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Editorial on the Research Topic

Functional Brain Mapping of Epilepsy Networks: Methods and Applications

INTRODUCTION

This multidisciplinary Research Topic is a collection of contemporary advances in neuroimaging
applied to mapping functional brain networks in epilepsy. With technology such as simultaneous
electroencephalography and functional magnetic resonance imaging (EEG-fMRI) now more
readily available, it is possible to non-invasively map epileptiform activity throughout the entire
brain at millimeter resolution. This Research Topic includes original research studies, technical
notes and reviews of the field. Due to the multidisciplinary nature of the domain, the Research
Topic spans two journals: Frontiers in Neurology (Section: Epilepsy) and Frontiers in Neuroscience
(Section: Brain Imaging Methods).

In this editorial we consider the outcomes of the multidisciplinary work presented in the
Research Topic. With the benefit of time elapsed since the original papers were published, we can
see that the works are making a substantial impact in the field. At the time of writing, this Research
Topic had well over 28,000 full-paper downloads (including over 18,500 for the 15 papers in the
Epilepsy section, and over 9,500 for the 8 papers in the Brain Imaging Methods section). Several
papers in the Research Topic have climbed the tier in Frontiers and received an associated invited
commentary, demonstrating there is substantial interest in this research area.

REVIEWS

The Research Topic’s review papers set the scene for the original research papers and
synthesize contemporary thinking in epilepsy research and neuroimaging methods. We see
that Epilepsy, whether of a “generalized” or “focal” origin, is increasingly recognized as
a disorder of large-scale brain networks. At one level it is self-evident that otherwise
healthy functional networks are recruited during epileptic activity, as this is what generates
patient perceptions of their epileptic aura. For example, the epileptic aura of mesial
temporal lobe epilepsy (MTLE) can include an intense sensation of familiarity (déjà
vu) associated with involvement of the hippocampus, and unpleasant olfactory auras
which may reflect involvement of adjacent olfactory cortex. As seizures spread more
widely throughout the brain, presumably along pre-existing neural pathways, patients lose
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control of certain functions; for example, their motor system
in the case of generalized convulsions, or aspects of awareness
in seizures that remain localized to non-motor brain regions.
Yet these functions return when the seizure abates, implying
involved brain regions are also responsible for normal brain
function. What has been less clear, and difficult to investigate
until the advent of functional neuroimaging, is precisely which
brain networks are involved (especially in “generalized” epilepsy
syndromes), and the extent to which functional networks are
perturbed during seizures, inter-ictal activity, and at other times.

Functional imaging evidence of brain abnormalities in
temporal lobe epilepsy is explored in Caciagli et al., including
evidence of dysfunction in limbic and other specific brain
networks, as well as global changes in network topography
derived from resting-state fMRI. Archer et al. systematically
review the functional neuroimaging of a particularly severe
epilepsy phenotype, Lennox-Gastaut Syndrome (LGS),
illustrating well how different forms of brain pathology can
manifest in a similar clinical phenotype, simply by the nature
of the healthy networks that the underlying pathology perturbs.
Similarly, the mechanisms of absence seizure generation are
reviewed by Carney and Jackson, revealing that it too has
a signature pattern of large-scale functional brain network
perturbation. The ability to make such observations has
considerable clinical significance, as highlighted in the review by
Pittau et al..

The tantalizing proposition that there may be a common
treatment target for all focal epilepsy phenotypes is also explored
in a review of the piriform cortex by Vaughan and Jackson. The
piriform cortex was first implicated as a common brain region
associated with spread of interictal discharges in focal epilepsy in
an experiment that analyzed the spatially normalized functional
imaging data of a heterogeneous group of focal epilepsy patients
(Laufs et al., 2011). This finding, since replicated (Flanagan et al.,
2014), led Vaughan and Jackson to explore in detail what is
known of the piriform cortex. Their findings reveal the piriform
has several features that likely predispose it to involvement
in focal epilepsy, and features that also explain many of the
peculiar symptoms experienced by patients, from olfactory auras
to the characteristic nose-wiping that many patients perform
postictally. This work points to the need for future studies to
determine whether the piriform might be an effective target for
deep brain stimulation or other targeted therapy to prevent the
spread of epileptiform activity.

ORIGINAL RESEARCH

Temporal lobe epilepsy is investigated in several papers in this
topic. One of these studies also introduces a new exploratory
method, Shared and specific independent component analysis
(SSICA), that builds upon independent component analysis to
perform between-group network comparison (Maneshi et al.). In
application to MTLE and healthy controls, three distinct reliable
networks were revealed: two that exhibited increased activity
in patients (a network including hippocampus and amygdala
bilaterally, and a network including postcentral gyri and temporal

poles), and a network identified as specific to healthy controls
(i.e., effectively decreased in patients, consisting of bilateral
precuneus, anterior cingulate, thalamus, and parahippocampal
gyrus). These finding give mechanistic clues to the cognitive
impairments often reported in patients with MTLE. Further
clues are revealed in a study of the dynamics of fMRI and
its functional connectivity (Laufs et al.). Compared to healthy
controls, temporal variance of fMRI was seen to be most
increased in the hippocampi of TLE patients, and variance
of functional connectivity to this region was increased mainly
in the precuneus, the supplementary and sensorimotor, and
the frontal cortices. More severe disruption of connectivity in
these networks during seizures may explain patients’ cognitive
dysfunction (Laufs et al.). Yang and colleagues also show that it
may be possible to use fMRI functional connectivity to lateralise
TLE (Yang et al.), which could be a useful clinical tool.

Mechanistic explanations of symptomatology beyond the
seizure onset zone can also be revealed with conventional
nuclear medicine techniques such as 18F-FDG-PET. This is
demonstrated in a study of Occipital Lobe Epilepsy byWong and
colleagues, who observed that patients with automatisms have
metabolic changes extending from the epileptogenic occipital
lobe into the ipsilateral temporal lobe, whereas in patients
without automatisms the 18F-FDG-PETwas abnormal only in the
occipital lobe (Wong et al.).

The clinical significance of the ability to non-invasively
study functional brain networks extends to understanding the
impact of surgery on brain networks. This Frontiers Research
Topic includes an investigation by Doucet and colleagues
revealing that temporal lobe epilepsy and surgery selectively
alter the dorsal, rather than the ventral, default-mode network
(Doucet et al.).

Another approach to better understand the mechanisms of
seizure onset and broader symptomatology is computational
modeling. Such an approach can track aspects of
neurophysiology that cannot be readily measured: for example
effective connectivity and mean membrane potential dynamics
are shown by Freestone et al. to be estimable using model
inversion. In a proof-of-principle experiment with simulated
data, they demonstrate that by tailoring the model to subject-
specific data, it may be possible for the framework to identify a
seizure onset site and the mechanism for seizure initiation and
termination. Also in this Research Topic, Petkov and colleagues
utilize a computational model of the transition into seizure
dynamics to explore how conditions favorable for seizures relate
to changes in functional networks. They find that networks
with higher mean node degree are more prone to generating
seizure dynamics in the model, thus providing a mathematical
mechanistic explanation for increasing node degree causing
increased ictogenicity (Petkov et al.).

Seizure prediction is an area of considerable research, and
in this Research Topic Cook and colleagues reveal intriguing
characteristics in the long-term temporal pattern of seizure onset.
They confirmed that human inter-seizure intervals follow a
power law, and they found evidence of long-range dependence.
Specifically, the dynamics that led to the generation of a seizure
in most patients appeared to be affected by events that took place
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much earlier (as little as 30min prior and up to 40 days prior
in some patients) (Cook et al.). The authors rightly note that
this information could be valuable for individually-tuned seizure
prediction algorithms.

Several methodological papers in this Frontiers Research
Topic prove there remains considerable potential to improve
neuroimaging methods as applied to the study of epilepsy. For
example, Mullinger et al. reveal the critical importance of the
accuracy of physical models if one is to optimize lead positioning
in functional MRI with simultaneous EEG. Confirming with
computer modeling and phantom measurements that lead
positioning can have a substantial effect on the amplitude of the
MRI gradient artifact present on the EEG, they optimized the
positions in a novel cap design. However, whilst this substantially
reduced gradient artifact amplitude on the phantom, it made
things worse when used on human subjects. Thus, improvements
in model accuracy are required if one is to make accurate
predictions for the human context.

Reduction of artifact, particularly cardioballistic and non-
periodic motion artifact, remains a challenge for off-the-shelf
MRI-compatible EEG systems. However, for over a decade,
the Jackson group in Melbourne has dealt well with this issue
using insulated carbon-fiber artifact detectors, physically but not
electrically attached to the scalp (Masterton et al., 2007). In the
present Research Topic, they provide detailed instructions for
building such detectors and interfacing themwith a commercially
available MRI-compatible EEG system (Abbott et al.). This team
also previously developed event-related ICA (eICA), to map
fMRI activity associated with inter-ictal events observed on EEG
(Masterton et al., 2013b). Themethod is capable of distinguishing
separate sub-networks characterized by differences in spatio-
temporal response (Masterton et al., 2013a). The eICA approach
frees one from assumptions regarding the shape of the time-
course of the neuronal and haemodynamic response associated
with inter-ictal activity (which can vary according to spike
type, can vary from conventional models and may include pre-
spike activity, Masterton et al., 2010; issues explored further
in the present topic by Faizo et al.; Jacobs et al.). However,
the effectiveness of eICA can be affected by fMRI noise or
artifact. In the present Research Topic we see that application
of a fully automated de-noising algorithm (SOCK) is now
recommended, as it can substantially improve the quality of eICA
results (Bhaganagarapu et al.).

The ability to detect activity associated with inter-ictal events
can also be improved with faster image acquisition. Magnetic
Resonance Encephalography (MREG) is a particularly fast fMRI
acquisition method (TR = 100ms) that achieves its speed using
an under-sampled k-space trajectory (Zahneisen et al., 2012;
Assländer et al., 2013). This has now been applied in conjunction
with simultaneous EEG, to reveal that the negative fMRI response
in the default-mode network is larger in temporal compared to
extra-temporal epileptic spikes (Jacobs et al.).

The default mode network and its relationship to epileptiform
activity is also examined in several other papers in this Research
Topic. In a pilot fMRI connectivity study of Genetic Generalized
Epilepsy and Temporal Lobe Epilepsy patients, Lopes et al.
observed that intrinsic connectivity in portions of the default

mode network appears to increase several seconds prior to the
onset of inter-ictal discharges. The authors suggest that the
default mode network connectivitymay facilitate IED generation.
This is plausible, although causality is difficult to establish and it
is possible that something else drives both the connectivity and
EEG changes (Abbott).

Complicating matters further is the question of what
connectivity means. There are many ways in which connectivity
can be assessed. Jones and colleagues have discovered that
some of these do not necessarily correlate well with each
other. They examined connectivity between measurements
made with intracranial electrodes, connectivity assessed using
simultaneous BOLD fMRI and intracranial electrode stimulation,
connectivity between low-frequency voxel measures of fMRI
activity, and a diffusion MRI measure of connectivity—an
integrated diffusivity measure along a connecting pathway
(Jones et al.). They found only mild correlation between these
four measures, implying they assess quite different features of
brain networks. More research in this domain would therefore
be valuable.

Whatever the measure of connectivity utilized, most evidence
of alterations in connectivity in epilepsy has been obtained from
comparison of a group of patients with a group of healthy
controls. However, a new method called Detection of Abnormal
Networks in Individuals (DANI) is now proposed by Dansereau
et al. This method is designed to detect the organization
of brain activity in stable networks, which the authors call
modularity. The conventional definition of modularity refers to
the degree to which networks can be segregated into distinct
communities, usually estimated by maximizing within-group
nodal links, and minimizing between group links (Girvan
and Newman, 2002; Rubinov and Sporns, 2010). Dansereau
take a novel approach to this concept, instead evaluating the
stability of each resting state network across replications of
a bootstrapped clustering method (Bellec et al., 2010). In the
DANI approach, the degree to which an individual’s functional
connectivity modular pattern deviates from a population of
controls is quantified. Whilst application of the method
to epilepsy patients is preliminary, significant changes were
reported likely related to the epileptogenic focus in 5 of the
6 selected focal epilepsy patients studied. In several patients,
modularity changes in regions distant from the focus were also
observed, adding further evidence that the pervasive network
effects of focal epilepsy can extend well-beyond the seizure
onset zone.

When it comes to application of EEG-fMRI to detect
the seizure onset zone, there is typically a trade-off between
specificity and sensitivity, with the added complication that
activity or network changes may also occur in brain regions
other than the ictal onset zone. The distant activity may be
due to activity propagation from the onset zone, pervasive
changes in functional networks creating a “permissive state,”
or in some cases might be the brain’s attempt to prevent
seizures. Specificity and sensitivity of EEG-fMRI to detect the
ictal onset zone is explored by Tousseyn et al.. They determined
how rates of true and false positives and negatives varied
with voxel height and cluster size thresholds, both for the
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full statistical parametric map, and for the single cluster that
contained the voxel of maximum statistical significance. The
latter conferred the advantage of reducing positives remote
from the seizure onset zone. As a result, it appeared to
be more robust to variations in statistical threshold than
analysis of the entire map. One needs to be cautious however,
given the small numbers of patients studied, and the fact
that the “optimal” settings were determined using receiver
operator characteristic curves of the same study data. It
remains to be seen how well this might generalize to a
different study.

Perhaps the greatest potential for future advancement in
EEG-fMRI is in methods to make the most of the all the
information captured by each modality. This is highlighted
by the work of Deligianni et al. demonstrating with a novel
analysis framework the potential to obtain more information on
the human functional connectome by utilizing EEG and fMRI
together (Abbott; Deligianni et al.).

We hope that you enjoy this collection of
papers providing a broad snapshot of advances in
brain mapping methods and application to better
understand epilepsy.
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The default-mode network (DMN) is a major resting-state network. It can be divided in
two distinct networks: one is composed of dorsal and anterior regions [referred to as the
dorsal DMN (dDMN)], while the other involves the more posterior regions [referred to
as the ventral DMN (vDMN)]. To date, no studies have investigated the potentially distinct
impact of temporal lobe epilepsy (TLE) on these networks. In this context, we explored the
effect of TLE and anterior temporal lobectomy (ATL) on the dDMN and vDMN. We utilized
two resting-state fMRI sessions from left, right TLE patients (pre-/post-surgery) and nor-
mal controls (sessions 1/2). Using independent component analysis, we identified the two
networks. We then evaluated for differences in spatial extent for each network between
the groups, and across the scanning sessions. The results revealed that, pre-surgery, the
dDMN showed larger differences between the three groups than the vDMN, and more par-
ticularly between right and left TLE than between the TLE patients and controls. In terms
of change post-surgery, in both TLE groups, the dDMN also demonstrated larger changes
than the vDMN. For the vDMN, the only changes involved the resected temporal lobe
for each ATL group. For the dDMN, the left ATL group showed post-surgical increases in
several regions outside the ictal temporal lobe. In contrast, the right ATL group displayed
a large reduction in the frontal cortex. The results highlight that the two DMNs are not
impacted by TLE and ATL in an equivalent fashion. Importantly, the dDMN was the more
affected, with right ATL having a more deleterious effects than left ATL. We are the first to
highlight that the dDMN more strongly bears the negative impact of TLE than the vDMN,
suggesting there is an interaction between the side of pathology and DM sub-network
activity. Our findings have implications for understanding the impact TLE and subsequent
ATL on the functions implemented by the distinct DMNs.

Keywords: default-mode network, dorsal and ventral subdivisions, temporal lobe epilepsy, anterior temporal
lobectomy, resting-state, fMRI

INTRODUCTION
The default-mode network (DMN) has been identified as one of
the most robust and consistent resting-state network [see review
of Ref. (1, 2)]. While much about its function remains unclear,
research has suggested it is engaged in the maintenance of “tonic”
or baseline cognitive processing related to self-awareness, episodic
memory, or the modulation of internal (mental) versus external
tasks. Others have linked it to anticipatory cognitive processes,
the strength of cognitive reserve, or consciousness [see review of
Ref. (1)]. Most recently, there has been new evidence that this net-
work is also modulated by the nature of the spontaneous thoughts
during a conscious resting-state (3, 4). It primarily consists of
posterior cingulate cortex (PCC)/precuneus, ventral anterior cin-
gulate cortex (ACC)/mesial prefrontal cortex, angular gyri, lateral
temporal cortex, and mesial temporal lobes. However, a grow-
ing number of studies consider this network to be comprised of at
least two functionally distinct subdivisions (5, 6): one is composed
of dorsal and anterior regions [referred to as the dorsal DMN
(dDMN)], and appears active when people engage in self-relevant

decisions or affectively laden cognitive processes. The second divi-
sion involves posterior and mesial temporal regions [referred to as
the ventral DMN (vDMN)], and engages during decision-making
related to constructing a mental scene, particularly a scene called
up from episodic or semantic memory.

Investigated as a functional marker for neurological patholo-
gies, several studies have reported that DMN activity is, indeed,
altered by neurologic pathologies such as Alzheimer’s disease (7)
or schizophrenia (8). Given the role of the DMN in temporal lobe
functions such as memory processing and conscious awareness,
increasing our understanding of temporal lobe epilepsy (TLE)
will require sophisticated analysis of this disorder’s impact on the
DMN. With regard to epilepsy, this network has been described
as perturbed during both ictal (and subsequently, transitory loss
of consciousness) (9) and interictal (10–13) states. To our knowl-
edge, however, only a few studies have specifically investigated
the DMN in unilateral TLE patients at rest through fMRI (10–
12). Existing studies demonstrate abnormal reduced activity in
this network compared to healthy controls, with distinct effects
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depending on the hemisphere with epileptic pathology. The effects
of the standard surgery for intractable epilepsy [e.g., anterior tem-
poral lobectomy (ATL)] on the DMN are still largely unknown.
Indeed, to date, only one study has investigated this network
and its changes prior to and after epilepsy surgery (10). In this
study, McCormick et al. described connectivity changes involving
the precuneus post-surgery relative to pre-surgery. These authors,
however, did not explore the two specific sub-networks (dDMN
and vDMN). Therefore, questions remain as to how the DMN
subdivisions may be differentially affected by the resection of the
temporal lobe, the laterality of the pathology, and the potential
neuroplastic or compensatory responses generated post-surgery.
In this sense, ATL provides a valuable model for testing the impact
of structural changes in the DMN, as this procedure includes resec-
tion of several parts of the network, most notably the lateral and
the mesial temporal regions.

In this context, we sought to expand our knowledge about the
effect of both TLE and ATL on the DMN’s subdivisions (dDMN
and vDMN). We utilize resting-state fMRI data from 29 unilat-
eral TLE patients (13 left, 16 right), who underwent standard en
bloc resection of their epileptogenic temporal lobe (standard ATL),
and 14 healthy matched controls. Using group independent com-
ponent analysis (ICA), we identified the ventral and dDMNs. We
hypothesized that the spatial extent of each DMN subdivision will
differ between left and right TLE patients. More specifically, we
expected that the left TLE patients will show more abnormalities
than the right TLE, as it has been suggested that left TLE patients
generally have more functional impairments at rest than right-
sided patients (14, 15). We also hypothesized that ATL surgery will
not affect the two networks in the same manner, as it will remove
distinct regions in the temporal lobe within each network. We
expected the vDMN to show more changes that the dDMN as it
is this sub-network that includes the epileptogenic mesial tempo-
ral lobe, potentially fostering distinct neuroplasticity mechanisms
and compensatory responses. It will increase our understanding
of the neuroplasticity responses that one can expect to emerge for
each DMN network post-surgery.

MATERIALS AND METHODS
PARTICIPANTS
A total of 14 healthy age-matched controls and 29 patients with
refractory unilateral TLE (13 left and 16 right) were recruited from
the Thomas Jefferson University Comprehensive Epilepsy Center.
All the patients underwent a standard en bloc ATL to remove
their epileptogenic temporal lobe. In detail, this surgery included
a unilateral ATL and amygdalohippocampectomy [approximately
4–6 cm from the temporal pole with the size smaller for the left
(language dominant) temporal lobe patients]. Note that all of
our participants, controls and patients, were left hemisphere (LH)
dominant as verified by task-fMRI (e.g., verb generation proce-
dure). Details of the Thomas Jefferson Comprehensive Epilepsy
Center algorithm for surgical decision-making are described by
Sperling et al. (16). A combination of video/surface EEG (at
least 96 h), MRI, PET, and neuropsychological testing was used
to lateralize the side of seizure focus. All patient participants met
the following inclusion criteria: unilateral temporal lobe seizure
focus, concordant MRI, and/or PET findings of temporal lobe

abnormality with no non-concordant data. TLE patients were
excluded from the study for any of the following reasons: previous
brain surgery; extra-temporal lesions; medical illness with cen-
tral nervous system impact other than epilepsy; extra-temporal or
multi-focal epilepsy; contraindications to MRI; psychiatric diag-
nosis other than an axis-I depression or anxiety disorder; or
hospitalization for any axis-I disorder listed in the Diagnostic and
Statistical Manual of Mental Disorders, IV. Patients provided writ-
ten informed consent. Table 1 outlines the patients’ demographic
and clinical characteristics.

Healthy normal controls (NCs) were recruited from the
Thomas Jefferson University community, in order to match the
patient participants in age and gender. All controls were free of psy-
chiatric or neurological (central nervous system) disorders based
on a health screening measure. This study was approved by the
Institutional Review Board for Research with Human Subjects
at Thomas Jefferson University and all participants provided a
written informed consent.

MRI DATA ACQUISITION
All participants underwent magnetic resonance imaging on a 3-
T X-series Philips Achieva clinical MRI scanner (Amsterdam, the
Netherlands) using an 8-channel head coil. Both the NCs and the
TLE patients underwent two identical fMRI scanning sessions. In
detail, each patient underwent one pre-surgical (mean= 217 days
prior to surgery) and one post-surgical (m= 530 days after
surgery, minimum of 6 months) scan, while the NCs participated
in two fMRI sessions, with parameters identical to the TLE patients
at a time interval of at least 6 months. A total of 5 min of a resting-
state condition was collected from all participants. Anatomical
and functional acquisitions were similar for all patients. A sin-
gle shot echoplanar gradient echo imaging sequence acquiring
T2* signal was used with the following parameters: 120 volumes,
34 axial slices acquired parallel to the AC–PC line, TR= 2.5 s,
TE= 35 ms, FOV= 256 mm, 128× 128 data matrix isotropic vox-
els, flip angle= 90°, bandwidth= 1.802 (±241.1 kHz). The in-
plane resolution was 2 mm× 2 mm and the slice thickness was
4 mm. Prior to collection of the T2* images, T1-weighted images
(180 slices) were collected using an MPRage sequence (256× 256
isotropic voxels; TR= 640 ms, TE= 3.2 ms, FOV= 256 mm, flip
angle= 8°) in positions identical to the functional scans to pro-
vide an anatomical reference. The in-plane resolution for each
T1 slice was 1 mm× 1 mm× 1 mm (axial oblique; angle following
the anterior, posterior commissure line). Survey and field refer-
ence inhomogeneity images were collected prior to the start of
the study. Each EPI imaging series started with three discarded
scans to allow for T1 signal stabilization. Subjects lay in a foam
pad to comfortably stabilize the head, were instructed to remain
still throughout the scan, not fall asleep, and keep their eyes closed
during the entirety of the scan.

IMAGE PROCESSING
Data from the patients (pre- and post-surgery scans) and NCs
(sessions 1 and 2) were preprocessed identically using SPM81. Slice
timing correction was used to adjust for variable acquisition time

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8
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Table 1 | Clinical information and characteristics of the patients.

Pathology Participants Gender Age at the

pre-surgery

scan date

(years)

Age at

seizure

onset

Seizure type Temporal

pathologya

Duration of

first

scan-surgery

(days)

Duration of

second

scan-surgery

(days)

Seizure

outcome

class

Left TLE 1 M 56.4 16 SPS; rare CPS Cavernoma 38 915 1

Left TLE 2 F 43.9 3 CPS; rare GTCS HS 311 251 1

Left TLE 3 F 60.2 53 CPS/SPS Mild subpial

gliosis, no HS

90 1062 1

Left TLE 4 M 35.9 20 CPS Gliosis and HS 61 1055 1

Left TLE 5 F 41.2 5 CPS/SPS Gliosis and HS 586 181 5

Left TLE 6 F 42.3 38 CPS Gliosis and HS 19 244 1

Left TLE 7 F 60.5 13 CPS Gliosis and HS 34 364 1

Left TLE 8 M 60.0 50 CPS Gliosis and HS 23 237 1

Left TLE 9 F 25.4 18 CPS with sec GTCS Low grade glioma 200 238 1

Left TLE 10 F 31.3 14 CPS Mild gliosis and

HS

14 1705 1

Left TLE 11 F 34.7 19 CPS/SPS Mild subpial

gliosis, no HS

42 890 1

Left TLE 12 F 52.2 42 CPS Gliosis and

cavernous

angioma

25 1360 1

Left TLE 13 M 34.1 31 CPS/GTCS Gliosis, no HS 68 208 1

Right TLE 1 F 48.2 16 CPS/SPS Gliosis and HS 172 787 1

Right TLE 2 F 33.1 2 CPS/rare GTCS Gliosis and HS 76 641 1

Right TLE 3 F 30.0 10 CPS Gliosis, no HS 271 530 1

Right TLE 4 F 26.0 21 CPS Gliosis, cortical

dysplasia

36 398 1

Right TLE 5 F 52.4 11 CPS/sec GTCS Gliosis 64 227 2

Right TLE 6 M 55.3 5 CPS; rare sec GTCS Gliosis and HS 38 159 1

Right TLE 7 M 57.5 27 CPS Gliosis, no HS 628 282 2

Right TLE 8 M 28.1 16 CPS Gliosis 35 255 1

Right TLE 9 M 25.6 19 CPS/SPS Gliosis 23 245 3

Right TLE 10 M 65.3 20 CPS Gliosis and HS 36 243 1

Right TLE 11 F 29.7 27 CPS/SPS Mild gliosis 472 146 4

Right TLE 12 M 39.6 35 CPS Mild gliosis 101 169 4

Right TLE 13 F 34.5 32 CPS Gliosis 886 548 1

Right TLE 14 F 47.5 34 CPS Mild gliosis 109 329 1

Right TLE 15 F 23.4 17 CPS Gliosis 1451 1391 1

Right TLE 16 M 60.0 51 CPS/GTCS Gliosis 394 297 2

F, female; M, male; HS, hippocampal sclerosis; CPS, complex partial seizures; SPS, simple partial seizures; sec GTCS, secondarily generalized tonic/clonic seizures.

The seizure outcome classification, from class 1 to 4 is based on the Engel classification (25), class 5 reflects the presence of post-operative pseudo-seizures.
aTemporal pathology resulted from the surgical pathology report regarding the resected tissue after the ATL.

over slices in a volume, with the middle slice in every volume used
as reference. Next, a six-parameter variance cost-function rigid
body affine registration was used to realign all images within a
session to the first volume. Motion regressors were computed and
later used as regressors of no interest. To maximize mutual infor-
mation, co-registration between functional scans and the MNI305
(Montreal Neurological Institute) template was carried out using
six iterations and re-sampled with a seventh-degree B-spline inter-
polation. Functional images were then normalized and warped
into standard space (MNI305) to allow for signal averaging across

subjects. We utilized the standard normalization method in SPM8,
which minimizes the sum-of-squared differences between the sub-
ject’s image and the template (MNI305), while maximizing the
prior probability of the transformation. This spatial normaliza-
tion provided a reliable matching to the MNI template without
causing aberrant distortions in the images, both in patients with
no brain lesions and those having brain resections and abnormal
signal (17). This enabled us to compare brain structures and define
the same seed region (see next step) between pre- and post-surgical
data. Segmentation of the data in the gray matter, white matter
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(WM), and cerebro-spinal fluid (CSF) classes was also carried
out. All normalized images were smoothed by convolution with a
Gaussian kernel, with a full width at half maximum of 8 mm in
all directions. For each individual, the time-courses of both WM
and CSF were estimated in the relevant brain tissue classes defined
at the segmentation step. Sources of spurious variance were then
removed from the data through linear regression: six parameters
obtained by rigid body correction of head motion and the CSF
and WM signals. Finally, fMRI data were temporally filtered using
the REST Toolbox (low cutoff frequency= 0.008 Hz – high cutoff
frequency= 0.1 Hz) (18, 19). As head motion has been reported to
potentially influence resting-state results (20), we utilized t -tests
to check for differences either across scanning sessions or between
our experimental groups. For each individual, we computed the
maximum difference (i.e., minimum to maximum) within each of
the six realignment parameters computed during preprocessing.
No significant differences were observed either across the scan-
ning sessions (pre- to post-) or between the experimental groups
(Bonferroni corrected for the six parameters, for an effective alpha
of p= 0.05).

STATISTICAL ANALYSES
Independent component analysis
Spatial probabilistic ICA (temporal concatenation method) was
used to identify resting-state networks. Briefly, preprocessed
images from each scan (a total of 86 inputs) were entered into
the FMRIB software library (FSL) 4.0.8 Melodic ICA software2

(21). This technique performs a spatio-temporal decomposition
of the signal without any a priori seed, by simultaneously analyzing
data from all the subjects (22). We used the Laplace approximation
to estimate the number of components. The output resulted in 16
independent components (ICs) common for the entire group of
participants. Each IC was associated with a Z -map and a time-
series. Also, for each component, an effect size value is available
for each participant, indicative of the strength of the component

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

in each subject’s data. Each map was thresholded at a posterior
probability threshold of p= 0.5, using an alternative hypothesis-
testing approach based on the fit of a Gaussian/Gamma mixture
model (22). In a second step, based on these group ICs, we then
applied a dual regression approach to characterize each IC in each
subject, through a Z -map and an individual time-series (23).

Selection of the dorsal and ventral default-mode networks
Based on this group decomposition, we identified the two best-fit
components for the dDMN and vDMN (Figure 1). For this, we
computed the goodness-of-fit (GOF) for each IC, using the dDMN
and vDMN templates provided by Shirer et al. (24). In detail,
applying Greicius et al.’s method, a linear template-matching
procedure was used, which takes the average z-score of voxels
falling within the template minus the average z-score of voxels
outside the template (7). These best-fit components reflect the
degree to which their best-fit component network matched the
default-mode networks template.

The IC selected as the best-fit for the dDMN (Figure 1A)
includes a major cluster in the medial prefrontal cortex/ACC,
the bilateral caudate nuclei. To a lesser degree, the PCC was also
included as well as the right angular gyrus, the left superior tem-
poral cortex, and right calcarine. The IC selected as the best-fit
for the vDMN (Figure 1B) includes a large cluster in the medial
parietal cortex, including the precuneus, PCC, and retrosplenial
cortex. Bilateral angular gyri, the anterior ventral area of the medial
prefrontal cortex as well as bilateral parahippocampal gyri (more
extensive on the left), bilateral inferior temporal cortices, and bilat-
eral superior/middle frontal cortices were also part of the vDMN.

Computation of goodness-of-fit or each individual network
After identifying the two best-fit networks, we computed the GOF
for each network and each individual. These GOFs were used
to indicate the fit or degree to which each individual’s network
was normative, with a higher GOF indicating a more norma-
tive network. These procedures yielded four GOF values for each
individual (two pre-surgery and two post-surgery, one for each
network). A repeated-measure ANOVA was run to test the effects

FIGURE 1 | Description of the best-fit independent components (ICs) for the dorsal DMN (A) and ventral DMN (B), resulted from the group ICA.
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Doucet et al. Default-mode network subdivisions in TLE

of sessions (pre-/post-surgery for patients, or session one and two
for the NCs) and experimental group (RTLE, LTLE, NCs) on the
GOF, run separately for each network.

Regional differences
At the group level, statistical analyses were computed in order
to determine spatial extent differences for each network between
the groups and the sessions. For this, individual Z -maps were
entered into a second-level random-effects analyses, for each net-
work separately. The first analysis was done on the pre-surgery
data only. In other words, we tested the differences between the
three experimental groups, pre-surgery, for each DMN subdi-
vision independently. Second, to analyze within-subject pre- to
post-surgery changes, a difference image was created for each
participant. This image was obtained by subtracting pre- to post-
surgery Z -maps, for each subject and each network. This allowed
us to test both for decreases (pre > post-surgery) and increases
(post > pre-surgery) in spatial extent across the scanning sessions.
As the number of days between the two scans was significantly
different between the groups (see Results), we added this as a con-
tinuous variable, a covariate of no-interest, in the model. Each
comparison was restricted to changes involving positive voxels
losing or gaining their engagement in the network of interest. In
other words, we did not report the clusters of voxels remaining
below the threshold defining during the ICA (posterior probabil-
ity threshold of p= 0.5; corresponding to a Z = 1.9 and 2.2 for the
dorsal and vDMN, respectively) at both sessions despite a possible
significant change between the two sessions, as any such pattern
would indicate the regions were not part of the network of interest
at either session.

In order to avoid any confounding effect between normal and
true post-surgery changes, we utilized two independent additional
analyses. First, at the whole-brain level, we recomputed the rele-
vant patient contrast (i.e., post- versus pre-surgery), and applied
an exclusive mask involving the regions associated with significant
changes between the two sessions for the control group (p < 0.001,
uncorrected). Second, for each cluster showing a significant change
in either patient group, we computed the averaged Z -values in the
control group and computed a paired t -test between the two ses-
sions. Any clusters significant in the control group were excluded,
as these would represent normative, not patient related, changes,
and, therefore, are not presented in the Section “Results.”

Lastly, the height threshold of the statistical analyses was fixed
at p < 0.001 (uncorrected, T > 3.31) and the spatial extent thresh-
old at 50 voxels minimum for a cluster (e.g., corresponding to a
corrected alpha level of p < 0.045).

Correlation with clinical characteristics
Lastly, we computed Pearson correlations to test the relation
between the age of seizure onset and the GOFs, within each patient
group. Also, regarding the analysis of regional differences, age of
seizure onset was added as a covariate in the second-level analyses
in order to test potential effects on pre-surgery DMN activity.

RESULTS
BEHAVIORAL DATA
The three experimental groups did not differ by age (p= 0.7), nor
gender (p= 0.09). With regard to the patient groups, the RTLE

and LTLE groups did not differ by age of seizure onset, illness
duration, number of anti-epileptic drugs (pre- or post-surgery),
presence/absence of unilateral mesial temporal sclerosis (MTS)
(pre-surgery), nor the time interval between the fMRI scans and
surgery (Table 1). With regards to the specialization of the LH for
language, the left TLE patients had a smaller resection than the
right TLE patients. However, this difference was not significantly
different between the patient groups. Regarding the seizure out-
come of the patients, we used a classification based on the Engel
classes [class I–IV; (25)], with an additional class V reflecting the
report of post-operative pseudo-seizures. Overall, all of the LTLE
patients were seizure free (Engel class I, at least 1 year after surgery),
except one who was in class V at 1 year (e.g., reporting pseudo-
seizures with no epileptic seizures). For the RTLE group, 14 of
16 patients also had a good seizure outcome [classes I (N = 10),
II (N = 3), or III (N = 1)], with two patients in class IV with no
change in seizure frequency (see Table 1).

The only difference that emerged between the groups involved
the number of days between the two scans (p= 0.02). In detail,
the time interval between scans was shorter for the control group
(m= 380 days), than for the LTLE (m= 786 days; p= 0.02), but
not for the RTLE group (m= 609 days, p= 0.3). Note that the
TLE groups did not differ (p= 0.6). To correct for this difference,
the time interval between scans variable was added as a covariate
of no interest in the second-level analysis involving pre- versus
post-surgery comparisons.

GOODNESS-OF-FIT ANALYSES
A repeated-measure ANOVA applied on the GOF revealed no
significant differences for the vDMN between the experimental
groups (p= 0.4) or sessions (p= 0.3) (Figure 2). In contrast,
for the dDMN, the RTLE showed higher GOF values than the
LTLE, pre-surgery (p= 0.013). This difference between left and
right TLE disappeared post-surgery, as we observed a significant
reduction of the RTLE’s post-surgery GOF (p= 0.013), reaching
a level almost identical to that of the LTLE group. This effect was
mostly driven by the high pre-surgery GOF of the RTLE, as it
did not remain significant when accounting for this parameter in
the model (by adding the pre-surgery GOF values as a baseline
covariate). Of note, neither of the TLE patient groups’ GOF sig-
nificantly differed from the controls’, for either network, pre- or
post-surgery.

Within the patient groups, a negative correlation was revealed
between the age of seizure onset and the GOF for the pre-surgery
dDMN (r =−0.42; p= 0.02), indicating that more normative
dDMN was associated with earlier age of seizure onset. Both TLE
groups had similar effects (LTLE: r =−0.45, RTLE: r =−0.47).
No other significant correlations were observed between age of
seizure onset and the GOF values for either sub-network at either
the pre- or post-surgery testing point.

REGIONAL ANALYSES
Pre-surgery
Consistent with the GOF analysis, the dDMN showed more
regional differences between the three experimental groups than
the vDMN (Table 2). In detail, both networks showed significant
differences between the experimental groups, or more specifically
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Doucet et al. Default-mode network subdivisions in TLE

FIGURE 2 | Goodness-of-fit (GOF) for each default-mode network. Left panel: dorsal DMN (dDMN), right panel: ventral DMN (vDMN). *Significant
difference at p < 0.05.

larger differences between the right and left TLE, than between the
patient groups (RTLE and LTLE separately) and NCs.

Regarding the dDMN, the largest differences in pre-surgery
emerged between the TLE groups. Indeed, the RTLE patients
showed increased engagement of three large clusters located in
the right superior frontal cortex and one cluster in the left PCC
(Figure 3). In contrast, the LTLE did not display regions with sig-
nificantly increased engagement in the dDMN,relative to the RTLE
group. Compared to the NCs, the RTLE group showed reduced
engagement of the right superior temporal cortex, while the LTLE
group had an increased engagement of the left cerebellum (Crus
I) in this DM subnetwork.

Regarding the vDMN, the RTLE group also showed increased
engagement of large clusters, compared to the LTLE patients
(Table 2). They were located in the left paracentral lobe, extend-
ing to the precuneus (Figure 3), and in the right middle temporal
cortex. In contrast, the LTLE group showed increased involvement
in the VIIB lobule of the left cerebellum, relative to the RTLE
group. But the LTLE also displayed reduced involvement in the
lobule V of the left-sided cerebellum, relative to the control group.
Finally, we revealed that the RTLE group demonstrated increased
engagement in the right calcarine and the left precuneus but no
significant reduction compared to controls.

No association was revealed between the age of seizure onset
and either pre-surgery DMN within each patient group.

Change from pre- to post-surgery
Overall, comparisons between the pre- and post-surgery sessions
demonstrated larger changes in the dDMN than in the vDMN
for both patient groups (Table 3). For the dDMN, the LTLE
demonstrated increased involvement in several regions outside the
ictal temporal lobe, post-surgery in comparison to pre-surgery. In
detail, the right precuneus, right inferior parietal, and left mid-
dle temporal (posterior to the resection area) clusters showed
positive involvement in the dDMN, post-surgery relative to pre-
surgery (Figure 4). In contrast, as expected, the LTLE group lost
the engagement of the left parahippocampal gyrus, located in
the resected area, but also a cluster in the right middle temporal
gyrus, post-surgery. The RTLE patients did not show any signifi-
cant increased involvement of other regions in the dDMN, post-
surgery. On the contrary, there was greatly reduced involvement

of ipsilateral regions in their dDMN. Most notably, a particularly
large focal cluster located in the right frontal lobe showed lower
participation in the dDMN activity (Figure 4). To a lesser degree,
the right caudate nucleus and insula also lost their functional
involvement in this network post-surgery. Importantly, none of
these changes were significant in the control group. NCs only
showed a small reduction of engagement of the right thalamus
in the dDMN during the session 2, relative to the session 1.
We did not observe any significant increase at session 2 for the
controls.

Regarding the vDMN, the only changes evident post-surgery
were in the ictal/resected temporal lobe for each patient group,
with reduced engagement, as expected (see Table 3). Also, the NCs
showed reduced activity in two clusters located in the left pre-
cuneus and left middle temporal lobe for the session 2, relative to
the session 1.

DISCUSSION
The present study investigated differences in the spatial extent of
the two major subdivisions of the well-known DMN at rest in TLE
patients. We tested for differences before and after ATL, with close
examination of side of pathology (i.e., ictal focus) as a mediating
factor. Prior work has described aberrant activity in the overall
DMN in TLE patients’ pre-surgery (11). We go further by clearly
showing the unique effects of left versus right TLE, with further
demonstration of the effects of ATL on the two main subdivi-
sions of the DMN. Indeed, in contrast to our initial hypothesis,
we found more evidence of TLE group differences in the dor-
sal rather than the vDMN, including distinct patterns of change
for dDMN post-surgery. Thus, we show that ATL does not affect
the DM networks in an equivalent fashion, and the nature of its
impact varies depending on the pathologic hemisphere involved.
Our results, therefore, imply that ATL has distinct effects on the
cognitive functions associated with the DMN subdivisions, and
that these effects will vary as a function of right and left TLE.

Importantly, our data show little evidence that the ventral sub-
division of the DMN was affected by either TLE pre-surgery
or ATL. Indeed, at the whole-brain level, using GOF measures,
our analyses failed to produce significant differences, while we
did observe substantive differences in the dDMN between the
groups and the sessions. This seems counter-intuitive as the vDMN

Frontiers in Neurology | Epilepsy March 2014 | Volume 5 | Article 23 | 614

http://www.frontiersin.org/Epilepsy
http://www.frontiersin.org/Epilepsy/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Doucet et al. Default-mode network subdivisions in TLE

Table 2 | Description of the significant differences within each DMN subdivision, between the experimental groups, pre-surgery.

Contrast Region Cluster voxel Z -value x y z Z (RTLE)a Z (LTLE)a

DORSAL DMN

RTLE–LTLE R Sup Ft 167 5.03 20 52 10 17 4

R Sup Ft 3.71 20 56 22

R Sup Ft 139 4.25 14 26 −16 27 12

R Rectus 4.22 8 44 −14

R Sup Ft 194 4.18 12 44 48 22 4

R Sup Ft 3.84 12 28 44

R Sup Ft 3.81 24 38 48

L PCC 59 4.05 −4 −38 30 10 −1

L PCC 3.45 −10 −44 26

LTLE–RTLE Null

Z (TLE)a Z (NC)a

NC–LTLE Null

NC–RTLE R Sup Tp 58 4.27 58 6 4 −4 9

LTLE–NC L Cereb 63 4.11 −48 −76 −30 3 −11

L Cereb 3.39 −42 −88 −32

RTLE–NC Null

VENTRAL DMN

RTLE–LTLE L PCL 125 5 −10 −30 68 6 −2

L Precu 3.47 −8 −44 68

R Mid Tp 124 4.02 52 −40 4 14 1

R Mid Tp 3.28 60 −52 0

LTLE–RTLE L Cereb 92 3.99 −12 −72 −34 −3 7

Cereb 3.42 0 −72 −38

Z (TLE)a Z (NC)a

NC–LTLE L Cereb 68 4.19 −16 −50 −18 −9 5

NC–RTLE Null

LTLE–NC Null

RTLE–NC R Calcar 51 4.12 28 −66 12 3 −4

L Precu 63 3.87 −6 −42 68 26 9

L Precu 3.69 −2 −50 64

NC, normal controls; LTLE, left temporal lobe epilepsy; RTLE, right temporal lobe epilepsy; Cereb, cerebellum; Calcar, calcarine; Precu, precuneus; Tp, temporal

cortex; Mid, middle; L, left; R, right; PCL, paracentral lobule; Sup, superior; Ft, frontal cortex; PCC, posterior cingulate cortex.
aThe last two columns indicate the averaged Z-values within each cluster for each group of interest, for each contrast, indicating the degree of difference between

the two groups.

includes the epileptogenic mesial temporal lobe in TLE. However,
within the vDMN, the mesial temporal lobe has a much less piv-
otal role than the precuneus, a region considered to be a major
hub in the DMN (26). Therefore, the relative integrity of this net-
work may suggest that the precuneus plays a compensatory role,
reducing the negative impact of mesial temporal disease over the
rest of the network, and otherwise helping to maintain network
integrity. As a matter of fact, our regional analyses revealed little
differences between the patient and control groups, supporting
this interpretation. Further emphasizing a compensatory role for

the precuneus in our data is that the RTLE group showed more
engagement of the precuneus in the vDMN, than either the LTLE
or controls. This finding is consistent with Zhang et al.’s study (11),
which suggested that the PCC may play a compensatory role for
the altered DMN in right but not left TLE. Our findings in LTLE
for the vDMN stand in stark contrast to this, compelling consid-
eration of an alternative interpretation. For example, rather than
proposing that the RTLE is displaying a compensatory response
involving the precuneus/PCC area (suggesting that the LTLE is
associated with a normal activity in this region), instead the LTLE
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Doucet et al. Default-mode network subdivisions in TLE

FIGURE 3 | Regions showing increased engagement in RTLE, relative
to LTLE group, for the dorsal DMN (green) or the ventral DMN (purple).
The images are shown in radiological orientation [e.g., the right side is the
left hemisphere (LH)]. LH, left hemisphere; RH, right hemisphere.

patients can be seen as showing a pathologic loss of engagement
of this region in the vDMN.

It is also worth noting that the LTLE group showed distinctly
different engagement of the left-sided cerebellum with the rest
of the vDMN, relative to the two other experimental groups.
The exact reason for this cortical-cerebellar alteration is unclear,
pre-surgery. It is interesting to note that in our previous study
we observed a specific modulation of the functional connectiv-
ity between the left hippocampus and the left-sided cerebellum
during a working memory task in the LTLE but not the RTLE
(27). Thus, in combination, these separate results for LTLE patients
may represent accruing evidence for altered functional connectiv-
ity between the cortex and the left-sided cerebellum. Overall, the
absence of large alterations within the vDMN indicates that the
abnormalities of unilateral temporal lobe seizures do not cause
major perturbation of the whole vDMN. As was the case with
the right TLE group, we again suggest that the precuneus/PCC
has a protective role within this mostly posterior network, pre-
venting major changes that might otherwise be caused by TLE
pathology. This role is supported by previous studies describ-
ing the precuneus/PCC as a principal hub in the DMN (26, 28),
perhaps generating activity or signals that limit seizure spread or
epileptogenesis in TLE patients (29).

In contrast, our data show that TLE and ATL do have a signif-
icant effect on the regional extent of the dDMN, a sub-network
whose major hub is prefrontal cortex, with precuneus involvement
present, but to a much smaller degree. Indeed, large discrepancies
were evident as a function of the side of the pathology. Pre-surgery,
based on the GOF, the RTLE showed a more normative network
than the LTLE (i.e., higher GOF as a sign of a better matching to
the template). Also, the present data demonstrate that, pre-surgery,
the LTLE group showed reduced involvement of the major regions
in this network such as frontal cortex and PCC, relative to the
RTLE group. Differences between the impact of right and left TLE
have been described previously, associated with the (dominant)
function of the LH in language-related processes (14, 15). It is
important to note that the majority of our participants were right-
handed, suggesting LH dominance for language was prominent in

our sample. Thus, our data support the notion that the functions
of the dDMN may be more strongly implemented by the LH, and
is consistent with previous finding suggesting that the DMN is
left-lateralized, heavily involved, for instance, in functions such as
inner, covert speech (30). Given this lateralized bias in function, it
makes sense that left-sided seizures are more harmful to this net-
work than right-sided seizures. Conversely, our data suggest that
the vDMN is less engaged in language processing, and will be less
sensitive to left-lateralized pathology such as LTLE.

Another striking result is the negative correlation revealed
between the age of seizure onset and the dDMN’s GOF in patients,
pre-surgery, regardless of the side of the pathology. In other words,
this indicates that earlier age of seizure onset is associated with a
more normative network. Indeed, higher GOF is indicative of a
better match between the patients’ network and the “normative”
dDMN obtained by Shirer et al. (24) on healthy participants. We
failed to find evidence of an association with onset at the regional
level, suggesting that age of seizure onset has more of a global
influence on the whole network, rather than selectively impacting
a specific network region. This negative correlation is consis-
tent with literature addressing the influence of early versus late
seizure onset on brain plasticity. Indeed, previous studies describe
how a mature brain is less plastic, allowing late onset seizures
to cause irreversible impairment in the setting of fully acquired
and developed cognitive functions (31). Our result suggests that
this developmental feature is at work with the dDMN, implying
that when a young brain is confronted with seizures it is more
capable than an older brain of generating functional adaptation
and plasticity in the dDMN. We observed no such developmental
relationship in the vDMN.

Our study is the first to investigate the effect of ATL on DMN
subdivisions, and, in addition, reporting different effects accord-
ing to the side of the ATL. It is important to remember that the
majority of our patients were confirmed to have good seizure out-
come (seizure free or significant reduction of their seizures) at
least 1 year after their surgery, confirming that the ATL surgery
likely resected the primary seizure onset zone. Our data show that
right ATL causes more damage in the dDMN than left ATL. More
specifically, right ATL, but not left ATL, was associated with a
large reduction in engagement of ipsilateral regions, especially the
right frontal cortex in the dDMN. The reason for such loss of
activity is still not clear, and we are the first to report this find-
ing. This loss of frontal activity in the RTLE patients implies that
right frontal cognitive deficits are likely to be more prominent in
these patients following ATL, though neuropsychological studies,
involving measures of executive function, do not support this (32).
One possibility for this discrepancy is that diminished right frontal
dDMN activity may impact other types of cognitive processing not
measured by standard neuropsychological testing such as sponta-
neous cognition (e.g., mind wandering). Indeed, DMN activity
has been associated with spontaneous mental processes in healthy
subjects (3, 4), but no study has explored nature and integrity of
spontaneous thoughts in TLE patients with concurrent measures
of DMN subdivision activity.

With regard to the unique effects of the side of the ATL, left but
not right ATL patients showed recruitment of additional posterior
regions into the dDMN post-surgery. This finding speaks to the
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Doucet et al. Default-mode network subdivisions in TLE

Table 3 | Description of the changes between the two sessions, within each experimental group, for each DMN subdivision.

Contrast Region Cluster voxel Z -value x y z Z (pre)a Z (post)a

DORSAL DMN

LTLE: post > pre R Precu 138 4.68 16 −54 66 −9 3

R Inf Pt 50 4.43 66 −30 52 0 7

L Mid Tp 65 4.09 −52 −34 −4 −2 7

LTLE: pre > post L Parahip – resected area 123 4.27 −28 −22 −22 2 N/A

R Mid Tp 98 3.89 60 −60 4 4 −6

RTLE: post > pre Null

RTLE: pre > post R Sup Ft 690 4.49 12 46 50 19 4

R Sup Ft 4.34 22 36 48

R Sup Ft 4.18 26 26 50

R Caudate 69 3.59 14 16 16 9 −1

R Insula 119 3.82 40 16 −14 22 3

NC: ses 2 > ses 1 Null

NC: ses 1 > ses 2 R Thalamus 61 3.9 2 −6 10 6 −2

VENTRAL DMN

LTLE: post > pre Null

LTLE: pre > post L Inf Tp – resected area 61 4.31 −56 −2 −32 13 N/A

RTLE: post > pre Null

RTLE: pre > post R inf Tp – resected area 294 5.05 66 −34 −16 9 N/A

R inf Tp – resected area 4.23 60 −30 −26

NC: ses 2 > ses 1 Null

NC: ses 1 > ses 2 L Precu 143 4.66 −14 −54 26 24 19

L Mid Tp 66 3.89 70 −34 −4 7 1

NC, normal controls; LTLE, left temporal lobe epilepsy; RTLE, right temporal lobe epilepsy; Cereb, cerebellum; Precu, precuneus; Tp, temporal cortex; Mid, middle;

L, left; R, right; Inf, inferior; Sup, superior; Ft, frontal cortex; Parahip, parahippocampal gyrus; Pt, parietal cortex.
aThe last two columns indicate the averaged Z-values within each cluster for each session (pre- and post-surgery for the patients, sessions 1 and 2 for the controls),

indicating the degree of change between the sessions within the experimental group.

FIGURE 4 | Major changes between pre- and post-surgery for the dorsal DMN (A) or the ventral DMN (B), within each patient group. The images are
shown in radiological orientation (e.g., the right side is the left hemisphere). LH, left hemisphere; RH, right hemisphere.
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Doucet et al. Default-mode network subdivisions in TLE

differential effect of temporal lobe seizures on the dominant versus
non-dominant hemisphere. It has been previously demonstrated
that LTLE patients are more prone to brain activity abnormali-
ties than RTLE, pre-surgery (14, 15). Yet, we observed an increased
engagement of the precuneus in this network for the LTLE patients
post-surgery relative to pre-surgery. This is consistent with our
previous interpretation regarding the positive and possible com-
pensatory effect of this region on the network as a whole. Recalling
that our left TLE patients had good seizure outcomes, we suggest
that, released from seizure burden, the left dominant hemisphere
is able to function more normally, with this normalization sup-
ported through the compensatory benefits conferred by adding
new regions to bolster dDMN activity. This idea is also conver-
gent with the findings of McCormick et al. (10), who described
that post-surgical enhancement of functional connectivity involv-
ing the PCC correlated with better post-surgical episodic memory
performance.

Overall, our data indicate that right TLE is associated with
greater disruption of the dDMN post-surgery. In terms of lat-
eralized effects, our data differs from the most common reports in
the neuropsychological literature, which generally indicate that
left (i.e., dominant hemisphere) TLE patients fare worse than
right TLE patients after ATL surgery (33, 34), particularly in areas
such as episodic memory. While our data may imply left, not
right, sided ATL engender adaptive mechanisms and compen-
satory network responses after surgery, we cannot presume that
the post-surgical changes observed in our right TLE are either
associated with cognitive outcome or could explain any observed
neurocognitive findings. Further investigations are needed to fill
the gap between our knowledge of functional reorganization and
its consequences for cognitive change following ATL and other
surgical interventions.

With regard to the vDMN and surgery, our data suggest that
ATL had very limited effects. Indeed, we only found expected
changes within the resected temporal lobe for each of the patient
groups. This lack of change is consistent with our interpretation
of the pre-surgical finding. That is, the engagement of the pre-
cuneus/PCC area may have worked to limit or constrain some of
the disruptions in the network caused by resection of the epilepto-
genic temporal lobe. More generally, these findings for the vDMN
imply that TLE and ATL surgery, regardless of side, has less of an
impact on vDMN functionality (e.g., decision-making related to
constructing/recalling a mental scene) than might be expected.

Some limitations in our study should be noted. We cannot
exclude the possibility that some changes revealed between pre-
and post-surgery in the patient groups were partially caused by
normal aging or the normal effects of time. Related to this, we
were not able to match exactly the NC and the LTLE participants
on the time interval between the scans. As described, we checked
that the brain regions displaying change between the two sessions
for the TLE patients were not areas of change in the NC group.
Furthermore, we did not find any regions with increased engage-
ment in the control group, suggesting that such DMN alterations
are quite specific to the effects of ATL surgery and are not likely
related to normal, time-related change in the healthy participants.
Thus, we believe that we have highlighted the reliable effects of the
ATL procedure on DMN activity at rest in TLE patients.

Another limitation is that the patients were not all seizure free.
The right TLE group had slightly fewer seizure-free patients than
the left TLE group, post-surgery (11/16 versus 12/13), although
this difference was not significant. Unfortunately, the low sample
size of the non-seizure free group precluded statistical analyses of
the potential effect of different seizure outcomes on our findings.
We acknowledge that patterns of seizure recurrence versus control
may influence the status of the DMN. Indeed, it could be playing
a role in our finding that the right, but not the left, TLE patients
suffer from a large reduction of frontal activity in the dDMN as a
result of factors such as seizure spread or secondary epileptogene-
sis [see Ref. (35)]. Further investigation is needed to explain such
phenomenon, using a more balance sample size of TLE patients
with poor versus good seizure outcome.

Regarding other clinical factors, AEDs could potentially effect
network connectivity and changes post-surgery. However, AED
status did not vary or change after surgery in our sample. We
considered analyzing collected clinical data on seizure frequency.
However, the experience at our epilepsy center is that age of onset
is a more reliable measure than other historical measures such as
seizure frequency or age at first risk (e.g., first signs of pathology).
The former because awareness and recall of seizure occurrence
is so poor; the latter because of the potential delay between the
start and the discovery of pathology. We chose to focus on age of
seizure onset as this may best capture developmental differences
in response to neuroplasticity. For instance, younger compared
to older age brains appear more disposed to plasticity and cog-
nitive reorganization (36), factors that likely play a role in DMN
strength and organization. With these issues of neuroplasticity in
mind, variables such as – the age at which seizures fail to respond to
medications – would not be as accurate, nor as meaningful. More-
over, our algorithm for ATL candidacy requires that all patients
fail at least three seizure medications, with a large number having
many more such failed trials. Therefore, it would be very difficult
to accurately determine the age at which seizures failed to respond
to medication. Lastly, illness duration is highly correlated with age
at seizure onset, and thus constitutes a redundant variable.

Regarding pathology, it should be noted that all our patients
did not have the same temporal pathology, especially with regard
to the presence or absence of MTS. While we are aware that this
variable is an important and relevant factor in TLE (37), our sam-
ple size was too low for any meaningful statistical comparison
between patients with and without MTS. It should be noted that
our major purpose was to explore the extra-temporal effects of
TLE on network connectivity, and these extra-temporal regions
were not “lesioned” in any of our patients.

CONCLUSION
We demonstrate that the subdivisions of the well-known default-
mode resting-state network are effected differently by both the
original TLE pathology, and subsequent ATL procedure. Overall,
and somewhat unexpectedly, the dDMN appears more impacted
by these factors. Prior to surgery, major whole-brain differences
were observed in the dDMN,with right TLE displaying a more nor-
mative pattern based on the GOF measures. In terms of regional
dDMN effects, the TLE group differences observed in frontal and
precuneal regions, imply that left-sided, dominant hemisphere,
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pathology is more damaging to the network. In contrast, the sta-
tus of the vDMN prior to surgery showed no differences among
our groups at a whole-brain level, suggesting that neither left nor
right pathology has a detrimental effect. Regionally for the vDMN,
the RTLE group demonstrated increases, particularly in the pre-
cuneus, increases we believe reflect an adaptive, neuroprotective
response, compensating for the right mesial pathology. Regarding
the impact of ATL and post-surgical change in the DMN subdi-
visions, the vDMN, which includes most of the mesial temporal
lobe, did not demonstrate any significant loss of activity outside
the resected epileptogenic cortex, a finding that again suggests
that the vDMN is less affected by epileptogenic pathology. For the
dDMN post-surgery, contrasting effects were obtained for the TLE
groups. LTLE patients demonstrated increased engagement of new
posterior regions such as the precuneus, while the RTLE patients
showed lost engagement of a large right anterior cluster. Here,
we again see an adaptive or compensatory role for the precuneus,
though in this case in the setting of left TLE.

Overall our data demonstrate that right ATL has a more
deleterious effect on the dDMN, and that left, not right, sided
ATL appears more likely to engender adaptive mechanisms and
compensatory network responses after surgery. This latter sug-
gests a possible inconsistency with the neuropsychological data,
which tend to associate dominant hemisphere ATL with greater
functional problems post-surgery in domains such as episodic
memory. In this sense, our data raise questions about the nature
and extent of the correspondence between resting-state networks
associated with memory (i.e., the DMN) and neuropsychologi-
cal measures of functionality. Further investigations are needed
to fill the gap between knowledge about functional reorgani-
zation, as reported here, and its impact on cognitive status
post-surgery.

To our knowledge, we are the first to highlight the differen-
tial impact of right and left TLE and subsequent ATL on the
major subdivisions of the DMN, at rest. Our data show that
the dDMN is more closely associated with the impact of TLE
pathology and resective surgery than the vDMN, suggesting that
studying the cognitive and behavioral correlates of this DMN
subdivision and its changes with surgery may be fruitful, partic-
ularly as resting-state becomes better integrated into pre-surgical
algorithms for predicting neurocognitive, neurobehavioral, and
seizure outcomes.
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We studied with functional magnetic resonance imaging (fMRI) differences in resting-state
networks between patients with mesial temporal lobe epilepsy (MTLE) and healthy sub-
jects.To avoid any a priori hypothesis, we use a data-driven analysis assessing differences
between groups independently of structures involved. Shared and specific independent
component analysis (SSICA) is an exploratory method based on independent component
analysis, which performs between-group network comparison. It extracts and classifies
components (networks) in those common between groups and those specific to one
group. Resting fMRI data were collected from 10 healthy subjects and 10 MTLE patients.
SSICA was applied multiple times with altered initializations and different numbers of spe-
cific components. This resulted in many components specific to patients and to controls.
Spatial clustering identified the reliable resting-state networks among all specific com-
ponents in each group. For each reliable specific network, power spectrum analysis was
performed on reconstructed time-series to estimate connectivity in each group and dif-
ferences between groups. Two reliable networks, corresponding to statistically significant
clusters robustly detected with clustering were labeled as specific to MTLE and one as
specific to the control group. The most reliable MTLE network included hippocampus and
amygdala bilaterally. The other MTLE network included the postcentral gyri and temporal
poles. The control-specific network included bilateral precuneus, anterior cingulate, thal-
amus, and parahippocampal gyrus. Results indicated that the two MTLE networks show
increased connectivity in patients, whereas the control-specific network shows decreased
connectivity in patients. Our findings complement results from seed-based connectivity
analysis (1). The pattern of changes in connectivity between mesial temporal lobe struc-
tures and other areas may help us understand the cognitive impairments often reported in
patients with MTLE.

Keywords: temporal lobe epilepsy, independent component analysis, resting-state fMRI, brain networks, functional
connectivity

INTRODUCTION
Mesial temporal lobe epilepsy (MTLE) is a common form of
human focal epilepsy, with hippocampal sclerosis a common
underlying pathology (2). Although seizures in MTLE heavily
involve the temporal lobes, it is now clear that there are more
anatomically widespread functional disturbances (3). In addition,
it appears that structural and metabolic abnormalities in this pop-
ulation are not limited to the period of seizure occurrence and
probably affect the periods with no epileptic discharges, i.e., the
resting-state periods.

A method to investigate how different parts of the brain inter-
act with each other is to measure the intrinsic function of the
brain at resting-state using functional magnetic resonance imag-
ing (fMRI). Because this approach does not require subjects to
perform a specific task, it is attractive for clinical studies. In MTLE,
studies have shown changes in functional connectivity of the tem-
poral or mesial structures with other brain areas (1, 4–6), and

reported impaired resting-state networks including the perceptual,
attention, and default mode networks (DMN) (1, 7–10). Studies
combining fMRI resting-state functional connectivity and diffu-
sion tensor imaging (7, 11) suggest that functional connectivity
changes in MTLE are affected by loss in gray matter volume and
white matter integrity in the temporal lobe.

Independent component analysis (ICA) is a popular method
to analyze resting-state fMRI data since it provides a network
view of the changes in brain activity, by decomposing the data
into statistical independent spatial components, each component
being associated with a time-course (12). The main limitation
of ICA is its nature, which does not generalize simply to draw-
ing conclusions about groups of subjects. Despite this issue, a
number of group-ICA approaches have been proposed (13, 14).
These approaches differ in terms of data organization prior to
the ICA analysis, types of available output, and the statistical
approaches. However, there are challenges concerning most of
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the available group-ICA approaches, extensively discussed by Vah-
dat et al. (15), which cause ambiguity in the classification and
detection of components at the group level.

We recently proposed a new ICA-based method to address the
limitations of the current ICA approaches in the situation of multi-
groups/multi-conditions comparisons (15). The method, called
“shared and specific independent component analysis”or“SSICA,”
systematically performs between-group network comparisons. It
extracts and classifies components (networks) into two categories:
those that are common to groups and those that are specific to one
of the groups. This is done by adding a constraint to the FastICA
(16) algorithm to simultaneously deal with the data of multiple
groups within one ICA estimation.

Here we studied, using fMRI, group-specific differences in
resting-state networks between patients with unilateral MTLE
and healthy control subjects. For this purpose, we considered
the SSICA, since it does not require any a priori hypothesis,
and therefore, can assess differences between the groups indepen-
dently of the involved structures. Moreover, we were interested
in finding the most reliable resting-state networks among all the
components that are extracted as specific, and also in estimating
functional connectivity in each group and exploring its changes
across groups.

MATERIALS AND METHODS
SUBJECTS
Ten patients with unilateral MTLE (aged 29± 11 years, 3 males, 7
right MTLE) were selected from our EEG–fMRI dataset of patients
scanned at 3-T. These patients were a subset whose fMRI data ful-
filled our criteria for selecting patients, as explained below. All
patients were taking medication at the time of study and they did
not stop it for the purpose of scanning. The study was approved by
the research ethics board of the Montreal Neurological Institute
and Hospital and subjects participated in the research after giv-
ing written informed consent. Patients’ inclusion criteria were: (a)
having a unilateral mesial temporal epileptic focus according to
the clinical information (history of febrile seizures, seizure types,
and EEG and MRI findings), (b) no large structural or postsurgi-
cal lesion in order to ensure the accurate coregistration with the
average standard space, (c) having at least two fMRI runs with
no interictal epileptic discharges (IEDs) proven by the simulta-
neous EEG recording, (d) wakefulness proven by EEG recording
during these runs, and (e) motion of <1 mm as determined
by the realignment of the preprocessing (see “fMRI Preprocess-
ing,” preprocessing step 5). Table 1 gives the demographic and
clinical characteristics of all patients. Ten healthy controls (aged
32± 9 years, 5 males) were scanned using the same fMRI proto-
col, fulfilling inclusion criteria (d) and (e). There was no significant
difference between the age distributions of the two groups (sign
test, p > 0.05). Subjects were asked to keep their eyes closed dur-
ing the scan and were instructed to refrain from any structured
thoughts and from falling asleep.

EEG ACQUISITION
The EEG acquisition was performed using 25 MR compatible
electrodes (Ag/AgCl) placed on the scalp using the 10–20 (21
usual electrodes without Fpz and Oz, reference at FCz) and 10–10

(F9, T9, P9, F10, T10, and P10) electrode placement system, as
described elsewhere (17). Two electrodes located on the back
recorded the electrocardiogram (ECG). To minimize movement
artifacts and for the patient’s comfort, the head was immobi-
lized using a pillow filled with foam microspheres (Siemens, Ger-
many). Data were transmitted from a BrainAmp amplifier (Brain
Products, Munich, Germany, 5 kHz sampling rate) via an optic
fiber cable to the EEG monitoring computer located outside the
scanner room.

fMRI ACQUISITION
Functional images were continuously acquired using a 3-T MR
scanner (Siemens Trio, Germany). A T1-weighted anatomical
acquisition was first done (1 mm slice thickness, 256× 256 matrix,
TE= 9.2 ms, TR= 22 ms, and flip angle 30°). Four to seven fMRI
runs, each recording 200 volumes, were acquired for each patient
and 2–4 runs for each healthy control. TLE patients selected for
this study had at least two runs with no epileptic discharges
seen on EEG. In order to have the same number of runs for
all subjects, only two runs for every patient and control sub-
ject were selected. For patients, fMRI data were collected with
two EPI acquisition protocols: (I) 5 scans done before July 2008:
voxel dimensions 5 mm× 5 mm× 5mm, 25 slices, 64× 64 matrix,
TE= 30 ms, TR= 1750 ms, and flip angle 90°, (II) 5 scans after
July 2008: voxel dimensions 3.7 mm× 3.7 mm× 3.7 mm, 33 slices,
64× 64 matrix, TE= 25 ms, TR= 1900 ms, and flip angle 70°. All
the healthy controls were scanned with protocol (II).

EEG PROCESSING
The brain vision analyzer software (Brain Products, Munich, Ger-
many) was used for off-line correction of the gradient artifact
and filtering of the EEG signal. This software uses the method
described by Allen and colleagues (18). A 50-Hz low-pass filter
was also applied to remove remaining high-frequency artifact. The
ballistocardiogram (BCG) artifact was removed by ICA (19, 20). A
neurologist reviewed the EEG recordings and made sure that the
selected runs in patients were free of epileptic discharges and that
the patients and controls were awake during these runs.

fMRI PREPROCESSING
Regular preprocessing was performed using FMRIB software
library (FSL), www.fmrib.ox.ac.uk, Oxford, UK, FSL version 4.1
(21, 22). The following preprocessing steps were applied: (1) flip-
ping of patients’data to make a homogeneous left MTLE group (10
cases) and increase the sample size, (2) removal of the first two vol-
umes of each scan to allow for equilibrium magnetization, (3) slice
timing correction using Fourier-space time-series phase-shifting,
(4) non-brain tissue removal (23), (5) motion correction using a
six-parameter linear transformation using a maximization of the
correlation ratio (default settings of FSL) (24), (6) intensity nor-
malization of all volumes of each run as implemented in FSL (7)
spatial smoothing using a Gaussian kernel with 6 mm full width
at half maximum (FWHM), and (8) high-pass temporal filtering
with cut off frequency of 0.01 Hz. To achieve the transformation
between the low-resolution functional data and the average stan-
dard space [MNI152: average T1 brain image constructed from 152
normal subjects (25)], we performed two transformations. The
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Table 1 | Patients’ clinical data.

Patient Gender Age/

onset of

epilepsy

Epilepsy

type

History

of febrile

seizures

Seizure types Interictal EEG Ictal

EEG

MRI Anti-

epileptic

medications

1 F 20/15 R MTLE No Psychic aura, LOC, and postictal

fatigue

R T spikes�

L T spikes

N/A R hippocampal and

parahippocampal

lesion

VPA, LEV,

and PB

2 F 36/7 R MTLE Yes Epigastric aura, LOC, oral

automatism, and R hand

automatism

R T spikes R T R HA CBZ

3 M 29/14 L MTLE No Aura of déjà vu, LOC, oral

automatism, and rare GTCS

L T spikes and

L T slow waves

L T Non-lesional CBZ

4 F 46/32 L MTLE Yes Olfactory aura, L hand

automatism, R hand dystonia,

and postictal dysphasia

L T spikes�

R T spikes

N/A L HA and HS TPM and

OXC

5 M 18/17 R MTLE No Aura of déjà vu, LOC, and rare

GTCS

L T spikes and

L T slow waves

N/A R T DNET and

R HA

GBP and CLB

6 F 40/39 R MTLE Yes Olfactory aura, sensation of

coldness, bad odor, LOC, and

oral automatisms

R T spikes R T Non-lesional CBZ and CLB

7 F 27/6 R MTLE Yes Epigastric aura, warm sensation,

fear, tachycardia, postictal

confusion, and rare GTCS

R T spikes and

sharp waves

R T R mesial temporal

atrophy

CBZ and CLB

8 M 19/14 L MTLE No Epigastric aura, LOC, L hand

automatism, and R hand dystonia

L T spikes N/A L HA and HS CBZ, CLB,

and LTG

9 F 16/5 R MTLE Yes Aura of déjà vu, LOC, and

manual automatism

R T spikes and

R T rhythmic

slow waves

N/A R HA and HS VPA, CLB,

LEV, and

TPM

10 F 40/1 R MTLE Yes Epigastric aura, nausea, and LOC R T spikes and

R T slow waves

N/A R HA and HS VPA, LEV,

and PB

MTLE, mesial temporal lobe epilepsy; R, right; L, left; T, temporal; M, male; F, female; HA, hippocampal atrophy per MRI; HS, hippocampal hyperintensity per MRI;

DNET, dysembryoplastic neuroepithelial tumor; VPA, valproate; CLB, clobazam; LEV, levetiracetam; CBZ, carbamazepine; LTG, lamotrigine; GBP, gabapentin; TPM,

topiramate, OXC, oxcarbazepine, PB, phenobarbital; LOC, loss of consciousness; GTCS, generalized tonic clonic seizures.

first was from the low-resolution EPI image to the T1-weighted
structural image (using 7 degrees of freedom affine transforma-
tion), and the second was from T1-weighted structural image
to the average standard space (using a 12 degrees of freedom
linear affine transformation, voxel size= 2 mm× 2 mm× 2 mm).
Data were then sub-sampled to 4 mm isotropic space to limit the
computational burden.

