversity overall show similar diversity hotspots, while beta diversity shows a different spatial pattern (Figures 4, 5). There is a wide variety of definitions of beta diversity, some which are directly correlated to alpha and gamma diversity (e.g., Whittaker’s original definition of [image: image], sensu Whittaker, 1960). However, the Sørensen dissimilarity index [image: image] used in this study does not display such a direct correlation to either alpha or gamma diversity, leading to the distinctly different spatial pattern observed in our predictions (Figure 1).

While the patterns of alpha and gamma diversity inferred by our models are strongly correlated, they do differ in some areas. There is potential for areas with low gamma diversity to exhibit relatively high densities of species, leading to high alpha diversity estimates within smaller defined areas, such as the 500 m2 vegetation plots used in our predictions. This is particularly the case for vegetation types consisting of species with relatively small individual plant sizes (such as grasslands and shrublands), which in comparison with forests allow for a potentially denser accumulation of individuals. These differences in average plant size often lead to open habitat grasslands displaying comparatively high alpha diversity values, particularly on small plot sizes (Wilson et al., 2012).

The difference between alpha and gamma diversity is a matter of spatial scale. While alpha diversity describes the number of species in a specific species community (vegetation plot, ~500 m2), gamma diversity describes the number of species in a larger geographic area (grid cell in spatial raster, ~100 km2). In our approach, as in most regression tasks, we expect the predictions of alpha or gamma diversity to be reliable only within the spatial scales that are well represented in the training data, i.e., for alpha diversity within a range between 50 and 10,000 m2, and for gamma diversity between ~100 and 40,000 km2 (Supplementary Figure S9). Since these ranges do not overlap with each other, these are considered to be separate diversity metrics in our model. However, if it were feasible to manually count all species occurring in a vegetation plot the size of a grid cell in our prediction raster, this alpha diversity estimate would be expected to match the predicted gamma diversity of the same, equally sized grid cell.



Biases in Training Data

Sampling biases pose a serious challenge for biodiversity reconstruction in countries of uneven spatial sampling, such as Australia (Piccolo et al., 2020). In our approach, we account for geographic bias in the training data by quantifying the uncertainty in the diversity predictions. Areas of high prediciton accuracy identified by our models, largely reflect those areas with little or no training instances. Additionally, we add the count of GBIF occurrence records in the vicinity of any given training instance as a measure of general sampling effort. Recent studies have addressed the issue of differences in sampling effort in more detail for defined regions and have pointed a way forward in addressing and accounting for this issue, using strategically sampled empirical data (Gioia and Hopper, 2017). However, such efforts are labor- and time-intensive and may not be feasible on continental scales. Alternatively, computational tools that can readily quantify spatial biases based on public database data are a promising way forward towards better accounting for the issue of spatial sampling biases (Zizka et al., 2021).

The ground truth diversity data derived from vegetation plots, which were used in this study for model training, are subject to several potential biases. Previous studies have found an effect of the number of observers conducting the inventory, plot-size, and vegetation type on how reliably and consistently species are being identified, particularly effecting the detection of rare and cryptic species (Vittoz and Guisan, 2007). While we did control for plot-size by adding it as a feature to our models, the potential effects of the number of observers and the vegetation type could not be as easily modeled in this framework. Beyond the issue of data availability, these predictors cannot be added as features to the model, as their values cannot be assumed or compiled for un-surveyed areas for which we want to make predictions with the trained model. However, these biases could be addressed in future applications of these models by apply additional data filtering and bias correction steps, that go beyond the cleaning steps already implemented in the sPlotOpen database (Sabatini et al., 2021).



Predicted Diversity Patterns for Australia

Our model predictions of alpha and gamma diversity identify several vascular plant biodiversity hotspots for Australia, such as (i) the tropical and subtropical forests in northeastern Queensland, (ii) the temperate forests and the montane grasslands and shrublands of southeastern Australia, (iii) the tropical savanna dominated ecosystems of the Northern Territory, and (iv) northern Western Australia (Figures 4, 5). These areas of high vascular plant diversity largely correlate with findings of previous studies, (e.g., Steffen, 2009; Goldie et al., 2010; Yeates et al., 2014; Thornhill et al., 2016) and are highly correlated with broader climatic patterns (Ooi et al., 2017).

One notable difference of our model predictions compared to previous work is the south-west of Western Australia, which is often inferred as a plant diversity hotspot (e.g., Myers et al., 2000; Steffen, 2009), but was predicted with comparably low alpha and gamma diversity by our models. This south-west Australian biodiversity hotspot may not have been predicted accurately—as also indicated by the large prediction uncertainty identified by our model—due to alternate evolutionary patterns in the region that have led to higher diversity than might otherwise be predicted in this very old and climatically buffered, infertile landscape (an OCBIL; see Hopper et al., 2016). It is also interesting to note that the models predict similar alpha diversity between the Kimberley region of Western Australia and the top end of the Northern Territory, as recent surveys demonstrate that this is indeed the case (Barrett and Barrett, unpublished data).

Interestingly, our beta diversity model inferred high species turnover for the arid eastern desert of central Australia. While this region has the lowest estimates for alpha and gamma diversity, the species turnover (relative to the total diversity) is inferred to be among the highest on the continent, likely reflecting a complex mosaic of Mediterranean, temperate, and arid vegetation types in this region (Fox, 2007).
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Species distribution models (SDMs) are widely used numerical tools that rely on correlations between geolocated presences (and possibly absences) and environmental predictors to model the ecological preferences of species. Recently, SDMs exploiting deep learning and remote sensing images have emerged and have demonstrated high predictive performance. In particular, it has been shown that one of the key advantages of these models (called deep-SDMs) is their ability to capture the spatial structure of the landscape, unlike prior models. In this paper, we examine whether the temporal dimension of remote sensing images can also be exploited by deep-SDMs. Indeed, satellites such as Sentinel-2 are now providing data with a high temporal revisit, and it is likely that the resulting time-series of images contain relevant information about the seasonal variations of the environment and vegetation. To confirm this hypothesis, we built a substantial and original dataset (called DeepOrchidSeries) aimed at modeling the distribution of orchids on a global scale based on Sentinel-2 image time series. It includes around 1 million occurrences of orchids worldwide, each being paired with a 12-month-long time series of high-resolution images (640 x 640 m RGB+IR patches centered on the geolocated observations). This ambitious dataset enabled us to train several deep-SDMs based on convolutional neural networks (CNNs) whose input was extended to include the temporal dimension. To quantify the contribution of the temporal dimension, we designed a novel interpretability methodology based on temporal permutation tests, temporal sampling, and temporal averaging. We show that the predictive performance of the model is greatly increased by the seasonality information contained in the temporal series. In particular, occurrence-poor species and diversity-rich regions are the ones that benefit the most from this improvement, revealing the importance of habitat's temporal dynamics to characterize species distribution.

Keywords: species distribution modeling, deep learning, image time-series, Sentinel-2, convolutional neural networks, remote sensing, macroecology, data science


1. INTRODUCTION


1.1. Context

Understanding and mapping species distributions is a major topic in conservation biology (Pecl et al., 2017). Species distribution models (SDMs) have recently become a key instrument: over the last 20 years, 6,000 peer-reviewed studies were found with this keyword according to Araújo et al. (2019). These statistical algorithms learn the correlations between species presence records (and possibly species absence records) and some environmental predictors provided. Under certain modeling assumptions (Zurell et al., 2020), they can estimate species distribution by generalizing learned habitat preferences over time and space (Phillips and Dud́ık, 2008; Thuiller et al., 2009). A major issue for the use of SDMs concerns the ecological relevance of the predictive variables used (Fourcade et al., 2018). Furthermore, collecting appropriate data at a large scale is usually very challenging. Global bio-climatic variables do not systematically provide enough information to draw conclusions on a species, presence. Many other factors like species dispersal capacities (Monsimet et al., 2020) or shifts in land use actually come into play.

After having revolutionized computer vision, neural networks - and especially convolutional neural networks (CNNs) - are also increasingly recognized in ecology (Williams et al., 2009; Heikkinen et al., 2012; Botella et al., 2018; Brodrick et al., 2019). They allow identifying environmental patterns on images like tree crowns (Csillik et al., 2018) or forest type limitations (Wagner et al., 2019). Local environment spatial structure has already been proven to add relevant information to SDMs involving convolutional layers (Deneu et al., 2021b).

In addition, remotely sensed data can grasp key features of vegetation functioning and thus convey relevant insights on species habitats (Remm and Remm, 2009; Adhikari et al., 2012; He et al., 2015). Unmanned Aerial Vehicles (UAVs) allow finer and finer-scale coverage at local, regional, or even country scale (Kattenborn et al., 2020). Thanks to such imagery, the nature and spatial structure of ecosystems can be characterized and learned in SDM training. RGB and IR image patches around species occurrences (or digitized geolocated presence of species) are thus added to the environmental predictors, so as to include information on vegetation and land-use heterogeneity around the occurrences (Deneu et al., 2021a).

Satellite missions like Copernicus Sentinel-2 (S2) (Berger et al., 2012) now provide RGB and IR channels with fine spatial resolution and temporal revisit frequency worldwide (see Section 2.1.1), which can feed high-resolution, CNN-based SDM models. However, there is still much potential ahead for bringing together remote sensing and deep learning (Camps-Valls et al., 2021). Remote sensing datasets that are (i) readily available for deep learning applications and (ii) exploiting the spatial, spectral, and temporal dimensions of new satellite missions are still very few. For instance, among the twenty-three benchmark datasets implemented in TorchGeo (Stewart et al., 2021), only two encompass a temporal dimension. There is then an opportunity to build RGB+IR image time series around occurrences spread worldwide. By sampling S2 data for a whole year, prominence is given to the seasonal evolutions of the plants, habitats. These time series are capturing the signature of ecosystems phenology and productivity. Our hypothesis is that this information can significantly help SDM predictions.



1.2. Contributions

This paper contribution is 2-folds: First, we built a substantial and original dataset pairing nearly 1 million geolocated occurrences of the Orchidaceae family with satellite image time series. This dataset and the associated method scripts, released as open data and code, should be useful for conservation biologists and SDM users in general. To our knowledge, no similar ready-to-use dataset is already available. Second, we designed interpretability tests of the deep SDMs trained on this dataset in order to measure the importance of seasonal landscape variability in characterizing species habitat and niche. Figure 1 provides the visual abstract of our method.


[image: Figure 1]
FIGURE 1. Visual abstract of the proposed method. Layer 0: The dataset introduced in this paper (DeepOrchidSeries) is based on a filtered set of GBIF occurrences (Global Biodiversity Information Facility) coming from the study of Zizka et al. (2021). Layer 1: Sentinel-2 image time series were collected around each occurrence geolocation, keeping least cloudy data tiles every month between March 2020 and February 2021. Images are made of 640 x 640 m RGB+IR channels with 10 m spatial resolution. The dataset is available on Zenodo and the method to create it on the Gitlab.inria platform. Layer 2: We then trained deep species distribution models (deep-SDMs) based on a convolutional neural network (CNN) (Inception v3) to capture the spatio-temporal context and environmental preferences of species. Next, we conducted experiments where the input temporal dimension was modified (randomized, averaged or sampled) so as to measure its contribution to model performance. Layer 3: the results are finally broken down into three main dimensions of analysis: species frequency in the dataset, bioregion, and species diversity in these bioregions. The analysis reveals that occurrence-poor species and diversity-rich regions are the ones that benefit the most from the improvement provided by the temporal information.





2. MATERIALS AND METHODS


2.1. DeepOrchidSeries Dataset
 
2.1.1. Raw Input Data Description


Orchid Occurrences Dataset

The Orchidaceae family is of great interest because of its diversity (about 28,000 species estimated) and its aesthetic attractiveness (Chase et al., 2015). Orchids are of major concern for ecologists due to the numerous threats they are facing: habitat destruction, climate change, pollution, and illegal harvesting for horticulture and tourism industries (Wraith and Pickering, 2018). They are also considered as a relevant proxy of their ecosystem's health (Newman, 2009). Moreover, orchids are found on all continents in a wide range of habitats and they are blooming at very different altitudes. Such a range or environmental amplitude is difficult to achieve with other families, making the orchid family an excellent candidate for the purpose of our study (i.e., to measure the importance of seasonal variability in characterizing species habitat and niche).

Rather than collecting a new set of orchid occurrences to build our image time-series dataset, we decided instead to re-use the one introduced by Zizka et al. (2021). Their objective was different from ours (i.e., estimating the conservation status of orchids) but the set of occurrences they collected from GBIF meets two main criteria of interest for our study: (i) global scale and (ii) suitable data quality, thanks to several data filtering and cleaning processes (including the use of the R package CoordinateCleaner v. 2.0-9, Zizka et al., 2019). The complete process they use is summarized in the Supplementary Table 1 of their paper (Zizka et al., 2021). Another benefit of reusing (Zizka et al., 2021)'s occurrence data is to support the potential reuse of our deep-SDM for the automated assessment of the orchid's IUCN status. In the long term, this will improve the reproducibility and comparability of newly developed methods in this regard.

In total, the dataset contains 999,407 occurrences of 14,148 species with 70 records per species on average, 4 in median, and 3,537 species (25%) with more than 13 observations. The (heavily-tailed) distribution of the number of occurrences per species is shown in Figure 2A (through a Lorenz curve). Figure 2B represents the temporal distribution of the occurrences in the dataset. Half of the observations dated from 1997, one quarter from 2010. A total of 14.6% of the set (145,641 occurrences) came with no timestamp at all. The oldest occurrence was from 1901 as a result of the filtering process that got rid of data records older than 1900. Only observations with a position uncertainty higher than 100 km were discarded. Perspectives and limits related to the use of such a large and imbalanced occurrence dataset will be discussed in the final Section 4.


[image: Figure 2]
FIGURE 2. (A) Distribution of Occurrences of species. Species are ordered by frequency. The dotted lines are flagging that 90% of the species are only gathering 9.1% of the occurrences. (B) Temporal distribution of occurrences. The two graphs are based on all dataset occurrences.




Sentinel-2 Multispectral Images

Sentinel-2 multispectral data comes from two identical satellites in the same orbit but diametrically opposite to one another. Sentinel-2A was launched on 23 June 2015 and its counterpart Sentinel-2B on 7 March 2017. This satellite mission is part of the European Earth observation project Copernicus1, previously known as Global Monitoring for Environment and Security (GMES, Drusch et al., 2012). Thirteen channels from the visible to short-wave infrared are monitoring the planet, with 10, 20, or 60 m spatial resolution and a 5-day temporal revisit above any point on Earth. Additional satellites 2C and 2D are planned to ensure continuity in the coming years and the next generation of Sentinel-2 satellites are being prepared. We only kept four out of the thirteen channels, i.e., the three RGB channels and the Infrared (IR) channel (842 nm). These wavelengths are expected to convey the most relevant information about the environment (He et al., 2015) and are also the finer in terms of spatial resolution (10 m). The smallest geographic units downloadable via the sentinelsat2 API are 109.8 km × 109.8 km square data tiles in WGS84/UTM projection. They were defined following a military grid splitting Earth planisphere. The field square from a given satellite orbit at a given sensing time interval does not always cover a whole tile so that several products must be merged and cropped to get an image of the whole tile.

Data products are made available to the user at two distinct levels: Top-of-Atmosphere (TOA or 2C) and Bottom-of-Atmosphere (BOA or 2A). The important difference is the application of an atmospheric correction algorithm such as Sen2Cor (Louis et al., 2016; Ientilucci and Adler-Golden, 2019). Water vapor and other atmospheric components alter the satellite image caption with complex non-linear deformations. When and how atmospheric correction should be performed prior to exploiting remote sensing data depends on the desired information and thus the targeted application. About classification and change detection tasks, a recognized work from Song et al. (2001) advises performing simple corrections only when multi-temporal data is used. Otherwise, having both training and test sets from the same relative scale proved to be sufficient: no significant performance gain would result from the addition of an atmospheric correction step. A more recent article estimating the relation between sea surface salinity and Sentinel-2 Imagery with a neural network and 2,700 points obtained better results with TOA than BOA imagery (Medina-Lopez, 2020). On their specific application, they found that the atmospheric correction entailed information loss due to alteration of actual multispectral relationships. They also observed that the time and computational resources spared by using the level 2C products were an important element to consider. Using L1C products time-series, Rußwurm and Körner (2018) obtain state-of-the-art land cover classification performances. Level 2A products are not readily available at the global scale and, when needed, atmospheric corrections have in this case to be applied by users. Considering the conclusions of previous surveys and the large size of the targeted data, we decided to work with TOA products. Moreover, the atmosphere information could be valuable for our application and we suggest that deep-SDMs are capable of correctly learning without this additional filter.




2.1.2. Dataset Construction

Figure 3 summarizes the workflow followed to obtain image time-series from a set of geolocated occurrences. The first step is to define the set of Sentinel-2 tiles containing all targeted occurrences, for which more details are provided in the Global scale processing paragraph. The second and third steps are used to define the patch size and the time sampling strategy, respectively. Our choices are presented in the two dedicated paragraphs hereafter. Finally, the last paragraph introduces our method to select the least cloudy S2 data.


[image: Figure 3]
FIGURE 3. Creation workflow of DeepOrchidSeries dataset. Input is a set of geolocated occurrences, output gathers image time series informing on species habitat preferences. Code and details are available at https://gitlab.inria.fr/jestopin/sen2patch.


We have furthermore considered only the four spectral bands available at 10 m resolution, but our workflow could be applied as well to bands at 20 m and 60 m resolution after a down-sampling step. Sentinel-2 queries and downloads were made with the Scihub Copernicus API3. We then extracted the patches by parallelizing the processing by UTM zone to gain speed. Code and details are available at https://gitlab.inria.fr/jestopin/sen2patch.


Global Scale Processing

The first step consists then in defining the minimal set of Sentinel-2 tiles containing all our orchid observations. The Sentinelsat python API provides the option to query data by various geographical means, mainly, coordinates, polygons, tiles, or satellite orbits. However, querying the API on an occurrence-by-occurrence basis for a dataset containing nearly one million occurrences is counterproductive. It is much more efficient to first download the tiles containing occurrences and then extract them locally (as shown in Figure 4A for the histogram of the number of occurrences per tile). To do so, we implemented the following two steps:

• First, we created a dictionary linking each tile with its WGS84 geometry thanks to the Sentinel-2 Level-1C tiling grid provided by the ESA Sentinel-2 official portal4.

• Then, an iterative process on all occurrences was implemented, testing each time if the new observation is included in the union of the already retained tiles set. If not, a tile containing the occurrence location is downloaded and added to the set.


[image: Figure 4]
FIGURE 4. (A) Histogram of the number of occurrences per tile, (B) different patch sizes comparison around an occurrence located at (–39.883306, 144.050000), decimal degree system, (C) map of the selected tiles colored by the number of records contained (log10 scale). Three occurrences are located by α, β, and γ. Figure 5 provides the three associated image time-series.


The final tiles set map is given in Figure 4C. It illustrates the full geographical scope of the dataset with 7,563 targeted tiles. A total of 50% of all land areas (Antarctica excluded) were included in the collected data. The color scale proportional to the number of observations per tile (with a log10-scale) further shows a geographic (or observation) bias in the occurrences set: Europe, south Australia, and New Zealand are gathering huge numbers of records.



Patch Size

The size of the patches associated with each occurrence is an important hyper-parameter to set. Patches should be large enough to contain the most relevant spatial information, but not too large to avoid introducing patterns that are too distant from the occurrence. They should also be large enough to compensate for the geographic imprecision of the occurrences (as shown in geolocation uncertainty distribution Supplementary Figure 1 and Wüest et al., 2020), but not too large to avoid computational issues. Considering all that constraints, our final choice was patches of size 640 m × 640 m (only powers of two were considered to optimize memory usage). Figure 4B illustrates three different patch sizes around an observation on an island of the South Australian coast. It shows that the 640 m × 640 m patch (40.96 ha) captures important landscape patterns around the record as well as potential threats due to surrounding land use.



Time Series Extent and Temporal Resolution

One of the main contributions of our study is to consider time series of satellite images rather than a single date image, with the objective of better characterizing the habitat of species. Two important parameters in this regard are the temporal extent of the series and its resolution. Here too, there is a compromise to be made. The extent and resolution must be high enough to capture important (spatio-)temporal patterns, but cannot be too high due to computational constraints. We finally chose a 1-year time series with a resolution of 1 month (i.e., twelve images, one per month).

Such 12-month time series allow grasping the main seasonal variations of the environmental and ecological context including vegetation phenology, yearly weather variations as well as landscape annual variations linked to human activity (e.g., agriculture). Noticeably, such seasonal variations are often neglected in SDMs devised at a global scale. Figures 5A,B show significant seasonal changes that can largely help models to differentiate species habitats. In Figure 5A, the tree cover greatly vary depending on the season and in Figure 5B snow covers the field half of the year. What if we only had 1 month of data? Environmental contexts would be characterized very partially and wrong inferences could be done on species ecological preferences (imagine having only one image covered by snow for Figure 5B). These examples illustrate the gain of ecologically relevant information when considering a 12-month image-series.


[image: Figure 5]
FIGURE 5. Image time series associated with the three occurrences located in Figure 4C map. RGB images are shown on the first line and IR patches on the second. (A) is almost cloud-free and globally normalized before visualization (i.e., all months are divided by TS maximum pixel), (B) is a cloudless time series with a strong environmental gradient because of snow presence and is normalized by frame (i.e., each month data is divided by month maximum pixel, only for visualization), (C) is an especially cloudy time series also normalized by frame.


Another parameter to be set is the starting date of the time series. Ideally, it should be chosen so that the date of the occurrences is included in the 1-year period covered for the time series. There are various reasons in practice impeding a perfect match between the occurrences dates and the associated predictive data. To begin with, the Sentinel-2 satellite was launched only in 2015 so that older occurrences cannot be matched. Second, all occurrences do not come with a precise date, some having no date information at all. Third, some S2 tiles from the defined minimal set would have to be downloaded a huge number of times to inform all observations at different dates. Lastly, there is no simple and open access to data older than a rolling year on Copernicus Open Access Hub. Because of all that constraints, we finally chose a fixed period for all 12-month time series, with a starting date of 1 March 2020 and an ending date of 29 February 2021 (the choice of the recent period being linked to the temporal distribution of the number of occurrences, as shown in Figure 2B).



Data Selection Based on Cloud Cover

Remote sensing data at RGB/IR channels are directly dependent on potential clouds covering the satellite's field of view. Fortunately, S2 products are including in their metadata the percentage of the scene view corrupted by cloud cover. Thereby when querying the Sentinelsat API over a given area and time window, one can ask to only keep the less cloudy products. The wider the chosen time window is, the more likely an almost cloud-free product will be available within. Based on this metadata, we selected the least cloudy S2 products within each month in the targeted time window. With this selection process, we expect the large majority of time series to be cloud-free like Figures 5A,B. Figure 6 provides an overview of the cloud coverage distribution in selected products compared to all available products in the queried time window. When, despite our efforts to select the least cloudy products, the obtained satellite data around an occurrence present many cloudy frames, it could nonetheless be interpreted as a piece of information contributing to the species, ecological niche. Furthermore, in this case, the environment structure can still be captured from clear scenes at other dates of the time series (see for instance April, May, and November 2020 on Figure 5C).


[image: Figure 6]
FIGURE 6. Cloud cover percentages of the 1,067,989 tested products, 180,747 (16.9%) selected against 887,242 (83.1%) dismissed. (A) all months taken together, (B) detailed by month.






2.2. SDM Trained With Satellite Image Series

In this section, we describe the architecture and learning procedure of the deep-SDMs that we trained based on the DeepOrchidSeries dataset described above. Given an image time series as input, the model estimates orchids, relative probabilities of presence.


2.2.1. Model Definition and Training Procedure


Model Architecture

The model used is an extended version of the Inception v3 (Szegedy et al., 2016) CNN. Inception networks are appreciated because of their capacity to grasp patterns -here environmental patterns- at multiple scales. It has been shown by Deneu et al. (2021b) that this architecture provides better species prediction performance than point neural networks, boosted trees, or random forests. We use this work to justify our choice of model. Nevertheless, testing other recent neural architectures specifically designed to deal with spatio-temporal data is an avenue to be exploited in the future, see the second perspective of the discussion. In particular, the performance gain was shown to be the most significant for rare species. In our context, the Inception v3 architecture was modified so as to accept not only RGB images but the full RGB+IR image time series. Our inputs are of size (Nf, Nx, Ny) with Nf the number of features equal to 12 * 4 = 48 (12 months x 4 RGB+IR channels) and Nx = Ny = 64 (corresponding to 640 x 640 m quadrats at 10 m resolution). To speed up the training and regularize the model, batch normalization (Ioffe and Szegedy, 2015) was applied on the convolutional layer activations, just before the nonlinear ReLu function. Dropout (Srivastava et al., 2014) was finally used to prevent the network from overfitting (with a dropout probability of 0.5).



Model Loss

The models were trained using the LDAM loss (Label-Distribution-Aware Margin, Cao et al., 2019) designed for strong class-imbalance multi-class classification problems. In our context, it allows pushing upward rare species performance without deteriorating predictions on common species. The LDAM loss is a label-distribution-aware function that leads the model to an optimized trade-off between per-class margins. When considering two species only, say one rare and one common, the decision boundary drawn by this loss will be slightly shifted toward the common species in order to let the benefit of the doubt to the rare species (refer to Cao et al., 2019 Figure 1 for a meaningful scheme). The LDAM loss has been shown to perform very well in many deep learning benchmarks involving both a strong imbalance between classes and a high inter-class ambiguity.



Training Procedure

The models were fitted using stochastic gradient descent on multi-GPU nodes from Jean Zay, an IDRIS supercomputer5. They were trained during 70 epochs with a batch size equal to 64. The training process took around 100 h per model (with 8 gpus working in parallel).

Convolutional and linear layers weights were initialized from a truncated normal continuous random variable. The deferred re-weighting (DRW) training schedule associated with the LDAM loss was used. DRW is a vanilla empirical risk minimization (ERM) until a given epoch, here 65. Then, the training ends with a re-weighted loss and SGD steps with a re-normalized learning rate, both by batch species frequency. The learning rate was initialized to 0.1 and later decayed by a factor of ten at epochs 50 and 65. A trained model is approximately 600 MB.




2.2.2. Performance Evaluation of the Model


Data Split

The DeepOrchidSeries dataset was split into three parts: (i) Training set (90%), (ii) Validation set (5%), and (iii), Test set (5%). Following the recommendations of Roberts et al. (2017), the split was done using a spatial blocking strategy that enables a more robust estimation of the performance of the model. The spatial blocks were defined in the spherical coordinate system according to a 0.025° grid, i.e., square blocks of 2.775 km at the equator. Splitting by block is important to impede the model from being validated or tested at locations very close to the training occurrences. In addition to the spatial blocking, we also used a stratified sampling strategy to ensure that any region of the world has a minimal number of blocks in the training set. We, therefore, used the WGSRPD level 2 regions (Brummitt et al., 2001). Within each region, we randomly sampled 90% of the blocks present and assign them to the training set. The remaining blocks were assigned to either the validation set or the test set (at random). Validation and test occurrences from species that were not in the training set were removed. Table 1 provides the number of occurrences and species in each set.


Table 1. Summary table of the number of occurrences and species in the training, validation, and test sets.

[image: Table 1]



Evaluation Metrics

Our model being trained with a multi-class classification loss on presence-only data, its output is a categorical probability distribution of the form ηs(x) = ℙ(Y = s|X = x) where x is the input tensor (i.e., an RGB+IR image time-series), Y the observed species and ηs(x) is the estimated probability that the observed species is s conditionally to x. Because the output is a categorical probability distribution, we have that the sum of probabilities over all species is equal to one ([image: image]). To evaluate the model, we chose not to use pseudo-absences because of the bias induced by such methods (Phillips et al., 2009; Botella et al., 2020). Instead, we used a set-valued metric (Chzhen et al., 2021) to assess the quality of the species assemblage predicted by the model for a given input. Specifically, we chose the commonly used top-k accuracy as suggested in Botella et al. (2019). It measures the success rate of the model when it returns the top-k most probable species for any input x. More formally
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where n is the number of occurrences in the test set (or validation set) and

[image: image]

with yi the true species label of occurrence xi and [image: image] the outputs of the model re-ordered in decreasing order of probabilities.

Because of the high-class imbalance of our dataset, a shortcoming of this metric applied on all test occurrences taken together (or micro-average, Sokolova and Lapalme, 2009) is that it gives far too much importance to the most frequent species over the less frequent ones. To compensate for this imbalance, it is preferable to use the macro-average version of this metric (Sokolova and Lapalme, 2009) consisting of first calculating the score of each species and then averaging the scores over all species. More formally, the macro-average top-k accuracy can be defined as
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where l is the number of species in the test and SAk,s is the top-k accuracy for species s defined as

[image: image]

with ns the number of occurrences of species s in the test set. During the training phase of the model, the macro-average top-k accuracy (MSAk) is computed on the validation set every two epochs for k = 30. The model selected in the end is the one with the highest value.

To analyze the performance of the model according to the number of occurrences available in the training set, we also measured the macro-average accuracy on subsets of species categorized by a range of their number of occurrences. If we denote as Ns the number of occurrences of a species s in the training set, we can define as SI = {s| Ns ∈ I, ns > 0} the set of species in the test set having a number of training occurrences in a given interval I. The macro-average accuracy for a given interval I is then defined as

[image: image]

Another batch of experiences will focus on performances per geographic region. Spatial units are taken from the World Geographical Scheme for Recording Plant Distributions book (Brummitt et al., 2001). The level 3 division defines the botanical countries that we exploit. Performance per region r is denoted as RAk,r and is defined as the micro-average top-k accuracy computed only on the occurrences encompassed in r:

[image: image]

where nr is the number of test occurrences in r. Regions with nr fewer than 50 occurrences were excluded as statistically insignificant. Further, performance per region is compared with region's species diversity. Therefore, we computed the diversity index [image: image] of each region r according to the definition of Hill (1973) and Jost (2006). It is a quantitative measure of biodiversity combining, in a given region, species richness with species relative prevalence. The term prevalence is used instead of abundance to account for the observation bias in our data. Species richness corresponds to the number of distinct species observed (denoted Lr). Species relative prevalence is the share of species occurrences compared to all region's observations: ps,r equals [image: image], with ns,r the number of test occurrences from species s in r. The general expression of the region's diversity index is

[image: image]

where q is a parameter weighting the trade-off between the importance granted to species richness (small value) vs. relative prevalence (big value). [image: image] results in regional species richness and [image: image] is the exponential of the Shannon entropy (Shannon, 1948). Performance per region is then averaged per category I on the diversity index and written as MRAk,I.

