
Edited by  

Mónica Hebe Vazquez-Levin, Jaume Reventos and George Zaki

Published in  

Frontiers in Oncology 

Frontiers in Genetics

Frontiers in Artificial Intelligence

Artificial intelligence: A step 
forward in biomarker 
discovery and integration 
towards improved cancer 
diagnosis and treatment

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/research-topics/18505/artificial-intelligence-a-step-forward-in-biomarker-discovery-and-integration-towards-improved-cancer-diagnosis-and-treatment
https://www.frontiersin.org/research-topics/18505/artificial-intelligence-a-step-forward-in-biomarker-discovery-and-integration-towards-improved-cancer-diagnosis-and-treatment
https://www.frontiersin.org/research-topics/18505/artificial-intelligence-a-step-forward-in-biomarker-discovery-and-integration-towards-improved-cancer-diagnosis-and-treatment
https://www.frontiersin.org/research-topics/18505/artificial-intelligence-a-step-forward-in-biomarker-discovery-and-integration-towards-improved-cancer-diagnosis-and-treatment
https://www.frontiersin.org/research-topics/18505/artificial-intelligence-a-step-forward-in-biomarker-discovery-and-integration-towards-improved-cancer-diagnosis-and-treatment
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/artificial intelligence


April 2023

Frontiers in Oncology frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-83252-180-9 
DOI 10.3389/978-2-83252-180-9

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


April 2023

Frontiers in Oncology 2 frontiersin.org

Artificial intelligence: A step 
forward in biomarker discovery 
and integration towards improved 
cancer diagnosis and treatment

Topic editors

Mónica Hebe Vazquez-Levin — National Scientific and Technical Research Council 

(CONICET), Argentina

Jaume Reventos — Institut d’Investigacio Biomedica de Bellvitge (IDIBELL), Spain

George Zaki — Frederick National Laboratory for Cancer Research, National Cancer 

Institute at Frederick (NIH), United States

Citation

Vazquez-Levin, M. H., Reventos, J., Zaki, G., eds. (2023). Artificial intelligence: A step 

forward in biomarker discovery and integration towards improved cancer diagnosis 

and treatment. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-83252-180-9

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-83252-180-9


April 2023

Frontiers in Oncology frontiersin.org3

05 Editorial: Artificial intelligence: A step forward in biomarker 
discovery and integration towards improved cancer diagnosis 
and treatment
Mónica Hebe Vazquez-Levin, Jaume Reventos and George Zaki

08 Integrated Analysis of Whole Genome and Epigenome Data 
Using Machine Learning Technology: Toward the 
Establishment of Precision Oncology
Ken Asada, Syuzo Kaneko, Ken Takasawa, Hidenori Machino, 
Satoshi Takahashi, Norio Shinkai, Ryo Shimoyama, Masaaki Komatsu 
and Ryuji Hamamoto

20 An Integrated Analysis of Tumor Purity of Common Central 
Nervous System Tumors in Children Based on Machine 
Learning Methods
Jian Yang, Jiajia Wang, Shuaiwei Tian, Qinhua Wang, Yang Zhao, 
Baocheng Wang, Liangliang Cao, Zhuangzhuang Liang, Heng Zhao, 
Hao Lian and Jie Ma

34 Imaging-Based Machine Learning Analysis of Patient-Derived 
Tumor Organoid Drug Response
Erin R. Spiller, Nolan Ung, Seungil Kim, Katherin Patsch, Roy Lau, 
Carly Strelez, Chirag Doshi, Sarah Choung, Brandon Choi, 
Edwin Francisco Juarez Rosales, Heinz-Josef Lenz, Naim Matasci and 
Shannon M. Mumenthaler

44 Capturing Biomarkers and Molecular Targets in Cellular 
Landscapes From Dynamic Reaction Network Models and 
Machine Learning
Susan D. Mertins

50 Deep Learning-Based Mapping of Tumor Infiltrating 
Lymphocytes in Whole Slide Images of 23 Types of Cancer
Shahira Abousamra, Rajarsi Gupta, Le Hou, Rebecca Batiste, 
Tianhao Zhao, Anand Shankar, Arvind Rao, Chao Chen, 
Dimitris Samaras, Tahsin Kurc and Joel Saltz

65 Developing a Cancer Digital Twin: Supervised Metastases 
Detection From Consecutive Structured Radiology Reports
Karen E. Batch, Jianwei Yue, Alex Darcovich, Kaelan Lupton, 
Corinne C. Liu, David P. Woodlock, Mohammad Ali K. El Amine, 
Pamela I. Causa-Andrieu, Lior Gazit, Gary H. Nguyen, 
Farhana Zulkernine, Richard K. G. Do and Amber L. Simpson

75 Precision Oncology: Artificial Intelligence and DNA 
Methylation Analysis of Circulating Cell-Free DNA for Lung 
Cancer Detection
Ray Bahado-Singh, Kyriacos T. Vlachos, Buket Aydas, Juozas 
Gordevicius, Uppala Radhakrishna and Sangeetha Vishweswaraiah

85 A Straightforward HPV16 Lineage Classification Based on 
Machine Learning
Laura Asensio-Puig, Laia Alemany and Miquel Angel Pavón

Table of
contents

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/


April 2023

Frontiers in Oncology 4 frontiersin.org

93 Application of Artificial Intelligence to Plasma Metabolomics 
Profiles to Predict Response to Neoadjuvant Chemotherapy 
in Triple-Negative Breast Cancer
Ehsan Irajizad, Ranran Wu, Jody Vykoukal, Eunice Murage, 
Rachelle Spencer, Jennifer B. Dennison, Stacy Moulder, 
Elizabeth Ravenberg, Bora Lim, Jennifer Litton, Debu Tripathym, 
Vicente Valero, Senthil Damodaran, Gaiane M. Rauch, Beatriz Adrada, 
Rosalind Candelaria, Jason B. White, Abenaa Brewster, Banu Arun, 
James P. Long, Kim Anh Do, Sam Hanash and Johannes F. Fahrmann

102 Machine-learning based investigation of prognostic 
indicators for oncological outcome of pancreatic ductal 
adenocarcinoma
Jeremy Chang, Yanan Liu, Stephanie A. Saey, Kevin C. Chang, 
Hannah R. Shrader, Kelsey L. Steckly, Maheen Rajput, Milan Sonka 
and Carlos H. F. Chan

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/


Frontiers in Oncology

OPEN ACCESS

EDITED AND REVIEWED BY

Claudio Sette,
Catholic University of the Sacred Heart,
Rome, Italy

*CORRESPONDENCE

Mónica Hebe Vazquez-Levin

mhvazl@gmail.com;

mhvazquez@ibyme.conicet.gov.ar

SPECIALTY SECTION

This article was submitted to
Cancer Genetics,
a section of the journal
Frontiers in Oncology

RECEIVED 07 February 2023

ACCEPTED 20 February 2023
PUBLISHED 31 March 2023

CITATION

Vazquez-Levin MH, Reventos J and Zaki G
(2023) Editorial: Artificial intelligence:
A step forward in biomarker discovery
and integration towards improved
cancer diagnosis and treatment.
Front. Oncol. 13:1161118.
doi: 10.3389/fonc.2023.1161118

COPYRIGHT

© 2023 Vazquez-Levin, Reventos and Zaki.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Editorial

PUBLISHED 31 March 2023

DOI 10.3389/fonc.2023.1161118
Editorial: Artificial intelligence:
A step forward in biomarker
discovery and integration
towards improved cancer
diagnosis and treatment

Mónica Hebe Vazquez-Levin1*, Jaume Reventos2

and George Zaki3

1Instituto de Biologı́a y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas de Argentina (CONICET) Fundación IBYME (FIBYME), Buenos Aires, Argentina,
2Institut d’Investigacio Biomedica de Bellvitge (IDIBELL) and Universitat Internacional de Catalunya,
Barcelona, Spain, 3Frederick National Laboratory for Cancer Research, National Cancer Institute at
Frederick (NIH), Frederick, MD, United States

KEYWORDS

cancer, artificial intelligence, machine learning, digital twin, precision medicine
Editorial on the Research Topic

Artificial intelligence: A step forward in biomarker discovery and inte-
gration towards improved cancer diagnosis and treatment
In cancer, a biomarker refers to a substance or process indicative of the presence of

cancer in the body. However, the idea of “one-molecule (or process) marker” indicated by

its presence, and the existence of an undergoing transforming cancer process is currently a

utopia. During the past decade, there has been a fundamental shift in cancer research and

clinical decision-making, moving from qualitative data to quantitative digital data. A large

wealth of cancer biomarkers and images has come from research laboratories and clinical

institutions worldwide. Moreover, the major bulk of information has arisen from genomics,

proteomics, metabolomics, and other omics, but also from oncology clinics, imaging,

epidemiology and more. Artificial Intelligence (AI) is a unique technology that is able to

combine all the above, and particularly suited to establish novel therapies and predictive

models of drug response (1, 2). The combination of several biomarkers, by means of

Machine Learning (ML) algorithms, would reach unprecedented conclusions in diagnosis,

prediction and general decision making of novel anticancer therapies (3–5). In addition,

the multimodal temporal data collected from patients with cancers can feed to initialize and

track a Digital Twin to experiment with multiple possible treatments in silico.

This Research Topic has gathered 10 selected contributions in the area of ML tools,

Deep Learning and Cancer Digital Twin technologies in the field of Precision Oncology,

and contains one review, one minireview and eight original contributions.

The review paper by Asada et al. emphasizes the relevance of Precision Oncology and

the integration of whole genome sequencing analysis, epigenome analyses and the use of

ML, and opens a discussion about future perspectives in the field.
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Networks of cellular systems and arrays of biological models

described by ordinary and partial differential equations were

developed in the last decades towards a better understanding of

biological systems. Mertins minireview describes the use of ML

algorithms to analyze computational dynamic ordinary differential

equation models in combination with omics data, towards the

discovery of novel biomarkers and novel molecular targets.

Tumor cell heterogeneity has been for many years a distortion

factor in the interpretation of cellular and molecular findings in

oncology. Tumor degree of purity is playing an important role in

optimizing the correlation of the research findings with therapeutic

anticancer strategies. By using Random Forest ML, Yang et al. were

able to assess tumor purity in children CNS tumors, which will

imply genomic, biological and clinical implications.

More than 60% of cervical cancers are caused by Human

Papilloma Virus (HPV) 16 genotype, classified into lineages A, B,

C, and D. In their contribution, Asensio-Puig et al. report the

development of a Random Forest-based new model to assess

HPV16 lineage. Authors highlight that their model is 40 times

faster than current assessment done with Maximum Likelihood

Tree, which requires a manual annotation and cannot assess poorly

sequenced samples.

The work by Chang et al. proposes a novel ML predictive model

utilizing a three-Dimensional Convolutional Neural Network (3D-

CNN) to predict the presence of lymph node metastasis and the

postoperative positive margin status based on preoperative CT

scans. Their report provides a proof of concept for the

preoperatively use of radiomics and 3D-CNN deep learning

framework to improve the prediction of positive resection

margins as well as the presence of lymph node metastatic disease.

In the report by Spiller et al., the utility and feasibility of

imaging, computer vision and ML to determine patient-derived

organoids vital status is reported. By acquiring bright field images at

different time points without relying upon vital dyes, authors track

the dynamic response of individual organoids to various drugs. In

addition, authors report a web-based data visualization tool, called

the Organoizer, available for public use.

Abousamra et al. present a Deep Learning workflow that

generates Tumor Infiltrating Lymphocytes (TIL) maps to study

their abundance and spatial distribution in 23 cancer types. Authors

trained three state-of-the-art CNN architectures (namely VGG16,

Inception-V4, ResNet-34) with training data from The Cancer

Genome Atlas, combining manual annotations from pathologists

and computer-generated labels from a first-generation TIL model.

It also incorporates automated thresholding to convert model

predictions into binary classifications to generate TIL maps.

With the aim to identify putative biomarkers for lung cancer and to

elucidate the pathogenesis of this disease, Bahado-Singh et al.

combined AI and DNA methylation analysis of circulating cell-free

tumor DNA. The study analyzes six AI platforms, including Support

Vector ML and Deep Learning, to measure cytosine (CpG)

methylation changes across the genome in lung cancer. Training sets

and validation sets are generated and 10-fold cross validation

performed. To elucidate lung cancer pathogenesis, gene enrichment

analysis using g:profiler and GREAT enrichment is done.
Frontiers in Oncology 0256
Triple-negative breast cancer (TNBC) always requires

neoadjuvant chemotherapy (NACT) for a pathological complete

response and improved long-term survival. Irajizad et al. previously

identified a polyamine biomarker suitable to assess which patient

will respond to NACT. In their contribution, Irajizad et al. identified

TNBC patients who will be insensitive to NACT, by using

ML methods.

Finally, the contribution by Batch et al. aimed to improve the

detection of metastatic disease over time from structured radiology

reports with the ultimate goal of building and updating a Digital

Twin to model long-term prognosis. By exposing prediction models

to historical information using Natural Language Processing (NLP),

the authors were able to extract and encode relevant features from

medical text reports, and use these features to develop, train, and

validate models. Over 700 thousand radiology reports were used for

model development to predict the presence of metastatic disease.

The model uses features from consecutive structured patient text

radiology reports. Three models were developed to classify the type

of metastatic disease: a simple CNN, a CNN augmented with an

attention layer, and Recurrent Neural Network labels. To develop

the models, a subset of the reports was curated for ground-truth.

Results from the three models were compared (accuracy, precision,

recall, and F1-score) to a single-report model previously developed

to analyze one report instead of multiple past reports. Results

suggest that NLP models can extract cancer progression patterns

from multiple consecutive reports and predict the presence of

metastatic disease in multiple organs with higher performance

when compared with a single-report-based prediction.

In summary, contributions to this special edition highlight

how AI will accelerate the advancement of Personalized Medicine

and cancer care, by improving patient diagnosis, treatment,

and prognosis.
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With the completion of the International Human Genome Project, we have entered what is
known as the post-genome era, and efforts to apply genomic information to medicine
have become more active. In particular, with the announcement of the Precision Medicine
Initiative by U.S. President Barack Obama in his State of the Union address at the
beginning of 2015, “precision medicine,” which aims to divide patients and potential
patients into subgroups with respect to disease susceptibility, has become the focus of
worldwide attention. The field of oncology is also actively adopting the precision oncology
approach, which is based on molecular profiling, such as genomic information, to select
the appropriate treatment. However, the current precision oncology is dominated by a
method called targeted-gene panel (TGP), which uses next-generation sequencing (NGS)
to analyze a limited number of specific cancer-related genes and suggest optimal
treatments, but this method causes the problem that the number of patients who
benefit from it is limited. In order to steadily develop precision oncology, it is necessary
to integrate and analyze more detailed omics data, such as whole genome data and
epigenome data. On the other hand, with the advancement of analysis technologies such
as NGS, the amount of data obtained by omics analysis has become enormous, and
artificial intelligence (AI) technologies, mainly machine learning (ML) technologies, are
being actively used to make more efficient and accurate predictions. In this review, we will
focus on whole genome sequencing (WGS) analysis and epigenome analysis, introduce
the latest results of omics analysis using ML technologies for the development of precision
oncology, and discuss the future prospects.

Keywords: artificial intelligence, whole genome analysis, epigenome analysis, machine learning, biomarker
discovery, cancer diagnosis and treatment, precision oncology
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INTRODUCTION

The structure of DNA was first reported by Watson and Crick in
1953 (1). Following this, the first sequencing technique known as
the Sanger sequencing method was developed in 1977 (2). In 1987,
the first automatic sequencing machine (AB370) was introduced by
Applied Biosystems, which uses capillary electrophoresis without
the need for a gel, which enabled the sequencing process to be more
convenient in terms of accuracy and time (3). This technology truly
accelerated the completion of the International Human Genome
Project, which was aimed at decoding three billion human
nucleotide base pairs (4). With the completion of the
International Human Genome Project, the era known as the post-
genome era began, and attempts to apply genomic information to
medicine began to be actively pursued. Consequently, the concept of
personalized medicine has also come to attract attention (5–7).
Under such circumstances, the advent of a new analysis method
called next-generation sequencing (NGS) technology has rapidly
accelerated the speed of nucleotide sequence analysis and
dramatically lowered the cost of performing whole genome
analysis (8, 9). As a result, genome-wide analysis can now be
performed routinely. In addition to DNA sequence analysis,
various analysis methods using NGS technology have emerged,
such as RNA sequencing (RNA-seq) for gene expression analysis,
chromatin immunoprecipitation sequencing (ChIP-seq) for histone
modification analysis and identification of transcription factor
binding sites, Assay for Transposase-Accessible Chromatin using
sequencing (ATAC-seq) and Hi-C for chromatin structure analysis
(10, 11) (Figure 1). Along with technological innovation, there have
also been attempts to apply genomic information to actual clinical
practice. Targeted-gene panels (TGPs), which use NGS to examine
the mutation status of a limited number of cancer-related genes, are
actively being used to select the optimal treatment (12–14). On the
other hand, one of the major problems in promoting precision
oncology using the TGPmethod is that the number of patients who
will benefit from the information obtained by the TGP method
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alone is limited (15–17). In order to increase the number of
patients who will benefit from the promotion of precision
oncology in the future, it is necessary to add more detailed
omics data, such as whole genome analysis data and epigenome
data, for integrated analysis. In recent years, it has been reported
that epigenomic abnormalities play an important role in the
development and progression of cancer (10, 18–25), and it is
important to take into account information on epigenomic
abnormalities when genomic mutations alone cannot elucidate
the molecular mechanisms. In fact, the concept of epigenetic
driver (epi-driver) is currently being used to describe the
phenomenon of cancer development and progression based on
epigenomic abnormalities (26, 27).

Another important issue is that the amount of data that
researchers have to deal with has become enormous due to the
emergence of various new methods with NGS analysis at their
core as a result of technological innovation. For example, the
amount of data generated by a single NGS run can be up to a
million times larger than the data generated by a single Sanger
sequencing run (28). In addition, there is a growing need for
multimodal analysis, such as integrated analysis of genomic and
epigenomic data, not just data from one modality. This kind of
advanced analysis using a large amount of data is difficult to
perform using conventional statistical methods, but nowadays,
by proactively introducing artificial intelligence (AI) with
machine learning (ML) and deep learning (DL) technologies at
its core, good results can be obtained (29–31). In our view, there
are four properties of ML and DL that are of particular
importance. First, multimodal learning, which allows us to
integrate multiple omics data as input (32–35). Second,
multitask learning, which allows us to learn multiple different
tasks simultaneously by sharing parts of the model (36, 37).
Third, representation learning and semi-supervised learning,
which allows us to acquire representations of data from large
amounts of unlabeled data and thereby obtain small amounts of
labels (38–41). The fourth is the ability to automatically acquire
FIGURE 1 | The summarized figure of chromatin structure and epigenomic analysis methods. ChIP-seq, ATAC-seq, and Hi-C methods can be used to predict the
state of transcriptional activation or inactivation, and chromatin structure. Image credit: Shutterstock.com/ellepigrafica.
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hierarchical features to capture higher-order correlations in the
input (10, 42). More importantly, AI has already become one of
the key technologies in the medical field, with a number of AI-
powered medical devices approved by the US FDA (43). Under
these circumstances, the active introduction of AI in the field of
precision oncology seems to be an inevitable trend in the future.

Therefore, this review introduces the current status of efforts
to establish precision oncology, focusing on whole genome
sequencing (WGS) analysis and epigenome analysis, with
particular emphasis on the results obtained through the use of
ML and DL technologies.
WHOLE GENOME ANALYSIS

In this section, we introduce the recently published up to date
WGS analyses using ML and DL. The cost of WGS dropped from
100 million US dollars in 2001 to 1,000 dollars in 2020 (NIH
National Human Genome Research Institute; https://www.
genome.gov/about-genomics/fact-sheets/Sequencing-Human-
Genome-cost; Cost per genome data - 2020). In 2020, an
international collaboration to identify common mutation
patterns in more than 2,600 cancer whole genomes was
performed by the Cancer Genome Atlas Research Network as
The Cancer Genome Atlas Pan-Cancer Analysis of Whole
Genomes (PCAWG) project (44). The results described in the
flagship paper were accompanied with related papers that
focused on specific analysis, such as peak calls, structural
variations (SV), and non-coding variants.

As summarized in Table 1, we categorized WGS analyses into
five groups based on the purpose of their use. The first type of
analysis considered is peak calling. Finding an accurate peak
calling is one of the most important and difficult parts of WGS
analysis. Aligning several hundred bps to the whole genome
(three billion bps in length) while considering sequencing errors
is technically challenging (65, 66). Thus, reports comparing the
benchmarks and new pipelines, particularly deep neural
networks (DNNs), have been published for both peak calling
and the identification of variants (45–51) in Table 1. In general,
DNN models were first trained with publicly available datasets
followed by the evaluation of their performance with the test
dataset. Validation is performed with the validation dataset
either using publicly available data or their in-house dataset.
For example, the WGS dataset obtained from the PCAWG was
used for training and testing the model. To independently
validate the DNN model, the authors assembled several
datasets outside the PCAWG (67).

The second analysis type is a genome graph or graph-based
genome alignment. This approach has been recently reported and
summarized (68). The advantage of using genome graphs is that
they can accurately map (genotype) the polymorphisms of
genomes with a good visualization, as well as perform fast and
memory-efficient alignments (52–55) in Table 1. There is
increasing recognition that a single, linear, monoploid reference
genome is not always the best reference structure for human
genetics, because they represent only a small fraction of existing
human variations, particularly when they span SV breakpoints.
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Third, heterogeneity in samples can be analyzed. Cancers are
often observed to have various morphologies. These types of
results are inconsistent with peak calls because they reflect where
tissue samples are dissected. However, it is also true that tumors
are composed of subpopulations of cells, and some cancer cells
can migrate to other tissues. This heterogeneity results in a
variety of features that can affect cancer phenotypes. To handle
this, some published papers specifically focused on and
investigated these phenotypes (56–58) in Table 1.

The fourth category is mutational signatures. The patterns
of mutation or substitution signatures in cancer genome
are discernible. Therefore, to categorize them, mutational
signatures have been reported. Mutational signature analysis
algorithms produce a decomposition matrix by using ML, a
non-negative matrix factorization (NMF) approach, to extract
mutational signatures (69–72). Additionally, other pipelines have
been reported to perform mutational signature analyses to
classify the samples (59–61) in Table 1.

The last is ML in a genome-wide association study (GWAS).
GWAS has been used to discover genetic variants that are
associated with diseases (73). To improve the analysis of
GWAS, a combination of ML and DL analyses was reported
(62) in Table1. However, how to improve mapping of regulatory
variants (non-coding regions) identified by GWAS is still on
going. Therefore, Arloth et al. developed DL-based approach and
showed SNPs identified by DL were nominally significant in
classical univariate GWAS analysis (63) in Table 1. They also
identified disease/trait-relevant transcriptionally active genomic
loci by integrating gene expression and DNA methylation
quantitative trait loci (eQTL and meQTL) information of
multiple resources and tissues. Although this is not a cancer
research, another ML- and DL-based approach using GWAS
data showed a good classification of amyotrophic lateral sclerosis
(ALS) patient, and this approach can identify potentially ALS-
associated promoter regions (64) in Table 1.

By integrating other omics data and analyzing single
nucleotide variants (SNVs), indels, SV, and copy number
alterations in non-coding regions, researchers can address the
question of how pan-negative cancers developed, which we
introduce in the following sections.
DNA METHYLATION

DNA methylation is an epigenetic modification that can
discriminate specific patterns between in normal tissue cells
and in cancer cells (74, 75). These epigenetic alterations affect
gene expression, and thus, cell-specific DNA methylation
patterns are used in the diagnosis and treatment selection of
cancer by identifying cancer-specific DNA methylation patterns
in biopsy specimens and blood samples (76, 77). A few diagnostic
measures utilizing cancer-specific DNA methylation patterns
have already received FDA approval (78, 79). Moreover, ML
and DL analyses have been increasingly used to identify novel
disease-specific DNA methylation patterns; they have also been
used in research that aims to utilize the DNA methylation data
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from cancer patients for diagnosis, staging, and prognosis
predictions (80–83).

Cell-free DNA (cfDNA) is circulating DNA found in plasma,
and is known to be elevated in cancer patients (84). The clinical
significance of analyzing cfDNA is that (1) it is noninvasive (2), it
can be applied for monitoring, and (3) it can detect a more global
Frontiers in Oncology | www.frontiersin.org 41011
signature compared to the data obtained from a biopsy on a single
metastatic site. Therefore, ML can be applied for DNA
methylation analyses using cfDNA. The DNA methylation levels
of plasma cfDNA in renal cell carcinoma (RCC) patients have
been assessed by cell-free methylated DNA immunoprecipitation
and high-throughput sequencing (cfMeDIP-seq), and RCC
TABLE 1 | Overview of whole genome analysis using machine learning.

Features Pipeline name Brief summary Reference

Peak calling,
mutational
signature, or
de novo
assembly

HipSTR (Haplotype
inference and
phasing for short
tandem repeat)

This method identifies de novo STRs; genotyping 1.6 million STRs in the human genome using HipSTR can be
done in an average of 10 CPU hours per sample.

Nat. Methods
(2017) (45)

BayesTyper This method performs genotyping of all types of variation (including SNPs, indels and complex structural
variants) based on an input set of variants and read k-mer counts.

Nature (2017)
(46)

Genomiser This method identifies pathogenic regulatory variants in non-coding regions. Am. J. Hum.
Genet (2016)
(47).

DeepVariant This is a universal SNP and small-indel variant caller using deep neural networks, highlighting the benefits of
using automated and generalizable techniques for variant calling.

Nat.
Biotechnol
(2018) (48).

ARC (Artifact
Removal by
Classifier)

This is a supervised random forest model designed to distinguish true rare de novo variants (RDNVs) from
genetic aberrations specific to lymphoblastoid cell lines (LCLs) or other types of artifacts, such as sequencing
and mapping errors.

Cell (2019)
(49)

N/A This method addresses the challenge of detecting the contribution of non-coding variants to disease using a
deep learning-based framework that predicts the specific regulatory and detrimental effects of genetic variants.

Nat. Genet
(2019) (50).

NeuroSomatic This is a convolutional neural network for somatic mutation detection. Nat.Commun
(2019) (51).

Genome
graph

Graphtyper This is an algorithm and software for discovering and genotyping sequence variation, which rearranges short
read sequence data into a pan-genome and creates a graph structure that takes into account the mutations
that encode sequence variation in a population by representing possible haplotypes as graph paths.

Nat. Genet
(2017) (52).

N/A The results of the missing mutations are added to a structure that can be described as a mathematical graph,
the genome graph. Compared to the existing reference genome map

bioRxiv (2017)
(53)

(GRCh38), the genome graph can significantly improve the percentage of reads that map uniquely and
completely.

GenGraph This provides a set of tools for generating graph-based representations of sets of sequences. BMC
Bioinformatics
(2019) (54)

N/A This is a SV caller that uses genome graphs, which is used to analyze cancer somatic DNA rearrangements and
revealed three novel complex rearrangement phenomena.

Cell (2020)
(55)

Heterogeneity PyClone This is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative
clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by
segmental copy-number changes and normal-cell contamination.

Nat. Methods
(2014) (56)

MOBSTER This is an approach for model-based tumor subclonal reconstructions. Cancer genomic data are generated from
bulk samples composed of mixtures of cancer subpopulations, as well as normal cells. Subclonal reconstruction
methods based on machine learning aim to separate those subpopulations in a sample and infer their
evolutionary history.

Nat. Genet
(2020) (57).

DigiPico/MutLX This method is a powerful framework for the identification of clone-specific variants with high accuracy. ELife (2020)
(58)

Mutational
signature

SigMA (signature
multivariant analysis)

This provides an accurate identification of mutational signatures with a likelihood approach, even when the
mutation count is very small.

Nat. Genet
(2019) (59).

DeepMS (deep
learning of mutational
signature)

This is a regression-based model to estimate the correlation between signatures and clinical and demographical
phenotypes in order to identify mutational signatures.

Oncogenes
(2020) (60)

SigLASSO This method performs efficient cancer mutation signature analysis by accounting for sampling uncertainty, and
also improves performance by allowing knowledge transfer through cooperative fitting of linear mixtures and
maximizing sampling likelihood.

Nat. Commun
(2020) (61).

GWAS COMBI This is a two-step algorithm that trains a support vector machine to determine candidate SNPs and then
performs hypothesis testing on these SNPs.

Sci Rep
(2016) (62).

DeepWAS This integrates regulatory effects predictions of single variants into a multivariate GWAS setting and provide
evidence that DeepWAS results directly identify disease/trait-associated SNPs with a common effect on a
specific chromatin feature.

PLoS
Comput. Biol
(2019) (63).

Promoter-CNN +
ALS-Net

This is a DL-based approach for genotype-phenotype association studies to predict the occurrence of ALS from
individual genotype data. A two step-approach employs (1); promoter regions that are likely associated to ALS
are identified and (2) individuals are classified based on their genotype in the selected genomic regions.

Bioinformatics
(2019) (64)
May 2021 | Volume 11 |
 Article 666937

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Asada et al. Integrated Analysis of WGS and Epigenome Data
detection was performed using the elastic net regularized
generalized linear model method (80). In this aforementioned
study, DNA methylation data obtained from blood and urine
samples were used for validation, and the area under the receiver
operating characteristic (AUROC) curve was found to be of 0.99
for blood samples and 0.86 for urine samples, respectively. In
another study, cfDNA methylation data from blood samples of
patients with intracranial tumors were obtained with cfMeDIP-seq
and successfully used to generate a cancer detection model using
the Random Forest algorithm (81). This model was also shown to
have high discriminative capacity among the five tumor types
(isocitrate dehydrogenase (IDH) wild-type glioma, IDH mutant
glioma, low-grade glial-neuronal, hemangiopericytoma,
and meningioma).

Next, we review DNA methylation analyses that use solid
tumor samples. First, to distinguish metastatic head and neck
squamous cell carcinoma (HNSC) from primary squamous cell
carcinoma of the lung (LUSC), DNA methylation data were
extracted from surgical specimens of lung cancer patients and
artificial neural networks (NN), and a support vector machine
(SVM) and a random forest (RF) classifier was constructed
because current diagnostics show no possibility to distinguish
metastatic HNSC from primary LUSC. Authors developed
models that classified 96.4% of the cases by NN, 95.7% by
SVM, and 87.8% by RF (82). The DL-based approach is also
used to detect DNAmethylation patterns related to breast cancer
metastases and predict recurrence by conducting feature
selection using an autoencoder with a single hidden layer
followed by ML techniques for classification, or enrichment
analysis for finding a biological relevance, genomic context,
and functional annotation of best genes (83).
CANCER EPIGENETICS WITH A FOCUS
ON ENHANCER FUNCTION

As mentioned earlier, since the advent of NGS technology and
analyses based on ML, remarkable progress has been made in
understanding the genetic basis of cancer. These studies have
mainly defined genetic alterations as either causal (driver
mutations), which confer a selective advantage to cancer cells, or
consequential (passenger mutations, not directly causal), which do
not have a selective advantage (26). Furthermore, genomic
sequencing of tumor samples has revealed that different patients
share a unique combination of one or two strong driver mutations
such as gain-of-function EGFR and loss-of-function TP53
mutations typically detected in lung cancer and less frequent
driver mutations (85, 86). On the other hand, the genetic
component of the general disease risk is distributed mainly in
the non-coding regions, which seem to be particularly rich in
enhancers specific to the cell types associated with the disease (87,
88). Therefore, this has led to a growing interest in the annotation
and understanding of human enhancers.

Measurable genome-wide biochemical annotations for
enhancer regions include ChIP-seq or cleavage under targeted
and release using nucleases (CUT&RUN) assays (89) for histone
Frontiers in Oncology | www.frontiersin.org 51112
modifications or transcription factor (TF) binding, DNase I
hypersensitivity sequencing (DNase-seq) for open chromatin
(90), and ATAC-seq (91). On the other hand, it has long been
hypothesized that enhancers loop in 3D space to access their target
promoters. In recent years, the more powerful chromosome
conformation capture (3C) method has yielded a series of high-
resolution 3D conformationmaps of the human genome in several
cell types. In the 3C method, genomic DNA fragments are ligated
to other genomic DNA fragments in physical proximity in the
nucleus (92). These results have led to the identification of large
compartments related to genomic organization, including
enhancer-promoter loops (93), topologically associating domains
(TADs) (94), and A/B compartments (92). In addition, 3C
methods have been integrated with biochemical assays to
annotate potentially functional interactions. For example,
paired-end tag sequencing (ChIA-PET) (95), HiChIP (96), and
proximity ligation-assisted ChIP-seq (PLAC-seq) (97) provide an
overview of genome structures with a focus on proteins. Despite
the development of various epigenomic methods as described
above, and the obvious importance of human enhancers in both
basic and disease biology, we still do not understand the repertoire
of enhancers, including where they reside, how they act, and
through which genes they mediate their effects.

In addition, it has recently been reported that super-enhancers
are involved in abnormal gene expression in cancer cells (98). A
super-enhancer is a region of the mammalian genome consisting
of multiple enhancers, which are joined by a sequence of
transcription factor proteins to drive the transcription of genes
involved in cell identity (Figure 2) (99). An interesting finding is
that disease-associated genetic mutations are particularly prevalent
in super-enhancers of disease-associated cell types (100).
Furthermore, cancer cells have been found to produce super-
enhancers for oncogenes and other genes important in cancer
development, suggesting that super-enhancers play an important
role in human cell health and disease identity (100, 101).
Importantly, super-enhancers are enriched in active chromatin
marks such as H3K27ac and H3K4me3, while they are depleted in
posed marks such as H3K27me3 (102). Therefore, epigenetic
dysregulation may be involved in the production of super-
enhancers in cancer cells. Since many disease-specific genetic
variants are observed in super-enhancers, it seems to be pretty
important to combine the information on genetic variants in non-
coding regions obtained by WGS with the information on super
enhancers based on epigenome data and analyze them in an
integrated manner. As an example of super-enhancer analysis
using ML, Gong et al. used two-dimensional lasso to improve the
reproducibility of the Hi-C contact matrix and then classified the
TAD boundaries based on the insulation score (103). The results
showed that a higher TAD boundary insulation score was
associated with higher CTCF levels, which may vary by cell
type. They also showed that strong TAD boundaries and super-
enhancer elements frequently overlap in cancer patients,
suggesting that super-enhancer insulated by strong TAD
boundaries may be used by cancer cells as a functional unit to
promote tumorigenesis (103). Furthermore, Bu et al. proposed a
new computational method, DEEPSEN, for super-enhancer
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prediction using a convolutional neural network, which is a DL
algorithm (104). The proposed method integrates 36 different
features and shows that it is capable of genome-wide prediction of
super enhancers compared to existing methods.

In transcriptome and epigenome profiling, one of the
conservative ML approaches of cluster analysis often yields
reproducible regulatory subtypes. In this way, somatic mutations
in cancer, although chaotic, often converge in a regulatory
manner. These events suggest that cancer cells follow the same
rules of transcriptional regulation as normal cells, despite the
presence of aberrant combinations of transcription factors and
genomic enhancers (105). Furthermore, a major unresolved
question is how primary cancer cells metastasize and what the
molecular events underlying this process are. However, extensive
sequencing studies have shown that mutations may not be the
causative factors in the transition from primary to metastasis
(106). On the other hand, epigenetic changes are dynamic in
nature and may play an important role in determining the
metastatic phenotype, and research in this area is only
beginning to be evaluated (107, 108). Unlike genetic studies, the
current limitations in studying epigenetic events in cancer
metastasis are the lack of conceptual understanding and the lack
of an analytical framework to identify the putative driver and
passenger epigenetic changes. We would therefore like to
introduce an ML analysis that has the potential to address
these issues.
CHALLENGES THAT MACHINE LEARNING
CAN OVERCOME

Genomic and epigenetic data-driven science operates by
comprehensively exploring genome-wide data to discover new
properties, rather than testing existing models and hypotheses
(109). These data-driven approaches include finding relationships
between genotypes and phenotypes, searching for biomarkers for
personalizedmedicine, discovering driver genes and predicting their
functions, and tracking genomic regions with biochemical activities
such as transcriptional enhancers, as mentioned in the previous
Frontiers in Oncology | www.frontiersin.org 61213
section. Due to the large scale and complexity of genomic and
epigenetic data, it is often not sufficient to check pairwise
correlations to make predictions. Therefore, analytical tools are
needed to support the discovery of new relationships, the derivation
of new hypotheses and models, and to make predictions. ML is
designed to automatically detect patterns in data, unlike algorithms
that have predetermined assumptions and expertise. Therefore, ML
is well suited for data-driven science, especially genomics and
epigenomics (110). However, the performance of ML is highly
dependent on how the data are represented and how each variable
or a feature is extracted. Epigenetic information and various
modalities are known to be interrelated events, which are thought
to interact with each other to change gene activity patterns. Based
on these hypotheses, Wang et al. predicted the DNA methylation
state of a specific region using a deterministic ML model [stacked
denoising autoencoders (SdAs)] based on the 3D genome topology
and DNA sequence obtained fromHi-C experiments (111). Against
the backdrop of the high cost and difficulty of experimental
techniques, which is the bottleneck of Hi-C data acquisition,
inference from 1D information such as ChIP-seq, ATAC-seq, and
RNA-seq to 3D genome topology structure has been actively
attempted using various ML methods (Table 2). However, the
prediction accuracy may not be improved due to inaccurate
extraction of the essential structures within the epigenetic dataset,
such as the still unelucidated mechanism of gene transcription
regulation by high-dimensional interactions between enhancer and
promoter regions. To solve these issues, an integrated approach that
combines not only the acquisition of multi-layered omics data over
time but also the generation and selection of phenotypic features
and ML, is necessary.
INTEGRATED ANALYSIS OF
WHOLE GENOME SEQUENCING
AND EPIGENOME DATASETS

For decades, cancer genome research has made significant
progresses in the identification of driver gene mutations,
largely owing to the wide application of WES. However, we are
FIGURE 2 | Diagram of comparison between a typical enhancer and a super-enhancer. According to reference 87, super enhancers are observed in the
transcriptional regulatory regions of oncogenes such as MYC in cancer cells, but not in their counterparts in normal tissues. E, enhancer; TF, transcription factor;
Med, Mediator complex; RNA pol II, RNA polymerase II. Image credit: Shutterstock.com/ellepigrafica.
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now realizing that druggable gene mutations are limited, and the
majority of cancer patients are left with unmet medical needs.
Therefore, academic interest has gradually shifted to the analysis
of mutations in non-coding genomes based onWGS analysis and
the search for “epi-drivers”, which are mechanisms of cancer
development and progression caused by epigenomic
abnormalities. For this purpose, WGS and epigenetic sequence
technologies such as ChIP-seq, ATAC-seq, and Hi-C are effective
tools because they offer comprehensive information about the
genome, epigenome, and crosstalk between these (Figure 1).

Integrated analysis of genome and epigenetic data can be
applied to predict the functional significance of single nucleotide
Frontiers in Oncology | www.frontiersin.org 71314
polymorphisms (SNPs) and germline/somatic mutations. In
order to analyze the function of DNA mutations in non-
coding genomes, it is important to focus on eQTLs, which are
genomic sites involved in the variation of expression levels of
target genes. It is known that most functionally active SNPs and
mutations fall within the open chromatin region, especially at
inferred transcription factor binding sites. Indeed, approximately
55% of eQTLs SNPs are reported to coincide with those of open
chromatin-associated SNPs and mutations (123). An impressive
study on integrated analyses of WGS, ATAC-seq, and RNA-seq
datasets has been posted (124). In a case of bladder cancer, they
found that a single base mutation in enhancer region of the
TABLE 2 | Epigenetic analysis typically focusing on regulatory regions.

