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Editorial on the Research Topic

Oscillatory brain activity as a marker of brain function and dysfunction in

aging and in neurodegenerative disorders

Neural oscillations support fundamental mechanisms of information processing in

neural networks (Buzsáki, 2006; Singer, 2013, 2018). Properties such as phase and amplitude

during task performance and at rest map onto cognitive processes and abilities. The articles

in this issue discuss the scientific and clinical use of oscillations in neurological populations

that exhibit altered cognition. The articles focus on understanding the oscillatory changes

associated with healthy aging and progression of neurodegenerative disorders such as

Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI) and Parkinson’s Disease

(PD), and examine how oscillatory activity can inform development of interventions

to slow down aging-related cognitive decline. Nine exciting contributions provide novel

methods involving oscillatory signals as early indicators of healthy aging, biomarkers of

neurodegeneration, and predictors of successful interventions.

Oscillatory changes associated with healthy aging

Griffa et al. investigated oscillatory connectivity, derived from resting-state MEG

(rsMEG) signals in cognitively impaired and normal oldest-old adults (90+ years old) in

terms of its relationships to their cognitive status. In the impaired oldest-old participants,

increased theta but reduced beta power was found in frontoparietal regions and the default

mode network, indicative of cortical slowing. Engagement during demanding cognitive

tasks (indicator of cognitive reserve) was associated with stronger connectivity in the alpha

and beta bands. Overall, the oscillatory changes in the oldest-old could not be readily

distinguished from individuals younger than 85 years.

Fröhlich et al. examined differences in spectral power and oscillatory reactivity in

80+-year old adults across different cognitive status (cognitively unimpaired, possible MCI,

non-amnesic MCI, amnesic MCI). No differences in power during eyes-closed condition
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were found between healthy individuals and those with cognitive

impairments. The authors noted that these findings might be

related to anatomical changes associated with advanced aging such

as cortical thinning which could lower baseline EEG amplitudes.

Although this was not directly addressed in the study, the report

highlights the importance of additional anatomical information in

this population to reliably interpret scalp-level oscillations.

Changes in the EEG signal associated
with neurodegeneration

Doan et al. examined the utility of resting-state and sensory

and task-related EEG measures to predict dementia severity based

on MMSE scores. After adjusting for demographic confounds,

prefrontal EEG measures were found to be highly correlated

with MMSE. Furthermore, relationships within EEG measures,

including peak frequency, median frequency, alpha-to-theta ratio,

alpha asymmetry, and theta-band power indicated increased

risk of dementia. This preliminary evidence suggests a potential

role of rsEEG as a screening tool. But larger-scale studies will

need to substantiate these findings with cautious study designs,

matching dementia and non-dementia groups on important

demographic variables.

Smailovic et al. investigated the relative potential of

rsEEG power, rsEEG connectivity and novel (neurogranin)

and conventional CSF markers (amyloid and tau pathology)

to differentiate subtypes of amnestic MCI. The strongest

discriminator between single-domain and multi-domain MCI was

a connectivity measure—global synchrony—in theta and delta

bands. Connectivity in slow frequencies was related to early effects

of AD-specific molecular pathology, further promising the utility

of rsEEG measures as potential biomarkers of dementia.

Lopez et al. modeled connectivity hubs from resting-

state alpha measurements in AD. Although both controls and

individuals diagnosed with AD had significant parietal “degree”

and “connector” hubs derived from alpha rhythms, outward

directionality of parietal hubs was lower in AD.

Oscillatory power as a predictor of
successful non-pharmacological and
pharmacological interventions

Spironelli and Borella examined short- and long-term effects

of working memory (WM) training among healthy older adults on

behavioral and rsEEG-based oscillatory indices. Specific training,

maintenance and transfer effects were reported in the WM

treatment group compared to the active control group. For

oscillatory responses, the treatment group showed increased

oscillatory responses in bilateral anterior sites, which were

correlated with better post-training performance.

Complementary to the assessment of resting-state power,

Rodríguez-González et al. implemented a network-based approach

that considered complex interactions among neurophysiological,

cognitive (MMSE), and behavioral (Dementia Behavior

Disturbance Scale) variables to assess treatment outcomes.

Together the results indicate that changes in EEG parameters

can serve as indicators of treatment-related changes in cognition

and behavior.

Eyjolfsdottir et al. examined the effects of targeted encapsulated

cell biodelivery of nerve growth factor (NGF-ECB) in the basal

forebrain (a treatment approach for AD) on rsEEG parameters

and cognition over a 12-month period. Increased theta power was

associated with a decrease in CSF cholinergic marker (ChAT),

whereas increased alpha power was related to increased ChAT and

stabilization of MMSE scores.

Zhang et al. examined rsEEG oscillatory and non-oscillatory

changes induced by dopaminergic medication in patients with PD.

Beta-band phase synchronization was up-regulated by medication.

Medication also increased the spectral slope of broadband non-

oscillatory component, suggesting that spectral slope could serve

as a marker of global efficiency.

In summary, cognitive impairment is found to be associated

with increases in slow frequency and reduction in higher frequency

cortical rhythms. Oscillatory reactivity is also modulated by

behavioral and pharmacological interventions, and can serve as an

indicator of treatment success alongside with other biomarkers. All

studies here examined rsMEEGmeasures mainly including spectral

power, ratio between bands, shifts in bands, and connectivity using

phase- or amplitude-basedmetrics, suggesting possiblemechanistic

roles of oscillations.

Future directions

This Research Topic provides new methodologies and results

with a potential to advance research and clinical practice for

aging populations. Most reported results are preliminary, and

signal a need for robust, well-designed, large-scale clinical trials

with a focus on spectral oscillatory measures to replicate the said

findings. Longitudinal studies are needed to validate reliability in

predicting cognitive status. Specific to connectivity, approaches

that overcome known challenges regarding volume conduction,

linear mixing, and signal-to-noise ratio should be used (Palva

and Palva, 2012). Consistent and reproducible findings related to

connectivity are needed to better interpret normal and pathological

oscillatory dynamics (Colclough et al., 2015; van Diessen et al.,

2015).
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Objective: To examine whether prefrontal electroencephalography (EEG) can be used
for screening dementia.

Methods: We estimated the global cognitive decline using the results of Mini-Mental
Status Examination (MMSE), measurements of brain activity from resting-state EEG,
responses elicited by auditory stimulation [sensory event-related potential (ERP)],
and selective attention tasks (selective-attention ERP) from 122 elderly participants
(dementia, 35; control, 87). We investigated that the association between MMSE
and each EEG/ERP variable by using Pearson’s correlation coefficient and performing
univariate linear regression analysis. Kernel density estimation was used to examine the
distribution of each EEG/ERP variable in the dementia and non-dementia groups. Both
Univariate and multiple logistic regression analyses with the estimated odds ratios were
conducted to assess the associations between the EEG/ERP variables and dementia
prevalence. To develop the predictive models, five-fold cross-validation was applied to
multiple classification algorithms.

Results: Most prefrontal EEG/ERP variables, previously known to be associated with
cognitive decline, show correlations with the MMSE score (strongest correlation has
|r| = 0.68). Although variables such as the frontal asymmetry of the resting-state EEG
are not well correlated with the MMSE score, they indicate risk factors for dementia. The
selective-attention ERP and resting-state EEG variables outperform the MMSE scores
in dementia prediction (areas under the receiver operating characteristic curve of 0.891,
0.824, and 0.803, respectively). In addition, combining EEG/ERP variables and MMSE
scores improves the model predictive performance, whereas adding demographic risk
factors do not improve the prediction accuracy.

Conclusion: Prefrontal EEG markers outperform MMSE scores in predicting
dementia, and additional prediction accuracy is expected when combining them with
MMSE scores.

Significance: Prefrontal EEG is effective for screening dementia when used
independently or in combination with MMSE.

Keywords: dementia, Alzheimer’s disease, electroencephalography, electrophysiology, event-related potential,
Mini-Mental Status Examination
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INTRODUCTION

Dementia is a clinical syndrome that comprises a group of
neurodegenerative disorders related to cognitive decline that
influence memory, language presentation, social abilities, and
executive functions, et cetera (McKhann et al., 2011; DSM-5).
With the progression of cognitive decline, dementia patients
gradually experience memory deficits, communication disorders,
and difficulty performing activities of daily living and eventually
become fully dependent on caregivers (Chertkow et al., 2013).
Alzheimer’s disease (AD) is the most common cause of dementia,
representing 60%–70% of cases. Other common causes of
dementia include cerebrovascular disease, Lewy Bodies disease,
and frontotemporal dementia (World Health Organization,
2020).

Aging is the major risk factor for dementia, which has a
prevalence of approximately 97% in population aged 65 years and
above (Alzheimer’s Association Report, 2020). The increasing
world population and life expectancy have led to a rapid increase
in the number of dementia patients, which is estimated to
reach 82 million people worldwide by 2030 (World Health
Organization, 2020). A substantial burden on social care and
degradation of quality of life may follow. Furthermore, the
deaths attributed to AD have positioned this condition as the
fifth leading cause of death globally, causing 122,019 deaths in
2018 alone (Alzheimer’s Association Report, 2020).

Although no known treatment is highly effective for any type
of dementia, combined therapeutic tools which are available
to mitigate the after effects of cognitive impairment, especially
during the early stages of these diseases (Robinson et al.,
2015; Tisher and Salardini, 2019). Moreover, the effectiveness
of early therapeutic interventions can be increased to achieve
disease modification when neuronal degeneration has not yet
begun (Sperling et al., 2011; Tisher and Salardini, 2019). As
the disease progresses, neurons accumulate abnormal proteins,
such as beta-amyloid and tau proteins, and exhibit mitochondrial
dysfunction and calcium homeostasis dysregulation (Niedowicz
et al., 2011; Kocahan and Doan, 2017; Farooqui, 2019). In the
later stages, the brain of the patient presents neuroinflammation
and irreversible synaptic loss, leading to neuronal death and
brain tissue damage (Niedowicz et al., 2011; Kocahan and Doan,
2017; Farooqui, 2019).

Early detection of neuronal damage in the brain that enables
both timely therapeutic intervention to manage the symptoms
and adequate preparation of patients and caregivers. Early
prediction of dementia is possible when the underlying disease
is defined with tangible biomarkers. Recently, the national
institute on aging and the Alzheimer’s association proposed an
AD research framework using diagnostic biomarkers that are
standardized in terms of beta-amyloid deposition, pathologic tau,
and neurodegeneration, representing a shift from syndrome to
biological constructions (Sperling et al., 2011; Jack et al., 2018).
Beta-amyloid plaques and neurofibrillary tau tangles uniquely
characterize AD among various neurodegenerative disorders
that may progress to dementia (McKhann et al., 2011; Jack
et al., 2018). Although these biomarker profiles are stated as
core neuropathologic changes for defining AD and related

terms in the research framework, they remain incomplete and
inadequate for clinical practice (Jack et al., 2018). Furthermore,
they are clinically accessible only at advanced hospitals and are
frequently costly, invasive, and time consuming. Therefore, the
development of cheap, fast, and easily accessible diagnostic and
screening tools is needed (Humpel, 2011; Zv̌ěrová, 2018).

At present, the most widely used tool for screening dementia
is the Mini-Mental Status Examination (MMSE), which exhibits
good internal consistency and concurrent validities (Boban
et al., 2012; Baek et al., 2016). MMSE has been used as a
clinical index to evaluate global cognitive performance with
five domains: orientation, registration, attention and calculation,
memory, and language (Folstein et al., 1975). Each MMSE
domain functionally reflects neural activities by specific cognitive
processing mechanisms. The noninvasive methods of EEG or
ERPs can electrically record these neural activities. Several
studies have validated the correlation between MMSE scores
and EEG/ERPs variables. For instance, the study of Garn et al.
(2014) explained 36%–51% of the variances associated with
quantitative EEG markers by using MMSE scores and exhibited
a strong correlation between MMSE scores and event-related
potential (ERP) face-name encoding task. There was a significant
negative correlation between MMSE scores with the temporal
theta to alpha ratio, with r = −0.69 in AD group (Meghdadi
et al., 2021). Significant correlations of MMSE with EEG beta
activity were also observed (Lees et al., 2016) along with
P300 latency (Tanaka et al., 1998; Lee et al., 2013). Notably,
MMSE scores were effectively correlated with prefrontal EEG
slowing biomarkers, as indicated from one of our previous
publications (Choi et al., 2019).

Meta-analysis showed that using the MMSE alone yielded
a pooled accuracy of 85%–87% for sensitivity and 82%–90%
for specificity to screen dementia (cutoff value of 24–25); after
adjusting for education level, the sensitivity and specificity were
97% and 70%, respectively (Creavin et al., 2014). In another
review of the conversion from mild cognitive impairment
(MCI) into AD dementia, the MMSE provided 27%–89%
pooled sensitivity with 32%–90% specificity (Arevalo-Rodriguez
et al., 2015). Although these meta-analyses have demonstrated a
moderate to high accuracy of the MMSE for screening dementia,
the cross-validation approach has frequently been neglected; this
has led to questions regarding the overfitting of the selected
models. In the medical sciences, a cross-validation approach
is being increasingly adopted to obtain an unbiased prediction
accuracy with high reliability (Wong and Yeh, 2020). Even
though MMSE is the most prevalent screening tool for dementia,
it suffers from some limitations such as barriers due to language
or educational background, the learning effect, or low sensitivity
in the early stage of cognitive decline (Scazufca et al., 2009; Duff
et al., 2012; Carnero-Pardo, 2014; Gross et al., 2018).

Electroencephalography (EEG) may overcome or supplement
the limitations of conventional screening tools such as the
MMSE for the early detection of dementia, as it is non-
invasive, relatively inexpensive, and portable, while allowing
repeated measurements with none or minimal learning effects
(Ben-David et al., 2011). Numerous studies have demonstrated
that resting-state EEG biomarkers or event-related potential
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(ERP) components obtained from EEG signals are reliable
for distinguishing dementia from normal controls or other
neurological disorders. For instance, by using quantitative EEG
features with artificial neural networks, the classification of MCI
from elderly normal individuals produced 95.87% sensitivity and
91.06% specificity (Rossini et al., 2008) and a classification model
between AD and MCI achieved 94.10% accuracy (Buscema
et al., 2007). Further, 92.2% accuracy was obtained for an Area
Under the Receiver Operating Characteristic curve (AUROC)
of 0.965 by using the cognitive data cluster of the Consortium
to Establish a Registry for the Alzheimer’s Disease (CERAD)
neuropsychological battery, MMSE, and clinical dementia rating;
however, in combination with a quantitative EEG analysis of
the absolute band power at rest, 95.3% accuracy was achieved
with an AUROC of 0.983 when distinguishing AD patients
from non-AD persons (Fonseca et al., 2011). In addition, the
N200 ERP component can identify memory changes better than
MMSE (Papaliagkas et al., 2008).

With the recent advances in hardware and signal processing
techniques, EEG systems with fewer channels have become
emerging research topics as they can improve the simplicity
and convenience of data acquisition and analysis in clinical
environments. For instance, single-channel EEG signals have
been tested for the detection of MCI, reaching 87.9% accuracy
by using a support vector machine with leave-one-out cross-
validation (Khatun et al., 2018). Similarly, single-channel EEG
features, such as the power spectrum or amplitude, and ERP
features (e.g., latency) have been used to distinguish early AD
from normal controls, while reaching 81.90% accuracy (Cho
et al., 2003). More recently, Choi et al. (2019) used the prefrontal
EEG signals (channels Fp1 and Fp2 in the 10–20 system) and
obtained a correlation of up to 0.757 in the regression model to
predict the MMSE score for older individuals.

In this study, we intended to examine whether prefrontal
EEG can be used for screening dementia. First, we examined
the correlations between the MMSE score and selected
EEG/ERP variables. Second, we compared the distributions
of selected variables between the dementia and cognitively
normal persons. Third, we estimated the associations of these
variables with dementia using logistic regression. Finally, we
developed prediction models for dementia by combining
variables from resting-state EEG, sensory event-related
potential (ERP), and selective-attention ERP results. We
compared the model prediction accuracies with and without
the MMSE score and demographic information, and we
verified the applicability of the models by performing a double
cross-validation test.

MATERIALS AND METHODS

Subjects
From September to October 2017, 155 elderly individuals from
four health centers (two geriatric hospitals: sites 1 and 2; two
public health centers: sites 3 and 4) were recruited for this study.
The participants, aged 50 years or older, were located in Uiryeong
County, Korea. This observational study was performed as part

of the Brain Aging Map Project, a community welfare project
conducted in Uiryeong County. Four clinical research nurses
were trained to operate EEG systems and other devices and
performed participation scheduling, data acquisition, and result
consultations. County dwellers were recruited through phone
calls, brochures, flyers, and poster advertisements.

The individuals participated voluntarily for approximately,
90 min to measure global cognitive decline [MMSE-DS, a
Korean version of the MMSE (Tae et al., 2010)], geriatric
depression [KGDS, a Korean version of the Geriatric Depression
Scale (GDS; Kim et al., 2001; Bae and Cho, 2004)], and
EEG/ERP examinations, among others. All the confirmed
demented patients were clinically diagnosed in the current
centers by their clinicians or by previous medical exams
conducted from other hospitals. Medical records including the
diagnostic details for dementia patients were not provided
in this study. Despite this limitation, dementia patients were
confirmed according to a standardized diagnostic guideline,
according to ‘‘Clinical practice guideline for dementia by
Clinical Research Center for Dementia of South Korea’’ (Bon
et al., 2011). This so-called CREDOS CPG was established
in 2011, and offers clinical standards for AD dementia and
vascular dementia in South Korea; dementia is diagnosed by
comprehensive assessment of dementia, which includes history-
taking, neurological examinations, neuropsychological tests,
physical evaluation, brain imaging, and laboratory tests. The
Diagnostic and Statistical Manual of Mental Disorders IV (DSM-
IV; American Psychiatric Association, 2013) was used for the
dementia criteria (Bell, 1994), and the International Statistical
Classification of Diseases and Related Health Problems 10th
edition (ICD-10) was used to classify the disease stage (World
Health Organization, 1992). All the normal individuals were
recruited from public health centers with the assumption that
they showed no evidence of dementia. The following individuals
and subjects were excluded from the study: those who had
a meal or performed intensive physical exercise within 1 h
before beginning the experiments; those who had insufficient
sleep (<4 h) during the previous night; those with physical
abnormalities that impeded adequate EEG electrode placement;
and those not apt for the study as assessed by the clinical
research nurses.

Consent was obtained after providing complete descriptions
about the purpose of the study to the participants or their
caregivers. The study protocol was approved by the Institutional
Review Board of the Korea Institute of Oriental Medicine
(KIOM; approval number: I-1807/007-003). The study was
performed in accordance with the Declaration of Helsinki.
Figure 1 shows the consolidated standards of reporting trials
(CONSORT) diagram corresponding to this study.

The demographic data, including age, sex, education level,
comorbidities, and current treatments, were obtained from
the participants. Subsequently, they underwent the MMSE-DS,
KGDS, and EEG/ERP experiments.

EEG/ERP Acquisition and Experiments
The brain activity was noninvasively recorded via EEG at two
prefrontal monopolar scalp electrodes (channels Fp1 and Fp2)
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FIGURE 1 | Consolidated Standards of Reporting Trials (CONSORT) diagram illustrating enrollment and exclusion criteria for this study.

according to the International 10-20 system, with the right
earlobe electrode serving as a reference. The EEG system used
was the NeuroNicle FX2 (LAXTHA, Daejeon, South Korea) with
band-pass filtering from 3–43 Hz and input voltages of ±393
µV (input noise below 0.6 µVrms). The signals passed through
an infinite impulse response, including Butterworth highpass
and lowpass filters with cutoff frequencies of 2.6 and 43 Hz,
respectively. In addition, a bandstop filter was set between
55 and 65 Hz. All the EEG electrode contact impedances were
maintained below 10 kΩ. The data were digitized in continuous

recording mode at a 250 Hz sampling frequency and a 15-bit
resolution (Choi et al., 2019). To eliminate muscle and eye
movement artifacts and monitor sleepiness in the subjects,
qualified operators inspected the individuals and EEG traces
during the recordings. The operator guided the participants to
remain comfortably seated with their eyes closed and alerted
them whenever signs of behavioral or EEG drowsiness were
detected. Thirty-three subjects were excluded from the study
due to noise, artifacts, and incomplete demography information
(Figure 1; Choi et al., 2019).
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Electroencephalography (EEG) signals from the participants
were acquired while they remained seated in an upright position
under three sequential conditions: (1) spontaneous brain activity
to establish background EEG signals in a resting state for
5 min (resting-state EEG); (2) sensory-evoked potentials (sensory
ERP) for 8 min; and (3) a selective attention task to acquire
the corresponding ERPs (selective-attention ERP) for 5 min.
All participants were tested for auditory hearing ability before
operating the experiments.

To elicit the sensory ERP, each participant was instructed
to avoid motion while perceiving eight intonations from
auditory stimuli at 125, 250, 500, 750, 1,500, 2,000, 3,000,
and 4,000 Hz. The sequence of intonation was allocated by a
pseudo-random function, in which the same intonation was
not provided consecutively over the 480 stimuli presented. The
pseudorandomized eight intonations function as non-repeated
stimuli, which helps to avoid the sensory adaptation effect and
therefore maintain the response sensitivity. Sensory adaptation
leads to the attenuation of neuronal responsiveness over time
after the sensory neurons are exposed to a repeated stimulation
(Pérez-González and Malmierca, 2014). Another reason for
selecting eight intonations, lies in the fact that hearing loss
due to aging generally occurs in high frequency and low
frequency regimes, which would be reflected in the frequency
response pattern of sensory ERP (Ciorba et al., 2011; Rigters
et al., 2016). Each participant received the auditory stimuli
through earphones at a volume level of 70 dB. The duration
of each stimulus was 50 ms, with rise and fall times being
within 1 ms and the interval between consecutive stimuli
being 1 s.

To elicit the selective-attention ERP, we adopted an active
auditory oddball task presenting 64 rare random-sequenced
target stimuli of 2,000 Hz (1/5 ratio) and 256 monotonic standard
auditory stimuli of 750 Hz (4/5 ratio). The stimulus presentation
was the same as that adopted to elicit the sensory ERP. The
participants were asked to press a response key upon recognition
of the target stimuli. The recordings were conducted while the
participants kept their eyes closed in a soundless room with
regular illumination.

Preprocessing and Variable Extraction
We tested data for contamination due to muscle and eye
movement of the (Fp1, Fp2) prefrontal EEG signals as we
did not reject any artifact in the signal processing. First, we
checked that none of the EEG data were contaminated by
large amounts of artifacts. Specifically, none of the participants
contained more than 10% of epochs exceeding 200 µV in
maximum amplitude; this value was a common exclusion
threshold of each epoch due to serious artifacts (Noh et al.,
2006). When applying a stricter voltage threshold of 100 µV,
we still found no participants for whom 10% of the epochs
exceeded this threshold. Therefore, none of the eye-closed
resting-state EEG data were rejected due to artifacts in
this study.

Frequency-domain (or spectral-domain) features are typically
used in the quantitative analysis of EEG rhythms. To transform
an EEG signal from the time domain into the frequency

domain, a Fourier transform of the autocorrelation function was
employed to provide the power spectral density. In the eye-closed
resting EEG, intrinsic oscillation reflective of an idling cortical
state becomes dominant, and the dominant peak frequency is
usually located in the 4–13 Hz band. Previous reports have
commonly revealed that the dominant oscillatory frequencies
that appear in the alpha band during normal aging become lower
in cognitively disordered patients (Jackson and Snyder, 2008;
Jelic and Kowalski, 2009).

Some of the variables used in the resting-state EEG results are
explained further. The resting-state EEG markers were derived
from a frequency-domain analysis of EEG data measured over
5 min. Concretely, the median frequency measures the average
frequency and the peak frequency measures the frequency
at the maximum peak, in the dominant intrinsic oscillatory
frequency band of 4–13 Hz of the EEG power spectrum. The
alpha-to-theta ratio measures the power ratio of alpha rhythms
(8–12.99 Hz) to theta rhythms (4–7.99 Hz). The EEG power
spectrum was obtained by fast Fourier transform of the EEG
signal using a rectangular window. The median frequency was
calculated in two steps. Step 1: all spectral power values in the
4–13 Hz frequency domain were summed and divided by 2.
Step 2: the frequency at which the cumulative power in the
4–13 Hz frequency domain first, exceeded the value calculated
in step 1 was selected. The peak frequency was determined
as the frequency at which the power of the EEG spectrum
in the 4–13 Hz frequency domain was largest. The absolute
power was calculated in the following four frequency regions:
delta (0–3.99 Hz), theta (4–7.99 Hz), alpha (8–12.99 Hz), and
beta (13–30 Hz). The power data were then logarithmically
transformed to fulfill the normal distributional assumptions
required for parametric statistical analysis (Choi et al., 2020). The
alpha-to-theta ratio was obtained by dividing the alpha power
by the theta power, and the frontal asymmetry was obtained by
taking the difference between the right and left alpha powers and
dividing by their sum.

The ERP markers were derived from event-related potentials
extracted by the conventional ensemble averaging method in
EEG with stimuli. Sensory ERP variables that are exogenous
sensory components represent sensory processes that mainly
depend on the stimuli physical parameters and also can be
influenced by cognitive processes (Pratt, 2012). The selective
attention ERP components measure higher processes of cognitive
function, which are related to endogenous cognitive activity
(Woodman, 2010). Five variables were considered from the
sensory ERP results: The average voltage peak (amplitude),
average response time, amplitude deviation, response time
deviation, and center-to-edge amplitude difference. Four
variables were extracted from the selective-attention ERP results:
the number of correct responses, response time, weighted error
percentile, and voltage peak difference between the response and
background ERPs. Voltage peak is the maximum amplitude of
the ERP signal. The response time is the time corresponding
to the voltage amplitude peak and is calculated relative to
the stimulus onset. All markers were averaged over the left
and right signals. The extracted variables are summarized in
Table 1.
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TABLE 1 | EEG/ERP variables considered in this study.

Type Variable Notation Unit Definition/description Alteration in dementia
patients

Resting-
state
EEG

Median frequency MEF Hz Frequency at which the
cumulative power spectral
density between 4 and
13 Hz is divided into two
equal amounts (the 50%
quantile).
Median frequency is
obtained by
f = MEF∑

f = 4
PSD [f ] =

f = 13∑
f = MEF

PSD [f ]

Median frequency and peak
frequency decrease in dementia
patients (Garcés et al., 2013;
Nina et al., 2014; Babiloni et al.,
2018; Rossini et al., 2020)

=
1
2

f = 13∑
f = 4

PSD [f ]

PSD, power spectral
density

Peak frequency – Hz Frequency at which peak
power occurs in 4–13 Hz

Peak power – µV2 Maximum PSD amplitude in
4–13 Hz

Shift to lower frequency in peak
power in dementia patients
(Raicher et al., 2008; Rodriguez
et al., 2011)

Alpha power Alpha (avg.) µV2 Alpha band (8–12.99 Hz)
power averaged over left
and right hemispheres

General reduction in alpha band
power is an EEG hallmark in AD
(Li et al., 2020)

Theta power Theta (avg.) µV2 Theta band (4–7.99 Hz)
power averaged over left
and right hemispheres

Theta power significantly
increases in patients with AD
dementia. There are significant
correlation between relative
theta power and multiple
neuropsychological measures
and total tau proteins
(Rodriguez et al., 2011; Vecchio
et al., 2011; Musaeus et al.,
2018)

Beta power Beta (avg.) µV2 Beta band (13–30 Hz)
power averaged over left
and right hemispheres

Decrement in relative and
absolute beta band power was
found in dementia patients
(Coben et al., 1983;
Holschneider and Leuchter,
1995; Christov and Dushanova,
2016)

Alpha-to-theta ratio Alpha/theta – Ratio of alpha to theta band
power
Alpha-to-theta
ratio = alpha/theta

Lower alpha-to-theta ratio in
early and moderate AD patients
(Cibils, 2002; Schmidt et al.,
2013; Choi et al., 2019)

Frontal asymmetry – – Asymmetry ratio of alpha
band power between right
and left hemispheres:
FA = (R − L)/(R + L),
R(L), absolute alpha band
power from right (left)
hemisphere

Alpha asymmetry is mainly
reported in depression-related
diseases as greater alpha
power in the left frontal region in
patients with major depression
(Jesulola et al., 2017; Roh
et al., 2020)

Sensory
ERP

Voltage amplitude
peak

Amplitude µV Voltage peak of ERP
responses averaged over
different frequencies

Sensory ERP components were
found to be relatively low in
sensitivity to detect changes in
dementia (Hirata et al., 2000;
Olichney et al., 2011)

(Continued)
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TABLE 1 | Continued

Type Variable Notation Unit Definition/description Alteration in dementia
patients

Response time – ms Mean time delay between stimulus and
response (i.e., voltage peak) averaged
over different frequencies

Delayed response across
different auditory and visual
oddball tasks in dementia
patients (Cecchi et al.,
2015; Gu et al., 2018)

Voltage amplitude
deviation

Amplitude
(deviation)

µV Standard deviation between voltage
peaks over different frequencies

–

Response time
deviation

Response
time
(deviation)

ms Standard deviation between response
times over different frequencies

–

Center-to-edge
amplitude
difference

Amplitude
(edge-
center
ratio)

– Mean voltage peaks at 500, 750,
1,500, and 2,000 Hz minus mean
voltage peaks at 125 and 4,000 Hz
divided by their sum

–

Selective-
attention
ERP

Number of correct
responses

# of correct – Number of correct responses for target
stimulus (2,000 Hz tone) distinguished
from background stimulus (750 Hz
tone)

Reduced accuracy in
ERP-related tasks in
dementia patients
(Mathalon et al., 2003;
Cecchi et al., 2015; Gu
et al., 2018)

Response time Resp. Time s Time between auditory stimulation and
voltage peak of EEG voltage oscillations

Response time to evoked
auditory stimuli increases in
dementia patients (Yener
and Başar, 2010; Gu et al.,
2018)

Weighted error
percentile

wER – wER = (no. errors + 4 × (64 − no.
correct recognitions)/(256 + 64 × 4)
No. of target (background) stimuli = 64
(256)

–

Amplitude
difference between
response and
background ERP

Amp (resp)
– Amp (bg)

µV Difference in voltage peaks of EEG
oscillations between target and
background stimuli

Patients with AD dementia
showed lower amplitude for
ERP features (Vecchio and
Määttä, 2011; Cecchi et al.,
2015)

Eight variables from resting-state EEG, five from sensory ERP, and four from selective attention ERP. EEG, electroencephalography; ERP, event-related potential.

Statistical Analysis
The significant level for all statistical tests is set to α = 0.05.
The demographic and neuropsychological characteristics were
summarized as the means and standard deviations (SDs) or
medians and ranges (from minimum to maximum values) for
continuous variables, and as the frequencies and proportions
for categorical variables for the dementia and non-dementia
groups. Either an independent two-sample t-test or a Mann-
Whitney-Wilcoxon rank-sum test was performed after checking
the normality of each group of data based on the Shapiro-Wilk
test to assess the differences in the continuous variables across
dementia and non-dementia individuals. The chi-squared (χ2)
test or the Fisher’s exact test was used to check the independence
of the categorical variables from the dementia status. The
association between the MMSE score and each EEG/ERP variable
was evaluated using the Pearson’s correlation coefficient (ρ̂) and
slope of each EEG measurement (β̂) obtained from univariate
linear regression analysis.

The distribution of every EEG/ERP variable for the dementia
and non-dementia individuals was obtained using kernel density
estimation to visualize the natural differences in both groups for
illustrative purposes. Univariate and multiple logistic regression

analyses were conducted to estimate the unadjusted or adjusted
odds ratios for dementia in each EEG/ERP variable to assess
the associations between the EEG/ERP variables and dementia
prevalence. In the multiple logistic regression analysis, sex, age,
education level, and GDS score were used as covariates. The
underlying diseases of the participants described in Table 2
were not considered as covariates due to the small sample size.
Furthermore, the MMSE score was included as an additional
covariate in the regression model to identify the independent
association of the EEG/ERP variables for dementia.

Dementia prediction models were developed based on all
EEG/ERP and demographic variables (age, sex, and education
level) that are directly associated with cognitive status. The
MMSE score was also used as a single predictor to compare
the performances of the models using EEG/ERP features
or to investigate the improvement of the predictive models
using EEG/ERP features in combination with the MMSE
score. All continuous predictors were standardized to a mean
of 0 and SD of 1 for data preprocessing. For the model
comparisons, we generated 12 datasets based on combination
of the variable groups: MMSE score, demographics, resting-
state EEG, sensory ERP, and selective attention ERP. The
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TABLE 2 | Demographic information and neuropsychological test results of dementia and non-dementia subjects.

Total (n = 122) No (n = 87) Yes (n = 35) Test Statistic

Age [years]
Mean (SD) 71.0 (±11.9) 68.2 (±11.2) 78.1 (±10.7)
Median [range] 73.9 [42.3–95.9] 68.7 [48.3–90.6] 78.6 [42.3–95.9] W = 777.0, p = 0.0000

Sex
Male 30 (25%) 22 (25%) 8 (23%)
Female 92 (75%) 65 (75%) 27 (77%) χ2

(df = 1) = 0.0, p = 9.605E-1
Education level [year]

Mean (SD) 6.0 (±5.0) 7.1 (±5.0) 3.4 (±3.9) W = 2,148.5, p = 0.0003
Median [range] 6.0 [0.0–18.0] 6.0 [0.0–18.0] 0.0 [0.0–12.0]

Systolic BP [mmHg]
Mean (SD) 125.6 (±16.4) 125.1 (±15.5) 126.9 (±18.6) t120.0 = –0.6, p = 0.5716
Median [range] 123.5 [80.0–170.0] 123.0 [80.0–170.0] 130.0 [98.0–169.0]

Diastolic BP [mmHg]
Mean (SD) 73.5 (±11.7) 74.3 (±12.0) 71.4 (±10.8) t120.0 = 1.3, p = 0.2091
Median [range] 70.0 [41.0–100.0] 73.0 [41.0–100.0] 70.0 [45.0–95.0]

MMSE score
Mean (SD) 23.2 (±5.7) 25.3 (±4.6) 18.0 (±5.0) W = 2630.0, p < 1E-6
Median [range] 25.0 [5.0–30.0] 27.0- [12.0–30.0] 18.0 [5.0–28.0]

GDS score
Mean (SD) 12.2 (±6.5) 10.7 (±6.0) 16.0 (±6.1) W = 810.5, p = 0.0001
Median [range] 11.0 [1.0–28.0] 9.0 [1.0–24.0] 16.0 [2.0–28.0]

Diabetes
No 101 (83%) 73 (84%) 28 (80%) χ2

(df = 1) = 0.1, p = 0.8010
Yes 21 (17%) 14 (16%) 7 (20%)

Hypertension
No 60 (49%) 46 (53%) 14 (40%) χ2

(df = 1) = 1.2, p = 0.2774
Yes 62 (51%) 41 (47%) 21 (60%)

Hyperlipidemia
No 105 (86%) 73 (84%) 32 (91%) FE-test, p = 0.3900
Yes 17 (14%) 14 (16%) 3 (9%)

Thyroid disease
No 115 (94%) 81 (93%) 34 (97%) FE-test, p = 0.6718
Yes 7 (6%) 6 (7%) 1 (3%)

Mental disorder
No 93 (76%) 81 (93%) 12 (34%) χ2

(df = 1) = 44.5, p < 1E-6
Yes 29 (24%) 6 (7%) 23 (66%)

Nervous system disease
No 111 (91%) 79 (91%) 32 (91%) FE-test, p = 1.0000
Yes 11 (9%) 8 (9%) 3 (9%)

Circulatory disease
No 118 (97%) 84 (97%) 34 (97%) FE-test, p = 1.0000
Yes 4 (3%) 3 (3%) 1 (3%)

The values represent the mean (±SD), median and range (minimum–maximum) for the continuous variables and N (%) for the categorical variables. The test statistics and p-values for
the continuous variables were obtained from an independent two sample t-test (t value with degree of freedom, df) or a Mann-Whitney-Wilcoxon rank sum test (W) after checking the
normality of each group of data based on the Shapiro-Wilk test. For the categorical variables, the p-values were derived from the chi-squared test statistics. FE-test: Fisher’s exact
test.

interaction terms between sex and other variables were
included as predictors in each candidate model containing
demographic features.

In total, 122 participants were randomly split, with 80% being
in the training set (n = 98) and 20% in the test set (n = 24). The
dementia cases in both the training and test sets were distributed
proportionally to the total sample size. Before assigning data to
the training and test sets, the total dataset was stratified by the
dementia status. Consequently, 20% of the data were randomly
selected according to each stratum, and then the selected data
from both strata were merged into the test dataset. The rest 80%
of the data of both strata were merged into the training set.
We trained several learning algorithms using a five-fold cross-
validation approach, for which the training dataset was again
stratified according to the dementia status; subsequently, the

randomly generated fold identifiers were given to each stratified
group. The learning algorithms employed in this study included
binary logistic regression with stepwise variable selection based
on Akaike information criteria; penalized logistic regression
including ridge, elastic net, and least absolute shrinkage selection
operator (Friedman et al., 2020); random forest algorithm
(Wright et al., 2020); and extreme gradient boosting (Chen et al.,
2020). The model performance was evaluated using the AUROC
and binomial deviance. The optimal model (with the highest
AUROC and lowest binomial deviance) was selected within each
combination of learning algorithms and 12 datasets, and its
prediction power was evaluated with the test set. All statistical
analyses and predictive model development were conducted
using the statistical software R (version 4.0.2, released 2019-06-
22; R Core Team, 2020).
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RESULTS

‘‘Subject Characteristics’’ section describes the basic
characteristics of the participants with regard to their
demographics, neuropsychological information, and
comorbidities. ‘‘Correlation Between MMSE Score and EEG
Measures’’ section demonstrates the correlation between
the EEG/ERP variables and conventional MMSE scores for
screening dementia using linear regression analysis. ‘‘Densities
of EEG/ERP Variables Between Dementia and Non-dementia
Subjects’’ section reports the distribution of each EEG/ERP
variable by its density in the dementia and non-dementia
groups. ‘‘Relation Between EEG/ERP Variables and Dementia’’
section clarifies the relations between the EEG/ERP variables
and dementia, using the estimated odds ratios in the unadjusted
and the two adjusted models based on logistic regression.
Finally, ‘‘Prediction Models for Dementia’’ section provides an
evaluation of the various dementia prediction models based on
the EEG/ERP variables, MMSE scores, and demographic data.

Subject Characteristics
The overall demographic information, neuropsychological
characteristics, and comorbidities of the 122 persons enrolled
in this study are listed in Table 2. Among the participants,
87 were non-dementia individuals, and the remaining
35 were confirmed dementia patients. Further, 25% of the
participants were male and the remaining 75% were female.
The ages of the dementia and non-dementia groups were
78.1 ± 10.7 and 68.2 ± 11.2 years (mean ± standard deviation),
respectively, and their education levels were 3.4 ± 3.9 and
7.1 ± 5.0 years (p < 0.05), respectively. The MMSE score
was 18.0 ± 5.0 for the dementia patients and 25.3 ± 4.6 for
the non-dementia individuals and ranged from 5.0–30.0
(p < 0.05). Thus, the dementia patients exhibited lower MMSE
scores and education levels and higher mean ages than the
non-dementia individuals (Pedraza et al., 2013; Qin et al.,
2020). Moreover, the GDS score was higher in the dementia
individuals (16.0 ± 6.1, mean ± standard deviation) than in
the non-dementia subjects (10.8 ± 6.2). The physiological and
psychological information, such as blood pressure, diabetes,
hypertension, and mental disorders, showed no statistically
significant differences.

Correlation Between MMSE Score and
EEG Measures
We investigated the relations between the MMSE score and
prospective EEG/ERP variables from the resting-state EEG,
sensory ERP, and selective-attention ERP using linear regression
models and the Pearson correlation coefficients, obtaining
the results shown in Figure 2. Weak to moderate linear
correlations are observed between the MMSE score and
EEG/ERP variables.

Among the resting-state EEG variables, the median frequency,
peak frequency, and alpha-to-theta ratio show positive moderate
linear correlations with the MMSE score, with average Pearson
correlation coefficient (ρ̂) of 0.55–0.68 and average regression
coefficients (β̂) of 2.55–10.29. The theta power shows a negative

linear correlation with the MMSE score, with ρ̂ = −0.43 and
β̂ = −4.34. Individual variables from the sensory ERP show
weak negative correlations with the MMSE scores, with ρ̂ from
−0.12 to −0.24. For the selective-attention ERP variables, the
MMSE scores show moderate linear correlations with the most
variables, including positive correlations with the number of
correct responses and amplitude difference between responses,
with ρ̂ = 0.58 and ρ̂ = 0.27, respectively, and negative correlations
with the response time and weighted error percentile, with ρ̂

ranging from−0.40 to−0.68.

Densities of EEG/ERP Variables Between
Dementia and Non-dementia Subjects
We determined the distribution of each EEG/ERP variable
based on its density in the dementia and non-dementia
groups, obtaining the results shown in Figure 3. Overlapping
distributions are observed for some variables obtained from
the resting-state EEG and sensory ERP results. However, the
variables exhibiting moderate correlations with the MMSE score
(reported in ‘‘Correlation Between MMSE Score and EEG
Measures’’ section) consistently show significant differences
between the dementia and non-dementia groups. Specifically,
the median frequency, peak frequency, alpha-to-theta ratio,
and theta power from the resting-state EEG results; average
response time from the sensory ERP results; and all selective-
attention ERP variables exhibit significant differences between
the dementia and non-dementia groups. Overall, the observed
differences in the distributions of the EEG/ERP variables
reflect the different cognitive statuses of the dementia and
non-dementia groups.

Relation Between EEG/ERP Variables and
Dementia
We obtained the forest plots shown in Figure 4 for the estimated
odds ratios and the 95% confidence intervals of the EEG/ERP
variables for predicting dementia. Three logistic regression
models were considered, namely, the unadjusted model (first
model); the first model adjusted for sex, age, education level, and
GDS score (second model); and the second model also adjusted
for the MMSE score (third model).

In the first model, most variables from the resting-state EEG
and selective-attention ERP reflect the risk of dementia, with
odds ratios and 95% confidence intervals, significantly different
from 1. Specifically, small peak frequency, median frequency,
alpha-to-theta ratio, frontal asymmetry, and large theta band
power in the resting-state EEG results indicate increased risk of
dementia with mean odds ratios of 0.255, 0.285, 0.289, 0.546, and
1.699 (p-values from 1.09E-2 to 5.58E-7), respectively. Similarly,
all variables from the selective-attention ERP contribute with
mean odds ratios from 0.349–0.521 and from 2.130–2.364
(p-values from 1.96E-2 to 4.31E-5). In addition, the delayed
average response time between the left and right hemispheres
in sensory ERP also indicates increased risk of dementia
with a mean odds ratio of 1.967 (p-value of 1.25E-3). The
detailed odds ratios and p-values are presented in Appendix
Table A1.
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FIGURE 2 | Scatterplots between Mini-Mental Status Examination (MMSE) scores and electroencephalography (EEG)/event-related potential (ERP) variables. The
red and blue circles indicate the dementia and non-dementia subjects, respectively. The red line and shaded area show the estimated regression curves and 95%
confidence intervals derived from univariate regression analysis. The estimated Pearson correlation coefficient (ρ̂), regression coefficient (β̂), and p-value (P) for each
EEG/ERP variable are shown with their 95% confidence intervals (MEF, median frequency; wER, weighted error percentile).

In the second model, only the median frequency, peak
frequency, alpha-to-theta ratio, and frontal asymmetry in the
resting-state EEG results and the average response time in the

sensory ERP results are effective to identify dementia after
adjustment, with odds ratios and 95% confidence intervals
different from 1. Notably, the bounds of the 95% confidence
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FIGURE 3 | Estimated densities of EEG/ERP variables in dementia and non-dementia subjects. Q indicates values divided into four quantiles (MEF, median
frequency; wER, weighted error percentile; SD, standard deviation).

intervals of these variables in the second model are wider than
those in the first model, but they still reflect the risk factors
of dementia with p < 0.05. Hence, the median frequency,
peak frequency, alpha-to-theta ratio, frontal asymmetry and
average response time tend to be independent from the
demographic risk factors and may represent risk factors
of dementia.

In the third model, most variables correlated with the
MMSE score no longer represent risk factors, and only a few

variables, including the peak frequency and frontal asymmetry
in the resting-state EEG results and average response time
in the sensory ERP results enable identification of dementia.
Interestingly, frontal asymmetry shows no correlation with the
MMSE score, but it represents a considerable risk factor for
dementia after adjustment for demographic covariates and the
MMSE score.

Variables such as the median frequency, peak frequency,
and alpha-to-theta ratio in the resting-state EEG results
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FIGURE 4 | Estimated odds ratios and 95% confidence intervals derived from three logistic regression models. The first, second, and third columns show the
results from the unadjusted univariate logistic regression model; the model adjusted for sex, age, education level, and geriatric depression scale (GDS) score; and the
model adjusted for all these covariates and the MMSE score, respectively. The size of each circle indicates the magnitude of the estimated odds ratio, and the line
across the circle represents its 95% confidence interval. The color map represents the magnitude of the log-transformed p-values (−2log p) for the odds ratios (MEF,
median frequency; wER, weighted error percentile). The quantitative results are summarized in Appendix Table A1.

present moderate to strong correlations with the MMSE score
(reported in ‘‘Correlation Between MMSE Score and EEG
Measures’’ section) and provide consistent odds ratio values
for classifying dementia. On the other hand, the frontal
asymmetry in the resting-state EEG results and the average
response times from the left and right hemispheres in the
sensory ERP results show no or weak correlations with the
MMSE score. Nevertheless, they exhibit valid odd ratios for
classifying dementia, suggesting that they could be candidate
biomarkers for dementia screening independently from the
MMSE score.

Prediction Models for Dementia
We categorized the prediction model results into five groups
(Table 3). The first group contained univariate analysis of
MMSE, multivariate analysis of individual sets of MMSE plus
demographic information, resting-state EEG, sensory ERP, and
selective-attention ERP. The logistic regression model using
the ordinary least squares approach for parameter estimation
predicted dementia using only the MMSE score, achieving
a 0.803 AUROC and 23.845 deviance. Adding demographic
information to the MMSE score did not improve the accuracy.
In fact, the prediction model based on logistic regression plus
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TABLE 3 | Evaluation results of prediction models according to type of data and classification model.

Logistic regression Logistic regression Random forest Extreme gradient
(Ordinary least square) + Elastic net boosting

AUROC Deviance AUROC Deviance AUROC Deviance AUROC Deviance

MMSE 0.803 23.845 - - - - - -
DM + MMSE 0.664 31.380 0.803 25.234 0.748 26.200 0.752 26.995
RSEEG 0.824 23.037 0.824 22.183 0.773 23.843 0.807 23.929
sensERP 0.697 30.332 0.647 28.832 0.605 28.465 0.500 28.979
attERP 0.891 20.363 0.882 21.608 0.857 20.679 0.882 24.134
RSEEG + sensERP + attERP 0.739 42.722 0.849 21.146 0.832 22.569 0.849 21.193
DM + RSEEG + sensERP + attERP 0.571 73.514 0.832 21.439 0.832 21.954 0.832 21.295
MMSE + RSEEG 0.798 25.300 0.849 22.141 0.807 21.581 0.849 22.123
MMSE + sensERP 0.807 25.795 0.798 23.338 0.790 22.598 0.756 29.949
MMSE + attERP 0.803 23.845 0.849 23.064 0.798 24.330 0.739 26.390
MMSE + RSEEG + sensERP + attERP 0.782 40.182 0.866 20.855 0.866 20.875 0.866 20.986
DM + MMSE + RSEEG + sensERP + attERP 0.605 86.032 0.849 22.048 0.866 21.140 0.874 21.150
Significant-variables 0.874 20.628 0.891 19.397 0.798 22.908 0.874 20.461

The MMSE score, demographic information (i.e., sex, age, education level, interaction between sexes, and other variables), resting-state EEG (eight variables), sensory ERP (five
variables), and selective-attention ERP (four variables) were the data sources. For the models with demographic variables, the terms corresponding to the interaction between sex
and other variables were included in each model. DM, Demographic information; RSEEG, resting state EEG; sensERP, sensory ERP; attERP, selective-attention ERP. For models with
demographic variables, the terms corresponding to the interaction between sex and other variables are included in each model.“Significant-variables” models contain MEF, peak
frequency, alpha/theta, frontal asymmetry from resting state EEG, response time from sensory ERP, and number of correct responses, response time and weighted error percentile
from attention ERP. The bold fonts indicate outstanding prediction accuracies.

elastic net using the MMSE score and demographic information
provided equal AUROCs of 0.803 with deviances of 25.234.
In this first group, the predictor based on selective-attention
ERP variables yielded the highest AUROC of 0.891 and lowest
deviance of 20.363 using logistic regression. In addition, the
resting-state EEG variables enabled higher accuracy than the
MMSE score or the MMSE score combined with demographic
information.

The second group combined resting-state EEG, sensory ERP,
and selective-attention ERP before and after adding demographic
information. Loosely speaking, these prediction models failed to
improve accuracy compared with the models from the EEG/ERP
variables in the first group.

The third group combined the MMSE score with different
EEG/ERP variables. Combining the MMSE score with resting-
state EEG or sensory ERP provided better prediction accuracy
than using the EEG variables from the single groups or the
MMSE score alone, reaching an AUROC of 0.849 and a
deviance of 22.141 when using logistic regression and elastic
net regularization. In comparison with selective-attention ERP
alone, combining the MMSE score with selective-attention ERP
or with all three EEG/ERP variables did not increase the
prediction accuracy.

The fourth group combined demographic information with
the MMSE score, resting-state EEG, sensory ERP, and selective-
attention ERP. This group provided a lower AUROC with
higher deviance than the third group, in which demographic
information was neglected.

Finally, the fifth group (‘‘significant-variables’’ model)
contained eight most likely potential markers among all the
variables, including MEF, peak frequency, alpha-theta, and
frontal asymmetry from resting state EEG, response time
from sensory ERP, and number of correct responses, response
time, and weighted error percentile from selective-attention
ERP. These variables were shown to have high correlations

with MMSE score (‘‘Correlation Between MMSE Score and
EEG Measures’’ section), less overlapping in their distribution
between dementia and non-dementia groups (‘‘Densities of
EEG/ERP Variables Between Dementia and Non-dementia
Subjects’’ section), and indicated as risk factors of dementia
after adjusting for covariates (‘‘Relation Between EEG/ERP
Variables and Dementia’’ section). This combination provided
a similar AUC of 0.891 but lower deviance of 19.397 using
logistic regression with elastic net in comparison with selective-
attention ERP cluster (deviance 20.363) using logistic regression
with ordinary least square. In this ‘‘significant-variables’’
model based on the elastic net, the accuracy went up
to 92.7%.

The prediction model results show that the groups of resting-
state EEG and selective-attention ERP variables predict dementia
better than the MMSE score. In addition, the EEG/ERP variables
combined with the MMSE score further improve dementia
prediction, except for selective-attention ERP, whereas adding
demographic information to either the EEG/ERP variables or
MMSE score does not improve the prediction accuracy. The
ineffectiveness of demographic information may be due to
the diversity of the participants and the small sample size.
The evaluation results of the prediction models are summarized
in Table 3.

DISCUSSION

In this study, spontaneous resting state EEG, sensory ERP and
selective-attention ERP were used as three methods to obtain the
important brain oscillations (Başar et al., 2016). Both EEG and
ERP variables have been investigated as potential biomarkers to
detect MCI and its progression to AD dementia, as well as to
directly detect AD dementia (Herrmann and Demiralp, 2005;
Uhlhaas and Singer, 2006; Jackson and Snyder, 2008). In resting-
state EEG, frequency components shift from high-frequency
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bands (i.e., alpha and beta) to lower frequency bands (i.e., delta
and theta), and the alterations develop gradually according to
the disease severity (Jelles et al., 2008; Smailovic and Jelic,
2019). Similarly, the peak frequency, median frequency, and
alpha-to-theta ratio in dementia patients drift towards lower
frequencies compared with non-dementia individuals (Raicher
et al., 2008; Dauwels et al., 2010; Schmidt et al., 2013). In ERP,
amplitude reduction and increased latency have been reported
(Başar et al., 2010), as well as reduced accuracy and increased
response time in a target detection task (Cecchi et al., 2015) in
dementia patients. Our findings are consistent with the results of
these studies.

The MMSE has been used widely in clinical practice as
an effective and sensitive test to detect and screen cognitive
impairment and dementia (Benson et al., 2005; Arevalo-
Rodriguez et al., 2015). The MMSE enables dementia detection
with 92% accuracy, 78%–84% sensitivity, and 87%–91%
specificity (cutoff value of 23/24) (Tsoi et al., 2015). However, the
MMSE has bias according to the socio-educational backgrounds
of participants, practice effect, and low sensitivity in the early
stage of cognitive decline (Scazufca et al., 2009; Duff et al., 2012;
Carnero-Pardo, 2014). These disadvantages can be overcome
while enhancing the diagnostic accuracy by combining the
MMSE score with EEG/ERP data.

Selective-attention ERP examines the cognitive performance
using auditory oddball paradigm, which elicits P300 in response
to the target intonations through the use of prompt button
pushing. This motoric response can cause a distinct movement-
related potential, which has been reported to interfere with the
topography of P300 and alter its amplitude in comparison with
the silent-count task (Salisbury et al., 2001; van Vliet et al., 2014;
Kim et al., 2020). Despite these reported influences on P300 with
button-pushing behavior, for old participants with as many as
64 deviant stimuli, the button-press was an optimal task touse
the counts of correct and erroneous responses as the two salient
variables in evaluating cognitive performance.

Selective-attention ERP variables include the number of
correct responses, response time, weighted error percentile,
and amplitude difference between deviant and background
stimuli. Selective attention ERP has been shown to provide
the highest AUROC values, while demonstrating the best
dementia predictor among all the possible combinations of
dementia risk factors. Selective-attention ERP or attention
components of P300 have been studied as indicators for cognitive
processing. Selective-attention ERP endogenous components
reflect the ability of cognitively processing the stimulus based
on the levels of attention and arousal (Polich and Kok,
1995). A prolonged P300 response time implies that more
time is required to process information, which represents
an index of abnormal cognition ability (Williams et al.,
1991; van Deursen et al., 2009). P300 amplitude reduction
in dementia patients shows that lower attentional resources
were devoted to the task performance (van Deursen et al.,
2009; Hedges et al., 2016). Furthermore, decreasing number
of correct answers and increasing weighted error percentile
in the dementia group as compared to those in the normal
group indicate a reduction in attentional maintenance and

action control ability during cognitive processing throughout
the task (Vecchio and Määttä, 2011). All changes in selective-
attention ERP variables indicate a decrease in intrinsic brain
activation to the responses in demented patients. Selective-
attention ERP provides a sensitive and reliable measure
for the early detection of cognitive impairment related to
AD (Cecchi et al., 2015; Gu et al., 2018). Our findings
upheld the literature associated with using attention ERP for
detecting dementia.

As indicated by the significant odds ratios before and after
adjusting for sex, age, education level, and GDS score, the
EEG/ERP variables show high correlations with the MMSE score
and indicate dementia risk factors. Furthermore, variables with
low correlations with the MMSE score (e.g., frontal asymmetry
in resting-state EEG) may be suitable for classifying dementia
independently from the MMSE score, as indicated by the
significant odds ratios that are obtained after adjusting for the
covariates plus the MMSE score. Frontal asymmetry has been
used as an indicator of depression due to the hyperactivity of
the right prefrontal lobe and the withdrawal behavior to aversive
stimuli (Thibodeau et al., 2006; Jesulola et al., 2015). However,
to the best of our knowledge, frontal asymmetry has not been
reported as a candidate indicator of dementia. Thus, our findings
establish a new direction for research on dementia by considering
frontal alpha asymmetry.

Considering dementia and its relation to depression, half of
the patients with late-onset depression may exhibit cognitive
impairment, and the prevalence of depression in dementia
patients is between 9% and 68% (Muliyala and Varghese, 2010).
Asymmetry in frontal cortex activity reflected in EEG signals has
been described as a potential discriminator for depression, such
that frontal alpha asymmetry has been found to be significantly
higher in depressed subjects than healthy controls (Gollan et al.,
2014; Adolph and Margraf, 2017; Brzezicka et al., 2017); however,
contradicting results have also been reported (van der Vinne
et al., 2017; Kaiser et al., 2018). Our results may suggest that the
frontal alpha asymmetry as one of the potential EEG variables for
dementia detection.