In the literature, the majority of studies involving species diversity use it as a response variable. They are focusing on its potential drivers like bio-climatic variables, topographic heterogeneity, or forest structure (Thuiller et al., 2006; Hakkenberg et al., 2016). Here, we exploit species diversity as an explanatory variable possibly explaining our model performances. In a similar manner, Emerson and Kolm (2005) defended that species diversity is a driver of speciation and (Dawud et al., 2016) examined its influence on soil carbon stocks among others.




2.2.3. Interpretability Experiments: Quantifying the Contribution of Temporal Information

We designed several tests to analyze to what extent the trained model uses the temporal information contained in the image time series. The general principle is to transform the input data in order to suppress some information and to retrain a new model based on this transformed data. The comparison of the model deprived of information with the original model then allows quantifying the importance of the suppressed information. Figure 7 gives a comprehensive overview of the procedure detailed hereafter:

[image: image]   Original time-series. This is the default original model where the input image time series are kept unchanged (stacked in chronological order). Here, the model can learn from the temporal dynamics present in the series. The filters learned by the Inception v3 model are themselves ordered feature maps time series of 12 months and are likely to capture spatio-temporal redundancies in the input data (e.g., seasonal variations of the environment or phenological patterns).

 [image: image] Random permutation. In this model, the 12 images of the original time series are randomly shuffled so that the model can no longer base its predictions on the actual temporal sequencing (Garnot et al., 2019). All input variance and spatial information remain nonetheless in the input. The filters learned by the Inception v3 model can neither be specialized by month nor can the model differentiate relations between months input. It actually learns from the block of 12 months considering them all equally. This procedure is comparable to the variable importance technique where a given input variable is randomized across samples to test how the model performs without its contribution. However, here, we do not randomize a given feature across samples, but features order independently for each sample.

 [image: image] Temporal averaging. In this model, the input image series are reduced to the mean over the 12 months replicated twelve times. Only the first moment of the distribution over the time dimension is kept and the model only "sees" a mean landscape averaged along the year. The objective here is to test to what extent a simple temporal averaging is sufficient to sum up most of the temporal variation. Each month contributes equally to the mean and the result is blurry. The variance between months has been totally removed. Ecological gradients of the different patch elements are reduced to their sum divided by twelve.

 [image: image] Temporal sampling. In this model, the input image series are reduced to only 1 month picked at random and replicated twelve times. The neural network is being provided with only a twelfth of the predictive data and is deprived of any temporal information.


[image: Figure 7]
FIGURE 7. Scheme illustrating the three transformations applied to the input image time-series toward interpreting the contribution of the temporal information. Only 6 RGB images are depicted but these procedures are applied on the whole 12-month-long time series, IR channel included (here N = 6 but would normally equal 12). The image time-series A (black legend) corresponds to the original data, i.e., to the images stacked in chronological order. The image series B1 (green legend) is obtained by randomly permuting the original time series. The image series B2 (red legend) is made of 1 month picked at random and replicated N times. The image series B3 (blue legend) is constructed by averaging the 12 images of the original time series and replicating the resulting mean image N times. Please note that the same legend's colors will be used in the figures of the paper presenting the results of these experiments.


Please notice that for each of the cases ([image: image], [image: image], and [image: image]), the data transformation is applied once on the whole dataset (including training, validation, and test set) before the model is trained and evaluated.

Model [image: image] being deprived only of the months, order information, its comparison with Model [image: image] can be interpreted as a statistical test of the hypothesis that the composition of species depends on the existence of months specific features, in particular the ones resulting from yearly seasonality cycles. The comparison between [image: image] and [image: image] can be interpreted as a test of the hypothesis that the species composition does or does not depend on any temporal variability. Model [image: image] can be seen as an intermediate scheme where the temporal variability is summarized only by the mean of the distribution. Accordingly, the comparison between [image: image] and [image: image] allows assessing how useful statistical moments of a higher order than the mean are for characterizing the temporal variability.

To compare the performances of two different models, say [image: image] and [image: image] with i ∈ {1, 2, 3}, for a given species s in the test set, we set a metric down called relative performance change of [image: image] compared to [image: image], defined as

[image: image]

where SAk,s is the top-k accuracy of species s (see Equation 3).

In the same manner that we defined the macro-average accuracy per category I on the species training set's number of occurrences, we can now consider the mean relative performance change per category between two models:

[image: image]

Relative region performance change [image: image] is also calculated as [image: image]. This measure is averaged per category I on the diversity index as well and is represented by [image: image].

When computing [image: image] (resp. [image: image]) between [image: image] and [image: image] models for a given species s (resp. a given region r), it is beforehand necessary to make sure that the denominator, [image: image] (resp. [image: image]), is not null. It can sometimes be when the model [image: image] fails to predict the correct label for all s occurrences (resp. all occurrences in r). In this case, no performance change can be calculated since it is already null. Species s (resp. region r) is then removed from the calculation of the mean performance change by categories on species training set number of occurrences (resp. on regions diversity index). This is why there is a drop of support between Figure 9 (resp. Figure 10) left and right graphs, i.e., there are fewer species (resp. regions) encompassed in the categories, as indicated on the horizontal axis. This effect is a lot more important on the support of the species mean performance change than on the region's one. To sum up, relative performance change cannot be calculated for species or regions having already the lowest possible score with the whole temporal information. They are in that case discarded from the mean performance change calculation.





3. RESULTS


3.1. Model Validation and Performance

The top-30 and macro-average top-30 accuracy of the four models ([image: image], [image: image], [image: image], and [image: image]) are presented on Figure 8 (at each epoch of the training phase for the validation set and on the test set for the final selected model). Due to the long-tail distribution of species occurrences (Figure 2A), the top-30 accuracy A30 is representative of the performance on the most common species whereas the macro-averaged top-30 accuracy MSA30 is more representative of the performance of the rare species. The final increase in the MSA30 score at epoch 65 is due to the DRW optimizer previously described: re-weighting the loss toward training's end enables a boost on rare species performances (Cao et al., 2019). The top-30 accuracy A30 tends to slightly decrease after the first quarter of the training phase. Our hypothesis is that this is mainly due to the use of the LDAM loss: as the training goes by, the models are reaching a better estimation of rare species ecological niche and tend to predict them more often to the detriment of common species that were chosen by default.


[image: Figure 8]
FIGURE 8. Micro (A) and macro (B) average top-30 accuracy on models validation and test sets. Micro-average results tend to represent common species whereas macro-average performances are more representative of rare species.


The model [image: image] trained and tested with the original time series provides better results than the three other models deprived of temporal information. [image: image] is the only one where the temporal dynamics are undamaged and hence fully exploitable to statistically draw predictions. The macro-average top-30 accuracy is 0.286 for the unaltered model [image: image], against 0.216 for [image: image] trained on shuffled data, 0.215 for [image: image] trained on the yearly mean, and 0.149 for [image: image] trained on a single random month.

The following analyses can be made of these results:

1. The strong performance decrease between [image: image] and [image: image] shows that the temporal information contained in the time series is a key factor of the predictive performance. For most species, it appears to be as important as the spatial information alone (cf. macro-average accuracy plot MSA30).

2. The comparison between [image: image] and [image: image] shows that the decisive temporal information is largely related to the order of the images in the time series, i.e., to the months, specific features captured by the model (such as the ones resulting from yearly seasonality cycles).

3. The comparison between models [image: image] and [image: image] shows that their performances is almost identical (cf. MSA30 plot). This means that the decisive information related to the unordered temporal variability can be synthesized efficiently by the mean of the time series. In other words, higher order statistical moments of the temporal dynamic independent from the time of the year are likely to be useless for predicting species composition (e.g., the standard deviation of acquisition noise).

4. The comparison between models [image: image] and [image: image] shows that the decisive temporal information is also largely explained by the unordered temporal variability of the images (typically due to some stochastic processes independent from the time of year).



3.2. Results by Number of Species Occurrences

Figure 9A displays the performance of the four models as a function of the number Ns of species occurrences in the training set (cf. equation 4). Not surprisingly, we can observe that the accuracy of the model is positively correlated with the number of occurrences. The more the occurrences in the training set and the better the top-30 accuracy. It should be noted, however, that the performance on the rarest species remains much better than that of a random predictor. Species having between 3 and 10 occurrences, for instance, are predicted in the set of the top-30 most probable species in 17% of the cases. A random predictor over the 13,700 species of the training set would have a top-30 accuracy below 0.22%.

Figure 9B displays the mean relative performance change between the unaltered model [image: image] and the three models [image: image] (i ∈ {1, 2, 3}) as a function of the number of species occurrences (as shown in Equation 8). It shows that the relative performance drop is inversely correlated with the species, number of occurrences. In other words, the rarer the species (in the data), the higher the performance gain obtained thanks to the temporal information. This can be explained by the fact that this is precisely on rare species predictions that the room for improvement is the bigger, as depicted on graph Figure 9A. The use of time series thus makes it possible to compensate for the lack of occurrence data by increased knowledge of the temporal dynamics of the environment.


[image: Figure 9]
FIGURE 9. Macro-average top-30 accuracy (A) and relative top-30 accuracy change (B) averaged per category of the number of species occurrences in the training set. All models, performances are following the drop of Ns when relative performance changes are inversely proportional to it.




3.3. Results by Region and Regional Diversity Index

Figure 10 displays all results related to the regional analysis of our models.


[image: Figure 10]
FIGURE 10. Region top-30 accuracy (A) and relative top-30 accuracy change (B) averaged per cat. of [image: image]. Map (C) presents region top-30 accuracy with [image: image] indicated in green. Map (D) illustrates spatial decreases in performances when comparing [image: image] to [image: image], i.e., without/with the temporal information.


The first sub-graph Figure 10A shows that the predictive performance of the four models is negatively correlated with the regional diversity index. Regions with small diversity indexes [image: image] are the ones where the model predictions are the better. On the contrary, regions with high diversities show the models achieve poor performance. With q = 1, the diversity index equals the Shannon entropy exponential. This measure strongly depends on species richness. Hence, areas with high diversities are where there is a lot of possible different orchids. This means many possible classes for the models and a high risk of confusion between species with similar environmental preferences. Moreover, these areas are often including a lot of rare species and/or are still poorly observed. Regions with low [image: image] values are regions with relatively low species richness and tend to encompass common species that the models are predicting well (as shown in Figure 9A).

The second sub-graph (Figure 10B) displays the relative performance change when comparing the model [image: image] to [image: image] models, as a function of the regional diversity index. The most obvious trend is the red curve: when totally deprived of the habitat temporal dynamics, predictions on most diverse regions are proportionally more impacted than on low diversity regions. The tendency is more irregular for [image: image] and [image: image] but is globally valid too. It implies that, similar to rare species in Figure 9B, the temporal information especially benefits highly diverse areas. The enlightenment of this tendency also is that this is where the room for improvement is the largest. Models especially take advantage of further temporal information to progress on hard tasks. Supplementary Figure 2 presents the results of the same experience but with categories formed on regions' the number of occurrences in the training set Nr, the total number of occurrences entailed in region r during training. Unlike Figures 10A,B, no tendency can be drawn. It reaffirms our idea that it is region's diversity that is driving results spatially and not only the observation bias.

The map displayed in Figure 10C depicts the top-30 accuracy per region achieved by the model [image: image] (i.e., the unaltered model with original time-series). A clear difference in performances can be observed between the southern and northern hemispheres. Looking at regions' diversity index [image: image], written in green on the map, allows a better understanding of this gap. Northern regions (especially northern Europe) are presenting fewer species and are well sampled whereas regions around and below the equator (Australia excepted) are a lot more diverse and still insufficiently observed. Models, average performances are actually quite consistent on the Earth parallels. This map is the direct illustration of the Figure 10A black curve.

Finally, map Figure 10D shows that where the loss of the temporal information impacts the more the performances. It corresponds to red curve of Figure 10B when the model trained with only one randomly picked and duplicated data month is compared to the reference model trained with full time series. Relative performance decreases in very diverse regions like southern China or Bolivia are really pronounced. On the contrary, performances in countries with low orchid diversities and well-observed like Norway of Finland are relatively spared by the input reduction.



3.4. Statistical Tests

A t-test between [image: image] and [image: image] species micro-average accuracies [image: image] and [image: image] does confirm that results are notably different (p-value of 5e−42). The same conclusion arises from the comparison of the average top-30 accuracy per region: [image: image] with ordered data against [image: image] without, a p-value of 3.5e−9. This confirms that the order of the images in the time series does matter and that providing the data stacked in chronological order leads to significantly better performances than when providing data in random order.



3.5. Model Evaluation Regarding Time and Spatial Data Mismatches

Figure 11A reveals a marked gradient of performance depending on test occurrence observation year. This analysis discarded 15% of the 50,375 test occurrences presenting no observation date information. Each quartile includes approximately 11,000 points. Both micro and macro top-30 accuracy seem to be linearly correlated to the occurrence observation year quartile. The linear behavior is confirmed when choosing a division with a thinner percentile. Top-30 performances on the last quartile 2010-2019 are impressive: 0.834/0.484 of micro/macro average accuracy. When cutting the test set data at the median 1997, i.e., considering separately the oldest and the most recent half of test observations, performances are of 0.703/0.281 (oldest half) and 0.811/0.409 (most recent half). Moreover, it should be noted that all macro-average performances calculated on the test set's subsets are comparatively higher than overall performances because less distinct species are considered (as shown in Figure 11 species number in bold, against 4, 261 in the entire test set).


[image: Figure 11]
FIGURE 11. Model performances on the test set divided by quartiles Qi on (A) occurrence observation year and (B) occurrence coordinates uncertainty. The test accuracy is higher on more recent observations and on observations with reasonably low coordinates uncertainty.


Figure 11B focuses on the influence of test occurrence coordinates uncertainty on model performance. Test set is divided by quartiles on the studied variable, likewise Figure 11A. In total, 31% of test observations do not include any information on coordinates uncertainty and are consequently put aside. Each quartile contains approximately 9,000 observations. Micro-average top-30 accuracy is identical on the first three quartiles and only drops when uncertainty is higher or equal than 5,000 m. Macro-average top-30 accuracy is similar when uncertainty is kept under 707 m, i.e., for the first two quartiles only (it is even slightly higher for the second one). Then, the macro-average performance goes a step down starting from the median of 707 m. Both micro and macro average performance are severely diminished when coordinates uncertainty is superior or equal to 5 km.




4. DISCUSSION


4.1. SDMs and Satellite Data

Remote sensing is an invaluable source of predictive features for SDMs and more widely for deep learning based earth observation applications (He et al., 2015; Zhu et al., 2017; Borowiec et al., 2021). Combined together, they offer a key opportunity in monitoring biodiversity facing climate change (Randin et al., 2020).

Species distribution models coupled with remote sensing data are often exploiting the widespread vegetation indexes Enhanced/Normalized Difference Vegetation Index (EVI or NDVI, Bannari et al., 1995). These indices are computed from satellite channels and are intended to reflect vegetation properties. The NDVI is said to assess photosynthetic activity and productivity (Pettorelli et al., 2011). Texture measures derived from satellite EVI were proven adapted to map habitat heterogeneity and bird species richness patterns (Farwell et al., 2020).

The WorldClim variables (weather station data interpolated with satellite-derived covariates, Hijmans et al., 2005; Fick and Hijmans, 2017) certainly are the most widely used global SDM predictors (Nogués-Bravo, 2009; Svenning et al., 2011). This bio-climatic data approaches habitats, annual trends (e.g., annual precipitation) and seasonalities (e.g., temperature annual range and standard deviation). Contrary to our 1-year DeepOrchidSeries dataset, here, the variables are averaged across several decades. Comparing the predictive power of these classic predictors (possibly completed with a land-cover raster) to our Sentinel-2 data will be the focus of future work.

Species distribution models and remote sensing data can also help rare species detection by capturing the biophysical conditions driving their distributions (Cerrejón et al., 2021). Recent studies have successfully leveraged the spatial structure of satellite images as input to CNN-based SDMs (Deneu et al., 2021b). Trained on fine-scale tensors, these models were proven able to learn and cluster species ecological preferences like annual mean temperature (Deneu et al., 2021a).

Regarding the use of the temporal dimension of satellite data in SDMs, few studies actually take advantage of it as underlined in Randin et al. (2020). In this regard, we can cite (Cord and Rödder, 2011) who tried in 2011 to include EVI seasonality information in their SDMs inputs. Their study was however on a totally different range than us since they focused on eight Mexican anurans and used one-dimensional predictors.



4.2. Benefits of Deep-SDMs Trained on Remote Sensing Image Time-Series

The main outcome of our study is that using time-series of satellite images significantly improve Deep-SDM performance, in particular for rare species and in most diverse regions, supporting the interest of the approach for conservation science. Rare species are almost always threatened due to few occurrences means, without conservation measures, and greater extinction risk. Moreover, the world's most diverse regions include nearly all undiscovered species (Joppa et al., 2011). Better knowledge of the ecological niche of rare or little-prospected species should foster more appropriate and effective conservation measures to ensure their survival.

We collected time series of remote-sensing images to grasp the temporal variation in habitat properties. Our results confirm that this information is of high value to capture species, ecological niches and potential distributions. Our time series are also providing SDMs with the spatial structure of species habitats, a key information to enhance predictive performances (Deneu et al., 2021b).

Recent satellite missions offer both high temporal revisit frequency and high spatial resolution at the global scale, supporting the use of such data for niche modeling. The use of even more intensive remote sensing data, e.g., all products without any selection by month or on a wider time window, would probably allow even better estimation of ecological niche. That said, the Sentinel-2 data curation we devised here represents a good trade-off to acknowledge the phenology of orchid habitats at a broad spatial scale. Trying to avoid as much as possible clouds on selected images was also a sensitive point in our dataset creation workflow. A thinner temporal resolution would have resulted in richer time-series, but also a higher number of cloud frames. The question of whether the presence of clouds is in itself a piece of relevant information for characterizing the environment was not addressed in our study and remains nonetheless an open question.



4.3. Comparison With Other Open Remote Sensing Datasets for Deep Learning

Remote sensing datasets for deep learning applications are currently gaining much interest and are more and more accessible. The very recent launch of TorchGeo (Stewart et al., 2021), a Python library to easily handle geospatial datasets in the PyTorch environment, illustrates the recent and still ongoing progress. However, the available datasets remain currently few and the temporal information provided by satellite revisits is almost never used (Sumbul et al., 2019). The available datasets are mostly used for land-cover classification (Helber et al., 2019) or semantic segmentation (Schmitt et al., 2019), as described in the benchmark datasets provided in TorchGeo (see Stewart et al., 2021 of Table 1). Sen12MS is for instance a global dataset including 180,662 patches of Sentinel-1/2 256 x 256 m images and MODIS-derived land cover maps (Schmitt et al., 2019). Another dataset, similar to ours in terms of spatial coverage, is named Seasonal Contrast (SeCo) (Mañas et al., 2021) and was released in 2021. It gathers 2.65 km × 2.65 km Sentinel-2 image time-series around about 200 K locations worldwide. Time-series include 5 images separated by approximately 3 months. The objective was to learn an encoder that can be used for a variety of tasks, from land-cover classification to change detection. SeCo includes images from all over the world to represent a wide variety of landscapes. Among the currently available and open datasets, our dataset is, to the best of our knowledge, the only one providing monthly image data at so many points worldwide. In order to allow its reuse and the reproducibility of our experiments, the entire dataset is made publicly available with the Zenodo DOI 10.5281/zenodo.4972593. We also share the scripts that allowed us to create it at https://gitlab.inria.fr/jestopin/sen2patch. In particular, these can be used to collect new image time series at locations other than those covered by our dataset.



4.4. Interpretability: In Which Cases Is the Modeling of the Temporal Dynamics the Most Beneficial?

One of the major conclusions of our study is that the regions benefiting the most from a performance gain due to the modeling of the temporal dynamics of satellite images are those with the highest species diversities. This conclusion may seem counterintuitive at first. Indeed, the regions with the highest diversities are often located toward the tropics and are not those with the most pronounced seasonal patterns. Consequently, the image time series in these regions are not expected to be the ones with the strongest temporal signal. However, it is important to understand that the model operates on a global scale with thousands of habitats to discriminate from each other. Whatever the temporal signature of a given habitat, it is a piece of useful information for distinguishing it from other habitats. At the extreme, the temporal signature of a constant habitat throughout the year is a strong marker of that habitat. A study led in Mediterranean natural habitats analyzed habitat discrimination from a variety of multispectral sensors answers simulated from field measurements, including Sentinel-2 (Féret et al., 2015). They showed that multi-temporal acquisitions outperform single data acquisition to discriminate habitats.

The reason for the higher performance gains in high diversity regions is actually more related to the higher model uncertainty in that regions. Species from these regions are indeed those for which there is the least amount of occurrence data available and our study clearly demonstrates that the performance gain is strongly correlated with this variable. In other words, our study shows that the addition of the temporal information allows reducing the model uncertainty related to the lack of occurrence data in high diversity regions. This result appears particularly interesting since habitats with the highest diversity and the rarest species are also the most threatened ones and modeling them is essential to put in place adapted conservation measures.



4.5. Key Considerations for Building New Models With Our Method or Using Existing Ones

Our method could be readily applied to other taxonomic groups than the orchids family. The ease and cost of implementation will mainly depend on the geographical distribution of the occurrences of the target taxon. With a family as large and widespread as the orchids, our method requires significant computing resources. Downloading Sentinel-2 tiles to a very large extent demands a lot of storage available (about 100Tb). To keep model training time reasonable, GPUs have to be used too. A computing cluster is more than welcome and the technical requirements can be a limitation for some researchers. However, once the dataset is built and the model is trained, predictions can perfectly be run on standard local machines. To this end, the model built for our study is shared publicly in the same Zenodo repository as the dataset (https://doi.org/10.5281/zenodo.4972593). The new S2 image time-series as input can be used to predict species orchids composition anywhere on earth or to build high-resolution maps of specific orchid species at a global scale. It may also be used for other ecological tasks via transfer learning approaches (i.e., keeping unchanged all the weights of the model except those of the last layer dedicated to species classification, Torrey and Shavlik, 2010).



4.6. On Temporal and Spatial Biases

In the context of species and habitats distribution modeling in general, a recurrent challenge is a possible mismatch, both in time and space, between the occurrences and the environmental variables (Phillips et al., 2006). As shown in Figure 2B, in particular, a fraction of the occurrences in our dataset date from several decades ago, while the satellite data is from March 2020 to February 2021. If the environment changed since the observation, e.g., because of a housing project or deforestation, the model may learn incorrect relationships. Figure 11A focuses on this particular issue and acknowledges the influence of occurrence observation date on model performances. The top-30 test accuracy is gradually higher on more recent occurrences than older ones. Interestingly, common and rare species predictions seem to respond in the same manner to temporal shifts between predictive habitat data and species observation dates.

Spatial mismatch can also happen because of the occurrences position uncertainty (Shown in Supplementary Figure 1). However, our model being based on convolutional filters, it is highly robust to such spatial shifts until the true occurrence position does not exceed the extent of the input image (here, 640 m × 640 m). Ideally, only occurrences with a position uncertainty of less than 320 m (half of the patch size) should be considered with our method. Figure 11B traduces the impact of test occurrence coordinates uncertainty on model performance. As expected, top-30 accuracy drops when uncertainty is substantial and there is actually very little chance that the predictive data is anywhere near the actual observation place (see performances on Q4 quartile). Besides, performance on both common and rare species remains almost constant when uncertainty is inferior to the median equal to 707 meters. Thereby, when the maximum uncertainty is of the order of the patch size, the model performs as well as on very precise occurrences. Finally, the Q3 marked difference of evolution between micro/macro top-30 accuracy could be explained by the following hypothesis: rare species predictions are more affected by a growing coordinates uncertainty than common species because of more locally specific habitat preferences.

In machine learning, such mismatch between labels and predictive data is called label noise (Frénay and Verleysen, 2013) and is actively studied (Ghosh et al., 2017; Lee et al., 2018). The strength of our dataset in counteracting this noise is its very large size, as demonstrated by Rolnick et al. (2017). Their work showed that deep learning models can learn correct generalizations even with massively noisy datasets.

At last, the strong spatial bias present in the DeepOrchidSeries dataset influences SDMs predictions (Beck et al., 2014). Such bias results from a very uneven sampling effort (Shown in Figure 4C map) and not from orchids distribution. The use of methods to mitigate spatial bias at the cost of occurrence number is a promising direction to exploit DeepOrchidSeries (see abovementioned publication). Nonetheless, true understanding of orchids distribution and health will only be reached with significant and uniform observation effort. Having access to constructive and global predictive data is remarkably valuable but not sufficient. Biodiversity hotspots (Myers et al., 2000) urgently need to be sampled with high standards of care to limit human disturbance. Citizen science initiatives are also contributing to enhancing biodiversity monitoring worldwide (Kobori et al., 2016; Affouard et al., 2017).



4.7. Perspective 1: Enriching the Input With Other Predictors Informing Orchids Habitats

An exciting future development is to add other relevant predictors to our models. Other image time series like the frequently used bio-climatic variables from WorldClim6 or Ecosystem Functional Attributes (EFAs, Arenas-Castro et al., 2018, although not independent since they also are computed from satellite data) would bring Supplementary Materials on species ecological niche. Complementary data like altitude7, available global human footprint rasters8, soil properties variables9 (Batjes et al., 2020), or ecoregions (Olson et al., 2001) would help to crystallize species preferences and vulnerabilities as well.



4.8. Perspective 2: Using NN Architectures Designed to Extract Long-Term Temporal Dependencies

An active research avenue concerns adapting neural networks architectures to best analyze satellite image time series with broad temporal and spatial coverages. Recurrent CNNs (RCNNs, Lai et al., 2015) achieve significant performance gain in land-cover classification tasks (Rußwurm and Körner, 2018; Garnot et al., 2019), and we anticipate it should also be relevant for the analysis of species distributions and spatio-temporal dynamics. In our case, we can suggest a hybrid architecture relying on an Inception v3 model to first extract the spatial features at each week or month and then an RNN to encode the temporal dimension over a long period of time. 3D CNNs are another promising candidate architecture but, as pointed out by Garnot et al. (2019), convolutions in the temporal dimension are not well adapted to grasp long-term dependencies and assume a regular sampling of occurrences in time, which we do not have. Lastly, spatio-temporal encoders with temporal attention also merit to be tested when seeing their success on other tasks like satellite time-series segmentation (Garnot and Landrieu, 2021). For now, our CNN architecture is considering the stacked time-series of size twelve as a global temporal context. It was proven suited to grasp the local landscape dynamics yearly and globally improve species relative probability of presence prediction. But with larger time-series, attributing more modeling weight to the temporal dimension will be a must. This seems especially relevant given that predictions of rare species and predictions in very diverse regions benefit the most from the temporal information.




5. CONCLUSION

In this paper, we studied for the first time a worldwide SDM based on high-resolution remote sensing image time series. Therefore, we built and shared a substantial dataset (called DeepOrchidSeries) aimed at modeling the distribution of orchids on a global scale from Sentinel-2 data. The spatial structure and phenology of species habitat are captured over a whole year for 999,258 occurrences. We then trained deep-SDMs resting on an Inception v3 architecture whose input was modified to deal with 12 months time-series of RGB+IR images. The analysis of the resulting model reveals that the temporal information contained in the time series enables a strong improvement of the predictive performance compared to a purely spatial model. Thanks to interpretability experiments, we did show that seasonal patterns, in particular, are well captured, resulting in better discrimination of habitats all over the world. We also demonstrated that occurrence-poor species and diversity-rich regions are the ones that benefit the most from this improvement, revealing the importance of habitats, temporal dynamics to characterize biodiversity. We hope that this work will pave the way for even more elaborate spatio-temporal models allowing us to predict future trajectories of ecosystems in the context of rapid changes in habitats.
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2https://sentinelsat.readthedocs.io/en/stable/

3https://scihub.copernicus.eu/, queries and downloads require an activated Scihub Copernicus account.

4https://sentinel.esa.int/web/sentinel/missions/sentinel-2

5http://www.idris.fr/annonces/annonce-jean-zay-eng.html

6http://www.worldclim.org

7https://lpdaac.usgs.gov/products/srtmgl1v003/

8https://sedac.ciesin.columbia.edu/data/set/wildareas-v3-2009-human-footprint and 1993 version.
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Trees are fundamental for Earth’s biodiversity as primary producers and ecosystem engineers and are responsible for many of nature’s contributions to people. Yet, many tree species at present are threatened with extinction by human activities. Accurate identification of threatened tree species is necessary to quantify the current biodiversity crisis and to prioritize conservation efforts. However, the most comprehensive dataset of tree species extinction risk—the Red List of the International Union for the Conservation of Nature (IUCN RL)—lacks assessments for a substantial number of known tree species. The RL is based on a time-consuming expert-based assessment process, which hampers the inclusion of less-known species and the continued updating of extinction risk assessments. In this study, we used a computational pipeline to approximate RL extinction risk assessments for more than 21,000 tree species (leading to an overall assessment of 89% of all known tree species) using a supervised learning approach trained based on available IUCN RL assessments. We harvested the occurrence data for tree species worldwide from online databases, which we used with other publicly available data to design features characterizing the species’ geographic range, biome and climatic affinities, and exposure to human footprint. We trained deep neural network models to predict their conservation status, based on these features. We estimated 43% of the assessed tree species to be threatened with extinction and found taxonomic and geographic heterogeneities in the distribution of threatened species. The results are consistent with the recent estimates by the Global Tree Assessment initiative, indicating that our approach provides robust and time-efficient approximations of species’ IUCN RL extinction risk assessments.
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INTRODUCTION

Of the estimated 350,000 vascular plant species, the c. 59,000 described trees species (Botanic Gardens Conservation International, BGCI; Beech et al., 2017) represent the bulk of biomass and are essential as ecosystem engineers housing and feeding millions of species (Olson et al., 2001; Crowther et al., 2015; Bar-On et al., 2018). Furthermore, trees provide many of nature’s contributions to people supporting the livelihood of virtually all humans, e.g., as sources of wood, food, shade, firewood, construction, and carbon sinks (Luyssaert et al., 2008; Fazan et al., 2020; Davies et al., 2021.

However, an increasing proportion of tree species are subject to anthropogenic threats. The global IUCN RL, arguably the most influential and comprehensive framework to estimate species risk with extinction, lists 67 tree species that are either extinct (EX) or extinct in the wild (EW) (IUCN, 2021). Many more species (n = 11,548) are currently listed as threatened with extinction meaning that they have been classified by experts to face extremely high to high risk of extinction in the wild, based primarily on criteria related to range size, population size, or population decline.