SSICA METHOD
Shared and specific independent component analysis employs a
three-step data reduction and whitening procedure prior to its
simultaneous ICA analysis and network-classification (see Sup-
plementary Material; Figure 1 for details). Here, the size of
each subject’s preprocessed data was reduced from 2× 198 to 50
time-points by performing the first principal component analysis
(PCA). We chose 50 time-points since it explained at least 90% of

data variability in each subject’s dataset. In total 30 components
(shared and specific together) were extracted in both groups. This
was done on the aggregate reduced data of both groups, where the
size of each group’s concatenated data was reduced from (10× 50)
to (30-K 2) for group-1 and (30-K 1) for group-2; where K 1 and
K 2 are the maximum number of specific components in group-1
and group-2. In order to test the stability of our results with respect
to the total number of extracted components, we did additional
analyses by extracting 40 and 50 components at the group level.

Shared and specific independent component analysis was
applied several times with different numbers of extracted specific
components. We chose to extract up to three specific components
per group [K 1 and K 2= (0, 1, 2, and 3)], as allowing more specific
components only resulted in repetition or combination of already-
extracted specific components (i.e., it did not introduce any new
component). Therefore, we considered four possible values for the
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FIGURE 1 | Schematic of the SSICA algorithm. There are three levels of data whitening and reduction. F, H, and G, respectively represent the transformation
matrices at the first (subject), second (within-group), and the third (between-group) levels of data reduction.

number of specific components, and for each run of the SSICA,
we assigned one of these values to the number of extracted specific
components in each group (e.g., 0 for group-1 and 1 for group-2, 0
for group-1 and 2 for group-2, 0 for group-1 and 3 for group-2, and
so on). Consequently, the number of possible combinations with
repetition was 4× 4, equal to 16. Excluding the condition where 0
specific networks are extracted in both groups, we ended up with
15 cases. We repeated the whole procedure five times to account
for the effect of the ICA initialization, which introduces stochas-
tic behaviors of ICA algorithms and could play an important
role in algorithmic instability (26). So in total 15× 5= 75 SSICA
estimations were considered for further analysis. The number of
extracted specific components for patients with MTLE was 118,
while for controls 39 specific components were extracted. It should
be noted that the outputs of SSICA are spatial Z -score maps.

SPATIAL CLUSTERING ANALYSIS
The remaining important issue was to find the most reliable spe-
cific components among all the specific components in each group.

To do so, the following analysis based on the clustering method
proposed by Hyvarinen and Ramkumar (27) was performed. In
their method, the null hypothesis models the case where the com-
ponents for different subjects/sessions have no similarity at all,
other than what would be expected by chance (randomness). They
introduced a null distribution, which embodies the two possi-
ble sources of such randomness (scenario I. complete failure of
the ICA algorithm and scenario II. the underlying components
are completely different for each subject). For constructing the
null distribution, instead of using an explicit model of multivari-
ate distribution, they proposed a model where parameters can
be directly estimated from the observed data. Using the p-values
computed for the similarities between sets of components, they
proposed a hierarchical clustering procedure, where median was
used as the linkage strategy and determined the pairwise distance
between components. Correcting for multiple testing, this cluster-
ing method controls the false positive rate (FPR) for the formation
of clusters, and the false discovery rate (FDR) for adding new
elements to clusters.
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As implemented in the clustering package ISCTEST, for each
group, our input to the clustering algorithm was a three-
dimensional tensor containing k 2-D matrices (k being the total
number of specific components extracted in that group), where
each 2-D matrix was an extracted specific component’s spatial
map. We set the FPR and FDR to the conservative value of 10% as
recommended by Hyvarinen and Ramkumar (27) in the context
of real fMRI. The outputs of this analysis were several clusters of
specific components, which had the highest within-cluster simi-
larities and the lowest between-clusters similarities (simple spatial
correlation was used as the similarity metric). Then, all the compo-
nents within each cluster were averaged to obtain a representation
of that cluster. Results were then overlaid on standard MNI152
at 1 mm resolution for visualization purposes. The thresholded
Z -maps (Z > 2.3) were labeled according to the Harvard–Oxford
cortical and subcortical (28), and Juelich histological atlases (29).

FUNCTIONAL CONNECTIVITY ESTIMATION
In this part of the analysis, we were interested to estimate the func-
tional connectivity of each reliable specific resting-state network
and to compare it between groups. Here, we defined functional
connectivity of a network based on the power of its correspond-
ing time-course in the frequency band of the resting-state BOLD
signal (0.01–0.1 Hz). For each reliable specific network and each
subject (patient or control), we used the subject’s fMRI data and
the network’s spatial map in a general linear model (GLM) to find
one associated time-course per network and subject. We then used
power spectrum analysis (with the standard Hamming window
as implemented in MATLAB) to assess the power of this esti-
mated time-course within the 0.01–0.1 Hz frequency band. For
each group and each reliable specific network, power was aver-
aged across subjects within that group to calculate the functional
connectivity of that network.

RESULTS
Following the clustering algorithm described above, two signifi-
cant clusters of components were detected specific to the MTLE

group and one specific to the control group. These clusters respec-
tively included 111, 6, and 23 specific components (in total there
were 118 specific components in the MTLE and 39 in the control
group). Setting FPR and FDR thresholds of the clustering analy-
sis at 10%, 1 component in patients and 16 in controls were not
included into any significant cluster. The three reliable specific
networks, corresponding to these three clusters, are illustrated in
Figures 2A–C. As explained before, all the components within each
cluster were averaged to obtain the representation of that cluster
(the reliable specific network).

Our result in Figure 2A demonstrates that the most reliable
MTLE-specific network comprises bilateral hippocampi, amyg-
dalae, and inferior temporal gyri (more on the side of focus). The
other reliable MTLE-specific network comprises the postcentral
gyri and bilateral temporal pole, with more involvement on the
healthy side (Figure 2B). Results in Figure 2C demonstrate that
the reliable control-specific network, comprising precuneus, ante-
rior cingulate, thalamus, brainstem, and parahippocampal gyrus.
For the cases where 40 or 50 components were extracted at the
group level, we found very similar results as when 30 components
were extracted.

Results of power spectrum analysis on the temporal dynamics
of the detected resting-state networks show that the two MTLE-
specific networks show increased functional connectivity in the
patients compared to the controls (Figures 3A,B), whereas the
control-specific network shows decreased functional connectivity
in patients (Figure 3C). This explains why we chose to illus-
trate the MTLE-specific networks (Figures 2A,B) in red and the
control-specific network (Figure 2C) in blue.

DISCUSSION
We used an ICA-based analysis to study resting-state brain activity
in patients with MTLE and investigated the resting-state networks
specific to them when compared to healthy controls. Following the
framework proposed in SSICA, we assume that the specific net-
works are those that differ when comparing both groups; either
a normal network identified in controls, which is less or more

FIGURE 2 |The three detected reliable specific resting-state
networks. Reliable resting-state networks specific to the MTLE group
(A,B), reliable resting-state networks specific to the control group (C).
Note that this result is showing the average of spatial maps within each

reliable cluster. Z -values range between 2.3 and 5 in both cases. To be
compatible with the results in Figure 3, we chose to illustrate the
MTLE-specific networks (A,B) in red and the control-specific network
(C) in blue.
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FIGURE 3 | Results of the power spectrum analysis on the temporal
dynamics of each detected specific resting-state networks. The reliable
resting-state networks specific to the MTLE group show increased
functional connectivity in patients compared to controls (A,B), whereas the
reliable resting-state network specific to the controls shows the opposite
(C). X -axis shows the frequency in Hertz and Y -axis indicates the power in
decibel. Shaded area shows standard error of the mean.

present in patients, or a pathological network that only exists in
the patients. The SSICA requires as input the number of net-
works specific to each group but the true value of this number is

not known a priori. We therefore ran the SSICA multiple times,
with different maximum numbers of specific components, pro-
viding us with a large number of components specific to the
patients and to the controls (we also ran SSICA with multiple
initializations to increase statistical performance and decrease sen-
sitivity to initial conditions). A subsequent clustering analysis on
the specific components estimated in each group resulted in the
detection of two reliable resting-state networks specific to the
MTLE group and one specific to the control group. To explore
changes of functional connectivity across groups, power spec-
trum analysis was performed. This analysis demonstrated that the
two reliable MTLE-specific networks show increased functional
connectivity in the MTLE group compared to the healthy con-
trol group, whereas the one control-specific network shows the
opposite.

In a previous seed-based functional connectivity study by our
group, Pittau et al. (1) demonstrated that amygdala and hip-
pocampus on the affected and to a lesser extent, on the healthy
side are functionally less connected with contralateral homologous
structure. Our results demonstrated that the most reliable MTLE-
specific network includes bilateral hippocampus and amygdala,
more on the side of the focus and comprises regions where func-
tional connectivity, measured through power of network, is higher
in patients than in controls.

Even though at first sight this result may seem to be contra-
diction with the finding of Pittau’s study, we believe that this
difference is originating from dissimilar strategies for functional
connectivity estimation. The difference can be explained as fol-
lows: one may assume that as a result of sporadic epileptic dis-
charges, the BOLD signal extracted from the seeds in the affected
areas, specifically the hippocampus and amygdala, show more vari-
ability compared to the signal from the same areas in healthy
controls. Since in the context of SSICA functional connectivity
of a resting-state network is defined based on the power of its cor-
responding time course, this extra variability of the BOLD signal
within the MTLE group could result in its extraction as a specific
network. However, as a result of the same variability, the corre-
lation between the BOLD signals extracted from the affected and
the healthy hippocampus and amygdala could be reduced and
therefore, decreased functional connectivity will be detected using
seed-based analysis.

Bettus et al. also reported complementary but inconsistent
information on functional connectivity in TLE measured by
BOLD signal and by intracerebral EEG (iEEG). In their study,using
both modalities, functional connectivity was estimated during the
interictal period in epileptic and in non-affected regions. Func-
tional connectivity measured from the iEEG signal was reported
to be higher in affected regions compared to non-affected areas,
whereas an opposite pattern was found for functional connectivity
measured from the BOLD signal (4). Using regional homogeneity
(ReHo) as an index of ongoing activity, Zeng et al. also reported
increased synchronized brain activity, in MTLE patients relative to
controls, in some regions including ipsilateral parahippocampal
gyrus (30).

Our other finding was that the second most reliable MTLE-
specific network shows increased functional connectivity in
patients compared to controls between the postcentral gyri and
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bilateral temporal poles. As also suggested by Maccotta et al.
(31), we believe that as a result of recurrent seizures, structural
degeneration and decreased connection density, or a combina-
tion of both, some neural connections may be facilitated, which
in turn lead to elevation of functional connectivity within MTLE-
specific networks. In this regard, Holmes et al. investigated the
gray matter concentration in left TLE at the voxel level and
found decrease in patients in a network comprised of left hip-
pocampus and left postcentral gyrus (32). In a quantitative MRI
study, Coste et al. (33) demonstrated that in refractory TLE,
the temporal pole is frequently atrophic ipsilateral to seizure
onset. Labate et al. (34), using cortical thickness for assessment
of neuropathologic changes, demonstrated progressive neocorti-
cal atrophy in intractable MTLE patients, which likely represents
seizure-induced damage. The involvement of neocortical regions,
such as sensorimotor cortex, in the pathophysiology of TLE has
also been reported by other authors (35, 36).

Finally, we found that the reliable control-specific network,
comprised of precuneus, anterior cingulate, thalamus, brainstem,
and parahippocampal gyrus, shows decreased functional con-
nectivity in patients compared to controls. We find this result
consistent and complementary to the findings of Pittau et al. (1),
which demonstrated that in MTLE patients compared to controls,
amygdala and hippocampus on the affected and to a lesser extent
on the contralateral side are functionally less connected with the
dopaminergic mesolimbic network and the DMN. We believe that
in MTLE, the amount of correlation between the BOLD signals
extracted from seeds in the affected areas and remote regions will
be reduced since distant regions do not necessarily show BOLD
changes related to epileptic discharges. Moreover, as the BOLD sig-
nals extracted from regions beyond the affected structures in TLE
do not necessarily have more variation in patients compared to
controls, the control-specific network shows less power in patients
compared to controls. In a recent study by McCormick et al. (37),
patients with MTLE showed reduced resting-state functional con-
nectivity from the posterior cingulate cortex to the epileptogenic
hippocampus. Zeng et al. (30) also reported decreased ReHo in
DMN, including precuneus and posterior cingulate gyrus, bilateral
inferior lateral parietal and mesial prefrontal cortex. In addition,
Liao et al. (7) showed that in MTLE patients compared to con-
trols, functional and structural connectivity of the bilateral mesial
temporal lobes were significantly decreased with the posterior cin-
gulate cortex and with precuneus and suggested that in MTLE, the
decreased connection density in several areas in the DMN might
be responsible for decreased functional connectivity within this
network.

It is important to note that a causal relationship cannot be
inferred from the current analysis and our results simply reflect
the state of the brain of patients with MTLE, which may relate to
structural abnormalities, long-standing epilepsy, or medication, a
combination of these, or a common cause for this type of epilepsy.
The fact that patients were on different medications may be con-
sidered as a confounding factor between patients and controls in
our analysis. Unfortunately, it is almost impossible to dissociate
the long term effect of medication from the effect of disease when
studying patients with a long duration of epilepsy since the vast

majority of patients take a combination of different medications
since the onset of their disease.

Given the number of patients, this study did not allow us to
investigate the correlation between the functional connectivity of
the two detected reliable MTLE-specific resting-state networks
and the duration of epilepsy. However, it would be interesting
for future studies to investigate those networks that show greater
alterations in functional connectivity in patients with a longer
history of disease. In addition, given the small number of sub-
jects in each group of MTLE patients, we could not study the
two groups separately and therefore were not able to investi-
gate whether there are different mechanisms underlying left and
right MTLE.

We want to reemphasize that although SSICA and seed-based
functional connectivity analysis measure different aspects of brain
activity organization and sometimes give apparently inconsistent
results, they may complement each other and provide more infor-
mation about the underlying processes resulting in changes of
functional connectivity.
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There is currently a lack of knowledge about electroencephalography (EEG)-functional mag-
netic resonance imaging (fMRI) specificity. Our aim was to define sensitivity and specificity
of blood oxygen level dependent (BOLD) responses to interictal epileptic spikes during
EEG-fMRI for detecting the ictal onset zone (IOZ). We studied 21 refractory focal epilepsy
patients who had a well-defined IOZ after a full presurgical evaluation and interictal spikes
during EEG-fMRI. Areas of spike-related BOLD changes overlapping the IOZ in patients
were considered as true positives; if no overlap was found, they were treated as false-
negatives. Matched healthy case-controls had undergone similar EEG-fMRI in order to
determine true-negative and false-positive fractions. The spike-related regressor of the
patient was used in the design matrix of the healthy case-control. Suprathreshold BOLD
changes in the brain of controls were considered as false positives, absence of these
changes as true negatives. Sensitivity and specificity were calculated for different sta-
tistical thresholds at the voxel level combined with different cluster size thresholds and
represented in receiver operating characteristic (ROC)-curves. Additionally, we calculated
the ROC-curves based on the cluster containing the maximal significant activation. We
achieved a combination of 100% specificity and 62% sensitivity, using a Z -threshold in the
interval 3.4–3.5 and cluster size threshold of 350 voxels. We could obtain higher sensitiv-
ity at the expense of specificity. Similar performance was found when using the cluster
containing the maximal significant activation. Our data provide a guideline for different
EEG-fMRI settings with their respective sensitivity and specificity for detecting the IOZ.
The unique cluster containing the maximal significant BOLD activation was a sensitive and
specific marker of the IOZ.

Keywords: EEG-fMRI, refractory focal epilepsy, presurgical evaluation, sensitivity and specificity, interictal

INTRODUCTION
The goal of the presurgical evaluation in refractory focal epilepsy
is to define the epileptogenic zone, the area indispensable for the
generation of epileptic seizures (1).

In the last decade, the value of simultaneous electroencephalo-
graphy-functional magnetic resonance imaging (EEG-fMRI) as a
localizing tool of the epileptogenic zone has been explored. In this
technique, changes in blood oxygen level dependent (BOLD) con-
trast, related in a statistical way to interictal epileptic discharges
or seizures, are displayed as spatial maps. Sensitivity of EEG-fMRI
for localizing the epileptogenic zone has received a lot of attention,
but specificity has largely been neglected (2), hampering the clini-
cal implementation of EEG-fMRI in the presurgical evaluation of
refractory focal epilepsy.

In order to address this issue, correlational studies of EEG-fMRI
with a “gold standard” are crucial (3). Since the epileptogenic zone
is a theoretical concept, the ictal onset zone (IOZ), the area from

which seizures are generated, is a valuable alternative. The IOZ
can be determined by ictal scalp/invasive EEG-registrations and/or
ictal single photon emission computed tomography (SPECT) in
concordance with other presurgical investigations (1).

Several validation studies assessed the sensitivity of spike-
related EEG-fMRI using the results of ictal invasive EEG-
registrations as indication of the IOZ (4–17). A major disadvantage
of intracranial EEG is the limited spatial coverage and the necessity
of an a priori hypothesis of the IOZ with possible non-localizing
or misleading results (18, 19). The IOZ is then determined by arbi-
trary margins around contact points, active during seizure onset,
but the technique is blind to uncovered areas, a particular prob-
lem when comparing with BOLD activity, as experienced by several
authors (5, 8, 17, 20–23).

Ictal perfusion SPECT has the advantage of demonstrating
dynamic seizure-related changes in cerebral perfusion on a whole
brain scale, which offers ideal comparison with fMRI studies.
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Several interictal EEG-fMRI studies used the results of ictal SPECT
in their validation (5, 6, 9, 11, 12, 24–26). Due to its low temporal
resolution, both the IOZ and seizure propagation pathways can
be found (27–30). Therefore, combinations of imaging modal-
ities [structural MRI, interictal and ictal SPECT and subtrac-
tion ictal SPECT co-registered to MRI (SISCOM), and interictal
18F-fluorodeoxyglucose positron emission tomography (18F-FDG
PET)], which integrate the additional information of each inde-
pendent modality, may provide superior information compared
to the information provided by ictal SPECT alone (29).

More recently, spike-related EEG-fMRI results have been com-
pared with postsurgical resection zone and epilepsy outcome (5,
9–12, 14, 16, 17, 21, 24, 26, 31, 32). After successful epilepsy surgery,
sufficient brain tissue has been resected. However, the resec-
tion zone depends on the surgical approach (conservative versus
extended resection) (33) and the accessibility and can overestimate
the actual IOZ.

A much larger problem than the exact definition of the IOZ
to define sensitivity of EEG-fMRI is the lack of knowledge about
specificity of EEG-fMRI (2). The extent and pattern of the BOLD
changes are dependent on the statistical threshold levels that are
used. Less stringent threshold levels will not only induce more
widespread and multifocal patterns but also more false-positive
results.

At conventional statistical threshold levels [family-wise error
(FWE) corrected p < 0.05 and uncorrected p < 0.001] both focal
and multifocal, widespread BOLD responses have been described.
Widespread BOLD signal clusters have been interpreted as rep-
resenting widespread epileptic abnormalities with poor surgical
prognosis if not completely included in the resection (10, 16,
21, 31). However, in the absence of knowledge about specificity
of EEG-fMRI, the clinical significance of these different patterns
remains uncertain. As mentioned by Chaudhary and colleagues
in 2012, EEG-fMRI studies demonstrate “often complex BOLD
patterns, raising the issue of specificity of the findings and the
unknown clinical relevance of individual BOLD clusters” (34).
In a paper of van Houdt and colleagues, this was rephrased as
“there are currently no standards for the statistical thresholds in
EEG-fMRI analysis” (17).

In this study, we propose an innovative approach to quantita-
tively define the effect of different statistical thresholds on sensitiv-
ity and specificity of spike-related BOLD changes for detecting the
IOZ. We determined true-positive and false-negative BOLD fluc-
tuations in patients, and false-positive and true-negative BOLD
fluctuations in age- and gender-matched healthy case-controls.

MATERIALS AND METHODS
INCLUSION CRITERIA
This study was approved by an independent ethical standards
committee on human experimentation of the University Hospi-
tals Leuven and written informed consent was obtained from all
participants.

Inclusion criteria were (i) consecutive adults who underwent
a full presurgical evaluation for refractory focal epilepsy between
August 2010 and November 2013, including seizure history, neu-
rological and physical examination, neuropsychological assess-
ment, interictal and ictal scalp EEG-recordings, video-analysis of

seizures, high-resolution MRI of the brain, and in most patients
SISCOM and interictal 18F-FDG PET. In selected cases, intracra-
nial EEG-recordings were performed; (ii) concordant data point-
ing to one epileptic focus using all available presurgical inves-
tigations, including a SISCOM or else successful outcome after
epilepsy surgery [international league against epilepsy (ILAE) out-
come classification 1–3 (1, completely seizure-free; 2, only auras;
3, one to three seizure days per year± auras; 4, four seizure days
per year to 50% reduction of baseline seizure days± auras; 5,
<50% reduction of baseline seizure days to 100% increase of
baseline seizure days± auras; 6, more than 100% increase of base-
line seizure days± auras)] (35); (iii) recording of interictal spikes
during EEG-fMRI.

OPERATIONAL DEFINITION OF THE ICTAL ONSET ZONE
The IOZ was defined as follows:

(i) In patients with successful outcome after epilepsy surgery, we
considered the manually outlined resected brain area as the
IOZ.

(ii) In patients, awaiting surgery, refusing surgery, or ineligible for
surgery due to proximity of the epileptogenic zone to eloquent
regions, we determined the IOZ as the hypothetical resection
zone, based on multidisciplinary clinical consensus using all
non-invasive and invasive data except EEG-fMRI results. As
the patients were selected for concordant localizing data, we
ensured not to rely on a single testing modality. The volume
of this IOZ was further restricted to the region of ictal hyper-
perfusion on SISCOM within this hypothetical resection area.
The hyperperfusion was thresholded with a Z -score= 1.5.
This threshold was shown to be optimal for localizing the
epileptogenic zone (36).

EEG-fMRI ACQUISITION AND PROCESSING
Functional images were acquired using a whole brain single-shot
T2* gradient-echo Echo Planar Imaging sequence in one of two 3 T
MR scanners (Achieva TX with a 32-channel head coil and Intera
Achieva with an eight-channel head coil, Philips Medical Systems,
Best, The Netherlands); TE= 33 ms, TR= 2.2 or 2.5 s, voxel size
2.6 mm× 3 mm× 2.6 mm.

A 64- or 32-channel MR compatible EEG cap was used for
simultaneous EEG-fMRI recordings with a BrainAmp amplifier
(Brain Products, Munich, Germany; sampling rate 5 kHz). In
patients admitted to the hospital, we used a 24-channel MR com-
patible electrode set (Yves EEG solutions, Newburyport, MA,
USA) both in the telemetry unit and in the scanner with the
BrainAmp amplifier. Patients were asked to rest with closed eyes.

The EEG was filtered offline (bandpass 1–50 Hz) and gradient
artifacts were removed using the Bergen plug-in (Bergen fMRI
Group, Bergen, Norway)1 (37) for EEGLAB.2 Pulse artifacts were
subtracted with Brain Vision Analyzer software (Brain Products,
Munich, Germany) (38).

1http://fmri.uib.no/tools/bergen_plugin.htm
2http://www.sccn.ucsd.edu/eeglab/
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The fMRI data were analyzed with statistical parametric map-
ping (SPM), version 8 (Wellcome Department of Imaging Neuro-
science, University College London, UK)3; running on MATLAB
(MathWorks, Natick, MA, USA). Images were realigned, slice-time
corrected, normalized into the Montreal Neurological Institute
(MNI) space using the T1 MRI template available in SPM (voxel
size: 2 mm× 2 mm× 2 mm), and spatially smoothed using an
isotropic Gaussian kernel of 6 mm full width at half-maximum
(FWHM).

Interictal spikes were visually marked by a neurologist (Simon
Tousseyn) and discussed with a second neurologist (Wim Van
Paesschen). Statistical analysis was performed using the gen-
eral linear model approach. The regressor of the interictal spike
was created using the timings of the event convolved with the
canonical hemodynamic response function. Included as con-
founding covariates were (i) the six rigid-body motion correc-
tion parameters, (ii) the fMRI signal averaged over the lateral
ventricles, and (iii) the fMRI signal averaged over a region cen-
tered in the white matter (39). When a sudden head movement
(>1 mm translation) appeared, we added a dummy regressor,
which was set to one for the corresponding scan as well as
for the next three scans. The remainder of the regressor was
set to 0. In case this sudden movement was present in differ-
ent consecutive blocks, a dummy regressor was created for each
block (40, 41).

A statistical Z -score map was obtained for the interictal spike
event-related regressor. In case, a patient had more than one spike-
type, only EEG-fMRI results corresponding to the most frequent

3http://www.fil.ion.ucl.ac.uk/spm/

spike-type, determined during video-telemetry, were used for the
analysis.

SENSITIVITY AND SPECIFICITY FOR LOCALIZING THE ICTAL ONSET
ZONE
Sensitivity and specificity were calculated as follows: true-positive
cases were defined as those patients in whom we found a
suprathreshold cluster of a suprathreshold size overlapping the
IOZ. Patients, in whom this was not the case, were considered
false-negative cases. Epilepsy can be regarded as a network disorder
(42, 43). This network concept implies interregional interactions
between the IOZ and other sites. Based on this theory, we believe
it is not appropriate to classify activations outside the IOZ, related
to spikes in patients, as false positives. To determine false-positive
and true-negative cases, we introduced age- and gender-matched
healthy controls assigned to each patient in order to obtain a sta-
tistical map using the spike event-related regressor of that patient
(corresponding to nonsense events for the control subject). False-
positive cases were those controls who showed a suprathreshold
cluster of a suprathreshold size somewhere in the brain while true-
negative cases were those controls for whom this was not the case
(see Figure 1). In a way, we treated the controls as a surrogate for
the patient group, assuming that the results would have been the
same if we had been able to look at those parts of the brain, which
were not linked to the epileptic network. Each control underwent
EEG-fMRI using the same session length as the corresponding
patient. The spatial normalization step ensured that the number
of voxels, which were analyzed, as well as the cluster size was similar
between all patients and controls.

At a certain statistical threshold, sensitivity was defined as the
proportion of true-positive cases within the patient group and

FIGURE 1 | Determination of test outcome. EEG-spikes= spike-time
course based on manually indicated interictal spikes. Regressor= spike-time
course of patient convolved with canonical hemodynamic response function.
Areas of suprathreshold BOLD changes overlapping the ictal onset zone in

patients were considered as true positives and if no overlap was found, they
were treated as false negatives. Suprathreshold BOLD changes in any part of
the brain in healthy controls were considered as false positives, absence of
BOLD responses as true negatives.
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the “surrogate” specificity as the proportion of true-negative cases
within the control group (see Figure 2). Sensitivity and speci-
ficity were calculated for different statistical thresholds at the voxel
level (Z, 0–13; step-size, 0.1). This was combined with different
thresholds for the minimal cluster size up to 600 voxels (step-size,
50 voxels, voxel size, 2 mm× 2 mm× 2 mm). Six hundred vox-
els correspond to a brain volume of 4800 mm3, comparable to
the volumes of a hippocampus (44), or a focal cortical dyspla-
sia (27). Based on these results, receiver operating characteristic
(ROC)-curves were calculated. We performed the calculations for
activations and deactivations, separately.

In an attempt to identify the most localizing cluster of BOLD
changes, if widespread BOLD changes were present, several

FIGURE 2 | Illustration of a contingency table. (A) For a certain statistical
threshold, true-positive (TP) or false-negative (FN) cases are determined in
patients, false-positive (FP) or true-negative (TN) cases in control subjects.
(B) Sensitivity (number of true positives over the number of true positives
and false negatives) was defined solely in the patient group and specificity
(number of true negatives over the number of true negatives and false
positives) solely in the control group.

authors looked at the cluster containing the maximal significant
activation or at the maximal significant activation voxel (45, 46). In
an additional analysis, we calculated the ROC-curves based upon
each of these selections.

RESULTS
STUDY POPULATION
Twenty-one consecutive patients (age: 36± 14 years, age at
epilepsy onset: 12± 10 years, 16 women) met the inclusion cri-
teria. Clinical data are presented in Table 1. Patients had a median
seizure frequency of eight seizure days per month (range 0.5–30)
and had failed 7± 4 antiepileptic drugs at the time of evalu-
ation. Thirteen patients had temporal lobe epilepsy (TLE): six
mesial TLE, seven lateral TLE, while seizure onset was extratem-
poral (ETLE) in the other eight patients. Structural imaging was
normal in 3/21 patients. All ictal SPECT injections used for analy-
sis in this study were performed during the ictal phase [median
seizure duration, 84 s (range: 5–423); median time of initiation
of ictal SPECT tracer injection, 17 s (range: 1–43)]. Intracranial
EEG-recordings, available in five patients, were concordant with
non-invasive investigations.

So far, eight patients underwent epilepsy surgery with a suc-
cessful outcome [ILAE class 1 (completely seizure-free) in six
cases, class 2 (only auras) in two cases] (35) (median follow-up
time, 9 months; range, 2–27): temporal lobe resection (patients
3, 7, 17, and 18), frontal lesionectomy (patients 6 and 9), func-
tional hemispherotomy (patient 12), and hippocampus/amygdala
radiosurgery (patient 16).

Functional magnetic resonance imaging sessions lasted on aver-
age 49± 15 min. The median spike-rate during EEG-fMRI was
187 spikes/h (range: 8–2018). Twenty-one healthy case-controls
(age, 36± 12 years; 16 women) underwent EEG-fMRI using the
same session length.

SENSITIVITY AND SPECIFICITY FOR LOCALIZING THE ICTAL ONSET
ZONE
Electroencephalography-functional magnetic resonance imaging
BOLD activations corresponding to the statistical threshold of
uncorrected p < 0.001 (Z = 3.1, no constraint on cluster size)
resulted in 86% sensitivity (suprathreshold activations in the IOZ
in 18 of the 21 patients) and 0% specificity (all controls had a
suprathreshold detection in the brain). In contrast, when a signif-
icance level of FWE corrected p < 0.05 was used (corresponding
to a Z between 4.9 and 5.1 in our study, no constraint on cluster
size), sensitivity dropped to 62–57% but specificity increased to
95–100% (Figures 3 and 4).

We report the settings that give the highest sensitivity for max-
imal specificity. Z -score thresholds of 3.4 and 3.5 both resulted
in 62% sensitivity and 100% specificity, using a minimal clus-
ter size of 350 voxels (Figure 3). At these settings, 6 of the 13
patients (46%) with an overlap between a cluster of BOLD acti-
vation and the IOZ had at least one additional activation cluster
in more remote areas, not overlapping the IOZ. Exclusion of these
remote activations from resection did not preclude successful out-
come in three of the eight operated patients (patients 3, 6, and 16).
In patient 3, a dysembryoplastic neuroepithelial tumor (DNET)
in the left temporal lobe was resected. Remote activations were
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FIGURE 3 | Sensitivity and specificity. Receiver operating characteristic
(ROC)-curves using different statistical Z -score thresholds at the voxel level
(range, 0–13; step-size, 0.1) and (A) no constraint on cluster size, (B) a
minimal cluster extent of 350 voxels. The results were based on all
EEG-fMRI activations (blue) and upon the cluster containing the maximal
significant activation only (green). The orange circle corresponds to the
statistical threshold of uncorrected p < 0.001 (Z =3.1), red circles to a
significance level of FWE corrected p < 0.05 (Z =4.9–5.1). The pink circle
represents Z -score thresholds of 3.4 and 3.5. Note that not every change in
Z -score threshold is associated with a change in sensitivity and specificity.

mainly located in mesial occipital areas. Patient 6, with a focal
cortical dysplasia in the right primary motor cortex, had a con-
tralateral cerebellar activation (Figure 5). Successful radiosurgery
involved the left hippocampus in patient 16 with left hippocam-
pal sclerosis. Additional BOLD activations were present in the left
temporal neocortex.

In an additional analysis, we looked at the cluster containing the
maximal significant BOLD activation. This resulted in similar sen-
sitivity and specificity when using the same minimal cluster extent
of 350 voxels (Figure 3). A sensitivity of 57% and a specificity of
100% were obtained for a broad range of Z -score thresholds from
3.2 to 3.5 (green areas in Figure 5). Interestingly, this combina-
tion of sensitivity and specificity could also be reached using other
settings for minimal cluster size (from 250 voxels up to 600 vox-
els) but with a smaller range of corresponding Z -score thresholds.
By using the cluster containing the maximal significant activation
instead of all EEG-fMRI activations, we discarded the additional,
non-localizing clusters (blue areas in Figure 4) distant from the
IOZ with sacrificing minimal sensitivity (4.8%) at 100% speci-
ficity. Only 1 of 21 patients (4.8%) (patient 15) showed a BOLD
activation cluster overlapping the IOZ, which did not contain the
maximal significant activation (Figure 5).

Finally, when using the maximal significant activation voxel
or when considering BOLD deactivations, an overall low perfor-
mance was found.

DISCUSSION
Electroencephalography-functional magnetic resonance imaging
has evolved from a research tool and is on the brink of becoming
a clinical method to delineate the ictal onset in the presurgical
evaluation of patients with refractory focal epilepsy. Before taking
decisions based on EEG-fMRI, validation studies are a prerequi-
site. We felt that it was important to investigate sensitivity and
specificity of interictal EEG-fMRI for localizing the IOZ, in those
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FIGURE 4 | Electroencephalography-functional magnetic resonance
imaging activations are overlaid on representative slices of the
postsurgical structural image of patient 3 (A) after thresholding at an
uncorrected p < 0.001 (Z = 3.1, no constraint on cluster size) and
(B) at a FWE corrected p < 0.05 (Z = 5.1, no constraint on cluster size).
(A) The EEG-fMRI cluster containing the maximal significant activation
(green colored) is overlapping the IOZ (red colored). Widespread additional

suprathreshold activation clusters (blue colored) are present. At these
settings, it is unclear whether these activations outside the IOZ represent
false- or true-positive activations. (B) Using a more stringent statistical
threshold (corresponding to 100% specificity), fewer activation clusters
survive. The left occipital activation (white circle) is not a false-positive but
a true-positive detection and is considered part of a spike-related network;
R, right; L, left.

FIGURE 5 | Electroencephalography-functional magnetic resonance
imaging results after thresholding at Z = 3.5 at the voxel level combined
with a minimal cluster extent of 350 voxels are overlaid on
representative slices of the structural MRI in three patients. (A) Patient 16
had only 1 suprathreshold activation. This cluster containing the maximal
significant activation (green colored) was localized within the IOZ (red

colored). (B) In patient 6, the cluster containing the maximal significant
activation (green colored) was overlapping the IOZ, while an additional
activation cluster (blue colored) was situated within the contralateral
cerebellum. (C) Patient 15 was the only patient with a BOLD activation cluster
(blue colored) overlapping the IOZ, which did not contain the maximal
significant activation (green colored); R, right; L, left.

patients in whom spikes were visually detected during EEG-fMRI.
A reliable test combines a high sensitivity with a high specificity.

SPECIFICITY
The setting of an appropriate statistical threshold in functional
imaging is a critical point (6, 32, 46, 47). EEG-fMRI validation

studies focused on sensitivity for detecting the IOZ, using “stan-
dard” statistical thresholds, but the specificity of these results is
still largely unknown. fMRI responses exceeding the epileptogenic
zone are often reported (17, 48, 49). A possible explanation may be
the choice of a low statistical threshold resulting in false-positive
responses (25) and understanding how to minimize these false
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positives would be of great interest (50). On the other hand, it
is not excluded that hemodynamic changes outside the IOZ are
related to an epileptic network. Hence, it would not be appro-
priate to consider hemodynamic changes, associated to spikes in
patients and localized partially within and partially outside the
IOZ, as false positives. To tackle this issue, we chose to determine
false-positive and true-negative cases in age- and gender-matched
healthy case-controls. The interictal spike event-related regres-
sor of the patient was used in the design matrix of the healthy
case-control (corresponding to nonsense events for this control
subject). False-positive cases were those controls who showed a
suprathreshold BOLD change in the brain while true-negative
cases were those controls for whom this was not the case. As argued
before, we treated controls as a surrogate for the patient group with
the assumption that results would have been the same if we were
able to look at those parts of the brain that were not linked to
the epileptic network. The surrogate specificity was subsequently
determined as the proportion of true-negative cases within the
control group. A disadvantage of our approach is the unknown
contribution of differences in noise level between patient and
control datasets.

Alternatively, false-positive and true-negative rates could be
established in the patient group after random annotation of
spike onsets (2). Specificity would then equal the proportion of
patients who lack a suprathreshold BOLD fluctuation in the brain,
related to these nonsense events. The calculation of true-positive
and false-negative rates could remain unchanged, based on real
spike onsets. This approach holds two potential risks. In patients
with high spike rates, coincidental correlation between regressors
related to nonsense events and to real spikes becomes more likely,
causing an overestimation of false-positive rates. This problem
does not apply in healthy volunteers. A second risk is related to
the poorly understood occurrence in time of epileptic spikes. It
is not excluded that this occurrence follows a rhythmic pattern,
which exhibits (whether or not coincidental) temporal similarities
with activity fluctuations of normal physiological brain processes.
In that case, random assignment of spike onsets would break this
rhythmicity and potentially cause an underestimation of false-
positive rates. When we copy the regressor-of-interest to healthy
volunteers, this rhythmicity remains unmodified. Notwithstand-
ing the concerns of the alternative method described above, per-
mutation of original spike onsets led to similar sensitivity and
specificity (see alternative approach, included as Supplementary
Material).

To the best of our knowledge, only three papers formally
addressed the topic of specificity of interictal EEG-fMRI in a quan-
titative way. First, Waites and colleagues used a non-parametric
permutation approach in two patients with childhood absence
epilepsy and one healthy control to investigate if interictal dis-
charges lead to a BOLD response that is significantly different
from chance (2). It was shown that “activations” (at a corrected
p < 0.05), related to randomly assigned events, survived more
often than expected by chance (i.e., more than 1 in 20). Second,
Flanagan and colleagues evaluated the effect of including non-
epileptic sharp EEG transients in the EEG-fMRI analysis of clear
epileptic spikes (51). These events can result in physiologically
plausible BOLD changes that survive a statistical threshold (in

both the patient and control group). Third, An and colleagues
determined sensitivity and specificity of EEG-fMRI through a dif-
ferent approach, using surgical outcome as “ground truth” (32).
True-positive (concordance with resection zone and good surgical
outcome) and false-negative (discordance with resection zone and
good surgical outcome) fractions were determined in the patients,
as were true-negative (discordance with resection zone and poor
surgical outcome) and false-positive (concordance with resection
zone and poor surgical outcome) fractions. However, poor sur-
gical outcome could have several reasons (incorrect location of
surgery, correct location but intra- or post-operative complica-
tions, partial resection of the epileptogenic zone, and no resectable
epileptogenic zone), leading to equivocal interpretation of the
results (52). This is the reason why we established sensitivity only
in successfully operated or well-defined patients, taking the (effec-
tive or hypothetical) resection zone as central point (patients with
poor surgical outcome were not included). On the other hand,
specificity was defined in healthy case-controls, taking absence of
epileptic activity as “ground truth.”

Different statistical thresholds (uncorrected p < 0.001 and
FWE corrected p < 0.05, for instance) can result in very divergent
specificities and sensitivities. This information is crucial as these
thresholds are commonly reported in EEG-fMRI validation stud-
ies. We argue that EEG-fMRI outcome studies should be reported
with settings that have maximal specificity. However, when the
purpose of EEG-fMRI is to guide the implantation of intracranial
electrodes, a high sensitivity might be preferred (17).

THE CLUSTER CONTAINING THE MAXIMAL SIGNIFICANT ACTIVATION
The presence of multiple clusters of BOLD activation raises an
important question: how can we identify the cluster overlapping
the IOZ in a highly specific but often widespread interictal epileptic
network without prior knowledge of the IOZ? The cluster, con-
taining the maximal significant BOLD activation, with a minimal
cluster size of 350 voxels, and with a broad range of Z -score thresh-
olds from 3.2 to 3.5, had 57% sensitivity and 100% specificity for
localizing the IOZ, similar to the accuracy of all EEG-fMRI acti-
vation clusters. The performance of this unique cluster was robust
and did not critically depend on a single Z -score or cluster size
threshold. Our findings confirm the observations that the cluster
containing the maximal significant activation is important in the
localization of the IOZ (45).

We considered two other aspects of the EEG-fMRI maps. First,
the maximal significant activation voxel had a lower performance
for localizing the IOZ compared with the cluster containing this
voxel. In some patients, this voxel was localized at the border, but
just outside the IOZ, while in others, it was found more remote.
Hauf and colleagues (46) ascribed similar findings of distant fMRI
peak activations to the effect of propagation. Second, deactivations
were only infrequently found inside the IOZ, consistent with other
reports (21, 53).

INVOLVEMENT OF REMOTE REGIONS: AN EPILEPTIC NETWORK
There is a bulk of evidence that so called “focal” epilepsies are
not strictly localized to well-circumscribed focal brain areas, but
constitute larger epileptic networks (42, 43). When using a set-
ting of high specificity (100%), almost half the patients with an
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activation overlapping the IOZ had at least one additional activa-
tion cluster in more distant areas. These remote findings can be
considered as true positives. Activations at a distance have been
interpreted as an extended or multifocal IOZ (10, 21). However,
the presence of these remote activations did not preclude suc-
cessful surgical outcome in three operated patients in our study.
Therefore, spike-related BOLD clusters distant to the IOZ could
also represent areas of propagated activity, as suggested by different
authors (6, 25, 54, 55).

VALIDITY OF THE ICTAL ONSET ZONE DEFINITION
Seizure freedom and good functional outcome are the ultimate
goals of epilepsy surgery. So far, 8 of the 21 patients underwent
successful surgery, and we considered the resection zone as IOZ.
The extent of the resection zone depends on the surgical approach
and can overestimate the actual IOZ. We have shown that only
about one-quarter of resected brain tissue overlapped the struc-
tural lesion or SISCOM hyperperfusion cluster (27). However,
after successful surgery, sufficient brain tissue has been resected.

Thirteen patients are awaiting surgery, refused surgery, or were
ineligible for surgery due to proximity of the IOZ to eloquent
regions. In this non-operated group, we chose to define the IOZ as
the hypothetical resection zone, based on multidisciplinary clinical
consensus and regardless of eloquent cortex. As already men-
tioned, a prerequisite for inclusion was concordance of all modal-
ities, including electroclinical information, structural imaging,
SISCOM, FDG PET, and intracranial EEG-recordings. Multimodal
concordant seizure focus localizing data increase the likelihood
of benefit from surgical treatment (56–58). To avoid a rater-
dependent bias in the manual delineation, we restricted the volume
of the IOZ to the region of ictal hyperperfusion within this hypo-
thetical resection zone. In our center, ictal and interictal SPECT are
part of the presurgical work-up. SISCOM has several advantages:
(i) it samples the whole brain, which offers an ideal compari-
son with the results of EEG-fMRI, (ii) it displays relative changes
in cerebral blood perfusion associated with neuronal metabolic
activity, (iii) a SISCOM Z -threshold= 1.5 results in optimal local-
ization of the IOZ (36), (iv) it is a non-invasive test, and (v) early
ictal tracer injections, as achieved in most of our patients, are
known to be related to correct localization of the IOZ (59).

LIMITATIONS
We stress that sensitivity and specificity calculations only apply
to patients in whom spikes were found during EEG-fMRI. In
two patients, more than one spike-type (based on topography)
was found during fMRI. In these cases, we decided to deter-
mine the results driven by the most frequent spike-type during
video-telemetry only, similar to Elshoff and colleagues (26). High
correlations between the localization of the lobe producing the
most active spiking and that of the IOZ have been found for
temporal lobe epilepsies (60). Moreover, it was shown that the
lobe producing the most active spiking correlated highly with the
ultimately resected lobe harboring cortical dysplasia (61).

The number of successfully operated patients and their follow-
up period is limited. To increase the group size, a surrogate for the
effective resection zone was adopted in those patients who could
not undergo surgery. This allowed us to study a representative and

larger sample of patients with a well-defined IOZ after a presur-
gical evaluation. Studies including larger number of patients and
control subjects will be required to fine-tune EEG-fMRI settings.
Furthermore, this could allow subpopulations (TLE versus ETLE)
to be studied, as sensitivity and specificity are presumably also
dependent on brain localization.

CONCLUSION
High sensitivity and specificity of spike-related EEG-fMRI for the
detection of the IOZ are crucial for the clinical implementation
of the technique in the presurgical planning of refractory focal
epilepsy. Our data provide a guideline for different EEG-fMRI
settings with their respective sensitivity and specificity for detect-
ing the IOZ. Using optimal settings, we found that the unique
cluster containing the maximal significant BOLD activation was a
sensitive (57%) and specific (100%) marker of the IOZ.
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Purpose: Some studies suggest that the pattern of glucose hypometabolism relates not
only to the ictal-onset zone but also reflects seizure propagation. We investigated meta-
bolic changes in patients with occipital lobe epilepsy (OLE) that may reflect propagation of
ictal discharge during seizures with automatisms.

Methods: Fifteen patients who had undergone epilepsy surgery for intractable OLE and
had undergone interictal Fluorine-18-fluorodeoxyglucose positron-emission tomography
(18F-FDG-PET) between 1994 and 2004 were divided into two groups (with and without
automatisms during seizure). Significant regions of hypometabolism were identified by
comparing 18F-FDG-PET results from each group with 16 healthy controls by using statistical
parametric mapping.

Key Findings: Significant hypometabolism was confined largely to the epileptogenic occip-
ital lobe in the patient group without automatisms. In patients with automatisms, glucose
hypometabolism extended from the epileptogenic occipital lobe into the ipsilateral temporal
lobe.

Significance: We identified a distinctive hypometabolic pattern that was specific for OLE
patients with automatisms during a seizure.This finding supports the postulate that seizure
propagation is a cause of glucose hypometabolism beyond the region of seizure onset.

Keywords: epilepsies, focal, epilepsy, occipital lobe, positron-emission tomography, fluorodeoxyglucose, automa-
tisms, automotor seizure

INTRODUCTION
Fluorine-18-fluorodeoxyglucose positron-emission tomography
(18F-FDG-PET) is often used for localization of the epileptogenic
region during an epilepsy presurgical evaluation. However, the
interictal 18F-FDG-PET hypometabolism often extends beyond
the epileptogenic region into the adjacent and remote corti-
cal and subcortical structures (1). Several studies investigating
this phenomenon demonstrated the patterns of interictal glucose
hypometabolism may reflect metabolic disturbances from propa-
gation of seizures to functionally connected remote brain areas or
networks (2–6).

In occipital lobe epilepsy (OLE), oral and manual automatisms
are common and are often attributed to seizure propagation from
the occipital to the temporal lobe (7, 8). This study examines
18F-FDG-PET of patients with OLE to identify specific pattern
of functional disturbances in brain areas that may reflect an ictal
pathway during seizures with automatisms.

MATERIALS AND METHODS
We included all 15 patients with medically intractable epilepsy,
who had undergone occipital lobe resections and interictal

18F-FDG-PET between 1994 and 2004 at the Westmead and Royal
Prince Alfred Hospitals, Australia. The study was approved by the
ethics committees in Central Sydney (Protocol no. X03-0161) and
Western Sydney Area Health Services [HREC reference no: HS/TG
HREC 2003/6/4.13 (1670)]. Patients with resection of the parieto-
occipital cortex were not included. The occipital lobe boundaries
were established as defined by the Tzourio-Mazoyer atlas (9).

Seizure semiology was determined from the review of the in-
patient video-EEG recording and was classified according to the
seizure semiologic classification developed at the Cleveland Clinic
Foundation in the 1990s (10). Based on the presence or absence of
seizures with automatisms during in-patient video-EEG record-
ing, patients were assigned into a seizure with automatisms group
or a seizure without automatisms group. Seizures with automa-
tisms were defined as seizures with oro-alimentary and man-
ual automatisms, usually, but not always, with impairment of
consciousness (10, 11).

Methods for FDG-PET acquisition and for statistical para-
metric mapping (SPM2; Wellcome Department of Cognitive
Neurology, UK) and spatial pre-processing of FDG-PET images
of patients and 16 healthy controls have been described in
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detail elsewhere (6, 12, 13). In brief, 18F-FDG-PET images were
realigned, spatially normalized,and smoothed by convolution with
a 10-mm FWHM Gaussian kernel. The 18F-FDG-PET images
of patients with left occipital ictal onset were transposed hori-
zontally so that all ictal-onset foci were lateralized to the right
side. Both patients and controls had regional metabolic rates
of glucose hypometabolism estimated using a population-based

input function calibrated by using two arterialized-venous blood
sampling procedures (14). For statistical analysis, 18F-FDG-PET
images of each patient group were compared with images of the
16 healthy controls (8 males, median age 31.5 years, interquar-
tile range 25–75%; 25–42 years) at the voxel-by-voxel level using
two-sample t -tests to identify all clusters of voxels exhibiting sig-
nificant hypometabolism. SPM analysis identifies regions with

Table 1 | Summary of clinical features, investigation results, and surgical outcome.

Patient

(age/gender)

Age of

onset

MRI findings Lobe of ictal

onseta

Typical semiologyb Seizure

outcome

Pathology

PATIENTS WITHOUT AUTOMATISM DURING SEIZURES

1. 25 yr/M 12yr Lt mesial occipital lesion Lt OLE Cephalic aura > tonic seizure

(Rt arm)

Engel 2 Type 1 cortical dysplasia

2. 20 yr/F 7 yr Rt inf-mesial occipital lobe

lesion

Rt OLE Visual aura > Lt versive

seizure > dialeptic seizure

Engel 1 Type 2 cortical dysplasia

3. 15 yr/M 12 yr Normal MRI Rt OLE Visual aura > Lt versive

seizure > SGTCS

Engel 1 Type 2 cortical dysplasia

4. 32 yr/M 18 yr Rt inf-mesial occipital lobe

lesion

Rt OLE Visual aura > SGTCS Engel 2 Gliosis

5. 30 yr/F 20 yr Normal MRI Lt OLE Visual aura > SGTCS Engel 1 Type 1 cortical dysplasia

6. 25 yr/F 17 yr Lt dorsolateral occipital

lobe lesion

Lt OLE SGTCS Engel 1 Ganglioglioma

PATIENTS WITH AUTOMATISMS DURING SEIZURES

7. 15 yr/F 4 yr Normal MRI Rt OLE Visual aura > automotor seizure Engel 1 Type 2 cortical dysplasia

8. 10 yr/F 6 yr Rt inf-mesial occipital lobe

atrophy

Rt OLE Visual aura > automotor seizure Engel 1 Gliosis

9. 15 yr/F 3 yr Rt inf-mesial occipital lobe

lesion

Rt OLE Visual aura > automotor seizure Engel 1 Ganglioglioma

10. 18 yr/M 6 yr Normal MRI Lt OLE Visual aura > automotor seizure Engel 1 Type 2 cortical dysplasia

11. 26 yr/M 7 yr Lt inf-mesial occipital lobe

lesion

Lt OLE Visual aura > automotor

seizure > tonic seizure (Rt arm)

Engel 1 Dysembryoplastic neuroepithelial

tumor

12. 26 yr/F 11 yr Normal MRI Lt OLE Cephalic aura > automotor

seizures > SGTCS

Engel 1 Type 1 cortical dysplasia

13. 13 yr/F 2 yr Lt dorsolateral occipital

lobe lesion

Rt OLE Visual aura > automotor seizure Engel 1 Dysembryoplastic neuroepithelial

tumor

14. 30 yr/M 17 yr Rt inf-mesial occipital lobe

lesion

Rt OLE Visual aura > automotor seizure Engel 3 Ganglioglioma

15. 27 yr/M 14 yr Normal MRI Rt OLE Visual aura > automotor seizure Engel 2 Type 1 cortical dysplasia

aOrigin of seizures was based on clinical history, scalp, and intracranial video-EEG monitoring, MRI, 18F-FDG-PET, 99mTc-hexamethyl-propylene-amine-oxime single

photon emission computed tomography and neuropsychological studies.
bSeizure semiology determined on video review of in-patient video-electroencephalography and classified according to the seizure semiologic classification (10).

Automotor seizures refer to seizures with oro-alimentary and manual automatisms.

Cephalic aura refers a sensation in the head (15).

M, male; F, female; Lt, left; Rt, right; yr, years; inf, inferior; OLE, occipital lobe epilepsy; SGTCS, secondarily generalized tonic clonic seizures.
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FIGURE 1 | Statistical parametric mapping comparison between
patient groups and healthy controls. Significant glucose
hypometabolism was observed in the ipsilateral occipital lobe in the
group of occipital lobe epilepsy patients without automatisms during

seizures (A). In the group of occipital lobe epilepsy patients with
automatisms during seizures, significant decrease in glucose
hypometabolism extends to involve the ispsilateral temporal
lobe (B).

cluster size (extent threshold) larger than 250 contiguous voxels
and with voxel-level significance (height threshold) of p ≥ 0.01.
Only regions with clusters of voxels that exceeds this extent and
height threshold and achieved corrected cluster-level significance
of p < 0.05 were considered significant. Group analysis was per-
formed to eliminate interindividual metabolic variability. The
analysis allowed the identification and comparison of hypometa-
bolic patterns for the seizures with automatisms and the seizures
without automatisms groups when compared to normal healthy
controls.

RESULTS
Fifteen patients (eight females and seven males) with age of
seizure onset between 2 and 20 years (median age 11 years; IQR
25–75%, 6–17 years) were studied. The median age of the study
population was 25 years old (IQR 25–75%, 15–27 years). Ten
patients were admitted to hospital for in-patient prolonged video
EEG on at least two occasions (range 1–4 video-EEG monitor-
ing). The median number of seizures recorded was 16 seizures
(IQR 25–75%, 11–35 seizures; range 10–50 seizures). Among the
patients, 13 had intracranial video-EEG studies and showed an
ictal-onset zone within the occipital lobe. Two patients (patient
6 and 13) did not undergo invasive monitoring but showed a
MRI abnormality with concordant scalp video-EEG findings; both
became seizure free after surgery. The median follow-up dura-
tion following surgery was 10.1 years (IQR 25–75%, 8–15.8 years).
Twelve patients achieved Engel class 1 outcome, 2 had signif-
icant seizure improvement (Engel 2) and 1 had worthwhile
improvement (Engel 3). The histopathology was summarized in
Table 1.

Nine patients had seizures with automatisms occurring as a
component of their habitual seizures. The other six patients, who

never had automatisms as a feature of their habitual seizures,
were assigned to the group without automatisms for SPM group
analysis. Table 1 summarizes the seizure semiology of all patients
studied.

In the seizure without automatisms group, SPM analysis
revealed significant glucose hypometabolism involving primar-
ily the epileptogenic occipital lobe and extending marginally
into the posterior temporal region (Figure 1A). In contrast, the
patient group with automatisms not only demonstrated promi-
nent glucose hypometabolism in the epileptogenic occipital lobe
but also a significant decrease in glucose metabolism in the basal
temporal, lateral temporal, and anteromesial temporal structures
(Figure 1B).

The extent of temporal lobe involvement was significantly
associated with the presence of automatisms during seizures
(p < 0.001, median 1223 voxels; IQR 928–4207 voxels) when com-
pared to patients without automatisms during seizures (median
101 voxels; IQR 0–300 voxels). No significant association was
found between the extent of temporal lobe involvement, duration
of epilepsy before FDG-PET, age when FDG-PET was performed
and seizure outcome.

DISCUSSION
In this study, we determined the interictal metabolic patterns
of glucose in patients with OLE with and without automatisms.
The major difference in OLE patients with automatisms was the
presence of significant glucose hypometabolism in the temporal
lobe. We suggest that this interictal metabolic change reflects evi-
dence for the propagation pathway of seizures in patients with
automatisms.

Significant hypometabolism was present in the occipital lobe in
both groups of patients with OLE. 18F-FDG-PET has been used to
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localize ictal focus by showing regional glucose hypometabolism
in the epileptogenic occipital lobe in OLE (16, 17). Our find-
ing was not unexpected given that 18F-FDG-PET revealed focal
areas of relative hypometabolism that was associated with the
epileptogenic zone.

The occipital lobe is connected to the mesial and lateral tem-
poral structures by abundant multisynaptic projections (18, 19).
Several studies have shown seizures originating from the occipital
lobe readily propagate to the temporal lobe (7, 8, 20, 21), and the
occipital to temporal seizure spread coincides with the appearance
of oral and manual automatisms (7, 8, 22). Our patient group
with seizures and automatisms demonstrated significant glucose
hypometabolism extending from the epileptogenic occipital lobe
into the temporal lobe. We postulate this hypometabolism reflects
neuronal dysfunction from the spread of electrical activity into
the ipsilateral temporal lobe during the evolution of seizures with
automatisms.

Several studies support the hypothesis that the topography of
glucose hypometabolism relates, at least in part, to brain regions
involved in the ictal onset and to pathways of seizure propaga-
tion generating the clinical manifestations (3, 4, 23). Schlaug et al.
examined the relationship between seizure semiology and inter-
ictal abnormalities in cerebral glucose metabolism in 48 patients
with neocortical focal epilepsy. The investigators found patients
with focal clonic seizures had prominent glucose hypometab-
olism in the contralateral primary motor area and unilateral
tonic seizures were associated with markedly decreased metab-
olism in the supplementary motor area (2). Others reported
ictal dystonic posturing to be correlated with contralateral basal
ganglia hypometabolism (3, 5). Several brain regions have been
reported to produce automatisms by direct cortical electrical stim-
ulation. These include the amygdala, hippocampus, peri-insular
temporal cortex, anterior cingulate gyrus, and mesial frontal
cortex (24–26). In our cohort of OLE patients with oral and
manual automatisms, our analysis found extension of interic-
tal glucose hypometabolism outside of the epileptogenic occip-
ital lobe into basal, lateral, and anteromesial temporal cortices.
These structures overlap with regions described in the literature
as regions producing automatisms with electrical stimulation.
These findings provide confirmatory evidence of occipital lobe
seizures often spread to the temporal lobe, and oral and man-
ual automatisms can be a marker of the spread. These same
patients overall had a good outcome following surgery on the
occipital lobe, leaving the temporal lobe in situ. This suggests
involvement of the temporal lobe reflects spread of ictal activity,
rather than the temporal lobe being a key part of the epileptogenic
network.
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EEG data recorded during simultaneous fMRI are contaminated by large voltages
generated by time-varying magnetic field gradients. Correction of the resulting gradient
artifact (GA) generally involves low-pass filtering to attenuate the high-frequency voltage
fluctuations of the GA, followed by subtraction of a GA template produced by averaging
over repeats of the artifact waveforms. This average artifact subtraction (AAS) process
relies on the EEG amplifier having a large enough dynamic range to characterize the artifact
voltages and on invariance of the artifact waveform over repeated image acquisitions.
Saturation of the amplifiers and changes in subject position can leave unwanted residual
GA after AAS. Previous modeling work suggested that modifying the lead layout and the
exit position of the cable bundle on the EEG cap could reduce the GA amplitude. Here, we
used simulations and experiments to evaluate the effect of modifying the lead paths on
the magnitude of the GA and on the residual artifact after AAS. The modeling work showed
that for wire paths following great circles, the smallest overall GA occurs when the leads
converge at electrode Cz. The performance of this new cap design was compared with
a standard cap in experiments on a spherical agar phantom and human subjects. Using
gradient pulses applied separately along the three Cartesian axes, we found that the GA
due to the foot-head gradient was most significantly reduced relative to a standard cap for
the phantom, whereas the anterior-posterior GA was most attenuated for human subjects.
In addition, there was an overall 37% reduction in the RMS GA amplitude produced by a
standard EPI sequence when comparing the two caps on the phantom. In contrast, the
subjects showed an 11% increase in the average RMS of the GA. This work shows that
the optimal design reduces the GA on a spherical phantom however; these gains are not
translated to human subjects, probably due to the differences in geometry.

Keywords: simultaneous EEG-fMRI, gradient artifact, optimizing wire configuration, artifact reduction, head

geometry

INTRODUCTION
Electroencephalography (EEG) data recorded simultaneously
with functional Magnetic Resonance Imaging (fMRI) acquisition
is becoming a widely used technique for studying brain function
(e.g., Mayhew et al., 2013; Mullinger et al., 2013c; Walz et al.,
2013; Warbrick et al., 2014). The complementary temporal and
spatial information which can be obtained from the two tech-
niques enables more information to be acquired about the brain
than either technique can provide alone. Combined EEG-fMRI
therefore opens up opportunities for developing a better under-
standing of brain function and of the origin of the haemodynamic
signals measured in fMRI. The promise of this technique, com-
bined with the commercial availability of MR-compatible EEG
systems, means that simultaneous EEG-fMRI is now being used
by neuroscientists in answering numerous research questions
(e.g., Plichta et al., 2013; Walz et al., 2013; White et al., 2013;
Hauser et al., 2014).

EEG data acquired during simultaneous fMRI is, however,
confounded by a number of artifacts which swamp the neuronal
signals of interest. The largest of these artifacts arises from
voltages generated by the time-varying magnetic field gradients
(Allen et al., 2000). The resulting gradient artifact (GA) can
be more than three orders of magnitude larger than the sig-
nals of interest from the brain (Mullinger et al., 2011). The
other dominant artifacts are the pulse artifact, linked to the
subject’s cardiac cycle (Debener et al., 2008; Mullinger et al.,
2013b), and motion artifacts, caused by movement of the
EEG equipment in the MR scanner due to subject motion or
vibration (Eichele et al., 2010). These artifacts severely cor-
rupt the EEG data and without post-processing methods ren-
der it impossible to investigate the neuronal EEG signals of
interest. Correction of EEG artifacts is therefore essential when
combining EEG and fMRI data which have been acquired
simultaneously.
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The inherent periodicity of the gradient artifact (GA) related
to the known, or measurable, timings of the artifact occurrences
makes this artifact easy to correct in principle. Most methods
for correcting this artifact rely on forming a GA template by
averaging over many repeats of the GA waveforms and then sub-
tracting this template from each occurrence of the GA in the
EEG data (Allen et al., 2000). To ensure the successful imple-
mentation of this average artifact subtraction (AAS) correction
method the artifact waveform must be precisely sampled, have
a smaller magnitude than the dynamic range of the EEG ampli-
fier and be stable over image acquisitions. The first condition
can be satisfied through synchronization of the EEG and MR
scanner clocks (Mandelkow et al., 2006; Mullinger et al., 2008b),
while the current practice for limiting the magnitude of the
GA is to use a low-pass hardware filter to attenuate the large,
high-frequency voltage fluctuations produced by the gradient
waveforms (Mullinger et al., 2013a). To achieve invariance of the
artifact waveform, the subject must be stationary over the entire
data acquisition, as any subject movement alters the morphology
of the induced GA and therefore compromises the efficacy of AAS.

As described above, in the absence of filtering, the GA induced
on an EEG lead can easily be more than 100 mV in magnitude
which would require an extremely large dynamic range and a
large number of bits for digitization (Mullinger et al., 2011).
Fortunately a low-pass hardware filter can be used to attenuate
the GA because the dominant contributions to the power spec-
trum of the artifacts occur at frequencies that are much higher
than those of the neuronal signals. This filter is usually set to have
a 250 Hz cut off which is satisfactory for the majority of stud-
ies as most neuronal activity occurs at frequencies lower than
this value. This filter ensures the artifacts are typically reduced in
magnitude by at least a factor of 10 and therefore allows a lower
dynamic range to be employed whilst avoiding the saturation of
the amplifier. However, this cut-off limits the accuracy with which
the artifact can be sampled and also prevents the study of ultra-
high frequency neuronal activity (Freyer et al., 2009). In addition,
even with such a hardware filter it is still possible to saturate EEG
channels under some circumstances, thus preventing artifact cor-
rection and with the development of higher performance gradient
systems this problem is likely to be exacerbated in the future.

As already alluded to there are additional problems in GA cor-
rection if the subject moves during data acquisition. Variations in
subject position result in changes in the location of the EEG leads
and electrodes relative to the magnetic field gradients produced
by the MRI scanner. As a result the amplitude of the induced
GA varies over volume acquisitions when movements occur.
Consequently any movement significantly reduces the efficacy of
AAS in removing the GA. A number of post-processing methods
have been developed to improve the performance of AAS when
subject movement has occurred during data acquisition. The sim-
plest of these involves using a sliding-average whereby only a
sub-set of the volumes (typically around 50) closest in time of
acquisition to the volume to be corrected are used in forming the
average (Allen et al., 2000; Becker et al., 2005). Moosmann et al.
proposed an extension of this simple approach that entails using
the fMRI motion parameters to guide the formation of the arti-
fact templates (Moosmann et al., 2009), while Freyer et al. have

presented a method by which the morphology of each occurrence
of the artifact is compared with all others in the data set and those
which are most similar are then used to create a weighted average
template to correct that specific artifact occurrence (Freyer et al.,
2009). For any of these AAS methods where a sub-set of volumes
are used for GA correction, correctly choosing the number of vol-
umes to average can pose difficulties: too few volumes can result
in the template containing, and therefore removing, neuronal
activity, while inclusion of too many volumes can mean that resid-
ual GAs remain (Mullinger et al., 2008a). As a result, large residual
GA at the higher frequency range of the 250 Hz band often remain
after AAS. These are commonly removed by applying additional
low-pass filtering after artifact correction with a cut-off frequency
around 80 Hz (e.g., Benar et al., 2007; Mayhew et al., 2010; Plichta
et al., 2013; Hauser et al., 2014). The presence of residual GAs
combined with the low amplitude of neuronal activity at high
frequencies makes studying gamma activity (30–100 Hz) inside
the MR scanner environment particularly challenging with cur-
rent methods (Ryali et al., 2009). In addition, study of ultra-high
frequency neuronal activity during fMRI currently requires the
EEG and fMRI data acquisitions to be interleaved by use of a
stepping stone approach (Anami et al., 2003; Freyer et al., 2009).
This involves the use of customized fMRI sequences which are
generally not available to all investigators.

It is clear that a reduction of the magnitude of the raw GA dur-
ing data acquisition would be advantageous. A reduction in the
GA amplitude would allow the filter bandwidth to be increased
in order to facilitate acquisition of higher frequency neuronal
signals without saturation of the EEG amplifiers (Freyer et al.,
2009). Alternatively the reduced artifact magnitude at a stan-
dard 250 Hz cut-off frequency would reduce the demands on the
amplifier’s dynamic range, thus allowing the voltage resolution to
be increased at a fixed number of digitization bits.

By providing an improved understanding of the origin of the
GA, previous simulation work suggested a number of ways by
which the amplitude of the GA could be reduced during data
acquisition (Yan et al., 2009). One suggestion was to change the
subjects’ axial head position relative to the scanner’s isocentre.
This approach was subsequently shown to reduce the root-mean-
square (RMS) amplitude of the GA significantly (Mullinger et al.,
2011). In particular, it was shown that there was an overall 40%
reduction in the raw GA, and a 36% reduction of the residual
GA after artifact correction for recordings made at the optimal
position (electrodes Fp1 and Fp2 at isocentre) compared with
a standard position (nasion at isocentre). Simulations also indi-
cated that the GA might be further reduced by changing the EEG
cap lead layout and the position of the cable bundle on the cap
(Yan et al., 2009). This stemmed from the realization that the GA
results from a superposition of the voltages induced in the EEG
leads and those produced at the surface of the head, which means
that there is potentially an optimal lead configuration in which
the lead voltages maximally cancel those induced at the surface
of the head. In the study reported here, we explored this con-
cept through simulations and experimental investigation on both
phantoms and subjects. We first used simulations to evaluate the
effect of modifying the lead paths on the magnitude of the GA
and then fabricated a new EEG cap based on the optimal lead
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configuration identified from the simulations. We then compared
the GA produced using the new cap design and a standard cap
design and also evaluated the residual artifact after AAS for both
designs.

METHODS
SIMULATION
All simulations and data analysis were carried out in Matlab
using programmes written in-house. The numerical calculations
required for the simulations were performed using previously
described methods (Yan et al., 2009). Briefly, these calculations
involved calculating the contribution of the temporal derivative
of the vector potential (−dA/dt) to the induced artifact by line
integration along each lead path, with the value from the reference
lead subtracted from the values calculated from other leads. Using
the assumption that the head can be represented as a spherical
volume conductor with the electrodes on the surface, the scalar
potential at each electrode was then calculated and the value at
the reference electrode subtracted. The vector and scalar poten-
tial contributions were then added to give an estimate of the GA
measured on each lead. To allow comparison of the performance
of the modified cap designs with that of a standard 32 channel
EEG cap, the real lead paths on a standard EEG cap when placed
on a human head were digitized using a Polhemus Isotrak sys-
tem, as previously described (Yan et al., 2009), Figure 1B. This cap
contained 30 electrodes following the extended international 10–
20 system with the reference electrode placed at FCz. In addition,
the cap carried electrooculography (EOG) and electrocardiogra-
phy (ECG) leads whose paths were not digitized or modeled. The
electrode positions on the standard cap were projected onto the
spherical surface, which best fitted the human head on which the
electrodes were digitized. This projection ensured the assump-
tions made to calculate the scalar potentials in the numerical
simulations were satisfied and this also allowed the modified
electrode positions to be used as the start point of each of the
lead paths when calculating the induced voltages for the lead
configurations of the novel cap arrangement.

To find the theoretical optimal lead configuration the head was
again modeled as a sphere and the lead paths formed great cir-
cles so as to minimize the length of the leads on the cap (which
would be expected to limit the magnitude of the GA). Each great
circle started from an electrode position, with all great circles con-
verging to a point from which the cable bundle leaves the cap,
as shown in Figure 1C. The electrode at FCz was chosen to be

the reference electrode, reflecting this aspect of the standard cap
set-up. As in the previous work (Yan et al., 2009) we assumed no
contribution to the GA from the wires in the cable bundle since
the induced artifacts in the leads serving each electrode and the
reference lead should be equal and opposite in the cable bundle;
therefore these contributions should cancel. The GA in a series
of lead configurations were evaluated as the position of the con-
vergence point of the leads (i.e., the cable-bundle exit position)
was moved along the midline following a great circle between
electrodes Fz and Oz (Figures 1A,C, red line). The convergence
point was also moved in a right-left direction along the great circle
between electrodes T7 and T8 (Figure 1D, red line). 100 possible
positions of the lead convergence point along each of these two
great circles were tested.

The GA induced by gradients applied in the Anterior-Posterior
(AP), Right-Left (RL) and Foot-Head (FH) directions were cal-
culated for the standard and modified lead configurations. The
range and root-mean-square (RMS) amplitude of the induced
GA across electrodes were calculated for each configuration. The
simulations were performed with the center of the sphere at the
scanner’s iso-center along the x- and y-axis. Considering the axial
position, electrodes Fp1 and Fp2 were positioned at z = 0, corre-
sponding to the 4 cm shift of the head in the foot-head direction
that was previously shown to minimize the artifact for a standard
cap arrangement (Mullinger et al., 2011). The results of the GA
simulations for the different convergence points were compared
and the optimal location for the cable bundle to leave the cap
found. The results of this optimally configured modified cap were
compared with GA simulations using the real lead paths from a
standard EEG cap, as previously described (Yan et al., 2009).