We derived prediction models using different combinations
of EEG/ERP variables, MMSE scores, and demographic data.
Selective-attention ERP variables and resting-state EEG variables
produced more accurate predictions than MMSE scores or
MMSE scores combined with demographic information. Hence,
these variables may be representative in the identification
of cognitive changes due to dementia. In contrast, adding
demographic information tended to decrease the accuracy
compared to the cases in which demographic information was
neglected. Hence, demographic information may undermine
predictive modeling of dementia.

The variable selection in the prediction model based on
the statistical test often leads to serious bias in maximizing
the performance of the predictive model, as explained by Lo
et al. (2015). To overcome this limitation, we adopted penalized
regression approaches that performed the variable selection
continuously. In our case, a model with the variables that showed
highest statistical significances resulted in best accuracy among
various prediction models (Table 3). In particular, the model
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exhibiting the highest AUROC (0.891) and lowest deviance
(19.397) employed the eight most significant-variables in the
logistic regression approach with elastic net regularization,
followed by the selective-attention ERP variables in a logistic
regression model via the ordinary least squares method. It implies
that a prediction model with only few EEG/ERP variables that
showed high statistical significance can be used for effective
screening of dementia, which would lead to the cost effective
utility of ‘‘prefrontal EEG’’ in clinics.

Overall, the logistic regression model with elastic net
regularization tended to perform better than the random forest
or extreme gradient boosting approach in terms of AUROC
and deviance from individual EEG/ERP variables with or
without MMSE. Again, adding demographic information to
this model reduced the predictive performance. The adverse
effects of demographics may be due to the diversity of
participants considered in this study regarding aspects such as
age, sex, education level, GDS score, and the underlying disease
causing dementia.

Some limitations of this study remain to be addressed.
The dementia patients in this study were registered in the
Korean National Health Insurance Service, and we were
not able to obtain further medical records of the patients,
such as imaging data, to identify the underlying causes and
statuses of dementia. Therefore, hidden comorbidities inducing
diversity of EEG/ERP features may have affected our results.
In addition, our findings cannot be generalized due to the
small sample size (122 participants) and discrepancies in
age and education level among groups. Even though we
attempted to remove confounding effects by adjusting for
age, sex, education level and depression level, the prediction
models could increase clinical usability if the data had no
such discrepancies in other risk factors between dementia
patients and normal controls. Finally, we could not examine
the exposures or suspected risk factors over time. Thus, a
prospective or case-control study with a larger and more
representative sample is still required to clinically validate
the diagnostic value of the EEG/ERP variables considered in
our study.

CONCLUSION

Prefrontal EEG variables, which are related to EEG slowing,
left–right asymmetry in the resting state, and sensory and
selective-attention ERPs, have been correlated with the MMSE
score. Logistic regression for dementia prediction shows that
most of the selected variables remain significant after adjustment
for GDS and demographic risk factors of dementia, such as
age, education level, and sex. In contrast, when the model
is adjusted for the MMSE score and demographic covariates,
these prefrontal EEG variables become non-significant, except
for the frontal asymmetry among the activity in the left
and right hemispheres, peak frequency in resting-state EEG,
and the response time in sensory ERP. The other variables
have no or minimal correlations with the MMSE score
after such adjustment. From multivariate regression models
with five-fold cross-validation, we found that the prefrontal

EEG variables outperform the MMSE score in dementia
prediction. In particular, the prediction accuracy was the
highest when using the eight variables that showed highest
statistical significances among tested EEG/ERP variables. Adding
demographic information fails to improve the prediction
accuracy. Overall, the slowing and asymmetry of prefrontal
EEG activity seem promising for dementia screening, and can
be used in combination with the MMSE score or function
as its alternative. In a future study, the clinical usability
of few-channel EEG can be improved by recruiting more
participants with balanced demographic risk factors among
patient and control groups and by including preceding stages
of dementia such as MCI; screening MCI patients effectively
allows early medical intervention that can prevent or deter the
progression to dementia.
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APPENDIX

TABLE A1 | Estimated odds ratios and 95% confidence intervals derived from three logistic regression models.

Unadjusted Adjusted Adjusted (including MMSE)

OR Wald Z OR Wald Z OR Wald Z
(95% CI) (p-value) (95% CI) (p-value) (95% CI) (p-value)

Resting state EEG
Alpha (avg.) [µV2] 0.615 (0.40, 0.93) −2.26 (2.39E−02) 0.693 (0.42, 1.12) −1.47 (1.41E−01) 0.747 (0.43, 1.26) −1.08 (2.80E−01)
Alpha/Theta 0.289 (0.16, 0.49) −4.39 (1.14E−05) 0.474 (0.24, 0.87) −2.33 (1.99E−02) 0.630 (0.32, 1.21) −1.36 (1.75E−01)
Beta (avg.) [µV2] 1.355 (0.91, 2.05) 1.49 (1.37E−01) 1.186 (0.74, 1.92) 0.71 (4.76E−01) 1.204 (0.72, 2.04) 0.71 (4.78E−01)
Frontal asymmetry 0.546 (0.34, 0.83) −2.68 (7.47E−03) 0.516 (0.30, 0.82) −2.58 (9.75E−03) 0.535 (0.30, 0.87) −2.29 (2.21E−02)
Peak frequency [Hz] 0.255 (0.14, 0.42) −5.01 (5.58E−07) 0.387 (0.20, 0.69) −3.07 (2.11E−03) 0.460 (0.24, 0.83) −2.50 (1.26E−02)
MEF [Hz] 0.285 (0.17, 0.45) −4.97 (6.64E−07) 0.387 (0.21, 0.68) −3.19 (1.40E−03) 0.555 (0.28, 1.06) −1.76 (7.79E−02)
Peak power [µV2] 0.969 (0.61, 1.42) −0.15 (8.79E−01) 0.868 (0.48, 1.45) −0.51 (6.13E−01) 0.842 (0.46, 1.43) −0.60 (5.52E−01)
Theta (avg.) [µV2] 1.699 (1.14, 2.60) 2.54 (1.09E−02) 1.143 (0.70, 1.89) 0.53 (5.94E−01) 0.952 (0.55, 1.65) −0.18 (8.60E−01)

Sensory ERP
Amplitude (deviation) [µV] 1.459 (0.99, 2.19) 1.88 (5.95E−02) 1.282 (0.80, 2.12) 1.01 (3.13E−01) 1.213 (0.71, 2.07) 0.72 (4.72E−01)
Amplitude (edge−center ratio) 1.094 (0.74, 1.63) 0.45 (6.56E−01) 0.903 (0.57, 1.43) −0.44 (6.61E−01) 0.884 (0.53, 1.47) −0.48 (6.33E−01)
Amplitude [µV] 0.931 (0.62, 1.38) −0.35 (7.24E−01) 0.875 (0.54, 1.40) −0.56 (5.78E−01) 0.768 (0.44, 1.30) −0.97 (3.32E−01)
Response time (deviation) [ms] 1.424 (0.97, 2.11) 1.79 (7.32E−02) 1.538 (0.95, 2.51) 1.75 (7.96E−02) 1.292 (0.76, 2.17) 0.96 (3.35E−01)
Response time [ms] 1.967 (1.32, 3.01) 3.23 (1.25E−03) 2.109 (1.31, 3.56) 2.96 (3.09E−03) 1.892 (1.15, 3.26) 2.42 (1.55E−02)

Attention ERP
# of correct 0.521 (0.34, 0.77) −3.18 (1.46E−03) 0.711 (0.45, 1.10) −1.54 (1.24E−01) 1.106 (0.65, 1.97) 0.36 (7.19E−01)
Amp (resp) − Amp (bg) [µV] 0.349 (0.13, 0.75) −2.33 (1.96E−02) 0.626 (0.23, 1.20) −1.13 (2.59E−01) 0.844 (0.32, 1.57) −0.43 (6.70E−01)
Resp. Time [s] 2.130 (1.42, 3.32) 3.53 (4.21E−04) 1.593 (1.01, 2.59) 1.96 (5.04E−02) 1.408 (0.86, 2.34) 1.36 (1.74E−01)
wER 2.364 (1.59, 3.66) 4.09 (4.31E−05) 1.533 (0.95, 2.51) 1.75 (8.02E−02) 0.950 (0.52, 1.69) −0.17 (8.61E−01)

The table shows the exact values for Figure 4. Due to the small sample size in this study, the covariates related to the disease status (e.g., hypertension, diabetes, and so on) were not included in the multiple logistic regression model.
OR (95% CI), Odds ratios with 95% confident interval; Wald Z (p-value), P-value obtains from Wald test.
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Dementia due to Alzheimer’s disease (AD) is a neurological syndrome which
has an increasing impact on society, provoking behavioral, cognitive, and
functional impairments. AD lacks an effective pharmacological intervention; thereby,
non-pharmacological treatments (NPTs) play an important role, as they have been
proven to ameliorate AD symptoms. Nevertheless, results associated with NPTs are
patient-dependent, and new tools are needed to predict their outcome and to improve
their effectiveness. In the present study, 19 patients with AD underwent an NPT for
83.1 ± 38.9 days (mean ± standard deviation). The NPT was a personalized intervention
with physical, cognitive, and memory stimulation. The magnetoencephalographic
activity was recorded at the beginning and at the end of the NPT to evaluate the
neurophysiological state of each patient. Additionally, the cognitive (assessed by means
of the Mini-Mental State Examination, MMSE) and behavioral (assessed in terms
of the Dementia Behavior Disturbance Scale, DBD-13) status were collected before
and after the NPT. We analyzed the interactions between cognitive, behavioral, and
neurophysiological data by generating diverse association networks, able to intuitively
characterize the relationships between variables of a different nature. Our results suggest
that the NPT remarkably changed the structure of the association network, reinforcing
the interactions between the DBD-13 and the neurophysiological parameters. We
also found that the changes in cognition and behavior are related to the changes in
spectral-based neurophysiological parameters. Furthermore, our results support the
idea that MEG-derived parameters can predict NPT outcome; specifically, a lesser
degree of AD neurophysiological alterations (i.e., neural oscillatory slowing, decreased
variety of spectral components, and increased neural signal regularity) predicts a better
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NPT prognosis. This study provides deeper insights into the relationships between
neurophysiology and both, cognitive and behavioral status, proving the potential of
network-based methodology as a tool to further understand the complex interactions
elicited by NPTs.

Keywords: non-pharmacological treatment (NPT), Mini-Mental State Examination (MMSE), Dementia Behavior
Disturbance Scale (DBD-13), magnetoencephalography (MEG), networks, predict

INTRODUCTION

Dementia is a neurological syndrome that induces cognitive,
behavioral, and functional alterations (Cummings, 2003). It is
estimated that, in 2019, about 50 million people suffered from
dementia worldwide, and this number is expected to increase to
132 million in 2050 (Alzheimer’s Disease International, 2019).
Furthermore, its global economic impact is currently estimated at
$1 trillion, and it is expected to be doubled by 2030 (Alzheimer’s
Disease International, 2019). Alzheimer’s disease (AD) is the
most common cause of dementia, with an exponentially growing
incidence, especially in developed countries, due to the increase
in life expectancy (Alzheimer’s Association, 2019). These figures
show that AD is becoming a problem of utmost importance,
highlighting the need to develop new treatments to help
ameliorate the increasing impact of AD.

Some pharmacological treatments for AD have been
developed over the past few years (Alzheimer’s Disease
International, 2019). Nonetheless, their effectiveness to mitigate
dementia symptoms is very limited and patient-dependent
and, in addition, they are often expensive (Qaseem et al.,
2008; Alzheimer’s Association, 2019; Alzheimer’s Disease
International, 2019). On the other hand, non-pharmacological
treatments (NPTs) are showing promising results when
dealing with AD-related cognitive alterations (Zucchella et al.,
2018; Alzheimer’s Association, 2019). NPTs include a wide
variety of strategies, ranging from physical training to cognitive
stimulation, through psychological therapy (Dyer et al., 2018). As
pharmacological therapies, they are not able to repair or stop the
neuronal death caused by AD, but they are beneficial to patients
with the disease (Dyer et al., 2018; Alzheimer’s Association,
2019). NPTs have been proven to effectively treat behavioral
and psychological dementia symptoms, as well as to improve
cognitive function and scores in depression tests (Oliveira
et al., 2015; Dyer et al., 2018; Alzheimer’s Association, 2019).
Therefore, NPTs are recommended as first-line managers to cope
with behavioral and psychological symptoms of dementia, as
they do not have adverse effects (Dyer et al., 2018). Nonetheless,
their effectiveness has been shown to be patient-dependent
(Kurz et al., 2011; Maki et al., 2018; Alzheimer’s Association,
2019). Many factors could influence the outcome of NPTs, such
as previous cognitive level, symptom severity, or anti-psychotic
use, but their impact is still unclear (Hsu et al., 2017). Therefore,
being able to a-priori predict NPT outcome is a problem of
paramount importance, since it would lead to personalized
treatments and, consequently, to increased treatment efficiency.

Neuroimaging techniques could be useful in this regard.
They record neuronal activity on different levels, providing

a quantitative framework to assess NPT influence on higher
cognitive functions. Resting-state electroencephalography (EEG)
and magnetoencephalography (MEG) have already been proven
to be sensitive to changes induced by NPTs in brain activity
(Amjad et al., 2019; Shigihara et al., 2020a,b), as well as to
be potential predictors of NPT outcome (Amjad et al., 2019;
Shigihara et al., 2020a,b). Both EEG and MEG are noninvasive
neurophysiological techniques, though only MEG provides
simultaneously high spatial and temporal resolution, as well as
low distortion of scalp recordings due to the resistive properties
of brain structures (Babiloni et al., 2009). MEG records brain
activity in the range of milliseconds, which is of paramount
importance to understand the function of a dynamic system
like the brain (Babiloni et al., 2009). MEG recordings, and
specifically resting-state signals, are often analyzed in patients
with AD because they are able to detect the subtle changes
that the disease provokes in neural activity (Engels et al.,
2017; Mandal et al., 2018). Likewise, as previously mentioned,
past studies found individual correlations between MEG-based
parameters in specific brain regions and both, cognitive and
behavioral variations due to NPTs (Amjad et al., 2019; Shigihara
et al., 2020a,b). These results support the potential of MEG to
quantify the effects of these therapeutic interventions. In the
current research, we propose to further explore the complex
interactions between the diverse variables under study by
means of a network-related framework, which enables us to
glimpse the footprint of the therapy in neural signals in a
comprehensive and intuitive way. This approach is based on the
generation of the so-called ‘‘association networks’’ that simplify
the interpretation of the complex interactions between variables
of diverse nature (Borsboom and Cramer, 2013; Fornito et al.,
2016; Borsboom, 2017). Association networks are increasingly
used as a tool for conceptualizing the interactions between
symptoms in mental disorders, given their ability to capture all
the intriguing complexity of these pathologies (Borsboom and
Cramer, 2013; Borsboom, 2017). To the best of our knowledge,
this is the first time that a network framework has been
applied to assess the complex associations due to an NPT
between neurophysiology, cognition, and behavior in AD. This
framework provides a powerful tool to analyze the impact of NPT
on neurophysiological signals and its potential predictors in a
simple and integrated way.

In this work, we hypothesize that NPT elicits several changes
in different cognitive and behavioral dimensions, which in turn
modify functional brain activity. The relationships between brain
function and higher-order capacities are governed by a complex
pattern of interactions between neurophysiological, cognitive,
and behavioral variables. Consequently, new methodological
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approaches are needed to identify the changes in oscillatory
brain activity that could be used to quantitatively assess NPT
outcomes and, eventually, to design personalized therapeutic
interventions. To address these issues, 19 patients with AD went
through an NPT. Resting-state MEG activity, cognitive state, and
behavioral status were evaluated at the beginning and end of
the NPT. Different spectral and non-linear parameters of the
MEG recordings were calculated to evaluate their interactions
with the NPT outcome, which was measured by means of
cognitive and behavioral tests. Specifically, we will address the
following research questions: (i) are the association networks
able to reflect the influence of the NPT on the relationships
between neurophysiological and cognitive/behavioral variables?;
(ii) what are the particular changes in the structure of
the association networks due to the NPT?; and (iii) can
the neurophysiological parameters predict the cognitive and
behavioral changes associated with the NPT?

MATERIALS AND METHODS

Participants
Nineteen patients with dementia from the geriatric health
services facility ‘‘Kakehashi’’ (Obihiro, Japan) were recruited
for this study. It is an official facility authorized by the
Ministry of Health, Labor, and Welfare in Japan, recognized
as a transient facility between hospitals and patients’ homes.
The main role of this facility is to improve the physical and
cognitive conditions of aged individuals to enable them to
return to their homes. All the participants were diagnosed
with AD, and two of them were also diagnosed with other
pathologies: one with Parkinson’s disease, and the other
one with vascular dementia. The diagnoses were carried
out by clinicians before admission in the ‘‘Kakehashi’’
facility, and according to the National Institute on Aging-
Alzheimer’s Association criteria (McKhann et al., 2011). If
possible, patients’ medication remained unchanged during the
NPT period.

Patients underwent the NPT for 83.1 ± 38.9 days
(mean ± standard deviation, see Figure 1 for a graphical
description of the NPT period), being treated every day by the
NPT professionals. NPT is composed of five types of activities
commonly used in geriatric health services facilities in Japan:

1. Physical training. It is aerobic exercise and resistance
training, which are effective to improve cognitive function in
aged individuals (Nagamatsu et al., 2012; Amjad et al., 2019).

2. Therapeutic role-playing. This therapeutic intervention is
called ‘‘Otona-no-gakko’’ (‘‘School for adults’’) and it is used
to both re-introduce patients to active life and enhance their
daily motivation (Cotelli et al., 2012).

3. Nursing care. Nursing care provides proper eating, drinking,
and a sanitary environment, which are essential to keep brain
activity healthy. Furthermore, it has been previously suggested
that diet has some relevant impact on AD (Rege et al., 2016;
McGrattan et al., 2019).

4. Horticultural therapy. This therapy is based on gardening
and planting activities to improve physical and cognitive

FIGURE 1 | Schematic overview of the time course of the study. Two
assessments took place during the study: at the beginning and the end of the
therapy. Each assessment consisted of MEG recording and application of
Mini-Mental State Examination (MMSE) and Dementia Behavior Disturbance
(DBD)-13 tests, that were performed within 3 days. The period between
assessments is defined as the time between the first and the second
assessments. The non-pharmacological treatment (NPT) period is defined as
the time between the admission in the facility and the second assessment.

TABLE 1 | Sociodemographic and clinical information of the sample.

Sociodemographic data

Number of subjects 19
Age (years) 86.00 ± 3.86
Gender (M:F) 7:12
NPT Period (days) 83.05 ± 38.88

Pre Post

MMSE 14.11 ± 5.95 16.00 ± 7.32
DBD-13 10.89 ± 9.93 9.84 ± 10.55

Data are shown as mean ± standard deviation. M, male; F, female; MMSE, Mini-Mental
State Examination; DBD-13, Dementia Behavior Disturbance scale.

conditions (Lu et al., 2020). Patients were familiar with these
activities since our facility is located in an agricultural area.

5. Self-cognitive training. Self-cognitive training includes
activities such as coloring books or crossword puzzles
(Anderson and Grossberg, 2014).

Each NPT session was designed each day by the experts to
adapt it to the clinical features and mood of each patient (Maki
et al., 2018), with a duration ranging from 20 to 40 min, according
to the Japanese regulations. See Table 1 for a description of the
sociodemographic and clinical information of the sample.

All participants and their families or caregivers gave their
informed consent to participate in the present study. The
investigation was carried out in accordance with the Code
of Ethics of the World Medical Association (Declaration of
Helsinki). The protocol was approved by the Ethics Committee
of Hokuto Hospital.

Cognitive and Behavioral Assessment
Cognitive and behavioral performance was assessed twice for
each patient, at the beginning and at the end of the NPT. Each
assessment session consisted of two different tests conducted
on the same day: an abbreviated version of the Dementia
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Behavior Disturbance Scale (DBD-13; Machida, 2012), and
the Japanese Mini-Mental State Examination (MMSE; Folstein
et al., 1975; Sugishita et al., 2010). The DBD-13 scale is a
52-point test consisting of 13 items of the original DBD-28
scale (Baumgarten et al., 1990; Machida, 2012). It measures the
behavioral disturbance induced by dementia, assigning higher
values to more behavior problems. The MMSE is a test with a
maximum score of 30, which measures cognitive impairment
by assessing different cognitive domains (Folstein et al., 1975;
Sugishita et al., 2010). Lower values correspond to more impaired
cognition.

MEG Recordings
All MEG recordings were acquired at the Hokuto Hospital
(Obihiro, Japan). As for the cognitive and behavioral
assessments, brain signals were recorded twice: at the beginning
and end of the treatment. MEG recordings, cognitive state, and
behavioral status were evaluated within 3 days in order to: (i)
accurately match each MEG recording with a cognitive and
behavioral assessment; and (ii) make the intervals between MEG
recordings and both cognitive and behavioral assessments as
similar as possible. Thereby, 76.1 ± 36.0 days (mean ± standard
deviation) passed between the initial and final assessments.
See Figure 1 for a graphical description of the period between
assessments.

For each subject, 5 min of resting-state brain activity was
recorded using a 160-channel axial gradiometers MEG system
(MEG Vision PQ1160C, Yokogawa Electric), with a sampling
rate of 1,000 Hz and a low-pass filter at 200 Hz. Head position
was registered with three fiducial markers placed on the patient’s
head during the MEG scan: 5 mm above the nasion, and 10 mm
in front of the tragus on each side of the head. Patients were asked
to stay calm and awake with eyes closed, in a supine position
during the recording. For security reasons, as well as to prevent
somnolence, MEG recordings were monitored in real time.

MEG Analysis
Signals were preprocessed before the application of the source
inversion algorithm. Next, different spectral and non-linear local
activation parameters were calculated from the signals at the
source level. Finally, these parameters were used to construct the
networks based on the Spearman correlations between them. The
next subsections describe the steps followed in the MEG analysis
in detail.

Preprocessing of MEG Signals
To limit the presence of noise in the MEG recordings, signals
were preprocessed using a 4-step pipeline (Rodríguez-González
et al., 2020): (i) artifact removal using the SOUND algorithm
(Mutanen et al., 2018; Rodríguez-González et al., 2019); (ii) finite
impulse response (FIR) filtering: 1–70 Hz band-pass to limit
noise bandwidth, and 49–51 Hz band-stop to remove line noise;
(iii) artifact removal using independent component analysis; and
(iv) visual selection of 5-s artifact-free epochs.

Source Inversion
Source-level signals were obtained using the Brainstorm toolbox,
which is documented and freely available for download online

under the GNU general public license1 (Tadel et al., 2011). A
forward model with 15,000 sources was created by means of
boundary element model using the ICBM152 head template
(Montreal Neurological Institute) and OpenMEEG software
(Fonov et al., 2009; Gramfort et al., 2010; Douw et al., 2018). The
head model was segmented into three tissues: brain, skull, and
scalp, with conductivities of 1, 0.0125, and 1 Siemens per meter,
respectively (Mahjoory et al., 2017). Sources were restricted to the
cortex, and their direction was set normal to it (Mahjoory et al.,
2017; Lai et al., 2018; Rodríguez-González et al., 2020). No noise
recordings were available, so an identity matrix was used as noise
covariance (Lai et al., 2018; Rodríguez-González et al., 2020).
The 15,000 source-level time courses were projected into the
68 regions of interest (ROIs) provided by the Desikan-Killiany
atlas, in order to have a manageable number of ROIs to work with
Desikan et al. (2006), Lai et al. (2018), and Rodríguez-González
et al. (2020). This source projection was done by averaging the
reconstructed activation time courses of all the voxels in each
ROI after flipping the sources of opposite direction (Lai et al.,
2018; Rodríguez-González et al., 2020).

As, we were working with resting-state signals, no a-priori
assumptions about sources could be made. Thus, we used the
weighted minimum-norm estimation (wMNE) algorithm, which
restricts the solutions by minimizing the energy (L2 norm)
weighting deep sources to facilitate their identification (Lin et al.,
2004). This method has been proven to be useful to reconstruct
the underlying sources of resting-state MEG datasets (Lin et al.,
2004).

Feature Extraction
Diverse signal processing methods have been widely used
to describe the properties of brain activity. These methods
characterize the electromagnetic fields generated by the
synchronized neuronal pools responsible for the observed brain
activity. In this study, we have used several local activation
parameters, which measure the activation of single functional
units (i.e., synchronized neuronal pools; Stam and van Straaten,
2012) They can be grouped in two main categories: (i) spectral
parameters, which evaluate the time-frequency content of the
recorded signal; and (ii) non-linear parameters, which measure
relevant non-linear properties of the signal, such as variability,
irregularity, or complexity. In this study, we have calculated a
wide variety of parameters in both categories to fully characterize
the properties of the resting-state MEG activity using its source
reconstructed time courses on the 68 estimated ROIs.

Spectral Parameters
They are useful to characterize the spectral content of the signal.
They were derived from the normalized power spectral density
(PSDn), which was calculated using the Blackman-Tuckey
method (Blackman and Tukey, 1958; Ruiz-Gómez et al., 2018;
Rodríguez-González et al., 2020). The parameters computed in
this category are listed below:

• Relative power (RP). It summarizes the neural activation in a
certain frequency range, relative to the full spectral content of

1http://neuroimage.usc.edu/brainstorm
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the signal. RP was calculated in the well-known conventional
frequency bands: delta (δ, 1–4 Hz), theta (θ, 4–8 Hz), alpha
(α, 8–13 Hz), beta 1 (β1, 13–19 Hz), beta 2 (β2, 19–30 Hz),
and gamma (γ, 30–70 Hz).

• Median frequency (MF). MF is the frequency that
divides the PSDn into two halves of equal power.
It is commonly used to measure the global signal
slowing provoked by AD disruptions (Poza et al., 2007;
Dauwels et al., 2011).

• Individual alpha frequency (IAF). It measures the frequency
where the alpha peak can be found. It is calculated as the
frequency that divides the extended alpha band (4–15 Hz)
into two halves of equal power (Klimesch, 1999; Poza et al.,
2007). Alpha peak is related to higher cognitive functions, so
this parameter is widely used to assess cognitive disfunction
(Klimesch, 1999; Poza et al., 2007).

• Spectral entropy (SE). This parameter measures the flatness
or uniformity of the PSDn using Shannon entropy. It has
been proven that patients with AD show a less distributed
spectral content of the PSDn than controls, which suggests
less variety of neural oscillatory components (Poza et al.,
2008b; Gómez and Hornero, 2010).

• Spectral edge frequency (SEF). It is quantified as the upper
limit of the PSDn. This parameter is calculated as the
frequency that comprises 95% of the power of the PSDn,
and is identified as the bandwidth of the signal (Poza et al.,
2007). Due to the slowing and the reduction in the variety of
neural oscillatory activity associated with AD, this parameter
has been used to characterize brain signals in patients with
dementia (Poza et al., 2007).

Non-linear Parameters
Non-linearity is a fundamental property of complex systems,
such as the brain (Stam, 2005). Non-linear analyses of brain
signals are then commonly used to describe the alterations
produced by a neuropathology like AD. The non-linear
parameters assessed in this study are:

• Lempel-Ziv complexity (LZC). It is a coarse-grain
complexity measure. LZC estimates the complexity by
counting the number of subsequences that the binarized
version of the analyzed signal contains (Lempel and Ziv,
1976). It assigns higher values to more complex time series
(Fernández et al., 2010, 2011). A decrease in complexity has
been associated with AD progression (Gómez et al., 2006;
Fernández et al., 2010).

• Sample entropy (SampEn). SampEn is an irregularity
measure that assigns higher values to more irregular time
sequences. It has two tuning parameters: the sequence length
and the tolerance, which were respectively set to 1 and
0.25·std (std: standard deviation of the signal) based on
previous studies (Gómez et al., 2009; Hornero et al., 2009;
Rodríguez-González et al., 2020). A decrease in irregularity
has been observed in the neural activity of patients with AD
(Escudero et al., 2009; Gómez et al., 2009; Hornero et al.,
2009).

• Central tendency measure (CTM). This parameter is useful
to quantify the variability of a signal. It is based on calculating

the second-order differences diagram of the time series and
then counting the points within a radius. In the present study,
the radius has been set to 0.025, based on previous analyses
(Ruiz-Gómez et al., 2018; Rodríguez-González et al., 2020).
CTM assigns higher values to less variable signals. Previous
studies have reported that AD is associated with lower CTM
values (Ruiz-Gómez et al., 2018).

In addition to the spectral and non-linear parameters, a new
measure is presented in the current study: the spatial Shannon
entropy (SSE). Specifically, the SSE computes the entropy of
the spatial distribution of values for a given local activation
parameter. The spatial distribution of the considered parameter
is estimated as the normalized histogram of its values considering
the 68 ROIs. The calculation of the SSE of a local activation
parameter enables us to quantify the changes induced by the
NPT in the spatial patterns of brain oscillatory activity. A
parameter with similar values across the brain (i.e., showing a
delta-like distribution of values) would yield a low SSE value,
whereas a high SSE value would be obtained by a parameter
with a wide range of variation (i.e., displaying a uniform
distribution). It is noteworthy that in the previous examples
the parameters could have similar mean values, but their
SSE values would be different. Hence, the SSE was computed
for each spectral and non-linear parameter; the SSE of a
given parameter will be referred to as S with the parameter
name in brackets, e.g., the SSE of the IAF will be denoted
as S(IAF).

Construction of Association Networks
In this study, we have generated different networks
to account for the potential relationships between the
neurophysiological, cognitive, and behavioral parameters.
Thereby, the network nodes were individual variables (all
the neurophysiological parameters, the score in the cognitive
examination—i.e., MMSE–, and the score in the behavioral
test—i.e., DBD-13), and the network edges (or weights) were the
associations between them. These associations were estimated
as the Spearman rank correlations between pairs of variables
to detect both linear and non-linear monotonic interactions;
age and gender were introduced in the correlation analysis as
covariates to control for their effect. Non-significant correlations
(i.e., network edges with p-values > 0.05) were removed
from the network (Zhang, 2011; Barberán et al., 2012). For
the sake of simplicity, negative correlations were converted
to positive, as we were interested in the association, and not
in the nature of that association. Afterward, networks were
constructed using Gephi software2. The width of the edges was
linked to the magnitude of the relationship, with a wider edge
meaning stronger association. The Force Atlas 2 algorithm
was employed to group nodes with higher correlations while
taking nodes with lower correlations away (Jacomy et al.,
2014). No regularization algorithm was applied, as we were
interested in exploring all the associations, especially those of
cognitive and behavioral parameters, even if they are weaker
than others.

2https://gephi.org/
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Four different associations networks were generated:

• Pre-NPT network. The nodes were the neurophysiological,
cognitive, and behavioral parameters obtained before the
application of the NPT.

• Post-NPT network. The nodes were the neurophysiological,
cognitive, and behavioral parameters obtained after the
application of the NPT.

• Changes network. The nodes were the variation of
neurophysiological, cognitive, and behavioral parameters
during the NPT, i.e., the difference between their values
before and after the NPT.

• Prediction network. The nodes were the neurophysiological
parameters before the application of the NPT, and the
variation of the cognitive and behavioral parameters during
the NPT.

Furthermore, networks stability was analyzed. To do that, the
probability of obtaining similar results was assessed by using
a bootstrapping methodology with 2,000 iterations to generate
new random network instances (Efron, 1992; Epskamp et al.,
2018). In each iteration, a new network is created by randomly
selecting 19 subjects of the original dataset, being possible to
select the same subject more than once (Efron, 1992). From the
four bootstrapped instances (one for each network), the 95%
confidence interval of the edges’ weights was reported (Jimeno
et al., 2020).

Another network was generated using the bootstrapped
samples from Pre-NPT and Post-NPT networks: the Variability
network. This network shows the differences in the association
pattern between Pre-NPT and Post-NPT. Each network edge
from the Variability network was computed as the test statistic
obtained when comparing the bootstrapped samples from
Pre-NPT and Post-NPT networks for that particular edge.
Thus, the higher the edge weight in the Variability network,
the higher the differences between Pre-NPT and Post-NPT
networks. Although all the edge weights were statistically
significant (p-values< 0.05, Wilcoxon signed rank test), only the
5% strongest connections (i.e., showing the biggest differences
between Pre-NPT and Post-NPT networks) were displayed.

RESULTS

Changes in Cognition and Behavior
Induced by the NPT
The average MMSE value before conducting the NPT was
14.11 ± 5.95 (mean ± SD), while the average for DBD-13
was 10.89 ± 9.93. Then, after applying the NPT, the
average value for the MMSE was 16.00 ± 7.32, and the
average for DBD-13 9.84 ± 10.55. The effectiveness of the
NPT was assessed by comparing the MMSE and DBD-13
before and after conducting the NPT. Both, MMSE and
DBD-13 show a statistically significant improvement after the
NPT, with MMSE significantly increasing (p-value = 0.0323,
one-tailed Wilcoxon signed rank test) and DBD-13 significantly
decreasing (p-value = 0.007, one-tailed Wilcoxon signed
rank test).

FIGURE 2 | Parameter network of the patients with Alzheimer’s disease (AD)
before the NPT (Pre-NPT network). Wider edges correspond with stronger
associations. Nodes corresponding to cognitive and behavioral parameters
are shown in blue, while nodes of neurophysiological parameters are shown
in orange.

FIGURE 3 | Parameter network of the patients with AD after the NPT
(Post-NPT network). Wider edges correspond with stronger associations.
Nodes corresponding to cognitive and behavioral parameters are shown in
blue, while nodes of neurophysiological parameters are shown in orange.

Changes in Network Structure Induced
by the NPT
In order to evaluate the changes induced by the NPT in
the patients’ network structure, three different networks were
evaluated: (i) Pre-NPT network (Figure 2); (ii) Post-NPT
network (Figure 3); and (iii) Variability network (Figure 4). The
figures depicting the stability of the networks shown in Figures 2,
3 can be found in the Supplementary Figures 1, 2.
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FIGURE 4 | Variability network, showing the 5% strongest connections
corresponding to the network edges that obtained the most significant
differences between Pre-NPT and Post-NPT networks. Wider edges
correspond with stronger associations. Nodes corresponding to cognitive
and behavioral parameters are shown in blue, while nodes of
neurophysiological parameters are shown in orange.

Figure 2 displays the relationships between the parameters
under study without the influence of the NPT, as they
were calculated with the samples obtained at the beginning
of the therapeutic intervention. It can be observed that
while DBD-13 is disconnected (i.e., it has no relationship
with any other parameter), MMSE is related with another
11 parameters: RP(Gamma), MF, IAF, SE, SEF, LZC, SampEn,
CTM, S(RP(Gamma)), S(RP(Beta 1)), and S(CTM). Interestingly,
no associations were observed for any RP parameter apart from
RP(Gamma).

On the other hand, Figure 3 shows the association network,
but including the influence of the NPT, as it has been calculated
with the parameters obtained after conducting the NPT. The
Post-NPT network has a higher number of connections on
cognitive and behavioral parameters in comparison with the
Pre-NPT network: MMSE now has 13 connections, while
DBD-13 has 11. Of note, eight out of the 13 associations of
MMSE were maintained from the Pre-NPT network (MF, IAF,
SE, LZC, SampEn, CTM, S(RP(Beta 1)), and S(CTM)), while the
other five were new associations (RP(Delta), RP(Beta 1), RP(Beta
2), S(RP(Beta 2)), and S(SampEn)). In contrast to the Pre-NPT
network, three parameters based on RP are now associated
with the MMSE, but RP(Gamma) is no longer significant.
Furthermore, the significant relationships for DBD-13 that can

FIGURE 5 | Network of changes. As indicated by the “Var” suffix, this
network displays the relationships between the variation of the parameters
under study during the NPT (i.e., ParameterPost − ParameterPre). Wider edges
correspond with stronger associations. Nodes corresponding to cognitive
and behavioral parameters are shown in blue, while nodes of
neurophysiological parameters are shown in orange.

be appreciated in the Post-NPT network are with: RP(Gamma),
SE, SEF, LZC, SampEn, CTM, S(RP(Gamma)), S(SEF), S(LZC),
S(SampEn), and S(CTM).

To get deeper insights on the changes induced by the
NPT in the parameter network, the Variability network was
constructed, depicting the 5% strongest differences between
Pre-NPT and Post-NPT networks (Figure 4). As expected,
the parameter whose relationships have changed most between
both networks is DBD-13, with 11 connections, while MMSE
only showed one connection. Interestingly, six out of those
11 connections (S(RP(Delta), S(RP(Beta 2)), S(RP(Gamma)),
S(LZC), S(SampEn), and S(CTM)) are spatial entropies.

Relationship Between Neurophysiological
and Cognitive and Behavioral Changes
The network of changes can be observed in Figure 5.
This network describes the associations between the
variation of the parameters under study (neurophysiological,
cognitive, and behavioral) by computing: ParameterPost −

ParameterPre. A positive value indicates an increase in the
parameter provoked by the NPT, while a negative value is
associated with a decrease. The figure showing the stability
of the network depicted in Figure 5 can be found in the
Supplementary Figure 3.

It could be observed that apart from the DBD-13 -
MMSE relationship, DBD-13 displays four connections
RP(Beta 1), S(IAF), S(SE), and S(RP(Beta 1)), while MMSE
only one S(RP(Beta 2)). Interestingly, four out of five
significant associations involve spatial entropies: S(RP(Beta
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FIGURE 6 | Prediction network, showing the ability of the assessed
neurophysiological parameters to predict the outcome of the NPT. The “Var”
suffix, which appears associated with DBD and MMSE, means the variation
of the parameters under study during the NPT (i.e., ParameterPost −

ParameterPre). Wider edges correspond with stronger associations. Nodes
corresponding to cognitive and behavioral parameters are shown in blue,
while nodes of neurophysiological parameters are shown in orange.

1)), S(IAF), S(SE) with DBD, and S(RP(Beta 2)) with MMSE.
Besides, three associations involve beta band: RP(Beta 1),
S(RP(Beta 1)), and S(RP(Beta 2)). No association involves any
non-linear parameter.

Predictability of the NPT Outcome by
Means of the Neurophysiological
Parameters
Figure 6 contains the Prediction network. It depicts the
ability of the neurophysiological parameters under study to
predict the outcome of the NPT, measured by the variation
of the cognitive and behavioral parameters (MMSE and DBD-
13). It could be appreciated that, aside from the relationship
that links cognitive and behavioral parameters, MMSE has
nine significant relationships (RP(Delta), RP(Beta 1), MF,
SE, SampEn, S[RP(Delta)], S[RP(Alpha)], S(RP(Beta 1)), and
S(CTM)), while DBD-13 has only one (RP(Beta 1)). Of note, only
two out of these 10 parameters involve non-linear parameters
(MMSE-SampEn and MMSE-S(CTM)), and four of them involve
spatial entropies (S[RP(Delta)], S[RP(Alpha)], S(RP(Beta 1)),
and S(CTM)). Supplementary Figure 4 depicts the stability of
the network depicted in Figure 6.

These relationships are of great importance because, as
mentioned in the Introduction section, predicting the NPT is
crucial. Thus, to obtain deep insights on them, and disentangle
the nature of these associations, we plotted scatterplots for
every significant relationship (involving cognitive or behavioral
parameters) obtained in the previous section, reporting the

specific correlation values (ρ). These scatterplots are shown in
Figure 7. Remarkably high relationships between parameters
can be observed, with a mean value of 0.56. The strongest
relationships can be observed for associations involving MMSE
and delta and beta bands: MMSE-RP(Delta) (ρ = −0.69, p-
value = 0.002, Spearman rank correlation), MMSE-RP(Beta 1)
(ρ = 0.57, p-value = 0.017, Spearman rank correlation), MMSE-
S(RP(Delta)) (ρ = −0.56, p-value = 0.019, Spearman rank
correlation), and MMSE-S(RP(Beta 1)) (ρ = 0.70, p-value = 0.002,
Spearman rank correlation).

DISCUSSION

In the present study, we have assessed the effects of an
NPT in the neurophysiology of patients with AD, as well as
whether its outcome is predictable by means of MEG-based
parameters. Our results hold three main findings related to
the three research questions posed in the introduction: (i)
the NPT alters the structure of the association networks,
unveiling relationships between DBD-13 and neurophysiological
parameters: RP(Gamma), SE, SEF, LZC, SampEn, CTM,
S(RP(Gamma)), S(SEF), S(LZC), S(SampEn), and S(CTM); (ii)
the changes induced by the NPT are related to the changes
in the DBD-13, suggesting an impact of the NPT in the
behavioral symptoms of AD; and (iii) the value of nine
neurophysiological parameters (RP(Delta), RP(Beta 1), MF,
SE, SampEn, S[RP(Delta)], S[RP(Alpha)], S(RP(Beta 1)), and
S(CTM)) before going through the NPT are related to the
NPT outcome, suggesting a potential predictive power of the
aforementioned parameters to foresee the response of the
patients to the NPT.

NPT Induces Several Changes in the
Structure of the Association Networks
The Pre-NPT network displayed in Figure 2 shows that, before
conducting the NPT, the neurophysiological parameters are
associated with the MMSE, but not with the DBD-13. This
could be explained as both tests are measuring the alterations
provoked by dementia in different cognitive domains. On the
one hand, DBD-13 measures strictly behavioral disturbances
defined as ‘‘the outward manifestation of some underlying
cognitive, psychological, or physiological deficit—regardless of
etiology—likely to cause stress to those caring for the patient’’
(Baumgarten et al., 1990). On the other hand, MMSE quantifies
cognitive impairment in a more global sense, by means of
different cognitive dimensions, such as attention, orientation,
language, perception, calculus, or the ability to follow simple
instructions (Folstein et al., 1975). Therefore, these results
suggest that cognitive disturbances measured in a broader sense
are directly related to the neurophysiological state. Nevertheless,
this is not the case for behavioral disturbances, where this
relationship could be mediated or obscured by external factors,
such as the environment, relationship with caregivers, or daily
life habits.

It is worth mentioning that all the spectral and non-linear
parameters, apart from those derived from the RP (except
RP(Gamma)), show statistically significant associations with

Frontiers in Aging Neuroscience | www.frontiersin.org 8 July 2021 | Volume 13 | Article 69617434

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Rodríguez-González et al. Interactions Between MEG and NPT Outcome

FIGURE 7 | Scatterplots representing the relationship between the neurophysiological parameters computed before applying the NPT (x-axis) and the changes in
cognitive and behavioral variables after the NPT (y-axis). In the top part of each panel, the value of the Spearman rank correlation for each specific pair of parameters
is plotted. Dashed lines represent the linear regression of the data.

the MMSE. RP values do not contain information about the
complete oscillatory activity, but only of a certain frequency
band, typically associated with a limited number of cognitive
functions (Uhlhaas et al., 2008). As it is known that AD
induces alterations in several cognitive domains (Alzheimer’s
Association, 2019; Alzheimer’s Disease International, 2019),
it could be hypothesized that the absence of associations
between MMSE and RP could be provoked, at least partially,
because they are only reflecting particular cognitive dimensions

of AD disruptions. Noteworthy, associations were found for
RP(Gamma), as well as for its spatial entropy. The gamma
band has been proven to play an important role in several
higher cognitive functions (Bartos et al., 2007; Martorell et al.,
2019). Besides, this frequency band is also affected by AD
neuropathology. Previous studies reported that AD patients’
brain activity is associated with an enhanced gamma power (van
Deursen et al., 2008; Wang et al., 2017), an increase in long
distance gamma connectivity (Bas̨ar et al., 2017), and an increase
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in the cross-frequency-coupling strength between gamma and
low frequency bands (Wang et al., 2017).

The Post-NPT network included in Figure 3 depicts the
association network after the application of the NPT. By
comparing this network with that in Figure 2, we can infer
the influence of the NPT in the pattern of interactions between
the different parameters (neurophysiological, cognitive, and
behavioral) under assessment. In this regard, the Variability
network (Figure 4) is also relevant, as it shows the 5% strongest
associations with the biggest differences induced by the NPT.
For MMSE, the basic structure of the network is relatively
maintained, as 62% of the statistically significant associations
are the same before and after conducting the NPT. Of note,
the associations with RP(Gamma), as well as its spatial entropy
S(RP(Gamma)), are not statistically significant; this result can
be interpreted as the NPT modulating the impairment provoked
by AD in the gamma band. Gamma activity is associated
with gamma-aminobutyric acid (GABAergic) activity, which
is the principal inhibitory neurotransmitter (Bartos et al.,
2007; Porges et al., 2017). Since an increased concentration of
GABA is related to superior cognitive performance, we may
suggest a relationship between gamma activity and cognitive
performance (Bartos et al., 2007; Porges et al., 2017; Mably
and Colgin, 2018). Besides, an increase in the gamma band
activity of the angular gyrus for AD patients has also been
reported (Shigihara et al., 2020b). This increase was associated
with the NPT inducing compensatory mechanisms against the
functional deficit provoked by dementia (Shigihara et al., 2020b).
Furthermore, new associations between MMSE and RP appear
with the application of the NPT: RP(Delta), RP(Beta 1), RP(Beta
2), and S(RP(Beta 2)). These bands are associated with the
well-documented slowing that AD elicits on oscillatory neural
activity (Jeong, 2004; Dauwels et al., 2011); therefore, they are
likely to be affected by the NPT. Interestingly, the association
of MMSE with RP(Alpha) is missing in both networks, though
it is commonly related to AD. This could be due to the fact
that the alpha band is acting as a ‘‘transition’’ band between
the decrease of power in faster bands (beta 1 and beta 2)
and the increase in the slower ones (delta and theta), thus
being less affected by the NPT. This result does not agree
with previous findings (Shigihara et al., 2020b), where the NPT
induced differences in the right temporal and right fusiform
areas in the alpha band. The discrepancies could be due to the
band definition (alpha band was split in alpha 1 and alpha 2)
or due to the spatial dimension of the analyses conducted by
Shigihara et al. (2020b).

Crucially, in Figure 4, it could be observed that the
majority of the associations that changed the most after the
NPT involve the DBD-13. This could be explained because of
the environment and habits of the patients being controlled
during the NPT, i.e., the therapeutic intervention would be
modulating those external factors, that could, in turn, be
mediating or obscuring the associations between DBD-13 and
the neurophysiological parameters before the application of the
NPT. Thus, we can speculate that the NPT has a direct impact
on the behavioral disturbances associated with AD, unveiling
their association with the neurophysiological oscillatory activity.

The behavioral symptoms are common in dementia, and largely
affect health and quality of life (Dyer et al., 2018). This is
in line with previous studies, where NPTs showed greater
effectiveness against behavioral symptoms than against cognitive
symptoms (Zucchella et al., 2018). Interestingly, 55% of the
associations of DBD-13 that changed the most after the NPT
are spatial entropies. This suggests that the spatial patterns
of the neurophysiological alterations elicited by NPT play a
significant role in patients with AD. Diverse brain regions
are affected differently by the NPT and, consequently, the
spatial entropy of local activation parameters is able to reflect
such changes. This is supported by previous studies where
NPT effects were observed in specific brain regions such as
the fusiform gyrus, right angular gyrus, sensorimotor area, or
right temporal lobe (Zucchella et al., 2018; Shigihara et al.,
2020a,b).

Relationship Between Neurophysiological,
Cognitive, and Behavioral Changes
Our findings suggest that changes in RP(Beta 1) and RP(Beta
2) are related with the cognitive and behavioral changes:
changes in RP(Beta 1) and S(RP(Beta 1)) are associated with
changes in DBD-13, whereas changes in S(RP(Beta 2)) are
related with those in MMSE. Beta activity is known to be
associated with GABA transmission, somatosensory functions,
and emotional processes (Jensen et al., 2005; Poil et al.,
2013). Besides, beta oscillations have been linked to AD: a
decrease in beta activity associated with the disease has been
widely reported (Jeong, 2004; Fernández et al., 2006; Poza
et al., 2007; Dauwels et al., 2011; Roh et al., 2011). Hence,
its application as a clinical tool to aid in AD diagnosis
and to assess neural disruption processes has been proposed
(Poil et al., 2013). Likewise, it has also been linked to
neuroplasticity, as well as to behavioral and psychological
symptoms of dementia via GABAergic activity (Lanctôt et al.,
2004; Griffen and Maffei, 2014). Also, in previous studies
associations between RP in beta and the changes in cognition
induced by an NPT has been reported (Shigihara et al.,
2020a,b).

Furthermore, a remarkable number of relationships between
the spatial entropies and both, cognitive and behavioral
parameters can be observed. This fact reinforces the idea posed in
the previous section: the NPT not only affects the global values of
the parameters under study, but their spatial distribution (i.e., the
changes induced by the NPT follow a specific spatial pattern).
This could be explained by the NPT restoring specific cognitive
domains (Zucchella et al., 2018), which are placed in specific
brain regions (Augustine, 2007), and can be detected by cognitive
and behavioral tests (e.g., behavior for DBD-13 or memory for
MMSE; Folstein et al., 1975; Baumgarten et al., 1990). The NPT
affecting different brain regions differently has been previously
reported (Zucchella et al., 2018; Shigihara et al., 2020a,b).

Finally, it can also be observed that the changes in non-linear
parameters are not related to the changes in cognition or
behavior, indicating that the NPT does not directly affect the
non-linear properties of resting-state MEG activity. It should
be noted that the non-linear parameters are affected by the
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NPT (as discussed in the previous section), but those changes
are not related to the NPT outcome (as measured by the
cognitive and behavioral tests). Thus, it is possible that non-linear
parameters are affecting specific cognitive domains not measured
by the tests, or that those domains are related to specific
aspects of the tests, thus blurring those differences among
the other dimensions. This is in line with previous studies
showing that, although spectral and non-linear parameters
are related (Dauwels et al., 2011), they also had remarkable
differences. Furthermore, the absence of connections with
non-linear parameters could be due to a decreased sensitivity of
the non-linear parameters to detect the AD neurophysiological
disruptions. This issue is in line with previous studies, where
non-linear parameters showed reduced capabilities for AD
classification compared to the spectral ones (Hornero et al., 2008;
Escudero et al., 2009; Poza et al., 2012).

Potential of Neurophysiological
Parameters to Predict the NPT Outcome
As stated in the Introduction section, predicting the
outcome of the NPTs would be of great interest, as
important differences have been found in the cognitive
impact of NPT among patients; some of them showed great
responsiveness to the treatment, while others were unresponsive
(Shigihara et al., 2020a).

It can be observed in Figure 6 that spectral parameters are
more associated with the NPT outcome than non-linear ones:
seven out of the nine local activation parameters that show
statistically significant relationships are derived from the PSDn.
This suggests that the NPT has a greater influence on the
spectral components of the resting-state MEG activity than on
its non-linear properties, which could be motivated by greater
disruptions of AD in the spectral content than in the non-linear
properties of the neural signals (Hornero et al., 2008; Escudero
et al., 2009; Poza et al., 2012).

Associations between MMSE and RP(Delta), RP(Beta 1), and
their SSEs can be appreciated, though the strongest association
was obtained between DBD-13 and RP(Beta 1). These two bands
are related to AD, as they measure the well-known frequency
shift provoked by AD: an increase of oscillatory activity in low
frequency bands and a decrease in higher ones (Jeong, 2004).
Not only the beta band, as previously stated, but also the delta
band is found to be associated with AD pathology. Delta has
been associated with the cholinergic levels of the brain, with
the current cognitive status, and also with the progression of
AD. Additionally, its increased delta activity has been proposed
as evidence of neural degeneration (Fernández et al., 2013;
Nakamura et al., 2018; Shigihara et al., 2020a). Furthermore, the
ratio between the power of neural activity in delta and beta bands
has been used to reflect AD disruptions (Babiloni et al., 2004;
Poza et al., 2008a; Knyazeva et al., 2010; Wang et al., 2017). In
a previous study, a correlation between beta power and NPT
outcome, measured by means of the MMSE, was also observed
(Shigihara et al., 2020a).

It is also noteworthy that our results suggest that milder
decline (measured by means of the neurophysiological
deterioration, i.e., slowing, diminished variety of frequency

components and irregularity loss; Jeong, 2004; Escudero et al.,
2009; Dauwels et al., 2011) is related with a better NPT outcome.
While AD provokes a shift to lower frequencies and a reduced
SE (Poza et al., 2008b; Dauwels et al., 2011; Bruña et al.,
2012), we have found that a PSDn skewed towards higher
frequencies (observed in the correlations MMSE-RP(Delta),
MMSE-RP(Beta 1), MMSE-MF, and DBD-13-RP(Beta 1))
and with a richer variety of frequency components (observed
in the correlation MMSE-SE) predicts a better outcome of
the therapy. Besides, AD is linked with more regular signals
(Escudero et al., 2009; Gómez et al., 2009; Hornero et al., 2009),
and we have observed that signals with higher irregularity
(observed in the correlation MMSE—SampEn) predict a better
response of the patient to the therapy. The correlation between
DBD-13 and RP(Beta 1) is negative, whereby higher beta
power is related to lower DBD-13, which indicates a better
behavioral state.

Besides, the SSE of the parameters were shown to be
important for predicting the NPT outcome: we found four
statistically significant correlations between MMSE and
S[RP(Delta)], S(RP(Beta 1)), S[RP(Alpha)], and S(CTM).
Also, all the correlations apart from the one with S[RP(Delta)]
are positive, which suggests that a more homogeneous spatial
distribution of the corresponding local activation parameters
predicts a better prognosis for the NPT. AD does not affect the
whole brain simultaneously, it is a progressive process (Raji
et al., 2009). Thus, a lower SSE could indicate that neural damage
is focused on specific brain areas (due to the variations in the
spatial pattern of the neurophysiological parameters), which the
NPT is unable to recover, so yielding a worse outcome of the
therapeutic intervention. Again, this idea is in line with previous
findings, where the spatial dimension of the results related to the
NPT is evident (Shigihara et al., 2020a,b).

The NPT significatively improved both cognition, as indicated
by the MMSE, and behavior, as quantified by the DBD-13. These
findings agree with previous studies where other NPTs yielded
beneficial effects in dementia patients (Zucchella et al., 2018).
Besides, in a previous study with the same NPT but a different
sample, statistically significant improvements were observed for
the MMSE but not for the DBD-13 (Shigihara et al., 2020b).
The discrepancy in the DBD-13 results could be explained due
to the different number of participants in the sample, or due to
the different pathology of the participants; in this study, only
patients with AD were included, while in the study conducted
by Shigihara et al. (2020b) the sample was composed of AD and
vascular dementia patients.

Limitations and Future Lines
Although this study has yielded interesting findings, there are
also some methodological issues that have to be mentioned, as
this is an exploratory study intended to be continued in the
future.

Firstly, the sample size is limited due to the difficulty of
carrying out this type of study, that requires a longitudinal
follow-up. This issue impacts, in turn, the stability of the
networks, probably due to the usage of bootstrapping that, with
reduced sample sizes (N = 19 in our case), yields high variability
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between iterations (Efron and Tibshirani, 1993). In order to
minimize the impact on the stability of the networks, they
have been generated considering only the statistically significant
connections (Supplementary Figures 1–4). Nevertheless, we are
working on incorporating new participants into the database,
which could also be interesting to design a classification
model useful to predict the responsiveness of a patient to
the NPT.

Another limitation is that we collapsed all the ROIs,
considering only the spatial dimension of the data by means
of the SSE. The results obtained with the SSE-related measures
support future studies that would address the role of spatial
patterns in detail. By analyzing its influence in each ROI
separately, deep insights on the NPT outcomes could be
obtained.

We have used only two tests in the cognitive assessments.
The inclusion of additional cognitive tests would be useful to
increase the robustness of the results by diminishing the impact
of biases and measurement errors. Besides, it would be also
interesting to disaggregate the MMSE results in its different
domains to assess how the NPT differently influences diverse
cognitive domains.

Furthermore, we have obtained interesting findings by
analyzing the association between the NPT outcome and
local activation (spectral and non-linear) neurophysiological
parameters. By analyzing the relationship between the
NPT outcome and connectivity or graph parameters
in future studies, we could potentially obtain a broader
characterization of the neurophysiological patterns associated
with the NPT.

Finally, we have conducted the study using resting-state MEG
recordings, where the background brain activity is measured.
Resting-state is a widely used paradigm, but it would be of great
interest to replicate the analysis performed in this study using
brain signals during sleep, as NPTs are able to ameliorate the
sleep disturbances provoked by AD (Berry et al., 2012; Horvath,
2018; Zucchella et al., 2018).