The RL provides detailed and verified information on species extinction risk and the potential threats; and is the basis for conservation policy [informing, for instance, e.g., Convention on Biological Diversity (CBD), Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), and Convention on International Trade in Endangered Species (CITES)] and prioritization of millions of dollars of conservation funds worldwide. Yet, due to the standardized criteria, the expert-focused assessment process, and the required documentation, the IUCN RL assessments are data intensive and time-consuming (Juffe-Bignoli et al., 2016; IUCN Standards and Petitions Subcommittee, 2017), and therefore, the IUCN RL is taxonomically and geographically biased (Bachman et al., 2019), and many species are classified as data deficient (DD) or have not been evaluated (Nic Lughadha et al., 2020; IUCN, 2021). Hence, until early 2021, c. 30,000 tree species remained without an RL assessment, forcing conservation decisions based on incomplete and biased information. Furthermore, for efficient conservation measures, extinction risk assessments need to be repeated and updated regularly. Keeping extinction risk assessments up to date is a major challenge for the IUCN RL (Rondinini et al., 2014), because, in addition to the general data and time constraints of RL assessments, reassessments of already red-listed species are often less appealing and hence down-prioritized.

As an attempt to speed up the process of assessing species extinction risk for the RL, a variety of methods have been proposed to automatically approximate species extinction risk based on species occurrence data from online databases (Bachman et al., 2011; Dauby et al., 2017; Pelletier et al., 2018; Zizka et al., 2021a, see Cazalis et al., 2022 for a review). All these methods have important caveats (Rivers et al., 2011; Nic Lughadha et al., 2019; Walker et al., 2020) and cannot replace the rigorous RL assessments. Yet, they can provide an approximation of species extinction risk and offer the advantage of being scalable to potentially large number of species.

For trees, a separate effort to boost the proportion of species with known extinction risk assessment exists: the Global Tree Assessment (GTA; BGCI, 2021). The GTA aims to assess the conservation status of all tree species following IUCN RL criteria to allow effective prioritization of conservation measures (Newton et al., 2015). As of late 2021, the GTA included, approximately 43,700 species, with about 20% of the known species yet to be assessed or classified (BGCI, 20211). To achieve this remarkable result, the GTA used a combination of semi-automated assessments based on approximate species range size from available occurrence data (for approximately 10,000 species) and data from national assessments and new expert-based assessment. The process involved the coordination of a huge international effort that took 5 years of research involving 60 institutional partners and over 500 experts (BGCI, 2021), which exemplifies the complexity of this approach. In contrast to the IUCN RL, the GTA identified 142 tree species as EW.

In this study, we present an automated assessment of the extinction risk of all tree species for which occurrence data are available at the Global Biodiversity Information Facility (The Global Biodiversity Information Facility [GBIF], 2021). Building upon the recently published R package IUCNN (Zizka et al., 2022a), we harvested and preprocessed the occurrence data of tree species already assessed in the IUCN RL and trained a deep learning model to infer the extinction risk status of tree species not yet assessed on the RL. Furthermore, we used the resulting assessments with geographic distribution and threat level, to highlight the most threatened taxonomic groups and to identify the biomes and countries most vulnerable to anthropogenic pressure. We demonstrated the reliability of our estimates by measuring the prediction accuracy and its spatial consistency.



MATERIALS AND METHODS


Data Collection and Preprocessing

We obtained the most recent database of scientific names of tree species from GlobalTreeSearch (Beech et al., 2017, version 1.5), which included 58,496 species. We retrieved the IUCN Red List extinction risk category using the R package rredlist (Chamberlain, 2020; R Core Team, 2021) from www.iucnredlist.org, yielding red list categories for 32,899 species (retrieved on 3 October 2021). This also included the categories data deficient (DD) (2,332 species) and EX as well as EW (together 67 species). For the purpose of training a supervised learning model, we disaggregated the data into 5 classes of interest, namely, least concerned (LC), near threatened (NT), vulnerable (VU), endangered (EN), and critically endangered (CE), which totaled 30,500 species.

We then retrieved occurrence data from the Global Biodiversity Information Facility1 using the R libraries taxize and rgbif (Chamberlain et al., 2020, 2021). The search returned 47,626,060 records (retrieved on 21.09.2021; DOIs in Supplementary Table 1; see also Supplementary Data). Since species occurrence records from the public database are error prone (Maldonado et al., 2015; Zizka et al., 2020), we cleaned the raw occurrences in a series of automated steps. First, we removed records that could not be assigned to a species from our initial list, for instance, due to synonymy (Cayuela et al., 2012; TPL v1.0). Second, we removed duplicates and retained only records derived from human observation, and preserved specimens or literature, with a coordinate uncertainty smaller than 100 km. Finally, we used the R package CoordinateCleaner v.2.0-20 (Zizka et al., 2019) to remove occurrences with suspicious coordinates falling into a capital city, country centroids, the GBIF headquarter, known biodiversity institutions, the sea, the point 0/0, if the latitude and longitude were equal, or if the occurrence was detected as a spatial outlier. After these cleaning steps, our dataset included 23,535,210 occurrences from 49,743 species.



Feature Generation

We used the IUCNN R package (Zizka et al., 2022a) to calculate features for each species based on their occurrences. The extracted features included geographic information (i.e., number of occurrences, area of occurrence, extent of occurrence, and latitudinal range), presence of the species across different biomes, proxies for climate, and human footprint (all features are described in Supplementary Table 1 in Zizka et al., 2021a). In some cases, not all features could be calculated, and we omitted those species because the downstream IUCNN functions cannot currently handle incomplete feature sets. The final dataset included features and IUCN RL labels for training for 27,146 species and features only for 21,691 species (for which we estimated extinction risk).



Model Training

The package IUCNN provides a framework to access the Python library Tensorflow (Abadi et al., 2016) within R. Using this framework, we trained fully connected neural networks with fivefold cross-validation to estimate the prediction accuracy across all samples. In each fold, the data were split into 80% of the instances used for training and 20% for validation. We monitored validation loss during training as a stopping rule to prevent overfitting. We then computed the prediction accuracy, quantifying the expected performance of the model on unseen data as an average of the validation accuracy across the fivefolds. After preliminary tests, we set the architecture of the neural network to three hidden layers with 100, 60, and 20 nodes, respectively, and rectifier linear unit (ReLU) activation functions. Using the IUCNN implementation, we tested two neural network models, a classifier with a SoftMax activation function in the output layer and a regression model. Furthermore, we used dropout (Gal and Ghahramani, 2016) with the rate set to 0.1 to prevent overfitting and allow the estimation of prediction uncertainty. We trained the networks based on the five extinction risk classes and using a simplified binary classification, including possibly threatened (i.e., VU, EN, and CR) and possibly not threatened (i.e., LC and NT), which we shortened to “not threatened” hereafter. We evaluated the performance of the models using the cross-validation accuracy.



Predicting Species Conservation Assessment

We used the trained models to predict the extinction risk of the 21,691 unlabeled species in our dataset. The application of 100 Monte Carlo (MC) dropout replicates allowed us to measure uncertainty around predictions (Gal and Ghahramani, 2016). We combined our predictions with the available RL assessments to summarize the estimated extinction risk within higher taxa and by region. Specifically, we computed the number and proportion of threatened species in each family to quantify the level of heterogeneity in conservation status among taxonomic groups. After assigning species to countries and biomes, we also computed the number and proportion of threatened species within these spatial entities.



Sensitivity Tests

We performed sensitivity tests to assess the extent of taxonomic and geographic bias among the species used for training our models, i.e., the species in the RL. Specifically, we looked at the fraction of evaluated species across plant genera, families, and orders assuming that a systematic bias would leave a signature in their distribution. For instance, if the assessments were carried out systematically by the taxonomic group, we would expect a bimodal distribution where the fraction of assessed species nears one in some groups and zero in others. Similarly, we quantified the fraction of assessed species across countries and biomes to estimate the level of heterogeneity in the available RL assessments.

We then calculated the cross-validation prediction accuracy for each country, to evaluate whether spatial biases in the distribution of RL-assessed species may impact the accuracy of our predictions. Specifically, we identified what tree species in our test sets (from the 5 cross-validation folds) were found in each country, based on the available geographic occurrences. We then approximated the prediction accuracy for each country as the fraction of species correctly classified out of all tree species occurring in the country.

We performed 100 predictions for all species using MC dropout probability as a measure of uncertainty around each prediction (Gal and Ghahramani, 2016). This enabled us to identify the MC dropout probability above which the classified instances yield a predefined prediction accuracy. For instance, we could identify the MC dropout probability threshold such that instances classified with a higher probability yield a 95% test accuracy, while others will remain “unclassified” (Gal and Ghahramani, 2016). We performed this test to assess how many species could be classified with high confidence (accuracy > 90%) and whether the fraction of them assigned to the possibly threatened category changes compared with the full set of predicted species.




RESULTS


Model Selection and Performance of the Best Models

The best-fitting model for the 5-class prediction was a neural network classifier, which achieved a cross-validation prediction accuracy of 66.9%, while the regression model yielded an accuracy of 61.5%. LC species were correctly identified in 92.6% of the cases, while the accuracy was lower for the other classes, particularly, the intermediate NT and VU classes (Supplementary Figure 1). In most cases, the misclassified species were assigned to a neighboring class, indicating that the model could still correctly identify some signal for these species.

The best model for the 2-class prediction (not threatened vs. possibly threatened) was a neural network classifier, which achieved a prediction accuracy of 83.7%, similar to the corresponding regression model (83.5%). The accuracy was much more balanced among assessments than in the model with 5 classes, with 87.1% of the not-threatened species and 78.1% of the possibly threatened species correctly classified (Figure 1A). Given the substantially higher accuracy of the binary predictions, we focused, hereafter, on the results obtained from this model.
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FIGURE 1. The classification results and performance of a deep learning model trained to identify possibly threatened tree species (binary classification; see Supplementary Figure 1 for the 5-class confusion matrix). (A) Confusion matrix showing the per-class prediction accuracy (cross-validation test sets) and (B) assessment of 58,429 species combining the IUCN RL (darker shades) and our predictions (lighter shades). Of the 52,191 species that could be assessed, 56% were estimated as not threatened and 44% as possibly threatened.




Classifications

Our model predictions resulted in an increase in the number of extinction risk assessments from 30,500 to 52,191 species compared to the RL (the detailed classification results are available in Supplementary Table 2), reducing the number of tree species without either a full IUCN assessment or a preliminary automated assessment from 29,462 to 6,238 (Table 1). They remained unassessed because the features could not be generated for these species due to a lack of occurrence data.


TABLE 1. The number of tree species in different extinction risk categories on the official IUCN RL and following predictions by our deep learning approach.
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With the binary classification model, we predicted 50% of the species as not threatened, while the Red List assessments consist of 60% not-threatened species (Table 1). Thus, we added more possibly threatened species than could be expected by extrapolating from the RL existing frequencies. We estimated 22,889 tree species as possibly threatened (39.1%) and 29,302 as not threatened (50.1%, Figure 1B and Table 1).



Taxonomic Patterns of Tree Conservation Status

Our dataset included 288 families and 57 orders with tree species (Supplementary Tables 3, 4), several of which we estimated to include a large fraction of possibly threatened species. The family with the highest number of possibly threatened tree species was the Rubiaceae (Figure 2A). With its 4,838 tree species of which 3,925 were assessed in this study, it is the second most species-rich family in terms of tree species. The family with the most tree species was the Fabaceae with a total of 5,483 tree species of which, we assessed 4,890, among these 1,765 as possibly threatened. In 13 families, the percentage of threatened tree species was 100%; however, those were all families comprising only 1–3 species (Supplementary Table 3). When considering only families with more than 10 evaluated tree species, Campanulaceae had the highest proportion of possibly threatened species (87%; Figure 2B).
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FIGURE 2. The proportion of possibly threatened species among trees grouped by families. (A) The 10 families with the highest number of possibly threatened tree species and (B) the 10 families with the highest proportion of possibly threatened tree species (and comprising more than 10 tree species in total). Red indicates counts of possibly threatened species, and blue indicates counts of possibly not threatened species, with darker shades used for IUCN RL assessments and lighter shades for our automated assessments. In gray, we showed the number of species not assessed. Percentages next to family names indicate the percentage of possibly threatened tree species in this family.




Spatial Patterns of Tree Extinction Risk

With more than 42,000 tree species, the tropical moist broadleaf forest was the most diverse biome in our dataset (Figure 3 and Supplementary Table 5). It also comprised the highest number of possibly threatened species (17,749), meaning that we estimated 41.5% of all tree species occurring in tropical moist broadleaf forests to be possibly threatened. The second highest fraction of possibly threatened tree species occurred in tropical coniferous forest comprising 5,107 tree species with 1,530 of them (30.0%) predicted to be possibly threatened.
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FIGURE 3. Number of possibly threatened (red) and not threatened (blue) tree species in different biomes after Olson et al. (2001). Darker shades indicate species count from the IUCN RL, while lighter shades indicate species counts from our automated assessment. Percentages next to biome names indicate the percentage of threatened tree species in this biome. Biome names are simplified for better readability.


We found the highest sampled diversity of tree species in our dataset in Brazil (Supplementary Table 6). The country harbored 9,995 species, of which, 2,397 were possibly threatened, making Brazil also the country with the highest number of possibly threatened species (Figure 4A). The fraction of possibly threatened tree species was highest in Madagascar. Including our status predictions, we have extinction risk information for almost all tree species in Madagascar (3,332 of 3,335). Of these tree species, we found 57%, (N = 1,893) as possibly threatened (Figure 4B).
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FIGURE 4. Tree species threat level around the globe: (A) number of threatened tree species per country and (B) fraction of threatened tree species per country (with at least 5 assessed species). (C) Prediction accuracy across countries: Despite the spatial biases in IUCN RL assessments, our model performed well with estimated accuracy above 80% in most countries.




Sensitivity Tests

A taxonomic bias in the subset of species that have already been evaluated by the IUCN and which we used to train our models could hamper the accuracy of our supervised learning method on other species. The fractions of IUCN Red List evaluated species within orders, families, and genera followed unimodal distributions except for a slight over-representation of fully assessed groups (Supplementary Figure 2). This suggests a lack of systematic bias in the evaluated data, despite their variability across taxonomic groups. We observed a similar pattern among all species and among the subset of 48,571 species that were used in this study (fewer species due to cleaning steps). Additionally, the IUCN assessment rates among orders, families, and genera were independent of the number of species they encompassed, thus pointing to a lack of systematic bias in the training data (Supplementary Figure 2).

Ignoring countries comprising fewer than 10 tree species, all countries had at least 40% of their tree species assessed on the RL, and these fractions of assessed species across countries followed a unimodal distribution (95% range: 45.6–87.9%; Supplementary Figure 3A). We did however observe a trend toward higher assessment fractions in countries with fewer tree species Supplementary Figure 3B). Similarly, assessment fractions across biomes showed a trend toward lower assessment fractions in highly diverse biomes (Supplementary Figure 3C). For instance, in boreal forests, 83% of trees were assessed on the RL, while in tropical moist broadleaf forests, only 52% of all tree species were assessed.

Despite the heterogeneous fraction of assessed species in the RL across countries (Supplementary Figure 3C), the prediction accuracy of our model was high and relatively homogenous across countries (Figure 4C). For instance, in most species-rich countries in South America and Central Africa, the prediction accuracy exceeded 80% despite a generally lower fraction of species included in the RL. The prediction accuracy was however slightly lower in Southeast Asia, where the fraction of species evaluated on the RL is lowest. Overall, these results show that our model managed to capture the general properties of species conservation status without overfitting toward regions of the world with denser data.

Limiting the predictions to those with a higher MC dropout probability, yielding a prediction accuracy of 90%, reduced the number of species that could be confidently assessed to 16,703, thus leaving 4,988 species unclassified. However, the proportion of possibly threatened species among the evaluated species remained similar, slightly decreasing from 46.9 to 45.1% (Supplementary Table 2). This indicates that while slightly more species in the not-threatened class could be predicted with high confidence compared with that in possibly threatened species, the results are robust to prediction uncertainty.




DISCUSSION

Improved knowledge of species extinction risk helps to guide conservation effort and avoid taxonomically and geographically biased decisions. Trees are pivotal to human livelihood and play a fundamental role in most terrestrial ecosystems (Chavan et al., 2016; Watson et al., 2018; Keppel et al., 2021). Thus, in some cases, a focus of conservation efforts on protecting tree species and, hence forests, can be an effective way to conserve a large share of biodiversity (Watson et al., 2018). This importance of trees is one reason why evergreen rainforests have long been at the forefront of conservation effort at the expense of other diverse and unique habitats (Parr et al., 2014; Veldman et al., 2019; Silveira et al., 2021). The ecological and economic importance of trees and their potential as umbrella species are reasons for the concentrated effort and systematic assessment of the GTA in 2015 (Newton et al., 2015). In this study, we complemented this effort with an automated deep learning assessment to approximate extinction risk assessments for all tree species with sufficient distribution data available, within a fraction of the time needed for full assessments on the RL or during GTA. Our results show that thousands of tree species are possibly threatened with extinction and that their state of conservation is heterogeneous among taxonomic groups and across different biomes and countries.

Using machine leaning approaches is increasingly common in biological research, for instance, to infer the intraspecific genetic diversity of amphibian taxa or predict the conservation status of data-deficient mammals (Bland et al., 2014; Barrow et al., 2020; Lee et al., 2020). More specifically, using machine learning to assist conservation prioritization is an active field of development (Walker et al., 2020; Cazalis et al., 2022; Silvestro et al., 2022; Zizka et al., 2022a), and automated methods have the potential to process large numbers of species quickly (Pelletier et al., 2018; Zizka et al., 2021b).

The increased assessment speed together with the capacity to close taxonomic gaps of knowledge by transferring knowledge from groups with good data availability (i.e., the training data) is a clear strength of automated assessment methods (Cazalis et al., 2022). Yet, automated methods to approximate extinction risk face several challenges in the IUCN RL framework, including minimum data requirements (Rivers et al., 2011; Nic Lughadha et al., 2019), inability to explicitly use the IUCN criteria and subcriteria, and a reduced documentation (which is why most automated assessments cannot feed back into the IUCN RL, Cazalis et al., 2022), as well as the error rate and low traceability and transparency (Walker et al., 2020). The IUCNN approach has the specific strength that it can integrate heterogeneous input features, yet it is sensitive to the class imbalance in the training data and prone to underestimating the number of species in intermediate extinction risk categories, when using the full suite of IUCN categories (see Zizka et al., 2022a for details). Automated assessments are complementary to full assessments on the IUCN RL. We consider filling knowledge gaps of extinction risk in specific taxonomic groups or geographic regions for the use in (1) synthetic academic research (for instance, linking extinction risk to species functional traits), (2) conservation communication to a broader public (for instance, indicating possibly threatened species in an ecosystem), and (3) conservation research (for instance, identifying priority species for full IUCN assessments), the prime applications for automated assessments.

While species occurrence data from large databases are inevitably affected by error, previous studies (Walker et al., 2020, 2021; Zizka et al., 2020) have shown that using stricter filters to select the species occurrences (for instance, by only considering recent occurrence records when generating the features) did not substantially increase the predictive accuracy but did decrease substantially the number of species that can be predicted (Zizka et al., 2020). We, therefore, opted to limit record cleaning to basic automated filters.

Our predictions are based on a range of data that can be obtained from publicly available geographic occurrence records. In contrast to Pelletier et al. (2018) who included morphological trait data such as woodiness, leaf phenology, and plant height to predict plant conservation status, we focused on data derived from geographic occurrences exclusively. We assumed that, since “trees” are a functionally defined group [i.e., woody, tall, few, or single-stemmed, as defined by Botanic Gardens Conservation International (BGCI); Beech et al., 2017], the variation in traits for which data were available (mostly records of traits such as growth form, maximum height, etc.) was negligible. Thus, we considered these traits uninformative in our case. However, we acknowledge that the inclusion of additional data (such as species economic value and human use) might contribute to improving the predictions. To include anthropogenic factors in the model, we used the human footprint in areas of occurrence of the species, as suggested by previous studies (Venter et al., 2016; Walker et al., 2020).

One of the main concerns in using supervised learning methods such as neural networks is the imbalanced representation of classes in the training set. This is an inevitable property of data from the IUCN RL, where some classes, e.g., LC, are over-represented compared with others, e.g., VU. Pelletier et al. (2018) addressed this issue, in a random forest model, by sub-sampling the training data. This, however, means excluding training instances, i.e., discarding available information, to obtain a more balanced training dataset. In this study, we tackled this issue by grouping the five IUCN classes into the two broader “possibly threatened” and “not threatened” classes. The resulting binary classification, resulted in more balanced classes and higher prediction accuracy, as expected based on previous studies (Stévart et al., 2019; Zizka et al., 2020). Still, non-negligible error remains in identifying species extinction risk and, in our model, classifying as not threatened the several species that appear as threatened on the IUCN RL. While some of the error is linked to the imperfection of predictive methods, we also found that several misclassified species include cultivated plants. These include the Fraser fir (Abies fraseri), several Araucaria species, Ginkgo biloba, Sequoia sempervirens, and Magnolia stellata, all of which are at risk of extinction in the wild, but widely found in cultivated settings and gardens. Their wide distribution as cultivated plants is reflected in their recorded geographic occurrences and probably explains the discrepancy between RL and automated assessments.

Since we applied a supervised learning approach, it is important for the data to be unbiased meaning that the assessed species should not differ systematically from unassessed species. We performed several tests to detect possible biases in the data and found no evidence of systematic taxonomic biases, with most groups sharing similar fraction of species already included in the RL. We did, however, detect evidence of geographic bias, with some regions of the world (especially, highly diverse tropical areas) presenting a lower fraction of assessed species in the RL. Yet, the estimated accuracy of our model was relatively unaffected by this bias, showing that the predictions obtained through the neural network were robust to this bias.

The number of possibly threatened species per plant family correlated with the overall number of species per family: The ten plant families with most possibly threatened species (Figure 2A) were also the ten families with the highest overall tree richness and represent some of the most species-rich families worldwide (Ehrendorfer et al., 2018). In contrast, the list of families with the highest fraction of possibly threatened species (Figure 2B) comprises different families with likely individual reasons for the high proportion of possibly threatend species. For six out of ten families in this list, a specific common threat related to a globally restricted distribution seems plausible. The families Sphaerosepalaceae and Sarcolaenaceae are endemic to Madagascar, and in the Buxaceae and Pandanaceae, the most species-rich genera Buxus and Pandanus, respectively, have centers of diversity and endemism in Madagascar. Hence, the high extinction risk in these families is likely linked to the high rates of land use change in Madagascar and their known detrimental effect on biodiversity. The possibly threatened tree species in Campanulaceae belonged exclusively to the peculiar radiation of phylogenetically derived woody Campanulaceae species on the Hawaiian archipelago (genera Clermontia, Cyanea, Delissea, Sclerotheca, and Trematolobelia, Givnish et al., 2009; Zizka et al., 2022b). Hence, the high proportion of threatened tree species in Campanulaceae is linked to the low proportion of tree species in the family (most Campanulaceae are herbaceous) and the specific threat by land use change and invasive plants and animals in the Hawaiian archipelago. The gymnosperm family Araucariaceae mostly comprises species in the genera Araucaria and Agathis occurring in Australasia and South America, which are often threatened by logging and human fire suppression;2 plus the “living fossil” Wollemia nobilis, only known from New South Wales in Australia. In Canellaceae, Octoknemaceae, and Anisophylleacea, the reasons for the high proportion of threatened species are less clear since these families have a larger geographic distribution. Yet, species in these families are mostly forest species in tropical and subtropical Africa and America threatened by on-going land use change. Similarly, Dipterocarpaceae are important elements of tropical rainforests particularly in Southeast Asia often threatened by logging and deforestation.

Since the tropical moist broadleaf forest comprises most known tree species, it unsurprisingly also harbors the highest number of threatened trees. However, in this biome, we also predicted 41.5% of the tree species to be threatened with extinction, while no other biome exceeds 30%. We considered mostly two reasons for the outstandingly high number of possibly threatened species in the tropical moist broadleaf forest. First, many tropical and subtropical islands harbor tropical forests with high numbers of endemic species and high levels of anthropogenic threat at the same time, for instance, New Caledonia, the Philippines, and Madagascar (Mittermeier et al., 1996; Myers, 1988). These biodiversity hotspots are unique because they harbor many endemic plant and animal species and face high rates of depletion. Second, tree species in the moist tropical forest often have small populations (for instance, less than 1,000 individuals for an estimated 6,000 tree species in Amazonia; ter Steege et al., 2013), and individuals are often scattered throughout their range (Zizka et al., 2018). Small population sizes and the resulting small area of occupancy are likely to lead to an increased species risk of extinction and are explicit criteria in RL assessments. In contrast, average range sizes of trees in other biomes, for instance, in African savannas or boreal forests, are often large.

Countries with tropical forests show high numbers and fractions of possibly threatened tree species, in line with our observation that tropical biodiversity hotspots are exposed to high risks. The spatial patterns of extinction risk estimated in this study are consistent with the estimates produced independently by the GTA (BGCI, 2021), indicating that they are robust and not a product of the data or method used. Brazil harbors the highest number of threatened species, and the threat is continuing as the timber of possibly threatened species is traded in vast amounts, primarily to countries of the global North (Brandes et al., 2020), and the rates of deforestation remain extremely high (accessed on 13. August, 2021).3 The high proportion of possibly threatened species in Madagascar is consistent with the recent report of Beech et al. (2021), which estimated 63% of Malagasy species to be threatened. Among them, there are many Pandanaceae species (Callmander et al., 2007), 3 of the 6 endemic baobab (Adansonia spp., Malvaceae), and the newly described Sapotaceae species Labramia ambondrombeensis (Baum, 1995; Randriarisoa et al., 2020). As 93% of Madagascar’s tree species are endemic, conservation efforts in the country are fundamental to preserve this staggering and unique diversity (Beech et al., 2021) and conserve the basis for a sustainable development of the countries’ human population.

Trees represent an irreplaceable component in most terrestrial ecosystems, and the very existence of entire biomes depends on their biodiversity. We found that a large fraction of all tree species are at risk of extinction, and available data show that extinctions have already taken place in recent years. Yet, it is not too late to prevent the loss of most of the tree biodiversity, but conservation efforts must step up now. We hope that our results can help prioritizing conservation action and raising awareness of the urgency to address the ongoing biodiversity crisis.
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Species Distribution Models (SDMs) are fundamental tools in ecology for predicting the geographic distribution of species based on environmental data. They are also very useful from an application point of view, whether for the implementation of conservation plans for threatened species or for monitoring invasive species. The generalizability and spatial accuracy of an SDM depend very strongly on the type of model used and the environmental data used as explanatory variables. In this article, we study a country-wide species distribution model based on very high resolution (VHR) (1 m) remote sensing images processed by a convolutional neural network. We demonstrate that this model can capture landscape and habitat information at very fine spatial scales while providing overall better predictive performance than conventional models. Moreover, to demonstrate the ecological significance of the model, we propose an original analysis based on the t-distributed Stochastic Neighbor Embedding (t-SNE) dimension reduction technique. It allows visualizing the relation between input data and species traits or environment learned by the model as well as conducting some statistical tests verifying them. We also analyze the spatial mapping of the t-SNE dimensions at both national and local levels, showing the model benefit of automatically learning environmental variation at multiple scales.
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1. INTRODUCTION

Understanding and predicting the spatial distribution of species is a crucial issue in theoretical and applied ecology. In particular, Species Distribution Models (SDMs) are used to characterize the ecological niche of species, i.e., the environmental conditions that explain their presence (Elith and Leathwick, 2009). The ecological niche is inherently multi-dimensional and can involve a large number of factors articulated in a complex manner (i.e., a non-linear system) and at multiple spatial scales. Modern SDMs are generally correlative methods that link known species occurrence data to environmental predictors via statistical learning methods (Guisan and Zimmermann, 2000; Guisan and Thuiller, 2005; Peterson, 2011). Among the most popular methods, we can mention MAXENT (Phillips et al., 2006; Phillips and Dudik, 2008) used in a very large number of studies or methods from the machine learning field such as random forest (Cutler et al., 2007) or boosted trees (De'ath, 2007; Elith et al., 2008). The latter generally allow substantial gains in predictive performance, but sometimes at the expense of weaker ecological interpretability. More recently, SDMs based on deep neural networks have emerged to try to better characterize the high complexity of how the environment shapes ecological niches (Chen et al., 2016; Benkendorf and Hawkins, 2020). These deep learning models have several advantages: (i) they can efficiently capture complex relationships from a very large number of predictors, (ii) they can extract ecological features common to a large number of species and thus capture fundamental ecological patterns, and (iii) they can significantly improve the prediction quality of species compositions (Botella et al., 2018; Christin et al., 2019).

A particular type of neural network initially proposed by LeCun et al. (1989), named convolutional neural networks (CNN), has recently been introduced for the modeling of species distribution (Botella et al., 2018; Deneu et al., 2018; Gillespie and Exposito-Alonso, 2020). The main added value of these CNN-SDMs models compared to non-convolutive deep neural networks and other machine learning methods is that they are based on spatial environmental tensors rather than on point values of environmental variables. These tensors capture the spatial dimension of the environmental variables around each point in addition to their value. Unlike classical SDMs, the great strength of CNN-SDMs is to be able to extract relevant spatial-environmental patterns from such complex input data (Deneu et al., 2021). CNNs were originally designed for image classification, inspired by convolution operators used in signal processing. For a long time, their use remained limited because their training requires significant hardware resources and large volumes of training data. For nearly 10 years, they have been recognized as undeniably more efficient than any other method for tasks requiring the extraction of information from images (especially multi-channel images). Therefore, within a few years, CNNs have become increasingly popular in the field of ecology for various tasks such as identifying species, classifying animal behavior, or estimating biodiversity in camera-trap images, videos, and audio recordings (Christin et al., 2019).

In this article, we study an SDM based on a convolutional neural network trained with very high resolution (VHR, 1 m) remote sensing images as one of the input variables. Its fitting on millions of plant and animal occurrences (coming from citizen science) required several weeks of computation on a GPU-equipped super-computer. The evaluation of its performance on several thousand species shows that it is superior to a state-of-the-art environmental SDM while its spatial resolution is several orders of magnitude higher. Beyond the raw predictive performance, we then focus on the ecological interpretation of this unusual SDM. Therefore, we employed a t-SNE (Maaten and Hinton, 2008), a non-linear dimension reduction method widely used to visualize the feature space learned by deep learning models. Specifically, we use t-SNE to construct a low-dimensional (2-dimensional and 3-dimensional) embedding of the high-dimensional representation space learned by the CNN (i.e., of the 2,048-dimensional feature vectors used as the input of the final species classifier). These low-dimensional representations are then exploited in three ways: (i) to visualize in geographic map form the spatial patterns of habitats and landscapes learned by the model, (ii) to visualize in graphical form the relationships between learned features, environment, and species traits, and (iii) to quantitatively verify these relationships using statistical tests. This interpretability study demonstrates that our CNN-SDM trained on VHR remote sensing data captures the landscape and habitat information at fine spatial scales while providing better overall predictive performance than conventional models. This offers the possibility to produce large-scale distribution maps for a large number of species simultaneously and at a spatial resolution rarely equalled. Moreover, it opens the possibility to analyze their consistency with the fine ecological knowledge of each species, which is almost impossible with coarser approaches. The conducted statistical tests also clearly demonstrate that the model is able to capture meaningful environmental and ecological patterns from the input data. This is particularly remarkable in the sense that none of these data were used as input variables during the training of the model. In addition, statistical tests show that the features learned by the model are significantly related to the environment and species traits. The model is able to extract this high-level information directly from the raw data used as input (the spatial-environmental tensors coupled to species occurrences).