Features Pipeline name Brief summary Reference

Epigenomic
Atlas (chromatin
marks/
chromatin
states, DHSs,
active
enhancers)

N/A Mapping nine chromatin marks across nine cell types. Systematically characterizes regulatory elements, cell-type
specificities, and functional interactions. Defining multicell activity profiles for chromatin state, gene expression,
regulatory motif enrichment, and regulator expression. Assigning candidate regulatory functions to disease-
associated variants from GWAS.

Nature
(2011)
(112)

N/A Presenting extensive map of human DNase I hypersensitive site (DHSs) to identify through genome-wide profiling
in 125 diverse cells and tissue types. The map shows relationships between chromatin accessibility, transcription,
DNA methylation, and mutation rate in regulatory DNA.

Nature
(2012)
(113)

N/A The bidirectional capped RNAs measured by cap analysis of gene expression (CAGE) are robust predictors of
enhancer activity. Enhancers share properties with CpG-poor messenger RNA promoters but produce
bidirectional, exosome-sensitive, relatively short unspliced RNAs. The generation of RNA is strongly related to
enhancer activity.

Nature
(2014)
(114)

Regulatory
sequence/
Network identify
(enhancer/
promoter/EPI,
etc.)

ELMER (Enhancer
Linking by
Methylation/
Expression
Relationships)

This uses methylation and expression data to identify cancer-specific regulatory transcription factors, detect
enhancer-gene promoter pairs, and correlate enhancer status with expression of neighboring genes.

Genome
Biol (2015)
(115).

JEME (joint effect of
multiple enhancers)

This method is an inference of enhancer-target networks, and consists of two steps: identifying enhancers that
regulate transcription start sites (TSSs) across all samples, and detecting enhancers that regulate TSSs in a
particular sample, to determine the target genes of transcriptional enhancers in a particular cell or tissue.

Nat. Genet
(2017)
(116).

FOCS (FDR-
corrected OLS with
Cross-validation
and Shrinkage)

This method estimates the link between enhancers and promoters based on the correlation of activity patterns
between samples and implements a leave-cell-type-out cross-validation (LCTO CV) procedure to avoid overfitting
of the regression model to the training samples. The cross-validation scheme consists of learning training set of
samples and evaluation left-out samples from other cell types. This also provides extensive enhancer–promoter
maps from ENCODE, Roadmap Epigenomics, FANTOM5, and a new compendium of GRO-seq samples.
FOCS suggests repressor–promoter links.

Genome
Biol (2018)
(117).

SPEID (Sequence-
based Promoter-
Enhancer
Interaction with
Deep learning;
pronounced
“speed”)

This method predicts enhancer-promoter interactions using DL models from genomic sequences, using only the
location of enhancers and promoters in specific cell types. Using the melanoma dataset, this shows that there is
potential to identify somatic non-coding mutations that reduce or interrupt important enhancer-promoter
interactions (EPIs).

Quant. Biol
(2019)
(118).

EP2vec This method uses natural language processing to predict enhancer-promoter interactions, and also extracts
sequence-embedded features (fixed-length vector representations) using an unsupervised DL model, the
paragraph vector. The extracted features are used to train a classifier to predict the interaction using supervised
learning. This can also merge sequence embedded features with experimental features for more accurate
prediction.

BMC
Genomics
(2018)
(119)

Inference of the
3D structure of
chromatin

Transcriptional
decomposition

This separates RNA expression into positionally dependent (PD) component and positionally independent (PI)
effects by transcriptional decomposition method to show the predictability of fine-scale chromatin interactions,
chromosomal positioning, and three-dimensional chromatin architecture.

Nat.
Commun
(2018)
(120).

CHINN (Chromatin
Interaction Neural
Network)

This predicts chromatin interactions between open chromatin regions using DNA sequence and distance using
convolutional neural network. This also extracts sequence features and feed into classifiers.

bioRxiv
(2019)
(121)

HiC-Reg This method uses one-dimensional regulatory signals (chromatin marks, architecture, transcription factor proteins,
and chromatin accessibility) and the published Hi-C dataset as training count data to predict cell line-specific
contact counts. A random forest regression model is used as the main prediction algorithm.

Nat.
Commun
(2019)
(122).
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FGD4 gene generated a putative de novo binding site for an NKX
transcription factor, associated with an increase in chromatin
accessibility and FGD4 gene expression (124). Since high
expression of the FGD4 gene correlates with worse clinical
outcomes in bladder cancer patients, this non-coding mutation
might contribute to the malignant transformation of the cells by
altering chromatin structure, thereby upregulating FGD4
gene expression.

However, it should be noted that the majority of non-coding
mutations might not exert an active function. In general, the
regional mutation rates of human cancer cells tend to be higher in
repressive chromatin states than in active chromatin states, which
may reflect differing efficiencies of DNA repair signals or mutagen
exposure (125). Thus, from a probabilistic view, most of mutations
in the heterochromatin region occur only because of their closed
chromatin states; that is, they are less likely to have any selective
advantages or active functions. Intriguingly, this tendency toward
higher mutational occurrences in heterochromatin states offers
potentially useful information. By applying the ML model,
genome-wide mutation data can be utilized to infer the cell-of-
origin of cancer cells. For example, the mutational landscape of
melanoma is best correlated with the epigenetic profile of skin
melanocytes than skin fibroblasts or skin keratinocytes, suggesting
the true cell-of-origin of melanoma (126). This approach can be
clinically applicable to predict the cell-of-origin for cancer of
unknown primary origin and may yield a better phenotypic
understanding of them. WGS can resolve non-coding SVs and
CNVs. RNA-seq detects the expression levels of driver genes and
aberrantly expressed genes caused by alternative promoter usage
and exon skipping (127–130). The utility of an integrative,
comprehensive approach, with WGS, RNA-seq, and DNA
methylation, independently and in combination, has been
reported (130). Comprehensive molecular tumor profiling
comprising WGS, RNA-seq, and DNA methylation analyses
identified pathogenic variants and provided therapy
recommendations, which could accelerate the development of
precision medications.

Overall, the genomic and epigenetic data of non-coding
regions contain enormous, complex and interdependent
information, and we believe that integrated analysis, effectively
utilizing ML and DL technologies, is important to discover new
drivers of human cancer.
DISCUSSION

The genetic variants or SNPs were refined by the international
haplotype map (HapMap) project to create a haplotype map of
genes and genetic variants that affect health and disease (131–
133). This project was attempted to genotype one common SNP
in every 5,000 bps. At that time, it was believed that more than
99.9% of DNA sequences between any two people were identical,
suggesting that only less than 0.1% of the genetic variants affect
health and disease (https://www.genome.gov/11511175/about-
the-international-hapmap-project-fact-sheet). Nowadays,
analyzing WGS data has identified a considerable number of
Frontiers in Oncology | www.frontiersin.org 81415
the genomic variants. The international consortium embarked
on the 1000 Genomes Project to find common human genetic
variations by applying WGS to a diverse set of individuals from
multiple populations. High-throughput sequencing technologies
do facilitate WGS in terms of accuracy, cost, and time. Almost
two decades after the completion of the Human Genome Project,
we have already entered a new era of sequencing, which led to
individual genomic information becoming analyzable data. In
practical terms, WGS analysis is becoming cost-effective. In
addition, there is a trend to apply WGS routinely in both basic
sciences and clinical cancer care to help us better understand and
identify potential therapeutic targets or predictive biomarkers.

Epigenetics analyses were also drastically and positively affected
by NGS. Chromatin conformations analyzed by ChIP-seq, ATAC-
seq, orHi-C are known to be related to cancer phenotypes (124, 134).
Epigenetic alterations of DNA methylation at promoter and
enhancer regions that induce chromatin dysregulation are found in
cancer (135, 136). NGS analysis can help resolve both genetic and
epigenetic alterations, andwe expect to reveal themechanismof pan-
negative cancers using these data. From this point of view, we further
introduced enhancers as an important concept inprecisiononcology.
The current understanding is that enhancers bind to cell type-specific
transcription factors, associate with regions of open chromatin, and
are flanked by histones with H3K27ac and/or H3K4me1
modifications. These enhancers interact with promoters in 3D
space and are either potentially primed or activated. Despite their
obvious importance in both basic biology and disease biology, much
remains to be learned about the relationship between enhancers and
chromatin higher-order structure, including the identification of
enhancer regions, how enhancers work, and through which genes
they mediate their effects. In the future, we hope that multimodal
analysis of multidimensional omics data by effective use of ML and
DL techniquesmay contribute to precision oncology by providing an
integrated understanding of more detailed molecular mechanisms.
CONCLUDING REMARKS

In this review, we first summarized the importance of genomic
and epigenetic data and introduced the importance of omics data
of interest in each section. Cancer is one of the leading causes of
death worldwide, and molecular mechanisms remain unknown in
certain cancers, which are categorized as pan-negative cancers.
Multi-omics analyses by simply integrating omics data may
encounter difficulties in identifying the mechanism causing
cancer because none of the methodologies can address the
comprehensive understanding underlying pan-negative cancers.
Therefore, as we reviewed here, integrating multi-omics analysis
with the assistance of ML is required for future cancer studies
because each omics data is tightly linked to each other, and all
omics data are associated with patient outcomes. Currently, there
are high expectations for the development of medical AI, and it is
expected that AI technology will be actively introduced in actual
clinical practice in the future. On the other hand, medical AI
research for clinical applications is currently focused on medical
image analysis (137–144), and research on the introduction of AI
May 2021 | Volume 11 | Article 666937
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to omics analysis such as whole genome analysis and epigenome
analysis, as well as its clinical application, has not progressed
sufficiently yet. In this regard, one of the problems associated with
the widespread adoption of AI-based methodologies in omics
analysis is that even though sequencing technology and other
advanced analytics are increasingly being used in research and
clinical practice, there is still a lot of confusion about the best
protocols to adopt for analysis. For example, the RNA-seq pipeline
is not sufficiently standardized, and the methodology relies heavily
on the expertise and experience of a single research group/
bioinformatics. As a result, in areas where uncertainty remains,
the spread of AI-specific technologies may be delayed. We hope
that this review will trigger the interest of more researchers in this
field, and that the standardization of omics analysis will actively
promote the adoption of AI and contribute to the establishment of
the field of precision oncology in the future.
Frontiers in Oncology | www.frontiersin.org 91516
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An Integrated Analysis of Tumor Purity
of Common Central Nervous System
Tumors in Children Based on Machine
Learning Methods
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Liangliang Cao, Zhuangzhuang Liang, Heng Zhao, Hao Lian* and Jie Ma*

Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai,
China

Background: Tumor purity is defined as the proportion of cancer cells in the tumor tissue,
and its effects on molecular genetics, the immune microenvironment, and the prognosis of
children’s central nervous system (CNS) tumors are under-researched.

Methods: We applied random forest machine learning, the InfiniumPurify algorithm, and
the ESTIMATE algorithm to estimate the tumor purity of every child’s CNS tumor sample in
several published pediatric CNS tumor sample datasets from Gene Expression Omnibus
(GEO), aiming to perform an integrated analysis on the tumor purity of children’s CNS
tumors.

Results: Only the purity of CNS tumors in children based on the random forest (RF)
machine learning method was normally distributed. In addition, the children’s CNS tumor
purity was associated with primary clinical pathological and molecular indicators.
Enrichment analysis of biological pathways related to the purity of medulloblastoma
(MB) revealed some classical signaling pathways associated with MB biology and
development-related pathways. According to the correlation analysis between MB
purity and the immune microenvironment, three immune-related genes, namely, CD8A,
CXCR2, and TNFRSF14, were negatively related to MB purity. In contrast, no significant
correlation was detected between immunotherapy-associated markers, such as PD-1,
PD-L1, and CTLA4; most infiltrating immune cells; and MB purity. In the tumor
purity–related survival analysis of MB, ependymoma (EPN), and children’s high-grade
glioma, we discovered a minor effect of tumor purity on the survival of the aforementioned
pediatric patients with CNS tumors.

Conclusion: Our purity pediatric pan-CNS tumor analysis provides a deeper
understanding and helps with the clinical management of pediatric CNS tumors.
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INTRODUCTION

As the most frequent solid tumors in children, pediatric tumors of
the central nervous system (CNS) represent an array of
molecularly and clinically diverse entities. The tumor
microenvironment (TME) is a complicated milieu comprising
many factors that promote and inhibit tumor growth, nutrients,
chemokines, and the spectrum of non-tumor cells (e.g.,
immunocytes, fibroblasts, and endotheliocytes). Increasing
evidence has revealed that the TME plays a pivotal role in
tumorigenesis, tumor progression, and the response to therapy
(Schreiber et al., 2011).

For the past few years, high-throughput techniques have been
increasingly applied in the field of pediatric CNS tumors (Kumar
et al., 2018). These techniques offer some new means for the
clinical diagnosis, prognostic prediction, and precise classification
of pediatric CNS tumors. Nevertheless, the surgically acquired
tumor tissues used for high-throughput techniques are a mixture
of both tumor cells and non-tumor tissues. The DNA and RNA
extracted from such a mixture are from all of the cells involved, so
the measurement result is a kind of mixed signal (Zheng et al.,
2017). Such a sample mixture may bias the downstream analyses
and thus could mask true biologically meaningful signals.

Tumor purity is defined as the proportion of tumor cells in
tumor tissue. Some recent studies have reported the confounding
effect of tumor purity on gene clustering, coexpression networks,
molecular taxonomy, and tumor prognosis andmicroenvironment
(Aran et al., 2015; Rhee et al., 2018). Currently, there are threemain
methods available for tumor purity estimation. The first is to
estimate the tumor purity based on the pathological images of
the tumor tissue by histopathological researchers and clinical
pathologists. However, these results are subject to the observer’s
proficiency and the pathological sensitivity of the tumor tissue
(Zhang et al., 2017). The second way determines tumor purity by
virtue of cell sorting–based techniques such as magnetic-activated
cell sorting (Schmitz et al., 1994) and fluorescent-activated cell
sorting (Basu et al., 2010). However, these methods demand high
inputs of time, effort, andmoney and are therefore difficult to apply
in large-scale studies.

More recently, with the development of high-throughput
techniques and improved bioinformatics approaches, many
purity estimation methods by computational methods have
been developed, and they are based on transcriptome data,
copy number variation data, DNA methylation data, or genetic
mutation data. These methods include the random forest (RF)
algorithm based on DNA methylation data (Capper et al., 2018),
ESTIMATE based on gene expression data (Yoshihara et al.,
2013), ABSOLUTE based on somatic copy number data (Carter
et al., 2012), and InfiniumPurify based on DNAmethylation data
(Zheng et al., 2017).

The existing studies on tumor purity are limited to adult
samples from the Cancer Genome Atlas, and little is known
regarding the relationship between tumor purity and the
clinicopathologic or genomic features in pediatric CNS
tumors. In addition, the association between the purity and
microenvironment of pediatric CNS tumors remains unclear.
In this study, we used these major means of tumor purity

estimation to infer tumor purity and sought to evaluate the
impact of purity on pediatric CNS tumor prognosis, genetic
profiling, and the immune microenvironment, which may deepen
our understanding of pediatric CNS tumor biology and provide new
insights into the clinical management of pediatric CNS tumors.

MATERIALS AND METHODS

Data Collection
The data of children’s CNS tumors (e.g., medulloblastoma (MB),
ependymoma (EPN), pilocytic astrocytoma, diffuse midline glioma,
atypical teratoma/rhomboid tumor, and embryonal tumor with
multilayered rosettes) used in this study were from Gene
Expression Omnibus (GEO) and ArrayExpress. Supplementary
Table S1 lists the general information about the datasets involved.

Selection of an Adequate Algorithm for
Purity Estimation of Common Pediatric CNS
Tumors
Random forest (RF), InfiniumPurify, and ESTIMATE algorithms
were used to estimate tumor purity. The RF model was
established by training the DNA methylation data extracted
from the panglioma dataset (795 samples of glioma)
(Ceccarelli et al., 2016) in TCGA based on the ABSOLUTE
algorithm (a direct purity estimation method) (Capper et al.,
2018). We selected the optimal algorithm from the
aforementioned three algorithms according to the distribution
of purity in different datasets of common pediatric CNS tumors.

Exploration of Biological Functions Related
to Common Pediatric CNS Tumor Purity
We screened the genes that correlated with tumor purity by
Pearson correlation analysis (Pearson |R| > 0.3). In total, 1,051
genes were eligible for Gene Ontology (GO) enrichment analysis
and gene set enrichment analysis (GSEA) (Subramanian et al.,
2005). Both GO analysis and GSEA were performed utilizing the
R package “clusterProfiler.” In addition, the cases were split into
high- and low-purity groups based on the median purity. By
utilizing the R package “GSVA,” we performed gene set variation
analysis (GSVA) of hallmark pathways between the high- and
low-purity samples (Hänzelmann et al., 2013).

Evaluation of the Relationship Between the
Purity of Common Pediatric CNS Tumors
and the Tumor Microenvironment
By applying CIBERSORT(Gentles et al., 2015), we scored 22
immune cell types for their relative abundance in pediatric CNS
tumor samples. For any given sample, we computed the
relationships between tumor purity and the relative
proportions of the individual immune cell types. In addition,
we also computed the associations between tumor purity and the
relative fractions of 24 immune cell types by using single-sample
gene set enrichment analysis (ssGSEA) (Bindea et al., 2013), as
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implemented in the R package “GSVA.” Finally, we determined
the correlations between tumor purity and 14 immune-related
genes (GZMA, PRF1, CD8A, PD-1, PD-L1, CTLA4, IDO1,
CXCR2, TNFRSF14, TNFRSF18, CD247, LAG3, BTLA, and
HAVCR2).

Survival Analysis
For each type of pediatric CNS tumors, we divided the samples
into high- and low-purity groups based on the optimal cutoff
value generated by using the R package “survMisc.”
Kaplan–Meier (K-M) curves were used to estimate the overall
survival distribution.

Statistical Analysis
R software version 3.4.4 was employed for all statistical
analyses. p values for the associations between tumor

purity and the immune microenvironment were computed
utilizing Pearson correlation analyses, followed by multiple
testing utilizing the Benjamini–Hochberg method. For all
statistical analyses, p < 0.05 was considered statistically
significant.

RESULTS

Selection of the Most Adequate Algorithm
for Estimating the Purity of Common
Pediatric CNS Tumors
To establish a general understanding of the purity distribution
of common pediatric CNS tumors, we estimated the tumor
purity of samples in the GSE90496 datasets containing MB,

FIGURE 1 | Tumor purity distribution of seven common pediatric CNS tumor datasets based on three methods of tumor purity estimation. (A) Tumor purity
distribution of the GSE90496 dataset based on InfiniumPurify and random forest (RF) algorithms; (B) tumor purity distribution of the GSE85218 dataset based on the
InfiniumPurify, ESTIMATE, and RF algorithms; (C) tumor purity distribution of the E-MTAB-5528 dataset based on the InfiniumPurify and RF algorithms; (D) tumor purity
distribution of the GSE64415 dataset based on the ESTIMATE algorithm; (E) tumor purity distribution of the GSE65362 dataset based on the InfiniumPurify and RF
algorithms; (F) tumor purity distribution of the GSE44971 dataset based on the InfiniumPurify, ESTIMATE, and RF algorithms; (G) tumor purity distribution of the
GSE64019 dataset based on the ESTIMATE algorithm.
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EPN, pilocytic astrocytoma, diffuse midline glioma, atypical
teratoma/rhomboid tumor, and embryonal tumor with
multilayered rosettes. As shown in Figure 1A, the tumor
purity distribution resulting from the InfiniumPurify
algorithm had a bimodal pattern, with an average tumor

purity of 49.8 ± 29.3%, while that from the RF algorithm
was normal, with an average tumor purity of 65.9 ± 7.1%.
Regarding the tumor purity distribution of the GSE85218
dataset (MB) (Figure 1B), the tumor purity based on the
InfiniumPurify algorithm was bimodal (average tumor

FIGURE 2 | Relationship between tumor purity and the patients’ clinical features in the GSE90496 dataset. (A) An overview of the correlation between the clinical
features and tumor purity in the GSE90496 dataset; (B) box plot of the tumor purity by tumor histology; (C) box plot of the tumor purity by age at diagnosis; (D) box plot of
the tumor purity by the tumor grade; (E) Box plot of the tumor purity by the tumor location; (F) box plot of the tumor purity by the tumor grade; (G) box plot of the tumor
purity by the patient gender.
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purity: 39.8 ± 37.6%), while that based on the ESTIMATE
algorithm was skewed and focused on 80% or more of the total
area (with an average tumor purity of 96.99 ± 3.3%), but the
tumor purity resulting from the RF algorithm was normal,
with an average tumor purity of 73.7 ± 4.5%. When applied to
the E-MTAB-5528 dataset (diffuse midline glioma)
(Figure 1C), the InfiniumPurify algorithm determined the
tumor purity to be skewed and the average tumor purity to
be 74.04 ± 12.4%, while the RF algorithm generated normal
tumor purity, with an average value of 69.5 ± 5.5%. For the
GSE64415 and GSE65362 datasets (EPN) (Figures 1D,E),
the tumor purity based on the ESTIMATE algorithm was
skewed, with an average value of 85.95 ± 8.01%, and that
based on InfiniumPurify was also skewed, with an average
value of 67.1 ± 22.4%, but that based on the RF algorithm was
normal, with an average value of 68.4 ± 4.6%. For the
GSE44971 dataset (pilocytic astrocytoma) (Figure 1F), the
average tumor purities generated were 59.4 ± 6.9, 74.8 ±
11.8, and 59.9 ± 5.5% for InfiniumPurify, ESTIMATE,
and RF, respectively, but they were all skewed. For the
GSE64019 dataset (atypical teratoma/rhomboid tumor),
the tumor purity distributed according to the ESTIMATE

algorithm was skewed, with an average tumor purity of
87.4 ± 8.1%.

Judging from these results, the distribution of pediatric CNS
tumors resulting from the ESTIMATE algorithm was skewed
and focused on the part with over 70% of the total area, and the
tumor purity distributions based on InfiniumPurify and RF
were skewed and normal, respectively. The ESTIMATE
method estimates purity indirectly by measuring stromal
and immune counterparts in the tumor sample (Yoshihara
et al., 2013). Therefore, the presence of non-stromal and
immune cells in a cancer sample, such as contaminating
adjacent normal cells, could affect ESTIMATE-based tumor
purity estimation. In addition, the InfiniumPurify method
estimates purity indirectly by identifying differentially
methylated regions between cancer and normal samples
(Zheng et al., 2017). However, paired normal controls were
lacking in our pediatric pan–central nervous system tumor
analysis. Although the InfiniumPurify method has a control-
free variant, this is only applicable for tumor entities that are
included in the TCGA datasets and not suitable for entities
from the pediatric spectrum that we have used here. In contrast
to the ESTIMATE and InfiniumPurify purity estimates,

FIGURE 3 |Relationship between the tumor purity of each pediatric CNS tumor and the patient age at diagnosis in the GSE90496 dataset. (A)Box plot of the tumor
purity in medulloblastoma (MB) samples by the age at diagnosis; (B) box plot of the tumor purity in atypical teratoma/rhabdoid tumor samples by the age at diagnosis; (C)
box plot of the tumor purity in diffuse midline glioma samples by the age at diagnosis; (D) box plot of the tumor purity in ependymoma (EPN) samples by the age at
diagnosis; (E) box plot of the tumor purity in pilocytic astrocytoma samples by the age at diagnosis.
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ABSOLUTE is a direct measure of the cancer cells in a sample
(Carter et al., 2012). Taken together, we selected the
ABSOLUTE-based RF method for the purity estimation of
pediatric CNS tumors in this study, and all subsequent studies
were based on the RF algorithm.

Tumor Purity and Molecular and
Clinicopathologic Features
Figures 2–4 illustrate the relationships between tumor purity and
the patients’ clinical features in the GSE90496 dataset. For the
tumor histology (Figures 2A,B), we observed that MB had the
highest purity, whereas pilocytic astrocytoma and atypical
teratoma/rhabdoid tumors had the lowest purity (p <
2.2e−16). For the age at diagnosis (Figures 2A,C), we found
that the patients aged 0–3 years had the lowest tumor purity,
while those older than 11 years had the highest purity (p �
1.5e−06). For the tumor grade (Figures 2A,D), the purity of
Grade I tumor was the lowest, while that of Grade IV was the
highest (p < 2.2e−16). For the tumor location (Figures 2A,E), we

found that the purity of tumors located in the posterior cranial
fossa was higher than that in the supratentorial parts (p �
8.5e−07). Regarding the tumor stage (Figures 2A,F),
compared with primary tumors, recurrent tumors had lower
purity (p � 0.019). For patient sex (Figures 2A,G), we
observed higher tumor purity in male patients (p � 0.044)
than in female patients.

Figure 3 presents the relationship between tumor purity
and the age at diagnosis in each type of pediatric CNS tumor in
the GSE90496 dataset. We found a positive correlation
between tumor purity and the age at diagnosis in MB (p <
2.2e−16, Figure 3A) but not in other pediatric CNS tumors
(including atypical teratoma/rhabdoid tumor, diffuse midline
glioma, EPN, and pilocytic astrocytoma) (Figures 3B–E). As
shown in Figures 4A–F, among six pediatric CNS tumors, no
significant difference was detected between tumors located in
the posterior cranial fossa and those in supratentorial sites in
terms of tumor purity. The relationships between MB purity
and clinicopathologic features in the GSE85218 dataset are
shown in Figure 5. The four molecular subgroups of MB

FIGURE 4 | Relationship between the tumor purity of each pediatric CNS tumor and the tumor location in the GSE90496 dataset. (A) Box plot of the tumor purity in
medulloblastoma (MB) samples by the tumor location; (B) box plot of the tumor purity in atypical teratoma/rhabdoid tumor samples by the tumor location; (C) box plot of
the tumor purity in diffusemidline glioma samples by the tumor location; (D) box plot of the tumor purity in ependymoma (EPN) samples by the tumor location; (E) box plot
of the tumor purity in pilocytic astrocytoma samples by the tumor location; (F) box plot of the tumor purity in embryonic tumors of multilayered rosettes by the tumor
location.
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(Figure 5A) differed greatly from each other in terms of tumor
purity (p < 2.2e−16). Compared with the non-WNT/SHH
(Groups 3 and 4) subgroups of MB with an inferior

prognosis, the WNT and SHH subgroups with a superior
prognosis had a higher tumor purity. For the metastatic
status of MB patients (Figure 5C), non-metastatic patients

FIGURE 5 | Relationship between the tumor purity of the medulloblastoma (MB) and its clinical molecular features in the GSE85218 dataset. (A) Box plot of the
tumor purity by molecular subgroup; (B) box plot of the tumor purity by histopathology; (C) box plot of the tumor purity by metastatic status; (D) box plot of the tumor
purity of the SHH subgroup by GLI amplification; (E) box plot of the tumor purity of the SHH subgroup byMYCN amplification; (F) box plot of the tumor purity of the Group
4 subgroup by MYCN amplification; (G) box plot of the tumor purity of the Group 3 subgroup by MYC amplification; (H) box plot of the tumor purity of the SHH
subgroup by PTEN deletion.
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had higher tumor purity than metastatic patients (p � 0.0053).
For the MYC amplifications of Group 3 MB patients
(Figure 5G), the tumor purity of Group 3 MB with MYC
amplifications was significantly different from that of Group 3
MB without MYC amplifications (MYC amplifications vs.
MYC balance, p � 0.0086; MYC amplifications vs. MYC
deletion, p � 9.8e-05). However, no significant difference
was detected among all of the groups in tumor purity when
other clinical and molecular features of MB were taken into
account (Figures 5B,D–F,H).

Figure 6 shows the relationships between high-grade glioma
tumor purity and the other clinicopathologic and molecular
features in the E-MTAB-5528 dataset. However, for the tumor
location (Figure 6A), none of the groups were significantly
different from each other in tumor purity. For the tumor
grade (Figure 6B), we found that the tumor purity of Grade
IV patients was higher than that of Grade III patients (p � 0.017).
Regarding BRAF_V600Emutation status (Figure 6C), no evident
difference was found between the wild-type BRAF patients and
mutant-type BRAF patients in tumor purity. For histone
mutation status (Figure 6D), the tumor purity of subgroups

divided by histone H3 mutation differed significantly (p � 0.025).
For IDH1 mutation status (Figure 6H), patients with wild-type
IDH1 were not significantly different from those with mutant-
type IDH1 in tumor purity. Regarding the molecular subgroup
(Figure 6F), a significant difference was detected between all of
the molecular subgroups of high-grade glioma in tumor purity
(p � 0.019).

Functional Annotation of Transcriptomic
Analysis in Tumor Purity
Since only the MB samples in the GSE85218 dataset came with
gene expression and DNAmethylation data as well as complete
clinical information, we performed an analysis of tumor
purity–related biological functions in this dataset. GO
analysis revealed that many development-associated
pathways were related to tumor purity (Figure 7A). Gene
set enrichment analysis determined the top three biological
pathways, including the MYC signaling pathway, DNA repair
pathway, and E2F targets signaling pathway (Figure 7B).
According to GSVA, the MYC signaling, DNA repair,

FIGURE 6 |Relationship between tumor purity of high-grade glioma (HGG) and the patients’ clinical molecular features in the E-MTAB-5528 dataset. (A)Box plot of
the tumor purity by tumor location; (B) box plot of the tumor purity by tumor grade; (C) box plot of the tumor purity by BRAF_V600E mutation status; (D) box plot of the
tumor purity by histone mutation status; (E) box plot of the tumor purity by IDH1 mutation status; (F) box plot of the tumor purity by molecular subgroup.
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glycolysis, WNT signaling, Hedgehog signaling, mTORC1
signaling, and oxidative phosphorylation pathways were
positively related to tumor purity, whereas the KRAS

signaling, IL2-STAT5 signaling, inflammatory response, and
angiogenesis pathways were negatively related to tumor purity
(Figure 7C).

FIGURE 7 | Biological functions related to the purity of medulloblastoma (MB) in the GSE85218 dataset. (A) Biological pathways related to the MB purity as
revealed by Gene Ontology (GO) analysis; (B) biological pathways related to Mb purity as revealed by gene set enrichment analysis (GSEA); (C) biological pathways
related to MB purity as revealed by gene set variation analysis (GSVA).
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FIGURE 8 | Relationship between the purity of medulloblastoma (MB) and the immune microenvironment in the GSE85218 dataset. (A) Relationship
between the MB purity and immune-related genes; (B) correlation between the purity of each MB subgroup and the CIBERSORT-based infiltrating immunocyte
proportions.
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Tumor Immune Microenvironment and
Tumor Purity
For the GSE85218 dataset, we also identified the relationship
between tumorpurity and the immunemicroenvironment.As indicated
in Figure 8A, we found that tumor purity was only negatively related to
three immune genes, namely, CD8A (R� −0.18, p� 1.06 e-06), CXCR2
(R � −0.18, p � 2.90 e-07), and TNFRSF14 (R � −0.21, p � 2.58 e-09),
but not to other immune-related genes, including the well-known PD1,
PD-L1, and CTLA4. Figure 8B reveals the correlation between the
tumor purity of each subgroup of MB and CIBERSORT-based
proportions of infiltrating immunocytes. In WNT MB, only
neutrophils were significantly negatively related to tumor purity (R �
0.34, p� 0.004). For SHHMB, only natural killer cells were significantly
negatively related to tumor purity (resting, R� −0.14, p� 0.03; activated,
R � −0.15, p � 0.02). However, no statistical correlation was detected
between the tumor purity and infiltrating immunocyte proportions in
Groups 3 and 4MB. As shown in Figure 9, WNT and SHHMBs were
significantly enriched in the high–immunocyte infiltration group,
whereas Groups 3 and 4 MBs were more enriched in the
low–immunocyte infiltration group.

The Prognostic Role of Tumor Purity
Since only the GSE85218, GSE117130, and E-MTAB-5528
datasets included clinical outcome data, they were used to

assess the relationship between tumor purity and clinical
outcome. For each type of pediatric CNS tumor, we divided
the patients into a high-purity group and a low-purity group. As
shown in Figures 10A–H, the two groups did not differ much in
terms of survival rate in all of the CNS tumor datasets. The
aforementioned findings suggest that among all pediatric CNS
tumors, the association between tumor purity and patient
prognosis may be weak.

DISCUSSION

With the development of high-throughput techniques, many
novel computation methods based on bioinformatics could be
employed to infer tumor purity. In contrast to those based on
histopathology, bioinformatics algorithms elicit more highly
concordant and objective results. In this study, we performed
a comprehensive purity analysis of pediatric CNS tumors with
DNA methylation data and gene expression data from several
CNS tumor–related large sample datasets on the basis of three
tumor purity calculation methods (namely, RF, InfiniumPurify,
and ESTIMATE). We found that only the RF estimation
approach could produce normally distributed tumor purity.

These results suggest that 1) to prevent bias arising from the
introduction of other tumor molecular data, we should employ

FIGURE 9 | Relationship between the medulloblastoma (MB) purity and the clinical features and immune microenvironment in the GSE85218 dataset as revealed
by the single-sample gene set enrichment analysis (ssGSEA).

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 70780211

Yang et al. An Integrated Analysis of Tumor Purity of Common Central Nervous System Tumors

2930

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


high-throughput data of the same tumor type (glioma in this
study) to construct a prediction model for estimating tumor
purity; and 2) given that the presence of non-immune and
stromal cells in CNS tumor tissues may affect the purity
estimation results of indirect algorithms such as ESTIMATE, it
is more reasonable to choose direct methods of tumor purity

estimation. We found that there was some relationship between
pediatric CNS tumor purity and the molecular and
clinicopathologic features. These findings suggested that tumor
purity may be an intrinsic characteristic of pediatric CNS tumors.
When analyzing the purity of MB in a systematic way, we
discovered that tumor purity was lower in Groups 3 and 4

FIGURE 10 | Prognostic role of tumor purity in three pediatric CNS tumor datasets. (A) Kaplan–Meier (K-M) curves for overall survival according to tumor purity in
the GSE85218 dataset; (B) K-M curves for overall survival according to tumor purity of the WNT subgroup medulloblastoma (MB) in the GSE85218 dataset; (C) K-M
curves for overall survival according to the tumor purity of the SHH subgroup MB in the GSE85218 dataset; (D) K-M curves for overall survival according to the tumor
purity of Group 3 subgroup MB in the GSE85218 dataset; (E) K-M curves for overall survival according to the tumor purity of Group 4 subgroup MB in the
GSE85218 dataset; (F)K-M curves for overall survival according to the tumor purity in the GSE117130 dataset; (G) K-M curves for progression-free survival according to
the tumor purity in the GSE117130 dataset; (H) K-M curves for overall survival according to the tumor purity in the E-MTAB-5528 dataset.
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MBs with a worse prognosis than in WNT and SHHMBs. This is
consistent with previous studies with regard to glioma purity
(Zhang et al., 2017). A possible reason for this is that Groups 3
and 4 MBs are more inclined to undergo metastasis and tumor
cell spreading and have difficulty forming dense solid bulks.

An enrichment analysis of MB purity–related biological
pathways unveiled some classical signaling pathways related to
the biology of MB, including MYC, WNT, and Hedgehog
pathways (Northcott et al., 2011). For instance, the WNT
pathway is enriched in WNT MB, and the sonic Hedgehog
pathway is enriched in SHH MB (Northcott et al., 2011;
Ramaswamy and Taylor, 2017; Wang et al., 2018). Moreover,
amplification of the MYC oncogene is the most common genetic
alteration of Group 3 MB (Ramaswamy and Taylor, 2017; Wang
et al., 2018). In addition, we found that some development-
associated pathways were associated with tumor purity; thus,
abnormalities in such pathways may lead to the occurrence of
MB. In the correlation analysis of MB purity and the immune
microenvironment, three genes related to immunity, namely,
CD8A, CXCR2, and TNFRSF14, were negatively related to
tumor purity. These findings suggested that such immune-
related genes may be potential targets for immune
microenvironment–specific MB therapies. On the other
hand, genes related to classical immunosuppression
checkpoints, such as PD-1, PD-L1, and CTLA4, were not
significantly associated with MB purity. This finding
indicates that the efficacy of immunotherapies with PD-1,
PD-L1, and CTLA4 inhibitors may be limited to MB. In
addition, most infiltrating immunocytes were unrelated to
MB purity, indicating that immunocyte-based therapies may
also be limited to MB.

While exploring the tumor purity–related survival analyses of
MB, EPN, and pediatric high-grade glioma, we confirmed that the
effect of tumor purity was insignificant for the survival of patients.
These results are inconsistent with previous studies on tumor
purity (Aran et al., 2015; Zhang et al., 2017). Cancer cells are
capable of recruiting immune infiltrating cells to the glioma
microenvironment (Silver et al., 2016), which could influence
the prognosis of glioma patients (Zhang et al., 2017). However,
childhood brain tumors are considered to be relatively
immunologically “cold” due to the lack of genetic mutations
(Gröbner et al., 2018). Furthermore, Bockmayr et al. did not
observe associations between intratumoral immune infiltrates
and MB survival, and they attributed their results to the
overall very low immune infiltration (Bockmayr et al., 2018).
The hypothesis that the ability of pediatric CNS tumors to recruit
immune infiltrating cells is relatively weak may provide a
direction for why tumor purity does not influence the overall
survival of pediatric CNS tumor patients. In addition, these
results may indirectly confirm the difference between
children’s CNS tumors and adults’ brain tumors in terms of
clinical and molecular features.

Nevertheless, the present work has some limitations. First, our
findings require external validation using independent pediatric
CNS tumor datasets. Second, due to the retrospective setting of

the present study, additional prospective studies are necessary to
evaluate our conclusions.

CONCLUSION

We presented a systematic comparison of three tumor purity
estimation methods across pediatric CNS tumors and found that
the RF algorithm is applicable for pediatric CNS tumor purity
estimation. MB purity was significantly associated with some
classical signaling pathways associated with MB biology and
development-related pathways. Furthermore, our analysis
showed a minor effect of tumor purity on the survival of
pediatric patients with CNS tumors. It is important for future
studies of pediatric CNS tumors to take tumor purity into account
when analyzing high-throughput data from patient samples.
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Three-quarters of compounds that enter clinical trials fail to make it to market due to safety
or efficacy concerns. This statistic strongly suggests a need for better screening methods
that result in improved translatability of compounds during the preclinical testing period.
Patient-derived organoids have been touted as a promising 3D preclinical model system
to impact the drug discovery pipeline, particularly in oncology. However, assessing drug
efficacy in such models poses its own set of challenges, and traditional cell viability
readouts fail to leverage some of the advantages that the organoid systems provide.
Consequently, phenotypically evaluating complex 3D cell culture models remains difficult
due to intra- and inter-patient organoid size differences, cellular heterogeneities, and
temporal response dynamics. Here, we present an image-based high-content assay that
provides object level information on 3D patient-derived tumor organoids without the need
for vital dyes. Leveraging computer vision, we segment and define organoids as
independent regions of interest and obtain morphometric and textural information per
organoid. By acquiring brightfield images at different timepoints in a robust, non-
destructive manner, we can track the dynamic response of individual organoids to
various drugs. Furthermore, to simplify the analysis of the resulting large, complex data
files, we developed a web-based data visualization tool, the Organoizer, that is available
for public use. Our work demonstrates the feasibility and utility of using imaging, computer
vision and machine learning to determine the vital status of individual patient-derived
organoids without relying upon vital dyes, thus taking advantage of the characteristics
offered by this preclinical model system.