CONCLUSIONS

In this study, we conducted an exploratory analysis
about the associations between different local activation
neurophysiological parameters (spectral and non-linear, as well
their spatial counterparts) and the NPT outcome, quantified
with MMSE and DBD-13 tests. Our findings suggest that the
NPT modifies the association network structure, influencing
the behavioral disturbances and suggesting its relationship with
the neurophysiological patterns. Changes in cognition and
behavior due to the NPT are related to the spectral changes
in MEG activity, especially in the beta band. Furthermore, the
NPT induces spatial-dependent patterns in MEG activity that
are able to reflect the cognitive and behavioral changes due to
the therapeutic intervention. Finally, we can conclude that the
analyzed neurophysiological parameters are potential predictors
of the NPT outcome; specifically, less severe neurophysiological
alterations due to AD can be associated with a better prognosis
of the NPT.
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Compared with healthy older adults, patients with Alzheimer’s disease show decreased

alpha and beta power as well as increased delta and theta power during resting state

electroencephalography (rsEEG). Findings for mild cognitive impairment (MCI), a stage

of increased risk of conversion to dementia, are less conclusive. Cognitive status of

213 non-demented high-agers (mean age, 82.5 years) was classified according to a

neuropsychological screening and a cognitive test battery. RsEEG was measured with

eyes closed and open, and absolute power in delta, theta, alpha, and beta bands were

calculated for nine regions. Results indicate no rsEEG power differences between healthy

individuals and those with MCI. There were also no differences present between groups in

EEG reactivity, the change in power from eyes closed to eyes open, or the topographical

pattern of each frequency band. Overall, EEG reactivity was preserved in 80+-year-olds

without dementia, and topographical patterns were described for each frequency band.

The application of rsEEG power as a marker for the early detection of dementia might be

less conclusive for high-agers.

Keywords: aged 80 and over, EEG reactivity, resting state EEG, eyes open, eyes closed, mild cognitive impairment

INTRODUCTION

Dementia is diagnosed due to pronounced cognitive impairments and deterioration in daily living,
but pathophysiological changes in the brain usually occur before this critical stage is reached
(Sperling et al., 2011). Mild cognitive impairment (MCI), which is characterized as objective
cognitive deficits that are more severe than normal aging would suggest, but mild enough to not
interfere with daily independence, is thought to be a precursor to dementia (Winblad et al., 2004).
Older adults (OA) with MCI have a higher risk of developing dementia, particularly Alzheimer’s
disease (AD), compared to healthy OA (Mitchell and Shiri-Feshki, 2009) and show more brain
neuropathology linked to dementia in postmortem studies (Petersen et al., 2006) and in studies with
cerebrospinal fluid analysis (Visser et al., 2009). In longitudinal examinations, the development
of patients with MCI is heterogeneous. For example, it was reported that 14% of MCI cases
reverted back to normal cognition, 35% progressed to dementia, and 51% stayed stable at the 2-year
follow-up (Pandya et al., 2017).
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To further understand MCI and its progression to dementia,
it is, important to study brain changes in MCI directly and
to find biomarkers that better predict progression to dementia.
Resting state electroencephalogram (rsEEG) measures seem to be
especially suitable because they are easily obtained (non-invasive,
no special stimuli necessary, short recording time) and can
help to understand the connectivity of brain networks (Babiloni
et al., 2019). Differences in rsEEG activity in eyes closed (EC)
conditions between healthy OA and patients with AD have been
shown consistently (in cross-sectional and longitudinal studies)
and include decreased alpha and beta power, increased delta
and theta power, and changes in coherence and other functional
connectivity measures [for reviews, see Jeong (2004) and Babiloni
et al. (2016)]. Similar results were reported for vascular dementia
(van Straaten et al., 2012) while frontotemporal dementia does
not show consistent differences in rsEEG compared with healthy
OA (Nardone et al., 2018).

In contrast, only a few studies compared the rsEEG of healthy
OA and OA with MCI during EC. The following studies all
included the frequency bands delta, theta, alpha, and beta and
reported inconsistent results. For example, in two cross-sectional
studies from the same research group, MCI patients (age ∼72
years) had less alpha 1 (8–10.5Hz) power and stronger delta
power, while no changes were present in the theta and beta
bands (Babiloni et al., 2006b, 2010). Others also reported higher
delta power in MCI (age, 71.9 ± 7.9 years) compared to healthy
individuals of the same age and no significant differences in
the other frequency bands (Ya et al., 2015). Alternatively, it
was reported that theta power was decreased in OA with mild
cognitive deficits (age, 70.7± 8.8 years) and that changes in other
bands were present only in further cognitively declined groups
(Prichep et al., 1994). Another study with participants of similar
age in the MCI group (72.5± 6.0 years) reported lower delta and
theta band power, but no change in the faster frequency bands
(Kwak, 2006). This study included comparable fewer cases of
MCI (n= 16) than all other studies mentioned, where the sample
size for MCI ranged from 40 to 155 cases. In a different sample
with a similar small MCI case amount (n= 20, age 74± 5 years),
no significant differences between patients with MCI and healthy
OA in the theta band were detectable, although theta power of the
MCI group fell in-between healthy and OA with dementia (van
der Hiele et al., 2007a). In addition, it was shown that patients
with MCI (mean age, 70.7 years) revealed less alpha and less
beta phase-locked synchronization (measured with global field
synchronization instead of power), but no changes in the slower
frequency bands (Koenig et al., 2005).

Taken together, no conclusive picture for the typical delta,
theta, alpha, and beta power values during rsEEG in EC condition
in the presence of MCI can be obtained from these studies. It
seems that the direction of changes is comparable to findings
in dementia. However, which of these changes are earliest in
the transition toward dementia and, therefore, most common
in MCI is unclear. This might be due to the limited number of
studies, including preclinical stages of dementia, small sample
sizes, heterogeneity in MCI classification, and heterogeneity in
the underlying cause of MCI (Yang et al., 2019).

Heterogeneity of underlying causes for MCI also means that
only a certain proportion of MCI cases will progress toward
dementia and, therefore, might be the only ones displaying rsEEG
patterns similar to those known in dementia. Moreover, many
types of dementia exist with AD being the most common cause.
Longitudinal studies can take this into account and examine
which EEG power parameters at the baseline best predict further
cognitive decline or even progression to AD or other types of
dementia in OA with MCI. For example, posterior alpha power
was reported to be smaller in progressing MCI compared with
stable MCI cases (age of all MCI cases at the baseline, 65.9 ± 9.6
years) and predicted worsening of cognitive function in a 1-year
period with 75% positive predictive power (Luckhaus et al.,
2008). For a longer follow-up period of 21 months, one study has
shown that relative alpha power, relative theta power, and mean
frequency at the temporo-occipital region in EC conditions at the
baseline (age at baseline, 58.2 ± 5.9 years) were the best EEG
predictors for conversion to AD (Jelic et al., 2000). Accuracy of
prediction was raised from only 70%, which was obtained with
MMSE as the only predictor, to 85% by adding EEG parameters
(Jelic et al., 2000). The best choice of parameters to predict
conversion from MCI (age at the baseline, 68.7 years) to AD
over a 2-year follow-up period obtained by data mining from
177 EEG parameters included predominantly beta frequency
parameters and reached 88% sensitivity, 82% specificity, and 64%
positive predictive value (Poil et al., 2013). The classification rates
in all studies so far were not sufficient enough for diagnostic
application (Jelic and Kowalski, 2009; Rossini et al., 2020).

Different causes for MCI also mean that subtypes of MCI
should be differentiated. Most commonly, this is done by
distinguishing between amnestic (aMCI) and non-amnestic
(naMCI) cognitive deficits (Petersen, 2004). The aMCI is thought
to be primarily related to AD because the relative incidence
of AD is significantly higher in aMCI compared with naMCI,
although other outcomes, such as vascular dementia or mixed
forms, are also possible (Jungwirth et al., 2012). In addition, it
has been shown that the amnestic subtype of MCI differs from
the non-amnestic type and shows lower central alpha and greater
occipital theta power at rest compared with naMCI (Babiloni
et al., 2010). Magnetic resonance imaging (MRI) results also
support the notion that neuropathological changes are different
in both types (Guan et al., 2017).

In addition to disease-related changes, EEG oscillations at rest
are also subject to changes during healthy aging. Research on
rsEEG (mostly during EC) in healthy OA consistently reveals
changes in the alpha band, which are similar to changes found
in AD, such as reduced power and reduced peak frequency
with increasing age (Rossini et al., 2007). For delta and theta
bands, decreases were mostly reported (Babiloni et al., 2006a;
Gaál et al., 2010), while activity in the beta band seems to be
more pronounced in OA compared with young adults (Koyama
et al., 1997; Rossiter et al., 2014). Those changes in delta, theta,
and beta bands are in the opposite direction of those reported
due to AD. Research on healthy OA as well as MCI, however,
has mainly been conducted within the age range of 60–80 years.
Thus, there seem to be no detailed reports about topographical or
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frequency specific EEG power characteristics in high-agers (>80
years) during rest or in comparison with younger OA.

Most studies so far only analyzed rsEEG data obtained
while eyes were closed. Studying eyes open (EO) conditions
seems appropriate, considering that task-related brain activity is
dependent on the prior background activity (Başar andGüntekin,
2012), and cognitive tasks in everyday life are usually not solved
in EC conditions. It has been shown that the classifications
between healthy OA and MCI work better with data from EO
than EC conditions (McBride et al., 2014). For example, alpha
activity during EO was reduced in MCI compared with healthy
OA, but alpha activity in EC was not able to discriminate between
both groups (McBride et al., 2014). Including both conditions
makes it possible to study states of low and moderate vigilance
(Babiloni et al., 2019) and to differentiate between global arousal
and focal activations (Barry et al., 2007). Investigating the
changes from EC to EO conditions, termed EEG reactivity,
might be promising as well. EEG reactivity describes the power
difference in a frequency band between two distinct conditions
(Klimesch, 1999). In the following, reactivity will be defined
as the difference in power between EO rest and EC rest (EO-
EC). Findings for reactivity are often limited to the alpha band.
Synchronous alpha activity observed during EC is blocked when
eyes are opened, which can be easily detected in the raw data
(Berger, 1929). Healthy OA showed decreased alpha reactivity
compared with young adults (Duffy et al., 1984) or a lack of
reactivity at all (Gaál et al., 2010). Alpha reactivity was found
to be even more decreased in patients with AD compared with
healthy OA (van der Hiele et al., 2007b; Schumacher et al., 2020).
In a study with small samples sizes, values of the MCI group (n
= 11) were between the healthy (n= 12) and demented group (n
= 10), but did not differ significantly from the healthy control
group (van der Hiele et al., 2007b). Alpha reactivity was also
found to be the best predictor of global cognitive performance,
memory and language skills across all groups (van der Hiele et al.,
2007b).

Recently, Barry and De Blasio (2017) have published rsEEG
data for young adults (age, 20.4; range, 18.8–25.6 years) and
OA (age, 68.2; range, 59.8–74.8 years), which looked in detail
at the topographical characteristics of each frequency band and
the changes from EC to EO conditions (reactivity) not only
in the alpha frequency but also in the delta, theta, and beta
bands. Across both groups, delta and theta power in EO and
EC were midline dominant with a maximum at the vertex
and a bias toward the right hemisphere (Barry and De Blasio,
2017). For the alpha band, the well-known posterior dominance
was reported, and power in the right hemisphere was stronger
compared with the left. Activation in the beta band showed
centroparietal dominance. For young adults, changes from EO
to EC included the overall reduction in power for delta, theta,
alpha, and beta bands and a focal frontal increase in the beta
frequency (Barry et al., 2007). A similar pattern was found
in healthy OA, indicating that the EEG reactivity for delta,
theta, alpha, and beta is maintained in healthy aging (Barry
and De Blasio, 2017). No further studies exist that investigated
EEG reactivity in other frequency bands than alpha in MCI
or dementia.

From the current state of research, it can be concluded that
further studies with adequate sample sizes are needed to better
consider healthy aging as a reference point and the transition
to cognitive decline (Yang et al., 2019), especially data for the
oldest (>80 years) are lacking for neuropsychological as well
as neurophysiological parameters (Slavin et al., 2013). Similarly,
dementia research should include more of the oldest participants
as they also make up the majority of the affected patients (Brayne
and Davis, 2012; Richard et al., 2012).

The aim of the current study was to investigate the association
of EEG activity in the delta, theta, alpha, and beta bands during
different rest conditions with the cognitive status of OA, ranging
from healthy toMCI (aMCI and naMCI). Since cognitive changes
in the course from healthy aging to early dementia describe a
continuum, the exact diagnostic classification of MCI is difficult
(Petersen, 2004). This might become even more difficult with the
advancing age of the sample. In order to tackle this uncertainty,
we categorized OA into groups of different cognitive status,
taking into consideration the level of evidence of cognitive
impairments (see Methods) and using the recommendations
for diagnosis of MCI in community-based samples (Petersen
et al., 2018). This resulted in three groups: (1) cognitively
healthy individuals (CHI) with strong evidence of no cognitive
impairments, (2) possible MCI (pMCI) subjects with some
evidence of cognitive impairments, and (3) MCI participants
with strong evidence of cognitive impairments (Müller et al.,
2020). The MCI group was further subdivided according to type
of cognitive deficits in aMCI and naMCI. As the prevalence
of MCI is positively correlated with age (Kryscio et al., 2006),
only high agers (participants in their eighties) were included in
the study to ensure a sufficient amount of MCI cases in the
volunteer sample. Also, this was supposed to fill the previously
identified gap for data from high-agers in the context of
MCI research.

The main objective was to find out if the rsEEG of 80+-year-
olds with MCI (pMCI, aMCI, and naMCI) differed significantly
from healthy individuals of the same age. Therefore, differences
between groups in mean absolute and mean relative power of
the delta, theta, alpha, and beta bands were studied for EO, EC,
and reactivity (EO–EC). It was expected that, similar to findings
in younger samples of MCI and samples of patients with AD,
MCI would have lower alpha and beta power and stronger delta
and theta power during EC. In the EO condition, alpha power
was expected to decrease in the MCI groups, while, for the
other bands, no specific predictions could be made according to
prior findings. Alpha reactivity was predicted to be smaller in
the MCI groups, while no predictions were made for the other
frequency bands.

METHODS

This study is part of the SENDA study (Sensor-based systems for
early detection of dementia, registered in the German Clinical
Trials Register under DRKS00013167), which was conducted
at Chemnitz University of Technology, Germany. The detailed
study protocol was published earlier by Müller et al. (2020). Only
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TABLE 1 | Characteristics of the total sample and groups according to cognitive status.

Total CHI pMCI naMCI aMCI

N (in %) 213 (100) 72 (34) 80 (38) 17 (8) 44 (21)

m/f 109/104 32/40 43/37 12/5 22/22

Age in years M (SD) 82.5 (2.4) 82.1 (2.4) 82.5 (2.1) 83.2 (3.1) 83.0 (2.7)

Education in years M (SD) 14.0 (3.2) 14.4 (3.4) 14.0 (3.3) 14.3 (3.2) 13.3 (2.7)

MoCA (0–30) M (SD) 25.6 (2.6) 27.8 (1.2) 25.8 (2.1) 22.8 (1.6) 22.8 (1.7) *a

Handedness (-100–100) M (SD) 83.3 (38.2) 89.1 (24.4) 81.9 (41.6) 78.2 (39.5) 81.5 (42.6)

GDS Score (0–15) M (SD) 2.8 (2.0) 2.6 (1.9) 2.6 (1.8) 3.6 (2.7) 3.4 (2.1)

NAA Score (20–60) M (SD) 26.3 (3.4) 25.3 (2.7) 25.9 (3.3) 29.5 (4.5) 27.9 (3.0) *b

CHI, cognitively healthy individuals; pMCI, possible mild cognitive impairment; naMCI, non-amnestic MCI; aMCI, amnestic MCI; MoCA, Montreal Cognitive Assessment; GDS, Geriatric

Depression Scale; NAA, Nürnberger-Alters-Alltagsaktivititäten-Skala (Nuremberg Gerontopsychological Rating Scale for Activities of Daily Living).

*p < 0.05.
aPost-hoc Dunn Bonferroni test showed: CHI > pMCI > naMCI = aMCI.
bPost-hoc Dunn Bonferroni test showed: CHI = pMCI< naMCI = aMCI.

information relevant to the current research question will be
described here.

Participants
The SENDA study sample included 244 participants (123 males;
age, 79–93 years; M = 82.5; SD = 2.5), which were recruited
from January 2018 to March 2020. Study participation required
walking ability, sufficient German language skills, residence in
or around Chemnitz, Germany, and self-organized means of
travel to and from the laboratory. Volunteers were excluded
before testing if any of the following criteria applied: (1) acute
psychological disorder; (2) diagnosis of any neurocognitive
or neurological disorder; (3) past traumatic head injury; (4)
substance abuse; (5) participation in other clinical studies; (6)
a physician-directed ban from physical activities; (7) severe
restrictions due to cardiovascular, pulmonary, or orthopedic
diseases; (8) or failure to reach the minimum required score of
19 during screening with the Montreal Cognitive Assessment
(MoCA, Nasreddine et al., 2005). Each participant signed a
written informed consent, and all study proceedings were
approved by the Ethics Committee of Chemnitz University
of Technology, Germany, Faculty of Behavioral and Social
Sciences (V232-17-KM-SENDA-07112017, approved on
19.12.2017). Each participant received 25 e compensation for
his or her participation at three appointments. This included
neuropsychological testing (part of first appointment) and EEG
recordings (part of the second appointment).

The analysis for this article included 213 participants.
Exclusion from analysis was due to (1) dropout from the
study before all needed testing was completed (n = 17), (2)
signs of severe depressive symptoms [Geriatric Depression
Scale (Gauggel and Birkner, 1999) short version > 8, n =

9], (3) technical issues during the EEG recording, (n = 4),
(4) and falling asleep during EEG recording (n = 1).
Demographic characteristics are reported in Table 1. In addition,
the participants reported their medication regimens. Due to
the old age of the participants, many of them were following
a medication regimen, which most often included medication
for high blood pressure, thrombosis prophylaxis, cholesterol

reduction, stomach acid reduction, and thyroid function. There
were 15 participants taking medication, which might have
influenced EEG activity, such as tricyclic antidepressants (n= 6),
antipsychotics (n = 2), Parkinson medication (n = 2), anti-
dementia medication (n = 2), and benzodiazepines (n = 5,
prescribed for sporadic, not regular use, according to medication
plans). These cases were distributed across all four groups (CHI:
3, pMCI: 4, naMCI: 5, and aMCI: 3). Conducting the following
analysis without these cases did not result in any differences, and
we, therefore, did not remove them from the sample.

Neuropsychological Testing and MCI
Classification
All the participants went through an intensive
neuropsychological test battery, which was carried out from
trained testing staff at the University lab. This included the
German version of the MoCA (Nasreddine et al., 2005) and the
German version of the Consortium to Establish a Registry for
Alzheimer’s Disease Neuropsychological Test Battery (Morris
et al., 1989; Memory Clinic Basel, 2005; CERAD-NP). The
MoCA was used to measure global cognitive functioning and to
screen for MCI. It is the second most utilized geriatric cognitive
screening tool after the mini mental status examination but
has superior sensitivity to mild cognitive impairments (Breton
et al., 2019). The CERAD-NP examines the cognitive domains
memory, language, executive functions, and visuo-construction.
In addition, information about the level of education (overall
years of education) and handedness [a laterality quotient
according to Oldfield (1971)] was obtained. The participants
completed additional questionnaires at home, which included,
among others, the Nürnberger-Alters-Alltagsaktivititäten-Skala
(NAA; Nuremberg Gerontopsychological Rating Scale for
Activities of Daily Living; Oswald and Fleischmann, 1995) to
measure basic and instrumental activities of daily living as well
as the German short version of the Geriatric Depression Scale
(GDS; Gauggel and Birkner, 1999) to screen for depressive
symptoms. The GDS was used to exclude individuals from the
analysis (GDS > 8) to prevent the inclusion of undetected cases
of major depression and also as a covariate.
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MCI classification was based on the recommendations of The
National Institute on Aging and the Alzheimer’s Association
(Albert et al., 2011) and in accordance with the criteria
proposed by Petersen et al. (2014). These criteria are also part
of the Diagnostic and Statistical Manual of Mental Disorders
(5th ed.; DSM-5; American Psychiatric Association, 2013) for
the diagnosis of mild neurocognitive disorders. The criteria
were: (1) self—or informant report of cognitive complaints,
(2) impairments in at least one cognitive domain while taking
into consideration age and education, (3) general independence
in daily activities, and (4) no dementia. Cognitive complaints
(criteria 1) were not included as a criterion of MCI here
because there is no consensus on inclusion or operationalization
(Mitchell, 2008). Subjective complaints also seem to be far less
relevant for the prediction of dementia in community-based
samples like ours compared with the participants in memory
clinics (Snitz et al., 2018). In addition, we found subjective
complaints to be very common in this age group. In a subgroup of
our sample (n = 136), 65% of the participants reported memory
complaints when asked to compare their memory performance 5
years prior.

Cognitive impairments (criteria 2) were determined according
to performance in MoCA (one sum score) and CERAD-NP
(nine separate test scores). The following CERAD-NP scores
were used: verbal fluency (number of animals named in 1min),
Boston naming test (number of objects correctly identified),
phonematic fluency (number of words named with letter “S”
in 1min), constructional praxis (number of correctly copied
characteristics), word list learning (number of words correctly
remembered in third trial), word list recall (savings score), word
list recognition (discriminability score), constructional praxis
recall (savings score), and trail making test (quotient B/A). We
followed a two-step procedure that is recommended for diagnosis
of MCI in the general population, which states that, first, a
screening should be used, and, in case of abnormal findings,
in-depth cognitive testing should follow (Petersen et al., 2018).
A MoCA score below 26 points and at least one CERAD-NP
performance below 1.5 standard deviations of the normative
mean (taking into consideration age, sex, and education level)
resulted in the classification of mild cognitive impairment (MCI).
Correspondingly, the participants were classified as being healthy
(CHI) if they scored 26 or more points on the MoCA and also
within the normative range (no score below −1.5 SD) in all of
the CERAD-NP scores. Out of the participants classified as MCI,
amnestic cases (aMCI) were distinguished by deficits in at least
one of the memory tests (word list learning, word list recall, word
list recognition, and constructional praxis recall). Accordingly,
non-amnestic cases (naMCI) presented with deficits only in the
other non-memory tests. Due to the application of the two-
step process, an additional class was defined for the participants
who showed cognitive impairments only according to one of
the two tests. They were categorized as possibly having MCI
(pMCI). This group either included the participants who had
deficits in one specific domain of the CERAD-NP, but, overall,
cognitive functioning was normal according to MoCA or the
participants that had no strong impairment in any single domain,
but small deficits in different domains added up to a low MoCA

score (<26). Although this group would be considered as non-
MCI according to Petersen et al. (2018) as these individuals
neither showed abnormal scores in the screening (MoCA > 25)
nor in-depth clinical testing after abnormal testing revealed any
cognitive impairments, we opted to separately analyze this group
to have high discriminatory power between CHI and MCI.

General independence (criteria 3) was presumed for all
the participants because we only included community-dwelling
volunteers in this study. This was further confirmed by the NAA
scores, which were below 39 for all individuals and fell within a
normal range for this age group (Oswald and Fleischmann, 1995).
No dementia (criteria 4) was also ensured due to the exclusion
criteria described before.

EEG Recordings
The actiCHamp system (Brain Products GmbH, Gilching,
Germany) was used to record 32 active EEG electrodes positioned
according to the international 10–20 system (Fp1, Fp2, F7, F3,
Fz, F4, F8, FC5, FC3, FC1, FC2, FC4, FC6, T7, C3, Cz, C4, T8,
CP5, CP3, CP1, CP2, CP4, CP6, P7, P3, Pz, P4, P8, O1, Oz, and
O2). The setup included a forehead ground electrode at Fpz and
an online reference electrode at Fz. All data were acquired with
a 500Hz sampling rate and 24-bit resolution. The electrode-skin
impedance was kept below 25 k�.

The EEG recording during rest only made up a small part of
the complete testing on the day and always took place after gait
analysis and prior to fine motor testing. Rest periods were offered
during the whole procedure, and all the participants had received
a short break prior to EEG recording. EEG measurements took
place in an electrically shielded and darkened room. Tominimize
EEG artifacts and distractions for the subject, all instructions
were given from an adjacent room via a microphone and a
monitor. The participants sat relaxed, with their backs leaned
against the back rest and both hands rested comfortably on the
table in front of them (see Figure 1A for a photo of the complete
setup). They looked at a white fixation cross at the center of a
black screen for 4min (condition EO) and, afterwards, closed
their eyes for 2min (condition EC). The level of consciousness
the subject wasmonitored to annotate changes and other artifacts
in the EEG protocol.

Preprocessing of EEG Data
BrainVision Analyzer 2.2 (Brain Products GmbH, Gilching,
Germany) was used for all preprocessing steps. Data were
filtered (phase shift-free Butterworth infinite impulse response
filter, 1–70Hz, slope 48 dB/Hz), notch filtered (50Hz), and
down sampled from 500 to 256Hz. In addition, blink artifacts
in the rest condition EO were removed via Independent
Component Analysis (Jung et al., 1998) with Fp1 as the reference
channel for vertical eye movements. Continuous EEG data were
then common average re-referenced and segmented into 2-s
epochs for an automatic artifact rejection. Epochs were rejected
from further analysis if at least one channel included voltage
steps >25 µV/ms or if the difference between minimal and
maximal absolute voltage recorded exceeded 200 µV in any 200
ms interval.
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FIGURE 1 | Setup of the resting state EEG measurements (A) and depiction

of the nine regions of interest obtained from the EEG (B).

At each electrode absolute power (in µV²) and relative power
(in %, relative to the total power of the spectrum 1–24Hz) was
calculated with a Fast Fourier Transform algorithm for each
2s epoch resulting in 0.5Hz resolution. A Hanning window
(length 10%) and variance correction were applied to correct
for spectral leakage. Mean absolute power and mean relative
power were obtained by averaging 15 artifact-free segments for
30 s after the start of the condition. One participant did not
have enough artifact free segments for the EO and another
participant for the EC condition. Therefore, EO and EC analyses
were carried out with N = 212 and the reactivity analysis with
N = 211. Frequency bands included delta (1–3.5Hz), theta (4–
7.5Hz), alpha (8–13Hz), and beta (13.5–24Hz). All data were
log-transformed (base 10) to obtain normal distribution and
variance homogeneity before calculation of regions of interest
(ROI) based on Barry and De Blasio (2017). The combination
of three sagittal planes (left, mid, and right) and three coronal
planes (frontal, central, and posterior) resulted in nine different
ROIs (Figure 1B): left frontal (Fp1, F3, and F7), mid frontal (Fz),

right frontal (Fp2, F4, and F8), left central (T7 and C3), mid
central (Cz), right central (T8 and C4), left posterior (P7, P3,
and O1), mid posterior (Pz), and right posterior (P8, P4, and
O2). Reactivity for absolute and relative power was calculated
separately for each frequency band as the difference between EO
and EC (log power EO- log power EC) for each ROI.

In addition, from the same spectrum (relative power, EC
condition, 30 s), we also obtained the individual alpha frequency
(IAF) for each person. All electrodes of the posterior region (P7,
P3, O1, Pz, P8, P4, and O2) were averaged, and the frequency
of the maximum value in the alpha band was extracted with
the MinMax Marker Solution (BrainVision Analyzer 2.2). Six
participants were not included in this analysis because they did
not show clear peaks in the alpha range. This was indicated by
the values of the detected peak being less than 1.96 standard
deviations above the mean value of the alpha range. Visual
inspection of the cases indicated either absence of a peak or a
peak in the theta range.

Statistical Analysis
IBM SPSS Statistics Version 27 (IBM Corp., Armonk, NY, USA)
was used for all statistical analysis. P-values < 0.05 were regarded
as significant and p-values < 0.10 as a trend unless they had to be
adjusted for multiple testing. Effect sizes were reported as partial
eta squares (η2p). As variables were not normally distributed,
Kruskal–Wallis tests were used to test if covariates age, education,
and depressive symptoms differed between groups. A chi-square
test was used to test if sex and group distributions were
independent. No significant differences between groups emerged
for any of the covariates, which means that potential effects of
cognitive status on EEG parameters should not be due to sex, age,
and education confounding with the group classification.

First, absolute power data were pre-analyzed in order to check
if reactivity was still preserved in the sample of high-agers. For
this purpose, a 2× 3× 3× 4 mixed-design ANOVA was carried
out with the three within-subject factors rest condition (EO, EC),
sagittal (left, mid, and right) and coronal (frontal, central, and
posterior) as well as one between-subject factor group (CHI,
pMCI, naMCI, and aMCI), and the main effect of rest condition
was reported for each frequency band.

All the following analyses were run with sex as covariate.
Age and education in years were not included as covariates
because there was no significant relationship with any of the
EEG parameters, and their inclusion did not improve variance
explanation. One-way analysis of covariance (ANCOVA) was
used to test for differences in IAF between groups. Next, six
3 × 3 × 4 mixed-design ANCOVAs were carried out with
the dependent variables (1) absolute EC power, (2) absolute
EC power, (3) absolute power reactivity, (4) relative EO
power, (5) relative EO power, and (6) relative power reactivity,
respectively. Each ANCOVA included two within-subject factors
sagittal (left, mid, and right) and coronal (frontal, central, and
posterior) as well as one between-subject factor group (CHI,
pMCI, naMCI, and aMCI) to find differences between groups
and topography. Greenhouse-Geisser adjustments were reported
whenever sphericity assumptions were violated. To control for
multiple testing within each frequency band (three tests for
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FIGURE 2 | Brain maps showing the mean absolute power in µV² for all frequency bands in both conditions and the difference maps. EO, eyes open; EC, eyes closed.

absolute power and three tests for relative power), the Bonferroni
adjusted alpha level of 0.017 was used. Last, the directions of
the significant main and interaction effects from the 3 × 3 ×

4 ANCOVAs were determined via contrast analysis to describe
the topography in more detail. For the coronal factor, two
contrasts were used: comparing frontal with posterior (F – P)
and comparing the mean of frontal and posterior against the
central ROI (F/P – C). Similarly, two contrasts were included
for the sagittal factor: comparing left with right (L – R) and
comparing themean of left and right with themid ROI (L/R –M).
Again, Bonferroni adjusted alpha levels were used to control for
testing multiple contrasts within one effect (main effects: 0.025
interaction effect: 0.0125). Only significant effects are reported in
the text unless stated otherwise.

RESULTS

Reactivity
Results from the 2 × 3 × 3 × 4 mixed-design ANOVA indicated
a significant reduction in absolute power from EC to EO across
the whole sample in delta [F(1,207) = 30, p < 0.001, ηp² = 0.13],

theta [F(1,207) = 144.4, p < 0.001, ηp² = 0.41], alpha [F(1,207) =
275.3, p < 0.001, ηp² = 0.57], and beta bands [F(1,207) = 6.6, p =
0.01, ηp²= 0.03].

Cognitive Status
Classification of participants in the four groups (CHI, pMCI,
aMCI, and naMCI) according to the introduced criteria resulted
in 72 CHI, 80 pMCI, 17 naMCI, and 44 aMCI cases (Table 1).
The four groups differed significantly according to problems with
daily activities measured with the NAA (CHI= pMCI< aMCI=
naMCI). The IAF was fastest in the healthy group (M = 9.3Hz,
SD= 1.1) compared with the groups with cognitive impairments
(pMCI: M = 9.0Hz, SD = 0.8, naMCI: M = 9.1Hz, SD = 0.8,
aMCI: M = 9, SD = 0.8). These differences were not significant
[F(3,206) = 1.6, p= 0.19, ηp²= 0.02].

Tables with log-transformed absolute power values for
each frequency band, group, and ROI are available in the
Supplementary Material. Results of the mixed ANCOVA for
each frequency band for the outcome variables (power EC,
power EC, and reactivity) revealed no significant group effects
or interactions involving the factor group for neither absolute
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nor relative power analysis. The p-values for these nonsignificant
effects ranged from p = 0.05 to p = 0.90 (with effect sizes
between ηp² = 0.00 and ηp² = 0.04) for absolute power and
p = 0.02 to p = 0.98 (with effect sizes between ηp² = 0.01
and ηp² = 0.04) for relative power. In this sample, the rsEEG
activity in the four frequency bands did not differ significantly
according to the cognitive status of the participants when using
absolute or relative power values. As no differences between
groups were established, all the participants were pooled together
to obtain brain maps from the non-transformed absolute power
values (Figure 2) for each frequency band and condition for this
sample of OA to illustrate the topographies. The maps for each
group separately are available in the Supplementary Material.
In the whole sample, the effects were significant for the
sagittal factor, the coronal factor, and the interaction between
sagittal and coronal for all frequency bands and absolute
power outcomes. The topographical effects will be looked at
in more detail in the following sections only for absolute
power. Relative power values are especially useful to control for
person-specific confounding variables, which are less relevant
to within-subject effects. In addition, differences in relative
power are less clear to interpret because they can be caused
by changes in the studied frequency band or changes in any
of the other bands used in normalization. The results from
the topographical analysis of relative power are available in the
Supplementary Material.

Topography During EC
The complete results of the contrast analysis can be seen
in Table 2. For all frequency, bands activity was significantly
smaller at the midline compared to hemispheres (L/R > M).
There was no effect of lateralization in any of the frequency
bands (L = R). Both alpha and beta were dominant in the
posterior regions (F < P), while delta band was dominant in
the frontal region (F > P). For the delta, theta, and alpha
bands, central activity was less pronounced compared with the
mean activity from frontal and posterior (F/P > C). In the
delta band, the difference between midline and hemispheres
was more pronounced frontally compared with the posterior
regions (L/R > M × F > P). For all other bands, this was
reversed with stronger differences between midline compared
with L/R in the posterior regions instead of frontal regions (L/R
> M × F < P). Although no global effect of lateralization
was obtained in the alpha band, there was more pronounced
activity in the right hemisphere of the posterior region (L <

R × F < P). The smallest power values for theta and delta
were obtained from the mid-central regions (L/R > M × F/P
> C).

Topography During EO
The topography during the EO was very similar to EC
topography (Tables 2, 3). The only differences pertained to
lateralization, where theta and alpha both showed greater
power in the left compared with the right hemisphere (L >

R) and no differences in lateralization between frontal and
posterior regions.

Topography of Reactivity
Topographical differences in reactivity were apparent in
the descriptive reactivity data (Supplementary Material)
and were confirmed by the contrast analysis (Table 4).
When interpreting the direction of effects, the sign of the
reactivity values must be considered. When comparing
two negative values, the smaller value is the more negative
value and, therefore, indicates the larger change from EC
to EO.

For the delta band, the pattern of reactivity resembled that of
the EC condition, whichmeans that the greatest changes from EC
to EOwere present in the areas with themost delta activity during
EC [F < P; F/P < C; L/R < M × F > P; L/R < M × F/P > C].
For the theta, band reactivity was less pronounced in the central
regions (F/P < C), specifically the left and right hemispheres
(L/R > M × F/P < C), which were also the regions with less
theta activity in EO and EC. In the alpha band, once again,
reactivity was more pronounced in the right compared with the
left hemisphere (L > R), which explained the change from a
right hemispheric bias during EC to a significant left hemispheric
bias during EO. Further considerations of interactions actually
showed that this was only the case in the posterior but not
the frontal region (L > R × F < P). The change from EC to
EO in alpha power was greater in the midline compared with
hemispheres (L/R > M), especially so in the frontal regions (L/R
> M × F > P). Reactivity was strongest in the posterior region
and least pronounced in the central regions (F > P, F/P < C),
which reproduces the pattern of alpha activity during EC. In
the beta band, reactivity was more pronounced in the midline
compared with the hemisphere (L/R > M) and in the posterior
compared with frontal regions (F > P). This is related to the
fact that beta activity in the hemispheres is increasing in the left
and right frontal regions while it is decreasing with the opening
of eyes in the other regions (L/R > M × F > P). This focal
frontoparietal activity with opening the eyes can also be seen in
Figure 2 (last column).

DISCUSSION

In this study, the synchronized activity at rest while eyes are
open and closed in the classical broad bands delta, theta,
alpha, and beta was compared between cognitively healthy
OA and individuals with MCI of the same age. The sample
included OA, 80 years or older, which are often not enough
represented in studies on early detection of dementia. Groups
were compared with respect to mean absolute power, relative
power, and reactivity to eyes opening separately in each band.
No significant differences between any of the groups of different
cognitive status (CHI, pMCI, naMCI, and aMCI) were detected.
Overall, specific topographical patterns were present, which will
be compared with results from other age groups later. In addition,
EEG reactivity was also present in each of the four frequency
bands with overall greater power during EC compared with EO
and a few focal increases in the beta band. The topography of
reactivity for the most part related to the topography found in
the EC condition.
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TABLE 2 | Results of the contrast analysis in each frequency band for absolute power (log-transformed) at rest with eyes closed.

Delta Theta Alpha Beta

F p ηp² F p ηp² F p ηp² F p ηp²

Main Effects (adj. α-level = 0.025)

L > R 4.1 0.04 0.02 1.9 0.18 0.01 1.1 0.129 0.01 0.0 0.89 0.00

L/R > M 266.5 <0.001 0.56 264.4 <0.001 0.56 387.4 <0.001 0.65 141.5 <0.001 0.41

F > P 130.5 <0.001 0.39 1.1 0.29 0.01 236.4 <0.001 0.53 26.4 <0.001 0.11

F/P > C 135.7 <0.001 0.40 165.3 <0.001 0.44 115.0 <0.001 0.36 3.1 0.08 0.02

Interactions (adj. α-level = 0.0125)

L > R x F > P 1.4 0.23 0.01 0.4 0.51 0.00 11.9 0.001 0.05 3.1 0.08 0.02

L > R x F/P > C 2.2 0.14 0.01 0.2 0.62 0.00 2.6 0.11 0.01 0.8 3.8 0.00

L/R > M x F > P 86.7 <0.001 0.30 4.7 0.03 0.02 81.1 <0.001 0.28 15.2 <0.001 0.07

L/R > M x F/P > C 15.9 <0.001 0.07 8.1 0.005 0.04 1.3 0.26 0.01 1.2 0.28 0.01

All test statistics are with (1, 207) degrees of freedom. Underlined effects are reversed in direction (i.e., the reversed effect from L > R × F > P is L < R × F > P). Changing the direction

of both directional indicators within a single effect is equivalent (i.e., L > R × F > P is the same as L < R × F < P). L, left; R, right; M, midline; F, frontal; P, posterior; C, central. Significant

results are printed in bold.

TABLE 3 | Results of the contrast analysis in each frequency band for absolute power (log-transformed) at rest with eyes open.

Delta Theta Alpha Beta

F p ηp² F p ηp² F p ηp² F p ηp²

Main Effects (adj. α-level = 0.025)

L > R 3.6 0.06 0.02 6.1 0.02 0.03 11.4 0.001 0.05 1.7 0.18 0.01

L/R > M 158.6 <0.001 0.43 173.7 <0.001 0.46 408.9 <0.001 0.66 143.4 <0.001 0.41

F > P 39.0 <0.001 0.16 2.9 0.09 0.01 106.1 <0.001 0.34

F/P > C 50.7 <0.001 0.20 86.4 <0.001 0.29 12.0 0.001 0.06

Interactions (adj. α-level = 0.0125)

L > R x F > P 0.0 0.87 0.00 2.6 0.11 0.01 0.0 0.95 0.00 6.7 0.01 0.03

L > R x F/P > C 1.4 0.23 0.01 0.1 0.80 0.00 0.5 0.47 0.00 0.5 0.49 0.00

L/R > M x F > P 24.1 <0.001 0.10 16.5 <0.001 0.08 14.8 <0.001 0.07 0.6 0.45 0.00

L/R > M x F/P > C 1.4 0.12 0.01 0.1 0.72 0.00 45.2 <0.001 0.18 7.4 0.01 0.03

All test statistics are with (1,207) degrees of freedom. Underlined effects are reversed in direction (i.e., the reversed effect from L > R × F> P is L < R × F > P). Changing the direction

of both directional indicators within a single effect is equivalent (i.e., L > R × F > P is the same as L < R × F < P). L, left; R, right; M, midline; F, frontal; P, posterior; C, central. Significant

results are printed in bold.

TABLE 4 | Results of the contrast analysis in each frequency band for reactivity (difference of log-transformed absolute power).

Delta Theta Alpha Beta

F p ηp² F p ηp² F p ηp² F p ηp²

Main Effects (adj. α-level = 0.025)

L > R 21.8 <0.001 0.10 1.3 0.25 0.01

L/R > M 9.1 0.003 0.04 18.7 <0.001 0.08

F > P 18.0 <0.001 0.08 0.1 0.76 0.00 66.2 <0.001 0.24 29.3 <0.001 0.12

F/P > C 39.7 <0.001 0.13 25.9 <0.001 0.11 86.6 <0.001 0.30 0.5 0.48 0.00

Interactions (adj. α-level = 0.0125)

L > R x F > P 0.6 0.43 0.00 4.5 0.04 0.02 8.5 0.004 0.04 2.2 0.14 0.01

L > R x F/P > C 0.1 0.76 0.00 0.1 0.80 0.00 1.0 0.33 0.01 0.1 0.77 0.00

L/R > M x F > P 11.5 0.001 0.05 2.83 0.09 0.00 30.6 <0.001 0.13 7.9 0.01 0.04

L/R > M x F/P > C 8.9 0.003 0.04 8.0 0.01 0.04 28.3 <0.001 0.12 5.5 0.02 0.03

All test statistics are with (1,206) degrees of freedom. Underlined effects are reversed in direction (i.e., the reversed effect from L > R × F > P is L < R × F > P). Changing the direction

of both directional indicators within a single effect is equivalent (i.e., L > R × F > P is the same as L < R × F < P). L, left; R, right; M, midline; F, frontal; P, posterior; C, central. Significant

results are printed in bold.
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No significant differences between any of the groups of
different cognitive status were found in IAF or resting state power
in EC, and, therefore, it can be concluded that the absolute and
relative power distributions were similar in each of the four
groups (CHI, pMCI, naMCI, and aMCI) for this condition. Thus,
the hypotheses that MCI is characterized by lower alpha and
beta power as well as stronger delta and theta power during EC
could not be confirmed in our sample. This is not in complete
agreement with prior findings of changes in the rsEEG in patients
with MCI. For the rest with EC, it was shown that alpha and
beta powers were reduced and theta and delta powers were either
elevated or reduced in MCI compared with healthy OA (Koenig
et al., 2005; Babiloni et al., 2006b, 2010; Kwak, 2006; Ya et al.,
2015). In fact, when specifying former studies, each study only
showed some of the listed changes, but the overlap between
results was often not great even though similar parameters
were studied.

One might assume that the lack of significant differences
between MCI and healthy participants in our study was caused
by an unsuitable resting state measurement protocol. This seems
to be rejectable as the protocol was very comparable to the ones
used in other MCI and dementia studies (e.g., Alexander et al.,
2006; van der Hiele et al., 2007b; Gaál et al., 2010; Toth et al.,
2014).

One major difference between the current findings and that
of other studies was the overall older age (mean, 82.5 years)
of the participants. The average age of most study samples was
∼10–20 years below that of the present sample [e.g., 62 years
(Koenig et al., 2005), 68 years (Barry and De Blasio, 2017), and
72 years (Babiloni et al., 2006b)]. In addition, the number of
rsEEG studies in this age group is very limited, which means that
there is limited knowledge of the typical rsEEG in MCI, but it is
also unclear how the rsEEG activity of healthy high-agers looks.
Some aging-related changes in the rsEEG, like the reduction in
alpha power, are probably similar in the aging process and the
neuropathological process of dementia (Rossini et al., 2007), and,
therefore, it might be harder to differentiate between healthy
but far advanced aging and early neuropathological changes.
Postmortem studies also showed that dementia pathology, such
as neuritic plaques, diffuse plaques, and neurofibrillary tangles
can be found in healthy OA without signs of dementia or
MCI during their lifetime (Bennett et al., 2006). In general, the
overlap in neuropathology between healthy and individuals with
dementia seems to increase with age (Richard et al., 2012). Taken
all together, this suggests that the cognitive status of high-agers as
determined by neuropsychological testing might not necessarily
represent the underlying neurophysiological state.

For EEG measurements, it must also be considered that aging
can cause anatomical changes that can dampen the measurable
EEG signal. It has been shown that cortical thinning with aging
results in smaller measurable EEG amplitudes and that power
differences between different age groups can be explained by
including cortical thickness into the analysis (Provencher et al.,
2016). As a consequence, it might be statistically problematic to
detect differences if the baseline level of power is very low. On
average, this is not the case in the current sample. The power
values at rest with EO in the present data set are comparable with

values found in a prior study (Hübner et al., 2018) with younger
OA (67–83 years).

The different groups of cognitive status were also compared
with regard to resting state power while EO and reactivity
(change from EC to EO). Although it had been shown
before that EO conditions might be better suitable to detect
EEG changes in MCI (McBride et al., 2014), this was not
replicated here. The present results indicated no differences
in resting state power with EO or reactivity according to
cognitive status in any of the frequency bands. Thus, the
hypothesis that MCI is characterized by reductions in alpha
power during EO and reduced reactivity in the alpha band
was not confirmed. In addition, for the first time, analysis of
reactivity was not restricted to the alpha band and included
also delta, theta, and beta bands. Group comparisons showed
that reactivity in the other bands was also not related to
cognitive status.

In addition, we studied the topography and reactivity of each
frequency band without taking into consideration the cognitive
status of the participants to generate knowledge about the rsEEG
in a group of non-demented high-agers. The topography of the
slower bands (delta and theta) was described withmaximal power
at the vertex in both rest conditions in healthy OA in prior studies
(Barry and De Blasio, 2017). This topography was not replicated
here, as delta power showed frontal dominance with the smallest
power at the vertex. Theta power was also smallest in the central
regions. It is unclear why these differences arise and if a small
sample size of prior studies, EEG setup or artifacts could be the
cause of this. As this pattern was especially pronounced during
EC condition, which typically shows very little frontal artifacts
such as blinking, this should not be the reason. Other studies with
young participants actually reported a very similar pattern with
prefrontal dominance of delta power (Barry et al., 2007; Chen
et al., 2008).

For the alpha band, topography was similar and, as expected,
showed strongest alpha power in the posterior ROI and smallest
power values centrally. A right hemisphere bias was present in
the alpha band during EC conditions and a left hemisphere bias
in the alpha and theta bands during EO, while, for all other
bands and conditions, no hemispherical differences were found.
In comparison, younger adults showed a right hemisphere bias
across all frequency bands during rest (EO and EC), which is
assumed to arise from the dominance of the left hemisphere in
right-handed participants (Simon-Dack et al., 2013; Barry and
De Blasio, 2017). This difference between our sample and results
from younger OA confirms many findings of age-related neural
dedifferentiation (Koen and Rugg, 2019).

The changes in band power due to eyes opening, in general,
resembled what has been shown in younger adults. Reactivity
was present in all bands and showed the typical pattern of overall
decreased power in all bands, and only focal frontal increases in
the beta band in EO (Barry and De Blasio, 2017). Even in high-
agers, reactivity is maintained in all frequency bands, showing
intact regulation of arousal and vigilance in the different resting
state conditions. The exact topographical pattern for delta, theta,
and alpha bands related to the observed EC pattern in each band,
meaning the difference EO – EC was the strongest in ROIs that
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showed the most activity during EC (delta: frontal, theta: frontal
and posterior, alpha: posterior).

Limitations
Some limitations of this study must be considered. First, all the
participants were volunteers, without symptoms of dementia and
no need to live in a nursing home. These constraints resulted in
the sample having a bias toward comparatively healthy and well-
educated individuals. Education could be an influencing factor,
because it is known as a proxy of a cognitive reserve, and it can
impact the relationship between brain changes and performance
measured in neuropsychological testing (Liu et al., 2013). This
should not influence the present results because the groups did
not differ in their levels of education.

In addition, one might assume that the MCI cases found in
this sample were mostly very mild and far from the progression
to dementia. However, the range of MoCA scores (19–25)
and the deficits found in CERAD-NP scores (<1.5 SD below
age specific norms) for the MCI groups indicated that this is
not the case. Although the norms of neuropsychological test
batteries like the CERAD-NP can be very strict when used
for individuals older than 75 years (Luck et al., 2018), this
issue was resolved by using a two-step classification system to
evaluate the cognitive status of the participants. This included
the neuropsychological test battery (CERAD-NP) with age- and
sex-corrected norm values and the MoCA. This screening tool is
known to detect MCI well-compared with others like the Mini
Mental Status Examination, which suffers from ceiling effects
in populations with mild impairments (Larner, 2012; Breton
et al., 2019). Standardized classification criteria according to
recommendations of the neurotic National Institute on Aging
and the Alzheimer’s Association (Albert et al., 2011) were
employed. This procedure is certainly comparable to the standard
clinical procedure, which includes first a screening and then
more extensive neuropsychological testing. In addition, this
recruitment procedure was chosen to obtain a sample of OA with
no or only mild cognitive deficits, as we were especially interested
in those early preclinical stages of dementia. Other studies
often used MCI samples that arose from memory clinics, where
probably, individuals applied with complaints, indicating further
progressive cognitive decline. Conversely, the present sample
allowed to study the process of cognitive decline even earlier.

The prevalence of MCI obtained from this strategy was 29%,
which is slightly higher than the incidence rate for community
samples calculated in a recent meta-analysis (Hu et al., 2017).
Considering the age of the sample, this prevalence seems well-
fitting and supports the validity of the classification strategy used.
In addition, the distribution from naMCI and aMCI matches
with prior findings that aMCI is the most common type of
MCI (Petersen et al., 2010). Unfortunately, a relatively large
part of the sample was classified as pMCI, indicating the high
rate of diagnostic uncertainty often apparent in the diagnosis of
preclinical and early dementia (Dubois et al., 2016).

The present study only focused on a selection of
EEG parameters that can be obtained from Fast Fourier
transform (spectral analysis). This was done because
such parameters have been shown before to differentiate
between healthy and persons with mild impairment

(Koenig et al., 2005; Babiloni et al., 2006b, 2010; Kwak, 2006; Ya
et al., 2015). They were now applied to a high-ager sample to
study their usefulness in terms of early detection of dementia
in such age groups. It is possible that early changes in resting
state networks are better found with other or more advanced
analysis methods. For example, measures of complexity (i.e.,
frequency or time domain entropy) or functional connectivity
(i.e., coherence, phase lag index, and synchronization likelihood,
and others) are able to extract different information from the
signals of resting state networks than absolute and relative
power can (Babiloni et al., 2019). Signal complexity seems to
be reduced in MCI compared with healthy OA, although there
are only few studies, including MCI, in addition to AD cases
(Sun et al., 2020). Functional connectivity in MCI has been
reported both as increased or decreased compared with healthy
OA (Lejko et al., 2020). This might be due to pathophysiological
as well as compensational processes present in MCI (Lejko et al.,
2020). Future studies should use these advanced measures in the
oldest-old samples to clarify if they can add findings that spectral
analysis was not able to disentangle.

Conclusion and Outlook
In this study, the rsEEG during EC and EO conditions of OAwith
and without cognitive impairments was studied. MCI was not
related to detectable changes in EEG power during rest, neither
for EC nor EO, compared with healthy individuals. Reactivity
in any frequency band was also not different between groups of
different cognitive status. With this sample of individuals in their
80’s, it was challenging to differentiate between cognitive deficits
caused by aging processes and actual pathological changes,
indicating MCI. However, by including only the participants
of very old age, it was possible to generate rsEEG data for an
understudied age sample, which can help to establish normative
data and is maybe better transferable to the clinical context,
where the majority of individuals being diagnosed with MCI and
dementia is rather old.

The present study results are strictly cross-sectional, and,
therefore, no statements on the trajectory of neuropsychological
performance and electroencephalographic parameters can be
made. All the participants were part of a longitudinal study
at the Chemnitz University of Technology, Germany (SENDA,
sensor-based systems for early detection of dementia), and
measurements were repeated up to three times in intervals of
8 months. In the future, additional data analysis will be carried
out. This will have two main advantages: (1) the validity of the
MCI diagnosis can be increased by including neuropsychological
data of more than one time point (Albert et al., 2011) and (2)
the predictive value of EEG parameters for the further cognitive
decline can be studied. So far, the accuracy obtained from such
studies is not high enough for clinical applications but they are
more promising than cross-sectional comparisons (Yang et al.,
2019).
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The current pilot study aimed to test the gains of working memory (WM) training, both at

the short- and long-term, at a behavioral level, and by examining the electrophysiological

changes induced by training in resting-state EEG activity among older adults. The study

group included 24 older adults (from 64 to 75 years old) who were randomly assigned to a

training group (TG) or an active control group (ACG) in a double-blind, repeated-measures

experimental design in which open eyes, resting-state EEG recording, followed by a WM

task, i.e., the Categorization Working Memory Span (CWMS) task, were collected before

and after training, as well as at a 6-month follow-up session. At the behavioral level,

medium to large Cohen’s d effect sizes was found for the TG in immediate and long-term

gains in the WM criterion task, as compared with small gains for the ACG. Regarding

intrusion errors committed in the CWMS, an index of inhibitory control representing

a transfer effect, results showed that medium to large effect sizes for immediate and

long-term gains emerged for the TG, as compared to small effect sizes for the ACG.

Spontaneous high-beta/alpha ratio analyses in four regions of interest (ROIs) revealed no

pre-training group differences. Significantly greater TG anterior rates, particularly in the

left ROI, were found after training, with frontal oscillatory responses being correlated with

better post-training CWMS performance in only the TG. The follow-up analysis showed

similar results, with greater anterior left high-beta/alpha rates among TG participants.

Follow-up frontal high-beta/alpha rates in the right ROI were correlated with lower CWMS

follow-up intrusion errors in only the TG. The present findings are further evidence of the

efficacy of WM training in enhancing the cognitive functioning of older adults and their

frontal oscillatory activity. Overall, these results suggested that WM training also can be a

promising approach toward fostering the so-called functional cortical plasticity in aging.

Keywords: working memory, older adults, resting state, EEG, cognitive resources, transfer effects

INTRODUCTION

Working memory is the ability to retain and simultaneously manipulate information for use in
complex cognitive tasks (Miyake and Shah, 1999), which is considered one of the core basic
mechanisms of cognition (e.g., Gamboz et al., 2009). Not only it is involved in various skills,
including everyday life functioning (Borella et al., 2017a), but it is also among the factors accounting
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for age-related differences across the life span. Indeed, working
memory (WM) has a clear and linear change. i.e., decline,
with aging (e.g., Park et al., 1996, 2002; Borella et al., 2008),
which is accompanied by anatomical and neuromodulatory
changes, as well as alterations in functional brain activity patterns
in older adults (i.e., Reuter-Lorenz, 2000; Raz, 2005; Reuter-
Lorenz and Sylvester, 2005). These findings have encouraged
a growing interest in developing WM training procedures to
slow down or attenuate age changes in the WM performance
of older adults. In particular, WM training is aimed not only
at improving information-processing systems of individuals but
also at inducing changes in how individuals process information,
through more flexible use of their own resources (e.g., Borella
et al., 2019b; Carbone et al., 2019). Therefore, not only is WM
training is theoretically expected to provide benefits in the trained
WM tasks (so-called specific training gains) but also to give
improvements in such a core cognitive mechanism would also
produce general effects in untrained cognitive abilities related
to it (so-called transfer effects) (e.g., Borella et al., 2017b).
According to recent reviews and meta-analyses (i.e., Karbach
and Verhaeghen, 2014; Teixeira-Santos et al., 2019; Hou et al.,
2020), WM training for healthy older adults has been shown
to provide large (Karbach and Verhaeghen, 2014; Teixeira-
Santos et al., 2019) and endurable (Hou et al., 2020) training
gains in tasks similar to those trained. However, less consistent
conclusions have been reported regarding the generalizability
of WM training benefits: improvements to untrained tasks,
i.e., transfer effects, usually are weaker than training gains are
(Karbach and Verhaeghen, 2014), with mixed and less endurable
effects (Teixeira-Santos et al., 2019; Hou et al., 2020), although
some exceptions have been found (e.g., see Borella et al., 2017b,
2019a).

Among the different training procedures adopted with older
adults, to our knowledge, the WM training program proposed
in the study by Borella et al. (2010) is the only one showing
promising results. Their training produced short- and long-term
specific transfer benefits (see Borella et al., 2017b), even extending
to tasks related to everyday life (Carretti et al., 2013; Cantarella
et al., 2017; Borella et al., 2019a). Furthermore, it is one of the
few procedures that other laboratories have adopted (Brum et al.,
2020) and whose results have been replicated. The benefits of
this WM training approach are considered to be due to: (i) the
training timing (every 2 days), which provides sufficient time to
consolidate the skills the participants acquired (see Borella et al.,
2010); (ii) the procedure used, which is adaptive, meaning that
participants are trained at a level of difficulty coming close to the
limits of their own capacity; (iii) the tasks, which are always novel
and challenging, thus engaging different cognitive processes and
sustaining participants’ interest and motivation (Borella et al.,
2010, 2017b).