2. MATERIALS AND METHODS


2.1. CNN-SDM Model Training and Validation
 
2.1.1. Training Dataset

For this study, we use the GeoLifeCLEF 2020 dataset, a detailed description of which is provided in Cole et al. (2020). This dataset covering France and the USA consists of 1,921,123 observations (8,23,483 in France and 1,097,640 in the USA) belonging to 31,435 different species, mainly plants and animals. Each observation is coupled to a tensor extracted from remote-sensing data (at high or VHR) at the position of the occurrence, refer to Figure 1. The four remote-sensing data used are, RGB and Near-IR imagery (from the 2009-2011 cycle of the National Agriculture Imagery Program (NAIP) in the United States1, and the BD-ORTHO® 2.0 and ORTHO-HR® 1.0 from IGN2 in France), land-cover (National Land Cover Database (NLCD) (Homer et al., 2015) for the United States and CESBIO3 for France), and elevation (Shuttle Radar Topography Mission (SRTM)4 for both France and USA). Table 1 summarizes the data sources and native resolution. These different remote-sensing data have been standardized to a spatial scale of 1 m per pixel. The finest data were downsampled (including for example the ORTHO-HR data which was up to 20 cm resolution) and the elevation and land-cover were oversampled. The oversampling of the elevation data is done using a bilinear interpolation that smoothes the interpolated data to avoid sharp edges to which the CNN can be sensitive (note that the data provided is itself already interpolated). On the contrary, the oversampling of categorical land cover data is done without interpolation for obvious reasons of data degradation (only the nearest neighbor allows us to keep the classes intact). The final tensors are 256 × 256 pixels covering 256 × 256 m for each data and centered on the position of each observation. An example is given in Figure 1B.


[image: Figure 1]
FIGURE 1. (A) Observations distribution (training data in blue, test data in red) in France. (B) Example of a very high-resolution (VHR) tensor of 256 × 256 m square with, respectively, RGB images (native colors), Near-IR images (artificial colors), land cover (artificial colors), and altitude (artificial colors). Artificial colors are from purple (lowest values) to yellow (highest values).



Table 1. Summary of data sources.
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2.1.2. Deep Convolutional SDM Architecture

Our deep convolutional neural network is the composition of non-linear transformations (including the convolutional layers) of the input space z = ϕ(x) with a linear classifier ψ(z) which is trained in a similar way to a multinomial logistic regression, i.e., by minimizing the negative log likelihood of:

[image: image]

where σ is the softmax function that maps the logit ψk(z) of a particular species to its relative probability. The vector z is called the feature vector (or representation vector) of the input tensor x. Here, the size of the feature space is 2,048, it is defined by the architecture of the model. We use the Inception V3 (Szegedy et al., 2016) model architecture adapted in the same way introduced in Deneu et al. (2020b) to fit the format of the input data and the number of output classes (species). The model is trained using the cross-entropy loss and so the outputs of the model can be interpreted as relative probabilities of occurrence of species for input data x.



2.1.3. Environmental and Trait Data

In this study, we also use environmental and species trait data. These data are not used for training the CNN but are used to study the ability of the model learned on VHR data to extract information related to the ecology of species. We use 19 bio-climatic rasters [30 arcsec2/pixel (above 1 km2/pixel) from WorldClim (Hijmans et al., 2005)] and 8 pedologic rasters [250 m2/pixel, from SoilGrids (Hengl et al., 2017)]. The detailed list and resolutions are presented in Table 2. This environmental data is also used to train an environmental random forest in order to compare this more classical approach and its performance to our model (refer to Section 2.1.4).


Table 2. Summary of environmental rasters.

[image: Table 2]

We also use data related to the ecology of the species, more precisely Ellenberg indicator values (EIVs, refer to Table 3) (Ellenberg, 1988) from Julve (1998). These data are available for more than 1,400 plant species that we have in our dataset. These variables consist of an ordinal classification of ecological strategies with respect to major environmental constraints and essential resource use (Bartelheimer and Poschlod, 2016).


Table 3. Summary of Ellenberg's plant species traits data.
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2.1.4. Environmental Random Forest

For performance comparison purposes, we also train an environmental random forest model. This more classical model is trained using environmental rasters of climate and soil data (refer to Section 2.1.3). We extract the environmental realization (the value taken by the environmental variables) at the point of each occurrence, which associates an environmental vector of size 27 with each occurrence. Similar to CNN, the random forest is learned on all the training occurrences over France and the USA, with the exception of some occurrences in Florida which are out of the coverage of the provided raster and are removed (there is no such problem on the test occurrences). We use the random forest classifier of scikit-learn (Pedregosa et al., 2011). The optimization of the parameters is done using a validation set of occurrences made of 0.5% of the occurrences randomly extracted from the training set. The final parameterization consists of a forest of 100 trees with a maximum depth of 10, the other parameters are left at their default values. The predictive power of random forests generally increases with the number of trees and the depth. However, the memory size of the model increases exponentially with the depth. Due to the size of the dataset, a depth of 10 was a limit with the resources we had available and using the scikit-learn implementation.



2.1.5. Models Evaluation

Both models (CNN and random forest) were evaluated in the context of the GeoLifeCLEF 2020 challenge (Deneu et al., 2020a; Joly et al., 2020). The main metric used for evaluation is the top-k accuracy index, i.e., the probability that the true species of the observation belongs to the set of k species predicted as most likely by the model. This metric is well-adapted to classification models that return relative probabilities such as the CNN or the random forest classifier. It also has the advantage of not requiring absence or pseudo-absence data. For an observation [image: image], we defined as ri the rank of the true species of i in the sorted list of the estimated probabilities ŷs(i). Additionally, for k≥1, we defined the top-k accuracy as:

[image: image]

with n is the number of occurrences in the test set and

[image: image]

To avoid giving too much weight to the most frequent species, it is preferable to evaluate the models in terms of scores per species and not per occurrence. Therefore, we defined the species-wise top-k accuracy for a particular species s as:

[image: image]

With j the number of occurrences of species s in the test set. Then we defined the mean top-k accuracy per species by:

[image: image]

with n the number of species in the test set. For the comparison of the two models, we choose to set k to 30. Models are evaluated using a spatial block holdout procedure (i.e., test occurrences are contained in 5 × 5 km quadrats with no train occurrences and represent 2.5% of the overall set).

In addition, we also evaluate the models with the Area Under Curve metric (AUC), more commonly used by the ecology community. For that, it is necessary to establish a method for selecting pseudo-absences. As the data we use are provided only at the points of occurrences, the pseudo-absences of a species must be drawn among the occurrences of other species. A naive draw of pseudo-absences could then be simply to draw randomly in all other occurrences uniformly. However, the distribution of occurrences by species as well as spatially being highly imbalanced could introduce biases in the representativeness of habitats in the pseudo-absences. To address this problem we propose to balance the drawing of pseudo-absences on the species and not the occurrences. Each pseudo-absence is then chosen by first randomly drawing a species (other than the one evaluated and with at least 1 occurrence in the test set) and then by randomly drawing a test occurrence of this species. For each species, we draw at least 100 pseudo-absences or as many as presence if the species has more than 100 occurrences in the test set. The AUC is then computed by species and the models are compared by their average AUC by species (MeanAUC). Note that the outputs of the random forest are the relative probabilities of the species. It is the score that is used to compute the AUC. However, for the neural network, it is the activation of the last linear layer (prior to the softmax, i.e., the logits of the species) that is used because it is closer to habitat suitability. Contrary to MSAk and Ak, the AUC is dependent on the pseudo-absences and their “environmental” distance from the presences, so the extent of the study area greatly influences the score obtained. The models being learned on a particularly large geographical area and covering the two countries, France and US, we also propose to evaluate the MeanAUC for each country separately.




2.2. Dimension Reduction

The learning of CNNs is done through a representation space, also called feature space. This space is concretized as the last layer of the CNN on which a linear model gives the final output. Each occurrence gives an activation of the neurons of this layer noted z = ϕ(x). This space then concentrates the information captured by the model in the input data in such a way that the species tend to be linearly separable. Analysis of the structure of this feature space and the information it has captured can lead to a better understanding of the explanatory factors captured by the model and how they relate to the ecology of the species. However, the feature space remains a relatively high-dimensional space (2,048) which makes it difficult to perform both qualitative and quantitative analyses on the space as is. We, therefore, propose to project this space and thus the vectors of activations (z) of the occurrences in a new space of very low dimension (2 or 3 dimensions). For this, we use a state-of-the-art non-linear dimension reduction method, the t-SNE (Maaten and Hinton, 2008). The t-SNE algorithm is based on a probabilistic interpretation of proximities. A probability distribution is defined for the pairs of points in the source space such that points that are close to each other have a high probability of being selected while points that are far away have a low probability of being selected. A probability distribution is also defined in the same way for the visualization space. The t-SNE algorithm consists of matching the two probability densities, minimizing the Kullback-Leibler divergence between the two distributions with respect to the location of points on the map. The main advantage of t-SNE is that it is able to preserve the local structure of the original space even if it is not linear. Since t-SNEs aim to preserve local similarities, a common practice is to perform a first dimension reduction before t-SNEs for very large dimensionalities. This helps to preserve the global structure as well and to improve the computation time. Here, we choose to use a PCA as a preliminary dimension reduction step (Kobak and Berens, 2019).

Specifically, to process the dimension reduction, we randomly selected 32, 000 training occurrences xj and computed their representations zj = ϕ(xj). Then, we first reduced the dimension from 2,048 to 50 by PCA using the scikitlearn package. The resulting 50-dimensional feature vectors were then further reduced by t-SNE, also using the scikitlearn package. For most experiments, the used dimension for t-SNE was set to 2 (apart from the geographical map of Figure 6 where it was set to 3 without PCA and based on other occurrences, refer to Section 2.4). In the following, we denote as [image: image] the resulting 2-dimensional feature vectors, where the function g denotes the complete dimension reduction function (PCA+t-SNE).



2.3. Learned Space Visualization

We propose to illustrate the main information related to the landscape, the environment, or the ecology of the species captured by the model using several visualizations on the two-dimensional t-SNE space. To do so, we discretize the two-dimensional space as a grid of size n × n with n the number of discretizations that can be arbitrarily chosen. On this grid, we search in each cell with at least one occurrence for the occurrence that is closest to the center of the cell (knn function in scikitlearn). Thus, we associate with each cell an occurrence (if there is one). We can then produce different visualizations by displaying information or data related to the occurrences at their position in the grid. Each cell, which can then be seen as a pixel, displays the data of its associated occurrence. The first one (Figure 3), consists in displaying the RGB image corresponding to the input data of the occurrence (which is equivalent to taking the tensor associated with the occurrence but keeping only the R,G,B channels, and not the Near-IR, Altitude, and land-cover channels). The other visualizations (Figure 8) display the environmental realization at the point of the occurrence or the value of a trait of the species of this occurrence.

The second representation is a projection of the t-SNE space on the geographical space. To do this, we first applied a bilinear color gradient on the t-SNE space (refer to Figure 5A), we then took a grid of points covering the French territory with one point for each kilometer. Each geographical point was associated by a 1-Nearest Neighbor algorithm to the closest occurrences used in t-SNE. The point then took the color obtained in t-SNE space for the corresponding occurrence and provided a pixel of the map in Figure 5B.



2.4. Very High Spatial Resolution Analysis

In addition to the visualization of learning on the whole territory, we demonstrate a visualization at a finer scale and VHR. To do so, we analyzed the activation of the model in a selected geographical area. The choice of the area was made according to two criteria. (1) The area had to contain several distinct environments within a small spatial extent (about 10 km). (2) The area had to be sufficiently documented and known by the authors to draw relevant conclusions. The result is the choice of an area of 10 × 15 km on the French Mediterranean coast close to Montpellier city, including a massif, coast line, salt ponds, garrigues, pine forests, agricultural areas, vineyards, urban areas, and some significant human infrastructure such as a highway. The model activation was performed every 50 m after extracting the input data for these points following the same procedure as for the official data set described in Cole et al. (2020). We then performed two different visualizations on this area. The first one is a visualization of the feature space z via a dimension reduction by t-SNE similar to what is described in Section 2.2 with some differences. Unlike the t-SNE described, here, we did not apply a PCA and we performed a reduction to three dimensions instead of two. We then plotted the 3-dimensional t-SNE on the map by re-scaling each of the three axes such as the values felt within 0–255. Each point could then be associated with an RGB color from its coordinates on t-SNE space. The resulting map was the plot of each point as a color pixel at its geographical position. The second representation was a geographical display of the activation of the logit of four species in this area (the logit being the confidence score associated with each species as presented in Equation 1). We suppose here that the logit provides an index of habitat suitability. We chose the species to be representative of different environmental conditions at a fine scale. The four selected species were Ailanthus altissima (Mill.) Swingle. (invasive along roads, rails, etc.), Cistus albidus L. (in the garrigues and limestone slopes), Capsella bursa-pastoris (L.) Medik. (pioneer of lawns, crops, wasteland, rubble in urban areas), and Anthemis maritima L. (marine sands).

For this analysis, with a limited number of species, we propose to compare our model to the predictions of an environmental MaxEnt (Phillips et al., 2006; Phillips and Dudik, 2008) model for the 4 species mentioned. The MaxEnt model remains to this day the most used model for single species SDMs and is known for its performance. We used the R implementation of MaxEnt and the environmental rasters presented in Section 2.1.3 for the 4 species models. We give as input to MaxEnt the bioclimatic and soil rasters over France. As the rasters must be given with the same size and resolution we use the “resample” function of the “aster” library in R to scale the bioclimatic raster to those of the soil (250 m). For the species Anthemis maritima L., being a coastal sand species, more than half of the learning occurrences fell outside the coverage of the rasters (the rasters being defined only on land, the occurrences too close to the water can be in the no data cells). To overcome this problem, we use the “approxNA” function of the “raster” library which allows us to extend the coverage of the rasters by replicating the values close to the no data zones onto them. The prediction of the MaxEnt models in this area can be compared to the CNN logit activations to see the difference in dynamics and resolution of the two models. However, there is a conceptual difference between the outputs of the models. Where MaxEnt gives an estimate of the probability of presence, the CNN logits cannot be interpreted as such. The two predictions are therefore not directly comparable. We propose only to compare the spatial dynamics of the maps produced in this area and not to directly compare the presence/absence predictions. To do so, we scale, for each species, the two model outputs to a prediction between 0 and 1, where 1 corresponds to the point on the map where the score given to the species by the model is the highest and 0 the lowest. This method is justified by the choice of species that we know are present in the study area but not in all environments. In other words, we know that these species are present in some habitats included in the study area and absent from some others. In practice, the output of the MaxEnt is already between 0 and 1 so we simply use a min-max scaler to set the local maximum to 1 and the local minimum to 0. For the CNN, the logits are not necessarily between 0 and 1 and can contain extreme values, thus, we first apply a sigmoid to bring the logits scores between 0 and 1 and then the min-max scaler. The threshold of the sigmoid is chosen equal to the average activation of the logits of the species in the area. This allows to center the values and remains consistent with the known condition of absence and presence of the species in the area.

We rendered the maps by combining a background map of the remote sensing data and a layer displaying the values obtained with a colormap going from transparent (0) to bright red (1).



2.5. Ecological Interpretation of the Learned Features

Here, we use the species, ecological traits and environment data that were not used during model training (refer to Section 2.1.3). These data allow us to assess how well the model is able to capture information related to the environment (climate and soil factors) and species ecology (species traits). To do so, we fit a linear model on each axis of the t-SNE (the two variables [image: image] and [image: image]) using either the environmental or ecological trait variables as explanatory variables (R language, lm function). The correlation then captured between the feature space of the model (reduced by t-SNE) and these data may be indicative of the ability of the CNN model to capture information directly related to species ecology through VHR imagery data. The variable bio_7 was removed from the linear model on the environmental variables because by definition it is equal to bio_5−bio_6 and is, therefore, directly correlated to them.




3. RESULTS AND DISCUSSION

The evaluation of the CNN based on VHR remote-sensing data against the environmental random forest highlights the performance of the CNN which obtains a better score than the more classically used environmental model on all metrics (Table 4). The CNN obtains 23.5 vs. 20.4% on the top-30 accuracy (A30). The performance gap is even greater when evaluating the mean top-30 accuracy per species (MSA30) with a score of 13.2% for the CNN against 6.9% for the random forest. This suggests that the CNN is particularly better on less represented species in the dataset as these species gain more weight in the MSA30 compared to the A30. Figure 2 confirms this by showing the performance of the two models as a function of the number of occurrences in the training set. The difference in the performance of the two models increases rapidly as the number of occurrences decreases. In particular, for species between 270 and 92 occurrences, the CNN is already twice as good as random forest.


Table 4. Evaluation of the models.
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[image: Figure 2]
FIGURE 2. Performance of models in mean top-30 accuracy per species (MSA30) according to the frequency of the species in the training set.


The model evaluation in MeanAUC shows a good overall capture of the species distribution over the global dataset with both models over 0.9 (0.915 for the CNN and 0.905 for the random forest). However, the separate MeanAUC evaluation shows lower scores than the overall evaluation for both countries. This illustrates the impact of pseudo-absence on particularly large and diverse study areas. In particular, the scores in France are significantly lower than in the US or the global evaluation. Two factors may be at play, the task may be more difficult (more species with few occurrences) but also the smaller size of the country may accentuate the previous remark. The comparison of the models confirms with this metric the better performance of the CNN against the random forest. In particular, in France, where the difference of MeanAUC is the most important (0.771 for the CNN vs. 0.732 for the random forest) shows that the CNN seems more robust when the task is more difficult.

Both proposed metrics have limitations that must be taken into account in the analysis of the results. For the evaluation of MSAk or Ak, the most obvious problem is the choice of k. Indeed, the actual k depends on both the spatial resolution of the prediction and the specific richness at the prediction point, which we do not know. The relative probability given to a rare species by the model may never allow it to reach the top k for small k even if the spatial dynamics of its prediction are consistent with its distribution. In our case, the choice of a relatively restrictive k with respect to the number of species (k fixed at 30 for 31,435 species) leads to relatively low scores in accuracy which can give the impression that the models perform poorly. For the AUC, the choice of pseudo-absences is known to have a strong impact on the score obtained and in particular, in our case, the evaluation of the models in such a large and varied region (France and the United States) facilitates obtaining high AUC scores. Indeed, the drawing of pseudo-absences has a great chance to represent environments that are on average quite far from the species' niches. This partly explains why the evaluations of the two separate countries are lower than the overall evaluation. In general, we prefer to use the MSAk metric which avoids the choice of pseudo-absences and is adapted to the evaluation of a model learned by cross entropy.

Figures 3, 4 visualize the RGB patches of the occurrences on the t-SNE space, and Figure 5 visualizes the projection of the t-SNE space on the geographical space in France. Two complementary conclusions can be drawn from these visualizations. First, the visualization of the RGB patches on the t-SNE highlights the fine-scale landscape factors identified by the CNN. In Figure 3, we can identify several areas of the t-SNE space corresponding to different broad landscape types. On the left side of the t-SNE, we can, e.g., identify mountain patches, and below, we can see forests. Toward the center of the t-SNE, one can identify predominantly agricultural landscapes, and the whole lower part and the right side present more or less dense urban landscapes. Figure 4 presents a zoom on a slice of the previous figure with examples of identifiable landscapes. Second, Figure 5 displays the projection of t-SNE space onto geographic space. It can be seen that the t-SNE space also contains geographic structuring in the large ecoregions. For example, the mountainous areas (e.g., the Alps in the southeast, the Massif Central in the center, and the Pyrenees in the southwest) and the Mediterranean basin stand out in similar colors indicating that these large areas are well-recognized by the model. Overall, the map shows good visual consistency with the large-scale biogeographic zones previously identified (Cervellini et al., 2020). This result combined with the analysis of the previous figure highlights that the model identifies both the broad biogeographic regions but also the different fine-scale landscapes within these regions (such as urban-rural). This important result shows that the model is able to capture spatially consistent information at multiple scales from VHR imagery data with both high spatial accuracy and large-scale consistency. This provides a breakthrough in the well-known problem of trading precision for generality when studying ecological processes (Levins, 1966).


[image: Figure 3]
FIGURE 3. Visualization of the remote sensing imagery patch (RGB) of occurrences on the t-SNE space. The grid corresponds to a uniform slicing of the t-SNE space (the result of the convolutional neural networks (CNN) feature space dimension reduction) and each cell displays the RGB image of the occurrence closest to its center. The position of the occurrences in this space is the result of the dimension reduction of their activation of the feature space.



[image: Figure 4]
FIGURE 4. Zoom of Figure 3 with examples of landscape features identified.



[image: Figure 5]
FIGURE 5. (A) Color space applied to t-SNE space (the result of the CNN feature space dimension reduction), each occurrence is associated with a color corresponding to its position in t-SNE space. (B) Map of France at 1 km/px resolution, each pixel takes the color of the closest spatial occurrence, a color defined by the (A) color space.


Figures 6, 7 highlight model ecological significance at a fine spatial scale. Figure 6B is a projection of the 3D t-SNE of the feature space in this area (refer to Section 2.4), it highlights that the model is able to differentiate many fine-scale environments. For example, we can see the temporary ponds (in purplish pink in the center), the highway (purple line in the North), the coast (in light pink), etc. This figure shows good identification of contrasting habitats, in terms of surface and nature. Among the natural habitats of large spatial dimensions, the mountain of the Gardiole (a, natural area of ecological, faunistic, and floristic interest), represented by 2 dominant colors (green in the southwest and blue in the North East), is finely delimited. The southern part of this space presents a gradient of green, from its central plateau located at an altitude of nearly 200 m, to the crops they dominate below (of almond green color). Among the most localized natural habitats, we see that the coastline (b, the beach of the Aresquiers), in light pink color, has indeed been captured over its entire length from the South to the North-East of the figure. Another remarkable, well-identified small-scale habitat is the coastal forest massif dominated by the presence of Pinus (c, the Wood of the Aresquiers), located at the center of the image, in light blue color. The precise delimitation of the outline of this small forest (limited to the south and east by ponds, and to the north and west by crops) shows how well it has been captured, despite its appearance with a fairly strong visual similarity to the forest observed further north in the Gardiole (but presenting a greater specific heterogeneity). The more anthropized habitats are also well-captured since we see that the different villages (d, Frontignan in the South, Gigean in the North West, Vic la Gardiole, and Mireval in the Center, Villeneuve-lès-Maguelone in the North East), whatever their sizes, are well-represented by a unique purplish pink color. The large plots of crops (e) are either represented by a creamy brown color in the North West wine-growing plain, or by an almond-green color for those located between the Gardiole mountain and the sea. Thus, patches of uniform color seem to define a well-defined habitat. This visualization also highlights the impact of data bias. This is particularly visible in the seaside ponds where artifacts coming from the remote sensing data (marked lines due to sun reflections and image reconstruction) seem to create inconsistencies in the feature space. It is difficult to estimate the impact of these artifacts on model learning. Even if they seem to have an important impact on the feature space, they correspond to an area with little or no observation (salt ponds being difficult to access and where only animals can be observed). The model may not have learned to ignore these biases. However, some observed divisions are difficult to explain. In particular, the limits between the green and blue zones seem to be made in the middle of the garrigues without observing any particular bias in the data nor that knowledge of the area seems to explain. This could be the result of multiple factors combined and difficult to untangle such as unidentified bias in data, the influence of near training occurrences, and unidentified environmental shift.


[image: Figure 6]
FIGURE 6. Visualization of the features learned by the CNN in an area of 10 × 15 km on the French Mediterranean coast. (A) Remote sensing RGB image. (B) Geographical projection (50 m/px) of the t-SNE space (the result of the CNN feature space dimension reduction). Highlighted environments: (a) the mountain of the Gardiole, (b) the beach of the Aresquiers, (c) the Wood of the Aresquiers, (d) villages, and (e) crops.
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FIGURE 7. Species CNN logits activation (left) and MaxEnt predictions (right) in an area of 10 × 15 km on the French Mediterranean coast (50 m/px). (A) Ailanthus altissima (Mill.) Swingle. (B) Cistus albidus L. (C) Capsella bursa-pastoris (L.) Medik. (D) Anthemis maritima L.


Concerning the maps of logit distributions of the four selected species, the first observation is that the activation is also at fine resolution with notable changes observable from 50 m (distance between points). This confirms that the learning of the model makes it possible to identify a change in the environment on the order of 10 m and that its prediction quickly changes spatially. For the four species, the activation seems to correspond globally to the expected distribution of the species. In comparison, the activations of the MaxEnt model, based on much coarser resolution data, do not allow such spatial resolution. With the exception of Anthemis maritima L., the dynamics of the MaxEnt predictions over the area for the different species also seem to be fairly consistent even if much less fine-grained. We remind for this analysis that only the dynamics of the predictions of the two models (knowing that the species is present in the area but not everywhere) are compared and that we cannot directly compare predictions of the probability of presence. Another point to note is that the environmental rasters are not defined on the seawater ponds present on the map (presence of no data). The MaxEnt model does not give predictions in these areas.

Ailanthus altissima (Mill.) Swingle., illustrated in Figure 7A, is known to be an invasive tree species of agricultural, urban and forested areas of the Mediterranean and temperate regions, that develop along with transport infrastructures thanks to its winged seeds that are easily spread by the wind. It is well-predicted by the CNN in the various habitats disturbed by human activity. We can note for example the visible activation along the highway (in the northeast) and the activations limited to the agricultural plots, wastelands, and paths in the forest of the massif. We can also see that the model correctly identified the habitats in which this species can not be observed, and which are unfavorable to its development, such as the temporary pools in the center of the map, or the coastline of the Aresquiers. The MaxEnt prediction follows roughly this dynamic with the highest values in the areas most impacted by human activity and the lowest values in the ponds (for the few ponds that have data on the rasters). However, the prediction is much less precise and much smoother than for CNN. The MaxEnt model tends not to predict on ponds but everywhere else.

Cistus albidus L., illustrated in Figure 7B, is a native species of the Mediterranean region and is found in areas of degraded scrublands of Mediterranean forests. Adapted to sunny and dry areas, it can be found over almost all of the territory illustrated in Figure 7B, with the exception of the coast, which explains its broad predicted distribution on the maps produced by the models. It is on the mountain of Gardiole that it is observed in greater numbers, which is well-represented by its strong prediction for this area on both models' maps. For this species, the predictions of the two models are particularly similar. This species is frequent in the region and abundant in the dataset which may allow both models to have a consistent prediction. The main difference still lies in the resolution of the prediction. The CNN prediction can vary quickly where MaxEnt is smoother. Unlike the previous species, there are no clearly visible factors to visually explain the rapid variations in predictions by the CNN. It could be due to differences in vegetation type at a fine scale that might be better captured by the CNN-SDM (such as differences in forest cover density).

Capsella bursa-pastoris (L.) Medik. Figure 7C is a cosmopolitan herbaceous species observed along paths, in crops lands, and wastelands. Here again, the prediction dynamics of the models are visually quite consistent. Its intense prediction in urban and crops areas is in line with what is known about its ecology. The predictions of the CNN are also finer, it does not predict in the forests, it is noticeable at the level of the woods at the edges of the ponds in the center of the map for example, but predicts the non-forest parcels present on the massif in the middle of the forests.

Anthemis maritima L., Figure 7D growing in marine sands, is correctly predicted by the CNN along the coastal line, as well as around the swamps and in the sandy areas between the Gardiole mountain and the sea. However, the MaxEnt model seems less consistent for this species. First, as it cannot predict the coastline (due to no data) this highlights a problem for the training of this model for coastal species. Unless the raster coverage is artificially extended to include the entire coastal zone, it is difficult to predict its presence accurately on the coast. Second, apart from the fact that the model is limited in its prediction area, the strongest activations of the prediction are in urban areas, which does not correspond to the ecology of the species. The difficulty in predicting this species by the MaxEnt model seems to lie both in the spatial definition of the rasters introducing biases on the observed niche of the species in the training and also in the fact that this species was particularly rare in the dataset (only 24 occurrences). On the contrary, the data used by the CNN and its resolution allow covering completely the coastline and previous studies have already shown the ability of the CNN to predict rare species by joint learning on many species (Deneu et al., 2021). This last result is confirmed in Figure 2. Despite close performances between the CNN and the random forest on the most frequent species, the CNN score is largely superior on the species with few learning occurrences.

We can observe that the activation of logits can change rapidly from one pixel to another (i.e., within 50 m). Contrary to the visualization of the feature space by the t-SNE, here, the activations do not seem to remain uniform on the identified landscape structures. For example, the species Anthemis maritima L. is globally predicted along the coastline, but there are some areas of low activation, whereas the t-SNE map seems to be consistent along the entire coastline. This can be the result of several factors. First, the visualization of the feature space by the t-SNE is done using strong dimension reduction, which retains the most important information about the dynamics of the feature space but certainly overlooks weaker variations. The logits are the result of a linear model on the feature space and not of its reduced representation in the t-SNE space. These variations can, therefore, have an impact on the logits without being visible on the map through the t-SNE. Another factor is the learning of the model. The model is evaluated by competing species against each other and the linear models of the last layer producing the activation of the logits are optimized during training to differentiate species which is not equivalent to a prediction of the probability of presence. The model may, therefore, emphasize one species more than another depending on very local factors or sampling bias. One way to limit this effect could be to reduce the size of the representation space (the feature space z) leaving less freedom for the model to separate individual species. As the identification of common and representative factors of habitats and communities seems to have more impact, the model would probably tend to favor this aspect.