Keywords: patient-derived organoids (PDO), high content imaging, label-free analysis, machine learning,
drug response
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INTRODUCTION

High-throughput screening assays have advanced the drug-
discovery field by greatly increasing the number of compounds
that can be screened and thus the number of positive leads.
However, this improvement has yet to produce a corresponding
increase in the drugs available for treatment as three-quarters of
the drugs that enter clinical trials never make it to market, with a
majority failing due to a lack of efficacy (1, 2). Oncology drugs
have proven especially challenging, with a predicted success rate
of only a 3.4% in clinical trials (3). One important limitation of
traditional in vitro cancer drug screening methods is the use of
oversimplified, immortalized cell lines cultured in 2D, which fails
to capture the in vivo complexity of human tumors including
influences from the surrounding microenvironment and cellular
heterogeneity (4–6). To improve the success rate of identifying
compounds with promising clinical translation, there is a need
for more biomimetic preclinical platforms to carry out these drug
testing studies. In this context, patient-derived organoids
(PDOs), in which cells obtained from a patient’s tumor are
grown in a medium that promotes the formation of cellular
aggregates that recapitulate important aspects of the original
tissue architecture, have gained significant traction in the cancer
research field (7–9). Multiple organoid models of human cancers
have been developed (10), including gastrointestinal (11),
prostate (12), ovarian (13) and pancreatic cancers (14). By
more faithfully representing the original physiological
environment, these tumor organoid models address some of
the limitations of traditional cell line cultures and offer rapid,
scalable approaches for patient-specific molecular and
phenotypic characterization as well as drug screening (11,
15–17).

Two traditional screening methods typically used to determine
compound efficacy are ATP based cell viability assays (18) and vital
dyes (VDs) (19). While valuable, both approaches have significant
drawbacks in the context of 3D organoid screening. ATP based cell
viability assays are disruptive and performed on a pooled
population of organoids: as such they do not allow for repeated
assaying and mask intra-organoid heterogeneity. Unlike cell
viability assays, vital-dye assays are imaging-based and non-
disruptive, and therefore, in principle, allow for analysis at
multiple timepoints and preserve heterogeneity. However, vital
dyes present two significant issues, depending on the specific dye.
First, they can have cytotoxic effects and interfere with the outcome
readout and, second, they can have transient expression, meaning
that the signal indicating a dead cell might peak at a certain
timepoint and disappear afterwards. In addition, the per-cell vital
dye signal needs to be integrated across multiple cells to obtain a
per-organoid viability determination.

Therefore, we propose a label-free high content screening
(HCS) method that involves live-cell imaging of colorectal cancer
(CRC) patient-derived organoids over time in a robust, non-
destructive manner. This approach provides an automated
pipeline to visualize cellular dynamics and extract multi-
parametric data, which is advantageous for phenotypic
screening of PDO models (20). One challenge of HCS
platforms is the vast amount of data produced that must be
Frontiers in Oncology | www.frontiersin.org 23435
accurately interpreted. To circumvent this bottleneck in analysis
pipelines, machine learning (ML) methods can be applied to
these large-scale biological data sets. The usefulness of
Supervised ML approaches such as linear classifiers and
regression models has been demonstrated in analyzing large
amounts of data in disparate fields and they are now being
used increasingly in the biomedical domain (21–24).
Furthermore, computer vision applications can be applied to
HCS image data to recognize patterns and changes that are not
detectable by the human eye and thus have a huge potential to
streamline drug discovery pipelines through screening at a faster
pace (25).

Previously, we have shown that imaging-based HCS assays
can provide dynamic insight to changes in heterogeneous cellular
populations using 2D culture models with a cell-based image
analysis method (26). In this study, we trained a linear classifier
to discriminate between live and dead PDOs based on a set of
morphological and textural features extracted from brightfield
images, and then used the trained model to determine drug
response of organoids derived from colon cancer patients with
heterogeneous clinical histories. Additionally, by collecting the
vital status of individual organoids over time we can gain insights
into the dynamic aspects of drug response as well as the
heterogeneity of response across organoids and across patients.
This work showcases the possibilities offered by the application
of machine learning approaches to label-free high-content
imaging assays.
RESULTS

Generation of a Label-Free
Imaging-Based Workflow to
Evaluate Patient-Derived Organoids
We established an HCS pipeline that includes label-free temporal
imaging of PDOs (Figure 1A) coupled with quantitative image
analysis using a linear classifier (Figure 1B) and data
compilation and visualization (Figure 1C). To execute this
workflow, we utilized PDOs from our biobank generated from
CRC patient samples, which includes primary and liver
metastatic tumors.

Organoid set up (Figure 1A): Briefly, to generate PDOs that
recapitulate the morphology of the tissue of origin
(Supplemental Figure 1), tissue samples were obtained post-
surgery, processed, seeded in extracellular matrix, and expanded
for future use (see Methods section for details). To set up the
screening assay, organoids were first digested to a single cell
suspension before being seeded into a 96 well plate. Then, using
an HCS platform, the samples were imaged at multiple
timepoints in brightfield to minimize phototoxicity
and photobleaching.

Supervisedmachine learning algorithmused to classify organoids
as live/dead based on phenotypic features (Figure 1B): Image
analysis was subsequently performed on the maximum intensity
projections of multiple z-scan images using a machine learning
algorithm that enables users to build a linear classifier by identifying
December 2021 | Volume 11 | Article 771173
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regions of interest (ROIs) that are part of distinct groups. Using a
trained feature-based textural machine learning algorithm we
divided image regions into two classes: organoid ROIs and
background (the ML algorithm was trained on the segmented
and annotated images, see the Methods section for details).
Morphological and textural features were measured for each
identified object within the organoid class (Supplemental
Table 1). STAR morphology features encompass Symmetry
properties, Threshold compactness, Axial and Radial properties.
Spot-Edge-Ridge (SER) textural features are based on Gaussian
derivative images measuring pixel intensity patterns within each
ROI.Distributionsof all 25STARandSER featuresmeasuredacross
6 different PDOs, in media or treated with staurosporine (positive
control - apoptosis inducer), are depicted inSupplementalFigure2
(seePDOcounts and tissue site inSupplementalTable 2).At day 3,
morphological features are patient-specific and consistent across
replicate wells (Figure 2A) and unsupervised clustering of the data
identified clusters that matched the patient or origin rather than
number of days in culture (Supplemental Figure 3). Using thisML
approach, we can detect morphometric similarities and differences
across PDOs.

Statistical analysis and development of data visualization tool
(Figure 1C): For all 25 textural and morphological features, the
measurements for each detected PDO were first summarized
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(mean value) across all detected objects within a well. Next, the
mean and standard deviation were computed from technical
replicate wells for each treatment and time-point. A Shiny-based
web tool, the Organoizer, was developed to process the data and
produce plots for organoid-survival and monitor changes in
features over the course of the treatment period (27).

Phenotypic Signatures Correlate
to PDO Viability
To create a training data set, we manually classified 179 objects,
80 live (untreated media control) and 99 dead (5 mM
staurosporine treated positive control), across 41 images of
organoids derived from six different patients at various time
points. When applied to new experimental data each detected
PDOwas assigned to either the “dead” or “live” class by the linear
classifier based on 9 significant morphology and texture features
chosen by the algorithm to delineate between live and dead PDO
categories: SER Valley, SER Edge, SER Ridge, Profile 2/2,
Threshold Compactness 60%, Axial Small Length, Area, Ration
Width to Length, and Threshold Compactness 50% (Figure 2B).
Representative images illustrate selected PDO textural and
morphological features (i.e., Profile 1/2, and 2/2, SER Edge
Ridge and Valley), found to be distinct between live and dead
PDOs (Figure 2C). The signal to noise ratio of the classifier
A

B

C

FIGURE 1 | Workflow schematic (A) At day -4 organoids were digested to single cells and seeded at 5,000 cells/well in Basement Membrane Extract. Plates were
incubated for 4 days allowing organoids to reform. Baseline images were taken at day 0 prior to the initiation of treatment. After initial treatment, plates were re-
imaged at days 1, 3, and 7. Media and treatment are refreshed post imaging on day 3, with final measurements taken at day 7. (B) Using 96 well plates, multiple
patients and/or treatments can be performed with a single assay. Images were obtained in z-stack then combined into a single maximum projection image upon
which all further processing and analysis was performed. A textural algorithm was used to identify organoid regions of interest, with a segmenting algorithm applied
to split organoids in near proximity to each other. A training set was created by identifying live/dead organoids across untreated and treated samples from each
patient. This supervised machine learning algorithm was then applied to experimental data. (C) Classification data was compiled into spreadsheets then uploaded to
a web-based app for data processing and visualization.
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algorithm is expressed as “goodness” based on the distance of the
data points from the classifier line, which is visualized using a
scatter plot (Figure 2D).

As a baseline, we compared our classifier to the visual
assessments of trained cell biology experts. Trained cell
biologists are adept at visually assessing the health of their cell
cultures using brightfield microscopy, however manual
classification not only limits throughput but also introduces
inter-observer variability (23). To generate a ground truth by
visual assessment, we asked 9 scientists to blindly classify images of
individual organoids (18 PDOs) as either “live” or “dead”
(Supplemental Figure 4). Statistical evaluation of inter-rater
reliability indicated only moderate agreement between visual
classifications (Fleiss’ k = 0.451, z = 11.5, p = 0.00; perfect
agreement k=1), highlighting the inherent variability in
subjective manual classification. Using the data set containing
the 18 manually classified organoids, we also performed live/dead
classifications based on vital dye (VD) intensity from DRAQ7
staining. For our purposes we defined a dead PDO as one that
contained at least one DRAQ7+ area ≥ the area of a nucleus. For
each organoid we compared the expert consensus classification
against DRAQ7 staining results and our linear classifier
(Figure 3A). We found 78% (14/18) concordance between the
linear classifier and expert majority, 61% (11/18) between the
linear classifier and DRAQ7, and 61% (11/18) between the expert
Frontiers in Oncology | www.frontiersin.org 43637
majority and DRAQ7. In instances where all experts agreed,
concordance between the linear classifier and the expert
majority increased to 100% (8/8), however expert majority
concordance with DRAQ7 only reached 62% (5/8). The strong
agreement between the expert classifications and the linear
classifier reinforces machine learning as a valuable approach for
3D organoid phenotyping. An important note, the 18 PDO images
classified across methods (i.e., experts/ML/VD) were not included
in the training set to ensure that there is no “leakage” of
information between the training and the testing set.

To further evaluate the performance of the linear classifier
using time series data, we compared our algorithm classifications
with those made using DRAQ7 for PDO-12620 (Figure 3B). We
normalized the proportion of live/total PDOs at each timepoint
to the proportion of live PDOs at day 0 for untreated and
staurosporine treated conditions determined by ML or DRAQ7
staining. For the staurosporine treated group, the ML classifier
detected a reduction in the number of live organoids on day 1,
whereas DRAQ7 shows a comparable reduction past day 3
(Figure 3C). In the untreated group, many organoids are
classified as live by both the ML and the VD, with 80%
concordance between the two methods. However, the two
methods started to diverge upon treatment, with concordance
in staurosporine treated organoids dropping to 60% (Figure 3D).
Additionally, our ML approach allows us to follow individual
A B

C

D

FIGURE 2 | PDOs display distinct texture and morphology features related to viability. (A) Heatmap illustrating 25 morphology and texture features (z-score
normalized) across 6 different PDOs in the untreated (media only) condition on Day 3. Columns represent replicates for each PDO. (B) Features discriminating
between live and dead PDOs are listed in order of relevance as indicated by the linear coefficient. (C) Representative PDO images of selected morphology and
texture features that discriminate between live and dead classification. Scale bar is 50 mm. (D) The signal to noise ratio is displayed as goodness of live (blue) versus
dead (orange) PDOs manually classified in the training set. Filled circles denote PDOs included in the training set and open circles are classified by the algorithm.
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A B

C D

E

FIGURE 3 | Comparison of live and dead classification by ML and vital dye. (A) Classification of 18 different organoid images as either live or dead was determined using
three independent methods: tissue culture experts, ML, and DRAQ7, and then compared to determine level of concordance. (B) PDOs treated with staurosporine or
untreated controls stained with DRAQ7 and classified by ML. Scale bar is 50µm. (C) The normalized proportion of live/total organoids (PDO 12620) for the control and
staurosporine treated group as determined by both ML and DRAQ7 was plotted over the course of 7 days (error bars: SD of 3 replicate wells per group per timepoint).
When classified by ML the difference in response between the treated and untreated groups are seen starting on day 1, whereas VD classification does not start to show
separation until after day 3. (D) Percentage agreement of ML and DRAQ7 live/dead classification for untreated and staurosporine treated organoids (PDO 12620; error bars
are SD of 3 replicate wells each). (E) Tracking the vital status of individual organoids (PDO 13154) over 7 days treatment with staurosporine as assessed by our ML
classification (N=114 organoids).
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organoids over time to determine their vital status (Figure 3E).
To further clarify the discrepancy between the ML-based and
DRAQ7-based classifications we tracked individual PDOs
(PDO-13154, N~900) over 7 days (days 0,1,3 and 7) and
determined their vital status at each time point by each
method (Supplemental Figure 5). While the ML classification
of dead PDOs increased with time, the population of dead PDOs
determined by DRAQ7 decreased. The discordance is most likely
due to clearance of cellular debris over time where a PDO
previously defined as dead is now DRAQ7 negative. Given
staurosporine is an inducer of apoptosis, this result suggests
that our ML method may identify dead or dying PDOs more
accurately including those that have lost their ability to
retain DRAQ7.

Use of Supervised Machine Learning to
Track Patient-Specific Drug Response
Tumors evolve over time in response to various stimuli, such as
organ-specific microenvironments and drug perturbations. Our
approach allows us to characterize the dynamic drug responses
of PDOs from both primary and metastatic CRC tumors over
Frontiers in Oncology | www.frontiersin.org 63839
time. To accomplish this, we treated PDOs with standard
chemotherapy agents: irinotecan, a topoisomerase I inhibitor,
and oxaliplatin, an alkylating agent. To interrogate drug specific
phenotypic responses, we used heatmaps to examine
morphological and textural features within the dead class of
PDOs over the course of drug treatment. (Figure 4A). Across all
PDOs, the feature pattern in the staurosporine-treated group is
distinct from the chemotherapy groups. For PDO-12415, the
symmetry features in the media control stand out with generally
higher feature values compared to the drug treated groups. PDO-
12527 and PDO-12911 showed an increase in area and radial
mean over time for all treatments, however the symmetry
properties of all the PDOs did not show distinct variation
across treatment or time. Importantly, the increase in area and
radial mean could be attributed to the loss of structure and
spreading of dead organoids in response to drug rather
than proliferation.

Using our Shiny-based visualization tool we generated box
plots of extracted features of interest over time (Figure 4B and
Supplemental Figure 6). We chose to highlight Regional
Threshold Compactness 60% due to the unique patterns
A 

B 

C 

FIGURE 4 | PDO-specific drug responses over time. (A) Heat maps of dead PDO features under drug perturbations. Z-score normalized averaged feature values
are shown with treatment and time on the x-axis, with features on the y-axis. (B) Boxplots of the feature “region threshold compactness 60%” generated using the
Organoizer show the variation between the classified live/dead groups. (C) Fractions of live/total organoids from untreated media control, irinotecan-treated and
oxaliplatin-treated groups are plotted over time to generate dose response curves. Points indicate the mean and bars show the SD.
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observed across patients; however, our visualization tool is capable
of displaying all features captured. In addition, we plotted dose
response curves for each drug treatment (Figure 4C). While PDO-
12415 (bottom left panel) showed a limited response to irinotecan
at 20 mM, a much stronger effect was measured with 40 mM
irinotecan starting on day 1. Oxaliplatin at 20 mM also elicited a
response with the normalized proportion of live/total dropping
60% by day 7. Analysis of PDO-12527 (bottom middle) revealed a
similar response to both oxaliplatin and irinotecan at 20 mM, while
irinotecan at 40 mM more effectively killed the PDOs. It appeared
that PDO-12911 (bottom right) did not respond to oxaliplatin at
20 mM, as the proportion of live/total PDOs was comparable to the
negative control across all 7 days. A slight difference in response
timing was seen between the two doses of irinotecan, where the 40
mMdose showed a stronger response at day 3 compared to 20 mM,
however by day 7 both showed a response below 40%. Despite
temporal variations in response, all three PDOs showed a 60-70%
reduction in the proportion of live/total PDOs by day 7. Taken
together our ML approach identified PDOs that responded to
chemotherapy early in the dosing regimen, highlighting the ability
to capture patient-specific drug responses.
DISCUSSION

Given the breadth of biological models used in cancer research,
investigations into drug response should span spatial and
temporal scales. However, we continue to apply assays such as
those measuring ATP-viability that capture a single readout from
a sample/well at a fixed timepoint, which results in a limited
understanding of the underlying biology. As seen in Figure 3,
manual classification limits throughput and introduces person-
to-person subjectivity. On the other side, VDs proved
problematic for determining the viability of 3D organoids -
especially once healthy proliferating organoids develop a
necrotic core that contains a substantial fraction of dead cells,
masking drug effects. This issue is more commonly seen in PDOs
that form large structures, which can be the result of rapidly
proliferating organoids. Furthermore, dying cells that initially
stain positive using VDs, eventually lose their ability to retain the
dye and therefore may erroneously be counted as live.

Herewepresent anobject-based image analysis (OBIA)workflow
that is designed to fill the gap between cell and population-level
analyses, to dynamically interrogate heterogeneous object-based
PDOs in response to perturbations including drug treatment. The
non-destructive nature of our platform supports temporal
monitoring of phenotypic changes, which allows us to capture the
appropriate timing of effects. With an OBIA ML approach we can
account for variations in inter-PDOsamples (size, shape, etc.).With a
larger dataset, one could begin to explore possible correlations
between organoid features and patient prognosis (28, 29), shedding
light on the clinical relevance of these features.

The imaging workflow described herein provides significant
advantages; however, it is important to consider the limitations.
Imaging consistency plays a large role in the success of a given assay,
and deviations in the XY sample placement can influence results
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when drawing conclusions across timepoints. Patient to patient
variability in PDO size influences the parameters needed for proper
segmentation and identification of ROIs; therefore, careful
consideration needs to be placed on splitting and merging factors
during the segmentation algorithm adjustments. Moreover,
additional features and/or separate classification algorithms may
beneeded toaccurately separate live anddeadPDOcategorieswhen
treated with diverse classes of drug compounds.

As many biologists are not computer vision or ML experts,
analysis platforms that are accessible to non-experts are needed
(30, 31). A paper by Falk et al. describes an ImageJ plugin, U-Net,
that enables researchers who are not ML experts to benefit from
its application to biological data (32). Furthermore, while the
computationally intensive parts of the image analysis workflow
are done in a reproducible and automated fashion, biologists are
still faced with the task of summarizing the data for different
timepoints and conditions across thousands of ROIs. To
facilitate this step, we have designed an interactive, web-based
tool where users can upload the output of the ML analysis and
obtain survival curves and feature metrics. Additionally, while
the textural and morphological features that best differentiate
between live and dead organoids are automatically determined
by the linear classifier, it is often useful to be able to visualize
differences across all collected features over time. These tools are
accessible at http://organoizer.eitm.org and available for
download at https://github.com/eitm-org/organoizer.

We focused our attention on the use of a supervised ML linear
classifier algorithm to distinguish live versus dead organoids for
the purposes of understanding drug response; however, there are
many other questions that could be asked using this method.
This workflow enables unrestrained exploration of
multidimensional features of organoid morphology and texture
characteristics to discover new biology within and across patient
samples. Here we demonstrate the utility of our ML image
analysis method using a smaller sample set; however, this
method can be scaled to perform large drug screens on PDOs
generated from different cancer types, providing researchers a
flexible yet robust platform for posing their own biological
questions. Additional artificial intelligence and ML techniques
are being applied to image analysis workflows, including
unsupervised techniques such as neural networks and deep
learning, which recognize outcomes that are not detectable by
humans (21–24). Label-free organoid imaging and batch analysis
methods using trained neural networks have been developed
from several groups (30, 31, 33, 34). Although these approaches
provide highly efficient and precise detection, classification, and
measurement of organoid objects, these often require
programming skills to create a specific code to train the
network and process images. Deep learning-based analysis will
be very powerful with large datasets, but additional data
processing will be needed to extract specific information. Our
ML-based method, with linear classifier and data visualization
tool, showed great performance with a relatively small patient
sample size. Moreover, it generated multiparametric data
including patient-specific organoid morphologies and drug
responses over time to understand patient heterogeneity.
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The rise in patient-derived biobanks, combined with sophisticated
image analysis techniques using ML approaches, presents a valuable
platform for drug screening and discovery.
ONLINE METHODS

Cell Culture and Reagents
Organoid growth medium consists of base medium (ADMEM/
F12 with 10% FBS, 1% penicillin/streptomycin, 1% Glutamax,
and 1% HEPES) supplemented with 1X N2 (Sigma Aldrich,
17502048), 1X B-27 (Sigma Aldrich,17504044), 1mM N-
Acetylcysteine (Sigma Aldrich, A7250) 50 ng/ml EGF (Life
Technologies, PGH 0313), 100 ng/ml Noggin (Tonbo, 21-
7075-U500), 10 mM nicotinamide (Sigma, N0636), 500 nM A
83-01 (Calbiochem, 616454-2MG), 10 mM SB202190 (Sigma
47067), and 0.01mM PGE2 (Sigma Aldrich, P5640).

Tissue digestion solution consists of 1.5 mg/ml collagenase
(Millipore, 234155), 20 mg/ml hyaluronidase, (MP Biomedicals
100740) and 10 mM Ly27632 (Sigma Y0503).

Generation and Expansion of Human
Colorectal Cancer PDOs
Tumor tissue was received from consented patients following
Institutional Review Board (IRB) approval at the Norris
Comprehensive Cancer Center of USC, Los Angeles CA.
Tissue was washed with PBS, minced and digested for 30
minutes at 37°C. Digest suspension was filtered using a 100
mm strainer to remove large residual pieces of tissue, then
centrifuged at 189 x g for five minutes. Pellet was washed in
DMEM/F12 media (ThermoFisher, 11320033) supplemented
with 10% FBS three times and single cells were re-suspended
in BME (Culturex® Reduced Growth Factor Basement
Membrane Matrix Type 2, Trevigen, 3533-005-02). Cell/BME
mixture was plated in 24 well plates with 60 ml per well and
incubated upside down at 37°C until solidified (10-20 minutes).
Then 500 ml of organoid growth media was layered on top and
media was changed as needed. To passage organoids, BME was
dissociated with 500 ml/well TrypLE (ThermoFisher Scientific,
12605028) for 5 minutes at 37°C. Organoid suspension was
pooled and centrifuged at 450 x g, the pellet was re-suspended
in BME and re-plated in a 24 well plate. PDOs used for
experiments were ≤ 20 passages in culture.

Drug Treatment Studies
PDOs were harvested from BME using Gentle Cell Dissociation
Reagent (Stemcell technologies, 07174), pooling all wells and
incubated on ice for 45 minutes then centrifuged for 5 minutes at
189 x g. Supernatant was removed and the pellet was re-
suspended in 50% TrypLE with 10 µM Y-27632 (Stemcell
Technologies, 72302), incubated at 37°C for 10-15 min with
occasional agitation. Alternatively, PDOs were harvested using
500 ml/well TrypLE, incubated at 37°C for 30 minutes. For both
methods, PDOs were centrifuged for 5 minutes at 189 x g.
Supernatant was removed and the pellet was re-suspended in 1
ml of organoid base medium then filtered through a 40 mm
strainer to remove aggregates. Flow through was centrifuged at
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189 x g for 5 minutes and the pellet was re-suspended in BME. A
96 well m-Plate (Ibidi, 89646) was coated with 5 ml of BME/well
and incubated at 37°C until BME solidified. The m-plate was then
seeded with 5 ml BME/cell mixture at a concentration of 1000
cells/ml and topped with 70 ml organoid growth medium.

I. Image-Based Organoid Drug Response Assay
Image acquisition. Plates were incubated for four days prior to
imaging on the Operetta HCS platform (PerkinElmer). Baseline
images were taken on day 0 followed by respective drug
treatments: irinotecan (Sigma-Aldrich, I1406), oxaliplatin
(Sigma-Aldrich, O9512), staurosporine (Sigma-Aldrich,
569396). Additional images were acquired on days 1, 3, and 7
post drug treatments. Images were acquired in brightfield, with
23 z-stacks ranging from 20-460 mm at increments of 20 mm. On
day 3 of the experiment, imaging medium was changed and
replaced with fresh medium and drugs.

Image Analysis. Z-stack images were combined into single
maximum projection images which were then analyzed using
Harmony (PerkinElmer) image analysis software. ROIs were
generated using the “Find Texture” supervised ML feature.
Training areas of 15 pixels, with texture scaling (2 pixels) were
used to define the distance, and region scaling (6 pixels) defines
the smoothness of region borders. These ROIs were modified as
needed per visual analysis using the “Modify Population” feature
to achieve optimal splitting of objects. Specifically, further
segmentation was performed to partition the organoid area
into multiple, distinct class regions corresponding to individual
organoids, by applying a hole-filling algorithm followed by a
cluster-by-distance method to detect individual objects within
clusters. After objects at the border of the image were removed
from the analysis set, morphological and textural features of
complete organoids (ROIs) were measured and extracted. A final
filtering step based on the object area measurement was applied
to exclude small debris as well as large, unsegmented organoid
clusters from the data set. In addition, the commercially available
PhenoLogic™ ML algorithm (PerkinElmer) was used to classify
organoids as live or dead.

II. VD Dead Cell Labeling, Imaging, and Analysis
DRAQ7 (Biolegend, 424001), at a final concentration of 5 mM,
was added to plates 30 minutes prior to imaging on day 0.
Additional 5 mM DRAQ7 was added on day 3 along with fresh
medium and drug. Images were acquired with excitation at 633
nm. Areas positive for DRAQ7 were detected within each
organoid ROI. ROIs containing one or more areas of DRAQ7
were classified as dead.

Statistical Analysis
Organoid ROIs were counted, and ROI-level morphological
metrics were averaged on a per-well basis at each timepoint
and for each class (“dead” vs. “live”). The mean and standard
deviation were then computed from replicate wells with the same
treatment conditions. Response curves were computed as either
the proportion of “live’ ROIs over “dead” ROIs (ratio) or as “live”
ROIs over all ROIs (proportion). Optionally, the proportion or
ratio of “live” organoids can be normalized to the proportion (or
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ratio, respectively) on the first day of measurement (usually day
0). Boxplots for each feature across timepoints were also
generated. The code is available at https://github.com/eitm-org/
organoid_drug_response.

Heatmaps were generated by averaging feature values per well,
then taking the average value across wells to get one average value
for each unique group. Rows and columns were grouped using
hierarchical clustering and rows were scaled using the heatmap
package in the R statistical computing language. All analyses were
performed using the R statistical language (v. 4.1.0) using the
following packages: cowplot (v.1.1.1) (35), eulerr (v. 6.1.1) (36),
ggridges (v. 0.5.3) (37), ggthemes (v. 4.2.4), here (v. 1.0.1), irr (v.
0.84.1) (38), knitr (v. 1.33), networkD3 (v. 0.4), pheatmap (v.
1.0.12), plater (v. 1.0.3), readxl (v. 1.3.1), reshape2 (v. 1.4.4), scales
(v. 1.1.1), tidyverse (v. 1.3.1) and viridis (v. 0.6.1) (27, 39–49).
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Computational dynamic ODE models of cell function describing biochemical reactions
have been created for decades, but on a small scale. Still, they have been highly effective in
describing and predicting behaviors. For example, oscillatory phospho-ERK levels were
predicted and confirmed in MAPK signaling encompassing both positive and negative
feedback loops. These models typically were limited and not adapted to large datasets so
commonly found today. But importantly, ODE models describe reaction networks in well-
mixed systems representing the cell and can be simulated with ordinary differential
equations that are solved deterministically. Stochastic solutions, which can account for
noisy reaction networks, in some cases, also improve predictions. Today, dynamic ODE
models rarely encompass an entire cell even though it might be expected that an upload of
the large genomic, transcriptomic, and proteomic datasets may allow whole cell models. It
is proposed here to combine output from simulated dynamic ODE models, completed
with omics data, to discover both biomarkers in cancer a priori and molecular targets in
the Machine Learning setting.

Keywords: biomarkers, molecular targets, drug discovery, drug development, pharmacodynamic modeling, ODE
modeling, machine learning
INTRODUCTION

Understanding biological systems is challenging as the detail and complexity of such dynamic
entities cannot be grasped using human ken and intuition. And disease states such as cancer further
the difficulties in addressing living entities. Thus, investigators have created networks of cellular
systems that encompass many components, connect those parts in some fashion, and then
interrogate their usefulness for addressing predictability and/or to study the networks themselves
(1). This has been well studied in the case of transcription factor networks that characterize the
phenomenon of epithelial to mesenchymal transition (EMT) in cancer (2–6). Recent work
demonstrated that the topology of transcription factor regulatory networks that were parameter
free (using a Boolean approach) or were parameter agnostic (using a random parameter generator)
was important in limiting changes in cell state that may promote disease progression (3).
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While important findings can be gleaned from understanding
regulation of gene expression, the effectors are not included in
such modeling nor are site-specific details such as binding
affinity or catalytic activities such as phosphorylation that are
likely to influence a particular cell behavior. Therefore, the
remainder of the Mini Review will focus on the modeling
approaches that include the depth and likely parameters that
may improve useful predictions.

Modeling cell behaviors using the mathematics underpinning
biochemical reactions has been a research topic for decades when
first approached by Tyson and others in understanding the cell
cycle in the 1980s (7). It was and still is clear that cellular networks
and pathways are dynamic and the overall contribution to cell
behavior mattered. Since then, a vast array of biological models
described by ordinary and partial differential equations (ODE,
PDE) have been published, new software has been created to
entice bench scientists to advance their findings computationally
[for example, RuleBender (8) and Virtual Cell (9)], and now, an
unprecedented amount of data to supply those models is available.
For the oncology field, melding both mathematical models and
omics data holds the promise to select the most effective molecular
targets and any concurrent biomarkers. The future promise
consists of whole cell models that lead to decisions of
personalized therapies needed to predict tumor regression.

At the cellular level, mathematical models describe reaction
networks (e.g., signal transduction pathways and metabolic cycles)
effectively, typically with output that is difficult to predict. For
example, binding of a growth factor to its receptor is a reaction that
is dependent on characteristics such as binding affinity and
concentration and leads to downstream events of interest
occurring with time. Further, if positive and/or negative feedback
loops are considered, cellular function becomes less predictable by
inspection, if at all. But, operationally, in this example, the change
in concentration of bound and unbound receptors and growth
factor with respect to time can be tracked through species in the
ODEs and downstream effects delineated. Furthermore, properties
such as molecular diffusion can be described with PDEs, thus
including spatial considerations as well. Many other biological
properties have been described and include cytoskeleton formation
(10), vesicular transport (11), and gene expression (12). Hundreds
of such mathematical models have been deposited in the
BioModels database (13) (RIDD: SCR_001993).

It is the premise of this Mini Review to describe how
computational dynamic ODE models describing biochemical
reaction networks can be analyzed by Machine Learning (ML)
algorithms capable of predicting desirable outcomes for the two
of the present challenges in oncology: discovering biomarkers
associated with positive patient outcomes and novel molecular
targets not generally considered druggable.
SELECTED ODE MODELS

As experimentalists have supplied an understanding of the
essential knowledge of biochemical pathways underscoring cell
behavior, ODE models offered predictions on some of the more
Frontiers in Oncology | www.frontiersin.org 24445
interesting aspects. For example, stimulus response, in general,
was thought to occur in a linear fashion such that the greater
concentration of a growth factor, the greater the response.
However, some components in pathways appeared not to
follow this linear rule. Rather, an all-or-none response
occurred. ODE modeling supplied a mechanism for such
ultrasensitivity, demonstrating a phenomenon that occurs
when proteins with enzymatic function are acting at saturation
(14, 15). Other important discoveries ensued and included
uncovering bistability, a behavior dependent on initial
conditions. Bistability is defined as having two stable states at
one stimulus level (16, 17). Parenthetically, bistability has also
been defined to describe whole cell states such as those found in
EMT and is distinct from that which is noted here (3–5).
Functionally, bistability at the biochemical reaction level is of
interest because, dependent on conditions such as saturation of
an enzyme and high initial stimulus, cellular response can
resemble a toggle switch in the on position. Thus, immediate
downregulation may not be needed in these instances (16, 18).
Finally, oscillatory behavior of important transcription factors
such p53 and their regulators have been demonstrated through
ODEmodeling and in cells (19, 20). In addition, oscillatory levels
of phosphorylated kinases have been characterized by an
amplitude and frequency and were shown to be regulated and
define outcomes such as the decision to proliferate (21). Below
are two relevant examples of ODE models that can be exploited
to discover biomarkers and molecular targets in oncology.

MAPK Signaling
One of the most well-studied signal transduction pathways in
oncology is that which triggers cell proliferation via growth
factor stimulation. In one such reaction network, EGF, a
growth factor, binds to its cognate receptor, which in turn,
dimerizes and activates its kinase domain through
conformational adjustments. Trans-autophosphorylation
occurs next which forms the initial sites for adapter binding.
GRB2 binding through its SH2 domain to phosphorylated
tyrosine then binds SOS, a GTPase exchange factor. Critically,
SOS replaces GDP with GTP on RAS, thus activating it for
downstream binding of RAF, a kinase. A kinase cascade ensues
ultimately leading to a phosphorylated kinase (phospho-ERK1/
2) capable of triggering gene transcription necessary for cell
growth. Importantly, several positive and negative feedback
loops regulate the pathway and when considered in an ODE
model, oscillatory behavior of phosphorylated ERK1/2 protein
level occurs. While this description adequately corresponds to
non-oncogenic signaling, disruption in the reaction rates by
mutations leads to unpredictable outcomes dependent on
pathway protein levels (22, 23). Figure 1 (upper portion)
depicts a limited Contact Map of MAPK signaling.

Cell Cycle Arrest or Apoptosis Decision
Cell decisions regulated by p53 have been readily modeled as it is
of deep interest to determine the conditions in which the
outcome of cell cycle arrest or apoptosis occurs following
genomic insult. This is of particular importance since p53 is
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commonly mutated in cancer and underpins tumorigenesis.
Lipniacki’s group developed a sophisticated model wherein
irradiation induced DNA damage, triggering p53 transcription
and subsequent downstream reactions (24, 25). The p53 network
was created using the rule-based modeling technique that defines
biochemical interactions such as protein complex formation and
enzymatic activities. In the three-stage model, a steady state was
achieved first through simulation and solutions through
deterministic algorithms. Next, irradiation was modeled over a
Frontiers in Oncology | www.frontiersin.org 34546
range (1-10 Gy). In the last relaxation phase, cell behavior was
characterized. Notably, the predicted outcomes were contingent
on the degree of irradiation. Oscillatory behavior of p53 levels
was observed as has been demonstrated in vitro and was found to
define the conditions that lead to programmed cell death. Finally,
their findings provided support for the heterogeneity in response
to DNA damage observed in tumor cell lines. [N.B. For an
overview of the methodology of ODE modeling in apoptosis,
see (26)].
FIGURE 1 | Overview of Proposed Methodology. The premise of this Mini Review is pictured. In the upper portion, a stylized version of the MAPK signaling pathway
is shown. The contact map shown is the basis of an ODE Model. Note the inclusion of positive (green line) and negative (red lines) feedback loops. Because of these
regulatory networks, it is inherently difficult to predict outcomes such as the decision to proliferate. Further, it is more challenging to ascertain pharmacologic
interventions. In the lower portion, an abstract matrix is shown that depicts the changing protein concentrations with time once an ODE model is simulated. It is
these data that are useful to train ML algorithms to discover biomarkers and novel molecular targets.
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PROTEOMIC DATABASES

One of the challenges of ODE modeling is the need to insert
quantitative parameters such as protein concentration in the
reaction network. Parenthetically, precise measurements of
reaction rates, enzymatic activity, and binding affinities are also
critically important in computational modeling. The advent of
critical technologies that can determine such include labeled and
label-free assays such and SILAC and LC-MS/MS, respectively
(27, 28). Both tumor cell lines and tumor tissue have been
studied in this fashion and databases exist to exploit (29–32).
And these quantitative proteomics efforts can evaluate post-
translational modifications as well (33). The direct analysis of
datasets from these studies has identified biomarkers, therapeutic
targets, and drug resistance mechanisms. Further, and
importantly, direct interaction networks can be constructed,
but offer a static interpretation of a dynamic living cell.

The National Cancer Institute’s Office of Cancer Clinical
Proteomics developed one such database that contains
proteomic evaluations from 13 different tumor types collected
since 2006 (31, 32, 34) (RIDD: SCR_017135). A series of studies
merged both proteomic and genomic data to better classify
actionable mutations that are expressed as proteins with
certainty rather than through sequence alone. This is even more
critical since transcriptomics does not necessarily confirm
translation in as high as 50% of all transcripts measured. But
importantly, studies utilizing this database have provided
important new classifications in cancer histologies. One study
evaluated the proteogenomics of pediatric brain tumors and found
new subgroups with wild type BRAF and novel networks that
overlap with the mutant gene (35). Thus, new therapeutic trials
could be proposed for these challenging tumor types.

SILACmethods have beenmeldedwithmathematicalmodeling
in the study of dynamic systems. For example, Yilmaz et al.
investigated proteosomal processing of NFkB subunits in mouse
embryonic fibroblasts via labeling studies and mathematical
modeling to discover the dynamics of the system under activation
(36). In another study, CHO cell extracts were processed in a
glycoproteomic approach to understand N-glycan processing and
found a kinetic description of the pathway (37). Finally, global
protein synthesis rateswere studied bypulse labeling and compared
to mRNA synthesis rates in mathematical models, thus, providing
critical quantitative parameters useful for future studies aswell (38).
In summary, SILAC and LC-MS/MS methods have supported
mathematical modeling and hold further promise.
MACHINE LEARNING

Applying ML algorithms to uncover cancer diagnoses from
histologies, to determine therapeutic decisions, and predict
outcomes is becoming pervasive in light of omics studies (39, 40).
ML, in an overview, can sort through vast inputs and discover
connections not likely to be found by human inspection. An
alternative application for ML in oncology could include the
development of hypotheses subject to future study. Thus, ML is
suited to intakevast inputs and to realize relationshipsnotpreviously
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expected. It is the thesis of this Mini Review to offer ways to meld
ODE modeling and ML to discover biomarkers and molecular
targets, ultimately aiding drug discovery and predictive oncology.

Biomarker and Molecular
Target Discovery
It is instructive to describe a published ODEmodel in more detail for
EGFR signaling encompassing the MAPK pathway (Figure 1) to
demonstrate how it might be utilized in ML with existing proteomic
databases. In two models published by Creamer and colleagues (41)
and Kochanczyk and colleagues (22), the basic signaling pathway is
described for EGF binding to the family of cognate receptor tyrosine
kinases with subsequent dimerization triggering autophosphorylation
on their intracellular tails at multiple sites. Next, adaptors bind with
some affinity via SH2 or PTB domains. In canonicalMAPK signaling,
bound GRB2 anchors SOS1/2, a GTPase exchange protein. During
activation, SOS1/2 binds RAS and exchanges GDP for GTP, and so
activates RAS. A kinase cascade follows RAF1 dimerization and
binding to RAS. RAF1 phosphorylates MEK1/2 and it, in turn,
phosphorylates ERK1/2 which translocates to the nucleus to
modulate transcription regulating essential genes for cell
proliferation. The ODE model of EGFR signaling as described here
includes reaction rates that underlie binding affinities, turnover rates,
phosphorylation and dephosphorylation rates, and both positive and
negative feedback loops (22). Including these important regulatory
features (the loops) is critical since unexpected behaviors emerge such
oscillatory ERK1/2 phosphorylation levels and multiple states that
includea steadystate, amonostableone, or abistableonedependenton
themathematical nature of the feedback loops.As an aside, even at this
basicunderstanding, choosingamolecular targetwouldbechallenging.