Despite the interest in WM training, little is known about
how these WM cognitive interventions affect the structure and
functioning of the older adult brain (see Nguyen et al., 2019, for
a review). This is quite surprising given the well-documented
association between the neurobiological and functional brain
changes occurring with increasing age, particularly within the
prefrontal cortex, and performance on cognitive tasks involving

WM or generally the executive functions. Compared with
other neuroimaging approaches, electroencephalography (EEG)
is particularly suited for studying maturational brain changes
because it is a non-invasive technique that can be used to directly
measure the cortical functioning of a human brain (e.g., Anokhin
et al., 1996; Rossini et al., 2007). EEG also provides reliable
measures that are important both for assessing neural correlates
of healthy aging and detecting functional neural changes from
healthy to pathological aging, both at rest and when executing
tasks (see Rossini et al., 2007, for a review). Changes in the
frequency of resting-state brain oscillation, such as a decrease
in posterior alpha power, have been associated, for instance,
with altered cerebral blood flow and cognitive functioning in
older adults with dementia, as compared to those with healthy
aging (Rossini et al., 2007). Furthermore, both cognitive and/or
physical training significantly affect neural oscillations (e.g.,
Styliadis et al., 2015; Klados et al., 2016; Reis et al., 2016), as
well as event-related potentials (ERPs) (e.g., Spironelli et al.,
2013; Zendel et al., 2016) in older adults experiencing both
healthy and pathological aging. In addition, ERP modulations
were reported in healthy elderly individuals after they received
cognitive training, in line with neuroimaging studies showing
reduced cortical activity in healthy elderly subjects after a WM
training session (Brehmer et al., 2012; Heinzel et al., 2014).

Notably, to the best of our knowledge, no studies have
examined resting-state EEG brain oscillation after WM training
in healthy older adults. To fill this gap, we developed a 2
year research protocol to advance our understanding of the
link between the cognitive and neural changes induced by WM
training and, thus, on the mechanisms underlying WM cognitive
training in older adults. Indeed, this latter topic is a critical aspect
that is still missing from the aging literature.

The present study aimed to examine training-specific gains
among healthy older adults immediately after WM training
(short-term effect) and 6months after it (long-term, follow-up, or
maintenance effect). The well-validated WM training procedure
in the study by Borella et al. (2010, 2017b) was conducted with
a sample of healthy older adults. The specific training gains were
assessed using a verbal WM criterion task closely similar to the
one used in the training, which is the Categorization Working
Memory Span task (CWMS; for the computerized version, see
Spironelli et al., 2020). This WM task can also be used to assess
intrusions errors, i.e., memory errors associated with the recall
of non-target words, which represent a measure of inhibitory
control failure (see Borella et al., 2007; Robert et al., 2009).
Therefore, we also examined whether any transfer effect occurred
for this measure.

Together with behavioral CWMS data, we analyzed a
psychophysiological index of oscillatory responses, including the
mean amplitude high-beta/alpha ratio, from 3min resting-state
EEG data (eyes open) collected before and after the WM training
in a group of older adults, i.e., the training group (TG), and
compared the data with those of a group engaged in alternative
activities, i.e., the active control group (ACG), in the same
period, who performed cognitive assessments. With respect to
electrophysiological data, according to the study of Laufs et al.
(2003), alpha activity is reduced attentively by external stimulus
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TABLE 1 | Means (M) and standard deviations (± SD) of the demographic characteristics, cognitive functioning, and mood measures at pre-training for the training group

vs. active control group (ACG) participants.

Training group N = 12 (10 women) Active control group N = 12 (9 women) t(22) tests

M SD M SD

Sociodemographic characteristics

Age (years) 68.83 ±2.85 69.16 ±3.18 −0.26

Education (years) 11.25 ±2.14 11.00 ±2.89 −0.24

Handedness (Oldfield) 99.33% ±2.31% 100.00% ±0.00% 1.00

Cognitive functioning

Mini-Mental State Examination 27.75 ±1.02 28.32 ±1.15 −1.27

Vocabulary 53.92 ±8.24 51.08 ±11.35 0.70

Ability to Solve Problems in Everyday Life 11.95 ±1.49 12.82 ±1.13 −1.59

Mood

Geriatric Depression Scale 1.75 ±1.36 2.08 1.97 −0.48

processing during resting state or when one is performing
intentional mental operations with high cognitive load. In detail,
decreased alpha power is associated with frontal and parietal
activations of cortical structures involved in goal-directed
cognition and behavior. In addition, the beta band characterizes
the spontaneous cognitive activation during conscious rest. In the
study by Oakes et al. (2004), the cerebral activity of participants
at rest was measured simultaneously with PET-FDG and EEG.
Their results revealed a significant correlation between the two
techniques, showing that high-frequency EEG bands, i.e., high-
beta and gamma waves, were positively correlated with higher
regional glucose metabolism. On the contrary, the lower alpha
band (8.5–10Hz) revealed a clear negative correlation with
brain metabolism, thus supporting the traditional interpretation
of alpha rhythm as a physiological index inversely related to
brain activation. The authors interpreted these results as direct
(high-frequency EEG bands) or inverse (lower alpha EEG band)
measures of neural activation in a resting-state condition (Oakes
et al., 2004). For this reason, the high-beta/alpha ratio combines
both the inhibitory component measured by alpha EEG and
the activation component represented by the high beta into one
measure, with the further advantage of statistically normalizing
these measures across participants (the ratio between the two
measures within-subjects). Concerning the localization of the
expected changes induced by WM training, according to a large
literature base involving healthy subjects (e.g., Emch et al., 2019),
the frontal lobes play an important central role in WM, together
with other secondary posterior regions. In addition, patients
with lesions in their prefrontal cortex typically have impaired
WM (e.g., Stuss et al., 1997; Jolly et al., 2020). Therefore, we
expected that when using the described high-beta/alpha EEG
ratio, prefrontal EEG sites would be the main neural hubs
subjected to WM-induced plastic changes.

In line with previous studies (e.g., Borella et al., 2017b), we
expected both short- and long-term specific training gains in
the criterion task at the behavioral level, with TG (but not
ACG) improving their WM performance. We also expected
WM training to produce a transfer effect in the inhibitory
control index, with TG, as compared with ACG, decreasing

the intrusion errors they committed in the CWMS task. At
the electrophysiological level, we expected no between-group
differences in spontaneous EEG oscillatory activity before the
WM training but significantly greater oscillatory responses
in TG rather than ACG participants after the WM training,
particularly in frontal brain sites. Indeed, according to the review
of Constantinidis and Klingberg (2016), WM training increases
prefrontal cortex activity. Whether WM training enhances the
WM performance of older adults and, simultaneously, their
resting-state neural oscillations, it is associated with the support
of plasticity and the coordination of both information transfer
within the brain and other important cognitive functions. Thus,
we hypothesized that WM training actively shapes the power of
spontaneous brain oscillations.

METHODS

Participants
Healthy older adults were recruited by word of mouth and
at social clubs for elderly people, according to the following
inclusion criteria: (i) age between 64 and 75 years; (ii) Italian
as their mother tongue; (iii) right-handed, as ascertained by
the Edinburgh Handedness Inventory (Oldfield, 1971); (iv) a
score of 27 or more in the Mini-Mental State Examination
(MMSE; Folstein et al., 1975), which indicated a good cognitive
functioning and no dementia or cognitive impairment; (v) good
physical and mental health and normal or corrected-to-normal
vision. Among the 24 volunteers for the study, all fulfilled the
inclusion criteria.

Participants were randomized into two groups: the training
group (TG), which attended the WM training, and the active
control group (ACG). Six months after the training, all of the
participants were called back for a follow-up session. All 24
older adults (see Table 1 for their descriptive statistics) elected
to complete the whole neuropsychological and EEG assessment,
including the pre-training, post-training, and follow-up sessions.
None of the 24 participants dropped out during the whole study.

All of the participants performed above the critical cut-off
for their age and education in the Vocabulary test taken from
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FIGURE 1 | Schematic representation of the 2-week training/alternative activity sessions assigned to the training group (TG) and active control group (ACG)

participants, as well as the 6-month follow-up. TG: Trained Group; ACG: Active Control Group; MMSE: Mini Mental State Examination; GDS: Geriatric Depression

Scale; CWMS: Categorisation Working Memory Span Test; APE: Ability to Solve Problems in Everyday Life test.

the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-
IV) (Wechsler, 2008; Italian norms by Orsini and Pezzuti,
2013) and in an objective performance-based measure of
everyday functioning, specifically the Ability to Solve Problems
in Everyday Life test (APE; Italian adaptation of the Everyday
Problems Test; Borella et al., 2017a). Moreover, none of them
reported signs of depression, as assessed with the Geriatric
Depression Scale (GDS; Yesavage et al., 1982-1983).

The present study was approved by the Ethics Committee for
Psychological Research—University of Padova (protocol number
3180). All of the participants gave written informed consent to
participate in the study, which was performed in accordance with
the ethical standards established in the Declaration of Helsinki
(World Medical Association, 2013), and they were paid back for
their travel costs to attend the experiment.

Study Design
The study was conducted using a double-blind design. The
assessment sessions were conducted by two experimenters, who
knew that participants would have been involved in different
activities and sessions, with only one group having attendedWM
cognitive training. They were unaware of the allocation of the
participants into the training or control groups, and they did
not attend any of the sessions. These two experimenters were
previously trained on EEG collection and task administering. The
training and alternative activity sessions for the TG and ACG,
respectively, were run by a third experimenter, who previously
was trained on managing the training protocol and the activities
of the control group.

The participants were told about the aims of the study at the
very end of the data collection (at follow-up). For ethical reasons,
participants who were assigned to the control condition were
offered to undergo the training program.

All participants attended six individual laboratory sessions
(Figure 1). The first and fifth were for the pre- and post-tests, and
the sixth was the 6-month follow-up.

During the three assessment sessions, lasting about 90min
(pre-test) and 60min (post-test and follow-up), respectively,
the participants completed a battery of tasks: the CWMS
-criterion- task (administered during the assessment sessions)
was presented via computer to allow EEG collection. The
Edinburgh Handedness Inventory, Health Interview, MMSE,
Vocabulary, APE, and GDS were all paper-and-pencil tests
administered only at pretesting (Figure 1).

During the other three sessions (2–4), lasting about 30–40min
each and completed within a 2 week time frame with a fixed
2 day break between each session, the TG has given the WM
training, whereas the ACG was occupied in alternative activities
(Figure 1). The duration of the training and alternative activities
as well as the amount of interaction with the experimenter were
much the same for the two groups.

In the practice phase, all of the participants were asked if they
could see and hear the stimuli easily. They perceived the visual
stimuli adequately. The volume of training stimuli was adjusted
according to the preferences of each individual, and a sound
amplifier for PCs was used. Therefore, after the practice phase,
all of the participants were able to see and hear all of the stimuli
administered in each task.

Criterion Task (All Participants)
The computerized version of the CWMS (Spironelli et al., 2020),
as in its original version (De Beni et al., 2008), consisted of 10
sets of word lists, which included 40 lists of five medium- to
high-frequency words (divided into groups containing from two
to six lists of words; two sets for each length). Among the total
number of words in the task (200), 28% were animal words, and
lists could contain zero, one, or two animal nouns, present in any
position, including the last one. The participants were required
to read each word appearing in the center of the computer screen
and to press the spacebar whenever an animal noun appeared
(processing phase). At the end of each set, when a triangle
appeared in the center of the screen, the participants had to recall
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the last word on each list in serial order (maintenance phase), i.e.,
they needed to remember from two to six words, depending on
the length of the set. Two practice trials containing two words to
remember were given before the experimental task started.

The participants have visually presented the words on the
computer screen as follows: black words were displayed in bold
Courier New font (size: 24 points) in the center of the white
screen for 2,000ms, and the interval between each trial within
the same set was 2,000ms. The end of a list was signaled by a
visual triangle (shown for 1,000ms) presented together with a
1,000Hz sound (presented for 200ms). The experimenter wrote
down recalled words on a dedicated form. To ensure that the
participants were not trading off between processing the animal
nouns and remembering the last words in the lists, 85% accuracy
was required on the secondary task, i.e., pressing the spacebar
whenever an animal noun appeared. All of the participants
satisfied this criterion.

The total number of correctly recalled words was used as
the measure of WM performance (maximum score = 20),
which was considered the specific training gain. The words
recalled incorrectly, i.e., recall of non-target words, were also
computed and used as a measure of the inhibitory control of
participants over no longer relevant information in WM, which
was considered a transfer effect.

Two parallel versions of this task, wherein each one including
five sets of word lists (one set for each length), were created
and administered, one at pretest and the other at posttest, in
a counterbalanced fashion across testing sessions. The pretest
version was then presented at the 6-month follow-up.

WM Training for the Training Group
The training task was presented individually in an auditory
manner, adjusted to the hearing level of each participant to limit
the influence of sensory variables on the outcomes. All of the
verbal stimuli were presented by using a sound amplifier during
the training sessions. The task consisted of a modified version of
the CWMS task (see Borella et al., 2010), in which lists of audio-
recorded words were presented and the participants were asked
to recall target words and also to tap on the table with their hand
when they heard the name of an animal.

The maintenance demand of the CWMS training task was
manipulated by using an adaptive procedure in the first training
session, i.e., the difficulty of the task increased based on whether
a participant was successful at a given level, if not, the lowest
level was presented. The demands of the task also varied and,
depending on the session, could involve having to recall words
proceeded by a beep (second training session) or an alternative
recalling of the last or first word in each list (third training
session). The processing demand (tapping on the table when
an animal name was heard) was manipulated by varying the
frequency of these animal words in the lists (second training
session). This type of training procedure combined an adaptive
procedure in the first training session with a standard one (from
the easiest to the hardest trials) and was referred to as a hybrid
procedure, which was considered to promote transfer effects
(Borella et al., 2010).

Activities for the Active Control Group
The participants in the ACG underwent the same number of
individual sessions as the TG did, but they were asked to fill
in the following paper-and-pencil questionnaires. Questionnaires
included the Autobiographical Memory Questionnaire (De Beni
et al., 2008), which entailed remembering common events related
to their childhood, adulthood, and recent events and to rate
their vividness; the Memory Sensitivity Questionnaire (De Beni
et al., 2008), in which participants had to rate the frequency
of behaviors dedicated to saving memories of life events; the
Psychological Well-Being Questionnaire (De Beni et al., 2008),
to rate the personal satisfaction of the participants with their life
(past, present, and future), emotional competencies (ability to
understand the emotions of their own and the others), and coping
strategies regarding everyday problems.

Data Recording and Analysis
The electrophysiological activity was recorded with 38 tin
electrodes mounted on an elastic cap (Electro-Cap International
Inc., Eaton, OH, USA) and positioned according to the
International 10–20 system (Oostenveld and Praamstra, 2001).
All of the cortical sites were referred to Cz during EEG acquisition
and re-referenced off-line to the mean activity of the whole scalp
by the average reference procedure. The data were stored using
the NeuroScan software, version 4.1. The amplitude resolution
was.1 µV, and the bandwidth ranged from DC to 100Hz (6
dB per octave). The sampling rate was set at 500Hz, and the
impedance was kept below 5 K� (further details in Spironelli
et al., 2020). After the data collection, the EEG signals were
corrected for blinking and eye-movement artifacts, according to
the eye movement modeling approach of Ille et al. (2002). All of
the EEG data were divided into 2,048-ms time intervals. Indeed,
given the constraint of the Brain Electrical Source Analysis
(BESA) software to use 2n samples, we needed to force the
width of each interval to 1,024 samples, corresponding to a
2,048-ms interval. Each resting-state EEG recording, i.e., at pre-
training, post-training, and follow-up at 3min each, was divided
into 2,048-ms time intervals. The continuous EEG data were
transformed into the time-frequency domain using a fast Fourier
transform (FFT), every task included 120 samples with.488Hz
FFT resolution. An artifact-rejection procedure was performed
during each interval, with both amplitude and derivative
thresholds (with respect to time) of 250 µV and 100 µV/ms,
respectively. The remaining epochs were also inspected visually
to remove any residual artifacts. On average, 89.93% of the epochs
were accepted, equally distributed among sessions [pre-training:
88.75%, post-training: 90.94%, and follow-up 90.09%; F(2, 44) =
0.55, p = 0.58, η2p = 0.02]. After windowing each interval with
a tapered cosine, the FFT was averaged across the epochs that
were finally free of residual artifacts. In the following step, the
EEG amplitude was normalized within each electrode as the
contribution of each band to the whole 0.488–100Hz spectral
range and expressed as a percentage. Normalization allowed us to
quantify the relative contribution of each EEG band with respect
to total spectral power (% value) in the two main groups (TG vs.
ACG) and to compare the same scalp locations in all samples.
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For statistical purposes, we calculated a new physiological
index as the mean amplitude of high-beta/alpha ratio1. We
decided to consider the ratio between the two EEG bands, rather
than the alpha or high-beta rhythms separately because the high-
beta/alpha ratio combines both the inhibitory component and the
activation component in one measure as measured by alpha EEG
and as represented by the high-beta rhythm, respectively (Oakes
et al., 2004). This had the further advantage of normalizing the
measures statistically across participants, i.e., the ratio between
the two measures by subject.

Electrodes were grouped into four clusters with two spatial
factors, consisting of two levels each, namely anterior-posterior
asymmetry and laterality. Therefore, each quadrant included
the average amplitude of five electrodes, including anterior left
(AL: F9-F7-FT7-F3-FC3), anterior right (AR: F10-F8-FT8-F4-
FC4), posterior left (PL: CP3-P3-P7-TP7-O1), and posterior right
(PR: CP4-P4-P8-TP8-O2).

For the demographic and cognitive tests, separate between-
groups Student’s t-tests were carried out on age, education,
handedness, MMSE, Vocabulary WAIS-IV subscale, APE, GDS,
CWMS accuracy performance, andCWMS intrusion errors at the
pretest to control for any difference at the pretest stage. Gender
distribution was analyzed using the non-parametric χ2 test.

Because of the small sample size, and as commonly done in
cognitive training studies on aging (i.e., Borella et al., 2017a),
Cohen’s d values (1988), expressing the effect size of the
comparisons, were computed within each group to better capture
and assess the extent of the immediate (between the pre- and
post-test sessions) and maintained (between the pre- and follow-
up sessions) training gains. Values were corrected using the
Hedges and Olkin (1985) correction factor to avoid the small
sample bias. For the ANOVA results (see text footnote 2).

For the EEG data, we carried out an omnibus ANOVA
including the between-subjects factor group (two levels, TG vs.
ACG) and three within-subject factors, including session (three
levels, pre-training vs. post-training vs. follow-up), region (two
levels, anterior vs. posterior), and laterality (two levels, left vs.
right hemisphere). Because the number of participants in each
group was small (n = 12), we recognized that this analysis must
be considered preliminary to ascertain whether the session factor
showed a main effect or an interaction. Once this exploratory
analysis revealed an effect of session, separate ANOVAs were
carried out for each session, i.e., pre-training, post-training,
and follow-up, on resting-state beta/alpha index that included
the between-subjects factor group (two levels, TG vs. ACG)
and two within-subject factors: region (two levels, anterior vs.
posterior) and laterality (two levels, left vs. right hemisphere).
Tukey’s honestly significant difference (HSD) test was used to
make post hoc comparisons (p < 0.05). In agreement with the
behavioral data analysis, the Cohen’s d (1988) effect sizes were
also computed within each group.

In addition, Spearman’s correlation analyses were carried out
separately for TG and ACG participants, to ascertain whether

1We calculated the high-beta/alpha index as the ratio between the high-beta (20–

35Hz, effective β range 20.50–35.14Hz) and alpha bands (8–2Hz, effective α range

8.30–11.71Hz).

post-training changes to the high-beta/alpha index at rest were
significantly associated with better post-training performance on
the CWMS task. Positive correlations marked those individuals
with higher post-training scores on the CWMS task and higher
post-training oscillatory responses at rest.

RESULTS

Socio-Demographical and Behavioral Data
As can be seen in Table 1, the two groups did not differ
significantly in age, gender distribution, education level,
handedness, or the general cognitive functioning (MMSE,
vocabulary, APE) and mood state measures.

As for the CWMS (see Table 2 for descriptive statistics), the
groups did not differ at the pretest session in terms of either the
CWMS score, representing the specific training gain, or intrusion
errors, as an index of the efficiency of inhibitory control in the
CWMS, representing a transfer effect [t(22) = 0.38, p = 0.70 and
t(22) = 0.47, p= 0.68, respectively].

Concerning the Cohen’s d effect sizes, considering the specific
training gain, i.e., the CWMS performance2, we found large to
medium effect sizes immediately after the training and at the
follow-up (0.80 and 0.61, respectively) for TG, whereas small
effect sizes emerged for the ACG (0.27 and 0.24, respectively).
Regarding the intrusion errors2, which account for transfer
effects, the medium to nearly large effect sizes immediately after
the training and at the follow-up (0.68 and 0.78, respectively) was
for the TG, whereas small effect sizes emerged for the ACG (0.19
and 0.13, respectively).

Electrophysiological Data
The preliminary omnibus ANOVA including all factors revealed
a main effect of session [F(2, 44) = 5.01, p < 0.05, η2p = 0.19,
Cohen’s d= 0.95], and allowed us to carry out separate ANOVAs
on resting-state high-beta/alpha index for each session, i.e., pre-
training, post-training, and follow-up.

The ANOVA carried out on the pre-training high-beta/alpha
index revealed a significant main effect of region factor [F(1, 22)
= 33.53, p < 0.001, η2p = 0.60, Cohen’s d = 2.47], with
greater anterior than posterior oscillatory activity (Figure 2A).
No significant main effects or interactions were found with
group factor.

2Separate ANOVAs were also carried out on CWMS performance - number of

correctly recalled words- and intrusion errors. The ANOVA for the CWMS showed

a main effect of the Session [F(2, 44) = 6.78, p < 0.05, η2p = 0.24] revealing a

significant improvement from the pre- to the posttest (Mdiff. = 1.67, p = 0.01)

and from the pretest to follow-up (Mdiff. = 1.33, p = 0.03). The main effect of

the Group factor was not significant [F(1, 22) = 1.15, p = 0.3], nor was the Group

x Session interaction [F(2, 44) < 1]. However, the planned comparisons based on

our a priori hypotheses showed that only the TG showed a significant difference

between the pretest and posttest (Mdiff.=−2.25, p= 0.02) and between the pretest

and follow-up (Mdiff. = −1.75, p = 0.04). These findings revealed improvements

in the CWMS score at both posttest and follow-up, which did not differ from each

other. No significant differences were found in the ACG.

Regarding the intrusion errors, the main effects of the Group [F(1, 22) > 1] and

Session factors [F(2, 44) = 1.61, p= 0.21], as well as the Group x Session interaction

[F(2, 44) = 1.89, p = 0.16] were not significant. The planned comparison did not

reveal any significant differences.
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TABLE 2 | Means (M) and standard deviations (±SD) of the criterion task (CWMS) and CWMS intrusion errors by group and assessment session.

Pre-training Post-training 6-month follow-up

TG ACG TG ACG TG ACG

CWMS M SD M SD M SD M SD M SD M SD

Accuracy 12.67 ±2.96 12.08 ±4.27 14.92 ±2.39 13.17 ±3.29 14.42 ±2.53 13.00 ±3.13

Intrusion errors 2.17 ±1.19 1.83 ±2.12 1.42 ±0.90 1.50 ±1.09 1.25 ±1.05 2.08 ±1.50

CWMS, Categorization Working Memory Span test.

FIGURE 2 | The resting-state normalized high-beta/alpha index from the pre-training EEG data revealed only (A) the main effect of the region. ANOVA on the

post-training EEG data showed both (B) the main effect of region and (C) the significant three-way Group × Region × Laterality interaction. The Spearman

correlations between high-beta/alpha indices on both anterior ROIs and CWMS post-training performance (D) were significant for TG participants (red dots and lines)

but not for ACG participants (blue dots and lines). ***p < 0.001, **p < 0.01 Tukey HSD post-hoc comparisons. TG: Trained Group; ACG: Active Control Group; LH:

Left Hemisphere; RH: Right Hemisphere; CWMS: Categorisation Working Memory Span Test.

The ANOVA carried out on the post-training high-
beta/alpha index revealed a significant main effect of region
factor [F(1, 22) = 38.86, p < 0.001, η2p = 0.63, Cohen’s d
= 2.66], same as for the pre-training resting-state session
(Figure 2B). However, the three-way Group × Region ×

Laterality interaction [F(1, 22) = 7.41, p = 0.01, η2p = 0.25,
Cohen’s d = 1.16] showed different patterns of oscillatory
activity in TG vs. ACG participants. Indeed, on both
anterior ROIs (all ps < 0.01), the TG participants had a
higher high-beta/alpha index than the ACG participants
did (Figure 2C). In addition, the TG participants showed
significantly greater left vs. right high-beta/alpha ratio in anterior
ROIs (p < 0.001), with the amplitude of left clusters being
significantly increased in left vs. right sites, whereas the ACG
participants exhibited a bilateral pattern of high-beta/alpha
oscillatory activity.

Spearman’s correlations were computed between the post-
training scores achieved in the CWMS task and the high-
beta/alpha ratio indices obtained at left and right anterior
ROIs (Figure 2D). The ACG showed no significant association
between left and right physiological indices and CWMS post-
training scores (all ps > 0.05), whereas the TG showed a
significant positive correlation between the scores obtained for
the CWMS task and both the anterior left [R(10) = 63, p = 0.02]
and right [R(10) = 0.61, p = 0.03] high-beta/alpha indices. This
indicated that the better the performance on the CWMS task
after the training, the greater the oscillatory responses in the
frontal sites at rest. Regarding the effect sizes of the correlation
coefficients in the anterior left and right ROIs, Cohen’s d was 0.86
and 0.7, respectively.

The ANOVA carried out on the follow-up high-beta/alpha
index revealed a significant main effect of the region factor
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FIGURE 3 | The resting-state normalized high-beta/alpha index from the follow-up EEG data revealed (A) the main effect of region and (B) the three-way Group ×

Region × Laterality interaction (tendency). The Spearman correlations between high-beta/alpha indices on anterior right ROIs and CWMS follow-up intrusions

(C) were significant in TG participants (red dots and lines) but not in ACG participants (blue dots and lines). **p < 0.01 Tukey HSD post-hoc comparisons. TG: Trained

Group; ACG: Active Control Group; LH: Left Hemisphere; RH: Right Hemisphere; CWMS: Categorisation Working Memory Span Test.

[F(1, 22) = 39.21, p < 0.001, η2p = 0.64, Cohen’s d = 2.67], as it
did in the previous session (Figure 3A). Furthermore, the three-
way Group x Region x Laterality interaction was marginally
significant [F(1, 22) = 4.01, p = 0.05, η2p = 0.25, Cohen’s d =

0.85], revealing that, 6 months after the end of the WM training,
the TG participants had higher oscillatory activity than the ACG
participants on anterior left ROIs only (p < 0.01; Figure 3B).

The Spearman’s correlations showed no significant association
between left and right high-beta/alpha ratio indices and CWMS
post-training scores in the ACG (all ps > 0.05), while showing a
negative correlation between the follow-up intrusions of the TG
in the CWMS task and the follow-up high-beta/alpha index on
right anterior ROIs [R(10) = −0.63, p = 0.02). This indicated
that the lower the number of CWMS intrusions 6 months after
the training, the greater the high-beta/alpha oscillatory activity
in frontal right sites at rest (Figure 3C). Cohen’s d was 0.41 in
considering the effect size of the correlation coefficients (TG vs.
ACG) on anterior right ROIs.

DISCUSSION

The present pilot study was aimed at investigating the effects
of WM training on behavioral and spontaneous resting-state
EEG changes in healthy older adults. In particular, we examined
WM-specific training gains and a transfer effect, i.e., the ability

to inhibit information in WM that is no longer relevant, at
both the behavioral and brain levels. Past research has revealed
the efficacy of the WM training procedure used here at the
behavioral level (e.g., Borella et al., 2010, 2017b), but no studies
have been carried out yet considering its effects (and even
the effects of WM training more generally) on spontaneous
cortical functioning. Most of the past research was aimed at
studying the effects of training(s) on neural activity, as collected
by EEG, while participants executed training(s) (e.g., Anguera
et al., 2013). Such data show how various kinds of training
affect brain oscillations but provide limited information on
training effects/benefits beyond the training itself. In other words,
generalization, or discussion of transfer effects, is not usually
seen when EEG data refer to cognitive functioning directly
associated with training. Although resting-state activity might be
more difficult to interpret, it offers some important advantages
when the experimental design is rigorous and different groups
are compared. In further detail, resting-state activity measured
before and after training may better reflect the plastic neural
changes occurring after training and their persistent traces across
time, which is a picture that can be masked during an active task.
To the best of our knowledge, no studies have examined WM
training changes in older adults by analyzing EEG oscillatory
activity at rest. The present study was aimed at filling this gap,
by analyzing a psychophysiological index of cortical activation,
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the mean amplitude high-beta/alpha ratio, in 3-min resting-state
EEG data (eyes open) collected before and after WM training
conducted with a group of older adults (TG) and comparing
the data with an active control group engaged in cognitive
assessments and alternative activities during the same period,
rather than in the training, to ensure the best control sample for
the TG. Finally, 6 months after the end of the WM training, all
of the participants were called back for a follow-up assessment,
which included electrophysiological resting-state recording. At
least to our knowledge, no studies have examined maintenance
effects regarding spontaneous oscillatory activity, and very few
have analyzed such activity at the behavioral level.

Interestingly, in line with WM training studies in aging
(Teixeira-Santos et al., 2019), the specific training gain was found
only in the TG, as shown by the large effect size found for this
group (as compared with the small effect size in the AG) in the
criterion task, in the short term. In addition, a medium effect size
was found for the specific training gains among the TG in the
long term. This is in line with past studies using the same training
regimen and, more in general, the very few WM training studies
analyzingWM training-maintenance effects (i.e., Teixeira-Santos
et al., 2019). As expected, these results confirmed the efficacy
of WM training (and this specific procedure in particular) for
improving the WM performance of elderly people, in both the
short and long term. A transfer effect was also found regarding
intrusion errors—as the index of the efficiency of inhibitory
control—both at the posttest (medium effect size) and in the
long-term (close to a large effect size). Such a transfer effect could
be attributable to training activities that involve several processes,
including the inhibition of no longer relevant information as well
as attention shifting, to handle the different demands required by
training tasks (see Borella et al., 2010, 2013). Notably, the larger
effect sizes found in the long term, i.e., at the 6-month follow-up,
as compared with the short-term ones, can indicate that more
time is need for WM training to foster the ability to resist no
longer relevant information. Indeed, a previous study using this
same training procedure (Borella et al., 2017b) found a similar
pattern of findings for intrusion errors, suggesting that certain
abilities, like inhibitory abilities whose decline is particularly
accentuated, thus not linear, with age take longer to benefit
clearly from training activities. Notably, the ANOVA results did
not show that the Group x Session interaction was significant
for this measure. The divergent results between effect sizes and
ANOVA may be due to the small sample size, which is one of
the limits of the present study and causes the present study to
be considered as a pilot one. However, the effect sizes indicating
the presence of a transfer effect may subtend (a beginning of)
changes that were more clearly found at the neural activity level
but were still not explicit at the behavioral stage. Overall, these
behavioral results both confirm that this WM training procedure
fostered the specific gain and suggest the presence of a transfer
effect on amechanism (i.e., inhibition/attentional control) related
to WM.

Regarding the electrophysiological data, preliminary analysis
revealed the main effect of the session, allowing us to carry
out a fine-grained analysis separately for the pre-training, post-
training and, follow-up sessions. The analysis carried out on

the normalized pre-training high-beta/alpha index revealed a
main effect of region, suggesting that greater oscillatory responses
appeared in frontal cortical sites, with no group differences. On
the one hand, this analysis confirmed that the WM task used
assesses WM and brain regions related to it (Constantinidis
and Klingberg, 2016; Spironelli et al., 2020). On the other
hand, it allows us to demonstrate that the training and the
control group were similar, considering not only the inclusion
criteria we set up a priori but also the baseline level of the
cortical arousal of the participants in a resting-state condition.
For this reason, post-training between-group effects reasonably
could be associated with the assigned experimental condition,
rather than with pre-existing differences. Greater oscillatory
activity in the anterior cortical regions also was found in the
post-training analysis. In addition, after the WM training, TG
participants showed significantly greater oscillatory responses
than ACG participants on both anterior ROIs. This result is in
line with WM training studies showing that, after WM training,
the regions involved in WM performance are the ones that
changed (Constantinidis and Klingberg, 2016; Iordan et al.,
2020). Interestingly, this increased cortical arousal was directly
associated with better CWMS post-training performance: the
higher the number of correct words recalled after the training,
the greater the modulation of oscillatory responses in frontal sites
at rest in only the TG participants. Thus, better management
of WM task requests, probably due to the training activities,
which led to improved WM performance, was related to greater
frontal asymmetrical oscillatory activity in only the TG. This
result supports the compensation hypothesis with aging (i.e.,
Cabeza et al., 2002), according to which aging brains recruit
additional brain regions to “better” face task demands: the older
adults in the TG who recruited more areas to compensate for
losses had better WM performance than the ACG participants
did. This pattern of findings also confirmed the role of
the frontal region as an important locus for compensatory
processes (Reuter-Lorenz and Park, 2014). Simultaneously, TG
participants, but not ACG participants, showed higher oscillatory
responses in left than in right anterior ROIs. This suggests
that only the TG participants showed a shift from a more de-
differentiated activity, i.e., the low specificity of processing, as
shown during the pretest, to a more specific neural activity
during the posttest. Therefore, the WM training could reduce
the need to rely on compensatory neural mechanisms, thereby
stimulating cortical efficiency. This pattern of findings is in
line with other WM training studies involving older adults
using fMRI (e.g., Buschkuehl et al., 2012). Indeed, laterality may
serve as a marker of brain activity efficiency (Luo et al., 2016).
A possible interpretation of our data could be that, because
of the complexity of the WM task, a sort of over-activation
compensated for age-related changes in neural efficiency during
the pretest (i.e., Reuter-Lorenz and Cappell, 2008). The TG had
more efficient behavioral and cortical functioning due to the
training activities, as marked by greater and more specialized
oscillatory activity.

Note that the leftward asymmetry found may also depend
directly on the characteristics of the WM task used for training.
The participants had to listen to a word list and then recall the
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last word of each string in serial order (maintenance phase) and
tap on the table (or press the spacebar) whenever they recognized
a word depicting an animal (processing phase), regardless of
its position in the word list. Therefore, the requests of the
CWMS test represent a challenging and complex condition,
involving an in-depth analysis of words. Because language shows
left hemisphere dominance for about 95% of right-handed
individuals and 70–85% of left-handers (e.g., Knecht et al., 2000;
Perlaki et al., 2013), the training itself probably stimulates the
linguistic network, with the frontal operculum being important
not only in articulation and phonological encoding (Paulesu
et al., 1993; Indefrey and Levelt, 2004) but also in the hierarchical
organization of high-level linguistic processes (e.g., Bookheimer,
2002; Hagoort, 2005). In addition, this area is sensitive to age
changes when verbal material is used and appears to be critical
for left hemisphere functioning because the frontal operculum
is also involved in high-order cognitive functions that decline
with aging, such as thinking, action planning, and goal-directed
behaviors (Koechlin and Jubault, 2006). In any case, these
results confirm that aging is characterized by a certain degree of
plasticity in terms of neural reorganization, as elicited by theWM
training activities, by increasing the range of neural activity of the
WM circuitry (Iordan et al., 2020).

In line with this interpretation, as compared with the ACG
participants, at the 6-month follow-up, the TG participants
showed significantly greater oscillatory activity in frontal left
ROIs only, but no within-group frontal asymmetry appeared.
Therefore, the immediately increased cortical arousal at rest in
frontal sites was still present 6 months after the training ended
but only in the left anterior cluster of electrodes, confirming
the increased oscillatory responses among the TG compared
to the ACG. Thus, it seems that the pattern found at the
posttest for the TG became clearer with time. Interestingly,
considering the association with a behavioral performance at
follow-up, no direct link with CWMS scores was found. However,
a negative correlation with intrusion errors in the CWMS
emerged. Again, the greater the cortical arousal in right frontal
sites, the better the performance at follow-up, as revealed by
the decrease in the number of intrusion errors at the CWMS
test. This result regarding electrophysiological activity levels
might indicate that more general processes could be at work
in the long term, particularly lessened attentional control due
to the more efficient ability to inhibit information that is no
longer relevant from the WM (see Buschkuehl et al., 2012).
It seems that in the long term, the WM task requires less
attentional control and the training results when it comes to
efficient processes, probably by making one’s ability to suppress
no longer relevant information more efficient, which is related to
a clear shift from asymmetrical oscillatory activity to a “specific”
one. This pattern of relationships (and changes at the cortical
level) can also account for both the larger effect sizes and the
asymmetrical EEG activity found, especially in the short term,
for the TG. Thus, it was presumably no longer necessary in
the long term to compensate at the cortical level to improve
WM performance, but rather the spontaneous oscillatory activity
could remain symmetrical because of changes in how one
manages their attentional control resources, as suggested by the

effect sizes found for intrusion errors. Although frontal regions
had similar average levels of oscillatory responses as those in ACG
participants did, the link with long-lasting gains was found for
TG adults only.

Despite these interesting results, our study has some main
limitations. The sample size was quite small, so this study must
be considered as a pilot, and the use of a unique WM task
to assess training gains could be another limitation. We did
not use a hearing screening task, which could be recommended
for auditory cognitive training. However, some precautions
were adopted, such as the use of a sound amplifier, and the
participants were asked if they could easily hear the training
stimuli during the experimental sessions. Furthermore, the
follow-up EEG data approached statistical significance, deserving
careful interpretations, and generalizations. Future studies
should confirm the present results and examine whether the
same brain-activation patterns are found with other WM tasks
and other cognitive tasks assessing transfer effects. Regarding the
modulation in oscillatory activity found, including a group of
young adults would have allowed us to better specify the nature
of the present results with respect to their interpretation. It would
also be of interest to examine training changes at the cortical level
in older adults exhibiting cognitive impairment to better capture
the value of this training procedure in counteracting aging
changes and examine the degree of plasticity that this training
can elicit. Nonetheless, the strengths of the study include its
aim, the double-blind, repeated-measures experimental design,
the presence of a 6-month follow-up session (rarely used in
training studies, even those focusing on the behavioral data
only), and the active control group. Furthermore, as stated at
the beginning of the discussion, analyzing resting-state activity
may offer some important advantages. In the present study,
there were no between-group differences at baseline (during
the pre-training condition), but we found significantly increased
oscillatory activity after this WM training in frontal sites of only
the TG participants. Considering that these two samples of older
adults shared similar sociodemographic characteristics as well as
comparable general cognitive functioning and mood symptoms,
the results support the idea that the cortical-level changes of the
TG could be reasonably attributed to their WM training activity.

In conclusion, the results of the present study provided
further evidence that WM training is a promising procedure
with which to sustain cognitive functioning in older adults,
particularly by improving their WM performance, at least in
the long term and in line with past studies carried out with
the same training procedure (Borella et al., 2017b). In addition,
resting-state EEG analysis showed, for the first time, that the
WM training procedure used in this study increased frontal
oscillatory activity at rest, revealing not only short-term but
also long-term training effects on the cortical arousal of the TG
participants. These results were closely associated with better
WM performance and a decrease in intrusion errors over the
long term. No such effects appeared in the ACG participants.
Overall, these findings suggested that WM training represents a
scaffold with which to counter the changes in older adults both in
their cognitive and brain functioning. The results also indicated
that WM training is a promising approach to foster the so-called
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functional cortical plasticity during aging, due to its ability to
increase spontaneous oscillatory responses, particularly in frontal
(left) brain regions.
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The oldest-old subjects represent the fastest growing segment of society and are
at high risk for dementia with a prevalence of up to 40%. Lifestyle factors, such
as lifelong participation in cognitive and leisure activities, may contribute to individual
cognitive reserve and reduce the risk for cognitive impairments. However, the neural
bases underlying cognitive functioning and cognitive reserve in this age range are still
poorly understood. Here, we investigate spectral and functional connectivity features
obtained from resting-state MEG recordings in a cohort of 35 cognitively normal
(92.2 ± 1.8 years old, 19 women) and 11 cognitively impaired (90.9 ± 1.9 years old,
1 woman) oldest-old participants, in relation to cognitive traits and cognitive reserve.
The latter was approximated with a self-reported scale on lifelong engagement in
cognitively demanding activities. Cognitively impaired oldest-old participants had slower
cortical rhythms in frontal, parietal and default mode network regions compared to the
cognitively normal subjects. These alterations mainly concerned the theta and beta band
and partially explained inter-subject variability of episodic memory scores. Moreover, a
distinct spectral pattern characterized by higher relative power in the alpha band was
specifically associated with higher cognitive reserve while taking into account the effect
of age and education level. Finally, stronger functional connectivity in the alpha and beta
band were weakly associated with better cognitive performances in the whole group of
subjects, although functional connectivity effects were less prominent than the spectral
ones. Our results shed new light on the neural underpinnings of cognitive functioning in
the oldest-old population and indicate that cognitive performance and cognitive reserve
may have distinct spectral electrophysiological substrates.

Keywords: cognition, functional connectivity, cognitive reserve, oldest-old, magnetoencephalography
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INTRODUCTION

The oldest-old population, including individuals aged
85–90 years and older, is the fastest growing segment of
Western societies (Corrada et al., 2010; Legdeur et al., 2018).
The number of oldest-old is estimated to increase fivefold
in the coming decades, resulting in 77 millions of oldest-old
individuals worldwide by 2050 (United Nations, Department
of Economic and Social Affairs, Population Division, 2019).
Many of these individuals will suffer from cognitive impairments
and dementia, with a dementia prevalence of up to 40% in
this age range and major implications for public health and
society (Bullain and Corrada, 2013; Yang et al., 2013). The
identification of dementia’s neuropathological substrate becomes
increasingly challenging with age (Yang et al., 2013). This is due
to an increasing prevalence of Alzheimer’s and cerebrovascular
pathologies (the most common causes of dementia) among
non-demented oldest-old individuals (Wharton et al., 2011;
Paolacci et al., 2017; Legdeur et al., 2019), and to a more
frequent co-occurrence of multiple dementia-related pathologies
(Corrada et al., 2012; James et al., 2012). In parallel, convergent
evidence suggests that different lifestyle factors may contribute
to individual cognitive reserve-defined as the adaptability of
functional brain processes to cope with aging or pathological
processes (Stern, 2009; Stern et al., 2018)- and protect from,
or delay cognitive decline and incidence of clinical dementia
(Verghese et al., 2003; Pettigrew et al., 2019; Soldan et al., 2021)
even in presence of extensive brain pathologies (Xu et al., 2019).
Yet, the neural underpinnings of cognitive functioning and
history of lifelong engagement in cognitive activities in the
oldest-old population are not clear.

Few electrophysiological studies have investigated the
brain functional substrate of cognitive impairments in the
oldest-old population, since data for this age range are scarce
(Yang et al., 2013; Legdeur et al., 2018). Studies that used
electroencephalography (EEG) or magnetoencephalography
(MEG) in older adults aged 65–80 years found that demented
subjects and subjects at risk of developing dementia have
brain functional alterations with slowing of cortical oscillations
(Babiloni et al., 2006; Fernández et al., 2006; van der Hiele et al.,
2007; de Haan et al., 2008), reduced functional connectivity
in the higher frequency bands in posterior, parietal and limbic
brain regions, and stronger functional connectivity between
frontal and posterior areas (Engels et al., 2017; Miraglia et al.,
2017; Maestú et al., 2019; Babiloni et al., 2020a). However,
it is unknown whether comparable spectral and functional
connectivity patterns are observable in cognitively impaired
oldest-old compared to cognitively normal oldest-old, and
how these patterns could relate to protective and cognitive
reserve factors.

Little research has been done on the electrophysiological
substrate of cognitive reserve (Šneidere et al., 2020; Balart-
Sánchez et al., 2021). Results on resting-state data are
controversial with studies reporting involvement of alpha
rhythms (Babiloni et al., 2020b), gamma rhythms (Yang and
Lin, 2020), or no association with cognitive reserve (López
et al., 2014). One study found negative and positive associations

between whole-brain EEG functional connectivity and cognitive
reserve in younger and older healthy adults, respectively,
suggesting possible shifts in the relationship between brain
electrophysiology and cognitive reserve with aging (Fleck et al.,
2017). In light of these considerations, understanding the
possibly age-specific (Gonzalez-Escamilla et al., 2018) neural
underpinning of cognitive impairment and cognitive reserve
in the oldest-old is key to identifying protective factors for
cognitive decline, testing prevention and treatment options,
and monitoring dementia-related pathological evolution in
this age segment.

MEG is a neuroimaging technique that allows quantifying
electrophysiological patterns at the individual subject level
by probing the magnetic fields associated with postsynaptic
potentials by means of sensor arrays that cover the whole
head (Hämäläinen et al., 1993; Stam, 2010; Hari and Puce,
2017; Gross, 2019). Signal contributions from different brain
regions can be estimated from sensor-level data using source-
reconstruction algorithms (Baillet et al., 2001), including
beamforming techniques (Hillebrand et al., 2005), and further
analyzed to elucidate spectral features of neuronal activity and
functional couplings between regions (Hillebrand et al., 2012).
MEG studies have revealed the functional organization of the
brain across different frequency bands into large-scale systems,
including the visual, sensorimotor and default mode networks
(de Pasquale et al., 2010; Brookes et al., 2011; Hipp et al.,
2012), and its disruption in neurodegenerative disorders (Stam,
2014) and dementia (Stam, 2010; Engels et al., 2017; Hughes
et al., 2019) but have not been applied to the oldest-old. The
objective of this study is to elucidate the relation between spectral
and functional connectivity properties of MEG oscillations and
cognitive impairments in a unique cohort of oldest-old subjects
from the EMIF-AD 90 + Study (Legdeur et al., 2018), and to
investigate the relationship between these neural biomarkers and
lifelong engagement in cognitively demanding activity, a possible
protective factor for cognitive decline and proxy for cognitive
reserve (Stern, 2009; Landau et al., 2012).

MATERIALS AND METHODS

Subjects
60 subjects (91.8 ± 2.0 years of age, 37 females) were recruited
at the Amsterdam University Medical Centers (Amsterdam
UMC), The Netherlands, in the framework of the EMIF-AD
(European Medical Information Framework for AD) 90 + Study
(Legdeur et al., 2018), a case-control study with cognitively
normal and impaired individuals to investigate the protective
factors for cognitive impairment in the oldest-old population.
In order to increase the power of our study and in agreement
with others (Bullain and Corrada, 2013), we also included 4
subjects aged between 88 and 90 years. Neurological disorders
(e.g., stroke or epilepsy), severe depression (Geriatric Depression
Scale (GDS) > 11) (Yesavage et al., 1982) and visual or
auditory impairments that made neuropsychological testing
impossible, were exclusion criteria. Moreover, 14 out of 60
subjects were excluded from further analyses because of missing

Frontiers in Aging Neuroscience | www.frontiersin.org 2 November 2021 | Volume 13 | Article 74637369

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-746373 November 24, 2021 Time: 13:20 # 3

Griffa et al. Oldest-Old Brain Oscillations and Cognition

MRI data, low-quality MEG recordings or poor MRI-MEG
co-registration (see below), so that a restricted subset of 46
subjects (91.9 ± 1.9 years of age, 29 females) were included in
the final analyses. This study was approved by the local Medical
Ethics Review Committee of the Amsterdam UMC, and all
subjects provided written informed consent.

Clinical and Cognitive Assessment
Each participant underwent a comprehensive
neuropsychological, functional and clinical assessment.
Neuropsychological and functional testing was administrated by
a neuropsychologist; clinical diagnosis was made by a neurologist,
geriatrician or general practitioner (McKhann et al., 1984;
Petersen, 2004). Subjects were considered cognitively normal
(CN) if they scored 0 points on the Clinical Dementia Rating
(CDR) scale (Morris, 1993) and had no clinical diagnosis of
dementia or mild cognitive impairment (35 CN, 92.2 ± 1.8 years
of age, 19 females). Cognitively Impaired (CI) subjects (11 CI,
90.9 ± 1.9 years of age, 10 females) had a CDR score larger than
0 points (median CDR = 1) and a clinical diagnosis of probable
Alzheimer’s disease (AD, 10 subjects) or amnestic mild cognitive
impairment (aMCI, 1 subject).

The overall cognitive ability of each participant was assessed
with the Mini-Mental State Examination (MMSE) (Folstein et al.,
1983). Executive control was tested with the letter fluency test
(1 min per letter, letters D-A-T) (Tombaugh et al., 1999),
the processing speed with the Trail Making Tests (TMT)-B
score (Reitan, 1958; Broshek and Barth, 2000), and episodic
memory with the total score of the CERAD (Consortium to
Establish a Registry for Alzheimer’s Disease) battery over three
trials (Rossetti et al., 2010). Lifelong engagement in cognitive
activities was assessed with a retrospective self-reported scale
quantifying how often the participant engaged in common
cognitively demanding activities that depend minimally on
socioeconomic status, such as reading books or newspapers,
playing games or writing letters (Wilson et al., 2003; Landau et al.,
2012). Specifically, each participant was asked to rate her/his
engagement in these activities at 6, 12, 18, 40, and current years
of age, according to a 5-level frequency scale (once a year or
never/several times a year/several times a month/several times a
week/several times a day). From the questionnaire responses, two
composite scores were computed: the current cognitive activity
(cCAQ) (average score at current age), and the past cognitive
activity (pCAQ) (average score across ages 6, 12, 18, and 40 years)
(Landau et al., 2012). The lifelong engagement in leisure and
cognitively stimulating activities has been associated with lower
dementia risk (Verghese et al., 2003; León et al., 2014; Wang et al.,
2017), slower hippocampal atrophy (Valenzuela et al., 2008) and
amyloid accumulation (Landau et al., 2012) in aging, and it is
considered a proxy of individual cognitive reserve.

Brain Imaging
Magnetic Resonance Imaging Acquisition and
Processing
Each subject underwent an MRI session on a 3T Philips
Achieva scanner equipped with an 8-channel head coil, which

included a structural three-dimensional (3D) T1-weighted
acquisition (sagittal gradient-echo sequence; isotropic voxel
size 1 × 1 × 1 mm3, TR 7.9 ms, TE 4.5 ms, flip angle
8◦). T1-weighted volumes were skull-stripped, corrected for
intensity inhomogeneity, and segmented into gray matter, white
matter, and cerebrospinal fluid compartments with the Statistical
Parametric Mapping (SPM) toolbox, version 8 (Penny et al.,
2011). The gray matter compartment was then parcellated into
78 cortical regions of interest (ROIs) according to the Automatic
Anatomical Labeling (AAL) atlas and 2 hippocampal regions
(Tzourio-Mazoyer et al., 2002; Gong et al., 2009; Supplementary
Table 1) through spatial normalization of the T1-weighted
volumes to MNI space and application of the inverse MNI-
to-native transform to bring the parcellation volume to native
space [SPM version 8 (Penny et al., 2011)]. The correspondence
between the 80 gray matter regions and the 7 resting state
networks (RSNs) defined by Yeo et al. (2011) was assessed with
a majority-voting procedure in MNI space (MNI-normalized
atlases from the Lead-DBS database (Horn and Kühn, 2015) were
used) using in-house MATLAB code (Supplementary Table 1).

Magnetoencephalography Recording and
Preprocessing
Magnetic fields were recorded with a 306-channel whole-
head MEG system (Elekta Neuromag Oy, Helsinki, Finland)
inside a magnetically shielded room (Vacuumschmelze, Hanau,
Germany), at a sampling frequency of 1,250 Hz. An online anti-
aliasing filter of 410 Hz and a high-pass filter of 0.1 Hz were
applied to sensor-level signals. The MEG protocol consisted of
a 5-min eyes-closed recording in resting-state condition, during
which subjects were instructed to remain awake and cognitively
alert, but they were not assigned any specific task.

Sensor-level time-series were visually inspected to identify
‘bad’ channels (i.e., flat channels and channels affected by
high-frequency noise or jump artifacts), which were excluded
before applying temporal signal-space separation (tSSS)
(min/median/max = 6/11/13 excluded channels per subject).
Next, artifact components originating from outside the head
volume, including both external noise sources and biomagnetic
sources, were removed with the tSSS algorithm implemented in
MaxFilter software (Elekta Neuromag Oy, version 2.2.15) (Taulu
and Simola, 2006; Taulu and Hari, 2009). For the tSSS parameter
setting, an automatic adjustment of the subjects’ sphere center
coordinates (Supplementary Material SI.1 and Supplementary
Figures 1, 2), a subspace correlation limit of 0.9, and a sliding
window of 10 s were used.

The position of the head with respect to the MEG sensors
was assessed by means of five Head Position Indicator (HPI)
coils and monitored during the recording. The outline of each
subject’s scalp (approximatively 500 points) and the HPI coils
were digitized with a 3D digitizer (Fastrak, Polhemus, Colchester,
VT, United States), and registered to the MRI space using a
surface-matching procedure with an approximate accuracy of
4 mm (Whalen et al., 2008). A sphere was then fitted to the outline
of the scalp as obtained from the co-registered MRI, which was
used as a volume conductor model for the beamformer algorithm
(see next section).
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Source Reconstruction
In order to obtain source-localized activity, the sensor-level
preprocessed time-series were projected to 80 locations (sources)
in the cortex corresponding to the centroids of the AAL and
bilateral hippocampal ROIs, using a beamforming approach
(Hillebrand et al., 2012, 2016). Briefly, the sensor-level data were
spatially filtered to estimate the contribution to each source’s
time-series. For each source, the filter weights were determined
from the broad-band (0.5–48 Hz) data covariance matrix and the
forward solution (lead field) of the target source according to a
scalar minimum variance beamformer (Hillebrand and Barnes,
2005; Hillebrand et al., 2005).

From the source-reconstructed time-series, 8 (not necessarily
consecutive) epochs of 13.1 s duration (16,384 samples) were
selected for each subject using an automatic procedure. Epochs
possibly corrupted by artifacts or during which the subjects
may have been drowsy were identified and discarded, based
on the presence of extreme values in the temporal domain
(indicators of artifacts such as eye movement or high frequency
noise), individual peak frequency (IPF) outliers, and low alpha1
occipital power content (indicators of transition to the first stages
of sleep; Hari and Puce, 2017; Supplementary Material SI.2
and Supplementary Figure 3). Out of the remaining epochs,
the 8 epochs with the highest individual alpha peak frequency
and alpha1 occipital power content were selected for each
subject, in order to include an equal amount of data for each
subject while avoiding possible drowsiness biases across subjects
(Supplementary Material SI.2 and Supplementary Figure 3).
A random subsample of the epochs selected by this automatic
procedure was visually inspected to ensure data quality.

Spectral Analysis
For each selected epoch (16,384 samples), the power spectral
densities (PSDs) of the source-level time-series were estimated
using the periodogram method implemented in MATLAB. The
IPF was computed as the frequency at which the average PSD
in the occipital regions peaked (Supplementary Table 1), in the
range 4–13 Hz. The total power (i.e., the integral of the PSD)
in the frequency range 0.5–48 Hz, and the relative band power
(RBP) in the delta (0.5–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz),
alpha2 (10–13 Hz), beta (13–30 Hz) and gamma (30–48 Hz) band
(i.e., the integral of the PSD in each frequency range, normalized
by the total power) were computed for each ROI, epoch, and
subject. Values were then averaged over epochs in order to obtain
single values per ROI per subject.