Statistical analysis between the environmental or ecological data and the t-SNE space reveals that the CNN captures information strongly related to species ecology.We propose here a very basic analysis of this statistical correlation. We do not directly take into account here the possible collinearities between the different variables, and we use a linear regression whereas the dynamics of the t-SNE space are not necessarily linear (as can be seen in Figure 8D). This may explain why significant relationships are still associated with fairly low coefficients. The idea here is simply to provide a numerical confirmation that the model does capture information directly related to the ecology of the species. Moreover, the significant correlations of this simplistic approach with the highly reduced dimensional space suggest that with further statistical analysis stronger and more precise correlations could be highlighted. Linear models on the t-SNE using species or environmental trait data displays one of the highly significant relationships (Tables 5, 6). For example, the coefficient associated with EIV T (species temperature preferences) is high on both axes of the t-SNE. Looking at the models using Ellenberg traits we see that trait values alone explain a significant portion of the variance in the position of occurrences in the t-SNE space (adjusted R2 of 0.111 and 0.231). This highlights that the information captured by the model in the input data is well-correlated with the ecology of the species.


[image: Figure 8]
FIGURE 8. Visualization of two species traits (left) and two environmental variables (right) in the t-SNE space (the result of the CNN feature space dimension reduction): (A) species temperature preference (EIV T), (B) species light preferences, (C) annual mean temperature (bio_1), and (D) temperature annual range (bio_7). Artificial colors from purple (lowest values) to yellow (highest values).



Table 5. Ellenberg's species traits linear models on the two axes of the t-SNE space (the result of the CNN feature space dimension reduction).
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Table 6. Environmental linear models on the two axes of the t-SNE space (the result of the CNN feature space dimension reduction).
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Figure 8A displays the Ellenberg temperature preference trait (EIV T) and Figure 8C displays the mean annual temperature, both of which are information related to either the species of occurrence or the location of the occurrence, over t-SNE space. One can see in these two representations a strongly pronounced gradient. The coherence between these two figures is expected since the species that have the most affinity with high temperatures are located in the warmest regions and vice versa. If this gradient is so pronounced on the t-SNE space it indicates that information strongly related to the temperature is captured is mostly important in the feature space of the model. Figure 8D represents the Temperature Annual Range of occurrences data on the t-SNE. We can see here that the distribution is characterized by pronounced clusters. Contrary to the annual mean temperature there is no particular gradient on one of the axes but the presence of these clusters also confirms the ability of the model to discern different types of environments. Figure 8B represents the species' light preferences, and here, it is more difficult to see global dynamics. However, a darker cluster (corresponding to species with an affinity for low light) stands out on the left of the image. Figure 3 shows that this area of t-SNE space corresponds to forests. This is another example of information on the ecology of species that the model can capture with the help of VHR remote-sensing data. These results highlight that the information captured by the model is strongly related to the environment and ecology of the species, even though this data was not used directly in model construction. It confirms the potential of remote sensing data for characterizing plant functional types (Ustin and Gamon, 2010; Alleaume et al., 2018).

These results bring some elements for the analysis of the CNN-SDM performances. The simultaneous learning of many species, at a large scale and high spatial resolution, allows the CNN to capture common and consistent information with the ecology of species at several scales ranging from fine landscape to large biogeographic regions.



4. CONCLUSION

In this article, we studied a country-wide species distribution model based on VHR (1m) remote sensing images processed by a convolutional neural network. The evaluation of this model shows that its predictive performance is better than state-of-the-art environmental models while its spatial resolution is several orders of magnitude higher. This strong predictive power at fine scales makes it possible to build maps of potential species distribution at resolutions, spatial scales, and taxonomic scales never before considered. We have illustrated this potential on a few species and a small region in the south of France and compared it with the less fine predictions of a MaxEnt model, but it is important to notice that the model has been built on the scale of the whole of France and USA and thousands of plant species. In order to better understand how this model captures ecological information, we have further analyzed the learned features using t-SNE, a powerful dimension reduction technique often used to visualize the representation space of deep learning models. This allowed confirmation that the model captures the relevant landscape and habitat information at fine spatial scales, highlighting the capacity of the model to predict species assemblages locally. In the future study, we plan to combine the remote sensing data with more conventional environmental rasters to further increase the performance of the model. We also plan to extend the approach to the high-resolution mapping of habitats, typically via transfer learning approaches that will require little habitat occurrence data.
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FOOTNOTES

1National Agriculture Image Program, https://www.fsa.usda.gov

2https://geoservices.ign.fr
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The trait-based approach in plant ecology aims at understanding and classifying the diversity of ecological strategies by comparing plant morphology and physiology across organisms. The major drawback of the approach is that the time and financial cost of measuring the traits on many individuals and environments can be prohibitive. We show that combining near-infrared spectroscopy (NIRS) with deep learning resolves this limitation by quickly, non-destructively, and accurately measuring a suite of traits, including plant morphology, chemistry, and metabolism. Such an approach also allows to position plants within the well-known CSR triangle that depicts the diversity of plant ecological strategies. The processing of NIRS through deep learning identifies the effect of growth conditions on trait values, an issue that plagues traditional statistical approaches. Together, the coupling of NIRS and deep learning is a promising high-throughput approach to capture a range of ecological information on plant diversity and functioning and can accelerate the creation of extensive trait databases.

Keywords: Arabidopsis thaliana, near-infrared spectroscopy (NIRS), multivariate analysis, machine learning, functional traits, metabolomics, trait-based ecology


INTRODUCTION

In trait-based ecology, the comparison of plant phenotype across multiple species aims at identifying general trends of variation to describe the biodiversity of plant forms and functions (Grime, 1988; Keddy, 1992; Díaz et al., 2016; Garnier et al., 2016). Ecological strategies are characterized qualitatively and quantitatively from the measurement of key functional traits, i.e., morphological, physiological, and phenological parameters that determine plant growth and reproduction (Violle et al., 2007). However, our understanding of plant diversity with comparative approaches is impeded by three main limitations. First, measuring the traits that describe ecological strategies on many individuals remains laborious. Second, intraspecific trait variability and plasticity to the environment still remain largely unconnected to traditional cross-species studies (but see Albert et al., 2010; Anderegg et al., 2018). Third, we need to clarify if and how plant (“soft”) traits used classically to describe ecological strategies are connected to plant metabolism and physiology (“hard” traits).

The development of near-infrared spectroscopy (NIRS) has provided a unique, fast, and reliable tool enabling the collection of a myriad of traits non-destructively (Foley et al., 1998; Cozzolino et al., 2001; Pasquini, 2018; Silva-Perez et al., 2018). NIRS measures the light reflected from a sample after irradiating it with wavelengths ranging from visible (VIS, 400–700 nm), near-infrared (NIR, 700–1,100 nm), to shortwave infrared (SWIR, 1100–2,500 nm). This provides a signature of the physical and chemical characteristics of the sample (Box 1). NIRS has been widely used for determining chemical traits in various fields. For instance, it is extensively used to characterize chemical products in pharmaceutical, agricultural, and food sectors (Shepherd and Walsh, 2007; Wójcicki, 2015; Biancolillo and Marini, 2018; Pasquini, 2018). In plant science, NIRS takes an increasingly important place as a high-throughput, cost-efficient method for the characterization of biodiversity (Arslan et al., 2018; Silva-Perez et al., 2018; Burnett et al., 2021; Kothari et al., 2021). For instance, it is widely used to predict differences in leaf palatability, digestibility, and decomposability—through lignin and fiber content—between species (Birth and Hecht, 1987; Andrés et al., 2005). The advantages of this method are numerous: spectral measurements are extremely rapid, taking only a few seconds, a single spectral measurement simultaneously captures multiple diverse plant traits (Petit Bon et al., 2020), minimal or no sample preparation is required, and the measurements are non-destructive which allows to track trait changes over time and avoids interfering with the organism.


BOX 1 | PRINCIPLE OF NEAR−INFRARED SPECTROSCOPY (NIRS) FOR PLANT CHARACTERIZATION

The leaf spectral reflectance is based on the low reflectivity in the visible part of the spectrum (400–700 nm), due to a strong absorption by photosynthetic pigments, and the high reflectivity in the near infrared (700–1,100 nm) produced by a high scattering of light by the leaf mesophyll tissues (Knipling, 1970). For instance, in the SWIR part of the spectrum (1100–2,500 nm), the reflectance intensity is affected by the water, cellulose, protein, and lignin content of plant tissues (Rascher et al., 2010). Healthy leaves emit radiation in the thermal infrared band (≈10 μm) according to their temperature, because of their high water content (emissivity between 0.97 and 0.99). The leaves appear green because the green light band (550 nm) is reflected relatively efficiently when compared with the blue, yellow, and red bands, which are absorbed by photoactive pigments. This absorption at different wavelength produces a spectrum of light reflectance (Figure I), which can be treated as a “signal” of the leaf physical and chemical properties.

[image: Figure 1]

FIGURE I. Leaf reflectance as a function of light wavelength. All spectrum available in the database used to analyze the ability of spectral reflectance to predict trait values and plant categories are represented here and colored according to the experiment they come from (see Supplementary Table S1 and Supplementary Material for details about experiments, conditions, as well as number of spectra per experiment). Colored lines represent the mean absorbance spectra, light grey lines represent the median absorbance spectra, dark shaded area represents spectra with absorbance ranging between the 5 and 95th percentiles, and light shaded area represents the entire absorbance range covered by the spectra.


The physical association between leaf properties and light reflectance is particularly useful to investigate leaf composition, functioning, and diversity. Different leaves will have different spectral signatures depending on their structure and chemical composition. For example, leaf nitrogen concentrations are associated with wavelengths absorbed by chlorophyll a and b in the visible part of the spectrum (400–700 nm), the spectral red edge (700–760 nm), and proteins in the SWIR (1,300–2,500 nm; Gitelson and Merzlyak, 1997; Kokaly, 2001). In the SWIR (SWIR; 700–1,300 nm), structures such as palisade cell density are important determinants of the spectral reflectance because of the very low effective photon penetration distance at these wavelengths.
 

While NIRS data are simple to acquire and rapidly generate a very large amount of information, they also require extensive post-processing, via chemiometric and multivariate statistical analyses. Usually, spectral information can be exploited through the development of calibration models relating spectra and reference trait data. Calibration models are built with a representative subsample of a complete data set, in terms of the range of spectral variation treated (Foley et al., 1998). After building and validating models linking plant spectra to independently measured traits in the calibration dataset, the trait values of new samples are predicted from their spectra using these models. For that, different statistical methods are commonly used to predict trait data from spectra, including partial least squares regression (PLSR; Wold et al., 1983), principal components analysis (Dreccer et al., 2014), and 2D correlation plots (Darvishzadeh et al., 2008). However, the performance of these methods, and especially PLSR, in estimating plant traits has been shown to vary significantly across species and growth conditions (Fu et al., 2020). In recent years, machine learning approaches have become widespread in multiple fields due to their better predictive performance. Machine learning and more particularly deep learning techniques—specific machine learning algorithms using a series of neural networks (Box 2)—are promising methods to improve the statistical analysis of high-throughput data (Mishra and Passos, 2021).


BOX 2 | THE PROMISE OF DEEP LEARNING TO ANALYZE NIRS

Chemometrics, the science of extracting information from chemical systems, faces multiple challenges while studying the link between samples near infrared spectra and desired traits. Partial least square regression (PLSR), the reference method, is well designed to address many of these but still exhibit some weakness that native properties and tools associated with deep learning may allow to tackle.

First, the inherent and unwanted variability associated with the spectrometric measure result in a highly noisy signal (e.g., environmental, machine, or sample variability). To deal with it, reference methods rely on pretreatment (i.e., filtering) of the signal and removal of the spectral outliers. Pretreatment works by removing noise and linearizing the response of a variable. As the number of possible pretreatments increases with research progress, finding the optimal solution empirically becomes more and more a challenge. Moreover, pretreatment development is optimized for its suitability to filter spectra in combination with a reference model (i.e., PLSR in most situations). This may result in suboptimal solution and loss of information. Conversely, some deep learning algorithms are particularly efficient in filtering input signals. Cui and Fearn (2018) illustrated how the convolutional layer can continually tune the variables in the filter, until it finds the best form of preprocessing. This means the spectroscopic preprocessing done by the convolutional layer is more flexible and saves a lot of effort when building new calibrations. In addition, because PLSR is highly sensitive to outliers, a common technique aims to remove spectra based on distance metrics and arbitrary threshold (Wadoux et al., 2021). This normative procedure could lead to the loss of informative spectra, particularly while dealing with small datasets.

In deep learning, many techniques (e.g., robust loss function and early stopping) allow us to deal with noise. This includes original signal noise but also artificially added noise allowing for data augmentation and regularization in order to minimize overfitting and increase robustness. Deep learning allows keeping all spectra without questioning the representativeness of a highly complex and spatially explicit signal (i.e., the spectra) based on a simple global distance.

Second, wavelength range and resolution of the actual spectrometer allow for a highly multivariate signal. Reference methods to deal with this often imply dimension reduction (e.g., PLSR), leading to a loss of information. The ability of multilayer networks trained with gradient descent to learn complex high dimensional non-linear mappings makes them obvious candidates. Indeed, deep networks proved to have the theoretical guarantee that they can avoid the curse of dimensionality for many problems (Poggio et al., 2017). Among deep learning algorithms, convolutional neural networks (CNN) are known to efficiently take care of variable selection. And as already mentioned, deep learning algorithms come with multiple useful techniques to deal with the overfitting risk (e.g., batch normalization, dropout, early stopping, and noise generation).

Finally, one of the main challenges for chemometrics is to infer traits values based on the reflectance of a limited number of chemical bonds that may be shared by multiple compounds (i.e., molecules). Therefore, the prediction of the compound’s content relies on a large number of very indirect relationships between reflectance values. This is already true for chemical composition (e.g., most carbohydrates exhibit only limited differences in their chemical composition) but it is even more obvious while working on functional traits resulting from multiple physiochemical changes. Moreover, the functional properties potentially arise from non-linear relationship or threshold, compensatory, moderator, and mediator effects at tissue, molecule, and chemical bounds scales. These multiscale non-linear relationships are hardly modeled by reference methods such as partial least squares regression (PLSR). The multilayer nature of deep learning algorithms allows for the identification of multiscale patterns and easily tackles non-linearity.
 

Spectral predictions of functional traits have been used to screen interspecific diversity across individual leaves, canopies, and biomes (Doughty et al., 2011; Roelofsen et al., 2014; Serbin et al., 2016; Wu et al., 2016; Chavana-Bryant et al., 2017). Yet, investigating intraspecific variability is crucial to connect global trait diversity to the underlying mechanisms of selection, genetic differentiation, and evolutionary adaptation (Violle et al., 2014). In this context, the model species Arabidopsis thaliana is an interesting model to test the predictive power of plant diversity with NIRS. Indeed, this species exhibits a large range of functional trait variation across its geographic range (Lasky et al., 2012; May et al., 2017; Price et al., 2018; Takou et al., 2018; Sartori et al., 2019), and hundreds of natural ecotypes have been fully sequenced to examine the genetic determinism of this variation (1001 Genomes Consortium, 2016). Ecological studies have taken advantage of this feature to examine the evolution of plant strategies in response to climate (Price et al., 2018; Vasseur et al., 2018a,b; Exposito-Alonso et al., 2019; Exposito-Alonso, 2020; Lorts and Lasky, 2020). In addition, this model species has been widely used to examine metabolic and physiological features (Chan et al., 2010; Tohge et al., 2018; Wu et al., 2018). Advanced molecular techniques—“omics” approaches—allow accurate quantification of transcriptome, proteome, metabolome profiles, and fluxome (Beale et al., 2016).

On the one hand, we need to increase sample size across species, genotypes, and environments to obtain sufficient statistical power for broad generalization and predictions. On the other hand, the time-consuming careful methods required to measure physiologically meaningful (“hard”) traits limit studies to small sample sizes. We argue that a promising avenue to avoid this trade-off between generality and feasibility is to combine NIRS and deep learning computation. In this perspective article, we document how NIRS and deep learning paves the way for a quick and accurate quantification of plant trait diversity, ecological strategies, and physiological adaptation. In addition to examples from the literature, we compiled 21,032 spectra and 108 trait measurements from published and unpublished datasets (Supplementary Table S1) across 5,683 Arabidopsis thaliana plants grown in various conditions. Using this database and examples from the literature, we first show that NIRS can accurately predict leaf functional traits and identify major plant ecological strategies. Second, we show that NIRS predicts the growth conditions and the plant phenotypic response to stress. Finally, we provide evidence that NIRS can give access to new traits and functions, notably those related to plant life history, physiology, and metabolism.



NIRS QUANTIFIES FUNCTIONAL TRAIT VARIABILITY AND SUMMARIZES PLANT ECOLOGICAL STRATEGIES

A key goal of trait-based ecology is to determine the physiological mechanisms of plant adaptation to the environment through the measurement of multiple traits related to resource-use, growth, development, and phenology. Recent efforts based on analyzing interspecific trait diversity have revealed functional tradeoffs at both local and global scales (Messier et al., 2016), which suggests that plant diversity is shaped by universal constraints. For instance, Díaz et al. (2016) recently analyzed more than 45,000 plant species and demonstrated that their diversity falls along two main phenotypic dimensions: one related to plant size, which affects competitive ability and dispersal; the other related to leaf anatomy, chemical composition, and longevity. This second phenotypic dimension, called the leaf economics spectrum (Wright et al., 2004), trades off traits positively related to nutrient retention—such as leaf dry matter content (LDMC), leaf nitrogen content (LNC), and leaf life span—with traits positively related to carbon acquisition—such as specific leaf area (SLA) and leaf photosynthetic rate. Importantly, the same trade-off has been observed within species (Vasseur et al., 2012; Anderegg et al., 2018; Sartori et al., 2019).

Different theories have been proposed to categorize plant phenotypic diversity into ecological strategies related to plant adaptation to the environment. Among these theories, Grime (1974) proposed that the quantitative variation in plant strategies is expected to result from their adaptation to contrasting levels of resource availability and disturbance. Following this hypothesis, plant strategies can thus be classified through a combination of three main axes, competitors (C), stress-tolerators (S), and ruderals (R; Grime, 1977, 1988). The “CSR” model suggests that the evolution of plant strategies is driven by trade-offs between resource capture and conservation, space occupancy, longevity, and dispersal. For instance, C-type plants invest resources into the growth of large organs to outcompete neighbors, S-type plants invest resources to conserve nutrients and protect tissues from stress damages, while R-type plants invest resources into rapid reproduction and propagule dispersal in highly disturbed environments. The CSR strategies are often depicted in a triangle with the primary types occupying the corners and intermediate forms, composed of a combination of types (e.g., “SR” and “CS”), arrayed within the triangle. The quantitative variations between CSR strategies are expected to result from plant adaptation to contrasting levels of abiotic stresses and disturbance. CSR variation has also been reported within species—notably in A. thaliana—and explained by evolutionary adaptation to the environment (May et al., 2017; Vasseur et al., 2018b). However, measuring through destructive methods, the numerous traits that enable the quantification of ecological strategies within—and a fortiori across—species remains an obstacle for the large-scale analysis of plant populations, which therefore limits our ability to temporally follow the relationships between plant traits, strategies, and the environment.

Using convolutional neural network (CNN; Box 2, Supplementary Material, Supplementary Table S2) to analyze our database of spectra and traits in A. thaliana, we show that most leaf traits were accurately predicted (Table 1). For instance, only leaf relative water content (RWC) and the leaf isotopic ratio of nitrogen (δ15N) had validation R2 below 0.65 (Table 1). Yet, previous studies showed that δ15N can be predicted with NIRS (Kleinebecker et al., 2009). Here, correlations between measured and predicted values were the highest for leaf traits associated with the leaf economics spectrum (SLA, LDMC, and LNC, all r2 > 0.85; Table 1). Importantly, for these traits, the correlations calculated from the predicted data were the same as those calculated from the direct measurements (p > 0.05; Figures 1A–C). Previous studies showed that SLA can be accurately measured with NIRS from the level of individual leaves to the level of the tree canopies (Curran, 1989; Lymburner et al., 2000; Asner and Martin, 2008; Asner et al., 2009; Jacquemoud et al., 2009; Kokaly et al., 2009; Ecarnot et al., 2013; Singh et al., 2015; Serbin et al., 2016). Other LES traits have been shown to be well predicted by NIRS (Ecarnot et al., 2013; Kattenborn et al., 2017, 2019). In addition, LNC, another LES trait, can also be predicted using light reflectance at the individual leaf and at canopy levels (Sims and Gamon, 2002). Other traits related to resource-use and conservation can be predicted with spectroscopy, such as leaf age and photosynthetic capacity (Doughty et al., 2011; Chavana-Bryant et al., 2017). Thus, NIRS can provide estimates of integrated properties, such as trait covariations, whole-plant traits, and strategies. Accordingly, traits such as plant growth rate and water use efficiency (estimated by δ13C; Farquhar et al., 1989) were also well predicted in A. thaliana (r2 = 0.53 and 0.83, respectively; Table 1). By contrast, predictive performance was lower for plant life span here (r2 = 0.17), although previous studies showed that spectral profiles are able to capture key differences in plant life history (Ustin et al., 2004). Plant ecological strategies depicted by CSR scores were highly predicted in our database (Table 1; Figure 1D), as were CSR intermediate categories (e.g., SR, R/SR, S/SC, and CS), with a prediction accuracy estimated at 70% (Table 2).



TABLE 1. Prediction accuracy for functional traits.
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FIGURE 1. Predictions of the leaf economics spectrum and CSR strategies. Log10 relationships between specific leaf area (SLA, mm2 mg−1) and leaf nitrogen content (LNC, %; A); between leaf nitrogen content (LNC, %) and leaf dry matter content (LDMC, mg g−1; B). Only predicted values in the validation dataset (1/4 of the whole dataset, n = 123) were plotted here. Observed trait values are colored in blue and predicted trait values are colored in red. Regression lines have been estimated by standard major axis (SMA). P is the p value of the SMA test of slope difference between observed and predicted relationships. (C) 3D representation of the leaf economics spectrum between observed and predicted trait values in the validation dataset (n = 123). (D) CSR triangle between observed and predicted trait values in the validation dataset (n = 699) depicting the variation of plant ecological strategies between competitive ability (C), stress-tolerance (S), and ruderalism (R). CSR scores (%) have been measured from leaf traits following the method from Pierce et al. (2017) (see Supplementary Material). Only measurements performed on fully expanded but non-senescing leaves, and only under non stressing conditions, were used here.




TABLE 2. Prediction accuracy for five plant categories.
[image: Table2]

Consistent with previous studies (Le, 2020; Barradas et al., 2021; Mishra and Passos, 2021), our results show that NIRS coupled with deep learning is a powerful tool to assess phenotypic variations in plants. Using 15 functional and metabolomic traits, we show that deep learning methods outperform classical analytical techniques such as PLSR (Supplementary Table S3). Moreover, deep learning approaches have numerous advantages compared to PLSR (Box 2). In particular, it does not require preprocessing of the data (cleaning and standardization of the spectra and removal of outliers), which often depends on the user’s choice and differs from one dataset to another. Importantly, analyzing the spectral signature of plants with deep learning allows determining with reasonable accuracy the plant genotype. For instance here, genotype identity was correctly predicted for 64% of the tested accessions (Table 2), as previously observed in maize (Rincent et al., 2018). Such estimation opens promising avenues as an alternative to expensive sequencing technologies, as well as to combine genomics with phenomics.



MEASURING PLANT RESPONSES TO THE ENVIRONMENT WITH NIRS

Large-scale comparisons of ecological strategies have been performed with large databases of trait values measured on many species under various conditions, from lab benches to greenhouse, common garden, and field conditions (Kattge et al., 2020). Although these trait databases are used to interpret plant adaptation to the environment, they surprisingly contain very little information about the response of the measured plant properties (demographics, growth rate, and traits) to the environment (Salguero-Gómez et al., 2018). Indeed, comparative approaches generally focus on interspecific variation, considering a mean trait value per species and neglecting intraspecific variability and phenotypic plasticity (but see Albert et al., 2010, 2011). For instance, CSR strategies, which should reflect environmental specialization and specific stress resistance, still remain largely unconnected to the plant evolutionary responses to biotic and abiotic stresses (Takou et al., 2018).

Spectral measurements are widely used to design screening protocols for plant drought responses (Shepherd and Walsh, 2007; Barradas et al., 2021; Burnett et al., 2021). For example, Cabrera-Bosquet et al. (2011) used spectra to accurately predict genotypic differences in the kernel and leaf water content in maize grown under different water treatments. In addition, spectral measurement is a promising method for detecting the severity of damage caused by pathogens, especially for those leaving no visible signs (Spinelli et al., 2004; Sabatier and Rutherford, 2013). Indeed, healthy plants interact (absorb, reflect, emit, transmit, and fluoresce) with electromagnetic radiation in a manner different from that of infected or damaged plants (Li et al., 2014).

To further explore the potential of NIRS as a predictive tool of plant stress level, we used experimental data included in our database (Supplementary Material) from 30 genotypes of Arabidopsis thaliana subjected to water deficit combined with either high or low (freezing) temperatures (Estarague et al., 2021). All plant individuals were measured for leaf NIRS in the course of the treatment, and survival was visually recorded after the treatment. Both measured and CNN-predicted survival rates varied from 14 to 80% depending on the genotype, with an estimated accuracy of survival prediction of 91% in an external validation dataset (Table 2; Figure 2A). Importantly, spectral measurements were taken during the treatment, before individuals started showing visible signs of death (Estarague et al., 2021). This suggests that NIRS is a powerful tool to estimate stress effects leading to plant death early on, even before any visible sign of adverse effects.
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FIGURE 2. Prediction accuracy of plant survival and growth conditions. Confusion matrices showing the classification performance for the prediction of (A) plant survival (positive P) and mortality (negative N), and (B) the growth condition: indoor (positive P) vs. outdoor (negative N). Precision score = true P/(false P + true P). Recall score = true P/(false N + true P). Accuracy Score = (true P + true N)/(true P + false N + true N + false P). F1 Score = 2*Precision score*Recall score/(Precision score + Recall score).


Convolutional neural network models were able to accurately predict the environmental treatment in which plants were grown (control vs. water stress; prediction accuracy = 71%, Table 2). More surprisingly, CNN models reached 100% accuracy to predict if a plant was grown indoor (growth chamber and greenhouse) vs. outdoor (common garden; Figure 2B; Table 2). This result not only demonstrates the capacity of NIRS and deep learning to characterize the environmental conditions in which plants are cultivated but also suggests that plants grown indoor and outdoor have very contrasted spectral signatures. In turn, these questions our ability to draw conclusions about plant adaptation in natural conditions from experiments led in controlled conditions (growth chamber and greenhouse).



METABOLOMICS AS A NEW PHENOTYPIC DIMENSION: FUTURE PERSPECTIVES FOR THE CHARACTERIZATION OF PLANT ECOLOGICAL STRATEGIES

A broader screening of the metabolic pathways involved in the physiological adaptation of plants to contrasting environments is a promising avenue for ecology in the future. So far, large comparative approaches remain limited by the type and availability of traits collected from the literature and organized into shared databases (Kattge et al., 2020). This constraint reduces our ability to fully understand the drivers of phenotypic diversity, as well as to identify new and ecologically meaningful axes of phenotypic variation. In this perspective, NIRS allows us to detect a large variety of commonly measured chemical compounds such as phosphorus (P)—a key element of the leaf economics spectrum— and base cations [calcium (Ca), potassium (K), and magnesium (Mg)], and other micronutrients (Cozzolino et al., 2001; Ortiz-Monasterio et al., 2007; Galvez-Sola et al., 2015; Ercioglu et al., 2018; de Oliveira et al., 2019; Yu et al., 2019; Prananto et al., 2021). This opens new avenues to link resource-use strategies with plant elemental composition, fluxes, stoichiometry, and beyond, with nutrient cycling in ecosystems (Ustin et al., 2004). In addition, studies have shown that not only LNC but also chlorophyll a and b can be predicted using reflectance and transmittance of light from individual leaves and at canopy level (Sims and Gamon, 2002).

Using quantitative measurements of 67 metabolites with GC–MS and LC–MS (Supplementary Material), we investigated whether NIRS can estimate variations in foliar content of sugars (e.g., glucose and fructose), hormones (e.g., salicylic acid, auxin, and abcissic acid), and secondary metabolites (e.g., phenolic compounds and glucosinolates). Our results show that prediction accuracy (estimated in an external dataset; Supplementary Material) was highly variable between metabolites. For instance, validation r2 ranged from 0% for the poorest predictions (see examples in Table 3) to 85% for the highest (dihydro caffeoyl glucuronide; Table 3). For sugars, the best predictions were obtained for fructose, cellobiose, mannose, and raffinose (Table 3). Among hormones, only auxin (IAA) and jasmonic acid (JA) were satisfactorily predicted by NIRS (Table 3), while other hormones were very poorly predicted (for instance, r2 < 0.10). Glucosinolates are a class of metabolites produced by the Brassicaceae family, which are involved in plant defense against herbivores (Ratzka et al., 2002). Many of them showed relatively high prediction accuracy (e.g., glucoraphenin and neoglucobrassicin with r2 > 0.70; Table 3), which paves the way for predicting plant responses to herbivore attack on many individuals at low cost. Finally, many other secondary metabolites showed substantial prediction accuracy (e.g., r2 > 50%; Table 3), although prediction accuracy was very variable between metabolites. More studies are needed to fully explore the potential of NIRS and deep learning to predict leaf chemistry and metabolisms. However, applying NIRS—coupled with deep learning computation—for high-throughput phenotyping of plants from cellular level to whole-plant level is perhaps the most exciting perspective of this approach.



TABLE 3. Prediction accuracy for 67 metabolites.
[image: Table3]



CONCLUSION

In this paper, we argue that NIRS coupled with recent advances in deep learning approaches is a promising method to broadly capture various information about plant functioning, ecological strategies, response to environment, and metabolism. In particular, NIRS affords considerable time and cost savings (spectrum acquisition lasts only a few seconds), and without using hazardous chemicals. In addition, samples can be analyzed in neither their natural form without destruction nor any special sample preparation. Thus, NIRS makes it possible to create extensive databases of traits at different temporal, spatial, and taxonomic scales and facilitate the adoption of phenomics into ecology. It might provide a reliable tool for the characterization of plant populations across geographical ranges, specifically if combined with other omics approaches and deep learning computation. Of course, developing calibration equations takes time, but selecting a suitable subset of samples to use in the calibration equation and validating the calibration equation take only a matter of hours in addition to standard laboratory work to chemically analyze the subset. Clearly, NIRS is more suited for larger data sets than those containing only a few samples. As calibration equations keep available for future studies, the time and financial cost of calibrations will decrease. Thus, adopting NIRS in trait-based ecology would literally multiply the number of species, genotypes, and environments potentially measurable, a key point to link functional trait variation to plant physiology and adaptation.
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The article reviews and benchmarks machine learning methods for automatic image-based plant species recognition and proposes a novel retrieval-based method for recognition by nearest neighbor classification in a deep embedding space. The image retrieval method relies on a model trained via the Recall@k surrogate loss. State-of-the-art approaches to image classification, based on Convolutional Neural Networks (CNN) and Vision Transformers (ViT), are benchmarked and compared with the proposed image retrieval-based method. The impact of performance-enhancing techniques, e.g., class prior adaptation, image augmentations, learning rate scheduling, and loss functions, is studied. The evaluation is carried out on the PlantCLEF 2017, the ExpertLifeCLEF 2018, and the iNaturalist 2018 Datasets—the largest publicly available datasets for plant recognition. The evaluation of CNN and ViT classifiers shows a gradual improvement in classification accuracy. The current state-of-the-art Vision Transformer model, ViT-Large/16, achieves 91.15% and 83.54% accuracy on the PlantCLEF 2017 and ExpertLifeCLEF 2018 test sets, respectively; the best CNN model (ResNeSt-269e) error rate dropped by 22.91% and 28.34%. Apart from that, additional tricks increased the performance for the ViT-Base/32 by 3.72% on ExpertLifeCLEF 2018 and by 4.67% on PlantCLEF 2017. The retrieval approach achieved superior performance in all measured scenarios with accuracy margins of 0.28%, 4.13%, and 10.25% on ExpertLifeCLEF 2018, PlantCLEF 2017, and iNat2018–Plantae, respectively.