Establishing the reaction network such as the one above byODE
equations can be readily accomplished with rule-based modeling
using BioNetGen, a programming language and software that can
further simulate the model over time (8). The simulations can be
deterministically or stochastically solved with well accepted
algorithms. Deterministic solutions are reproducible, resulting in
the same output with every simulation. In contrast, stochastic
simulations apply randomness to the solution, hence output is
variablewithina certaindistribution andcanbeaveraged.However,
it is important tonote that biological systemsare noisy and the latter
solutions may bemore relevant. Simple output includes changes in
species (molecule) abundanceat each time stepmodeled. In the end,
a vast amount of data is generated and fairly complex models with
thousands of reactions can be coded (42). Figure 1 (lower portion)
pictorially describes a matrix of protein concentrations (in the
columns) that change at each time step during a deterministic
simulation (in the rows).

Parameterization of ODE models is challenging and typically,
the scientific literature can provide many (43). It is anticipated
that the proteomic databases described herein will readily
provide protein abundance for ODE models and thus, may
reflect both normal and disease states in separate models.
Databases such as BRENDA (44, 45) (RIDD: SCR_002997)
and Binding Database (46) contain curated reaction rates and
affinities culled from the published literature. Thus, with a
completed ODE model of interest, experimental protein
abundance and measured parameters underlie their usefulness.
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For ML algorithms, each time step can be represented by copy
number (abundance) for an individual protein and thus, become
features. What would be of interest for both biomarker and
molecular target discovery is which state (i.e., time point and
copy numbers) would be predictive of a desired outcome such as
inhibition of cell proliferation and/or induction of cell death
through one or more of the many known mechanisms. In order
to achieve this, a training set would be needed that describes a
signal transduction pathway or pathways anticipated to be
central to cancer pathogenesis and clinically relevant. For
example, the p53 ODE model such as the one described above
intersects a critical cellular decision in light of DNA damage,
determining cell cycle arrest or programmed cell death. The
proteins in this training set model would be derived from tumor
cell lines or tissues. Next a simulation would be completed
resulting in a matrix of protein abundance at each time step
(Figure 1). Now, the investigator has hundreds, if not thousands
of models with and without the desired outcome that act as the
training dataset for ML. The first analysis of such a ML model
would be to find biomarkers (i.e., abundances of particular
proteins) that correlate with the predicted outcome.

An alternative approach utilizing the same ODE model can aid
in the discovery of novelmolecular targets. In this case, proteins can
be knocked out virtually (individually) through simple
programming, a simulation run for each knock-out, and outcome
collected.TheMLalgorithmwould identify the connectionbetween
thepresumptivemolecular target andprogrammedcelldeath in this
instance.Thus, a virtualhigh throughput screenhasbeencompleted
using only computational effort.
CONCLUSION

It has been proposed in this Mini Review to apply ML algorithms
to discover biomarkers and molecular targets through the
Frontiers in Oncology | www.frontiersin.org 54748
creation of ODE models of signaling pathways in cancer (47).
While ODE modeling is more labor intensive than the ML
analysis, the complex systems of cancer cell biology can be
studied in this novel way leading to knowledge that will be
readily apply to the pharmaceutical challenges ahead. In
addition, ongoing advances in ODE modeling combined with
tissue level simulations also show promise. For example,
mathematical models of metabolism and cell proliferation
indicated new molecular targets (48) and such multicellular
models can further predict outcomes such as necrosis and
growth arrest (49), cancer cell migration (50), and immune cell
invasion (51). It can be envisioned that the computational efforts
described herein can contribute to proposed Digital Twins for
personalized medicine in cancer (52).
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32. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER,
et al. Next-Generation Characterization of the Cancer Cell Line Encyclopedia.
Nature (2019) 569(7757):503–8. doi: 10.1038/s41586-019-1186-3

33. Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Proteomics Identifies
New Therapeutic Targets of Early-Stage Hepatocellular Carcinoma. Nature
(2019) 567(7747):257–61. doi: 10.1038/s41586-019-0987-8

34. Rodriguez H, Zenklusen JC, Staudt LM, Doroshow JH, Lowy DR. The Next
Horizon in Precision Oncology: Proteogenomics to Inform Cancer Diagnosis
and Treatment. Cell (2021) 184(7):1661–70. doi: 10.1016/j.cell.2021.02.055

35. Petralia F, Tignor N, Reva B, Koptyra M, Chowdhury S, Rykunov D, et al.
Integrated Proteogenomic Characterization Across Major Histological Types of
Pediatric Brain Cancer. Cell (2020) 183(7):1962–85.e31. doi: 10.1016/
j.cell.2020.10.044

36. Yılmaz ZB, Kofahl B, Beaudette P, Baum K, Ipenberg I, Weih F, et al.
Quantitative Dissection and Modeling of the NF-kb P100-P105 Module
Reveals Interdependent Precursor Proteolysis. Cell Rep (2014) 9(5):1756–69.
doi: 10.1016/j.celrep.2014.11.014
Frontiers in Oncology | www.frontiersin.org 64849
37. Arigoni-Affolter I, Scibona E, Lin C-W, Brühlmann D, Souquet J, Broly H,
et al. Mechanistic Reconstruction of Glycoprotein Secretion Through
Monitoring of Intracellular N-Glycan Processing. Sci Adv (2019) 5(11):
eaax8930. doi: 10.1126/sciadv.aax8930

38. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al.
Global Quantification of Mammalian Gene Expression Control. Nature
(2011) 473(7347):337–42. doi: 10.1038/nature10098

39. Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow
RA, et al. Rethinking Drug Design in the Artificial Intelligence Era. Nat Rev
Drug Discov (2020) 19(5):353–64. doi: 10.1038/s41573-019-0050-3

40. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine Learning in Medicine: A
Practical Introduction. BMC Med Res Methodol (2019) 19(1):64. doi: 10.1186/
s12874-019-0681-4

41. Creamer MS, Stites EC, Aziz M, Cahill JA, Tan CW, Berens ME, et al.
Specification, Annotation, Visualization and Simulation of a Large Rule-Based
Model for ERBB Receptor Signaling. BMC Syst Biol (2012) 6:107. doi: 10.1186/
1752-0509-6-107

42. Dolan DWP, Zupanic A, Nelson G, Hall P, Miwa S, Kirkwood TBL, et al.
Integrated Stochastic Model of DNA Damage Repair by Non-Homologous
End Joining and P53/P21-Mediated Early Senescence Signalling. PLoS
Comput Biol (2015) 11(5):e1004246. doi: 10.1371/journal.pcbi.1004246

43. Mitra ED, Hlavacek WS. Parameter Estimation and Uncertainty
Quantification for Systems Biology Models. Curr Opin Syst Biol (2019)
18:9–18. doi: 10.1016/j.coisb.2019.10.006

44. Schomburg I, Chang A, Schomburg D. BRENDA, Enzyme Data and Metabolic
Information. Nucleic Acids Res (2002) 30(1):47–9. doi: 10.1093/nar/30.1.47

45. Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, Schomburg I, et al. BRENDA,
theELIXIRCoreDataResource in2021:NewDevelopmentsandUpdates.Nucleic
Acids Res (2021) 49(D1):D498–508. doi: 10.1093/nar/gkaa1025

46. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in
2015: A Public Database for Medicinal Chemistry, Computational Chemistry
and Systems Pharmacology. Nucleic Acids Res (2016) 44(D1):D1045–53.
doi: 10.1093/nar/gkv1072

47. Patterson EA, Whelan MP. A Framework to Establish Credibility of
Computational Models in Biology. Prog Biophys Mol Biol (2017) 129:13–9.
doi: 10.1016/j.pbiomolbio.2016.08.007

48. Roy M, Finley SD. Computational Model Predicts the Effects of Targeting
Cellular Metabolism in Pancreatic Cancer. Front Physiol (2017) 8:217.
doi: 10.3389/fphys.2017.00217

49. GhaffarizadehA,HeilandR, FriedmanSH,Mumenthaler SM,MacklinP. PhysiCell:
An Open Source Physics-Based Cell Simulator for 3-D Multicellular Systems.
PLoS Comput Biol (2018) 14(2):e1005991. doi: 10.1371/journal.pcbi.1005991

50. Schumacher LJ, Maini PK, Baker RE. Semblance of Heterogeneity in Collective
Cell Migration. Cell Syst (2017) 5(2):119–27. doi: 10.1016/j.cels.2017.06.006

51. Vipond O, Bull JA, Macklin PS, Tillmann U, Pugh CW, Byrne HM, et al.
Multiparameter Persistent Homology Landscapes Identify Immune Cell
Spatial Patterns in Tumors. Proc Natl Acad Sci USA (2021) 118(41):
e2102166118. doi: 10.1073/pnas.2102166118

52. Hernandez-Boussard T, Macklin P, Greenspan EJ, Gryshuk AL, Stahlberg E,
Syeda-Mahmood T, et al. Digital Twins for Predictive Oncology Will be a
Paradigm Shift for Precision Cancer Care. Nat Med (2021) 27(12):2065–6.
doi: 10.1038/s41591-021-01558-5

Conflict of Interest: The author had a position as Guest Researcher at Frederick
National Laboratory for Cancer Research, Leidos Biomedical Research, LLC, and
is Founder and CEO of BioSystems Strategies, LLC.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Mertins. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
January 2022 | Volume 11 | Article 805592

https://doi.org/10.1016/j.cell.2007.01.039
https://doi.org/10.1038/ncb954
https://doi.org/10.1016/j.tibs.2014.10.002
https://doi.org/10.1016/j.molcel.2011.01.012
https://doi.org/10.1016/j.molcel.2011.01.012
https://doi.org/10.1073/pnas.0501352102
https://doi.org/10.1371/journal.pcbi.1004787
https://doi.org/10.1016/j.molcel.2012.11.002
https://doi.org/10.1038/srep38244
https://doi.org/10.1002/psp4.12291
https://doi.org/10.1186/1752-0509-7-67
https://doi.org/10.1038/s41598-020-69380-6
https://doi.org/10.1016/j.ymeth.2013.04.007
https://doi.org/10.1002/jms.4659
https://doi.org/10.1111/jcmm.15712
https://doi.org/10.1158/2159-8290.CD-13-0219
https://doi.org/10.1021/pr501254j
https://doi.org/10.1016/j.isci.2019.10.059
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1038/s41586-019-0987-8
https://doi.org/10.1016/j.cell.2021.02.055
https://doi.org/10.1016/j.cell.2020.10.044
https://doi.org/10.1016/j.cell.2020.10.044
https://doi.org/10.1016/j.celrep.2014.11.014
https://doi.org/10.1126/sciadv.aax8930
https://doi.org/10.1038/nature10098
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1186/s12874-019-0681-4
https://doi.org/10.1186/s12874-019-0681-4
https://doi.org/10.1186/1752-0509-6-107
https://doi.org/10.1186/1752-0509-6-107
https://doi.org/10.1371/journal.pcbi.1004246
https://doi.org/10.1016/j.coisb.2019.10.006
https://doi.org/10.1093/nar/30.1.47
https://doi.org/10.1093/nar/gkaa1025
https://doi.org/10.1093/nar/gkv1072
https://doi.org/10.1016/j.pbiomolbio.2016.08.007
https://doi.org/10.3389/fphys.2017.00217
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1016/j.cels.2017.06.006
https://doi.org/10.1073/pnas.2102166118
https://doi.org/10.1038/s41591-021-01558-5
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Mónica Hebe Vazquez-Levin,

Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas (CONICET),

Argentina

Reviewed by:
Ole Winther,

University of Copenhagen, Denmark
Konstantinos Zormpas-Petridis,

Institute of Cancer Research (ICR),
United Kingdom

*Correspondence:
Shahira Abousamra

sabousamra@cs.stonybrook.edu

Specialty section:
This article was submitted to

Cancer Genetics,
a section of the journal
Frontiers in Oncology

Received: 01 November 2021
Accepted: 31 December 2021
Published: 16 February 2022

Citation:
Abousamra S, Gupta R, Hou L,

Batiste R, Zhao T, Shankar A, Rao A,
Chen C, Samaras D, Kurc T and

Saltz J (2022) Deep Learning-Based
Mapping of Tumor Infiltrating
Lymphocytes in Whole Slide

Images of 23 Types of Cancer.
Front. Oncol. 11:806603.

doi: 10.3389/fonc.2021.806603

TECHNOLOGY AND CODE
published: 16 February 2022

doi: 10.3389/fonc.2021.806603
Deep Learning-Based
Mapping of Tumor Infiltrating
Lymphocytes in Whole Slide
Images of 23 Types of Cancer
Shahira Abousamra1*, Rajarsi Gupta2, Le Hou1, Rebecca Batiste3, Tianhao Zhao3,
Anand Shankar4, Arvind Rao4, Chao Chen2, Dimitris Samaras1, Tahsin Kurc2

and Joel Saltz2

1 Department of Computer Science, Stony Brook University, Stony Brook, NY, United States, 2 Department of Biomedical
Informatics, Stony Brook University, Stony Brook, NY, United States, 3 Department of Pathology, Stony Brook University,
Stony Brook, NY, United States, 4 Department of Computational Medicine & Bioinformatics, University of Michigan,
Ann Arbor, MI, United States

The role of tumor infiltrating lymphocytes (TILs) as a biomarker to predict disease
progression and clinical outcomes has generated tremendous interest in translational
cancer research. We present an updated and enhanced deep learning workflow to
classify 50x50 um tiled image patches (100x100 pixels at 20x magnification) as TIL
positive or negative based on the presence of 2 or more TILs in gigapixel whole slide
images (WSIs) from the Cancer Genome Atlas (TCGA). This workflow generates TIL maps
to study the abundance and spatial distribution of TILs in 23 different types of cancer. We
trained three state-of-the-art, popular convolutional neural network (CNN) architectures
(namely VGG16, Inception-V4, and ResNet-34) with a large volume of training data, which
combined manual annotations from pathologists (strong annotations) and computer-
generated labels from our previously reported first-generation TIL model for 13 cancer
types (model-generated annotations). Specifically, this training dataset contains TIL
positive and negative patches from cancers in additional organ sites and curated data
to help improve algorithmic performance by decreasing known false positives and false
negatives. Our new TIL workflow also incorporates automated thresholding to convert
model predictions into binary classifications to generate TIL maps. The new TIL models all
achieve better performance with improvements of up to 13% in accuracy and 15% in F-
score. We report these new TIL models and a curated dataset of TIL maps, referred to as
TIL-Maps-23, for 7983WSIs spanning 23 types of cancer with complex and diverse visual
appearances, which will be publicly available along with the code to evaluate performance.

Code Available at: https://github.com/ShahiraAbousamra/til_classification.

Keywords: TIL maps, digital histopathology, whole slide images, tumor infiltrating lymphocytes, deep learning,
large scale analysis
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1 INTRODUCTION

Tumor infiltrating lymphocytes (TILs) have gained importance as a
biomarker in translational cancer research for predicting clinical
outcomes and guiding treatment. As our collective understanding
of tumor immune responses in cancer expands, clinical research
studies have shown that high densities of TILs correlate with
favorable clinical outcomes (1), such as longer disease-free
survival (2) and/or improved overall survival in multiple types of
cancer (3). Studies also suggest that the spatial distribution of TILs
within complex tumor microenvironments may play an important
role in cancer prognosis (4–6). These findings have led to efforts to
characterize the abundance and spatial distribution of TILs in
cancer tissue samples to further our understanding of tumor
immune interactions and help develop precision medicine
applications in oncology (7–11).

Computational image analysis of whole slide images (WSIs)
of cancer tissue samples has become a very active area of
translational biomedical research. The goals are to gain novel
insights into cancer and the tumor microenvironment, including
tumor immune responses, through the search for biomarkers to
predict outcomes and treatment response. Modern digital
microscopes scan whole slide tissue samples at very high image
resolutions, ranging from 50,000x50,000 pixels to over
100,000x100,000 pixels. The increasing availability of such
gigapixel WSIs has stimulated the development of image
analysis methods for detection, segmentation, and classification
of microanatomic regions, structures, cells, and other objects in
tissue images. Therefore, we utilized advances in computer vision
and machine learning to quantitatively characterize TILs to
complement qualitative microscopic evaluation of cancer tissue
samples by pathologists. Deep learning has become the preferred
approach for a variety of image analysis tasks in recent years (12–
17) since these methods can analyze raw image data and do not
require specified instructions to identify and quantify engineered
image features. Furthermore, deep learning-based image analysis
workflows have been shown to consistently produce more
accurate results and generalize to new datasets better than
previous image analysis methods in computational pathology.

Several projects have implementedmethods to detect and classify
lymphocytes in tissue images. Eriksen et al. (18) employed a
commercial system to count CD3+ and CD8+ cells in tissue
images that were obtained from stage II colon cancer patients and
stained with an immunohistochemistry (IHC) protocol. Swiderska-
Chadaj (19) also trained a deep learning model with a dataset of
171,166 annotated CD3+ and CD8+ cells in images of IHC stained
tissue specimens frombreast, prostate and colon cancer cases. Garcia
et al. (20) proposed a deep learning model to count TILs in IHC
images of gastric cancer tissue samples by using amodel trainedwith
70x70 square pixel patches extracted from biopsy micrographs
scanned at 40x magnification and labeled by pathologists.
PathoNet, developed by Negahbani et al. (21), implements a deep
learning model based on the U-Net architecture (22) for detection
and classification of Ki-67 and TILs in breast cancer cases.

Methods were also developed to study TILs in Hematoxylin and
Eosin (H&E) stained tissue images. Budginaite et al. (23) developed
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a deep learning workflow based on the Micro-Net architecture (24)
and multi-layer perceptrons to identify lymphocytes in tissue
images from breast and colorectal cancer cases. Corredor et al.
(25) investigated the spatial patterns of TILs in early stage non-
small cell lung cancer cases with the goal of predicting cancer
recurrence. Jaber et al. (26) investigated TILs in non-small cell lung
cancer cases by employing deep learning architectures and support
vector machines to classify 100x100 square micron patches in
WSIs. Acs et al. (27) developed a computerized TIL scoring
method using QuPath software (28) to cluster melanoma cancer
patients into those with favorable prognosis and those with poor
prognosis. Linder et al. (29) evaluated the use of deep learning for
TIL analysis in tissue images of testicular germ cell tumors by using
commercial image analysis software and implementing a two stage
workflow in which the first stage processed WSIs to detect regions
that contained TILs and the second stage counted the TILs in those
regions, demonstrating how deep learning-based methods can be
used successfully for TIL detection in germ cell cancer. Amgad
et al. (30) proposed a deep learning workflow based on a fully
convolutional network architecture developed by Long et al. (31) to
identify tumor, fibroblast, and lymphocyte nuclei and tumor and
stroma regions. Le et al. (32) developed deep learning models for
segmentation of tumor regions and detection of TIL distributions
in whole slide images of breast cancer tissues by training models
based on VGG16, Inception-V4, and Resnet-34 architectures that
used WSIs from The Surveillance, Epidemiology, and End Results
(SEER) Program at the National Cancer Institute (NCI) and the
Cancer Genome Atlas (TCGA) repository.

Despite an increasing number of projects, there are few large scale
datasets ofWSIs that are publicly available to study TILs. Moreover,
most of the previous projects targeted specific types of cancer from
particular organ sites. The classification of TILs can be challenging in
large datasets of WSIs across multiple types of cancer from different
organ sites for many reasons. Deep learning models need to
distinguish TILs from cancer cells that are intrinsically complex
across a wide spectrum of growth patterns, cellular and nuclear
morphologies, and other histopathologic features associated with
specific types of cancer, which vary by organ site, state of cellular
differentiation, and stage of cancer (e.g. primary organ site versus a
metastatic tumor deposit). Computational image analysis of
pathology WSIs is also complicated by variations in image
properties from differences in scanning with different types of
digital slide scanners and varying tissue staining laboratory
protocols. Figure 1 shows an example of identifying TILs in a WSI
and the heterogeneity of the appearance and distribution of TILs in
different tissue samples. Before our work, the largest TIL dataset was
generated by Saltz et al. (33), where 5202WSIs from 13 cancer types
were analyzed.

In this paper we describe a deep learning workflow that was
utilized to generate a large dataset of TILmaps, referred to here as the
TIL-Maps-23 dataset. Unlike the previous work that studied TILs in
mostly common types of cancer, we trained a deep learning model
with the goal of analyzingWSIs from amuchwider range of different
types of cancer. We adopted the same approach of patch-wise
classification as in (33), where each WSI is partitioned into non-
overlapping patches of size 50 x 50 square microns. A trained deep
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learning CNN model classifies each patch as TIL-positive or TIL-
negative and then compiled to generate a TILmap of theWSI.While
a classification at the cellular level allows finer grain analysis, patch-
level classification offers several advantages. First, it requires much
less annotation time and effort. The pathologist can justmark regions
as TIL positive or TIL negative and thenwe can sample patches from
these regions. On the other hand, cell-level annotations require
marking each individual lymphocyte cell in a patch. Second,
optimizing nuclear classification is more challenging over multiple
cancer types and needs much more data. Our approach allows us to
scale the dataset to develop a model to span more cancer types with
much less effort. Third, the identifying lymphocytes at a 50 microns
resolution provides valuable and interpretable information about the
spatial distributions of TILs across large sets of WSIs to study many
samples from a particular type of cancer and/or compare the role of
TILs in different types of cancer, which can be further studied in
downstream correlative analyses. In an earlier work (33), we applied
spatial statistics to patch-level TIL predictions in WSIs and
demonstrated that spatial clustering patterns of TILs correlate with
molecular features and clinical outcomes. In another work (32), we
computed TIL infiltration amounts by combining patch-level TIL
predictions with tumor segmentation results in breast cancer and
showed correlations between TIL infiltration and survival that was
stratified by molecular subtype.

The work presented in this manuscript focuses on an improved
deep learning workflow for patch-level TIL prediction and
generation of a large dataset of TIL predictions across multiple
cancer types.Weplan to carry out additional studies to ascertain the
Frontiers in Oncology | www.frontiersin.org 35152
clinical relevance of TIL predictions in future works. Our work
improveson the earlierworkdonebySaltz et al. (33) in severalways.
The previous work trained two CNNdeep learningmodels, one for
detecting lymphocytes and the other for segmenting necrosis
regions by using convolutional neural networks (CNNs)
developed in-house. The necrosis segmentation model was used
to eliminate false TIL-positive predictions in necrotic regions of
tissues, which required two separate training datasets. This new and
improved deep learning workflow employs a single CNN by
adapting popular, engineered classification networks and using a
combination of manual annotations and machine-generated
annotations as training data. Moreover, the previous work
included a manual thresholding step in order to generate the final
binary TIL maps. This step consisted of a patch sampling process
andamanual reviewof the sampledpatches tosetTIL-positive/TIL-
negative thresholds for different WSIs. The new workflow
implements an automated mechanism for computing thresholds
to map model predictions to binary classifications. This eliminates
themanual thresholding step of the previouswork.After all of these
improvements, we present the TIL-Maps-23 dataset for 23 types of
cancer, which is the largest collection of curated TIL maps across
both common and rare types of cancer to date.
2 MATERIALS AND METHODS

The overall analysis workflow is illustrated in Figure 2. The
workflow consists of training data generation, model training,
FIGURE 1 | Identifying Tumor Infiltrating Lymphocyte (TIL) regions in gigapixel pathology WSIs. (A) H&E stained WSI of lung adenocarcinoma. (B) Example of a
region of tissue. (C) Example of a TIL map overlaid on the region of tissue. (D) Examples of TIL positive (framed in red) and negative (framed in green) patches. A
lymphocyte is typically dark, round to ovoid, and relatively small compared to tumor and normal nuclei. Sample patches show the heterogeneity in TIL regions and
how it can be challenging to differentiate TIL positive and TIL negative regions.
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and inference steps. The training dataset is generated by
combining labels from manual patch-level and region-level
annotations, as well as classification predictions generated by
the deep learning model developed in (33). The inference step
(Figure 3) partitions WSIs into patches, outputs patch-level
probability values, and executes an automated method to
compute thresholds for mapping the probability values to
binary classifications.
Frontiers in Oncology | www.frontiersin.org 45253
2.1 Generating Training Dataset
We created a training dataset by combining manually annotated
patches (strong annotations) from 18 TCGA cancer types (ACC,
BRCA, COAD, ESCA, HNSC, KIRC, LIHC, LUAD, MESO, OV,
PAAD, PRAD, SARC, SKCM, TGCT, THYM, UCEC, and
UVM) and model-generated annotations from 4 TCGA cancer
types (CESC, LUSC, READ, and STAD). For the model-
generated annotations, we sampled a set of patches classified
FIGURE 2 | The overall analysis workflow: Training data generation, model training, inference (prediction), and computing threshold values. Training data is
generated via a combination of manual annotations and model-generated predictions. A trained model generates predictions in the form of the probability that a
patch is TIL-positive. The probability values are mapped to binary classifications by applying an automatically computed threshold.
FIGURE 3 | TIL inference step. An input WSI is partitioned into disjoint patches of 50x50 square microns. Each patch is processed by the trained classification
model and assigned a probability value. The probability values are mapped to binary classifications. A TIL map covering the entire WSI is generated.
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by the model in (33). The model-generated annotations are
employed not only as a cost-saving mechanism to reduce
manual annotation workload but also to increase diversity in
texture and appearance of tissue data. Variations in texture and
appearance are often the case with H&E images, especially with a
dataset like TCGA which comes from multiple sites, each using
their own slide scanners and staining protocols. We have shown
previously in (34) that combining manual annotations with
model-generated annotations for cancer types with scarce or
no manual annotations gives better results compared to using
manual annotations alone.

The manual annotations are generated in 2 ways. First,
patches of 150 x 150 square microns are randomly sampled
from the WSIs. Pathologists annotate the center 50 x 50 square
micron sub-patch in each patch. The annotation indicates
whether the center sub-patch is TIL-positive or TIL-negative.
Using a 150 x 150 square micron patch allows pathologists to see
the surrounding tissue for a more informed decision on the label
of the center sub-patch. Only the center sub-patch is used in
training. A patch is labeled TIL-positive if it has at least 2
lymphocytes or plasma cells in the center sub-patch. Second,
pathologists mark TIL-positive and TIL-negative regions on
WSIs, where TIL-positive regions are regions with a significant
amount of lymphocytes and/or plasma cells. Patches of 50 x 50
square microns are randomly sampled from these regions, where
each patch is assigned the same label as the source region.

The model-generated annotations are collected from
classifications produced by the previous model in (33). This
model employed a human-in-the-loop TIL classification
procedure, where a manual threshold step was applied to the
predicted TIL probability maps in order to produce binary
classifications. In our work, we randomly sampled TIL-positive
and TIL-negative patches from the binary classifications.

2.2 Deep Neural Network Models
and Training
We trained 3 models with different networks: VGG-16 (35),
ResNet-34 (36), and Inception-V4 (37). These networks are
engineered for image classification. They have been shown to
be powerful classifiers on the ImageNet dataset (38) and have
been adopted in various computer vision applications. The main
differences between the 3 networks can be summarized as
follows: VGG-16 has a basic convolutional neural network
architecture; ResNet-34 is much deeper and features skip
connections that allow a more stable training of the deeper
network; and Inception-v4 is an even a deeper network, where
each block in the network utilizes residual connections and
convolutional layers of various sizes to capture features at
different resolutions and reception fields.

Each network is initialized with weights from the
respective pre-trained model on ImageNet. The batch
normalization layers are dropped. Each input image (patch)
is scaled with bilinear interpolation to match the network’s
pre-training input size (i.e., 224 x 224 pixels for VGG-16, 299
x 299 pixels for Inception-V4, and 100 x 100 for ResNet-34).
The input image is normalized to the range [–1, 1] for VGG-
Frontiers in Oncology | www.frontiersin.org 55354
16 and Inception-V4 by img = ( img
255 − 0:5)� 2. For ResNet-34,

the input image is normalized with the same mean and
standard deviation vectors as the pre-trained model. The
training phase implements data augmentation, including
random rotation and flipping, shifting of input patches left/
right and up/down by a random number of pixels in the range
of [–20, +20], and color augmentation via small variations to
brightness and color in the hue, saturation, and lightness
(HSL) space. All of the networks were trained end-to-end
using the cross entropy loss.

2.3 Determining Binary
Classification Thresholds
The trained models output a probability value for each patch in
an input WSI. This creates a probability map for the entire WSI.
The final binary prediction (TIL positive or TIL negative) is
obtained by thresholding the probability map. If the probability
of a patch is greater than or equal to the threshold value, the
patch is classified as TIL-positive. Otherwise, it is classified as
TIL-negative.

A default threshold value of 0.5 was used during training to
evaluate a model’s performance in each training epoch. At the
end of the training phase, the threshold value was fine-tuned for
the inference phase. A threshold value in the range [0.4, 0.6] was
selected for each model based on the performance of the model
on a small hold-out dataset. We evaluated two methods for
selecting the threshold value for each model. The first method
relies on the true positive rate (TPR) and the false positive rate
(FPR) (39). The optimal (FPR, TPR) pair is (0,1). The threshold
selection method minimizes the FPR and maximizes the TPR.
Figure 4 shows an example receiver operating characteristic
(ROC) curve (x = FPR, y = TPR). The length of the line from
the (0,1) point and intersecting the curve at (fpr, tpr)
is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fpr2 + (1 − tpr)2

p
. By selecting the threshold value that

minimizes the distance from (0,1) to the curve, FPR and (1-
TPR) are minimized. The second method is based on the Youdin
Index, which is commonly used to select a threshold that
maximizes TPR - FPR (40). In our experiments, both methods
resulted in almost identical binary classification maps. The
threshold values selected for the VGG-16, ResNet-34, and
Inception-V4 models were 0.4, 0.56, and 0.41, respectively.

2.4 Software Support for Training Data
Generation and Review of Analysis Results
The WSIs in the image dataset are loaded to a software platform,
called Quantitative Imaging in Pathology (QuIP), for training
data generation and review of the model predictions. QuIP
consists of multiple services, implemented as micro-services
with software containers, and a set of Web-based applications
that support viewing of WSIs, annotation of image regions and
patches, and interactive viewing of model predictions as
heatmaps overlaid on WSIs (41).

One of the web applications is a markup and annotation tool
with multiple class label selections (Figure S2 in supplementary
material). This tool enables annotations of full-resolution whole
slide tissue images. The user can draw a polygon to mark up a
February 2022 | Volume 11 | Article 806603
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region and select a label from a pull-down menu to label the
region. Multiple regions and classes can be annotated in an
image. In addition to marking regions, pathologists can annotate
individual patches. Another web application is used for this
purpose. A set of patches are displayed to the user who can assign
a label to each patch by clicking on the patch. To minimize the
number of mouse clicks (or taps on touch screens) for the binary
classification case, we assume a default class for all patches. The
user clicks on patches that belong to the alternative class only.

Manual examination of model predictions requires
interactive interrogation and visual analytic tools that link
these results with the underlying images. QuIP implements
two tools for this purpose; the FeatureMap tool and the
heatmap viewer/editor. The FeatureMap tool converts
probability maps into low resolution heatmaps, called
featuremaps, which can be visualized at a lower image
resolution than at the resolution of whole slide images
(Figure 5A). Each pixel in a featuremap image corresponds to
a patch in the WSI. The goal is to let a user rapidly go through a
set of images without having to load heatmaps on full-resolution
images and pan and zoom in the images. After reviewing a
featuremap, the user can click anywhere on the featuremap
image and visualize the region at full image resolution using
the heatmap viewer/editor. The heatmap viewer/editor allows a
user to access full-resolution heatmap representation of a
probability map overlaid on the input WSI and re-label
algorithm predictions (Figure 5B). The user can click on an
area in a heatmap, zoom and pan, and interactively examine the
areas of interest. If the user determines that predictions in some
areas should be corrected, the user switches to the heatmap
Frontiers in Oncology | www.frontiersin.org 65455
editor and annotates a set of patches to be positive or negative on
the WSI. The FeatureMap and heatmap viewer/editor tools rely
on the backend data management and indexing services of QuIP,
namely PathDB for managing images and FeatureMap data and
FeatureDB for managing probability maps and user annotations.

2.5 Evaluating Model Performance
We evaluated the performances of the trained models via two
methods: patch-level classification accuracy and region
categorical classification performance.

For patch-level classification accuracy, we collected manually
labeled test patches and measured the performance of each
model with these patches using the accuracy and F-score
metrics. The accuracy metric represents the percent of
correctly classified patches and is computed as:

Accuracy =
TP + TN

TP + TN + FP + FN
� 100% (1)

Here TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the
number of false negatives. The F-score measures the balance of
model precision and how many of the positive patches are
correctly classified (i.e. recalled). It is computed as:

Precision =
TP

TP + FP
,  Recall =

TP
TP + FN

,  

F − score =
2� Precision � Recall
Precision + Recall

(2)

For the region categorical classification performance, we
adopted the evaluation method implemented in (33). We
evaluated the correlation between predictions from the models
and annotations (labels) from the pathologists, both
quantitatively and qualitatively using super-patches. Super-
patches make it easier to collect a large number of annotations
from multiple pathologists. This evaluation method provides a
higher level of evaluation that is beyond individual patches and
offers a quantification of the correlation between a model’s
predictions and a pathologist’s perception of TIL distribution.

A super-patch is defined as a large 800 x 800 square pixel
patch at 20x magnification (i.e., a super-patch covers a 400 x 400
square micron area in tissue). The deep learning models classify
100 x 100 square pixel patches at 20x magnification. Hence, each
super-patch is divided into an 8 x 8 grid, and each patch (of 100 x
100 square pixels) is classified as TIL-Positive or TIL-Negative.
Figure 6 shows an example of a super-patch and the labeling of
its patches.

In our work, each super-patch was annotated by one to three
pathologists as Low TIL, Medium TIL, or High TIL, based on the
perceived fraction of the area of the TIL-positive patches. The
score of a deep learning model for a given super-patch is the
number of patches classified as TIL-positive by the model.
Hence, each super-patch gets assigned a score between 0 to 64.

We use the polyserial correlation method (42, 43) to quantify
the correlation between the model scores and the pathologist
annotations. Polyserial correlation measures the inferred latent
correlation between a continuous variable and an ordered
FIGURE 4 | Model probability threshold selection. The objective is to
minimize the false positive rate (FPR) and maximize the true positive rate
(TPR). This ROC plot (FPR, TPR), illustrates that by minimizing the distance
from the point (0,1) to the curve, we are minimizing FPR2 + (1 - TPR)2, thus
achieving our objective. The selected threshold corresponds to the FPR and
TPR at which the line intersects with the curve minimizing the distance to the
point (0,1).
February 2022 | Volume 11 | Article 806603

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Abousamra et al. Large Scale Lymphocyte Maps
A

B

FIGURE 5 | (A) FeatureMap along with a view of the tissue image. (B) Heatmap viewer and editor for viewing of heatmaps on full-resolution WSIs and for fine-grain
re-labeling of patches to generate additional training data.
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categorical variable, which, in our case, represent scoring by the
model and the rounded average TIL-positive annotations from
the pathologists, respectively. We also used violin plots for the
qualitative evaluation of the correlation between the model
scoring and the pathologists’ categorical labels. Violin plots can
be viewed as box plots that show the smoothed probability
density distribution rotated on each side.
3 RESULTS

3.1 Dataset and Implementation Details
The number of patches in training and test sets are given in
Tables S1 and S2 in the supplementary material. On average, 19
WSIs per cancer type were used in manually annotated training
data and 117 WSIs per cancer type were used in model-generated
training annotations. There were 351,272 patches in total in the
training dataset. Out of these patches, 282,065 were manually
annotated and 69,207 were patches from the model-generated
annotations dataset. The model-generated annotations allowed us
to reduce the manual annotation effort by 19% and increase
training data diversity by covering 22 cancer types (the training
dataset did not include patches from BLCA), while maintaining a
good ratio of strong annotations to model-generated annotations.
Frontiers in Oncology | www.frontiersin.org 85657
We trained three models with popular networks, namely
Inception V4 (37), VGG-16 (35) and ResNet-34 (36), as
described in Section 2. The models were trained with the
Adam optimizer using a learning rate of 0.00005 and a batch
size of 128.

3.2 Patch-Level Classification Accuracy
We collected 327, 299, 326, and 299 of manually labeled test
patches from BRCA, LUAD, SARC, and OV, respectively, and 888
patches in total from the other cancer types with 47 patches per
cancer type on average. Tables 1 and 2 show the accuracy and F-
score, respectively, for the three models, as well as the model
trained in (33), referred to as the Baselinemodel in the tables. The
columns LUAD, BRCA, SARC, and OV show the performance
numbers in each metric for the patches collected from these four
cancer types. The columns Other and All show the performance
values with the 888 patches from the other cancer types and with
all of the patches, respectively. The column 13 Cancer Types shows
the performance comparison between the Baseline model and the
newer models with patches from the 13 cancer types (BLCA,
BRCA, CESC, COAD, LUAD, LUSC, PAAD, PRAD, READ,
SKCM, STAD, UCEC, and UVM) analyzed in the previous
work (33). The results show that the new models outperformed
the Baseline model by up to 13% in accuracy and 15% in F-score.
FIGURE 6 | Illustration of a superpatch labeling and prediction.
TABLE 1 | Evaluation of patch classification accuracy.

Model Name LUAD BRCA SARC OV Other* 13 cancer types** All

Baseline 73.60% 74.90% – – – 79.56% –

VGG-16 83.28% 88.38% 94.17% 88.29% 82.52% 83.32% 86.02%
ResNet-34 84.28% 86.24% 91.41% 87.29% 82.10% 82.45% 85.14%
Incep-V4 86.29% 87.16% 96.93% 94.31% 82.53% 83.68% 87.43%
Febru
ary 2022 | Volume 11 | Article
Compare result for each of LUAD, BRCA, SARC, OV, *Other: patches from other cancer types in the set of 23 types used in training, **13 cancer types: subset of test patches
belonging to the 13 cancer types the baseline model with human in the loop (Baseline) (33) was trained on, All: all test patches from all the 23 cancer types. Best accuracy in each
dataset is indicated in bold.
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All of the newmodels performed well, attaining high accuracy and
F-score values. In most of the cases, the Inception V4 model
achieved better performance, in the range of 1–5% higher values,
than the other models.

3.3 Region Categorical Classification
We collected manual annotations on 4,198 randomly selected
super-patches from the 23 cancer types. Table 3 shows the
polyserial correlation coefficient for each model for super-
patches from individual cancer types. The last column in the
bottom set of the table is the polyserial correlation coefficient
with respect to the collective set of super-patches and the mean
and standard deviation over the correlation coefficients of the
individual cancer types. The results show that no single model is
consistently better than the other models. The Inception V4
model achieves a higher mean score as shown in the ALL column
of the table. The correlation coefficients are the lowest for KIRC.
The nuclei of cells in KIRC are generally small, dark, and
rounded, which gives the tumor cells a similar appearance to
lymphocytes. Thus, the deep learning models classify them
incorrectly and overestimate TIL regions. Figure 7 shows some
of the super-patches that were incorrectly scored by the
Inception V4 model. The left panel in the figure shows the
categorical label (Low, Medium and High) of the super-patch
assigned by the pathologists as well as the model prediction and
the number of patches classified as TIL-positive by the model in
parentheses. For the sake of presentation in the figure, the model
prediction is described as Low, if the model score is 0 ≤score ≤
Frontiers in Oncology | www.frontiersin.org 95758
21, Medium if the score is 22 ≤score ≤ 42, and High >42. Similar
low correlations were obtained with super-patches from OV. The
Inception V4 model resulted in under-estimation in 14 cases
versus over-estimation in 9 cases of the OV super-patches.
Figure 8 shows various sample results from the model with
the OV super-patches, illustrating the discrepancy between the
model scoring and the pathologists’ classifications. The polyserial
correlation coefficient is greater than or equal to 0.8 for 13 cancer
types (ACC, BRCA, ESCA, HNSC, LIHC, MESO, PAAD, PRAD,
READ, SARC, SKCM, TGCT, and UVM), between 0.7 and 0.8
for 5 cancer types (LUSC, THYM, STAD, BLCA, and UCEC)
and below 0.7 for 5 cancer types (COAD, CESC, OV, LUAD,
and KIRC).