Functional Connectivity Analysis
Single epoch MEG data were used to build 80 × 80 functional
connectivity matrices for each frequency band of interest. For
each epoch and subject, the source-level time-series were band-
pass filtered into the six bands of interest (delta, theta, alpha1,
alpha2, beta, and gamma) using a two-way least-square finite
impulse response (FIR) filtering as implemented in EEGLAB
(Delorme and Makeig, 2004). Band-pass filtered time-series were
then pair-wised orthogonalized to correct for the effects of spatial
leakage (i.e., removing zero-lag coupling components). This
correction scheme was applied at the single epoch level, and in

both directions (orthogonalization of a signal i with respect to
a signal j, and vice versa). Next, orthogonalized time-series were
Hilbert-transformed and their amplitude envelopes (magnitude
of the analytic signal) were pair-wise correlated using the
Pearson’s correlation coefficient, thus computing the corrected
Amplitude Envelop Correlation (AECc) (Brookes et al., 2012;
Hipp et al., 2012). The AECc is a robust functional connectivity
measure comprised between −1 and 1 that demonstrates high
levels of within- and between-subject consistency and group-
level reproducibility (Colclough et al., 2016; Sareen et al., 2021).
The resulting functional connectivity matrices were then made
symmetric by averaging their upper and lower triangular parts,
averaged over the 8 epochs, and used to compute (i) the average
functional connectivity at the whole-brain level (i.e., the average
over all functional connections between the 80 cortical ROIs),
and (ii) the nodal functional connectivity strength (i.e., the row-
wise sum of the functional connectivity matrices) for each subject.
Group-average functional connectivity matrices for the CI and
CN group are shown in Supplementary Figure 4.

Statistical Analyses
Statistical differences between the CI and CN group were
assessed with ANCOVA analyses within a general linear model
(GLM) formulation. Age and gender were added as covariates
in all the analyses. Considering that functional connectivity
and band power content are positively related (Demuru et al.,
2020), the RBP was added as covariate in supplementary
analyses when comparing functional connectivity values. The
effect size was quantified with the Cohen’s d coefficient (Cohen,
2013) between GLM residual distributions, after correcting for
covariates. When multiple comparisons were performed (e.g.,
when comparing region-wise RBP or functional connectivity
strength), the false discovery rate (FDR) was controlled at
0.05 level with the Benjamini-Hochberg procedure (Meskaldji
et al., 2013). Pair-wise associations between cognitive scores
were assessed with the Spearman’s rank correlation coefficient
(ρ). Multivariate relationships between spectral or functional
connectivity brain features and cognitive scores (including
cognitive reserve indicators) were assessed with partial least
square correlation (PLSC) analyses (Krishnan et al., 2011). PLSC
identifies multivariate correlation patterns through singular value
decomposition of the data covariance matrix. This operation
results in a set of orthogonal and paired brain and cognitive
saliences, each one representing a pattern of brain and cognitive
features with maximum covariance. To interpret the brain
and cognitive saliences, we computed the Pearson’s correlation
coefficient between the original data and their projection onto
the respective saliences, which results in the so-called brain
and cognitive loadings (Kebets et al., 2019). A large positive
(or negative) loading for a particular brain (cognitive) feature
indicates a greater contribution of that feature to the multivariate
correlation pattern. The statistical significance of the multivariate
correlation patterns was assessed with permutation testing (1,000
permutations, correlation patterns with p < 0.05 after FDR
correction were deemed significant). The reliability of brain
and cognitive loadings for the significant correlation patterns
was assessed with bootstrapping (500 random data resamplings)
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and computing standard scores with respect to the bootstrap
distribution (loadings were considered reliable for absolute
standard score > 3) (Krishnan et al., 2011; Zöller et al., 2019). For
the PLSC analyses, missing cognitive scores were imputed using
the 4-nearest-neighbor method.

All the analyses were performed with MATLAB (The
MathWorks, Inc., version R2019b).

RESULTS

Subjects and Cognitive Profiles
We investigated the spectral and functional connectivity profiles
of MEG data recorded in 35 CN and 11 CI oldest-old subjects.
The demographic, clinical and cognitive characteristics of the
two groups, and the related statistical comparisons, are reported
in Table 1. There was a significant difference between the two
groups in terms of age [Student’s t-test, t(44) = 2.03, p = 0.048,
CI < CN, difference of the means = 1.3 years] and gender
[proportionally fewer women in the CI group, Chi-square test,
C2(1, N = 46) = 4.82, p = 0.028], and no significant difference
in years of education or GDS TOTAL score. By definition CI
subjects had significantly lower MMSE total [F(1, 42) = 60.73,
p < 10−9] and CERAD total [F(1, 42) = 19.15, p = 0.000073]
scores, indicating overall cognitive impairment and reduced
episodic memory performances compared to CNs, when taking
into account the effects of age and gender. There were no
differences between CNs and CIs with respect to letter fluency
and TMT-B scores. At the time of this study, CI subjects engaged
less frequently in cognitively demanding activity compared to
CN subjects [cCAQ, F(1, 40) = 5.03, p = 0.030]. CN and
CI oldest-old subjects did not differ in terms of cognitive
reserve (i.e., there was no difference between CNs and CIs with
respect to pCAQ scores). The rank correlations between age,
years of education, cognition, and cognitive reserve scores in
the whole groups of subjects are reported in Figure 1. There
were statistically significant (FDR < 0.05) positive correlations
between education level and pCAQ [(44) = 0.54, p = 0.0010];
verbal fluency and MMSE [(44) = 0.70, p < e−7); verbal
fluency and cCAQ (ρ(44) = 0.45, p = 0.0016]; CERAD total
and MMSE [ρ(44) = 0.40, p = 0.0062]. The pCAQ score was
also positively correlated with the verbal fluency [(44) = 0.36,
p = 0.020], but this association did not survive multiple
comparison correction.

Spectral Features in the Theta and Beta
Bands Are Altered in Cognitively
Impaired Oldest-Old Subjects
Spectral features of the CN and CI MEG were quantified with the
IPF and the relative band power (RBP) in six frequency bands,
both at the whole-brain and regional levels. Before computing
IPF and RBP values, we verified that there was no significant
difference in global power (i.e., average over all the 80 brain
regions; [F(1, 42) = 0.06, p = 0.81] or total power estimated
over the occipital regions only [F(1, 42) = 1.27, p = 0.27,
Supplementary Table 1] between the CN and CI groups.

On average, CI subjects had lower IPF than CN subjects, but
this difference did not reach statistical significance (mean ± std
IPF: CN = 9.1 ± 0.8 Hz, CI = 8.7 ± 0.3 Hz; [F(1, 42) = 2.44,
p = 0.13]. We found significantly higher whole-brain theta RBP
[F(1, 42) = 14.54, p = 0.00044, d = 1.15] and lower beta RBP
[F(1, 42) = 16.82, p = 0.00018, d = –1.23] in CI compared to
CN subjects (Figure 2). Moreover, the individual theta and beta
RBP values were strongly negatively correlated across subjects
[linear correlation coefficient r(44) = –0.79, p < e-10], suggesting
an overall shift of the average MEG spectrum toward the lower
frequencies in CI subjects. This effect is qualitatively illustrated
by the group-average power spectral density curves in Figure 2A.
There was also a significant decrease of whole-brain gamma
RBP in CI compared to CN subjects, but this effect had smaller
effect size than was the case for the theta and beta bands
[F(1, 42) = 4.19, p = 0.047, d = –0.63]. No significant CI-CN
whole-brain RBP differences were found in the delta, alpha1 or
alpha2 frequency band.

Next, we investigated the spectral properties of CN and CI
time-series at the level of the individual cortical regions. We
found spatially diffuse CI-CN RBP alterations in the theta and
beta band with 73 and 77 regions surviving multiple comparison
correction, respectively (FDR < 0.05). In the theta band, RBP
was higher in CI compared to CN subjects in the frontal lobe,
including superior frontal and anterior cingulate cortices, in the
primary and association somatosensory cortices, and, to a lesser
extent, in the parietal and temporal lobes (no region showed
lower theta RBP) (Figure 3A). In the beta band, RBP was lower

TABLE 1 | Demographic and cognitive characteristics.

CN (n = 35) CI (n = 11) p-values

Demographic and clinical indicators

Age, years 92.2 (1.8) 90.9 (1.9) 0.048*

Gender, F/M 19/16 1/10 0.028*

Education, years 12.5 (4.7) 12.4 (4.2) 0.94

GDS TOTAL 1.7 (1.6) 3.0 (2.3) 0.057

Cognition

MMSE, points 28.3 (1.1) 23.2 (3.4) <e-9**

DAT fluency, number 28.2 (7.9) 23.0 (10.9) 0.090

TMT-B, seconds 268 (125) 217 (105) 0.15

CERAD TOTAL, words 16.6 (3.5) 11.4 (3.4) 0.000073**

Cognitive engagement

cCAQ, points 3.2 (0.6) 2.6 (1.0) 0.03*

pCAQ, points 2.5 (0.6) 2.8 (0.6) 0.49

Column 1: demographic, clinical and cognitive indicators. Columns 2 and 3: group-
mean (standard deviation) values for continuous variables for the 35 cognitively
normal (CN) and 11 cognitively impaired (CI) subjects. Column 4: p-values
for statistical comparisons between CN and CI groups (one-way ANOVA for
continuous and interval variables; chi-square test for categorical variables).
*p < 0.05; **p < 0.001. GDS TOTAL score was missing for 1 CI subject; TMT-B
for 8 CN and 5 CI subjects; pCAQ for 1 CN and 1 CI subject; cCAQ for 1 CN
and 1 CI subject. Reported statistics are based on available data. GDS, Geriatric
Depression Scale; MMSE, Mini-Mental State Examination; CERAD, total score of
the Consortium to Establish Registry for Alzheimer’s Disease; DAT, letters D-A-
T fluency test; TMT-B, Trail Making Tests B score; cCAQ, current engagement in
cognitively demanding activities; pCAQ, past engagement in cognitively demanding
activities.
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FIGURE 1 | Relationships between cognitive and cognitive reserve scores.
The matrix entries represent the Spearman’s rank correlation coefficient
between cognitive performances, cognitive reserve, age and education level.
Correlations surviving multiple comparison correction (FDR < 0.05) are
indicated with an asterisk. Edu, education level; MMSE, Mini-Mental State
Examination; CERAD, total score of the Consortium to Establish Registry for
Alzheimer’s Disease; DAT, letters D-A-T fluency test; TMT-B, Trail Making Tests
B score; cCAQ, current engagement in cognitively demanding activities;
pCAQ, past engagement in cognitively demanding activities.

in CI compared to CN subjects in superior parietal regions
(including the postcentral gyrus), posterior cingulate/precuneus,
dorsolateral prefrontal, and anterior cingulate cortices (no region
showed higher beta RBP) (Figure 3A). Globally, these spectral

alterations mainly involved the default mode network and, to a
lesser extent, the limbic, somatomotor, and fronto-parietal resting
state networks, in both the theta and beta band (Figure 3B). The
visual cortex was spared in the theta bands but partially affected
in the beta band.

Functional Connectivity Is Similar
Between Cognitively Normal and
Impaired Subjects
We investigated possible CI-CN group-differences of functional
connectivity values at whole-brain and cortical region level. At
the whole-brain level, the average functional connectivity in
the alpha2 band was decreased in CI compared to CN, with
small effect size [F(1, 42) = 4.28, p = 0.045, d = –0.64; F(1,
42) = 2.36, p = 0.13, d = –0.47 when also covarying for the alpha2
RBP]. There was no CI-CN difference of average functional
connectivity in the other frequency bands. Similarly, no CI-CN
comparison of functional connectivity at the level of single brain
regions survived multiple comparison correction (FDR < 0.05)
in any frequency band.

Magnetoencephalography Brain
Features Relate to Cognition and
Cognitive Reserve in Oldest-Old
Subjects
The cognitive profile of individual subjects was characterized
in terms of overall cognitive ability (MMSE score), executive
control (letter fluency), processing speed (TMT-B score) and
episodic memory (CERAD total score). Moreover, we considered
the lifelong engagement in cognitively demanding activity as
possible protective factors for cognitive impairment and proxy
for subjects’ cognitive reserve. We investigated multivariate
linear relationships between whole-brain spectral or functional

FIGURE 2 | Whole-brain average spectral properties of cognitively normal and impaired oldest-old subjects. (A) Group-average power spectral density curves over
80 cortical regions of interest, for cognitively normal (n = 35, blue curve) and cognitively impaired (n = 11, orange curve) subjects. Solid lines represent the group
means; shaded areas represent ± 1 standard deviation interval. (B) Distributions of whole-brain relative band power (RBP) in the theta and beta band, after
correction for age and gender. ∗∗p < 0.001 for CI-CN comparison.
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FIGURE 3 | Cortical distribution of spectral differences between cognitively normal and impaired subjects. (A) Cortical surface plots of local effect size (Cohen’s d) for
statistically significant (FDR < 0.05) CI-CN comparisons of source relative band power (RBP), in the theta and beta frequency band (ANCOVA analyses including age
and gender covariates). Cortical regions not surviving multiple comparison correction are represented in gray. (B) Percentage effect size contributions in the 7 RSNs,
for the theta and beta RBP. The percentage effect size contribution for each RSN was assessed by normalizing the effect size sum over the regions belonging to
each RSNs by the sum of all regions’ effect size, and considering only the regions significantly different between cognitively normal and impaired subjects. Inset:
schematic representation of the 7 RSNs on the cortical surface. VIS, visual; SM, sensorimotor; DA, dorsal attention; VA, ventral attention; FP, fronto-parietal; DMN,
default mode; LIM, limbic network.

connectivity features, and cognition, cognitive reserve, education
level and age with two PLSC analyses. The analyses were
performed on the whole group of 46 subjects (i.e., considering
both CI and CN subjects) and replicated in the CN group
(we did not repeat the analyses in the CI group given the
small sample size).

Concerning the spectral features, the PLSC analysis extracted
by construction 7 multivariate correlation patterns, one of which
was statistically significant (p = 0.0010; FDR < 0.05). On an
exploratory basis, we also report a second multivariate correlation
pattern with p = 0.68. The brain and cognitive loadings associated
with the two patterns are shown in Figures 4A,B, with loadings
that were reliably different from zero highlighted in yellow. The
first multivariate pattern shows an association between higher
cognitive reserve (larger pCAQ score and education level, while
taking into account the age) and processing speed, and a spectral
signature characterized by less power in the delta and gamma
band and more power in the alpha band (Figure 4A). The second
multivariate pattern mirrors the CI-CN differences reported
above (Figure 2) and suggests an association between poorer
cognitive performances (including lesser current involvement in
cognitively demanding activities, i.e., lower cCAQ) and slowing
down of brain oscillations, particularly involving the beta and
theta band (Figure 4B).

Concerning the functional connectivity features, none of the
multivariate correlation patterns survived multiple comparison
correction. However, we report on an exploratory basis the
correlation pattern with the smallest p-value (p = 0.087),
which suggests a possible relationship between better cognitive
performance and stronger functional connectivity in the alpha
and beta band (Figure 4C). All PLSC results were consistent
when analyses were performed on CN participants only
(Supplementary Figure 5), suggesting that the brain-cognition
associations reflect a continuum over cognitive decline stages and
are not driven by just the cognitively impaired individuals.

DISCUSSION

This study represents the first characterization of neuronal
oscillations’ spectral features and amplitude coupling with respect
to cognition and lifelong engagement in cognitive activity in
oldest-old participants using MEG. Compared to cognitively
normal subjects, those with cognitive impairments showed
extended alterations of relative power in the theta and beta band,
indicating a global slowing of cortical oscillations. The source-
level power alterations heavily involved the frontal lobe in the
theta band and extended to fronto-parietal and visual areas in
the beta band, with an overall predominant involvement of the
default mode network. Spectral and, to a lesser extent, functional
connectivity features related to cognitive traits. In the spectral
domain, two multivariate correlation patterns were discussed,
one mirroring the spectral changes observed in cognitively
impaired participants with lower (higher) power content in the
theta (beta) band associated with better cognitive performances
(trend-level, p = 0.068). The main multivariate correlation
pattern (p = 0.0010) revealed an association between spectral
content in the delta, alpha, and gamma band, and cognitive
reserve approximated with the lifelong (past) engagement
in cognitively demanding activity. Finally, better cognitive
performances were marginally associated with overall stronger
functional connectivity in the alpha and beta band.

Our finding of higher theta and lower beta power in
cognitively impaired oldest-old subjects suggests that the
association between electrophysiological changes and cognitive
impairment is substantially similar in oldest-old participants and
individuals younger than 85 years.

Younger old-adults with prodromal AD, early onset AD
or typical-onset AD show widespread power increases of
electrophysiological signals in lower frequency bands (delta
and theta band) and power decreases in higher frequency
bands (alpha and beta band) compared to normal aging adults,
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FIGURE 4 | Multivariate correlation patterns between electrophysiological and cognitive features. Each panel represents, from left to right: (i) the brain loadings, (ii)
the cognitive loadings, and (iii) the data projection onto the brain and cognitive saliences for the first (A) and second (B) significant multivariate correlation patterns
between spectral and cognitive features, and for the multivariate pattern between functional connectivity and cognitive features (C) from partial least square
correlation (PLSC) analyses. In the loading plots, bars and dots represent the average and dispersion of brain and cognitive loadings over 500 bootstraps; loadings
reliably different from zero are shaded in yellow. P-values for the multivariate correlation patterns are reported below the loading bar plots (* indicates pattern
surviving multiple comparison correction at FDR < 0.05). In the scatter plots on the right, each dot represents brain and cognitive data of a single subject projected
onto the corresponding PLSC saliences, with cognitively normal (CN) and impaired (CI) subjects represented in light blue and orange, respectively. The r-squared
between the brain and cognitive data projection onto the PLSC saliences is reported above each scatter plot and quantifies the amount of cognitive scores’ variance
explained by the spectral or functional connectivity features.

indicating a global slowing of resting-state activity (Dauwels
et al., 2010; Micanovic and Pal, 2014; Engels et al., 2016,
2017; Gouw et al., 2017; Babiloni et al., 2020a). This finding
is highly consistent in literature, and it is here extended to
cognitively impaired oldest-old with probable late-onset AD
or aMCI. It should be noted, however, that the slowing of
cortical oscillations is observed not only in AD, but also in
multiple pre-dementia and dementia forms (notably, dementia

with Levy Bodies) (Dauwan et al., 2016; van der Zande et al.,
2020), as well as in normal aging (Knyazeva et al., 2018). In our
sample, there was a small but significant age difference between
cognitively normal and cognitively impaired subjects, but the
latter were on average younger than the former. It is therefore
unlikely that the slowing down of cortical rhythms observed in
our cognitively impaired sample was due to physiological aging
rather than neurodegenerative processes. In further support
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of this interpretation, lower IPF, larger relative power in the
theta band and lower power in higher frequency bands (beta,
gamma) were weakly associated with worse overall cognitive
performances, memory, executive control, processing speed,
and current engagement in cognitively demanding activity both
in the whole sample and in the cognitively normal group
only, suggesting a relationship between cortical slowing and
cognition that is independent from clinical classification. This
is consistent with previous findings that have linked increased
theta power with decreased cognitive functioning in healthy
older adults (Mitchell et al., 2008; Stomrud et al., 2010; Finnigan
and Robertson, 2011). Moreover, baseline theta power predicts
longitudinal cognitive decline and conversion to dementia in
younger old-adults (Prichep et al., 2006; Gouw et al., 2017;
Rossini et al., 2020). Finally, previous works have associated theta
(but also delta and alpha) power with clinical symptoms and
global cognitive status in AD patients (Engels et al., 2016; Gouw
et al., 2017). In our study, it was not possible to investigate
associations between electrophysiological and cognitive features
specifically in the AD/aMCI group given the small sample size
(only 11 out of 46 subjects were cognitively impaired). Therefore,
it remains to be further investigated in a larger cohort whether
the relationships between spectral features and cognition in this
age range are diagnosis-dependent (Vlahou et al., 2014; Benwell
et al., 2020) or reflect more generic neurodegenerative processes
that lead to cognitive decline.

The cortical distributions of the theta and beta changes in
cognitively impaired oldest-old participants largely overlapped in
the frontal lobe with involvement of the default mode network,
but showed distinct spatial patterns in posterior cortices.

Theta alterations were widespread and mainly involved the
frontal lobe, while beta alterations extended to more posterior
areas, including the visual cortices and showing relatively large
effects in the precuneus and posterior cingulate regions. The
superior parietal cortex was affected in both bands, in agreement
with MEG findings in younger AD patients (Berendse et al.,
2000; Engels et al., 2016, 2017). Globally, the power changes
involved the default mode network, a brain system that includes
medial (medial prefrontal and precuneus/posterior cingulate
cortices), hippocampal and parietal regions (Raichle et al., 2001;
Greicius et al., 2003; Andrews-Hanna et al., 2014; Raichle,
2015). Functional connectivity in the default mode network
predicts cognitive abilities in healthy adults (Van Den Heuvel
et al., 2009) and is strongly implicated in the pathophysiology
of AD (Agosta et al., 2012). In AD and preclinical AD,
default mode regions show early accumulation of amyloid-β
and early neurodegeneration (Palmqvist et al., 2017; Sepulcre
et al., 2017), possibly driven by high baseline activity levels
(Buckner et al., 2009). Default mode regions in AD also show
decreased synchronization of hemodynamic signals (weakened
functional connectivity) as assessed with resting-state functional
magnetic resonance imaging (rfMRI) (Myers et al., 2014; Pasquini
et al., 2017). Interestingly, simultaneous EEG-rfMRI studies in
healthy subjects specifically associate the amplitude of neuronal
oscillations in the theta and beta frequency band to default mode
network hemodynamic activity (Laufs et al., 2003; Scheeringa
et al., 2008; Hlinka et al., 2010). Alterations of default mode

hemodynamic activity and widespread changes of theta and
beta rhythms could therefore be the manifestations of the
same pathophysiological mechanisms, such as activity-dependent
neurodegeneration (Buckner et al., 2009; Griffa and van den
Heuvel, 2018; de Lange et al., 2019). Moreover, computational
models demonstrate that activity-dependent degeneration of
default mode regions can reproduce AD-like changes such as
oscillatory slowing and loss of spectral power (de Haan et al.,
2012). Yet, the subdivision of cortical regions into RSNs that we
used in this work was derived from fMRI data (Yeo et al., 2011). It
is not yet clear whether MEG functional activity shows the same
RSNs (de Pasquale et al., 2010), especially in this age group, which
deserves further investigation.

Previous studies on AD patients also report slower rhythms
in the occipital lobe and visual areas in the alpha band (Engels
et al., 2017; Babiloni et al., 2020a), which was not the case for
our cohort. However, the alpha band was involved in terms
of functional connectivity, with cognitively impaired oldest-
old participants having lower alpha2 amplitude coupling at
the whole-brain network level. This CI-CN difference partially
related to the power content in the two groups, since covarying by
the alpha2 band power decreased the effect size. Nonetheless, the
functional-connectivity group-effect should not be disregarded
because of the power contribution. Signal power is necessary
to get functional connectivity, especially when connectivity is
based on amplitude coupling, and the relationship between
the two dimensions is non-trivial and may reflect underlying
mechanisms (Tewarie et al., 2019). In addition, the PLSC
analysis suggested a relationship between stronger functional
connectivity in the alpha and beta band, and preserved
cognitive performances, particularly in the executive domain.
These results in oldest-old participants are in line with MEG
literature showing decreased functional connectivity in AD
(Berendse et al., 2000; Stam et al., 2002, 2006, 2009; Yu et al.,
2017), but they remain preliminary considering the limited
power of the study in relation to the small effects detected
in the functional connectivity domain. Indeed, it should be
noted that the effect sizes of the CI-CN group-differences
and the linear associations with cognitive traits were more
prominent in the spectral domain, highlighting the relevance
of relatively simple electrophysiological measures in a clinical
setting. Functional connectivity analyses on larger cohorts
may nonetheless contribute to the understanding of neural
mechanisms associated with specific cognitive dysfunctions -such
as impairments in executive functioning- that strongly rely on
network-level integration processes.

Participants underwent an interview reporting how often
they engaged in common cognitively demanding activities that
depend minimally on socioeconomic status (Landau et al.,
2012). Lifestyle factors are considered as a proxy for cognitive
reserve, defined as the adaptability of functional brain processes
to cope with aging, brain insults or pathological processes
(Stern, 2009; Stern et al., 2018). In particular, frequency of
past and present engagement in cognitively demanding activities
has been associated with lower amyloid-β accumulation in
brain tissues (Landau et al., 2012), less hippocampal atrophy
(Valenzuela et al., 2008), and lower dementia incidence

Frontiers in Aging Neuroscience | www.frontiersin.org 9 November 2021 | Volume 13 | Article 74637376

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-746373 November 24, 2021 Time: 13:20 # 10

Griffa et al. Oldest-Old Brain Oscillations and Cognition

(Valenzuela and Sachdev, 2006; Xu et al., 2019) in healthy older
adults. However, in subjects aged 85 years or older, education,
occupational complexity and engagement in cognitive and leisure
activities do not predict cognitive decline nor the risk of 5-
year incident dementia (Lavrencic et al., 2018; Hakiki et al.,
2020), suggesting that cognitive reserve mechanisms may be
age-dependent and become less effective in counterbalancing
neurodegenerative processes (Nelson et al., 2019). In line with
these observations, past engagement in cognitively demanding
activities (pCAQ score) did not differ between cognitively
normal and impaired oldest-old participants in our study,
although higher pCAQ scores were weakly associated with
better executive performances at the whole-group level. As
expected, higher pCAQ (but not cCAQ) scores were also
associated with higher educational level, a component of the
cognitive reserve construct (Nucci et al., 2012). On the contrary,
cognitively impaired participants tended to engage less frequently
in cognitive activities than cognitively normal ones at the time of
the study. The frequency of current engagement in cognitively
demanding activities may therefore better reflect the present
cognitive status rather than cumulate cognitive reserve. Our and
literature findings converge on the hypothesis that education
and sociobehavioral lifestyle habits including lifelong (past)
engagement in cognitively demanding activities may serve as
protective factors for cognitive decline in younger-old, but that
this beneficial effect may be progressively less prominent in
oldest-old subjects who, possibly, face distinct or more severe
pathophysiological mechanisms.

In support of this hypothesis, we found that cognitive
reserve in oldest-old participants was associated with a specific
spectral signature involving delta, alpha and gamma band,
in contrast to the spectral changes associated with cognitive
performances, which mainly involved the theta and beta band.
In particular, higher cognitive reserve (higher pCAQ scores
and education level while accounting for age) related to
lower (higher) cortical oscillation power in the delta (alpha)
band, combined with lower power in the gamma band. This
finding nicely corroborates a recent sensor-level EEG study
that identified higher alpha amplitudes in (amyloid negative)
older adults (mean age 75 years) with subjective cognitive
complaints and higher educational level compared to those
with lower education level (Babiloni et al., 2020b). It is well
known that posterior resting-state alpha is progressively reduced
with aging, which may partially be linked to a deterioration
of the cholinergic system (Wan et al., 2019). Our results
suggest that lifestyle factors may compensate this process, even
at advanced age, resulting in stronger alpha activity at rest.
However, we have also shown that the relationship between
cognitive reserve and spectral features is independent from
memory and executive control performance, which was taken
into account through the multivariate nature of our analyses
and replication of results in the cognitively normal group. Yet,
the spectral signature of cognitive reserve might change as
a function of the pathological substrate underlying cognitive
decline (Babiloni et al., 2021). Considering the small size of the
CI group, it was not possible to perform reliable correlation
analyses within this group. Further research is needed to

elucidate the interplay between the distinct electrophysiological
mechanisms reflecting cognitive reserve, cognitive decline, and
pathological load, particularly in an age segment - the oldest-
old- for which dementia risk and protective factors identified in
younger subjects may not be valid. Taken together, our results
indicate that functional adaptability mechanisms associated with
cognitive reserve (lifelong engagement in cognitive activity)
are present in the oldest-old and expressed in specific
electrophysiological signatures, but that they are less effective in
limiting cognitive decline.

This study has some limitations that should be noted. First,
the sample size is relatively small and absence of statistically
significant findings might relate to limited statistical power.
However, one should consider that the recruitment of oldest-
old subjects in research programs is challenging and few
neuroimaging data are available for oldest-old participants
(Legdeur et al., 2018). Second, in this study measures of
brain pathology, such as biomarkers for amyloid, tau, and
cerebrovascular pathologies, were not taken into account. Third,
the subjects’ cognitive profile was condensed in few cognitive
scores probing executive control, processing speed and episodic
memory, mainly to accommodate the limited statistical power
linked to the small sample size. However, further analyses
are needed to fully explore the relationship between cognitive
dimensions and MEG features. For example, executive control
is a complex construct that is only partially captured by the
phonemic verbal fluency (DAT scores) (Jurado and Rosselli, 2007;
Friedman and Miyake, 2017; Vallesi, 2021). Finally, individual
levels of cognitive reserve were approximated with a self-reported
questionnaire on past engagement in cognitively demanding
activities. Self-reporting may be poorly reliable, particularly
in the oldest-old age range, and additional sociobehavioral
proxies of cognitive reserve could be used in future studies
(Stern et al., 2018).

To conclude, in this work we have shown that cognitive
impairments in oldest-old subjects are associated with a slowing
of theta/beta oscillatory brain activity converging onto the
default mode network. In the same subjects, a distinct spectral
signature involving the delta, alpha and gamma band is associated
with cognitive reserve mechanisms, which, however, may be
ineffective in preserving cognitive performances in this age
range. Future studies should further investigate how these brain
functional changes relate to underlying neuropathological factors
and to functional adaptive mechanisms that are possibly specific
to this age range.
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Background: Mild cognitive impairment (MCI) is highly prevalent in a memory
clinic setting and is heterogeneous regarding its clinical presentation, underlying
pathophysiology, and prognosis. The most prevalent subtypes are single-domain
amnestic MCI (sd-aMCI), considered to be a prodromal phase of Alzheimer’s disease
(AD), and multidomain amnestic MCI (md-aMCI), which is associated with multiple
etiologies. Since synaptic loss and dysfunction are the closest pathoanatomical
correlates of AD-related cognitive impairment, we aimed to characterize it in patients
with sd-aMCI and md-aMCI by means of resting-state electroencephalography (EEG)
global field power (GFP), global field synchronization (GFS), and novel cerebrospinal
fluid (CSF) synaptic biomarkers.

Methods: We included 52 patients with sd-aMCI (66.9 ± 7.3 years, 52% women) and
30 with md-aMCI (63.1 ± 7.1 years, 53% women). All patients underwent a detailed
clinical assessment, resting-state EEG recordings and quantitative analysis (GFP and
GFS in delta, theta, alpha, and beta bands), and analysis of CSF biomarkers of synaptic
dysfunction, neurodegeneration, and AD-related pathology. Cognitive subtyping was
based on a comprehensive neuropsychological examination. The Mini-Mental State
Examination (MMSE) was used as an estimation of global cognitive performance. EEG
and CSF biomarkers were included in a multivariate model together with MMSE and
demographic variables, to investigate differences between sd-aMCI and md-aMCI.
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Results: Patients with sd-aMCI had higher CSF phosphorylated tau, total tau and
neurogranin levels, and lower values in GFS delta and theta. No differences were
observed in GFP. The multivariate model showed that the most important synaptic
measures for group separation were GFS theta, followed by GFS delta, GFP theta, CSF
neurogranin, and GFP beta.

Conclusion: Patients with sd-aMCI when compared with those with md-aMCI have
a neurophysiological and biochemical profile of synaptic damage, neurodegeneration,
and amyloid pathology closer to that described in patients with AD. The most prominent
signature in sd-aMCI was a decreased global synchronization in slow-frequency bands
indicating that functional connectivity in slow frequencies is more specifically related to
early effects of AD-specific molecular pathology.

Keywords: electroencephalography, synaptic dysfunction, amnestic mild cognitive impairment (aMCI),
Alzheimer’s disease, EEG power, global field synchronization (GFS)

INTRODUCTION

Mild cognitive impairment (MCI) is an intermediate stage
between cognitively healthy brain aging and dementia (Winblad
et al., 2004) and is one of the most common diagnoses in memory
clinic (Wahlund et al., 2003). It represents a risk condition for
future development of dementia, with an annual conversion rate
ranging from 5 to 15% (Bruscoli and Lovestone, 2004; Farias
et al., 2009). The risk of progression to dementia is even higher
among patients with MCI from the specialized memory clinics
than community-based populations, emphasizing the need for
improved clinical phenotyping of patients with objectively
evident cognitive impairment (Mitchell and Shiri-Feshki, 2009).
Several diagnostic criteria for MCI have been proposed so far
(Petersen, 2004; Winblad et al., 2004; Albert et al., 2011), all
of which highlight the heterogeneity of this condition in terms
of its clinical and etiological presentation. MCI is typically
classified as amnestic or non-amnestic, depending on whether
there is an objectively evident impairment in the memory
domain (Petersen, 2004, 2016; Winblad et al., 2004). Amnestic
MCI (aMCI) is considered to clinically correspond to the
prodromal stage of typical Alzheimer’s disease (AD) (Dubois
et al., 2014; Petersen, 2016) and has been linked to the AD
biomarker profile including positive markers for amyloid and tau
pathology (Visser et al., 2009; Wolk et al., 2009). MCI can be
additionally classified as a single or multiple domain based on the
number of affected cognitive domains, with the latter including
deficits in memory, language, attention, executive function, and
visuospatial skills (Petersen, 2004; Albert et al., 2011). Objectively
verified impairment in multiple cognitive domains seems to be
related to the faster progression to dementia, including dementia
due to AD, Lewy bodies (DLB), and cerebrovascular disease
(Petersen, 2004; Hughes et al., 2011).

Cognitive subtypes of MCI still exhibit variability in terms
of disease etiology and prognosis, emphasizing the role of
biomarkers in delineating more homogeneous subgroups of
patients with objective cognitive impairment. Recent studies have
shown that markers of synaptic degeneration and dysfunction are
closely related to cognitive impairment (Scheff et al., 2006, 2007;

Headley et al., 2018) and future cognitive deterioration in
patients with MCI (Poil et al., 2013; Kvartsberg et al., 2015a),
supporting their role in characterizing subgroups of patients with
cognitive impairment.

Electroencephalography (EEG) is a neurophysiological
method that can detect real-time changes in the brain synaptic
activity associated with different vigilance states, cognitive
load, and pathological brain disorders. Its clinical use spans
across a spectrum of brain disorders with underlying synaptic
pathology that causes cortical hypo- and hyperexcitability, focal,
or more generalized cerebral dysfunction (Schomer and Lopes
da Silva, 2015). The nature of cortical and subcortical synaptic
degeneration and loss in patients with cognitive impairment
therefore suggest EEG as a candidate neurophysiological marker
of impaired cerebral activity. So far, most of the research studies
have emphasized the advantage of quantitative EEG (qEEG)
that offers objective, comprehensive, and more generalizable
interpretation of EEG analyses (Smailovic and Jelic, 2019).
The quantitative resting-state EEG analysis commonly assesses
the power and synchronization of EEG oscillations across
four conventional frequency bands that are also routinely
described during visual EEG assessments (Schomer and Lopes
da Silva, 2015). The most common qEEG finding in patients
with cognitive impairment includes the increase in power in
slow-frequency bands (i.e., delta and theta) and decrease in
power in fast-frequency bands (i.e., alpha and beta) (Smailovic
and Jelic, 2019). At the same time, the decrease in global EEG
synchronization has also been reported in patients with cognitive
impairment, noted as early as in patients with subjective
cognitive decline (SCD) (Koenig et al., 2005). In the context of
MCI subtypes, different qEEG changes have been reported in
relation to the underlying neurodegenerative or cerebrovascular
pathology (Moretti et al., 2012; Schumacher et al., 2020) and
duration of disease symptoms (Moretti et al., 2010).

Synaptic dysfunction in patients with cognitive impairment
can be further assessed by changes in molecular markers available
from cerebrospinal fluid (CSF) that are thought to reflect
degeneration and loss of pre- or postsynaptic compartments in
the central nervous system. Recent studies support neurogranin,
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a postsynaptic neuron-specific protein, as a CSF marker of
synaptic degeneration in AD (Kvartsberg et al., 2015b; Portelius
et al., 2018). Neurogranin is mainly expressed in the cortical and
hippocampal neurons and has an important role in regulating
synaptic plasticity (Bogdanovic et al., 2002; Zhong et al., 2009;
Zhong and Gerges, 2012). Previous studies have shown that
increased neurogranin levels in the CSF correlate with poor
memory scores and aMCI presentation (Lista et al., 2016; Headley
et al., 2018) as well as progression to AD dementia in patients with
MCI (Kvartsberg et al., 2015a).

Despite the close relationship between synaptic markers and
measures of cognitive impairment, their role in characterizing
heterogeneous clinical presentation of the mild neurocognitive
disorders is yet to be fully elucidated. The main aim
of this study was to investigate whether EEG power and
synchronization and novel CSF synaptic marker neurogranin,
in addition to the conventional CSF markers of amyloid and
tau pathology, differentiate subtypes of aMCI based on the
single- vs. multidomain cognitive profile. We hypothesized
that neurophysiological and molecular markers of synaptic
dysfunction have added value to conventional AD biomarkers in
characterizing aMCI subtypes.

MATERIALS AND METHODS

Study Population
The study included 82 patients from memory clinic recruited
at Karolinska University Hospital and diagnosed with MCI
based on the clinical criteria by Winblad et al. (2004). Our
comprehensive clinical assessment included clinical interviews
with the patient and informant, blood testing, lumbar puncture,
screening for depression, and somatic and neurological
examinations. MCI of the amnestic type has been defined during
a discussion on the consensus diagnostic round and was based
on the clinical observation and summarized neuropsychological
test profile. Patients with an amnestic profile of MCI were further
clinically subtyped into a single domain (sd-aMCI; n = 52) and
multiple-domain amnestic MCI (md-aMCI: n = 30) based on
the standard neuropsychological examination including tests of
language, visuospatial ability, executive functions, and memory
(Table 1; Ekman et al., 2020). Impairment in memory and/or any
other cognitive domain was standardized by z-transformation of
test results, using age- and education-adjusted Swedish norms
and references (Arnáiz and Almkvist, 2003; Wechsler, 2003,
2010). Clinical Dementia Rating (CDR) scale was used to assess
the level of disease severity. The CDR global score was 0 or 0.5
with no major difficulties in performing independent activities
of daily living. Global cognitive performance was estimated
by means of the Mini-Mental State Examination (MMSE)
(Folstein et al., 1975).

All patients underwent lumbar puncture and CSF
conventional (i.e., Aβ42, p-tau, and t-tau) and synaptic
(i.e., neurogranin) biomarker analysis and resting-state EEG
recording at the baseline. The exclusion criteria involved patients
younger than 50 years, presence of any major psychiatric or
neurological disorder, brain trauma, psychotropic medication,

TABLE 1 | Cognitive tests used for subtyping of MCI patients into sd-aMCI and
md-aMCI groups in the current study.

Cognitive domains Neuropsychological tests

Language WAIS-IV: Similarities; BNT; Letter Fluency (F-A-S);
Semantic Fluency (animals)

Visuospatial WAIS-IV: Block Design; RCFT; Copying Geometric
Shapes; Clock Drawing/Reading Test

Executive WAIS-IV: Digit Symbol; Trail-Making Test A&B;
D-KEFS: Trail-Making Test 1–5

Attention/Working memory WAIS-IV: Digit span and Arithmetic; RCFT; WMS-III:
Logical Memory

Semantic/Episodic memory WAIS-IV: Information; RAVLT; RCFT; WMS-III:
Logical Memory

BNT, Boston Naming Test; D-KEFS, Delis-Kaplan Executive System; MCI,
mild cognitive impairment; RCFT, Rey-Osterrieth Complex Figure Test; WAIS-IV,
Wechsler Adult Intelligence Scale 4th edition; WMS-III, Wechsler Memory Scale 3rd
edition; md-aMCI, multidomain amnestic MCI; sd-aMCI, single-domain amnestic
MCI.

and the time gap between the EEG recording and lumbar
puncture longer than 6 months. Demographics and clinical
data in the whole MCI cohort as well as in sd-aMCI and md-
aMCI subgroups are presented in Table 2. We also presented
descriptive data for a selection of neuropsychological tests within
different cognitive domains to illustrate the differences between
the sd-aMCI and md-aMCI groups (Table 3). The study was
approved by the Local Ethical Committee of the Karolinska
Hospital and Regional Ethical Review Board in Stockholm (Dnr:
2020-00678, 2011/1978-31/4).

Cerebrospinal Fluid Sampling and
Analysis
All CSF samples were collected according to the standard lumbar
puncture procedure (Engelborghs et al., 2017). Conventional
markers of AD (i.e., Aβ42, t-tau, and p-tau) were analyzed using
the xMAP technology and INNO-BIA AlzBio3 kit (Innogenetics)
(Olsson et al., 2005). The clinical cutoff value for amyloid
positivity according to the CSF Aβ42 levels was < 550 ng/L.
Neurogranin concentrations in the CSF were analyzed using
the in-house-developed ELISA assay as described previously in
detail by Kvartsberg et al. (2019).

TABLE 2 | Demographics and clinical characteristics in the whole MCI cohort and
sd-aMCI and md-aMCI subgroups.

Variables Whole
cohort
(N = 82)

sd-aMCI
(n = 52)

md-aMCI
(n = 30)

Effect size
(η2)

p-value

Age, years 65.49
(7.42)

66.85
(7.31)

63.13
(7.12)

0.059 0.028

Sex, women (%) 52% 52% 53% 0.001 0.999

Education, years 12.58
(3.94)

12.18
(3.31)

13.27
(4.83)

0.018 0.281

MMSE 27.31
(1.94)

27.65
(1.67)

26.73
(2.24)

0.053 0.040

Data presented as mean and standard deviation except for sex, where percentage
of women is presented. p-values were obtained using t-tests (or ANCOVA when
including age as a covariate) for all the variables except for sex, where the chi-
square test was used. MMSE, Mini-Mental State Examination. sd-aMCI, single-
domain amnestic MCI; md-aMCI, multidomain amnestic MCI.
Significant p-values are written in bold text.
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TABLE 3 | Neuropsychological test results in z-scores for subtyping of MCI
patients into sd-aMCI and md-aMCI groups.

Cognitive domains/
Neuropsychological tests

sd-aMCI
(n = 52)

md-aMCI
(n = 30)

Language

Similarities 0.23 (0.89) −0.28 (0.79)

Visuospatial

W: Block Design 0.24 (1.05) −0.63 (0.80)

RCFT, copy −0.69 (0.97) −1.83 (2.14)

Executive

W: Digit symbol −0.52 (0.89) −1.02 (0.87)

Attention/Working memory

Digit span −0,32 (0.85) −0.94 (0.64)

Episodic memory

RAVLT, total learning −1.37 (0.84) −1.32 (0.96)

RAVLT, delayed recall −1.71 (0.86) −1.87 (0.81)

RCFT, immediate recall −0.88 (1.16) −1.24 (1.03)

Data presented as mean and standard deviation. RAVLT, Rey Auditory Verbal
Learning Test; W, Wechsler Adult Intelligence Scale (WAIS) 3rd and 4th edition.

Electroencephalography Recordings and
Analysis
All MCI patients underwent resting-state EEG recording within
6 months of lumbar puncture and CSF sampling. Resting-state
EEGs were recorded as a standard clinical procedure for 15–
20 min on the nervous system at the Department of Clinical
Neurophysiology at Karolinska University Hospital (NicoletOne
EEG Reader v5.93.0.424, Natus NicoletOne, Pleasanton, CA)
using the standard placement of 21 scalp electrodes according to
the 10/20 system. Trained biomedical engineers were noting any
changes in the vigilance states and alarming patients in the case of
drowsiness during EEG recording. The standard recording setup
was described previously in detail by Smailovic et al. (2018).

All EEGs were exported in the common average reference
montage and preprocessed following the same procedure. All
exceptional events during the resting-state eyes-closed recording,
such as periods of eyes opening, drowsiness, alarming of
the patient, movements, and other non-physiological and
physiological artifacts, were removed by visual inspection and
manual artifact rejection. Ocular artifacts were additionally
removed by using electrooculogram (EOG) and semi-automated
independent component algorithm (ICA). Preprocessed EEGs
were analyzed in frequency-transformed artifact-free 2 s EEG
epochs and averaged within subjects. The qEEG analysis involved
two complementary and comprehensive EEG measures of global
field power (GFP) and global field synchronization (GFS). GFP
reduces and summarizes data across multiple EEG channels to
a single measure of generalized EEG amplitude. Specifically, in
the context of this study, GFP corresponds to the root mean
of spectral amplitudes across all EEG channels (Huang et al.,
2000; Michel, 2009). GFS, in contrast, reflects, for a particular
frequency, the amount of the EEG activity that can be explained
by a common phase across all EEG electrodes (Koenig et al.,
2001). The computation of GFS measure has been introduced
and described in detail in Koenig et al. (2001). GFP and GFS

measures were averaged in predefined conventional frequency
bands defined within the frequencies as follows: delta (1–3.5 Hz),
theta (4–7.5 Hz), alpha (8–11.5 Hz), and beta (12–19.5 Hz). The
beta frequency range was defined between 12 and 20 Hz since
EEG frequencies above 20 Hz may be contaminated with muscle
artifacts (Goncharova et al., 2003; Whitham et al., 2007).

Statistical Analysis
We compared sd-aMCI and md-aMCI groups with t-tests when
the dependent variables were continuous and chi-square tests
when the dependent variables were categorical. We applied the
Mann-Whitney U-test for group differences when continuous
variables were not normally distributed. We also used analysis
of variance (ANCOVA) to compare sd-aMCI and md-aMCI
groups in MMSE scores while controlling for the effect of age
as a covariate. Effect sizes are reported as eta squared (η2) and
interpreted per convention: small = 0.01, medium = 0.06, and
large = 0.14. We further wanted to compare EEG measures
with CSF biomarkers and key clinical measures, such as MMSE,
in their capacity to differentiate sd-aMCI from md-aMCI. For
this analysis, we used MMSE instead of the comprehensive
neuropsychological protocol to avoid circularity, since the MCI
subtype was based on the neuropsychological protocol. Age, sex,
and education were also included to assess their role in the
model. Given the nature of our variables, the multicollinearity
between several of the variables, and the sample size, we chose
to apply a classification random forest model, which is superior
to the general linear model and other statistical methods in
such a scenario (Breiman, 2001; Machado et al., 2018). Random
forest is an ensemble method in machine learning based on
growing of multiple decision trees via bootstrap aggregation
(i.e., bagging). Each tree predicts a classification independently
and votes for the corresponding class. The best model for
each outcome variable is chosen from the majority of votes.
The combination of bootstrap aggregation (Breiman, 1996) with
random feature selection (Amit and Geman, 1997) in a random
forest is important to prevent data overfitting and increase the
prediction power. Our random forest model included 5,000 trees,
providing an accurate estimation of the importance of variables
without introducing too much noise in the model due to the
addition of redundant trees. Each of the trees was trained on
randomly selected 70% of the data and subsequently tested on the
unseen 30% of the data. A total of three variables were randomly
selected and tested at each split, where the number of variables
was defined by the square root of the total number of predictors
in the model. The maximum depth of each tree was determined
by the maximum number of nodes in each tree, ensuring at
least one observation per node (i.e., trees were not truncated
at a given depth). We conducted a random forest classification
model (Liaw and Wiener, 2002), with the MCI subtype (i.e.,
sd-aMCI vs. md-aMCI) treated as the outcome variable, and
age, sex, education, MMSE, CSF amyloid-beta 42, CSF p-tau,
CSF t-tau, CSF neurogranin, and the four GFP and four GFS
qEEG measures included as the predictors. We accounted for
the fact that the outcome variable presented with an unbalanced
number of cases in its two levels (i.e., sd-aMCI n = 52 and md-
aMCI n = 30). When the groups are not balanced in size, the
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probability of taking observations from the larger group is higher,
which could affect the performance of the model. Therefore, we
a priori fixed our model to select random samples of the two
MCI groups that were 50/50 in proportion. We reported the
classification error as a measure of goodness of the model (i.e.,
out-of-the-bag estimated error rate, OOB-EER) (Breiman, 2001).
When outcome variables are dichotomous, as it is our case, the
error by chance is 50%. Therefore, a classification error below
50% is better than chance, with values closest to 0% denoting
better classification performance, hence, good reliability of the
model. We also reported the importance of the predictors as
a measure of their contribution toward differentiating the sd-
aMCI and md-aMCI groups. Higher important values denote
a stronger contribution to the prediction. The random forest
model was further complemented with the Pearson correlation
coefficients (or point biserial correlation in the case of categorical
variables, which were coded as dummy variables), to present the
magnitude and direction of the association between variables
(i.e., bivariate association). All the analyses were performed
using the R1 version 3.2.4 software, with a p-value ≤ 0.05
deemed significant.

RESULTS

Demographics and Clinical
Characteristics
With respect to the demographical characteristics, patients in the
md-aMCI group were significantly younger (63.1 ± 7.1 years)
than patients in the sd-aMCI group (66.9 ± 7.3 years). There
were no statistically significant differences in the distribution of
sex and years of education between the two groups. However,
patients in the md-aMCI group obtained significantly lower
MMSE scores (26.7 ± 2.2) than patients in the sd-aMCI group
(27.7 ± 1.7) (p = 0.040) (Table 2). ANCOVA showed that group
differences in MMSE scores remained significant when including
age as a covariate (p = 0.040). The differences in age and MMSE
were, however, small, with effect sizes (η2) below 0.06. Results
of the neuropsychological test presented in z-scores for patients
with sd-aMCI and md-aMCI are presented in Table 3.

Conventional and Synaptic
Cerebrospinal Fluid Biomarkers
The analysis of conventional AD CSF biomarkers revealed that
patients from the sd-aMCI group had higher CSF t-tau (p = 0.009)
and p-tau levels (p = 0.031) than patients from the md-aMCI
group. Even though the sd-aMCI group exhibited lower CSF
Aβ42 levels and included a higher percentage of patients with
CSF amyloid positive than those in the md-aMCI group, the
difference was not statistically significant in the patient cohort
of this study. In contrast, neurogranin levels were significantly
increased in the CSF of patients with sd-aMCI compared with
those with md-aMCI (p = 0.044) (Table 4).

1www.R-project.org

TABLE 4 | Conventional and synaptic CSF biomarkers in the whole MCI cohort
and sd-aMCI and md-aMCI subgroups.

Variables Whole
cohort
(N = 82)

sd-aMCI
(n = 52)

md-aMCI
(n = 30)

Effect size
(η2)

p-value

CSF amyloid-beta
42 (ng/L)

697
(255.6)

673
(249.7)

738
(264.8)

0.015 0.273

CSF amyloid-beta
42, abnormal (%
positive)

33% 35% 30% 0.002 0.854

CSF t-tau (ng/L) 397 (212.7) 443 (231.9) 317 (145.9) 0.082 0.009

CSF p-tau (ng/L) 66 (25.3) 70 (26.5) 58 (21.4) 0.057 0.031

CSF neurogranin
(ng/L)

204 (75.1) 217 (80.3) 182 (60.2) 0.050 0.044

Data presented as mean and standard deviation except for CSF amyloid-beta
42, abnormal where percentage of a positive biomarker is presented. p-values
were obtained using t-tests for all the variables except for CSF amyloid-beta 42,
abnormal, where the chi-square test was used. The cutoff value for CSF Aβ42
positivity < 550 ng/L. CSF, cerebrospinal fluid. sd-aMCI, single-domain amnestic
MCI; md-aMCI, multidomain amnestic MCI.
Significant p-values are written in bold text.

TABLE 5 | qEEG measures of global field power (GFP) and synchronization (GFS)
in four conventional frequency bands in the whole MCI cohort and sd-aMCI and
md-aMCI subgroups.

Variables Whole
cohort
(N = 82)

sd-aMCI
(n = 52)

md-aMCI
(n = 30)

Effect size
(η2)

p-value

GFP delta 0.102
(0.051)

0.098
(0.048)

0.109
(0.056)

0.010 0.367

GFP theta 0.055
(0.044)

0.054
(0.044)

0.058
(0.046)

0.002 0.717

GFP alpha 0.157
(0.120)

0.164
(0.135)

0.144
(0.090)

0.007 0.468

GFP beta 0.036
(0.029)

0.039
(0.032)

0.030
(0.023)

0.025 0.180

GFS delta 0.550
(0.026)

0.545
(0.022)

0.558
(0.030)

0.059 0.029

GFS theta 0.554
(0.026)

0.549
(0.024)

0.563
(0.027)

0.063 0.023

GFS alpha 0.576
(0.036)

0.575
(0.032)

0.578
(0.043)

0.002 0.719

GFS beta 0.516
(0.022)

0.516
(0.022)

0.518
(0.022)

0.002 0.720

Data presented as mean and standard deviation. p-values were obtained using
t-tests for all the variables.
GFP, global field power; GFS, global field synchronization. sd-aMCI, single-domain
amnestic MCI; md-aMCI, multidomain amnestic MCI.
Significant p-values are written in bold text.

Quantitative Electroencephalography
Parameters in Single-Domain Amnestic
Mild Cognitive Impairment and
Multidomain Amnestic Mild Cognitive
Impairment
The qEEG analysis showed that the sd-aMCI group had a
statistically significant lower GFS delta (p = 0.029) and theta
(0.023) compared with that of the md-aMCI group. There were
no statistically significant differences in the EEG measure of
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FIGURE 1 | Classification model for differentiating sd-aMCI and md-aMCI.
The x-axis displays the importance of the variables in the differentiation
between sd-aMCI and md-aMCI, with higher values (i.e., dots to the right side)
indicating a greater importance. MDA, mean decrease accuracy; GFP, global
field power; GFS, global field synchronization; MMSE, Mini-Mental State
Examination; MCI, mild cognitive impairment; md-aMCI, multidomain
amnestic MCI; sd-aMCI, single domain amnestic MCI.

global power (i.e., GFP) between the two groups, in any of the
conventional frequency bands (Table 5).

Classification Model for Differentiating
Single-Domain Amnestic Mild Cognitive
Impairment and Multidomain Amnestic
Mild Cognitive Impairment
The multivariate model showed a good performance (out-of-the-
bag error = 35.5%). Figure 1 shows that several EEG measures
had an important contribution toward discriminating the sd-
aMCI and md-aMCI groups, including GFS theta and delta
and GFP theta and beta. This contribution was beyond the
differences in age and MMSE between the two MCI groups. Other
measures that were important to differentiate sd-aMCI from
md-aMCI were age, education, CSF p-tau, MMSE, CSF Aβ42,
and neurogranin. Regarding the direction of these measures,
lower GFS theta and delta, lower GFP theta, higher GFP
beta, lower education, older age, higher MMSE scores, higher
CSF p-tau and neurogranin, and lower CSF amyloid-beta 42
were almost always related to sd-aMCI (17.0% of classification
error), while the opposite was not always true for md-aMCI
(65.5% of classification error). Figure 2 shows the correlation
matrix between all predictors and the outcome variable in our
random forest model.

DISCUSSION

This study reports that the qEEG measure of global synchrony
(i.e., GFS) in slow frequencies, in particular in the theta band,
is the strongest discriminator between the two most common
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FIGURE 2 | Correlation matrix between all predictors and outcome variable of
the random forest model. MCI subtype was coded as sd-aMCI = 0 and
md-aMCI = 1. Sex was coded as women = 0 and men = 1. GFP, global field
power; GFS, global field synchronization; MMSE, Mini-Mental State
Examination; CSF, cerebrospinal fluid.

clinical subtypes of aMCI: single-domain (sd-aMCI) and multi-
domain amnestic MCI (md-aMCI). The GFS in theta-frequency
band was significantly lower in the sd-aMCI group than that
of the md-aMCI group, followed by lower GFS in the delta
band. These differences and the capacity of qEEG measures to
discriminate between MCI groups were above and beyond group
differences in MMSE and age. Patients with single-domain aMCI
in this study, in accordance with the literature and the common
clinical experience, had more pathological changes in CSF
biomarkers of amyloid pathology and neurodegeneration (Visser
et al., 2009; Damian et al., 2013). Interestingly, a previous study by
Koenig et al. (2005) on GFS alterations on the clinical continuum
of AD showed that the decrease in the alpha-frequency band
was more pronounced than in other frequency bands, with a
gradient mode of decrease across the severity of the functional
decline. This might not be at odds with our findings in this study
since patients with early AD and dementia show a shift of alpha
power peak toward lower frequencies in the theta range (Samson-
Dollfus et al., 1997; Moretti et al., 2004). It would have been of
interest to subdivide alpha frequencies in slow and fast alpha
bands since they could have different functional significance as
suggested previously (Schomer and Lopes da Silva, 2015).

In the study by Koenig et al. (2005), 2-center large data
sets from cognitively healthy subjects and patients ranging from
subjective and MCI to the most severe stages of AD dementia
were included although not with a balanced number of cases
in different diagnostic categories. Thus, there was a noteworthy
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heterogeneity of the contrast groups phenotyped only by the
clinical assessment and not by additional consideration of disease
biomarkers. Furthermore, the inclusion of a considerable number
of healthy subjects might have introduced a bias toward alpha
frequencies, since the GFS in the alpha band was strongest in the
healthy controls thus increasing contrast toward other groups.