EXPERIMENTAL
EEG data were recorded in a 3 T Philips Achieva MR scanner
(Philips Medical Systems, Best, Netherlands) using two differ-
ent 32-electrode EEG caps, a BrainAmp MR-plus EEG amplifier
and Brain Vision Recorder software (Brain Products, Munich,
Germany). The EEG amplifier was set to a sampling rate of 5 kHz,
with the EEG clock synchronized to the MR scanner clock to
ensure consistent sampling of the GA waveforms (Mandelkow
et al., 2006; Mullinger et al., 2008b). The electrode positions for
both the standard and modified EEG caps followed the extended
international 10–20 electrode configuration, which was also used
in the simulations. The standard EEG cap employed a standard
lead configuration, as provided by the manufacturer (EASYCAP,

FIGURE 1 | (A) Schematic of head showing the midline path along which the convergence point was moved. Lead paths used in simulation for the standard cap
(B) and modified caps (C,D). The convergence point was moved along the midline (C, red line) and along the great circle running right-left (D, red line).
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Herrsching, Germany), with the cable bundle leaving the cap
mid-way between electrodes Cz and Pz, as shown in Figure 1B.
The modified EEG cap used the optimal lead paths and cable
bundle position identified from the simulations, with the cable
bundle leaving the EEG cap at Cz, as shown in Figure 1C. To
ensure the optimal lead paths in the experimental set-up followed
the simulated ones as closely as possible, each lead was sewn to the
cap along its entire length, with leads in the cable bundle twisted
tightly together (Figure 2).

Artifact voltages were first measured using a 19-cm-diameter,
saline-loaded spherical agar phantom (Yan et al., 2009).
Subsequently, GA voltages were recorded on five subjects, with
approval of the local ethics committee and informed consent. The
order in which the data were acquired for the two caps was ran-
domized over subjects. Data from both caps were acquired in the
same experimental session for each subject, with subjects wash-
ing and drying their hair between cap applications in order to
remove all of the conductive gel used in the first set of record-
ings. Since subject positioning is known to effect GA amplitude
(Mullinger et al., 2011), 9 and 7 repeats of the measurements
were made for Studies 1 and 2, respectively, on the phantom,
and 3 repeats of each measurement were made on the subjects
for each cap. The phantom/subject was removed from the scan-
ner and head coil and then returned to the head coil and scanner
between successive measurements. Positioning was kept as sim-
ilar as possible across repeats and subjects, with electrodes Fp1
and Fp2 placed axially at iso-center each time (Mullinger et al.,
2011) and the phantom/subjects were also centered in the right-
left axis. A twisted cable bundle running down the entire length
of the scanner bore, rather than a ribbon cable, was used in order
to minimize the induced GA from the cabling connecting the cap
to the EEG amplifiers (Chowdhury et al., 2012). The cable bundle
was mounted on a cantilevered beam running along the axis of
the bore so as to minimize any GA variability due to vibration of
the cabling (Mullinger et al., 2013a).

All data analysis for the following experiments was carried out
in Brain Vision Analyzer2 (version 2.0.2.5859) (Brain Products,
Munich, Germany) and Matlab.

Study 1: orthogonal gradients
To identify the effect of lead paths on the magnitude of the
GA produced by the three orthogonal gradients, EEG record-
ings were made during execution of a modified EPI sequence in

FIGURE 2 | Photos showing the optimal cap design with each wire

sewn onto the cap.

which gradient pulses, ramping up and down with a slew rate
of 2 Tm−1s−1, were sequentially applied in the RL, AP and FH
directions prior to each slice acquisition (Mullinger et al., 2011).
The sequence was repeated 30 times and the filters, which limit
the frequency range of the recorded EEG data, were set to 0.016–
1000 Hz with a roll-off of 30 dB/octave at high frequency to ensure
accurate characterization of the induced GA. To measure the arti-
fact voltage on each channel we employed methods previously
described (Mullinger et al., 2011). In brief, the GA induced by
each of the pulses was averaged over the central 5 ms of each
10 ms ramp period for the 30 repeats. The difference between the
voltages induced during the ramp-up and down periods for each
of the pulses was used as a measure of the induced GA, which
was independent of baseline and high frequency fluctuations. The
range and RMS amplitude of the artifacts across electrodes were
then calculated for each cap and gradient direction and averaged
over repeats and subjects.

Study 2: EPI
In the second study, EEG data were recorded during the execu-
tion of a standard axial, multi-slice EPI sequence (TR = 2 s, TE =
40 ms, 84× 84 matrix, 3× 3 mm2 in-plane resolution, 4 mm slice
thickness, flip angle = 85◦, fold-over direction = AP, SENSE fac-
tor = 2,—i.e., a two-fold reduction in the number of lines of
k-space acquired). Twenty slices were acquired with equidistant
temporal spacing in each TR-period, such that the frequency of
slice acquisition was 10 Hz. This standard sequence allowed the
evaluation of the effect of the lead paths and cable configuration
on the GA induced by a sequence that is conventionally used for
simultaneous EEG-fMRI. 50 volumes of data were acquired on
the phantom, whilst 185 volumes were acquired on the human
subjects. To mimic the movements that may occur during longer
EEG-fMRI runs and thus allow evaluation of the effect of small
movements on the GA, the phantom was manually rotated and
the subject cued to move their feet for 5 s every 30 s with a total of
10 movement periods in each data acquisition, following a pro-
tocol used in a previous study (Mullinger et al., 2011). The EEG
data were recorded with a frequency range of 0.016–250 Hz in this
study. This is typical of the bandwidth that is used in EEG-fMRI
studies in order to avoid saturating the EEG amplifiers.

Data were exported to Matlab for analysis of the GA both
before and after artifact correction had been carried out using
AAS in Brain Vision Analyzer2. The AAS-template spanned one
TR period and was formed from an average of the GA over the
entire acquisition period. This long averaging period ensured
maximum sensitivity to changes in the GA due to the move-
ments. No down-sampling or filtering of data were employed so
as to allow the GA signals over the entire frequency range to be
evaluated.

To assess the effect of the EEG cap lead configuration on the
induced GA before artifact correction, the artifact waveforms for
each slice acquisition (100 ms in duration) for each lead were
baseline corrected (relative to the average over the entire 100 ms
period) and averaged over all slices (excluding periods when
movements were present) within an acquisition period. The RMS
over the slice acquisition period was then calculated for the aver-
age artifact on each lead. An average over leads and repeats was
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then taken for the phantom and subject recordings. For the sub-
ject data, the average and standard deviation over subjects was
also calculated. A Wilcoxon signed-rank test was applied to the
subject data to assess if there were significant differences between
the GA induced by the EPI sequence for the two different lead
configurations.

To evaluate the effect of the lead configuration on the residual
GA after AAS, we focused on signals occurring at harmonics of
the 10 Hz slice repetition frequency in the range 0–250 Hz. Data
were filtered in Brain Vision Analyzer2 so as to pick out signal
contributions falling within a 0.1 Hz frequency range around each
harmonic. The RMS amplitude of these signals over the entire
acquisition period was calculated and averaged over channels and
repeats for both the phantom and subject data using Matlab. The
average and standard deviation over the subjects was also calcu-
lated. A Wilcoxon signed-rank test was applied to the subject data
to test for significant differences in the residual GA after artifact
correction between the two different lead configurations.

To test whether head/phantom movements were similar across
repeats, data were realigned using SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/). The RMS of the mean corrected realignment param-
eters (x, y, and z translation and pitch, yaw and roll) were calcu-
lated for each data set and the average and standard deviation of
this measure over repeats found.

RESULTS
SIMULATION
Figure 3 shows that changing the lead paths by moving the cable
bundle position along the midline produces a decrease in the
range of the GA for the FH gradient, but little change for the RL

FIGURE 3 | Variation of the range (A) and RMS (B) of the average GA

(over electrodes) with cable bundle position (along the midline) for

simulated RL, AP, and FH gradients. The dashed lines indicate the cable
bundle position on standard (black) and optimally modified (red) caps.

or AP gradients compared with the conventional position of the
cable bundle (Figure 3A, black dashed line). The RMS measure
showed a similar behavior, although using this measure a mea-
sureable change in the GA induced by the RL gradient was also
observed (Figure 3B). From these simulations, a sensible com-
promise position was found to be with the cable bundle at the
position of electrode Cz, as depicted in Figure 1C and denoted by
the red dashed line in Figure 3. Figure 4 shows the spatial pat-
terns of the GA induced by the FH gradient for three different
lead arrangements. Figure 4 shows the numerical data produced
when real lead paths are employed (Figure 4A), compared with
the patterns generated when the leads follow great circles con-
verging on a cable bundle located at the conventional position
(Figure 4B), and at the optimal position, Cz (Figure 4C). This fig-
ure shows that for the FH gradient, varying the lead paths and the
convergence point of the cable bundle not only reduces the ampli-
tude of the induced artifact, but also changes the spatial pattern
to give an anterior-posterior (Figure 4C) rather than right-left
(Figures 4A,B) GA pattern of variation. Consequently, the sim-
ulations suggest that the greatest reduction in the GA induced
by a FH gradient for the modified cable configuration will occur
over the temporal regions, but that this will be accompanied by
an increase in the artifact induced over the anterior and posterior
regions of the head.

Figure 5 shows the RMS and range over all electrodes of the
GA induced by the three different gradients. These data were
derived from the numerical simulations using the real and modi-
fied lead paths (Figures 1B,C, respectively). When compared with

FIGURE 4 | Simulated artifact maps for a FH gradient at 2 Tm−1s−1 for

real lead paths (A), great circle lead paths converging in the

conventional location (between electrodes Cz and Pz) (B) and great

circle lead paths converging at the optimal location (electrode Cz) (C).
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real lead paths, the modified cap design shows a decrease in the
range of the simulated GA of 48, 1, and 9% for the FH, AP and
RL gradients respectively. The RMS of the simulated GA showed
a 40% decrease for the FH gradient, no change for the AP gra-
dient and a 6% increase for the RL gradient when the results for
the modified cap were compared with the real lead paths. Moving
the cable bundle away from the midline in the RL direction, as
shown in Figure 1D, did not reduce the GA measures for any of
the applied gradients.

EXPERIMENTAL
Study 1: orthogonal gradients
Figure 6A shows that differences in the induced GA between the
cap configurations were observed in the RMS measure on the
phantom. The modified cap generated lower induced GA from
all three orthogonal gradients compared with the standard cap
configuration. However, a considerable variation in this measure
between repeated recordings was seen for the RL and AP gradi-
ents. This variability suggests that the most consistent gains in
performance from use of the modified cap may be for the FH gra-
dient, since the reduction of the GA for this gradient seemed to
be less dependent on small changes in position between repeated

recordings. Little difference in the range of the GA induced when
using the two different cap configurations was observed for any of
the three applied gradient directions (Figure 6B).

Figure 7 shows that, on average over all subjects and repeats,
the greatest difference between the GA measured with the stan-
dard and modified cap on the subject was found to be for the AP
gradient. However, as found with the phantom recordings, a high
degree of variability was observed over subjects. The reduction
in the GA due to the FH gradient was smaller, but more con-
sistent across subjects than that seen for the AP gradient when
considering the RMS or range measures. Therefore, the greatest
benefit in GA reduction in EEG-fMRI studies of brain function
may be for the AP gradient although the gains will vary across
subjects. In agreement with the simulations, the RL gradient
amplitude (RMS) was found to increase when using the modified
cap compared with the standard cap.

Study 2: EPI
Figures 8A–C demonstrates that, for the phantom, the modified
cap most significantly reduces the amplitude of the GA due to
an EPI sequence over the “temple regions.” This finding is con-
sistent with the results of the simulations (Figure 4). A similar

FIGURE 5 | The RMS (A) and range (B) of the simulated induced GA over all electrodes for each orthogonal gradient (RL, AP, and FH); for the modified

(blue) and standard (red) lead paths.

FIGURE 6 | The average RMS (A) and range (B) of the induced GA over recording repeats for each orthogonal gradient (RL, AP, and FH) on the

phantom; for the modified (blue) and standard (red) lead paths. Error bars show the standard deviation of the measures over repeats.
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FIGURE 7 | The average RMS (A) and range (B) of the induced GA over recording repeats and subjects for each orthogonal gradient (RL, AP and FH);

for the modified (blue) and standard (red) lead paths. Error bars show the standard deviation of the measures over subjects.

FIGURE 8 | Maps of the average RMS (over time) of the GA produced

by a multi-slice EPI acquisition with the standard cap (A,D); modified

cap (B,E) on the phantom (A–C) and the subjects (D–F). (C,F) Show the
difference in the induced GA between caps (A,B,D,E, respectively).

artifact reduction pattern is not seen clearly in the average sub-
ject data (Figures 8D–F), although a slight increase in the artifact
amplitude is shown in the posterior and anterior regions when
the modified cap is used compared with the standard cap, also
in agreement with the simulations. The RMS measurement over
slice acquisitions on the phantom averaged over all channels and
repeats was reduced from 600 ± 100 µV when the standard cap
was used to 380 ± 50 µV when the modified cap was used (error
denotes the standard deviation across repeats). However, as sug-
gested by Figures 8D–F, this finding was not reflected in the
subject data where the average RMS over all repeats, subjects and
channels increased from 380± 40 µV when the standard cap was
employed to 410± 60 µV when the modified cap was used (error
denotes the standard deviation across subjects). No significant
difference in the performance of the caps was found over subjects.

No significant differences were found in the movement param-
eters identified in the experiments employing the two different
caps for either the phantom or subject data. The maximum

RMS displacement of the phantom over the data acquisition was
1.5 mm translation (z-direction) and 0.016◦ rotation (pitch). For
the subjects, the maximum displacements were smaller: 0.5 mm
translation (z-translation) and 0.005◦ rotation (pitch). These
movements were sufficiently small to allow evaluation of the effect
of realistic movements on GA correction for each cap. Using
the EEG data collected during the EPI sequence with the move-
ments of the phantom/head enabled interrogation of the effect
of the lead and cable configuration on the residual GA after cor-
rection using AAS. Using the GA- corrected data, the RMS of
the harmonics of the slice repetition frequency averaged over
channels and repeats measured on the phantom yielded values
of 11 ± 3 µV and 6 ± 2 µV (mean ± standard deviation over
repeats) for the standard and modified caps, respectively, suggest-
ing that the variation in the GA is reduced when the modified
cap is employed. However, no significant difference between caps
was seen for the subject data, which yielded values of 4 ± 2 µV
and 5 ± 2 µV (mean ± standard deviation over subjects) for
the standard and modified caps, when averaged over subjects,
respectively.

DISCUSSION
Simple consideration of Faraday’s Law might suggest that identi-
fication of the optimal lead configuration is straightforward since
shorter wires would result in smaller loop areas and thus lower
induced GAs. However, the interaction of the voltages induced in
the volume conductor (the head) with those generated in the leads
make this a more complex problem (Yan et al., 2009). Simulations
were therefore required to identify the lead configuration that
optimally reduces the overall induced GA. These simulations
showed that modification of the lead paths and cable bundle posi-
tion greatly affected the amplitude of the induced GAs. Figure 4,
for example shows that a reduction in the GA due to a FH gra-
dient can be achieved for a spherical volume conductor without
any change in the cable bundle position by changing from stan-
dard lead paths to paths that follow great circles (Figures 4A,B),
while Figure 4C shows that a further reduction in this GA can be
achieved by moving the cable bundle position along the midline
to lie at electrode Cz, rather than between electrodes Cz and Pz.
Figure 5A shows that this optimal cap configuration produces a
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reduction in the range of the GA for all three gradient directions,
although the RMS over leads of the artifact is only reduced for
the FH gradient (Figure 5B). The simulations also indicated that
moving the cable bundle off the midline in the RL direction does
not reduce the range or RMS value of the induced GA over leads.
This result can probably be explained by the removal of the RL
symmetry of the lead arrangements relative to the applied gradi-
ents, which occurs when the cable bundle position is moved in
the RL direction; this means that although the artifact on some
channels is reduced other channels experience a larger increase in
the induced GA and as a consequence the range and RMS ampli-
tude of the artifact is not reduced. This strategy might however
be employed in studies where the focus is on recording from one
side of the head.

The results obtained in the experiments on the spherical
phantom in Study 1 largely agree with those found from the sim-
ulations, although the modified cap produced a reduction in the
range and RMS amplitude of the GAs induced by all three gra-
dients (Figure 6). However, the results of similar experiments on
human subjects were significantly different, with the modified cap
producing little reduction in the artifact induced by a FH gradient
with a much larger reduction for the AP gradient, and an increase
in the range and RMS amplitude of the GA due to a RL gradient
(Figure 7).

The results of the simulations and the experimental measure-
ments of Study 1 thus clearly show that the effect of the lead
configuration on the induced GA during a standard EPI sequence
will be strongly dependent on the image geometry, which dictates
the direction of the gradients used in the gradient waveform ele-
ments that cause the dominant temporal features of the GA. It
is known that when a 250 Hz low-pass cut-off is employed, the
periods of gradient switching of a standard EPI sequence which
produce the largest elements of the GA are the slice select, phase-
encode pre-excursion and crusher gradient pulses (Mullinger
et al., 2008b). The orientation of the slices and the phase-encode
direction determine the directions in which the slice select and
phase-encode pre-excursion gradient pulses are applied. fMRI
data acquisitions generally employ axial slice geometry and the
phase-encoding direction is generally AP, so that the image dis-
tortions due to field inhomogeneity do not disturb the left-right
symmetry of the brain. With this image geometry, which was used
in Study 2, the slice selection gradients are applied in the FH
direction, while the phase-encode pre-excursion pulse is applied
in the AP direction. The crusher gradient pulses generally employ
all three orthogonal gradient channels so as to maximize signal
dephasing.

Since Study 1 showed that the reductions in the RMS of the
GA induced on the spherical phantom could be achieved with the
modified cap for the AP and FH gradients (Figure 6), we would
predict that the GA induced by the EPI sequence employed in
Study 2 would also be reduced by the modified cap design. This
was found to be the case with the RMS of the GA observed on
the phantom being reduced from 600 ± 100 µV to 380 ± 50 µV
by use of the modified cap. Unfortunately, a similar reduction
was not reflected in the subject data where in fact no signifi-
cant change in the induced GA was measured across subjects and
repeated measures when comparing data from the standard and

modified caps. Maps of the average RMS (over time) of the GA
on the phantom due to the EPI sequence (Figures 8A–C) show
that the modified lead configuration reduced the GA amplitude to
the greatest extent in the “temple regions.” Since the simulations
showed that the modified lead paths result in the largest reduc-
tion in the GA over temple areas when a FH gradient was used
(Figure 4) it is likely that the pattern of GA reduction measured
on the phantom is primarily accounted for by the FH gradient,
employed during slice selection. The lack of a reduction in the
RMS of the GA induced by the FH gradient on the human subjects
(Figure 7) may therefore explain why no significant reduction of
the GA was seen when the EPI sequence was applied to human
subjects. Given the lack of a significant change in the induced GA
on the subjects it is unsurprising that GA correction using AAS
did not perform significantly better when the modified cap was
used rather than the standard one.

The observed difference in the performance of the modified
cap in reducing the GA for the spherical phantom and human
subjects most likely results from differences in volume conductor
geometry. Whilst the spherical phantom used in the experimen-
tal work matched the geometry used in the simulations, this
was obviously not the case for the subjects’ heads, which var-
ied in shape across subjects and always deviated from sphericity.
Consequently the lead paths did not form great circles when the
EEG cap was placed on the subjects’ heads and it is likely that the
leads serving electrodes over the temple regions were most dis-
torted from great circle paths, because of the flat sides of the head.
This distortion may explain why the induced GA was not reduced
for data acquired on the human subjects in the same way as on
the phantom. To test this hypothesis, the recordings described
in Study 1 were repeated for the two cap arrangements using a
head-shaped agar phantom (see Figure 2) formed using a spe-
cial mold. Figure S1 shows the results. A strong similarity can be
seen between the results obtained on the head-shaped phantom
with those recorded from the subjects’ heads (Figure 7 vs. Figure
S1). The GA induced by the FH gradient shows no clear differ-
ence between the two caps whilst the GA from the AP gradient is
considerably smaller for the modified cap than for the standard
cap. This provides a strong indication that the discrepancy in the
data acquired on the subjects compared with that from the spher-
ical phantom probably results from differences in the shape of the
volume conductors onto which the caps are placed.

The lesser differences between the results of the simulations
and the experiments on the spherical phantom are likely to be
caused by small errors in lead path positioning resulting from the
difficulties of cap construction. In addition, there will be some
contribution to the GA from the wires in the cable bundle and
those in the cable between the EEG cap connector and the ampli-
fier, as previously discussed (Yan et al., 2009). Whilst for this work
we removed the ribbon cable and replaced it with a cable bundle
so as to minimize the GA induced in this cabling, as described by
Yan et al. (2009), it is not possible using a conventional EEG setup
to remove all contributions of the cabling to the observed GA. The
relatively large standard deviations of the RMS and range mea-
sures shows how sensitive the induced GA is to external factors
such as positioning of cables and leads (Mullinger et al., 2011).
The variance in the measures for the phantom data (Figure 6)
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provides an indication of the sensitivity of the induced GA to
the exact lead and cable positions. The standard deviation of
the RMS over repeated measures is reduced for all three gradi-
ents when using the modified cap compared with the standard
one. This reduction in variability of the GA is translated into an
improvement in GA removal when using AAS with the modi-
fied cap on the phantom compared with the standard cap. The
standard deviation over subjects is not only sensitive to varia-
tions in subject positioning in the scanner but also to the different
head shapes, which produce different wire paths. Therefore, the
increase in standard deviation when the modified cap is used is
most likely be due to a mixture of these effects and cannot easily
be directly linked to the performance of AAS for GA correction.
The smaller residual GAs in the subject data compared with the
phantom are most likely to be due to the movements of the sub-
jects’ heads being less than those applied to the phantom in Study
2 (Moosmann et al., 2009).

The large differences observed between the induced GA in
the simulations and experimental results in Study 1 when using
a head (or head-shaped phantom) compared with the relative
similarity when using a spherical phantom, suggest that wire
path optimization is highly dependent on the volume conductor
geometry. Therefore, further simulations are required to ascertain
the optimal lead configuration for a volume conductor with more
realistic head-shaped geometry. As in this study, the electrode
positions on the head could again be defined by digitizing the
electrodes on a head. However, these electrode positions would no
longer be projected onto a sphere, thus violating the assumptions
made to calculate the scalar potential employing an analytical
solution (Yan et al., 2009) which was used here. Consequently
numerical analysis would be needed to calculate the contribution
of the scalar potential term of the GA. This may be achieved using
methods recently employed by Chowdhury et al. (2013). Wire
paths would follow the contours of the head rather than great cir-
cles, with a similar method of varying the position of the cable
bundle to that used in this study. These measures should provide
a more accurate estimate of the overall GA induced on the head by
different wire configurations from which to evaluate the potential
gain of changing the wire paths on the EEG cap for EPI sequences
with different image geometries (axial, coronal or sagittal slices)
where different gradients (RL, AP, and FH) dominate the induced
GA. We hypothesize that these advanced simulations would show
that for the optimal wire configuration tested in this work (cable
bundle position at Cz), the greatest reduction in GA amplitude
would occur for the AP gradient (as shown in the experimental
data on subjects, Figure 7) with the variation of the artifacts with
cable bundle position differing from that shown in Figure 3.

In future work, simulations using realistic head-shaped models
could also be used to investigate wire configurations which opti-
mally minimize sensitivity to changes in GA due to changes in
head position. Previous work has shown that the GA varies lin-
early with small changes in head position (Yan et al., 2009). If
possible, minimizing the rate of change of the GA with position,
as well as the overall amplitude of the GA targeted in this work,
would further improve the quality of EEG data recorded dur-
ing concurrent fMRI. However, this issue is non-trivial as there
will be interactions between the angulations of the head, the type

of movement and head-shape; therefore further investigation is
required to identify if it is possible to find a single cable con-
figuration which reduces the change in GA for all types of head
movement and all directions of gradient (RL, AP and FH) tak-
ing account of sensitivity to head geometry, which will vary on a
subject by subject basis.

The work described here shows that it is possible to reduce
the induced GA by changing the lead and cable bundle positions.
However, the experimental work indicates that use of a simple
spherical model of the head in identifying the optimal position
of the cable bundle yields a cap design which does not reduce
the GA significantly when used on human subjects. Further work
is needed to assess whether the use of a more realistically head-
shaped volume conductor in the optimization process will yield
a cap design that reduces the GA on average in human subjects.
With the set-up tested here, the greatest reductions in the GA
on the spherical phantom were seen over the “temple regions”
which would be particularly useful in studies focusing on auditory
responses. Our results also suggest that other lead configurations
could be used to minimize the GA at different electrodes depend-
ing on the cortical areas of interest. Although the subject data
did not reflect the reductions over the “temple regions,” small
modifications of the lead paths may allow such a reduction to
be achieved. The resulting cap might then also be beneficial in
reducing the pulse artifact which is largest over the temple regions
(Debener et al., 2008; Yan et al., 2010).
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Whole brain functional connectomes hold promise for understanding human brain activity
across a range of cognitive, developmental and pathological states. So called resting-state
(rs) functional MRI studies have contributed to the brain being considered at a macroscopic
scale as a set of interacting regions. Interactions are defined as correlation-based
signal measurements driven by blood oxygenation level dependent (BOLD) contrast.
Understanding the neurophysiological basis of these measurements is important in
conveying useful information about brain function. Local coupling between BOLD fMRI
and neurophysiological measurements is relatively well defined, with evidence that
gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes
during cognitive processing. However, it is less clear how whole-brain network interactions
relate during rest where lower frequency signals have been suggested to play a key
role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics
with high spatio-temporal resolution. We utilize these measurements to compare the
connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this
multi-modal information requires the development of an appropriate statistical framework.
We relate the covariance matrices of the Hilbert envelope of the source localized
EEG signal across bands to the covariance matrices derived from rs-fMRI with the
means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA).
Subsequently, we identify the most prominent connections that contribute to this
relationship. We compare whole-brain functional connectomes based on their geodesic
distance to reliably estimate the performance of the prediction. The performance of
predicting fMRI from EEG connectomes is considerably better than predicting EEG from
fMRI across all bands, whereas the connectomes derived in low frequency EEG bands
resemble best rs-fMRI connectivity.

Keywords: brain connectivity, simultaneous EEG-fMRI, resting-state brain connectomes, statistical prediction,

band limited power

1. INTRODUCTION
Large scale networks with correlated time courses have been
consistently identified in the resting brain with functional
Magnetic Resonance Imaging (fMRI) (Beckmann and Smith,
2004; Varoquaux et al., 2010b), and electroencephalography
(EEG) (Tagliazucchi et al., 2012) and magnetoencephalography
(MEG) (Brookes et al., 2011a,b). Spontaneous neural fluctua-
tions exhibit consistent correlation structures over a wide range
of spatial and temporal scales and they constitute a prominent
energy-consuming feature of the brain (Schölvinck et al., 2013;
Smith et al., 2013). Several studies highlight their significance in
modulating brain function and task efficiency (Bonnelle et al.,
2012). Furthermore, abnormalities of resting-state (rs) connec-
tivity have been also implicated in several neurological diseases,
including epilepsy, schizophrenia, attention deficit hyperactivity
disorder, Alzheimers disease, stroke and traumatic brain injury
(Zhang and Raichle, 2010).

Multi-modal approaches and in particular combined elec-
trophysiological measures with fMRI offer the opportunity to

observe neurophysiological events in high temporal and spatial
resolution. fMRI data are acquired as series of volumetric images,
typically obtained every few seconds, that represent blood oxy-
gen level-dependent (BOLD) contrast. This mechanism is related
to the delivery of blood to active neuronal tissue and hence it
allows indirect inference on brain function. This places a limit on
the temporal resolution of neuronal fluctuations observed with
rs-fMRI and complicates the interpretation of the estimated con-
nectivity. On the other hand, in EEG, multiple electrodes are
placed on the scalp to measure spontaneous electrical activity.
Although temporal resolution of EEG is on the scale of mil-
liseconds, the localization of the signal involves sophisticated
algorithms and a priori models for both the source and the vol-
ume conductor and yet it only achieves accuracy in the range of
1–2 cm (Kaiboriboon et al., 2012).

To fully exploit the advantages of combining multi-modal
information, we need to understand the relationship between the
underlying modalities as well as and their neurophysiological ori-
gins (Laufs et al., 2008). Pioneering intracranial recordings have
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established a link between the local BOLD signal and the under-
ling neuronal activity (Logothetis et al., 2001; Logothetis, 2003;
Mukamel et al., 2005; Magri et al., 2012; Chang et al., 2013).
However, these studies do not capture the cooperative processes
underpinning brain function that involves whole brain organi-
zation. Furthermore, they are invasive and their application is
limited in animals and in specific patient cohorts with neurologi-
cal abnormalities. We are interested in examining the relationship
of brain connectomes derived from simultaneous recordings of
fMRI and EEG in rest.

Specific EEG features from the scalp, such as occipital alpha
and beta bands have been related to RSN observed with fMRI
(Laufs et al., 2003; Moosmann et al., 2003). These studies have
revealed networks with a large degree of commonality with rest-
ing state networks such as the default mode and attentional
networks. Investigating neuronal activity in different frequency
bands has attracted considerable attention because it is hypothe-
sized to subserve different roles and originate from anatomically
separated but functionally related brain regions. For instance,
band-limited gamma effects have been linked to enhanced neu-
ral communication, while alpha oscillations have been related
to functional inhibition (Scheeringa et al., 2011). These stud-
ies along with studies of seed-based analysis (de Pasquale et al.,
2010; Brookes et al., 2011a) provided insight on the relationship
of BOLD fMRI and EEG within specific networks. One major
limitation of methodologies based on the topographic electro-
physiological signatures of RSN is that the agreement between
RSN observed with fMRI and EEG relies on the spatial relation-
ship of the extracted networks (Razavi et al., 2013). This process
depends on thresholding and it does not provide information
about the intra-cerebral location of the EEG signal nor about the
relationship between specific RSN connections and EEG rhythms
(Jann et al., 2010).

Recently, Brookes et al. derived resting state networks in a
range of band-limited power (BLP) frequency ranges using MEG
and investigated their relationship with the rs-fMRI (Brookes
et al., 2011a,b). They used a beamforming source localization
to map the MEG signal from sensor space to source/voxel
space. Source localization provides spatial information that allows
one to draw direct regions’ correspondence across subjects.
Subsequently, temporal independent component analysis (ICA)
of the Hilbert envelope of the MEG signal highlighted brain net-
works that closely resemble known rs-fMRI networks (Brookes
et al., 2011b). This confirmed further the neurophysiological ori-
gin of the resting-state networks that emerge in fMRI data (Smith
et al., 2009).

However, these comparisons were based on the spatial agree-
ment between the temporal ICA components estimated across
MEG frequency bands and the spatial ICA components derived
from the analysis of rs-fMRI data (Brookes et al., 2011b). This
approach is limited in that it uses non-simultaneous acquisition
of MEG and fMRI data without any guarantee that differences
in these environments (e.g., motion, auditory input) would not
affect the outcome. Furthermore, temporal and spatial ICA can
have diverging results, depending upon the spatiotemporal char-
acteristics of the underlying sources. Whereas spatial agreement
between the two maps is reassuring, further information about

how the covariance structure between EEG and fMRI signals dif-
fer is needed to fully understand their relationship. In particular
knowledge of the key connections that contribute to the predic-
tion of one connectome from the other may give insight into the
parts of the network that are frequency specific and common to
each modality.

We develop a statistical framework to learn the relation-
ship between connectomes derived from rs-fMRI and the BLP
spectrums of simultaneous source-localized EEG recordings. To
achieve this we relate the covariance structure of the Hilbert
envelope of the source localized electrophysiological signal to the
covariance matrices derived from rs-fMRI. A key methodological
principle of this work is that the covariance structure of both the
Hilbert envelopes of the EEG signal and the fMRI signal lie on
a hypercone of symmetric positive matrices (SPD). In this man-
ifold, the geodesic distance between covariance matrices can be
estimated precisely. This provides a principled way of comparing
multimodal weighted whole-brain networks/graphs within and
across subjects.

Statistical inference has been shown to be a useful tool in
examining the relationship between brain connectivity variables
because it establishes a link between different modalities and it
allows the generalization of the results from a sample set to the
general population (Deligianni et al., 2010, 2011b, 2013). We
use statistical inference based on sparse Canonical Correlation
Analysis (sCCA) (Witten et al., 2009a; Witten and Tibshirani,
2009b) to link EEG and fMRI rs connectomes. Subsequently, sub-
ject specific EEG connectomes can be predicted from previously
unseen fMRI connectomes and vice-versa. The predicted and
measured functional connectomes are compared based on their
geodesic distance and a prediction error is estimated based on
leave-one-out cross validation. This allows us to statistically assess
the information context of fMRI and EEG brain connectomes
across bands.

This approach provides a rigorous multivariate statistical
framework to quantify the importance of each connection in
maximizing the relationship between EEG and fMRI connectivity.
To this end, we extend the sCCA framework with the princi-
ple of randomized Lasso (Meinshausen and Buhlmann, 2010)
to identify the most prominent connections that contribute to
this relationship. This assigns a probability to each connection
to be selected, and it offers a principled way to control for false
positives. The sCCA loadings provide a data-driven weighting
that minimizes the influence of noisy and unrelated connections,
which do not contribute to the relationship between EEG and
fMRI. This also provides a quantitative assessment of the overall
accuracy of source localization in deep-gray matter regions.

2. MATERIALS AND METHODS
2.1. IMAGING
Simultaneous resting-state EEG-fMRI was acquired from 17 adult
volunteers (11 males, 6 females, mean age: 32.84± 8.13 years).
The subjects had their eyes open and were asked to remain
awake and fixate on a white cross presented on a black back-
ground. Subjects were asked to remain still and their head
was immobilized using a vacuum cushion during scanning.
Scalp EEG was recorded during the MRI scanning using a 64
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channel MR-compatible electrode cap (BrainCap MR, Gilching,
Germany) at native frequency of 1000 Hz. The electrodes were
arranged according to the modified combinatorial nomenclature,
referenced to FCz electrode. The electrocardiogram (ECG) was
recorded, and EEG and MR scanner clocks were synchronized.
Imaging data was acquired in a Siemens Avanto 1.5 T clinical
scanner using a self-shielded gradient set with maximum gra-
dient amplitude of 40 mTm−1 and standard 12 channel head
receiver coil. Resting-state fMRI data were acquired based on
a T2∗-weighted gradient-echo EPI sequence with 300 volumes,
TR/TE =2160/30 ms, 30 slices with thickness 3.0 mm (1 mm
gap), effective voxel size 3.3 × 3.3 × 4.0 mm, flip angle 75◦,
FOV 210 × 210 × 120 mm. A T1-weighted structural image was
also obtained. Ethical approval has been obtained from the UCL
Research Ethics Committee (project ID:4290/001) and informed
consent has been obtained from all subjects.

2.2. PREPROCESSING
T1-weighted images were processed with Freesurfer to obtain
gray matter (GM) 68 cortical regions and 14 subcortical regions
(Desikan et al., 2006) (Table S1). Comparisons between two net-
works are easier to interpret when both are derived from the same
set of nodes. Atlas-based parcellation allowed us to define cor-
responding nodes in both fMRI and the source-localized EEG
signal. We propagate the anatomical labels from T1 space to native
fMRI space using affine registration (Modat et al., 2010) to avoid
erroneous warping of the image due to the drop out of gradi-
ent echo EPI images that result from local magnetic susceptibility
effects. Anatomical labels are also propagated to MNI space, for
the analysis of EEG, using non-rigid registration (Modat et al.,
2010).

The first five volumes of rs-fMRI data are removed to avoid T1
effects and preprocessing of the functional data involves motion
correction, high pass filtering (0.01 Hz) and spatial smoothing
(5 mm) with FSL (Smith et al., 2004). To construct correspond-
ing functional networks the fMRI signal is averaged across voxels
within each GM ROI derived from the parcellation. The signal in
WM and cerebrospinal fluid (CSF) is also averaged and along with
the six motion parameters provided from FSL is linearly regressed
out from the averaged time-series within each GM ROI.

EEG was corrected offline for scanner (Allen et al., 2000)
and cardiac pulse related artifacts (Allen et al., 1998) using
Brain Vision Analyzer 2 (Brain Products, Gilching, Germany).
Subsequently, it was down-sampled to 250 Hz and exported to a
standard binary format, which is supported by SPM12b (www.fil.
ion.ucl.ak.uk) (Friston, 2007). The pre-processed EEG signal was
also visually reviewed and noisy channels due to low impedances
(≤100 kOhm) were excluded from the main analysis.

2.3. ANALYSES OF THE EEG SIGNAL
Further analysis of the EEG signal is carried out with SPM12b.
This involves the following steps also shown in Figure 1:

• Bandpass filtering: The signal is filtered into five bands: δ

(1–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), and γ

(30–70 Hz). Phase delays are minimized by using zero-phase
forward and reverse second order butterworth filter. Note
that band-pass filtering is performed prior to source localiza-
tion. Spatial resolution in beamforming is data dependent and
thus it exhibits frequency dependent and time-variant magni-
tude characteristics (Barnes and Hillebrand, 2003). Traditional

FIGURE 1 | Main steps toward deriving functional brain networks from the preprocessed EEG signal.
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beamforming methods focus on narrow band signals because
they approximate frequency independent of spatial selectivity.
• Segmentation into epochs: The signal is segmented into (fMRI)

TR epochs (2.16 s).
• Definition of a head model: The standard template head model

in SPM is used and the electrode positions are spatially trans-
formed to match the template head. This provide reasonable
co-registration of the original sensor positions to the MNI
coordinate system of the template structural MRI image, even
if individual subjects heads are considerably different from the
template.
• Definition of forward model: The three-shell boundary ele-

ment method (BEM) model is used for forward modeling and
the lead fields are estimated using the Sarvas formulas for each
point on the canonical cortical mesh.
• Source localization: EEG data is projected into source space

using beamforming as implemented in SPM12b (Brookes et al.,
2011a, 2012). Source localization allows spatial correspondence
across subjects and modalities. It has also the potential to
remove signal artifacts, which cannot be explained by the scalar
beamformer. For each GM cortical region, the EEG signal is
projected from sensor space to points randomly drawn from
the region, independently for each subject. The region’s center
is always included whereas the number of points is propor-
tional to region’s volume. In Figure 1, the red dots on the
3D head model indicate the true density of random points
drawn in cerebral cortex, which is around 0.7 points/cm3.
These points have been picked randomly for each subject. Note
that this approach of projecting the encephalography signal
to specific brain locations has been used before to estimate
thalamo-cortical coupling in MEG (Roux et al., 2013).
• Estimation of Hilbert envelope: We use two approaches to esti-

mate the EEG time series and we produce results independently
for each case: (a) We estimate the Hilbert transform across
the whole down-sampled time series (WTS). Therefore, con-
nectivity matrices are estimated based on the down-sampled
time resolution of the EEG signal. (b) The EEG time-series are
estimated as the average of the absolute value of the Hilbert
transform within each epoch (AWE). This results in EEG
time-series with corresponding time samples to the fMRI time-
series. This approach provided the best agreement with the
fMRI signal in Brookes et al. (2011a).
• Region average: Finally, within each region the Hilbert-

transformed, source localized signal is averaged across the
randomly distributed voxels to produce an EEG time-series per
region. Note that similarly to the fMRI preprocessing, the first
five epochs are not included in the average.

2.4. ESTIMATION OF FUNCTIONAL BRAIN CONNECTOMES
Once both EEG and fMRI average time-series have been esti-
mated for each cortical region, we seek to derive the covariance
structure of these signals. This assumes that the brain activity
patterns are described by a Gaussian multidimensional station-
ary process. In this case, the covariance matrix characterizes
fully the statistical dependencies among the underlying signals
(Sporns et al., 2000). We use the inverse covariance, normalized to
unit diagonal to characterize functional connectivity. The inverse

covariance, also called the precision matrix, is directly related
to partial correlation, which provides a measure of connectivity
strength between two regions once the influence of the others
has been regressed out. The correlation coefficient cannot dis-
tinguish between a direct signal transfer from node A–C from a
signal transfer through other nodes, as for example from A to B
to C. Partial correlation is the simplest approach in estimating
direct connections. Furthermore, it offers a reasonable approxi-
mation of network structure for a scale of networks of up to few
hundred of nodes, which is what is used in practice. This simpli-
fies the problem of associating EEG with fMRI brain connectivity.
Hence, there is no need to consider indirect signal transfer from
one region to another via others (Deligianni et al., 2011a). To pro-
duce a well-conditioned, symmetric positive definite, (Sym+p ),
sample covariance matrix we use the shrinkage estimator (Krämer
et al., 2009):

�̂λ = λT̂+ (1− λ)�̂ (1)

where the sample covariance matrix �̂λ is estimated as a convex
linear combination of the unrestricted sample covariance matrix
�̂ and the estimator T̂, which is the identity matrix I. In this
case, the optimal regularization parameter λ ∈ [0, 1] is deter-
mined analytically based on the Ledoit-Wolf theorem (Ledoit and
Wolf, 2004). This approach provides a systematic way to regular-
ize the sample covariance matrix and it has been shown to greatly
enhance inference of gene association networks (Schäfer and
Strimmer, 2005), where the number of variables n is much greater
than the number of observations p. This approach allows one to
estimate a well-conditioned covariance structure even when the
number of connections grow quadratically with the number of
ROIs without any prior information.

2.5. PREDICTIVE MODEL BASED ON SPARSE CANONICAL
CORRELATION ANALYSIS (SCCA)

Canonical correlation analysis (CCA) is generally applied when
one set of predictor variables X is to be related to another set
of predicted variables Y and observations are available for both
groups. Note that CCA is designed to deal with situations where
the underlying variables are not statistically independent and,
hence, they are inherently inter-correlated. The ultimate goal of
CCA is to find two basis vectors (canonical vectors) u, v, one for
each variable, so that the projections of X, Y onto these vectors,
respectively are maximally linearly correlated.

In CCA all variables from both sets are included in the fit-
ted canonical vectors. However, for the purpose of studying
brain connectivity, we are interested in sparse sets of associ-
ated variables that would result in simultaneous multivariate
dimensionality reduction and selection of the most relevant con-
nections. Furthermore, it allows the emergence of interpretable
links between EEG and fMRI connectivity data. Hence, we adapt
sparse canonical correlation analysis (sCCA) to optimize the CCA
criterion, subject to certain constrains (Witten and Tibshirani,
2009b):

maximizeu,vuT XT Yv
subject to :‖u‖2 ≤ 1, ‖v‖2 ≤ 1, ‖u‖1 ≤ c1, ‖v‖1 ≤ c2

(2)
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‖u‖1 ≤ c1 and ‖v‖1 ≤ c2 represent the L1 (or lasso) penalty and
they result in sparse canonical vectors u, v when the sparsity
parameters c1 and c2, respectively, are chosen appropriately. Note
that with u fixed, the criterion in Equation 2 is convex in v , and
with v fixed, it is convex in u . Therefore, the objective function
of this biconvex criterion increases in each step of an iterative
algorithm (Witten and Tibshirani, 2009b):

u← argmaxuuT XT Yv subject to : ‖u‖2 ≤ 1, ‖u‖1 ≤ c1

v← argmaxvuT XT Yv subject to : ‖v‖2 ≤ 1, ‖v‖1 ≤ c2
(3)

Here, we are interested in quantifying how well functional con-
nectivity measured with EEG in different bands can predict fMRI
brain connectivity and vice-versa. We use leave-one-out cross val-
idation and thus for each subject s = 1, . . . , S, the sCCA model is
trained based on the remaining S− 1 datasets. The number of
components is estimated as the minimum of the ranks of the pre-
dictor and predicted variables in CCA. The penalty values c1, c2

are optimized in each cross-validation loop using an approach
that permutes the rows of both the predictor and predicted vari-
ables of the sCCA (Witten and Tibshirani, 2009b). Optimization
takes place with exhaustive search on a grid of values.

Subsequently, a subject-specific rs-fMRI connectome Ys is
predicted from its previously unseen EEG connectome Xs

according to:

Ŷs = (uXs)+Dv+ (4)

Vice-versa a subject-specific EEG Xs conenctome can be pre-
dicted from its rs-fMRI connectome Ys based on the same sCCA
solution of u and v vectors:

X̂s =
(

(Ysv)�
)+

Du+ (5)

D is a diagonal matrix with the canonical correlation scores
and + denotes the pseudoinverse. The sCCA optimization prob-
lem being solved is symmetric in the two variables. However,
the algorithm finds a local optimum, by first updating one, then
updating the other criterion. Therefore, depending on the order
of updates, the local optimum obtained might be different. We
found that there was no practical difference when we reverse the
optimization approach.

Here, both X and Y are matrices with rows the vectorized
upper or lower triangular part of the precision matrices across
subjects. The diagonal elements of the normalized precision
matrix are excluded since they are always ones. CCA applies to
these elements without any further restrictions and hence there
is no explicit guarantee the predicted precision matrix would
be SPD.

2.6. A METRIC TO COMPARE COVARIANCE MATRICES
We are interested in estimating the similarity between predicted
and estimated connectivity matrices based on a distance metric
that quantifies differences in the space of covariance matrices.
Precision and covariance matrices lie in the space of symmetric
definite positive matrices F = Sym+p . The standard Euclidean
distance on matrices, the Frobenius norm, does not account for

the geometry of this space. Thus, this norm is ill-suited to quan-
tify prediction errors. However, Sym+p can be parameterized as
a Riemannian manifold using an intrinsic metric (Förstner and
Moonen, 1999; Arsigny et al., 2006):

dAI(P, G)2 = tr
(
log G−

1
2 PG−

1
2
)2

(6)

This metric has been used successfully to build statistical frame-
works of precision matrices Sym+p (Deligianni et al., 2011b).
dAI is a distance metric, invariant to affine transformations and
inversion, appropriate to quantify the distance between covari-
ance matrices from biological data successfully (Mitteroecker and
Bookstein, 2009).

The dAI measure is applied in a leave-one-out cross-validation
loop outside the sCCA algorithm to reliably estimate the out-of-
sample modeling error. We have shown before that the dAI metric
is suitable in quantifying the loss in a structured-output multi-
variate regression predictive framework, because it accounts for
the geometry of the output space, and it demonstrates evidence
of statistical consistency (Deligianni et al., 2013). Since CCA is
closely related to multivariate multiple regression analysis (Lutz
and Eckert, 1994), we argue that dAI is appropriate to compare the
prediction performance of different functional models of brain
connectivity.

2.7. IDENTIFICATION OF RELEVANT CONNECTIONS
It is of great interest to identify which rs-fMRI connections
are mostly related to functional connections derived in each
EEG band. Toward this objective we concatenate the connections
across all EEG bands to one variable X̆, whereas the rs-fMRI
connectivity variable remains the same Y. We are interested in
applying the same biconvex criterion described in Equation 3 to
solve the sCCA problem that aims to find the parameters that
maximize the linear relationship between X̆ and Y, Equation 2.
The concatenation of the connections across all EEG bands is
advantageous because it does not require the choice of a spar-
sity parameter for each band independently, which would hinder
meaningful comparisons across bands.

Subsequently, we modify the biconvex criterion in sCCA,
Equation 3, based on the randomized Lasso principle
(Meinshausen and Buhlmann, 2010). Therefore, Equation 3
takes the following form:

u← argmaxu(wx · u)T X̆T Yv subject to :
‖u‖2 ≤ 1, ‖u‖1 ≤ c1, wx ∈ {1, 0.5}

v← argmaxvuT X̆T Y(v · wy) subject to :
‖v‖2 ≤ 1, ‖v‖1 ≤ c2, wy ∈ {1, 0.5}

(7)

wx and wx are the coefficients weights chosen randomly equal
to 0.5 or 1, as recommended by Meinshausen and Buhlmann
(2010); Deligianni et al. (2013). The randomized sCCA criterion
in Equation 7 is optimized several times, which is effectively a
strategy of resampling the connectivity data. Note that c1 and c2

was chosen initially based on a permutation strategy and they
remain the same through out the randomized Lasso iterations.
The probability of selecting a connection is then given by the
number of times the coefficient is selected over the number of
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repetitions. This provides a principled control on thresholding
false positives and it is a significant improvement over the stan-
dard Lasso penalization, which does not provide any information
on the statistical significance of the selected features. Another
important benefit of the randomized Lasso is that it decreases the
dependence of the selected coefficients on the initial choice of the
sparsity parameter, c1 and c2.

3. RESULTS
We present results based on brain connectomes derived from the
whole time series of EEG (WTS) as well as corresponding results
derived based on brain connectomes estimated from averaging
the Hilbert transformed EEG signal within each epoch (AWE).

In Figure 2 we show the average functional connectivity matri-
ces across subjects in fMRI and EEG δ, θ , α, β, and γ bands,
respectively. In both fMRI and EEG, the precision matrices have
been estimated based on time-series across the whole experiment
(WTS). Matrices are symmetric, since they reflect correlation and
this implies that there is no directionality information. Each of
the connectivity matrices has been estimated by averaging (mean)
each connection across all subjects. All matrices have two dis-
tinctive parallel lines to the diagonal that represent homologous
inter-hemispheric connections. These are strong in both fMRI
and EEG across all bands, whereas in EEG we also observe strong
intra-hemispheric connections. The top row depicts the partial
correlation within cortical regions and results in 68× 68 matri-
ces. The bottom row demonstrates the partial correlation within
cortical and subcortical regions and results in 82× 82 matrices.
For the cortical regions, the top left matrix quadrant represents
connections within the left hemisphere (lh), the bottom right
represent connections within the right hemisphere (rh) and the

remaining quadrants represent inter-hemispheric connections. In
the bottom row, the subcortical regions have been added at the
top left corner of the connectivity matrices. (The regions are
given in Table S1 and they are ordered similarly in their matrix
representation.)

In Figure 3, the connections with the 15% highest absolute
value in Figure 2 (WTS) are shown as 3D graphs in MNI space.
The top row shows partial correlation networks within corti-
cal regions, whereas the bottom row shows partial correlation
networks within cortical and subcortical regions. In rs-fMRI
connectomes inter-hemispheric connections dominate, whereas
across connectomes from each EEG band intra-hemispheric con-
nections are predominant. In particular, brain regions are repre-
sented with spheres. Their centers and radii represent the center of
mass of each underlying region and its volume, respectively. The
color-coding of the spheres corresponds to different parts/lobes
of the brain. Connections above the 15% threshold are repre-
sented as cylinders with salmon color when they are positive and
slate-gray when they are negative. The diameter of the cylinder is
proportional to the connection’s strength, scaled independently in
the fMRI connectome and the connectome from each EEG band.

Figures 2, 3 demonstrate a relatively similar covariance struc-
ture across the EEG frequency bands. To examine whether there
is a broadband phenomenon where all frequency bands fluctuate
together within ROIs, or whether they are minimally corre-
lated, we plot the histograms of correlations for four subjects in
Figure 4. Within each ROI, we estimated the correlation matrix
(5-by-5) of the averaged time series (WTS) for each band. Here,
we show the histograms of the off diagonal correlation elements
across all cortical ROIs. These results show low correlation val-
ues between bands and demonstrate that the whole-brain EEG

FIGURE 2 | Average functional connectivity matrices across subjects in

fMRI and EEG δ, θ , α, β, and γ bands, respectively. In both fMRI and EEG,
the precision matrix has been estimated across the whole time samples
(WTS). (A–F) Depicts the partial correlation within cortical regions (68× 68),
whereas the bottom row demonstrates the partial correlation within cortical
and subcortical regions (82× 82). (The regions are given in Table S1 and they

are ordered similarly in their matrix representation). For the cortical regions,
the top left matrix quadrant represents connections within left hemisphere
(lh), the bottom right represent connections within the right hemisphere (rh),
and the remaining quadrants represent inter-hemispheric connections. At
(G–L), the subcortical regions have been added at the top left corner of the
connectivity matrices.
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FIGURE 3 | The connections with the 15% highest absolute value

in Figure 2 (WTS) are shown as 3D graphs in standard space.

Connections are represented as cylinders with salmon color when
they are positive and slate-gray when they are negative. Brain regions
are represented with spheres. Their centers and radii represent the

centers of mass of each underlying region and its volume,
respectively. The color-coding corresponds to different parts of the
brain. (A–F) Shows partial correlation networks within cortical regions,
whereas (G–L) shows partial correlation networks within cortical and
subcortical regions.

FIGURE 4 | Histograms of correlations between bands across all cortical ROIs for four subjects.

connectomes are not driven by broadband signal changes but
rather EEG signals at different frequencies operate within the
same networks.

Figure 5 shows results of prediction performance and inter-
subject variability for the case of precision matrices derived
based on the WTS approach. Results demonstrate that sCCA
has improved the agreement between the predicted connectivity
matrices and the corresponding measured connectivity matri-
ces. Note that the optimization objective of Equations 2, 3 does
not optimize the distance between connectivity matrices directly.
sCCA learns the relationship between EEG and fMRI connections
across subjects and as a result the Euclidean distance between the

predicted and measured connectomes is minimized. This usually
results in minimizing the geodesic distance between connectomes
too. The prediction performance are represented based on the
dAI metric, which reflects geodesic distance between SPD matri-
ces. The smaller the distance the more similar the connectivity
matrices should be and subsequently the better the performance
of the sCCA training. Figure 5A shows results based only on cor-
tical regions that summarize the prediction performance of fMRI
from EEG (brown box-plots), EEG from fMRI (green box-plots)
across bands, as well as the distance between the fMRI preci-
sion matrices and the EEG precision matrices within subjects
(white box-plots). Figure 5B shows similar results based on both
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FIGURE 5 | Results of prediction performance (WTS). This figure presents
results of prediction performance and inter-subject variability when both fMRI
and EEG precision matrices are estimated based on all time samples. The
distance between the rs-fMRI precision matrices and each of the EEG
frequency banded precision matrices estimated with dAI . The smaller the
distance the more similar the connectivity matrices should be. (A) It shows
results based only on cortical regions that summarize the prediction
performance of fMRI from EEG (brown box-plots) and vice-versa (green
box-plots) across bands, as well as the distance between the fMRI precision

matrices and the EEG precision matrices within subjects (white box-plots),
(B) It shows results based on both cortical and sub-cortical regions that
summarize the prediction performance of fMRI from EEG (brown box-plots)
and EEG from fMRI (green box-plots) across bands, as well as the distance
between the fMRI precision matrices and the EEG precision matrices within
subjects (white box-plots), (C) It shows inter-subject variability for the
precision matrices estimated within cortical regions. (D) It shows
inter-subject variability for the precision matrices estimated within cortical
and subcortical regions.

cortical and sub-cortical regions. In all cases, the performance of
the predictions is estimated based on leave-one-out cross vali-
dation. c1 and c2 have been optimized in each cross-validation
loop according to a permutation-based algorithm [6]. The num-
ber of components is estimated as the minimum of the ranks of
the variables X and Y .

The ability to predict a rs-fMRI precision matrix from an
EEG precision matrix remains relatively similar across bands and
it is substantially better than predicting an EEG connectivity

matrix from a rs-fMRI precision matrix. This is also shown with
a Wilcoxon rank-sum test, which demonstrates significant sta-
tistical differences between the prediction performance of EEG
from fMRI and the prediction performance of fMRI from EEG
across all bands (p-values < 1e-05). On the contrary, the pre-
diction of EEG from fMRI is considerably modulated across
bands with the low frequency bands (δ, θ , α) performing bet-
ter, similarly to the within-subject distance between the measured
fMRI and EEG connectomes. In Table 1 we show the p-values
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Table 1 | P-values of Wilcoxon rank-sum test for assessing differences

between intra-subject comparisons of EEG and fMRI across bands

(WTS) shown in Figure 5.

θ α β γ

(A) CORTICAL CONNECTOMES

δ 0.07 0.39 0.23 3.4e-04

θ 0.39 0.006 1.2e-05

α 0.03 6.1e-05

β 9.4e-03

(B) CORTICO-SUBCORTICAL CONNECTOMES

δ 0.12 0.31 0.18 0.002

θ 0.88 0.01 0.0004

α 0.06 0.003

β 0.06

Bold values indicate p < 0.05.

of Wilcoxon rank-sum tests for assessing differences between
intra-subject comparisons of EEG and fMRI connectomes across
bands. Figures 5C,D shows inter-subject variability for the preci-
sion matrices estimated within only cortical and both cortical and
subcortical regions, respectively. Inter-subject variability in fMRI
is considerably lower than inter-subject variability across all EEG
bands.

Figure 6 is similar to Figure 5 but the EEG connectivity
matrices have been produced by averaging the Hilbert trans-
formed signal within epochs (AWE). Therefore, each EEG time
sample corresponds to a single fMRI time sample. (The cor-
responding connectivity matrices and 3D graphs are shown in
Figures S1, S2.) In this case, the distance between fMRI and
EEG is smaller across all bands compared to Figures 5A,B.
Nevertheless, the prediction of fMRI from EEG is better than
the prediction of EEG from fMRI. A Wilcoxon rank-sum test
shows significant statistical differences in θ and β bands with p-
values of 0.04 and 0.01, respectively, for cortical connectomes and
p-values of 0.04 and 0.005 for cortico-subcortical connectomes.
sCCA training does not improve the performance of predicting
EEG from fMRI compared to the original within-subject distance
of fMRI and EEG connectivity. This may reflect the limits of the
sCCA since dAI is not optimized explicitly and the original dis-
tance of the connectivity matrices is already low. Figures 6C,D
show inter-subject variability for only cortical and both cortical
and subcortical regions, respectively.

Figure 7B shows the normalized distance between the mea-
sured EEG and fMRI precision matrices across bands when we
use only subcortical structures, only cortical structures and both
cortical and subcortical structures. The inclusion of the sub-
cortical regions in the connectome increases the within subject
distance between EEG and fMRI matrices (less similar connec-
tomes). Several factors can account for this finding, including,
the limitation of EEG source reconstruction in deep brain struc-
tures. Note that dAI has been normalized based on the line fit of
the median values of the simulation data in Figure 7A. This is
approximately equivalent of dividing by the number of regions.
Figure 7A shows how the dAI metric scales with the number of
regions represented in the precision matrices. Simulation results

come from the comparison of 1000 pairs of precision matrices
drawn from random Whishart distributions of matrix order from
10 to 100. To investigate further whether incorporating subcor-
tical regions improves the prediction performance, we examined
the performance of prediction of cortical fMRI connectomes from
EEG cortical and cortico-subcortical connectomes. In this case,
the number of regions in the predicted connectomes is the same
and there is no need for any normalization. Subsequently, we
used a paired Wilcoxon test to examine significance in each band.
Our results showed that there is a trend that cortico-subcortical
EEG connectomes predict cortical fMRI connectomes better than
using cortical EEG connectomes alone. This difference is signif-
icant in the δ band (p = 0.01) and close to significance in the θ

band (p = 0.08).
Figure 8 demonstrate the results of 98050 randomized Lasso

iterations for the EEG brain networks estimated based on WTS.
(Figure S3 shows the corresponding results of the AWE case.)
These results highlight the most prominent connections in sCCA
from rs-fMRI (v) and EEG (u) brain connections across all bands.
For this experiment we concatenate all the connections across all
EEG bands to form the canonical variable X̆, whereas Y is the
brain connectivity as it is measured from rs-fMRI. This allows
us to draw the most relevant variables across all bands under
the same sparsity parameters c1 and c2. Finally, we measure how
many times each connection is selected out of the 98050 iterations
and this provides us with a probability measure of confidence
representing the importance of the underlying connection in
maximizing the relationship between fMRI and EEG. The top row
shows the 2% connections with the highest selection probability
in fMRI and each EEG band for cortical regions only. The bottom
row shows the 2% connections with the highest selection prob-
ability for the configuration with both cortical and subcortical
regions. We note that the selected features are mostly long-range
connections. To our knowledge, the results of randomized Lasso
represent the first attempt to show inter-relations between EEG
and fMRI whole-brain connectomes.

4. DISCUSSION
We utilized the band-limited power envelope of the EEG signal
to estimate an average time-series for each gray-matter cortical
region based on a standard atlas-based parcellation. Based on
this approach we describe functional connectivity with covari-
ance matrices between corresponding regions across subjects and
modalities. This allows us to compare resting-state functional
connectivity derived across frequency bands from EEG with
resting-state functional connectivity derived from BOLD fMRI.
To our knowledge, we are the first to investigate the relation-
ship between synchronous fMRI and EEG connectomes across
frequency bands in a whole-brain, using source space analysis.
fMRI connectivity is dominated by the inter-hemispheric con-
nections between homologous areas, whereas brain connectivity
derived from EEG shows a more complex pattern of connections
composed by both intra-hemispheric and inter-hemispheric con-
nections. We also observe that EEG connectomes in low frequency
bands are the most similar to resting-state fMRI connectomes
based on their geodesic distance of the underlying precision
matrices.

www.frontiersin.org August 2014 | Volume 8 | Article 258 | 963

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Deligianni et al. Relating fMRI and EEG connectomes

FIGURE 6 | Results of prediction performance (AWE). This figure
presents the same results as Figure 5 but EEG time series have been
averaged within each epoch, which is equal to the fMRI-TR. The distance
between the rs-fMRI precision matrices and each of the EEG frequency
banded precision matrices estimated with dAI . The smaller the distance
the more similar the connectivity matrices should be. (A) It shows results
based only on cortical regions that summarize the prediction performance
of fMRI from EEG (brown box-plots) and vice-versa (green box-plots) across
bands, as well as the distance between the fMRI precision matrices and

the EEG precision matrices within subjects (white box-plots), (B) It shows
results based on both cortical and sub-cortical regions that summarize the
prediction performance of fMRI from EEG (brown box-plots) and EEG from
fMRI (green box-plots) across bands, as well as the distance between the
fMRI precision matrices and the EEG precision matrices within subjects
(white box-plots), (C) It shows inter-subject variability for the precision
matrices estimated within cortical regions. (D) It shows inter-subject
variability for the precision matrices estimated within cortical and
subcortical regions.

One possibility is that the low frequency bands in EEG
are most predictive due to their higher signal-to-noise ratio.
However, low frequency bands are affected from small drifts, eye
blinks, cardiac, and respiration cycle and so on, whereas muscle
artifacts and channels with low impedance affect higher frequen-
cies. In addition for EEG-fMRI this is additionally complicated
by the gradient and pulse artifacts that provide sources of struc-
tured noise in particular in the alpha band at the slice frequency.

Given this noise distribution, it is unlikely that the prediction dif-
ference of the EEG bands is driven by the signal noise differences
between bands. Nevertheless, we cannot exclude the possibility
that differences in SNR across frequencies could explain some
of the differences in similarity between fMRI and EEG brain
connectomes across bands.

Subsequently, we examine the connectivity derived from
simultaneous EEG and fMRI by means of statistical prediction.
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FIGURE 7 | (A) It shows how the dAI metric scales with the number of
regions represented in the precision matrices. 1000 pairs of precision
matrices were drawn from random Whishart distributions from matrix order
of 10–100. Subsequently, the distance between the pair of matrices was
estimated based on the dAI metric. (B) It shows the normalized distance

between the measured EEG and fMRI precision matrices across bands when
we use only subcortical structures, only cortical structures and both cortical
and subcortical structures. dAI has been normalized based on the line fit of
the median values of the simulation data. This is approximately equivalent of
dividing by the number of regions.

FIGURE 8 | Results derived from randomized Lasso for the WTS

case. These reflect the 2% connections selected more often over all
sCCA repetitions. (A–F) Shows results with the precision matrices

derived based on cortical regions only, whereas (G–L) shows the
results obtained with precision matrices that include both cortical and
subcortical regions.
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An advantage of a predictive framework of EEG and fMRI con-
nectomes is that it removes noise that it is present in one modality
and not the other. We use sCCA to predict EEG brain connectivity
from fMRI and vice-versa. To evaluate the prediction perfor-
mance we use leave-one-out cross validation and we compare
the predicted connectivity matrix with the observed connectiv-
ity matrix. We demonstrate that the performance of predicting
fMRI connectivity from EEG is considerably better than pre-
dicting EEG from fMRI across all bands. In fact, the prediction
performance of EEG from fMRI follows a similar pattern to the
distance between the original precision matrices, whereas the pre-
diction performance of EEG from fMRI is relatively stable across
bands. There is no significant improvement in prediction of fMRI
from EEG using the joint information across multiple EEG fre-
quency bands. Note that increasing the number of variables does
not necessarily increase the prediction performance, since we use
cross-validation loop to control for over fitting.

This finding has several important implications. Firstly, it
shows that there are signatures of rs-fMRI dynamics across EEG
frequencies. This is consistent with the concept of nested oscil-
lations and cross spectral coupling often found within EEG
(Penny et al., 2008). Note that we have used envelope correla-
tion amplitude and thus the phase information is not preserved.
Nevertheless, if the phase-amplitude locking, which indicates
nested oscillations, is intermittent then a large overall ampli-
tude correlation is also expected (Penny et al., 2008). Secondly,
it likely reflects the greater dynamic information content cap-
tured by EEG in this particular spatial scale. Although, the spatial
resolution of source localization is in the scale of 1–2 cm, most
fMRI network analysis studies involve averaging the hemody-
namic signal within larger regions. Our results indicate that in
this spatial resolution the information carried in the EEG signal
is richer than the averaged hemodynamic activity. In this con-
text, the question of which EEG band represents best the fMRI
is not important; any EEG band can provide similar connectivity
information. This implies that scalp EEG can be used to provide
similar information to resting state fMRI based connectomes at
substantially reduced cost while providing much greater possibil-
ities in dynamic information content. This might be because of
the coarse brain parcellation, which limits spatial resolution to
the size of the underling cortical regions. However, most current
fMRI studies tend to examine connectivity at this scale.

On the other hand, the inclusion of the subcortical regions
results in more dissimilar fMRI and EEG connectomes even when
we account for the difference in the number of regions. This may
indicate that the highly complex cortico-subcortical interactions
are not adequately captured with EEG alone. Cortico-subcortical
interactions play an important role in regulating physiological
rhythms that are associated with sleep or wakefulness, motor con-
trol and so on. Furthermore, they have an eminent role in patho-
logical conditions such as the propagation of epileptic activity in
several epilepsy syndromes (Kahane and Depaulis, 2010; Moeller
et al., 2013). Therefore, further investigation on how multi-modal
data can improve the sensitivity in detecting these interactions
both in space and time is crucial in discovering new treatments
and understanding how brain networks work. Our multi-modal
connectivity analysis demonstrate evidence that incorporating

sub-cortical structures in EEG connectomes improves the predic-
tion of cortical fMRI connectomes. Therefore, a cutoff in weights
might be appropriate in some circumstances, but due to the
sparsity constraints a weight should only be large enough to be
influential if the corresponding edge is genuinely informative for
the prediction. It should therefore not be necessary to explic-
itly down-weight or ignore connections carrying little predictive
information. We acknowledge that there is controversy in the abil-
ity to detect subcortical sources with EEG source imaging alone
(Muthuraman et al., 2014). However, Muthuraman et al. also
showed that sources in deep gray matter structures are present in
EEG data when segments with higher SNR are selected indicating
a lower sensitivity of EEG to detect deep-gray matter sources com-
pared to MEG data. Nevertheless, Plomp et al. linked event related
potentials recorded with EEG with sources in the insula and sub-
cortical areas such as the parahippocampus and the thalamus
(Plomp et al., 2010). Furthermore, Moeller et al. demonstrated
the ability of electrical source imaging in identifying deep sources
in the thalamus and in revealing similar neuronal networks as
with simultaneously acquired fMRI (Moeller et al., 2013). In any
case, as we have discussed here, there is evidence in the literature
and in our data to suggest that there may be some information in
the scalp EEG which is attributable to deep sources.

Furthermore, we showed that the connectomes derived in low
frequency EEG bands (δ, θ , and α) resemble best rs-fMRI con-
nectomes. This conclusion results from estimating the precision
matrices over the whole down-sampled EEG Hilbert-transformed
time-series (WTS). When connectivity is estimated based on the
average of the signal envelope within epochs (AWE), the geodesic
distance between EEG and fMRI connectomes is smaller, reflect-
ing the fact that averaging the EEG signal within epochs of equal
duration to fMRI TR, approximates the rs-fMRI signal better.
Effectively, this reduces the information content in the EEG in a
way that better resembles the fluctuations observed in the BOLD
signal. Furthermore, this temporal averaging of the EEG means
that the difference in prediction performance between bands is
smaller than the inter-subject variability within-band.

In literature there is on-going controversy about which band in
EEG mostly resembles rs-fMRI connectivity. Our results are con-
sistent with de Pasquale et al. where a seed-based analysis was used
to correlate the dorsal and default mode networks with sponta-
neous MEG activity (de Pasquale et al., 2010) and showed that the
band limited MEG signal in theta, alpha and beta bands is primar-
ily related to BOLD fMRI connectivity. Similarly, Brookes et al.
observed higher spatial agreement between resting-state fMRI
and MEG in the α and β bands (Brookes et al., 2011b). However,
in de Pasquale et al.s MEG study inter hemispheric correlation
between homologous regions was not observed in despite it being
a typical feature of resting state fMRI studies, being observed in
the first such study by Biswal et al. (1995). Furthermore, Cabral
et al. found that the strength of correlation between brain regions
peaks at the α and the lower end of the β frequency bands, both in
MEG and in simulated connectivity based on coupled oscillators
with parameters derived from structural networks (Cabral et al.,
2014). On the other hand, work in anaesthetized rats suggested
that in the fMRI signal is mostly correlated to δ band (epidu-
ral) electrophysiological measures (Lu et al., 2007), whereas Magri

Frontiers in Neuroscience | Brain Imaging Methods August 2014 | Volume 8 | Article 258 | 1266

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Deligianni et al. Relating fMRI and EEG connectomes

et al. highlighted α, β, and γ bands as mostly related to BOLD
fMRI spontaneous activity in anaesthetized monkeys.

There is some consensus among studies that the best agree-
ment between rs-fMRI and EEG signal is in the α frequency
range. Our results also highlight low frequency bands, which
could result from that both fMRI and EEG connectomes describe
mostly long-distance connections due the relatively large vol-
ume of the underlying regions. In fact, evidence suggests that
the more distant two neural assemblies are, the longer the signal-
conduction delay between them. This biases the maintenance of
a phase relationship between the two signals over long cortical
distances to low frequencies (Schölvinck et al., 2013). Also small
time shifts in high frequencies cause proportionally large phase
shifts, which limits correlations in high frequencies. EEG and
fMRI provide measurements of whole-brain spontaneous activ-
ity over a large range of spatial, temporal and spectral scales. Slow
electrophysiological activity as it is derived from the envelope or
power of a limited range of frequencies, also called band limited
power (BLP), is of great interest for three reasons. First, changes
occur over similar time scales as the BOLD signal. Secondly, it is
related to large scale spontaneous oscillations observed between
any pair of distant brain regions. Finally, they reflect intrinsic cou-
pling modes that are closely related to structural connectivity and
appear relatively constant across brain states (Engel et al., 2013;
Woolrich et al., 2013).

The main reason for mapping the sensors to source space, in
combination with an atlas based analysis approach, is that it pro-
vides a general framework that allows for an anatomical interpre-
tation of the EEG data as well as a direct comparison with other
networks derived from fMRI and Diffusion Weighted Imaging
(DWI). This is important to allow the extension of our method-
ology to pathological and atypical brains (Bellec et al., 2010).
For example, in epilepsy, localizing accurately and specifically the
epileptogenetic zones where seizures initiate is of tremendous
importance for the surgical outcome. Current research shows
that agreement between EEG and fMRI analysis in detecting
the epileptogenetic zone correlates with good surgical outcome
(Thornton et al., 2010). Our framework could be extended to
shed light on how to interpret observations when there is no
multi-modal agreement. For example, examining whether and
how the relationship between fMRI and EEG brain networks
differ in different brain states and pathological conditions is of
particular interest in current clinical neuroscience studies.