Figure 9 shows the violin plots for scores from each deep
learning model against the rounded average of pathologists’
annotations. The visual representations of the density
distributions and the median values indicate that the VGG-16
model tends to under-estimate TILs. The ResNet-34 and Inception-
V4 models are more consistent with the pathologist categorical
labeling, where the Inception-V4 model performs better.

3.4 TIL Area Estimation
After we evaluated the performance of these TIL models and
visually confirmed how well TILs were being classified in WSIs
across 23 types of cancer, the next step was to utilize the best TIL
model to analyze all of the available diagnostic DX1 TCGAWSIs
in these types of cancer to characterize the abundance and spatial
distribution of TILs as a potential biomarker. Based on our
TABLE 2 | Patch classification F-score results.

Model Name LUAD BRCA SARC OV Other* 13 cancer types** All

Baseline 0.78 0.77 – – – 0.85 –

VGG-16 0.85 0.88 0.92 0.84 0.85 0.86 0.86
ResNet-34 0.87 0.87 0.88 0.82 0.86 0.86 0.86
Incep-V4 0.89 0.89 0.96 0.93 0.87 0.88 0.89
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Compare result for each of LUAD, BRCA, SARC,OV, *Other: patches fromother cancer types in the set of 23 types used in training, **13 cancer types: subset of test patches belonging to the 13
cancer types the baseline model with human in the loop (Baseline) (33) was trained on, All: all test patches from all the 23 cancer types. Best F-score in each dataset is indicated in bold.
TABLE 3 | Superpatches evaluation using polyserial correlation coefficient.

Model Name ACC (147) BLCA (64) BRCA (348) CESC (61) COAD (65) ESCA (312) HNSC (324) KIRC (319)

Baseline – 0.720 0.552 0.679 0.329 – – –

VGG-16 0.879 0.787 0.745 0.592 0.688 0.777 0.904 0.515
ResNet-34 0.925 0.740 0.797 0.654 0.658 0.810 0.883 0.599
Incep-V4 0.963 0.744 0.797 0.667 0.695 0.805 0.897 0.598
Model Name LIHC (248) LUAD (63) LUSC (65) MESO (271) OV (158) PAAD (440) PRAD (66) READ (62)
Baseline – 0.615 0.658 – – 0.695 0.819 0.706
VGG-16 0.891 0.670 0.830 0.840 0.565 0.886 0.885 0.702
ResNet-34 0.872 0.733 0.775 0.805 0.527 0.874 0.862 0.715
Incep-V4 0.854 0.617 0.789 0.818 0.635 0.870 0.818 0.811
Model Name SARC (299) SKCM (67) STAD (63) TGCT (303) THYM (324) UCEC (64) UVM (64) ALL (4198)
Baseline – 0.666 0.728 – – 0.692 0.681 –

VGG-16 0.912 0.816 0.713 0.859 0.774 0.667 0.896 0.807 (0.77 ± 0.12)
ResNet-34 0.932 0.794 0.821 0.799 0.765 0.766 0.899 0.808 (0.78 ± 0.10)
Incep-34 0.921 0.822 0.752 0.823 0.790 0.742 0.913 0.820 (0.79 ± 0.10)
The number in brackets indicated the number of superpatches in the respective cancer type. Baseline is the model developed in (33).
Highest polyserial correlation in each dataset (cancer type) is indicated in bold.
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FIGURE 7 | Sample KIRC super-patches, showing the categorical label and the Inception model prediction. KIRC is challenging because other cell types nuclei can
look like lymphocytes. The model prediction is displayed as a category and a score between brackets. The models’ scoring is a value in the range 0 to 64. We
roughly interpret it as: Low if 0 ≤score≤ 21, Medium if 22 ≤score ≤ 42, and High otherwise. Top row: cases where the category approximated from the model
scoring does not match the pathologists’ label. Bottom row: cases where the category approximated from the model scoring matches the pathologists’ label.
FIGURE 8 | Sample OV super-patches, showing the categorical label and the Inception model prediction. The model prediction is displayed as a category and a
score between brackets. The models’ scoring is a value in the range 0 to 64. We roughly interpret it as: Low if 0 ≤core ≤ 21, Medium if 22 ≤core ≤ 42, and High
otherwise. Top row: cases where the category approximated from the model scoring does not match the pathologists’ label. Bottom row: cases where the category
approximated from the model scoring matches the pathologists’ label.
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evaluations, we utilized the Inception model to analyze all
diagnostic DX1 TCGA WSIs since it had the highest patch
classification accuracy and F-score and best overall
performance on the super-patches. We used the Inception-V4
TIL model to generate all of the TIL maps in this dataset and
compute the estimated average area that is infiltrated by TILs per
WSI in the dataset across 23 types of cancer. The results are
summarized in Table 4 and demonstrate how computational
pathology is very useful in characterizing TILs as a biomarker,
which can be very helpful in guiding future clinical research in
precision oncology and immunotherapy by supporting cohort
discovery by identifying potential types of cancer with high
abundance of intra- and peri-tumoral TILs.
4 DISCUSSION

We described and evaluated a deep learning workflow that
creates TIL maps to facilitate the quantitative characterization
of TILs and map their spatial distributions in H&E WSIs of
cancer tissue specimens. Since H&E staining is routinely
performed for diagnostic histopathologic evaluation of tissue
samples, we developed this workflow to analyze TILs in H&E
WSIs that are becoming more commonly available as digital
pathology is being more commonly adopted in clinical
laboratories. Studies have shown that the host immune system
is capable of controlling tumor growth through the activation of
adaptive and innate immune surveillance mechanisms (44) and
TABLE 4 | Estimated percent TIL area (mean±standard deviation) across WSIs in the

Cancer Type TIL Area Cancer Type

ACC 1.96 ± 5.15 BLCA
CESC 15.69 ± 11.57 COAD
HNSC 13.54 ± 10.36 KIRC
LUAD 14.29 ± 11.31 LUSC
OV 3.94 ± 4.96 PAAD
READ 9.04 ± 6.23 SARC
STAD 15.29 ± 13.24 TGCT
UCEC 7.87 ± 8.40 UVM
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that the spatial context and nature of cellular heterogeneity of the
tumor microenvironment are important in cancer prognosis (1,
4, 45, 46). This has led to TILs becoming important in the clinical
arena with increasing importance in precision medicine (47–49).
Thus, having the ability to quantify TILs in diagnostic H&EWSIs
of tissue images is becoming incredibly important as we
collectively expand our understanding about tumor immune
interactions and their role in disease progression, recurrence,
treatment response, and survival.

Therefore, our goal was to develop a robust computational
pathology workflow for H&E WSIs to reliably characterize TILs
in the tumor microenvironment in a uniform manner. We
generated TIL maps to complement traditional microscopic
examination so that pathologists and research scientists could
interpret the abundance and distribution of TILs alongside the
assessment of invasive growth patterns and other histopathologic
features across 23 types of cancer. The interest in harnessing the
power of TILs to fight cancer continues to grow with advances in
immunotherapy, chemoradiation regimens, and other treatment
modalities, which has led to important translational cancer
research initiatives by the International Immuno-Oncology
Biomarker Working Group in creating standardized visual
reporting guidelines for pathologists to evaluate TILs in breast
cancer and other solid tumors (49–54). Even though pathologists
can follow the guidelines and perform qualitative and semi-
quantitative assessments of TILs in cancer, the task is highly
challenging, subjective, and prone to intra- and interobserver
variability. Our results show that the new TIL models are quite
FIGURE 9 | Violin plots of each model’s scores against super-patch categorical labels (Low, Medium, and High TIL).
dataset TIL-Maps-23.

TIL Area Cancer Type TIL Area

8.60 ± 8.23 BRCA 6.37 ± 7.38
9.60 ± 6.62 ESCA 11.34 ± 8.45
6.74 ± 8.43 LIHC 7.80 ± 8.27

15.59 ± 10.29 MESO 7.64 ± 8.03
10.42 ± 7.78 PRAD 5.73 ± 6.52
6.44 ± 9.28 SKCM 13.42 ± 14.46

14.51 ± 14.19 THYM 52.89 ± 26.88
2.20 ± 2.34 – –
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useful for both qualitative and quantitative evaluation of TILs
in WSIs. The TIL maps are also very useful for discerning
how much of the tissue samples contain mononuclear
lymphoplasmacytic infiltrates and their spatial distribution in
individual cancer tissue samples and across several different
kinds of cancer from various organ sites. And most
importantly, these new models perform better than the model
developed in the earlier work, which was limited to 13 different
types of cancer (33).

We attribute the better results to the use of state-of-the-art
engineered networks and our larger and more diverse training
dataset that includes both computer-generated annotations and
manual annotations. Having the capability to computationally
analyze WSIs to study fascinating patterns of tumor immune
interactions with reliable and reproducible methods represents a
highly significant opportunity for cancer research to help
improve cancer treatment and clinical management. This novel
data about the quantity and distribution TILs from H&EWSIs is
also important as a biomarker for downstream correlative
prognostic studies with clinical, radiologic, laboratory,
molecular, and pharmacologic data. Moreover, these kinds of
analyses facilitate large-scale research to elucidate deeper
mechanistic understanding of the role of tumoral immunity in
disease progression and treatment response across both common
and rarer types of cancer. Furthermore, the identification and
quantification of other image features would allow for the
formulation of higher-order relationships to explore the role of
TIL infiltrates in cancer immunology with respect to histologic
patterns of tumor growth, tumor grade, tumor heterogeneity,
cancer recurrence, and metastasis.

In this work, we used three popular network architectures,
VGG16, Inception V4, and ResNet-34, to train models for the
detection and classification of TILs in tissue images. There are
other state-of-the-art networks, such as Xception (55) and
EfficientNet (56), which have shown excellent performance in
image classification tasks. Our choice of the networks is
primarily based on the fact that we have used these selected
networks for other projects. Since deep learning is a rapidly
evolving field, future work will explore incorporating other deep
learning architectures into our workflow to further improve
performance and expand the capabilities and applicability of
our workflow. We utilized our models to generate TIL maps,
referred to here as the TIL-Maps-23 dataset, in 7983 H&E WSIs
in 23 tumor types in the TCGA data repository from among
approximately 12,000 diagnostic WSIs from 33 cancer types.

The TIL-Maps-23 dataset covers 70% of the TCGA cancer
types and 67% of the diagnostic TCGA WSIs. Beyond the
information embedded in pathology WSIs, the TCGA dataset
also includes demographic, clinical, and molecular data derived
from multiple molecular platforms, which presents a readily
available opportunity to integrate image-derived features, such
as TIL-tumor distance distributions or TIL spatial cluster
distributions, with rich molecular and clinical data to gain a
more comprehensive understanding about tumor immune
interactions and the role of TILs as a biomarker. To the best of
our knowledge, this is the largest set of TIL maps to date. The list
Frontiers in Oncology | www.frontiersin.org 126061
of cancer types included in the dataset is in Table 5. In addition to
making our models and Tensorflow CNN codes publicly available,
we are also releasing the dataset of TIL maps with the intention of
motivating translational cancer research and algorithmic
development for image analysis in computational pathology.
5 CONCLUSION

The growth of cancer immunotherapy has created tremendous
interest in characterizing the abundance and spatial distribution of
TILs in cancer tissue samples in order to explore their clinical
significance to help guide treatment. As the footprint of Digital
Pathology rapidly expands in translational cancer research and
clinical laboratories with the recent FDA approval of whole slide
imaging for primary diagnostic use, it is widely expected that a large
majority of pathology slides will be routinely digitized within the
next 5-10 years. In parallel, advances in machine learning, computer
vision, and computational hardware resources have led to an
increased focus on deep learning-based techniques for
segmentation and classification of various features of tissue
microanatomy in WSIs, including regions, microanatomic
structures, cells, nuclei, and other features. The characterization of
TIL infiltrated tissue in WSIs at a resolution of 50 microns by using
our methods goes far beyond what can be reproducibly and scalably
observed by human beings across hundreds and thousands of tissue
samples. Tools and methodologies that augment or enable such
TABLE 5 | The list of cancer types in TIL-Maps-23, the number of WSIs for each
cancer type, and the polyserial correlation coefficients for the Inception-V4 model,
sorted in descending order.

Cancer Type #
WSIs

Polyserial Correlation
Coefficient

Adrenocortical carcinoma (ACC) 323 0.96
Sarcoma (SARC) 255 0.92
Uveal melanoma (UVM) 80 0.91
Head and Neck squamous cell carcinoma
(HNSC)

450 0.90

Pancreatic adenocarcinoma (PAAD) 189 0.87
Liver hepatocellular carcinoma (LIHC) 365 0.85
Mesothelioma (MESO) 175 0.82
Prostate adenocarcinoma (PRAD) 403 0.82
Skin cutaneous melanoma (SKCM) 448 0.82
Testicular germ cell tumors (TGCT) 154 0.82
Esophageal carcinoma (ESCA) 156 0.81
Rectum adenocarcinoma (READ) 165 0.81
Breast invasive carcinoma (BRCA) 1068 0.80
Lung squamous cell carcinoma (LUSC) 484 0.79
Thymoma (THYM) 121 0.79
Stomach adenocarcinoma (STAD) 434 0.75
Bladder urothelial carcinoma (BLCA) 386 0.74
Uterine corpus endometrial carcinoma
(UCEC)

506 0.74

Colon adenocarcinoma (COAD) 453 0.69
Cervical squamous cell carcinoma (CESC) 268 0.67
Ovarian serous cystadenocarcinoma (OV) 106 0.64
Lung adenocarcinoma (LUAD) 480 0.62
Kidney renal clear cell carcinoma (KIRC) 514 0.60
Februar
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characterizations can improve the practice of pathology while we
march towards realizing the goal of precision oncology.
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The development of digital cancer twins relies on the capture of high-resolution

representations of individual cancer patients throughout the course of their treatment.

Our research aims to improve the detection of metastatic disease over time from

structured radiology reports by exposing prediction models to historical information.

We demonstrate that Natural language processing (NLP) can generate better weak

labels for semi-supervised classification of computed tomography (CT) reports when it

is exposed to consecutive reports through a patient’s treatment history. Around 714,454

structured radiology reports from Memorial Sloan Kettering Cancer Center adhering to a

standardized departmental structured template were used for model development with

a subset of the reports included for validation. To develop the models, a subset of the

reports was curated for ground-truth: 7,732 total reports in the lung metastases dataset

from 867 individual patients; 2,777 reports in the liver metastases dataset from 315

patients; and 4,107 reports in the adrenal metastases dataset from 404 patients. We use

NLP to extract and encode important features from the structured text reports, which are

then used to develop, train, and validate models. Three models—a simple convolutional

neural network (CNN), a CNN augmented with an attention layer, and a recurrent neural

network (RNN)—were developed to classify the type of metastatic disease and validated

against the ground truth labels. The models use features from consecutive structured

text radiology reports of a patient to predict the presence of metastatic disease in the

reports. A single-report model, previously developed to analyze one report instead of

multiple past reports, is included and the results from all four models are compared based

on accuracy, precision, recall, and F1-score. The best model is used to label all 714,454

reports to generate metastases maps. Our results suggest that NLP models can extract

cancer progression patterns from multiple consecutive reports and predict the presence

of metastatic disease in multiple organs with higher performance when compared with

a single-report-based prediction. It demonstrates a promising automated approach to

6465

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.826402
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.826402&domain=pdf&date_stamp=2022-03-02
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:karen.batch@queensu.ca
https://doi.org/10.3389/frai.2022.826402
https://www.frontiersin.org/articles/10.3389/frai.2022.826402/full


Batch et al. Metastases Detection From Consecutive Reports

label large numbers of radiology reports without involving human experts in a time- and

cost-effective manner and enables tracking of cancer progression over time.

Keywords: digital twins, cancer, metastases, machine learning, radiology, natural language processing (NLP),

convolutional neural network (CNN), recurrent neural network (RNN)

INTRODUCTION

Healthcare is increasingly tailoring treatments to the needs
of individual patients, an approach known as personalized
medicine. To achieve this, the engineering concept of Digital
Twins is proposed to develop virtual patients that can be
computationally treated to find optimal treatment strategies
(Björnsson et al., 2020). Thesemodels are in silico high-resolution
representations of an individual based on available molecular,
physiological, and other data, which has the potential for vast
improvements in patient care (Björnsson et al., 2020; Croatti
et al., 2020). Personalized medicine stems from the assumption
that refined mathematical models of patients will result in
more precise and effective medical interventions (Bruynseels
et al., 2018). This approach uses fine-grained information on
individuals to identify deviations from the individual’s normal
to develop or select treatment focusing on a patient’s individual
clinical characterization such as diversity of symptoms, severity,
and genetic traits, as well as environmental and lifestyle factors
over time (Bruynseels et al., 2018; National Institutes of Health,
2020). Previously believed to be impossible, digital models of
patients are becoming a reality with the wide-spread availability
of molecular as well as other clinical data and substantial increase
in computational power.

Much of the information contained in a medical record is in
the form of free-text or semi-structured text data from clinical
notes. Radiology reports in particular capture information
critical to the treatment and management of cancer patients.
Therefore, the development of a Cancer Digital Twin from
routinely acquired radiology reports offers a unique opportunity
to study cancer response and progression throughout a
patient’s journey. Manual extraction of data from CT reports
requires substantial domain expertise and is prohibitively time-
consuming to perform across all cancer patients. As a result,
little is known about metastatic progression outside of cancer
clinical trials, where response rates are most typically calculated.
Data extraction from radiology reports by natural language
processing (NLP) is now increasingly performed (Pons et al.,
2016), including in large populations of patients with cancer,
so the potential application to Digital Twins is attractive. To
date, the application of NLP to radiology reports for the
classification of metastatic disease has been limited to bone and
brain metastases (Senders et al., 2019; Groot et al., 2020) or
generalized cancer outcomes (Kehl et al., 2019). We previously
presented an ensemble voting model to detect metastases from
individual radiology reports for different organs using NLP (Do
et al., 2021). This model considered only single reports for a
given patient using standard term frequency-inverse document
frequency (TF-IDF) techniques. The application of NLP to large-
scale labeling of CT reports would facilitate the development

of a Digital Twin and offer new insights into patterns of
metastatic progression across cancer sites. Identification of such
patterns will allow for the development of the high-resolution
representation required for virtual patients to be effective when
modeling a cancer patient’s disease progression over time. This
coupled with the generation of a large database of patterns of
spread, early detection, and prediction of how an individual
patient will progress will be possible.

Time is a critical aspect of medical data.When an event occurs,
or the order of events that occurred, is as important as the events
themselves. Studies have been conducted to incorporate the
information contained in free-text clinical notes with temporal
data points for ICU-related tasks (Caballero Barajas and Akella,
2015; Khadanga et al., 2019; Huang et al., 2020). Clinical notes
have high-dimensionality and are sparsely recorded, creating a
computational challenge compared with traditional structured
time-series data (Huang et al., 2020) such as ICU data. There has
been little investigation into using radiology reports throughout a
patient’s cancer treatment to improve the detection of metastatic
spread in radiology reporting. Our research aims to fill this
gap and develop a map of disease spread in individual patients
over time.

In this paper, we extend our model presented in Do et al.
(2021) to incorporate consecutive, multi-report prediction using
several convolutional and recurrent neural network (RNN)
approaches to improve detection accuracy. We present three
NLP models that generate weak labels for semi-supervised
classification of CT reports when exposed tomultiple consecutive
reports throughout a patient’s treatment history.

MATERIALS AND METHODS

Dataset Description
The data for this study consists of consecutive radiology
reports for CT examinations of the chest, abdomen, and
pelvis, performed between July 1, 2009, and March 26, 2021,
at Memorial Sloan Kettering Cancer Center (MSKCC). Only
reports following the departmental standardized structured
template introduced in July 2009 were included; any reports
which deviated from the template were omitted from analysis.
The complete dataset includes 714,454 reports. Each report
consists of “findings” for 13 individual organs (lungs,
pleura, thoracic nodes, liver, spleen, adrenal glands, renal,
abdominopelvic nodes, pelvic organs, bowel, peritoneum, bones,
and soft tissues) and an overall “impression” field. The reports
in this dataset are semi-structured as shown in Figure 1. In
the findings section, the radiologists report observations using
free text under individual headings for each organ (e.g., lung,
liver). Important findings are summarized using free text in
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FIGURE 1 | Example report of a chest CT following the template implemented in July 2009. The “Findings” section contains observations specific to each organ sites,

while the “Impression” section can contain observations pertaining to any organ.

the impression section at the end of the report. Of note, non-
observations are often as important as observations. This is to
say that if there are “no changes” reported for a certain organ, it
could mean that in a previous report metastases were identified,
and they remain as they were. It could also mean that there are
no lesions of interest. Standardized reporting improves clarity
and consistency of clinical reports and is increasingly preferred
compared to free-text reports (Renshaw et al., 2018).

Three of the 13 available organs were selected for the study:
lungs, liver, and adrenal glands. The lungs and liver were selected
as the most common sites of metastases while adrenal glands are
one of the least common sites. Subsets of the complete dataset
were annotated for ground truth by a radiologist. Each report
in the ground truth set was labeled for the presence or absence
of metastases. For each patient in the ground truth set, five
radiologists were instructed to read all reports available before
deciding the presence or absence of metastases at each time
point. If after reviewing all the available reports, the radiologists
were unsure about the presence or absence of metastases in a
particular patient, they were instructed to skip those reports. This
resulted in the following number of annotated reports: 7,732 in
the lung metastases dataset from 867 individual patients; 2,777 in

the liver metastases dataset from 315 patients; and 4,107 in the
adrenal metastases dataset from 404 patients. Annotated reports
were used to train a single-report ensemble prediction model
for each organ. Once the model accuracy plateaued, the dataset
was deemed to be of adequate size for that organ, resulting in
differing quantities of annotated reports for each organ. Each
of the three datasets (lung metastases, liver metastases, adrenal
metastases) were randomly split into training (70%), testing
(15%), and validation (15%) sets (see Table 1). All models were
trained, tested, and validated using the same data splits to ensure
accurate performance comparison at each stage.

Data Preprocessing
The raw text data consisted of organ observations from the
report, each associated with a patient. To transform the data
into a format for multi-report analysis, individual reports were
grouped by patient and ordered chronologically from oldest to
newest. For each report rt of a patient, all previous reports (t =
0, 1, . . . , n, where n is the target report) were concatenated into
a single document. For example, if the target report is the first
report associated with the patient, the resulting document would
consist only of this report. If the target report is the third report
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TABLE 1 | Model performance results for the baseline single-report metastases prediction model and the three novel multi-report metastases prediction models.

Model Metric Training Testing Validation

Lung

(n = 5,413)

Liver

(n = 1,943)

Adrenal

(n = 2,874)

Lung

(n = 1,160)

Liver

(n = 417)

Adrenal

(n = 617)

Lung

(n = 1,160)

Liver

(n = 417)

Adrenal

(n = 616)

TF-IDF ensemble

model (Baseline)

Accuracy 99.69%

(±0.15%)

99.95%

(±0.10%)

99.23%

(±0.32%)

92.33%

(±1.53%)

90.12%

(±2.86%)

96.60%

(±1.43%)

93.80%

(±1.39%)

92.50%

(±2.53%)

96.10%

(±1.53%)

Precision 0.9977

(±0.00)

1.0000

(±0.00)

1.0000

(±0.00)

0.8553

(±0.02)

0.9060

(±0.03)

0.9444

(±0.02)

0.9080

(±0.02)

0.8990

(±0.03)

1.0000

(±0.00)

Recall 0.9833

(±0.00)

0.9983

(±0.00)

0.8932

(±0.01)

0.6733

(±0.03)

0.7794

(±0.04)

0.4595

(±0.04)

0.6860

(±0.03)

0.8310

(±0.04)

0.5000

(±0.04)

F1-score 0.9904

(±0.00)

0.9991

(±0.00)

0.9436

(±0.01)

0.7535

(±0.02)

0.8379

(±0.04)

0.6182

(±0.04)

0.7815

(±0.02)

0.8637

(±0.03)

0.6667

(±0.04)

Simple CNN Accuracy 99.93%

(±5.21%)

99.85%

(±7.59%)

100%

(±0.00%)

97.41%

(±0.91%)

98.56%

(±1.14%)

99.03%

(±0.77%)

96.64%

(±1.04%)

98.56%

(±1.14%)

99.51%

(±0.55%)

Precision 0.9956

(±0.00)

0.9950

(±0.00)

1.0000

(±0.00)

0.9526

(±0.01)

0.9851

(±0.01)

0.9429

(±0.02)

0.9526

(±0.01)

0.9746

(±0.02)

0.9592

(±0.02)

Recall 1.0000

(±0.00)

1.0000

(±0.00)

1.0000

(±0.00)

0.8960

(±0.02)

0.9706

(±0.02)

0.8919

(±0.02)

0.8564

(±0.02)

0.9746

(±0.02)

0.9792

(±0.01)

F1-score 0.9978

(±0.00)

0.9975

(±0.00)

1.0000

(±0.00)

0.9234

(±0.02)

0.9778

(±0.01)

0.9167

(±0.02)

0.8920

(±0.02)

0.9746

(±0.02)

0.9691

(±0.02)

Augmented CNN Accuracy 99.98%

(±0.04%)

99.90%

(±0.14%)

99.97%

(±0.06%)

97.41%

(±0.91%)

98.56%

(±1.14%)

98.87%

(±0.83%)

96.81%

(±1.01%)

99.04%

(±0.94%)

99.68%

(±0.45%)

Precision 0.9989

(±0.00)

0.9966

(±0.00)

0.9952

(±0.00)

0.9388

(±0.01)

0.9710

(±0.02)

0.9167

(±0.02)

0.9467

(±0.01)

0.9831

(±0.01)

0.9792

(±0.01)

Recall 1.0000

(±0.00)

1.0000

(±0.00)

1.0000

(±0.00)

0.9109

(±0.02)

0.9853

(±0.01)

0.8919

(±0.02)

0.8511

(±0.02)

0.9831

(±0.01)

0.9792

(±0.01)

F1-score 0.9994

(±0.00)

0.9983

(±0.00)

0.9976

(±0.00)

0.9246

(±0.02)

0.9781

(±0.01)

0.9041

(±0.02)

0.8964

(±0.02)

0.9831

(±0.01)

0.9792

(±0.01)

Bidirectional LSTM Accuracy 97.97%

(±0.38%)

99.23%

(±0.39%)

99.72%

(±0.19%)

96.66%

(±1.03%)

98.56%

(±1.14%)

98.70%

(±0.89%)

97.16%

(±0.96%)

98.32%

(±1.23%)

99.03%

(±0.77%)

Precision 0.9052

(±0.01)

0.9798

(±0.01)

0.9660

(±0.01)

0.8465

(±0.02)

0.9853

(±0.01)

0.8919

(±0.02)

0.8404

(±0.02)

0.9661

(±0.02)

0.9375

(±0.02)

Recall 0.9366

(±0.01)

0.9873

(±0.00)

0.9803

(±0.01)

0.8976

(±0.02)

0.9781

(±0.01)

0.8919

(±0.02)

0.9054

(±0.02)

0.9702

(±0.02)

0.9375

(±0.02)

F1-score 0.9206

(±0.01)

0.9835

(±0.01)

0.9731

(±0.01)

0.8713

(±0.02)

0.9817

(±0.01)

0.8919

(±0.02)

0.8717

(±0.02)

0.9682

(±0.02)

0.9375

(±0.02)

Organ datasets are split into three subsets for training (70%), testing (15%), and validation (15%). The n values correspond to the size of the sets. The highest values for each organ in each performance metric are bolded. Values in

parentheses are within the 95% confidence interval rounded to two decimal places.
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associated with the patient, the resulting document consists of the
patient’s first, second, and third reports concatenated together in
chronological order. The radiology reports often included dates
and lesion measurements. These text patterns were identified
using regular expressions and replaced with the text “date” and
“measurement”, respectively. This is done to shrink the size of
the vocabulary as well as to capture the higher-level concept
of a date or measurement being present in the text. Since the
measurements themselves were not included in any analysis, it
was beneficial to remove them from the vocabulary space. Target
values (i.e., labels) were encoded from “Yes” and “No” values to
binary values 1 and 0, respectively.

Model Development
Three models were developed to predict the presence of
metastases over time in each of the three target organs namely, a
simple convolutional neural network (CNN), a CNN augmented
with an attention layer (referred to as the Augmented CNN),
and a bidirectional Long Short-TermMemory (Bi-LSTM)model.
Convolutional neural network extract spatial features which
allows for the maintenance of context when analyzing text in
NLP applications. Adding the attention layer to the CNN allows
for increased explainability and allows the model to learn and
give higher importance to features later in the sequence. The Bi-
LSTM was selected because it learns context of information and
the sequence of patterns by traversing the text in two directions
to create superior text embedding. For the purposes of this
study, we combine multiple consecutive reports of a patient
consisting of observations made by a radiologist into a single
document which is used as the input to the model. To evaluate
the benefit of looking at multiple consecutive reports compared
to only one report, the single-report model described previously
by our group (Do et al., 2021) was used as a baseline. The
models are compared based on the following metrics: accuracy,
precision, recall, and F1 measure. F1 measure is considered the
most important metric because F1 is the harmonic mean of
precision and recall and provides a better measure of incorrectly
classified cases than accuracy. In the cases of identifying potential
metastases, the cost of missing positive cases (false negatives) is
much greater than the cost of false positives, which is reflected
in the F1 score. F1 also mitigates the effect of imbalanced class
distribution, which can be masked behind accuracy scores.

Baseline Model
We previously presented an ensemble voting model to detect
metastases from individual radiology reports for different organs
using NLP (Do et al., 2021). This model is used as the baseline
for performance evaluation of themulti-report predictionmodels
presented in the current paper. Briefly, this baseline model
processes the raw text data using a TF-IDF method. The
processed data are passed through an ensemble voting model
built with a logistic regression (LR) model, a support vector
machine (SVM), a random forest (RF) model, and an extreme
gradient boosting (XGBoost) model. The specifications for each
model are given in the following paragraph. Ensemble models
use a “voting” strategy to select the best prediction based on
predictions made by multiple underlying statistical models.

Voting can be done using either a hard vote counter or a soft
vote counter. In hard voting, the final classification is made based
on a strict count of the predictions made by the underlying
models, while soft voting gives higher importance to certain
models. In soft voting, the models in the ensemble are ranked
using a simple weighting algorithm to determine the relative
importance given to each model’s predictions. The algorithm
compares the accuracy, precision, and recall metrics of all models
on the training set to assign the weights. These values are used
such that the best-performing classification model’s prediction is
given the highest importance when tallying the votes. In addition
to this ranked weighting, the confidence values for each model’s
prediction are leveraged in making the final prediction. Our
model uses soft voting. Importance calculations were done for
each organ to better optimize model performance by location.
This means that the weights assigned to the individual models
for predicting liver metastases may be different from those for
predicting lung metastases.

The LR model is configured with a regularization strength of
15.0, it uses balanced class weighting, which automatically adjusts
the weights inversely proportional to class frequencies in the
input data. It uses the Newton-CG optimization algorithm solver
to handle multinomial loss in the multiclass prediction problem.
The SVM uses a linear kernel and all other default parameters.
The RF model is built to have 2,000 trees with bootstrapping and
the maximum number of features used when building a tree is set
to the square root of the number of features seen during fit. The
XGBoost model uses default configuration.

Simple Convolutional Neural Network
Text data from the radiology reports must be converted into a
numeric vector representation to be used as inputs to machine
learning models. Recent studies (Zuccon et al., 2015; Zhao
and Mao, 2018; Verma et al., 2021) have shown different
text encoding approaches having different complexities and
ability to represent contextual information. One of the popular
approaches is called word embedding, which includes word
context and transforms each word to a numeric vector capturing
semantic information (Ghannay et al., 2016). The transformation
allows different words having similar meanings to have vector
representations that are close together in the embedding space.
For the convolutional neural network models, the text data is
transformed using the Tokenizer from TensorFlow (Abada et al.,
2015). Tokenizer creates a vocabulary of all the unique terms in
the training corpus and allows for vectorization of the text corpus
by turning each document into a sequence of integers, where each
integer is the index of a token in a dictionary. All punctuation is
removed from the text when it is processed through Tokenizer.
When any text is processed by the Tokenizer, only the known
words are processed while the unknown words are ignored. This
processed data is then fed as input to the convolutional layers of
the model.

The idea behind convolutions in computer vision is to learn
filters that transform adjacent pixels into single values. A CNN
for NLP learns which combinations of adjacent words are
associated with a given concept, meaning they can augment the
existing techniques by leveraging the representation of language
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FIGURE 2 | The architectures of the three multi-report prediction models. (A) The Simple CNN architecture consisting of the embedding layer, 1D convolutional layer,

max pooling layer, and dense layers. (B) The Augmented CNN, consisting of the same architecture as the Simple CNN with an added Attention Layer before the max

pooling layer. (C) The Bi-LSTM, with the two LSTM layers processing inputs in opposite directions.

to learn which phrases in clinical text are relevant for a given
medical condition. In a CNN, a text is first represented as a
sequence of word embeddings in which each word is projected
into a distributed representation. Words that occur in similar
concepts are trained to have similar embeddings, meaning
misspellings, synonyms, and abbreviations of an original word
learn similar embeddings, leading to similar results. Therefore,
a database of synonyms and common misspellings is therefore
not required.

Embedded text is the input to the convolutional layer.
Convolutions detect a signal from a combination of adjacent
inputs, and each convolution operation applies a filter of trained
parameters to an input-window of specific width. A filter is
applied to every possible word window in the input to produce
a feature map. The feature map is then reduced using a pooling
operation. It is possible to combine multiple convolutions per
length and of different lengths to evaluate phrases from 1 to 5
words long, for example. A final fully connected feed forward
layer helps compute the probability of whether the text refers to a
patient with a certain disease condition.

The CNN model (Figure 2A) is built using Keras (Chollet,
2015), which consists of an embedding layer with an embedding
dimension of 50, a 1D convolutional layer with a filter size of 64,
a kernel size of 3 and using ReLU activation, followed by a global
max pooling layer, and finally two fully connected dense layers
containing 10 nodes and 1 node, respectively. The final single
output node generates a binary decision of whether the input
corresponds to the presence of a certain disease condition or not.
The penultimate layer uses ReLU activation, and the ultimate
layer uses sigmoid activation to make the final prediction. The
model is optimized using the ADAM optimizer and the binary
cross-entropy loss function.

Augmented CNN
The Augmented CNN (Figure 2B) consists of the same
architecture as the Simple CNN model as describe above
with one added layer: the Keras Sequential Self Attention
layer (SeqSelfAttention). This layer implements an attention
mechanism when processing sequential data to learn important
text embedding and attend to that information (increase weight
values) when extracting data features. It is added after the
convolutional layer in the model, and its output is fed as the input
to the global max pooling layer. The attention layer is configured
to use multiplicative attention, an attention width of 1, and uses
sigmoid attention activation. The remaining layers of the model
are the same as in the Simple CNN.

Bi-Directional LSTM
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) networks are a powerful type of RNN.
One of the main limitations of the basic RNNs is that they lose
critical information when dealing with long sequences. Long
Short-Term Memories are explicitly designed to avoid such
problems and retain information from long sequences of data to
learn dependencies in data that are far apart. Thus, the model can
remember and also forget certain information it has previously
seen. These models consist of a cell state ct−1 (i.e., the memory of
the network) and a hidden state ht−1 (used to make predictions)
with three gates that allow the gradient to flow unchanged. The
three gates are a forget gate, an input gate, and an output gate.
The forget gate determines what information are going to be
thrown away from the cell state. This gate is essentially a sigmoid
function, taking hidden state ht−1 and data xt as input, and
outputs a number between 0 and 1 for each element in the cell
state. A 0 means to completely throw away the information while
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a 1 means keep all the detail of that element. The input gate
determines what new information is going to be retained in the
cell state (update the cell state from ct−1 to c̃t). This layer has two
parts: a sigmoid layer and a tanh layer. The sigmoid layer takes
hidden state ht−1 and data xt as input and determines which
values to update by assigning a number between 0 and 1 to each
element computed in the tanh layer. The tanh layer transforms
the data xt and hidden state ht−1 to a number between −1 and
1. Next, the product of both layers yields the update to the cell
state. The cell state is updated by multiplying the output from
the forget gate elementwise, ensuring only critical information
can flow down the sequence. Next, the results from the input
gate are added elementwise to the cell state. This completes the
cell state update, yielding ct . We use the freshly updated cell state
ct to update the hidden state. In the output gate, it first passes the
hidden state ht−1 and data xt through a sigmoid layer. Then, ct
is passed through a tanh layer and these results are multiplied
together, yielding the new hidden state ht .

Bidirectional RNN models are two combined RNN models,
one model processing data sequentially from beginning to
end, while the other received input data in the opposite
direction, from end to start. These models perform data analysis
simultaneously and their results (predictions) are combined and
passed to the dense layers.

For the Bi-LSTM (Figure 2C), a self-created dictionary is used
for the word embedding. Each unique word in the reports is
extracted and sorted in the order of alphabet. Each word is then
assigned an index, reserving the first two indices for padding (0)
and unknown (1) values, respectively. This model encodes the
input documents as vectors consisting of values corresponding
to the word’s index in the vocabulary dictionary. This means that
each input vector for this model depends on the length of the
original report, which is variable. The documents are not padded
initially but will be padded to the same length for each batch while
they are passing through the data generator function. This data is
then passed through into the two LSTM layers, processing the
data in opposite directions.

The Bi-LSTM was also developed using Keras. The first layer
is an embedding layer with input dimension equal to the size
of the vocabulary and an output size of 64. This is followed
by the Bidirectional LSTM layer provided in the Keras library,
which uses the tanh activation function and sigmoid recurrent
activation. The output dimension of this layer is 64. The final
two layers of the model are similar to those found in both the
Simple and Augmented CNN models; the penultimate layer is a
fully connected dense layer with 64 nodes and ReLU activation,
while the ultimate layer is a dense layer with one output node
with no activation.

RESULTS

Metastatic disease was present in 16.6% (1,287/7,733) of the
reports in the lung dataset, 30.5% (848/2,777) of the reports
in the liver dataset, and in 7.1% (291/4,107) of the adrenal
gland dataset. These distributions were consistent in the training,
testing, and validation sets. Prediction accuracies exceeded 96%

across all organs and all models during validation, with the
lowest accuracy being the Simple CNN predicting the presence
of lung metastases. The F1 scores are especially promising,
showing balanced precision and recall scores in all models. The
F1 scores demonstrate that the Augmented CNN is the most
balanced model, though all models’ F1 scores for the lung dataset
were below 0.90. The F1 scores for lung metastases detection
are consistently the lowest, though always scoring above 0.87.
The performance metrics of the three models on the validation
dataset are presented in Table 1. We compare these results
with the performance of the baseline model outlined in section
Baseline Model, which predicts the presence of metastases from
single reports, in contrast to the three deep learning models,
which include information from previous reports concatenated
in chronological order.