Another EEG study that explored changes in global EEG
synchronization in AD showed a decrease in GFS in beta-
frequency band in patients with AD with more severe disease
stages when compared with those in healthy controls (Ma et al.,
2014). However, only GFS in the slow delta band correlated
significantly with a CDR scale, a measure of clinical disease
severity, which was also found in an earlier study by Park et al.
(2008). Increased synchronization within and between frontal
and parietal areas in the delta band has been further associated
with better visual episodic memory performance (Tóth et al.,
2012), while the overall increase in the EEG delta activity was
observed during the performance of arithmetic tasks (Dimitriadis
et al., 2010). Delta synchronization has been additionally related
to the object maintenance in short-term memory in experiments
involving primates (Siegel et al., 2009). These findings highlight
the functional importance of slow-frequency synchronization for
maintaining healthy cognitive performance.

Our findings are further supported by a plausible conceptual
background. Amnestic syndrome in AD is driven by
hippocampal dysfunction (Dubois et al., 2014), and it was
shown that the source of theta activity originates in the
hippocampus and entorhinal cortex (Schomer and Lopes da
Silva, 2015). It is plausible that cortico-cortical disconnection in
the limbic system is an early event in the pathophysiology of the
amnestic syndrome. Although intraoperative recordings, as well
as magnetoencephalography (MEG) studies, have confirmed the
existence of hippocampal theta activity in human subjects (de
Araújo et al., 2002; Jacobs and Kahana, 2010), it is still speculative
to conclude that theta activity in our patient population has an
exclusive hippocampal origin without in-parallel application
of source imaging. Studies performed in rodents have shown
that theta oscillations seem to coordinate the activity of
widespread neural networks, such as prefrontal, somatosensory,
and entorhinal cortices (Chrobak and Buzsáki, 1998; Siapas
et al., 2005; Sirota et al., 2008). Thus, alterations in the scalp-
recorded theta activity are possibly a result of a more complex
neuronal network dysfunction. Additionally, both theta and delta
activities were shown to reflect EEG slowing due to cholinergic
deafferentation of the cortex that is a major neurotransmitter
failure in AD and occurs already at the MCI stage of the disease
(Spehlmann and Norcross, 1982; Whitehouse et al., 1982;
Riekkinen et al., 1990; Lee et al., 1994; Haense et al., 2012).

Interestingly, some neuropsychiatric diseases that could also
cause memory impairment in a cluster of other clinical features
have shown similar alteration in the GFS. For example, in
obsessive-compulsive disorder, a decreased GFS in delta, theta,
and the slow alpha band was reported (Özçoban et al., 2018).
Decreased GFS in theta-frequency band was also reported in first-
episode, neuroleptic-naïve patients with schizophrenia (Koenig
et al., 2001). In healthy subjects, a simple working memory
activation paradigm increases the activity in the theta band
(Gevins et al., 1997). Decreased functional synchrony in the theta

band in resting-state EEG of cognitively impaired subjects might
therefore reflect disease-induced desynchronization of neuronal
networks that are necessary for successful performance of the
working memory task. In addition, a number of other studies
showed that scalp-recorded theta power and synchronization
in humans correlated with cognitive processing involved in
encoding and retrieving verbal stimuli (Kahana, 2006).

In contrast, neither of the spectral power-related EEG
measures played any significant role in discriminating the two
amnestic subtypes of MCI. In previous publications, a temporal
pattern of changes in EEG power spectra has been repeatedly
confirmed on a continuum of AD, including MCI. The temporal
dynamics of EEG power alterations during the course of the
disease include an early increase in theta and decrease in beta
power, followed by a decrease in alpha and an increase in
delta power (Coben et al., 1985; Dierks et al., 1991; Prichep
et al., 1994). Interestingly, the recent MEG study by López et al.
(2014) showed an increase in delta and theta and a decrease
in alpha and beta power in patients with md-aMCI compared
with those with sd-aMCI; however, it involved relative power
measures on topographical clusters of sensors, thus presenting
with some key methodological differences. In addition, Moretti
et al. (2009) showed a correlation between the increase of
the relative theta/gamma power ratio and performance on
memory tests in subjects with MCI. Another study that assessed
changes in topographical resting-state EEG sources between
different MCI subtypes showed increased occipital theta and
decreased centro-parieto-occipital alpha activity in amnestic
compared with non-amnestic MCI. The same study observed
a positive correlation between central-parietal alpha and a
negative correlation between frontal delta sources and scores
on cognitive tests assessing attention, episodic memory, and
executive functions (Babiloni et al., 2010).

However, it may not be surprising that global spectral
power parameters do not play a role in discriminating the two
clinical entities with amnestic profiles and similar low grades of
functional impairment since our study did not include cognitively
healthy individuals or patients with more severe stages of AD
as contrast groups. Rather, our study included patients with
MCI at an intermediate cognitive level of impairment, with
minimal differences in global cognition (MMSE) between MCI
groups, despite showing different cognitive profiles (i.e., single-
vs. multiple-domain impairments). This is supported by the
low importance of MMSE to discriminate the two MCI groups
in our multivariate analysis. In addition, inclusion of the local
relative EEG power measures instead of the global parameters
that summarize the amplitude/power across all EEG channels
may be more sensitive to the fine EEG power changes between
MCI subtypes as indicated by some of the previous studies
(Moretti et al., 2009; López et al., 2014). Thus, in contrast to GFS
that seems to be a trait marker of AD-related early functional
disconnection of neuronal networks, differential alterations in
global EEG power frequency spectra seem to be a state marker
of disease progression.

It is interesting that a novel CSF molecular marker of synaptic
pathology, i.e., neurogranin, did not considerately contribute
to discriminating the two MCI groups in our multivariate
model. This implies that changes in neurophysiological
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markers of synaptic dysfunction in sd-aMCI, a group that
represents prodromal AD, may precede changes in markers of
molecular synaptic pathology. Another explanation could be that
neurogranin is associated with conditions with memory-related
deficits irrespective of AD pathology as was suggested in a study
that found that this synaptic marker is also sensitive to age-
related cognitive performance on memory tests in neurologically
healthy older adults (Casaletto et al., 2017). However, this was
contradicted by studies suggesting that the CSF neurogranin is
specific to AD-type synaptic dysfunction (Wellington et al., 2016;
Portelius et al., 2018).

It is interesting that the biological profile of clinically defined
sd-aMCI in this study is closer to the biological profile of AD in
contrast to the empirically data-driven classification of sd-aMCI
recently published by Edmonds et al. (2021). This discrepancy
emphasizes a need for validation of different diagnostic criteria
in diverse clinical populations. It is of utmost importance to
characterize this prodromal AD stage as early and as accurately
as possible to convey the risk and likelihood of developing AD
dementia to patients (Frederiksen et al., 2021).

A limitation of our multivariate model is the small groups
size, especially for the patients with md-aMCI (n = 30) when the
cohort is split in 70% for training and 30% for testing of model
performance. However, the multivariate model in this study
was designed as an extension of the univariate tests for group
differences, to investigate EEG measures and CSF biomarkers
in the context of age, sex, education, and MMSE measures.
Both set of analyses converged in the findings, validating the
results from the multivariate model despite the small group
size for the test set. Another limitation is that the non-memory
cognitive domains affected in the md-aMCI group may vary from
patient to patient. Hence, our current results could be expanded
in future studies with a larger md-aMCI group, by analyzing
associations of different non-memory cognitive domains with
qEEG and CSF biomarkers. Importantly, the inclusion of the
control group in such comparisons may extend the panel of
relevant qEEG and CSF biomarkers for contrasting different
cognitive subtypes and considerably add to the interpretation
of the results when it comes to the expected direction of
change from the cognitively healthy state. Furthermore, the
analysis of GFS measure over full EEG frequency spectra
instead of averaging across standard frequency bands, or a
local topographical parcellation of synchronization patterns,
may provide more detailed and physiologically meaningful
results in this patient group. Addition of the analysis in
the gamma-frequency range while addressing high-frequency
artifact contamination would be of further interest since
gamma oscillations have been associated with different cognitive
processes and were shown to be impaired in AD (Herrmann and
Demiralp, 2005; van Deursen et al., 2008; Zheng et al., 2016;
Etter et al., 2019).

In conclusion, our study suggests that measures of global
EEG synchronization could contribute to the characterization of
synaptic dysfunction in different MCI cognitive subtypes. Future
studies are required to address and further explore some of the
limitations of this study by including other clinical and etiological
subtypes of MCI as well as cognitively healthy subjects.
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Background: Basal forebrain cholinergic neurons are dependent on nerve growth factor
(NGF) for growth and survival and these cells are among the first to degenerate in
Alzheimer’s disease (AD). Targeted delivery of NGF has been suggested as a potential
therapy for AD. This hypothesis was tested in a clinical trial with encapsulated cell
biodelivery of NGF (NGF-ECB) in AD patients. Three of six patients showed improved
biomarkers for cognition by the end of the study. Here, we report on the effects of
targeted delivery of NGF on human resting EEG.

Materials and methods: NGF-ECB implants were implanted bilaterally in the basal
forebrain of six AD patients for 12 months. EEG recordings and quantitative analysis
were performed at baseline, 3 and 12 months of NGF delivery, and analyzed for
correlation with changes in Mini-mental state examination (MMSE) and levels of the
cholinergic marker choline acetyltransferase (ChAT) in cerebrospinal fluid (CSF).

Results: We found significant correlations between the topographic variance of EEG
spectral power at the three study points (baseline, 3 and 12 months) and changes in
MMSE and CSF ChAT. This possible effect of NGF was identified in a narrow window
of alpha frequency 10–11.5 Hz, where a stabilization in MMSE score during treatment
was related to an increase in EEG alpha power. A similar relation was observed between
the alpha power and ChAT. More theta power at 6.5 Hz was on the contrary associated
with a decrease in CSF ChAT during the trial period.
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Conclusion: In this exploratory study, there was a positive correlative pattern between
physiological high-frequency alpha activity and stabilization in MMSE and increase
in CSF ChAT in AD patients receiving targeted delivery of NGF to the cholinergic
basal forebrain.

Keywords: EEG, EEG alpha activity, Alzheimer’s disease, nerve growth factor, encapsulated cell biodelivery,
choline acetyltransferase

INTRODUCTION

Resting-state quantitative EEG (qEEG) is a good candidate
marker for intervention clinical trials in Alzheimer’s disease
(AD) since it has shown good discriminatory power between
AD patients and healthy aging in several studies (Brenner
et al., 1988; Lehmann et al., 2007; Jelic and Kowalski, 2009;
Babiloni et al., 2021). These studies report on an increase in
the slow frequency activities including early changes in theta
range and the later stage of the disease alterations in the
delta range, in parallel with a decrease in the faster alpha and
beta frequencies.

Already at the very beginning of acetylcholine esterase
inhibitor (ChEI) treatment for AD, it was reported that chronic
treatment with cholinergic drugs induces a specific pattern of
electrical brain activity corresponding to both the treatment
response and early decline in treatment efficacy (Jelic et al., 1998).

It has been shown repeatedly that the ChEI treatment
increases the physiological alpha rhythm oscillations in
EEG, particularly in the posterior regions (Jelic et al.,
1998; Moretti, 2014). Furthermore, these positive effects
on the resting EEG spectral alpha power induced by
ChEIs, correlated well with improved cognitive function
as measured by significant changes in Mini-mental state
examination (MMSE) scores (Moretti, 2014). Recently an
EEG-based acetylcholine (ACh) index has been developed
using data from a scopolamine challenge study showing a
reduced ACh index even in prodromal AD (Johannsson
et al., 2015). Interestingly, even cholinergic stimulation of
healthy subjects with the ChEI galantamine showed an effect
on the alpha power and working memory performance
(Eckart et al., 2016).

The symptomatic cholinergic treatment approach to
AD is based on findings that Nucleus Basalis of Meynert
(NBM) is a major source of cholinergic projections to
the cortex (Mesulam and Geula, 1988) and reductions
in levels of the cholinergic markers acetylcholinesterase
(AChE) and choline acetyltransferase (ChAT) reflects the
loss of cholinergic innervation that have been reported
in the AD brain (Giacobini, 2003). Traditionally, ChAT
activity is used as a marker of cholinergic neuronal
loss in lesion studies (Wenk et al., 1994; Rossner et al.,
1995). It has been shown that NBM lesions in animal
models decrease cortical ChAT activity and modulate
event-related oscillations in EEG by increasing power
in low and decreasing power in high frequencies
(Sanchez-Alavez et al., 2014).

Nerve growth factor (NGF) has emerged as a potential
therapeutic agent in Alzheimer’s disease (AD) due to its
regenerative effects on basal forebrain cholinergic neurons
(Williams et al., 2006; Mufson et al., 2008). Exogenous
NGF delivered to the cholinergic basal forebrain has shown
regenerative effects correlating with improved cognition in
animal models of AD (Hefti and Mash, 1989; Olson et al., 1992).
Since NGF does not cross the blood-brain barrier, administration
to the brain provides a challenge.

Nerve growth factor administration to the brain has
previously been tested in clinical studies of AD patients.
A first trial was performed in three AD patients where NGF
was delivered by intracerebroventricular infusion (Eriksdotter
Jönhagen et al., 1998). The results indicated an up-regulation
of nicotinic receptors and glucose metabolism on positron
emission tomography (PET), as well as a normalization of
the electroencephalography (EEG) pattern. However, adverse
effects of NGF (neuropathic pain being the most prominent),
made this route of administration unacceptable for routine
treatment. In a clinical trial using genetically modified fibroblasts
secreting NGF injected into the basal forebrain in AD patients,
Tuszynski et al. (2005) demonstrated the feasibility of an
ex vivo gene therapy approach with results indicating a
slowing of disease progression. Our group has shown that
targeted delivery of NGF through encapsulated cell biodelivery
(NGF-ECB) into the basal forebrain is safe and well-tolerated
(Eriksdotter-Jönhagen et al., 2012; Wahlberg et al., 2012).
Three of the six patients responded to the NGF-delivery
with a decrease in brain atrophy (Ferreira et al., 2015),
and an increase in cholinergic markers in cerebrospinal
fluid (CSF), correlating with improved cognition and brain
glucose metabolism (Karami et al., 2015). Importantly, the
activity of the acetylcholine synthesizing enzyme, ChAT in CSF
showed a significant increase in patients with stable cognition
during the 12-month NGF delivery (responders), compared
to those patients who declined cognitively (non-responders)
(Koenig et al., 2011).

The present report aimed to explore the potential effects
of NGF-ECB administration on qEEG parameters during
a 12-month exploratory study in a small, but unique
sample of AD patients that have undergone this advanced
experimental treatment. Our findings corroborate the
previously reported changes in the rate of brain atrophy
(Ferreira et al., 2015) and cholinergic markers in CSF
(Karami et al., 2015) and further investigate changes in
the functional measure of synaptic brain activity such as
EEG. Moreover, we wanted to investigate whether qEEG
changes were related to the global measures of cognitive
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stabilization and the levels of cholinergic markers in the
CSF by using an advanced statistical method to analyze
multichannel EEG data.

SUBJECTS AND METHODS

Participants, Clinical Assessments,
Procedures, and Ethics
The details of the NGF-ECB study as well as patient demographic
and clinical data have been previously reported (Eriksdotter-
Jönhagen et al., 2012; Wahlberg et al., 2012). In brief, six patients
with mild to moderate AD, the median age of 62 years (range
55–73), and a median MMSE score of 23 (range 19–24) were
enrolled and completed the study. They were all on stable ChEI
treatment at baseline (median of 12 months, range 8–26 months)
and throughout the study.

Before enrollment, the patients underwent a
comprehensive medical evaluation, including medical
history, somatic assessment and cognitive screening
with MMSE (Folstein et al., 1975), lumbar puncture
for CSF analyses, computerized tomography (CT) or
magnetic resonance imaging (MRI), psychometric testing
of cognition, EEG and routine blood sampling. All
mentioned procedures were repeated within 1 week at 3
and 12 months follow-up. AD diagnosis was confirmed
histopathologically on a cortical biopsy from surgical
implantation (Vijayaraghavan et al., 2013).

The NGF-ECB implant is a catheter-like device containing
a human retinal epithelial cell line, genetically modified to
secrete NGF. All six patients received bilateral single implants
in the Ch4 region in the basal forebrain and the last three
patients also received additional bilateral implants in the
Ch2 region as previously described (Rosengren et al., 1996;
Vijayaraghavan et al., 2013). None of the patients suffered
complications related to the neurosurgery or the device, and
the post-operative courses were mainly uneventful (Rosengren
et al., 1996; Vijayaraghavan et al., 2013). All patients completed
the study, including the removal of all implants after the 12-
month study period.

The patients were monitored primarily for safety and
tolerability. Secondary outcome measures included effects on
cognition, imaging, and quantitative EEG (qEEG) parameters,
the latter being an additional exploratory outcome.

The study was conducted according to the Helsinki
Declaration and was approved by the Swedish Medical Products
Agency. Ethical approval was obtained from the Regional Human
Ethics Committee of Stockholm. Both patients and caregivers
gave written informed consent before study entry.

EEG Recordings
All spontaneous EEGs were recorded in a resting awake condition
during the morning between 8 and 12 p.m. using the Nervus
digital recording system (Natus Medical/NicoletOne). Electrodes
were placed according to the standard 10/20 system, the
reference electrode was placed in the midline between Fz and
Cz, and the ground electrode between Cz and Pz. Horizontal

and vertical eye movements and blinking were monitored
by an EOG channel. Electrode impedance was below 5 k�.
Initial filter settings were: low pass online filter 70 Hz to
de-noise various types of interferences during the recording
and sampling rate 256 Hz. The patients were seated in a
slightly reclined chair in a sound-attenuated, normally lit room
and after completion of the EEG set-up were instructed to
remain relaxed, yet alert and awake during recording. Trained
biomedical engineers were continuously monitoring the level of
consciousness and used acoustic stimulation (noise or calling
a patient’s name) to keep the patients awake during the
recording. Duration of resting-state eyes-closed EEG recording
was 15 min with intermittent 5 s eyes open intervals during
the first 10 min of recording, followed by 5 min eyes
closed recording.

Quantitative EEG Analysis
EEGs were exported in an average reference mode into
an EDF-file format and computerized EEG analysis was
performed offline using the commercially available software,
Brain Vision Analyzer, version 2.1 (Brain Products GmbH,
Gilching, Germany). Non-physiological and physiological
artifacts due to eye movements, contamination with muscle
activity, and episodes with drowsiness were removed after
visual inspection of the recording, and only segments with the
awake eyes-closed state during the recording were included in
the analyses. Ocular artifacts were additionally removed from
all channels by using EOG and additionally semi-automated
independent component (ICA) algorithm. Drowsiness during
EEG recording was defined by transients of slow rolling eye
movements (SREM) and concomitant attenuation of posterior
alpha rhythm or occurrence of frontocentral theta activity.
The preprocessed EEG data were segmented in 2-s epochs,
frequency transformed at all electrodes using Fast Fourier
Transform (FFT) algorithm with a Hanning window which is
an in-built solution in the Brain Vision Analyzer software used
to smooth out the endpoints of the data before applying FFT
and thus reduce spectral leakage. All frequency transformed
epochs were thereafter averaged to yield one amplitude/power
spectrum per patient.

Cerebrospinal Fluid Biomarkers
Cerebrospinal fluid samples were collected by lumbar
puncture before implantation (at baseline), 3 and 12 months
after implantation. The samples were aliquoted and
kept in polypropylene tubes at −80◦C until analyzed.
CSF ChAT activity was measured by a colorimetric
assay as previously described (Vijayaraghavan et al.,
2013). CSF levels of neurofilament light chain protein
(NFL) were analyzed using a previously described
enzyme-linked immunosorbent assay (ELISA) method
(Rosengren et al., 1996).

Statistical Analyses
The analysis of treatment effects on the frequency domain
EEG scalp distribution was based on topographical analyses of
covariance (TANCOVAs) (Koenig et al., 2008), testing whether
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a statistically significant amount of topographic variance can
be accounted for by the linear contribution of an individual
external predictor that may vary by condition, and there the
significance of such accounts is assessed globally across all
electrodes using a randomization test. For the testing of EEG
associations with an external predictor that interacts with some
condition, first, electrode-wise regression maps with the external
regressor are computed. The difference of these regression
maps is then globally quantified by first subtracting, from all
regression maps the mean regression map, and then computing
the overall mean square of the residual. To estimate the
distribution of this RMS measure under the null hypothesis, the
procedure is then also applied to data where the condition and
subject labels have been randomly permutated. The statistical
significance is given by the percent rank of the original
measure in comparison to the estimated distribution under
the null hypothesis. TANCOVAs have the advantage that they
do not require any a priori hypothesis about a particular
spatial distribution of some effect, which limits type I errors,
but need, for a given frequency, only one test for the entire
set of electrodes, which strongly reduces type II errors. This
is particularly useful in the current context, where a larger
number of subjects, and thus more statistical power, is not
possible due to the costs and the invasive nature of the study.
For the computation of the TANCOVAs and the visualization
of the results, we used a Matlab-based program, Ragu
(Randomization Graphical User interface) (Koenig et al., 2011),
and estimated null-hypothesis based on 1,000 randomization
runs. TANCOVA uses non-parametric randomization statistics
that do not require a Gaussian distribution of the variable values
across subjects.

No correction for multiple comparisons was used since
randomization tests use global measures of effect size and
therefore “downsize” a large amount of data by using a
single measure of effect size which makes it suitable for
this type of exploratory analysis. This results in a significant
reduction of the tests needed for comparisons which in return,
avoids correction of the results for multiple comparisons
(Gudmundsson et al., 2007).

In the present analysis, MMSE and ChAT were considered
as external predictors and the EEG spectral power maps at
baseline, after 3 and 12 months of NGF delivery were considered
as repeated measures. As this was an interventional study,
we were primarily interested in systematic EEG covariates
of the interaction of clinical measures with time after the
intervention, which was computed for each frequency bin in
the range from 1 to 30 Hz. Frequency bins are intervals
between points in frequency-transformed data and thus bins
refer to each 0.5 Hz frequency point computed separately for
1–30 Hz spectral range.

RESULTS

Six patients were enrolled in the study, two men and four women,
implanted with NGF-ECB implants in the basal forebrain for
12 months, when the implants were removed uneventfully. All six

patients were treated with ChEI as concomitant medication for a
median duration of 12 months (range 8–26) before enrollment
and continued this therapy throughout the study (Table 1).

Association Between EEG Spectral
Power and Cognitive Stabilization During
Nerve Growth Factor Delivery
We tested the data for significant changes in EEG spectral power
in the frequency range from 1 to 30 Hz and if there were
associations found with MMSE change at 12 months of NGF
delivery against a baseline, as a function of time of the EEG
recording (baseline, 3 months or 12 months). Figure 1 illustrates
change in averaged power spectra, baseline vs. 12 months, per
individual subject.

The interaction between EEG frequency spectra across the
three recordings and two groups, based on above or below the
mean change in MMSE (12 months minus baseline), for the six
patients showed a significant association at around 11 Hz (10–
11.5 Hz), p = 0.042, Figure 2. Post hoc tests: baseline against
3 months p = 0.059, the baseline against 12 months p = 0.033,
the baseline against merged 3 and 12 months p = 0.023, 3 months
against 12 months, p = 0.56. This suggests a correlation between
change in MMSE and EEG activity in the narrow window
of the upper alpha band that was marginally significant at 3-
months and significant at 12-months of NGF delivery. The
fact that there was no significant correlation between the 3

TABLE 1 | Demographic data on enrolled patients.

Patients

Gender, n (M/F) 4 M/2 F

Age, median (range) 62 (55–73)

Memory problems (y), median (range) 4 (1–6)

AD diagnosis (y), median (range) 1.5 (1–3)

Duration of ChEI (m), median (range) 12 (8–26)

MMSE score at baseline, median (range)
• Non-responders
• Responders

23 (19–24)
23 (19–24)
23 (21–23)

MMSE score at end of study, median (range)
• Non-responders
• Responders

18 (14–27)
15 (14–16)
21 (21–27)

CSF ChAT activity (nmol/min/ml), baseline,
median (range)

• Non-responders
• Responders

2.6 (2.0–3.7)
2.7 (2.0–3.4)
2.6 (2.6–3.7)

CSF ChAT activity (nmol/min/ml), 3 months,
median (range)

• Non-responders
• Responders

2.7 (2.3–3.1)
2.7 (2.3–2.7)
3.1 (2.5–3.1)

CSF ChAT activity (nmol/min/ml), 12 months,
median (range)

• Non-responders
• Responders

3.0 (2.0–4.3)
2.9 (2.0–3.0)
3.7 (3.0–4.3)

CSF NFL (ng/L), baseline, median (range) 157.5 (125–360)

CSF NFL (ng/L), 12 months, median (range) 260 (125–420)

AD, Alzheimer’s disease, ChAT, choline acetyltransferase, ChEI, cholinesterase
inhibitors, CSF, cerebrospinal fluid, F, female, M, male, MMSE, Mini-mental state
examination, NFL, neurofilament light protein.
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FIGURE 1 | Averaged power spectra, baseline vs. 12 months, per individual subject. The upper row shows the power spectra of responders, the lower row of the
non-responders.

and 12 months implicates that most clinically detectable change
happens in the first 3 months of treatment. The effect remains
sustained during the treatment, although no further increase
is detectable between the 3 and 12 months. No significant
effects were observed when the data were merged across all
observational points.

Association Between Changes in
Cerebrospinal Fluid Choline
Acetyltransferase Activity and EEG
Spectral Power
TANCOVA correlations between EEG frequency spectra across
the three recording occasions, dividing the six patients into two
groups according to a change in CSF ChAT activity, below or
above the mean change (12 months minus baseline), showed
a marginally significant correlation in the frequency of around
6.0–6.5 Hz, Figure 3. This indicates that the more power in the
theta frequency band, the less the change in CSF ChAT activity,
p = 0.058 (Figure 3a). Post hoc tests: baseline vs. 3 months
(p = 0.09), baseline vs. 12 months (p = 0.06), 3 months vs.
12 months (p = 0.29), baseline vs. 3 and 12 months merged
(p = 0.023). The results suggest that the relationship between a
reduction in CSF ChAT activity and EEG slowing in a narrow
theta frequency range was mostly detectable at 3 months.

We also found a significant correlation between time vs.
change in ChAT activity at 11–11.5 Hz (p = 0.025), Figure 3b. The
interaction was mainly accounted for by the difference between
baseline and 3 months, indicating that at 3 months of NGF
delivery, the patients showed more alpha power correlating to
positive changes in CSF ChAT activity, compared to baseline.
Hence, the increase in ChAT seems to predict an increase in fast
alpha activity up to 3 months of treatment. Post hoc tests: baseline
vs. 3 months (p = 0.042), baseline vs. 12 months (p = 0.21),
3 months against 12 months (p = 0.12), baseline against merged 3
and 12 months (p = 0.056).

Association Between Changes in
Cerebrospinal Fluid Nerve Growth Factor
and EEG Spectral Power
There was no correlation between changes in NFL and
EEG at any time point, and no significant interaction with
time, MMSE, and ChAT.

DISCUSSION

This exploratory study is the first to report a correlation between
the cholinergic marker ChAT in CSF and EEG oscillations in
the alpha and theta frequency range during encapsulated NGF
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FIGURE 2 | Association between MMSE and EEG spectral power as a function of time. The graph on the left the probability (p) of the null hypothesis (y-axis) for the
TANCOVA interaction between time and MMSE change as a function of frequency in Hz (x-axis). Significant (p < 0.05) frequency range is marked by a white line
shows. The red cursor marks the frequency range represented by the covariance maps. Topographic maps display topographic covariance of the EEG spectral
power correlating to MMSE changes at the frequency range 10–11.5 Hz for the three EEG recording occasions. Red maps show were less than the average
change in MMSE score related to an increase in alpha frequency. BL, baseline; EEG, electroencephalography; MMSE, mini-mental state examination; TANCOVA,
topographic analysis of covariance, 3 m: 3 months, 12 m: 12 months.

delivery to patients with a definite AD diagnosis as confirmed by
a cortical biopsy (Eriksdotter-Jönhagen et al., 2012). Associations
between changes in ChAT activity and EEG in narrow windows of
both the theta and alpha frequency bands were mainly observed
during the first 3 months of NGF delivery and do not seem
to increase further thereafter. These limited effects could be
explained by the fact that all the patients already were on a stable
long-term treatment with ChEI which is a requirement for all
clinical trials with new experimental treatments.

This was also the first cohort of patients who received NGF
delivery via the NGF-ECB implants, with safety and tolerability as
primary endpoints. However, at implant retrieval at 12 months,
the NGF release was low (Eriksdotter-Jönhagen et al., 2012). It
would be of interest to study the delivery of NGF with NGF-ECB
implants for a longer duration than 12 months at sustained NGF
dose level, to see if there are similar or even more pronounced
effects on EEG, cholinergic biomarkers, and cognition.

In our study, a cognitive stabilization in some patients, as
measured by an increased or stable MMSE score during the
NGF delivery was related to a significant effect in a narrow
frequency of the fast alpha band 10–11.5 Hz. Although such a
narrow window of significant correlations might be the result
of small sample size and could be questioned as physiologically
relevant, an alternative explanation for the selective effect on
the fast alpha frequencies may be the different functional
significance of slow and fast alpha oscillations (Klimesch, 2012).
It has been suggested that activities in the lower alpha bands
(slower alpha oscillatory frequencies) are related to attentional
processes and that those of the higher alpha bands (faster
alpha oscillatory frequencies) are related to retrieval from the
long-term memory (Klimesch, 1996). Although this knowledge is
generated in EEG studies during a cognitive activation paradigm,
we could speculate that it could be extrapolated to the resting
EEG during stimulation of the cholinergic system, which may
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FIGURE 3 | Associations between CSF ChAT activity and EEG spectral power as a function of time during the NGF delivery. The graph shows the probability (p) of
the null hypothesis (y-axis) for the TANCOVA interaction between time and change in CSF ChAT activity, as a function of EEG frequency in Hz. The significant
(p < 0.05) frequency range is marked by a white line. The red cursor marks the frequency range represented by the covariance maps. Maps display topographic
covariance of the EEG spectral power correlating to changes in ChAT activity at the frequency ranges: (a) 6.0–6.5 for the three EEG recording occasions. The blue
maps show where lower than the average difference in CSF ChAT values correlated with an increase in the theta frequency, (b) 11.0–11.5 Hz for the three EEG
recording occasions. The red maps indicate where a higher than average difference in CSF ChAT activity (12 months vs. baseline) is related to an increase in upper
alpha frequency. BL, baseline; ChAT, choline acetyltransferase; CSF, cerebrospinal fluid; EEG, electroencephalography; TANCOVA, topographic analysis of
covariance, 3 m: 3 months, 12 m: 12 months.

preferentially activate neuronal networks involved in selective
cognitive processes.

An alternative explanation may be that both thalamocortical
and cortico-cortical networks are responsible for the generation
of rhythmic alpha oscillations, assuming that the balance with
other neurotransmitter systems during the disease process in
AD affects the profile of EEG changes and cognitive response
(Dringenberg, 2000).

While our earlier study showed that treatment with ChEI
gave limited improvements of qEEG parameters up to 6 months
(Jelic et al., 1998), this study showed a sustained association
between positive changes in qEEG profile in the patients
who showed clinical stabilization as suggested by MMSE
change after a 12 month NGF delivery. The narrow windows
of correlations between the EEG frequency spectra and
cognitive and biochemical markers of cognitive deterioration and
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biological activity of the disease during the NGF-ECB treatment
should be interpreted with a reservation as a converging pattern
in the context of current knowledge.

There was no strong consistent relation with theta power and
the MMSE change as was shown for alpha power. Theta activity is
known to increase early during AD and reaches a plateau during
the disease course (Musaeus et al., 2018). Thus, theta power may
not be a single sensitive electrophysiological state marker for
monitoring disease activity and effects of therapeutic stimulation
of the cholinergic system but can rather be considered an
indicator of the baseline disease severity and could therefore be
a basis for the selection of patients for clinical trials.

One limitation of this study is the small number of patients,
which increases the variance of the data and puts limits to the
use of conventional statistics. We propose here the use of the
Ragu program which by using assumption-free randomization
statistics computes significance as a function of frequency,
controls for type 2 error, and displays results in a user-
friendly visual format with EEG spectral power covariance maps
(Gudmundsson et al., 2007).

Another limitation is the invasiveness of the treatment method
which induces a minor brain lesion during implantation of
the NGF-releasing implants. This is reflected in the temporary
increase in the CSF neurofilament light chain (NFL) protein at the
3-month follow-up, returning to baseline levels when measured
at 12 months (Eriksdotter-Jönhagen et al., 2012). However, there
was no correlation between the qEEG parameters and CSF NFL
levels and no significant interaction with time, MMSE, or ChAT.

A possible confounding placebo effect of the implantation
procedure is less likely but since it could not be ruled out future
investigation requires a cross-validation design.

We have employed only selected conventional EEG
parameters that have shown in previous studies reliable test-
retest reliability (Gudmundsson et al., 2007; Näpflin et al., 2007)
at the individual level, which was important for the present
study with the limited number of patients. Since the molecular
family of NGFs plays an important role in synaptic plasticity
(Liu et al., 2014; Numakawa and Odaka, 2021) it would be
of interest to further explore on a larger sample size EEG
connectivity measures that are more closely related to the efficacy
of neuronal networks.

Although this study is exploratory, the results give further
support for the qEEG method as a possible marker of disease
activity. Furthermore, it is a desirable outcome measure in clinical
trials monitoring treatment efficacy over time since it does not
put limits on serial recordings. As with many other treatment
strategies in AD, there will probably always be responders
and non-responders to therapy and the corresponding need to

define these patients with an objective and validated functional
measures. The present results motivate the use of qEEG as one
of the outcome measures in the clinical trials of novel potential
therapeutics in AD. However, future validation studies with
different treatment approaches on a larger sample of patients are
further warranted.
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Dopaminergic medication for Parkinson’s disease (PD) modulates neuronal oscillations
and functional connectivity (FC) across the basal ganglia-thalamic-cortical circuit.
However, the non-oscillatory component of the neuronal activity, potentially indicating
a state of excitation/inhibition balance, has not yet been investigated and previous
studies have shown inconsistent changes of cortico-cortical connectivity as a response
to dopaminergic medication. To further elucidate changes of regional non-oscillatory
component of the neuronal power spectra, FC, and to determine which aspects of
network organization obtained with graph theory respond to dopaminergic medication,
we analyzed a resting-state electroencephalography (EEG) dataset including 15 PD
patients during OFF and ON medication conditions. We found that the spectral slope,
typically used to quantify the broadband non-oscillatory component of power spectra,
steepened particularly in the left central region in the ON compared to OFF condition.
In addition, using lagged coherence as a FC measure, we found that the FC in the
beta frequency range between centro-parietal and frontal regions was enhanced in the
ON compared to the OFF condition. After applying graph theory analysis, we observed
that at the lower level of topology the node degree was increased, particularly in the
centro-parietal area. Yet, results showed no significant difference in global topological
organization between the two conditions: either in global efficiency or clustering
coefficient for measuring global and local integration, respectively. Interestingly, we
found a close association between local/global spectral slope and functional network
global efficiency in the OFF condition, suggesting a crucial role of local non-oscillatory
dynamics in forming the functional global integration which characterizes PD. These
results provide further evidence and a more complete picture for the engagement of
multiple cortical regions at various levels in response to dopaminergic medication in PD.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common neural
degenerative disorder characterized by massive degeneration of
dopaminergic neurons in the nigrostriatal dopamine system
(Olanow et al., 2009). It has been increasingly recognized
that PD is accompanied by functional disturbances both at
subcortical and cortical levels (Braak et al., 2003; Boon et al.,
2019). Clinically, dopamine loss is managed via dopaminergic
therapy (DT). The dopaminergic system has been shown to have
considerable and widespread modulatory influences on many
brain structures including the cortex (Steiner and Kitai, 2001).
While dopamine replacement therapy is efficient for improving
the motor symptoms, the neural mechanisms of dopaminergic
medication are not yet fully understood (Schapira, 2005).

In PD, it has been repeatedly reported that it is characterized
by abnormal oscillatory synchrony in the basal ganglia-thalamus-
cortical (BGTC) network in the beta frequency band (13–30 Hz)
that could be modulated by dopaminergic medications and deep
brain stimulation (DBS) (Brown, 2003; Wingeier et al., 2006;
Kühn et al., 2009; De Hemptinne et al., 2015; Müller and
Robinson, 2018). In the frequency domain, electrophysiological
brain signals typically consist of a power-law 1/f component
and periodic oscillatory activities. While a majority of studies
have so far been dedicated to the oscillatory activity, increasing
evidence shows that non-oscillatory (aperiodic) activity also
provides information about the intricate neuronal dynamics
unfolding at different temporal scales (He et al., 2010; Voytek
et al., 2015). A broadband aperiodic component of the spectrum
is often represented by the slope of the fitted line in log-
log space (known as spectral slope). The changes in spectral
slope have been associated with neural development, healthy
aging, and performance in working memory tasks (Voytek et al.,
2015; Donoghue et al., 2020). In addition, previous studies
have reported that it is altered in different pathologies, such
as schizophrenia (Peterson et al., 2017; Molina et al., 2020)
and ADHD (attention deficit/hyperactivity disorder) (Robertson
et al., 2019). Importantly, it has also been demonstrated
that the spectral slope is a potential indicator of the local
excitation/inhibition balance (Gao et al., 2017; Colombo et al.,
2019). In addition, TMS (transcranial magnetic stimulation)
studies, which can directly probe the changes in excitation and
inhibition, have shown that PD is accompanied by changes in
cortical excitability (Ridding et al., 1995; Hanajima et al., 1996;
Cantello, 2002). Thus, it would be important to test whether
and how this measure is altered in PD, in particular with
dopaminergic medication.

While regional changes could provide comprehensive
understanding of the underlying local circuitry, the brain rather
functions as a distributed network. Functional connectivity (FC)
analysis allows us to understand how distinct regions interact,
and graph-theory based approach enables a macroscopic
perspective of brain connections on the regional and whole-brain
network level. Many previous studies showed that network
architecture is related to brain function or dysfunction (Bassett
and Bullmore, 2009; Bullmore and Sporns, 2009). Using resting
state fMRI (functional magnetic resonance imaging), it has

been intensively investigated how dopaminergic medication
modulates brain FC in the BGTC network (Tahmasian et al.,
2015). The most consistent finding across different rs-fMRI
studies revealed decreased connectivity within the posterior
putamen in PD (Tessitore et al., 2019), and that its cortical
projections are modulated by dopaminergic medication (Herz
et al., 2014). To date, few fMRI studies have adopted graph
theoretical approach in PD, and the reported findings have been
inconsistent. Specifically, compared to healthy controls, PD
patients showed lower global efficiency (GE) (Sang et al., 2015),
while no abnormalities in topographical property at the global
level were observed in PD (Berman et al., 2016; Hou et al., 2018;
Ruan et al., 2020). Both increase (Sang et al., 2015) and decrease
(Hou et al., 2018) in nodal centrality have been observed in PD
compared to healthy controls. In addition, it was found that
levodopa administration significantly decreased local efficiency
of the network (Berman et al., 2016), and conversely resulted in
an increase in eigenvector centrality of cerebellum and brainstem
in PD (Jech et al., 2013).

As for the EEG/MEG (electro- and magnetoencephalography)
studies, compared to healthy controls, increased cortico-cortical
FC in PD has been found primarily in alpha and beta frequency
ranges, and cortico-cortical coherence was linked to the severity
of the clinical symptoms (Silberstein et al., 2005; Stoffers et al.,
2007, 2008; Bosboom et al., 2009; George et al., 2013; Miller et al.,
2019). Dopaminergic medication induced changes in cortical
synchronization have also been investigated by computing pair-
wise coherence across the entire montage using multi-channel
EEG/MEG. However, both reduction of FC after dopamine
medication (Silberstein et al., 2005; George et al., 2013; Heinrichs-
Graham et al., 2014) and the absence of connectivity modulation
were previously reported (Miller et al., 2019). Very recently,
using advanced modeling analysis, in response to dopaminergic
medication, increased cortico-cortical synchronization in beta
band has been detected by taking into account the contribution
from other sub-networks (Sharma et al., 2021). To capture
the changes across the whole cortex, through the application
of graph theoretical measures in EEG/MEG, previous studies
have demonstrated abnormalities in topographical organizations
of functional network in PD compared to healthy controls,
suggesting that the interactions between cortical areas become
abnormal and contribute to PD symptoms at various stages
(Utianski et al., 2016). Furthermore, the alterations in network
attributes were linked to both motor and cognitive dysfunctions
(Olde Dubbelink et al., 2014; Boon et al., 2017). However,
how the topological organization of the cortical functional
network changes after dopaminergic administration remains
rather elusive. To address this issue, we applied graph theory-
based network analysis to investigate further changes in cortical
connectivity in patients with PD after the administration
of dopaminergic medication. Besides, previous studies have
suggested a close link between the local excitation/inhibition
balance and information transmission locally and globally (Deco
et al., 2014), and the network’s organizational structure (Zhou
et al., 2021). Therefore, we asked whether and how the spectral
slope, as a proxy of the local E/I ratio, would relate to the
network-wise activity in the context of PD.
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To further characterize the regional and functional network
changes due to dopaminergic medication, we address the
following questions. Regarding local properties: (1) How does
the aperiodic property of the electrophysiological brain signal
change in response to dopaminergic medication administration?
With respect to cross-area interactions: (2) What is the effect of
dopaminergic medication on functional connectivity? (3) Does
dopaminergic medication induce alterations in the lower and/or
higher level of the network architectures? (4) Do local changes in
non-oscillatory component of neural activity influence functional
network topology/organization? To answer these questions, we
analyzed a publicly available dataset including EEG data of PD
patients from ON and OFF dopaminergic medication conditions
(George et al., 2013; Rockhill et al., 2020).

MATERIALS AND METHODS

Participants
The data analyzed in this study is open-source data (George
et al., 2013; Swann et al., 2015; Jackson et al., 2019). This
dataset includes resting state EEG data with a duration of around
3 min. Data were collected from 15 PD patients (8 female,
average age = 63.2 ± 8.2 years, mild to moderate disease with
average disease duration of 4.5 ± 3.5 years) during OFF and ON
dopaminergic medication sessions. All participants were right-
handed and provided written consent in accordance with the
Institutional Review Board of the University of California, San
Diego and the Declaration of Helsinki. For more information you
may refer to George et al. (2013).

Data Collection
EEG of patients with PD were recorded on two different days for
ON and OFF medication sessions which were counterbalanced
across subjects. For the OFF medication session, patients were
requested to withdraw from their medication at least 12 h
prior to the EEG recording. For the ON medication session,
subjects took their medication as usual. A 32-channel EEG cap
with BioSemi ActiveTwo system was used to acquire the EEG
data with a sampling rate of 512 Hz. Two additional electrodes
were placed over the left and right mastoids used for reference.
During the EEG recording, participants were instructed to sit
comfortably and fixate on a cross presented on the screen. Each
recording session lasted at least 3 min. In addition, participants
completed a few clinical assessments which were previously
reported in George et al. (2013). In this study, we did not link
the clinical scores of patients to the EEG measures as the authors
of the original paper mentioned some uncertainty about these
scores. Yet, to assure these two conditions represent two distinct
parkinsonian states, we examined the change in the motor section
of unifined Parkinson’s disease rating scale (UPDRS III) scores
between the two conditions. Statistical analysis showed that there
was a significant reduction of the clinical scores in ON condition
(mean ± SD: 32.67 ± 10.42) compared to that in OFF condition
(mean ± SD: 39.27 ± 9.71). Note, that in this dataset a healthy
control group was also included. However, we focused on the
comparison of data between ON and OFF conditions which is

also a standard study setup for differential parkinsonian states
induced by medication in PD (Tinkhauser et al., 2017; Sharma
et al., 2021).

Data Pre-processing
EEG data were analyzed using EEGLAB (version 14.1.2; Delorme
and Makeig, 2004) and FieldTrip toolboxes, together with
customized scripts in Matlab (The MathWorks Inc., Natick, MA,
United States). First, a high-pass filter at 1 Hz was applied to
remove low frequency drifts (two-way FIR filter, order = 1,536,
eegfilt.m from EEGLab). Subsequently, independent component
analysis (ICA – infomax algorithm implemented in EEGLab) was
used to remove artifactual sources of cardiographic components,
eye movements and blinks, and muscle activity in the data.
Further, channels with inadequate quality were rejected by
visually inspecting whether their spectra demonstrated residual
EMG at higher frequency ranges [on average 5.4 ± 3.1 for
OFF and 5.2 ± 2.8 for ON, no difference between conditions
(p = 0.6606)]. Bad channels were interpolated with neighboring
electrodes using a method of spherical splines (EEGLab function
“eeg_interp”). Next, data were examined visually for the presence
of residual artifacts and segments contaminated by gross artifacts
and these events were marked and then excluded from further
analysis [on average 172.5 ± 22.7 s in OFF and 165.5 ± 33.6 s
in the ON condition remained, no difference in the number
of rejected data points (p = 0.3591)]. Subsequently, data were
re-referenced to the common average.

DATA ANALYSIS

Power Spectral Density
Power spectral density (PSD) was calculated using the function
“pwelch” in MATLAB, with a Hamming window of 512 samples
(i.e., 1 s) and a 50% overlap. Beta band power was estimated as
the averaged PSD in the beta frequency range (13–30 Hz). In
addition, in line with a previous study (Donoghue et al., 2020),
we utilized another way of estimating the oscillatory beta power
by accounting for the overall spectral slope. For this purpose, we
subtracted the spectral slope (measured by a fitted line in a log-log
space) and estimated the beta power on the residuals of the PSD.

Power Spectral Density Slope
To reduce contamination from high frequency non-neuronal
noise, we estimated the slope of the PSD in a frequency range
of 2–45 Hz. A three-step robust regression method was used to
estimate the slope based on the computed PSD. This method
was proposed and applied by Colombo et al. (2019). First, a
least-squares linear line was fitted to the raw PSD using the
function “robustfit” in MATLAB in the log frequency-log PSD
space. Second, frequency points with larger than 1 median
absolute deviations of the PSD residuals were identified as
oscillatory peaks. Continuous frequency bins surrounding these
peak frequencies were considered as the base of the oscillatory
peaks and were also excluded for the further step. Last, a second
least-squares fit was performed on the rest of the frequency
ranges. We took the slope (with the sign) of the second fitted
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line as the final spectral slope of the PSD. Thus, a more
negative slope demonstrates a steeper decay, while a less negative
slope represents a flatter one. One advantage of this method
is that it considers the potential bias resulting from linearly
spaced frequency bins being estimated with a logarithmic scale.
Therefore, before the regression procedure, the PSD curve was
up-sampled with logarithmically distributed frequency bins. For
more details, please refer to the study by Colombo et al. (2019).

Functional Network Analysis
A network is constructed by a collection of nodes and links
between pairs of nodes. In this study, we defined each node
as a brain region approximately represented by each channel,
while links represent the connectivity between pairs of channels.
FC between the brain areas was determined by computing the
lagged coherence which accounts for the volume conduction
issue. Each network can be represented by a symmetrical 32 × 32
adjacency matrix.

Functional Connectivity
Functional connectivity measure was quantified by the lagged
coherence between all the channel pairs in a frequency range
of 1–35 Hz with resolution of 1 Hz. This metric quantifies the
strength of phase coupling between two signals by eliminating
the effects of volume conduction (Pascual-Marqui, 2007; Pascual-
Marqui et al., 2011), and it has been shown to be even more
suitable than phase lag index for the application of connectivity
estimation when using EEG and MEG (Hindriks, 2021). Its
value ranges between [0, 1]: “0” stands for no coupling, and
“1” represents perfect coupling. This measure has been utilized
in earlier EEG studies (Milz et al., 2014; Vecchio et al., 2021).
FC in an oscillatory frequency band was acquired by averaging
the FC values over the respective frequency range (for instance
beta band FC was obtained by averaging the FC values over 13–
30 and 8–12 Hz for the alpha band). To investigate whether
medication could result in changes in FC in oscillatory frequency
band across the whole brain (neighboring areas and remote
regions), we applied a seed-based connectivity comparison
approach. This means that the connectivity was calculated
between a given electrode (seed) and all other electrodes for each
subject. Then, whole-head connectivity was compared between
conditions using a cluster-based permutation test to account for
multiple comparisons.

Network Measure
We estimated the brain network metrics based on the
scalp sensor-based EEG connectivity matrix. Although often
performed in source space, due to a small number of channels
(Lantz et al., 2003) we did it rather in sensor space similar to
previous studies (Stam et al., 2007; Zeng et al., 2015; Chai et al.,
2019; Sun et al., 2019; Mitsis et al., 2020; Smith et al., 2021). In the
discussion, we mention and discuss limitations associated with
the estimation of graph metrics in sensor space.

Node Degree
Node degree estimates the number of edges connected to
each node. To estimate the importance of each node (each

channel in our case), node degree centrality weighted by edge
importance (the connection is stronger, edge weights are larger)
was utilized for this purpose. Specifically, we used the function
“Centrality” implemented in Matlab for this measure (parameter
“importance” specified by edge weights).

Graph Theory Based Complex Network Measures
Overall Functional Connectivity. For each individual FC matrix,
the overall FC was obtained by averaging all the connectivity
values across all the pairs of the connection in a matrix.

Proportional Thresholding. Proportional thresholding is a
commonly applied approach to remove connections with
lower strength and to obtain a sparse connectivity matrix for
computing the network properties based on graph theory. Here,
we applied a proportional threshold to keep a consistent density
of the connections across individuals (Bassett and Bullmore,
2009; van den Heuvel et al., 2017). If a proportional threshold
(PT%) is applied to a functional network, all the strongest
PT% of the connections are preserved and set to 1; the other
connections are set to 0. As suggested by Rubinov and Sporns
(2010), networks should be ideally characterized and show
consistent patterns across a broad range of thresholds. These
threshold values are often determined differently across studies.
Therefore, in this study we examined a wide range of thresholds
ranging from 36 to 4% (resulting in networks with around
20–200 links) in steps of 2%, similar to a previous study (van
den Heuvel et al., 2017). To show how the network looks like, in
Figure 1, we plotted the grand mean networks within each group
at differential thresholding values (20, 10, and 2%).

Graph Metrics. Various measures characterize a network’s
structure. Two fundamental ones are included here: clustering
coefficient (CC) and global efficiency (GE). These two basic
graph metrics were computed as implemented in the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). Clustering
coefficient is a commonly used measure to quantify the functional
network segregation. It is defined as the fraction of triangles
(ratio of the present and total possible number of connected
triangles) around an individual node and is equivalent to
the fraction of a node’s neighbors that are neighbors of each
other (Watts and Strogatz, 1998). The clustering coefficient
of a network CC is the average clustering coefficient across
all the nodes in the network. It reflects the prevalence of
clustered connectivity around individual nodes (Rubinov and
Sporns, 2010): the larger the CC, the greater the degree of
functional segregation.

The other metric, GE, was used to quantify the functional
network integration. This is based on a basis measure – shortest
characteristic path length. Paths are sequences of distinct nodes
and links, with shortest paths between two nodes defined as the
path with the fewest edges in a network (the sum of the number
of its constituent edges is minimized). GE for a network, obtained
by the average inverse shortest path length between all the pairs,
is a measure of functional network integration: the larger the GE,
the greater the degree of global integration. All these measures

Frontiers in Aging Neuroscience | www.frontiersin.org 4 April 2022 | Volume 14 | Article 846017105

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-846017 April 25, 2022 Time: 15:4 # 5

Zhang et al. Dopaminergic Modulation of EEG in Parkinson’s Disease

were computed with an open source Matlab toolbox (Rubinov
and Sporns, 2010).1

Statistical Tests
Non-parametric Wilcoxon signed rank test was performed for
the comparisons of measures in PD OFF and ON states.
Spearman’s correlation coefficients were calculated to estimate
the relations between different measures. We applied the false
discovery rate (FDR) procedure (Benjamini and Hochberg,
1995) to correct for multiple tests (correlation calculation)
across channels. Significance is reported when FDR-corrected
p-values are below 0.05.

To account for multiple comparisons of metrics across
all channels, we performed a channel space cluster-based
permutation test using the “Monte Carlo” method, as
implemented in FieldTrip (Oostenveld et al., 2011). At sample
level (each channel in this case), a dependent t-test was utilized
to estimate the effect. A total of 1,000 randomizations were
performed across groups (ON and OFF conditions) and for
each permutation. Additionally, the single sample t-values are
thresholded at the 95th quantile, and cluster-level statistics
(sum of t-values within each cluster) were computed and the
largest cluster statistic was taken to build a null distribution.
We then compared the observed cluster-level statistic from
the empirical data against the null distribution derived from
the permutation procedure. p-Values below 0.05 (two-tailed)
were considered significant. A positive or negative cluster
demonstrates a significant difference between two conditions
(OFF > ON) or (OFF < ON).

RESULTS

Spatial Specificity and Effects of
Medication on Spectral Slope
The grand mean of PSD averaged from all channels across
subjects in each group is shown in Figure 2A. One can observe
that the PSD decay in PD OFF was shallower compared to the
PSD decay in PD in the ON condition. The spectral slope was
computed for each channel and each subject. Figure 2B shows
the topography of the grand mean of the spectral slope across
all subjects within each group (upper panel for OFF and lower
panel for ON condition). As shown in Figure 2B, for both groups,
spectral slopes were more negative (steeper slopes) along the
fronto-central-parietal midline of the brain and flatter in the
other regions. In general, the ON condition was characterized by
a more negative slope than that in the OFF condition.

We investigated the difference between the two conditions for
all channels. As described in section “Materials and Methods,”
we applied a non-parametric cluster-based permutation test
to correct for multiple comparisons in the channel space.
When comparing slope values in PD OFF with those of
PD ON, a significant positive cluster (p = 0.0220) indicated
an increased slope (flatter) in PD OFF. This difference

1http://www.brain-connectivity-toolbox.net

demonstrated a lateralized pattern covering mostly left central
region (Figure 2C).

No Beta Power Difference Between
Conditions Before and After Correcting
for the Slope Effect
Previous studies have demonstrated inconsistent changes in
cortical beta power: an increase of beta power after dopaminergic
medication (Melgari et al., 2014) and insignificant cortical
beta power changes after DT in PD (George et al., 2013;
Miller et al., 2019). Since we showed that the background
slope was significantly modulated by dopaminergic medication
(significantly steepened by the medication), we assumed that
insignificant beta power reports might partly be attributed to
the overall broadband slope changes. To test this assumption,
we first applied a traditional approach to estimate the beta band
power on the raw PSD. We computed the mean PSD value
in the beta frequency range (13–30 Hz) for each channel and
each subject in each group. Cluster-based permutation tests in
channel space showed no significant difference in beta power
between conditions (Figure 3A). Next, to address whether this
finding might be due to a flattened background spectral slope
(as observed in the PD OFF vs. ON comparison) on the top
of which oscillations were present, we used a second approach
controlling for the spectral slope to estimate beta-oscillation
power for each channel and subject. Figure 3B shows the grand
mean of the residuals of the PSD across all channels after
accounting for spectral slope. By averaging the PSD values in
the same frequency range of 13–30 Hz, beta band power for
each channel and each subject was re-calculated. Cluster-based
permutation tests identified two non-significant negative clusters
(OFF-ON) (p = 0.0739, 0.0939), mainly localized in bilateral
centro-parietal regions (CP5, CP1 and C4, CP6, Figure 3C). This
demonstrates that even after accounting for the background slope
effect, there were no significant beta power changes between the
two medication conditions.

Functional Connectivity in Beta Band Is
Increased After Medication
First, we predominantly focused on the sensorimotor seed-
based connectivity changes, which typically include C3 and C4
electrodes (Swann et al., 2015; Miller et al., 2019). The upper
panel of Figure 4A depicts the FC between C3 and one of
the representative channels from the parietal region (Pz) along
a wide frequency range (1–35 Hz). One can observe clear
peaks around the alpha and beta frequency bands for both the
ON and OFF conditions. Next, we averaged the connectivity
values in the beta frequency range (13–30 Hz) as a measure
of beta band FC. As described above, C3 seed-based beta
band connectivity was compared between medication conditions.
A negative cluster localized in the parieto-occipital region
(OFF < ON, p = 0.007) was identified as shown in the upper
panel of Figure 4B, demonstrating a lower connectivity between
C3 and parieto-occipital regions in the OFF compared to the ON
conditions. However, there was no significant difference in the
comparison of C4 seed-based connectivity between conditions.
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FIGURE 1 | Circular graph plot for the grand mean networks within each group under different PT%. Upper panel: in OFF condition, the networks under the
thresholding values of 20, 10, and 2%. Lower panel: in ON condition, the networks under the thresholding values of 20, 10, and 2%. The degree of transparency
represents how relatively strong the connection is within the network: the less transparency, the stronger the connection is.