4.1. METHODOLOGICAL CONSIDERATIONS
Sensor level connectivity analysis is biased by the effects of vol-
ume conduction/field spread, since there are multiple sensors
recording the signal from the same sources. This severely affects
the estimation of connectivity and impedes interpretation of the
results (Hillebrand et al., 2012). We have used a state of the art
approach to estimate the sources from EEG recordings based
on beamforming (Brookes et al., 2012). Although, the effect
of field spread is not completely abolished, this approach pro-
vides a reasonable solution and it is resilient to artifacts in EEG
acquired during fMRI such as those due to switched magnetic
fields gradients. Another option is to analyse the imaginary part
of the coherence, which is robust to volume conductance (Engel

et al., 2013). However, functional connectivity based on phase
measurements have different interpretations than envelope based
connectivity (Engel et al., 2013). It is more variable across brain
states and less bound to structural connectivity. The framework
provided here can be extended to study both the power enve-
lope and the phase of the EEG signal that could provide valuable
insights regarding the connectivity information across modalities.

Our analysis assumes that functional connectivity can be ade-
quately described as a stationary process. Most current connec-
tivity studies assume stationarity to avoid the high complexity
involved in modeling the dynamic signal information, which lim-
its the ability to process connectomes with more than 10–20
regions (Smith, 2012). Nevertheless, the extension of our frame-
work, using for example sliding-window correlations, to examine
the dynamic complexity of the underlying signals is of particular
interest (Brookes et al., 2014). Here, we examine brain connec-
tivity based on the precision matrix, which is the inverse of
the covariance matrix and it reflects partial correlation. This is
important to disentangle the influence of other regions on each
pair-wise connection (Smith et al., 2013) and to allow direct com-
parison between connectivity variables (Deligianni et al., 2011b,
2013). Partial correlation not only is a reasonable approximation
of direct connectivity among brain regions but compared to the
usual correlation coefficient it is also more resilient to common
underlying noise sources.

The inversion of the covariance matrix requires a well-
conditioned SPD matrix. This problem is also known as covari-
ance selection, and in the context of brain connectivity it is
challenging due to the problem’s intrinsically high dimensional
space, and to inter-subject variability (Varoquaux et al., 2010a).
In fact, the empirical covariance matrix results in inaccurate esti-
mation of the precision matrix from its inverse due to numerical
instabilities and poor estimation of its eigen structure. Here, we
use a shrinkage estimator (Krämer et al., 2009) based on the
Ledoit and Wolf theorem (Ledoit and Wolf, 2004). This regu-
larizes the estimate of the precision matrix by adding a diagonal
matrix to the sample covariance before computing its inverse.

Other approaches to regularizing the inverse covariance matrix
based on shrinkage have been recently proposed (Friedman et al.,
2008) and they have been suggested in estimating connectivity
from fMRI time series (Varoquaux et al., 2010a; Smith et al.,
2013). These approaches shrink the estimated values of the preci-
sion matrix, so that very small values that are potentially noisy
are forced to zero and the rest are better estimated. However,
a major challenge is how to determine the shrinkage parameter
(Hinne et al., 2014). This is particularly important when we com-
pare connectivity across bands and modalities. One approach is to
use cross-validation to choose the shrinkage parameter that best
generalizes the estimated covariance within subjects (Pedregosa
et al., 2011). This results in connectivity matrices with consid-
erably different sparsity across bands and thus interpretation of
the results is not straightforward. Other approaches hypothesize a
structure based on prior information provided either from struc-
tural data (Deligianni et al., 2013; Hinne et al., 2014) or using
population priors (Varoquaux et al., 2010a) and they may intro-
duce strong biases. Furthermore, their extension in populations
with neurological diseases is not obvious.
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It is important to note that the canonical correlation variables
X and Y that represent EEG and fMRI connectivity, respectively,
are not in the form of SPD matrices. They are produced by the
concatenation of the vectorized upper triangular matrix of each
precision matrix across subjects. The sCCA operates on these con-
nectivity variables based on the lasso L1 penalty, which results in
sparse vectors u and v. Although there is no explicit constraint
to ensure that the prediction will be an SPD matrix, we do not
encounter this problem when we predict fMRI from EEG con-
nectomes. On the other hand, when we predict EEG from fMRI
connectomes, non-SPD predictions appear on average three times
for each cross-validation. This is worse with other approaches
of estimating the precision matrix such as the graphical lasso
(Friedman et al., 2008; Pedregosa et al., 2011). In this case, most
of the predictions are not SPD and therefore we cannot proceed
further and estimate the overall prediction performance reliably.

We used gray matter regions derived from standard atlas-based
parcellation, which is a common approach (Hillebrand et al.,
2012). The main advantage of this whole-brain parcellation is
that it is well-defined in subject space and produces correspond-
ing regions across subjects and modalities. It is well known that
atlas-based segmentations have poor functional specialization
and regions’ sizes differ considerably from a few tens of voxels to
thousands. This would produce differences in signal to noise ratio
of the estimated time-series. Another approach is to use regions
drawn from functional studies. Although, these regions are more
functionally specialized, there is no universal agreement on how
to produce a whole-brain representation and how to propagate it
into subject space. We expect that more functionally specialized
regions would improve the ability of the proposed approach to
select relevant connections and subsequent interpretation of the
results (Deligianni et al., 2013).

Nevertheless, our analysis shows that strong inter-hemispheric
connectivity between homologous regions is present in both EEG
and fMRI connectomes. This is indicated by the lines parallel to
the diagonal in the partial correlation matrices, Figure 2. These
correlations emerge even though in EEG the voxel time-series to
be averaged within a region are drawn randomly for each region
and subject. Coupling between homologous sensory areas across
hemispheres has been also revealed with envelope correlation
in previous seed-based studies (Engel et al., 2013). This is also
well established in resting-state fMRI analysis independently of
how regions are defined (voxel based or function based) (Biswal
et al., 2010). Furthermore, evidence shows that inter-hemispheric
connectivity has critical significance for behavior, indicating an
important interaction between homologous regions rather than
an effect of averaging dissimilar signals (Carter et al., 2010).

FUNDING
Funding for this study comes from EPSRC (EP/J016292/1) and is
supported by Great Ormond Street Hospital Biomedical Research
Center. Dr Maria Centeno is funded by Action Medical Research
grant SP4646.

ACKNOWLEDGMENTS
We would like to thank Prof. Louis Lemieux, who provided
us with MR compatible EEG equipment, Prof. Gareth Barnes

for valuable advice on the application of EEG beamforming
and the radiographer Tina Banks. We also acknowledge the
use of the UCL Legion High Performance Computing Facility
(Legion@UCL), and associated support services, in the comple-
tion of this work.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.
2014.00258/abstract

Table S1 | Freesurfer subcortical and cortical regions used in this work to

define brain connectomes.

Figure S1 | Average functional connectivity matrices across subjects in

fMRI and EEG δ, θ , α, β, and γ bands, respectively. The Hilbert envelope of

the EEG signal was averaged within each epoch (AWE), which is equal to

the fMRI-TR. Therefore, both fMRI and EEG time series have the same

number of time samples. (A–F) Depicts the partial correlation within

cortical regions (68× 68), whereas (G–L) demonstrates the partial

correlation within subcortical regions (82× 82). The regions are given in

Table S1 and they are ordered similarly to their matrix representation. For

the cortical regions, the top left matrix quadrant represents connections

within left hemisphere (lh), the bottom right represent connections within

the right hemisphere (rh), and the remaining quadrants represent

inter-hemispheric connections. At (G–L), the subcortical regions have

been added at the top left corner of the connectivity matrices. This figure

is similar to Figure 2 with a noticeable decrease of the partial correlation

across all EEG bands. This may be due to less time samples that would

result in under-estimation of true connectivity due to the regularization.

Figure S2 | The connections with the 15% highest absolute value in

Figure S1 (AWE) are shown as 3D graphs in standard space. Connections

are represented as cylinders with salmon color when they are positive and

slate-gray when they are negative. Brain regions are represented with

spheres. Their centers and radii represent the centers of mass of each

underlying region and its volume, respectively. The color-coding

corresponds to different parts of the brain. (A–F) Shows partial correlation

networks within cortical regions, whereas (G–L) shows partial correlation

networks within cortical and subcortical regions.

Figure S3 | Results derived from randomized Lasso for the AWE case.

These reflect the 2% connections with the highest probability to be

selected overall sCCA repetitions. (A–F) Shows results with the precision

matrices derived based on cortical regions only, whereas (G–L) shows the

results obtained with precision matrices that include both cortical and

subcortical regions.
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Absence seizures (AS) are brief epileptic events characterized by loss of awareness with
subtle motor features. They may be very frequent, and impact on attention, learning, and
memory. A number of pathophysiological models have been developed to explain the mech-
anism of absence seizure generation, which relies heavily on observations from animal
studies. Studying the structural and functional relationships between large-scale brain net-
works in humans is only practical with non-invasive whole brain techniques. EEG with
functional MRI (EEG-fMRI) is one such technique that provides an opportunity to explore
the interactions between brain structures involved in AS generation. A number of fMRI tech-
niques including event-related analysis, time-course analysis, and functional connectivity
(FC) have identified a common network of structures involved in AS. This network com-
prises the thalamus, midline, and lateral parietal cortex [the default mode network (DMN)],
caudate nuclei, and the reticular structures of the pons. The main component displaying
an increase in blood oxygen level dependent (BOLD) signal relative to the resting state, in
group studies, is the thalamus while the most consistent cortical change is reduced BOLD
signal in the DMN. Time-course analysis shows that, rather than some structures being
activated or inactivated during AS, there appears to be increase in activity across compo-
nents of the network preceding or following the electro-clinical onset of the seizure. The
earliest change in BOLD signal occurs in the DMN, prior to the onset of epileptiform events.
This region also shows altered FC in patients with AS. Hence, it appears that engagement
of this network is central to AS. In this review, we will explore the insights of EEG-fMRI
studies into the mechanisms of AS and consider how the DMN is likely to be the major
large-scale brain network central to both seizure generation and seizure manifestations.

Keywords: epilepsy, absence seizures, functional MRI, default mode network, functional connectivity

CLINICAL
TYPICAL ABSENCE SEIZURES AND ABSENCE SEIZURE SYNDROMES
Genetic generalized epilepsy (GGE) is common and accounts for
approximately 20% of epilepsy diagnoses (1). Initially referred
to as idiopathic generalized epilepsy, this syndrome was defined
by the ILAE Commission on Classification in 1985 (2). This
referred to “forms of generalized epilepsies in which all seizures
are initially generalized, and their EEG expression is a generalized,
bilateral, synchronous, symmetrical discharge.” Furthermore, this
syndrome was seen in individuals “presenting a normal interic-
tal state without neurological or neuroradiolgical signs.” In the
most recent classification commission document (3), the term
genetic replaced idiopathic given the clear genetic origins of this
condition. Furthermore, in the current classification,“Generalized
epileptic seizures are conceptualized as originating at some point
within, and rapidly engaging, bilaterally distributed networks.
Such bilateral networks can include cortical and sub-cortical struc-
tures, but do not necessarily include the entire cortex” (3). This
reflects current views on seizure generation in generalized epilep-
sies highlighting that a seizure “focus” may initiate a generalized
seizure.

A number of generalized seizure types are seen in GGE (1981).
These included absence seizures (AS), myoclonic seizures (MS),
and generalized tonic–clonic seizures (GTCS). Using a combina-
tion of seizure type, seizure frequency, and the age at seizure onset,
GGE can be further sub-classified into sub-syndromes (1989). It
is uncertain to what extent sub-syndrome classification identi-
fies true physiological differences between the disorders in people
with“GGE”(4). The sub-classification is useful for defining groups
for study and provides information that assists in predicting out-
come and response to therapy, although there can be considerable
clinical heterogeneity within sub-groups.

Different types of AS have also been defined (3, 5, 6). The major
distinction exists between typical and atypical AS, which were first
defined by the ILAE in 1981 (6). Typical AS were defined according
to clinical features, and ictal and interictal features. Although not
stated in this classification, individuals with atypical AS usually
have a slow EEG background and the presence of this seizure type
is generally associated with intellectual disability, multiple other
seizure types, poorer response to medical therapy, and a poorer
outcome (7). Atypical absence is a feature of the Lennox–Gastaut
syndrome (LGS) (2). In the more recent classification, documents
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include a third category: absence with special features. This group
includes myoclonic absence seizures (MAS) in which AS are com-
monly associated with persistent rhythmic axial myoclonus (8)
and eyelid myoclonia during which there is regular rhythmic eyelid
myoclonus with or without loss of awareness (9).

As outlined above, AS may be seen in a number of epilepsy syn-
dromes with the relative frequency and pattern of the AS helping
to define the syndrome classification. Table 1 shows the typical
syndromes and the common seizure types.

Childhood absence epilepsy (CAE) and juvenile absence
epilepsy (JAE) are the archetypal absence epilepsy syndromes with
typical AS being the defining seizure type in each of these syn-
dromes. The ILAE (2, 10) syndrome classification of CAE involved
the following criteria:

1. Occurring in children of school age (peak manifestation age
6–7 years).

2. Very frequent (several to many per day) absences.
3. The EEG reveals bilateral, synchronous symmetrical spike

waves, usually 3 Hz, on a normal background activity.
4. During adolescence, generalized tonic–clonic seizures often

develop. Otherwise, absences may remit or, more rarely, persist
as the only seizure type.

Juvenile absence epilepsy is defined by a later onset and lower
frequency of AS when compared to CAE.

“Manifestation occurs around puberty. Seizure frequency is
lower than in pyknolepsy (CAE), with absences occurring
less frequently than every day, mostly sporadically. Associa-
tion with GTCS is frequent, and GTCS precede the absence
manifestations more often than in CAE, often occurring on
awakening. Not infrequently, the patients also have myoclonic
seizures.” (10)

Table 1 | ILAE-defined syndromes in which absence seizures are

commonly observed.

Syndrome AS type Other seizure types

GGE SUB-SYNDROMES

Childhood absence epilepsy Typical AS GTCS

Juvenile absence epilepsy Typical AS GTCS, myoclonus,

absence status

Juvenile myoclonic epilepsy Typical AS Myoclonus, GTCS

Eyelid myoclonia with

absence (Jeavon’s syndrome)

Eyelid myoclonia

Typical AS

GTCS, myoclonus

Epilepsy with myoclonic

absence seizures

Myoclonic AS GTCS

OTHER SYNDROMES

Lennox–Gastaut syndrome Atypical AS Tonic seizures, GTCS,

myoclonus, focal seizures

Genetic epilepsy with febrile

seizures plus (GEFS+)

Typical AS GTCS, myoclonus, other

AS, absence seizure; GTCS, generalized tonic–clonic seizure.

COGNITIVE IMPACT OF ABSENCE SEIZURES
Absence seizures clearly have an impact on short-term cogni-
tive function. However, despite their brief and relatively benign
appearance, the presence of AS appears to have more significant
long-term cognitive consequences. AS themselves can have a vari-
able effect on consciousness both within and between seizures in
an individual (11, 12). Furthermore, variable aspects of a patient’s
cognition may be impaired suggesting that selective brain net-
works may be involved during AS (11, 13). Exactly what the
mechanism involved in the disruption of cognition is unclear;
however, it has been speculated that focal involvement of bilateral
frontal association cortex disrupts normal processing leading to
impairment of specific cognitive functions (11).

There is some discrepancy in the types of cognitive deficits seen
in GGE and children with AS; however, it is clear that the gener-
alized epilepsies have a significant and pervasive neuro-cognitive
impact, and that AS themselves may contribute unequally to this
morbidity. A number of studies have attempted to more clearly
elaborate the cognitive and psychiatric impacts of generalized
epilepsies and absence epilepsy in childhood (14–18). It appears
that children with CAE have significantly lower IQs, linguistic
deficits, and attentional inefficiencies, as well as social and thought
problems when compared to matched controls, and this appears to
be related to duration of illness, seizure frequency,and medications
(18). The commonalities between psychiatric and epilepsy diag-
noses may reflect a common involvement of the mesial, ventral,
and dorso-lateral pre-frontal cortex (18). Cognitive deficits may
be more marked in children when seizures begin before 4 years
of age (15). Furthermore, when comparing children with GGE,
with and without AS, it was found that children with AS had more
pronounced deficits in verbal performance measures when com-
pared to those with convulsions and controls (16). In JME, it has
been noted that there is impaired deactivation of the default mode
network (DMN) and abnormal coupling of cognitive and motor
systems, which is felt to explain the interaction between cognitive
effort and myoclonus (19). Similarly, in CAE, it may be that abnor-
mal network connectivity contributes to long-term learning risk
despite good seizure control and that these deficits are potentially
greater in children with AS as a result of the nature of the network
disturbance.

PATHOPHYSIOLOGICAL MODELS OF GSW IN AS
To understand the mechanisms of AS generation, one needs to
consider both the cellular networks involved in seizure generation,
as well as the large-scale functional networks involved. At a cellu-
lar level, thalamo-cortical networks appear to be the major seizure
generating apparatus (20, 21). The thalamo-cortical circuitry has
been studied extensively in the generation of sleep spindles, and
this circuitry informs our understanding of GSW (22). A central
role of the thalamus in the generation of seizures and epilepti-
form discharges seems intuitive. The thalamus displays rhythmic
firing and has extensive reciprocal connections to the cortex, with
excitatory neurons (glutamatergic) arising from the dorsal thala-
mus conveying information to the cortex and excitatory cortical
neurons projecting back to the thalamus (21, 23). Inhibition of
this circuit is provided by cortical and thalamic projections to
the reticular nucleus of the thalamus. Reticular neurons release
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Carney and Jackson EEG-fMRI in absence epilepsy

gamma-aminobutyric acid (GABA), which in turn inhibits the
excitatory stimuli from cortex and thalamus (21). This cyclical
excitatory (spike) and inhibitory (wave) activity is mediated by
voltage-gated calcium channels (24).

The physiological role of thalamo-cortical networks is well
established in the maintenance of the sleep–wake cycle, aware-
ness, and cognition (20, 21, 25), and these pathways were felt to
be the underlying network substrate for generalized discharges
(20, 21). More recently, a number of authors have challenged this
assertion (25–27). Importantly, the clinical validation for a rela-
tionship between AS and spindles has been questioned. AS occur
in wakefulness or while drowsing and although fragmentary GSW
may be seen in NREM sleep, at times related to spindle activity, AS
otherwise are observed when physiological sleep oscillations are
inactivated (25). In rodent genetic absence models, oscillations of
thalamo-cortical circuits tend to involve the sensori-motor cortex
and do not resemble sleep spindles as closely (25). These observa-
tions inform newer ideas of network models of AS,which challenge
longstanding views of generalized discharges.

Early experimental models of spike-and-wave activity gave rise
to the centrencephalic theory of epilepsy, which implicated the thal-
amus as the likely central driver of epileptiform activity (28). An
opposing view held that the role of seizure generation lay diffusely
in the cortex and directly contradicted the need for a central driver
(29). These contrasting theories were united by research carried
out by Gloor, which lead to the proposal of the generalized cortico-
reticular theory in which spike-and-wave arose from interactions
between ascending inputs from the thalamus and a diffusely hyper-
excitable cortex (30). More recently, it has been suggested that a
cortical focus is required to initiate generalized activity (26). The
cortical focus theory is strongly influenced by data derived from
newer rodent models of epilepsy, particularly absence epilepsy (25,
31–33). An apparent cortical focus at the onset of a seizure was then
followed by oscillation within the thalamo-cortical network with-
out a specific driver. This view is encompassed in the most recent
classification commission document, which refers to generalized
seizures originating “at some point within, and rapidly engaging,
bilaterally distributed networks” (3).

In vitro and in vivo animal studies of thalamo-cortical circuitry
have clearly established the underlying cellular mechanisms of
spike-and-wave generation. Furthermore, animal models have led
to important observations as to the potential networks involved.
What is lacking is the translation of these models to the human
condition. Non-invasive functional imaging studies provide this
opportunity.

FUNCTIONAL IMAGING IN ABSENCE EPILEPSY
A number of imaging techniques have been employed, which pro-
vide the ability to explore structures involved in the generation of
AS. Although EEG with functional MRI (EEG-fMRI) has become
a dominant means of studying the functional consequences of
AS on the human brain, a number of other techniques have also
been used to study blood flow (34–36) and metabolic changes
(37–39) associated with AS. Doppler ultrasonography of the mid-
dle cerebral artery (MCA) has demonstrated a reduction in blood
flow as a result of AS (34, 40), whereas single photon emission
tomography (SPECT) identified decreases in cerebral blood flow

(CBF) in the frontal and parieto-occipital areas during the ictal
phase and generalized blood flow increases during the postictal
phase without an increase metabolic demand (35). The use of
positron emission tomography (PET) with fluorinated glucose
(FDG) provides information about changes in metabolic activ-
ity but over a much longer time scale. In children with AS, there
was a diffuse increase in cerebral glucose metabolism compared to
baseline during seizures (37); however, the same finding has not
been observed in adults with IGE during GSW (38, 39). The use
of H2

15O with PET provides a functional marker for blood flow
rather than glucose metabolism and has demonstrated that during
AS, there is a global increase in CBF, seen greatest in the thalamus
(41). Although these studies provide somewhat conflicting evi-
dence as to the metabolic changes, we may expect to see during AS
and GSW, the overall impression is that AS require greater energy
use and thus promotes increased blood flow.

FUNCTIONAL MRI
Functional MRI relies on a series of assumptions about the rela-
tionship between neuronal activity, neuronal metabolic demand,
CBF, and oxygen delivery and utilization [for review see Ref. (42)].
fMRI utilizes the blood oxygen level dependent (BOLD) response
as a surrogate for neuronal metabolic activity to enable visual-
ization of brain regions in response to both physiological and
pathological paradigms.

The physiological parameters that influence BOLD signal are
cerebral metabolic rate of oxygen consumption (CMRO2), the
CBF, and the cerebral blood volume (CBV). Following a physio-
logical stimulus, there is an increase in CMRO2, which leads to
an increase in CBF. As a result, CBV also increases. A number
of experiments have been performed to define what the normal
BOLD response to a brief physiological stimulus is likely to be
(43–45) (Figure 1). Although there is general agreement about the
normal physiological BOLD response, it is not clear whether the
canonical hemodynamic response function (HRF) is also observed
during pathological activation of neuronal regions. An assumption
is made that the BOLD response is canonical during statistical
analysis using the general linear model. However, a number of
studies have highlighted that BOLD change in the pathological
state, particularly in epilepsy, may not be canonical (46–48). As a
result, more robust statistical results may be achieved with HRFs
tailored to suit the patient population being studied (48).

FMRI studies of patients with AS have been used with great
success to understand the functional and structural mechanisms
of seizure generation. EEG with fMRI enables the identification of
BOLD change associated with AS by either acquiring fMRI data
with the onset of an epileptiform discharge (early spike-triggered
EEG-fMRI studies) or continuously recording EEG whilst acquir-
ing fMRI data (continuous EEG-fMRI). Continuous EEG-fMRI,
now commercially available, has many advantages, including the
ability to mark up events offline facilitating careful identification
of events for analysis. Both methods demonstrate regions of both
increased BOLD and decreased BOLD. It is important to note that
negative BOLD is most likely a reflection of a relative reduction
in neuronal activity compared to the resting state rather than an
aberration of neuronal coupling or a vascular steal phenomenon
(49–51).
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Carney and Jackson EEG-fMRI in absence epilepsy

FIGURE 1 |Typical BOLD impulse response model generated using SPM8.

Event-related fMRI, with acquisition of continuous BOLD data,
also allows the study of functional connectivity (FC), the other
major technique applied to the study of AS. Continuous BOLD
data can be gathered without concurrent EEG; however, the advan-
tage of performing a BOLD free run with EEG is the ability to
insure that there is no epileptiform activity during the period
of recording. FC can be estimated non-invasively with fMRI by
measuring the correlation between spontaneous low-frequency
hemodynamic fluctuations in different brain regions (52), which
have been linked to the synchronization of slow fluctuations in
underlying neuronal networks (53). FC demonstrates a temporal
correlation in BOLD change across remote regions of the brain,
suggesting that these regions may exist as a network of structures
performing a complimentary function. The combination of EEG-
fMRI and FC has provided an important bridge between animal
models and the human condition.

EEG-fMRI AND ABSENCE NETWORKS
The “core” absence network
A number of studies have identified consistent cortical and sub-
cortical structures involved in the generation of AS and GSW in
both group analyses of patients with CAE (54–57), JAE (58), and in
patients with mixed, often refractory, GGE syndromes, and pheno-
types (59–65). In our study of a tightly defined group of untreated
patients with CAE, we dubbed this the “core” network to suggest
that it is crucial to the generation spike-and-wave. This network
may be insufficient in itself to generate seizures, and it is likely that
the influence of other structures on the network may influence
the seizure manifestations (57). It would appear that this network
reflects structures, which are consistently involved in, or influenced
by the generation of generalized epileptiform activity regardless of
phenotype. Furthermore, this supports the notion that a consistent
network of regions is likely to exist within GGE despite differ-
ent syndrome diagnosis, duration of disease, medication use, and
genetic heterogeneity.

The core network comprises the thalamus, midline, and lateral
parietal cortex (the DMN) and the striatum (predominantly the

caudate nuclei) (Figure 2). Other sub-cortical structures have been
identified in different studies including the reticular structures of
the pons (57) and cerebellum (56, 65). Cortical BOLD change
outside of the DMN has also been observed including increased
BOLD in the occipital lobe (56), anterior cingulate (65), anterior
and lateral temporal lobes, and insula cortex (56, 62). Decreased
cortical BOLD has also been seen in the medial pre-frontal cortex
(56, 65, 66), the temporal poles (66), and sub-group differences in
BOLD change in the dorso-lateral pre-frontal cortex (66). Using
canonical HRF analysis, the main component consistently display-
ing an increase in BOLD signal relative to the resting state is the
thalamus. The other structures show relative decreases in BOLD
signal compared to the resting state.

The thalamus
As stated above, the thalamus has retained a central role in models
of absence generation given its role as a relay station for infor-
mation transfer in the brain with strong reciprocal connection
to the cortex. A robust positive thalamic BOLD response has
been consistently observed associated with AS (54–58, 66) and
interictal GSW (59–63, 65). It has been suggested that the spatial
extent of thalamic involvement extends beyond the thalamus into
the nearby striatal structures (67). Using event-related indepen-
dent components analysis (eICA), it has been possible to identify
two thalamic components, one located in the midline, which
may reflect the local venous drainage into thalamostriate veins,
while the other component involves the lateral thalamic nuclei
and lentiform nuclei bilaterally (Figure 3). The spatial extent of
thalamic involvement as identified using EEG-fMRI, however, is
uncertain. Given requirements for spatial smoothing in the analy-
sis, functional imaging may simplify more complex BOLD change
within discrete thalamic nuclei.

Although EEG-fMRI lacks the temporal information of EEG
alone, nonetheless important information about the timing of
BOLD signal change can be gathered. The time course of the
thalamic BOLD change associated with AS has been studied in
a number of papers using varied techniques including shifting
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Carney and Jackson EEG-fMRI in absence epilepsy

FIGURE 2 |Thalamic increases and “default mode” cortical
decreases are the most prominent changes seen with conventional
HRF modeling in SPM. fMRI increases (warm colors) and decreases
(cool colors) are shown resulting from group analysis with second-level
random-effects analysis, FDR-corrected height threshold p_0.05, and
extent threshold k_3 voxels (voxel dimensions_ 2 _ 2 _ 2 mm). Functional
data are superimposed on the Montreal Neurological Institute brain
template “colin27” (single_subj_T1 in SPM2) displayed in radiological
right–left convention. In total, 54 seizures in nine patients (40 in 8

patients during CPT or RTT; 14 in 4 patients during VFT, 3 patients with
both CPT/RTT and VFT runs) were analyzed using GLM with canonical
HRF in SPM2. The dataset in this analysis was the same as Figure 1.
fMRI increases were seen in bilateral thalamus, occipital (calcarine)
cortex, and to a lesser extent in the midline cerebellum, anterior and
lateral temporal lobes, insula, and adjacent to the lateral ventricles. fMRI
decreases were seen in the bilateral lateral parietal, medial parietal, and
cingulate cortex and basal ganglia (46) (published with permission from
the Journal of Neuroscience, copyright 2010, SFN).

the event-related time course relative to event onset (64, 68),
brain-wide analysis of mean percentage BOLD change without
a priori presumption of the HRF (56) and region of interest analy-
sis of relative BOLD signal change (55, 57, 66). To summarize
these different approaches, it has generally been observed that
an increase in thalamic BOLD signal is closely associated with

the onset of the epileptiform event (AS or GSW), although ini-
tial BOLD change may precede event onset (64), occur congruent
with event onset (55, 57, 65, 66), or follow event onset (56). There
is some debate whether the time course is canonical or that it
deviates significantly from the canonical response. Our observa-
tion has been that the BOLD response is canonical, in contrast to
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Carney and Jackson EEG-fMRI in absence epilepsy

FIGURE 3 | GSW-related networks identified using event-related ICA.
Each row represents a different network, labeled from (A–F). The plots on the
right show the mean time course of fMRI signal change within each network

with error bars indicating the standard error, over the time period from −32
to +32 s relative to the GSW onset. The vertical dotted line in each plot

(Continued)
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Carney and Jackson EEG-fMRI in absence epilepsy

FIGURE 3 | Continued
represents the time of GSW onset, and the horizontal dotted line
represents the baseline fMRI signal level. Asterisks indicate where the
BOLD signal is significantly different to baseline (p < 0.05, uncorrected).
The images on the left are z -statistic maps, thresholded to show significant
(p < 0.05) clusters of voxels, overlaid upon a reference anatomical image.

The hot and cool colors in the images indicate whether the brain region
shows a positive or negative modulation with respect to the network time
course, i.e., they are analogous to activations and deactivations except with
respect to the network-specific time course instead of a canonical HRF (67)
(published with permission from Epilepsia, copyright 2013, ILAE/Willey
Blackwell).

the other elements of the “core” network, and we have speculated
that the thalamus therefore appears to behave physiologically and
reactively to the onset of epileptiform activity, although it may be
critical to sustaining the seizure (66).

Cortical BOLD changes in EEG-fMRI
Cortical BOLD change can be seen in a number of locations in
individual studies of AS and GSW; however, the most consistent
and reproducible cortical BOLD change in group event-related
analysis of AS is in the mesial parietal cortex (precuneus and pos-
terior cingulate) and lateral parietal cortex (angular gyrus and
supramarginal gyrus). These cortical regions are the major com-
ponents of the DMN, which is an important cognitive attentional
network involved in non-task directed, internal processing (69,
70). There is much speculation as to the functional implications
of parietal/DMN change, and this will be discussed in detail in
“The Role of Default Mode Network in the Occurrence of Absence
Seizures” section.

The fact that BOLD change is only seen consistently in the pari-
etal lobe at a group level, and that there is an apparent reduction
in metabolic activity sits in contrast to the published literature.
Observations from other functional imaging techniques described
in “Functional Imaging in Absence Epilepsy” section lead us to
expect generalized increases in BOLD signal in the cortex. There
is also ample evidence to suggest that we might see focal BOLD
increase in cortical regions. A number of animal studies have
suggested that focal cortical regions, particularly in the sensori-
motor area, may be involved in the onset of GSW. Multi-site EEG
recordings in WAG/Rij rats (26, 31) and in GAERS rats (25) have
demonstrated onset of AS focally in the peri-oral region. Similar
observations have been made using fMRI in these animal models
of AS (71–73). A number of human electrophysiology studies of
GGE have also identified the possibility of a focal driver of AS,
particularly involving the mesial and orbitofrontal cortex (74–
77). Taken together, this animal and human electrophysiology
data suggest that although the electrographic and clinical man-
ifestations of GGE are generalized, a focal trigger may exist and
this would be expected to be the cause of an increase in corti-
cal BOLD activity. This trigger is likely to vary cross individuals
and GGE syndromes and is likely to be highly connected to the
DMN.

Changes in the mesial and lateral parietal cortex associated with
AS was first identified by Archer et al. (59) using spike-triggered
fMRI. In this paper, the authors speculated that the parietal cor-
tex may be involved in the initiation of epileptiform discharges
although providing alternative views that this may reflect the
disruptive effect of GSW on cortical function or is merely “a
marker of the epilepsy syndrome’s intermittent neurophysiological
abnormality.” Negative BOLD change in the parietal cortex has

been detected reproducibly both in AS (54, 56–58, 66) and during
interictal discharges in a range of GGE syndromes (55, 59–65, 78).
The time-course analysis of BOLD change in parietal cortex had
a more complex (non-canonical) hemodynamic response than is
reflected in the statistical maps. A number of studies have shown
BOLD change in the parietal cortex occurs prior to the onset of the
epileptiform event, and certainly before changes in the thalamus,
with sustained increases in BOLD starting several seconds prior
to the electrographic onset and the subsequent negative BOLD
change (56, 57, 63–65). These responses were identified only as a
decrease in BOLD signal in the statistical maps and hence simplify
important temporal fluctuations in regional metabolic activity,
particularly at event onset. The multimodal parietal association
cortices are the major structure in the DMN, which has been
demonstrated to play a role in a number of physiological and
pathophysiological processes. To better understand the implica-
tions of the fluctuations of BOLD in the parietal cortex for the
occurrence of AS and GSW, we must first consider the normal
function of the DMN.

The importance of frontal cortical BOLD change
As discussed above, it would be expected that BOLD signal change
would be seen in the frontal cortex as a consistent finding, given
the observations made in animal models, as well as observations
from electrophysiology. Negative BOLD change has been identi-
fied in the mesial frontal and anterior cingulate cortex in several
studies (55, 56, 65, 66), which is not surprising given this region
is a component of the DMN. Focal cortical BOLD change may
be seen in individual cases (55, 65, 68), and it has been suggested
that there may be subject specific changes in BOLD signal, which
are consistent within individuals but vary from subject to sub-
ject (68). Another possibility is that frontal cortical BOLD change
may reflect differences in sub-groups of patients with absence
epilepsy (66). What is clear is that BOLD signal in the frontal
lobe is influenced by AS (see Figure 4 for individual case results).
When using a standardized event-related analysis of a group or
individual, this may appear as increases, decreases, or no change.
However, in group and individual analyses of BOLD time course,
there are clear increases in BOLD signal in frontal cortical net-
works occurring prior to, co-incident with, or following the event
onset. This is highlighted in our paper on sub-group differences in
frontal cortical BOLD in which the division into frontal negative
or frontal positive was dependent on the timing of the BOLD sig-
nal increase relative to the event onset, not whether BOLD signal
increased or decreased (66). Given the wealth of clinical, electro-
physiological, and functional data highlighting the importance of
frontal lobe activity in seizure generation, it is important for fMRI
techniques to better explore the contribution of frontal lobes to
seizure generation.
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FIGURE 4 | Continued

FIGURE 4 | Continued
BOLD signal change for three subjects showing variability of cortical
BOLD change (figure previously unpublished). Color maps of positive
BOLD (red to white: 0 to +10) and negative BOLD (blue to green: 0 to −10)
change superimposed on subjects mean EPI image are displayed in three
plains (p < 0.001). A single surface rendered image is also displayed
demonstrating the cortical surface involved. Subject 1: 16 years female with
onset of AS at age 5 who developed refractory AS and GTCS. EEG-fMRI of
6 (14 s) bursts of interictal activity. Subject 2: 13 years male with onset of
AS at age 8 who achieved seizure control on mono-therapy. EEG-fMRI of 11
AS (105 s). Subject 3: 5 years female with AS since 4 who achieved seizure
control on mono-therapy. EEG-fMRI of 6 AS (83 s).

Is there a difference between an absence and an interictal
discharge?
It is clear that not all burst of spike-and-wave, even when pro-
longed, will cause a clinically evident absence seizure (11). Patients
with AS may demonstrate fragmentary interictal discharges or
even prolonged bursts of spike-and-wave without clear impair-
ment of consciousness or impairment of task performance. It
appears that there may be differences in the spatial distribution of
BOLD change depending on discharge type, as well as the timing
of the BOLD signal change.

A number of elegant studies performed in the Blumenfeld lab
have specifically looked at this issue by performing simultaneous
EEG-fMRI whilst performing cognitive and motor tasks (56, 79,
80). In one study, they observed that if there was no impairment of
performance during a cognitive task, despite typical EEG changes
of an AS, there was no significant cortical BOLD change during
these events (79). Similar observations about the spatial extent of
cortical BOLD change have been made when GSW are compared
directly to AS within a patient group with the extent and magni-
tude of BOLD change being higher in the parietal cortex during
AS (81). Given these observations, it may be that the basis for
cognitive impairment does relate directly to the extent of cortical
involvement and not the appearance of the epileptiform activity,
which may not arise due to cortical BOLD change itself. In con-
trast, a single case report of a patient with prolonged bursts of
spike-and-wave (up to 5 s during fMRI) who did not demonstrate
cognitive impairment showed a typical bilateral deactivation of the
default mode (82). These authors concluded that BOLD change in
this region is not sufficient to explain cognitive impairment.

We have also studied this issue of the timing of BOLD change.
We defined interictal discharges and AS according to the cognitive
effect observed during the subjects routine EEG (66, 83). We were
able to study the time course of BOLD change within subjects
according to whether the discharge was interictal or ictal (83). We
found the overall pattern of the BOLD signal change to be similar
between event categories, although there was a trend suggesting
that the BOLD signal change was more prolonged and of greater
magnitude in AS compared to GSW. Interestingly, we observed a
delay in onset of BOLD signal change in the thalamus in AS when
compared to asymptomatic GSW. Previous studies have suggested
a difference in BOLD time course between different events (AS
and polyspike-and-wave) (55, 63, 65) but these differences have
not been directly compared within a single cohort. A potential
difference in the timing of BOLD signal change dependent on
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Carney and Jackson EEG-fMRI in absence epilepsy

event type is interesting in that it may reflect differences in the
underlying pathophysiology of brief interictal events that self-
terminate without clinical symptoms, compared to AS. Our data
suggest that an early thalamic response correlates with asympto-
matic termination of the spike-wave event. Whether this reflects a
true physiological difference has not been established.

Is there a difference between typical and atypical absence?
The possibility that typical and atypical AS may be different has
never been directly addressed using functional MRI. Although
considered separately in the ILAE classification, there is evidence
that these two event types may form a continuum (84). Slow spike-
and-wave (SSW) and paroxysmal fast activity (PFA) have been
studied in LGS, and there are important differences when com-
pared to GGE (85–87). Epileptiform activity (SSW and PFA) in
LGS gives significant positive activation in the brainstem and thal-
amus (86). More recently, in a study of patients with LGS, SSW led
to a more variable pattern of BOLD change with less consistent
thalamic activation and deactivation in primary cortical regions
when compared to the reported literature on GSW (87). Impor-
tantly, this SSW pattern was in stark contrast to the pattern of
activation seen in PFA. Although it is not possible to say whether
the BOLD response to typical AS is likely to differ to atypical AS,
the evidence relating to SSW and GSW certainly suggests major
differences in the behavior of the networks involved.

Connectivity
A number of studies have employed resting-state connectivity
measures to identify whether disturbance of connectivity relation-
ships are present, independent of epileptiform events, in CAE, as
well as other GGE syndromes (88). There has been some inconsis-
tency in these findings, which may be explained by differing GGE
sub-syndromes, influences of age and medications, and physiolog-
ical changes, as well as errors introduced by certain pre-processing
steps (88–90). Decreases in resting-state functional connectivity
(rFC) have been demonstrated bilaterally in the medial pre-frontal
cortex, angular gyrus, and inferior parietal lobule in patients
with CAE compared to controls, without evidence of areas of
increased connectivity (91). Furthermore, these changes appear
to be increased with increased duration of epilepsy. Attentional
processing is also disrupted in CAE (92). This study used an atten-
tion task to define a frontal lobe network and assessed its FC to
other brain regions. They demonstrated that children with AS
had impaired rFC compared to controls. This provides an alter-
native anatomical and functional basis for cognitive dysfunction
in CAE (92). In a related study (80), an abnormal increase in rFC
was identified between orbitofrontal cortex in CAE also indicating
altered network performance, which may contribute to cognitive
inefficiencies. Using whole brain rFC, reduction in whole brain
connectivity between the thalamus and cortex has also been shown
(93). Although patients with CAE showed a similar pattern of
thalamic FC to controls, this was diminished in both the spatial
extent and the magnitude of the correlation. Taken together, these
studies suggest a fundamental change in the interaction between
thalamus and cortex in CAE in the “baseline” or resting state
with alterations in the normal relationships with connected brain
networks.

THE ROLE OF DEFAULT MODE NETWORK IN THE
OCCURRENCE OF ABSENCE SEIZURES
THE DEFAULT MODE NETWORK
The observation of task-induced activity decreases in parietal and
frontal cortical regions was first made during a meta-analysis of
PET studies of visual processing (94). This network of regions was
later termed the DMN (95) and was confirmed by several other
studies (70, 96). The DMN is involved in internalized cognitive
activity including random thoughts and free associations of ideas
and memories (69, 70). Functions in the DMN are likely to be inte-
grated with physiological information such as body position and
sensation. The term REST network, meaning “random episodic
silent thinking,” to reflect the importance of increase in activity in
this network at times when goal-directed tasks are not being per-
formed (70). The contrasting network is the attentional network,
which during goal-directed attentional tasks, demonstrates activa-
tion in the dorsal fronto-parietal regions (97). The brain appears
to switch between states of DMN activation and deactivation
associated with task attention and concentration. This switching
between cognitive states reflects an important phenomenon of
presumed functional coherence throughout the brain (98).

The DMN includes the midline and lateral parietal structures
and the midline and lateral frontal cortex superiorly. Studies of the
DMN over differing developmental ages show important changes
within the network (99). Local or regional correlations weaken
and more distant correlations strengthen, due to a range of devel-
opmental processes including synaptic pruning and myelination
(100, 101). These changes occur between portions of the brain
that are functionally related in adults (102). However, pediatric
networks have a fundamentally different structure and are not
just simple precursors to the adult form (99). The complex devel-
opment of DMN interactions reflects its intrinsic importance to
a range of brain functions and possible varying role through-
out neural development. The DMN is also known to function
in sleep and even in the anesthetized state, and much of the
brains resting-state energy demands are consumed by activity in
the DMN (98, 103).

The observation that much of the low-frequency “noise” in
BOLD signal displays striking patterns of coherence lead to the
concept of FC (52). Perhaps not surprisingly, when this technique
was applied to the DMN, the presence of resting-state coher-
ence of these functional regions was confirmed (104). In a recent
review, Raichle (103) has argued for a new way to consider task-
related BOLD signal change, particularly in the DMN. He has
suggested that the evidence does not support BOLD signal change
as reflecting immediate response to task, particularly as BOLD
change tends to be sluggish, but rather that BOLD changes in
regions like the DMN are a “reflection of changes in the slow
components of the brain’s intrinsic activity in response to chang-
ing environmental contingencies.” Although it is clear that there
is relative inactivation of the DMN during epileptiform events
and AS, precisely why we consistently see this pattern is not well
understood.

THE DMN AT REST IN ABSENCE EPILEPSY
There appears to be a fundamental change in network connectivity
in the resting-state functional networks in the brains of children
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with AS, and most likely in all forms of GGE (88, 91–93). It does
appear that the relationships within normal attentional networks
are likely to be abnormal in the resting state in absence epilepsy.
There is ample evidence of cognitive inefficiencies seen in CAE and
other GGE syndromes (14–18). Although these observations may
be influenced by the effects of seizures and medications, it is likely
that there is fundamental abnormality in the function of these net-
works beyond these effects as demonstrated in JME (19). It would
seem intuitive that, given the likely brain-wide effects of genetic
abnormalities that cause GGE, this would predispose to alterations
in normal connectivity relationships in the resting state. Given we
know that development of the DMN is dynamic throughout child-
hood (99), we can hypothesize that it is the very dynamic nature
of these changes that can contribute to the onset and offset of
AS at differing developmental ages with the expression of differ-
ent genes during development. Studying the development of FC
changes over time in patients compared to controls may help to
answer this question.

THE PARIETAL CORTEX “PERMITS” EPILEPTIFORM EVENTS
Two views have been taken as to the role of the DMN in AS. One
view argues that the DMN is“switched off”during spike-and-wave
discharges leading to the clinical features of reduced awareness
associated with GSW and AS (62), while the other view suggests
that a causal relationship exists between this region and epilep-
tiform activity (59, 105). The first view holds that the switching
from “active” resting brain activity in the DMN to a reduction
in DMN activity reflects inactivation of internal self-reflective
processes and therefore loss of awareness. Blumenfeld and Tay-
lor (106) proposed a network inhibition hypothesis for loss of
awareness during seizures. They suggested that seizure inhibition
of sub-cortical activating systems lead to impairment of aware-
ness by disrupting their interaction with the DMN. Certainly this
hypothesis fits nicely with event-related analysis during AS show-
ing negative BOLD in both the pons and DMN. However, there is
evidence that DMN change is not secondary and is more directly
involved in genesis of the absence events:

1. Default mode network negative BOLD change is seen indepen-
dent of event type. We have observed that negative BOLD in
the DMN occurs regardless of whether the event is an interictal
discharge or an AS. Hence, DMN negative BOLD is seen even
when awareness is maintained.

2. The DMN time course shows that BOLD changes occur before
an absence occurs and awareness becomes impaired.

3. Evidence of DMN change associated with a huge range of tasks
and the observations of functional coherence, suggesting this is
not reactive but pro-active neural network.

The evidence of early change in the BOLD signal in the DMN
suggests that either activity in the DMN initiates the generation of
GSW and AS, or the DMN must be in a certain state to “permit”
or facilitate the occurrence of epileptiform events (105). One can
speculate that the level of activity in the DMN has a permissive
effect on the occurrence of AS, which is to say that fluctuating
states of awareness contribute to an environment conducive to the
generation of epileptiform activity. Within that “conducive” envi-
ronment, a further “trigger” is required to initiate an epileptiform

event. Following this, there is engagement of thalamo-cortical sys-
tems, and dependent on the timing of this engagement (perhaps
relating to the onset of thalamic activity as discussed above), an
interictal or ictal event may occur. The observation that AS often
occur at times of fatigue or rest, when the DMN is engaged, would
support the notion of a permissive environment.

CONCLUSION
The use of functional MRI to study AS has provided invalu-
able insights into the mechanism of this common seizure type.
fMRI techniques have enabled the translation of animal models
of seizure generation to the human condition, provided a map of
the neural networks needed for seizure generation, and demon-
strated ictal and interictal disturbance of normal physiological
networks. What is clear from the temporal information regarding
BOLD change is that there are important increases in neuronal
activity, which occur prior to, co-incident with, and following the
onset of AS in a range of important cortical and sub-cortical net-
works. Time and again, the DMN has been identified as a core
network with changed activity central to AS and interictal epilep-
tiform discharges. What cannot be established is to what extent
BOLD change in this region is a consequence of an absence, or,
perhaps more likely, facilitating its occurrence. Furthermore, fMRI
has provided important observations regarding the potential cog-
nitive and phenotypic importance of the frontal lobe in absence
epilepsy syndromes, consistent with the clinical and animal data.
As fMRI techniques continue to develop enabling more sophisti-
cated techniques of acquisition and analysis in individual patients,
this valuable research and clinical tool is likely to further facil-
itate our understanding of the mechanisms of absence seizure
generation.
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Temporal lobe epilepsy (TLE) can be conceptualized as a network disease.The network can
be characterized by inter-regional functional connectivity, i.e., blood oxygen level-dependent
(BOLD) signal correlations between any two regions. However, functional connectivity is
not constant over time, thus computing correlation at a given time and then at some
later time could give different results (non-stationarity). We hypothesized (1) that non-
stationarities can be induced by epilepsy (e.g., interictal epileptic activity) increasing local
signal variance and that (2) these transient events contribute to fluctuations in connectivity
leading to pathological functioning, i.e., TLE semiology. We analyzed fMRI data from 27
patients with TLE and 22 healthy controls focusing on EEG-confirmed wake epochs only
to protect against sleep-induced connectivity changes. Testing hypothesis (1), we identi-
fied brain regions where the BOLD signal variance was significantly greater in TLE than
in controls: the temporal pole – including the hippocampus. Taking the latter as the seed
region and testing hypothesis (2), we calculated the time-varying inter-regional correlation
values (dynamic functional connectivity) to other brain regions and found greater connectiv-
ity variance in the TLE than the control group mainly in the precuneus, the supplementary
and sensorimotor, and the frontal cortices. We conclude that the highest BOLD signal
variance in the hippocampi is highly suggestive of a specific epilepsy-related effect. The
altered connectivity dynamics inTLE patients might help to explain the hallmark semiologi-
cal features of dyscognitive seizures including impaired consciousness (precuneus, frontal
cortex), sensory disturbance, and motor automatisms (sensorimotor cortices, supplemen-
tary motor cortex). Accounting for the non-stationarity and state-dependence of functional
connectivity are a prerequisite in the search for potential connectivity-derived biomarkers
in TLE.

Keywords: functional connectivity, non-stationarity, temporal lobe epilepsy, biomarker, EEG-fMRI, interictal
epileptiform discharges, semiology, seizure

INTRODUCTION
Epilepsy affects the brain both during seizures and interictally in
the form of neurobehavioral problems. These are considered to
be due to progressive structural and functional changes in the
brain related to syndrome-specific “network” variations (1). In
temporal lobe epilepsy (TLE), for example, interictal language
and memory impairment are typical (2). In terms of seizure
semiology, motor automatisms and consciousness impairment
are characteristics of dyscognitive (complex partial) seizures typ-
ical for TLE. We hypothesized that, during seizure-free wakeful
rest, brain activity is altered in syndrome-specific regions owing
to so-called interictal epileptic activity – which may or may not
be visible on scalp EEG (3) – and additionally any other sort
of paroxysmal activity patterns differing from activity within
a healthy brain, an “epileptic process.” Hence, as a first step,
we tested the basic assumption that in TLE patients any such
paroxysmal process should induce bursts of the blood oxygen

level-dependent (BOLD) signal leading to increased regional vari-
ance compared to healthy controls. Among the primary candidate
regions, we expected either one or both of those contributing to
“interictal” cognitive impairment and those functionally related
to temporal lobe seizure semiology, i.e., not only temporal (e.g.,
hippocampal) but also extratemporal (consciousness subserving
and motor) regions.

Temporal lobe epilepsy can be considered as a network disease
(4, 5) because widespread anatomic abnormality exists outside the
primary epileptic zone affecting inter-regional connectivity linked
to distributed cognitive impairments (6). Hence, a natural sec-
ond step is to explore to which other brain regions – exhibiting
“normal” signal fluctuations – the locations of increased variance
are more tightly connected in the epileptic condition than in the
healthy control subjects. By always taking healthy brain activity
as the reference, we ensured that the observed typical effects were
specific for the epileptic condition, in particular TLE.
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Laufs et al. Dynamic functional connectivity in TLE

However, it has been shown that functional connectivity is
not static (7–11) but differs between different stages of wakeful-
ness (12), and in addition fluctuates within each stage over time.
“Dynamic functional connectivity” is here understood in the con-
text of fluctuating, non-constant coupling between brain areas
when the coupling is computed over short temporal windows. In
contrast with the traditional practice of assuming a steady corre-
lation between regions, the study of dynamic connectivity aims to
study how connectivity evolves in time, how stable connections are
and what the possible short-term connectivity motifs are between
regions. Assuming a paroxysmal pathological process influencing
brain activity in TLE, it is conceivable that accounting for the
non-stationarity of inter-regional BOLD signal correlations both
between and within wake and other sleep stages is mandatory for
obtaining specific results with high sensitivity. Because of this,
we selected epochs of data recorded during epochs of wakeful-
ness and within these based all inferences on dynamic functional
connectivity measures as obtained by means of sliding window
analysis. Then, the variability of dynamical functional connectiv-
ity was computed (as the variance of the functional connectivity
time series), which represents the intensity of the temporal fluctu-
ations in the connectivity of the regions. A low value of variance of
the dynamic connectivity time series corresponds to stable connec-
tions, in which coupling does not deviate much from the average
value. In contrast, large values of the variance correspond to widely
fluctuating connectivity, i.e., switching over time between high and
low values of the coupling between regions.

MATERIALS AND METHODS
All procedures were subject to the relevant local and national
research ethics committees’ approval.

SUBJECTS AND PATIENTS
Data from 22 healthy subjects (11 females) served as control in
this study (age 35± 12 years), and data from 27 epilepsy patients
[13 classified as left TLE (age 32± 9 years), 14 with right (age
33± 11 years); 16 females], who were selected from a larger
dataset with the inclusion criteria of TLE based on electro-clinical
information-informed expert classification (Table 1).

EEG-fMRI ACQUISITION
In this study, we assumed the presence of an “epileptic process”
possibly reaching beyond epochs of interictal epileptic activity
visible on scalp EEG. Accordingly, the EEG was not used for the
detection of epileptiform EEG activity but to identify fMRI epochs
of wakefulness in order to increase the sensitivity and specificity
of our results (12).

EEG via a cap (modified Brain Cap MR, Easycap, Herrsching,
Germany) was recorded continuously (sampling rate 5 kHz,
low pass filter 1 kHz) during fMRI acquisition with an MRI-
compatible EEG system (BrainAmp MR+ and Brain Vision
Analyzer; Brain Products GmbH, Gilching, Germany) yielding
two 20-min sessions consisting of 404 T2*-weighted single-shot
gradient-echo echo-planar images (EPIs; echo time/repetition
time, 30/3000 ms; flip angle, 90°; 43 2.5 mm interleaved slices; FOV,
24 cm× 24 cm; matrix 64× 64) acquired continuously on a 3T
Signa Excite HDX MRI scanner (General Electric, Milwaukee, WI,
USA).

EEG DATA PREPROCESSING
MRI and pulse artifact correction were performed based on the
average artifact subtraction (AAS) method (13, 14) as imple-
mented in Vision Analyzer 2 (BrainProducts, Germany) resulting
in EEG with a sampling rate of 250 Hz. EEG was re-referenced to
common average. Sleep stages were scored manually by an expert
according to the AASM criteria (15). Epochs other than wakeful-
ness were erased from the analysis (by excluding the corresponding
BOLD time courses from both the variance and dynamic func-
tional connectivity analyses). Epochs of wakefulness shorter than
2 min were not included in the analysis.

fMRI DATA PREPROCESSING
Using Statistical Parametric Mapping (SPM 8, http://www.fil.
ion.ucl.ac.uk/spm), EPI data were realigned, normalized (MNI
space), and spatially smoothed (Gaussian kernel, 5 mm3 full width
at half maximum). The time course of the average signal at
the ventricles (CSF as given by FSL’s Ventricle Mask standard
image) as well as motion-induced noise was regressed out. We
did not remove the global brain signal to avoid the issue of
induced anti-correlations (16). Also, since there are direct elec-
trophysiological correlates of the global resting-state signal (17),
we believe that its removal is arbitrary and results in a loss
of information. fMRI data was band pass filtered in the range
0.01–0.1 Hz using a sixth order Butterworth filter as described
previously (8). In all cases, both 20 min fMRI sessions were ana-
lyzed and then the results were averaged within every subject (to
guarantee the assumption of statistical independence) prior to
statistical testing.

Subjects displayed similar degrees of head displacement across
groups. Controls: 0.06± 0.02 mm, Left TLE: 0.08± 0.04 mm,
Right TLE: 0.08± 0.05 mm. No significant differences (p > 0.05)
between groups were found. As an additional control, we repro-
duced the results after erasing volumes associated with high (>0.3)
head displacement amplitude (see Appendix).

DATA ANALYSIS
Computation of temporal variability
The temporal variability (variance) of BOLD signals carries
important information about the brain state and also about task
performance. An optimal value is typically observed during rest,
which is decreased locally during task performance and increased
in other brain states such as sleep (11, 18, 19). The possibility
of interictal spikes occurring in TLE patient leads naturally to
the hypothesis of locally increased variability (i.e., increased vari-
ance) of BOLD activity time courses. To quantify precisely the
changes in variability observed in the patient vs. the control pop-
ulation, we use the traditional definition of variance in the time
domain:

σ2
=< (X− < X >)2 > (1)

where X is the BOLD signal, σ2 the variance, and <, > denotes
temporal averaging. This analysis is performed on a voxel-wise
basis, resulting in spatial maps in which every voxel contains the
variance of its associated time series. The procedure is summarized
in Figure 1A.

Frontiers in Neurology | Epilepsy September 2014 | Volume 5 | Article 175 | 285

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.frontiersin.org/Epilepsy
http://www.frontiersin.org/Epilepsy/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Laufs et al. Dynamic functional connectivity in TLE

Table 1 | Patient characteristics.

Age

(years)

Ictal Interictal Structural

MRI

Seizure semiology

included

VIQ PIQ Epilepsy

duration

(years)

Medication

EEG changes Reduced

conscious-

ness

Motor

automa-

tisms

L1 49 Left Left > right Normal Yes Yes 84 99 Unknown Unretrievable

L2 29 Initial left Left Normal Yes No 100 100 14 LTG

L3 28 Left (icEEG) Left (icEEG) Normal Yes Yes 87 100 18 LEV, VPA

L4 33 Left Left Left HS Yes Yes 71 81 28 Unretrievable

L5 27 Left Left Left HS Yes Yes 90 99 24 LEV, VPA, PGB

L6 30 Left (icEEG) Left (icEEG) Signal change in

calcarine fissure

Yes Yes 75 80 15 CBZ, LEV, CZ

L7 41 Left Left Left HS Yes Yes 80 93 Unknown CBZ, LEV

L8 48 Left Left > right Normal Yes Yes 107 119 37 LEV, PHT

L9 19 Left Left Left HS Uncertain Yes 92 98 12 TPM, LTG

L10 26 Left Left Bilateral HS Yes Yes 99 106 19 LEV, LTG

L11 42 Left Left Left HS and

parietal WML

Yes Yes 97 99 33 LEV, PHT, PGB

L12 28 Left Left (icEEG) Left STG

abnormality

Yes Negative

motor

102 106 Unknown CBZ, LEV, LTG

L13 19 Left Left, bilateral Irregularly

lobulated mass

left temporal into

frontal lobe

Yes Yes 111 106 2 LTG

R1 25 Right Right Tumor right

temporal lobe

Uncertain Never

observed

105 100 6 CBZ, LTG

R2 38 Bilateral Right Right HS Yes Yes 103 96 Unknown CBZ, TPM

R3 20 Unretrievable Unretrievable Right HS Uncertain Never

observed

80 73 4 CBZ, LEV

R4 23 No scalp

discharges

Right Right temporal

gliosis

Yes Yes 80 84 23 OXC, CZM,

ACM

R5 25 Right (icEEG) Right and

independent

left

Right HS, right

temporal DNET

Yes Yes Unknown Unknown Unretrievable Unretrievable

R6 40 Right temporal

and left fronto

-central

Right » left Right HS Yes Yes Unknown Unknown Unretrievable TPM, PHB, PGB

R7 59 Right Right Bilateral WML Uncertain Yes 87 89 54 LEV

R8 30 Right Right Normal Yes Yes 80 80 13 OXC, GBP, CZM

R9 18 Right Right Right temporal

DNET

Yes Yes 101 110 11 OXC

R10 37 Right Right Normal Yes Yes 67 92 14 CBZ, LTG

R11 24 Right Right > left Normal Yes Yes 82 105 5 VPA, PGB, CZM

R12 41 Right Right Right HS No No 108 110 22 CBZ, LEV

(Continued)

www.frontiersin.org September 2014 | Volume 5 | Article 175 | 386

http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Laufs et al. Dynamic functional connectivity in TLE

Table 1 | Continued

Age

(years)

Ictal Interictal Structural

MRI

Seizure semiology

included

VIQ PIQ Epilepsy

duration

(years)

Medication

EEG changes Reduced

conscious-

ness

Motor

automa-

tisms

R13 37 No scalp

discharges

Right Right HS Yes No 85 81 14 OXC, ZNS

R14 43 Right Right Normal Yes No 115 113 26 LTG, LCS

L[index], syndrome classified as leftTLE, R[index], syndrome classified as rightTLE; VIQ/PIQ, verbal/performance IQ (Wechsler D. WAIS III Administration and Scoring

Manual, New York Psychological Corporation 1997); icEEG, intracranial EEG; HS, hippocampal sclerosis, DNET, dysembryoplastic neuroepithelial tumor; WML, white

matter lesion(s); STG, superior temporal gyrus; ACT, acetazolamide; CBZ, carbamazepine; CZM, clobazam; LCS, lacosamide; LEV, levetiracetam; LTG, lamotrigine;

OXC, oxcarbazepine; PGB, pregabalin; PHT, phenytoin; TPM, topiramate; VPA, valproate; ZNS, zonisamide.

FIGURE 1 | Procedure to study BOLD signal and functional connectivity
temporal variability. (A) To compute the voxel-wise map of BOLD signal
variability, the time series for every voxel in the EPI data is first extracted.
Then, the variance of the signal is computed, resulting in the required map.
(B) To compute the voxel-wise map of BOLD functional connectivity temporal
variability with a seed, a region in the AAL template is first selected (in this
work, the left and right hippocampi are used as seeds) and the average signal

in the region is computed. Then, for every voxel in the EPI data, correlations
over time are obtained using a sliding window (30 s) and the temporal
dynamics of functional connectivity are computed. Note that in this example
the dynamics are non-constant with moments of drastic loss of connectivity
between regions. Finally, the temporal variance of the functional connectivity
time series is computed, resulting in a spatial map (see Figure 4) encoding
the variability in the interaction between the seed region and every voxel.

Computation of functional connectivity variability
The study of functional connectivity between brain regions usually
neglects the possibility of changes of connectivity occurring over

time [dynamical functional connectivity (8)]. Not only functional
connectivity values computed over extended periods of time char-
acterize the healthy, resting brain but also a normal switching of
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connectivity values, representing the engagement and disengage-
ment of different brain networks. At a first level, the normal level
of this fluctuation in connectivity can be computed in two steps,
which are also summarized graphically in Figure 1B:

(1) A temporal time course of functional connectivity is com-
puted by means of a sliding window analysis. Inside each
window, the normal correlation coefficient between the signal
at a seed region and the signal at every voxel in the brain is
computed. Then, the window is displaced one time step and
the analysis repeated, obtaining one connectivity estimate per
time unit. In this work, the sliding window length was set to
30 s, and the seed region to the left and right hippocampus [as
defined in the automated anatomical labeling atlas (20)].

(2) Once the temporal time courses of functional connectivity
are obtained, they are collapsed into a single spatial map by
computing their temporal variability or variance (using Eq.
1). Thus, this results in a map in which every voxel has a value
encoding how widely over time its connectivity with a seed
region of interest is fluctuating.

STATISTICAL ANALYSIS
Both maps of temporal variability and of dynamical functional
connectivity variability are compared between groups by means
of mass univariate t -tests as implemented in the SPM8 software.
All maps are reported at a level of p < 0.001 uncorrected with
only clusters passing a threshold of p < 0.05 FWE corrected being
shown.

RESULTS
On average, healthy controls slept more than left and right TLE
patients (Figure 2). Controls were awake 71± 11% of the time,
left TLE patients 85± 8%, and the right TLE patients 86± 9% of
the time. This justifies the detection and deleting of BOLD data
corresponding to sleep, considering the possibility of confounds
due to comparing groups of subjects in different vigilance states
(12).

The voxel-wise analysis of BOLD signal variance in TLE was
greater than in controls in the anterior temporal lobe bilater-
ally (Table 2; Figure 3). Significantly reduced variance compared

to controls was not found in any voxel. A significant difference
between left TLE and right TLE was not observed.

Dynamic functional connectivity from the hippocampi in TLE
(left and right TLE pooled) was greater than in controls in the
supplementary motor area, the pre- and postcentral gyri, the (pre-
)cuneus, the calcarine/middle occipital gyrus, and the superior
frontal gyrus (Tables 3 and 4; Figure 4). A significant differ-
ence between left TLE and right TLE was not observed (compare
Tables 3 and 4 for seeding in the left and right hippocampus,
respectively). Of the pooled analysis, only results for the left hip-
pocampus as the seed region are displayed and differences between
seeding in the left and the right hippocampus were not significant
(compare Tables 3 and 4).

DISCUSSION
Interictally, compared to healthy controls and during wakeful-
ness, in the TLE group we found increased BOLD signal variance
in the anterior temporal lobe regions overlapping with the left
and right hippocampi and that these regions showed increased
dynamic functional connectivity most prominently to sensory
motor structures, the precuneus, and superior frontal cortices.

Table 2 | Regions, hemisphere, and statistical significance of areas

with increased BOLD signal variance inTLE patients compared to

healthy controls (local maxima at least 8 mm apart).

Brain region MNI coordinates

(x, y, z)

Hemisphere t -Value

Left+RightTLE > Healthy Controls

Inferior temporal gyrus (38, −4, −36) Right 6.44

Temporal pole (−38, 8, −30) Left 5.30

LeftTLE > Healthy Controls

Temporal pole (36, 0, −36) Right 5.31

RightTLE > Healthy Controls

Fusiform gyrus (34, −8, −36) Right 5.08

Inferior temporal gyrus (−36, −4, −36) Left 4.89

TLE, temporal lobe epilepsy.

FIGURE 2 | Distribution of percent time spent in different sleep stages (wake, N1 and N2; no N3 sleep was observed) for healthy controls, left and
rightTLE patients (mean±SEM).
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Laufs et al. Dynamic functional connectivity in TLE

FIGURE 3 | Spatial map (coronal, sagittal, axial slices) of significantly
greater variance of the blood oxygen level-dependent signal in patients
with temporal lobe epilepsy (pooled right and left) than in healthy

controls. Color bar indicates p-value (thresholded at p < 0.001 for display,
cluster survives family-wise error correction at p < 0.05). Left on figure is right
in the brain (coronal and axial slices).

Table 3 | Regions, hemisphere, and statistical significance of areas

with increased variance of dynamic functional connectivity with the

left hippocampus in patients compared to healthy controls.

Brain region MNI coordinates

(x, y, z)

Hemisphere t -Value

Left+RightTLE > Healthy Controls

Supp. motor area (4, −12, 72) Right 4.78

Postcentral gyrus (−20, −24, 72) Left 4.95

Precentral gyrus (−44, 4, 52) Left 4.81

Cuneus (1, −76, 28) Right 4.97

Calcarine (1, −92, −8) Right 4.66

Sup. frontal gyrus (1, 76, 8) Right 4.79

Middle frontal gyrus (−12, 79, 24) Left 3.74

LeftTLE > Healthy Controls

Paracentral lobule (0, −28, 80) Left/right 4.76

Postcentral gyrus (36, −28, 60) Right 4.56

Cuneus (12, −76, 20) Right 5.14

Sup. frontal gyrus (−8, 24, −20) Left 4.56

Parahippocampal gyrus (−32, −24, −20) Left 4.51

Middle frontal gyrus (−12, 75, 22) Left 3.64

RightTLE > Healthy Controls

Supp. motor area (0, −20, 64) Left/right 4.57

Cuneus (0, −80, 28) Left/right 4.95

Middle cingulate gyrus (−1, −24, 52) Left 4.31

Sup. frontal gyrus (0, 76, 8) Left/right 4.33

Parahippocampal gyrus (−32, −24, −21) Left 4.15

Middle frontal gyrus (−7, 83, 32) Left 4.01

TLE, temporal lobe epilepsy, supp, supplementary, sup, superior.

The identification of anterior temporal lobe structures in
particular including the hippocampi is highly suggestive of a
syndrome-specific effect because these regions have long been
known as crucial in TLE (21). The anterior hippocampus is
thought to be highly epileptogenic (22). In the context of inter-
ictal neuropsychological dysfunction, it is essential for memory
processes (23), and with respect to seizure control, its surgical
removal has been shown to be associated with a good outcome
(24). In addition, our study design in which we try to keep con-
stant as many parameters as possible between the control and the

Table 4 | Regions, hemisphere, and statistical significance of areas

with increased variance of dynamic functional connectivity with the

right hippocampus in patients compared to healthy controls.

Brain region MNI coordinates

(x, y, z)

Hemisphere t -Value

Left+RightTLE > Healthy Controls

Paracentral lobule (0, −28, 80) Left/right 5.10

Precuneus (−8, −36, 60) Left 4.35

Cuneus (−12, −84, 40) Left 4.82

Middle occipital gyrus (28, −84, 28) Right 4.84

Postcentral gyrus (8, −40, 80) Right 4.35

Sup. frontal gyrus (0, 56, −20) Left/right 4.12

LeftTLE > Healthy Controls

Paracentral lobule (0, −24, 76) Left/right 4.46

Precentral gyrus (−40, −16, 64) Left 4.06

Cuneus (12, −96, 16) Right 4.42

Fusiform gyrus (−28, −24, −24) Left 4.10

Middle frontal gyrus (4, 84, −16) Right 4.19

RightTLE > Healthy Controls

Paracentral lobule (0, −28, 80) Left/right 4.26

Cuneus (4, −80, 24) Right 4.74

Middle frontal gyrus (0, 60, 28) Left/right 4.04

Inferior frontal gyrus (48, 32, −16) Right 4.15

Middle cingulate gyrus (4, 36, 32) Right 4.09

sup, superior.

patient group (including the state of wakefulness) ensures that any
significant group differences are specific to the condition TLE. In
particular, we can identify significant activity alterations in sets of
brain regions constituting intrinsic connectivity networks, which
can be present both in the patient and the control group and
which might evade other analysis techniques such as independent
component analysis or conventional seed region-based functional
connectivity analysis.

INTERPRETATION OF INCREASED HIPPOCAMPAL BOLD SIGNAL
VARIANCE
The first observation that in our group of TLE patients, we found
the highest BOLD signal variance in the anterior temporal lobe
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Laufs et al. Dynamic functional connectivity in TLE

FIGURE 4 | Spatial map (coronal, sagittal, axial slices) of significantly
greater variance of hippocampal dynamic functional connectivity in
patients with temporal lobe epilepsy (here: seed in left hippocampus)
than in healthy controls. For differences between seeding in the left
hippocampus and in the right, seeTables 3 and 4, of the pooled analysis, only

results for the left hippocampus as the seed region are displayed (seed in
right hippocampus yielded most similar results). Color bar indicates p-value
(thresholded at p < 0.001 for display, cluster survives family-wise error
correction at p < 0.05). Left on figure is right in the brain (coronal and axial
slices).

including, of note, the hippocampus supports our hypothesis of
the presence of paroxysmal interictal activity resulting in region-
ally increased BOLD signal variance. It is well-established that local
field potentials (LFP) explain the largest portion of this variance
(25) and that interictal epileptic spikes in the anterior temporal
lobe are reflected in LFP changes (26). We hence propose interictal
epileptic activity (“epileptic process”) as the most likely explana-
tion for the high anterior temporal lobe variance common to our
TLE group. Kobayashi and colleagues as well as ourselves previ-
ously identified hippocampal BOLD signal increases at the group
level in TLE, when correlating by means of a general linear model
(GLM) interictal scalp EEG activity with the BOLD signal (27,
28). For these GLM-based EEG-fMRI studies, the occurrence of a
number of interictal spikes was essential, whereas in the present
approach, we on purpose designed our analysis to be independent
of scalp EEG interictal activity. We did this for two reasons: (1) the
sensitivity of scalp EEG in TLE is compromised with respect to
hippocampal interictal epileptic activity (3, 29), allowing the cre-
ation of a scalp EEG-based GLM with limited sensitivity only and
(2) we sought to identify an fMRI marker for paroxysmal activity
specific to the epileptic condition independently of the simultane-
ously recorded EEG. Such paroxysmal activity in addition to“true”
interictal spikes (as can be demonstrated with intracranial EEG)
might include other types of epileptic (neuronal) activity leading
to bursts of energy consuming processes, e.g., owing to damaged
cells in the hippocampus, alterations in the glial milieu, or pathol-
ogy of blood flow parameters (30). The exclusive selection of
epochs during which the patients and control subjects, respec-
tively, were awake ensured increased sensitivity when comparing
resting-state BOLD signal properties: it is well known that the
functional architecture of the brain changes significantly depend-
ing on the level of wakefulness (12, 31) including the variance of
the BOLD signal in different brain regions (11, 32), but also graph
theoretical network measures (33, 34), and variance in the brain’s
functional connectivity structure (8).