KEYWORDS
 plant, species, classification, recognition, machine learning, computer vision, species recognition, fine-grained


1. Introduction

Accurate species identification is essential for most ecologically motivated studies, in the pharmaceutical industry, agriculture, and conservation. In the case of Flora—with more than 400,000 species and high inter-species similarities—correct species determination requires a high level of expertise. An identification process using dichotomous keys may take days, even for specialists, especially in locations with high biodiversity, and it is exceedingly difficult for non-scientists (Belhumeur et al., 2008). To overcome that issue, Gaston and O'Neill (2004) proposed to use a computer vision based search engine to partially assist with plant identification and consequentially speed up the identification process. Since then, we have witnessed an increased research interest in plant species identification using computer vision and machine learning (Wu et al., 2006, 2007; Prasad et al., 2011; Priya et al., 2012; Caglayan et al., 2013; Munisami et al., 2015), especially following the advances in deep learning (Ghazi et al., 2017; Bonnet et al., 2018; Lee et al., 2018; Šulc et al., 2018; Wäldchen and Mäder, 2018; Picek et al., 2019).

The overall performance of automatic fine-grained image classifiers has improved considerably over the last decade with the development of deep neural networks, mostly Convolutional Neural Networks (CNNs). We refer readers unfamiliar with the principles of deep learning and CNNs to the book by Goodfellow et al. (2016). The success of deep learning models trained with full supervision is typically conditioned by the existence of large databases of annotated images. For plant recognition, such large-scale data are available, thanks to citizen-science and open-data initiatives such as Encyclopedia of Life (EoL), Pl@ntNet, and the Global Biodiversity Information Facility (GBIF). This allowed building challenging datasets for fine-grained classification training and evaluation, e.g., in PlantCLEF (Goëau et al., 2016, 2017, 2018, 2020, 2021), LifeCLEF (Joly et al., 2018, 2019, 2020, 2021), iNaturalist (Van Horn et al., 2018), and Pl@ntNet (Garcin et al., 2021).

This article deals with automatic image-based plant species identification “in the wild”, thus dealing with: (i) Different scales: Plant species can be observed from various angles and distances. (ii) Intra-class differences: Plant organs—leaf, fruit, bark, etc.—look very distinct. (iii) Inter-class similarities: The same organ of different species might look very similar. (iv) Background and Clutter: Other species are present behind or around the observed sample, and many more. Identification of plants from images is a fine-grained classification problem, due to the high number of classes1, high intra-class variance, and small inter-class differences. Šulc and Matas (2017) showed that constrained plant identification tasks, such as recognition of scanned leaves, can be solved with a high level of classification accuracy (± 99%). Yet the “in the wild” scenario, with an unspecified view or organ type, natural background, possible clutter in the scene, etc., remains challenging even for state-of-the-art deep learning methods. For “In the wild” photograph samples, refer to Figure 1.


[image: Figure 1]
FIGURE 1
 “In the wild” photograph samples—PlantCLEF datasets. Images by soyoban, Liliane Roubaudi, Hugo Santacreu, Sarah Dechamps, Richard Gautier, Heinz Gass, Alain Bigou, Jean-Michel Launay, and Jose Luis Romero.


First, is the standard approach, where fine-grained recognition is posed as closed-set classification; the learning involves minimization of cross-entropy loss. Second, a retrieval-based approach, which is very competitive, achieves superior in comparable conditions. Here, the training involves learning an embedding where the metric space leads to high recall in the retrieval task. Formulating fine-grained recognition as retrieval has clear advantages—besides providing ranked class predictions, it recovers relevant nearest-neighbor labeled samples. The retrieved nearest neighbors provide explainability to the deep network and can be visually checked by an expert. Moreover, the user may inspect specific information, e.g., about location and date of collection, to further reduce decision uncertainty. Besides, the retrieval approach naturally supports open-set recognition problems, i.e., the ability to extend or modify the set of recognized classes after the training stage. The set of classes may change, e.g., as a result of modifications to biological taxonomy. New classes are introduced simply by adding training images with the new label, whereas in the standard approach, the classification head needs re-training. On the negative side, the retrieval approach requires, on top of running the deep net to extract the embedding, to execute the nearest neighbor search efficiently, increasing the overall complexity of the fine-grained recognition system.

Section 4 discusses techniques that can noticeably improve the performance of any vision-based species recognition system. The techniques are diverse and attend to different problems. The prior shift in the datasets, i.e., the difference between the training and test data class distribution, is a significant and omnipresent phenomenon. We test existing prior shift adaptation methods and their impact on classification accuracy. Class prior adaptation equips the system with the ability to reflect the change of prior probability of observing a specimen of a given species over time and location. Image augmentations make the system robust to acquisition conditions that, in some applications, e.g., plant recognition, are far from the lab setting. Finally, technical aspects related to training of the deep nets, such as learning rate schedule, loss functions and the impact of the noisy data, on classification performance, are discussed.

The performance evaluation part of the article builds on our winning submissions to PlantCLEF (Picek et al., 2019; Sulc and Matas, 2019) and extends a workshop article (Šulc et al., 2018) and a PhD thesis (Šulc, 2020). It substantially extends the experiments by including recent state-of-the-art methods for image classification: Convolutional Neural Networks (CNNs) (Xie et al., 2017; Hu et al., 2018; Zhang et al., 2020; Tan and Le, 2021), Vision Transformers (ViTs) (Dosovitskiy et al., 2021), and an interpretable image retrieval approach (Patel et al., 2021).



2. Related work

This chapter reviews existing methods, systems, and applications for plant species recognition: leaf or bark recognition and “in the wild” plant species recognition.


2.1. Leaf and bark recognition

Leaf and bark recognition was the only application before deep learning where automatic plant species identification allowed to reliably tackle complex species recognition tasks. Most techniques were based on two steps: (i) descriptor extraction, often based on combining different hand-crafted features such as shape, color, or local descriptors (SIFT, SURF, ORB, etc.), and (ii) classical. classifiers such as k-Nearest Neighbor (Munisami et al., 2015), Random Forest (Caglayan et al., 2013), SVM (Prasad et al., 2011; Priya et al., 2012), and early adoptions of neural networks (Wu et al., 2006, 2007). The generalization capability of these methods was limited, and so was the applicability—e.g., most leaf recognition methods relied on the shape of scanned leaves; thus, the usability in the “in the wild” scenario was limited since the uniform background was required.



2.2. Flora recognition in the wild

The continuous progress in automatic plant species recognition “in the wild” has been strongly driven by the efforts of the LifeCLEF research platform. Established in 2014, the LifeCLEF helps track progress and allows reliable evaluation of novel methods. In particular, the annual PlantCLEF challenges are an immense source of plant species datasets tailored to develop and evaluate automatic plant species recognition methods.

Following the findings of the LifeCLEF challenges (Joly et al., 2018, 2019, 2020, 2021), AI-based identification of the world flora has improved significantly over the last 5 years, and it reached similar performance as human experts for common (Šulc et al., 2018) as well as for rare species (Picek et al., 2019). Ensembles of CNN models were able to recognize 10,000 plant species from Europe and North America and 10,000 from the Guiana shield and the Amazonia with approximately 90 and 40% accuracy, respectively.

Overall, there are few methods for plant recognition “in the wild”; thus, we overview relevant methods for general fine-grained recognition. Wu et al. (2019) developed a Taxonomic Loss that sums up loss functions calculated from different taxonomy ranks, e.g., species, genus, and family. Cui et al. (2018) studied domain-specific transfer learning from large-scale datasets to domain-specific fine-grained datasets. Zheng et al. (2019) propose the Trilinear Attention Sampling Network that generates attention maps by modeling the inter-channel relationships, highlights attended parts with high resolution and distills part features into an object-level feature. Keaton et al. (2021) utilized object detection as a form of attention with a bottom-up approach to detect plant organs and combine the predictions from organ-specific classifiers. Malik et al. (2021) used a standard ensemble-based approach utilizing Inception, MobileNet and ResNet CNN architectures.

Several interesting approaches emerged in connection with the annual PlantCLEF workshops. In PlantCLEF 2017, the best performing submission competition with an accuracy of 88.5% was developed by Lasseck (2017). The underlying method is based on 12 models derived from 3 architectures—GoogLeNet, ResNet-152, and ResNeXt-101-64x4d. All models were fine-tuned from the ImageNet-1k checkpoints utilizing various augmentation techniques, e.g., random cropping, horizontal flipping, variations of saturation and lightness, and rotation. While testing, 5 crops for all observation images are predicted with all models and averaged. In the PlantCLEF 2018, the best performing submission (Sulc and Matas, 2019) was based on two architectures—Inception-ResNet-v2 and Inception-v4 (Szegedy et al., 2017)—and their ensembles and achieved an accuracy of 88.4%. The TensorFlow-Slim API was used to adjust and fine-tune the networks from the publicly available ImageNet-1k pre-trained checkpoints. All networks shared the following optimizer settings: RMSprop with momentum and decay set to 0.9, initial learning rate 0.01, and exponential learning rate decay factor 0.4. Batch size, input resolution, and random crop area range were set differently for each network. For the used values please refer to the original article (Sulc and Matas, 2019). The following image pre-processing was used for training: Random crop, with aspect ratio range (0.75, 1.33) and with various area ranges, Random left-right flip, and Brightness and Saturation distortion. At test-time, 14 predictions per image are generated by using 7 crops and their mirrored versions: full image, central crop covering 80% of the original image dimensions, central crop covering 60% of the original image dimensions, and 4 corner crops covering 60% of the original image dimensions. The significant improvement in accuracy was achieved by using running averages of the trained variables instead of the values from the last training step. This is important especially if the noisy labels are present in the training set where mini-batches with noisy samples may produce large gradients pointing outside of the local optima. The use of the Polyak averaging (Polyak and Juditsky, 1992) resulted in a more stable version of the training variables.




3. Datasets

This section overviews datasets suitable for plant recognition “in the wild” which, unlike other plant species datasets, contain images of various plant body parts observed in an open world. Such datasets are unique with high inter-class similarities—bark of one species is similar to the bark of another species—and high intra-class differences—the bark, flower, and fruit of one species are visually distinct. Currently, datasets with large species diversity and a sufficient number of samples to train a reliable machine learning model are available. The most significant providers of those datasets—iNaturalist, Pl@ntNet, EoL, LifeCLEF—are closely connected to citizen-science platforms, thus their data originate from thousands of users, and are captured on various devices, observed under different conditions, and submitted from many countries. The most influential datasets are described below and their main characteristics are summarized in Table 1.


TABLE 1 Datasets for plant recognition; “in the wild” scenario.

[image: Table 1]

For the experimental evaluation in this article, we used iNaturalist 2018†, PlantCLEF 2017‡, and ExpertLifeCLEF 2018‡, as they offer a sufficient number of species and test samples while keeping the training set size and, thus, computational demands reasonably low.


3.1. LifeCLEF—PlantCLEF

The annual LifeCLEF—PlantCLEF identification challenge is an important source of data for plant recognition. Since 2017 the PlantCLEF challenges present the following classification problem: For each plant observations consisting of one or more images of the same specimen, predict the species. Example images from one observation are visualized in Figure 2. The PlantCLEF datasets are mainly intended for benchmarking machine-learning-based algorithms for plant recognition, thus are briefly described below.


[image: Figure 2]
FIGURE 2
 A PlantCLEF observation—images of different plant parts. Images by Hugo Santacreu.


The PlantCLEF 2016 dataset (Goëau et al., 2016) comprises 1,13,205 training images belonging to 41,794 observations of 1,000 plant species from France and neighboring countries. Every image is annotated with a plant organ label, i.e., flower, leaf, fruit, stem, branch, and whole plant. A small fraction has GPS coordinates. The test set contains 2,583 images. As in all PlantCLEF challenges, no predefined validation set was provided.

The PlantCLEF 2017 challenge dataset (Goëau et al., 2017) includes 3,20,544 images from the Encyclopedia of Life with trusted labels, and noisy web data crawled with Bing and Google search engines (~1.15M images). The dataset covers 10,000 plant species—mainly from North America and Europe—representing the biggest plant species identification dataset in the number of classes. The test set contains 25,170 images (17,868 observations).

The ExperLifeCLEF 2018 training dataset (Goëau et al., 2018) differs from the PlantCLEF 2017 dataset only in the test set. The test set contains 6,892 images (2,072 observations) covering species mainly from Western Europe and North America. In addition, selected endangered species, and cultivated and ornamental plant species were added.

The PlantCLEF2019 dataset (Goëau et al., 2019) contains 434,251 images that belong to 10,000 rare species from the Guiana shield and the Amazon rain forest.The images originate from EoL and Google/Bing search engines; the majority have the “noisy” labels. The test set is composed of 742 plant observations (2,974 images) collected and identified by five experts on tropical flora.



3.2. iNaturalist

iNaturalist is a crowd-based citizen-science platform allowing citizens and experts to upload, annotate and categorize species of the world. iNaturalist has a wide geographic and taxonomic coverage—more than 343 thousand species with approximately 97 million observations. The annual iNaturalist competition datasets that include a significant number of plant species are described below.

iNaturalist 2017: The iNaturalist 2017 dataset (Van Horn et al., 2018) contains 2,101 plant species, with 1,58,407 training and 38,206 validation images that have been collected and verified by multiple independent users. The dataset features many visually similar species that have been captured worldwide and under various conditions. As labels for the test set were not provided, it is impossible to specify how many plant species are contained.

iNaturalist 2018: The iNaturalist Challenge 2018 dataset includes 2,917 plant species, with 118,800 training and 8,751 validation images acquired the same way as in the previous year. Additionally, complete taxonomy information was given for all images. Test labels were not provided.

iNaturalist 2021: The iNaturalist Challenge 2021 dataset with 1,148,702 training and 42,710 validation images is the most extensive dataset considering the number of images—the number of plant species was increased to 4,271. Test labels were not provided as in all iNaturalist Challenge datasets.



3.3. Pl@ntNet-300K

The Pl@ntNet-300K dataset Garcin et al. (2021) is built from the database of the Pl@ntNet citizen observatory and includes 1,081 species and 306,146 images. The dataset exhibits a long-tailed class imbalance, where 20% of the most common species provide 89% of the images. Provided validation and test sets include 31,118 and 31,112 images, respectively.




4. Methods

This section is divided into three parts. First, the pipeline for automatic Plant Recognition by the standard Image Classification pipeline is described. Second, an alternative and novel approach to Plant Recognition via kNN classification in deep embedding space is proposed and described. Finally, a range of methods and techniques that increase classification performance are introduced.


4.1. Deep neural network classifiers

Plant species recognition can be easily automated through the standard image classification approach, where a Deep Neural Network (DNN) serves as a deep feature extractor and a fully convolutional neural network as a classifier. Image representations learned by deep neural networks provide significantly better results than handcrafted features. Furthermore, DNNs are data-driven and require no effort or expertise for feature selection as they automatically learn discriminative features for every task. In addition, the automatically learned features are represented hierarchically on multiple levels. Having such deep features is a strong advantage over traditional approaches.

Currently, many DNN architectures are widely used; thus, a broad range of Convolutional Neural Networks and Transformer-based architectures are evaluated to test the classification capabilities for different feature extractor architectures. The ResNet-50 (He et al., 2016), Inception-v4, and Inception-ResNet-v2 (Szegedy et al., 2017) are chosen as baselines as they are commonly used in related study. We add the following novel and state-of-the-art architectures:

SE-ResNeXt-101: Extends the ResNet deep residual blocks by adding the NeXt dimension, called Cardinality (Xie et al., 2017), and Squeeze and Excite blocks that adaptively re-calibrates channel-wise feature responses by explicitly modeling inter-dependencies between channels (Hu et al., 2018).

ResNeSt-269e: Applies channel-wise attention to different parts of the architecture to leverage and allow the cross-feature interactions and learning of the more diverse representations. (Zhang et al., 2020).

EfficientNetV2-S: Similarly to the first EfficientNet generation, the EfficientNet-v2 architectures are developed by a combination of training-aware architecture search and scaling, to jointly optimize training speed and parameter efficiency (Tan and Le, 2021). Newly, the models: (i) were searched from the space enriched with Fused-MBConv, and (ii) the last stride-1 stage in the original EfficientNet was removed.

Vision Transformers: Unlike CNN, the Vision Transformer (ViT) (Dosovitskiy et al., 2021) does not use convolutions but interprets an image as a sequence of patches and processes it by a standard Transformer encoder used primarily for natural language processing (Vaswani et al., 2017). Compared to state-of-the-art convolutional networks, selected ViT architectures demonstrated excellent performance in fine-grained image classification (Picek et al., 2022).


4.1.1. Training strategy

All NN architectures were initialized from publicly available ImageNet-1k or ImageNet-21k pre-trained checkpoints (Wightman, 2019) and further fine-tuned for 100 epochs. Mini-batch gradients were accumulated to reach an effective size of 128 for all the architectures—most of the time, 4 batches of size 32 are accumulated. SGD with momentum (0.9) was used as an optimizer with a custom learning rate (LR) schedule—Reduce LR to a fraction of 0.9 if validation loss does not decrease for 2 epochs. The loss was calculated as Softmax Cross Entropy. While training, we employ a few data augmentation techniques from the Albumentations library (Buslaev et al., 2020). A sample image and its augmented variations are shown in Figure 3. Augmentation methods, their description, and specified non-default parameters are:

• RandomResizedCrop: creates a random resized crop with a scale of 0.8 − 1.0.

• HorizontalFlip: randomly (50% probability) flips the image horizontally.

• VerticalFlip: randomly (50% probability) flips the image vertically.

• RandomBrightnessContrast: changes contrast and brightness by a random factor in a range −0.2 − 0.2 with 20% probability.
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FIGURE 3
 Image augmentations—Horizontal and vertical flip, small brightness/contrast adjustments, and 80–100% crops—used while training the deep neural network classifier. Image by Zoya Akulova.


All images were: resized to match the pre-trained model input size of 224 × 224 or 384 × 384, re-scaled from 0 − 255 to 0 − 1, and normalized by mean (0.5) and std (0.5) values in each channel.



4.1.2. Test-time

At the test time, all images are resized to the appropriate size, i.e., 224 × 224 or 384 × 384, and normalized as in training. Next, all observation images are feed-forward and class predictions are combined. The study about different methods for prediction combinations is included in Section 5.3. The classification performance for all selected models is evaluated on both resolutions—224 × 224 and 384 × 384—and two different test sets—PlantCLEF 2017 and ExpertLifeCLEF 2018.




4.2. Plant recognition via kNN classification in deep embedding space

Fine-grained recognition of plant species can be alternatively solved via the k-Nearest Neighbors algorithm (kNN) in an embedding space where the samples from the same semantic class are grouped together, and the samples from different classes are far apart. Recent study by Touvron et al. (2021); Khosla et al. (2020) have shown such a recognition technique to outperform standard cross entropy based training. For training of such an embedding, we use the current state-of-the-art image retrieval method Patel et al. (2021), where a deep neural network is trained on a surrogate loss—Recall@k. The notations and methodology for the retrieval approach are described below.


4.2.1. Notations

For a query example q ∈ X, the objective of a retrieval model is to obtain semantically similar samples from a collection Ω ⊂ X, also known as database, where X is the space of all images. The database is divided into two subsets based on the positive or negative samples to the query q. These subsets are denoted by Pq and Nq, respectively, such that Ω = Pq ∪ Nq. For the query q, all database samples are ranked based on a similarity score, with the goal to rank positives before negatives.



4.2.2. Deep embedding

Image embedding, a learned vector representation of an image, is generated by function [image: image]. Function fθ is a deep neural network, either a ResNet-50 or a Vision Transformer in this article, mapping input images to an L2-normalized d-dimensional embedding. Embedding for image x is denoted by x = fθ(x). Parameters θ of the network are learned during the training using Recall@k surrogate loss. The similarity score between a query q and a database image x is computed by the dot product of the corresponding embeddings and is denoted by s(q, x) = qTx, also denoted as sqx.



4.2.3. Recall@k surrogate loss

The Recall@k Surrogate loss is a differentiable approximation of the Recall@k evaluation metric. For a query q, the Recall@k metric is the ratio of positive (relevant) samples in top-k retrieved samples to the total number of positive samples in the database, given by |Pq|. The metric focuses only on top-k ranked samples and is one of the standard metrics to evaluate retrieval benchmarks. Recall@k cannot be directly used as a loss function. It requires two non-differentiable operations: ranking the database samples and counting the number of positives that appear in top-k. The subsequent text presents Recall@k expressed mathematically, non-differentiability, and the differentiable approximation as proposed by Patel et al. (2021).

Patel et al. (2021) denotes Recall@k by [image: image] when computed for query q and database Ω and expresses it mathematically in terms of ranks of samples in the database:

[image: image]

where the rank of sample x is denoted by rΩ(q, x), which depends on the query sample q and the database Ω. H(.) is the Heaviside step function, which is 0 for negative values and otherwise 1. The rank rΩ(q, x) of sample x is computed according to the similarity score, and it can be expressed mathematically as:

[image: image]

where H(.) is also the Heaviside step function applied on the difference of similarity scores. Therefore, Recall@k from Equation (1) can also be directly expressed as a function of similarity scores as:

[image: image]

The computation of Recall@k in Equation (3) involves the use of two Heaviside step functions, one to obtain the rank and the other to count the positives in top-k retrieved samples. The gradient of the Heaviside step function is a Dirac delta function. Hence, direct optimization of recall with back-propagation is not feasible. Patel et al. (2021) provide a smooth approximation of the Heaviside step function by the logistic function, a sigmoid function στ:R→R controlled by temperature τ:

[image: image]

Replacing the two Heaviside step functions with the sigmoid functions of appropriate temperatures, a smooth approximation of Recall@k can be expressed as:

[image: image]

The Recall@k Surrogate loss from Equation (5) is differentiable and is used for training the parameters θ of the deep embedding model. In practice, the Recall@k Surrogate loss is re-scaled to have values between 0 and 1, by dividing it by min(k, |Pq|) instead of |Pq|, and by clipping the values larger than k in the numerator. The single-query loss to be minimized in a mini-batch B, with size |B|, and query q∈B is given by:

[image: image]

The final loss is computed by averaging the loss across multiple values of k as:

[image: image]

In practice, we use following values K = {1, 2, 4, 8, 16}. All examples in the mini-batch are used as queries, and the average loss over all queries is minimized during the training.



4.2.4. Training

The training is set up for 100 epochs using an AdamW optimizer (Loshchilov and Hutter, 2019) with an initial learning rate of 0.0001, which decreases by a factor of 0.3 using a step decay. For data augmentation, images are resized to 256 × 256, and a random crop of 224 × 224 is taken, followed by a random horizontal flip with a probability of 0.5 and normalization with mean and SD. The mini-batch is constructed via class-balanced sampling with 4 samples per class and a large batch size of 4, 000 is used. Two feed-forward passes (Patel et al., 2021) are accumulated to create a larger batch size to address the GPU hardware demands. The first feed-forward pass is performed on the batch with 4, 000 samples in chunks of 200 samples at a time. All embedding vectors are stored while the intermediate features are discarded from the GPU memory. Using the embedding vectors and the ground truth labels, the loss (Equation 7) and the gradients for each sample with respect to the embedding vectors are calculated. Finally, a second feed-forward is performed, also in the chunks of 200 samples at a time, allowing the propagation of the gradients through the deep embedding model for the current chunk of 200 samples. At the end of the second feed-forward stage, the model's weights are updated.



4.2.5. Test-time

At inference, the test image is resized to 256 × 256, and a central crop of 224 × 224 with normalization is the input to the deep embedding model. A feed-forward pass is performed through all the training and testing samples, and the embedding vectors are stored. Each test sample is treated as a query for retrieval, and the ten closest samples from the training set are obtained. A majority vote determines the semantic class of the test sample.




4.3. Class prior estimation

Commonly in Machine Learning, the class prior probabilities are the same for the training data and test data. However, plant species distributions change dramatically based on various aspects, i.e., seasonality, geographic location, weather, the hour in a day, etc. The problem of adjusting CNN outputs to the change in class prior probabilities was discussed in Sulc and Matas (2019), where it was proposed to recompute the posterior probabilities (predictions) p(ck|xi) by Equation (8).
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The subscript e denotes probabilities on the evaluation/test set. The posterior probabilities p(ck|xi) are estimated by the Convolutional Neural Network outputs since it was trained with the cross-entropy loss. For class priors p(ck), we have an empirical observation—the class frequency in the training set. The evaluation and test set priors pe(ck) are, however, unknown. To evaluate the impact of changing class priors, we compare three existing prior estimation algorithms—the Expectation–maximization algorithm (EM) of Saerens et al. (2002) and the recently proposed CM-L and SCM-L methods of Sipka et al. (2022).


4.3.1. EM—expectation maximization

In our ExpertLifeCLEF 2018 challenge submissions, we followed the proposition from Sulc and Matas (2019) to use an EM algorithm of Saerens et al. (2002) for the estimation of test set priors by maximization of the likelihood of the test observations. The E and M step are described by Equation (9), where the super-scripts (s) or (s + 1) denote the step of the EM algorithm.
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In our submissions, we estimated the class prior probabilities for the whole test set. However, one may also consider estimating different class priors for different locations, based on the GPS-coordinates of the observations. Moreover, as discussed by Sulc and Matas (2019), one may use this procedure even in the cases where the new test samples come sequentially.



4.3.2. CM-L—confusion matrix based likelihood maximization

The prior estimate is based on maximizing the likelihood of the observed classifier decisions. The CM-L method uses the classifier's confusion matrix (CM) in the format Cd|y, where the value in the k-th column and i-th row is the probability p(D = i|Y = k) of the classifier deciding for class i when the true class is k. The new class priors P are then estimated by maximizing the log-likelihood with the following objective:
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where nk is the numbers of classifier's decisions for class k on test set and Ck, : is the k-th row of the confusion matrix.

The SCM-L method works analogically, but uses the so-called soft confusion matrix (SCM) [image: image] estimated from the classifier's soft predictions f as

[image: image]

where [image: image] denotes the k-th column of SCM. The probability [image: image] can be estimated by averaging predictions f(x) over the test set.





5. Results

First, we compare the state-of-the-art Convolutional Neural Networks and Vision Transformers in Section 5.1. Second, we evaluate the image retrieval approach to classification and compare it with the standard classifiers in Section 5.2. Finally, additional techniques for performance improvements are evaluated in Section 5.3.


5.1. Image classification
 
5.1.1. Combining several predictions per observation

LifeCLEF datasets include sets of images belonging to the same specimen observation. Typically, the images represent different organs of the specimen, e.g., flower, leaf, Such sets of images are connected by the ObservationID values provided in the metadata. The PlantCLEF 2017 test set contains 17,868 observations and 25,170 images. The ExpertLifeCLEF 2018 test set is smaller with 2,072 observations and 6,892 images. Plant species prediction based on multiple images is intuitive; it is inspired by the process used for years by botanists. Four simple approaches of per-image prediction combination are evaluated. Decide for the class with

• Max softmax: maximum posterior probability estimate—softmax—over all images, i.e., follow the most confident prediction,

• Mean softmax: maximum average (over images) estimated posterior probability,

• Max logit: maximum activation value (Logit) over all images.

• Mean logits: maximum average (over images) logit value.

The best results of species prediction combination was achieved by selecting the species with the maximum value of logit mean. For the single ViT-Base/32 model and image size of 224 × 224, the Mean logits approach outperformed the max softmax by 0.86% on PlantCLEF 2017 and 4.59% on ExpertLifeCLEF 2018. Overall, the accuracy is significantly higher for observations then for single images, in some cases increasing the accuracy by more then 20%. Full results are shown in Table 2.


TABLE 2 Classification accuracy on the PlantCLEF 2017 and the ExpertLifeCLEF 2018 datasets for different image prediction combination strategies.
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Convolutional neural networks: The comparison of the former and recent state-of-the-art CNN architectures on the PlantCLEF2017 and the ExpertLifeCLEF 2018 test sets shows similar behavior as on other fine-grained datasets (Wah et al., 2011; Van Horn et al., 2018; Picek et al., 2022). The best performing model on both datasets is EfficientNetV2-L with 77.03% accuracy on ExpertLifeCLEF 2018 and 88.52% accuracy on PlantCLEF 2017. Other deep networks including ResNeSt-269e and SE-ResNeXt-101 underperformend by a significant margin. The achieved scores are summarized in Table 3.


TABLE 3 Image classification accuracy for Deep Neural Network Classifiers on the PlantCLEF 2017 (right) and ExpertLifeCLEF 2018 (left) test sets.
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Vision transformers: The performance of different ViT architectures in the FGVC domain, multiple architectures, was evaluated for two different input resolutions—224 × 224 and 384 × 384—on two test sets—PlantCLEF2017 and ExpertLifeCLEF 2018. More precisely, ViT-Base/16 and ViT-Base/32 are compared on the input size of 224 × 224 and ViT-Large/16, ViT-Base/16 and ViT-Tiny/16 are tested on the input size of 384 × 384.

In the 384 × 384 scenario, ViT-Large/16 outperformed the best CNN model (ResNeSt-269e) 2.63% points on PlantCLEF 2017 and by 6.51% points on ExpertLifeCLEF 2018 while reducing the error by 22.91% and 28.34%, respectively. In the 224 × 224 scenario, the relative performance differed; EfficientNetV2-S outperformed all the models including both Vision Transformers on the ExpertLifeCLEF 2017 dataset. Comparison on the PlantCLEF2017 dataset, show the insignificant performance difference between ViT-Base/16 and EfficientNetV2-S.