The training and testing results for the baseline TF-IDF
Ensemble Voting model are as follows: in training, the model
scored 99.69 ± 0.001%, 0.9977, 0.9833, and 0.9904 (accuracy,
precision, recall, F1 score) on the lung dataset, 99.95%, 1.00,
0.9983, and 0.9991 (accuracy, precision, recall, F1 score) on the
liver dataset, and 99.23%, 1.00, 0.8932, and 0.9436 (accuracy,
precision, recall, F1 score) on the adrenal gland dataset. In
testing, the model scored 92.33%, 0.8553, 0.6733, and 0.7535
(accuracy, precision, recall, F1 score) on the lung dataset, 90.12%,
0.9060, 0.7794, and 0.8379 (accuracy, precision, recall, F1 score)
on the liver dataset, and 96.60%, 0.9444, 0.4595, and 0.6182
(accuracy, precision, recall, F1 score) on the adrenal gland
dataset. During validation, the model scored 93.80%, 0.9080,
0.6860, and 0.7815 (accuracy, precision, recall, F1 score) on
the lung dataset, 92.50%, 0.8990, 0.8310, and 0.8637 (accuracy,
precision, recall, F1 score) on the liver dataset, and 96.10%, 1.00,
0.5000, and 0.6667 (accuracy, precision, recall, F1 score) on the
adrenal gland dataset. The results from the baseline model are
also presented in Table 1.

The complete results for the Simple CNN on each dataset are
as follows: in training, the model scored 99.93%, 0.9956, 1.00,
and 0.9978 (accuracy, precision, recall, F1 score) on the lung
dataset, 99.85%, 0.9950, 1.00, and 0.9975 (accuracy, precision,
recall, F1 score) on the liver dataset, and 100%, 1.00, 1.00, and
1.00 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. In testing, the model scored 97.41%, 0.9526, 0.8960, and
0.9234 (accuracy, precision, recall, F1 score) on the lung dataset,
98.56%, 0.9851, 0.9706, and 0.9778 (accuracy, precision, recall,
F1 score) on the liver dataset, and 99.03%, 0.9429, 0.8919, and
0.9167 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. During validation, the model scored 96.64%, 0.9526,
0.8564, and 0.8920 (accuracy, precision, recall, F1 score) on
the lung dataset, 98.56%, 0.9746, 0.9746, and 0.9746 (accuracy,
precision, recall, F1 score) on the liver dataset, and 99.51%,
0.9592, 0.9792, and 0.9691 (accuracy, precision, recall, F1 score)
on the adrenal gland dataset. The results from the Simple CNN
model are also presented in Table 1.

The complete results for the Augmented CNN on each dataset
are as follows: in training, the model scored 99.98%, 0.9989, 1.00,
and 0.9994 (accuracy, precision, recall, F1 score) on the lung
dataset, 99.90%, 0.9966, 1.00, and 0.9983 (accuracy, precision,
recall, F1 score) on the liver dataset, and 99.97%, 0.9952, 1.00, and
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0.9976 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. In testing, the model scored 97.41%, 0.9388, 0.9109, and
0.9246 (accuracy, precision, recall, F1 score) on the lung dataset,
98.56%, 0.9710, 0.9853, and 0.9781 (accuracy, precision, recall,
F1 score) on the liver dataset, and 98.87%, 0.9167, 0.8919, and
0.9041 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. During validation, the model scored 96.81%, 0.9467,
0.8511, and 0.8964 (accuracy, precision, recall, F1 score) on
the lung dataset, 99.04%, 0.9831, 0.9831, and 0.9831 (accuracy,
precision, recall, F1 score) on the liver dataset, and 99.68%,
0.9792, 0.9792, and 0.9792 (accuracy, precision, recall, F1 score)
on the adrenal gland dataset. The results from the Augmented
CNN model are also presented in Table 1.

The complete results for the Bi-LSTM on each dataset are as
follows: in training, the model scored 97.97%, 0.9052, 0.9366, and
0.9206 (accuracy, precision, recall, F1 score) on the lung dataset,
99.23%, 0.9798, 0.9873, and 0.9835 (accuracy, precision, recall,
F1 score) on the liver dataset, and 99.72%, 0.9660, 0.9803, and
0.9731 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. In testing, the model scored 96.66%, 0.8465, 0.8976, and
0.8713 (accuracy, precision, recall, F1 score) on the lung dataset,
98.56%, 0.9853, 0.9781, and 0.9817 (accuracy, precision, recall,
F1 score) on the liver dataset, and 98.70%, 0.8919, 0.8919, and
0.8919 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. During validation, the model scored 97.16%, 0.8404,
0.9054, and 0.8717 (accuracy, precision, recall, F1 score) on
the lung dataset, 98.32%, 0.9661, 0.9702, and 0.9682 (accuracy,
precision, recall, F1 score) on the liver dataset, and 99.03%,
0.9375, 0.9375, and 0.9375 (accuracy, precision, recall, F1 score)
on the adrenal gland dataset. The results from the Bi-LSTM
model are also presented in Table 1.

DISCUSSION

We developed three novel models for detectingmetastatic disease
in three separate organs using NLP over multiple consecutive
radiology reports. Both the CNNmodels and the Bi-LSTMmodel
demonstrated high performance in accomplishing this task. Our
results demonstrate the added predictive power of exposing an
NLP model to historical patient information. Indeed, F1 score
increased from 0.7815, 0.8637, and 0.6667 to 0.8964, 0.9831, and
0.9792 in the lung, liver, and adrenal gland datasets, respectively,
when multiple reports were considered. Accuracy, precision,
and recall all improved with the multi-report model. The best-
performing model—the Augmented CNN—achieved the highest
F1 scores at all three organ sites during validation. Through the
model development process, the model performance remained
consistent through training, testing, and validation. During
training, the models were exposed to records with varying
number of concatenated reports, meaning the models have been
trained to detect metastases with varying amounts of available
information so the models can be used at any point within a
patient’s course of treatment.

Performance on the lung dataset was lowest for all three
models, with F1 scores of 0.8920, 0.8964, and 0.8717 achieved
by the Simple CNN, the Augmented CNN, and the Bi-LSTM,

respectively. This is likely because the lung can be subject
to a large variety of ailments, such as infections, some of
which overlap in appearance with metastatic disease because
they appear to radiologists as pulmonary nodules. In analyzing
the model’s decision-making by extracting the most predictive
terms from the vocabulary, it was identified that the presence
of measurements in a report were highly indicative of the
presence of a metastatic disease. This is not surprising since
radiologists commonly rely on measurements to document
response to treatment in their report. Use of this feature is
excellent in detecting metastases in the liver and adrenal glands,
however there are more types of lesions that are measured for
the lung, including benign lung nodules. Predicting based on
the presence of measurements in the case of lung metastases
therefore, results in higher frequency of false positives. The
F1 scores for liver and adrenal metastases predictions on
the validation sets exceeded 0.9691, and the Bi-LSTM was
only slightly lower at 0.9375 when predicting the presence of
adrenal metastases.

There are many papers that describe the usage of NLP for
text mining clinical notes, linking events described in notes to
time series data (typically for prediction of mortality or length
of stay) (Caballero Barajas and Akella, 2015; Khadanga et al.,
2019; Huang et al., 2020). A recent study used NLP and deep
learning for case-level context for classifying pathology reports
has demonstrated the success of CNNs, RNNs, and attention
models (Gao et al., 2020), such as those presented in our study.
While presenting similar models, this previous study focused
on several multi-class classification problems, while our study
focuses on the binary classification of the presence or absence
of metastatic disease. Both studies demonstrate the benefit of
capturing case-level context from consecutive reports compared
with single-report prediction, however our models demonstrate
higher F1 scores overall. To our knowledge, ours is the first
demonstration ofmulti-report detection in consecutive radiology
reports. Specifically, we consider the order that metastases appear
for each patient by concatenating reports but do not consider
the length of time between metastatic events. Given the overall
high performance of our models, factoring in the actual time
may not be warranted for simple detection of labels. As we
advance our methods to metastatic phenotype identification, the
goal of our cancer digital twin, time will likely be an important
factor. When included in a digital twin, the series of metastatic
cancer labels will show how the individual’s state is changing over
time and construct the high-resolution representations required.
We were the first to demonstrate the benefit of semi-structured
narrative reports in the largest study using NLP for identifying
metastatic disease (Do et al., 2021), combined with the new
models proposed in the current study, we are unlocking the
potential of using cancer digital twins for anticipating cancer
response and progression.

Our study is not without limitations. It is important to
note that the human annotators had access to slightly different
information compared to what the models had access to at the
time of prediction. The human annotators had access to both
historical and future reports, while the models only had the
text from previous reports concatenated to the target report to
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FIGURE 3 | Lung metastases developing on serial CT scans (arrows). Axial images of the lung from three consecutive CT scans, showing the development of a lung

nodule, in the posterior right lower lobe (A–C). A separate nodule in the anterior right lower lobe also grew between the second (D) and third CT scan (E). A third

nodule appeared in the left lower lobe on the third scan only (F). The first CT was negative for metastasis (A), with the text in the “Lungs” section of the findings

reading “No suspicious findings.” The model predicted correctly that there were no metastases described with 100% confidence. The second CT (B,D) was labeled

as positive for metastases by the radiologist who had access to all three scans, but negative by the CNN (with a confidence of 99.60%) which only had reports for the

first two. The third CT (C,E,F) was labeled as positive by both radiologists and the CNN (with 100% confidence).

make their predictions. This resulted in false negative errors
(example provided in Figure 3), though the model was able
to correct the prediction for later reports. The implications
of this depend on the use-case of the model. In the case
where “future” reports (with respect to the target report) are
available, such as in a retrospective study of disease pattern,
exposing the model to these future reports would be desired.
However, if the use-case is predicting the presence of metastases
in a patient currently undergoing treatment and all reports
to-date are presented to the model, the model is not missing
any information.

In conclusion, the multi-report NLP prediction models
presented in this paper generate more reliable weak labels
of radiology reports compared with a single-report prediction
model. The success of digital cancer twins relies heavily on the
access of high-resolution representations of individual cancer
patients over time. The ability to automatically generate accurate
labels of metastatic disease from radiology reports will improve

the viability of these digital twins, while enabling recognition
of disease progression patterns through the availability of such
a large database of generated weak labels. This will allow
for earlier detection of potential progression of disease in
individual patients allowing for more successful intervention
during disease management.
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Background: Lung cancer (LC) is a leading cause of cancer-deaths globally. Its lethality is
due in large part to the paucity of accurate screening markers. Precision Medicine includes
the use of omics technology and novel analytic approaches for biomarker development.
We combined Artificial Intelligence (AI) and DNAmethylation analysis of circulating cell-free
tumor DNA (ctDNA), to identify putative biomarkers for and to elucidate the pathogenesis
of LC.

Methods: Illumina Infinium MethylationEPIC BeadChip array analysis was used to
measure cytosine (CpG) methylation changes across the genome in LC. Six different AI
platforms including support vector machine (SVM) and Deep Learning (DL) were used to
identify CpG biomarkers and for LC detection. Training set and validation sets were
generated, and 10-fold cross validation performed. Gene enrichment analysis using g:
profiler and GREAT enrichment was used to elucidate the LC pathogenesis.

Results: Using a stringent GWAS significance threshold, p-value <5x10-8, we identified
4389 CpGs (cytosine methylation loci) in coding genes and 1812 CpGs in non-protein
coding DNA regions that were differentially methylated in LC. SVM and three other AI
platforms achieved an AUC=1.00; 95% CI (0.90-1.00) for LC detection. DL achieved an
AUC=1.00; 95% CI (0.95-1.00) and 100% sensitivity and specificity. High diagnostic
accuracies were achieved with only intragenic or only intergenic CpG loci. Gene
enrichment analysis found dysregulation of molecular pathways involved in the
development of small cell and non-small cell LC.

Conclusion: Using AI and DNA methylation analysis of ctDNA, high LC detection rates
were achieved. Further, many of the genes that were epigenetically altered are known to
be involved in the biology of neoplasms in general and lung cancer in particular.
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INTRODUCTION

Lung cancer (LC) is the leading cause of cancer deaths in the US
and worldwide (1). There has been a dramatic rise in the
incidence of this disorder over earlier decades largely due to
smoking and more recently to environmental pollution among
non-smokers. The 5-year survival rate is dismal at 4-17% (2)
making LC the deadliest cancer in the USA. As per the
International Agency for Research on Cancer (IARC)
GLOBOCAN cancer statistics, 2.21 million cases of lung cancer
cases were diagnosed in the year 2020 and 1.79 million deaths
were registered worldwide (3). This high mortality is due
principally to the late stage at which most cases are diagnosed
highlighting the urgent need for the development of
accurate biomarkers.

The US Preventative Services Task Force (USPTF) has
recommended routine low-dose computed tomography
(LDTC) LC screening of a defined population of high risk
individuals (4). The USPTF however found that LDTC
screening was associated with harms which included high false
positive rates resulting in unnecessary tests and invasive
procedures, incidental non-cancerous findings, overdiagnosis
and radiation exposure. They therefore called for more
research to develop biomarkers to improve the detection rate
and lower the false positive rate of LDTC screening (4).

Significant focus has historically been placed on the role of
gene mutations in the development of cancer. The extreme
variability in the types of gene mutations in cancer however,
has made it difficult to develop high sensitivity biomarkers for
cancer diagnosis (5) using this approach. The stability and
widespread nature of epigenomic changes in cancer has fueled
its increasing study for understanding both the pathogenesis of
cancer and for novel biomarker development. The best
understood and most extensively studied epigenetic change is
DNA methylation (6) which can alter gene expression.

Epigenetics and Cancer
Epigenetics is believed to play a key role in the neoplastic
transformation of stem cells to form microscopic benign
tumors (7), with extensive increase or decrease of methylation
throughout the genome in most and possibly all tumors (8).
Many studies have shown that tobacco smoke and other
environmental exposures are important in LC pathogenesis,
and induce significant epigenetic changes (9–12). Given the
extensive degree of methylation changes throughout the
genome and the likely role in neoplastic transformation, DNA
methylation has great promise as an accurate and early potential
biomarker for the detection of cancers.

Circulating Tumor DNA and LC
‘Liquid biopsy’ involves the harnessing of circulating tumor
nucleic acids, such as tumor DNA (ctDNA), micro-RNA,
exosomes, and tumor-educated platelets for LC (13) for cancer
and other investigations. CtDNA describes cellular DNA
released into the bloodstream and is present in higher amounts
in cancer compared to normal cases. Several mechanisms such as
necrosis and apoptosis induce this DNA release. Furthermore, it
Frontiers in Oncology | www.frontiersin.org 27576
is known that newly synthesized DNA is periodically released
even from viable intact cells. As a consequence, circulating tumor
DNA (ctDNA) has gained increasing attention as a possible
source of LC biomarkers (14) both for disease detection and real-
time minimally invasive monitoring.

At its core, Precision Medicine deploys a combination of
powerful biological approaches (e.g. genomics) and
computational and bioinformatic tools for the detection and
investigation of complex disorders. Precision Oncology is an
established NIH priority (15). We have previously focused on the
use of Machine Learning based Artificial Intelligence (AI) and
‘omics’ including epigenomics, metabolomics and proteomics for
interrogation of disease mechanisms and the accurate detection
of complex disorders (16, 17). Clinically validated DNA
methylation markers currently do not exist for LC. In this
study we used DNA methylation analysis of ctDNA to
interrogate the molecular mechanisms of LC. Further, using
multiple AI platforms combined with epigenomic markers, we
accurately and minimally-invasively detected LC.
MATERIALS AND METHODS

Study Subjects and Sample Collection
This study was approved by Beaumont Institutional Review
board (IRB#2018-306). Written patient consent was obtained.
Blood samples were prospectively obtained from 10 LC cases and
20 controls in the present study. Only cases without any prior
treatment for prior or current treatment for lung or other cancers
were included in the study. Streck Cell-Free DNA BCT® tubes
were used for collecting the blood samples from each study
subjects. These tubes are designed to avoid the leukocyte
genomic DNA contamination and thus minimizing the
dilution and contamination of the cell-free (cf) DNA (18).
Medical record numbers were removed, and unique study IDs
were allocated to each sample for the purpose of de-identification
of samples for laboratory analysis. All samples were processed
within 24 hours of sample collection by centrifuging for 15
minutes at 3000 x g and aliquoting plasma into cryogenic vials.
Samples were then stored at −80°C until further laboratory
analysis (19). The Figure 1 represents the overview of research
methodology including downstream steps considered in the
present study.

Sample Processing and
Methylation Profiling
The cf-DNA was extracted using the QIAamp circulating nucleic
acid kit (Qiagen Cat # 55114) manual vacuum manifold method.
The samples were bisulfite converted using EZ DNAMethylation
Kit (Zymo, USA) according to the standardized manufacturer’s
protocol. DNA methylation, analysis was performed using the
Illumina Infinium MethylationEPIC BeadChip arrays (Illumina,
Inc.). The array analyzes approximately 850,000 cytosine (‘CpG’
or ‘cg’) loci covering intragenic and extragenic regions of
genome. The assay was performed based on the manufacturer’s
protocol, as described in detail previously (20).
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Statistical Analysis
The raw iDat files were analyzed using Illumina GenomeStudio
software as described in our earlier studies (20). The b-values
(methylation level at each cytosine locus) were measured and
compared for statistical differences between the LC and control
groups at each cytosine locus using the genome build hg37. To
avoid gender bias, the CpG sites on the X and Y chromosomes
were not considered in further analyses. Also, CpG loci within
10bp of any Single Nucleotide Polymorphism (SNPs) as observed
on Single Nucleotide Polymorphism Database (dbSNP) were
excluded as well to avoid genetic (e.g. mutations, single
nucleotide polymorphisms) effects on methylation (21). For
each CpG marker, the Area Under the Receiver Operating
Characteristic (AUC) curve was computed using the R packages
dplyr, reshape2 and ROCR. The genome-wide association studies
(GWASs) significance p-value threshold < 5x10-8 (22) was to
designate significant CpG methylation change at each site.

Artificial Intelligence and Predictive
Models for LC Detection
An important aim of our study was to test the performance of AI
generated predictive algorithms, consistent with the objectives o
Precision Oncology, for the detection of LC. AI ranked the top CpG
markers in decreasing order of predictive ability. The top markers
were then combined to generate the predictive algorithms for each
AI platform. A total of six different AI algorithms were used to as
previously reported (17, 23, 24). These platforms were: Random
Forest (RF), Support Vector Machine (SVM), Linear Discriminant
Frontiers in Oncology | www.frontiersin.org 37677
Analysis (LDA), Prediction Analysis for Microarrays (PAM),
Generalized Linear Model (GLM) and Deep Learning (DL). Each
has relative strengths and limitations. The data was split into a
training set (80% of subjects) and validation set (the remaining
20%) and 10-fold cross validation was performed. The splitting
process was repeated ten times and the average area under the
receiver operator characteristics curve (AUROC or AUC) and 95%
confidence intervals was calculated for LC detection, along with
sensitivity and specificity values (25). Bootstrapping using random
sampling with replacement was also performed to optimize the
accuracy of the estimates. The R package “Caret” was used to
optimize predictions for five AI algorithms (RF, SVM, LDA, PAM
and GLM) (https://cran.r-project.org/web/packages/caret/caret.
pdf), and the package h2o was used to tune the parameters of
DL algorithm (https://cran.r-project.org/web/packages/h2o/h2o.
pdf) (26–28). The variable importance functions varimp in h2o
and varImp in caret R packages were utilized to rank the models
features in each of the predictive algorithms. We used pROC R
package to compute the AUC, specificity and sensitivity values of
the models (29). The detailed descriptions of AI algorithms, cross
validation, bootstrapping, and feature ranking are provided in a
Supplementary Methods Section.

Disease and Functional
Enrichment Analysis
All analyses were performed using R programming language
(v. 4.1.0). The EPIC array CpG loci were annotated using
I l luminaHumanMethylat ionEPICanno. i lm10b4.hg19
FIGURE 1 | Overview of research methodology – The figure outlines the sample collection, bisulfite conversion, methylation profiling followed by statistical and
artificial intelligence analysis.
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Bioconductor package. For each CpG locus we determined the
associated gene if any using the UCSC reference gene names
(UCSC_RefGene_Name). When multiple genes were associated
with a single CpG locus, the most frequently associated gene with
that locus was used. Genomic Regions Enrichment of
Annotations Tool (GREAT) was used to determine the number
of CpGs associated with each gene and the distance of CpGs from
the transcription start site (30). CpG methylation changes in
transcription start site are more likely to be associated with altered
gene expression and therefore to have an identifiable biological
effect. g:profiler enrichment was performed using genes associated
with statistically significant CpG loci as foreground and all
annotated genes as background. R package gprofiler2 (v. 0.2.0)
was used to make the enrichment API call with default
parameters (31). miRNA enrichment analysis was performed by
subjecting significant miRNAs to “miRNA Enrichment Analysis
and Annotation Tool” (miEAA) v2.0 (32). We also searched for
long non-coding RNA (lncRNA) using “LncExpDB” (33).

Principal Component Analysis
Given the large number of potential CpG epigenetic predictors
generated, dimensionality reduction was performed using
Principal Component Analysis (PCA). This approach reduces
the number of predictors (dimensionality reduction) and thus
simplifies and enhances the interpretability of the data. A visual
display is generated showing whether with a limited number of
CpG predictors the two groups (LC and controls) can be
discriminated. We performed principal component analysis
(PCA) MetaboAnalyst (v4.0) (34).
RESULTS

The demographic details of the study subjects are provided in
Table 1. All study participants were of Caucasian race. The mean
age between two groups was different (Mean age of cases is 64
years and controls were of 75 years, p-value < 0.01), BMI was also
lower in LC cases. We therefore performed analysis adjusting for
these confounders as well as gender. There were no differences
between groups in the frequency of a positive family history for
cancer. The histologic types and disease staging of the LC is also
presented in Supplementary Table S1. Principal component
Frontiers in Oncology | www.frontiersin.org 47778
analysis (PCA) showed very good visual the separation of LC and
control groups (Supplementary Figure 1) using methylation
markers. Using the GWAS significance threshold of p-value <
5x10-8 (22) we found a total of 4389 CpG loci (intragenic region)
(3921 genes) that displayed significant methylation change in
LC. Of the total of 4389 CpGs, 2906 were hyper-methylated
(increased methylation) and 1483 CpGs were hypo methylated
(decreased) in LC compared to control group (Supplementary
Table S2).

We identified 1812 significantly differentially methylated
CpGs in non-protein coding region of genome (intergenic
region). Among them, 1067 CpGs were hyper methylated and
745 were hypo methylated CpGs (Supplementary Table S3). We
found that 99% of these CpGs on both intra and intergenic CpGs
showed methylation difference of greater than 5%. It should be
noted that the higher the methylation difference the more likely
is the epigenetic change to correlate with altered gene expression.
Artificial Intelligence and Lung
Cancer Detection
A total of 19 individual CpGs among the intragenic CpGs and four
among the intergenic CpGs had an excellent individual predictive
value for LC detection based on AUC (AUC =1.00). We performed
AI analysis using six different algorithms. Each AI platform was
used to rank the CpG markers in decreasing order of predictive
ability. We developed separate intragenic (within the gene) and
intergenic (based on CpG markers) algorithms for LC detection.
Using a 10-marker based algorithm, Five of the 6 AI algorithms
using intragenic CpG markers achieved an excellent to outstanding
diagnostic performance based on AUC (95% CI). These included
SVM, GLM, RF and LDA with AUC=1.00 and 95% CI (0.90-1.00).
DL had an AUC (95% CI) =1.00; (0.95-1.00) with 100% sensitivity
and specificity, Table 2. Bootstrapping yielded excellent predictive
accuracies, Table 2A. Equal or slightly lower detection rates were
achieved when only 5markers were used. For example, for SVM the
AUC (95% CI) =1.00; (0.90-1.00) with 90% sensitivity and 100%
specificity and for DL AUC (95% CI) =1.00; (0.95-1.00) with 100%
sensitivity and 100% specificity. Likewise, when using 20 markers in
the algorithm, the predictive accuracy was slightly higher but
generally comparable to the 10-marker model. For example, for
SVM the AUC (95% CI) =1.00; (0.90-1.00) with 94% sensitivity and
100% specificity and for DL AUC (95% CI) =1.00; (0.95-1.00) with
100% sensitivity and 100% specificity.

Likewise, using intergenic (non-coding region of the DNA)
CpG markers, SVM, GLM, RF and LDA had excellent to
outstanding diagnostic performance with AUC (95% CI) =1.00
(0.90-1.00) and DL performed with AUC (95% CI) =1.00 (0.95-
1.00) and 100% sensitivity and specificity Table 3. Bootstrapping
achieved similar detection performances Table 3A.

We identified 52 genes with at least 3 of their constituent
CpGs significantly differentially methylated, 10294 genes had 2
CpGs and 5586 genes were found to have one CpG that had
significant alteration in the methylation level in the ctDNA from
LC versus normal group. The orientation of the CpGs from
Transcription Start Site (TSS) and absolute distance from TSS are
depicted on Figure 2. The closer the CpG locus is to the TSS the
TABLE 1 | The demographic characteristics of lung cancer cases and controls.

Parameter Cases Controls p-value

Number of patients 10 20 –

Race - Caucasian 10 20 –

Age - Mean (Standard deviation) 63.9 (11.14) 74.85 (7.37) 0.01 (T)
Gender – n (%)
Females 7 (70) 14 (70) 0.24 (W)
Males 3 (30) 6 (30)
BMI - Mean (Standard deviation) 28.9 (3.4) 26.75 (5.3) 0.01 (T)
Family history of any cancer type – n (%)
Yes 6 (60) 0 (0) 0.09 (W)
No 4 (40) 20 (100)
T, T test; W, Wilcoxon Mann Whitney test.
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greater is the likelihood that the methylation change will be
biological significant i.e., result in altered gene expression.

Due to the difference in age group of cases and controls, we
performed further analysis in which potential confounders such
as age and gender were considered with CpG markers. A 50-
marker algorithm did not find any of these potential confounders
to contribute significantly to LC prediction. All 50 markers for
each AI platform were CpG loci for both the intra- and extra-
genic analyses (Supplementary Table S4).
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Gene Enrichment Analysis
There were 4 significantly enriched terms associated with LC. (1)
WikiPathways - Non-small cell lung cancer (NSCLC) (WP :
WP4255, p=1.76e-7), (2) KEGG Non-small cell lung cancer
(KEGG:05223, p=5.33e-7), (3) WikiPathways - Small cell lung
cancer (WP :WP4658, p=0.0020) and (4) KEGG - Small cell lung
cancer (KEGG:05222, p=0.0034). The constituent genes in these
significantly enriched pathways that were found to be
epigenetically altered are listed in Supplementary Table S5
TABLE 2A | Bootstrapping based on methylation of cf-DNA Lung Cancer for the coding region CpGs (top 10 Variables).

SVM GLM PAM RF LDA DL

AUC 95% CI 1.0000 (0.9000-1) 1.0000 (0.9000-1) 0.9822 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9500-1)
Sensitivity 0.9500 0.9700 0.9600 0.9800 0.9300 1.0000
Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
May 2022 | Volume 1
TABLE 3 | Artificial Intelligence based prediction on methylation of cf-DNA Lung Cancer for the non-coding region CpGs (top 10 Variables).

SVM GLM PAM RF LDA DL

AUC 95% CI 1.0000 (0.9000-1) 1.0000 (0.9000-1) 0.9900 (0.8900-1) 1.0000 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9500-1)
Sensitivity 0.9300 0.9600 0.9700 0.9800 0.9400 1.0000
Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CpG predictors in order of contribution:
SVM: cg16349277, cg10302285, cg21127580, cg07591229, cg15455979, cg13645106, cg05458412, cg00316520, cg14185604, cg02475408.
GLM: cg08090691, cg19319928, cg17373554, cg02821627, cg07099084, cg14852082, cg20802868, cg09853648, cg07877987, cg03388189.
PAM: cg05062489, cg09295542, cg06105068, cg24524245, cg19216204, cg03388189, cg06723904, cg13645106, cg12629103, cg02984449.
RF: cg07828654, cg02475408, cg14661028, cg03449513, cg22887498, cg10302285, cg26201011, cg08505243, cg20216928, cg04424605.
LDA: cg24196351, cg14071171, cg14559409, cg07892140, cg12629103, cg10430189, cg06723904, cg05909891, cg09295542, cg17001531.
DL: cg05458412, cg07652774, cg26399254, cg15398272, cg15125549, cg14852082, cg12629103, cg01076051, cg10086080, cg08852943.
TABLE 2 | Artificial Intelligence based prediction on methylation of cf-DNA Lung Cancer for the coding region CpGs (top 10 Variables).

SVM GLM PAM RF LDA DL

AUC 95% CI 1.0000 (0.9000-1) 1.0000 (0.9000-1) 0.9800 (0.8900-1) 1.0000 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9500-1)
Sensitivity 0.9400 0.9700 0.9600 0.9800 0.9200 1.0000
Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CpG predictors in decreasing order of contribution:
SVM: cg06829681 (TEAD1), cg24283889 (LOC102723701; ERLIN2), cg19403339 (DNAJC10), cg01430372 (TMEM99; KRT10), cg23280290 (HERPUD2), cg23178322 (FXR2; SHBG),
cg15650170 (AGAP3), cg26864130 (MCAM), cg10299917 (LRP5L), cg25552416 (ZFP3).
GLM: cg10181281 (VWC2L), cg00941912 (KIAA1530), cg21722128 (MEIS3), cg15470857 (ZNF510), cg16267059 (MFAP1), cg16026813 (BTRC), cg25167447 (NAV1), cg16971745
(IFIH1), cg07401887 (DUXAP10), cg13390998 (NFKBIL2).
PAM: cg01430372 (TMEM99; KRT10), cg00071702 (CDH4), cg11149658 (MCPH1), cg07660991 (ZNF414), cg10299917 (LRP5L), cg08855953 (PRKACG), cg18227776 (NCOA2),
cg14224170 (SAFB2), cg06270462 (EFHD1), cg00019091 (PTPN11).
RF: cg03871275 (DLK2), cg24847481 (SLC35A3), cg17094927 (ATP8B2), cg07199894 (ULK1), cg06831761 (SRPK2), cg18887033 (CMPK2), cg05398019 (COL27A1), cg24696183
(KCNQ1DN), cg06415550 (PTDSS2), cg16971745 (IFIH1).
LDA: cg26372202 (AK7), cg06819704 (CCNJL), cg10299917 (LRP5L), cg02401627 (LEKR1), cg26864130 (MCAM), cg11107657 (ODZ2), cg26024401 (DCDC2), cg11149658
(MCPH1), cg12282830 (AP1B1), cg25552416 (ZFP3).
DL: cg23496516 (USP36), cg07618979 (NFATC2), cg15684274 (NOC2L), cg06829681 (TEAD1), cg13302670 (CAMK2B), cg21466229 (SNTG1), cg23205538 (PARK2), cg14505733
(WNK2), cg25365034 (KLHL29), cg14364474 (GNAL).
TABLE 3A | Bootstrapping based on methylation of cf-DNA Lung Cancer for the non-coding region CpGs (top 10 Variables).

SVM GLM PAM RF LDA DL

AUC 95% CI 1.0000 (0.9000-1) 1.0000 (0.9000-1) 0.9910 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9500-1)
Sensitivity 0.9400 0.9650 0.9733 0.9800 0.9475 1.0000
Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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along with their known or putative roles in LC and in neoplasms
in general. Overall, these individual genes based on the quoted
references, appear to have a significant role in LC and neoplastic
transformation. The epigenetic dysregulation of known LC and
cancer molecular pathways lends biological credibility to our
findings and supports the argument for a significant role of DNA
methylation changes in LC development.

Overall, miRNA genes (epigenetically altered in LC) were
found to be enriched and was the top significant term with p-
value of <8.24e-239 based on g:profiler enrichment analysis. We
observed 45 miRNA genes to be significantly differentially
methylated in our study. The CpGs (49 CpGs) encompassing
regions of these 45 miRNA genes are provided on
Supplementary Table S6 (This is a subset data of
Supplemental Table S2) and their enrichment status relative
to lung cancer is detailed (Supplementary Table S7). We also
identified 70 CpGs from 66 lncRNA genes that were differentially
methylated and associated with LC. The CpGs corresponding to
lncRNAs are provided in the Supplementary Table S8 (This is a
subset data of Supplementary Table S2). A few of these
differentially methylated lncRNAs were previously found to be
associated with lung cancer as detailed in the Supplementary
Table S9.
DISCUSSION

In 2017 the U.S. Food and Drug administration (FDA) established
the Oncology Center of Excellence to promote Precision Medicine
in oncology and for the development of new cancer therapies. Its
writ included the development of biomarker-based treatments and
is grounded in the advances made in our understanding of the
genomics of cancer pathogenesis and propagation (35). As noted
previously, key to the improvement of LC outcomes will be the
development of accurate biomarkers. The potential therapeutic
value of liquid biopsies including ctDNA in oncology, have been
addressed in other reviews (36). These include cancer screening
and diagnosis in asymptomatic populations, identifying individual
patients for specific treatments, identifying evidence of residual
disease after treatment, predicting the risk of relapse, detection of
recurrence, distinguishing true from pseudo progression and
Frontiers in Oncology | www.frontiersin.org 67980
reducing prolonged or unnecessary treatments in patients. We
combined AI with the DNA methylation analysis of circulating
tumor DNA to investigate both the mechanism and for the
minimally-invasive detection of LC. We achieved highly
accurate detection of LC using six different AI platforms with
AUC = 0.90-1.0 and high sensitivity and specificity values. For
example, Deep Learning achieved high performance with AUC
(95% CI) =1.0, with 100% sensitivity and specificity in this
preliminary study. High diagnostic accuracies were similarly
achieved with algorithms based on combinations of smaller or
larger numbers of individual CpG epigenetic markers. The
excellent performance was also achieved when only intragenic
or alternatively intergenic CpG loci were considered. In the
present study, the classes are moderately imbalanced (i.e., no
worse than 10:1). Hence, we did not perform analysis to limit
the class imbalance which would otherwise have no huge benefit of
considering either weighting or sampling techniques to limit the
class imbalance. If there was a class imbalance, we would consider
different methods to help improve classification performance.
Some of the popular techniques to deal with class imbalances
are: (i) Class weights: impose a heavier cost when errors are made
in the minority class, (ii) Down-sampling: randomly remove
instances in the majority class, (iii) Up-sampling: randomly
replicate instances in the minority class and (iv) Synthetic
minority sampling technique (SMOTE): down samples the
majority class and synthesizes new minority instances by
interpolating between existing ones.

We further found evidence of a significant role of epigenetic
dysregulation in know molecular pathways involved in LC
pathogenesis (discussed in more detail below). Confounders
such as age and gender did not appear as independent
predictors of cancer beyond the epigenetic markers when we
adjusted for these confounders in AI analysis. This is likely due to
the fact that these variables have an epigenetic impact which is
already subsumed in the DNA data.

Freitas et al. (13) recently reviewed the literature on gene
mutation analysis of ctDNA for LC detection. Overall, studies
screening for multiple rather than a single cancer gene mutation
in ctDNA appeared to have higher diagnostic performance. Gene
mutation biomarker studies evaluating a combination from 3
to139 cancer related genes achieved a performance that varied
FIGURE 2 | Distance of significantly methylated CpGs’ from Transcription Start Site (TSS) in Lung cancer.
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from 33% sensitivity and 100% specificity to a high of 85%
sensitivity and 96% specificity.

We focused on DNA methylation given the burgeoning
evidence of the centrality of epigenomics in tumorigenesis (37).
Other studies have confirmed the feasibility of this approach.
Using a combination of methylation markers in 6 cancer genes
based on plasma ctDNA analysis, Hsu et al. (38) achieved an 73%
sensitivity and 82% specificity for LC detection. Begum et al. (39)
performed methylation analysis using serum cell-free DNA.
Using a combination of five genes they reported an 75%
sensitivity and 73% specificity for LC detection. Zheng et al.
(40) achieved a sensitivity of 83.64% and a specificity of 74.0%
using a combination methylation profiling of five genes from
plasma ctDNA.

Methylation analysis may have a future advantage in
facilitating new therapeutic approaches. Targeted alteration of
epigenomic changes is emerging as a potentially highly impactful
therapeutic approach in cancer. This involves the precise
targeting of DNA sequences to reverse or introduce epigenetic
marks. The CRISPR/Cas 9 system appears to be the most exciting
though not the only such approach (41). The CRISPR/Cas-9
approach has been used for targeted reversal i.e. removal of DNA
methylation (demethylation) leading to gene activation in
cancer (42).

An important objective of “Precision Oncology” is deploying
omics and AI to investigate disease pathogenesis. Recent
advances in machine learning (a branch of AI) point to a
significant potential for future impact on medical research and
practice. It has been noted that AI methods could potentially
make significant contributions in the medical field in the
fol lowing areas: understanding “disease underlying
architecture, perform early diagnosis of diseases, and disease
progression prediction” (43).

We found alterations in molecular pathways that are involved
in non-small cell lung cancer (NSCLC), small cell lung cancer
development. Our findings provide further evidence in support
of the importance of epigenetic dysregulation in LC. Further, the
association with known or suspected LC cancer molecular
pathways gives biological plausibility to our findings. The
cancer related functions of the genes found to be epigenetically
dysregulated in this study is further summarized. In
Supplementary Table S10, we list the function of genes that
were identified to be epigenetically altered and determined by AI
to be LC markers, along with their known or suspected roles in
LC and neoplastic transformation based on the published
literature. Given what is known about their apparent roles of
these genes in the neoplastic process, it is therefore not surprising
that they emerged as significant markers for LC detection.
Examples of epigenetically modified genes that were found in
our study and are catalogued in Supplementary Table S5
include FHIT, FN1, FOXO3 and GRB2. They are thought to
regulate epithelial-mesenchymal transition and/or metastasis
and associated with LC. Also, ITGA2, ITGA3 and ITGA6 are
integrin coding genes that participate in cell adhesion,
proliferation, and differentiation and are known to have anti-
cancer properties in LC. It should be pointed out however that
Frontiers in Oncology | www.frontiersin.org 78081
the LC roles of a significant number of genes that were
epigenetically altered in our study are currently unknown.
Should our findings be subsequently validated, the function of
the latter genes in cancer should be investigated. Also, the
function of the constituent genes involved in the enrichment
pathways reveal an important role in neoplasms in general.
Overall, our results were generally enriched with many genes
currently known or suspected to be involved in carcinogenesis,
giving biological plausibility to our findings.