We note that a very similar result (increased variance of BOLD
signals in bilateral hippocampi) was recently found for sub-
jects under the influence of a psychedelic substance (psilocybin)
(35). Furthermore, a related result is discussed in the context of

REM sleep (36), and in the psilocybin study the intensity of the
“dream-like” experience, which was rated subjectively by the sub-
jects, correlated positively with the magnitude of the hippocampal
BOLD signal fluctuations. It can be speculated that subjective alter-
ations in the conscious awareness of the patients – more subtle
than full-blown seizures, but which can escalate into the former
and also into auras – are shared in TLE and in the other altered
states of consciousness mentioned above.

INTERPRETATION OF INCREASED HIPPOCAMPAL DYNAMIC
FUNCTIONAL CONNECTIVITY
Increased variance of dynamic functional connectivity in TLE
compared to healthy controls indicates region pairs, which exhibit
stronger fluctuations of the correlation of their BOLD time series
in the epileptic condition than in the healthy. While the measure
does not assess an absolute difference in connectivity between the
two cohorts, regions are identified, which link and unlink typically
more in TLE than in the control group. Our study design moti-
vates the hypothesis that the “epileptic process” is responsible for
this coupling and uncoupling, possibly in the form of the interictal
epileptiform activity in the hippocampus, which leads to increased
functional connectivity variance. Further analyses should reveal
whether such epileptic activity weakens or strengthens the func-
tional connection between regions. It may even be that “erratic”
hippocampal coupling (and uncoupling) with cortical regions dis-
rupts the physiological interplay of the latter with yet further parts
of the brain – including subcortical and that this eventually results
in the observed dysfunctionality.

Van Paesschen and colleagues used single photon emission
computed tomography (SPECT) to study patients with hippocam-
pal sclerosis (HS) and observed both ictal hyper- and hypop-
erfusion in (lateralized) regions partly overlapping with those
we describe here in our study, which also includes many cases
of HS. Hyperperfusion was described in temporal lobe, mid-
dle frontal and central regions, and in the frontal lobes and the
precuneus hypoperfusion was found (37). It hence appears that
both a “gain” as well as a “loss of function” in different brain
regions is linked with ictal dysfunctioning. For example, Chas-
sagnon and colleagues studied patients with mesial TLE and found
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ictal–interictal hypoperfusion in the posterior cingulate and pre-
frontal regions, which might be interpreted as a loss of function
in the sense of impaired consciousness (precuneus) and executive
functioning (frontal regions) (38).

Looking at the particular brain regions in TLE with increased
connectivity variance, we speculate that (1) the hippocampal activ-
ity interferes with language (39) and memory function (40), both
interictally and ictally and that (2) the increased dynamic connec-
tivity to the precuneus and frontal cortex is ictally associated with
impaired consciousness (4, 41) and executive functioning (42).
We also propose that (3) the increased dynamics in functional
connectivity between the hippocampus and the sensorimotor cor-
tices might pave the way for ictal sensory and motor dysfunction
and – probably tightly related to the supplementary motor area –
in particular motor automatisms (43). The superior frontal gyrus
was also described relevant for introspection (44).

HOW ARE INTERICTAL CONNECTIVITY CHANGES LINKED WITH ICTAL
SEMIOLOGY?
Our study does not offer any objective clues as to what the
changes we describe in the TLE group interictally have to do with
ictal changes in brain function. While it is well described that
language and memory impairment are present interictally (45),
sensorimotor dysfunction does not obviously occur interictally.
One explanation could be that a qualitative difference between
what is called interictal and ictal activity may not exist as such,
but rather a quantitative one: Binnie a good decade ago pointed
out that if only we tested carefully enough, transitory cognitive
impairment could be related to “interictal” activity in many indi-
viduals (46). In our own EEG-fMRI study looking at BOLD signal
changes related to formally interictal activity, we interpreted sig-
nal changes in regions of the so-called default mode network to
explain reduced consciousness during dyscognitive seizures. How-
ever, we selected for the study cohort patients with very frequent
interictal discharges on the EEG increasing the sensitivity of our
discharge-correlated GLM analysis (27). With this in mind and
taking Binnie’s idea forward, it is conceivable that with so-called
interictal activity vastly the same set of brain regions (network) is
recruited as is ictally with the difference that when behavioral alter-
ations become obvious they are called seizures and hence define
“ictal activity.” Of course, some additional features distinguish
seizure from interictal activity going beyond “duration” alone
but include spreading of epileptic activity. Still, such spreading
of activity might occur along interictally pre-existing paths (47).
Supporting our speculation further, in TLE, structural changes
have been shown to progress over time and memory function
was more closely related to structural hippocampal changes than
the overt seizure frequency: the group of Bernasconi found neo-
cortical thinning in TLE progressing over time in bilateral frontal
(sensorimotor) and temporal (hippocampal, entorhinal, temporo-
polar) regions – overlapping with the regions we report here
(48), and Pacagnella and colleagues most recently presented data
proposing that memory impairment is more influenced by hip-
pocampal damage than by seizure frequency (40). In our limited
cohort, we failed to identify a correlation between epilepsy dura-
tion and BOLD signal variance or dynamic functional connectivity
(analysis not shown).

UNIDIRECTIONAL DIFFERENCES AND LACK OF SIGNIFICANT
LATERALIZATION OF OUR FINDINGS
We did not find any significantly lateralized or side-dependent
results. Instead, significant differences between healthy subjects
and controls were usually bilateral. This might be due to a lack
of sensitivity of our analysis, which was not optimized for this
purpose (balancing of handedness, type of left- and right-sided
pathologies, and EEG abnormalities). We hence do not discuss
our lateralized results. In general, however, on first sight, a lack of
lateralized findings is surprising taking into account clinical prac-
tice and surgical success with unilateral resections and the efforts
spent with non- and invasive video-EEG telemetry and imaging to
identify in which temporal lobe (hippocampus) the epileptogenic
zone is located (49). Although it is clinically not a contested issue
that it is relevant indeed to operate on the correct side of the brain,
we are not aware of any systematic review of epilepsy surgery cases
in which – for whatever reason – retrospectively the wrong side was
operated upon. It is likely that the vastly symmetrical results we
present reflect secondary bilateral “network” effects of a lateralized
primary cause.

It is equally interesting that we found exclusively variance
increases – and not any decreases – of BOLD signal amplitude
and hippocampal functional connectivity in patients with TLE
compared to control subjects. However, we would like to note
that this does not rule out the possibility of decreased absolute
functional inter-regional connectivity in the epilepsy cohort, as
this differs from the variance of functional connectivity, which we
report in our study and the interpretation of which is discussed
above. Still, a relationship between the two measures might exist
because many of the regions in which we found altered dynamic
functional connectivity were also reported by Haneef and col-
leagues. They compared TLE patients to controls and found that
the classical measure of static hippocampal functional connec-
tivity was greater to the bilateral temporal lobes, insula, fornix,
frontal poles, angular gyrus, basal ganglia, thalamus, and cere-
bellum. They found reduced connectivity with the occipital pole,
calcarine, lingual, precuneus, sensorimotor cortex, and parts of
insula and frontal lobes as well as medial frontal areas (50). We
report results of a “Standard Seed Correlation Analysis” of our
data in the Appendix. Because we analyzed wakefulness epochs
exclusively, comparability to other data remains limited.

LIMITATIONS
We are aware of the many factors influencing resting-state – and
any other – fMRI studies (51) but not aware of any study formally
assessing the order of relevance of the numerous confounding
effects. We do know, though, from our own data (12, 31) that sleep
alters the neuronal resting-state brain architecture significantly;
and motion is known to introduce BOLD signal changes of several
magnitudes the size of those commonly induced neuronally (52).
In comparison, e.g., effects of sex and age are less pronounced both
in terms of extent and intensity, and only optimized analysis meth-
ods will reveal such differences (53, 54). Nevertheless, we tried to
match both gender and age as much as possible between the exam-
ined cohorts. We regressed rigid body motion from the data and in
an additional analysis accounting for motion-induced variance in
a very conservative way showed that our results were robust w.r.t.
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motion-induced variance (see “Reproduction of Results Erasing
High Amplitude Head Movements” in the Appendix; Figures 5
and 6).

Regarding confounding fluctuations in wakefulness, to our
knowledge, this is the first “wakeful rest” functional connec-
tivity study controlling for and restricting the analysis to true,
EEG-defined, awake epochs only and in addition accounting for
non-stationarity of the functional connectivity even within the
awake state. We advocate both as a desirable standard. To demon-
strate independence of our results to the length of the sliding
window used in the dynamic functional connectivity analysis, we

performed an additional analysis with a different (shorter) win-
dow length (see “Robustness against Changes in Sliding Window
Length” in the Appendix, Figure 7).

We did not make a strong point about left TLE vs. right TLE
comparisons, because we did not observe significant group differ-
ences. Evidently, absence of proof is not proof of absence but may
be due to patient heterogeneity. Such is almost inevitable in patient
studies like this one caused by a variety of factors, such as the range
of dyscognitive seizure semiology (not any two patients have the
same seizures), seizure frequency, and the potential occurrence
of additional generalized tonic clonic seizures, type and location

FIGURE 5 | Spatial map (coronal, sagittal, axial slices) of significantly
greater variance of the blood oxygen level-dependent signal in patients
with temporal lobe epilepsy (pooled right and left) than in healthy
controls. An additional preprocessing step was performed by erasing

volumes associated with large head displacements, as well as surrounding
volumes. Color bar indicates p-value (thresholded at p < 0.001 for display,
cluster survives family-wise error correction at p < 0.05). Left on figure is right
in the brain (coronal and axial slices).

FIGURE 6 | Spatial map (coronal, sagittal, axial slices) of significantly
greater variance of hippocampal dynamic functional connectivity in
patients with temporal lobe epilepsy (here: seed in left hippocampus)
than in healthy controls. An additional preprocessing step was performed

by erasing volumes associated with large head displacements, as well as six
surrounding volumes. Color bar indicates p-value (thresholded at p < 0.001 for
display, cluster survives family-wise error correction at p < 0.05). Left on
figure is right in the brain (coronal and axial slices).

FIGURE 7 | Spatial map (coronal, sagittal, axial slices) of significantly
greater variance of hippocampal dynamic functional connectivity in
patients with temporal lobe epilepsy (here: seed in left hippocampus)
than in healthy controls. A sliding window length of 15 s was used for the

computation of dynamic functional connectivity time series. Color bar
indicates p-value (thresholded at p < 0.001 for display, cluster survives
family-wise error correction at p < 0.05). Left on figure is right in the brain
(coronal and axial slices).
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– or by current radiological standards even absence – of structural
pathology visible on MRI, IQ, duration of epilepsy, and medica-
tion – just to name a few. Although epilepsy syndrome diagnosis
relied on multidisciplinary experts reviewing extensive electro-
clinical information, we cannot rule out classification errors. But
differences within the TLE cohort between left and right TLE
patients will not affect our main positive findings, i.e., the group
differences between TLE and healthy controls. However, we note
that any medication taken by the patients if systematically leading
to, e.g., alterations of consciousness could have biased our results;
but there is no evidence to date supporting this possibility for the
specific patterns we observed.

In addition to these mere technical issues, like in any resting-
state study, result interpretation conceptionally is limited given
the absence of a task. We based the justification of the study
design on the fact that interictal epileptic activity occurs spon-
taneously at rest as indicated by neuronal discharges measurable
with EEG, although we assumed a more general “epileptic process”
based on the well-established general clinical observation of inter-
ictal cognitive compromitation in TLE. In an attempt to tie our
interpretation of our observations more closely to the results, we
regressed IQ against BOLD signal variance and dynamic func-
tional connectivity. We report this analysis only in “Correlations
Between BOLD Signal Variance/Variance of Dynamic Connectiv-
ity Time Series with the Left Hippocampus and VIQ/PIQ” in the
Appendix as it needs to be considered of anecdotal character owing
to a lack of statistical significance. Causes of the latter include those
discussed above.

CONCLUSION
We found evidence in support of our hypothesis that, inter-
ictally, brain activity is altered in syndrome-specific regions.
Assuming that interictal processes like bursts of interictal epilep-
tiform discharges will generate large changes in BOLD ampli-
tude, we analyzed the variance of the BOLD signal and found
this increased in anterior temporal regions, which suggest a
TLE specific effect. Starting from the anterior temporal lobe, we
found hippocampal dynamic connectivity increased in regions,
which might explain the hallmark semiological features of com-
plex partial seizures including impaired consciousness (pre-
cuneus, frontal cortex), sensory disturbance, and motor automa-
tisms (sensorimotor cortices, supplementary motor area). Tak-
ing into account state of the art knowledge about the non-
stationarity and state-dependence of functional connectivity, we
sought to increase the sensitivity and specificity of our results.
More generally, this work encourages the further development
of connectivity-derived measures as potential functional imaging
biomarkers in TLE.
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APPENDIX
REPRODUCTION OF RESULTS ERASING HIGH AMPLITUDE HEAD
MOVEMENTS
Following the work of Lemieux et al. and Power et al. (55, 56), we
have scanned the time course of estimated head movement and
erased those volumes associated with a displacement larger than
0.3 mm, as well as the three previous and following volumes. We
then reproduced Figures 3 and 4 using this alternative preprocess-
ing. Results are shown in Figure 5 (voxel-wise variance, controls
vs. TLE) and Figure 6 (hippocampus-based dynamic functional
connectivity variance, controls vs. TLE). It can be appreciated from
both figures that the general composition of the patterns discussed
in the main text is preserved.

ROBUSTNESS AGAINST CHANGES IN SLIDING WINDOW LENGTH
The computation of dynamic functional connectivity time series
requires the specification of a sliding window length, which can be

FIGURE A1 | Spatial map (coronal, sagittal, axial slices) of significantly
decreased hippocampal signal linear correlation in patients with
temporal lobe epilepsy (here: seed in left hippocampus) than in healthy

controls. Color bar indicates p-value (thresholded at p < 0.001 for display,
cluster survives family-wise error correction at p < 0.05). Left on figure is right
in the brain (coronal and axial slices).

FIGURE A2 | Correlations between BOLD signal variance/variance of
dynamic connectivity time series with the left hippocampus and
VIQ/PIQ scores for theTLE group (left+ right). Statistical significance
was determined at p < 0.05 with a cluster threshold of 10 voxels. Maps
were masked with the regions where the metrics were significantly

different between controls and TLE patients. Left: results for PIQ and VIQ
correlation with variance. In all cases positive correlations were found.
Right: results for PIQ and VIQ correlation with variance of connectivity time
series with the left hippocampus. In all cases negative correlations were
found.

seen as a free parameter (even though its correct choice bears an
obvious relationship with the time scale where the changes occur).
We demonstrate that results are robust against a chance of this
parameter by reproducing Figure 4 using a different, shorter win-
dow length (15 s). Results are shown in Figure 7. From this figure,
it is evident that the main differences between controls and TLE
patients still hold using this different window length.

STANDARD SEED CORRELATION ANALYSIS
We performed a standard“static” linear correlation analysis seeded
in the left hippocampus. Results of the controls vs. TLE compari-
son are presented in Figure A1. A decrease in seed connectivity was
observed in the patient group relative to the control group in brain
areas including visual cortex, precuneus, and sensorimotor cortex.
Compared to the regions in which a change in dynamic con-
nectivity variance was observed (Figure 4), these regions overlap
but also include a less extended network than that observed in
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the dynamic analysis; in particular, frontal regions do not appear.
To a large extent, for regions having strong baseline connectiv-
ity, increased variance of the dynamic connectivity time series
implies decreased “static” correlation. The opposite, however, is
not true. This points to an origin of the decreased “static” correla-
tion that can be traced to a dynamic transient phenomenon, which
we hypothesize corresponds to paroxysmal events.

CORRELATIONS BETWEEN BOLD SIGNAL VARIANCE/VARIANCE OF
DYNAMIC CONNECTIVITY TIME SERIES WITH THE LEFT HIPPOCAMPUS
AND VIQ/PIQ
In an attempt to link the results derived from resting-state data
more tightly to our interpretation, we performed a correlation
analysis of the behavioral measures PIQ/VIQ (obtained close in
time to the fMRI experiment) and fMRI signal changes in the
regions of increased BOLD signal variance and increased dynamic
functional connectivity, respectively (Figure A2). We found pos-
itive correlations between the IQ measures and the BOLD signal

variance, and negative correlations with the dynamic BOLD func-
tional connectivity. With the caveat of uncorrected significance
values – possibly a power or, alternatively, a conceptual problem –
this argues for a relationship of our findings obtained at rest with
these psychological measures, i.e., a connection between interic-
tal cognitive impairment and the observed changes between the
TLE and the control cohorts. That a lower IQ score is linked to
higher functional connectivity could be interpreted as paroxys-
mal interference of the “epileptic process” with normally required
and less pronounced variations in functional connectivity. Why
at the same time an impaired IQ is associated with reduced vari-
ance in the BOLD signal time series in regions characterized by
an overall increase in BOLD signal variance in TLE compared to
controls – admittedly – is difficult to interpret. Although the func-
tional role of anterior temporal lobe is still debated (57), it might be
possible that increased “inertia” (i.e., reduced BOLD signal vari-
ance) of the anterior temporal lobe reflects deficits in semantic
memory (58).
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Event-related ICA (eICA) is a partially data-driven analysis method for event-related fMRI
that is particularly suited to analysis of simultaneous EEG-fMRI of patients with epilepsy.
EEG-fMRI studies in epileptic patients are typically analyzed using the general linear
model (GLM), often with assumption that the onset and offset of neuronal activity
match EEG event onset and offset, the neuronal activation is sustained at a constant
level throughout the epileptiform event and that associated fMRI signal changes follow
the canonical HRF. The eICA method allows for less constrained analyses capable of
detecting early, non-canonical responses. A key step of eICA is the initial deconvolution
which can be confounded by various sources of structured noise present in the fMRI
signal. To help overcome this, we have extend the eICA procedure by utilizing a fully
standalone and automated fMRI de-noising procedure to process the fMRI data from an
EEG-fMRI acquisition prior to running eICA. Specifically we first apply ICA to the entire
fMRI time-series and use a classifier to remove noise-related components. The automated
objective de-noiser, “Spatially Organized Component Klassificator” (SOCK) is used; it has
previously been shown to distinguish a substantial fraction of noise from true activation,
without rejecting the latter, in resting-state fMRI. A second ICA is then performed, this
time on the event-related response estimates derived from the denoised data (according
to the usual eICA procedure). We hypothesize that SOCK + eICA has the potential to
be more sensitive than eICA alone. We test the effectiveness of SOCK by comparing
activation obtained in an eICA analysis of EEG-fMRI data with and without the use of
SOCK for 14 patients with rolandic epilepsy who exhibited stereotypical IEDs arising from
a focus in the rolandic fissure.

Keywords: functional magnetic resonance imaging (fMRI), independent component analysis (ICA), automated

classification, artifacts, denoising, filter, event related ICA, Benign epilepsy with centro-temporal spikes (BECTS)

1. INTRODUCTION
Event-related functional magnetic resonance imaging (fMRI) is
an MRI technique that can be used to detect changes in the
Blood Oxygen Level Dependent (BOLD) hemodynamic response
to neural activity in response to certain events. The conventional
method for detecting event-related responses in fMRI consists of
modeling the expected fMRI response to an event by convolving
a stimulus presentation time-course with an assumed canoni-
cal Haemodynamic Response Function (HRF) and using linear
regression to identify voxels with a significant correlation to this
expected response (Josephs et al., 1997). One typically assumes
that the onset and offset of neuronal activity match stimuli onset
and offset, the neuronal activation is sustained at a constant level
throughout the stimulus and that evoked fMRI signal changes
follow the canonical HRF.

There are instances, however, when these assumptions may
not be satisfied. An example is interictal epileptiform discharges
(IEDs), which are pathological patterns of activity generated by
the brain of patients with epilepsy between seizures (de Curtis

et al., 2012). IEDs produce marked and stereotyped trace devi-
ations on electroencephalography (EEG) recordings and can be
studied using fMRI by using a simultaneous acquisition of EEG
(EEG-fMRI) in order to identify the event timings (Lemieux et al.,
2001; Bnar et al., 2002). Studies have shown that the onset of the
neuronal activity underlying the EEG discharge may not always
coincide with the EEG onset (Bai et al., 2010; Carney et al.,
2010; Masterton et al., 2010). For example, Carney et al. (2010)
identified changes in BOLD signal which precede the onset of
epileptiform activity. In addition, it is also reported that the use
of the same HRF in all patients may not be appropriate and that
individual-based HRF models provide increases in extent and
degree of activation (Masterton et al., 2010; Storti et al., 2013).

To address the above issues, we developed an algorithm,
dubbed event-related independent components analysis (eICA),
which allowed for less constrained analyses capable of detect-
ing early, non-canonical responses (Masterton et al., 2013a,b).
Event-related ICA is a technique that provides an estimate
of the underlying components that give rise to the observed
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event-related fMRI signal changes throughout the brain, and
importantly, does not rely upon the specification of an HRF
model or predefined Regions of Interest (ROIs). Unlike a stan-
dard independent components analysis (ICA), which is applied
to the entire fMRI time series, the eICA method is applied only
to the event-related time courses at each voxel (an estimate of the
event-related signal at each voxel is first obtained by deconvolu-
tion of the observed fMRI signal with the observed EEG event
timing), which means that only a small number of components
are generated that are all explicitly related to the event of interest.
Event-related ICA can be applied to data from individual subjects
and also to group data using a temporal concatenation approach.
We previously demonstrated that the eICA method, when applied

to EEG-fMRI data acquired from a group of patients with Benign
epilepsy with centro-temporal spikes (BECTS), provided better
performance than a standard event-related analysis and a linear
deconvolution approach, with a better detection rate in single-
subject analyses (73 vs. 53%) and only event-related ICA finding
significant group-level activation (Masterton et al., 2013b).

A key element of the eICA is the initial deconvolution.
However, the stability of the deconvolution can be compromised
by various sources of structured noise (Biswal et al., 1996; Friston
et al., 1996; Glover et al., 2000) present in the fMRI signal. These
include rapid and slow head movements, physiological activ-
ity (breathing and heartbeat) and potential acquisition artifacts.
Data driven techniques, especially ICA, are increasingly being

FIGURE 1 | We assess the performance of SOCK by comparing the

activation obtained in an eICA analysis with and without the use of

SOCK (for both group and individual studies). In the with-SOCK
processing stream, ICA was applied to pre-processed fMRI data yielding

spatial component maps with associated time courses and power spectra,
SOCK automatically classified ICs into one of two categories; artifact or
unlikely artifact. Rejecting all ICs classified into the artifact category, a
de-noised fMRI data series is formed that is then processed with eICA.
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employed to separate signal and noise in conventional fMRI data
(Thomas et al., 2002; Kochiyama et al., 2005; McKeown et al.,
2006; Perlbarg et al., 2007; Stevens et al., 2007; Calhoun et al.,
2008; Tohka et al., 2008; Sui et al., 2009; Beckmann, 2012; Kundu
et al., 2012; Bhaganagarapu et al., 2013; Salimi-Khorshidi et al.,
2014). However, in the context of EEG-fMRI studies in epilepsy,
the interpretation of the results from an application of ICA can be
difficult as it may produce more than a hundred different com-
ponents per subject with the majority of these likely having no
relationship to the EEG event of interest (Rodionov et al., 2007;
LeVan et al., 2010).

To address this we developed a strategy for the auto-
mated objective identification of artifactual components from
an ICA, that we have dubbed a Spatially Organized Component
Klassificator (SOCK) (Bhaganagarapu et al., 2013). The primary
objective of SOCK is to distinguish noise from true activation
without rejecting the latter. SOCK automatically classifies ICs into
one of two categories; artifact or unlikely artifact. It does so using
spatial measures likely to indicate motion, physiological noise, or
machine or undetermined noise. SOCK was shown to successfully
remove artifactual components, without rejecting true activation
in resting state data (Bhaganagarapu et al., 2013). Unlike exist-
ing automatic classifier methods which are primarly dependent
on training data to inform classification (De Martino et al., 2007;
Tohka et al., 2008; Salimi-Khorshidi et al., 2014) or require query-
ing a public database (Sochat et al., 2014), SOCK is a standalone,
automated and objective method that does not require the user
to train the algorithm. It is able to identify a high proportion of
artifact-related ICs without removing components that are likely
to be of neuronal origin (Bhaganagarapu et al., 2013).

In this paper, we extend the eICA procedure by utilizing
SOCK to automatically de-noise fMRI data from an EEG-fMRI
acquisition prior to running eICA. As we are de-noising the entire
fMRI time series prior to the eICA, we hypothesize that this
approach has the potential to be more sensitive than eICA alone.
The use of an automated de-noising procedure like SOCK in the
context of eICA is a novel methodology and to our knowledge has
not been investigated previously. We demonstrate the effective-
ness of SOCK by comparing the extent of activation obtained in
a standard eICA analysis of EEG-fMRI data with and without the
use of SOCK for 14 patients with rolandic epilepsy who exhibited
stereotypical IEDs arising from a focus in the rolandic fissure.

2. METHODS
2.1. METHODS OVERVIEW
SOCK is applied to de-noise fMRI data prior to event-related ICA.
An overview of the de-noising process is given below (see also
Figure 1) and more detail is provided in the sections that follow.

1. ICA was applied to the pre-processed fMRI data (see Section
2.6) using MELODIC (Beckmann and Smith, 2004), yielding
both thresholded and unthresholded ICs and associated time
courses and power spectra1.

1Temporal information expressed in the frequency domain. This is done
mathematically by taking the discrete Fourier Transform of the time course.

2. ICs were classified into one of two categories using SOCK:
artifact or unlikely artifact.

3. All ICs classified into the artifact category were discarded and
a de-noised fMRI data series was constructed with only the
unlikely artifact ICs.

4. An event-related ICA (eICA) was preformed using the de-
noised fMRI data (along with EEG).
The above process was performed for both group and
individual studies.

2.2. ICA DECOMPOSITION
In the with-SOCK processing stream, ICA is employed to
decompose the 4D fMRI time series into a linear combination

Table 1 | Patient details.

Subject ID Gender Age at CTS laterality Number of

study events

1 M 6 Right 509
2 M 7 Left 527
3 M 7 Left 38
4 F 9 Left 622
5 M 9 Left 428

Right 434
6 M 9 Right 67
7 F 9 Left 106
8 M 9 Left 348
9 M 10 Right 670
10 M 10 Right 285
11 F 10 Right 257
12 M 10 Left 158
13 M 11 Right 134
14 M 13 Right 15

Table 2 | ICA decomposition and the SOCK classification for 14

patients who underwent an EEG-fMRI study as described in Section

2.6.2.

Subject ID No. of ICA SOCK classification artifact % of rejected

components Artifact ICs

1 97 43 54 44
2 75 29 46 39
3 81 31 50 38
4 105 45 60 43
5 57 30 27 53
6 122 50 72 41
7 80 29 51 36
8 161 56 105 35
9 154 51 103 33
10 108 49 59 45
11 285 78 207 27
12 99 44 55 44
13 120 50 70 42
14 106 44 62 42

SOCK classified between 27 and 53% of each subject’s components as artifact

(mean 41%).
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of spatially independent component maps with an associated
time-course (McKeown et al., 1998; Hyvärinen, 1999). In practice
this decomposition is usually too computationally expensive to
perform on raw fMRI data, so a preliminary data reduction step
using principal components analysis is applied prior to ICA.
Several freely available software packages are available to perform
this preprocessing and decomposition; we used MELODIC which
is part of the FSL package (Beckmann and Smith, 2004). The out-
put is a set of spatial maps with associated time courses and power
spectra. These then form the input for the automatic classifier,
SOCK.

2.3. CLASSIFICATION OF ICs USING SOCK
SOCK classifies ICs using features likely to indicate motion, phys-
iological noise, or machine or undetermined noise. The algorithm
is described in detail elsewhere (Bhaganagarapu et al., 2013)
and our implementation is freely available at www.brain.org.au/
software. Briefly, individual slices in each IC are assessed for:

1. Smoothness: contributions of low and high spatial frequency
content, to detect components with a large number of isolated
very small clusters or isolated voxels (i.e., a spotty appearance).

2. Edge activity: extent of activity in an edge mask.
3. Ventricular activity: extent of activity in a Cerebrospinal fluid

(CSF) mask.
4. Temporal Frequency Noise (TFN): the power in temporal

frequency beyond 0.08 Hz.

Based on these measures and with the assistance of k-means clus-
tering, ICs dominated by artifact are classified into an Artifact
category and all other ICs (i.e., those containing possible neuronal
signal) into an Unlikely Artifact category.

The SOCK procedure was implemented in MATLAB (R2010b,
The MathWorks, Natick, MA, USA). Source code of our imple-
mentation of the method is available at http://www.brain.org.au/
software.

2.4. CONSTRUCTING DE-NOISED DATA
After SOCK classification, all ICs classified in the artifact category
are discarded from the fMRI data set and a de-noised fMRI data
set is assembled from the remaining components. This is done via
the FSL function, fsl_regfilt (with the ‘-a’ aggressive filter-
ing option). The de-noised fMRI data along with the original EEG
timings are then input to an eICA analysis.

2.5. EVENT-RELATED INDEPENDENT COMPONENTS ANALYSIS (eICA)
The eICA method, described in detail elsewhere (Masterton et al.,
2013b), can be applied at either an individual or group level. In
brief, eICA uses two separate steps to identify events observed in
the EEG: firstly, a linear deconvolution (via GLM) provides an
estimate of the event-related BOLD response at each voxel in the
brain in a time-window spanning from 30 s before to 30 s after
the event onset. The deconvolution does not assume any particu-
lar response shape and allows for changes occurring before the
event onset. ICA is then used to separate the estimated event-
related fMRI signal changes into a small number of spatial maps
and associated time-courses that summarize the timing of activity
within different spatial sources.

To estimate the event-related response across the group, the
ICA decomposition was performed upon temporally concate-
nated data (Calhoun et al., 2009); note that in this context the
event related responses (rather then the original fMRI time series)
were concatenated. This provided a common set of spatial maps
for each group with subject specific time courses. Components of
interest were identified as those exhibiting activity in the vicinity
of the ipsilateral rolandic region (Masterton et al., 2013b).

The eICA procedure was implemented in MATLAB (R2010b,
The MathWorks, Natick, MA, USA) using the SPM8 software
(Wellcome Department of Cognitive Neurology, http://www.fil.
ion.ucl.ac.uk/spm) to perform the GLM parameter estimation,
and the FastICA and ICASSO (Hyvärinen, 1999; Himberg et al.,
2004) toolboxes to perform the ICA decomposition. The resulting
spatial maps were transformed into z-statistics maps by fitting a
mixture model to the data (see Masterton et al., 2013b for more
details). This eICA procedure was applied to EEG-fMRI data in
separate analyses with and without de-noising the fMRI data via
SOCK.

2.6. fMRI DATA
2.6.1. Subjects
The fMRI data used for this study was the same as that pre-
viously studied with eICA (without SOCK) and described in
detail by Masterton et al. (2013b). We summarize key sub-
ject details below and in Table 1. Data from fourteen patients
with typical BECTS, recruited for EEG-fMRI from the Royal
Childrens Hospital, Monash Medical Centre and Austin Hospital

Table 3 | A summary of the results of the individual analyses

comparing the number of ICs yielded from an eICA with and without

the use of SOCK prior to eICA.

Subject ID eICA SOCK+eICA

No. of Rolandic No. of Rolandic

components component? components component?

1 8 � 1 �
2 2 � 2 �
3 6 - 6 -

4 7 � 10 �
5 (left CTS) 7 � 6 �
5 (right CTS) 6 � 9 �
6 7 - 5 -

7 10 � 10 �
8 2 - 5 �
9 11 � 4 �
10 6 - 6 �
11 5 � 5 �
12 9 � 8 �
13 10 � 9 �
14 9 � 9 �

The rolandic component column indicates whether an eICA component was

visually identified with a BOLD signal change in the peri-rolandic region. Rows

in bold indicate subjects where activation in the vicinity of the ipsilateral rolandic

region was identified when using eICA+SOCK but not when using eICA alone.
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in Melbourne, Australia, are included in the analysis. One patient
had independent left and right-sided CTS; the remainder had
unilateral discharges—this provided a total of fifteen different
events for study. More detail on the patient cohort is provided
in Lillywhite et al. (2009). A representative EEG recording of CTS
discharges in the MRI scanner is also provided in Masterton et al.
(2010). This cohort was chosen because the previously published
eICA could be used as a gold standard when assessing the perfor-
mance of SOCK to de-noise fMRI data. This study had approval
from the Human Research Ethics Committee at each recruit-
ing hospital and all subjects (or their parents) provided written
informed consent.

2.6.2. Data acquisition
The patients underwent 30 min of simultaneous EEG and
fMRI scanning. fMRI images were acquired in a 3T GE Signa
LX scanner (General Electric, Milwaukee, WI, USA) using a
BOLD-weighted gradient-recalled echo-planar imaging sequence
(TR = 3 s; TE = 40 ms; FOV = 24 × 24 cm; 128 × 128 matrix;
25 interleaved 4 mm slices with 1 mm gap). In three stud-
ies (Subjects 3, 7, and 9 in Table 1) a slightly different fMRI
acquisition was used (TR = 3 s; TE = 40 ms; FOV = 22 × 22 cm;
64 × 64 matrix; 35 interleaved 3.2 mm slices with 0.2 mm
gap).

Simultaneous EEG was acquired during fMRI scanning
using an MR-compatible EEG system (developed in-house)

with scalp electrodes positioned in the standard 10–20 loca-
tions and filtering to remove the effect of cardioballistic and
motion artifacts (Masterton et al., 2007). The patients’ EEG
was reviewed by experienced electroencephalographers accord-
ing to the guidelines developed in our group (Flanagan
et al., 2009) and the timing of all identified CTS was
recorded.

2.6.3. Data analysis
Image conversion was performed using iBrain (Abbott and
Jackson, 2001), preprocessing and statistical analysis utilized
SPM8 with the aid of the iBrain Analysis Toolbox for SPM
(Abbott et al., 2011; www.brain.org.au/software). Preprocessing
included temporal alignment of slices within each volume to
the first slice, rigid-body spatial realignment to correct for
subject motion, spatial normalization to a symmetric tem-
plate and spatial smoothing with a Gaussian kernel (FWHM =
8 mm). The symmetric template was created specifically for
this patient group using SPM8 software by normalizing each
subject’s brain to MNI space, averaging these images together
(along with a left-right flipped version of each image), and
then smoothing with an 8 mm Gaussian filter (Wilke et al.,
2002). To enable grouping of data between subjects with left
and right-sided CTS, the data from subjects with right-sided
CTS were flipped in the left-right direction prior to group
analysis.

FIGURE 2 | Spatial maps (thresholded at p < 0.05) with time courses for

subject 11 indicating the differences in activation with and without the

use of SOCK (left and right columns respectively). Activation is overlaid
onto a mean functional image for this subject. Warm and cool colors indicate
respectively a positive or negative correlation with the component time

course. Arrows in green show areas of increased activation within the region
of interest when SOCK was used. Furthermore, the shape of the time-course
after applying SOCK is also qualitatively smoother then prior to using SOCK.
The zero time-point, indicated by the vertical dotted line in the center of the
time-course plot, represents the onset time of the EEG discharge.
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3. RESULTS
3.1. ICA ANALYSIS AND SOCK CLASSIFICATION
MELODIC ICA yielded an average of 114 components per sub-
ject (range: 57–285). SOCK classified between 27 and 53% of each
subject’s components as artifact (mean 41%). These ICs were dis-
carded to construct a de-noised fMRI data set for each subject.
See Table 2 for summary details of the ICA decomposition and
the SOCK classification for all 14 subjects.

3.2. INDIVIDUAL SUBJECT EVENT-RELATED ANALYSIS
Fifteen individual analyses were performed for eICA, each with
and without the use of SOCK to de-noise fMRI data. This

included two analyses for the patient (Subject 5) that had inde-
pendent left and right-sided CTS, which were analyzed as separate
events. The results are summarized in Table 3.

3.3. eICA (WITHOUT SOCK)
eICA estimated an average of 7 (range: 2–11) different compo-
nents for each analysis. In 11 out of 15 analyses (73%) at least one
component was identified showing activity in the vicinity of the
ipsilateral rolandic region.

3.4. eICA (WITH SOCK)
After de-noising the fMRI data with SOCK, eICA estimated an
average of 6 (range: 1–10) different components for each analysis.

FIGURE 3 | Spatial maps (thresholded at p < 0.05) with time courses

for all subjects (except subject 11 already shown in Figure 2)

indicating the differences in activation with and without the use of

SOCK (left and right columns respectively). Activation is overlaid onto
a mean functional image for each subject. Warm and cool colors
indicate respectively a positive or negative correlation with the
component time course. The time course axes are similar to Figure 2.

The zero time-point, indicated by the vertical dotted line in the center of
each time-course plot, represents the onset time of the EEG discharge.
Two subjects (8 and 10) yielded activation in the vicinity of the ipsilateral
rolandic region when analyzed with eICA after de-noising with SOCK but
not when analyzed by eICA alone. Furthermore, the shape of the
time-course after applying SOCK is also qualitatively smoother then prior
to using SOCK.
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In 13 out of 15 analyses (87%) at least one component was iden-
tified showing activity in the vicinity of the ipsilateral rolandic
region.

Figure 2 displays sample slices and time-courses of the
rolandic component derived from an eICA of subject 11, with
and without SOCK. Activation is overlaid onto a mean functional
image for that subject. Comparison of the left (without SOCK)
and right (with SOCK) columns shows more robust activation
in the area of interest after de-noising the data with SOCK and
additional activation on the contralateral side (see green arrows).
Furthermore, the shape of the time-course after applying SOCK
is also qualitatively smoother.

The associated spatial maps (with and without SOCK) and
time courses for all remaining subjects are provided in Figure 3.

In two of these analyses (Subjects 8 and 10) activation in the
vicinity of the ipsilateral rolandic region was identified when ana-
lyzed with eICA after de-noising with SOCK but not when ana-
lyzed by eICA alone (see Figure 3). The shape of the time-courses
after applying SOCK for these subjects was also qualitatively con-
sistent with the other subjects’ peri-rolandic component time
courses.

Furthermore, using SOCK prior to running an eICA has qual-
itatively decreased the noise in both the spatial maps and time
courses. For example, the spatial maps for Subjects 9 and 13
(Figure 3) are observed to have little or no activation on the edge
of the brain and in the CSF after applying SOCK. In addition,

the time courses are observed to follow a BOLD response more
consistent with the other subjects.

3.5. GROUP EVENT-RELATED ANALYSIS
3.6. eICA (WITHOUT SOCK)
eICA group analysis (without SOCK) estimated 14 different com-
ponents out of which a single CTS-related component of interest
was identified low in the ipsilateral post-central gyrus, extending
along its opercular surface into the lateral fissure. A much smaller
activation was also seen on the contralateral side (see “Without
SOCK” panel in Figure 4). It is important to note that the term
“activation” used here is defined based upon the direction of
signal change near the EEG event onset at time 0; however if the
haemodynamic contribution to the response is assumed canon-
ical then the larger than canonical post event dip suggests there
is substantial neuronal deactivation following an initial smaller
positive neuronal activation event in this component.

3.7. eICA (WITH SOCK)
The SOCK+eICA analysis yielded 15 different components out
of which two CTS-related components of interest were identi-
fied; (1) low in the ipsilateral post-central gyrus, extending along
its opercular surface into the lateral fissure (also observed in
eICA without SOCK analysis) and (2) a bilateral component
containing de-activation in both the ipsilateral region above and
contralaterally (see Figure 4).

FIGURE 4 | The group eICA result. Left panel: Only a single group
component of interest was found for the eICA only analysis (Without SOCK),
which is dominated by activity low in the ipsilateral post-central gyrus,
extending along its opercular surface into the lateral fissure. A much smaller
region was also seen on the contralateral side. Right panel: The
SOCK+eICA analysis separated these regions into distinct components with
different time-courses and revealed a substantially larger extent of
de-activation on the contralateral side (see far right component) that appears
to have a time course somewhat delayed from the ipsilateral-only

component. Arrows in green highlight areas of substantial improvement
when SOCK was used. The components are displayed as z-statistic maps
thresholded at p < 0.05 corrected for multiple comparisons and overlaid upon
the group-mean fMRI image. The time-course at the bottom represents the
average modulation of this network across all the subjects i.e., the
event-related impulse response function. The zero time-point, indicated by
the vertical dotted line in the center of the plot, represents the onset time of
the EEG discharge. Warm and cool colors indicate respectively a positive or
negative correlation with the component time course.
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4. DISCUSSION
In this paper we have demonstrated the superiority of
SOCK+eICA compared with eICA alone for mapping functional
brain activity associated with epileptic spikes. It has previously
been demonstrated that that eICA is superior to conventional
event-related analyses when the BOLD response does not closely
match the canonical haemodynamic response function (HRF)
(Masterton et al., 2013b). Taken together, our results suggest that
SOCK+eICA should replace eICA alone as the preferred method
for such analyses.

The centro-temporal spikes of Rolandic epilepsy served as a
good test case for our analysis methodology, as it is known that
the BOLD response does not well match the standard HRF. This
is in part due to neuronal activity associated with the spikes
being detectable with fMRI before activity becomes sufficiently
widespread and synchronized to manifest as a spike visible on
the EEG, and in part due to a larger post-spike undershoot
(Masterton et al., 2010, 2013b). The eICA procedure provides a
less constrained approach than a GLM incorporating a conven-
tional HRF model, however this flexibility comes at the cost of
lower power (increased susceptibility to noise). Whilst the event-
related nature of the eICA approach provides a much stronger
constraint than conventional ICA on the full fMRI time series, the
eICA method is still susceptible to noise, particularly in the initial
deconvolution step. Temporally non-stationary noise would be
expected to increase the heterogeneity of the raw signal response
associated with events, making deconvolution more challeng-
ing, and spatial non-stationary of the noise would be expected
to increase heterogeneity of the derived event-related responses
across voxels. This would then deleteriously affect the perfor-
mance of the subsequent ICA of the event-related responses. Thus
using a procedure which removes a substantial quantity of noise
from the input data may improve the end result. The SOCK pro-
cedure is a standalone, automated and objective method which is
able to remove a substantial fraction of noise without removing
biologically interesting signal (Bhaganagarapu et al., 2013). The
results of the present study indicate in practice the improvement
can be substantial when SOCK is used to de-noise fMRI data prior
to eICA.

Applying SOCK+eICA to the existing EEG-fMRI of our
BECTS cohort has improved the confidence in the initial results
of Masterton et al. (2010) and Masterton et al. (2013b) (i.e., that
the centro-temporal spikes arise from low in the ipsilateral post-
central gyrus, extending along its opercular surface into the lateral
fissure), with two of the previously negative-result individuals
now showing activity in this region. There now remain just two
individuals with negative results: These two subjects (3 and 6 in
Table 1) along with subject 14 registered the smallest number of
events compared to all other subjects. The lower the event count,
the less power one has to detect an effect (Flanagan et al., 2009).

In these BECTS subjects the epileptic spikes were unilateral
during the imaging session. Homologous regions of cortex are
connected via fibers projecting through the corpus callosum and
typically inhibit neural activity in the contralateral hemisphere.
The new SOCK+eICA group analysis reveals a more complex
response than previously evident, with initial ipsilateral activity,
followed by a more extensive bilateral pattern of deactivation (i.e.,

the time-course of the deactivation component displays a later
rise and peak compared to the ipsilateral-only component). We
would interpret the new finding as distinguishing the activation
of the ipsilateral cortex during epileptiform events, and a later
bilateral decrease in activity in response to this activation.

5. CONCLUSION
We have demonstrated a novel application of our ICA classi-
fier, SOCK, to de-noise fMRI prior to an event-related ICA in
patients with rolandic epilepsy. The procedure outlined in this
paper harnesses the advantage of both techniques: (1) SOCK de-
noises fMRI in an objective and automated manner utilizing the
entire fMRI time-series. (2) eICA utilizes the EEG information
to derive event-related responses which are input into an ICA,
thus constraining the final eICA decomposition to a small num-
ber of components time-locked to the events of interest. The use
of SOCK increased power to detect activity of interest in both
individual and group analyses.

ACKNOWLEDGMENTS
This study was supported by the National Health and Medical
Research Council of Australia (Project grants 368650 and
318900, Program Grant 628952, and a practitioner fellow-
ship 527800 to Graeme D. Jackson), the Austin Hospital
Medical Research Foundation, and the Operational Infrastructure
Support Program of the State Government of Victoria, Australia.

REFERENCES
Abbott, D., Masterton, R., Waites, A., Bhaganagarapu, K., Pell, G., Harvey, M.,

et al. (2011). “The iBrain™ analysis toolbox for SPM,” in Proceedings of the 17th
Annual Meeting of the Organisation for Human Brain Mapping, Quebec, QC.

Abbott, D. F., and Jackson, G. D. (2001). iBrain software for analysis of visu-
alization of functional MR images. Neuroimage 13, s59. doi: 10.1016/S1053-
8119(01)91402-8

Bai, X., Vestal, M., Berman, R., Negishi, M., Spann, M., Vega, C., et al. (2010).
Dynamic time course of typical childhood absence seizures: EEG, behavior,
and functional magnetic resonance imaging. J. Neurosci. 30, 5884–5893. doi:
10.1523/JNEUROSCI.5101-09.2010

Beckmann, C., and Smith, S. (2004). Probabilistic independent component anal-
ysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23,
137–152. doi: 10.1109/TMI.2003.822821

Beckmann, C. F. (2012). Modelling with independent components. Neuroimage 62,
891–901. doi: 10.1016/j.neuroimage.2012.02.020

Bhaganagarapu, K., Jackson, G. D., and Abbott, D. F. (2013). An automated method
for identifying artifact in independent component analysis of resting-state
fMRI. Front. Hum. Neurosci. 7:343. doi: 10.3389/fnhum.2013.00343

Biswal, B., Deyoe, E. A., and Hyde, J. S. (1996). Reduction of physiological fluc-
tuations in fMRI using digital filters. Magn. Reson. Med. 35, 107–113. doi:
10.1002/mrm.1910350114

Bnar, C.-G., Gross, D. W., Wang, Y., Petre, V., Pike, B., Dubeau, F., et al. (2002).
The BOLD response to interictal epileptiform discharges. Neuroimage 17,
1182–1192. doi: 10.1006/nimg.2002.1164

Calhoun, V. D., Liu, J., and Adali, T. (2009). A review of group ICA for fMRI data
and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1
Suppl):S163–S172. doi: 10.1016/j.neuroimage.2008.10.057

Calhoun, V. D., Maciejewski, P. K., Pearlson, G. D., and Kiehl, K. A. (2008).
Temporal lobe and default hemodynamic brain modes discriminate between
schizophrenia and bipolar disorder. Hum. Brain Mapp. 29, 1265–1275. doi:
10.1002/hbm.20463

Carney, P. W., Masterton, R. A. J., Harvey, A. S., Scheffer, I. E., Berkovic, S. F.,
and Jackson, G. D. (2010). The core network in absence epilepsy. differ-
ences in cortical and thalamic BOLD response. Neurology 75, 904–911. doi:
10.1212/WNL.0b013e3181f11c06

Frontiers in Neuroscience | Brain Imaging Methods September 2014 | Volume 8 | Article 285 | 8104

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Bhaganagarapu et al. SOCK can improve the performance of event-related ICA

de Curtis, M., Jefferys, J. G. R., and Avoli, M. (2012). “Interictal epileptiform
discharges in partial epilepsy: complex neurobiological mechanisms based
on experimental and clinical evidence,” in Jasper’s Basic Mechanisms of the
Epilepsies, 4th Edn National Center for Biotechnology Information (US), eds J.
L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, and A. V. Delgado-Escueta
(Bethesda, MD: Oxford University Press), 213–223.

De Martino, F., Gentile, F., Esposito, F., Balsi, M., Di Salle, F., Goebel, R., et al.
(2007). Classification of fMRI independent components using IC-fingerprints
and support vector machine classifiers. Neuroimage 34, 177–194. doi: 10.1016/j.
neuroimage.2006.08.041

Flanagan, D., Abbott, D. F., and Jackson, G. D. (2009). How wrong can we
be? the effect of inaccurate mark-up of EEG/fMRI studies in epilepsy. Clin.
Neurophysiol. 120, 1637–1647. doi: 10.1016/j.clinph.2009.04.025

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., and Turner, R. (1996).
Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355.
doi: 10.1002/mrm.1910350312

Glover, G. H., Li, T. Q., and Ress, D. (2000). Image-based method for retrospective
correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson.
Med. 44, 162–167. doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>

3.0.CO;2-E
Himberg, J., Hyvärinen, A., and Esposito, F. (2004). Validating the indepen-

dent components of neuroimaging time series via clustering and visualization.
Neuroimage 22, 1214–1222. doi: 10.1016/j.neuroimage.2004.03.027

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent
component analysis. IEEE Trans. Neural Netw. 10, 626–634. doi: 10.1109/72.
761722

Josephs, O., Turner, R., and Friston, K. (1997). Event-related f MRI. Hum.
Brain Mapp. 5, 243–248. doi: 10.1002/(SICI)1097-0193(1997)5:4<243::AID-
HBM7>3.0.CO;2-3

Kochiyama, T., Morita, T., Okada, T., Yonekura, Y., Matsumura, M., and Sadato,
N. (2005). Removing the effects of task-related motion using independent-
component analysis. Neuroimage 25, 802–814. doi: 10.1016/j.neuroimage.2004.
12.027

Kundu, P., Inati, S. J., Evans, J. W., Luh, W.-M., and Bandettini, P. A. (2012).
Differentiating BOLD and non-BOLD signals in fMRI time series using multi-
echo EPI. Neuroimage 60, 1759–1770. doi: 10.1016/j.neuroimage.2011.12.028

Lemieux, L., Salek-Haddadi, A., Josephs, O., Allen, P., Toms, N., Scott, C., et al.
(2001). Event-related fMRI with simultaneous and continuous EEG: descrip-
tion of the method and initial case report. Neuroimage 14, 780–787. doi:
10.1006/nimg.2001.0853

LeVan, P., Tyvaert, L., Moeller, F., and Gotman, J. (2010). Independent compo-
nent analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from
focal epilepsy patients. Neuroimage 49, 366–378. doi: 10.1016/j.neuroimage.
2009.07.064

Lillywhite, L. M., Saling, M. M., Simon Harvey, A., Abbott, D. F., Archer, J. S.,
Vears, D. F., et al. (2009). Neuropsychological and functional MRI studies pro-
vide converging evidence of anterior language dysfunction in BECTS. Epilepsia
50, 2276–2284. doi: 10.1111/j.1528-1167.2009.02065.x

Masterton, R. A. J., Abbott, D. F., Fleming, S. W., and Jackson, G. D. (2007).
Measurement and reduction of motion and ballistocardiogram artefacts
from simultaneous EEG and fMRI recordings. Neuroimage 37, 202–211. doi:
10.1016/j.neuroimage.2007.02.060

Masterton, R. A. J., Carney, P. W., Abbott, D. F., and Jackson, G. D. (2013a).
Absence epilepsy subnetworks revealed by event-related independent compo-
nents analysis of functional magnetic resonance imaging. Epilepsia 54, 801–808.
doi: 10.1111/epi.12163

Masterton, R. A. J., Harvey, A. S., Archer, J. S., Lillywhite, L. M., Abbott, D. F.,
Scheffer, I. E., et al. (2010). Focal epileptiform spikes do not show a canonical
BOLD response in patients with benign rolandic epilepsy (BECTS). Neuroimage
51, 252–260. doi: 10.1016/j.neuroimage.2010.01.109

Masterton, R. A. J., Jackson, G. D., and Abbott, D. F. (2013b). Mapping brain
activity using event-related independent components analysis (eICA): specific

advantages for EEG-fMRI. Neuroimage 70, 164–174. doi: 10.1016/j.neuroimage.
2012.12.025

McKeown, M., Hu, Y.-J., and Wang, Z. (2006). “ICA denoising for event-related
fMRI studies,” in In Engineering in Medicine and Biology Society, 2005. IEEE-
EMBS 2005. 27th Annual International Conference (Shanghai), 157–161.

McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell,
A. J., et al. (1998). Analysis of fMRI data by blind separation into independent
spatial components. Hum. Brain Mapp. 6, 160–188. doi: 10.1002/(SICI)1097-
0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1

Perlbarg, V., Bellec, P., Anton, J.-L., Plgrini-Issac, M., Doyon, J., and Benali,
H. (2007). CORSICA: correction of structured noise in fMRI by automatic
identification of ICA components. Magn. Reson. Imaging 25, 35–46. doi:
10.1016/j.mri.2006.09.042

Rodionov, R., De Martino, F., Laufs, H., Carmichael, D. W., Formisano, E.,
Walker, M., et al. (2007). Independent component analysis of interictal
fMRI in focal epilepsy: comparison with general linear model-based EEG-
correlated fMRI. Neuroimage 38, 488–500. doi: 10.1016/j.neuroimage.2007.
08.003

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L.,
and Smith, S. M. (2014). Automatic denoising of functional MRI data: com-
bining independent component analysis and hierarchical fusion of classifiers.
Neuroimage 90, 449–468. doi: 10.1016/j.neuroimage.2013.11.046

Sochat, V., Supekar, K., Bustillo, J., Calhoun, V., Turner, J. A., and Rubin, D. L.
(2014). A robust classifier to distinguish noise from fMRI independent compo-
nents. PLoS ONE 9:e95493. doi: 10.1371/journal.pone.0095493

Stevens, M. C., Kiehl, K. A., Pearlson, G., and Calhoun, V. D. (2007). Functional
neural circuits for mental timekeeping. Hum. Brain Mapp. 28, 394–408. doi:
10.1002/hbm.20285

Storti, S., Formaggio, E., Bertoldo, A., Manganotti, P., Fiaschi, A., and Toffolo,
G. (2013). Modelling hemodynamic response function in epilepsy. Clin.
Neurophysiol. 124, 2108–2118. doi: 10.1016/j.clinph.2013.05.024

Sui, J., Adali, T., Pearlson, G. D., and Calhoun, V. D. (2009). An ICA-based
method for the identification of optimal FMRI features and components
using combined group-discriminative techniques. Neuroimage 46, 73–86. doi:
10.1016/j.neuroimage.2009.01.026

Thomas, C. G., Harshman, R. A., and Menon, R. S. (2002). Noise reduction in
BOLD-Based fMRI using component analysis. Neuroimage 17, 1521–1537. doi:
10.1006/nimg.2002.1200

Tohka, J., Foerde, K., Aron, A. R., Tom, S. M., Toga, A. W., and Poldrack, R. A.
(2008). Automatic independent component labeling for artifact removal in
fMRI. Neuroimage 39, 1227–1245. doi: 10.1016/j.neuroimage.2007.10.013

Wilke, M., Schmithorst, V. J., and Holland, S. K. (2002). Assessment of spatial
normalization of whole-brain magnetic resonance images in children. Hum.
Brain Mapp. 17, 48–60. doi: 10.1002/hbm.10053

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 June 2014; accepted: 22 August 2014; published online: 19 September
2014.
Citation: Bhaganagarapu K, Jackson GD and Abbott DF (2014) De-noising with a
SOCK can improve the performance of event-related ICA. Front. Neurosci. 8:285. doi:
10.3389/fnins.2014.00285
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers
in Neuroscience.
Copyright © 2014 Bhaganagarapu, Jackson and Abbott. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org September 2014 | Volume 8 | Article 285 | 9105

http://dx.doi.org/10.3389/fnins.2014.00285
http://dx.doi.org/10.3389/fnins.2014.00285
http://dx.doi.org/10.3389/fnins.2014.00285
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL RESEARCH ARTICLE
published: 10 October 2014

doi: 10.3389/fneur.2014.00201

Study on the relationships between intrinsic functional
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Rationale: Simultaneous recording of electroencephalogram and functional MRI (EEG–
fMRI) is a powerful tool for localizing epileptic networks via the detection of hemodynamic
changes correlated with interictal epileptic discharges (IEDs). fMRI can be used to study
the long-lasting effect of epileptic activity by assessing stationary functional connectivity
during the resting-state period [especially, the connectivity of the default mode network
(DMN)]. Temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) are asso-
ciated with low responsiveness and disruption of DMN activity. A dynamic functional
connectivity approach might enable us to determine the effect of IEDs on DMN connec-
tivity and to better understand the correlation between DMN connectivity changes and
altered consciousness.

Method: We studied dynamic changes in DMN intrinsic connectivity and their relation to
IEDs. Six IGE patients (with generalized spike and slow-waves) and 6 TLE patients (with
unilateral left temporal spikes) were included. Functional connectivity before, during, and
after IEDs was estimated using a sliding window approach and compared with the baseline
period.

Results: No dependence on window size was observed. The baseline DMN connectivity
was decreased in the left hemisphere (ipsilateral to the epileptic focus) in TLEs and was
less strong but remained bilateral in IGEs. We observed an overall increase in DMN intrin-
sic connectivity prior to the onset of IEDs in both IGEs and TLEs. After IEDs in TLEs, we
found that DMN connectivity increased before it returned to baseline values. Most of the
DMN regions with increased connectivity before and after IEDs were lateralized to the left
hemisphere in TLE (i.e., ipsilateral to the epileptic focus).

Conclusion: Results suggest that DMN connectivity may facilitate IED generation and may
be affected at the time of the IED. However, these results need to be confirmed in a larger
independent cohort.

Keywords: default mode network, functional connectivity, dynamic, epileptic interictal event, temporal lobe
epilepsy, idiopathic generalized epilepsy, posterior cingulate gyrus, precuneus

INTRODUCTION
Epilepsy is a common neurological disease defined by the occur-
rence of electrically and clinically measurable epileptic seizures.

Abbreviations: BOLD, blood oxygen level dependent; DMN, default mode network;
dMPFC, dorsal medial prefrontal cortex; EEG, electroencephalogram; fMRI, func-
tional magnetic resonance imaging; HRF, hemodynamic response function; ICA,
independent component analysis; IED, interictal epileptic discharge; IGE, idiopathic
generalized epilepsy; IPL, inferior parietal lobule; MFG, middle frontal gyrus; MTG,
middle temporal gyrus; NBS, network-based statistics; PCC, precuneus/posterior
cingulate cortex; PHG, parahippocampal gyrus; RSN, resting-state network; TLE,
temporal lobe epilepsy; TP, temporal pole; WOI, window of interest.

Cognitive and behavioral functions may be altered, leading to
severe social and professional handicap. By definition, the patient’s
clinical state is altered at the time of the ictal event and during the
immediate postictal period. However, functional brain impair-
ments can also be observed during the interictal state. These
cognitive impairments may be due to factors such as structural
lesions,medication effects, the underlying cause of epilepsy,and/or
the occurrence of interictal epileptic discharges (IEDs) observed
in electroencephalography (EEG). The repetition of IEDs may be
responsible for long-lasting effects on the brain’s functional plas-
ticity and may thus lead to cognitive disturbances (1). However, a
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transient cognitive impairment has also been observed at the time
of each IED (2–5). This effect has been noticed for both generalized
spike and wave bursts and focal epileptic events.

Simultaneous recording of the EEG and functional magnetic
resonance imaging (fMRI) has provided new insights into the
effect of IEDs on brain function. Event-related analyses have
shown that at the time of the IED, the blood-oxygen-level-
dependent (BOLD) signal increases at the epileptic focus (cor-
responding to activation). Furthermore, the BOLD signal may
decrease to a variable extent at some distance from the epilep-
tic focus (i.e., deactivation). In group analyses, this deactivation
appears to involve a specific brain functional network – the default
mode network (DMN) (6–9). The DMN involves several cortical
areas (such as the posterior cingulate, the precuneus, the bilateral
inferior parietal lobule, and the mesial prefrontal cortex) (10–13).
This network is usually activated during wakefulness at rest and
deactivated during sleep or during a task that requires great atten-
tion (14). The alteration in DMN activity observed at the time of
an IED suggests that epileptic activity has a direct effect on aware-
ness and cognitive performance. Deactivation within the DMN
has been observed in patients with idiopathic generalized epilepsy
(IGE) (6, 15, 16) and patients with temporal lobe epilepsy (TLE)
(7, 8). However, the exact pattern of DMN deactivation has not
been studied with respect to the side of the focus or the exact type
of IED (17).

The long-lasting effect of epileptic activity on the brain’s func-
tional organization during a prolonged resting-state period (clas-
sically 10 min) has been investigated in network functional con-
nectivity studies. Based on the analysis of coherent low-frequency
BOLD fluctuations, several local spatial patterns [defined as
resting-state networks (RSNs)] have been identified and thus con-
stitute a new functional map of the brain (12). The DMN is one of
these distinct RSNs; in healthy subjects, its intrinsic connectivity
is characterized by low intra- and inter-individual variability (18).
Moreover, structural imaging analysis suggests that RSNs (such as
the DMN) reflect anatomic connectivity (19, 20). DMN connec-
tivity is low in IGE patients, relative to healthy controls (21–24).
Similar patterns of low DMN connectivity have been observed in
TLE patients (25–28). Pittau et al. (29) also demonstrated that the
mesial structures in TLE patients were less connected to the DMN.

Studies of DMN connectivity and epilepsy have been per-
formed on 10-min resting-state blocks (based on the assumption
that DMN connectivity is stable over 10 min). However, there is
increasing evidence to suggest that the intrinsic connectivity and
spatial extent of the RSNs fluctuates in a periodic manner (30–35).
Furthermore, epileptic activity may affect these fluctuations (36).
Characterization of these influences is crucial for better under-
standing the epileptic discharge and its relationship with cognitive
disturbances in patients with epilepsy.

In the present study, we assessed the dynamic changes in DMN
intrinsic connectivity and its relation to epileptic activity. We
hypothesized that DMN connectivity is affected by the occurrence
of IEDs (i.e., connectivity differs before, during, and after IEDs).
However, these changes may depend on the type of IED. To bet-
ter characterize these effects, we chose to evaluate two different
types of IEDs: (i) generalized spike and slow-wave bursts and (ii)
left focal temporal epileptic spikes. A generalized spike and wave

burst might affect the connectivity of the DMN on both sides
of the brain, whereas, focal IED might lead to more lateralized
changes in the DMN. Our objective was to better understand the
relationship between the occurrence of IEDs and the disturbance
of RSNs.

MATERIALS AND METHODS
SUBJECTS
We retrospectively selected patients registered in the EEG–fMRI
databases in the Department of Clinical Neurophysiology at Lille
University Medical Center (Lille, France) (from April 2011 to
December 2013) and the Department of Neuropaediatrics at the
University Hospital of Kiel (Kiel, Germany) (from May 2006 to
December 2009).

The inclusion criteria were related to the number and type of
IEDs. We first selected IGE patients with isolated or short general-
ized spike and wave events recorded during the EEG–fMRI session.
Secondly, we selected focal epilepsy patients with unilateral tempo-
ral IEDs. Patients were suffering from epilepsy with temporal lobe
involvement (TLE). In order to perform a group analysis of our
data, we chose patients with IEDs from the temporal lobe on the
same side of the brain (the left). Patients had to present no more
than two types of IED, and only the predominant IED-related
to the epileptic focus was studied. Absence or focal seizures were
not considered and patients with seizures during the fMRI session
were excluded from the study. Furthermore, patients selected for
this study had to present at least 10 separate IEDs during the EEG–
fMRI session. And, due to our constraints of the analysis explained
in Section “Dynamical Functional Connectivity,” an interval of at
least 80 s between each IED was required for completion of the
analysis. All patients were right-handed. Data from EEG–fMRI
sessions with high-amplitude movement artifacts (>1 mm in each
direction) were excluded from the analysis. Hence, patients were
included in one of two groups: (i) IGE patients with typical, gen-
eralized slow-wave spikes, or short bursts on the EEG, and (ii) TLE
patients with unilateral (left) temporal spikes.

All patients were receiving antiepileptic medication at the time
of the study (Table 1). The patients (and their parents in minors)
gave their written informed consent to participation. The study
was performed according to the Declaration of Helsinski and the
protocol was approved by the institutional research ethics boards.

EEG–fMRI ACQUISITION
In Lille, the EEG signal was recorded using 25 separate scalp MRI-
compatible electrodes placed according to the international 10–20
system. In Kiel, a 30-electrodes Easycap system (Falk-Minow Ser-
vices, Herrsching-Breitbrunn, Germany) was used. In both cases,
FCz was the reference. To improve patient comfort and reduce
movement artifacts, the head was maintained in position with
foam cushions. Data were transmitted via an optic fiber cable from
a Micromed amplifier (Micromed, Italy, 5 kHz sampling rate) in
Lille and from a BrainAmp-MR amplifier (Brain Products Co.,
Munich, Germany, 5 kHz sampling rate) in Kiel to the EEG moni-
tor located outside the scanner room. The EEG was recorded with
a 1024 Hz sampling rate.

In both centers, functional imaging was performed with a
3 T MRI scanner (Achieva Philips, Best, The Netherlands) and
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Table 1 | Clinical and EEG characteristics of the patients in the IGE andTLE groups.

Pt Group

center

Sex Age

(years)

Disease

duration

(years)

AEDs Epilepsy type Struct. MRI IEDs

Nb Mean

duration (s)

Side Type and location

1 IGE Lille M 13 9 LMG, VPA Childhood absence

epilepsy

N 20 1.8 – GSW

2 IGE Lille F 23 18 TPM, BZD Juvenile myoclonic

epilepsy

N 14 2.5 – GSW

3 IGE Kiel F 13 10 VPA, LTG,

LEV

Myoclonic absence

epilepsy

N 12 <1 – GSW

4 IGE Kiel M 6 1 VPA, TPM,

LEV

Myoclonic absence

epilepsy

N 12 <1 – GSW

5 IGE Kiel M 10 6 LTG, ESM Childhood absence

epilepsy

N 16 <1 – GSW

6 IGE Kiel M 5 1 LTG, ESM Childhood absence

epilepsy

N 17 2.5 – GSW

7 TLE Lille F 14 10 OXCBZ,

TPM, VPA

Temporo-occipital Temporo-occipital

DNET

14 <1 Left Temporo-occipital

spikes

8 TLE Lille F 20 17 LCM, BZD Fronto-temporal N 22 <1 Left Fronto-temporal spikes

9 TLE Lille F 45 15 OXCBZ,

TPM, BZD

Temporo-

perisylvian

N 14 <1 Left Temporo-perisylvian

rhythmic theta bursts

10 TLE Lille F 33 14 LMG, TPM,

LCM

Temporo-

perisylvian

Temporo-insular

dysplasia

14 <1 Left Temporo-perisylvian

spike and waves

11 TLE Lille F 22 9 CBZ, LCM,

ZNS, BZD

Temporo-occipital N 12 2.4 left Temporo-occipital

polyspikes

12 TLE Lille F 18 9 LMG, LVT,

BZD

Temporal N 10 <1 Left Temporal spikes

Mean±SD
18.5±

11.4

9.9±

5.5

Pt, patient; AEDs, antiepileptic drugs; OXCBZ, oxcarbazepine; TPM, topiramate; LMG, lamotrigine; VPA, valproate; LCM, lacosamide; LVT, levetiracetam; ZNS, zon-

isamide; BZD, benzodiazepin; ETSM, ethosuximide; IEDs, interictal epiletiform discharges; N, normal; GSW, generalized spike and waves; Nb, number; M, male; F,

female; DNET, dysembryoplastic neuroepithelial tumor; Struc., structural.

a standard, 8-channel SENSE head coil. A T1-weighted structural
image (voxel dimensions: 0.8 mm× 0.8 mm× 1.3 mm; slices: 130;
matrix: 288× 288; TE: 2 ms; TR: 20 ms; flip angle: 30°) was used
for superposition on the functional images. For functional data,
six or seven 10-min runs were acquired with a T2*-weighted
EPI sequence (voxel dimensions: 4 mm× 4 mm× 4 mm; slices: 34;
matrix: 64× 64; TE: 35 ms; TR: 2000 ms; flip angle: 90°; volumes:
300) in Lille and with a 15-min T2*-weighted EPI sequence (voxel
dimensions: 3.125 mm× 3.125 mm× 3.79 mm; slices: 30; matrix:
64× 64; TE: 45 ms; TR: 2250 ms; flip angle: 90°; volumes: 540)
in Kiel.

The patients were recorded at rest for up to 2 h inside the
MRI. They were instructed to rest and to keep their eyes closed

throughout the whole MRI session. The EEG signal was used by
a neurologist to monitor the patient during the entire record-
ing. In order to display a clear EEG, the gradient artifact was
corrected online using an adaptive filtering algorithm (Brain Prod-
ucts, Munich, Germany). Only the raw EEG was recorded. No
specific drug dose step-down, sleep deprivation, or seizure induc-
tion methods were used. Patients received chloral hydrate before
the MRI session.

EEG ANALYSIS
The EEG signal was processed off-line using Brain Vision Analyzer
software (Brain Products, Munich, Germany), with correction of
the gradient artifact and filtering of the EEG signal (37). A 50 Hz
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low-pass filter was applied to remove any remaining artifacts.
Independent component analysis (ICA) was used to extract the
ballistocardiogram artifact (38). After correction of the EEG, a
neurologist reviewed the signal. Epileptiform events were marked
according to their type, location, and duration. The predominant
IED type was selected according to its frequency of occurrence and
to its relevance to the suspected epileptic focus.

fMRI PREPROCESSING
Structural data were preprocessed by Freesurfer software (v.5.1)1.
Each subject’s structural data underwent non-uniformity and
intensity correction, skull stripping, and automatic tissue classi-
fication. Preprocessing and analysis of fMRI data were performed
using a combination of Statistical Parametric Mapping software
(SPM122; Wellcome Department of Cognitive Neurology, Univer-
sity College London, UK), and in-house software implemented
in MATLAB v7.11 (Mathworks Inc., Natick, MA, USA). Func-
tional image preprocessing included the removal of the first three
image volumes (to avoid T1 equilibration effects), realignment,
slice-timing correction (using the middle slice as the reference
frame), and registration against the structural data. Nuisance sig-
nals were removed using a two-step linear regression. The first
regression removed linear/quadratic trends (to account for scan-
ner drift) and six motion parameters. The second regression
removed five “nuisance signals” obtained by means of a principal
component analysis of white matter and ventricle signals using
the component-based noise correction (CompCor) approach (39,
40). Residual data were corrected for high temporal frequencies
(low-pass filtering with a 0.1 Hz cut-off).

Lastly, structural and functional preprocessed data were spa-
tially normalized to match the Montreal Neurological Institute
(MNI) template. For that, a non-linear registration was applied to
match the preprocessed T1-weighted data to the MNI template,
using SPM software. Then, the transformation was applied to pre-
processed fMRI data and resampled by spline interpolation into a
final voxel size of 3 mm× 3 mm× 3 mm.