Furthermore, to investigate whether the frontal region showed
altered synchronization with other regions, we chose one of
the representative channels in the frontal area [Fz, which is
typically within the cluster of electrodes near the supplementary
motor area (Casarotto et al., 2019)] and performed the same
analysis as for electrode C3. As shown in the lower panel of
Figure 4A, there were obvious peaks in the broad oscillatory
frequency range (alpha and beta) for both conditions. The lower
panel of Figure 4B shows the topographical pattern for the
comparison between OFF and ON conditions, and a significant
negative cluster (p = 0.0250) localized primarily in the parietal
region. This demonstrated that the synchronization between
Fz and parietal regions in the beta band was significantly
enhanced in the ON compared to OFF condition in PD.
Finally, we performed the same analysis for the other channels
to demonstrate whole-head comparisons in a head-in-head
plot (Figure 4C). As in C3 and Fz seed-based connectivity
comparisons, the other channels in seed-based connectivity also
showed significant increase in ON compared to OFF conditions.
Significant clusters (p < 0.05) are marked by warm color.
In general, the topographies showed significant alterations in
synchronization between frontal, central, and parieto-occipital
regions. To show that these connectivity effects are not mainly
driven by the power of the beta oscillation itself, we also examined
the PSD and connectivity profiles and found that in the beta
band the peaks of the connectivity between the two channels
do not coincide with the peaks of the power from either of
the relevant channels (see Supplementary Figure 1). Therefore,
we conclude that the connectivity effect estimated from the

lagged coherence is not driven by the power and rather reflects
phase-driven interaction. In addition, due to presence of peaks
of the FC in the alpha band, we used the same approach to
explore the FC changes in alpha band (8–12 Hz). Yet, there was
no significant cluster detected for all the possible seeds when
comparing the two conditions. Due to our predominant interest
in the beta frequency range and pronounced effects observed in
this frequency band, in the rest of the study we focus on the
measures from the beta band.

Node Degree in Centro-Parietal Region
in Beta Band Is Increased After
Medication
Next, we tested whether the local level of a network feature,
namely the node degree, was modulated by the medication
effect. For this purpose, we calculated the node degree (from the
connectivity in the beta band) for each channel and each subject.
Figure 5A shows the topographical maps of the grand mean of
the node degree across subjects within each group. As can be
seen from Figure 5A, both groups showed a spatial specificity
regarding the degree distribution (left for OFF and right for ON
conditions): a higher level of the node degree in central areas than
in other regions. This demonstrates that the central region might,
in general, interact more with other regions in the whole brain
network. Next, we compared the node degree between conditions
for all channels using a cluster-based permutation test. Figure 5B
shows the spatial difference pattern – a significant negative
cluster was detected (p = 0.0140, OFF vs. ON, shown by labels)
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FIGURE 2 | (A) Grand mean of PSD across all channels and subjects within each group [OFF in black and ON in red, and the shaded area indicates the standard
error of the mean (SEM)]. (B) Grand mean spatial distribution of spectral slope estimated from power spectra over 2–45 Hz across subjects within each group (upper
panel for OFF, lower panel for ON condition). Color bar indicates the slope value. (C) Spatial-difference pattern of spectral slope between OFF and ON (OFF-ON)
condition (cluster-based permutation test, p = 0.0220). Significant positive clusters are labeled. Color bar indicates the statistical t-value.

mainly in the centro-parietal region, suggesting that medication
modulated the node degree of the beta band functional network
in a way that the connectivity of the centro-parietal region
became more pronounced in the whole network. Thus, this
analysis further confirmed our findings obtained from seed-based
connectivity analyses, revealing that synchronization was up-
regulated by medication specifically between the centro-parietal
region and other regions.

No Significant Change in the Global
Network Topology: Either in Network
Segregation or Network Integration
Measure
To answer the question whether the global network structure
is modulated by medication, we estimated the two fundamental
features of a network: the GE for measuring functional network

integration and the CC for measuring network functional
segregation. We report the comparison results for both of the
measures across a wide range of proportional thresholding
values (36–4%, with a step of 2%) between the two conditions.
Since it has been shown that differences in overall FC could
have predictable consequences for between-group differences
in network topology (van den Heuvel et al., 2017), we here
first checked whether in our data there could be a possible
bias for the comparison. However, no significant difference in
overall FC between condition comparisons was found (Wilcoxon
signed rank test, two-tailed, p = 0.1514). Thus, the overall FC is
probably not a significant bias in the comparisons we performed
as shown below. As seen in Figure 6A, across the whole range of
thresholding (36–4%), the mean GE across subjects in the OFF
condition (in black) almost overlapped with that from the ON
condition (in red). As for clustering coefficient, the grand mean
of CC in the OFF condition (black line) showed higher values
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FIGURE 3 | (A) Topography for the comparison of beta band power between PD OFF and ON conditions estimated from the raw power spectra. No significant
cluster was detected for the comparison. (B) Mean of the residuals of PSD (across all channels and subjects within each group, OFF in black and ON in red, and the
shaded area indicates the SEM) after subtracting the spectral slope. Oscillatory peaks are present in alpha and beta bands in both groups. (C) Topography for the
comparison of oscillatory beta band power between PD OFF vs. ON conditions after accounting for the background spectral slope. Two negative clusters were
identified as shown by the labels, but none of them reached significance (p = 0.0739, 0.0939). Color bar indicates the statistical t-value.

than those in the ON condition (red line) across all thresholding
values (Figure 6B). However, the statistical comparison did not
indicate a significant difference in GE (p > 0.05, p-values shown
in dashed orange line, right y-axis), or in CC between the two
conditions (p > 0.05, p-values shown in dashed orange line,
right y-axis). Thus, controlling for the overall FC values and
across a wide range of thresholding values, we were not able
to demonstrate a significant impact of medication on global
network configuration.

Spectral Slope (Local and Global)
Predicts the Network Global Efficiency in
OFF Medication
Next, we asked how the spectral slope, as a proxy of measuring
local E/I balance, would relate to the brain functional network;
thus, we investigated a possible relationship between spectral
slope and network topology. First, we averaged the spectral slope
across all channels to represent an overall slope (referred to
as global slope) for each subject. Spearman’s correlation was
performed between global slope and network metrics (GE and
CC) derived under an exemplary thresholding value at 20%
in both groups. As shown in the scatter plot in Figure 7A,
GE negatively correlated with global slope (Rho = −0.7643,
p < 0.001) in the OFF condition. In contrast, no such association
was observed in the ON condition (Rho = −0.1036, p = 0.7144).
Next, we performed a correlation analysis for the channel-
wise slope (referred to as local slope) and network GE in the
OFF condition. This analysis revealed a significant negative
relationship between local slope values and network GE as shown
in the topographical map (channels demonstrating significance
are highlighted by label, FDR-corrected) in Figure 7B, and this
relationship was most pronounced in the left centro-parietal area.
There was no significant relationship between local slopes and GE
in the ON condition. In addition, we examined if the relationship
we observed at the 20% thresholding could be obtained regardless
of the specific thresholding value. We performed the correlation

analyses between global slope and network GE across the whole
range of thresholding values (36–4% with a step of 2%) in the
OFF group. As shown in Figure 7C, almost across all PT%,
the negative association between global slope and network GE
was present consistently (p < 0.05, p-values shown in dashed
orange line, right y-axis), except under an extreme thresholding
value of 4%. The spatial correlation pattern between local slope
and network GE was also examined under the same range of
thresholding values, and consistently negative relations between
local slope from the centro-parietal region and network GE
were observed (see Supplementary Figure 4). These results
showed that global slope negatively correlated with network
GE across a wide range of thresholding values, and a further
topographical correlation map between local slope and network
GE demonstrated a region-specific pattern.

Control for the Discontinuity in the Data
To assure that the estimation of the metrics is not affected by
signal discontinuity introduced by removing the artifacts, we
additionally performed the main analyses respecting the cutting
borders. Consistently, we obtained very similar results with
respect to spectral slope and lagged coherence. The differences
between the two medication conditions remained unchanged.
A detailed report can be found in Supplementary Figures 2, 3.

DISCUSSION

In this study, we investigated local and global changes induced
by dopaminergic medication in a cohort of PD patients using
non-oscillatory spectral slope measure and connectivity analysis
in resting state EEG. Locally, we estimated the slope of the non-
oscillatory wideband background activity and showed that the
left central region had a significantly decreased (steeper) spectral
slope during the ON compared to OFF medication state. In
addition, in ON compared to OFF, we observed an increase in
the FC in the beta band, mainly between centro-parietal and
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FIGURE 4 | (A) Lagged coherence plot over a frequency range of 1–35 Hz. Upper panel shows the mean connectivity (measured by lagged coherence) estimated
from C3 and Pz, while the lower panel shows the connectivity estimated from Fz and Pz, across the subjects within each group (OFF in black and ON in red, and the
shaded area indicates the SEM). (B) Upper panel: topography for C3 seed-based connectivity (lagged coherence in beta band) comparison between OFF vs. ON
condition (channel-space cluster-based permutation test). The significant cluster is highlighted by the labels in white, while the seed channel C3 is marked in yellow
and outlined by a square box. Lower panel: the same analysis performed for the seed channel Fz, and a significant negative cluster (OFF < ON) was detected
(p = 0.0250). Color bar indicates the statistical t-value. (C) Head-in-head plot for the seed-based connectivity (lagged coherence in beta band) comparison for all
channels. At each channel, the head plot shows the topography for comparison of connectivity between this channel and all other channels using cluster-based
permutation test. Only the significant clusters (p < 0.05) are shown by warm color.

frontal regions. Further, graph theory-based analysis showed an
enhanced node centrality in particular in the centro-parietal
regions but no significant alteration in the complex level of
network topology (GE or CC). Lastly, we found a strong negative

relationship between spectral slope (locally and globally) and
network’s GE in the OFF condition, where a flatter slope was
associated with a smaller degree of GE of the functional network.
These findings provide further evidence for the engagement of
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FIGURE 5 | (A) Mean spatial distribution of node degree calculated from the beta band functional connectivity for each group: left for OFF and right for ON condition.
For both groups, the electrodes in the central area have a higher level of node degree than that of other regions. Color bar indicates the magnitude of node degree.
(B) Spatial difference pattern for comparison of node degree between two conditions (OFF vs. ON). The labeled channels show the identified significant negative
cluster (OFF < ON, p = 0.0140) using cluster-based permutation test. Color bar indicates the statistical t-value.

multiple cortical regions in response to dopaminergic medication
in PD, which in turn may indicate that the therapeutic efficacy of
dopaminergic medication may relate to both regional and global
changes in cortical activity.

Non-oscillatory Background Spectral
Slope
Using multi-channel resting state EEG, we observed that patients
with PD in the medication OFF condition had an increased
(flatter) spectral slope compared to medication ON condition.
This effect was found to be spatially specific to the left central
region. The spectral slope, a metric to quantify this background
power spectrum, has been reported to be altered in the first
year of development, healthy aging and in mental disorder such
as schizophrenia (Peterson et al., 2017; Donoghue et al., 2020;

Molina et al., 2020; Schaworonkow and Voytek, 2021), and could
also predict the dynamic behavioral outcome in working memory
tasks (Voytek et al., 2015; Donoghue et al., 2020). In our study,
we observed that the spectral slope steepened in ON compared
to OFF conditions. Given that previous studies demonstrated
that healthy aging is accompanied by flattening of the spectral
slope (Voytek et al., 2015; Cesnaite et al., 2021) and that neural
electrophysiological biomarkers associated with PD are already
present in the apparently healthy aging brain (Zhang et al.,
2021), one can speculate that PD might be accompanied by a
flattening of the power spectra and that dopaminergic medication
might reverse this flattening effect. The effect was found most
pronounced in the left central area (strongest at C3 electrode in
the detected cluster), which might indicate a modification over
the sensorimotor area by the medication. The broadband spectral
slope underlying the dopamine medication modulation effect
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FIGURE 6 | (A) Mean GE estimated from beta band functional connectivity across subjects within each group (OFF in black and ON in red, and the shaded area
indicates the SEM) across a wide range of thresholding values (36–4% in step of 2%). The dashed orange line represents the p-values (right y-axis) for the
comparisons: none are below 0.05. (B) Same analysis, but for CC: across a wide range of thresholding values no significant difference was observed between the
conditions (OFF vs. ON).

FIGURE 7 | (A) Scatter plot shows that global efficiency for the beta band network (under thresholding value 20%) negatively correlates with the global slope
(averaged slope across the whole head) in the OFF condition. Each asterisk represents one subject. (B) Spatial pattern for the correlation between local slope and
global efficiency (beta network and under 20% thresholding). The channels highlighted by label indicate significant correlation after FDR correction. Color bar
indicates the correlation coefficient value. (C) Through a family of thresholding values (36–6%, with a step of 2%), there was a significantly negative relationship
(p < 0.05, p-values shown in dashed orange line, right y-axis) between global efficiency and global slope.
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in patients with PD may thus potentially serve as a biomarker
sensitive to dopamine replacement therapy. At the same time,
even though we carefully cleaned the data and removed artifacts
which might contribute to the estimation of spectral slope, we
could not completely rule out this confounder. However, we
would like to emphasize that this is unlikely to drive the effect
of spectral slope we observed, otherwise one would expect a
spatial pattern which shows strongest difference over the frontal
or temporal areas (which cover large muscle groups and prone
to be contaminated by the muscle activity). Additionally, as we
mentioned before, the spectral slope has been shown to index the
E/I balance, and we will discuss the implication of this finding
below (see section “Spectral Slope and Network Global Efficiency:
Local E/I Balance and Global Network”).

Power of Beta Oscillation
Previous studies have demonstrated an increase in cortical beta-
band power in PD compared to healthy controls and alleviated
beta band synchrony after medication administration (Stanzione
et al., 1996) and attenuation by DBS (Whitmer et al., 2012). On
the other hand, other studies have also reported an opposite
effect—an increase of beta band power after dopaminergic
medication (Melgari et al., 2014). In addition, some studies
demonstrated that dopaminergic medication did not have any
effect on cortical beta power (Stoffers et al., 2007; George et al.,
2013; Swann et al., 2015; Miller et al., 2019). Importantly, all
previous PD studies on this topic have only considered total
power of beta without separating it into oscillatory and 1/f
aperiodic components. In the present study, we tested the impact
of the removal of the aperiodic part of the spectrum on the
estimation of oscillatory power. We found that a conventional
approach to estimate oscillatory power based on the raw PSD
resulted in a non-significant difference in beta band in the PD
OFF compared to ON state. After accounting for the spectral
slope changes, a marginal increase of beta power was detected
in the centro-parietal regions in the comparison between the
ON and OFF conditions, yet this difference failed to reach
significance. Our data thus suggests that even though the beta-
band power estimation by the conventional approach might
be partly affected by the background wideband PSD spectra,
correcting the effect still does not yield a clear and statistically
significant difference between the ON and OFF conditions. Thus,
in line with some previous studies (George et al., 2013; Swann
et al., 2015; Miller et al., 2019), we further confirm that with
and without considering the background slope effect, there was
no difference in beta power between the medication conditions.
In addition, we discuss a possible relation of our findings to
prior studies which were based on the same dataset. The only
intersecting aspect across all these prior studies and ours is the
investigation of beta-band power change during resting state.
Consistently with what have been reported by George et al.
(2013) and Swann et al. (2015), our study demonstrated there
was no beta power change between the two medication states.
Importantly, in our study, we have examined a possible bias
from the overall PSD slope effect and showed that even when
considering it there was no spectral power change in beta
frequency range between the two conditions. Yet, we suggest

that future studies should take into account the effect of the
aperiodic spectral component for the comprehensive evaluation
of oscillatory power changes in PD.

Functional Connectivity
We observed a significant increase in FC of beta oscillations
in the ON compared to OFF condition, in particular between
the centro-parietal regions with frontal regions. Previous studies
have demonstrated a presence of beta-band coherence between
STN (subthalamic nucleus) and multiple cortical regions,
including sensorimotor (Hirschmann et al., 2011, 2013; Litvak
et al., 2011), parietal and frontal areas (Litvak et al., 2011) in the
OFF medication condition in patients with PD. Dopaminergic
medication can also alter the beta-band connectivity between
STN and cortical regions (Stoffers et al., 2008; Litvak et al.,
2011; Hirschmann et al., 2013; van Wijk et al., 2016). As
for the cortico-cortical connectivity, dopaminergic medication
administration was shown to either reduce interactions between
cortical areas (Silberstein et al., 2005; George et al., 2013;
Pollok et al., 2013; Heinrichs-Graham et al., 2014) or not to
produce any significant changes (Miller et al., 2019). In a very
recent study using combined STN-LFP (local field potential)
and MEG recordings, the authors discovered differential effects
of dopaminergic medication in different levels of networks
(Sharma et al., 2021). Specifically, in the cortico-cortical network,
sensorimotor-cortical connectivity across multiple regions was
enhanced in the beta band during the ON medication state.
Therefore, our observations of the enhancement of such a
coherent fronto-parietal motor network in the ON condition
is consistent with this recent report. Such enhancement of FC
is partially in agreement with another study which employed
simultaneous fMRI/EEG recordings and showed that a higher
dose of dopaminergic medication increased FC between motor
areas and the default mode network in fMRI, whereas EEG
connectivity remained unaffected (Evangelisti et al., 2019). In
general, the dopaminergic effect over the cortico-cortical motor
network might relate to the motor decision-making associated
network, which has been shown to involve cortical fronto-parietal
regions (Siegel et al., 2015), or it might relate to the default-
mode network changes associated with non-motor symptoms in
PD as suggested by other fMRI studies (Gao and Wu, 2016).
Notably, a recent EEG study in PD using source localization
demonstrated the presence of strong phase-amplitude coupling
between the phase of beta and the amplitude of broadband
gamma oscillations in a variety of cortical regions (including
sensorimotor, somatosensory, and prefrontal areas) involved
in motor and executive control (Gong et al., 2021). In line
with this study, our findings of increased connectivity between
centroparietal-frontal regions after dopaminergic medication
further emphasize the importance of cortico-cortical connections
in PD. These electrophysiological findings are consistent with
previous fMRI studies suggesting a critical role of motor circuitry
in PD in response to dopamine administration (Shen et al., 2020).

Global and Local Network Organization
Using graph theory, we demonstrated that in the ON condition,
there was a significant increase in node degree in centro-parietal
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regions implying that these regions became more influential in
the communication within the network. However, the network
topology does not seem to undergo a major re-configuration
as we did not identify significant changes in GE or CC in the
brain network. This seems consistent with findings of previous
studies in which PD patients were compared to healthy controls
and no differences in topographical properties were found at
the global level either in fMRI (Ruan et al., 2020) or in EEG
in all frequency bands (Hassan et al., 2017). Another previous
study also investigated the topographical structure of functional
network using graph analysis based on MEG of patients with
PD (Olde Dubbelink et al., 2013). Compared to healthy controls,
their longitudinal study revealed a tendency toward a more
random brain functional organization which was associated with
lower local integration in multiple frequency bands and lower
GE in the upper alpha band. However, another study using
EEG found an increase in local integration and a decrease
in GE across all the frequency bands in PD compared to
healthy subjects (Utianski et al., 2016). In the present study, we
explored the alterations in a functional spectral network using
graph metrics and showed that dopaminergic medication intake
did not significantly alter the brain network organization but
did exert a significant enhancement in node degree of some
particular regions within the network. The absence of significant
changes in global integration and segregation of the functional
network might suggest that dopaminergic medication does not
re-configure the network at a global organizational level. Instead,
these observations appear to imply that the brain network as a
whole does not respond to medication at the complex (global
integration and segregation) but rather at the low-level network
topology (local node). It would be interesting for future studies to
test whether this relates to the clinical improvement of symptoms
and whether it is possible to significantly alter the network
organization through different therapeutic interventions based
on brain stimulation.

Spectral Slope and Network Global
Efficiency: Local E/I Balance and Global
Network
A steeper spectral slope after dopaminergic medication intake
was evident in PD. As proposed by previous computational work,
the scaling property of the power spectrum of the membrane
potentials and EEG could be due to the frequency attenuation
of the extracellular medium itself (Bédard et al., 2006), or the
intrinsic low-pass filtering effect of the electrical properties of
the neural dendrites (Lindén et al., 2010; Einevoll et al., 2013).
Alternatively, steepening of the slope could be a consequence of
dampened activity propagation (Freeman and Zhai, 2009). More
recently, by applying a realistic computational model, it has been
demonstrated that stronger inhibitory activity results in steeper
spectral decay compared to a situation with a stronger excitatory
drive and thus the spectral slope value can be linked to the local
excitation/inhibition ratio (Gao et al., 2017). Importantly, this
spectral slope derived from ECoG recording dynamically reflects
the effects of anesthesia induced by propofol. Furthermore, other
pharmacological studies on resting state EEG confirmed further

that spectral slope can differentiate the states of wakefulness
compared to a reduction or a complete loss of consciousness
induced in the anesthesia (Colombo et al., 2019). Even though
an exact generative mechanism of the 1/f shaped arrhythmic
brain activity is still unclear (He, 2014), these recent prior work
from simulations and experiments with the recordings across
different spatial scales have indicated that the spectral slope
could be a sensitive marker of the E/I dynamics. Following the
E/I balance hypothesis of the spectral slope, a steeper slope
after medication, observed in this study, may indicate that
dopamine induced a state characterized by stronger inhibition
over excitation. This line of interpretation agrees with previous
TMS studies reporting a reduction of intracortical inhibition
at rest in PD OFF medication (Ridding et al., 1995; Hanajima
et al., 1996; Cantello, 2002) and an enhancement of evoked
inhibitory activity (reflected in late TMS-evoked activity and beta
TMS-evoked oscillations) after dopaminergic medication intake
(Casula et al., 2017).

In addition, we found a close relationship between broadband
non-oscillatory background activity measured by the spectral
slope and the beta-band GE of the functional network. Global
network efficiency represents the ability of integration of activity
of widely distributed regions within a network, impacting
information transmission and communication (Bullmore
and Sporns, 2012). Notably, a previous simulation work
demonstrated that synaptic E/I balance is crucial for efficient
neural coding (Zhou and Yu, 2018), and the local E/I ratio plays
a role in information transmission at large scale brain level
(Deco et al., 2014). This theory concurs with our findings: the
local and global spectral slope, reflecting the local and global
tune of E/I balance, is closely associated with the functional
network global integration property. The negative relationship
between them implies that more excitation over inhibition
corresponds to a lower level of functional network integration.
Consistently, a recent study from both fMRI recording and
simulation data showed that the local E/I ratio could have a
significant impact on the organization of whole brain functional
networks: GE of the functional network is an inverted-U shaped
function of local E/I ratio and the more deviation from the
balanced E/I state (in either direction), the lower GE of the
whole functional network (Zhou et al., 2021). Our observation
about the relationship between local and global slopes with the
global network integration property can potentially be explained
by this model: in OFF medication, an imbalanced E/I state
(indexed by flatter slope) deviating from balanced E/I ratio exerts
a monotonous negative relation with functional network GE.
A presence of a negative relation between the spectral slope and
GE might indicate that the network in PD OFF state resides
within the left part of the inverted-U shaped function [GE
vs. E/I ratio, refer to the Figure 8A of the study (Zhou et al.,
2021)] where a monotonous correlation can be expected. Such
a close association did not hold for the medication ON group.
We assume that the medication moves the network back closer
to a more balanced state, reflected in a steeper spectral slope
(steepening of the flattened slope in OFF state); thus, functional
network organization was no longer closely related to the E/I,
since in a close-to balanced E/I state the GE would rather remain
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stable (i.e., it reaches a maximum at the optimal E/I state). Our
data did not show a difference in the network’s GE property
and in contrast did demonstrate a difference in E/I dynamics
(reflected by the spectral slope) between the two conditions,
thus actually providing a possibility which allows us to more
specifically identify a position of the network in the OFF state.
One intriguing explanation would be that GE changes rather
slowly for quickly changing E/I ratio; therefore, the network in
OFF condition stays relatively close to the one in ON condition
along the GE axis, and along the E/I axis the networks from two
conditions stay further apart.

The spatial distribution of local slope and GE demonstrated
a specific pattern where the slope from the centro-parietal
regions showed strongest relations with the GE of the brain
network. In line with previous fMRI studies demonstrating that
the nodal property of the parietal cortex is closely associated
with motor outcome and decreased with progressing disease
stage (Hoehn and Yahr stage) in PD (Sang et al., 2015; Fang
et al., 2017; Suo et al., 2017), we assume that centro-parietal
regions play an important role in orchestrating the whole global
network organization. This is congruent with the finding that the
connectivity patterns in these cortical regions are also affected by
dopaminergic medication, as discussed above.

LIMITATIONS

The first limitation of this study is that due to a rather
low density of electrodes, we performed all connectivity
analysis in sensor space. Thus, we refrain from making any
conclusions about the specific structure of the networks (e.g.,
small-world and scale-free networks) as is also suggested in
a critical study on the application of graph measures in
EEG/MEG (Kaminski and Blinowska, 2018). It should also
be noted that even if the analysis were to be conducted
in source space, the volume conduction issue may still
be present. Importantly, we applied a connectivity measure
that is specifically used to overcome the volume conduction
issue. Moreover, we were able to show that our findings
remained consistent for a wide range of thresholds for the
networks’ properties.

Another limitation of our study is that clinical measures
were not available and therefore, we could not associate
EEG measures with the severity of clinical symptoms. We
acknowledge this and suggest that future studies could include
such a design so that the link between EEG parameters and
clinical phenotypes can be explored. Future work should test
whether and how local and global EEG parameters relate to
clinical symptoms.

Lastly, due to the lack of EEG comparison with the
healthy control group and the possibility to link the observed
effects to differential components of the clinical symptoms
in PD, we are rather restricted in our interpretation of the
neuronal effects due to dopaminergic modulation. In particular,
significant modulation of the spectral slopes and connectivity
in some specific regions might potentially indicate a successful
improvement associated with particular motor aspects (for

instance bradykinesia), while non-significant changes might
indicate the absence of such modulation for other motor
components such as internal motor control as shown in a
recent study (Michely et al., 2015). Alternatively, the absence of
neuronal changes in some regions might imply a co-existence of
possible non-dopaminergic alterations (for instance serotonergic
dysfunction) that could also become present in the course
of PD and are not modulated by dopaminergic medication
(Politis and Niccolini, 2015).

CONCLUSION

Using multi-channel resting EEG recordings in PD patients,
we showed differential effects of dopaminergic medication on
local non-oscillatory components and connectivity parameters.
Both from the local-level and brain-network perspective, the
centro-parietal area was identified as the region where significant
alterations in non-oscillatory wideband activity, measured by
spectral slope and node centrality within the spectral functional
network in the beta band, occurred. However, the network’s
global topologies, namely global integration (measured by GE)
and global segregation (measured by CC) remained unaffected
by the dopaminergic medication. Furthermore, during the OFF
state, a close association between the spectral slopes (local and
global) and network global integration was observed. These
findings align with the theory that local E/I balance impacts global
network structure, which might in turn demonstrate a crucial role
of local non-oscillatory dynamics in forming the functional global
integration in PD.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://openneuro.org/datasets/ds002778.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Institutional Review Board
Protocol at the University of California, San Diego. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

JZ: conceptualization, methodology, software, formal analysis,
data curation, writing—original draft, writing—review and
editing, visualization, and project administration. AV: writing—
review and editing, and supervision. VN: conceptualization,
methodology, writing—original draft, writing—review and
editing, project administration, and supervision. All authors
contributed to the article and approved the submitted version.

Frontiers in Aging Neuroscience | www.frontiersin.org 14 April 2022 | Volume 14 | Article 846017115

https://openneuro.org/datasets/ds002778
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-846017 April 25, 2022 Time: 15:4 # 15

Zhang et al. Dopaminergic Modulation of EEG in Parkinson’s Disease

FUNDING

This work was supported by Deutsche Forschungsgemeinschaft
(German Research Foundation) (Project ID: 424778381
TRR 295).

ACKNOWLEDGMENTS

We thank Tilman Stephani for valuable discussions on the
manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.
2022.846017/full#supplementary-material

Supplementary Figure 1 | Normalized PSDs and connectivity profiles in OFF and
ON conditions. In the upper panel: in OFF state, blue lines show the PSD profiles
and black lines show the connectivity (left for C3-Pz and right for Fz-Pz). In the
lower panel: in ON state, blue lines show the PSD profiles and red lines show the
connectivity (left for C3-Pz and right for Fz-Pz).

Supplementary Figure 2 | Spectral slope effect remains the same after taking
care of the cutting borders. (A) Left panel: grand mean PSD plot in PD ON

condition before and after respecting the cutting borders (original PSD estimation
in magenta and PSD estimation with taking care of the cutting borders in light
blue). Two lines almost completely overlap across all the frequencies. Right panel:
histograms of the estimated spectral slope values across all the channels and all
the subjects within PD ON group with original approach in magenta and new
approach (considering the borders) in light blue. (B) Topographical pattern of the
comparison of the spectral slope between two conditions based on the
estimations considering the cutting borders (OFF vs. ON, p = 0.0240). This
topography is consistent with the Figure 2C of the main manuscript.

Supplementary Figure 3 | Functional connectivity effects remain unchanged
after taking care of the borders introduced by removing the artifactual segments.
(A) Left panel: averaged functional connectivity between Fz-Pz channels in PD
OFF condition before and after considering the cutting borders (original and new
estimation in magenta and light blue color, respectively). Two approaches give rise
to very similar estimation values. Right panel: same analysis but in the PD ON
condition. (B) Topographical pattern of the comparison of the Fz-seed based
functional connectivity between two conditions (OFF vs. ON, p = 0.028). The
significant cluster is highlighted by the labels in white, while the seed channel Fz is
marked in yellow outlined by a square box. This spatial difference pattern is very
consistent with the lower panel of Figure 4B of the main manuscript.

Supplementary Figure 4 | Spatial patterns for the correlation between local
slope and global efficiency (beta network and under a variety of thresholding
values). Significant channels are shown in labels (p < 0.05) after FDR correction.
Color bar indicates the correlation coefficient value. The spatial specificity over the
centro-parietal region is generally consistent across a family of thresholding values
(36–18%). At the PT% of 14%, a significant negative relationship is still present.
For the higher PT% values, no significant correlation remains after multiple testing
correction.
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Patients with Alzheimer’s disease 
dementia show partially preserved 
parietal ‘hubs’ modeled from 
resting-state alpha 
electroencephalographic rhythms
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Introduction: Graph theory models a network by its nodes (the fundamental unit by 
which graphs are formed) and connections. ‘Degree’ hubs reflect node centrality 
(the connection rate), while ‘connector’ hubs are those linked to several clusters 
of nodes (mainly long-range connections).

Methods: Here, we compared hubs modeled from measures of interdependencies 
of between-electrode resting-state eyes-closed electroencephalography 
(rsEEG) rhythms in normal elderly (Nold) and Alzheimer’s disease dementia 
(ADD) participants. At least 5 min of rsEEG was recorded and analyzed. As ADD is 
considered a ‘network disease’ and is typically associated with abnormal rsEEG delta 
(<4 Hz) and alpha rhythms (8–12 Hz) over associative posterior areas, we tested the 
hypothesis of abnormal posterior hubs from measures of interdependencies of 
rsEEG rhythms from delta to gamma bands (2–40 Hz) using eLORETA bivariate and 
multivariate-directional techniques in ADD participants versus Nold participants. 
Three different definitions of ‘connector’ hub were used.

Results: Convergent results showed that in both the Nold and ADD groups there 
were significant parietal ‘degree’ and ‘connector’ hubs derived from alpha rhythms. 
These hubs had a prominent outward ‘directionality’ in the two groups, but that 
‘directionality’ was lower in ADD participants than in Nold participants.

TYPE Original Research
PUBLISHED 26 January 2023
DOI 10.3389/fnagi.2023.780014

OPEN ACCESS

EDITED BY

Aneta Kielar,  
University of Arizona,  
United States

REVIEWED BY

Jonathan Cole,  
Bournemouth University,  
United Kingdom
Lars Meyer,  
Max Planck Society,  
Germany

*CORRESPONDENCE

Susanna Lopez  
 susanna.lopez@uniroma1.it

SPECIALTY SECTION

This article was submitted to  
Neurocognitive Aging and Behavior,  
a section of the journal  
Frontiers in Aging Neuroscience

RECEIVED 20 September 2021
ACCEPTED 05 January 2023
PUBLISHED 26 January 2023

CITATION

Lopez S, Del Percio C, Lizio R, Noce G, 
Padovani A, Nobili F, Arnaldi D, Famà F, 
Moretti DV, Cagnin A, Koch G, Benussi A, 
Onofrj M, Borroni B, Soricelli A, Ferri R, 
Buttinelli C, Giubilei F, Güntekin B, Yener G, 
Stocchi F, Vacca L, Bonanni L and 
Babiloni C (2023) Patients with Alzheimer’s 
disease dementia show partially preserved 
parietal ‘hubs’ modeled from resting-state 
alpha electroencephalographic rhythms.
Front. Aging Neurosci. 15:780014.
doi: 10.3389/fnagi.2023.780014

COPYRIGHT

© 2023 Lopez, Del Percio, Lizio, Noce, 
Padovani, Nobili, Arnaldi, Famà, Moretti, 
Cagnin, Koch, Benussi, Onofrj, Borroni, 
Soricelli, Ferri, Buttinelli, Giubilei, Güntekin, 
Yener, Stocchi, Vacca, Bonanni and Babiloni. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

120

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.780014﻿&domain=pdf&date_stamp=2023-01-26
https://www.frontiersin.org/articles/10.3389/fnagi.2023.780014/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.780014/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.780014/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.780014/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.780014/full
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.780014
mailto:susanna.lopez@uniroma1.it
https://doi.org/10.3389/fnagi.2023.780014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Lopez et al. 10.3389/fnagi.2023.780014

Frontiers in Aging Neuroscience 02 frontiersin.org

Discussion: In conclusion, independent methodologies and hub definitions suggest that 
ADD patients may be characterized by low outward ‘directionality’ of partially preserved 
parietal ‘degree’ and ‘connector’ hubs derived from rsEEG alpha rhythms.

KEYWORDS

resting-state eyes closed electroencephalographic (rseeg) rhythms, alzheimer’s disease 
with dementia (add), interdependencies of rseeg rhythms, linear lagged connectivity, graph 
theory, hub topology

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative 
disorder in the elderly and causes cognitive deficits (e.g., episodic and 
working memory, executive functions, visuospatial abilities, language, 
etc.) and disabilities in activities of daily living progressively (i.e., loss of 
autonomy) belonging to dementia as a clinical syndrome (Tahami 
Monfared et al., 2022). It is provoked by the abnormal accumulation in 
the brain of Ab-42 and tau proteins, so the neurobiological in vivo 
diagnosis can be made using techniques that measure that accumulation, 
such as analysis of cerebrospinal fluid and positron emission tomography 
(Jack et al., 2019).

AD is considered a pathology affecting functional brain 
connectivity (Teipel et al., 2016). In this area of research, previous 
structural and resting-state functional magnetic resonance imaging 
(sMRI and rs-fMRI) studies showed colocalized abnormalities in both 
interhemispheric and intrahemispheric cortical connectivity in ADD 
patients compared with healthy elderly people (Nold) with unimpaired 
cognition (Delbeuck et  al., 2003; Busche and Konnerth, 2016; 
Nakamura et al., 2017). Thanks to the high spatial resolution of MRI 
techniques (i.e., millimeters), those abnormalities were mainly 
localized as follows: (1) in the posterior parietal (precuneus) and 
cingulate cortices of the cortical default mode network (DMN; Bokde 
et al., 2006; Sorg et al., 2007; Brier et al., 2012; Wang et al., 2013, 2015; 
Joo et al., 2016; Eyler et al., 2019; Talwar et al., 2021; Zhang et al., 
2021); (2) in the occipital and inferior parietal gyrus (Wang et al., 
2021); and (3) in the medial temporal lobe and other nodes of the 
limbic system (Talwar et al., 2021).

Another significant contribution made by the sMRI and rs-fMRI 
studies, together with other brain research techniques, was to unveil the 
abnormal topological organization underlying the above alterations in 
the functional brain connectivity observed in ADD patients [see reviews 
by Reijneveld et al. (2007), Xie and He (2012), Stam (2014)]. In this 
topological organization, a cortical neural network can be  formally 
represented by a ‘graph’ constituted of ‘nodes’ interconnected by ‘edges’. 
Notably, the topology of ‘nodes’ and ‘graphs’ globally reflects the 
following properties of a network: (1) near cortical nodes can be highly 
interconnected to each other forming ‘clusters’, and the nodes with more 
edges may have a prominent central role and underpin the modularity 
and segregation of the information within a network; (2) a few cortical 
nodes, the ‘hubs’, can ensure long-range interconnections between 
‘clusters’ and may reduce the path length between far nodes and 
underpin the integration of the information within a network; (3) the 
‘degree centrality’ or ‘nodal degree’ can define the importance of the hub, 
the ‘hub centrality’, in the information transmission within a brain 
network; (4) a hub can be classified as ‘connector’, connecting several 
different network modules, or ‘provincial’, mostly connecting nodes in 
the same network module as measured by the hub ‘participation 

coefficient’; (5) the number of the shortest paths that pass through a 
cortical node defines the node importance, the ‘betweenness centrality’, 
in the information transmission within a brain network; (6) a few highly 
connected cortical nodes may show dense interconnections with each 
other and form a sort of ‘rich club’ structure with a particular importance 
in the network information processing; (7) the topological distance 
between nodes, i.e., the mean number of edges to connect them, the 
‘global efficiency’, is inversely related to effective parallel information 
transfer and integrated processing; and (8) an optimal balance between 
the network modularity (segregation) and integration of the nodes 
defines the so-called ‘small worldness’ structure, which is a favorable for 
information processing and shows resilience to insults impairing 
cortical nodes (Bullmore and Sporns, 2009, 2012; He and Evans, 2010; 
van den Heuvel and Sporns, 2011; Sporns, 2013; Wang et al., 2015; Liao 
et al., 2017).

Previous rs-fMRI studies also showed that compared with Nold 
people, ADD patients were characterized by decreased network 
segregation, as revealed by lower clustering/modular structure of the 
network graphs (Supekar et al., 2008; Chen et al., 2013) and higher 
network integration structure, as revealed by lower characteristic path 
length among the cortical nodes (Sanz-Arigita et al., 2010). Furthermore, 
prodromal ADD patients with mild cognitive impairment (ADMCI) 
compared with controls showed a higher global ‘clustering coefficient’, 
while ADD patients presented a higher hub ‘participation coefficient’ in 
the inferior parietal cortex, prefrontal cortex, precuneus, and 
somatomotor cortex (Ng et al., 2021). By contrast, diffusion MRI showed 
the following opposite picture in ADD patients over Nold persons: (1) 
lower network segregation, as revealed by a higher ‘clustering coefficient’ 
(Yao et al., 2010; Daianu et al., 2013); (2) lower efficiency of the network 
structure in relation to memory and executive performances (Lo et al., 
2010; Reijmer et  al., 2013); and (3) lower network integration, as 
revealed by higher characteristic ‘path length’ (Lo et  al., 2010; Yao 
et al., 2010).

It should be  remarked that the rs-fMRI has a low temporal 
resolution of about 1 s, which is insufficient to investigate the 
interdependency between the emerging activity of neural brain 
populations at frequencies higher than 0.5 Hz. Therefore, 
electroencephalographic (EEG) techniques were used to explore that 
interdependency at a larger frequency spectrum, as they have a high 
temporal resolution of <1 ms, despite a moderate spatial resolution of 
centimeters (de Haan et  al., 2012). Previous EEG studies showed 
abnormalities in several measures of the interrelatedness of rsEEG 
rhythms at electrode or source pairs. Compared with Nold persons, 
ADD patients presented lower ‘spectral coherence’ at alpha (8–12 Hz) 
and beta (13–20 Hz) rhythms, especially at temporo-parieto-occipital 
and fronto-parietooccipital electrode pairs; notably, ‘spectral coherence’ 
is the most popular linear measure of the interrelatedness of rsEEG 
activity (Leuchter et al., 1992; Dunkin et al., 1994; Locatelli et al., 1998; 
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Jelic et al., 2000; Adler et al., 2003). Similarly, ADD and ADMCI patients 
exhibited lower interrelatedness of temporo-parieto-occipital and/or 
fronto-parietooccipital rsEEG alpha rhythms, as revealed by the 
following procedures: the ‘phase lag index’, a spectral measure of the 
phase difference distribution asymmetry (Stam et al., 2007b; Yu et al., 
2016; Peraza et  al., 2018), ‘synchronization likelihood’, a measure 
sensitive to both linear and non-linear interrelatedness of rsEEG activity 
(Babiloni et  al., 2004b, 2006b), and ‘linear lagged connectivity’, a 
measure of the interrelatedness of rsEEG activity without the zero-lag 
component sensitive to the head volume conduction effects (Babiloni 
et al., 2018, 2019).

The above rsEEG findings were confirmed and extended by 
measures reflecting the directionality of the interrelatedness of rsEEG 
activity from one electrode/source to another, such as the ‘directed 
transfer function’ derived from Granger causality and autoregressive 
methods (Blinowska, 2011; Blinowska et al., 2017). ADD and ADMCI 
patients exhibited lower interrelatedness of the temporo-parieto-
occipital and/or fronto-parietooccipital rsEEG alpha rhythms, as 
revealed by “directed transfer function” (Dauwels et al., 2009, 2010). 
Furthermore, there was a reduced prominence of the interrelatedness 
from parietal to frontal electrodes at the alpha and beta (13–35 Hz) 
rhythms (Babiloni et al., 2008, 2009a,b; Blinowska et al., 2017).

Concerning the rsEEG delta (<4 Hz) and/or theta (4–7 Hz) rhythms, 
most of the studies showed higher measures of the interrelatedness of 
topographically widespread rsEEG activity, intrahemispherically and 
inter-hemispherically; those measures were derived from the ‘spectral 
coherence’, ‘directed transfer function’, and ‘linear lagged connectivity’ 
(Babiloni et al., 2008, 2009a,b, 2010, 2018, 2019; Sankari et al., 2011; 
Canuet et al., 2012; Yu et al., 2016; Blinowska et al., 2017), with some 
exceptions (Knott et al., 2000; Adler et al., 2003).

Previous rsEEG studies also revealed the abnormal network 
topology of the interrelatedness of rsEEG rhythms at electrode/source 
pairs in ADD patients. Compared with Nold people, ADD and ADMCI 
patients showed a more random topology of the interrelatedness of 
rsEEG rhythms at an electrode or source pairs, possibly due to reduced 
‘small worldness’ properties of brain networks (Reijneveld et al., 2007; 
Stam et al., 2007a; de Haan et al., 2009; Frantzidis et al., 2014; Vecchio 
et al., 2014, 2016; Hallett et al., 2020). This general effect was reported at 
the delta, alpha, and beta rhythms on the whole scalp (Stam et al., 2007a; 
de Haan et al., 2009; Vecchio et al., 2014, 2016) and in AD-vulnerable 
regions, such as the frontal and parietal regions (Frantzidis et al., 2014).

Moreover, beyond the ‘small worldness’ property, ADD patients 
were characterized by abnormalities in the following graph network 
indexes: (1) a shift of the ‘betweenness centrality’ center of mass from 
posterior to anterior alpha rhythms in relation to disease severity, as 
revealed by the ‘phase lag index’ (Engels et al., 2015); (2) a parietal and 
occipital loss of the network organization from theta and alpha rhythms, 
as revealed by the ‘phase lag index’ (Yu et  al., 2016); (3) hub 
rearrangement and functioning at different rsEEG frequency bands, as 
revealed by several interrelatedness measures (Stam et al., 2007a; De 
Haan et al., 2009; Frantzidis et al., 2014; Engels et al., 2015; Song et al., 
2019; Das and Puthankattil, 2022); (4) lower ‘global efficiency’, increased 
‘local efficiency’, and lower resilience of cortical networks from the 
rsEEG alpha and beta rhythms, as revealed by the Granger ‘directed 
transfer function’ (Afshari and Jalili, 2017); and (5) reduced graph ‘local 
and global efficiency’ values from lower inward and outward directions 
of the interrelatedness derived from the whole-band rsEEG activity by 
another Granger measure based on a conditional multivariate vector 
autoregression model. Notably, the maximum abnormalities of the ‘hub 

degree’ were observed at parietal electrodes (Franciotti et al., 2019), 
whereas no changes in the global network organization from the whole-
band rsEEG activity were found by ‘mutual information’ measures of 
that interrelatedness (Franciotti et al., 2022).

Considering the above rsEEG findings, both ADD and ADMCI 
patients showed reduced efficient information exchange in the cortical 
neural networks, as revealed by their more random topology. However, 
no previous study in those patients focused on the integrity of the 
parietal hubs derived from the rsEEG alpha rhythms, although it is well 
known that ADD patients show the following significant abnormalities: 
(1) impairment in the parietal nodes of the cortical DMN (Bokde et al., 
2006; Sorg et al., 2007; Brier et al., 2012; Wang et al., 2015; Joo et al., 
2016; Eyler et  al., 2019; Talwar et  al., 2021; Zhang et  al., 2021); (2) 
reduced interrelatedness of the parietal rsEEG alpha rhythms electrode 
or source pairs (Leuchter et al., 1992; Locatelli et al., 1998; Jelic et al., 
2000; Babiloni et al., 2004a, 2006a, 2018, 2019; Stam et al., 2007b; Yu 
et al., 2016; Peraza et al., 2018); and (3) reduced power density of the 
occipital and parietal rsEEG alpha rhythms (reviewed by Babiloni 
et al., 2021).

In ADD patients, the abnormal reduction in rsEEG alpha rhythms 
may be related to disorders in the regulation of quiet vigilance. This 
functional interpretation is based on, among others, the following 
findings: (1) in healthy volunteers, posterior (eyes closed) rsEEG alpha 
rhythms were modulated in amplitude after transcranial magnetic 
stimulations over angular gyrus, a core region of the DMN, but not over 
control regions of the dorsal attention network (Capotosto et al., 2012); 
(2) those rsEEG alpha rhythms also reduced in amplitude 1 min before 
the onset of sleep stage 1 (Morikawa et al., 2002); (3) furthermore, they 
decreased in amplitude and theta rhythms increased in amplitude 
during the transition from quiet vigilance to drowsiness, behaviorally 
tested by both EEG spectral measures and reaction time and decision 
making to auditory stimuli (Jagannathan et al., 2018, 2022); and (4) 
moreover, a night of sleep deprivation reduced the posterior rsEEG 
alpha rhythms in healthy volunteers and visual attention performances 
(placebo condition), whereas an acute dose of an amphetamine 
(experimental condition) after sleep deprivation recovered both the 
posterior EEG alpha rhythms and those performances (Del Percio 
et al., 2019).

To fill the above literature gap, the present study explored the 
integrity of the parietal graph-based hubs derived from the rsEEG alpha 
rhythms in mild-to-moderate ADD patients compared with Nold 
people. In the present study, all methods for estimating the directional 
(isolated lagged effective coherence, iCoh) and non-directional (linear 
lagged connectivity, LLC) interrelatedness of the rsEEG activity at 
electrode pairs are implemented in the freeware platform called 
eLORETA.1 Along the same line, the methods for computing the Graph 
Theory indexes are implemented in the freeware platform called 
GraphVar.2 These methods were chosen to (1) use different mathematical 
approaches to measure that interrelatedness, (2) compare the results, (3) 
promote open science, and (4) allow easier cross-validation of the 
present results in the future. Notably, we did not want to provide a 
methodological standard for applying graph theory analysis. Rather, 
we provided a proof of concept of how the results may be affected by 
different thresholds and criteria.

1 https://www.uzh.ch/keyinst/loreta

2 https://www.nitrc.org/projects/graphvar
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2. Materials and methods

2.1. Subjects

For the present study, we used the clinical and rsEEG data of 40 
ADD patients and 40 control Nold people carefully matched for age, 
gender, and education and enrolled by clinical units of our Consortium 
(data from three ADD patients were irremediable artifacts or relevant 
missing data, so were not considered further). The Local institutional 
Ethics Committees approved the present study. All experiments were 
performed with the informed and overt consent of each participant or 
caregiver, in line with the Code of Ethics of the World Medical 
Association (Declaration of Helsinki) and the standards established by 
the local Institutional Review Board.

Table  1 summarizes the most relevant demographic (i.e., age, 
gender, and education) and clinical (i.e., MMSE score) features of the 
Nold and ADD participants. Furthermore, it shows the results of the 
statistical comparisons (p < 0.05) of age (t-test), gender (Fisher test), 
education (t-test), and MMSE score (Mann–Whitney U test) between 
the two groups. As expected, a statistically significant difference was 
found for the MMSE score (p < 0.001), indicating a higher score in the 
Nold group than the ADD group. No difference was found for the age, 
gender, and education between the two groups (p > 0.05 uncorrected).

In Table 1, the mean values of TF and IAF for the Nold and ADD 
groups, together with the results of the statistical comparisons between 
them (t-test), are also reported. No statistically significant differences 
were observed for TF and IAF values (p > 0.05 uncorrected).

2.2. Diagnostic criteria

In all clinical units, probable ADD was diagnosed based on the 
criteria of the Diagnostic and Statistical Manual of Mental Disorders, 
fourth edition (DSM-IV-TR; American Psychiatric Association), and the 
National Institute of Neurological Disorders and Stroke-Alzheimer 
Disease and Related Disorders (NINCDS-ADRDA) working group 
(McKhann et al., 1984, 2011). Diagnostic criteria refer to the time period 
when diagnoses were performed. All ADD individuals underwent 
medical, neuropsychological, neurological, psychiatric, and neuroimaging 
evaluations, according to standard procedures at each center and based 
on the expertise of each clinician. The procedures followed by all clinical 
units included the Instrumental Activities of Daily Living scale (IADL; 
Lawton and Brody, 1969), the Mini-Mental State Examination (MMSE; 
Folstein et al., 1975), the Clinical Dementia Rating scale (CDR; Hughes 
et al., 1982), the Geriatric Depression Scale (GDS; Yesavage et al., 1982), 
and the Hachinski Ischemic Score scale (HIS; Rosen et al., 1980).

Inclusion criteria included the clinical diagnosis of AD based on the 
above procedures and the determination of a worsening episodic 

memory in the last 6 months, thus referring to patients with typical ADD 
clinical presentation. According to the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI),3 the MMSE score had to be 24 or lower. 
Additionally, inclusion criteria included the visual analysis of structural 
T1-weighted magnetic resonance images (MRIs) by local radiologists; 
those images had to be compatible with ADD diagnosis (Albert et al., 
2011). Cognitive deficits were assessed by standard neuropsychological 
tests in the domains of episodic memory, language, executive function/
attention, and visuoconstruction abilities (local normative reference 
thresholds). Only some of the patients received the CERAD-plus battery. 
In general, the tests assessing episodic memory included the delayed 
recall of Rey figures (Rey, 1959) and/or the delayed recall of a story 
(Spinnler and Tognoni, 1987). The tests assessing language included the 
1-min verbal fluency for letters, fruits, animals, or car trades (Novelli 
et al., 1986), and/or the Token test (Spinnler and Tognoni, 1987). The 
tests assessing executive function and attention included the Trail 
Making Test Part A and B (Reitan, 1958). Finally, the tests assessing 
visuoconstruction abilities included the copy of Rey figures (Rey, 1959). 
This inhomogeneity derived from the retrospective nature of the study, 
with data collected during a clinical routine at each center.

Exclusion criteria included major neuropsychiatric disorders and 
other types or causes of dementia, such as frontotemporal dementia 
(Rascovsky et al., 2011), vascular dementia diagnosed based on the 
National Institute of Neurological Disorders and Stroke and Association 
Internationale pour la Recherché et l’Enseignement en Neurosciences 
(NINDS-AIREN) working group (Gorelick et  al., 2011), Parkinson 
disease (Gelb et al., 1999), dementia with Lewy Bodies (McKeith et al., 
2005), metabolic syndrome, nutritional deficits, tumors, epilepsy, etc. 
Exclusion criteria also included visual analysis of structural T2-weighted 
MRIs by local radiologists to exclude major cerebrovascular lesions, as 
well as the chronic use of psychoactive drugs except for 
acetylcholinesterase inhibitors (all patients chronically took them) and/
or NMDA receptor antagonists.

The Nold participants received a cognitive, physical, and 
neurological examination to exclude the presence of cognitive deficits 
and psychiatric disorders. According to ADNI, the MMSE score had to 
be 27 or higher. Additionally, all Nold participants had a GDS score 
lower than the threshold of 5 (no depression) or were verified as not 
having depression after an interview with a physician or clinical 
psychologist. Those affected by chronic systemic illnesses (e.g., diabetes 
mellitus) were excluded, as well as participants receiving chronic 
psychoactive drugs. Assessed Nold people were also excluded if they 
had, currently or historically, neurological or psychiatric diseases and 
drug or alcohol abuse issues.

3 http://adni.loni.usc.edu

TABLE 1 Demographic, clinical, neuropsychological, and neurophysiological characteristics of the normal elderly (Nold) subject and Alzheimer’s Disease 
with Dementia (ADD) patients enrolled in the present study.

Group N Age (± SEM) Education (± SEM) Gender (M/F) MMSE (± SEM) TF (± SEM) IAF (± SEM)

Nold 40 73.8 (± 1.0) 9.1 (± 0.5) 20/20 28.6 (± 0.2) 5.7 (± 0.1) 9.0 (± 0.2)

ADD 37 73.7 (± 1.0) 8.7 (± 0.8) 17/20 18.7 (± 0.6) 5.3 (± 0.2) 8.6 (± 0.3)

Statistical 

comparisons

– t test, n.s. t test, n.s. – Mann–Whitney, 

p < 0.0001

t test, n.s. t test, n.s.

SEM, standard error of the mean; MMS, Mini-Mental State Examination; TF, transition frequency; IAF, individual alpha frequency; n.s., not significant.
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In ADD and Nold participants, pharmacological administration 
(when planned) of routine drugs was postponed until after the rsEEG 
recordings and performed in hospital settings in the morning. Although 
this procedure did not guarantee a full washout of the drugs, it 
synchronized the timing of drug administration. Longer periods of 
suspension would not have been valid for obvious ethical reasons.

2.3. Resting state eyes-closed 
electroencephalographic recordings

In all clinical units, the Nold and ADD participants were kindly 
asked to stay relaxed with their eyes closed during the experiments. They 
were also kindly asked not to move or talk and keep their mind 
wandering without focused mentalization. During the experimental 
recordings, the researchers controlled for the subject’s behavioral 
condition and ongoing rsEEG traces (specifically the amplitude of alpha 
waves on posterior regions and the onset of slow-wave activity in frontal 
regions), helping the participants to keep an adequate level of vigilance 
(i.e., avoiding drowsiness and sleep onset). These alarms were annotated 
in the protocol for the preliminary rsEEG data analysis phase. The above 
instructions and procedures were similar in all clinical units even if the 
respective protocols were not identical.

At least 5 min of electrophysiological data were recorded by 
professional digital EEG systems authorized for clinical applications (i.e., 
EB-Neuro Be-light, Micromed, Brain Product, etc.). For this purpose, 
19 exploring scalp electrodes were placed according to the 10–20 
montage system (i.e., Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, 
P3, Pz, P4, P8, O1, and O2; Figure 1).

The ground electrodes were placed in the posterior midline, while 
the reference electrodes were located in different positions across 
participating clinical units (i.e., linked earlobes, mastoids, vertex, etc.), 
in line with local standard protocols and clinical trials. During the 
rsEEG recordings, scalp electrode impedances were kept below 5 KOhm. 
The rsEEG recordings were performed using 128 Hz or a higher 
sampling rate (i.e., 128–1,024 Hz) with an adequate antialiasing band 
pass between 0.01 Hz and 60–100 Hz.

In addition to the rsEEG recording, bipolar vertical and horizontal 
electrooculographic (EOG) signals and one-channel 
electrocardiographic (ECG) signals were also acquired using the same 
sampling frequency adopted for recording the rsEEG data 

(128–1,024 Hz). Consequently, rsEEG, EOG, and ECG signals had the 
same sampling rate, so EOG and ECG signals could be used for artifact 
detection and their off-line correction when adequate.