MicroRNA (miRNA) are small single stranded non-coding
RNAs. They play an important role in gene expression through
the post- translational regulation of multiple other genes. This is
accomplished by binding of miRNA to and degradation of the
mRNA of other genes and thus inhibiting their expression.
MicroRNA is another well-known epigenetic mechanism.
DNA methylation in turn is critical in regulating the
expression of miRNA genes (44). miRNA is increasingly being
recognized as playing an important role in lung cancer including
in tumorigenesis, tumor suppression, with value as biomarkers
and potential therapeutic roles among others (45). In the current
study, miRNAs overall were found to be significantly enriched,
p-value of 8.24e-249, in our gene enrichment analysis. We found a
total of 45 miRNAs that were significantly differentially
methylated and most of them were enriched in various LC
phenotypes (Supplementary Table S6) signifying the complex
regulation of miRNA via methylation and regulation of gene
expression in LC. Further, we performed a literature review to
determine whether our overrepresented miRNAs and their
targets were previously identified as having a role in LC
pathogenesis. These include miR-96-5p previously identified as
an oncogene in lung adenocarcinoma (46), miR-126, miR-212,
miR-330, miR-432, miR-563, miR-663a, miR-1238 are
considered to be tumor suppressor miRNAs (47–53), miR-136
is significantly upregulated in human NSCLC primary tumors
(54). Further, miR-141-3p appears to have prognostic value and
is a tumor suppressor involved in the NSCLC progression (55),
miR-346 promotes cell growth and metastasis and suppresses
apoptosis in non-small cell lung cancer (56), miR-601 is
associated with cell apoptosis in lung cancer (57), miR-2861
expression was found to be higher in lung cancer stem cells (58),
miR-1307 promotes the proliferation of lung adenocarcinoma
(59), the miR-1469 is an apoptosis enhancer that regulates lung
cancer apoptosis (60) and miR-200c plays a significant role in
suppressing Epithelial-mesenchymal transition in lung
cancer (61).

Based on circulating miRNAs studies, the circulating
miRNAs, miR-10b and miR141 were found to be elevated in
lung cancer cases (62), while circulating miR-487a, miR-30b,
miR-601 were found to be associated with NSCLC (63). The
serum exosome miR-96 has been identified as a biomarker for
lung cancer (64). We also identified lncRNA genes that were
differentially methylated in lung cancer and a few of these
lncRNAs were already identified in various lung cancer studies
(Supplementary Table S9).

Although very encouraging, our study is not without
limitations. As a proof-of-concept study, the sample sizes were
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small. it is possible for example that more DNA methylation
markers could be detected with the analysis of a larger sample
cohort. Despite these limitations, high statistical significance was
obtained. Due to the non-suitability of the circulating cell-free
DNA for gene expression analyses, we were unable to assess gene
expression associated with the methylation changes. We however
searched databases based on two studies i.e. 65 (65) and 51 (66)
that document gene expression changes in lung cancer tissue. We
cross-matched their differentially expressed genes with our
differentially methylated genes. We found the following genes
to be both differentially expressed in LC tissue and differentially
methylated in our study: DSC3, MUC1, VSNL1, RORC, ACSL5,
KRT6B and TP63. Further, many of the CpGs that were
epigenetically altered are located close to the gene transcription
start site (TSS), which would indicate that methylation changes
are likely to impact gene expression. Finally, there were many LC
genes with methylation change ≥ 10%. This degree of
methylation difference is generally associated with an increased
likelihood of gene expression changes (67).

Conclusion
Using principles espoused in Precision Medicine, we report that
a combination of DNAmethylation analysis of circulating tumor
DNA and AI achieved high LC detection rates based on this
minimally invasive approach. High performances were observed
with the analysis of either intragenic or intergenic areas of the
DNA. In addition, many of the genes that were found to be
differentially methylated in LC in our study are known or
suspected, based on a search of the existing literature, to be
involved in the mechanism of development, suppression, or
growth of cancer in general including lung cancer. Larger
confirmation studies will need to be performed in the future.
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Human Papillomavirus (HPV) is the causal agent of 5% of cancers worldwide and the

main cause of cervical cancer and it is also associated with a significant percentage of

oropharyngeal and anogenital cancers. More than 60% of cervical cancers are caused by

HPV16 genotype, which has been classified into lineages (A, B, C, and D). Lineages are

related to the progression of cervical cancer and the current method to assess lineages

is by building a Maximum Likelihood Tree (MLT); which is slow, it cannot assess poor

sequenced samples, and annotation is done manually. In this study, we have developed

a new model to assess HPV16 lineage using machine learning tools. A total of 645

HPV16 genomes were analyzed using Genome-Wide Association Study (GWAS), which

identified 56 lineage-specific Single Nucleotide Polymorphisms (SNPs). From the SNPs

found, training-test models were constructed using different algorithms such as Random

Forest (RF), Support Vector Machine (SVM), and K-nearest neighbor (KNN). A distinct set

of HPV16 sequences (n= 1,028), whose lineage was previously determined by MLT, was

used for validation. The RF-basedmodel allowed a precise assignment of HPV16 lineage,

showing an accuracy of 99.5% in the known lineage samples. Moreover, the RF model

could assess lineage to 273 samples that MLT could not determine. In terms of computer

consuming time, the RF-based model was almost 40 times faster than MLT. Having a fast

and efficient method for assigning HPV16 lineages, could facilitate the implementation of

lineage classification as a triage or prognostic marker in the clinical setting.

Keywords: Human Papillomavirus (HPV), cancer, prognostic and predictive factors, classification, machine

learning, HPV16 lineage

INTRODUCTION

A total of 5% of worldwide cancers are caused by the Human Papillomavirus (HPV) being cervical
cancer the fourth most common cancer in women (Arbyn et al., 2020). Although the incidence of
cervical cancer has decreased over the last years (Arbyn et al., 2011; Van Dyne et al., 2018) due to
the implementation of screening methods (Brisson et al., 2020) and it may decrease in the following
years due to vaccination (Bruni et al., 2021; Falcaro et al., 2021), an estimated 570,000 women were
diagnosed with cervical cancer worldwide in 2018 (Bray et al., 2018). Moreover, the incidence of
non-cervical cancers has increased in recent years. While in cervical cancer HPV prevalence is
close to 100%, in other HPV-associated anogenital cancers viral prevalence rates differ according
to the anatomical site: anus (88%; Alemany et al., 2015), vagina (74%; Alemany et al., 2014), penis
(33%; Alemany et al., 2016), vulva (29%; de Sanjosé et al., 2013), and oropharynx (29–70%; Stein
et al., 2015).
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HPV high-risk types (HR-HPV) include predominantly, alpha
9 (HPV 16/31/33/35/52/58), alpha 7 (HPV 18/39/45/59/68),
alpha 6 (HPV 56/66), and alpha 5 (HPV 51) genus, but HPV16
is by far the most common HR-HPV type, which contributes
to 70–75% of all cervical cancers and is found in 40–60%
of cervical intraepithelial neoplasia 2 (CIN2+; Bzhalava et al.,
2013). However, only 5% of persistent HPV16 infections will
evolve to high-grade lesions, and from those, a small proportion
will progress to invasive cancer. Although it remains unclear
why some HPV16 infections progress while others are cleared
spontaneously, viral genome variability has been described as a
key factor that could play a crucial role in the progression toward
high-grade lesion or invasive cancer risk (Cullen et al., 2015).
HPV16 was classified accordingly to viral genome variability in
different lineages (A, B, C, and D) and sublineages (A1-4, B1-3,
C1, D1-3) by Burk et al. (2013). HPV16-A lineage is the most
prevalent type worldwide, while HPV16-D is the most aggressive
type associated with cervical cancer risk (Gheit et al., 2011;
Mirabello et al., 2016; Clifford et al., 2019).

In the 90’s, the HPV genotype and HPV16 variants were
determined according to the L1—Open Reading Frame (ORF)
region that was amplified and sequenced (Ho et al., 1991; Chen
et al., 2005). The implementation of New Generation Sequencing
(NGS) techniques allowed us to perform bulk experiments and
obtain longer sequences beyond the L1 ORF. Full viral genome
sequencing resulted in the discovery of more lineages and
genome variants (Burk et al., 2013). High-throughput sequencing
as Illumina or Ion Torrent (Cullen et al., 2015) methods leads
us to read the full viral genome. Before estimating the similarity
between genomes, sequence samples are aligned to the reference
HPV16 sequence (NCBI genome IDs: NC_001526.4). Then, a
Maximum Likelihood Tree (MLT) is built altogether with a set
of known-lineage HPV genomes used as a reference to assign
specific lineages (Smith et al., 2011). New samples are placed
on the phylogenetic tree according to their similarity with the
reference sequences. Finally, the researcher manually assigns a
lineage for the sample of interest, looking at where the sample
has been located on the phylogenetic tree.

However, since the current method uses the entire genome
sequence, poor coverage samples and samples showing gaps or
missing fragments are difficult to classify. Building a phylogenetic
tree is a time-consuming method when the sample size is
big, which may take a long time to process depending on
the computer used and finally, the lineage assignment is done
manually. As MLT classification is directly influenced by the
operator’s expertise, reproducibility and standardization of the
method may vary. To improve the HPV16 lineage assessment,
we propose a new model that uses a few positions on the HPV16
genome to assess lineage and it does not require visual control,
which makes the process faster and reproducible.

In this study, we describe a new code that can be used
to efficiently assign HPV16 lineages. Using a Genome-Wide
Association Study (GWAS), we tested all the positions of the
HPV16 genome that are known to be unique to a single lineage or
sublineage. Then, using machine learning algorithms, we trained
and tested different models using reference and known samples
for these positions. The code has been developed with the R

language and it has been validated with more than 4,000 HPV16
genomes. Having a fast and efficient method for assigning HPV
linages will help clinics to provide better-informed prognoses and
help to define screening and treatment decision strategies.

MATERIALS AND METHODS

Samples
HPV16 genome sequences were used to find the lineage-specific
SNPs and to build the model to assess lineage. Reference
samples were obtained from two different sets of known-
lineage HPV16 genomes: one set was described by Burk (n
= 46; Smith et al., 2011) and the other was obtained from
the Papillomavirus genome database (PAVE) webpage (n =

10; Supplementary Material 1). To define the lineage-specific
positions for HPV16A, HPV16B, HPV16C, and HPV16D and
to build the training-test models we used the reference samples
and all the complete HPV16 genomes from NCBI (n = 588),
downloaded from NCBI nucleotide dataset by keyword search
“txid333760 complete genome;” Species: Viruses; Molecular
types: Genomic DNA/RNA; Sequence type: Nucleotide accessed
on July 30, 2021.

Validation of the model was performed with two different
sets of samples, the first set of 1,028 HPV16 samples collected
and sequenced in our laboratory, and the second set of
3,898 samples (which included the complete genomes and
other almost complete genomes) were downloaded from NCBI
nucleotide dataset by keyword search txid333760; Species:
Viruses; Molecular types: Genomic DNA/RNA; Sequence type:
Nucleotide; Release Date: From 0000/01/01 to 2022/03/24;
Sequence length: from 7,000 to 8,500; accessed on March 24,
2022.

All samples were aligned on the HPV16 reference genome
(GenBank Accession code: K02718.1) with MAFFT (v7.475)
software using “–add” and “–keeplength” options (Katoh et al.,
2019). The HPV16 reference genome, which is the HPV16-A1
sublineage has been added to the reference sample set (n= 57).

Lineage Assessment
The HPV16 lineage was assigned to the 588 NCBI samples using
the current lineage assignment process described by Burk (Burk
et al., 2013; Cullen et al., 2015) based on phylogenetics, which
we will henceforth call Maximum Likelihood Tree (MLT), as
it is based on this the Maximum Likelihood algorithm. The
process consists of building a phylogenetic tree with altogether
known lineage sequences and samples of interest. Phylogenetic
analysis was conducted using MEGAX (Tamura et al., 2021)
(v10.2.4) using the 57 reference samples plus the 588 NCBI
previously aligned samples. To build the phylogenetic tree, we
first calculated the genomic variation in a group of sequences
with the Maximum Likelihood statistical method applying the
Tamura-Nei correction model for nucleotide substitution. The
process was replicated 100 times with the bootstrapping method.
Finally, a tree was built, and lineage was assigned to each
sample accordingly to the closest reference sample and results
were manually annotated. Not all samples were assigned to a

Frontiers in Artificial Intelligence | www.frontiersin.org 2 June 2022 | Volume 5 | Article 8518418586

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Asensio-Puig et al. HPV16 Lineage Classification

lineage, since some sequences were not placed in themain lineage
branches, so they were classified as “n” or unknown lineage.

Detection of Main Nucleotides Related to
Lineage
AGenomicWide Association Study (GWAS; Manolio, 2010) was
performed on the reference and NCBI sequences (n = 645) to
find differences between lineages within the HPV16 genome. The
7,906 base pairs that make up the viral genome have been traced
to detect mutations. Known positions with two or more alleles
with a minimum variant frequency (MVF) of 0.05 and a call rate
higher than 95%were called SNP candidates. A generalized linear
model (GLM) with a binomial distribution and a logit function
was used to test the relationship between each SNP candidate and
the HPV16 lineage. P-values were adjusted by False Discovery
Rate (FDR) and only SNPs with a p-value lower than 0.05 were
considered significant.

Training a New Model to Assess Lineage
To assess lineage with the SNPs described in the previous step we
opt for training-test models. Different algorithms had been used
to train models: Random Forest (RF), Support Vector Machine
(SVM) and K-nearest neighbor (KNN), and Classification and
Regression Trees (CART). Themodel was built with a total of 646
samples, including the 588 NCBI complete HPV16 genomes, the
57 reference samples, and a new sample called the “n-sample.”
The n-sample had no information and was composed of 7,906
unknown nucleotides (“n”), to assign unknown lineage to those
samples with poor coverage. The 80% (n = 518) of the samples
had been used for training and testing the model, while the
remaining 20% (n = 128) had been used for the validation. For a
better estimation, samples have been randomly mixed 100 times
creating different training and test groups with the k-fold cross-
validation method, and the model has been trained and tested
for each new dataset. Accuracy, Kappa constant, and the testing
confusion matrixes have been used to compare models and to
choose the best model for lineage assessment.

Validate the New Model
Finally, validation has been performed to test the new model
with two datasets of samples. The model has been validated
with 3,898 genomes downloaded from NCBI which included
both complete genomes and almost complete genomes and
with a dataset composed of 1,028 HPV16-positive samples,
that were selected from the archive of HPV tumors collected
for the RIS HPV TT, VVAP, and Head and Neck studies (De
Sanjose et al., 2010) and coordinated by the Catalan Institute
of Oncology (ICO). Formalin-fixed paraffin-embedded (FFPE)
specimens were sequenced with the HPV16 assay designed for
the Ion Torrent Sequencing platform, which covers more than
80% of the viral genome (Cullen et al., 2015). Therefore, this
last step of validation has tried out the model with a set of
incomplete genomes as the sequencing assay was designed to
amplify low-quality archival DNA.

In both datasets, lineage was first assessed with MLT,
to then compare the quality of the new lineage assessment
done by the machine learning model. Both GWAS and

the training-test model has been performed using R
language under 3.6.3 version and the code is available
on www.github/INCALAB-PREC/HPV16-linpred/.

RESULTS

A GWAS performed on 645 HPV16-reference genomes showed
56 SNPs that are unique for one or more HPV16-lineages: A, B,
C, or D (Figure 1A). Significant SNPs were spread out into the
full genome. Gene E1 had a total of 16 lineage-definers SNPs,
followed by E2 (10 SNPs), L2 and URR (7 SNPs), E6 (4 SNPs),
E5 and L1 (3 SNPs), E7 (1 SNP), and 5 SNPs were found in a
non-codifying region. Most of the differences in nucleotides were
found between A and D or C lineages.

The training-test models were built using the 80% (n = 518)
of the HPV16 dataset randomly selected and considering only
the 56 lineage-specific positions found in the GWAS. The 100
k-fold cross-validation method has been applied and the dataset
has been resampled 100 times in train and test groups. Each new
dataset group was trained and tested to improve the estimated
values of the model. Figure 1B shows a comparison between
the models used, revealing that the best model to assess HPV16
lineage was the Random Forest (RF) algorithm, with an accuracy
of 0.99 (CI:95%), followed by Support Vector Machine (SVM)
andK-nearest neighbor (KNN); with amean accuracy of 0.98 (CI:
95%) for both. Validation of the models was performed with the
remaining 20% of the dataset (n = 128). To build the confusion
matrix, lineage was assessed using the three models (RF, SVM,
and KNN) and individually compared with the lineage assessed
by MLT. Random Forest was the model with less error since all
the assessed lineages match with MLT and were selected for the
next validation steps (Figure 1C). Despite the high accuracy of
SVM and KNNmodels, both failed in one single sample.

Further validations were carried out with two independent
set of samples, the first one included 1,028 HPV16 positive
samples, whose genome was partially obtained from FFPE
archive samples. Most of the high coverage samples were
classified with the same lineage as the MLT method did, shown
in green in the confusion matrix (Figure 2A). Only one sample
was differently classified between models (in red). MLT lineage
classification is a challenge in low coverage samples, since out of
1,028 samples only 569 (56.1%) could be evaluated. In contrast,
RF model has been able to assess lineage in 943 (93.0%) of these
sequences. Therefore, if the MLT model is considered as the
reference method for assessing HPV16 lineage, the RF model has
an error of 0.17%. A total of 375 samples with average coverage
have been assessed for the first time (in blue). However, we have
no way of confirming that these samples have been properly
classified. Lineage could not be assessed in 84 samples by either
method, which has been classified as “n” samples. The coverage of
most of these samples is poor, although some samples with good
coverage were found in the unclassified group.

To understand in which conditions the RF model can assign
lineage, different statistical analyses had been performed. Lineage
has been assessed with a median of 24 known SNPs out of the
56 lineage-specific SNPs in a single sample (in red), while the
84 sequences that no lineage could be assigned had <15 known
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FIGURE 1 | A total of 56 lineage-definers SNPs were found in the GWAS, which were used to build four machine learning models, being RF the best model to predict

HPV16 lineage. (A) Manhattan plot showing all the nucleotides in the HPV16 genome with any mutation (MAF > 0.05 and CR < 95%). SNP candidates have been

colored differently according to which lineage they are specific for. Therefore, one SNP candidate can define two different lineages and it will be plotted twice. SNPs

significantly related (p < 0.05) with any lineage are plotted above the black line. The genomic map under the Manhattan plot shows the positions of the HPV16 genes.

(B) Accuracy and Kappa of the different training-test algorithms build to predict HPV16 lineage. Models used are Random Forest (RF), Support Vector Machine (SVM),

K-nearest neighbor (KNN), and Command Assessment of Readiness and Training (CART). Kappa is a metric that compares an observed Accuracy with an expected

Accuracy obtained by cross-validation (100-fold). When both, accuracy and kappa are 1, the model is perfect. (C) Confusion matrix for the Random Forest-based

model using the validation set of samples. In green, samples that had been assessed equally with both methods: RF and Maximum Likelihood Tree (MLT).

SNPs (in blue; Figure 2B). Therefore, it must exist a minimum
number of SNPs to successfully run the model. We have fixed a
threshold at the intersection of the two density lines, which is 13
SNPs, and sequences with<13 out of the 56 lineage-definer SNPs
will be directly assigned as unclassified lineage - “n.” Applying the
threshold, the confusion matrix slightly changes, losing a total of
102 samples that will be considered as “n” instead of the predicted
lineage (Figure 2C). None of the samples equally assigned for
both methods, RF and MLT, has been affected by the application
of the threshold. After the correction, the percentage of lineage
assignment decreased from 93.0 to 82.9%. Discarded samples
included sequences of both good and bad coverage samples.

RF model has been validated with a second set that includes
all the HPV16 genomes available in the NCBI dataset in March
2022. Lineage has been previously assessed by the MLT method
and then has been assessed with the random-forest algorithm.
The accuracy of the validation matrix is 98.9% (p < 0.001) and
the error when assigning the lineage is <1.5%. However, a set of
samples classified with theMLTmethod as HPV16-A lineage had
been classified as B (n= 28) and D (n= 12) using the RF model.
Discarding those who had<24 known SNPs thematrix improves,
which indicates that the loss of certain SNPs after sequencing

incomplete genomes, could influence the classification model
accuracy. However, 22 samples are still classified as B instead of A
(Figure 2D). This is probably due to a large number of HPV16-A
samples included in the validation step compared to the other
lineages. Although the error in lineage A classification is only
0.67%, most of the errors accumulate in B, which is the closest
lineage to A, and overall, one of the less frequent lineages. In turn,
all samples initially classified using MLT as B were well-classified
as B using the RF model, which confirms that the model works to
classify lineage B.

As the prevalence of HPV16-A lineage is higher in the world,
for this reason, all the possible HPV16 datasets will have an
important bias. We evaluate the model with a balanced dataset
for each lineage. Sets of 200 lineage-balanced samples had been
created randomly selecting 50 samples of each lineage from the
full NCBI dataset (n = 3,898). The validation of the model,
repeated with 10 different random sets shows an accuracy of
0.986 (95% CI: 0.958–0.997). The A-samples misclassification to
B almost disappears (Supplementary Material 2).

In both pipelines, samples must be aligned to a reference
genome. MAFFT takes an average of 2min to align a total
of 100 HPV16 genomes. It takes ∼40min to calculate the
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FIGURE 2 | Model validation on 1,028 patient’ HPV16 sequences showed higher ratios of classification with Random Forest (RF) model than with Maximum

Likelihood Tree (MLT). (A) RF validation was performed on 1,028 samples and shown in a confusion matrix. Samples receiving the same classification from both

pipelines are colored in green, while samples that are not classified with the same lineage are shown in red. In the last column, sequences that RF-based model could

assign for the first time and MLT could not. (B) Density curves of the number of covered lineage specific SNPs for each sample in function if their lineage has been

assessed by RF (red) or not (blue), shows that the smaller number of known SNPs makes more difficult for the RF model to assess lineage. The black line corresponds

at the intersection point between the two densities curves, where we had defined a threshold, where samples with <13 SNPs will be considered as the unclassified

lineage or “n.” (C) Validation matrix after threshold correction, discarding all the samples that have less than 13 known lineage-definers SNPs. Notice that the

threshold only changes the blue column, increasing the n-samples from 87 to 182. (D) Validation matrix using 3,898 HPV16 genomes available in the nucleotide

database from NCBI. Samples with <24 lineage-dependent SNPs had been classified as n-sample.

distances between samples with the MLT algorithm and to build
a phylogenetic tree (bootstrapping samples 100 times) (Table 1).
Followed by the annotation step, where the operator annotates
manually the lineage by looking at the phylogenetic tree, which
may take between 30 and 40min depending on the skills of the
worker. Using the developed code in this project, it only takes
0.97 s (SD= 0.43, repeated 25 times) to load the samples in Fasta
format, assess lineage with the RF model and annotate lineage.
For 100 samples, the new RF pipeline is almost 40 times faster
than the current MLT pipeline. By increasing the number of
samples to be tested, the difference between models becomes
much larger. To assign lineage in our 1,028 HPV16 genomes
dataset, the RF model was almost 40,000 times faster than MLT,
since the process to build the MLT and annotating lineage lasted

approximately up to 30 h, while the RF model took only 2,81 s
(SD= 0.15, repeated 10 times).

Sublineage A
From the reference genome set (n = 645), a total of 481 HPV16-
A samples had been selected, all of them assessed with A-lineage
by both models, MLT and RF. Nucleotide differences between
0.5 and 1% of the complete genomes are used to define the
sublineages (Burk et al., 2013), and HPV16-A lineage is classified
in A1, A2, A3, and A4 groups. As HPV16-A1, A2, and A3
sublineages are more similar to each other and have a similar
contribution on HPV-associated cancers than A4, we decided
to cluster them into a single group called A123. A total of 67
positions were classified as SNP candidates (CR > 95% and
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MAF > 0.05), but the GWAS only assessed 17 significantly SNPs
associated with A123 or A4 sublineage.

An 80% of the samples were used to build the models, and
from the five machine-learning models used in this study, RF and
KNN were the models with better results to predict sublineage A.
KNNmodel obtained an accuracy of 0.979 (95%CI: 0.926–0.997),
which showed similar values than RF with an accuracy of 0.968
(CI: 0.911–0.993). After resampling and building the model 100
times, models were validated other 20% of the samples (n = 96).
The validation matrix showed two mismatches between KNN
and MLT (Figure 3A), instead of the three mismatches produced
by the RF model, even showing the same accuracy values. A
second validation was performed with the patient’s sequenced
HPV16-A samples (n = 466) obtained from the project led by
ICO (Figure 3B). The accuracy of predicting sublineage A123 or

TABLE 1 | HPV16 lineage classification is faster with the Random Forest pipeline.

100 HPV16 samples Current pipeline (MLT) New pipeline (RF)

Software/ Time Software/ Time

method (min) method (min)

Alignment MAFFT 2 MAFFT 2

Algorithm MEGAX/MLT 40 R/RF 0.97 s

Annotation Manually* 30–40* R

The time for both pipelines was calculated on a set of 100 HPV16 sequences and tracked

in a computer with the following features: UBUNTU 20.04 with 4 GHz Intel Core i7 and

16 GB of RAM.

For both pipelines, samples were aligned on the reference HPV16 genome with MAFFT

software using “—keeplength” function. For the current pipeline we usedMEGAX software

to calculate the distance between sequences with the Maximum Likelihood tree (MLT)

method and to build a phylogenetic tree. The new pipeline has been developed with

R language and uses the Random Forest (RF) algorithm from the “caret” library. While

the R code generates an output with the samples ID and the assigned lineage, the

current pipeline requires manual annotation and the estimated time* may depend on the

operator’s skills.

A4 was 0.939 (95% CI: 0.914–0.959), being lower than the lineage
model accuracy.

The training-tests with an accuracy higher than 95% (RF,
KNN, and SVM) were ensembled by the majority vote method.
The ensemble model did not improved the KNN prediction
(Figure 3C).

DISCUSSION

The HPV16 lineage classification needs to be more efficient if
we ever want to implement it as triage or prognostic marker
in the clinical setting. Here we describe a faster and automated
new model based on machine learning that efficiently classifies
HPV16 sequences into lineages and requires lower sequence
coverage if compared with the current method.

The current classification model calculates the similarity
between samples and reference HPV16 genomes using the
Maximum Likelihood estimation to classify the sampled
sequence into a given lineage. To work, the MLT algorithm
requires, as input, the whole HPV16 genome (7,906 base pairs),
therefore, sampled sequences with large uncovered regions
cannot be assigned to any lineage. We performed a genomic wide
association study in which we identified 56 SNPs that are HPV16-
lineage specific. The subset of SNPs included in the RF model
is mainly lineage definers, our results are in agreement with
previously described studies using phylogenetic reconstruction
and classification to assignHPV16 variants to clinical sample (Ou
et al., 2021).

Working with 56 SNPs instead of the full genome sequence,
we can develop more efficient and faster models than the current
model used for HPV16 lineage classification. Among different
training-test models used to assess lineage based on the 56 SNPs,
Random Forest was the best one, with an accuracy close to 100%.
Using the RF to classify more than 1,000 samples we could assign
a lineage to 93% of the samples, whereas usingMLTwe assigned a
lineage to 56.1%. If the MLT model is considered as the reference

FIGURE 3 | Comparison between KNN, MLT and ensembled models to assign sublineage A shows good results but with higher error than the lineage model. (A)

K-nearest neighbors (KNN) confusion matrix on the 20% of the HPV16-A reference sequences that were not used to build the model. (B) KNN validation was

performed on 466 HPV16 patient’s sequences and shown in a confusion matrix. Samples receiving the same classification from both pipelines are colored in green,

while samples that are not classified with the same sublineage are shown in red. In the last column, sequences that KNN-based model could assign for the first time

and Maximum Likelihood Tree (MLT) could not. (C) Ensembled model by majority vote was validated on the 466 HPV16-A patient’s genomes.
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method for HPV16 lineage classification since it does not exist
another method, the new RF-based model would have an error
between 0.17 and 1.4% according to both validation matrices.
Therefore, from the 273 samples of first-time lineage assessed by
RF in the 1,028 patient samples, we may assume that the error is
similar, so there would be between 1 or 4 misclassified samples in
this group.

Not all the SNPs are equally related to the lineage. A total of 20
out of 56 SNPs used in the model show higher Odds Ratio (OR)
values when the relation between nucleotide and lineage is tested,
thus lineage assessment could also work with a smaller set of
SNPs in each sample. The density histogram showed that at least
13 SNPs must be known to assess lineage with the RF model, in
consequence, samples with <13 known SNPs will be considered
non-classified samples to avoid errors in low coverage samples.
Besides the reduction of data required, if compared to the MLT
pipeline, the RFmodel also allows a much faster process that does
not require manual annotation. The RF model is 40 times faster
than the MLT model.

Sequencing is becoming affordable to most laboratories, and
consequently becoming a part of the clinical setting; however, it
generates large amounts of data that may be difficult to analyze,
besides being time-consuming. The new model we present
here allows a straightforward assignment of HPV16 sequence
alignment of virtually all sampled sequences.

The main limitation of this study is that we did not test our
model for all sublineages, the training-test models could be only
applied for A sublineage. Further studies should investigate the
mismatched samples in order to unveil any potential limitation
of the RF model for assigning HPV16 lineages. Our model
can be implemented to classify HPV genotypes and other
HPV lineages. Thus, samples from cervical and anogenital sites
that are positive for any HPV type could be assigned to a
specific lineage.

Having a fast and efficient method for assigning HPV linages
may allow better-informed prognosis and may better guide
doctors on the best course for women showing an HPV16
positive test or individuals with HPV positive pre-neoplastic
lesions and high-grade lesions. Most of the current screening
algorithms, using HPV as a primary test, define that HPV16
positive women should be referred directly to colposcopy, while
more than 95% of these infections will be cleared spontaneously
during the next 12 months. The identification of HPV16-positive
women with a high risk of progression is a key point to develop
new diagnostic tools for improving screening or diagnostic
specificity avoiding unnecessary methods.

In addition, the computational model described in this work
would be easily implementable in a user-friendly software or
web interface, which will make easier the introduction of HPV16
lineage classification in the clinical setting.
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There is a need to identify biomarkers predictive of response to neoadjuvant

chemotherapy (NACT) in triple-negative breast cancer (TNBC). We previously obtained

evidence that a polyamine signature in the blood is associated with TNBC development

and progression. In this study, we evaluated whether plasma polyamines and other

metabolites may identify TNBC patients who are less likely to respond to NACT.

Pre-treatment plasma levels of acetylated polyamines were elevated in TNBC patients

that had moderate to extensive tumor burden (RCB-II/III) following NACT compared to

those that achieved a complete pathological response (pCR/RCB-0) or had minimal

residual disease (RCB-I). We further applied artificial intelligence to comprehensive

metabolic profiles to identify additional metabolites associated with treatment response.

Using a deep learning model (DLM), a metabolite panel consisting of two polyamines as

well as nine additional metabolites was developed for improved prediction of RCB-II/III.

The DLM has potential clinical value for identifying TNBC patients who are unlikely to

respond to NACT and who may benefit from other treatment modalities.

Keywords: triple-negative breast cancer, biomarkers, artificial intelligence, deep-learning model, neoadjuvant

chemotherapy, prediction

INTRODUCTION

Triple-negative breast cancer (TNBC) accounts for ∼15–20% of breast cancers and represents
a heterogeneous subtype characterized by high pathological grade, strong invasiveness, local
recurrence, highmetastasis rate, and poor prognosis (Foulkes et al., 2010). TNBCs are defined based
on the lack expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal
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growth factor receptor type 2 (HER2) and are thus not
amenable to endocrine therapy or therapies targeted to the
HER2 receptor type (Foulkes et al., 2010). Chemotherapy
remains the mainstay of systemic treatment, typically consisting
of anthracycline and taxane-based chemotherapy regimens
(Foulkes et al., 2010; Bianchini et al., 2022). Platinum-
based neoadjuvant chemotherapy has been shown to increase
pathological complete response (pCR) rates compared to
platinum-free neoadjuvant chemotherapy. However, platinum-
based treatment is associated with higher rates of toxicity
and treatment discontinuation, and the optimal integration
of platinum-based agents remains controversial (Poggio et al.,
2018). The addition of immunotherapy has shown promise with
recent Phase III clinical trials demonstrating that the addition of
the anti-PD-L1 inhibitor atezolizumab or the anti-PD1 inhibitor
pembrolizumab with chemotherapy improved pCR compared to
chemotherapy alone in patients with TNBC (Schmid et al., 2018,
2020).

In the curative neoadjuvant setting, a pCR after neoadjuvant
chemotherapy (NACT) in TNBC is associated with improved
long-term survival yielding estimated 10-year relapse survival
rates of 86% (Symmans et al., 2017). However, up to 60% of
patients will have residual disease after receiving standard NACT
and are at an elevated risk of poor outcome, with reported 10-
year estimated relapse survival rates of 81, 55, and 23% for TNBC
patients with a residual cancer burden (RCB) index of I, II,
and III, respectively (Huober et al., 2010; Symmans et al., 2017;
Schmid et al., 2020). Currently, there is a paucity of biomarkers
that can reliably identify TNBC patients that will have poor
response to NACT.

Polyamines, including putrescine, spermidine, and spermine,
are polycationic alkylamines that are essential for eukaryotic
cell growth. Dysregulation of polyamine metabolism is frequent
in cancer and polyamines have been reported to play central
roles in neoplastic transformation and tumor progression (Park
and Igarashi, 2013; Casero et al., 2018; Chia et al., 2022).
We previously obtained evidence that increased plasma levels
of the acetylated polyamine diacetylspermine (DAS) in TNBC
was prognostic for poor progression-free survival and overall
survival. Specifically, we found that elevated levels of plasma DAS
to be prognostic for worse 5-year metastasis free survival and
poor 5-year overall survival in newly-diagnosed treatment naïve
TNBC patients (Fahrmann et al., 2020).

Here, we tested the utility of plasma polyamines for
identifying subjects who will be insensitive to NACT as part
of a comprehensive plasma metabolomics profiling. We further
applied artificial intelligence to plasma metabolic profiles and,
using a deep-learning model (DLM), established a metabolite
biomarker panel consisting of two polyamines as well as nine
additional metabolites for prediction of response to NACT.

MATERIALS AND METHODS

Specimen Sets
Patients with stage I–III TNBC enrolled in the prospective,
Institutional Review Board (IRB)-approved, clinical study, “A
Robust TNBC Evaluation framework to Improve Survival”

TABLE 1 | Patient and tumor characteristics.

TNBC
†
cases Controls

N 88 167

Age, mean +/– SD 50 +/– 11 58 +/– 9

Stage, N (%)

I 9 (10) –

II 64 (73) –

III 15 (17) –

RCB status, N (%)

0 48 (55) –

I 14 (16) –

II 21 (24) –

III 5 (6) –

†
All TNBC patients received NACT; plasma samples were collected pre-treatment.

TNBC, triple-negative breast cancer; RCB, Residual Cancer Burden.

(ARTEMIS, NCT02276443), were included in this study.
Briefly, the ARTEMIS trial included treatment-naïve patients
with localized TNBC (stage I-III) that underwent a pre-
treatment ultrasound with biopsy following by 4 cycles
of Adriamycin-cyclophosphamide (AC) chemotherapy. The
outcome of the molecular characterization from the pre-
treatment biopsy in combination with response assessment
(clinical exam/diagnostic imaging, after 4 cycles of AC) were used
to identify chemotherapy-insensitive disease and to inform the
second phase of neoadjuvant therapy. Patients deemed to have
chemo-sensitive disease after 4 cycles of AC (≥70% volumetric
reduction by ultrasound after 4 cycles of AC) were recommended
to undergo standard paclitaxel-based chemotherapy as the
second phase of their NACT consisting of 4 cycles or weekly for
12 doses. Patients with TNBC predicted to be chemo-insensitive
(≤70% volumetric reduction by ultrasound after 4 cycles of AC)
were offered therapy on clinical trials using targeted therapy in
combination with chemotherapy based on the specific molecular
characteristics of their tumor as the second phase of their therapy
with dose regimens varying depending on therapy. Response to
neoadjuvant therapy was determined using the residual cancer
burden (RCB) index (Symmans et al., 2007). The specimen set
consisted of pre-treatment EDTA plasma from 88 patients who
received standard-of-care NACT; 62 of the 88 patients had a
second plasma sample available after four cycles of AC. Detailed
patient and tumor characteristics are provided in Table 1.

EDTA plasma from cancer-free women (n = 167) were
obtained from the MD Anderson Cancer Center (MDACC)
Longitudinal High-Risk Cohort initiated September 1st,
2011, for the prospective follow-up of cancer-free high-
risk women seen in the MDACC Cancer Prevention
Center (IRB protocol LAB07-0086).

Immunohistochemistry
Immunohistochemical (IHC) staining for Ki-67 was performed
on unstained 4-µm-thick tissue sections that had been prepared
from a representative paraffin block of tumor in each case. IHC
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staining for Ki-67 was performed using the polymeric biotin-free
horseradish peroxidase method on the Leica Microsystems Bond
III autostainer (LeicaMicrosystems, Buffalo Grove, IL, USA). The
slides were incubated at 60◦C for 25min. Following heat-induced
epitope retrieval with Tris-EDTA buffer for 20min at 100◦C,
slides were incubated with mouse monoclonal antibody to Ki-
67 (clone MIB-1, Dako; 1:100). The Refine Polymer Detection kit
was used to detect bound antibody, with 3,3-diaminobenzidine
serving as the chromogen (Leica Microsystems). For Ki-67, the
percentage of any nuclear staining of any intensity in the tumor
cells was recorded.

Metabolomic Analysis
Sample Preparation
Plasma metabolites were extracted from pre-aliquoted
biospecimens (15 µL) with 45 µL of LCMS grade methanol
(ThermoFisher) in a 96-well microplate (Eppendorf). Plates
were heat sealed, vortexed for 5min at 750 rpm, and centrifuged
at 2,000 × g for 10 mins at room temperature. The supernatant
(30 µL) was transferred to a 96-well plate, leaving behind the
precipitated protein. The supernatant was further diluted with
60 µL of 100mm ammonium formate, pH3 (Fisher Scientific).
For Hydrophilic Interaction Liquid Chromatography (HILIC)
positive ion analysis, 15 µL of the supernatant and ammonium
formate mix were diluted with 195 µL of 1:3:8:144 water
(GenPure ultrapure water system, Thermofisher): LCMS grade
methanol (ThermoFisher): 100mm ammonium formate, pH3
(Fisher Scientific): LCMS grade acetonitrile (ThermoFisher).
For C18 analysis, 15 µL of the supernatant and ammonium
formate mix were diluted with 90 µL water (GenPure ultrapure
water system, ThermoFisher) for positive ion mode. Each sample
solution was transferred to 384-well microplate (Eppendorf) for
LCMS analysis.

Untargeted Analysis of Primary Metabolites and

Biogenic Amines
Untargeted metabolomics analysis was conducted on Waters
AcquityTM UPLC system with 2D column regeneration
configuration (I-class and H-class) coupled to a Xevo G2-
XS quadrupole time-of-flight (qTOF) mass spectrometer as
previously described (Fahrmann et al., 2019, 2020, 2021a,b).
Chromatographic separation was performed using HILIC
(AcquityTM UPLC BEH amide, 100 Å, 1.7µm 2.1 × 100mm,
Waters Corporation, Milford, U.S.A) and C18 (AcquityTM UPLC
HSS T3, 100 Å, 1.8µm, 2.1 × 100mm, Water Corporation,
Milford, U.S.A) columns at 45◦C.

Quaternary solvent system mobile phases were (A) 0.1%
formic acid in water, (B) 0.1% formic acid in acetonitrile and (D)
100mm ammonium formate, pH 3. Samples were separated on
the HILIC using the following gradient profile at 0.4 mL/min
flow rate: (95% B, 5% D) linear change to (70% A, 25% B and
5% D) over 5min; 100% A for 1min; and 100% A for 1min.
For C18 separation, the chromatography gradient was as follows
at 0.4 mL/min flow rate: 100% A with a linear change to (5%
A, 95% B) over 5min; (95% B, 5% D) for 1min; and 1min
at (95% B, 5% D).