THE DMN MASK
Connectivity-based methods have been used to detect function-
ally connected brain networks with high consistency and repro-
ducibility across subjects and sessions (41). Graph theory has been
recently used to study the topological organization of these brain
networks, by modeling the brain as a collection of nodes (e.g.,
brain regions) and edges (e.g., connectivity) [see Ref. (42), for an
excellent review]. In this study, we are interested in the topological
organization of DMN using a graph theory-based approach.

To study DMN intrinsic connectivity, we had first to identify the
network. In view of the small number of study participants and
the “double dipping” issue (43), the DMN was identified using
data from healthy volunteers (part of the 1000 Functional Con-
nectome Project, a publicly available collection of resting-state
fMRI datasets from a number of laboratories around the world).3

The corresponding institutional review boards have approved or

1http://surfer.nmr.mgh.harvard.edu/
2http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
3http://fcon_1000.projects.nitrc.org/

provided waivers for the submission of anonymized data, which
were obtained after provision of written, informed consent by
each participant. We selected 198 healthy volunteers (76 males
and 122 females, aged 18–26) from the Beijing dataset. The DMN
was then identified using group-level spatial ICA, as implemented
in the GIFT toolbox.4 We used a low-order model (20 compo-
nents) to extract the DMN into one component using the infomax
ICA algorithm repeated 10 times. After thresholding to z-score
>2, seven clusters (or regions of interest) per hemisphere were
identified by selecting 30 voxels around the peak of each cluster.
Thus seven regions per hemisphere were defined in MNI space: the
precuneus/posterior cingulate cortex (PCC) (MNI coordinate: 8,
−53, 15 and −8, −55, 18), inferior parietal lobule (IPL) (MNI
coordinate: 48, −64, 31 and −45, −69, 32), middle temporal
gyrus (MTG) (MNI coordinate: 56,−2,−25 and −57,−6,−22),
parahippocampal gyrus (PHG) (MNI coordinate: 27, −21, −23
and−26,−26,−20), temporal pole (TP) (MNI coordinate: 40, 21,
−37 and −41, 19, -37), middle frontal gyrus (MFG) (MNI coor-
dinate: 6, 54, −9 and −7, 51, −11) and dorsal medial prefrontal
cortex (dMPFC) (MNI coordinate: 20, 39, 46 and−21, 32, 47).

DYNAMICAL FUNCTIONAL CONNECTIVITY
Functional connectivity is commonly computed by estimating the
covariance between regions. However, estimation of the covari-
ance matrix can be a difficult statistical problem for two reasons:
(i) the positive definite constraint on the matrix and (ii) the fact
that there are more connections than samples. Connectivity can
also be measured by estimating the inverse covariance matrix (the
precision matrix) between regions under sparsity constraints. The
zero entries in this matrix correspond to conditional indepen-
dence between regions if the data are normally distributed. This
procedure amounts to limit the number of edges in graphical mod-
els. The graphical least absolute shrinkage and selection operator
(GLASSO) (44) is an extension of the least absolute shrinkage and
selection operator (45) for estimating a sparse precision matrix
with l1-constraint. This approach was recently applied to esti-
mate brain region functional connectivity in a small number of
samples (46–48).

The mean BOLD time courses were extracted from the N = 14
defined DMN regions. The functional connectivity was esti-
mated for four conditions, corresponding to windowed segments
of the time courses [referred to as “before,” “during,” “after,”
and “baseline” windows of interest (WOIs)]. Figure 1 shows
the selection of a WOI of length L. We used a tapered win-
dow created by convolving a rectangle (length: L TRs) with a
Gaussian (σ= 2 TRs). Assuming that an event occurred at time
t, the “before” WOI corresponded to a window from t –L TRs
to t TRs, with a “during” WOI from t TRs to t + L TRs, an
“after” WOI from t + 2L TRs to t + 3L TRs, and a “baseline”
WOI from t + 4L TRs to t + 5L TRs. No other events occurred
during these periods or after 2L TRs from the end of “baseline”
period. In the experiments, we varied the length L from 6 to 10.
In view of our constraints, use of broader WOIs generated too few
events.

4http://mialab.mrn.org/software/gift/index.html
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Lopes et al. Dynamic DMN connectivity and epilepsy

FIGURE 1 | Definition of the WOIs. The red arrow represents the timing of
the epileptic event (according to EEG data). Four types of window were
defined: “before,” “during,” and “after” the epileptic event, together with the

“baseline” period (i.e., with no epileptic events LTR seconds before and after
the window). Tapered windows were used by convolving a rectangle (length:
L TRs) with a Gaussian (σ=2 TRs).

According to the literature (49–51), early BOLD response can
precede the IEDs observed on scalp EEG. Supplementary analy-
ses were conducted to check this effect. We performed addi-
tional EEG–fMRI analyses using different timings of hemody-
namic response function (HRF) preceding the IEDs (−9s, −7s,
−5s, −3s, and 0) [for method see Ref. (49, 50)]. None of our
subjects had significant BOLD changes according to these early
convolved HRFs.

Next, for each condition, the functional connectivities between
each region were computed using the windowed time series
from corresponding WOI of length L. The covariance matrix
was estimated from the regularized precision matrix using the
GLASSO approach (i.e., the Ω that maximizes the penalized Gauss-
ian log-likelihood) by using a coordinate descent optimization
procedure (44):

log det(Ω)− tr
(∑

Ω
)
− λ‖Ω‖1 (1)

where“det”means the determinant of Ω and λ is the regularization
parameter optimized for each subject after evaluating the log-
likelihood of unseen data (windowed covariance matrices from
the same subject) in a cross-validation framework. For each condi-
tion, the regularized covariance matrix W was Fisher-transformed
to improve normality.

For each subject, we applied a general linear model on the
covariance matrices estimated for each condition in the previous
step, in order to investigate its contrast effect size. Thus, four“mean
regularized covariance matrices” M (corresponding to contrast
effect results from each condition) were obtained for each subject.
These matrices will be subjected to later inter-condition analyses.
This step was repeated for different lengths of window [i.e., Ref.
(6, 8, 10)].

STATISTICAL ANALYSIS OF STATIC CONNECTIVITY
Although the direct comparison of the static connectivity between
TLE and IGE groups was not the main aim of this study, we
performed a common graph theory-based approach using sta-
tic functional connectivity. We wished to see if such an analysis of
our patient groups would be consistent with previous results in
the literature.

We compared DMN intrinsic functional connectivity in the
TLE and IGE groups by considering whole time series. For each

subject, the average whole time series of each DMN regions (see
The DMN Mask) was computed and we measured the degree
of DMN integration, as described in Marrelec et al. (52). A
Bayesian numerical sampling scheme was used for the inference
of integration measures in a group analysis. The integration was
approximated from 1000 samples.

STATISTICAL ANALYSIS OF DYNAMIC CONNECTIVITY
In this section, we were interested in DMN intrinsic connectiv-
ity for TLE and IGE groups, separately. We compared the four
conditions for each group of patients. The statistical comparison
of connectivity between conditions was performed using graph
theory. The mean covariance matrices M were represented as a
graph G= (V, E), where V = {Vi}i=1, . . . , N are the nodes (brain
regions) and E = {Ei}i=1, . . . , N; j=1, . . . , N are the elements of the
matrix corresponding to edge weights (or connections). We used a
multiscale approach to investigate the differences between the four
conditions (“before” vs. “during” vs. “after” vs. “baseline” WOIs)
at the network, node, and edge levels.

At the network level, the DMN integration I for each condition
and a given subject s was computed to capture the overall level of
statistical dependence within the network:

Ii,s =
1

2
log

(
det

(
Mi,s

))
, i = 1, . . . , 4 (2)

where Mi,s is the covariance matrix estimated for condition i and
subject s, and “det” means the determinant of the matrix.

A non-parametric paired difference test (Wilcoxon’s signed-
rank test) was applied on integration measures. The resulting
p-values were corrected at p < 0.05 using false discovery rate
(FDR), yielding increased and decreased integrations between two
conditions.

At the node-level, two topology measures were used: the node
strength (i.e., the sum of weights of links connected to a node i,
also known as weighted node degree):

ki =

N∑
j=1

Ei,j (3)

and the clustering coefficient of node i, which is the average“inten-
sity” of triangles around a node and reflects the prevalence of
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clustered connectivity around a node:

Ci =

∑N
j ,h=1

(
wij wihwjh

)1�3

ki (ki − 1)
(4)

The clustering coefficient was computed according to the Brain
Connectivity toolbox.5

A Wilcoxon signed-rank test was applied to these measure-
ments and the resulting p-values were FDR-corrected at p < 0.05
(indicating differences in inter-node connectivity values when
comparing two conditions).

At the edge level, we focused on comparing DMN intrinsic
connectivity at a pairwise level. A network-based statistics (NBS)
approach (53) was used to identify pairs of regions between which
the strength of connectivity was altered in the conditions of one
group. NBS approach has already been used to show altered struc-
tural connectivity in absence epilepsy (54) and TLE (55). For the
comparison of two conditions for S subjects, a primary thresh-
old (p= 0.05) was first applied to a t -statistic computed from the
matrices {Ms}s=1 . . . S. This t -statistic was computed for each graph
edge, in order to determine any connected components and their
size. A family wise error-corrected p-value was then assigned to
each network using permutation testing. The condition label on
each covariance matrix was permuted (10,000 permutations) con-
strained for repeated (within-subject) measures to assess statistical
significance between two conditions. Lastly, only statistically sig-
nificant networks (with a p-value of 0.05 corrected for multiple
comparisons) were selected.

The brain networks were visualized with BrainNet Viewer
software6 (56).

RESULTS
SUBJECTS
In view of the restrictive inclusion criteria, only 12 patients were
eligible for inclusion (6 IGE patients and 6 TLE patients). Details
on all subjects included in the study are listed in Table 1. Indeed,
in Lille and Kiel databases patients’ recruitment was based on
IEDs frequency. Then only active epileptic patients were recorded
in order to maximize the chance to observe IEDs during the
MRI session. In our study, to perform our analysis an interval
of at least 80 s between each IED was required. This criterion
was rarely obtained. In the IGE group, we included four males
and two females (mean± SD age: 11.5± 6.5 years; mean epilepsy
duration: 7.5± 6.4 years). Based on the International League
against Epilepsy criteria (57), three of them were suffering from
childhood absence seizure, two were suffering from myoclonic
absence epilepsy, and one was suffering from juvenile myoclonic
epilepsy (Table 1). The structural MRI datasets were normal in all
patients. The TLE group comprised six females (mean± SD age:
25.3± 11 years; mean epilepsy duration: 12.3± 3.4 years). All six
were suffering from epilepsy involving the left temporal lobe with
left temporal IEDs. The structural MRI datasets were normal in

5http://sites.google.com/site/bctnet/
6http://www.nitrc.org/projects/bnv/

four cases (patients 8, 9, 11, and 12). Patient 10 had a left temporo-
insular dysplasia and patient 7 presented a left temporo-occipital
dysembryoplastic neuroepithelial tumor.

DMN CONNECTIVITY AT THE NETWORK LEVEL
We first compared DMN intrinsic functional connectivity in the
TLE and IGE groups by considering whole time series. Figure 2
shows that DMN integration in the TLE group was significantly
lower than in the IGE group. The error bars indicated the stan-
dard deviation of the 1000 samples. This result was confirmed by
inspection of the DMN maps for the two groups (thresholded for
a z-score >2) using the GroupICA approach (the same method
as used for healthy volunteers in Section “The DMN Mask”)
(Figure 2). In the TLE group, the DMN was composed of the PCC
and the right IPL. In the IGE group, it was composed of the PCC
and the bilateral IPL, MTG, PHG, and dMPFC regions. Further-
more, we observed negative connections between the DMN and
the left superior frontal and inferior frontal gyri for the TLE group.
DMN anti-correlated network was larger in the IGE group (with
the occipital pole and the bilateral inferior frontal and superior
insula gyri) than in the TLE group.

We then studied DMN intrinsic functional connectivity in the
four WOIs. Functional connectivity was estimated using a window
size of eight TRs (from 16s to 18s). When varying the window
size from 6 to 10 TRs, we did not find any significant differences
between the respective results. Hence, a window size of eight TRs
was chosen because it provided a good trade-off between the ability
to resolve dynamic changes and the ease of computing regularized
covariance matrices. Table 2 shows the inter-condition differences
in DMN integration. In the TLE group, significantly stronger inte-
grations were found in the “before” and “after” WOIs than in the
“during” and “baseline” WOIs. There were no significant differ-
ences between “during” and “baseline” WOIs. These data indicate
that the most significant changes occur before and after an epilep-
tic event. However, the DMN intrinsic connectivity was similar
during an IED and during the “baseline” period. In the IGE group,
we did not observe any significant inter-conditions difference in
DMN integration. Although we found greater DMN integration
in the “before,” “during,” and “after” WOIs than in the “baseline”
WOI, the differences were not significant (with p-values of 0.08,
0.16, and 0.18, respectively).

DMN CONNECTIVITY AT THE NODE LEVEL
After studying connectivity at the network level, we sought to
determine which nodes (or brain regions) were most involved in
the inter-condition differences described above. Two topological
measures were used to quantify the nodes’ function: node strength
and the clustering coefficient. Figure 3 summarizes the results
obtained for the TLE group; no significant differences between
“during” and “baseline” WOIs were observed for either measure.
The“before”and“during”WOIs differed most in terms of numbers
of nodes (4), and differed significantly in terms of node strength
and the clustering coefficient. According to both measures, the
PCC and left MFG regions had greater connectivity before an IED
than during an IED. Likewise, the right IPL region had greater
connectivity with its neighborhood. Intrinsic hyperconnectivity of
the DMN was also observed in the “before” WOI comparing with
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FIGURE 2 | DMN functional connectivity inTLE vs. IGE groups. The
DMN integration (dimensionless) was computed for each subject of the
two groups. A Bayesian numerical sampling scheme was used for the
inference of integration measures in a group analysis. The integration was
approximated from 1000 samples. The error bars indicated the standard

deviation of the 1000 samples. There was significantly less integration in
the TLE group than in the IGE group (right panel). To illustrate this
difference, DMN was estimated for each group using the same groupICA
approach than the Section “DMN mask” (left panel). Maps were
thresholded (z -score > 2).

Table 2 | Mean integration of the DMN network for theTLE and IGE

groups under different conditions and for a window size of eightTR.

Before

events

During

events

After

events

Baseline

TLE patients 1.09±0.14 0.89±0.13(+)(x) 1.06±0.09 0.90±0.10(+)(x)

IGE patients 1.15±0.18 1.08±0.20 1.09±0.23 1.01±0.20

(+) and (x) indicate significantly different (p < 0.05) means in a paired Wilcoxon

signed-rank test when comparing the designated column with the “before” and

“after” columns, respectively.

the “baseline” WOI but this phenomenon involved different brain
regions. Only regions from the left hemisphere (PCC–PHG–TP)
differed in terms of clustering coefficient. Lastly, hyperconnectivity
was also observed for regions when comparing the “after” condi-
tion on one hand with the “during” and “baseline” conditions on
the other. However, the hyperconnectivity in the “after” condition
was less intense than for “before” condition. We observed that the
left and right PCC regions were hubs of hyperconnectivity after
(but not before) the IED.

In the IGE group, there were no significant inter-condition
differences in node-level intrinsic connectivity of the DMN
(Figure 4).

DMN CONNECTIVITY AT THE EDGE LEVEL
Our last analysis focused on DMN intrinsic connectivity at the
edge (connection) level. In a first step, a one-sample t -test was
performed on each condition using NBS. For one condition, we
compared the mean regularized covariance matrices from all sub-
jects. Figures 5 and 6 show pairs of regions that were significantly
connected (p < 0.05, corrected) during each condition in both
epilepsy groups. For TLE and IGE groups, the DMN intrinsic con-
nectivity was relatively high for all conditions. We did not see
a condition with very few connected regions. For TLE group, it
seemed that the temporal regions (TP–MTG and PHG) showed
greater connectivity in the “before” and “during” WOIs than in

the “after” and “baseline” WOIs. For IGE group, it seemed that the
DMN intrinsic connectivity was higher in the “before,” “during,”
and “after” WOIs than in the “baseline” WOI.

In a second step, the conditions were compared in a paired t -
test to statistically validate these observations (again using NBS).
The only statistically significant difference was that between the
“before” WOI and all other WOIs in the TLE group (Figure 7). A
larger difference between “before” and “during” WOIs than “after”
or“baseline”WOIs was observed (especially for the left PCC node).
The PCC was more strongly connected with the parietal, frontal,
and temporal regions in the “before”WOI than in the other WOIs.
Although differences were observed in the two hemispheres, the
number of significant connections was higher in the left hemi-
sphere than in the right hemisphere. This difference was especially
marked for connections between extra-temporal and temporal
regions. Only connections between the left PHG and the right
PCC and right IPL were significantly stronger in the “before” WOI
than in the “after” WOI. Lastly, the “before” WOI had greater con-
nectivity between temporal and extra-temporal regions than the
“baseline”WOI. Indeed, differences were observed for connections
involving the left and right TPs and the left PHG. The “after” WOI
did not differ significantly from the “during” and “baseline” WOIs
at this level of connectivity.

DISCUSSION
The present study focused on two different types of epilepsy (TLE
and IGE) with a common clinical feature: reduced responsiveness
at the time of the epileptic discharge. In both types of epilepsy, the
DMN is known to be affected by IEDs (5–7, 13–15). We first com-
pared DMN connectivity (based on a standard analysis) in TLE
and IGE patients. The decrease in DMN functional connectivity
was lateralized (on the focus-side) in TLE patients and was diffuse
in IGE patients. By performing a time-resolved analysis of changes
in DMN intrinsic connectivity, we found that the overall level of
connectivity increased before the onset of the IED in both IGE and
TLE patients. This effect was more marked in the TLE group with
recovery of a spatially bilateral DMN connectivity pattern prior
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FIGURE 3 | Pairwise comparisons of node strength and the
clustering coefficient in theTLE group (in a Wilcoxon signed-rank
test). The node sizes correspond to the mean network measure being
tested. Colors indicated the direction of change (the red lines mean a

decrease, and the blue lines an increase, from the first condition to
the second). Different line style indicated significance (thin for
FDR-corrected p-values <0.1 and thick for FDR-corrected p-values
<0.05).

to the IED. In TLE patients, the DMN connectivity increased after
the IED (predominantly in the PCC) and then returned to baseline
values (baseline DMN configuration).

BASELINE DMN CONNECTIVITY AND EPILEPSY
Before studying the time course of change in the DMN connec-
tivity, we wished to confirm the literature reports of alterations
in DMN connectivity in IGE and TLE patients by analyzing the
resting-state (i.e., the period free of IEDs). We also sought to deter-
mine whether the DMN connectivity pattern differed as a function
of the type of epilepsy. Firstly, we observed that the DMN con-
nectivity pattern remained bilateral in IGE patients. In the TLE
group, the level of DMN connectivity was clearly lower than in
the IGE group (Figure 2); it involved all the nodes but had a
right predominance pattern: the left IPL, MTG, and PHG did not

form part of the DMN. These results agree with literature data on
both types of epilepsy. In TLE patients, only one study failed to
observe an asymmetric pattern with lower functional connectivity
on the focus-side (26). However, the authors in the latter study
did not monitor the resting-state period; residual IEDs (or even
seizures) may have occurred and thus affected the analysis. Zhang
et al. (28) and Luo et al. (22) observed low connectivity in the
dMPFC and very low or even no connectivity in the mesial tempo-
ral lobe and the superior temporal gyrus ipsilateral to the epileptic
focus-side. These researchers observed this pattern in right and
left TLE patients. Although the right TLE patients showed low
functional connectivity in right and left mesial temporal lobes,
the left TLE patients had only low functional connectivity in the
left mesial temporal lobe. Greater functional connectivity in the
posterior cingulate gyrus was only observed in patients with right
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FIGURE 4 | Pairwise comparisons of node strength and the clustering coefficient in the IGE group (in a Wilcoxon signed-rank test) thresholded at
FDR-corrected p-values <0.05. The node sizes correspond to the mean network measure being tested.

FIGURE 5 | Maps of DMN intrinsic connectivity in theTLE group. The
node sizes correspond to the number of connections for a node and the
gray lines show significant connections between pairs of regions

(FDR-corrected p < 0.05). The variable D represents the network density
(i.e., the number of significant connections divided by the total number of
connections).

TLE. Frings et al. (25) confirmed the presence of an asymmetric
DMN disconnection after observing low functional connectiv-
ity between the precuneus and temporal structures in left TLE

patients. In studies using region of interest methods, the over-
all DMN connectivity in IGE patients is found to be lower than
in controls (22–24). Using ICA, Wang et al. (58) observed low
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FIGURE 6 | Maps of DMN intrinsic connectivity in the IGE group. The
node sizes correspond to the number of connections for a node and the
gray lines show significant connections between pairs of regions

(FDR-corrected p < 0.05). The variable D represents the network density
(i.e., the number of significant connections divided by the total number of
connections).

functional connectivity in the dMPFC, precuneus and right angu-
lar gyrus, and high connectivity in the PCC. These MRI studies
did not monitor the EEG. As mentioned above, the epileptic event
might directly interfere with overall DMN connectivity. Recently,
Kay et al. ’s (21) EEG–fMRI study focused on IED-free periods
and observed low overall connectivity in the posterior part of the
DMN (the PCC, the left and right inferior parietal areas and, to
a lesser extent, the left and right prefrontal gyri). Our present
results are similar to the literature findings, even though we had
small numbers of patients in each group. In TLE and IGE patients,
our present results and the literature data emphasize the effect of
chronic epileptic discharges on the overall functional connectiv-
ity of the brain. During clinical epileptic events in IGE and TLE,
cognitive impairment is associated with changes in the DMN con-
figuration. Recurrent IEDs and/or seizures may account for the
observed reorganization of DMN connectivity in both types of
epilepsy. One can speculate that low functional connectivity in the
DMN in IGE and TLE patients may result in cognitive impairment
during the interictal period. Although we observed abnormally
low DMN connectivity in both types of epilepsy, TLE was fur-
ther characterized by a marked lower temporal connectivity in the
left hemisphere (the left PHG, MTG, IPL, and PCC). This clear,
focus-side decrease in DMN connectivity in TLE (relative to IGE)
rules out the hypothesis whereby differences in DMN connectiv-
ity are due to differences in the mean age of IGE and TLE groups.

The mechanisms underlying the changes in the DMN may vary
according to the type of epilepsy. In IGE, seizures and IEDs involve
widespread, bilateral subcortical, and cortical areas at the same
time via thalamo-cortical and cortico-cortical networks (6, 51,
59–65), even though focal onset can sometimes be observed (66,
67). DMN connectivity could be affected by recurrent activation
of these thalamo-cortical and cortico-cortical networks on both
sides of the brain. TLE is defined by the emergence of an aberrant
epileptic network in the temporal lobe, which involves unilat-
eral, local anatomical, and functional reorganization. This local
epileptic activity can affect distant areas of the brain (such as the
DMN), suggesting that focal epileptic discharge has a widespread
asymmetric effect (predominantly on the focus-side).

IEDs AND THE INTRINSIC DYNAMIC CONNECTIVITY OF THE DMN
The main aim of this study was to evaluate the changes in intrin-
sic DMN connectivity before, during, and after the IED. Indeed,
the standard method for measuring DMN connectivity is based on
observing the resting-state period for around 10 min. It is assumed
that brain activity and RSN connectivity are stable during this
time. However, it is known that brain states cannot necessarily
be controlled during the resting-state; subjects are submitted to
variable external and internal stimuli that will affect their brain
processes in different ways. The assumption made in many stud-
ies (that ongoing activity is sufficiently random to be averaged)
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FIGURE 7 | Significant differences between two WOIs in theTLE group. The node sizes correspond to the number of connections for a node and the gray
lines show significant connections between pairs of regions (FDR-corrected p < 0.05).

induces a bias. It is clear that brain activity displays specific fea-
tures that are not random over time (68). Recent research has
demonstrated that RSN connectivity also changes over time, with
periodic fluctuations reflecting different brain states (30–34). This
time course is random. Conventionally defined RSNs correspond
to the sum of the brain’s different network configurations. Over
long time scales, RSNs may reflect anatomic connectivity (19, 20).
Over short time scales, different configurations of each RSN can
be observed but they are always based on the brain’s underlying
functional structure. Based on this concept of dynamic changes in
RSN connectivity, it is possible to evaluate the effect of the IED or
seizure on the RSNs’ respective time courses. Liao et al. (36) were
the first to explore this concept with a view to better understanding
the network properties involved in the onset and offset of absence
seizures. The researchers particularly studied the dynamic inter-
actions between DMN and the thalamic network at and around
the time of the epileptic event. They found a negative correlation
between the two networks at the time of the absence seizure and
a positive correlation during the baseline period. These results
confirmed previous EEG–fMRI studies (based on event-related
analysis) that reported an anti-correlated BOLD signal pattern in

the DMN and in the thalami (overall DMN deactivation and acti-
vation of the thalami) at the time of the absence seizure. In our
present work, we chose to evaluate the effect of the epileptic event
on DMN intrinsic connectivity during different time windows
(before, during, and after the IED and at baseline). Although our
initial analysis showed that overall DMN connectivity is affected
during IED-free periods, it did not provide information on the
specific effect of the IED on connectivity.

DMN connectivity changes during the IED
At the time of the IED, RSN connectivity is necessarily affected
by the epileptic event itself. Indeed, we hypothesized that struc-
tures displaying a significant increase or decrease in the BOLD
(i.e., a hemodynamic response) at the time of the IED are highly
connected. Previous event-related EEG–fMRI studies revealed a
transient decrease in the BOLD signal in DMN areas at the time
of generalized spike and slow-wave discharges and the focal TLE
spikes (6–8, 15, 16). We assumed that the intrinsic connectiv-
ity of the DMN would be affected, with greater connectivity in
the nodes in deactivated brain areas and decreased connectivity
in nodes in non-deactivated areas. In fact, we did not find any
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difference in DMN connectivity when comparing the “during”
period and the baseline period. This means that in IGE patients,
the DMN connectivity remained stable and uniform including
all the usual DMN nodes. This result is consistent with the find-
ings of event-related EEG–fMRI studies, i.e., bilateral, symmetric
DMN deactivation at the time of generalized spike and slow-wave
bursts. In TLE, DMN connectivity was low and asymmetric during
IEDs. The left temporal and parietal DMN nodes (the PHG, IPL,
and MTG) were disconnected from the usual DMN components.
These nodes are probably affected by the specific temporal lobe
epileptic network involved in IED generation. The similar con-
nectivity configurations in the “during” and “baseline” conditions
suggest that the baseline DMN reflects functional (and probably
structural) alterations caused by recurrent epileptic discharges.

DMN connectivity changes before the IED
In both TLE and IGE, we always observed greater DMN connec-
tivity several seconds before the onset of the IED (in the −8 TR
to 0 s WOI). In the TLE group, the DMN configuration “before”
the IED was characterized by an increase in DMN connectivity in
the left PCC and dMPFC (relative to the “during” configuration).
When compared with the “baseline” connectivity pattern, DMN
connectivity was particularly enhanced in the PCC, left MTG, left
PHG, and left TP. In the IGE group, this effect was not statistically
significant. However, we observed a trend toward greater DMN
connectivity during the “before” window than during other time
windows (p= 0.008). In view of the lack of statistical power, we
were not able to identify specific structures that may be particu-
larly affected by this increase in connectivity. This statistical issue
may be due to the small size of the study population and the small
differences between a normal DMN configuration and the IGE
configuration.

Changes in DMN connectivity observed before the electrical
epileptic event at the scalp is consistent with previous observa-
tions of metabolic changes before EEG events. Indeed, several
studies have demonstrated that oxygenation and BOLD changes
may occur several seconds before the generalized spike and slow-
waves or before focal spikes (49–51, 69, 70). Early BOLD changes
could be observed up to 9 s before the EEG event. This long delay
suggests that mechanisms other than “invisible” electrical changes
may precede scalp IED changes, i.e., primary hemodynamic and
metabolic events may occur before the electrical changes. Likewise,
Zhao et al. (71, 72) used optical imaging of the cortical surface to
observe isolated oxygenation changes before the seizure onset. If
focal IEDs and seizures can indeed be triggered or conditioned by
an early hemodynamic and/or metabolic event, the latter appears
to only affect a small, focal, cortical area (50, 71). More recently, a
dynamic time course study (66) reported a significant BOLD sig-
nal increase in DMN structures (the orbitofrontal, cingulate gyrus,
lateral parietal, and precuneus areas) more than 5 s before IEDs in
absence seizures. In contrast, the thalami were only involved later
on in the absence seizures. Our observation of increased con-
nectivity in DMN agrees with these findings. However, the early
change in DMN connectivity suggests the presence of a more com-
plex process, with involvement of brain areas far from the epileptic
focus. We observed increased DMN connectivity over a broad time
window [−8 TRs (−18/−16 s) to 0 s], suggesting that this process

may occur earlier than the early BOLD changes described in the
literature (observed up to 9 s before the EEG event). Vaudano et al.
has suggested that the DMN is involved in IED generation, with a
causal link between early BOLD changes in DMN structures and
the occurrence of IEDs (73). The latter researchers used dynamic
causal modeling to investigate the involvement of the precuneus,
thalamus, and prefrontal cortex in the spike and slow-wave dis-
charges in IGE. They found that the onset of a generalized spike
and slow-waves was linked to early activity in the posterior cingu-
late gyrus. This had already been suspected by Archer et al. (74)
in five IGE patients, in whom only an negative BOLD response
of the posterior cingulate gyrus was observed at the time of the
IEDs. In the present study, we observed changes in the configura-
tion of the DMN, with greater connectivity between the various
DMN structures (including the posterior cingulate gyrus). This
result corroborates Vaudano et al.’s finding. However, our study
was not restricted to the PCC area and we further demonstrated
that this early process affected other DMN nodes. Moreover, we
found that this early process occurred in TLE patients and (albeit
as a non-significant trend) in IGE patients. This implies that a
specific configuration of the DMN is present before IEDs in both
types of epilepsy. We suggest that in IGE, higher intrinsic con-
nectivity in the DMN could activate the thalami and stimulate
specific cortico-subcortical interactions required for generalized
IEDs. We suggest that a similar process occurs in TLE: the change
in DMN connectivity several seconds before the IED is character-
ized by a switch from the usual right predominance DMN pattern
to a bilateral pattern (i.e., increased DMN connectivity in left TP,
PHG, MTG, PCC, and dMPFC). This would mean that structures
on the focus-side are transiently reconnected to other DMN nodes.
This may increase the level of interaction between the DMN and
the epileptic network. The IEDs in IGE and TLE may result from
a particular interaction between a highly connected DMN and the
epileptic network (a focalized, temporal network in TLE and a
cortico-subcortical network in IGE).

This early switch in DMN configuration is not random and
probably reflects a specific change in brain state. We speculate that
the early DMN configuration reflects a physiologic fluctuation in
brain state as a function of external or internal stimuli. This spe-
cific state may facilitate the occurrence of epileptic discharge. As
mentioned above, the DMN is related to the consciousness state
and is modulated by attention-demanding tasks. Interestingly, it
has been firmly established that the occurrence of seizures and
IEDs depends on the level of awareness (2). Although IEDs are
responsible for disrupting normal function (leading to transient
cognitive impairment at the time of the event) (75, 76), there is
also evidence to suggest that cognitive tasks can directly affect the
occurrence of IEDs (3). The level of attention also seems be related
to the frequency of IEDs (2, 77, 78). Aart et al. (2) reported that the
IED frequency in generalized and focal epileptic patients changed
during cognitive testing. More recently, Matsumoto et al. (78) used
a visual memory task to show that the IED rate fell as the gamma
power preceding the IED onset increased. This high-frequency
oscillation modulation was related to a memory-encoding task.
Moreover, Fahoum et al. (17) demonstrated that DMN BOLD
activity fell in parallel with the gamma band power in DMN com-
ponents. Taken as a whole, these findings suggest that specific
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cognitive tasks (leading to gamma power fluctuations) or aware-
ness fluctuations may change DMN connectivity and thus facilitate
IED generation.

DMN connectivity changes after the IED time window
Compared with the “during IED” configuration, we observed
greater connectivity of the right and left PCCs in TLE patients.
There was no clear difference between the “after” and “baseline”
periods. In the“during”period, we found that the PCC and the left-
side temporal and parietal nodes were partly disconnected from
the standard DMN nodes. Recovery of a baseline configuration
means that the PCC has to be transiently hyperconnected to other
DMN nodes (since the left-side temporal and parietal nodes are
still disconnected). The PCC is less extensively connected to other
DMN nodes during the IED, and this configuration is corrected
after the IED. The role of the PCC in consciousness mechanisms
has been studied; it appears to be the primary substrate for con-
scious awareness (79). Alteration of the PCC’s function during
cingulate gyrus epilepsy or absence epilepsy is associated with loss
of consciousness. Transient cognitive impairment is observed dur-
ing focal and generalized IEDs (75, 76). A change in PCC function
may be one explanation. Our results show that the PCC’s connec-
tivity with other parts of the DMN may also be crucial for change in
awareness during IEDs. As Laureys et al. (79) mentioned, the PCC
has a pivotal role in consciousness/awareness regulation because
of its anatomic position (with strong links to the anterior thala-
mus nucleus and the brainstem’s arousal system in the thalamus).
In the present study, we failed to reproduce this effect in the IGE
group. It would be interesting to investigate the involvement of the
PCC in a larger number of IGE patients.

METHODOLOGICAL CONSIDERATIONS AND PERSPECTIVES
Our study focused on the relationship between the IED and
the DMN connectivity changes. This work was based on the
recent observation that RSNs fluctuates over time (30–34) and
the hypothesis that the epileptic activity may affect these fluctua-
tions. For this purpose, dynamic connectivity was estimated using
a sliding window approach described and validated by Chang et al.
(31). If this methodological approach was suitable for our research
hypothesis, it also raised several methodological issues.

Firstly, the main limitation of the present study was the small
number of patients (n= 6) in each group. This was explained
by the severe selection criteria (at least 10 isolated IEDs with
an interval of at least 80 s between each IED were required). To
perform relevant statistical analysis on these small size groups,
non-parametric statistical analyses were used. This study is a pre-
liminary work and it would be useful to increase the sample size for
further analyses (especially to evaluate effect of disease duration,
effect of antiepileptic drugs. . .) and to confirm our hypotheses.
Secondly, the regions of interest of the DMN were chosen using
a group-level spatial ICA of 198 healthy volunteers (76 males and
122 females) aged 18–26. The IGE patients were younger than
the TLE patients and the healthy volunteers. This high range of
ages is related to the different types of epilepsy. Indeed, if IGE is
affecting mostly infants and adolescents, TLE is affecting young
adults and adults. Previous studies of difference in DMN intrinsic
connectivity between children and young adults (80, 81) found

similar spatial patterns, with only weaker DMN connectivity and
decreased spatial extent in the dMPFC in the children. As described
in Section “DMN Connectivity at the Network Level,” we found
weaker DMN connectivity in the TLE group than in the IGE group.
We performed the DMN integration comparisons between IGE
and TLE patients using whole time series without the dMPFC
node. This analysis yielded similar result. Hence, differences in
mean age are unlikely to have biased our data on DMN functional
connectivity changes. The wide range of the subject’s ages could
also be an issue for spatial normalization of fMRI data. Visual
inspection of spatial normalization results was performed to detect
abrupt differences in quality of registration between children and
adults and no relation was found between this spatial normaliza-
tion and age of subjects. Even if the effect of brain maturation
cannot be totally ruled out on our results, the difference observed
between IGEs and TLEs in term of DMN functional connectiv-
ity changes is likely to be due to the type of epileptic disorders
and events. The two groups also exhibit a difference in gender (six
females in TLE group and two females in IGE group). Our results
are unlikely to be affected by this difference as the DMN connec-
tivity has been shown to be robust and similar between sexes (82,
83). Thirdly, to define the different windows (“baseline,” “before,”
“during,” and “after”) we used the IED timing. If the “during” and
“after”windows are easy to define based on the timing and the short
duration of each IED, the “baseline” and the “before” window may
raise more difficulties. The epileptic activity in our work is defined
by the occurrence of IEDs observed on scalp EEG. Scalp EEG can
be blind to deeper epileptic activities especially in TLE patients.
This point is a common limitation of the literature on EEG–
fMRI studies. Facing this difficulty, authors focusing on functional
resting-states networks used also the period of EEG without IEDs
as the baseline to avoid interferences with epileptic activity (19). In
our study, we can suggest that if this deeper epileptic activity had
interfered on our results, because the occurrence of this specific
activity would have been random, our results would have been sta-
tistically irrelevant. We showed that especially in TLEs our results
on DMN intrinsic connectivity are statistically consistent. We sug-
gest then that deeper epileptic activity is possible but is unlikely to
affect our analysis. Intracerebral EEG (iEEG) recording simultane-
ously with fMRI may be one way to control this “deeper” epileptic
activity. However, the spatial sample of intracerebral electrodes is
also limited and can provide other bias. To go further, we checked
that no BOLD change can be observed before the scalp IEDs tim-
ing. Indeed previous works showed that in IGE patients and in
some cases of focal epilepsy (49, 50) an early BOLD change can be
observed. This early BOLD change would affect the signal during
the “before” window and provide heterogeneity between patients.

The dynamic connectivity was estimated using a sliding win-
dow approach. Thus, the length (L) of the windows was an impor-
tant degree of freedom. The dependency of the window of length
L were investigated in the present study, but the range (L= {6 TRs,
. . . , 10 TRs}) was limited due to the need of at least 4L between
each IED. In fact, windows larger than L= 10 TRs (20 s/22.5 s) did
not contain enough IEDs per subject. We varied the window size
from 6 TRs to 10 TRs and did not find any statistically significant
differences between the respective results (Figure S1 in Supple-
mentary Material). We chose to report results with windows of
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length L= 8TRs because it provided a good trade-off between
time resolution and the ability to compute regularized covari-
ance matrices with a low standard deviation. Furthermore, the TR
values in Kiel and in Lille were slightly different (2 s and 2.25 s,
respectively). Although, a variation in TR can impact the quality
of the BOLD signal, the slight overall difference (2 s for an 8 TR
window) is unlikely to be significant. Moreover, we showed that
larger windows (10 TRs) yielded the same results. The next step in
the procedure was the estimation of DMN functional connectivity
within the WOIs. Due to the relatively small window length, we
decided to estimate the precision matrix (the inverse covariance
matrix) rather than the covariance matrix. Use of the precision
matrix is suitable when the number of connections is greater than
the number of samples (as in the present study). However, different
approaches could be used to study the dynamic functional connec-
tivity of the DMN or other brain regions. In this study, the window
length was a degree of freedom of our method. Other approaches
to investigate the dynamic functional connectivity could be used
to avoid the need of defining a window length. Previous studies
were interested in dynamic functional connectivity without the
need of defining WOIs. Two kinds of approaches have been used:
(i) in looking for spatial patterns of dynamic connectivity and (ii)
in investigating the temporal pattern of dynamic connectivity. Li
et al. (84) showed that the time course of functional connectiv-
ity can be divided into quasi-stable segments via a sliding time
window approach. These time segments were used to differenti-
ate between healthy volunteers and patients with post-traumatic
stress disorder. Ma et al. (85) used independent vector analysis
to identify dynamic changes in spatial functional connectivity.
The researchers found significantly more fluctuations and more
variable patterns of spatial network concordance in schizophrenia
patients than in healthy volunteers.

In the validation part of the present study, a graph analysis
was used to compare the “before,” “during,” “after,” and “baseline”
WOIs in both the TLE and IGE groups. A multiscale network, node
and edge analysis was applied. At the network and node-levels,
many different network measures can be computed by calculating
measures of integration and segregation (86). We chose to limit
our analysis by measuring only DMN network integration at the
network level and node strength and the clustering coefficient at
the node-level. We selected these criteria because they are easier
to interpret. Our results revealed inter-conditions differences in
DMN intrinsic connectivity in both the TLE and IGE groups.

Small window lengths were used in this study (6, 8, and 10
TRs), which causes methodological issues in the estimation of
the covariance matrix. Recently developed fMRI sequences could
be used to increase the time resolution (i.e., by decreasing the
TR). Significant shortening of TR has been achieved using “slice”
multiplexing, in which multiple slices are excited and acquired
simultaneously. This approach significantly increases statistical
power in functional connectivity analyses (87).

Lastly, our previous research (88) showed that a wavelet-based
approach can be used to detect epileptic activity in BOLD sig-
nals alone (i.e., without the need to record the EEG). Although
this method was able to detect much the same spatial patterns of
epileptic activity as EEG–fMRI, only a few IEDs were detected. The
dynamic changes in DMN functional connectivity could be used

to improve the sensitivity and specificity of this type of approach.
In the future, we intend to combine both dynamic functional con-
nectivity and the wavelet-based approach, with a view to improve
the robustness of IEDs detection in the BOLD signal.

CONCLUSION
In the present study, we investigated dynamic changes in DMN
intrinsic connectivity and their relation to epileptic activity. We
showed that DMN connectivity is specifically affected by the
IED occurrence. The greatest changes in DMN connectivity were
observed before IEDs. These changes may be caused by specific
brain states that facilitate IED generation. During and after IEDs,
the observed change in DMN connectivity emphasized the pivotal
role of the PCC in IED-related awareness fluctuations. Due to the
low number of subjects, the results found in this study need to be
confirmed in a larger independent cohort. Future research should
investigate more precisely the relationship between the occur-
rence of IEDs and states of awareness/consciousness in epilepsy.
The dynamic approach of the RSNs connectivity will provide a
powerful tool to investigate IEDs and seizure physiopathological
mechanisms.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/fneur.2014.00201/
abstract
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The pattern of epileptic seizures is often considered unpredictable and the interval between
events without correlation. A number of studies have examined the possibility that seizure
activity respects a power-law relationship, both in terms of event magnitude and inter-event
intervals. Such relationships are found in a variety of natural and man-made systems, such
as earthquakes or Internet traffic, and describe the relationship between the magnitude
of an event and the number of events. We postulated that human inter-seizure intervals
would follow a power-law relationship, and furthermore that evidence for the existence of
a long-memory process could be established in this relationship. We performed a post hoc
analysis, studying eight patients who had long-term (up to 2 years) ambulatory intracra-
nial EEG data recorded as part of the assessment of a novel seizure prediction device.
We demonstrated that a power-law relationship could be established in these patients
(β=−1.5). In five out of the six subjects whose data were sufficiently stationary for analy-
sis, we found evidence of long memory between epileptic events. This memory spans
time scales from 30 min to 40 days. The estimated Hurst exponents range from 0.51 to
0.77±0.01.This finding may provide evidence of phase-transitions underlying the dynamics
of epilepsy.

Keywords: epilepsy, long-range memory, power-law phenomena, neural dynamics in cortical networks,
seizure clustering

INTRODUCTION
Epilepsy is a common and serious neurological disorder character-
ized by recurrent seizures. Though cycles of seizure activity associ-
ated with biological rhythms (circadian and menstrual) have long
been recognized, Poisson processes have been felt to describe the
pattern of seizure occurrence, with departures perhaps explained
by external factors (1). Many authors have noted more variability
in seizure frequency than would be expected if their distribution
followed a simple Poisson model, with overdispersion in series of
seizure counts (2–6).

Identification of a power law in epileptic inter-event times has
received considerable interest (7). Power laws describe a relation-
ship between quantities, where the frequency of an event varies
as a power of another feature of the event, such as size. In such
a relationship, small events occur very more frequently than large
events, although the probability of the large events is non-trivial.
The existence of power-law relationships is necessary for certain
types of system behavior, such as critical dynamics, to exist. By
itself, the presence of a power law is not a sufficient condition to
prove critical system behavior, but its absence is strong evidence
against such dynamics.

A long-memory process (or long-range-dependent process) is
another type of dynamic behavior that can be identified by the

existence of a power law in the higher order statistics of a system.
This describes a situation where the decay of dependence of system
dynamics on past events is slower than exponential, and correla-
tion of events extends far beyond immediate values. This contrasts
with short memory processes in which the system dynamics can
be described using a short and finite memory. A parameter typi-
cally used to characterize the length of this dependence is the Hurst
exponent (H ). A value of H= 0.5 defines a system that is random
(i.e., no dependence), and 0.5 < H < 1 defines a positive correla-
tion, or clustering of extremes, so that long intervals are likely to be
followed by long intervals, and short intervals by short intervals.
Values of 0 < H < 0.5 imply anti-correlation, and H > 1 implies
non-stationarity in the data. We have previously demonstrated
the existence of long-memory processes in epileptic seizures in
animal and limited human datasets (8).

Recognizing and understanding any long-term dynamic
processes underlying epilepsy would have significant implica-
tions for its management; however, the data required for the
estimation of this have not previously been available. Human
scalp EEG data are easily obtainable, but has poor localization
properties that obscure seizure initiation dynamics (8–10), and
are typically only very short term (~1 day duration). Intracra-
nial EEG (iEEG) improves localization, but such limited duration
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(~1 week) records are obtained during pre-resection assessment of
hospitalized patients, under artificial circumstances of sleep and
medication withdrawal, and show different seizure dynamics to
those observed in ambulatory recordings.

We present here a study of the dynamics of epileptic seizure
generation using intracranial, ambulatory, human EEG data with
continuous records up to 2 years duration. This unique dataset was
acquired for the purpose of epileptic seizure anticipation (11). To
our knowledge, this is the first time data of this nature has been
available for the study of epilepsy. The volume and uniqueness of
the data make the possibilities for analysis immense, but we restrict
our work here to the study of the distribution and correlation of
seizure event times.

SUBJECTS
Data acquired for a clinical feasibility study of a seizure predic-
tion device involving long-term implantation of iEEG recording
electrodes were used. More details of the study can be found in
Cook et al. (11). Subjects were selected primarily on the basis of
medically refractory nature, with 2–12 reported seizures/month,
as confirmed through patient diaries. Approval for the study
was obtained though the Human Research Ethics Committees
of the participating clinical centers. All subjects gave written
informed consent to participate prior to any study procedures
being performed.

Seventeen subjects were enrolled from the three tertiary refer-
ral epilepsy centers comprising the Melbourne University Epilepsy
Group. Two of these elected to pursue other treatment options
prior to implantation, and so are not included in any further
results. These adult subjects were selected chiefly on the basis of
suitable seizure frequency (2–12 seizures/month) and all had a
level of independence sufficient to make the device useful in the
management of daily activities. Nine males and six females with
a mean age of 44.5 years (range 20–62 years) were implanted. Six
subjects had undergone previous epilepsy resective surgery and
one had used vagus nerve stimulation (VNS), which was explanted
at the time of predictive system implant.

Subjects meeting inclusion/exclusion criteria were implanted
with the SAS and initially entered a Data Collection Phase, where
the hand-held device remained passive (where no advisories were
given to the subject) and iEEG data was collected. When sufficient
data was obtained, a subject-specific algorithm was created. The
algorithm was then evaluated against minimum performance cri-
teria and if satisfactory, the subject entered the Advisory Phase. In
the Advisory Phase, the algorithm was enabled to provide visual
and audible advisories to the subject. Throughout the study,ambu-
latory iEEG data were analyzed for seizure statistics and other
relevant electroencephalographic events. Subjects served as their
own controls for the purpose of evaluating study outcomes.

PROCEDURES
The major components of the implanted seizure prediction sys-
tem are: (1) the implantable lead assemblies, (2) the implantable
telemetry unit, (3) the external hand-held personal advisory
device, and (4) the external charging accessory. In addition to these
components, a cluster-computing system and associated software
was used to configure algorithms for each individual subject.

A total of 15 subjects were implanted with the device, 9 males
and 6 females with a mean age of 44.5 years (range 20–62).
Two silicone implantable lead assemblies, each with eight plat-
inum iridium contacts distributed across two electrode arrays
(16 electrodes in total), were used to collect iEEG on the cortical
surface. Leads were placed regionally, unilaterally over the quad-
rant believed to contain the epileptogenic zone, as determined by
prior EEG studies, imaging studies, and/or seizure etiology, via
a small craniotomy or through prior craniotomy sites if surgery
had been performed in the past. A typical implantation scheme
is shown in Figure 1. For those subjects diagnosed with bilateral
temporal lobe onset seizures, leads were placed over the hemi-
sphere that generated the most frequent, stereotypical seizures.
System operation and integrity was verified prior to wound clo-
sure. The leads were tunneled down the neck and terminated at
a subclavicularly placed, titanium encased, hermetically sealed,
implantable telemetry unit, which sampled 16 channels of iEEG
acquired at 400 Hz and wirelessly transmitted it to an external,
hand-held personal advisory device. The external, hand-held per-
sonal advisory device received the telemetered iEEG and stored
iEEG on standard flash memory cards for subsequent analysis. An
important component was that it also supported audio record-
ings, both manually triggered by the subject for diary purposes,
and also automatically activated when a seizure was detected by
the system to aid in establishing a clinical correlate with iEEG
activity. The duration of implantation varied between ~0.5 and
~1.8 years.

The clinical study algorithm utilized a layered structure consist-
ing of a filtering layer, a feature extraction layer, and a classification

FIGURE 1 | Plain skull radiograph of subject post implantation,
showing typical implantation scheme.
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layer. Each layer could be configured using a number of subject-
specific parameters that were created as part of an algorithm
training process.

The filtering and feature extraction layers were used to imple-
ment a form of spectral analysis. Input signals were filtered by a
collection of octave-wide digital filters covering the range from 2 to
128 Hz. A wide band filter complemented these filters and optional
notch filters designed to eliminate interference from AC-mains
sources. Filter outputs could be analyzed for average energy or
line-length over a 5 s analysis window. These outputs could be nor-
malized using previously derived parameters or by other signals.
The combination of 16 available iEEG input channels and many
different filtering options created a list of several 100-candidate
features. During algorithm training, the list of candidates was ana-
lyzed to find the best 16 features. This 16-dimension feature vector
was then passed to the classification layer.

The classifier design was intended to create a computationally
efficient implementation that was functionally similar to a k-
nearest neighbor (kNN) classifier. This was accomplished through
use of a partitioning approach that reduced the need to search
through long lists of training data points. The classifier output
was filtered, thresholded, and then passed to the user interface
state machine used to control the three likelihood indicators. The
main function of the state machine was to latch a condition in the
case where the classifier output was repeatedly alternating across
a decision threshold, preventing rapidly changing advisories and
possible subject confusion.

To support the study, a revised cluster-computing environment
was developed. The main function of this new cluster computer
was to train subject-specific algorithms to generate the required
algorithm configuration parameters. The system could also apply
hold-out or cross validation quasi-prospective methods to pro-
vide an estimate of algorithm performance needed to inform the
decision to proceed into the Advisory Phase of the study. The sys-
tem could also be used to calculate algorithm performance using
prospective data collected during the Advisory Phase.

Post processing was applied to the iEEG data to determine
the time and the length of both clinical and sub-clinical seizures
(defined as electroencephalographic events with no clinically rel-
evant manifestation). Study investigators annotated the iEEG
acquired and events were detected by a validated seizure detec-
tion algorithm based on an unsupervised learning approach that

identifies statistically significant outliers in iEEG features asso-
ciated with seizures (12). Accumulated iEEG was annotated by
clinical staff and verified by study investigators utilizing subject
diaries, hand-held audio recordings, and a seizure detection algo-
rithm (12). Events were categorized as clinically reported, and
found in EEG (type 1), events not clinically reported, but found in
EEG, and having a similar envelope to type 1 events (type 2), and
those not clinically reported, but found in EEG, without evidence
of clinical manifestations (type 3). Events clinically reported but
without EEG changes were excluded. A large number of events
were necessary for accurate analysis, and so the 8 subjects who
had more than 400 recorded events were studied. The inter-event
intervals, defined as the time between the onset of one seizure
and the onset of the next were used for analysis. To estimate the
Hurst exponent, point processes were generated by quantizing
the timescale to 1-min resolution, and the presence or absence
of seizure onset at a particular time was represented with the value
of 1 or 0, respectively. A summary of all data included for analysis
can be found in Table 1.

MATERIALS AND METHODS
ESTIMATING POWER LAWS
Mathematically, a quantity x follows a power law if it is drawn
from a probability distribution f(x)∝ xβ. The scaling exponent
β is a constant that can be estimated as the (linear) gradient of
the log–log plot log[f(x)]= β log(x)+ c. This estimate is highly
susceptible to errors when the dataset is not ideal, such as brevity,
non-stationarity, or inaccurate records.

ESTIMATING THE HURST EXPONENT
To estimate the Hurst exponent (H ) of a long-memory process, a
power law must be identified in the second order statistics (such
as the variance) of the dataset. The relationship between β and H
depends on the method used to derive the power law (13–15).

Recent research has shown that a reliable and robust esti-
mate of H is possible with the use of wavelets (15–17), designed
to isolate activity at different frequencies and timescales (14,
15). Recursively applying a wavelet transform with dyadic sam-
pling to a dataset yields wavelet coefficients dm(n) at each
time scale m. The larger the m, the lower the frequency
that dm(n) describe, with the highest frequency occurring at
m= 0, that is, at the sampling frequency. H is estimated by

Table 1 | Summary of data.

P1 P2 P3 P4 P5 P6 P7 P8

Age 22 52 48 51 50 53 43 50

Sex F M M F F F M M

Epileptogenic zone PT FT FT OP FT FT T T

AED’s CBZ, LTG, PHT CBZ, CLZ, LEV CBZ, LEV CBZ LEV, OXC, ZNS LCM, PHT, PRP LTG, LCM, PHT, RTG CBZ, CLZ, LEV, LCM

Record length (days) 523 182 504 305 313 646 650 618

Total seizures 1569 574 446 750 1088 479 4561 985

Median ISI 3 min 41 min 11.5 h 3 h 21 min 13 h 5 min 1 h

AED’s: CBZ, carbamazepine; CLZ, clonazepam; LCM, lacosamide; LEV, levetiracetam; LTG , lamotrigine; OXC, oxcarbazepine; PHT, phenytoin; PRP, perampanel;

RTG, retigabine; ZNS, zonisamide; epileptogenic zones: FT, frontotemporal; OP, occipitoparietal; PT, parietal-temporal; T, temporal.
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FIGURE 2 | Example estimates of the Hurst exponent H for (A) a
long-memory process with H = 0.9, and (B) a random process with
H = 0.5. In each case, the scalogram (a log–log plot of m versus ym)
shows a region of alignment of at least four scales that correctly
identifies a power law with gradient β and H=0.5(β+1). (C–E) show the
robustness properties of wavelet estimation tools. The gradient β (and
therefore H ) is not affected by (C) slow non-stationarity, (D) a large

number of missing events, or (E) the resolution of the point process. In
(A–C), the 95% confidence limits as defined by the variance σ2

m at each
scale is denoted by the gray shaded region between dotted lines, and
the red line shows the gradient β identified over the region of alignment.
The error bounds and the linear fit are not shown in (D–E) for easier
visualization, though they are similar in magnitude and quality as those in
(A–C).
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FIGURE 3 | In (A) are the PDF distributions (in a log-log plot) for each of
P1–8. A power law is evident, but the gradient for each subject varies, and
estimates of the scaling exponent β may be influenced by insufficient data in
some subjects. The aggregate PDF in (B) shows an estimated power law with

gradient β=−1.5. The deviation from linearity that occurs at ~1000 h is also
observed at a different time in ~10% of the subjects in Ref. (18), and could be
caused by insufficient data at large time scales (leading to an under-estimate
of β) or by a genuine excursion from a true power law in the data.

identifying the power-law exponent β that occurs in the scalo-
gram, that is, the plot of m versus the variance of wavelet
coefficients,

ym =
1

Nm

Nm∑
n=1

|dm(n)|2 − ĝm .

The parameter ĝm ≈ −
1

Nm ln 2 is a correction factor used to so
that the estimate of H is unbiased. When this method is used,
the Hurst exponent H is computed as H= 0.5(β+ 1). The vari-
ance at each m is given by σ2

m ≈ −
2

Nm ln22
and can be used to

infer the confidence of the estimate. For stationary processes, the
estimated values of H range between 0.5 and 1. When H= 0.5
is found, the underlying process cannot be determined: it may
infer a true system with H = 0.5, that is, with no memory between
events, but may also result from systems with long memory but
unpredictable variance. Our methods fail to identify the type of
memory involved. When 0.5 < H < 1, there is evidence of mem-
ory in the system, and thus there is a correlation between past and
present events. The higher the H, the longer this memory is (15,
16).

Example estimates of H for both random and long-memory
processes are shown in Figures 2A,B. Figures 2C–E show that
wavelet estimation tools are robust in the presence of smooth
non-stationarity, accurate even when a large number of events are
removed, and not affected by the resolution of the records. More
detailed description of the methods can be found in the on-line
methods section.

RESULTS
THE EXISTENCE OF POWER LAW
In Figure 3A, it is the probability density function (PDF, or nor-
malized histogram) of the inter-seizure times of each of the eight
viable datasets. It is evident that a power law likely exists in all
datasets, although the variability in the number of events used
to derive individual PDFs would make an estimate of each slope
error-prone. So as to obtain a better estimate, the events of all eight

subjects were grouped together to derive a combined PDF, shown
in Figure 3B.

THE EXISTENCE OF LONG-MEMORY PROCESSES
The existence of long-memory processes was evaluated for the
eight subjects, and the resulting scalograms shown in Figure 4.

The Daubechies wavelet was used for all calculations of H.
The order of this wavelet transform dictates the level of non-
stationarity tolerated in the data. To select an appropriate number,
the wavelet order was systematically increased until the resulting
scalograms were approximately constant. In all cases, wavelet order
4 was sufficient. To test for more abrupt non-stationarity that is
not tolerated by this method, data were divided into segments of
approximately 250–500 events (depending on the total length of
the record), and the scalograms for each segment were recom-
puted. The range of scales where the gradients coincide across all
segments was identified as the stationary scales for each subject.
These are shown as the shaded background of Figure 4. Two sub-
jects (P2 and P4) were completely non-stationary and were not
included in further analysis.

To compute the Hurst exponent, regions of alignment were
defined as any four or more scales within the stationary regions
over which a straight line could be drawn (15). A Hurst exponent
consistent with the existence of long memory was found in five
out of the six subjects with sufficiently stationary data, with H
ranging between 0.66 and 0.77. Conservative estimates of the time
scales where dependence was evident ranged between 30 min and
40 days (Table 2).

DISCUSSION
We have confirmed previous findings of a power-law relation-
ship in inter-seizure intervals, on a large and unique human
dataset. A scaling exponent of β=− 1.5 was shown to exist in
the averaged PDF of all eight subjects (Figure 3B), consistent
with earlier finding (18). Wavelet-based tools were used to com-
pute a patient-specific estimate of the Hurst exponent H. In five
subjects, H was consistent with the existence of a long-memory
process, while in one subject the correlation between seizures
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FIGURE 4 |The scalograms for P1–8 are shown. In addition to the
conventions used in Figure 1, the orange shaded background denotes
scales over which the data were stationary and that can be used to estimate
H. Of the eight subjects, all but two (P2 and P4) showed stationary scales
from which a Hurst exponent H could be computed. Of the remaining six
subjects, five were found to have regions of alignment with scaling
exponents consistent with the existence of long memory, with H ranging

from 0.66 to 0.77. The last subject (P7) showed potentially random
correlations between time scales (H=0.51±0.01). Note that to infer
stationarity for P7, the data were divided into three segments containing
~1500 events each. At the small time scales, two of the segments agreed
with the results, and one did not. This may imply a sharp dynamic change
occurring sometimes during the 1.8 years of recording. A summary of all
results can be found inTable 2.
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Table 2 | Summary of results.

P1 P2 P3 P4 P5 P6 P7 P8

Stationary YES NO YES NO YES YES YES YES

Long Memory found YES – YES – YES YES NO YES

Hurst exponent H 0.74±0.01 – 0.73±0.08 – 0.77±0.01 0.68±0.08 0.51±0.01 0.66±0.04

Region of Alignment (scales m) 5–9 – 11–15 – 4–9 11–14 7–14 9–12

Length of Dependence (time) 1 h–1.5 days – 3–40 days – 30 min–1.5 days 3–20 days 4 h–20 days 17 h–6 days

was indeterminable and potentially negligible. This estimate was
shown to be robust even when the length of the data is rela-
tively short and when the likelihood of inaccurate records (in the
form of missing events) is high. To our knowledge, this is the
first time that long-range memory has been identified in human
seizure frequency, and similarly the first time a Hurst exponent
has been estimated.

The advantage of using wavelet tools to identify the existence of
a power law (and, in this case, the existence of long memory) is that
the scaling exponent β can be computed on a patient-specific basis.
Traditional methods of estimating β require very high quality data
over a very long period of time for a robust fit (19). Data must
often be aggregated over many subjects, leading to conclusions
that are only relevant on average and losing any patient-specific
information (e.g., related to differing pathology or site of origin).
This is demonstrated in Figure 3, where the variability in exponent
between subjects in (a), as well as the deviation from a true power
law in some cases (e.g., P3) are lost when the aggregate β=− 1.5
estimated in (b).

A range of time scales that are involved in these long-memory
processes can be identified using this method of estimating H. For
example, in P3 dependence exists from ~3 to 40 days, implying that
the dynamics that led to the generation of a seizure are affected by
events that took place in the range up to 40 days prior.

In one subject (P7), no dependence could be identified in the
stationary region of the scalogram (H= 0.5). It is possible that
some dependence exists at smaller time scales, but the process was
not sufficiently stationary to make for a robust estimate at those
scales.

There are a number of potential limitations to this study. The
patient group suffering refractory seizures may not be typical, and
the medication used in treatment, as well as routine changes in
doses made during the study, may have effects on the timing
and occurrence of events not considered in our analysis. Data
dropouts through brief telemetry failure may also have influenced
our findings, but these were not felt to be significant, and model-
ing indicates that random loss of data, even at high rates, does not
affect our estimates (see Figure 2D).

There was a marked discrepancy between seizure frequen-
cies as estimated from patient diaries and those captured by the
implanted system. While this was to some degree accounted for by
a high number of sub-clinical (type 3) events, both the clinically
reported (type 1 events) and clinically confirmed but unreported
(type 2 events, as ascertained through analysis of event-triggered
audio recordings) were still often orders of magnitude greater
than expected, confirming the poor reliability of subjects ability to
recognize events.

Existence of long memory is useful in the analysis and inter-
pretation of signals such as the EEG. In the study of epileptic
seizure prediction, over 20 years of research has yielded a few
success stories (20–22), but none have been readily generalized
to wider datasets. The existence (or otherwise) of long memory
could explain the differences in performance between different
people – if long memory is present then the underlying dynam-
ics are relatively less complex than one where memory cannot be
established. In effect, the system becomes more predictable. As
an example, we can look at the prediction algorithm proposed in
Cook et al. (11), which uses the same data as in this study. Of the 8
subjects included here, the seizures of P2, P4 and P7 were unpre-
dictable. Interestingly, we have shown that the dynamics of P2
and P4 are non-stationary, and that only random (or alternatively,
highly complex) correlations exist between events in P7. A long-
memory process was identified for all other subjects, and between
54 and 100% of seizures were correctly predicted for these sub-
jects. Although the dataset is limited, it appears that the existence
of memory between events is necessary for successful prediction.

The results presented here can be applied in algorithm design
directly – it is now known, in a patient-specific way, the depen-
dence of epileptic seizures on past events, and data that reflects this
should be included (or accounted for) in any predictive analysis.
When analyzing the dynamics of epilepsy, we have shown that an
appropriate mathematical model should incorporate mechanisms
that allow for interactions stretching far into the past, and that the
length of dependence should be tunable.

These findings also have implications for the clinical manage-
ment of epilepsy. Many authors have remarked on the inadequacy
of current methods of assessing the efficacy of anticonvulsants,
exclusively based currently on patient diaries (7, 23). More sophis-
ticated methods of analysis based on better understanding of
the non-random occurrence of events may permit recognition
of treatment effects at a much earlier time point (4). Determi-
nation of the optimum time for medication withdrawal after a
suitable seizure-free interval may also be more accurately esti-
mated (24). The findings here do not, however, confirm Gower’s
dictum that “seizures beget seizures” (25), with progressive esca-
lation in the frequency of events, but rather that there is a deep
structure to the timing and occurrence of seizures, with a complex
inter-relationship between past and future events.
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Background: Seizures and interictal spikes in mesial temporal lobe epilepsy (MTLE)
affect a network of brain regions rather than a single epileptic focus. Simultaneous elec-
troencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have
demonstrated a functional network in which hemodynamic changes are time-locked to
spikes. However, whether this reflects the propagation of neuronal activity from a focus,
or conversely the activation of a network linked to spike generation remains unknown.The
functional connectivity (FC) changes prior to spikes may provide information about the con-
nectivity changes that lead to the generation of spikes. We used EEG-fMRI to investigate
FC changes immediately prior to the appearance of interictal spikes on EEG in patients
with MTLE.

Methods/principal findings: Fifteen patients with MTLE underwent continuous EEG-
fMRI during rest. Spikes were identified on EEG and three 10 s epochs were defined relative
to spike onset: spike (0–10 s), pre-spike (−10 to 0 s), and rest (−20 to −10 s, with no pre-
vious spikes in the preceding 45s). Significant spike-related activation in the hippocampus
ipsilateral to the seizure focus was found compared to the pre-spike and rest epochs. The
peak voxel within the hippocampus ipsilateral to the seizure focus was used as a seed
region for FC analysis in the three conditions. A significant change in FC patterns was
observed before the appearance of electrographic spikes. Specifically, there was signifi-
cant loss of coherence between both hippocampi during the pre-spike period compared
to spike and rest states.

Conclusion/significance: In keeping with previous findings of abnormal inter-hemispheric
hippocampal connectivity in MTLE, our findings specifically link reduced connectivity to the
period immediately before spikes.This brief decoupling is consistent with a deficit in mutual
(inter-hemispheric) hippocampal inhibition that may predispose to spike generation.

Keywords: interictal spikes, hippocampus, mesial temporal lobe epilepsy, EEG-fMRI, functional connectivity,
network

INTRODUCTION
Mesial temporal lobe epilepsy (MTLE) is the most common
symptomatic focal epilepsy and is frequently associated with hip-
pocampal sclerosis (HS), i.e., neuronal cell loss and gliosis of
the hippocampus (1, 2). While HS has been understood to rep-
resent a focal neuro-pathological alteration linked to the gen-
eration of seizures (i.e., the epileptogenic focus) (3), not all
patients become seizure free after surgical resection of the hip-
pocampus (4). Hence, the concept of the epileptogenic focus has
been revised to incorporate the involvement of an “epileptogenic
network” of brain regions, in which the hippocampus is a key
component (5).

Epileptogenic networks have been explored via single photon
emission computed tomography (SPECT) (6), positron emission
tomography (PET) (7), and simultaneous electroencephalography

(EEG) and functional magnetic resonance imaging (EEG-fMRI)
(8). Of these, EEG-fMRI has the potential to be the most infor-
mative, as it is able to provide highly spatially resolved three-
dimensional maps of brain activation (fMRI), which can be linked
to interictal electrical discharges seen on EEG. EEG-fMRI studies
in patients with MTLE have demonstrated widespread activation
and deactivation in temporal lobe structures, particularly in the
hippocampus ipsilateral to scalp recorded interictal spikes, as well
as in extra-temporal regions (9, 10). Perhaps more importantly,
EEG-fMRI findings have also demonstrated hemodynamic alter-
ations that occur immediately prior to interictal spikes (11, 12).
These pre-spike BOLD changes were reported by Jacobs et al.
(13) to be more focal than spike-triggered alterations reported
by Kobayashi et al. (8) and Salek-Haddadi et al. (14), suggest-
ing that hemodynamic alterations preceding interictal spikes may
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provide better localization of regions involved in spike generation
(8, 13, 14).

A common way to identify functional brain networks is to
assess functional connectivity (FC) between spatially separated
regions. FC measures the degree of covariance between the activ-
ity in a specific brain region and other areas across the whole
brain. In MTLE, decreased FC in ipsilateral mesial temporal lobe
networks and increased contralateral compensatory connectivity
during the interictal state have been reported (15, 16). Delin-
eation of FC patterns related to interictal spikes may be useful
in shedding light on the mechanisms that underlie these changes,
and potentially MTLE seizures. Although the exact physiologic
relationship between interictal spikes and seizures are not fully
understood (17, 18), there is a growing evidence that the neural
network involved in generating interictal spikes is a reliable esti-
mator of the network that generates seizures (19–21). The aim of
this study was to use EEG-fMRI to investigate FC changes immedi-
ately prior to the appearance of interictal spikes on EEG in patients
with MTLE.

MATERIALS AND METHODS
PARTICIPANTS
Fifteen patients (9 females, mean age: 38 years; 6 males, mean age:
42 years) with MTLE (10 left and 5 right lateralized) and 15 age-
matched healthy controls participated in the study. Patients were
recruited from the Royal Brisbane and Women’s Hospital Epilepsy
clinic, whereas healthy participants were recruited via the Univer-
sity of Queensland Human Research volunteer scheme. All patients
underwent comprehensive clinical assessment and the diagnosis of
MTLE was based on the following: (a) seizure semiology consis-
tent with MTLE; (b) interictal spikes confirmed during in-patient
video-EEG monitoring performed within the last year, and (c)
MRI scan consistent with a temporal lobe focus (no lesion or

ipsilateral HS). Patient exclusion criteria included absence of inter-
ictal spikes during monitoring, recurrent unprovoked seizures,and
the presence of metal implants. Patients’ clinical details and spike
distributions are summarized in Table 1. Only one patient had
been free of seizures for 6 months and recurrent seizures occurred
in the remainder. All EEG-fMRI recordings were acquired during
the interictal state. Healthy controls were screened for current or
previous brain injury, neurological, or psychiatric disorders. All
participants provided written informed consent prior to enroll-
ment, and the study was approved by the Human Research Ethics
Committee (HREC) at the Royal Brisbane Women’s Hospital
(RBWH) and the Centre for Advanced Imaging, the University
of Queensland.

PROCEDURE
The study was conducted at the Centre for Advanced Imaging,
the University of Queensland. An MRI compatible 64-channel
electrode cap was positioned on patients’ heads according to
the international 10:20 system and prepared with a conductive
non-abrasive gel (chloride 10%). All electrodes, including the
ground (AFz) and reference electrodes (FCz) impedances, were
below 5 kΩ. One additional electrode recorded ECG from the
chest. Patients then underwent a 40-min simultaneous EEG-
fMRI recording, having been instructed to remain still, awake,
and relaxed with their eyes closed. Healthy control participants
underwent only resting state fMRI without the EEG recording.

EEG DATA ACQUISITION AND PREPROCESSING
Electroencephalography was acquired with an MR-compatible
Brain Products EEG System (Brain Products, Gilching, Ger-
many), using a 64-channels cap with silver silver/chloride
(Ag/AgCl) electrodes. EEG data were recorded using Brain Vision
Recorder software version 1.20.0001 (Brainproducts Co., Munich,

Table 1 | Summary of the patients’ clinical details and spike distribution.