5.2. Classification vs. metric learning

This section compares training a softmax image classifier explicitly as in the previous experiments and training an image retrieval system, which is subsequently used for nearest neighbor classification. The resolution of images, pre-trained weights and number of training epochs are kept the same across the two setups for a fair comparison. Even though we compare both methods under the same conditions, those conditions handicap the standard image classification approach as any additional techniques are permitted.

Overall, the retrieval approach achieved superior performance in all measured scenarios. Notably, the ViT-Base/16 feature extractor architecture achieved a higher classification accuracy with a margins of 0.28, 4.13, and 10.25% on ExpertLifeCLEF 2018, PlantCLEF 2017, and iNat2018–Plantae, respectively. Besides, the macro-F1 performance differences margin is noticeably higher—1.85% for ExpertLifeCLEF 2018 and 12.23% for iNat2018–Plantae datasets. Even though the standard classification approach performs better on classes with fewer samples (refer to Figure 4), common species with high a-prior probability are frequently wrongly predicted. This is primarily due to the high-class imbalance preserved in the dataset mimicked by the deep neural network optimized via SoftMax Cross-Entropy Loss. Thus, the results of the standard image classification approach performs way worst in case of the macro-F1 score. A full comparison of the classification and retrieval-based methods and their appropriate recognition scores are listed in Table 4. Three architectures—ResNet-50, ViT-Base/32, and ViT-Base/16 are evaluated. It can be seen from the results that for all selected architectures, retrieval leads to better performance. Furthermore, in Figure 5, we provide qualitative examples from the retrieval approach on the iNaturalist dataset. The Top5 predictions for randomly selected target images show that the retrieval-like approach allows better interpretability of the results.


[image: Figure 4]
FIGURE 4
 Classification performance (F1 and Accuracy) as box-plot for three backbone architectures and Classification and Retrieval approaches. Tested on PlantCLEF2017 test set with input resolution of 224 × 224.



TABLE 4 Performance evaluation for Classification (C) and Retrieval (R) based methods.
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[image: Figure 5]
FIGURE 5
 Qualitative examples from the retrieval approach on the iNaturalist dataset. The leftmost column shows samples from the test set followed by five nearest neighbors in the learned embedding space from the training set. The red box denotes the wrong species.




5.3. A fine-tuning cookbook

In this section, we evaluate several methods that have the potential to increase performance for almost any deep neural network architecture considerably. The evaluation considers different loss functions, learning rate schedulers, prior estimation methods, and augmentations. Furthermore, the impact of the noisy data and the contribution of the test-time augmentations are studied. We list helpful methods and those that will make the performance worst if utilized. The evaluation is carried out on the PlantCLEF2017 and ExpertLifeCLEF 2018 datasets and ViT/Base-32 architecture with an input size of 224 × 224, if not stated differently. All used methods are described bellow. The ablation study for relevant methods is summarized in Table 5.


TABLE 5 Ablation study considering different techniques for ViT-Base/32 performance improvements.
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Cyclic cosine annealing: We compare standard cosine, a custom adaptive strategy where Learning Rate is decayed by 10% if validation loss is not reduced for two epochs, and Cyclic Cosine Annealing (CCA). The CCA is an alternative to standard Learning rate scheduling approaches, e.g., Exponential, Linear, Step, and Cosine. The CCA is divided into multiple cycles where the start learning rate decreases by 20%, and the learning rate in each cycle decreases via the standard cosine function. Such a learning rate schedule allows for diverging from local minima and searching for better optima. We compare standard cosine, a custom adaptive strategy where Learning Rate is decayed by 10% if validation loss is not reduced for two epochs, and Cyclic Cosine Annealing (CCA). Using the CCA instead of the standard approaches, we measured relative performance increases equal to +1.06 and +0.80% on the ExpertLifeCLEF 2018 and LifeCLEF2017, respectively.

Test-time augmentations: Test-time augmentations is a procedure where various mutations of the original image are feed-forwarded through the deep neural network in order to provide images in different rotations or scales. In our case, we use a simple test-time augmentation procedure—each test image is processed as a batch of 13 images:

• One original image (resized to 224 × 224 or 384 × 384),

• Four central crops covering 90, 80, and 70% of the original image size,

• Two top left corner crops covering 80 and 70% of the original image size,

• Two top right corner crops covering 80 and 70% of the original image size,

• Two bottom left corner crops covering 80 and 70% of the original image size,

• Two bottom right corner crops covering 80 and 70% of the original image size,

The predictions from all 13 cropped/augmented images are then combined. The results in Table 5 show than using so called test time augmentation improves the classification accuracy up to 1.98 and 4.65% on the ExpertLifeCLEF 2018 and LifeCLEF2017, respectively.

Random crop: Random crop allows for learning more detailed object representation as an image is not resized to a smaller resolution. Furthermore, training with random crops has high synergy with the test-time augmentation process if crops of similar size are used for TTA. For just a random crop, we measured performance increases equal to +1.30 and +3.86% achieved on the ExpertLifeCLEF 2018 and LifeCLEF2017, respectively. Combining with TTA, the margin increased to +1.93%, +3.89%.

Prior shift adaptation: The prior shift adaptation methods described in Sections 4.3.1 and 4.3.2 are compared in Table 6. Prior shift adaptation is applied to the prediction of each test augmentation, before the combination of augmentation and images per observation by averaging. The results show that in all cases, prior shift adaptation improves the recognition accuracy. The EM algorithm of Saerens et al. (2002) achieves the best result in three cases, the CM-L method of Sipka et al. (2022) in one case, but the differences are very small among the three compared prior shift adaptation methods.


TABLE 6 Accuracy before and after prior shift adaptation with the EM algorithm (Saerens et al., 2002) and the (S)CM-L methods (Sipka et al., 2022) on the ExpertLifeCLEF 2018 and the PlantCLEF 2017 test sets.
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Focal loss: Even though commonly used in object detection, Focal Loss (Lin et al., 2017) has the potential to focus the training process on more challenging and rare samples and could prevent the vast majority of images from dominating the optimizer. As any considerable performance increase for ViT and CNN architectures was not measured on both datasets, we do not recommend using Focal Loss for plant recognition.

Impact of the noisy data: Noisy data, i.e., data without human-verified labels, are commonly used to increase the number of rare species samples and balance long-tailed class distribution. Even though the Krause et al. (2016) showed unreasonable effectiveness of the noisy labels on small-scale FGVC datasets, the contribution in the “in the wild” scenario is not established. In the case of the flora recognition, upsampling the minimum samples for each class (up to 10, 20, 30, and 40) did not improve the accuracy on both testing sets, i.e., the performance difference was statistically insignificant (see Table 7).


TABLE 7 Impact of additional noisy data on classification performance.
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6. Conclusion

The article assessed automatic plant identification as a fine-grained classification task on the largest available plant recognition datasets coming from the LifeCLEF and CVPR-FGVC workshops, counting up to 10,000 plant species.

State-of-the-art classifiers: The comparison of deep neural network classifiers in Section 5.1 shows the improvement in classification accuracy achieved by recent CNN architectures. The state-of-the-art Vision Transformers achieve even higher recognition scores: the best model, ViT-Large/16, achieves recognition scores of 91.15% and 83.54% on the PlantCLEF 2017 and ExpertLifeCLEF 2018 test sets, respectively, before additional post-processing like test-time augmentations and prior shift adaptation.

Prior shift adaptation: The prior shift in the datasets, i.e., the difference between the training and test data class distribution, is a significant and omnipresent phenomenon. We test existing prior shift adaptation methods and their impact on classification accuracy. The experiments with state-of-the-art methods for prior shift estimation (Saerens et al., 2002; Sipka et al., 2022), evaluated in Table 6, show that all three compared methods improve the classification accuracy in all cases. The differences among all three methods are rather small, EM achieving slightly better results in 3 of 4 cases. Given the optimization speed, EM algorithm is a preferred choice.

Retrieval approach to fine-grained classification: Training an image retrieval system and subsequently performing a nearest neighbor classification is a competitive alternative, with better results than direct classification. The prediction obtained via a nearest neighbor search is more interpretable as the samples contributing to the prediction can be visualized. Therefore, a retrieval-based approach is more suitable if utilized within the humans in the loop. On the other hand, the softmax predictions of a standard neural network classifier allow for simple post-processing procedures such as averaging and prior shift adaptation, which are yet to be explored for the retrieval approach, and which noticeably improve the final recognition accuracy of the standard classifiers.

Overall, using image-retrieval has clear advantages, e.g., recovering relevant nearest-neighbor labeled samples, providing ranked class predictions, and allows user or experts to visually verify the species based on the k-nearest neighbors Besides, the retrieval approach naturally supports open-set recognition problems, i.e., the ability to extend or modify the set of recognized classes after the training stage. The set of classes may change e.g., as a results of modifications to biological taxonomy. New classes are introduced simply by adding training images with the new label, whereas in the standard approach, the classification head needs re-training. On the negative side, the retrieval approach requires, on top of running the deep net to extract the embedding, to execute the nearest neighbor search efficiently, increasing the overall complexity of the fine-grained recognition system.

Contrary to our expectations, the error analysis in Figure 4 shows that the retrieval approach does not bring an improvement in classifying images from classes with few training samples. Figure 5 shows that retrieval has a very high accuracy for a higher number of species, but it also fails for a higher number of species.
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Footnotes

1We use the term class following the machine learning wording, where classes denote the categories to be recognized, not the taxonomic rank (classis), i.e., we use the term class for species.
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E 0.50 0.14 0.06 0.04 0.02 0.0003 0.50 0.07 25.00 £+ 9.00 2.40+0.23 11.33+1.20 14.63 +1.20 3.15+0.25 0.00 0.00 36.27 £+ 2.56
F 1.00 10.00 6.00 2.00 2.00 0.0000 1.00 2.05 0.00 N/D N/D N/D N/D N/D N/D 100
G 0.50 11.00 3.00 4.00 2.00 0.0000 0.50 2.05 40.00 + 16.33 3.83+0.48 46.50 + 4.92 14.80 + 1.05 4.41+0.88 0.00 6.50 +2.28 0.00
H 0.01 6.08 6.00 0.04 1.00 0.0003 0.01 1.05 0.00 N/D N/D N/D N/D 100 N/D N/D
| 1.00 4.06 0.06 2.00 0.02 0.0002 1.00 0.07 83.33+11.24 2.74+0.38 19.40 +1.59 10.62 +£1.24 1.79+0.37 0.00 0.00 68.57 + 6.80
J 0.01 6.08 6.00 0.04 2.00 0.0003 0.01 2.056 0.00 N/D N/D N/D N/D 100 N/D N/D
K 1.00 8.06 0.06 4.00 1.00 0.0000 1.00 1.05 92.31 +£7.69 297 +£0.41 23.58 +£2.92 20.91 £ 0.69 3.83+1.93 0.00 0.00 0.00
L 0.50 7.00 3.00 2.00 0.02 0.0002 0.50 0.07 66.67 +21.08 1.38 £0.43 19.76 +£1.60 9.23 +0.99 224 +0.67 0.00 0.00 80.75 £ 7.26
M 0.50 8.06 0.06 4.00 2.00 0.0003 0.50 2.06 75.00 £ 9.93 6.25 + 0.82 33.87 £ 2.52 16.17 £1.35 8.81+1.19 0.00 0.00 20.45 + 5.96
N 0.01 10.00 6.00 2.00 1.00 0.0002 0.01 1.05 87.50+ 125 1.80 £ 0.31 17.43+1.63 7.04 £0.30 1.01 £0.12 0.00 0.00 25.74 £ 15.65
o 0.01 7.00 3.00 2.00 2.00 0.0003 0.01 2.06 71.43 £18.44 2.64 +0.69 11.80 £ 2.35 6.76 + 0.65 120+ 0.25 0.00 0.00 62.99 + 9.73
P 1.00 14.00 6.00 4.00 1.00 0.0002 1.00 1.05 42.86 + 20.20 3.65 + 0.49 34.00 £1.15 11.70 + 3.40 574 +2.87 16.04 + 2.00 0.00 0.00
Q 1.00 4.06 0.06 2.00 1.00 0.0000 1.00 1.05 83.33 £ 16.67 3.90 + 0.42 17.60 £1.17 19.98 +£2.13 9.20 +3.01 0.00 0.00 0.00
R 0.01 6.08 6.00 0.04 2.00 0.0002 0.01 2.06 0.00 N/D N/D N/D N/D 100 N/D N/D
S 0.50 11.00 3.00 4.00 0.02 0.0003 0.50 0.07 87.50+ 125 1.756+0.19 17.43 £ 0.97 6.63 +0.23 148 +£0.14 0.00 0.00 71.81 £6.34
Control 0.50 7.00 3.00 2.00 1.00 0.0002 0.50 1.05 7111 +6.83 519+ 0.26 44.44 +£1.80 156.33 £ 0.84 6.12 +0.67 1.90 £ 0.67 4.37 +£1.00 0.00

N/D, not determined.
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Formulations NH4H,PO,4 Ca(NO3),.4H,0 KNO3 MgS0,4.7H, 0 CuS0,4.5H,0

A 57.515 944.6 6.066 492.9 0.0008
B 1156.03 472.3 303.3 246.45 0.08
C 1.1508 9.446 606.6 4.929 0.04
D 1.1503 944.6 303.3 246.45 0.04
E 57.515 9.446 6.066 4.929 0.08
F 115.03 472.3 606.6 492.9 0.0008
G 57.515 944.6 303.3 492.9 0.0008
H 1.1503 9.446 606.6 246.45 0.08
| 115.03 472.3 6.066 4.929 0.04
J 1.1503 9.446 606.6 492.9 0.08
K 1156.03 944.6 6.066 246.45 0.0008
L 57.515 472.3 303.3 4.929 0.04
M 57.515 944.6 6.066 492.9 0.08
N 1.1503 472.3 606.6 246.45 0.04
O 1.1508 472.3 303.3 492.9 0.08
P 115.03 944.6 606.6 246.45 0.04
Q 115.03 472.3 6.066 246.45 0.0008
R 1.1503 9.446 606.6 492.9 0.04
S 57.515 944.6 303.3 4.929 0.08
Control 57.515 472.3 303.3 246.45 0.04

Three levels were selected for each factor (0.01, 0.5, and 1 x Hoagland solution).
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Model Based on single spectrum Based on majority vote

Cal® (%) Val® (%) Pre® (%) Cal® (%) Val® (%) Pre® (%)

KNN 75.56  66.42 64.33 80.67 7025 66.75
SVM 99.97  83.33 84.67 100.00 87.00  90.00
1D-ResNet 100.00 87.42 86.42 100.00 91.75  89.00

1D-PCA-ResNet  100.00  86.75 86.00 100.00 91.00 89.50
1D-PCSA-ResNet 100.00  86.92 86.83 100.00 90.25  89.25

ab.c Cal Val and Pre are assigned, respectively, as the discriminant accuracy of
calibration set, validation set, and prediction set.
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Format of data Model Cal (%)?2 Val(%)® Pre (%)°

Spectral matrix 2D-LeNet 100.00 87.75 85.25
2D-VGG 100.00 85.50 85.75

2D-ResNet 100.00 89.50 89.75

2D-PCA-ResNet 100.00 90.75 89.00

2D-PCSA-ResNet 100.00 88.75 91.75

a.b.c Cgl, Val, and Pre are assigned, respectively, as the discriminant accuracy of
calibration set, validation set, and prediction set.
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The inputs with the strongest effect on each output are in bold.
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Outputs

Hard (%)
SL (cm)
TLN

LCC

LA (cm?)

LN (%)
CL (%)
LS (%)

Submodel

- =W =N =N =N -

Significant inputs

M92+ X N037
Ca2+
NH;t x Cu2*
M92+
NH;t x Cu2*
Mg2+
NH;* x Cu2+
Mg2+
CaZ+
NH4* x Mg2+
NOsz~
ca2+

R2

85.52

81.24

79.77

92.84

78.87

72.67
93.72
98.79

f ratio

12.80

£:19

7.10

9.73

6.72

13.29
4.07
5.81

df1, df2

3,18
11,14
14,15

f critical

2.91

3.84

3.84

3.29
8.76
245.28

The number of submodels, significant inputs, predictability, and accuracy parameters: Train set R? and ANOVA parameters for training [f ratio, degree of freedom (df1:
model and df2: total) and f critical value for a. = 0.05]. The inputs with the strongest effect on each output are in bold.
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Input:training set T3, hyper-parameters M

Output: predict probability p
1 for E=1, Efyrqr do
2 | Take training set = Ts
3 | Two samplers (x;, y), (xr,y,) generate from
instance-balanced  sampling (75) and reversed
sampling (75)
4 | Eachimage x; or x;, generate feature maps F and
attention maps A = f (F) = UkM=] Ay
5 | Randomly select Ay, and normalize it A%, then attention
cropping (Equation 5) and attention drop (Equation 6)
6 | The original data (T5) and enhanced image are trained as
input data, then features are extracted by backbone
network
7 | Obtain feature vectors (f;, f;) by GAP
8 | Letadaptive hyperparameters j, i, update from
Equation 7, output logits I = j1; W;rf‘. + MZWJY,
9 | p=SoftMax(l)
10 | Calculate Lcpy from Eqn. 12
1 Update parameters by minimizing Lcpy
12 end
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6 30,5 03 0.7103 0.0788 0.1457
6 30,15,5 [ 0.6570 0.0751 0.0823
6 30,15,5 0.1 06111 0.0752 0.0951
6 30,15,5 03 06725 0.0783 0.1312
6 30,20,10,5 o 0.6225 0.0743 0.0804
6 30,20,10,5 0.1 0.6542 0.0749 01012
6 30,20,10,5 03 0.6844 0.0794 0.1307
8 30 0 0.6555 0.0742 0.1064
8 30 01 0.7022 0.0753 0.1056
8 30 03 06776 0.0763 0.1107
8 30,5 0 0.6301 0.0749 0.0851
8 30,5 0.1 0.5872 0.0757 0.1012
8 30,5 03 0.6740 0.0779 0.1298
8 30,15,5 o 06179 0.0745 0.0673
8 30,15,5 0.1 0.6335 0.0749 0.0911
8 30,15,5 03 0.6606 0.0778 0.1173
8 30,20,10,5 0 06157 0.0741 0.0634
8 30,20,10,5 0.1 0.6047 0.0731 0.0877
8 30,20,10,5 03 0.7323 0.0788 0.1357
27 30 0 0.6233 0.0732 0.0882
27 30 0.1 0.6198 0.0741 0.0829
27 30 03 0.6336 0.0750 0.0954
27 30,5 [} 0.6073 0.0738 0.0835
27 30,5 0.1 0.5884 0.0736 0.0835
27 30,5 03 0.6157 0.0764 0.1016
27 30,15,5 0 0.5921 0.0721 0.0609
27 30,15,5 0.1 0.6165 0.0747 0.0819
27 30,15,5 03 0.6343 0.0791 0.1145
27 30,20,10,5 0 0.5904 0.0722 0.0660
27 30,20,10,5 0.1 06153 0.0740 0.0987
27 30,20,10,5 03 0.6824 0.0786 0.1221

The last three columns show the mean average percentage error (VAPE) of the model predictions for an independent test set, The tested modes ciffer in terms of the number of
eatures (it column), number o layers and nades por layer (second colum), and the cropout ate (1 coum). The best modes fo cach diversity melri are ighighted in bod.
More detailed visualizations of the test set predictions for these best models are shown in re 4.
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A Half-Earth dataset categories

@® 64,500 species
(27 % with > 25 images)

® 6,437 genera
(63 % with > 25 images)

O 451 families
(88 % with > 25 images)

) 81 orders
(96 % with > 25 images)

B Half-Earth dataset
2,257,759 specimen images
06,437 genera
5 institutions

(i) Limited to max. 25 images ﬂ

830,200 images remaining

Hold out images
from non-NYBG herbaria

(i)
HBEE 139,529 images
Bl 1,734 genera
BBl /4 institutions

655,502 images remaining Testing herbaria (H)

(i) Hold out images
for random species (10 %)
62,997 images

M 1,735 genera
M 1 institutions

590,487 images remaining Testing species (S)

Hold out random sample
of remaining images (10 %)

(iv)

I | Hl 58,886 images

RSN | M 4,069 genera

RN pEEE | B 1 institutions
Training/validation Testing specimens (R)

424,544 (106,136) images
5,099 genera
1 institutions
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Index Feature name Data source Selected 27 Selected 8 Selected 6
1 Longitude SPlotOpen X X

2 Latitude SPlotOpen X X

3 Sampiing effort gbitorg X

4 # of sampled species gbitorg X

5 Human footprint weshumanfootprint.org X X X
6 Elevation WorldGiim X X X
7 BIOT (annual mean temperature) WorldGiim X X X
3 BIO2 (mean diurnal range) WorldClim X

9 BIOS (isothermality) WorldGiim X

10 BIO4 (temperature seasonaiity) WorldGiim X

il BIOS (max. temp. warmest month) WorldGim X

12 BIOS (min temp. coldest month) WorldGim X

13 BIO7 (temperature annual range) WorldClim X

14 BIOB (mean temp. wettest quarter) WorldCiim X

15 BIO9 (mean temp. diest quarter) WorldGiim X

16 BIO10 (mean temp. warmest quarter) WorldGiim X

17 BIO11 (mean temp. coldest quarter) WorldClim X

18 BIO12 (annual precipitation) WorldClim X X X
19 BIO13 (precipitation wettest month) WorldClim X

20 BIO14 (precipitation dfiest month) WorldGiim X

21 BIO15 (precipitation seasonalty) WorldGiim X

22 BIO16 (precipitation wettest quarter) WorldClim X

23 BIO17 (precipitation driest quarter) WorldCiim X

24 BIO18 (precipitation warmest quarter) WorldGiim X

25 BIO19 (precipitation coldest quarter) WorldGiim X

26 Vegetation plot size Based on sPlotOpen data X X X
27 Neighborhood radius Based on sPlotOpen data X X X
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tsne 1 tsne 2

Estimate (std. error) Estimate (std. error)
bio_1 2.837"** (0.287) ~0.867"* (0.279)
bio_2 —0.774** (0.261) —1.010™* (0.244)
bio_3 3.838" (0.588) 2667 (0.571)
bio_4 ~0.106** (0.008) 0.027*** (0.008)
bio_6 0.326+ (0.153) 0.116/(0.148)
bio_6 0.225(0.142) 0.462*** (0.138)
bio_8 ~0.008 (0.008) —0.021*** (0.008)
bio_9 ~0.068°** (0.006) ~0.012" (0.006)
bio_10 2073 (0.415) 0.412/(0.403)
bio_11 ~5.772"" (0291) 0.772°** (0.282)
bio_12 ~0.101*** (0.018) 0.005 (0.018)
bio_13 ~0.468°** (0.064) ~0.144* (0.062)
bio_14 1.308* (0.091) 0.180** (0.089)
bio_15 -0.052 (0.119) —1.430"* (0.115)
bio_16 0336 (0.035) 0.232+** (0.034)
bio_17 ~0.220™* (0.042) —0.431"* (0.041)
bio_18 0.148"* (0.022) 0.047** (0.022)
bio_19 ~0.009 (0.022) 0.063"** (0.021)
baticm 0.003** (0.0005) ~0.001 (0.0005)
bidfie 0.042°** (0.006) 0.043°** (0.006)
cecsol —0.286"* (0.078) 0.422%* (0.076)
clyppt ~0.042 (0.344) ~0.286 (0.335)
oredre —0.251** (0.031) —0.005 (0.030)
phihox ~0.087 (0.068) 1.818"* (0.066)
sltppt 0.269 (0.343) 0.133 (0.333)
sndppt 0215 (0.341) 0.557* (0.331)
Intercept —81.011** (41.240) —384.572*** (40.078)
R? 0.100 0217
Adjusted R? 0099 0216

*p <0.1; **p < 0.05; **p < 0.01.
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tsne_1 tsne_2

Estimate (std. error) Estimate (std. error)
EVL —1.562* (0.236) 2630 (0.214)
EVT —5.035"* (0.260) 9.478* (0.235)
EVK 2523 (0.389) 0.150 (0.352)
EV AirH 0.782° (0.378) —0.869"* (0.341)
ENVF 1.461%* (0.409) 2328 (0.370)
EVR 0.481** (0.213) —0.686** (0.192)
EV Trol. 2,902+ (0.181) 3.851%* (0.163)
EVS —2.714"* (0.366) ~0.981%* (0.331)
EV SoiT 1,649+ (0.252) 2.848"+ (0.228)
EVN 0211(0.212) ~0.598"* (0.192)
Intercept ~5.951(3.947) —113.831*** (3.569)
R? 0.111 0232
Adjusted R? o111 0.231

*p < 0.1; **p < 0.05; **p < 0.01.
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Model Az MSAz MeanAUC MeanAUC France MeanAUC US

Environmental random forest 0.204 0.069 0.905 0.732 0.889
Remote-sensing based CNN 0.235 0.132 0915 0.771 0.902
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Name

EVL
EVT
EVK
EV AIrH
EVF
EVR
EIV TroL
EVS
EIV SoiT
EVN

Description

Light availability
Temperature

Ciimatic continentaiity

Air humidity

Soil humidity

Reaction (soil acidity / pH)
Trophic level

Salt (soll salinity)

Soil texture

Nitrogen (soilfertlty)

Ranges of values (Nb species)

2-9(1,423)
1-9(1,413)
1-8 (1,411))
1-9 (1,408)
1-12 (1,405)
1-9(1,410)
1-9(1,412)
0-9(1,416)
1-9(1,416)
1-9(1,422)
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Name Description Res.

Annual Mean Temperature 30 arcsec
Mean Diurnal Range [Mean of monthly (max temp - min temp)) 30 arcsec
Isothermality (bio_2/bio_7) (* 100) 30 arcsec
Temperature Seasonality (standard deviation *100) 30 arcsec
Max Temperature of Warmest Month 30 arcsec
Min Temperature of Coldest Month 30 arcsec
Temperature Annual Range (oio_5-bio_6) 30 arcsec
Mean Temperature of Wettest Quarter 30 arcsec
Mean Temperature of Driest Quarter 30 arcsec
Mean Temperature of Warmest Quarter 30 arcsec
Mean Temperature of Coldest Quarter 30 arcsec
Annual Precipitation 30 arcsec
Precipitation of Wettest Month 30 arcsec
Precipitation of Driest Month 30 arcsec
Precipitation Seasonality (Coefficient of Variation) 30 arcsec
Precipitation of Wettest Quarter 30 arcsec
Precipitation of Driest Quarter 30 arcsec
Precipitation of Warmest Quarter 30 arcsec
Precipitation of Coldest Quarter 30 arcsec
Absolute depth to bedrock in cm 250m
Bulk density in kg/m3 at 15 cm depth 250m
Cation exchange capacity of soil in cmolc/kg 15 cm depth 250m
Clay (0-2 micro meter) mass fraction at 15 cm depth 250 m
Soil organic carbon content (/kg at 15 cm depth) 250m

phihox Phx 10 in H20 (at 15 cm depth) 250m

sltppt Silt mass fraction at 15 cm depth 250m

sndppt Sand mass fraction at 15 cm depth 250m
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Name Description Native resolution

NAIP RGB and Near-IR imagery (US) im
BD-ORTHO® 2.0 RGB and Near-IR imagery (France) 05m
ORTHO-HR® 1.0 RGB and Near-IR imagery (France) 02m
NLCD Land-cover (US) 30m
CESBIO Land-cover (France) 1om

SRTM Elevation 1 arcsec (~30 m at equator)
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= Find nearest neighbors and nearby occurrences

GBIF records [ Vegetation plot
ElSurmunding square [ﬂ Nearby veg. plots

—» # of GBIF occurrences

1 Radius of surrounding area
(containing N vegetation plots)

Calculate diversity metrics based on species lists

Alpha diversity = 3 Beta diversity = Sarensen index (see Methods) Gamma diversity = 8
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Characteristics and type of Number of misclassified Proportion of 55

misclassification specimens (of 284 total misclassified (of 284
specimens) total) specimens
Taxa are anatomically 34 0.618 (0.12)

consistent, test specimen

typical (Type 1)

Test specimen atypical, but 10 0.182 (0.035)
with a reasonable range, for its

taxon (Type 2)

Taxa and test specimen are not 1 0.20 (0.039)
anatomically consistent (Type 3)
Total 556 1(0.194)

Types 1 and 2 are consistent with wood anatomy and are expected errors made
by human field inspectors.

Type 3 errors are inconsistent with macroscopic wood anatomy and would not be
expected to be made by a human inspector.
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Training and evaluation details Top-k Accuracy (%)

Five fold cross-validation

k=1 95.2

Trained using four folds, tested on PACw* k=1 73.5
k=2 85.1

Field model trained using all five folds, tested on PACw k=1 80.6
k=2 90.5

*The mean top-1 and top-2 prediction accuracies over the five models are reported
with the standard deviations 4.5 and 4.1%, respectively. Accuracies in bold are
those for which a confusion matrix is provided.
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Training Testing Total

(counts) (counts) (counts)
Number of xylaria 3 1 4
Number of taxa 98 69 105*
Number of specimens 504 284 788
Number of images 5184 1209 6393

788 specimens from 105 unique taxa (belonging to 24 genera) were prepared and
imaged to produce 6393 images for training and testing the classification models.
*The total number of taxa does not equal the sum of the training and testing counts
as not all species comprising each class were present in both the training and
testing data sets. Complete details about the class membership and training/testing
set membership of the taxa are provided in Supplementary Material 1.
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Test2018 - Acc[%]  Test 2017 - Acc[%)]
TTA CCA RC Images Observations Images Observations

x X ox 4959 7162 73.59 81.29
v X x 4251 +1.98 +5.38 +4.65
x voox 032 +1.06 +0.70 +0.80
x x v 048 +1.30 +3.82 +3.86
x v v -010 +1.93 +3.83 +3.89
v x v 244 4251 4422
VooV x 4301 +3.72 +4.38
v v v 28 42.85 +4.67
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Institution (Xylarium acronym) Specimen Role
counts

USDA Forest Products Laboratory, 410 Model Training

Madison collection (MADw)

USDA Forest Products Laboratory, 77 Model Training

Samuel J. Record collection (SJRw)

Royal Museum of Central Africa (Tw) 17 Model Training

Mississippi State University (PACw) 284 Model Testing

The MADw, SJRw, and Tw specimens contributed images exclusively to the training
data set, while the test data set was obtained from only the PACw specimens.
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ExpertLifeCLEF 2018 PlantCLEF 2017 iNat2018-Plantae

Architecture Method Acc. Macro F1 Acc Macro F1 Acc Macro F1
ResNet-50 c 59.87 55.11 77.89 54.48 57.73 52.69
ViT-Base/32 [ 65.21 60.29 80.68 59.18 57.24 53.17
ViT-Base/16 [ 7171 67.35 84.48 65.40 67.42 64.51
ResNet-50 R 60.15 56.30 80.27 55.57 57.95 5632
ViT-Base/32 R 66.48 61.49 84.89 60.79 63.12 6124
ViT-Base/16 R 71.99 69.20 88.61 66.39 77.67 76.74

All models were trained for 100 epochs with fixed image size (224 x 224). No tes

/ation.