A binary pump was used for column regeneration and
equilibration. The solvent system mobile phases were (A1)
100mm ammonium formate, pH 3, (A2) 0.1% formic in 2-
propanol and (B1) 0.1% formic acid in acetonitrile. The HILIC
column was stripped using 90% A2 for 5min at 0.25 mL/min
flow rate, followed by a 2min equilibration using 100% B1 at 0.3
mL/min flow rate. Reverse phase C18 column regeneration was
performed using 95% A1, 5% B1 for 2min followed by column
equilibration using 5% A1, 95% B1 for 5min at 0.4 mL/min
flow rate.

Mass Spectrometry Data Acquisition
Mass spectrometry data was acquired using ‘sensitivity’ mode
in positive and negative electrospray ionization mode within
50–800 Da range. For the electrospray acquisition, the capillary
voltage was set at 1.5 kV (positive), sample cone voltage
30V, source temperature at 120◦C, cone gas flow 50 L/h and
desolvation gas flow rate of 800 L/h with scan time of 0.5 sec
in continuummode. Leucine Enkephalin; 556.2771 Da (positive)
was used for lockspray correction and scans were performed
at 0.5 sec. The injection volume for each sample was 6 µL.
The acquisition was carried out with instrument auto gain
control to optimize instrument sensitivity over the samples
acquisition time.

Data were processed using Progenesis QI (Non-linear,
Waters). Peak picking and retention time alignment of LC-MS
and MSe data were performed using Progenesis QI software
(Non-linear, Waters). Data processing and peak annotations
were performed using an in-house automated pipeline as
previously described (Fahrmann et al., 2019, 2020, 2021a;
Vykoukal et al., 2020). Annotations were determined by
matching accurate mass and retention times using customized
libraries created from authentic standards and by matching
experimental tandem mass spectrometry data against the NIST
MSMS, LipidBlast or HMDB v3 theoretical fragmentations. To
correct for injection order drift, each feature was normalized
using data from repeat injections of quality control samples
collected every 10 injections throughout the run sequence.
Measurement data were smoothed by Locally Weighted
Scatterplot Smoothing (LOESS) signal correction (QC-RLSC) as
previously described. Values are reported as ratios relative to the
median of historical quality control reference samples run with
every analytical batch for the given analyte (Fahrmann et al.,
2019, 2020, 2021a; Vykoukal et al., 2020).

Statistical Analysis
A deep learning algorithm employing all quantified metabolites
with tuned hyperparameters using the grid search approach
(Candel et al., 2016) was run 20 times, and the relevance
importance score for each metabolite was calculated using
the Gedeon method (Gedeon, 1997). Metabolites were
prioritized based on consistently exhibiting a relative importance
score >0.5. Ten models, including deep learning, random
forest, ensemble learning and gradient boosting method
algorithms, incorporating eleven metabolites were assessed for
distinguishing responder/partial responders (RCB-0/I) from
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FIGURE 1 | Predictive performance of individual polyamines for distinguishing

treatment-naïve TNBC cases from healthy controls. Table beneath shows AUC

(95% CI), Wilcoxon rank sum test 2-sided P-values as well as sensitivity and

specificity estimates at 95% specificity/sensitivity thresholds of individual

polyamines for distinguishing TNBC cases from healthy controls.

non-responders (RCB-II/III). The predictability, reliability,
and stability of the models in the training set was evaluated
using a 5-fold cross validation as well as through introducing
perturbations (e.g., random sample selection with replacement)
to the dataset.

Model discrimination was assessed based on receiver
operating characteristic curve (ROC), as well as sensitivity and
specificity estimates. The 95% confidence intervals (CI) for AUCs
were estimated using the Delong method (DeLong et al., 1988).
All modeling was performed using the H2O package and R
statistical program (Candel et al., 2016).

RESULTS

Plasma Polyamine Levels in
Triple-Negative Breast Cancer
Using mass spectrometry, we first assessed polyamines
levels in plasmas from 88 newly diagnosed treatment-
naïve TNBC cases and 167 cancer-free women enrolled
in the MDACC Longitudinal High-Risk Cohort (Table 1).
A total of four polyamines, acetylspermidine (AcSpmd),
diacetylspermidine (DiAcSpmd), diacetylspermine (DAS), and
N-(3-acetamidopropyl)pyrrolidin-2-one (N3AP) were detected
and quantified. Of these, AcSpmd and DAS were statistically
significantly elevated (Wilcoxon rank sum test 2-sided p
< 0.01) in case plasmas compared to controls (Figure 1).
DAS exhibited the highest discrimination performance for
distinguishing all cases from controls with an AUC of 0.72
(95% C.I.: 0.64–0.79) (Figure 1).

Association of Polyamines With RCB
Status
All 88 TNBC patients were treated with AC in the neoadjuvant
setting. A subset of 62 (70.5%) had a complete pathological
response (pCR/RCB-0) or minimal residual disease (RCB-I)
following NACT, whereas 26 (29.5%) had a moderate to extensive
tumor burden (RCB-II and III) (Table 1). Pathological response
tended to be associated with tumor stage and % tumoral
Ki-67 staining positivity, albeit not statistically significant
(Supplementary Figure 1).

Elevated pre-treatment plasma levels of AcSpmd, N3AP,
DiAcSpmd and DAS were associated with higher odds of
RCB-II/III following NACT [adjusted ORs of 1.24 (95% CI:
0.76–2.04), 1.33 (95% CI: 0.79–2.46), 1.15 (95% CI: 0.71–1.85)
and 1.26 (95% CI: 0.71–1.91) per standard deviation increase,
respectively] (Table 2).

Applying Artificial Intelligence to Metabolic
Profiles to Develop a Combination Rule for
Prediction of RCB-II/III
Complementary to the four polyamines, untargeted
metabolomics analyses of these plasmas yielded an
additional 82 uniquely annotated metabolite features
(Supplementary Table 1). To prioritize metabolites associated
with response to NACT for model building, relative importance
scores were calculated using the Gedeon method (Gedeon,
1997) and metabolites were selected that constantly showed a
relative important score of > 0.5 (see Methods). This approach
resulted in 11 cancer-related metabolites, consisting of two
polyamines, two lipids, three amino acids, a purine catabolite,
and two indole-derivatives (Supplementary Table 2). Spearman
correlation analyses indicated low to moderate associations
between these metabolites (Supplementary Figure 2).

We next sought to develop a machine learning algorithm
that incorporated the eleven metabolites for predicting RCB-
II/III. For model building, we tested 10 different machine
learning algorithms (Table 3). Of these, a deep learning model
(DLM) with 3 hidden layers and 20 nodes in each layer
achieved the highest predictive performance with an AUC
of 0.97 (95% CI: 0.93–1.00) with 85% sensitivity at 95%
specificity for identifying RCB-II/III (Figure 2). Notably, the
DLM yielded an AUC of 0.76 (95% CI: 0.65–0.87) with 48%
sensitivity at 95% specificity for distinguishing TNBC cases
with residual disease (RCB-I/II/III) from those that achieved a
pCR (Supplementary Table 3). To assess model reproducibility
and stability, we introduced perturbation into the dataset (e.g.,
random selection with replacement) and re-evaluated model
performance, the results of which showed that the DLM was
robust (Supplementary Table 4).

We additionally assessed the predictive performance of the
DLM model using plasma samples collected during NACT from
a subset of TNBC patients (n = 62). The DLM model showed
an AUC of 0.74 (95% CI: 0.62–0.87) with 21% sensitivity at 95%
specificity for RCB-II/III (Figure 3).
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TABLE 2 | Performance estimates of polyamines for distinguishing RCB-II/III from RCB-0/I.

Polyamines AUC (95% CI) Sensitivity

@ 95% sen

Specificity @ 95% spec Odds ratio Adjusted Odds ratio
†

AcSpmd 0.59 (0.46–0.71) 0.12 (0.00–0.23) 0.19 (0.10–0.31) 1.34 (0.85–2.10) 1.24 (0.76–2.04)

N3AP 0.55 (0.42–0.68) 0.12 (0.00–0.27) 0.10 (0.02–0.32) 1.34 (0.86–2.26) 1.33 (0.79–2.46)

DiAcSpmd 0.54 (0.40–0.67) 0.08 (0.00–0.23) 0.08 (0.00–0.26) 1.15 (0.72–1.80) 1.15 (0.71–1.85)

DAS 0.58 (0.46–0.71) 0.15 (0.00–0.31) 0.24 (0.10–0.39) 1.39 (0.89–2.23) 1.26 (0.77–2.10)

Area under the Receiver Operating Characteristic Curve (AUC), sensitivity, specificity, odds ratios, and adjusted odds ratios estimates and corresponding 95% confidence intervals of

individual polyamines are shown. AcSpmd, acetylspermidine; N3AP, N-(3-acetamidopropyl)pyrrolidin-2-one; DiAcSpmd, diacetylspermidine; DAS, diacetylspermine.
†
age and stage

were included as covariables in adjusted odd ratios.

TABLE 3 | Performance of the different learning models in the training set.

Model Hyper parameters AUC Log loss AUCpr Mean per

class error

RMSE

Deep learning model Activation: Maxout, hidden

layers:3, number of nodes in

each layer: 20

0.97 0.396 0.62 0.249 0.339

Deep learning model Activation: Maxout, hidden

layers:2, number of nodes in

each layer = 1

0.86 0.412 0.61 0.268 0.385

Deep learning model Activation: Tanh, hidden

layers: 1, number of nodes

in each layer = 3

0.78 0.429 0.60 0.283 0.393

Deep learning model Activation: Tanh hidden

layers:1, number of nodes in

each layer: 1

0.72 0.438 0.60 0.297 0.399

GLM Family: Binomial 0.68 0.585 0.53 0.331 0.47

Gradient boosting method Number of tree: 50,

Maximum depth:6

0.61 0.692 0.53 0.342 0.499

Distributed random forest

(DRF)

– 0.55 0.709 0.51 0.49 0.507

Extremely randomized trees

(XRT)

– 0.53 0.787 0.45 0.429 0.537

StackedEnsemble Ensemble models (best of

each family): GLM, Deep

Learning, Random Forest,

Gradient Boost Method

0.53 2.274 0.46 0.421 0.671

Extreme gradient boosting – 0.52 4.198 0.47 0.481 0.66

AUC, Area under the ROC curve; AUCpr, Area under precision-recall curve; RMSE, root-mean-square deviation; GLM, generalized linear model; DRF, Distributed Random Forest; XRT,

Extremely Randomized Trees.

DISCUSSION

The heterogeneity of TNBC results in a spectrum of responses
to NACT with pCR being achieved in only a subset of
patients (Sikov et al., 2015; Gamucci et al., 2018). Several
methods have been used to measure and predict residual
disease during course of treatment, including ultrasound,
MRI scans, histopathology; however, none have yet achieved
adequate performance to predict response to NACT (Croshaw
et al., 2011; Shin et al., 2011; Ono et al., 2012; De Los
Santos et al., 2013; Leon-Ferre et al., 2018). Here, we
applied artificial intelligence to metabolomic profiles of TNBC
patient plasmas obtained prior to NACT and, using a
DLM, establish a blood-based polyamine-centric metabolite
panel that is predictive of non-response to NACT. The

metabolite panel may be implemented in the clinical setting
to stratify TNBC patients who are at high-risk of being non-
responsive to NACT and who may benefit from alternate
treatment modalities. Conversely, TNBC patients who are
likely to be responsive to NACT may potentially benefit
from dose de-escalation, thereby permitting management of
treatment-associated toxicity.

The metabolite panel consisted of several cancer-relevant
metabolites including the acetylated polyamines DAS and
AcSpmd, which were found to be elevated in TNBC patients
who were less likely to respond to NACT. Elevated levels
of acetylated polyamines in various biofluids including urine,
plasma, and serum, have been shown to report on cancer
status (Park and Igarashi, 2013; Wikoff et al., 2015; Fahrmann
et al., 2019, 2020, 2021b). Targeting of cancer cell polyamine
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FIGURE 2 | ROC curve for the DLM for distinguishing TNBC patients that went on to have RCB-II/III following NACT from those that had RCB-0/I. Table provides

tabulated performance estimates of the DLM.
†
Age and stage were included as covariables in adjusted odd ratios.

FIGURE 3 | ROC curve for the DLM for distinguishing TNBC patients that went on to have RCB-II/III following NACT from those that had RCB-0/I using plasmas

collected after four cycles of AC. Table provides tabulated performance estimates of the DLM.
†
Age and stage were included as covariables in adjusted odd ratios.

metabolism via small molecule inhibitors has been proposed
for anti-cancer therapy for cancer, including TNBC (Casero
et al., 2018; Geck et al., 2020; Capellen et al., 2021).
Acetylation of polyamines is mediated by spermidine/spermine
N1-acetyltransferase 1 (SAT1) (Pegg, 2013; Fahrmann et al.,
2020). Our prior investigations demonstrated that oncogenic
MYC regulates transcription of polyamine metabolizing enzymes
ornithine decarboxylase (ODC1), spermidine synthase (SRM),
and spermine synthase (SMS) in TNBC, and that elevated
intracellular polyamine levels induce expression of SAT1
(Pegg, 2013) resulting in elevated cancer cell biosynthesis and
secretion of acetylated polyamines (Fahrmann et al., 2020).
We further reported that plasma polyamines, particularly
DAS, are associated with TNBC development and progression
(Fahrmann et al., 2020). Given our prior findings, we posit
that the elevation in polyamines may underly an aggressive
subtype of TNBC (Fahrmann et al., 2020) that is less likely to
respond to NACT.

Elevated serum levels of urate, a purine catabolite, are also
reported to be prognostic for TNBC recurrence and poor

overall survival (Ackermann and Tardito, 2019; Gong et al.,
2021). Lysophosphatidylethanolamines and lauroylcarnitine
are associated with cancer metabolic plasticity and fatty acid
oxidation (Melone et al., 2018). We have previously reported
that JAK/STAT3-mediated fatty acid oxidation promotes
chemoresistance in TNBC (Chakraborty et al., 2016; Wang
et al., 2018). Methylhistidine has been shown to be elevated in
serum of TNBC patients who had an cPR following NACT (He
et al., 2021). TNBC cells are reported to exhibit a glutamine-
dependent phenotype; promoting survival advantage as well as
chemo-resistance (Kung et al., 2011; Lampa et al., 2017).

Remarkably, among the metabolites in the metabolite panel
were two microbiome-related metabolites, indoleacrylic acid
(IAA) and indole-acetylaldehyde (IAALD). IAA and IAALD
are produced through the catabolism of tryptophan by the
gut microbes (Vujkovic-Cvijin et al., 2013). Increasing evidence
implicates that alterations in the microbiome influence resistance
to anticancer treatment, including conventional chemotherapy,
immunotherapy, radiotherapy, and surgery (Pryor et al., 2020;
Garajová et al., 2021; Pandey and Umar, 2021). The relationship
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between changes in the microbiome and response to NACT
warrants further investigation.

On balance, limitations to our study include limited sample
availability and lack of external validation. To assess for potential
overfitting, we tested the model by introducing perturbation
(e.g., random selection and replacement) to the dataset and re-
evaluated performance, the results of which demonstrated that
our model was robust. We performed further validation using
available samples and found that the metabolite panel provided
good classifier performance for distinguishing individuals with
RCB-II/III following four cycles of NACT from those with
RCB-0/I, thus providing an independent validation. We note
that attenuation of model performance after four cycles of
NACT could be attributable to elevations in plasma metabolites
consistent with chemotherapy-induced cancer cell death and
turnover. Additionally, the relative cost-effectiveness of using the
metabolite panel for risk-based prediction of non-responsiveness
to NACT needs to be considered compared to other clinical
predictors (Croshaw et al., 2011; Shin et al., 2011; Ono et al., 2012;
De Los Santos et al., 2013; Leon-Ferre et al., 2018).

In conclusion, using a deep learning model, we developed
a blood-based metabolite panel and that offers potential utility
for identifying TNBC patients who are at high-risk of being
non-responsive to NACT and who may benefit from more
personalized treatment modalities.
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Introduction: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive

malignancy with a poor prognosis. Surgical resection remains the only

potential curative treatment option for early-stage resectable PDAC. Patients

with locally advanced or micrometastatic disease should ideally undergo

neoadjuvant therapy prior to surgical resection for an optimal treatment

outcome. Computerized tomography (CT) scan is the most common

imaging modality obtained prior to surgery. However, the ability of CT scans

to assess the nodal status and resectability remains suboptimal and depends

heavily on physician experience. Improved preoperative radiographic tumor

staging with the prediction of postoperative margin and the lymph node status

could have important implications in treatment sequencing. This paper

proposes a novel machine learning predictive model, utilizing a three-

dimensional convoluted neural network (3D-CNN), to reliably predict the

presence of lymph node metastasis and the postoperative positive margin

status based on preoperative CT scans.

Methods: A total of 881 CT scans were obtained from 110 patients with PDAC.

Patients and images were separated into training and validation groups for both

lymph node and margin prediction studies. Per-scan analysis and per-patient

analysis (utilizing majority voting method) were performed.

Results: For a lymph node prediction 3D-CNN model, accuracy was 90% for

per-patient analysis and 75% for per-scan analysis. For a postoperative margin

prediction 3D-CNN model, accuracy was 81% for per-patient analysis and 76%

for per-scan analysis.
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Discussion: This paper provides a proof of concept that utilizing radiomics and

the 3D-CNN deep learning framework may be used preoperatively to improve

the prediction of positive resection margins as well as the presence of lymph

node metastatic disease. Further investigations should be performed with

larger cohorts to increase the generalizability of this model; however, there is

a great promise in the use of convoluted neural networks to assist clinicians

with treatment selection for patients with PDAC.
KEYWORDS

machine learning, neural network, pancreatectomy, pancreatic cancer, surgical
outcome, radiomics
Introduction
Pancreatic cancer is currently the third leading cause of

cancer-related death in Western societies with an average annual

incidence rate of 12.9 cases per 100,000 but a disproportionately

high mortality rate of 10.9 deaths per 100,000 (1). Pancreatic

ductal adenocarcinoma (PDAC) is the most common type of

pancreatic cancer. At the time of diagnosis, only ~10% of PDAC

are localized since small early cancers are often asymptomatic

and left undiagnosed (2). Although surgery is the only curative

treatment for PDAC, only 15%–20% of patients are candidates

for surgical resection due to late presentation (2). The decision

for upfront surgical resection followed by adjuvant

chemotherapy vs. neoadjuvant treatment followed by surgical

resection is based on both the anatomy of the tumor (i.e.,

vascular involvement) and risk stratification/prognostic

features including the health condition, blood tumor markers,

and lymph node involvement on imaging studies (3). Currently,

computerized tomography (CT) scan is the most utilized

modality for the evaluation of PDAC with a specificity and

sensitivity of ~89% and ~90% (2). The nodal status is a well-

established prognostic indicator for both overall survival and

disease recurrence (4–6). Although CT image resolution has

increased dramatically over the last two decades, the ability of a

CT scan to assess both vascular invasion (sensitivity and

specificity of 60% and 94%) and the nodal status remains

suboptimal (positive predictive value and negative predictive

value are 68% and 43.1%, respectively), as it may heavily depend

on physician experience (1, 7). An automated prediction model

for the presence of lymph node metastatic disease may

preoperatively aid in clinical decision-making.

The choice to undergo the upfront surgical treatment of

PDAC is determined by the preoperative CT stratification of

resectability that is dependent on tumor proximity to the

surrounding vessels (portal vein, superior mesenteric vein,

superior mesenteric artery, and celiac artery) (8). The impact
02
102103
of the R1 resection status (i.e., presence of microscopic disease),

defined as the distance of a tumor from the resection margin of

less than or equal to 1 mm, on overall survival and recurrence-

free survival is controversial (9–11). However, recent studies

have suggested that the presence of microscopic disease within

1 mm is associated with decreased overall survival and decreased

disease-free survival in PDAC in comparison to R0 resection

(i.e., free of cancer cells at the resection margin) (12). Hong et al.

demonstrated that of patients with the designation of a

“resectable” tumor based on preoperative CT imaging, only

73% of patients had postoperative R0 resection on pathology

(13). Preoperative CT appeared to overpredict resectability in

tumors with any level of portomesenteric vein abutment and for

larger tumors greater than 4 cm (12). An enhanced preoperative

prediction of the surgical margin status would allow for

improved patient selection for upfront curative intent surgery

and importantly direct patients with tumors more likely to have

postoperative R1 or R2 resection to neoadjuvant chemotherapy.

Radiomics is a novel approach to medical imaging that

abstracts vast amounts of qualitative imaging features using

data-characterizing algorithms, converting medical images into

big data (14). The basis of the application of radiomics is that

distinct imaging features between disease forms may be used to

predict a prognosis and a therapeutic response (15). With

radiomics exponentially increasing the data obtained from

medical imaging, there has been growing interest with utilizing

artificial intelligence or machines learning models to provide

techniques to analyze these image data (16). One such model

demonstrating great utility is the convoluted neural network

(CNN). CNNs contain multiple interconnected layers of

artificial neurons whereby each neuron can take an input,

perform a computation, and produce output, while learning

increases its higher-level functions (17). CNNs have been

utilized to investigate a number of medical imaging questions

including segmentation (i.e., tumor vs. normal tissue (18)),

disease classification (19), detection and localization (i.e.,

identification of cerebral microbleeds in MRI (20)), and
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registration (i.e., integrating multiple scans of same patient (21)).

Some examples include the following: Huang et al. have

described that specific radiomic signatures differed between

normal lymph nodes and lymph nodes with metastatic disease

and that these differences allowed the creation of a nomogram

for the prediction of the lymph node status in colorectal cancer

(22). Chen et al. created hybrid many-objective radiomics and a

three-dimensional CNN (3D-CNN) model to evaluate lymph

node metastasis in head and neck cancers (23).

This paper proposes a novel machine learning predictive

model, utilizing a 3D-CNN, to reliably predict the presence of

lymph node metastasis and the postoperative positive margin

status based on preoperative CT scans. This is the first deep

learning predictive model for both lymph node disease in

pancreatic cancer and the margin status based on preoperative

imaging. Manual image segmentation was not performed allowing

for an unbiased approach and a potential generalizability of the

model to other abdominal/gastrointestinal cancers.
Materials and methods

Study population

The Biospecimen Procurement and Molecular Epidemiology

Core (BioMER) is a shared core resource at the University of Iowa

Holden Comprehensive Cancer Center that prospectively enrolls

cancer patients into disease-specific MER patient cohorts annotated

with clinicopathological, treatment, and outcome data. Within the

gastrointestinal cancer cohort of the BioMER (GIMER), 462 patients

were enrolled from 2015 to 2021. Study inclusion criteria included 1)

having a diagnosis of pancreatic ductal adenocarcinoma by

pathology, 2) receiving curative intent surgery, 3) available CT
Frontiers in Oncology 03
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images prior to surgical intervention, and 4) available surgical

pathologic data regarding the tumor margin status and lymph

nodes. Positive margin was defined by the presence of cancer cells

found within 1 mm from the inked resection margin. CT images and

clinical and pathologic data were obtained from 110 patients

(Table 1). A total of 881 CT scans were obtained. A patient’s CT

scan from a particular date may contain the images of arterial,

venous, and delayed phases with different resolutions. For the

purposes of subgrouping, the images from each individual phase

are classified as “one” scan. Due to small patient numbers, each scan

was treated independently. The patient cohort was divided into two

groups, one for training and one for validation for each study

algorithm, margin study, and lymph node study. The training vs.

validation split was 59 patients (340 scans) vs. 20 patients (140 scans)

for the lymph node study and 83 patients (629 scans) vs. 27 patients

(252 scans) for the margin study. For the margin study, additional

PDAC patients with surgeon-determined unresectable locally

advanced disease on preoperative CT were included to provide

additional control cases with positivemargin to improve study power.
Development of machine
learning algorithm

In collaboration with the Iowa Initiative for Artificial

intelligence (IIAI), a 3D-CNN was developed for the purpose of

image classification based on the lymph node disease or the margin

status. In a basic sense, the CNN involves creating a scaffolding of

computational “layers” stacked on one another whereby the outputs

of terminal layers are built upon the inputs of the previous. The

specific structuring of the number of layers and the type of layer

(i.e., convolutional, pooling, and fully connected) based on the

research question is where nuance arises. The goal was to learn a
TABLE 1 Study population characteristics.

Lymph node study Margin study

Training group (n=59) Validation group (n=20) Training group (n=83)* Validation group (n=27)§

Age 66.1 [63.6–68.7] 62.5 [58.6–66.3] 65.8 [63.6–68.0] 64.2 [60.5–67.8]

Gender

Male 27 (45.8%) 10 (50%) 44 (53%) 13 (48.1%)

Female 32 (54.2%) 10 (50%) 39 (47%) 14 (51.9%)

Pathological Stage

Stage 0 0 1 (5%) 0 1 (3.7%)

Stage I 5 (8.5%) 2 (10%) 5 (6.0%) 2 (7.4%)

Stage II 54 (91.5%) 17 (85%) 55 (66.3%) 16 (59.3%)

Stage III 0 0 16 (19.3%) 6 (22.2%)

Stage IV 0 0 7 (8.4%) 2 (7.4%)

Positive Margin 12 (20.3%) 4 (20%) 36 (44.4%) 11 (40.7%)

Number of Images 340 140 629 252
*Includes 23 unresectable cases (these cases would yield a positive resection margin if they have undergone surgery).
§Includes 8 unresectable cases.
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discriminative function, f ∈ {0, 1}, where 1 indicates lymph node

metastasis or a positive margin and 0 otherwise.

The 3D-CNN utilized was modeled after that described by

Zunair et al. (24). Like Zunair et al, this study utilized a 17-layer 3D-

CNN. Four 3D convolutional layers are used with each

convolutional layer followed by a max-pooling layer and a

subsequent batch normalization layer creating a CON-

MAXPOOL-BN module (24). The subsequent output runs

through a global average pooling layer and then a dense layer. An

effective dropout rate of 60% was utilized. A second dense layer was

used to produce output consistent with the binary classification

problem (Figure 1). The binary cross-entropy loss function was

utilized within model learning to optimize the performance of the

classification model. A total of 1,351,813 learnable parameters were

present in this study. All codes were written and run utilizing

Python (Python Software Foundation, Delaware, USA).
Data preparation

To decrease computational time, slice selection was performed.

Each axial CT scan was analyzed, and the slices between an

anatomical boundary of superior to the celiac artery takeoff to

inferior to the renal vein were identified. Subsequently, each image

was resized to a resolution of 128 × 128 × 64 pixels. Image intensity

and parameters were normalized to a scale of (0, 1). The initial input

for the first layer of the 3D-CNN model was resized CT scan.
Statistical analysis

The sensitivity, specificity, positive and negative predictive

values, and accuracy of the model were evaluated on training and

validation datasets. With the use of the Wilson–Brown Method

with GraphPad Prism8 software, 95% confidence intervals (17)

were determined. Receiver operating characteristic (25) curves

were plotted for the per-patient analysis using the different cutoff

values of percent-positive scan from per-scan analysis for each
Frontiers in Oncology 04
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patient, and area-under-the-curve (26) analysis was performed

using GraphPad Prism8 software. Algorithm prediction

accuracy was displayed in the confusion matrix as appropriate.
Results

The clinical characteristics of study population are

summarized in Table 1.
Lymph node metastasis predictive model

The training group consisted of 37 patients with lymph node

metastasis and 22 patients without (total of 340 scans), and the

validation group consisted of 15 patients with lymph node

metastasis and 5 patients without (total of 140 scans). In per-scan

analysis, the 3D-CNN model achieved a sensitivity of 93% (95%CI:

86%–97%) and a specificity of 42% (95%CI: 29%–56%) with an

accuracy of prediction at 75% and a positive and negative predictive

value of 74% (95%CI: 66%–82%) and 78% (95%CI: 59%–89%),

respectively (Table 2). Using majority voting strategy in per-patient

analysis, the 3D-CNNmodel achieved a sensitivity of 100% (95%CI:

80%–100%) with a specificity of 60% (95%CI: 23%–93%) with an

accuracy of 90% and a positive and negative value of 88% (95%CI:

66%–98%) and 100% (95%CI: 44%–100%), respectively (Table 2).

Using various cutoff values in per-patient analysis, an ROC curve

was constructed with an AUC of 0.786 (95%CI: 0.510–1.000)

(Figure 2A) and the best cutoff value was indeed the same as the

major voting strategy (i.e., >50% of scans predicted to be positive).
Postoperative positive-margin
predictive model

The training group consisted of 83 patients (total of 629

scans) with 36 patients having a positive margin. The validation
FIGURE 1

Framework for 3D convolutional neural network. CONV, convolutional layer; MAXPOOL, max pooling; LN, Lymph node.
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group for the margin model consisted of 27 patients (total of 252

scans), 11 of whom had a positive margin. In per-scan analysis,

the 3D-CNN model achieved a sensitivity of 67% (95%CI: 59%–

74%) and a specificity of 89% (95%CI: 81%–93%) with an

accuracy of 76% and a positive and negative predictive value

of 89% (95%CI: 82%–94%) and 65% (95%CI: 57%–73%),

respectively (Table 3). Using majority voting strategy in per-

patient analysis, the 3D-CNN model achieved a sensitivity of

73% (95%CI: 43%–90%) and a specificity of 88% (95%CI: 64%–

98%) with accuracy of 81% and a positive and negative

predictive value of 80% (95%CI: 49%–96%) and 82% (95%CI:

59%–94%), respectively (Table 3). Using various cutoff values in

per-patient analysis, an ROC curve was constructed with an

AUC of 0.852 (95%CI: 0.670–1.000) (Figure 2B) and the best

cutoff values were between 40% and 60%.
Discussion

The purpose of this study is to provide a proof of concept

that 3D CNN-based algorithms can predict lymph node

metastasis and the postoperative margin status with clinically

relevant levels of accuracy. The CT scans of 110 patients from a
Frontiers in Oncology 05
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single tertiary care institution were utilized without

segmentation. The lymph node prediction model achieved an

accuracy of 75% in per-scan analysis and 90% in per-patient

analysis using majority voting, while the postoperative margin

prediction model achieved an accuracy of 76% in per-scan

analysis and 81% in per-patient analysis using majority voting.

This is the first study to utilize a 3D-CNN for the prediction of

postoperative margins and the first study to utilize a 3D-CNN to

predict the lymph node status in pancreatic cancer.

The most promising type of machine learning model for

radiomic analysis has been the CNN (16). CNNs were developed

in the late 1970s and saw their first application intomedical imaging

analysis in the 1990s (27). CNNs became more widely recognized

after the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) in 2012, whereby algorithms were tasked with

classifying over 1.2 million high-resolution images from 22,000

categories into 1,000 classes (28). AlexNet, the winning model, was

highly efficient and accurate and provided a framework for the

future iterations of CNNs (29). CNNs are a more popular option in

comparison to other types of machine learning algorithms, such as

the random forest model or decision trees for radiomic data. They

are superior in modeling non-linear relationships in seemingly

unrelated data to achieve a result (30). In contrast to random
A B

FIGURE 2

ROC curves of per-patient analysis. (A) Lymph node study. AUC: 0.79. (B) Margin study. AUC: 0.85.
TABLE 2 Confusion matrix for lymph node study.

Type of analysis True positive True negative

Per-patient analysis (n=20)
Predicted Positive 15 2

Predicted Negative 0 3

Per-scan analysis (n=140)
Predicted Positive 84 29

Predicted Negative 6 21
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forest models, CNNs lack the interpretability of individual features

and focus on solving a specific problem (16, 31). CNNs have been

applied to a wide range of medical problems with over 300 papers

published in the last few years (17). All kinds of medical imaging

including X-ray, CT, MRI, and ultrasound have been utilized with

CNNs (17). For example, in pancreas imaging, studies have been

performed looking to use 3D-CNNs for the diagnosis of pancreatic

cystic neoplasms, neuroendocrine tumors, and additional

segmentation of the pancreas. Recently in 2020, a 3D-CNN

model was described for the classification of pancreatic cancer

from initial diagnostic CT scans that demonstrated a sensitivity of

99% and an accuracy of 99%. Another study used CNNs tomeasure

pancreas volumes in patients with type 1 diabetes (32). The

pancreas is an inherently more difficult organ to evaluate than

the liver or kidney due to its variable shape, size, and proximity to

numerous structures. Studies utilizing pre-analysis segmentation to

isolate the pancreas from neighboring structures have yielded

improved accuracy in comparison to non-segmentation

studies (33).

Lymph node metastasis is a significant prognostic factor in

pancreatic cancer survival; however, preoperative lymph node

identification remains a challenge in the diagnostic radiology of

pancreatic and other abdominal cancers with sensitivities

ranging from 40% to 87% and specificities ranging from 64%

to 100% for CT and MRI (26, 34). Radiologists are limited to

looking at the size, shape, and contour of lymph nodes on CT

scans. Specifically, CT and MRI techniques are limited in the

ability to detect metastatic disease in normal-sized or minimally

enlarged lymph nodes. Based on tumor morphology, the

incidence of metastatic disease within normal-sized nodes may

occur anywhere from 10% to 90% of cases (35). In pancreatic

cancer, the size of ≥1cm was only 44.2% sensitive to the

identification of lymph node metastasis (34). While there have

been attempts to utilize CNNs in CT segmentation to identify

metastatic lymph nodes, the first use of CNNs to evaluate for

potentially metastatic lymph nodes was performed in head and

neck cancers by Chen et al. (36). Utilizing many-objective

radiomics in conjunction with the 3D-CNN framework, the

group created a model to predict three classes of lymph nodes:

normal, suspicious, or involved. Segmentation was used to

identify specific nodes for analysis. The accuracy of the model
Frontiers in Oncology 06
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was 0.88. Additional machine learning models have been created

for the identification of lymph node metastasis in cervical cancer

(37) and the prediction of lymph node metastasis in gastric

cancer (38) and prostate cancer (39). This is the first study

investigating the pancreas. The 3D-CNN proposed by this paper

offers a different approach as this model does not utilize

segmentation and imaging studies were at a different

anatomical location likely involving different radiomic

parameters. An acceptable accuracy of 90% was achieved in

per-patient analysis.

The accuracy of CT imaging for predicting resectability is

approximately 70% and is prone to overestimation (40). The

ability to improve preoperative patient selection for such a

substantial surgical procedure could be vital in improving overall

clinical outcomes. Patients who are deemed to be high risk for R1

resection even though their tumors are classified as technically

resectable based on current clinical and radiological guidelines may

warrant a consideration for neoadjuvant therapy. It remains

controversial whether the postoperative positive microscopic

margin (R1 resection) has an impact on survival postoperatively

since the probability of the recurrence-free survival and overall

survival of these patients depends on multiple factors including

underlying medical conditions, the postoperative course, the choice

of systemic treatment, the treatment response, pathological and

molecular subtypes, and the stage of disease. The rates of R1

resection in the literature may range widely from as low as 16%

to >75% with some studies also noting an association with poorer

clinical outcomes in comparison to R0 resection but not others (41).

This discrepancy was due to a lack of standardization with the

pathologic evaluation of resection specimens and definitions (9).

The Royal College of Pathologists define R1 resection as a

“microscopic evidence of tumor within 1 mm of a resection

margin” (42, 43). The adoption of the standardized definitions of

R1 resection as well as the circumferential resection margin has led

to increase in the literature-reported incidence rates of R1 resection

(44). Recent meta-analysis data have shown that R1 resection is

associated with decreased overall survival and disease-free survival

in PDAC patients after pancreaticoduodenectomy (Whipple

procedure) (9, 12). One thinking is that R1 resection following

curative intent surgery may indicate the presence of

micrometastatic disease unable to be identified preoperatively. A
TABLE 3 Confusion matrix for margin study.

Type of analysis True positive True negative

Per-patient analysis (n=27)
Predicted Positive 8 2

Predicted Negative 3 14

Per-scan analysis (n=252)
Predicted Positive 98 12

Predicted Negative 49 93
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developing paradigm shift in themanagement of PDAC is the usage

of neoadjuvant therapy in the cases of resectable or borderline

resectable cancer (45). The Preoperative radiochemotherapy versus

immediate surgery for resectable and borderline resectable

pancreatic cancer (PREOPANC-1) randomized phase III trial,

comparing neoadjuvant with gemcitabine and chemoradiation vs.

adjuvant gemcitabine in resectable or borderline resectable tumors

did not identify any difference in overall survival; however, there

was improvement in the secondary endpoints of disease-free

survival and the R0 resection rate (45). In subgroup analysis,

borderline resectable but not resectable tumors demonstrated an

improvement in overall survival (46). In this study population,

survival analysis supports the notion that a positive resection

margin is associated with worse overall survival and recurrence-

free survival, as well as worse local and distant recurrence-free

survival in Kaplan–Meier and univariate Cox hazard ratio analyses

(Supplemental Figure 1 and Supplemental Tables 1, 2). The lymph

node status was only associated with overall survival (Supplemental

Figure 2 and Supplemental Tables 1, 2). In multivariate Cox hazard

ratio analysis, a positive margin remains associated with recurrence-

free survival (Supplemental Table 2). This suggests that the margin

status may act as a surrogate marker of recurrence. It is important to

note that in this study population, only 16 out of 110 patients

received neoadjuvant therapy, with the majority of borderline

resectable tumors receiving upfront surgery. The purpose of

performing preoperative margin prediction is to potentially assist

in clinical decision-making for these types of tumors, where patients

predicted to have positive margin should probably consider

neoadjuvant treatment instead of upfront surgery.

Margin studies are difficult to accomplish specifically in the

pancreas due to the need for the CNN to understand and

evaluate proximity to a “weighted” group of vital structures.

There have been no machine-learning models trained to identify

the postoperative margin status from preoperative images. A

study performed by Halicek et al. described the use of CNNs in

patients with squamous cell carcinoma in their oral cavity to

identify residual disease on postresection imaging studies (47).

The model proposed in this paper utilized a simplistic approach

to provide a proof of concept with subsequent fine-tuning

available in future iterations. Without the segmentation of

images, the model learns the pancreas, auto-segments the

tumor from the normal pancreas, and attempts to classify the

characteristics of surrounding pixels to trained binary outcomes.

A future iteration of the model should look to identify specific

radiomic parameters investigated in order to compare the

radiomic differences between high- and low-risk tumors for a

postoperative positive margin.

A major limitation of this study is the small sample size for

respective training and validation groups. In our algorithm, this

was attempted to be mediated by additional per-scan analysis to

increase sample size as well as well as limiting the number of

trainable parameters, which demonstrated worse accuracy in

comparison to majority voting in per-patient analysis. The
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concern when utilizing smaller datasets is whether the model

is specifically learning features that would ideally distinguish

from the testing criteria or just overfitting for some features in

the given dataset. Additionally, the design of this study is such

that the outcome is a binary yes or no to the question posed.

There is no distinction to which the lymph node station or

margin is the one predicted to be positive nor if the features of

the true-positive lymph node or margin are sampled. A

consideration for future modification to this 3D-CNN model

would be to use postoperative lymph node pathology with

preoperative image segmentation for individual lymph node

stations and tumor boundaries in the training group.

Additionally, future CNN models on larger datasets should

seek to perform iterations with the optimization of overall

survival and recurrence-free survival with propensity- matched

cases to alleviate confounding characteristics. Lastly, a small

dataset of 110 patients, majority (98%) Caucasian, could mean

that training CT images may not be representative of the

generalizable population of PDAC tumors (48). Additional

diversity should be included in additional training groups

for CNNs.

Medical outcome modeling for treatment planning is a novel

application of convolutional neural networks that warrants

additional investigation.
Conclusion

In conclusion, this study provides a proof of concept that

utilizing radiomics, the 3D-CNN deep learning framework may

be used to improve the preoperative prediction of positive

resection margins as well as the presence of lymph node

metastatic disease. Further investigations should be performed

with larger cohorts to increase the generalizability of this model;

however, there is great promise in the use of CNNs to assist

clinicians with treatment selection for patients with PDAC.
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