Patients Lateralization

of epilepsy

Age of epilepsy

onset

Duration of the

disease (years)

Clinical

MRI

Total number of

spikes across 6 runs

AEDs

1 R 21 12 HS 47 Levetiracetam, gabapentin, clobazam

2 L 20 25 N None Levetiracetam

3 R 14 7 N None Levetiracetam, clobazam, valproate

4 R 21 26 HS 52 Levetiracetam, carbamazepine, valproate

5 R 21 2 N None Lamotrigine, carbamazepine, valproate

6 L 30 25 N 50 Levetiracetam, lamotrigine

7 L 17 6 N 24 Lamotrigine

8 R 16 14 HS None Levetiracetam, oxacarbazepine, clobazam

9 L 20 24 N 49 Levetiracetam, lamotrigine, phenytoin

10 L 17 3 N 35 Pregabalin, cabamazepine

11 L 25 7 N 32 Lamotrigine, oxacarbazepine, topiramate

12 L 23 21 N 54 Levetiracetam, lacosamide, valproate

13 R 35 2 N 37 Lacosamide

14 L 4 55 N 32 Carbamazepine, phenytoin, clonazepam

15 L 25 8 N 34 Carbamazepine, levetiracetam, lamotrigine,

valproate

R, right; L, left; HS, hippocampal sclerosis; N, normal; none, no spikes have been identified during EEG-fMRI; AEDs, anti-epileptic drugs.
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Germany). After recording, EEG datasets were preprocessed using
EEGLAB software (22). Gradient artifacts introduced by MRI
scanning were corrected with the Artifact Slice Template Removal
(FASTR) algorithm (23, 24). Low pass (70 Hz), high pass (1 Hz),
and notch (50–60 Hz) filtering were then used to remove frequency
movement artifacts. An optimal basis set was formed to define
the variations in the pulse artifact and create a template, which
was then subtracted from the EEG data. Residual artifacts were
removed using independent component analysis (ICA). An expert
neurologist then reviewed the preprocessed EEG records to iden-
tify interictal spikes. Three out of the 15 patients did not show any
spikes throughout the recording, and the EEG of one other patient
contained movement artifacts. These data were not included in
further analysis.

fMRI DATA ACQUISITION AND PREPROCESSING
Structural and functional MR data were acquired using a
3 T Siemens Magnetom Trio scanner, with a 12-channel
head coil. fMRI-BOLD weighted images with full brain cov-
erage were acquired with a single-shot gradient-echo pla-
nar image sequence (36 slices, TR= 2500 ms, TE= 30 ms,
flip angle= 90°, matrix= 64× 64, 3.3 mm isotropic voxels).
T1-weighted (MP-RAGE) anatomical images were acquired
(192 slices, TR= 1900 ms, TE= 2.13 ms, flip angle= 9°,
matrix= 192× 256× 256, 0.9 mm isotropic voxels). EEG-fMRI
data were collected in six runs, with each EPI run lasting 5:05 min,
and the anatomical images 4:35 min.

MRI preprocessing was conducted using SPM8 (Wellcome
Trust Centre for Neuroimaging, London, UK), in Matlab (Math-
works, Sherborne, MA, USA) (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/). Functional images were slice time corrected,
realigned, and normalized via the SPM8 Segment routine prior
to spatial smoothing with an 8 mm FWHM isotropic Gaussian
kernel.

fMRI ANALYSIS
Functional magnetic resonance imaging analysis was conducted in
four steps, using Partial Least Square (PLS) software (25, 26). First,
event-related analysis was used to identify activation in mesial tem-
poral lobe, and, in particular, in the hippocampus ipsilateral to the
seizure focus. Second, we examined the time course of activity
within the hippocampal region. Third, we examined the FC of the
peak voxel in this cluster to delineate large-scale networks during
the spike, pre-spike, and rest periods. Finally, we tested whether the
FC maps from the previous analysis were correlated with seizure
recency, i.e., time from the last seizure. The three 10 s periods were
defined relative to spike onset on EEG: spike (0–10 s), pre-spike
(−10 to 0 s), and rest (i.e., baseline) (−20 to −10 s, with no pre-
vious spikes in the preceding 45 s). This time window was chosen
because the hemodynamic response function returns to baseline
25 s after a single burst of neural activity (i.e., the interictal spike).
Our study was designed to examine short-term changes in con-
nectivity, and was based on previous findings that pre-spike BOLD
signal alterations are evident up to 9 s before interictal spikes (13,
27). On this basis, we selected the interval between 25 s after a
spike and 10 s before the next spike as baseline. A total of 186 spike
onsets were included in the analysis. Images from patients with

right TLE were flipped along the antero–posterior axis, so that in
all patients the seizure focus was on the left. Therefore, all results
were expressed as ipsilateral or contralateral, referring to the spikes
recognized on the EEG.

Partial Least Square is a multivariate tool that enables delin-
eation of distributed brain regions in relation to task demands
(task PLS), behavioral performance (behavior PLS), or activity in
a given seed region (seed PLS). Briefly, PLS uses singular value
decomposition (SVD) of a single matrix that contains all par-
ticipants’ data to identify latent variables (LVs) that explain the
covariance in the data. Each LV consists of three components: sin-
gular image of brain saliences (the brain image that best reflects
the correlation of the task or behavior changes across conditions),
design saliences (a set of weights that indicate the relationship
between brain activity in a singular brain image and each of the
assigned conditions), and singular value (the amount of covari-
ance captured by the LV). For each LV in each condition, brain
scores are calculated by multiplying each voxel’s salience by the
normalized BOLD signal value in the voxel, and summing across
all brain voxels for each subject. Conceptually, brain scores rep-
resent the weighted average of the contribution each voxel makes
to the specific pattern of connectivity. The statistical assessment is
determined using a permutation test and bootstrap estimation of
standard errors for the brain (voxel) saliences. Permutation tests
assess the significance of the LV by resampling the singular value
with participants being randomly reassigned (without replace-
ment) to different conditions. Bootstrap resampling is indepen-
dent of permutation, assessing by resampling the voxel saliences
with replacement of subjects but maintained assignment of partic-
ipants to conditions. Resampling with 100 bootstrap steps was sat-
isfactory to estimate standard error of the voxel weights/saliences
(bootstrap ratio or BSR) for each LV. Peak voxels above BSR of 3
(i.e., p < 0.002) were considered reliable. Corrections for multiple
comparisons were not required because the extractions of brain
saliences are calculated in a single mathematical step on the whole
brain.

Event-related task PLS was conducted to identify spike-related
activation. Then, the peak voxel time course within the acti-
vated region in the ipsilateral hippocampus was tested across the
three epochs with four TRs per epoch, each TR being 2500 ms.
PLS connectivity analysis was conducted using the peak voxel
activated by spikes in the ipsilateral hippocampus as the seed
voxel. BOLD signal intensities in that voxel were extracted and
correlated with every other voxel in the brain in each condi-
tion across all subjects. The correlation of brain activity between
the seed voxel and every other voxel in the brain across dif-
ferent conditions and subjects was calculated and stacked into
a single combined matrix of correlations called the behavior
matrix. The behavior matrix was then decomposed with SVD
into a set of LVs that describe the network/regions (FC pat-
tern) that correlated with the ipsilateral hippocampal activity
in different conditions. Finally, to examine the relation between
FC patterns in the three states (spike, pre-spike, and rest) and
seizure recency, we conducted seed/behavior analysis by adding
the time from last seizure (in weeks) as a variable in the sub-
sequent PLS connectivity analysis. We were thus able to assess
whether spike, pre-spike, or resting FC maps, defined in relation
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to the ipsilateral hippocampus, were related to interval from
last seizure.

RESULTS
WHOLE BRAIN ANALYSIS
Event-related task PLS analysis of spike, pre-spike, and rest states
yielded significant activity in the ipsilateral mesial temporal struc-
tures. As hypothesized, spike-related activation was seen in the
ipsilateral hippocampus (relative to pre-spike) and was accompa-
nied by increased activity in the ipsilateral parahippocampal gyrus,
middle temporal gyrus, precuneus, contralateral middle temporal
gyrus, and insula (Figure 1; Table 2). Additionally, activity in the
ipsilateral medial frontal gyrus and the right inferior and superior
frontal gyri were decreased during interictal spikes, relative to the
pre-spike period.

Analysis of the time course and degree of activation in the peak
voxel within the ipsilateral hippocampal cluster (MNI coordinates;
−21, −27, −12) revealed a decrease in ipsilateral hippocampal
activity during the 10 s pre-spike period when compared to rest
and spike conditions (Figure 2). Paired t -tests showed that spike
and pre-spike time courses differed significantly between TR1′,
TR2′ during pre-spike and TR2′′,TR3′′ during spike (p= 0.002,
p= 0.005, respectively).

FUNCTIONAL CONNECTIVITY ANALYSIS
During the rest epoch, the ipsilateral hippocampus was func-
tionally connected with the contralateral hippocampus, and
the parahippocampal gyri, fusiform gyri, amygdala, and cere-
bellar cortex bilaterally (Figures 3Aa1,Bb1; Table 3). Activity
in the ipsilateral hippocampus was also correlated with struc-
tures of the default mode network including the precuneus,

bilateral superior frontal, medial temporal, and cingulate gyri. The
strongest connectivity, however, was demonstrated with the con-
tralateral hippocampus and the parahippocampal gyri, amygdala,
and cerebellar cortices bilaterally.

During the pre-spike period, the ipsilateral hippocampus
showed connectivity to the ipsilateral parahippocampal gyrus,
bilateral cerebellar cortices, ipsilateral insula, bilateral lentiform
nuclei, and contralateral caudate nucleus (Figures 3Aa2,Bb2;
Table 4).

At the time of spikes, the ipsilateral hippocampus showed a
connectivity pattern similar to the pattern of connectivity during
rest, except for increased connectivity to the contralateral insula
(Figures 3Aa3,Bb3; Table 5). Also, in the spike epoch, negative
correlations were observed with both superior frontal gyri. The
main differences between pre-spike and spike conditions were that
during pre-spike, the connectivity of the ipsilateral hippocampus
to the contralateral hippocampus, both parahippocampal gyri and
cerebellar cortex were significantly reduced, whereas negative cor-
relation in activity was observed with insula, lentiform nuclei, and
cingulate gyri bilaterally.

Seed/behavior correlation analysis revealed similar maps to
those seen in the previous FC analysis (Figure 3C). Impor-
tantly, this additional analysis showed that seizure recency was
strongly correlated with the pre-spike (a negative correlation of
r =−0.64) (Figure 3, c2) and rest conditions (a positive corre-
lation r = 0.4) (Figure 3, c1), but not with the spike condition
(Figure 3, c3).

DISCUSSION
We used EEG-fMRI to investigate FC changes immediately prior to
the appearance of interictal spikes on EEG in patients with MTLE.

FIGURE 1 |Task PLS results. (A) A pattern of whole brain activity in spikes versus pre-spike. (B) Brain scores related to the pattern seen in (A).
(C) L hippocampus activation cluster, from which the peak voxel was used for functional connectivity analysis.
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Our findings showed spike-related activation in the ipsilateral
hippocampus. In addition, we demonstrated the significantly
reduced ipsilateral hippocampal activity, and the loss of bilateral
hippocampal FC immediately before the appearance of electro-
graphic spikes. Moreover, we showed that the pre-spike connectiv-
ity pattern is related to seizure recency, suggesting that the altered
FC changes prior to spikes was influenced by the time from last
seizure. Spike-related activation in the ipsilateral hippocampus
is consistent with previous EEG-fMRI studies on patients with
MTLE (8, 28, 29).

In the FC analysis, the most striking finding was the signifi-
cant loss of connectivity between the hippocampi several seconds
before the appearance of spikes on EEG. During rest and spiking,
there was a coupled coherence between the two hippocampi.
However, this coherence decreased dramatically a few seconds
prior to the onset of interictal spikes and are in keeping with a

Table 2 | Whole brain analysis, spike versus pre-spike.

Region Side Peak MNI coordinates Ratioa

x y z

Positive correlations

HP, para HP, amygdale L −15 −15 −12 4.34

Middle temporal gyrus R 69 6 −21 4.62

Precuneus R 3 −42 69 4.11

L −3 −40 71 4.08

Middle temporal gyrus L −52 −20 −10 4.04

Insula R −30 −12 −18 3.49

Negative correlations

Inferior frontal gyrus R 51 15 6 −6.99

Superior frontal gyrus R 48 −48 15 −6.28

Medial frontal gyrus L −12 −18 66 −4.24

HP, hippocampus; L, left; R, right; MNI, Montreal Neurological Institute; SE,

standard error.
aSalience/SE ratio in bootstrap analysis.

role for altered inter-hippocampal interaction in the initiation of
spikes.

The hippocampi are anatomically and functionally connected
by the fornix (30), a major input and output pathway for the hip-
pocampus (31, 32). Previously, it was thought that seizure and
epileptiform discharges are initiated in one hippocampus and
propagate to the contralateral hippocampus through the fornix.
However, the short delay (20 ms) between activity in right and
left hippocampi raises the possibility that the hippocampi are
functionally synchronized (33). Studies of inter-hippocampal syn-
chronization using intracranial EEG in animals and human beings
have shown that normally, there is electrophysiological coherence
between the hippocampi in the delta wave frequency range dur-
ing wakefulness (0.5–2 Hz) (34, 35) and rapid eye movement sleep
(36). Functional synchronization may involve the input that both
hippocampi receive from each other via commissural fibers in the
fornix. In animal models of MTLE, there is significant loss of syn-
chronization at high frequencies between the hippocampi prior
to the onset of epileptiform discharges (37). Our results support
and translate these findings into human beings using EEG-fMRI
FC analysis. We found that the loss of coherent synchronization
between the two hippocampi occurred a few seconds before the
appearance of interictal spikes.

Previous studies on animal models of focal epilepsy have shown
hemodynamic changes prior to spikes (38, 39). These pre-spike
changes have been related to early synchronization of a popu-
lation of neurons before interictal discharges. In human beings,
EEG-fMRI has also demonstrated early BOLD changes in the pre-
spike period. Both positive and negative pre-spike BOLD changes
have been described and have been found to be more focal than the
spike-related BOLD signals. Correlation of early BOLD changes
with findings from invasive EEG recording has revealed pre-spike
synchronized neural discharges from areas exhibiting early BOLD
changes (27). These pre-spike EEG discharges were observed on
the intracranial EEG but not detected with scalp EEG.

Interictal inter-hemispheric hippocampal FC (40) has been
investigated using resting state fMRI in MTLE. Decreased FC
within the ipsilateral temporal lobe and between temporal lobe

FIGURE 2 | Peak voxel (−21, −27, −12) BOLD signal intensities within the ipsilateral hippocampal activation across three conditions: rest, pre-spike,
and spike. TRs, TRs′, and TRs′′ represent the 4TRs for rest, pre-spike, and spike, respectively. Each TR is 2.5 s.
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FIGURE 3 | FC and seed/behavior results. (A) From left to right,
patterns of whole brain FC during rest (a1), pre-spike (a2), and spike
(a3). (B) From left to right, patterns of bilateral hippocampal FC during

rest (b1), pre-spike (b2), and spike (b3). (C) From left to right,
seed/behavior correlation between FC maps in a1 (c1), a2 (c2), and
a3 (c3).

structures in both hemispheres has been reported. EEG-fMRI has
been used to examine the relationship between connectivity and
brain states related to interictal spikes. In these studies, reduced
FC between the hippocampus ipsilateral to the seizure focus
with the contralateral hippocampus has been reported in rela-
tion to interictal activity in patients with unilateral MTLE, when
compared to controls (41). Pereira et al. (42) has demonstrated
that healthy subjects exhibit high FC between the hippocampi,
whereas in patients with MTLE, the basal connectivity between
the hippocampi is disrupted. Our findings support and extend the
knowledge from previous reports of reduced bilateral hippocam-
pal activity. Specifically, we showed that the loss of connectivity
between the hippocampi is linked to the pre-spike period. Our
approach in defining different brain states (i.e., background, pre-
spike, and spike) facilitated the identification of altered FC during
the transition from rest to spike states. It remains to be deter-
mined whether these changes in FC are due principally to changes
in firing patterns in the ipsilateral (abnormal) hippocampus, the
contralateral hippocampus, or to a complex desynchronized pat-
tern of firing in both hippocampi. It is possible that decreased

connectivity reflects a reduction in inter-hemispheric inhibition
from the contralateral hippocampus, which plays a role in the
emergence of interictal spikes. Further research is needed to dif-
ferentiate between these alternatives. Seizure recency influenced
short-term connectivity patterns. The shorter the interval from
the last seizure, the greater the recruitment of the pre-spike net-
work, whereas the rest network was more strongly recruited with
longer intervals from the last seizure.

This study and others have emphasized the usefulness of EEG-
fMRI and FC in examining brain connectivity in disease, but
conclusions from these studies should take into account their
limitations. In our study, the possibility that not all interictal spikes
were visible in scalp recorded EEG (43) may limit the accuracy
and specificity of our analysis. Additionally, we report findings in
a small sample of patients, which is likely to have reduced sta-
tistical power (44). Each subject was scanned only once, and the
FC patterns were derived from the average of all pre-spike peri-
ods across all subjects. Each patient had a differing number of
spikes, as reported in Table 1, and our estimates of FC were based
on the average of all pre-spike periods available. The variability
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Table 3 | Functional connectivity pattern during rest.

Region Side Peak MNI coordinates Ratioa

x y z

Para HP, amygdale L −21 −12 −15 47.09

HP, para HP, amygdale R 24 −15 −4 13.5

Cerebellum L −24 −51 −9 29.32

R 31 −53 −15 15.22

Fusiform L −36 −42 −14 4.51

R 37 −40 −15 4.00

Precuneus R 2 −72 47 4.03

L −2 −72 51 4.59

Cingulate gyrus R 16 −29 42 4.007

L −21 −26 42 4.32

Superior frontal gyrus R 30 51 51 7.68

L −5 19 58 3.48

Medial frontal gyrus L −20 −2 42 6.20

Medial temporal gyrus R 50 −4 −20 6.85

L −50 −2 −23 6.08

Brainstem 0 −23 −23 6.85

HP, hippocampus; L, left; R, right; MNI, Montreal Neurological Institute; SE,

standard error.
aSalience/SE ratio in bootstrap analysis.

Table 4 | Functional connectivity pattern during pre-spike.

Region Side Peak MNI coordinates Ratioa

x y z

Para HP, amygdale L −18 −15 −11 16.92

Middle temporal gyrus L −61 −28 −11 5.04

Caudate R 20 25 −10 7.95

Lentiform nucleus L −13 6 −13 7.2

R 17 6 −11 8.12

Cingulate gyrus L −7 22 30 −9.2

R 8 21 33 −6.05

Insula L −43 −15 −10 4.55

R 44 −13 −10 4.55

HP, hippocampus; L, left; R, right; MNI, Montreal Neurological Institute; SE,

standard error.
aSalience/SE ratio in bootstrap analysis.

in connectivity across epochs and subjects is taken into account
in the statistical inference insofar as significant voxels represent
the consistent features of the connectivity maps. Furthermore, the
large range of AEDs prescribed and the relatively low number
of subjects precluded the analysis of the influence of specific drug
classes on connectivity patterns. Finally, we concede there may be a
degree of temporal blurring in examining connectivity time linked
to interictal spikes in a dataset with a temporal resolution of 2.5 s.
However, if it were possible to remove this effect, the focal pat-
tern of connectivity that we observed during the pre-spike period
might be expected to be even stronger.

Table 5 | Functional connectivity pattern during spike.

Region Side Peak MNI coordinates Ratioa

x y z

Para HP, amygdale L −25 −15 −15 23.05

HP, para HP, amygdale R 29 −15 −13 5.01

Cerebellum L −23 −53 −10 29.32

R 31 −52 −15 15.22

Fusiform R 38 −65 −3 4.60

Insula R 44 −42 25 9.11

L −2 −72 51 4.59

Lentiform nucleus L −20 −15 −8 13.75

Red nucleus 0 −15 −7 6.05

Superior frontal gyrus L −18 21 58 −4.68

R 24 20 58 −5.6

Middle frontal gyrus L −36 5 44 −6.72

HP, hippocampus; L, left; R, right; MNI, Montreal Neurological Institute; SE,

standard error.
aSalience/SE ratio in bootstrap analysis.

To conclude, our main findings indicate that ipsilateral
hippocampal activity and FC are reduced during the period
immediately prior to the appearance of interictal spikes. These
findings may provide insights about the patho-physiological state
of mesial temporal lobe structures underlying the genesis of spikes.
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Lennox–Gastaut Syndrome (LGS) is a category of severe, disabling epilepsy, characterized
by frequent, treatment-resistant seizures, and cognitive impairment. Electroencephalog-
raphy (EEG) shows characteristic generalized epileptic activity that is similar in those with
lesional, genetic, or unknown causes, suggesting a common underlying mechanism. The
condition typically begins in young children, leaving many severely disabled with recurring
seizures throughout their adult life. Scalp EEG of the tonic seizures of LGS is characterized
by a diffuse high-voltage slow transient evolving into generalized low-voltage fast activity,
likely reflecting sustained fast neuronal firing over a wide cortical area. The typical inter-
ictal discharges (runs of slow spike-and-wave and bursts of generalized paroxysmal fast
activity) also have a “generalized” electrical field, suggesting widespread cortical involve-
ment. Recent brain mapping studies have begun to reveal which cortical and subcortical
regions are active during these “generalized” discharges. In this critical review, we examine
findings from neuroimaging studies of LGS and place these in the context of the electri-
cal and clinical features of the syndrome. We suggest that LGS can be conceptualized
as “secondary network epilepsy,” where the epileptic activity is expressed through large-
scale brain networks, particularly the attention and default-mode networks. Cortical lesions,
when present, appear to chronically interact with these networks to produce network insta-
bility rather than triggering each individual epileptic discharge. LGS can be considered as
“secondary” network epilepsy because the epileptic manifestations of the disorder reflect
the networks being driven, rather than the specific initiating process. In this review, we
begin with a summation of the clinical manifestations of LGS and what this has revealed
about the underlying etiology of the condition. We then undertake a systematic review of
the functional neuroimaging literature in LGS, which leads us to conclude that LGS can
best be conceptualized as “secondary network epilepsy.”

Keywords: Lennox–Gastaut syndrome, generalized epilepsy, tonic seizure, EEG–fMRI, default-mode network,
attention network, paroxysmal fast activity, slow spike and wave

LENNOX–GASTAUT SYNDROME – DEFINITION AND
CLINICAL FEATURES
Lennox–Gastaut Syndrome (LGS) is a severe epilepsy phenotype,
usually beginning in childhood, and commonly associated with
intellectual disability. Onset of LGS is typically before the age of
8 years (1–3), with peak onset age between 3 and 5 years (4). Once
established, 80% of LGS patients will continue to have seizures
into adulthood (5, 6). Individual patients may have a variety of
genetic abnormalities or cortical lesions (7), and in a significant
proportion of patients, perhaps 25% (8, 9), the underlying cause
is unknown.

The core features of LGS were described by Henri Gastaut in
1966 (10). Patients may have a variety of seizure types, often with
multiple daily attacks, but tonic seizures, which cause patients to
suddenly and unpredictably stiffen and drop to the ground, are a
key diagnostic feature (11). On electroencephalography (EEG),
tonic seizures are characterized by a diffuse high-voltage slow
wave followed by generalized low-voltage fast activity (LVFA)

(Figure 1A), likely reflecting sustained fast neuronal firing over a
wide cortical area (12). The interictal EEG shows frequent runs of
pseudo-rhythmic 1.5–2.5 Hz diffuse slow spike-and-wave (SSW),
and intermittent bursts of generalized paroxysmal fast activity
(GPFA), particularly in sleep (4). The electrical features of GPFA
show similarity to the LVFA of tonic seizures, suggesting that they
probably recruit similar brain networks.

Although LGS is relatively uncommon [0.24–0.28 per 1,000
births; (14, 15)], the persistent nature of seizures results in a rel-
atively high prevalence, estimated at 1–10% of all children with
epilepsy (8, 16–21), and 3–17% of patients with epilepsy and
intellectual disability (22–24). LGS patients are not uncommon
in epilepsy clinics.

LENNOX–GASTAUT “PHENOTYPE”
Patients with some, but not all, the features of LGS, were previ-
ously classified as having “secondary generalized epilepsy” (6, 25,
26). This term was removed from the 2010 International League
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FIGURE 1 | Ictal EEG features and peri-ictal SPECT of tonic seizures in
LGS. (A) Clinical onset of seizure corresponds with a high-voltage slow
transient (vertical arrow) followed by apparent diffuse attenuation, evolving
into low-voltage fast activity (LVFA) and later a run of slow spike-and-wave
mixed with notched delta. (B) Early radiotracer injection (<10 s after offset of
LVFA) and subsequent SPECT shows an early pattern of increased (red)
cerebral blood flow in frontal and parietal “attention” areas, pons, and
cerebellum, and decreased (blue) CBF in primary cortical areas. (C) Late

radiotracer injection (>10 s after offset of LVFA) and subsequent SPECT
shows an evolution toward a pattern of increased CBF over lateral parietal
cortex and cerebellum, and decreased CBF bi-frontally, while the pons is no
longer involved. (B,C) Top: surface renderings displayed at p < 0.02
(uncorrected), extent k > 125 voxels. Below: overlay onto axial slice of MNI T1
152 average brain displayed at p < 0.05 [cluster-corrected for family-wise error
(FWE)]. R = right, L = left, I = inferior, S = superior. Adapted and re-printed
with permission from Intusoma and colleagues (13).

Against Epilepsy (ILAE) updated classification of the epilepsies
(11), as it was felt the diagnostic category had become an unhelp-
ful“dumping ground”for poorly defined cases of severe epilepsy. It
is clear that many recent advances in understanding disease mech-
anisms in epilepsy have come from genetic discoveries, derived
from careful electroclinical phenotyping (27, 28). Unfortunately,
in clinical practice, this has meant patients who manifest most of

the electrical features of LGS (tonic seizures, SSW, and GPFA), but
who might have an older than usual age of onset, minimal EEG
background slowing, or mild intellectual disability, are no longer
easily classified. We have begun using the term “Lennox–Gastaut
Phenotype” (LGP) to describe these patients (29), as we believe the
similarities in electroclinical expression likely reflect similarities in
the neural networks being driven by epileptic activity.
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EPILEPTIC ENCEPHALOPATHY
Lennox–Gastaut Syndrome is classified as one of the epileptic
encephalopathies (11), as it seems likely that the epileptic process
pervasively inhibits cognition and cognitive development. Patients
with LGS frequently show cognitive regression around the time of
diagnosis, while established LGS is almost always associated with
moderate to severe cognitive impairment. Twenty to sixty percent
of patients show intellectual disability at the time of diagnosis,
increasing to 75–95% within 5 years of the syndrome’s onset (4).
Fifty-five percent of LGS patients have an IQ under 50 (30), and
impairment is often global. On continuous performance tasks,
children and adolescents with LGS show impaired information
processing with marked slowing of reaction times to cognitive
and motor stimuli (31). Behavioral and psychiatric disturbances
are frequent in LGS, compounding the burden of care. Common
problems include aggressiveness, hyperactivity, and autistic traits
(32–38). Long-term outcomes are typically very poor, with the
majority of patients remaining under home-care or institution-
alization (2, 39), and some needing to wear a helmet to prevent
seizure-related head and face injuries (40).

Cognitive impairment in LGS appears related to the age of
onset and persistence of seizures. An earlier age of seizure onset
(<5 years) has been associated with more severe cognitive impair-
ment,while patients who develop LGS later in life (>9 years) follow
a more favorable cognitive course (3, 30, 32, 41–43). In a group of
patients with normal mental development before the onset of LGS,
Ohtsuka (44) found that 95.7% (22/23) of patients with persistent
seizures showed cognitive impairment after a follow-up period of
at least 5 years compared with 12.5% (1/8) of patients who had
been seizure free for at least 1 year.

If seizures remain poorly controlled, there appears to be pro-
gressive cognitive impairment over time. Oguni (1) followed 72
patients for a mean of 17 years and found a decrease of at least
15 IQ points from onset of diagnosis to end of follow-up in
around 80% of patients with LGS. In contrast, there are a number
of case reports of improved cognitive trajectory in patients with
LGS due to a lesion, who become seizure free following resective
surgery (45, 46).

VARIABLE CAUSES, COMMON ELECTROCLINICAL FEATURES
No single pathophysiology underlies the development of LGS
(25), although the age-dependent expression implies that there
is something about the immature brain that renders it suscepti-
ble to development of the LGS phenotype (47). Approximately
10–30% of patients have an epileptogenic abnormality visible on
structural MRI (3, 48), with focal, multifocal, or diffuse structural
abnormalities described. Etiologies include focal cortical dysplasia,
perinatal anoxia, ischemic stroke, intracranial hemorrhage, and
encephalitis (7, 49). A variety of genetic factors, particularly de
novo mutations, have been implicated in some patients (7, 50).
However, approximately 25% of patients with LGS (8, 9) have no
obvious structural brain abnormalities and no confirmed genetic
abnormalities. These cases may be considered LGS of unknown
cause (11). It is notable that the electroclinical features of tonic
seizures and interictal discharges in LGS are remarkably similar
whether or not there is a causative lesion, and independent of
lesion location or pathology. Conversely, the same etiology may
lead to LGS or a more benign epilepsy phenotype. For example,

tuberous sclerosis is a condition, in which inherited or sponta-
neous mutations of the TSC1 or TSC2 gene lead to a failure of
inhibition of the mTOR (mammalian target of rapamycin) path-
way, causing abnormal cell proliferation. In this condition, defects
in the same molecular pathway, and at times the same genetic
abnormality, may produce epileptic spasms, an LGS phenotype,
or focal epilepsy (51, 52). Hence, there are factors other than the
specific molecular mechanism that determine whether a patient
will express the LGS phenotype.

POTENTIALLY REVERSIBLE
Seizures and developmental delay are not necessarily permanent
in LGS. With regards to seizures, as early as 1979 it was shown
that surgical removal of a parietotemporal neoplasm in a child
with LGS led to a complete remission of seizures and SSW pat-
terns on EEG (53). We recently showed similar improvements in
three patients who had their lesions removed (29) (Figure 2),
consistent with other reports of seizure freedom following focal
or lobar resections in LGS patients with parietal, frontal, tempo-
ral, and hypothalamic lesions on MRI (45, 46, 54–62). Following
successful epilepsy surgery, some LGS patients show an initial per-
sistence of seizures or “generalized” epileptic discharges, which
subsequently resolve (“winding down”; Figure 2) (29, 45, 46, 54,
56). This demonstrates that although lesions can cause the LGS
phenotype, at least in some patients the lesions themselves are
not triggering each individual epileptic discharge (“secondary bi-
synchrony”). It suggests instead that lesions are interacting with
key networks to create an unstable mode of network behavior (29).
Once the destabilizing influence is removed, in this case the corti-
cal lesion, cerebral networks are able to gradually return to a more
stable (non-epileptic) state.

In addition to reductions in seizure frequency and normal-
ization of EEG abnormalities, there are several reports of post-
operative cognitive gains (45, 46, 54, 55, 57–60), supporting
the notion that intellectual deterioration may in part be due
to seizures and interictal discharges (63, 64). For example, Liu
(59) performed comprehensive pre- and post-operative neuropsy-
chological assessment in 15 patients with LGS who underwent
single-lobe/lesionectomy or multi-lobe resection, and found a sig-
nificant mean IQ increase from 56.1 to 67.4 after surgery. These
benefits become less certain as duration of LGS prior to surgery
increases (59, 65), a trend found in other severe childhood epilep-
sies (66–69). Hence, there appears to be a time window in which the
epileptic brain is both vulnerable to irreversible cognitive decline
and amenable to treatments that restore normal development.

INVOLVEMENT OF SUBCORTICAL STRUCTURES
THALAMUS
The generalized nature of epileptic discharges and seizures has
led many to postulate that the thalamus may be a key initiator of
epileptic activity in LGS. Recordings from the thalamus during
generalized epileptic discharges of LGS confirm that the thal-
amus is involved (70, 71). EEG–functional magnetic resonance
imaging (fMRI) studies have shown thalamic involvement during
SSW (29, 72, 73) and generalized spike-and-wave (74, 75). High-
frequency electrical deep brain stimulation (DBS) of the thalamic
centromedian nucleus has been reported to reduce generalized
seizures by 80% in a group of 13 LGS patients (76). However,
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FIGURE 2 | Pre- and post-operative EEG. Pre- and post-operative EEG in a
38-year-old male with LGS, a lesion, and intractable seizures since childhood.
Prior to resection of a left frontal cortical dysplasia (arrowed), the patient
suffered daily seizures. Pre-operative interictal EEG showed bursts of slow
spike-and-wave (SSW) and generalized paroxysmal fast activity (GPFA). Day 3

post-operative EEG showed persistence of SSW, while day 30 EEG showed
complete normalization, consistent with a winding down of the epileptic
process. The patient is 2 years seizure free, consistent with LGS being
potentially reversible. Re-printed with permission from Archer and
colleagues (29).

given that cortical lesions can cause LGS, and their removal can
lead to abolition of the epileptic process, it seems likely in this
case that the thalamus is probably acting as a synchronizer and
amplifier, rather than initiator.

PONS
The pons appears involved in tonic seizures. Direct electrical stim-
ulation of pons in animals reproduces posturing similar to a
tonic seizure, with predominant axial muscle involvement (77).
Auditory stimulation of the brainstem in a rat model of gen-
eralized epilepsy causes animals to have convulsive attacks with
electrophysiological evidence of excessive brainstem firing, but no
evidence of cortical involvement (78). We have shown increased
blood flow in the pons during tonic seizures in humans, consistent
with increased pontine neuronal activity (13). However, as noted
above, cortical lesions can cause LGS, and their removal can lead
to abolition of the epileptic process. Hence, although the pons is
involved in seizure expression, it does not appear to be the initiator
of epileptic activity and seizures (79).

A NETWORK DISORDER
The shared electroclinical and cognitive features of LGS suggest
that common cerebral networks are involved. Epilepsy is increas-
ingly being recognized as a disorder of cerebral networks (29, 72,
74, 80–84). The electroclinical features of an epilepsy syndrome
can be considered as reflecting the specific cerebral networks being
recruited. In this context, a neural network comprises anatomically
and functionally connected cortical and subcortical brain struc-
tures, where activity in any one part of the network may affect
activity in all the others (80). Network-based considerations of
epilepsy are useful and clinically relevant because they can help
explain seizure semiology can suggest which cerebral networks
may be dysfunctional in the interictal state, and can help guide
medical and surgical management directions. For example, the

diagnosis of temporal lobe epilepsy (TLE), reflecting seizures pre-
dominantly expressed in the limbic system, makes sense of the
memory, olfactory, and other symptoms the patient may experi-
ence during an “aura.” It permits interpretation of ictal features,
including spread patterns. It suggests particular imaging and
genetic studies directed at epilepsy involving this region, while
leaving open the idea that seizure activity could have started else-
where (e.g., occipital lobe) but be maximally expressed through
the temporal lobe. Finally, the label of TLE helps interpretation
of memory deficits, which are associated with dysfunction of
this particular network. The neuroimaging evidence for network
involvement in LGS is reviewed below.

EPILEPSY NETWORKS OF LGS: A SYSTEMATIC REVIEW OF
THE FUNCTIONAL NEUROIMAGING LITERATURE
In this section, we review the functional neuroimaging studies in
LGS, in particular, positron emission tomography (PET), inter-
ictal and peri-ictal single-photon-emission computed tomogra-
phy (SPECT), and combined electroencephalography (EEG) and
functional magnetic resonance imaging (EEG–fMRI).

SEARCH STRATEGY
A literature search in the bibliographic database PubMed (1982
to April 2014) was undertaken. Search terms were restricted to
articles’ titles and abstracts. A combination of the following search
terms was used: LGS AND PET OR positron OR SPECT OR pho-
ton OR fMRI OR EEG–fMRI OR neuroimaging. Furthermore, we
examined each article’s reference list and used Google to search
for websites that might provide additional references. This effort
resulted in 95 citations that were selected for review. Included
articles were limited to studies reporting primary data; review
articles were read but are excluded here. A total of 70 citations
were excluded as irrelevant, with 25 remaining for review.
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POSITRON EMISSION TOMOGRAPHY
The most common radio-ligand is fluoro-2-deoxy-d-glucose
(FDG-PET), which images glucose uptake, to display average cere-
bral metabolism over the course of the image acquisition, usually
30–60 min in duration (85). Several interictal PET studies with
small numbers of LGS patients have shown unilateral focal or mul-
tifocal hypometabolic abnormalities,predominantly in frontal and
temporal regions, that tend to correlate with structural abnormal-
ities observed on structural imaging or epileptic foci determined
by EEG (86–89). Others have observed more diffuse abnormali-
ties, including generalized bilateral hypometabolism, most promi-
nent fronto-temporally (90). Some patients show normal cerebral
glucose metabolism (91). The variability in these results was reca-
pitulated in a larger series of 15 children with LGS (92), where
four major metabolic subtypes were identified: unilateral focal
hypometabolism in frontal or temporal regions; unilateral diffuse
hypometabolism; bilateral diffuse hypometabolism; and normal
metabolic patterns. Ferrie (93) aimed to establish whether PET
would reveal focal abnormalities in a group of LGS patients who
had no localizing features evident on clinical examination, EEG, or
high resolution MRI. Using asymmetry indices for patients’ own
homologous cortical regions to detect metabolic defects, no focal
abnormalities were found in patients with de novo LGS, while LGS
cases following West syndrome more commonly showed unilat-
eral focal hypometabolism in temporal, frontal, or parietal regions.
Repeat PET performed 1 year later in a subset of patients with focal
abnormalities showed that hypometabolic defects were stable over
time (94). In a further semi-quantitative analysis comparing meta-
bolic rates in LGS to age-matched controls, Ferrie (95) observed
widespread, generalized hypometabolism in cortical and thalamic
regions in LGS patients with and without previously reported focal
abnormalities (93). The degree of hypometabolism in the frontal
lobes was later reported to be inversely correlated with measures
of patients’ adaptive behavior (96).

Taken together, these results agree with the clinical impres-
sion that LGS is a disorder of heterogeneous etiologies. However,
they add further evidence that, in some cases at least, generalized
epileptic activity in LGS may be caused by focal cortical abnormal-
ities. This notion is supported by more recent uses of PET in the
identification of metabolic defects in LGS patients who undergo
resective surgery and subsequently show seizure improvement (57,
58, 60). An additional observation across these studies is that in
patients who do show aberrant metabolic activity, whether focal,
multifocal, or diffuse, the abnormality appears largely confined
to association cortex (involving frontal, temporal, and parietal
lobes), typically sparing primary cortical areas (e.g., primary visual
and motor cortex). This pattern of common cerebral network
involvement has been observed in other functional neuroimaging
modalities, which are discussed below.

SINGLE-PHOTON-EMISSION COMPUTED TOMOGRAPHY
Single-photon-emission computed tomography is able to image
regional cerebral blood flow (CBF) to identify brain regions that
are active during a seizure (97, 98). To date, very few studies have
been performed in LGS patients. A small number of case reports
have found diffuse foci of reduced CBF in frontal, temporal, or
parietal regions (99–103); however, their interpretation is limited

because studies were only performed interictally, making it dif-
ficult to differentiate normal from epileptogenic tissue (104). To
address this gap in the literature, we recently performed a voxel-
wise comparison of ictal and interictal SPECT in a group of 10
scan pairs from 7 LGS patients who were studied during video
EEG-confirmed tonic seizures (13). Five patients had focal struc-
tural abnormalities on MRI. Across the whole group, tonic seizures
were associated with increased CBF in the lateral parietal lobe and
cerebellum, and reduced CBF bilaterally in frontal and occipital
regions. The evolution of CBF changes was also explored by exam-
ining patient subgroups who were injected with a radiotracer early
(<10 s) or late (>10 s) after the offset of EEG LVFA (Figure 1).
The early injection group showed increased CBF in the pons, cere-
bellum, and bilateral fronto-parietal regions, and reduced CBF
in primary cortical areas, including pericentral and occipital cor-
tex. The late injection group showed an evolution of this pattern
toward increased CBF over lateral parietal cortex and the cerebel-
lum, and reduced CBF frontally. Despite some of these patients
having a focal cortical lesion in different locations, we observed
a common pattern of early association cortex involvement and
reduced activity in primary cortical areas. We postulated that tonic
seizures in LGS reflect activity in a corticopontine pathway, arising
in a network of bilateral frontal and parietal association cortices
before projecting via cortico-reticular pathways to the pons, and
from there via reticulo-spinal pathways to spinal motor neurons
(Figure 3).

FIGURE 3 | Schematic illustration of proposed mechanism of tonic
seizures in LGS is shown. (A) Epileptiform activity initiated in cortex, and
rapidly amplified within intrinsic attention and default-mode networks.
(B) Epileptiform activity projects via cortico-reticular pathway – Brodmann
area 6 (premotor cortex) to ponto-medullary reticular formation (105, 106).
(C) Epileptiform activity projects via the reticulo-spinal pathway to motor
neurons innervating proximal muscles at multiple levels (107).
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EEG–fMRI
An understanding of the importance of cerebral networks in
epilepsy has been driven by insights gained through combined
EEG and functional MRI (EEG–fMRI) studies, including key pub-
lications from our laboratory (29, 72, 74, 75, 108–114). Recording
low-voltage scalp EEG signals in the MR environment poses a
number of challenges (115–117), but these can be largely overcome
(118, 119).

Electroencephalography–functional magnetic resonance imag-
ing utilizes the blood–oxygen-level-dependent (BOLD) response
(120) to visualize activity changes associated with epileptiform dis-
charges across the whole brain. Functional MRI activity represents
summed local field potentials across time [fMRI volume acquisi-
tion time (TR) is typically 2–3 s] and space (voxel size is typically
3–5 mm3) (121). Hence, EEG–fMRI provides an overview of cere-
bral network behavior during epileptic discharges. Indeed, because
fMRI is sensitive to brain activity that is not necessarily hyper-
synchronized, it can do more than simply map the brain regions
active at the time of the spike; it can also map brain activity time-
locked to but preceding the EEG spike (113, 122), thus providing
a more complete picture of the brain networks associated with
epileptic discharges.

A relatively small number of EEG–fMRI papers have examined
LGS. One study of spike-and-wave activity in 16 subjects with“sec-
ondary generalized epilepsy” who were scanned at 1.5 T showed
thalamic activation in addition to widespread cortical changes
that included variable activation and deactivation in frontal and

parietal regions (123). Similar results were observed in two of
these patients who were studied again at 3 T using simultaneous
EEG with BOLD and arterial spin label (ASL) fMRI (124). BOLD
activation and deactivation during spike-and-wave observed in
frontal and parietal regions corresponded, respectively, with CBF
increases and decreases recorded with ASL. A group analysis of
11 children with LGS, with EEG–fMRI performed under chlo-
ral hydrate sedation, found BOLD increases in the thalamus and
brainstem (73). These changes were found on an analysis that com-
bined all discharges, including SSW and “polyspike” discharges,
potentially diluting the differential effects of SSW and GPFA on
cortical activity.

We have recently shown that GPFA and SSW, the two pathog-
nomonic interictal discharges of LGS, are associated with quite
different changes in neuronal activity (29, 72). GPFA is associated
with diffuse association network activation (Figure 4), consistent
with the GPFA EEG signature of widespread fast activity. Associa-
tion cortex contains two dominant cognitive systems: the attention
network, which modulates focused attention to task across a range
of cognitive domains; and the default-mode network (DMN),
that engages during quiet reflection, reminiscing, and internal
thinking. Neural activity in these two networks is normally anti-
correlated, consistent with their diametrically opposed cognitive
functions (125–128). Epileptiform activity in LGS appears to be
associated with a highly unusual pattern of co-activation of atten-
tion networks and the DMN. Furthermore, there is a very similar
pattern of network activation in LGS whether or not there is

FIGURE 4 | Electroencephalography–functional magnetic resonance
imaging of generalized paroxysmal fast activity (GPFA) and slow
spike-and-wave (SSW) in individual LGS patients is shown. In
individual patients, GPFA and SSW produce different
blood–oxygen-level-dependent (BOLD) response patterns. GPFA shows
increased BOLD in diffuse association network regions, as well as

brainstem, basal ganglia, and thalamus. SSW shows a different pattern,
with decreased BOLD signal in primary cortical areas. The number of
events in seconds, at the bottom of each panel, is the sum of the length
of all individual epileptiform events recorded during the EEG for each
patient. Pt, patient. Re-printed with permission from Pillay and
colleagues (72).
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FIGURE 5 | Group-level EEG–fMRI activation maps and peri-event BOLD
signal time-courses in LGS patients with epileptogenic lesions in
different cortical locations are shown. (A) Generalized paroxysmal fast
activity (GPFA). Left : fixed-effects whole-brain group EEG–fMRI analysis in six
patients with cortical lesions in different locations showing co-activation of
two normally anti-correlated cognitive systems in diffuse association cortex:
the attention and default-mode networks. Activations are displayed as
two-tailed t -statistics thresholded at p < 0.05 (corrected for FWE) and overlaid
on axial slices of the MNI T1 152 average brain. Right : random-effects
peri-event time-course analysis showing GPFA group mean BOLD signal
change from regions of interest. Time-courses are displayed in 3.2 s time-bins,
from 32 s before to 32 s after event onset (indicated by vertical line). Error bars
indicate standard errors. Asterisks indicate time-bins of significant mean
BOLD signal change (two-tailed single sample t -tests, p < 0.05, uncorrected).
Time-course analysis confirms simultaneous BOLD signal increases in frontal

and parietal association cortical areas, thalamus, and pons, and reduced
signal in primary cortical areas. (B) Slow spike-and-wave (SSW). Left :
fixed-effects whole-brain group EEG–fMRI analysis in three subjects with
cortical lesions in different locations showing mixed increased and decreased
BOLD signal, including activation in thalamus and lateral frontal and parietal
areas, and deactivation in primary cortex including pericentral and occipital
regions. Activations are displayed as per (A). Right : random-effects peri-event
time-course analysis showing SSW group mean BOLD signal change from
regions of interest, as displayed in (A). Time-course analysis shows a complex
set of activity changes that are only partially captured by the whole-brain
maps. Attention and default-mode networks are being driven simultaneously,
but with a steady “pre-spike” increase in activity followed by a decrease in
signal at the time of scalp-detected SSW. Primary cortical regions show signal
decreases. Adapted and re-printed with permission from Archer and
colleagues (29).

an underlying epileptogenic lesion, and independent of lesion
location (Figure 5), supporting our hypothesis that the shared
electroclinical features of LGS reflect underlying similarities in the
recruited brain networks.

Slow spike-and-wave also appears to simultaneously recruit the
attention and DMNs, but with a more complex pattern (Figure 4).
SSW shows a steady upward drift of activity for more than 6 s prior

to scalp-detected activity, followed by an abrupt fall in activity with
the appearance of SSW on the scalp (Figure 5). The curious phe-
nomenon of “pre-spike” fMRI activity changes has been observed
in generalized spike-and-wave of genetic generalized epilepsy (74,
129–131), and may reflect the need of the brain to be in a specific
state for spike-and-wave discharges to occur. The shape of the
hemodynamic changes around the time of SSW is a poor fit for
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the canonical hemodynamic response function (HRF) that is typ-
ically used in event-related analyses to generate maps of activity
changes (132). This may explain the variability seen with our EEG–
fMRI maps of SSW. EEG–fMRI studies of epileptic discharges in
other epilepsy syndromes have also observed that BOLD responses
to discharges show differences to the canonical HRF (113, 114,
133–135).

We and others have observed reduced activity in primary corti-
cal regions during interictal discharges (GPFA and SSW; Figures 4
and 5) (29, 73). This is consistent with our observation of reduced
blood flow in sensorimotor cortex during tonic seizures (13).
Hence, it appears that epileptic activity in LGS is not predomi-
nantly expressed through primary cortical regions. This suggests
that an alternate pathway generates the axial predominant move-
ments of tonic seizures, perhaps cortico-reticular pathways (105,
106), driving the pontine reticular formation, with outflow via
reticulo-spinal projections, which innervate predominately axial
muscles at multiple spinal levels (107) (Figure 3).

CONCLUSION
Patients with LGS have a similar electroclinical phenotype, despite
varying etiologies, consistent with a common underlying mecha-
nism. The EEG features suggest that there is widespread cortical
recruitment during epileptic activity. Functional neuroimaging
has confirmed that epileptic activity in LGS recruits widespread
areas of association cortex (diffuse association network activity),
and spares primary cortical regions. Hence, LGS appears to be
a network epilepsy, where the epileptic discharges and seizures
reflect abnormal neuronal firing within intrinsic cognitive brain
networks, specifically the attention and DMNs. Furthermore,
epileptic activity in LGS appears to be characterized by a fun-
damental breakdown in normal brain network behavior, with
co-activation of attention networks and the DMN. However, it
is not yet clear whether it is the attention network, the DMN, or
both that are key to the LGS phenotype.

The epileptic process in LGS appears to be initiated from the
cortex. Cortical lesions can cause LGS, and their removal can
abolish seizures. Some patients show “winding down” of inter-
ictal discharges following removal of an epileptogenic lesion. This
strongly suggests that cortical lesions, when present, chronically
interact with these networks to produce network instability rather
than triggering each individual epileptic discharge. Presumably,
a wide range of molecular and neuronal mechanisms could pro-
duce a similar pattern of network instability. In patients without
an obvious cortical lesion, therapies that seek to reduce network
instability, such as “generalized” anti-convulsants, are likely to
be beneficial (4). Preliminary evidence suggests that thalamic
DBS may also be beneficial (76), possibly by modulating net-
work excitability. Although the epileptic process is driven from
the cortex, it appears that tonic seizures are expressed through the
reticular formation of the pons. We propose that when epileptic
activity in the cognitive networks reaches a particular threshold, it
triggers cortico-reticular pathways, which connect premotor cor-
tex (Brodmann area 6) to the pontine reticular formation. Trunkal
predominant movement is likely generated via reticulo-spinal
pathways, which innervate axial muscles at multiple levels. These
primitive pathways are normally responsible for postural control

and orienting behavior, such as turning to visual, auditory, or tac-
tile stimuli (105, 106), but in LGS are being driven by epileptic
outflow from the cortex.

Lennox–Gastaut syndrome can be conceptualized as secondary
network epilepsy, where the epileptic discharges and seizures
reflect epileptic activity being amplified through intrinsic cogni-
tive brain networks. The epileptic features of LGS reflect activity in
these networks, rather than the specific lesional, genetic, or other
cause. We believe that the label of “secondary network epilepsy”
is useful as it captures and explains the key electroclinical fea-
tures, including tonic seizures, SSW, and GPFA. The label allows
initial management decisions to be made, including considera-
tion of “generalized” drug therapies, while acting as a reminder
to continue to search for specific underlying causes. Finally, the
label reminds us that the process is potentially reversible, if an
underlying treatable cause such as a lesion can be identified early.
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Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic
zone and then spread to other brain regions.This is a key concept for semiological electro-
clinical correlations, localization of relevant structural lesions, and selection of patients for
epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combi-
nations, thereof, have been validated as contributory tools for focus localization. In parallel,
these techniques have revealed that widespread networks of brain regions, rather than a
single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multi-
modal imaging and analysis strategies of brain connectivity patterns have been developed
to characterize the spatio-temporal relationships within these networks by combining the
strength of both techniques to optimize spatial and temporal resolution with whole-brain
coverage and directional connectivity. In this paper, we review the potential clinical con-
tribution of these functional mapping techniques as well as invasive electrophysiology in
human beings and animal models for characterizing network connectivity.

Keywords: connectivity, resting-state network, epilepsy, animal model, EEG, fMRI, MEG, intracranial EEG

INTRODUCTION
Epilepsy is one of the most frequent chronic neurological dis-
order, with an incidence of 50/100,000/year and a prevalence of
0.5–1% (1, 2). One third of these patients are drug resistant (3).
Focal seizures are classically considered to be caused by an abnor-
mal neuro-electrical activity of a focal epileptogenic zone and a
subsequent spreading to other brain regions. This concept is inti-
mately linked to the correlation between ictal signs and symptoms,
electro-physiological activity, and structural lesion [anatomo-
electro-clinical correlation (4)]. Furthermore, this hypothesis is
crucial to select drug-resistant focal epilepsy patients for surgery,
a widely accepted effective therapy (5, 6). The aim of epilepsy
surgery is to remove the epileptogenic zone with the preservation
of the eloquent areas (7).

Recent progress in neuro-imaging and electro-physiology sug-
gests that focal seizures and focal epilepsies are actually related
to an abnormal function of a network of cortical and subcorti-
cal brain structures rather than to a single epileptogenic region
(8–14). The occurrence of epileptic activity is due to the abnor-
mal neuronal activity of these connected regions and abnormal
interactions between them (epileptic network). This conceptual
shift is reflected in the new terminology proposal for seizures
and epilepsies of the International League against Epilepsy, which
proposes “focal” as indicating seizures arising primarily “within
networks limited to one hemisphere and that may be discrete or
more widely distributed”(15). Generalized seizures are considered
as “originating within and rapidly engaging, bilaterally distrib-
uted networks” of cortical and subcortical regions. Inside these

networks, some brain regions are responsible for seizure initia-
tion and propagation, whereas other nodes are more remotely
involved, their activity modulating, or being modulated by the
epileptic discharge.

There is increasing evidence that epileptic activity strongly
interacts with physiological brain networks, notably the so-called
“resting-state networks” (RSNs) (8, 16). A RSN is a set of brain
regions that shows temporal correlations in their activity (as mea-
sured by hemodynamic or electrical signals) and that are function-
ally related. They are observed during rest but correspond to the
networks revealed in different behavioral and cognitive task (e.g.,
attention, vision, etc.). This has led to the new concept that the
apparently resting spontaneous brain activity shows continuous
interaction among brain networks responsible for various classes
of sensory/behavioral functions (17). RSNs are highly organized in
space, reproducible from subject to subject, and differ with aging
and between genders (18).

In this paper, we review the converging evidence from dif-
ferent brain mapping techniques in human and animal models
that epilepsy is related to the dysfunction of a large-scale brain
networks, with alterations of physiological brain networks. We
will particularly focus on the clinical impact of this new view of
epilepsy as a network disease.

METHODS
An electronic literature search was conducted for articles on this
topic regarding human and animal subjects. Sources searched
included PubMed and relevant books. Words used in the search
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included the text words and subject headings of epilep*, functional
connect*, resting-state functional network*, temporal epilepsy,
extra-temporal epilepsy, electroencephalogram (or EEG), simul-
taneous functional MRI (fMRI) and EEG (or EEG-fMRI), electric
and magnetic source imaging (or MSI, ESI), intracranial EEG (or
iEEG or sEEG), cortico-cortical evoked potential, and single-pulse
electrical stimulation. The words were searched independently and
in combination. For each citation considered, the abstract was read
(when available), and articles were excluded if they were outside
the scope of the review. Studies published only in abstract form,
letters, and technical reports were excluded. The bibliography of
each of the retrieved papers was examined to identify relevant
references that could have been missed by electronic search. The
findings were described taking into account the limit of words and
the critical insight of the authors.

HOW TO MEASURE RESTING-STATE NETWORKS?
FUNCTIONAL CONNECTIVITY
Functional interactions between brain regions activity, can be
characterized in several ways. On the one hand, functional con-
nectivity (FC), the most widely used metrics, measures the statisti-
cal dependency between different signals obtained by correlation
analysis. However, such strategy does not account for the direc-
tion of the information flow and cannot therefore infer causality
relationships. On the other hand, effective or directed connec-
tivity investigates directional relationships and aims at describ-
ing causal influences. Effective connectivity can be investigated
using model-driven techniques such as structural equation mod-
eling (19) and dynamic causal modeling (DCM) (20), data-driven
techniques such as Granger-causal modeling (21), or by record-
ing the response of remote areas to focal stimulation of a given
brain region [cortico-cortical evoked potentials (22)]. Connec-
tivity studies can be applied among a set of predefined relevant
brain regions selected by the investigator, between one seed region
and the rest of the brain or at the whole-brain scale, using the
spatial resolution of the recording technique. A detailed descrip-
tion of the various approaches used for measuring connectivity is
beyond the scope of this review and the reader is referred to studies
comparing various approaches to better understand the specific
limitations of each technique (23–25). The results obtained by
such connectivity analysis between all pairs of brain regions can
be represented in so-called connectivity matrices. Graph topo-
logical analysis is then increasingly applied to reduce the com-
plexity of the data and extract meaningful characteristics of the
networks (26).

BLOOD OXYGEN LEVEL DEPENDENT SIGNAL AND PHYSIOLOGICAL
RESTING-STATE NETWORKS
The concept of brain networks originated, and has largely ben-
efited, from the use of resting-state fMRI. fMRI detects blood
oxygen level dependent (BOLD) signal change reflecting metabol-
ically active brain areas not only in relation to a specific physiologic
or pathologic event (27) but also in resting-state (RS) condition
(resting-state-fMRI or RS-fMRI).

Biswal and colleagues demonstrated for the first time (1995)
that brain regions that are functionally related, show temporal cor-
relations in the low frequency component of the BOLD signal. In

other words, fMRI FC detects zones that exhibit correlated BOLD
fluctuations and, as a result, belong to the same functional network
(28). Studies in monkeys (29) and in human beings (30) suggest
that FC is related to neuronal processes.

Functional connectivity can be measured while the subject is
performing a behavioral and cognitive task (task-related FC), or
while the subject is not performing any specific task (RS-FC).
The RSN that is mainly activated in condition of resting wake-
fulness and deactivated in task performing is called default-mode
network (DMN) (31). This physiological RSN is involved in self-
referential thoughts and consciousness (32, 33). The concept of
“resting” is debatable. Usually, subjects are instructed to lie down
in the scanner with the eyes closed, and are invited to not sleep.

Different methods have been developed to extract RSNs, some
requiring an “a priori hypothesis,” like seed-based approach (34),
other do not [i.e., independent component analysis (35), or boot-
strap analysis (36)]. The description of the methodological aspects
is outside the scope of this review. Other papers can be consulted
(14, 37, 38).

EEG/MEG AND PHYSIOLOGICAL RESTING-STATE NETWORKS
Functional connectivity algorithms similar to those used for fMRI
BOLD signals can be applied to MEG or EEG current-density
estimations in the source space, revealing brain areas that are syn-
chronized in specific frequency bands. As with fMRI, such analysis
can be applied to task-related (39), as well as to spontaneous
resting-state activity (40, 41). The unique advantage of EEG/MEG
connectivity analysis is the high temporal resolution that allows
studying fast fluctuations within large-scale network interactions
and fast switches between resting-state networks.

FC analysis of EEG/MEG considers the time-course of electro-
magnetic signals and looks at correlations of oscillating networks
(42). Beyond this view of temporal oscillations, EEG record-
ings can be considered as time-series of scalp potential maps
that vary across time with the temporal resolution in the order
of milliseconds (43). Several studies have shown that sponta-
neous EEG signals can be explained by the alternation of periods
of stable topography, lasting almost 100 ms, very reproducible
across subjects, and modifiable by neurological (44) or psychi-
atric impairment (45). These periods are called microstates and
can be identified throughout an individual’s life (46) suggesting
that they might be mediated by predetermined anatomical con-
nections. During rest, four different microstates are consistently
observed, and they can be considered as “basic building blocks” of
spontaneous mental activities (47). A recent review on this topic
is available (48).

It has been shown (49) that the temporal dynamic of EEG
microstates have hemodynamic correlates that can be measured
with EEG-fMRI and that each physiological microstate map corre-
sponds to one of the well-described BOLD RS network. Such clear
correlates between EEG and BOLD are less well found when look-
ing at classical power fluctuations in specific EEG frequency bands
(50). This finding strongly suggests that the EEG microstates can
be the candidates for the electro-physiological signatures of fMRI
RSNs. Scale-invariance of the alternation between microstates has
been demonstrated to be the base of this coupling over such a wide
temporal scale (51).
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EVIDENCE FOR BRAIN NETWORKS INVOLVED IN EPILEPTIC
ACTIVITY
As described above, FC at the whole-brain level can be stud-
ied with EEG, MEG, fMRI, iEEG, or the combination of these
techniques. They have been applied to patients with focal or gen-
eralized epilepsy to characterize spatial and temporal properties of
epileptic networks.

EEG AND MEG-BASED CONNECTIVITY IN EPILEPSY
EEG and MEG are appealing non-invasive techniques for estimat-
ing brain connectivity in epilepsy because they measure neuro-
electrical activity more directly than fMRI and can potentially
offer a higher temporal resolution.

Several studies using concordance with intracranial record-
ings or post-operative outcome have established that electric and
magnetic source imaging (ESI, MSI) are reliable techniques for
estimating the localization of the cortical generators of epileptic
activity (52–55) and these techniques now offer a much more con-
vincing strategy to investigate connectivity directly between the
activity of cortical regions. Therefore, both ESI and MSI studies
will be discussed together hereunder. Studies using connectiv-
ity analysis in the sensor space are not discussed here because
of their severe limitations of interpretation due to important
caveats related to sensor cross-talk, volume conduction, and refer-
ence choice of the electromagnetic signals (56). The projection of
the signal in source space requires the selection of a head model
describing the propagation of the electromagnetic signal (forward
problem) and an inverse solution (estimating the cortical activ-
ity from the EEG/MEG recording, inverse problem) (48, 57, 58).
A variety of head models exists, from template averaged normal
brain to highly sophisticated realistic models based on individual
anatomy, and they have been used in epilepsy imaging and cog-
nitive neurosciences. Validation in patients with invasive EEG or
surgical resection showed that the individual anatomy was impor-
tant for the localization accuracy (54), but that the performance
of highly sophisticated models did not outperform less computer-
intensive models also based on individual anatomy, as these were
disturbed by the presence of brain lesions in patients with epilepsy
(59). Regarding inverse solutions, dipole models consider a sin-
gle or a few equivalent dipole(s) as sources of the EEG/MEG
signals of sources distributed in the whole cortex (48). While
both approaches might yield complimentary results for localiz-
ing epileptic sources (60), distributed sources are best suited to the
study of connectivity between cortical patches at a large brain scale.

The analysis of interictal epileptic discharges has principally
aimed at localizing epileptic generators in the context of pre-
surgical evaluations rather than studying large brain networks.
Case reports or small MEG series showed promising results for
the localizing value of the regions with high information outflow,
estimated by connectivity analysis (61–63). In addition, based on
development in cognitive neurosciences, the background activity
measured by MEG and EEG in the classical frequency bands has
also been used as a substrate to estimate abnormal connectivity
in patients with epilepsy and correlate it with clinical variables.
In patients with brain tumors, increased theta-band connectiv-
ity and more profound network alterations were associated with
a higher number of epileptic seizures (64) and there is higher

post-operative network improvement in patients who become
seizure free (65).

In generalized epilepsies, connectivity studies have highlighted
a network of hyperconnected anterior regions in photosensitive
patients (66). Network analysis using graph theory in five patients
with absence epilepsy showed a build-up of connectivity changes
occurring before the onset of generalized spike-wave discharges
(67). This shows the potential of such a technique for our under-
standing of the large-scale brain networks underlying hyperex-
citability and interictal to ictal transition. A similar approach has
been applied to iEEG recordings of interictal to ictal transition in
patients with focal cortical dysplasia (12).

Another study used co-occurrence of MEG interictal spikes
to build graphs of connectivity between the estimated sources of
these spikes. In seven patients also investigated with stereotac-
tic iEEG, the connections revealed by MEG were confirmed by
iEEG (68).

Similarly to fMRI studies, future work will need to distinguish
between transient connectivity alterations related to interictal dis-
charges, that are known to be associated with subtle cognitive
impairment (69), and deeper connectivity changes based on back-
ground activity alterations. The tools are now available to benefit
from the high temporal resolution of EEG/MEG to further inves-
tigate these issues and this field has recently attracted an intense
interest. While MEG offers advantages over EEG for longitudi-
nal studies of post-operative cases, due to its insensitivity to skull
defects, the development of long-term high-density EEG system,
its greater versatility compared to MEG and its potential com-
bination with fMRI will be precious for recording seizures and
exploring network changes leading to their initiation, spread, and
termination.

EEG-fMRI CONNECTIVITY IN EPILEPSY
Simultaneous EEG and fMRI (EEG-fMRI) detects hemodynamic
changes in the brain related to events of interest identified in
the EEG (70). Combining high temporal resolution of EEG sig-
nal with high spatial resolution of BOLD images, EEG-fMRI has
been shown to be useful to characterize various forms of focal
and generalized epileptic abnormalities (hereunder called “spikes”
for practical reasons) (71). EEG-fMRI helps to localize epileptic
focus in patients with drug-resistant focal epilepsy candidate for
surgery (72, 73). From the first publications (74, 75), EEG-fMRI
has demonstrated that BOLD responses to a focal spike can be
multifocal, also present at a distance from the presumed focus
(Figure 1), corroborating the concept of epileptic network (9).
Studying such networks can inform about patients’ prognosis after
surgery. While focal responses predict a good post-operative out-
come, diffuse results are associated with a poor outcome, probably
reflecting that a larger network is involved in the epileptogenic
zone (76, 77). Epileptic activity can also be detected in the absence
of spikes and fMRI analysis based on EEG topography can reveal
epileptogenic networks (78).

BOLD responses to a neural event are usually detected with
a delay of 4–6 s (79). Nevertheless, hemodynamic changes to
spikes can have different peak times (80), and can occur before
the spike is visible on the scalp (81). Dynamic analysis of BOLD
response (82, 83) can tell us which brain areas are first activated,
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FIGURE 1 | Interictal network revealed by EEG-fMRI. Patients with
non-lesional right frontal epilepsy. Marked events inside the EEG-fMRI
session: right frontal spikes with phase reversal at F4 (on the left:
longitudinal bipolar montage from 204 channels EEG). On the middle:
scalp voltage map of the spike (204 electrodes, viewed from the top)

with the maximal right frontal negativity (blue). BOLD response
(t -value = 4; p < 0.05 corrected for family-wise-error) has maximal
activation in the spike topography but other clusters with inferior
statistical values are present in the contra-lateral homologous region and
in the thalamus.

by comparing early BOLD response vs. late BOLD response. How-
ever, this analysis does not address the concept of causality and the
sluggishness and variability of BOLD responses prevent a more
accurate investigation into the temporal dynamics and directional-
ity of the connections (24). Causality within epileptic network can
be addressed by effective connectivity approaches like Dynamic
Causal Modeling (DCM) (37, 84).

The combination of ESI with EEG-fMRI can offer complemen-
tary information for improving each single technique (Figure 2).
Although EEG-fMRI and ESI measure different signals (hemody-
namic the first, electrical the second), the concordance between
ESI performed during fMRI recordings can allow distinguishing
between hemodynamic changes related to spike onset vs. propaga-
tion, adding important temporal information to the limited fMRI
temporal resolution (85, 86).

EEG-fMRI studies can give insights about epileptogenesis.
Interictal spikes of different types of epilepsy (frontal, temporal,
and posterior quadrant), are associated with deactivation in the
precuneus and posterior cingulate cortex (10), regions involved in
the DMN (Figure 3). Other physiological RSNs could be affected
by spikes: this interaction and its clinical consequences need to be
clarified in future studies. A common involvement of the cingulate
gyri in temporal lobe and frontal lobe epilepsy was reported (10),
probably resulting from rapid spread of epileptic activity originat-
ing from the temporal and frontal areas, which both involve the
limbic system.

FIGURE 2 |Techniques using different types of signal are concordant in
localizing the epileptic focus in a patient with right orbito-frontal focal
cortical dysplasia. On the top-line: ESI (256 electrodes, simplified realistic
head model lSMAC, distributed inverse solution LORETA) performed on
right frontal spikes (FP2-F8). On the bottom-line: EEG-fMRI performed on
the same type of events recorded inside the scanner.

A specific area, localized in the medial orbito-frontal gyrus
(piriform cortex), called “area tempestas”, seems to be involved
in the genesis or propagation of epileptic activity (87, 88) in focal
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FIGURE 3 | Interictal involvement of DMN in focal epilepsy. Patients
with right hemispheric extended periventricular nodular heterotopia.
Marked epileptic events inside the scanner: right posterior temporal spikes
with phase reversal at P8 (on the left: 256 channel EEG; referential montage
Fz-Cz). BOLD increase is concordant with the spike topography
(topographic map on the middle), whereas BOLD decrease is present in the
regions of default-mode network (DMN).

epilepsies. A DCM study supported the hypothesis of a causal link
between hemodynamic changes in this structure and a specific
type of reflex epilepsy, although in a single patient (89). Sev-
eral other findings seem to corroborate the important role of the
area tempestas: (i) its decrease in benzodiazepine receptor (87),
(ii) its epileptogenic role in animal kindling models of temporal
lobe epilepsy (TLE) (90–92), and (iii) its increase in gray matter
volume in patient with frontal lobe epilepsy when compared to
controls (93).

From a methodological point of view, multimodal combination
between EEG/ESI, fMRI, and diffusion imaging tractography will
allow exploring functional and structural connectivity at a finer
spatio-temporal scale. Some initial small studies have highlighted
the potential of these combinations (94–96).

fMRI and EEG-fMRI studies in focal epilepsy
Unfortunately, only few of the many studies on RS-FC have been
done with the simultaneous recording of EEG. Spikes cause a tran-
sient cognitive impairment, by affecting, e.g., memory retrieval in
rats (97), and memory maintenance and retrieval in human beings
(69). Therefore, a more consistent use of simultaneous EEG while
performing fMRI for RS or task-related studies in epileptic patients
is needed to determine the influence of spikes on the determined
BOLD networks. Indeed a study where EEG activity was moni-
tored during a working memory-fMRI session (98) has shown that
the task-related BOLD dramatically changes when spikes occur.
Another advantage of the simultaneous recording of EEG in the
scanner is that it allows monitoring the transition between differ-
ent alertness states in order to assure that the subject is in RS and
not in drowsiness/sleep state. A very recent review (99) has accu-
rately discussed this issue and summarized the relevant studies.

Temporal lobe epilepsy. The majority of RS-fMRI studies in focal
epilepsies have focused on TLE, which is the most common form of

focal epilepsy in adults and offers the advantage of being one of the
most homogeneous groups within the focal epilepsy syndromes.

Temporal lobe epilepsy has been the first epileptic syndrome to
be considered as epileptogenic network (100) with relatively well
characterized components encompassing different structures in
the mesial temporal lobe (amygdala and hippocampus), adjacent
cortex including enthorhinal cortex and lateral temporal cortex,
and extra-temporal structures (i.e., thalamus and orbito-frontal
cortex). fMRI connectivity studies (some with simultaneous EEG
recording, others without) conducted by seeding the principal
nodes of the mesial temporal network showed impaired connec-
tivity with the other nodes of the network (101–103). Decreased
connectivity is the most common finding among those studies.
Nevertheless, there are reports of increased function of the unaf-
fected hippocampus in patients with unilateral MTLE, both in the
RS (104) and during task-related (105, 106) acquisitions. Mor-
gan et al. (107) have shown that RS cross-hippocampal FC is
disrupted at the beginning of the disease and then increases lin-
early with epilepsy duration after 10 years, suggesting that length
of disease influences FC patterns. Bettus et al. (108) studied the
electro-physiological correlates of BOLD signal fluctuations in
structures exhibiting epileptiform discharges, by measuring cor-
relations between intracerebral EEG and resting-state fMRI in five
patients with TLE. They found an increase in connectivity mea-
sured from the intracerebral EEG but a decrease of connectivity
measured from the BOLD signal in regions with epileptiform
abnormalities relative to non-affected areas. This discrepancy,
obtained by measuring connectivity of two signals of different
nature (electrical and hemodynamic), demonstrates the challenge
in interpreting connectivity changes. It could also suggest an
alteration of neurovascular coupling in TLE.

In unilateral mesial TLE (MTLE), the affected amygdala and
hippocampus (and to a lesser extent on the contra-lateral side)
are less connected between them and also with other consis-
tent RSNs, such as the mesolimbic and the DMN, suggesting
that these functional interictal changes explain cognitive and psy-
chiatric impairments often found in patients with this type of
epilepsy (109). Several fMRI studies, with and without EEG, have
shown an abnormal FC between physiological consistent RSNs
[i.e., language (110)] and MTL structures.