¢ augmentations were used. The most confident image pre

iction is used for all images belonging to

the same obe
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PlantCLEF 2018— Accuracy [%] PlantCLEF 2017—Accuracy [%]

Architecture Input Images Observations Images Observations
ResNet-50 224x 224 40.03 56.32 68.00 7457
Inception-v 224 x 224 4341 59.41 7132 77.92
Inception-Resnet-V2 224 % 224 4414 68.15 7057 78.96
ViT-Base/32 224% 224 4936 7153 73.50 8129
ViT-Base/16 224 %224 5158 7370 75.54 8257
EfficientNetV2-§ 224 x 224 53.08 7413 79.21 85.75
ViT-Tiny/16 384 x 384 47.43 69.06 73.64 8059
SE-ResNeXt-101 384 x 384 5461 7375 80.31 85.98
ResNest 269 384 x 384 56.27 7452 8168 86.74
ViT-Base/16 384 x 384 58.49 77.03 8228 87.75
EfficientNetV2-L 384 x 384 59.90 77.03 84.15 88.52
ViT-Large/16 384 x 384 67.03 83.54 86.87 9115

Observation values calculated as M

n Logit
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#Occurrences 897,296 51,116 50,375
#Species 13,700 4,290 4,261
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We outline a set of simple recommendations to improve the quality of community science
images for phenology research. If adopted, these recommendations would greatly
improve the accessibility of community science images for phenological research by
making it easier for deep both CNNs and human annotators to accurately annotate
phenology.

1) The organism of interest should take up the entire frame.

2) The image should be angled from a top or side-view to allow the viewer to identify
all reproductive organs (ex. buds, flowers, and fruits).

3) The image should be taken of the organism in its original location, so as not to
disturb important phenological features and to ensure that the image’s geolocation 1s
accurate.

4) Images should be uploaded in their original form; not digitally altered nor
uploaded as copies of the original photo.






OPS/images/fpls-13-839327/fpls-13-839327-g011.gif
s oan

2090

o oy

Quarties on occur





OPS/images/fpls-12-787407/fpls-12-787407-g004.jpg
Phenophase: OVegetative O Budding ‘ Flowering . Fruiting
12 13






OPS/images/fpls-13-839327/fpls-13-839327-g010.gif
ey e 0 o3}






OPS/images/fpls-13-787527/crossmark.jpg
(®) Check for updates





OPS/images/fpls-12-787407/fpls-12-787407-g003.jpg
Accuracy
1.0
0.9
0.8
0.7
0.6
0.5

Vegetative Budding Flowering Fruiting





OPS/images/fpls-13-839327/fpls-13-839327-g009.gif
o s = o
Gou -
I e PPV I B B





OPS/images/fpls-13-836488/fpls-13-836488-t003.jpg
Caibration validation

Variable
sp R RMSE Bias Slope RPD
Sugars Glucose 6764.56 0.14 1621.88 -4.49 0.95 417
Fructose 1024092 056 131693 352.08 147 7.78
Sucrose 11380.72 000 2086.69 538.48 -12.55 545
Fucose 2865 003 1.90 087 075 15.04
Isomaltose 2602 016 6.58 144 1.41 395
Cellobiose 157.51 039 7321 19.87 1.85 215
Avabinose 37.57 000 51.42 939 100.65 073
Galactose 29366 018 30429 8221 111 097
Inositol 911.06 031 136.28 2817 1.29 6.69
Mattose 58.40 002 57.31 19.37 086 1.02
Mannose 21979 042 35.78 12.77 219 6.14
Raffinose 644.65 057 457.00 1277 112 1.41
Rhamnose 6856 002 9556 17.09 ~1150.74 072
Ribose 3235 000 4217 1341 138.61 077
Palatinose 236.89 000 294.60 36.80 -5.60 080
Melezitose 15.62 0.38 7.47 131 1.26 2.09
Melibiose 200.00 009 264.69 4747 069 076
Trehalose 176.00 000 146.34 2378 -1.69 1.20
Xylose 375 013 7.09 154 1.32 504
Hormones. ABA 12.54 006 11.25 143 057 112
1AA 21.37 026 18.16 1.84 0.95 1.18
JA 337.70 029 197.91 3153 1.03 171
SA 799.00 0.00 495.41 147.44 -10.54 161
CMLX 727761 002 8086.67 242127 6366 090
Glucosinolates  Glucoalysiin 2879 010 27.76 395 1.05 1.04
Glucobrassicin 1462.69 0.15 914.32 210.01 0.76 1.60
Glucoerucin 12.22 039 588 051 086 208
Gluconapin 5005.90 000 470353 2123.30 043 1.06
Gluconasturtin 94.36 000 9173 12.46 063 1.03
Glucoraphanin 1308.98 000 1166.48 250.14 022 112
Glucoraphenin 1.78 0.74 0.62 0.07 0.91 288
Epigallocatechin 21086 027 163.05 291 083 129
Progoitrin 666.26 001 564.65 135.83 038 1.18
Epiprogoitin 6316.22 009 5944.42 1814.64 074 1.06
Isobuty! 47357 003 356.50 5656 067 133
Glucosinalbin 10.35 000 7.96 1.28 252 1.30
Sinigrin 4445.20 007 4259.39 157186 1.04 1.04
Hexyl 4996 000 4561 12.28 053 1.10
Butyl 5.49 051 320 -024 1.07 172
Neoglucobrassicin Peak1 265.97 073 27380 59.08 1.86 097
Neoglucobrassicin Peak2 1051.25 0.06 254.92 24.16 0.41 412
X3MTP 47.48 051 963 036 1.41 493
XSMTP 2076 061 11.56 114 1.40 1.80
XBMSH 5183 022 4864 955 1.09 107
X7TMSH 261.68 0.18 277.93 88.23 1.19 0.94
X7TMTH 244.30 0.36 22481 36.56 1.04 1.09
XBMSO 2013.33 031 1528.42 169.92 087 132
XBMTO 1278.38 047 105850 17647 085 121
Other secondary ~ Apigenin rutinoside 114031 031 84850 73.33 063 134
metabolites
Caffeic Acid 3001 032 096 -020 074 31.31
Chiorogenic Acid 2055 066 16.29 138 109 181
Gitrat 2647.54 044 1894.98 169.09 1.08 1.40
Gyanidin thamnoside 143134 053 842.46 -56.16 081 1.70
Cyanidin sophorosid 674.85 031 387.08 88.61 1.04 1.74
glucoside
Dihydro caffeoyl glucuronide 27.05 085 896 001 112 302
Fumarat 204.76 010 174.41 1817 068 169
Kaempherol glucosyl 989.20 014 51891 97.70 069 191
thamnosyl glucoside
Kaempherol rutinoside 2783.98 059 1613.31 127.58 088 173
Kaempherol xylosyl 1362.13 056 77466 7.04 088 1.76
thamnoside
Malat 1078.18 016 78653 133.47 061 137
m-Coumaric Acid 144.26 000 143.67 18.09 084 1.00
p-Coumaric Acid 4.00 046 135 -0.08 1.02 295
Pelargonidin cumaroyl 69.47 065 34.69 -028 094 200
diglucoside glucoside
Pelargonidin sambubioside 20172 047 22317 1331 081 131
Prenyl naringenin 36.74 063 14.89 -2.09 0.93 247
Quercetin glucoside 56.73 028 54.09 1.7 1.41 1.0
Succinat 60.74 016 4515 070 093 1.35

Metaboltes have been measured with GC-MS or LC-MS depending on the metabolite (n=124 per metabolte) on leaves harvested on 4-week old plants grown in the greenhouse.
Sugars are given in umol/gFVV; hormones in ng/gFW. For glucosinolates and other secondary metabolites, foliar relative concentrations were estimated by dividing the peak area
corresponding to the metabolite by the fresh weight of the sample. SD, standard deviation; RMSE, root mean square deviation; and RPD, relative percent diference. Al predictions
have been obilained from CNIN models (see Supplementary Material for dotaits).
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ration accuracy  Validation accuracy

(%) (%)
Survival (2) 0988 0915
Genotypes (10) 0831 0640
Indoor/Outdoor (2) 0998 1.000
CSR categories (11) 0.980 0.700
Treatment (2) 0955 0714

Plant survival has two categories (dead or alive), which were measured according to the
protocol described in Estarague et al. (2021). Genotypes have 10 categories
corresponing to the 10 natural accessions used here. Indoor/outdoor represents
whether a plant has been grown in a greenhouse or growth chamber (indoor) or in a
common garden (outdoor) across allthe experiments included in the database used
here. CSR categories are the intermediate CSR classes estimated from leat traits by the
algorithm from Pierce et al (2017), such as RISR, S/SC, RS, and C/CSR (see
Supplementary Material. Treatment has two categories (control and water stress)
fom the dedicated experiments included in the database (see Supplementary
Material). Al predictions have been obtained from CNIN models.
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Calibration

Variable n
sD R RMSE Bias Slope RPD

LDMC (mgg™) 2932 5273 086 16.10 038 1.06 328
SLA (miné mg~) 3423 2090 085 7.47 014 101 2.80
NG (%) 1,961 218 093 053 -0.06 097 412
Leat thickness (um) 4,143 178.08 089 69.49 279 1.02 256
RWG (%) 1,421 2206 047 452 0.40 127 488
LCC (%) 1,960 478 065 117 003 086 410
1,222 159 083 062 -0.04 095 256

1,223 3.76 0.28 183 -0.13 0.82 2.06

Plant ifespan (days) 1,403 10,55 047 801 -1.31 086 132
Plant growth rate (g d-') 701 001 053 000 000 096 1.94
C score (%) 2,905 1025 088 328 -0.02 1.03 313
S score (%) 2,905 11.64 0.75 257 0.19 1.1 453
R score (%) 2,905 17.03 087 479 033 099 355

LDMC, leaf airy matter content; SLA, specific leaf area; LNC, leaf nitrogen content; RWC, relative water content; LCC, leaf carbon content; &°C, fraction of **C isotope; and 5N,
fraction of "N isotope. CSR scores were estimated from leaf traits by the aigorithm from Pierce e al. (2017). n i the total number of leaves used for modeling from our database
that are associated with both trait and spectra measurements. All predictions have been obtained from convolutional neural network (CNIN) models (see Supplementary Material
for details). SD, standard deviation; RMSE, root mean square deviation; and RPD, relative percent difference.
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Stage

Learning representations
Learning representations
Applying representations
Applying representations
Applying representations
Applying representations
Applying representations
Applying representations

Task

Taxonomic identification
Taxonomic identification
Taxonomic identification
Genus discrimination/Identifying mislabels
Genus discrimination/Identifying mislabels
Genus discrimination/Identifying mislabels

Name

Training set
Validation set
Herbarium test set (H)
Species test set (S)
Random specimen test set (R)
Syzygium
Eugenia
Dendrobium

Source

Half-earth dataset
Half-earth dataset
Half-earth dataset
Half-earth dataset
Half-earth dataset
RBG, Kew
RBG, Kew
RBG, Kew

Number of specimens

424,544
106,136
139,529
62,997
58,886
1,996
8,358
1,004
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Model Description Pre-training Loss function
dataset
Autoencoder A symmetric autoencoder with a ResNet-18 encoder, a CIFAR-10 Mean squared error (MSE)
latent space of 256 units, and a ResNet-18 decoder where of the reconstructed image.
convolutions have been replaced by resizing convolutions.
Triplet network A ResNet-18 encoder, through which three images are ImageNet Triplet loss
passed—an anchor, an example from the same class
(positive), and an example from a different class (negative).
Classifier A ResNet-18 encoder with a classification head comprising ImageNet Cross-entropy loss

two densely connected layers, each preceded by
batch normalization and dropout layers.






OPS/images/fpls-13-839327/fpls-13-839327-g003.gif
Usar definton of

e
et dtenct .
et | peer =
i ) | e

e o e s
At e et
T emng e otnchon
Qs of b Copericn e ol
ottt T\ punowsacien
frofyosfeivey frboine 5
ansavion e i/ "






OPS/images/fpls-13-836488/crossmark.jpg
©

2

i

|





OPS/images/fpls-13-839327/fpls-13-839327-g002.gif





OPS/images/fpls-13-839279/math_5.gif
)





OPS/images/fpls-13-839279/math_4.gif
@





OPS/images/fpls-12-787127/fpls-12-787127-g006.gif





OPS/images/fpls-12-787127/fpls-12-787127-g005.gif





OPS/images/fpls-13-839327/inline_35.gif





OPS/images/fpls-12-787127/fpls-12-787127-g004.gif





OPS/images/fpls-13-839327/inline_34.gif





OPS/images/fpls-12-787127/fpls-12-787127-g003.gif





OPS/images/fpls-13-839327/inline_33.gif
R, (M)





OPS/images/fpls-13-787527/math_9.gif
pe ()

ploglx); o)

o erlxi) =

Lot

x
'
P ) = 2o e,
—

I3 g

©)





OPS/images/fpls-12-787127/fpls-12-787127-g002.gif





OPS/images/fpls-13-839327/inline_32.gif
Shy, (M)





OPS/images/fpls-13-787527/math_8.gif
pelcilxi) = plelxi)

o plehxi)

pelc)plx) _
e

pelcg)
e

T
3 bl
=i

be(q)

)

®)





OPS/images/fpls-12-787127/fpls-12-787127-g001.gif
0 10000 20000 30000 40000 50000 60000
d taxa





OPS/images/fpls-13-839327/inline_31.gif





OPS/images/fpls-13-787527/math_7.gif
Ky — ki
! (q)—me:L - @
—





OPS/images/fpls-12-787127/crossmark.jpg
©

2

i

|





OPS/images/fpls-13-839327/inline_30.gif





OPS/images/fpls-13-787527/math_6.gif
g

— R g@).

6)





OPS/images/fpls-12-804140/math_1.gif





OPS/images/fpls-13-839327/inline_3.gif





OPS/images/fpls-13-787527/math_5.gif
onlk—1= ) onlsg — sqx)
KZP. ( ):ﬂ 'ry(Sqz — sqx))
Ry (9) = =

)





OPS/images/fpls-12-804140/fpls-12-804140-t002.jpg
Flowers present Vegetative

Perspective name Top-1  Perspective name  Top-1
Accuracy Accuracy
Node (N) 649
Inflorescence (F) 873
Leaf back (LeB) 63.9
Leaf top (LeT) 626
Ligule side (i) 703
Ligule front (LiF) 75.1
Best Combination Top-1  BestCombination  Top-1
Accuracy Accuracy
F_LS 920 LeB_LF 8.4
N_F_LF 9.4 N_LeT_LiF 7.1
N_F_LeB_LiF 955 N_LeB_LeT_LiF 89.7
N_F_LeT_LeB_LIF 953 N_LeB_LeT_LiS_LiF 203
N_F_LeT_LeB_LF_Lis (Al) 9.1

Top-1 accuracies for indlvidual perspectives and for the best combinations of n
perspectives out of all combinations for n=1,..,6. Accuracies are calculated separately
depending on the availability of images depicting the inflorescence.
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Full species name Abbreviation Code

Agrostis capillaris L. Agr_cap 1
Agrostis stolonttera L. Agr_sto 2
Alopecurus pratensis L. Ao_pra 3
Anthoxanthum odoratum L. Ant_odo 4
Avenula pubescens (Huds.) Dumort. Ave_pup 5
Arrhenatherum elatius (L.) P.Beauv. ex J.Presl & C.Presl. Arr_ela 6
Brachypodium pinnatum (L) PBeauv. Bra_pin 7
Brachypodium sylvaticum (Huds.) PBeauv. Bra_syl 8
Bromus inermis Leyss. Bro_ine 9
Bromus erectus Huds. Bro_ere 10
Bromus hordeaceus agg. Bro_hor 1

includes Bromus hordeaceus L.

includes Bromus lepidus Holmb.
Bromus ramosus agg. Bro_ram 12

includes Bromus ramosus Huds.

includes Bromus benekenii (Lange) Trimen)
Bromus sterils L., nom. cons. Bro_ste 13
Dactylis glomerata L. Dac_glo 14
Elymus caninus L. Ely_can 15
Elymus repens L. Gould Ely_rep 16
Festuca altissima All. Fes_alt 17
Holous lanatus L. Hol_tan 18
Hordelymus europaeus (L.) Jess. ex Harz Hor_eur 19
Lolum perenne L. Lol_per 20
Lolium giganteum (L) Darbysh. Lol_gig 21
Melica nutans L. Mel_nut 22
Melica picta K Koch Mel_pic 23
Milium effusum L. Mil_eff 24
Phleum pratense L. Phl_pra 25
Poa compressa L. Poa_com 26
Poa nemoralis L. Poa_nem 27
Poa pratensis L. Poa_pra 28
Poa trvials L. Poa_triv 29
Sesleria caerulea (L.) Ard. Ses_cae 30
Trisetum flavescens (L) PBeauv. Ti_fia 31

Species names are used according to Catalog of Life (Roskov et al., 2019).
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Class-wise proportion of all specimens (source) or all
misclassified specimens (sink)

Source Sink
Class (n specimens) Type 1 Type 2 Type 3 Total Type 1 Type 2 Type 3 Total
AcerH (9)
AcerS (9)
Aesculus (6) 0.500 - - 0.500
Alnus (8) - 0.125 - 0.125 0.018 - - 0.018
Arbutus (9) 0.111 - - 0.111
Betula (33) 0.091 0.091 0.061 0.243
Carpinus (9)
Fagus (13)
Frangula (1) - 0.018 0.018 0.036
Fruitwood (32) 0.182 0.036 0.018 0.236
Liquidambar (10) 0.100 - - 0.100 0.036 - - 0.036
Liriodendron (14) - 0.143 0.500 0.643
Magnolia (25) 0.440 0.120 0.120 0.680
Nyssa (23) 0.043 - - 0.043 0.145 0.018 0.055 0.218
Ostrya (2)
Oxydendrum (9) 0.111 - - 0.111
Platanus (3) - - 0.333 0.333
Populus (26) 0.038 - - 0.038 0.182 0.091 0.127 0.400
Prunus (16) 0.063 - - 0.063
Rhamnus (2)
Salix (13) 0.077 - - 0.077 0.018 0.018 0.018 0.055
Tilia (3)

Source misclassification proportions are the based on the total number of input specimens (n = 284).

Sink misclassification proportions are based on the total number of misclassified specimens (n = 55).

Dark grey indicates a class for which there were neither source nor sink misclassifications; light grey indicates the absence of misclassifications in either source or sink;
colored cells are proportions of note and are discussed in the text.
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Test 2018 - Acc[%]  Test2017 - Acc [%)]
Min. samples  Images Observations Images Observations

10 4017 -058 020 -0.49
20 +0.32 -053 -0.33 -0.38
30 -0.13 -024 -0.44 ~0.66
40 .10 -125 -0.60 -0.82

Baseline 4977 68.24 74.19 81.16
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Architecture  Test set EM CM-L SCM-L

ViT-Large/16 PlantCLEF 2017 4117 4125 +0.66
ViT-Large/16 ExpertLifeCLEF 2018 4221  +1.83 +1.64
SE-ResNeXt-101  PlantCLEF 2017 4165 4150 +1.07
SE-ResNeXt-101  ExpertLifeCLEF 2018~ +3.81  +3.28 +3.23

Al esults are usin the fine-tuned models and Mean Softmax Accuracy for combining






OPS/images/fpls-12-774965/fpls-12-774965-t001.jpg
Ranunculus species (n = 474)

-Ranunculus bulbosus (442)
-Ranunculus friesianus (8)
-Ranunculus acris (24)

Lotus comniculatus (3,271)

~Lotus comiculatus (2926)
~Lathyrus pratensis (345)

Galium mollugo (659)

~Galium mollugo (202)
-Achillea millefolium (338)
-Daucus carota (65)
~Carum carvi (54)

Crepis biennis (159) Centaurea jacea (805)
~Crepis biennis (89) ~Centaurea jacea (786)
~Leontodon hispicus (10) ~Lychnis flos-cucul (19)
-Tragopogon pratensis (8)

~Picris hieracioides (62)
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Model F1 Acc Mca

Baseline 0.442 0.543 0.485
Baseline with marginalization loss 0.494 0.599 0.534
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Team ranking

Team name (Organization)

Team members

Model architecture

Feature extractor parameters (M)

Input image resolution

Loss function

1st

CIPP (Alibaba Group)

Baoming Yan, Bo Gao,
Xiao Liu, Lin Wang, and
Chao Ban

ResNest101,
ResNeXt101-1BN-a,
ResNeXt101

48.3+89+89 =226.3

256%256, 256x256,
352x352

Triplet, AM-softmax,
LDAM

0.757
0.845
0.787

2nd

HaeC (Postech)

TResNet-M,
TResNet-M-21k,
TResNet-L, GENet-L,
ECA-NFNet-LO

2044294 4 54.7 +
31424=1695

448448

SoftTriple,
Cross-entropy,
BM-Softmax.

0.735
0.837
0761

3rd

Brendan Rapazzo
(Cornell University)

Brendan Repazzo

SE-ResNext101

9%
448448

Cross-entropy
0.689

0.793
0.706

4th

Qidian213

0.687
0.799
0.725

5th
Undergrad & Botany

Joe (The University of
Tennessee)

Dax Ledesma and Joey
Shaw

SE-ResNeXts0

28
448448

Cross-entropy
0.682

0.786
0.693

Note that the fourth place team did not respond to the post-competition survey. We define as a feature extractor the part of the model that extracts the feature maps on which the
classification is based. The feature extractor parameters are taken from the publications associated with the respective model architectures.
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Dataset Images

Dillen et al., 2019 1,900
Lorieul et al,, 2019 163,233
Herbarium 255 (Carranza-Rojas et al., 2017) 11,071
Herbarium 1K (Carranza-Rojas et al., 2017) 253,733
Herbarium 2019 (Tan et al., 2019) 46,000
Herbarium 2020 1,169,039
Herbarium 2021 2,500,779

Taxa

1,680
7,782
255
1,204
680

32,004
64,500

Vascular plant representation (%)

034
1.66
0.05
0.26
0.15
6.85
13.76

Institutions

[N

Geographic range

Global
Americas
Costa Rica
France
Americas
Americas

Americas, Oceania, and Pacific

The percent of vascular plent taxa represented is based on the 468,759 LCVP (Freiberg et al., 2020) “accepted” and “unresolved” taxa. Because diferent taxonomies were used as
standards for the various datesets, the reported percentage can only be considered an approximation. Note that the Herbarium 2019 detaset focuses on the flowering plent femiy
Melastomataceae, while the other datasets include representatives across vascular plants.
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Study

Tian et al. (2020)
Cai etal. (2018)
Li etal. (2020)
Xin et al. (2020)
Kim et al. (2021a)
Wagner (2021)

Vegetation type

Mangrove
Cropland
Cropland

Forest, Grassland
Forest

Forest

Phenology expression

808, senescence
S0s

S80S, EOS

S0OS, EOS

80s

Flower

Scale

Regional
Regional
Regional
Regional
Regional
Regional

Sensor

Landsat-5, 8
Landsat-5, 7, 8
Sentinel-2, Landsat-8
MODIS

Sentinel-2

Sentinel-2
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Study

Pearse et al. (2021)
Nogueira et al. (2019)
Yang et al. (2019)
Yang et al. (2020)

Vegetation type

Forest
Grass-/shrubland
Gropland
Cropland

Phenology expression

Flower

sos

6 growth stages

8 growth stages + Harvest time

Scale

Individual
Regional
Regional
Regional

Sensor

RGB
RGB

RGB, mulispectral
RGB, multispectral
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Study Phenology expression Scale # Specimen # Species

Lorieul et al. (2019) Bud, flower, fruit, sporangia, cones Individual 163,233 7,782
Davis et al. (2020) Bud, flower, fruit Individual >3,000 6
Gosau et al. (2020) Bud, flower, fruit Individual 21 1
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Vegetation Phenology Image acquisition

type expression
Primary study Perspective Scale Trigger #Images
Correla et al. (2020) Forest Bud Under canopy Individual Automated 47,607
Kim et al. (2021b) Forest Flower Under canopy Individual Automated 20,000
Caoetal. (2021) Forest Leaf Above canopy Regional Automated 14,453
Milicevic et al. (2020) Plantation Flower Under canopy Individual Automated 7,000
Ganesh et al. (2019) Plantation Fruit Under canopy Individual Manual -
Wang et al. (2020) Plantation Flower Under canopy Individual Automated -
Wang et al. (2021) Plantation Flower Under canopy Individual Automated 1,126
Pahalawatta et al. (2020) Plantation Flower Off-site Indivicual Manual 245
Velumani et al. (2020) Cropland Wheat spike Above crop Individual Automated 40,500
Yalcin (2017) Cropland 9 stages Above crop Individual Automated 2400
Han et al. (2021) Cropland 10 stages Above crop Individual Manual 610
Nogueira et al. (2019) Grass-/shrubland o) Above canopy. Regional Automated 432
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Primary study Segmentation task Network architecture Performance
Wang et al. (2020) Flower segmentation Cust. FON 84.4(F)
Davis et al. (2020) Counting buds, flowers, fruits Mask R-CNN 920(A)
Gosau et al. (2020) Counting buds, flowers, fruits Mask R-CNN 7791
Ganesh et al. (2019) Fruit segmentation Mask R-CNN 88.7(F)
Pahalawatta et al. (2020) Open/close flower Mask R-CNN 84.3(A)
Kim et al. (2021a) Landuse U-Net 75.0 (A
Lietal. (2020) Species presence Temp. group attention netw. 99.9 (A)
Tian et al. (2020) Species presence SAE 96.1 (4)
Caietal. (2018) Species presence DNN 950 (A)
Nogueira et al. (2019) Species presence Cust. CNN 99.8(A)

Primary studies report performance as accuracy (A) and F-score (F).
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Primary study

Han et al. (2021)
Yalcin (2017)
Yang et al. (2020)

Lorieul et al. (2019)
Lorieul et al. (2019)
Lorieul et al. (2019)
Lorieul et al. (2019)
Wang et al. (2021)
Kim et al. (2021b)

Miicevic et al. (2020)

Velumani et al. (2020)
Wagner (2021)
Pearse et al. (2021)

Classification
task

10 stages

9 stages
8 stages + harvest time

Fertile material
Flower

Fruit

9 stages

8 flower stages + distribution
Flower

Open - closed flower buds

Wheat spikes
Species presence
Species presence

Network
architecture

AlexNet (fusing 4 perspectives)
AlexNet

Cust. two-branch CNN
processing images and
temperature

ResNet50
ResNet50
ResNet50
ResNet50
VGG16
NASNet

Cust. CNN

ResNet50
VGG16
ResNet50

Compared
methods

GCC, color features+SVM
Texture feature + Naive-Bayes.

Vegetation indices, VGG16,
InceptionV3, ResNet50v2,
InceptionResNetV2

YOLOVS

VGG16, ResNet50, ResNet 101,
MobileNet

VGG19, InceptionResNetv2,
Xception, ResNets0,

Texture feature+XG Boost

Performance as

accuracy

91.2,73.1,81.7
87.1,82.4
83.9,68.8,832,81.3,838,81.3

96.3
843
80.5
434

99.9,99.0,99.2, 99.4, 98.6

97.2,69.5, 65.5, 67,0, 64,0

985
9.6
97.4,86.7

The bold values indicate the best performing method and their respective performance.
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Flower Drone-based prediction Extrapolation of manual counts Relative difference (%)

Centaurea jacea 456 505 10.7
Knautia arvensis 8,059 8,308 3.1

Leucanthemum vulgare 7,044 10,778 53.0
Lotus corniculatus* 50,365 51,139 16
Onobrychis viciifolia 595 3,761 532
Salvia pratensis 209 673 222

*The 50,365 predicted Lotus comiculatus flowers were calculated as the multiplicative of the actual predictions of the network (19389) and a ratio of 2.6. The numbers in Table 2
suggest that there are on average 2.6 blooms per prediction.
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Flower species

A. vulneraria
C. jacea

C. biennis

D. carthusianorum
G. mollugo

K. arvensis

L. vulgare

L. corniculatus

0. vicifolia

R. alectorolophus
S. pratensis

T. pratense
Overall

Training instances

196
742
124
20
546
429
928
2,163
92
23
133
109
5495

Test instances

®

34
16
438
1,022
1,026
95
26
15
7
2759

Precision (%)

20.0
73.0
36.8
100.0
195
896
96.5
87.4
776
615
50.0
95
87.0

Recall (%)

16.7
509
66.7
235
500
94.1
836
855
a4
308
80.0
571
842

mAP

0.056
0.382
0.325
0.235
0.100
0879
0.861
0.772
0.407
0218
0.436
0.104
0.398

F1 Score

0.182
0.600
0.475
0.381
0.281
0918
0.924
0.864
0.588
0410
0615
0.163
0.855

The numbers in the Training Instances and Test Instances columns refer to the ground truth annotations. The overall scores of the performance metrics were weighted means. mAP =

mean average precision.
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A. vulneraria
C. jacea

C. biennis

D. carthusianorum
G. mollugo

K. arvensis

L. vulgare

L. comiculatus

0. vicifolia

P vulgaris
Ranunculus species
R. alectorolophus
S. pratensis

T, pratense

False positives

A. vulneraria

4

C. jacea

6

C. biennis

17

D. carthusianorum

G. mollugo

32

K. arvensis

24

L. vulgare

31

L. corniculatus

17

0. viciifolia

P vulgaris

Ranunculus species

R. alectorolophus

S. pratensis

T. pratense

1

False Negatives

The columns represent what the model predicted, and the rows represent what the model should have predicted (the ground truth). The green, red, orange, and brown numbers denote

TP FP. FN, and confusions between two flower species, respectively.
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Flower

Leucanthemum vulgare
Onobrychis vicifolia
Lotus corniculatus
Salvia pratensis
Ranunculus species
Knautia arvensis
Thifolum pratense
Medicago lupulina
Centaurea jacea

Manually counted

724
483
1,943
142
431
371
129
17
25

Tablet annotations

960
105
748
127
474
47
72
5
28

Ratio

13
0.2
04
0.9
14

13
06
0.0
1.1

The last column shows the ratio of the tablet annotations divided by the manuelly counted

flowers.
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