As mentioned above, some rsEEG datasets were recorded using a 
relatively low sampling frequency of 128 Hz (i.e., 6 out of 40 rsEEG 
datasets collected for the Nold group and 4 out of 37 rsEEG datasets 
collected for the ADD group). It should be  remarked that such a 
sampling frequency is suboptimal for an ideal reconstruction of rsEEG 
signal beyond 40 Hz without aliasing. Ideally, a factor of 3–4 between 
the low-band pass limit and the rsEEG sampling frequency 
should be set.

2.4. Preliminary rsEEG data analysis

Data analysis was centrally performed by the group located at the 
Department of Physiology and Pharmacology ‘Erspamer’ of Sapienza 
University of Rome, Italy. In the preliminary analysis, the rsEEG data 
were split into 2-s epochs and analyzed off-line. This segmentation 
allowed the use of standard toolboxes for the spectral analysis of 
rsEEG activity, such as fast Fourier transform (FFT) implemented in 
the official eLORETA platform. This analysis assumes the stationarity 
of rsEEG activity. Furthermore, it allowed for the minimization of the 
rejection of rsEEG data for artifactual activity. The use of those 
procedures allowed a better understanding of the present results in 
light of previous reference evidence of the PDWAVES Consortium 
(Babiloni et al., 2015, 2016; Lizio et al., 2016; more information can 
be found at www.pdwaves.eu), but it implied the focus on the linear 
components of rsEEG signals.

Two independent researchers (GN and RL) performed a visual 
analysis of EOG and rsEEG data blind to the clinical diagnosis associated 
with the electrophysiological datasets. They rejected those with artifacts 
due to instruments, electronic noise, head–neck movements, and face 
muscle tension. They also rejected rsEEG epochs with amplitude values 
exceeding 100 μV. Particular attention was given to the contamination 
of saccades and blinking on electrophysiological data recorded by 
frontal (i.e., F7, F3, Fz, F4, and F8) and frontopolar (Fp1 and Fp2) 
electrodes. This specific exam was based on the comparison of EOG and 
rsEEG traces. The rsEEG epochs with artifacts marked as eye movements 
and blinking were provided as inputs to a software toolbox based on an 
autoregressive model for their possible correction (MATLAB 6.5, 
MathWorks Inc.). Technical details and performances of this procedure 
have been reported elsewhere (Moretti et al., 2003) and validated in 
several previous studies by the present research group (Babiloni et al., 
2004a, 2006a, 2008). Of note, the outcome of this procedure was visually 
revised by the two researchers (G. N. and R. L.). All Nold and ADD 
datasets showed less than 25% of artifact-free rsEEG epochs, without 
significant differences between the Nold and ADD groups (t-test, 
p > 0.05, two tails). More specifically, the total number of artifact-free 
epochs was as follows: 135 ± 11 (SE) epochs for the Nold group and 
115 ± 8 (SE) epochs for the ADD group, with a total duration spanning 
between 3.5 and 4.5 min, respectively.

To harmonize rsEEG data recorded using different reference 
electrodes and sampling frequency rates, artifact-free rsEEG epochs 
were off-line frequency-band passed at 0.1–45 Hz and downsampled, 
when appropriate, to make the sampling rate of all artifact-free rsEEG 
datasets in the Nold and ADD participants equal to 128 Hz. For the sake 
of harmonization of all datasets, the recorded rsEEG data were 
re-referenced to the common average reference.

FIGURE 1

Scalp electrode positioning of the 19 electrodes according to the 
international standard 10–20.
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2.5. The spectral analysis of rsEEG epochs

A standard digital FFT-based analysis (Welch technique, Hanning 
windowing function, no phase shift) computed the power density of 
scalp rsEEG rhythms (0.5 Hz of frequency resolution). As mentioned 
above, only rsEEG epochs free from artifacts were used.

The EEG frequency bands of interest were individually identified 
based on the following frequency landmarks: the transition frequency 
(TF) and the individual alpha frequency (IAF) peak (Klimesch, 1999). In 
the EEG power density spectrum, the TF marks the transition frequency 
between the theta and alpha bands, defined as the minimum of the 
rsEEG power density between 3 and 8 Hz (between the delta and the 
alpha power peak). The IAF is defined as the maximum power density 
peak between 6 and 14 Hz. These frequency landmarks were previously 
well described by Dr. Wolfgang Klimesch (Klimesch, 1996, 1999; 
Klimesch et al., 1998). Specifically, the TF and IAF were measured on 
averaged rsEEG power density spectra at parietal and occipital electrodes.

The TF and IAF were computed for each subject involved in the 
study. Based on the TF and IAF, we estimated the individual delta, theta, 
and alpha bands as follows: delta from TF −4 Hz to TF −2 Hz, theta 
from TF −2 Hz to TF, low-frequency alpha (alpha 1 and alpha 2) from 
TF to IAF, and high-frequency alpha (or alpha 3) from IAF to IAF + 
2  Hz. Specifically, the individual alpha 1 and alpha 2 bands were 
computed as follows: alpha 1 from TF to the frequency midpoint of the 
TF-IAF range and alpha 2 from that midpoint to IAF.

The other bands were defined based on the standard fixed frequency 
ranges used in the reference study series (reviewed by Babiloni et al., 
2021): beta 1 from 14 to 20 Hz, beta 2 from 20 to 30 Hz, and gamma from 
30 to 40 Hz. See Supplementary Figure 1 in the Supplementary materials 
for the graphical representation of the above-mentioned frequency bands.

Of note, important aspects of the procedure were as follows:

 (1) The alpha band was divided into sub-bands because, in the rsEEG 
data, dominant low-frequency alpha rhythms (alpha 1 and alpha 
2) may denote the synchronization of diffuse neural networks 
regulating the fluctuation of the subject’s global awake and 
conscious states, while high-frequency alpha rhythms (alpha 3) 
may denote the synchronization of more selective neural 
networks specialized in the processing of modal specific or 
semantic information (Pfurtscheller and Klimesch, 1992; 
Klimesch, 1999). When the subject is engaged in sensorimotor 
or cognitive tasks, alpha and low-frequency beta (beta 1) rhythms 
do reduce in power (i.e., desynchronization or blocking) and are 
replaced by fast EEG oscillations at high-frequency beta (beta 2) 
and gamma rhythms (Pfurtscheller and Klimesch, 1992).

 (2) We considered individual delta, theta, and alpha frequency bands 
because a clinical group may be characterized by a mean slowing 
in the peak frequency of the alpha power density without any 
substantial change in the magnitude of the power density. In that 
specific case, the use of fixed frequency bands would result in a 
statistical effect erroneously showing alpha power density values 
lower in the clinical group than in the control group. In some 
specific cases, the groups of AD patients and control participants 
may not show statistically significant differences in the mean 
values of TF and IAF. Nevertheless, we used those values as a 
research model to allow the identification of delta, theta, 
low-frequency alpha bands, and high-frequency alpha bands on 
an individual basis to ensure the spectral measures were accurate 
within those bands, in line with our reference rsEEG studies 

performed in patients with AD and related neurodegenerative 
disorders (Babiloni et al., 2017, 2018, 2019, 2020).

 (3) Fixed frequency ranges were used for the beta and gamma bands 
because the individual beta and gamma frequency peaks were 
only evident in a few subjects (<10%).

 (4) We selected the beginning of the beta frequency range at 14 Hz 
to avoid overlapping between individual alpha and fixed beta 
frequency ranges (i.e., the individual alpha frequency band 
ranged from TF to 14 Hz with an IAF of 12 Hz).

During rsEEG recording, very careful attention was paid to the 
amplitude of alpha rhythms on posterior regions and the abnormal 
slow wave on frontal regions. Overall, specific spectral features should 
be respected, namely:

 (1) The physiological decrease of the EEG power density after the 
IAFp as a function of the increase of the frequencies in the range 
of 1–40 Hz (related to residual muscular activity);

 (2) The absence of an offset of power density across all frequencies 
at some scalp electrodes (especially visible as big differences in 
gamma rsEEG power density among the ROI);

 (3) The absence of several peaks of high-power density in the range 
of 1–40 Hz; and.

 (4) Visible IAFp in the range between 6 Hz and 14 Hz, especially on 
posterior regions.

We carefully checked the presence of IAFp in the present cohort of 
AD patients, as in a mild-to-moderate dementia stage, AD 
neuropathology should not impair the neurophysiological synchronizing 
mechanism inducing a total disruption of IAFp. If an IAFp was not 
clearly present, we attributed the cause to substantial artifacts rather 
than AD neuropathology.

2.6. Estimation of linear lagged connectivity 
(LLC) and isolated lagged effective 
coherence (iCoh)

As mentioned above, LLC and iCoh are two complementary and 
mathematically independent approaches available at the freeware 
platform called LORETA (see technical details at https://www.uzh.ch/
keyinst/loreta; Pascual-Marqui, 2007) for measuring the 
interrelatedness of rsEEG activity at electrode (source) pairs. 
Comparing the results with two techniques probed the intrinsic 
variability of this kind of readout and allowed us to select and discuss 
the one that was most consistent.

LLC belongs to the popular bivariate techniques that compute the 
non-directional interrelatedness of rsEEG activity at electrode pairs (e.g., 
spectral coherence, phase lag index, synchronization likelihood, etc.) 
without considering the interrelatedness of rsEEG activity across the other 
electrode (source) pairs. It has the conceptual advantage of not considering 
the interrelatedness of the rsEEG activity at the zero-lag phase, which may 
be affected by the instantaneous spread of the electric field to the well-
known head volume conduction effects (Pascual-Marqui et al., 2011).

By contrast, iCoh belongs to a group of techniques based on an 
autoregressive model that computes the directional interrelatedness of 
rsEEG activity at electrode pairs (e.g., spectral coherence, phase lag 
index, synchronization likelihood, etc.), removing the linear component 
of the interrelatedness of rsEEG activity across the other electrode 
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(source) pairs. It has the conceptual advantage of being multivariate (as 
opposed to bivariate) and exploring the directionality of that 
interrelatedness (Pascual-Marqui et al., 2014).

Using the iCoh procedure, we  obtained not only a ‘directional’ 
measure of the interdependencies of rsEEG rhythms at electrode pairs 
but also a ‘non-directional’ measure. The directional measure was 
computed as the absolute difference of the iCoh values between the two 
‘directions’, while the ‘non-directional’ measure was obtained by the 
mean of the two ‘directional’ values. The latter measure allowed cross-
validation of (‘non-directional’) LLC measures.

For each participant, LLC, mean iCoh between the two ‘directions’, 
and the absolute difference of the iCoh values for the two ‘directions’ 
were calculated at each frequency bin between 0.5 and 45 Hz (matrix of 
19 rows × 19 columns). LLC and iCoh values within the frequency bands 
individually identified based on the TF and IAF landmarks were 
averaged to obtain delta, theta, alpha 1, alpha 2, and alpha 3 bands. LLC 
and iCoh values for beta 1, beta 2, and gamma LLC were based on fixed 
frequency bands, as mentioned above.

To reduce statistical comparisons, we averaged the LLC or iCoh 
values calculated between scalp electrode pairs for regions of Interests 
(ROI). Specifically, we considered frontal, central, parietal, temporal, 
and occipital ROI. For each frequency band, LLC or iCoh values for 
interhemispheric comparisons were calculated as follows: (1) frontal 
ROI, mean values of Fp1-Fp2, F3-F4, and F7-F8 electrodes; (2) central 
ROI, the values of C3-C4 electrodes; (3) parietal ROI, the values of 
P3-P4 electrodes; (4) temporal ROI, mean values of T7-T8 and P7-P8 
electrodes; and (5) occipital ROI, the values of O1-O2 electrodes.

Similarly, for each frequency band, LLC or iCoh values for 
intrahemispheric comparisons were calculated as follows: (1) left frontal 
ROI, mean values of electrode pairs between Fp1, F3, and F7 electrodes 
and all the left hemispheric electrodes; (2) right frontal ROI, mean 
values of electrode pairs between Fp2, F4, and F8 electrodes and all the 
right hemispheric electrodes; (3) left central ROI, mean values of 
electrode pairs of the left hemi-scalp involving the C3 electrode and all 
the left hemispheric electrodes; (4) right central ROI, mean values of 
electrode pairs of the right hemi-scalp involving the C4 electrode and 
all the right hemispheric electrodes; (5) left parietal ROI, mean values 
of electrode pairs of the left hemi-scalp involving the P3 electrode and 
all the left hemispheric electrodes; (6) right parietal ROI, mean values 
of electrode pairs of the right hemi-scalp involving the P4 electrode and 
all the right hemispheric electrodes; (7) left temporal ROI, mean values 
of electrode pairs of the left hemi-scalp involving the T7 and P7 
electrodes and all the left hemispheric electrodes; (8) right temporal 
ROI, mean values of electrode pairs of the right hemi-scalp involving 
the T6 and P8 electrodes and all the right hemispheric electrodes; (9) 
left occipital ROI, mean values of electrode pairs of the left hemi-scalp 
involving the O1 electrode and all the left hemispheric electrodes; and 
(10) right parietal ROI, mean values of electrode pairs of the right hemi-
scalp involving the O2 electrode and all the right hemispheric electrodes.

2.7. Graph theory analysis of LLC and iCoh 
values

For each participant, the LLC, mean iCoh, and absolute difference 
of iCoh values at the frequency bands showing statistically significant 
differences between the ADD and Nold groups were used as input for 
the graph theory analysis. This analysis was performed using the 
GraphVar 2.0 software platform (Waller et al., 2018).

For this purpose, matrices of LLC, mean iCoh, and absolute 
difference of iCoh values were converted into binary matrices having ‘0’ 
or ‘1’ in the cells. LLC or iCoh values associated with ‘1’ were considered 
as ‘significant’ and considered for the computation of the graph indexes 
of interest in the Nold and ADD groups. Notably, we converted the LLC 
and iCoh matrices into binary (‘1’ and ‘0’) graphs to (1) mitigate the 
inclusion of ‘spurious’ interdependencies of rsEEG rhythms at electrode 
pairs and (2) compare graphs with the same number of those 
interdependencies for the Nold and ADD groups.

For the identification of the ‘significant’ values of LLC or iCoh (‘1’ 
in the binary matrices), two arbitrary percentage thresholds were 
used, namely 10% (0.1) and 20% (0.2). For each frequency band and 
group of participants (Nold and ADD), the threshold at 10% did set to 
‘1’ the 10% of the highest values of LLC (iCoh), considering all 
electrode pairs, and ‘0’ for the remaining ones. This procedure was 
repeated for LLC, mean iCoh, and the absolute difference of iCoh 
values. Specifically, 10% of the highest values of LLC corresponded to 
17 electrode pairs. The same number of electrode pairs was true for 
(‘non-directional’) mean iCoh and the absolute difference of the two 
‘directional’ iCoh values.

Following the same procedure, the threshold at 20% did set to ‘1’ the 
20% of the highest values of LLC (iCoh), considering all electrode pairs, 
and ‘0’ for the remaining ones. Specifically, 20% of the highest values of 
(‘non-directional’) LLC corresponded to 34 electrode pairs. Again, this 
procedure was repeated for LLC, mean iCoh, and the absolute difference 
of iCoh values.As another step of the graph theory analysis, 
we arbitrarily used the nodal degree (ND), participation coefficient 
(PC), and local clustering coefficient (CC) graph indexes to scalp 
electrodes as degree hubs and then differentiate them into provincial 
and connector hubs.

For this purpose, ND was defined as the number of links (i.e., 
‘significant’ interdependencies of rsEEG rhythms at electrode pairs 
represented as ‘1’ in the previously mentioned binary matrices) 
characterizing a given node (electrode). Among nodes with a high 
number of links (high-degree nodes = degree hubs), PC denoted the 
discriminant feature of their connection profile. In general, provincial 
hubs primarily link other nodes located within a single network region. 
By contrast, connector hubs predominantly link nodes located in several 
network regions (Sporns et al., 2007; Power et al., 2013). Here, this 
classification as provincial hub vs. connector hub was further confirmed 
by the CC index, which is a measure of the tendency of network nodes 
to form local clusters. High CC values mainly characterize provincial 
hubs rather than connector hubs.

In the present experimental context, we  operationally defined 
degree hubs and then differentiated them into provincial and connector 
hubs using the following three approaches:

 (1) Hubs were defined according to ND and classified into connector 
and provincial hubs according to the PC and CC calculated at 0.1 
and 0.2 graph thresholds, in line with the Franciotti and 
Bonanni approach.

 (2) Hubs were defined according to ND and classified into connector 
and provincial hubs according to the PC and betweenness 
centrality (BC) calculated at 0.1 and 0.2 graph thresholds, in line 
with the approach described by Cole et al. (2015).

 (3) Hubs were defined according to the within-module degree 
z-score and classified into connector and provincial hubs 
according to the PC calculated at 0.1 and 0.2 graph thresholds, in 
line with the approach described by Power et al. (2013).
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Furthermore, we  used the four following alternative criteria for 
testing the consistency of the results (they were applied for each 
frequency band and each group of participants):

 (1) According to the first criterion, degree hubs were defined as 
nodes (electrodes) with ND (number of links) higher than one 
standard deviation (SD) from the group mean of significant 
node links (i.e., ‘1’ in the previously mentioned binary matrices) 
within the network (electrode montage). Provincial hubs were 
then defined as degree hubs with an ND and a CC higher than 
one SD and PC lower than one SD from the group mean of 
significant node links within the network. Connector hubs were 
defined as degree hubs (electrodes) with an ND and a PC higher 
than one SD from the network mean and a CC lower than one 
SD from the group mean of significant node links within 
the network.

 (2) According to the second criterion, degree hubs were defined as 
nodes with an ND higher than the 80th percentile from the 
group mean of significant node links within the network. 
Provincial hubs were then defined as degree hubs with an ND 
and a CC higher than the 80th percentile and a PC lower than 
the 20th percentile from the group mean of significant node links 
within the network. Connector hubs were defined as degree hubs 
with an ND and a PC higher than the 80th percentile from the 
network mean and a CC lower than the 20th percentile from the 
group mean of significant node links within the network.

 (3) According to the third criterion, degree hubs were defined as 
nodes with an ND higher than the 70th percentile from the 
group mean of significant node links within the network. 
Provincial hubs were then defined as degree hubs with an ND 
and a CC higher than the 70th percentile and a PC lower than 
the 30th percentile from the group mean of significant node links 
within the network. Connector hubs were defined as degree hubs 
with an ND and a PC higher than the 70th percentile from the 
network mean and a CC lower than the 30th percentile from the 
group mean of significant node links within the network.

 (4) According to the fourth criterion, degree hubs were defined as 
nodes with an ND higher than one standard error of the mean 
(SEM) from the group mean of significant node links within the 
network. Provincial hubs were then defined as degree hubs with 
an ND and a CC higher than one SEM and a PC lower than one 
SEM from the group mean of significant node links within the 
network. Connector hubs were defined as degree hubs with an 
ND and a PC higher than one SEM from the network mean and 
a CC lower than one SEM from the group mean of significant 
node links within the network.

All results obtained with the above criteria are reported in detail in 
the tables featured in the Supplementary materials (see Results). Of note, 
the selection of the criteria was performed to provide an index of the 
result variability using different mathematical threshold definitions.

2.8. Directionality of degree hubs by iCoh 
values

To evaluate the directionality of the interdependencies of rsEEG 
rhythms between degree hubs (electrodes), ‘directional’ iCoh values for 
pairs of those hubs were calculated at each frequency bin between 0.5 

and 45 Hz and for each participant of the ADD and Nold groups. Then, 
these iCoh values were averaged according to individual frequency 
bands from delta to alpha 3. To limit the statistical comparisons, the 
subsequent analysis was focused on individual delta, alpha 2, and alpha 
3 bands, which are typically abnormal in rsEEG rhythms recorded in 
ADD patients (Babiloni et al., 2021). For each frequency band and group 
of participants, the global output (outward) value of a given degree hub 
was obtained averaging all output iCoh values from it to the other degree 
hubs. The global input (inward) value of that degree hub was obtained 
averaging all input iCoh values to it coming from the other degree hubs.

2.9. Statistical analysis

To evaluate the study hypotheses, the following statistical sessions 
were performed by the commercial tool STATISTICA 10 (StatSoft Inc.).4 
As analysis of variance (ANOVA) implies that dependent variables have 
Gaussian distributions, we tested this feature with the LLC and iCoh 
values using a Kolmogorov–Smirnov test (null hypothesis of 
non-Gaussian distributions tested at p > 0.05). Both the LLC and iCoh 
values showed non-Gaussian distributions, so we Log10 transformed 
them and retested Gaussian status. Such a transformation is a popular 
method for transforming a skewed data distribution with all positive 
values, such as LLC and iCoh values, to Gaussian distributions, as 
required when using ANOVA. Indeed, the outcome of the procedure did 
approximate the distributions of LLC and iCoh values to Gaussian 
distributions (p > 0.05), allowing the use of the ANOVA model.

For the session using ANOVAs, Mauchly’s test evaluated the 
sphericity assumption, and degrees of freedom were corrected using the 
Greenhouse–Geisser procedure when appropriate (p < 0.05). the Duncan 
test was used for post-hoc comparisons (p < 0.05, corrected for 
multiple comparisons).

The results of the following ANOVAs were controlled by the iterative 
(leave-one-out) Grubbs’ test detecting for the presence of one or more 
outliers in the distribution of the LLC and iCoh values showing the 
significant effects in relation to the study hypotheses. The null hypothesis 
of the non-outlier status was tested at the arbitrary threshold of p > 0.001 
to remove only values with the highest probability of being outliers.

In the first statistical session, we evaluated whether the LLC, mean 
iCoh, and absolute difference of iCoh interhemispheric values may 
differ between the ADD and Nold groups at parietal delta and alpha 
rhythms. To this aim, we developed three ANOVA designs with the 
Log10-transformed LLC, mean iCoh, and absolute difference of iCoh 
values as dependent variables, respectively. The factors were group 
(Nold, ADD; independent variable), ROI (frontal, central, parietal, 
temporal, and occipital), and band (delta, theta, alpha 1, alpha 2, alpha 
3, beta 1, beta 2, and gamma). The confirmation of the hypothesis 
would require (1) a statistically significant ANOVA interaction, 
including the factors group, ROI, and band (p < 0.05), and (2) a post-
hoc Duncan test indicating statistically significant (p < 0.05) 
differences in the LLC values at parietal delta and alpha rhythms 
between the Nold and ADD groups (i.e., Nold ≠ ADD, p < 0.05).

In the second session, we evaluated whether the LLC, mean iCoh, 
and absolute difference of iCoh intrahemispheric values may differ 
between the ADD and Nold groups at delta and alpha rhythms within 

4 www.statsoft.com
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the two hemispheres. To this aim, we developed three ANOVA designs 
with the Log10-transformed LLC, mean iCoh, and absolute difference of 
iCoh values as dependent variables, respectively. The factors were group 
(Nold, ADD; independent variable), hemisphere (left, right), ROI 
(frontal, central, parietal, temporal, and occipital), and band (delta, theta, 
alpha 1, alpha 2, alpha 3, beta 1, beta 2, and gamma). The confirmation 
of the hypothesis would require (1) a statistically significant ANOVA 
interaction, including the factors group, ROI, and band (p < 0.05), and 
(2) a post-hoc Duncan test indicating statistically significant (p < 0.05) 
differences in the LLC values at parietal delta and alpha rhythms between 
the Nold and ADD groups (i.e., Nold ≠ ADD, p < 0.05).

In the third session, we evaluated whether the global output and 
input iCoh values of parietal degree hubs (identified by the previous 
graph theory analysis) may differ between the ADD and Nold groups at 
delta and alpha rhythms. We also evaluated whether, within each group, 
a difference between global output and input iCoh values for degree hubs 
could be observed. To these aims, for each frequency band, we developed 
an ANOVA design with the Log10-transformed global iCoh values as a 
dependent variable and the group (Nold, ADD; independent variable), 
hub (all degree hubs), and direction (output, input) as factors. The 
confirmation of the hypothesis would require (1) a statistically significant 
ANOVA interaction, including the factors group, hub, and direction 
(p < 0.05), (2) a post-hoc Duncan test indicating statistically significant 
(p < 0.05) between-group differences in the parietal iCoh values at delta 
and alpha rhythms between the Nold and ADD groups (i.e., Nold ≠ 
ADD, p < 0.05), and (3) a post-hoc Duncan test indicating statistically 
significant (p < 0.05) within-group differences between the global output 
and input iCoh values (i.e., output ≠ input, p < 0.05).

3. Results

3.1. Demographic, clinical, 
neuropsychological, and rsEEG features in 
the Nold and Add groups

Table  1 summarizes the most relevant demographic (i.e., age, 
gender, and education) and clinical (i.e., MMSE score) features of the 
groups of Nold (N = 40) and ADD (N = 37) participants. Furthermore, 
it reports results of the statistical comparison (p < 0.05) of age (t-test), 
gender (Fisher test), education (t-test), and MMSE score (Mann–
Whitney U test) between the two groups. As expected, a statistically 
significant difference was found for the MMSE score (p < 0.001), 
indicating a higher score in the Nold group than in the ADD group. No 
difference was found for age, gender, and education between the two 
groups (p > 0.05 uncorrected).

In Table 1, the mean values of TF and IAF for the Nold and ADD 
groups, together with the results of the statistical comparisons between 
them (t-test), are also reported. No statistically significant differences 
were observed for TF and IAF values (p > 0.05 uncorrected).

3.2. Interdependencies of rsEEG rhythms at 
parietal electrode pairs as revealed by LLC 
and iCoh values

Results showed a statistically significant ANOVA interaction (F[28, 
2,100] = 2.25, p < 0.05) in interhemispheric LLC values among the factors 
group (Nold and ADD; independent variable), ROI (frontal, central, 

parietal, temporal, and occipital), and band (delta, theta, alpha 1, alpha 2, 
alpha 3, beta 1, beta 2, and gamma; Supplementary Figure 2). Compared 
with the Nold group, the ADD group was mainly characterized by (1) 
lower alpha 2 and alpha 3 LLC values at parietal and temporal ROI and 
(2) higher delta LLC values at frontal, parietal, and occipital ROI 
(p < 0.05). No significant ANOVA effect was observed in the 
interhemispheric iCoh values (p > 0.05; see Supplementary Figures 3, 4).

Additionally, a statistically significant ANOVA interaction (F[28, 
2,100] = 3.32, p < 0.05) in intrahemispheric (non-directional) LLC 
values among the factors group, ROI, and band (Supplementary Figure 5) 
was observed. Compared with the Nold group, the ADD group was 
mainly characterized by (1) lower LLC alpha 2 and alpha 3 values at the 
central, parietal, and occipital ROI and (2) higher LLC delta values at 
frontal, parietal, and occipital ROI (p < 0.05).

Another statistically significant ANOVA interaction (F[28, 
2,100] = 1.91, p < 0.05) was found in intrahemispheric (non-directional) 
mean iCoh values among the factors group, hemisphere, ROI, and band 
(Supplementary Figure 6). No significant post-hoc effect was observed 
in the planned tests (p > 0.05). There was just a trend for lower left-
parietal iCoh alpha 2 and alpha 3 values in the ADD group compared 
with the Nold group.

Finally, a statistically significant ANOVA interaction (F[28, 
2,100] = 2.13, p < 0.05) was found in the intrahemispheric (directional) 
absolute difference of iCoh values among the factors group, hemisphere, 
ROI, and band (Supplementary Figure 7). Again, no significant post-hoc 
effect was observed in the planned tests (p > 0.05) but there was a trend 
showing lower left-parietal iCoh values in the ADD group compared 
with the Nold group.

Table  2 reports all the results from the planned post-hoc tests 
(p < 0.05) for the above significant ANOVA effects. Notably, the above 
findings based on LLC and iCoh values were not due to outliers, as 
shown by Grubbs’ test with an arbitrary threshold of p > 0.001 (see 
Supplementary Figures 8, 9, respectively).

Globally, the above LLC and iCoh findings showed that 
interdependencies of rsEEG alpha 2 and alpha 3 rhythms at parietal 
electrode pairs were lower in the ADD group than in the Nold group. 
By contrast, results on interdependencies of rsEEG delta rhythms at 
scalp electrode pairs were inconsistent considering LLC and iCoh 
measures, so we did not use those measures for the graph hub analysis.

3.3. Parietal graph degree hubs from LLC 
and iCoh values at alpha rhythms

In the Supplementary material Tables 2–7 report detailed results 
about the graph degree hubs derived from LLC and iCoh alpha 2 and 
alpha 3 values computed in the Nold and ADD groups. As explained in 
the Materials and Methods section, those degree hubs were defined by 
the ND graph index using four different quantitative thresholds of 
qualification (i.e., mean + 1 SD, 80th percentile, 70th percentile, 
mean + 1 SEM).

Figure 2 illustrates those graph degree hubs computed from LLC 
and iCoh alpha 2 and alpha 3 values in the Nold and ADD groups. For 
sake of concision, the 0.1 and 0.2 thresholds are displayed in the 
same figure.

Although there was a certain spread of degree hubs over the scalp 
at alpha 2 and alpha 3 bands, LLC and iCoh measures showed 
converging evidence of parietal degree hubs at these bands in both 
the Nold and ADD groups. Even using the most conservative 
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criterion for the degree hub qualification (i.e., mean + 1 SD), 
consistent degree hubs from alpha 2 and alpha 3 rhythms were 
observed at parietal electrodes (i.e., P3, Pz, and P4). Notably, the iCoh 
values showed no substantial between-group differences in the 
topology of the parietal degree hubs at the alpha 2 and alpha 
3 bands.

3.4. Parietal graph connector hubs from LLC 
and iCoh values at alpha 2 and alpha 3 
bands

In the Supplementary material Tables 8–13 report detailed results 
about the graph connector and provincial hubs derived from LLC and iCoh 
alpha 2 and alpha 3 values computed in the Nold and ADD groups. Notably, 
the results showed no substantial graph provincial hub in the two groups.

Figures 3, 4 illustrate the localization of the graph connector hubs 
at the alpha 2 and alpha 3 bands in the Nold and ADD groups. For sake 

of concision, such a localization was computed considering the 0.1 and 
0.2 thresholds together. There was a certain spread of connector hubs 
over the scalp at those bands. However, LLC and iCoh measures 
showed convergent evidence of parietal connector hubs at alpha 2 and 
alpha 3 bands in both the Nold and ADD groups. Even using the most 
conservative criterion for the connector hub qualification (i.e., mean + 1 
SD), consistent connector hubs for alpha 2 and alpha 3 bands were 
observed at parietal electrodes (i.e., P3, Pz, and P4). Notably, the iCoh 
values showed no substantial between-group differences in the 
topology of the parietal connector hubs at the alpha 2 and alpha 
3 bands.

3.5. Directionality of hubs from LLC and 
iCoh values at alpha 2 and alpha 3 bands

Figures 5, 6 plot the global output (outward) and input (inward) 
iCoh alpha 2 and alpha 3 values at all electrodes denoted as a degree or 

TABLE 2 Post-hoc p-values (Duncan test) relative to the ANOVA interaction effects on the global output and input isolated lagged effective coherence 
(iCoh) in the alpha 2 and alpha 3 bands.

Global alpha2 iCoh Global alpha3 iCoh

Statistical comparison p-value Statistical comparison p-value

Nold > ADD Output P3: 0.026011

Output Pz: 0.038590

Nold > ADD Output Pz: 0.021034

Input > Output (Nold) Fp2: 0.044984

F3: 0.024305

F4: 0.026964

F7: 0.038887

Input > Output (Nold) Fp2: 0.034870

F3: 0.026717

F4: 0.027734

F7: 0.026067

Input > Output (ADD) Pz: 0.013233

Output > Input (Nold) P3: 0.000002

P4: 0.000002

Output > Input (Nold) P3: 0.000002

P4: 0.000003

Pz: 0.027605

Output > Input (ADD) P3: 0.014394

P4: 0.000001

Output > Input (ADD) P3: 0.007453

P4: 0.000005

FIGURE 2

Degree hubs for the alpha 2 and alpha 3 linear lagged connectivity (LLC, left column), mean (middle column), and absolute difference isolated lagged 
effective coherence (iCoh, right column) values in the Nold and ADD groups defined according to nodal degree (ND) calculated at 0.1 and 0.2 graph 
thresholds. Colors correspond to the different criteria adopted (mean and SD, 80th percentile, 70th percentile, mean and SEM).
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FIGURE 3

Connector and provincial hubs for the alpha 2 linear lagged connectivity (LLC, left column), mean (middle column), and absolute difference isolated lagged 
effective coherence (iCoh, right column) values in the Nold and ADD groups defined according to the three approaches used in the present study. Upper 
row: hubs were defined according to nodal degree (ND) and classified into connector and provincial hubs according to the participation coefficient (PC) 
and clustering coefficient (CC) calculated at 0.1 and 0.2 graph thresholds, in line with the approach described by Franciotti and Bonanni. Middle row: hubs 
were defined according to nodal degree (ND) and classified into connector and provincial hubs according to the participation coefficient (PC) and 
betweenness centrality (BC) calculated at 0.1 and 0.2 graph thresholds, in line with the approach described by Cole et al. (2015). Lower row: hubs were 
defined according to the within-module degree z-score and classified into connector and provincial hubs according to the participation coefficient (PC) 
calculated at 0.1 and 0.2 graph thresholds, in line with the approach described by Power et al. (2013). Colors correspond to the different criteria adopted 
(mean and SD, 80th/20th percentile, 70th/30th percentile, mean and SEM).

FIGURE 4

Connector and provincial hubs for the alpha 3 linear lagged connectivity (LLC, left column), mean (middle column), and absolute difference isolated lagged 
effective coherence (iCoh, right column) values in the Nold and ADD groups defined according to the three approaches used in the present study. Upper 
row: hubs were defined according to nodal degree (ND) and classified into connector and provincial hubs according to the participation coefficient (PC) 
and clustering coefficient (CC) calculated at 0.1 and 0.2 graph thresholds, in line with the approach described by Franciotti and Bonanni. Middle row: hubs 
were defined according to nodal degree (ND) and classified in connector and provincial hubs according to the participation coefficient (PC) and 
betweenness centrality (BC) calculated at 0.1 and 0.2 graph thresholds, in line the approach described by Cole et al. (2015). Lower row: hubs were defined 
according to the within-module degree z-score and classified into connector and provincial hubs according to the participation coefficient (PC) calculated 
at 0.1 and 0.2 graph thresholds, in line with the approach described by Power et al. (2013). Colors correspond to the different criteria adopted (mean and 
SD, 80th/20th percentile, 70th/30th percentile, mean and SEM).
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FIGURE 5

Global isolated lagged effective coherence (iCoh) values (mean across subjects ± SEM) in the alpha 2 frequency band within electrodes classified as 
substantial degree or connector hubs relative to a statistically significant ANOVA interaction (F [10, 750] = 2.42, p < 0.05) among the group (Nold and ADD), 
hubs (Fp2, F3, F4, F7, P3, P4, Pz, P7, P8, O1, and O2), and direction (output and input) factors. No statistically significant outliers were found according to 
Grubbs’ test (p < 0.0001).

a connector hub in the above analysis. Results showed a statistically 
significant ANOVA interaction of the iCoh alpha 2 values among group 
(Nold and ADD; independent variable), hub (electrodes with hub 
features), and direction (output and input) factors (F[10, 750] = 2.42, 
p < 0.05). Compared with the Nold group, the ADD group showed lower 
output global iCoh alpha 2 values at parietal electrodes (i.e., P3 and Pz; 
p < 0.05).

A statistically significant ANOVA interaction of the iCoh alpha 3 
values was also observed among group, hub, and direction (F[10, 
750] = 2.48, p < 0.05). Compared with the Nold group, the ADD group 
showed lower output global iCoh alpha 3 values at one parietal electrode 
(i.e., Pz; p < 0.05).

Additionally, a statistically significant ANOVA interaction of the 
iCoh alpha 3 values was observed among group, hub, and direction 
(F = 2.48, p < 0.05). Compared with the Nold group, the ADD group 
showed lower output global iCoh alpha 3 values at one parietal electrode 
(i.e., Pz; p < 0.05).

Supplementary material Table 1 reports the results of the Duncan 
planned post-hoc (p < 0.05) test relative to the ANOVA interaction 
effects. Of note, the above results were not caused by outliers, as 
shown by Grubbs’ test with an arbitrary threshold of p > 0.001 (see 
Supplementary Figure 10).

Overall, the above iCoh results showed no substantial between-
group differences in the topology of the iCoh alpha 2 and alpha 3 
values, with those values being maximized at parietal electrodes. 
However, the output iCoh alpha 2 and alpha 3 values at parietal 
electrodes were lower in the ADD group than in the Nold group.

3.6. Control analysis on parietal connector 
hubs identified at alpha 2 and alpha 3 bands 
by other graph theory measures

To control for the robustness of the present results about the parietal 
connector hubs computed at the alpha 2 and alpha 3 bands, we used the 
following additional graph measures and definitions of those hubs 
(GraphVar 2.0 platform). According to Cole et al. (2015), a connector hub 
can be associated with high values of ND, PC, and Betweenness Centrality 
(BC). Notably, BC of a node is defined as the number of shortest graph 
paths that goes through that node (Rubinov and Sporns, 2010). According 
to Power et al. (2013), a connector hub can be associated with high values 
of the within-module degree z-score and PC.

Figures 3, 4 illustrate the results of this control analysis. There was 
again a certain spread of connector hubs over the scalp at alpha 2 and 
alpha 3 bands. However, convergent results showed significant 
connector hubs located at the parietal electrodes (i.e., P3, Pz, and P4) 
in both the Nold and ADD groups. Supplementary material Tables 14–25 
report detailed results of this control analysis.

3.7. Control analysis of the influence of 
normalized rsEEG spectral power density on 
iCoh values

To evaluate the influence of potential intergroup differences in the 
rsEEG spectral power density on iCoh (and LLC as the second 
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interdependency measure) values, we included a control analysis for 
the comparison of the rsEEG power spectra for each frequency band 
of interest between the Nold and ADD groups. To this aim, we used 
the normalized rsEEG spectral power density calculated at each 
individual frequency band of interest (from delta to gamma) as the 
dependent variable in an ANOVA design, with group (Nold and ADD; 
independent variable), ROI (frontal, central, parietal, temporal, and 
occipital), and band (delta, theta, alpha 1, alpha 2, alpha 3, beta 1, beta 
2, and gamma) as factors. The ROI were defined as those used for the 
interhemispheric iCoh analysis. We  used the Log10-transformed 
rsEEG spectral power density values to meet the requirement of 
Gaussian distribution of the dependent ANOVA variable.

Results are illustrated in Supplementary Figure 11. Compared with 
the Nold group, the ADD group was characterized by (1) lower 
widespread alpha 2 and alpha 3 spectral power density values, especially 
at parietal and occipital ROI, and (2) higher widespread delta spectral 
power density values (p < 0.05).

Owing to the above-mentioned intergroup differences, we repeated 
the main statistical analyses by introducing the global alpha 2 or the 
alpha 3 regional normalized spectral power density as a covariate. 
Global values were calculated by averaging the regional values (as 
intergroup differences in the alpha 2 and alpha 3 bands were 
widespread). Results confirmed the previous main findings except for 
the intrahemispheric (non-directional) LLC values (no statistically 
significant interaction among the factors group, ROI, and band with 
global alpha 2 or alpha 3 spectral power densities as covariates; p > 0.05). 
In detail, the following results were obtained:

 • intrahemispheric (non-directional) mean iCoh—covariate, global 
alpha 2 spectral power density: a statistically significant ANOVA 
interaction (F[28, 2072] = 3.55, p < 0.05) among the factors group, 
hemisphere, ROI, and band. Again, no significant post-hoc effect 
was observed in the planned tests (p > 0.05).

 • intrahemispheric (non-directional) mean iCoh—covariate, global 
alpha 3 spectral power density: a statistically significant ANOVA 
interaction (F[28, 2072] = 3.02, p < 0.05) among the factors group, 
hemisphere, ROI, and band. Again, no significant post-hoc effect 
was observed in the planned tests (p > 0.05).

 • intrahemispheric (non-directional) absolute difference iCoh—
covariate, global alpha 2 spectral power density: a statistically 
significant ANOVA interaction (F[28, 2072] = 2.81, p < 0.05) among 
the factors group, hemisphere, ROI, and band. Again, no significant 
post-hoc effect was observed in the planned tests (p > 0.05).

 • intrahemispheric (non-directional) absolute difference iCoh—
covariate, global alpha 3 spectral power density: a statistically 
significant ANOVA interaction (F[28, 2072] = 2.02, p < 0.05) among 
the factors group, hemisphere, ROI, and band. Again, no significant 
post-hoc effect was observed in the planned tests (p > 0.05).

 • interhemispheric LLC—covariate, global alpha 2 spectral power 
density: a statistically significant ANOVA interaction (F[28, 
2072] = 2.22, p < 0.05) among the factors group, ROI, and band. A 
planned Duncan post-hoc test showed that, compared with the Nold 
group, the ADD group was mainly characterized by (1) lower LLC 
alpha 2 and alpha 3 values at the parietal and temporal ROI and (2) 
higher LLC delta values at frontal, parietal, and occipital ROI (p < 0.05).

FIGURE 6

Global isolated lagged effective coherence (iCoh) values (mean across subjects ± SEM) in the alpha 3 frequency band within electrodes classified as 
substantial degree or connector hubs relative to a statistically significant ANOVA interaction (F [10, 750] = 2.48, p < 0.05) among the group (Nold and ADD), 
hubs (Fp2, F3, F4, F7, P3, P4, Pz, P7, P8, O1, and O2), and direction (output and input) factors. No statistically significant outliers were found according to 
Grubbs’ test (p < 0.0001).
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 • interhemispheric LLC—covariate, global alpha 3 spectral power 
density: a statistically significant ANOVA interaction (F[28, 
2072] = 2.19, p < 0.05) among the factors group, ROI, and band. A 
planned Duncan post-hoc test showed that, compared with the Nold 
group, the ADD group was mainly characterized by (1) lower LLC 
alpha 2 and alpha 3 values at the parietal and temporal ROI and (2) 
higher LLC delta values at frontal, parietal, and occipital ROI (p < 0.05).

With regard to the directionality of hubs from iCoh values at alpha 
2 and alpha 3 bands, we used the global alpha 2 and alpha 3 spectral 
power densities, respectively, as covariates in the main statistical 
analysis. Results with the global alpha 2 spectral power density as 
covariate confirmed a statistically significant ANOVA interaction of the 
iCoh alpha 2 values among group (Nold and ADD; independent 
variable), hub (electrodes with hub features), and direction (output and 
input) factors (F[10, 70] = 1.97, p < 0.05). Compared with the Nold 
group, the ADD group showed lower output global iCoh alpha 2 values 
at parietal electrodes (i.e., P3 and Pz; p < 0.05). No statistically significant 
ANOVA interaction (p > 0.05) was observed, including with global alpha 
3 spectral power density as a covariate.

4. Discussion

4.1. Converging evidence of LLC and iCoh 
measures about the interdependencies of 
rsEEG rhythms at electrode pairs

In the present study, both bivariate LLC and multivariate iCoh 
measures showed that, compared with the Nold participants, the ADD 
patients were characterized by lower interdependencies of rsEEG alpha 
rhythms, especially at parietal electrode pairs. This effect was more 
spatially sharp with multivariate iCoh measures than with bivariate LLC 
measures. These results confirm the spatial variability of the effects 
derived from different techniques estimating interdependencies of 
rsEEG rhythms at electrode pairs and emphasize the importance of 
using more than one technique, including at least one multivariate 
approach (Blinowska, 2011; Blinowska et al., 2017).

The current results are globally in line with the bulk of previous 
rsEEG studies showing that ADD patients exhibit lower interrelatedness 
of rsEEG rhythms at alpha and higher frequencies at posterior electrode 
pairs (Leuchter et al., 1992, 1994; Besthorn et al., 1994; Dunkin et al., 
1994; Sloan et al., 1994; Stam et al., 1995, 1996, 2003, 2009; Jelic et al., 
1998, 2000; Locatelli et al., 1998; Anghinah et al., 2000; Knott et al., 2000; 
Adler et al., 2003; Babiloni et al., 2004a, 2006a, 2018; Pogarell et al., 2005; 
de Haan et al., 2009; Fonseca et al., 2011, 2013).

Additionally, the current results showed certain effects of ADD on 
the interdependencies of rsEEG delta rhythms at electrode pairs, but 
only when the bivariate LLC technique was used. Compared with the 
Nold group, the ADD group exhibited higher LLC values at frontal, 
parietal, and occipital delta rhythms. These effects were globally in 
agreement with previous rsEEG evidence obtained using bivariate 
techniques (e.g., FFT-based spectral coherence or LLC) to investigate the 
effects of ADD on the interdependencies of rsEEG rhythms (Locatelli 
et al., 1998; Babiloni et al., 2010, 2018; Hsiao et al., 2013, 2014). Given 
the lack of effects of ADD on interdependencies of rsEEG delta rhythms 
derived from multivariate iCoh measures, we did not estimate hubs at 
delta rhythms. Notably, the results at delta rhythms indicated that the 
present iCoh measures were not redundant compared with those of 

spectral power density, which showed greater widespread rsEEG delta 
power in the ADD group than the Nold group.

4.2. Converging evidence of LLC and iCoh 
measures about graph hubs at parietal 
electrodes and alpha rhythms

The present alpha LLC and iCoh measures showed converging 
evidence of prominent degree and connector hubs at parietal electrode 
pairs (i.e., P3, Pz, and P4). Furthermore, both groups were characterized 
by a prominent alpha iCoh outward direction (output or outflow) from 
parietal electrodes to other electrodes exhibiting degree hub properties. 
This effect was lower in the ADD group than in the Nold group and was 
consistent with the three definitions of connector hubs (Rubinov and 
Sporns, 2010; Power et al., 2013; Cole et al., 2015).

Taken together, it can be speculated that the present alpha LLC-iCoh 
and graph results may reflect abnormalities in parietal networks 
underpinning the regulation of quiet vigilance in ADD patients but with 
a global preservation of the parietal hub function, as revealed by the 
present analysis of the rsEEG alpha rhythms.

In line with this speculation, previous studies investigating 
directional interdependencies of rsEEG rhythms in cognitively 
unimpaired adults showed prominent outflow measures at alpha (and 
beta) rhythms from parietal electrodes, based on the computation of 
multivariate directed transfer function (Kuś et al., 2004; Blinowska and 
Kaminski, 2013). These measures were reduced in relation to a decrease 
in vigilance and an increase in errors during a continuous cognitive 
task in those adults (Liu et al., 2010). When applied to AD patients, 
directed transfer function measures at rsEEG alpha (and beta) rhythms 
exhibited lower outflow from parietal to frontal electrodes in ADD and 
ADMCI patients than in Nold participants (Babiloni et  al., 2008, 
2009a,b; Blinowska et al., 2017). These effects might be partially caused 
by abnormal ascending inputs coming from the thalamic and 
cholinergic basal forebrain regions (Hughes and Crunelli, 2005; 
Babiloni et al., 2006a, 2009a,b, 2020a, 2021; Wan et al., 2019).

4.3. What might graph hubs from rsEEG 
alpha rhythms tell us about add patients?

At this early stage of the research, we can only speculate about the 
neurophysiological significance of the present results. As novel and 
original neurophysiological findings, the present study showed evidence 
of prominent parietal hubs from interdependencies of the rsEEG alpha 
rhythms but with reduced outward iCoh measures in AD patients with 
mild-to-moderate dementia (mean MMSE score of approximately 
19/30). An exciting hypothesis for future longitudinal studies is that the 
AD progression to severe dementia might be  associated with (1) 
outward alpha iCoh measures that are even more reduced from parietal 
electrodes, (2) loss of degree and connector hubs from the present LLC 
and iCoh measures, and (3) increased disorders in the regulation and 
maintenance of quiet vigilance during the daytime, with frequent 
episodes of drowsiness, misperceptions, and light sleep. If confirmed, 
the present rsEEG evidence of partially preserved parietal hubs in mild-
to-moderate ADD patients would reflect a sort of resilience or initial 
vulnerability of the brain networks underpinning quiet vigilance.

In line with this speculation, previous rsEEG evidence showed 
several signs of topographically widespread impairment of brain 
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networks in ADD patients, as revealed by graph theory indexes. 
Multivariate directional techniques based on a Granger causality matrix 
from rsEEG alpha and beta rhythms unveiled that ADD patients were 
globally characterized by lower global efficiency, increased local 
efficiency, and lower resilience of cortical networks (Afshari and Jalili, 
2017). Furthermore, these patients were characterized by lower inward 
and outward directions of interdependencies of the whole-band rsEEG 
activity recorded from posterior electrodes, with maximum 
abnormalities of degree hubs at parietal electrodes (Franciotti et al., 
2019), but not replicated with a bivariate mutual information technique 
(Franciotti et al., 2022).

In the resting state condition, prominent outward directionality of 
the present hubs at parietal electrodes and alpha rhythms might reflect 
the synchronization and interdependence of neural activity into 
posterior thalamocortical and corticothalamic loops, which might 
maintain cortical arousal underpinning vigilance against sleep 
intrusion (Hughes and Crunelli, 2005; Lörincz et  al., 2008, 2009; 
Crunelli et al., 2015). Indeed, the greater the posterior rsEEG alpha 
rhythms, the greater the cortical inhibition in quiet vigilance, the 
lower the attention to external stimuli (Pfurtscheller and Klimesch, 
1992; Boksem et al., 2005; Babiloni et al., 2020b). Those thalamic and 
cortical reciprocal interactions might influence several cortical areas, 
including the nodes of the ‘default mode network’ (Raichle et al., 2001; 
Buckner et al., 2008). Overall, such traveling alpha rhythms may flow 
from higher-to lower-order areas in the visual and somatosensory 
cortices (Halgren et  al., 2019). The effect may be  to facilitate the 
scanning of internal and external environments (Liu et  al., 2010; 
Al-Shargie et  al., 2019), extract relevant features on demand 
(Ermentrout and Kleinfeld, 2001), and support communications 
within nodes of brain networks in relation to vigilance (Han et al., 
2008; Crunelli et al., 2018).

4.4. Methodological limitations of the 
present study

This study was not performed within a unique multicentric clinical 
trial, so the present recording units did not follow the identical clinical, 
neuropsychological, and neuroimaging procedures during the 
enrollment of Nold and ADD participants. This makes the present study 
exploratory in nature.

Standard biomarkers of AD neuropathology (e.g., cerebrospinal 
diagnostic measures of Ab42/phospho tau or amyloid positron emission 
tomography) were not systematically measured in the present Nold and 
ADD participants, so only the strongest and most robust results could 
emerge at the group level. This limitation may explain some significant 
variability of graph indexes at rsEEG delta rhythms.

We used a low number of scalp electrodes to record rsEEG activity 
(i.e., 19 electrodes placed according to 10–20 system), two standard 
bivariate (LLC) and multivariate (iCoh) techniques estimating the 
interrelatedness of the rsEEG activity at electrode pairs, and well-known 
graph indexes in line with the general methodology of several previous 
successful studies; those studies investigated the graph-based rsEEG 
topology in ADD patients based on ‘synchronization likelihood’, ‘phase 
lag index’, ‘synchronization likelihood’, ‘generalized composite multiscale 
entropy vector’, and ‘mutual information’ techniques applied to rsEEG 
data recorded from ≤19 scalp electrodes (Stam et al., 2007a; De Haan 
et al., 2009; Engels et al., 2015; Yu et al., 2016; Song et al., 2019; Das and 
Puthankattil, 2022; Franciotti et al., 2022).

This intrinsic low resolution of the present rsEEG approach was 
partially considered by averaging the LLC and iCoh measures in large 
scalp ROI. Furthermore, head volume conduction effects may inflate 
LLC and iCoh measures. Indeed, electric fields can instantaneously 
spread from a brain source to several scalp electrodes, thus generating 
spurious (fake) interdependencies of rsEEG rhythms at electrode pairs. 
These effects of head volume conduction are partially mitigated by the 
fact that LLC and iCoh measures are insensitive to zero-lag 
interdependencies of rsEEG rhythms. However, the present application 
of those techniques at scalp electrodes ignores observational equations 
modeling confounding effects of head volume conduction and position/
orientation of cortical sources of scalp EEG activity (Babiloni et al., 
2020). Therefore, confounding non-zero-lag head volume conduction 
effects and false ‘interrelatedness’ cannot be  excluded in the 
interpretation of the present results. In this framework, it should 
be remarked that bivariate techniques (including LLC) may be more 
prone to those confounds than multivariate techniques (including 
iCoh), as the latter typically remove common correlations of the rsEEG 
activity among the electrode pairs (Blinowska and Kaminski, 2013; 
Babiloni et al., 2020b).

The intrinsic methodological limits of all bivariate and multivariate 
techniques (including LLC and iCoh) were recently discussed by an 
Expert Panel of the International Federation of Clinical Neurophysiology 
(IFCN; Babiloni et al., 2020b). The Expert Panel agreed that all bivariate 
(e.g., LLC, synchronization likelihood, phase lag index, etc.) and 
multivariate (e.g., iCoh, directed transfer function, etc.) techniques 
estimating the interrelatedness of the rsEEG activity at scalp electrode 
pairs may be subject to unmodeled effects of (1) brain neural populations 
‘invisible’ to EEG recordings and (2) head volume conduction. 
Furthermore, the Expert Panel shared the following recommendations 
to fruitfully tackle (Babiloni et al., 2020b): (1) the use of the locution 
‘measures of the interrelatedness of rsEEG activity at scalp electrodes’ 
rather than locutions such as “measures of cortical functional connectivity 
from rsEEG activity” to emphasize that the head volume conduction 
effects cannot be entirely taken into account when those techniques are 
applied at scalp electrode pairs; (2) the development of exploratory 
rsEEG studies carried out by investigators belonging to independent 
research institutions, to ensure a significant intersubjectivity in the 
interpretation of the results; (3) the use of at least two independent 
techniques for estimating the interrelatedness of the rsEEG activity at 
scalp electrodes, to compare the results and represent their intrinsic 
variability dependent on the methodology used; and (4) the exploitation 
of open science to cross-validate the research results using, when 
possible, freeware techniques validated by independent research groups. 
We grounded the present study design on these recommendations.

Keeping in mind the previously mentioned low spatial resolution 
and head volume conduction effects, we included a relatively low number 
of network nodes (corresponding to the standard 10–20 electrode 
montage) in the graph analysis. This low-resolution EEG method could 
not allow the disentanglement of the contribution of the nodes of the 
default mode network or associate parietal cortex. Therefore, future 
studies may improve the methodological approach with the following 
solutions: (1) large samples of the enrolled ADD, ADMCI, and Nold 
participants and a longitudinal design to enhance the statistical power of 
the study and test the impact of disease severity and progression on the 
topology of the interrelatedness of rsEEG activity; (2) harmonized 
protocols in the multicentric studies; (3) >48 scalp electrodes for the 
rsEEG recordings; (4) mathematical source and head volume conduction 
models for an rsEEG source estimation probing the activity of more 
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cortical nodes, including those located in the default mode and other 
relevant cortical networks; (5) a multimodal approach, including the 
rs-fMRI recordings, to correlate the AD-related abnormal topology of 
the cortical functional connectivity, as revealed by rs-fMRI and rsEEG 
data; and (6) a more systematic variation of statistical thresholds to 
qualify the significant associations between sensors and the criteria used 
to define and describe the present hubs with those thresholds.

5. Conclusion

In the present exploratory study, we compared hubs modeled from 
measures of interdependencies of between-electrode rsEEG alpha 
rhythms in Nold and mild-to-moderate ADD participants. We tested 
the hypothesis of abnormal posterior hubs from those measures in ADD 
versus Nold participants. To report robust results, we  measured 
interdependencies of rsEEG rhythms using both bivariate LLC and 
multivariate (directional) iCoh measures. Furthermore, we used three 
different definitions of ‘connector’ hub.

Convergent results of LLC and iCoh measures showed that in both 
Nold and ADD groups there were significant ‘degree’ and ‘connector’ 
hubs at parietal electrodes derived from rsEEG alpha rhythms. 
Furthermore, these hubs showed a prominent outward directionality in 
both groups of participants. As a main difference between the two 
groups, the outward ‘directionality’ of the hubs at parietal electrodes was 
lower in the ADD group than in the Nold group.

Future longitudinal high-resolution rsEEG studies in ADD patients 
will have to test hypotheses about the resilience or vulnerability of those 
parietal hubs derived from rsEEG alpha rhythms and their relationships 
with the neuropathological burden, derangement in the DMN, and the 
neurophysiological regulation and maintenance of quiet vigilance 
during daytime.
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