Default-mode network. Laufs and colleagues (8) have shown that
deactivation in DMN, involved in consciousness, is more frequent
for spikes in patients with TLE than extra-TLE. Deactivation in
the same regions in response to temporal spikes was also demon-
strated by Kobayashi et al. (111) and by Fahoum et al. (10). Frings
et al. (112) showed decreased DMN-hippocampus FC in MTLE
patients compared to controls during an object-location memory
task, underlying the importance of the intact connection between
these structures to preserve memory. This concept was validated in
post-surgical follow-up studies (see below). An impairment of the
connections between DMN and MTL structures has been demon-
strated also in RS with a seed-based fMRI analysis (113). The same
group (114) combined fMRI RS-FC and diffusion tensor imaging,
and showed that the decreased FC within the DMN in MTLE is cor-
related to abnormal structural connectivity. Although functional
DMN connectivity is generally decreased in MTLE, few nodes can
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be hyperconnected and this may play a compensatory role for the
loss of functional connections in other regions of the network
(115). The same study, performed with an independent compo-
nent analysis, has also shown distinct patterns of FC impairment
with DMN between the left and right MTLE. The same difference
has been further reported (116), suggesting that impaired cogni-
tion and memory in TLE may be different in right vs. left TLE.
Morgan and colleagues (117) have identified a region in the ven-
tral lateral nucleus of the right thalamus whose connectivity to the
hippocampi separates left from right TLE subjects, suggesting that
quantifying resting-state FC across this network may be a potential
indicator of lateralization of TLE (useful step in the pre-surgical
assessments).

Functional connectivity findings are related with clinical data:
McCormick et al. (118) shows that MTLE patients with respect
to controls have reduced connectivity from the posterior DMN to
the epileptogenic hippocampus and increased DMN connectivity
to the contra-lateral hippocampus. Stronger DMN connectivity
to the epileptogenic hippocampus was associated with better pre-
surgical memory and with greater postsurgical memory decline,
whereas stronger DMN connectivity to the contra-lateral hip-
pocampus was associated with less postsurgical memory decline.
Following surgery, DMN connectivity to the remaining hippocam-
pus increased from pre-surgical values and showed enhanced
correlation with postsurgical memory function.

Hippocampi are considered by some authors as nodes of the
DMN (119), but there is not unanimity on this interpretation (32,
120, 121). It is important to remember that all the regions of the
brain can be functionally connected: a region belonging to a spe-
cific network (like the mesial temporal network) can belong also
to a less specific network encompassing the previous one. This
classification depends on how many different physiological RSNs
are extracted from specific analyses: for instance, by extracting
four physiological RSNs, the probability that the mesial temporal
regions will be included in the DMN is higher than if the number
of extracted network is higher (122).

Mesolimbic network. Patients with unilateral MTLE have impor-
tant decreases of FC with the ventromesial limbic prefrontal
regions and with the nucleus accumbens (109). These regions
belong to a dopaminergic mesolimbic network, involved in long-
term memory for novel events and reward (123). Hippocampus
and amygdala have been often described as part of this net-
work (124, 125), and several findings suggest that this network
is affected in MTLE. The preferential seizure spread from mesial
temporal lobes to mesial frontal lobes, especially the orbito-frontal
cortex, has been demonstrated by ictal iEEG in patients with
MTLE, suggesting that mesial orbito-frontal cortex is strongly
affected by mesial temporal activity (126). On the other hand,
dopaminergic alterations have been demonstrated in the patho-
physiology of major depression, and dysfunctional activity of the
mesolimbic dopaminergic system plays a crucial role in depres-
sive behavior (127, 128). Structures belonging to mesolimbic
network are functionally (129) and structurally (130) impaired
in MTLE patients who have psychiatric impairments, such as
anxiety/depression. A recent study (131) showed that the sub-
genual anterior cingulate cortex (mesolimbic network key-node)

is affected only in MTLE patients that have primary affective dis-
orders and not in those without such disorders and neither in
controls. The same study confirms these FC findings with voxel-
based morphometry and diffusion tensor imaging, corroborating
the concept that the affective psychopathology often diagnosed
in patients with MTLE has a neurobiological correlate. Antide-
pressant drugs, when effective, could modulate these connectivity
impairments.

The amygdala has often been described as part of mesolimbic
network and it is also involved in emotional processing of stimuli.
Facial emotion recognition, particularly for “fear,” is impaired in
patients with TLE, especially on the right hemisphere (132–135).
Broicher and colleagues (136) showed through fearful-face fMRI-
paradigm that the altered amygdala FC in TLE patients is strongly
related to the poor performance in behavioral tests evaluating the
theory of mind abilities (ability of decoding thoughts and behavior
of other human beings). Another study with the same paradigm
showed that, in right TLE patients, pre-operative right amygdala
activation correlates with post-operative change of anxiety and
depression scores [i.e., greater increases in anxiety and depression
in patients with greater preoperative activation (137)]. This con-
firms that pre-surgical study of FC between TLE and other brain
structures can help to predict post-surgery neuropsychological
consequences.

Attention network. Several studies have shown that dorsal and
ventral attention networks are functionally altered in MTLE,
explaining why patients with this type of epilepsy have often
worse performances than healthy controls (HC) in attention tasks.
Cataldi et al. (138) have recently reviewed this topic.

Extra-temporal lobe epilepsy. Extra-temporal lobe epilepsies
are characterized by a wide range of focus localization and eti-
ology. For this reason, group studies with homogeneous clini-
cal phenotype are difficult to achieve. This contrasts with the
large body of group studies in MTLE, which take advantage
from the frequent uniform pathology of atrophy and cell-loss in
amygdala-hippocampus structures. A group-analysis EEG-fMRI
study in different types of epilepsy (frontal, temporal, and pos-
terior quadrant) showed that focal spikes are associated with
networks of widespread metabolic changes, specific for each type
of epilepsy (10).

Negishi et al. (139) revealed higher lateral pre-surgery FC maps
in drug-resistant patients with good surgical outcome (seizure-free
at 1-year) compared to those with poor outcome. A recent study
on 23 patients with frontal lobe epilepsy used the same seed-FC
approach (seed at maximal BOLD value of the spike-related acti-
vation map) (140), finding an increased FC in the neighborhood of
the seed and a decrease in regions remote to the seed compared to
controls. Patient-specific connectivity pattern was not significantly
changed when comparing fMRI runs with spikes vs. fMRI without
any spike detectable on the simultaneous EEG. Patients with drug-
resistant frontal lobe epilepsy (141) recruit wider areas compared
to controls when performing an fMRI memory encoding task par-
adigm, particularly in the contra-lateral frontal lobe, suggesting
the presence of compensatory mechanisms to maintain memory
function.
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Generalized epilepsy
Different theories have been proposed about the patho-physiology
of “generalized seizures”. Meeren et al. (142) reviewed this topic.
All these theories consider cortex and thalamus as being involved
in the generation of the typical 2.5–4 Hz generalized spike-wave
discharges (GSWD) detected on scalp EEG, but it is still unclear,
which of them is the “primum movens” (143). As discussed below,
animal studies in genetic models of absence epilepsy are crucial
to gain understanding of these conditions because no invasive
validation can be contemplated in human beings. These animal
studies suggest that GSWDs are triggered in a restricted cortical
region (144–147).

Several EEG-fMRI studies showed that during short GSWD
(16, 148–150) and absence (151–154), there is a characteristic pat-
tern of subcortical (medio-dorsal thalamic and striatus) activation
and cortical deactivation, especially in areas of the DMN. It has
been hypothesized that the DMN deactivation is linked to reduced
consciousness (i.e., absences) (16, 155, 156). A dynamic analysis
study on 17 absences from nine patients with absence epilepsy
and classical pattern of 3–4 Hz GSWDs (83) showed that BOLD
responses were remarkably consistent in space and time across dif-
ferent absences of one patient, but were different from patient to
patient. Furthermore, this study shows early frontal BOLD acti-
vations (specific for each patient), supporting the cortical focus
theory. Another EEG-fMRI study on 11 children with absence
seizures (157) revealed that the first brain zone showing BOLD
increase was the parietal cortex, this activity starting 10 s before
the onset of the discharge. Additionally, this study demonstrated
the hemodynamic involvement of subcortical structures in GSWD,
including the reticular structures of the brainstem. Focal cortical
involvement before the onset of GSWD has been demonstrated
also by a magnetoencephalography study in human beings (158)
and a near-infrared spectroscopy study applied on the frontal
cortex (159). An exhaustive review on focal abnormalities in idio-
pathic generalized epilepsy (IGE) has been recently published
(160). All these findings support the conceptual transition from
“primarily generalized epilepsy,” (implying that all brain regions
simultaneously would generate GSWD) to seizures “originating
within and rapidly engaging, bilaterally distributed networks” of
cortical and subcortical regions (15).

Concerning the role of subcortical structures, in patients
with IGE, it has been shown that both the anterior nucleus of
thalamus (ANT) and the centromedian/parafascicular (Cm/Pf)
nucleus (which provides diffuse inputs to the cortex) are acti-
vated during GSWD; the activity of the cortico-reticular Cm/Pf
preceded that of the ANT, suggesting that the Cm/Pf is involved
in GSWD initiation or early propagation, while the ANT in its
maintenance (161).

Recent studies have used fMRI to investigate whether resting-
state FC between thalamus, basal ganglia, and DMN areas is altered
in patients with IGE, even during GSWD-free periods of brain
activity (Figure 4). Wang et al. (162) used ICA to map RSNs
in 16 patients with IGE and 16 HC. They found that the DMN
had simultaneously reduced FC within the anterior cingulate
cortex,but increased connectivity in the precuneus. Moreover, they
found widespread connectivity reductions in prefrontal, sensori-
motor, and even auditory cortices (162). Reduced resting-state FC

FIGURE 4 |This diagram summarizes the functional connectivity (FC)
changes in patients with idiopathic generalized epilepsy compared to
healthy controls. The color map shows the default-mode network
(z-scores) derived from independent component analysis or RS-fMRI data
overlaid on a standard single-subject anatomy (Montreal Neurological
Institute space). Widespread FC reductions were found within the DMN
(dashed lines), as well as between anterior DMN and the thalamus.
Increased FC related to increased disease duration has been observed
between posterior DMN regions and the parahippocampal gyrus (solid line).
ACC, anterior cingulate cortex, IPL, inferior parietal lobule, PRE, precuneus,
PHG, parahippocampal gyrus, TH, thalamus.

between frontal areas and the rest of the DMN was later confirmed
(163). An important question is whether these changes in DMN
connectivity are meaningfully related to clinical information, e.g.,
disease duration or responsiveness to medication. Of note, in
both aforementioned studies, there were significant correlations
between RS-FC and disease duration: the reduction in connec-
tivity was inversely correlated to disease duration, indicating that
long-standing epilepsy leads to progressive disruption of DMN
integration. Interestingly, a study of structural and FC in 26 IGE
patients and HC, showed that the degree of coupling between
functional and structural connectivity networks is decreased,
and exhibited a negative correlation with epilepsy duration in
patients (164).

Other RSNs can be affected in patients with IGE, reflect-
ing specific cognitive impairment when compared to controls.
A seed-based RS-FC study in 14 patients with IGE showed that
attention network is impaired even in interictal periods, and that
this impairment is related with the disease duration (165).

One study in 60 IGE patients specifically addressed the question
whether pharmacoresistance was correlated with RS-FC changes
in the DMN (166). DMN connectivity was reduced in the IGE
group compared to HC, and the strongest decrease was found
in those patients that were resistant to valproate. Finally, a recent
study directly addressed RS-FC within the thalamo-cortical system
(167), finding decreased RS-FC between thalamus and anterior
DMN. Collectively, these studies suggest that there is a loss of
functional integration in the thalamocortical and default-mode
system of the brain in IGE, even outside the GSWD. Although
small sample size and heterogeneous methodology limit “gen-
eralization,” the abnormal RS-FC patterns found in IGE so far
could serve as endophenotypes of different IGE syndromes, and
thus inform clinical diagnostics. Importantly, the confounding
effect of anti-epileptic drug on dysconnectivity needs to be further
elucidated.

The most frequent IGE syndrome is juvenile myoclonic epilepsy
(JME), where seizures are characterized by myoclonic jerks of
the upper limbs, often triggered by cognitive inputs. Several RS

www.frontiersin.org November 2014 | Volume 5 | Article 218 | 7155

http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive


Pittau et al. Functional connectivity in epilepsy

and task-related functional studies have shown an impairment
of connectivity among supplementary motor area and the rest
of the brain (168–170), suggesting that this structure may rep-
resent the anatomic basis for triggering motor seizures in JME.
JME patients have often personality characteristics suggestive of
a frontal lobe dysfunction (e.g., risk-taking behavior, dysexecu-
tive syndrome). A task-related FC study in JME patients (171)
shows that patients with ongoing seizures learn less from previous
experiences compared to seizure-free patients and to controls.

Pediatric syndromes
Numerous EEG-fMRI studies have been conducted on pedi-
atric syndromes [for review, see in Ref. (172)]. Several studies
in Lennox–Gastaut syndrome (173–175) have shown hemody-
namic involvement of brainstem, thalamus, and basal ganglia dur-
ing paroxysmal fast activity and slow spike-and-wave discharges,
underlying the importance of cortical–subcortical networks in
Lennox–Gastaut syndrome. A group-analysis study in patients
with myoclonic-astatic-epilepsy (176) showed that GSWD are
related not only to a thalamo-cortical network (commonly found
in IGE), but also to brain areas associated with motor function,
suggesting that the involvement of these structures may predispose
to the typical myoclonic jerks observed in this syndrome.

Concerning idiopathic focal epilepsies of childhood, these com-
prise a broad spectrum of phenotypes showing an overlap with
each other, from benign childhood epilepsy with centro-temporal
spikes (BECTS) to more severe seizure and cognitive disorders, like
atypical benign partial epilepsy (ABPE), continuous spikes and
waves during slow sleep (CSWS), and Landau-Kleffner syndrome.
In patients with BECTS, EEG-fMRI studies have revealed focal
spike-associated BOLD signal changes in the sensorimotor cor-
tex, well corresponding to spikes localization, and typical seizure
semiology (177–180). In patients with CSWS, a consistent neu-
ronal network including both cortical and subcortical structures
was described with positive BOLD signal changes in the perisyl-
vian region, insula, cingulated cortex, and thalamus, and negative
BOLD signal changes in the DMN areas and caudate nucleus
(181). Source analysis of the simultaneously recorded EEG in
these patients allowed differentiating initiation from propagation
of epileptic activity in these common networks. The importance
of assessing sleep state when studying networks is given by the
report of a patient, whose centro-temporal spikes were recorded
during wakefulness and sleep. BOLD response during wakefulness
showed a focal activation concordant with the spike topography,
whereas BOLD response to the same event during sleep showed
the involvement of a thalamic–perisylvian neural network similar
to the one previously observed in patients with CSWS, suggesting
a common sleep-related network dysfunction even in cases with
milder phenotypes (182).

A single-subject and group-analysis study (183) on patients
with ABPE demonstrated that this syndrome is characterized by
patterns similar to studies in rolandic epilepsy (focal BOLD sig-
nal changes in the spike field) as well as patterns observed in
CSWS (distant BOLD signal changes in cortical and subcortical
structures), thereby corroborating the concept that idiopathic
focal epilepsies of childhood form a spectrum of overlapping
syndromes.

An EEG-fMRI study in thirteen patients with ring 20 chro-
mosome syndrome (184) shows specific networks involved by
different interictal and ictal events of interest, suggesting that some
hemodynamic networks are the expression of epilepsy-related
cognitive and behavioral deficits typical of ring 20 chromosome
syndrome, whereas others can be common to other syndromes
with neurobehavioral regression.

INTRACRANIAL EEG STUDIES
The indication for video-iEEG monitoring is the absence of a
unique focal hypothesis regarding the source of the patient’s
seizures (obtained with non-invasive investigation), or the need
for cortical mapping of the epileptogenic cortex vs. eloquent cor-
tex (7). Therefore, intracranial electrodes often sample from more
than one lobe, although their spatial sampling remains limited and
needs to be targeted using all available clinical and paraclinical
information. Subdural grids allow dense sampling of the corti-
cal convexity while intracerebral depth electrodes are able to reach
deeper structures (e.g., medial temporal structures); combinations
of both techniques are feasible. Therefore, iEEG studies represent
a unique opportunity to investigate seizure networks in human
beings with optimal temporal and excellent spatial resolution.

The concept of the seizure-onset zone as a single, circumscribed
brain region implies that, assuming that intracranial electrodes
sample this region, ictal iEEG activity should invariably start there.
Careful observation of ictal iEEG recordings, however, reveals that
this is not always the case. Rather, there are patients in whom
clinically indistinguishable seizures seem to start at any of two or
more distinct brain areas (100). Observations such as this were one
of the major factors spurring the interest in considering seizure-
generating brain regions as distributed networks. Therefore, the
seizure-onset zone could be seen as the particular regions with the
lowest seizure threshold while other regions could also give rise to
independent seizure onsets, which explains the need to consider
more than the sole seizure-onset zone for estimating the epilepto-
genic zone. In an attempt to quantitatively analyze seizure-onset
patterns, Bartolomei and colleagues (185) developed the epilepto-
genicity index (EI), which takes into account the transition of iEEG
activity toward higher frequencies (a general observation of ictal
iEEG patterns) together with the delay in which the transition is
observed compared to the ictal onset. This approach has revealed
that in a significant portion of TLE patients, the medial and lateral
temporal lobe display similar EI, implying that both structures
could equally subtend seizure generation. Also of interest, some
patients with what seemed like TLE before implantation actually
displayed the highest values of EI in the fronto-orbital, opercular,
or insular cortex rather than the temporal lobe, and these patients
had poorer outcomes after resective surgery, suggesting that they
harbored more distributed seizure-generating networks not easily
amenable to full resection (186). The number of brain regions with
a high EI increases with the duration of epilepsy, suggesting that
epilepsy networks may extend over time as a result of plasticity
triggered by pathological activity (185, 186).

The same authors analyzed the neurophysiological correlates
of alterations of consciousness in TLE (187). They found that
alteration of consciousness was associated with increased broad-
band synchronization in a network of structures, which were
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mainly extra-temporal, including the thalamus, cingulate cortex,
and parieto-temporal association cortex. Consciousness was pre-
served as long as excessive synchrony was confined to the temporal
lobe. Similarly, loss of consciousness in parietal seizures was associ-
ated with widespread parietal and frontal synchronization (188).
The authors framed these observations into the context of the
global workspace theory, in which the sustained synchronization
of neuronal activity in widely distributed modules renders percep-
tions, memories, and intentions available to consciousness (189).
This work rejoins observations made with single photon emis-
sion computed tomography that temporal lobe seizures causing
altered consciousness were associated with widespread cortical
and subcortical blood-flow alterations (190). That group later
showed increases in the power of delta oscillations in the frontal
and parietal association cortices during seizure-related loss of con-
sciousness (191). Results from studies in a rat model of complex
partial seizures suggest that these widespread changes are caused by
transient alteration of activity in the subcortical septal nuclei (192),
implying that the widespread effects of temporal lobe seizures on
cortical networks could be mediated indirectly via the midline
arousal structures (193).

Measures of directed connectivity in seizure networks are start-
ing to reveal the internal organization of the individual nodes that
make up the network. To date, most iEEG studies use mathemat-
ical approaches to determine the direction of connections. For
instance, using focal cortical dysplasia as a model of a circum-
scribed seizure-onset zone and applying partial directed coherence
analysis, Varotto et al. (12) found that the focal dysplasia indeed
acted as the initial generator of ictal activity, as evidenced by its
greater out-degree both interictally, pre-ictally, and during ictal
onsets [the out-degree is a summary measure of the influence of
one network node on all the others (194)]. Cortical-areas remote
from the morphological lesion could also be involved in the onset
or early propagation of ictal high-frequency activity and could thus
represent secondary foci. Wilke et al. (195) used frequency-band-
specific betweenness centrality, a graph theoretical measure of the
“importance”of a node in network pathways, to demonstrate a sig-
nificant overlap between the intracranial electrodes showing the
highest betweenness centrality and the seizure-onset zone delin-
eated visually by clinical neurophysiologists, as well as the resected
cortical area. That correspondence was present both during ictal
and interictal recordings and was highest for gamma-band fre-
quencies. In addition, the analysis also revealed nodes with high
betweenness centrality that had not been clinically identified as
part of the seizure-onset zone. Van Mierlo et al. (196) showed
that the single intracranial electrode with the highest out-degree
during seizure onsets was included in the clinically defined seizure-
onset zone as well as the resection area in all of eight patients.
These first findings suggest that analyzing epileptic networks in
the framework of graph theory, taking into account the direction
of connections between nodes in the network, can help clinicians
delineate the primary drivers from secondary nodes in seizure
nodes [see also in Ref. (197) for a review]. In the near future, we
expect that the tools of graph theory will be applied more generally
to iEEG data to describe more fully the spatio-temporal dynamics
of seizure networks. Another unique perspective could be offered
by the analysis of simultaneous recordings of iEEG and fMRI (198,

199) to combine the spatial resolution of iEEG with the mapping of
whole-brain BOLD changes related to epileptic activity. This could
allow bridging the poorly understood gap between increased iEEG
connectivity and reduced BOLD connectivity within epileptic
networks (108).

Micro-electrode studies in human beings
Another potential breakthrough in the investigation of epileptic
networks could stem, in a somewhat paradoxical fashion, from
micro-electrode array recordings, which revealed new insights on
the pathophysiology of epilepsy. Schevon et al. (200) inserted
arrays comprising of 96 electrodes arranged in a 4-by-4-mm
square pattern in the putative seizure-onset zone allowing to
record single unit activity in cortical layers 4 and 5 as well as
recording the local-field potentials. They showed that there is a
sharp delineation (at a sub-millimetric scale) between cortical-
areas involved in intense hypersynchronous firing (the hallmark of
ictal activity, based on animal studies) and adjacent areas with only
mildly increased firing rate and synchrony. Crucially, visual inspec-
tion of the iEEG alone did not allow distinguishing between what
the authors termed the seizure core and its (presumably) inhibitory
penumbra. The same investigators further proposed that ictal
high-frequency oscillations phase-locked to the lower-frequency,
high-amplitude ictal iEEG recorded by standard intracranial elec-
trodes might represent a signature of increased firing in the seizure
core (201). These new findings open the possibility of investigating
neuronal firing in distributed seizure networks using conventional
iEEG electrodes, without the need for micro-electrode arrays.
Future work building on these exciting findings will likely increase
our understanding of the ways in which seizures alter normal
neuronal firing across the nodes of the involved networks.

Direct electrical stimulation studies
Direct electrical stimulation (DES) in epileptic patients consists
of administering electrical currents to the brain tissue in order to
transiently influence or perturb its function. A technique almost
as old as epilepsy surgery, it has mostly been used to probe the
function of the cortex directly underlying or surrounding the stim-
ulation site (202–205). In that context, DES is generally delivered at
high frequencies (e.g., 50–60 Hz) for a few seconds with the aim of
inducing clinical changes in the patient (206). More recently, DES
has also been used to investigate FC; in that case, single stimulation
pulses are delivered at low frequencies (e.g., 1 Hz) and the readout
consists of time-locked perturbations in the activity of points dis-
tant from the stimulation site (cortico-cortical evoked potentials,
CCEPs) (207). An interesting aspect of DES-based FC assessments
is that they are directed, i.e., the effect of stimulation at site A on
site B is not necessarily symmetrical with the effect of stimulating
B on A (Figure 5). There is an intuitive appeal to this “hands-on”
interventional approach to reveal directional connectivity. Evoked
effective connectivity was found to correlate with FC measured
by resting-state fMRI (22) as well as with anatomical connectiv-
ity probed by diffusion tensor imaging (208). It has been pointed
out, however, that DES can activate axons in the antidromic as
well as the orthodromic direction, and could also stimulate fibers
de passage, an important caveat to keep in mind when interpret-
ing the directionality information provided by these data (209).

www.frontiersin.org November 2014 | Volume 5 | Article 218 | 9157

http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive


Pittau et al. Functional connectivity in epilepsy

FIGURE 5 | Evoked effective connectivity reveals the directionality of
neural connections in the human brain. In this example, subdural
electrodes are represented by circles, and CCEP responses as lines linking
bipolar electrode pairs. Missing (e.g., artifacted) data are indicated by light
gray lines, sub-threshold (non-significant) responses by black lines, and
significant responses by progressively lighter shades of blue.
(A) Stimulation of the middle frontal gyrus (electrode pair colored in pink)
triggers widespread responses in the frontal and temporal lobes, including
the middle temporal gyrus (inset: CCEP waveform from 50 ms before to
250 ms after stimulation; the arrow indicates the time of stimulation). By
contrast, stimulation of the middle temporal gyrus (B) does not evoke any
significant response in the frontal lobe, illustrating that effective
connectivity between remote brain structures is not necessarily reciprocal.

This highlights the importance of aiming at obtaining multimodal
functional and structural information to better understand brain
connectivity and dynamics.

Evoked effective connectivity has revealed strong intralobar
connectivity in the temporal and frontal lobes, as well as connec-
tions between the frontal and temporal lobes that are more promi-
nent in the frontal-to-temporal than in the temporal-to-frontal
direction (210, 211). An intriguing aspect of these studies is the
observation that, whereas interhemispheric connections between
the frontal lobes are relatively common, temporal-temporal con-
nections appear sparse, being observed in <20% of patients (211).
This begs the question of which neuronal pathways are responsible
for bitemporal synchronized spiking as well as the propagation of
seizures from one temporal lobe to the other one (212). Recently,
David et al. (213) generalized this approach offering to develop an
atlas of evoked effective connectivity that would eventually allow,
through data sharing, sampling most of the human brain’s volume.

Direct electrical stimulation has also been used to specifi-
cally evaluate epileptic networks, the general idea being that the
responses of remote sites to stimulation of epileptogenic cortex
(214) or the responses of epileptogenic cortex to stimulation of
remote sites (215) differ from those involving only normal brain
tissue. Interestingly, the network of brain areas that respond to
DES of the seizure-onset zone overlaps partially but not completely
with the areas of ictal propagation, suggesting both that seizures
propagate sequentially through multiple nodes in the network and
that some existing connections between the seizure-onset zone
and distant brain areas “shut down” during seizures (216). Further
research combining iEEG and DES, as well as integrating these
techniques with fMRI and high-density non-invasive electromag-
netic recordings, will improve our understanding of the physiology
of seizure networks.

WHAT WE CAN LEARN FROM ANIMAL MODELS
Recording the activity of any node suspected to be determinant in
the disease is not feasible in human beings, contrarily to animal
research. Moreover, animal-related technologies offer the possibil-
ity to desiccate and manipulate cellular and molecular components
of such networks, as well as scrutinizing the associated structural
and functional alterations. A great perspective in pathological
networks study is detecting features associated with the risk of
recurrence after a first seizure as well as predicting the evolution
toward pharmaco-resistance.

Animal models allow studying networks connectivity and
recording the underlying brain activity with high spatial coverage
and resolution (217), and addressing the process of epilepto-
genesis and ictogenesis, including their molecular and genetic
mechanisms at cellular and subcellular levels (218–222). Imbal-
ance between excitation and inhibition might not only occur at the
local microscopic level (223, 224), but could also reflect dysregula-
tion of excitatory and inhibitory neuronal interactions at a larger
(network) scale. Recent evidence emphasizes the modifications of
the network dynamic, or network configuration that character-
izes, and sometimes precedes or even predicts a seizure. Network
analysis could be a powerful tool to more precisely define the dif-
ferent epilepsies and develop new treatments that target networks,
instead of focal activity (11, 100).

In animals and human beings, focal onsets have been identified
in generalized epilepsy, and complex large-scale network involve-
ment has been shown in focal epilepsies (8, 11, 14). Spontaneous
epileptic disease occurs in animals, as in the case of the genetic
absence epileptic rats of Strasbourg (GAERS) or in the WAG/Rij
rats (225–227); other models studied are epileptic conditions
induced by – mainly – chemical or electrical interventions (220).
A major animal model of TLE is the kainate, or pilocarpine, model
of hippocampal sclerosis (HS) (228–232). Kainate, a glutamatergic
agonist, is injected either in the hippocampus or intraperitoneally.
It is suspected that the kainate has a tropism for the hippocam-
pus, which led several authors to consider that the kainate induces
specifically a HS. Yet, the mechanisms by which kainate induces
an epileptic activity is still debated; the immune system and leak-
age of the blood–brain barrier have been cited as critical for the
expression of the disease (233, 234). Hence, it is not excluded that
systemic kainate may have diffuse effects on the brain.
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Models of focally induced epileptic disorders might avoid this
limitation. One of them, electrical kindling, triggers focal epilep-
tic activity using focal electrical stimulation in accordance with
standard stimulation parameters, e.g., duration of the stimulation,
frequency, and intensity of the stimulus (220, 235, 236). The emer-
gence of a distant pathological activity can be related to remote
effects of the focally induced epilepsy, and not to the direct diffuse
effects of the electrical or chemical triggers. Electrical stimulation,
in particular of the performant-path, has also been described as a
model of induced status epilepticus (237, 238).

CONNECTIVITY STUDIES IN ANIMALS
Electrophysiology can assess connectivity and RS networks in ani-
mal models of epilepsy by recording several brain regions simul-
taneously. The great advantage is that the signal can be directly
linked to neuronal activity. Using intrahippocampal recording
in a rat model of induced TLE, Wang et al. (239) showed that
neuronal pairs presented a decreased FC prior to the status epilep-
ticus induced by an intraperitoneal injection of pilocarpine. Using
Graph Theory measures in an in vitro Mg2+-free model of hip-
pocampal epilepsy, Gong et al. (240) reported the modifications
in network configuration that appear in parallel to epileptiform
discharges. More interestingly, they revealed that the changes in
network configuration appeared before and lasted longer than the
epileptiform discharges (240). These two observations suggest that
the classical ictal activity, i.e., the presence of spikes in the EEG,
could be the resultant of network reconfiguration, i.e., it could
even be an epiphenomenon of a more profound alteration in brain
connectivity, indicating that it could be possible to identify certain
network alterations as a biomarker of epilepsy. Such studies aimed
at identifying markers of an upcoming ictal activity and have
mainly looked at the local activity changes (241). Knowledge on
remote involvement is sparse. Recent works (224) showed struc-
tural alterations remote from the focus, but only a few evidence of
distant, abnormal neuronal activity exists (242). Major advance-
ment has been made to record as many neurons or neuronal
populations as possible at the same time (145, 243–248); this shows
the feasibility to investigate large-scale networks in animal models
with high temporal and spatial resolution (Figure 6). Their combi-
nation with effective connectivity measures (25) will help to better
understand the hierarchical organization of epileptic networks.
Gong et al. (240) demonstrated the leading activity of pyramidal
cells over granular cells in an in vitro model of TLE, illustrating
the utility of effective connectivity in the field of epilepsy.

Research on animal models of epilepsy has been dominated by
invasive electro-physiology technique. Recently, the combination
of EEG and fMRI has emerged with interesting results, such as
those reported by Englot et al. (192), where they describe how a
partial limbic seizure lead to neocortical slow-wave activity; yet,
technical issues makes difficult to obtain combined EEG-fMRI in
awake animals. As in Englot et al. (192), fMRI could possibly be
a powerful in vivo screening method for anatomical regions that
could then be more deeply investigated with EEG.

Using fMRI, Mishra et al. (249) showed that rats submitted
to traumatic brain injury through left parietal fluid percussion
presented a decreased correlation coefficient between the left pari-
etal cortex and other brain regions. Dysfunctional activity in the

FIGURE 6 | Dynamic of somato-sensory network mapped with
high-density EEG. Somato-sensory evoked potential (SEP) from left
whisker stimulation. Top left: each black dot represents the position of one
recording electrode; the most anterior one is ground. Top right: 31 electrode
traces displaying the SEP with sub-milliseconds resolution. Bottom left: the
same electrode traces represented over the mouse brain. In the
lissencephalic mouse brain, dipoles are estimated to be generated below
the recording electrodes. Bottom right: segmentation of the SEP in six
stable configurations of potential maps. The technique’s high spatial and
temporal resolutions identify the first component, somato-sensory barrel
field activity, followed by motor cortex and contra-lateral somato-sensory
areas recruitment within a few milliseconds. Adapted from Megevand et al.
(243) with permission.

left parietal cortex, as highlighted by the decreased correlation
coefficient could have been expected, yet the pattern of resting
BOLD-fMRI connectivity showed that only certain regions were
specifically affected, namely the left hippocampus and the contra-
lateral parietal cortex. This illustrates that BOLD-fMRI can be
used to identify secondary dysfunctional brain regions in rodents
following a proepileptogenic injury (249). The same group inves-
tigated with fMRI the FC in WAG/Rij rats (250) and found an
increased correlation between brain areas suspected to be involved
in seizures when compared to non-epileptic rats; more impor-
tantly, this increase was observed outside of the ictal periods. Choi
et al. (251) performed a FC study using the 18fluorodeoxyglucose
positron emission tomography (PET) signal in a rat model of
TLE. They revealed the decreased correlation of several pairs of
brain structures, most of them included left amygdala and left
entorhinal cortex (251). Hence, despite the systemic injection of
pilocarpine, the affected network appeared to be mainly restricted
to the left hemisphere (251). It would have been very interesting
to see if the electro-physiological counterpart of such functional
deficit was also restricted to one hemisphere, yet no EEG record-
ing was reported. Asymmetry in the central nervous system is well
recognized, e.g., asymmetry of the temporal lobes, but the reason
why the left hemisphere appears to be more functionally altered
in this rat model of TLE is unclear, although electro-physiological
experiments suggest that the left hemisphere is indeed more prone
to develop epileptic discharges (252). The authors claimed that
the PET images were acquired in the interictal period, but no
EEG recording was used (251); yet, if true, this would suggest that
epileptic animals can be identified as such on the basis of the FC
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of particular networks outside of any ictal activity. These studies
(249–251) indicate that the pathological process in these rats is
ongoing: the epileptic brain is not suffering from epilepsy only
during seizures.

The anatomical basis of FC is largely unclear. Zhou et al. (253)
nicely investigated the anatomical substrate and plasticity of such
connections. They observed that after partial posterior calloso-
tomy of wild-type rats, the FC of the auditory and visual cortices
decreased at day 7 and returned to baseline at day 28, whereas
this decrease was still present in rats submitted to complete cal-
losotomy (253). The authors concluded that it could be possible
to identify the anatomical basis of FC, and that these functional
connections were also capable of plasticity. This is an important
proof-of-concept: it is possible to identify morphological substrate
of functional connections and manipulate them.

DIFFERENTIAL INVOLVEMENT OF SPECIFIC BRAIN REGIONS IN ANIMAL
MODELS OF GENERALIZED EPILEPSY
Different rat models of generalized absence epilepsy have been
studied and all share the presence of the characteristic SWDs (254,
255). Using combined EEG-fMRI in WAG/Rij rats, Mishra et al.
(250) demonstrated that during SWDs, the associated fluctuations
in the BOLD signal were specific to certain brain regions. Indeed,
the somato-sensory barrel field showed an increase, whereas the
striatum showed a decrease in the BOLD signal and cerebral blood-
flow (225, 250). On the other hand, the local-field potential (LFP)
and the multi-unit activity (MUA) were increased in both regions
(225). Vascular steal or dopamine-regulated blood volume could
account, at least in part, for this lack of matching between BOLD
signal and CBF on the one hand and LFP and MUA on the other
hand (225). An earlier study using surface and deep EEG record-
ings in the same rat-model showed that these rats shared a similar
focus located in the ventrolateral part of the somato-sensory cortex
(SC) (145). More importantly, the authors observed that the ictal
activity of the cortical focus preceded the one in the thalamus, sug-
gesting that the cortex was leading the thalamus (145). Nersesyan
et al. (256) investigated the relation between SWDs and CBF in the
same animal model. They showed that regions involved in SWDs,
i.e., SC, presented a 1- to 2-s delayed increase in CBF during a SWD,
whereas this increase did not appear in regions not involved in the
SWDs, such as primary visual cortex (256). In a parallel work using
the same animal model of absence epilepsy, they observed that the
BOLD signal was not equally modified across brain regions during
a SWD (257): the somato-sensory and motor cortices, as well as
subcortical regions, i.e., thalamus, basal ganglia, and brainstem,
showed an increased BOLD signal, whereas other regions such as
the occipital cortex did not show such a modulation of the sig-
nal (257). Again, the increase in the BOLD signal appeared with
a lag of a few seconds after the electro-physiological SWDs (257).
This finding is in contrast with a work by Desalvo et al. (258), in
which they used a rat model of generalized tonico-clonic seizures
induced by injection of iv bicuculline, and observed that BOLD
increased significantly in primary and secondary somato-sensory
cortices, as well as in primary auditory cortex and thalamus before
the onset of electro-physiological seizures. The role of the SC in
initiating GSWDs was further investigated through inactivation

of this cortical region in GAERS animals (259). The pharmaco-
logical inactivation of the SC with the sodium channel blocker
tetrodotoxine prevented the spike-and-wave activity; yet unilateral
application of the drug did not completely abolish the abnormal
contra-lateral oscillations. On the whole, these studies highlight
the importance of abnormal focal brain activity as a potential trig-
ger of generalized seizures (258). The identification of interacting
yet independent nodes within a network of suspected generalized
epilepsy is a major advance in epilepsy research. Indeed, it will per-
mit to refine the therapeutic intervention toward the manipulation
of one particular and decisive node.

SHORT-RANGE AND LONG-RANGE NETWORK MODULATIONS IN
ANIMAL MODELS OF FOCAL EPILEPSY
Different animal models of focal epilepsy exist (220), such as the
kainate- or pilocarpine-models of MTLE (228, 229, 260), posttrau-
matic epilepsy (261, 262), or electrical kindling (227, 263). Despite
an initially focal insult, recent evidence (e.g., 242) shows that
remote brain areas become affected by the pathological activity
of the epileptic focus.

The induction of a focal epileptic syndrome in a rat model
of generalized epilepsy allows better understanding how these
two entities interact. Carcak et al. (227) took advantage of the
fact that absence epilepsy may increase the resistance to limbic
seizures. They investigated the role of the cortico-thalamo-cortical
circuitry, involved in SWDs, in the development of limbic seizures
induced by unilateral electrical stimulation of the rat amygdala.
Whereas control rats, i.e., those without absence epilepsy, pre-
sented all convulsive epileptic seizures following amygdala elec-
trical stimulation, rats suffering from absence epilepsy did not
(227). In order to understand how the circuit involved in absence
epilepsy could affect the one of TLE, the authors investigated
the spontaneous activity in the reticular thalamic nucleus (RTN),
known to be involved in the slow-waves discharges that character-
ize absence epilepsy (227). Remarkably, the electrical stimulation
of the amygdala had a different effect on the mean firing fre-
quency of neurons of the RTN: in not-stimulated animals, there
was no significant difference between epileptic and non-epileptic
rats, whereas the increase after stimulation was higher in epilep-
tic rats when compared to non-epileptic rats (227). This suggests
first that the development of an epileptic focus alters the activity
of neurons in the RTN and second that this alteration depends
on the activity before the induction of the epilepsy. The use of
Wistar rats as controls for GAERS rats in that study is commonly
accepted, but could still be questioned; yet the conclusion would
still remains the same: the effects of an epileptic focus seem to
depend on the brain state in which it is being established. It
would hence be interesting to investigate how an epileptic focus
affects a given network, but also how a particular network con-
figuration can modulate the effects of an epileptic focus. The
involvement of the thalamus in propagation of temporal lobe
seizures has already been the scope of several studies (156, 264).
If the thalamus has a major role in the generation of SWDs
(227), this could highlight the relevance of studying the interac-
tion between hippocampus and thalamus, in the context of focal
epilepsies.

Frontiers in Neurology | Epilepsy November 2014 | Volume 5 | Article 218 | 12160

http://www.frontiersin.org/Epilepsy
http://www.frontiersin.org/Epilepsy/archive


Pittau et al. Functional connectivity in epilepsy

Hippocampal sclerosis is a frequent lesion that has been
deeply investigated, although, most of the works conducted local,
intrahippocampal recordings. Yet, recent publications have shown
the involvement of remote brain areas. Using 16 bipolar deep elec-
trodes in the pilocarpine rat-model of HS, Toyoda et al. (247)
showed that the initial focus varied from one seizure to another
in each individual rat. The subiculum, the dorsal and ventral
hippocampus, and the amygdala were the regions where seizure
onsets were most often recorded. All regions could be considered
as belonging to the same network; indeed, an interesting obser-
vation is that most seizures were convulsive, and this did not
depend upon where the seizure started (247). This suggests that the
involved network is more determining than the seizure-onset zone
for the clinical expression of a seizure. Long-range modifications
in the kainate mouse-model of TLE were also observed. It has been
shown that non-injected hippocampus presented indeed morpho-
logical alterations, notably in the expression of the neuropeptide-Y,
which is known to modulate neuronal activity (265, 266), and
electro-physiological changes, such as significant decrease in the
power of the theta frequency band (265). In vitro, Khalilov et al.
(267) demonstrated that a mirror focus in the contra-lateral hip-
pocampus appears after 10–15 successive applications of kainate
in the ipsilateral hippocampus. These findings are in line with
the hypothesis that an epileptic focus leads to permanent electro-
physiological and morphological modifications in remote brain
areas (268–270). Other works have also stressed the possibility that
subcortical brain regions, such as the basal ganglia, could influence
or even inhibit the progression of an ictal activity originating from
the temporal lobe (271, 272).

Evidence of distant brain involvement arises also from electri-
cally induced epilepsy. For instance, during hippocampal seizures
induced by electrical stimulation in rats, the frontal neocortex
presented a parallel modification in spontaneous activity, i.e., fast
polyspike activity when the seizure was generalized and slow oscil-
lations when it was partial (242). This example illustrates that
distant brain areas are affected even after a few or only one focal
epileptic seizure. It would be extremely interesting to study how
this involvement evolves in a chronic disease.

On the whole, evidence exists that other brain areas are
recruited in propagation or in inhibition of the seizure spread.
Hence, the epileptic threshold does not seem to depend only on
the imbalance between excitation and inhibition within the focus,
but could also be determined by the intricate interactions between
the components of a given network.

EXPERIMENTAL THERAPEUTIC INTERVENTIONS ON THE EPILEPTIC
NETWORK
Conceiving epilepsy as a network disease has therapeutic con-
sequences. The classical view is to modulate the activity of the
so-called epileptic focus, or seizure-onset zone, in order to con-
trol the disease. Yet, any node of an epileptic network could
possibly be a target. In this sense, open-loop or closed-loop
devices, either through electrical or optogenetic stimulation, are
promising tools for generalized (217) as well as for focal epilepsy
(273, 274). Major work has shown that it is possible to iden-
tify critical nodes in a given epileptic network: the modification

of their activation – mainly inhibition – could help to control,
or even stop an ictal activity. Paz et al. (274) showed in a rat
model of cortical epilepsy that the inactivation through optoge-
netics of the thalamic ventrobasal nucleus could stop an ongoing
seizure. In the same line, Langlois et al. (264) showed in an
in vivo model of TLE that DBS of the ipsilateral parafascicular
nucleus of the thalamus (PF) stopped the ongoing hippocam-
pal paroxysmal discharges (HPD), while higher current intensities
were needed to stop the HPD if DBS was applied to neighbor-
ing areas (264), illustrating the specificity of PF in controlling
HPDs. The anterior thalamic nucleus (ANT) appears also to be
involved in control or spread of epileptic activity of mesial tempo-
ral onset (156). Ablation or electrical stimulation of ANT increases
the epileptic threshold (263, 275–277); yet, opposite results have
also been observed (278). On the whole, ANT is a recognized
target for refractory epilepsy, although mechanisms by which
manipulation of the ANT increases epileptic threshold are poorly
understood. Use of animal research and the possibility to iden-
tify how the activity of ANT may modulate epileptic activity
at remote sites, e.g., with the use of effective connectivity mea-
sures, is crucial to tailor therapeutic interventions. Such recent
evidence shows that the manipulation of the primary epilep-
tic focus does not seem to be the only possibility to achieve
the control of an epileptic disease. The thalamus in particular,
and other subcortical regions as well (272) have been identified
as major targets for epileptic network modulation culminating
in clinical applications in the form of DBS of ANT in focal
epilepsies (279).

CONCLUSION
With increasingly complex methodological strategies and an ever-
increasing wealth of possible approaches, the study of brain con-
nectivity and its neuroscientific and clinical correlates are very
promising. Nevertheless, the application of connectivity tech-
niques for diagnostic or prognostic purposes requires further
studies to be firmly grounded by invasive studies and sufficient
follow-up investigations before it can be reliably applied to the
clinical management of individual patients. Combining func-
tional techniques can lead to the achievement of complementary
information for improving each single technique.

Focal epilepsies, despite focal epileptogenic zone, are dis-
eases affecting the whole brain: altered large-scale FC is reflected
in neuropsychological features of individual specific syndrome.
Hippocrates (400 years b.c.) considered epilepsy as a systemic
disease, centered in the brain, due to an altered “defluxion of
cold phlegm” through the body. In more recent times, the con-
cept of epilepsy as “focus disease” has been largely developed
(280–282), whereas in the last decade it has shifted to a “brain-
network disease” (15). In parallel to the “brain-network” concept
of epilepsy, psychiatric and neurological co-morbidities, such as
strokes, dementia, and migraine are more and more defined.
Interestingly, somatic co-morbidities have also come to light,
since several medical conditions, such as cardiac, gastrointesti-
nal, and respiratory disorders, are often associated with epilepsy
(283). These findings may lead to re-consider epilepsy as a “sys-
temic disease,” this time with the diagnostic and therapeutic
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knowledge obtained recently by ground-breaking work on net-
work analysis.

Concerning “generalized” epilepsy, neuro-imaging, and espe-
cially connectivity studies have allowed considering them as focal
brain disorders with fast bilateral discharge propagation. This
concept leads to the idea that focal and generalized epilepsies
are the two extremes of a single spectrum and to a possible
new way of studying mechanisms of AED: do they have an
effect on particular nodes of a network where receptors are more
expressed? Is it possible to detect an anatomical target to avoid
generation/propagation of seizures, using disconnection or stim-
ulation? For all these reasons, translational research in light of
network analysis, based on fundamental science through animal
experiments and clinical perspectives through human research,
opens new opportunities to better understand the complexity
of epilepsy and define new and more effective treatments for
patients.
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Introduction: EEG-fMRI detects BOLD changes associated with epileptic interictal
discharges (IED) and can identify epileptogenic networks in epilepsy patients. Besides
positive BOLD changes, negative BOLD changes have sometimes been observed in
the default-mode network, particularly using group analysis. A new fast fMRI sequence
called MREG (Magnetic Resonance Encephalography) shows increased sensitivity to
detect IED-related BOLD changes compared to the conventional EPI sequence, including
frequent occurrence of negative BOLD responses in the DMN. The present study
quantifies the concordance between the DMN and negative BOLD related to IEDs of
temporal and extra-temporal origin.

Methods: Focal epilepsy patients underwent simultaneous EEG-MREG. Areas of overlap
were calculated between DMN regions, defined as precuneus, posterior cingulate,
bilateral inferior parietal and mesial prefrontal cortices according to a standardized atlas,
and significant negative BOLD changes revealed by an event-related analysis based on
the timings of IED seen on EEG. Correlation between IED number/lobe of origin and the
overlap were calculated.

Results: 15 patients were analyzed, some showing IED over more than one location
resulting in 30 different IED types. The average overlap between negative BOLD and
DMN was significantly larger in temporal (23.7 ± 19.6 cm³) than extra-temporal IEDs
(7.4 ± 5.1 cm³, p = 0.008). There was no significant correlation between the number of
IEDs and the overlap between DMN structures and negative BOLD areas.

Discussion: MREG results in an increased sensitivity to detect negative BOLD responses
related to focal IED in single patients, with responses often occurring in DMN regions.
In patients with high overlap with the DMN, this suggests that epileptic IEDs may
be associated with a brief decrease in attention and cognitive ability. Interestingly this
observation was not dependent on the frequency of IED but more common in IED of
temporal origin.

Keywords: fast fMRI, default mode, epileptic spikes, refractory epilepsy, EEG-fMRI

INTRODUCTION
EEG-fMRI is a non-invasive method to identify epileptic net-
works activated by IEDs in patients with focal and general-
ized epilepsy (Gotman et al., 2006; Grouiller et al., 2011). In
focal epilepsy, IED-related positive BOLD changes are found
in the area of IED origin in the majority of patients (Moeller
et al., 2008; Tyvaert et al., 2008). Moreover, positive BOLD
changes could be found within or in the vicinity of epileptogenic

Abbreviations: BOLD, Blood Oxygenation Level Dependent; DMN, default
mode network; EPI, Echo Planar Imaging; fMRI, functional magnetic reso-
nance imaging; IED, inter-ictal epileptic discharge; MREG, Magnetic-Resonance-
Encephalography; TLE, Temporal Lobe Epilepsy.

lesions such as focal cortical dysplasia, nodular heterotopia
and mesial temporal sclerosis (Kobayashi et al., 2006b; Jacobs
et al., 2007). Zijlmans and colleagues showed that EEG-fMRI
can be a useful additional diagnostic tool in the presurgi-
cal evaluation of patients with refractory epilepsy by improv-
ing the identification of patients suitable for surgery (Zijlmans
et al., 2007). This observation was confirmed by a study pro-
viding evidence that the surgical removal of the area with
the strongest positive BOLD is correlated with a good post-
surgical seizure outcome (Thornton et al., 2010; An et al.,
2013). Thus, there is strong evidence that BOLD changes
related to epileptic spikes are able to identify epileptic networks
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and EEG-fMRI has a large potential as a diagnostic tool in
epilepsy.

Additionally to positive BOLD changes, negative BOLD
changes also called deactivations are observed related to IEDs
(Archer et al., 2003; Jacobs et al., 2007; Moeller et al., 2008; An
et al., 2013). Mechanisms of negative BOLD changes are less well
understood in general and their interpretation is subject to debate
in patients with epilepsy. Some negative BOLD changes have been
observed as focal changes with a close relationship with the spike
origin (Jacobs et al., 2007, 2009), but in the majority of cases they
are rather widespread and distant (Kobayashi et al., 2006b; Laufs
et al., 2007).

An improved understanding of negative BOLD responses is
important to facilitate the interpretation of BOLD responses in a
clinical setting. Moreover negative BOLD responses may provide
additional information about the effect of IEDs on the patient’s
brain. Many of the observed negative BOLD responses occur in
the precuneus, posterior cingulate, bilateral inferior parietal and
mesial prefrontal cortices, structures which are known to be part
of the default mode network (DMN) (Archer et al., 2003; Gotman
et al., 2005). This network was first described in PET studies. Its
structures are most active during periods of relaxed wakefulness
and their activity is reduced during specific tasks (Mazoyer et al.,
2001; Raichle et al., 2001). Strong changes within the DMN have
been shown in patients during coma and anesthesia supporting
its importance for consciousness (Laureys et al., 2004).

In epilepsy, the strongest negative BOLD in the DMN
was observed during absence seizures in idiopathic generalized
epilepsy (Moeller et al., 2008; Berman et al., 2010) or following
generalized epileptic discharges (Gotman et al., 2005). In patients
with focal epilepsy, group analyses reliably detect changes in the
DMN (Laufs et al., 2007) and several studies report on negative
BOLD in the DMN in some of their individual patients (Fahoum
et al., 2012, 2013). In contrast to absence seizures, a change of
consciousness is usually not observed in association with focal
interictal spikes. Some studies however suggest that focal IEDs in
around 50% of patients are associated with a transitory cogitive
impairment (TCI) (Binnie, 2003). In focal IED this impairment
is especially visible during complex tasks and has most often
been shown during studies assessing language or working mem-
ory (Hutt and Gilbert, 1980; Aarts et al., 1984). In line with the
idea that IEDs can affect cognition the negative BOLD in DMN
related to interictal spikes has been interpreted as an indication
that focal IEDs may interfere with networks of normal atten-
tion (Gotman et al., 2005; Laufs et al., 2007). Interestingly, the
observed changes were more prominent during spikes of tempo-
ral than extra-temporal origin (Jacobs et al., 2009), which is in
line with the more prominent alteration of consiousness during
temporal than neocortical seizures. The interference level caused
by focal IEDs is probably below the threshold necessary for clin-
ical observation of altered consiousness, but it may still have
a long-term influence on the cognitive performance of affected
patients.

Recently a number of fast fMRI sequences have been devel-
oped (Lin et al., 2006; Feinberg et al., 2010; Posse, 2012). Magnetic
Resonance Encephalography is one which allows whole-brain
imaging with a temporal resolution of 100 ms (Zahneisen et al.,

2012; Assländer et al., 2013). The increased temporal resolution
not only improves the tracking of fast artifacts and brain activity,
but it also increases sensitivity of functional imaging by record-
ing an increased number of images during each hemodynamic
response. Our group could demonstrate that this results in a
higher sensitivity to detect IED-associated BOLD changes in focal
epilepsy (Jacobs et al., 2014). Moreover, the increased sensitivity
resulted in a frequent detection of negative BOLD changes in the
DMN even without performing group analysis. It is thus possi-
ble to assess the alterations in the DMN associated with IEDs for
every single patient, which may be the key to a better understand-
ing of the clinical importance of this phenomenon. The present
study aims to quantify negative BOLD in the DMN with the
hypothesis that the amount of interference may be dependent on
the region of IED generation or the frequency of IEDs observed
in each patient.

MATERIALS AND METHODS
PATIENTS
Patients with focal epilepsies who were admitted to the Epilepsy
Centre Freiburg were included in this study. All patients signed
informed consent and the study was approved by the Research
Ethics Committee of the University of Freiburg.

EEG-fMRI data were only acquired in patients who fulfilled
the following criteria:

(1) ability to stay calmly in the MRI scanner over a period of 1 h
and

(2) frequent IEDs (>10 in 60 min) recorded on routine EEG
outside the scanner.

All patients underwent scanning with the EEG-MREG sequence
for 20–40 min depending on ability to cooperate.

DATA ACQUISITION
A 64-channel scalp EEG was continuously recorded inside the
MRI scanner (3-Tesla Trio Tim, Siemens Healthcare, Erlangen,
Germany) with a reference located between Fz and Cz. Sintered
Ag/AgCl ring electrodes were attached using a “BrainCap”
(Easycap, Herrsching, Germany), which is part of the MR-
compatible EEG recording system “BrainAmp-MR” (Brain
Products, Munich, Germany). Electrode impedances were kept
below 15 k�. An electrode was placed perivertebrally on the
left for acquisition of the electrocardiogram. Data was transmit-
ted from the amplifier (5 kHz sampling rate synchronized with
the 10 MHz scanner clock, 0.016–250 Hz band-pass filter) via
an optic fiber cable to a computer located outside the scanner
room (Mandelkow et al., 2006). During the whole measure-
ment, the patient’s respiration and ECG were monitored with
the physiological monitoring unit (pneumatic breathing belt,
ECG electrodes) of the MRI scanner (3-Tesla Trio Tim, Siemens
Healthcare, Erlangen, Germany).

A 3D, T1-weighted anatomical acquisition (MPRAGE,
TR = 2200 ms, TE = 2.15 ms, FOV = 256 mm, 256× 256
matrix, 160 sagittal slices, 1 mm slice thickness) was performed
for co-registration with the functional images. This was fol-
lowed by the fMRI acquisition using 3D MREG. Acquisition
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was performed with the following parameters (TR = 100 ms,
TE = 20 ms, FOV = 192–256 mm, 64× 64 × 64 matrix, flip
angle = 15◦, 12,800 volumes, total acquisition time 21:20 min
(Zahneisen et al., 2012).

EEG PROCESSING
Gradient artifacts were corrected offline by an averaged artifact
subtraction method (Allen et al., 2000). The pulse artifact was
then also corrected using averaged artifact subtraction (Allen
et al., 1998), followed by an Independent Component Analysis-
based procedure to remove residual noise (Srivastava et al., 2005;
Debener et al., 2007).

IEDs were marked by two independent reviewers (Julia Jacobs
and Katharina Körbl) and were classified into distinct types for
each patient according to spatial distribution and morphology
(if more than one type was present), verifying that they were
similar to epileptic discharges recorded in routine EEG outside
the scanner. IED-like transients occurring in a window of 150–
500 ms following the QRS complex in the ECG were not marked
to avoid including residual ballistocardiographic (BCG) artifact
in the analysis (Flanagan et al., 2009; Ertl et al., 2010). EEG
quality was considered as appropriate if it allowed the identifi-
cation of IED types seen in the routine clinical EEG. All IEDs
were classified according to their focal distribution at the time
of the scan, according to whether they derived from temporal or
extra-temporal origin.

MREG ANALYSIS
fMRI images were reconstructed from the raw MREG data
(Hugger et al., 2011) and then motion corrected and smoothed
(Gaussian kernel, FWHM = 6 mm) using FSL software (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Smith et al., 2004). Data was then
analyzed as an event-related design in the general linear model
(GLM) framework using fMRIstat software (Worsley et al., 2002).
The noise term in the GLM was modeled as a 5th-order autore-
gressive (AR) process to account for additional autocorrelations
originating from the higher temporal resolution (Worsley et al.,
2002; Posse, 2012). The order of the AR model had been deter-
mined in a recent study on patients with epilepsy (Jacobs et al.,
2014).

IEDs with distinct spatial distribution were analyzed as sep-
arate regressors. Motion parameters obtained from the motion
correction step and cardio-respiratory regressors based the syn-
chronized recording of the physiological unit of the MRI
scanner (Glover et al., 2000) were used as confounds in the
model. Four separate event-related analyses were conducted,
using HRFs consisting of a single gamma function peaking
at 3, 5, 7, or 9 s after the event. This allowed some vari-
ation in the latency of the BOLD response while retaining
information about its expected shape (Bagshaw et al., 2004).
A BOLD response was considered statistically significant if it
was significant in any of the 4 analyses. For visualization pur-
poses, a single combined map was thus generated from the
highest absolute value for each voxel among the four t-maps.
Significant responses were defined as 7 or more contiguous
voxels with |t| > 3.5 (p = 0.05), corrected for multiple compar-
isons (Worsley et al., 2002) at the cluster level (Friston et al.,

1993) with an additional Bonferroni correction due to the 4
analyses.

OVERLAP BETWEEN THE DEFAULT-MODE NETWORK AND NEGATIVE
BOLD
The following brain regions were considered to be part of the
default-mode network: precuneus, posterior cingulate, bilateral
inferior parietal and mesial prefrontal cortices (Raichle et al.,
2001; Gotman et al., 2005; Laufs et al., 2007). A spatial tem-
plate of the default-mode network was thus created from those
regions as defined in the automatic anatomical labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002). According to the names
given in the AAL atlas the following regions were included in the
analysis:

- medial prefrontal regions: frontal superior orbital, frontal supe-
rior medial, frontal medial orbital, rectus, cingulum anterior

- lateral inferior parietal regions: parietal inferior, angular, supra-
marginal

- posterior cingulate: cingulum posterior
- precuneus: precuneus

The atlas was co-registered to each patient’s anatomical image,
resulting in individual default-mode network templates on which
clusters of significant IED-related negative BOLD responses were
overlaid.

For each patient, the volume of the default-mode templates,
regions of significant negative BOLD responses, and overlap
between the two were used to generate the following two mea-
sures:

- Percentage of the overall negative BOLD associated with a given
IED type, which is located within the structures of the default-
mode network

- Percentage of default-mode structures covered by significant
negative BOLD changes

The calculated percentages of overlap were then correlated with
the number of IED for each IED type using a Spearman cor-
relation. Percentage of overlap was compared for temporal vs.
extra-temporal IED using a t-test. Significance level for both tests
was p < 0.05.

RESULTS
PATIENTS
Fifteen consecutive patients were included. Six patients showed
one, four patients two, four patients three and one patient four
distinct IED types. Thus, a total of 30 distinct IED types could
be analyzed in this study, 12 of which were classified as temporal
IED. Clinical details of all patients are given in Table 1.

OCCURRENCE OF NEGATIVE BOLD RESPONSES
Details about all IED types and resulting BOLD responses
are given in Table 2. The average size of AAL DMN tem-
plate for each individual patient was 182.5 ± 14.9 cm³. The
average size of brain areas showing significant negative BOLD
responses was 109.2 ± 96.5 cm³. The average overlap between
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Table 1 | Clinical information.

Patient Age m/f Age of Onset Epilepsy classification Seizure types MRI AED

1 26 m 7y Structural CPS Hypothalamic harmatoma LEV, OXC, LCM

2 36 m 7y Structural TLE CPS MTS R LTG, LCM

3 17 m 13y Unclear SPS/CPS GTCS Normal LTG, OXC

4 17 f 16y Structural TLE CPS Unclear mass in the L superior T gyrus OXC

5 27 m 11y Structural FLE SPS/CPS GTCS Surgical cavity F L LEV, OXC

6 12 m 9y Structural FLE CPS Caveroma F R none

7 9 m 4y Structural FLE SPS/CPS Extensive R polymicrogyria LEV, VPA

8 28 f 11y FLE of unclear origine SPS/CPS GTCS Unclear lesion F R, including insular cortex. LTG, LCM

9 71 m 70y Structural TLE CPS Cystic tumor mesio-temporal L VPA

10 31 f 31y TLE CPS Normal OXC

11 60 m 40y Structural TLE CPS Defect /sclerosis T pole L. OXC

12 23 m 14y Structural TLE SPS, CPS FCD T L LTG

13 40 f 23y Bilateral TLE CPS, GTCS Malrotation HC R LTG

14 14 f 7y Structural FLE CPS FCD F R VPA, OXC

15 16 m 1y Structural PLE CPS Tuberous sclerosis LEV, ZNS

AED, antiepileptic drugs; C, central; CPS, complex partial seizures; FCD, focal cortical dysplasia; f, female; F, frontal; FLE, frontal lobe epilepsy; GTCS, generalized

tonic clonic seizures; HC, hippocampus; m, male; L, left; LCM, lacosamide; LEV, levetirazetam; LTG, lamotrigine; O, occipital; OXC, oxcarbazepin; P, parietal; PLE,

parietal lobe epilepsy; R, right; SPS, simple partial seizures; y, years; T, temporal; TLE, temporal lobe epilepsy; VPA, valproate; ZNS, zonisamide.

both areas was 12.3 ± 14.3 cm³. The large variation in
overlap mainly results from the strongly varying amount of
negative BOLD seen in different patients and distinct IED
types.

The average size of negative BOLD in temporal IED was with
154.9± 126.1 cm³ was significantly larger than in extra-temporal
with 78.7 ± 56.4 cm³ (p = 0.01, Figure 1A). The average size of
overlap between both regions was significantly larger in tempo-
ral IEDs with 23.7 ± 19.6 cm³ than for extra-temporal IEDs with
7.4± 5.1 cm³ (p = 0.008, Figure 1B).

PERCENTAGE OF OVERALL NEGATIVE BOLD RESPONSES FOUND IN
DMN
The average percentage of overall negative BOLD responses found
within the DMN structures was 11.2 ± 6.1%. Again a large vari-
ation was seen between IED types. Seventeen patients showed
between 10 and 20% overlap and 3 patients more than 20%
overlap (see Table 2, for examples see Figures 2, 3).

There was no significant correlation between the number of
single IED per IED type and the amount of overlap. There was no
significant difference between IEDs of temporal (11.5 ± 5%) and
extra-temporal origin (10.9 ± 6.6%) (Figure 4A).

PERCENTAGE OF DMN COVERED BY NEGATIVE BOLD:
The average percentage of DMN structures covered by nega-
tive BOLD was 6.7 ± 7 cm³. Three patients showed between 10
and 20% overlap and two patients more than 20% overlap (see
Table 2, for examples see Figures 1, 2).

There was no significant correlation between the number
of IEDs per IED type and the amount DMN structures cov-
ered by negative BOLD. There was a significantly larger area of
DMN structures covered by negative BOLD for IED with tem-
poral origin (10.4 ± 10.3%) that IED of extra-temporal origin
(4.2± 2.9%, p = 0.01) (Figure 4B).

COMPARISON OF TEMPORAL AND NON-TEMPORAL IEDs
Six patients had both temporal and extra-temporal IEDs (for
details see Table 2), in one patient three comparisons, in three
patients two comparisons and in two patients one comparison
between temporal and extra-temporal IEDs were possible. In
regard to the percentage of DMN structures covered by negative
BOLD the statistical comparison just within the single patients
shows a trend toward temporal IED causing larger overlap than
extra-temporal ones (p = 0.07). For the percentage of negative
BOLD lying within DMN structures no significant difference can
been seen as for the overall group (p = 0.2).

DISCUSSION
The present study confirms the observation that a high number of
patients with focal epilepsy show alterations in the DMN during
focal IED occurrence. This observation is mainly possible due to
the use of MREG which increases the sensitivity of event-related
fMRI for IEDs. The amount of negative BOLD in the DMN was
highly variable between distinct types of IED and stronger in IEDs
generated in the temporal lobe. This suggests that different IEDs
may affect attention and consciousness to variable degrees and it
may be of clinical interest for patients with epilepsies to identify
those subtypes with a large effect on important networks such as
the DMN.

METHODOLOGICAL ISSUES
The present analysis of single patients was to a large extent only
possible as a result of the increased sensitivity of the MREG
sequence (Zahneisen et al., 2012; Assländer et al., 2013). During
the analysis, statistical methods were carefully adapted to correct
for the increase of autocorrelations and multiple comparisons.
In EEG-fMRI in epilepsy, the definition of a gold standard to
which all BOLD changes can be compared is difficult and the
most valid is probably comparing BOLD changes with activity
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Table 2 | Summary of IED types and overlap between DMN and

negative BOLD.

Patient # IED IED Location # of % of neg % of DMN

type topography T vs. Ex-T IED BOLD covered by

in DMN neg. BOLD

1 1 TP right T 6 11 6

2 2 F T right T 4 12 14

3 T right T 1 19 9

3 4 F right EX-T 7 10 5

5 PO Left EX-T 2 15 6

6 F left EX-T 13 11 3

4 7 T right T 1 18 4

8 P right Ex-T 2 21 7

9 F right Ex-T 3 9 6

5 10 C left Ex-T 46 17 5

11 T left T 8 16 32

12 F pole left Ex-T 9 10 2

13 F right Ex-T 3 10 4

6 14 T left T 2 12 7

7 15 F pole right Ex-T 1 0 0

16 FP right Ex-T 1 24 2

8 17 F left Ex-T 3 3 2

18 FP right Ex-T 21 4 5

19 T right T 2 5 0

9 20 F pole left Ex-T 2 6 5

21 F left Ex-T 2 6 4

22 T right T 2 3 2

10 23 T right T 1 6 2

11 24 FT left T 2 10 5

25 CP right Ex-T 1 7 0

12 26 FT left T 10 10 14

13 27 T right T 3 15 29

28 P right Ex-T 12 14 2

14 29 F pole right Ex-T 1 21 13

15 30 F pole right Ex-T 4 8 5

Mean and SD 11.2 ± 6.2 6.7 ± 8

C, central; DMN, default mode network; Ex-T, extra-temporal; F, frontal, IED, inter-

itcal epileptic discharge; P, parietal; pos, positive; neg, negative; SD, standard

deviation; T, temporal.

from intracranial EEG (Pittau et al., 2011) or surgical removal and
postsurgical outcome (Thornton et al., 2010). However, BOLD
changes detected by MREG have so far only been compared with
the lobe of spike origin or the localization of lesion (Jacobs et al.,
2014), as the method is still quite recent; additional data acquisi-
tions will need to be performed to allow a valid comparison with
other measures.

As with all EEG-fMRI studies, it is important to exclude
sources of artifact which may result in incorrect BOLD responses.
One advantage of MREG is the ability to measure un-aliased phys-
iological artifacts such as respiration and ECG, which could then
be corrected as part of our analysis (LeVan et al., 2012).

A second potential source for mistakes during EEG-fMRI is the
false detection of motion artifacts such as the ballistocardiogram

as IED (Flanagan et al., 2009; Jansen et al., 2012). The first step
to avoid this mistake is the thorough correction of EEG artifacts,
which has been performed with all currently available methods
in the present study (Allen et al., 1998; Debener et al., 2007).
Moreover, Van Houdt and coworkers could show that a more
robust identification of IED results from reviewing the EEGs by
more than one reviewer, as we performed in our analysis (Van
Houdt et al., 2010) MREG increases sensitivity to a point where
BOLD changes related to artifacts may also be more likely to be
detected, which is why we felt that IED selection should be rather
specific than sensitive.

In the present study IEDs occurring during the time window
of the ballistocardiogram were not included in the analysis. This
measure likely resulted in the exclusion of true IEDs and thus in a
decreased sensitivity of the identified BOLD responses (Flanagan
et al., 2009). However, this was considered a more benign effect
compared to the potential inclusion of non-epileptiform motion
events among true IEDs, which may result in not only a decreased
sensitivity for the identification of IED-related BOLD responses,
but also possibly causing spurious negative BOLD in the DMN
(Flanagan et al., 2009). Due to the use of MREG as fMRI sequence
and its high sensitivity for the detection of IED related BOLD
changes (Jacobs et al., 2014), which may compensate the loss
of sensitivity, as well as for the sake of our primary goal to
analyze negative BOLD in DMN structures, it thus appears to
be more reasonable to exclude events coinciding with move-
ments such as the BCG. The development of better monitoring of
patient motion is likely to greatly facilitate the distinction of true
and motion-related epileptiform events (Masterton et al., 2007;
Flanagan et al., 2009; LeVan et al., 2013).

ORIGIN OF NEGATIVE BOLD RESPONSES
It should be pointed out that we did not preselect patients in
regard to whether they showed any negative BOLD for this anal-
ysis. Therefore, it is not surprising that the area covered by
negative BOLD varied between zero and 380 cubic-centimeters
depending on patient and spike type. The underlying phys-
iological mechanism of negative BOLD is largely unknown.
One theory has suggested that it might result from a “vascu-
lar steal” phenomenon, which implies that neighboring areas
of increased blood flow and BOLD cause a decreased blood
flow and negative BOLD (Harel et al., 2002). In previous as
well as the current study this explanation seems rather unlikely
as we could not observe any correlation between positive and
negative BOLD as well as no spatial relationship (Kobayashi
et al., 2006a; Jacobs et al., 2014). Other authors suggest that
the neurovascular coupling necessary to observe the well-known
positive BOLD effect might be impaired in some regions of
patients with epilepsy, which could result in a lack of blood
flow increase caused by high deoxyhemoglobin levels (Fink
et al., 1996; Bruehl et al., 1998). A study of Stefanovic and
colleagues however found convincing evidence for intact neu-
rovascular coupling in patients with epilepsy (Stefanovic et al.,
2005). Impaired neuro-vascular coupling is thus unlikely to
explain the presence of negative BOLD changes either in the
DMN or elsewhere, as described before as well as in our
study.
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FIGURE 1 | Average size of overlap in cubic-centimeters between the

negative BOLD and DMN structures in temporal and extra-temporal IED.

The average size of negative BOLD as well as the overlap is significantly

larger for temporal than extra-temporal IED. (A) Average size areas covered
by negative BOLD. (B) Average size of overlap between DMN and negative
BOLD.

FIGURE 2 | Example of the overlap between negative BOLD

responses and DMN regions. Patient # 2 had two different IED
generated over the anterior and posterior region of temporal structures.
DMN regions according to the AAL atlas are shown in red, negative
BOLD in blue. (A) Shows the overlap for IED # 2 which occurred 4

times during the scan. 12% of the negative BOLD was located within
the DMN and 14% of the DMN were covered by negative BOLD.
(B) Shows the response to IED # 2 which only occurred once during the
scan time. 19% of negative BOLD was located within DMN regions and
9% of DMN was covered by negative BOLD.

Another possible explanation for the occurrence of nega-
tive BOLD might be a decreased neuronal activity at the time
of IEDs in these regions. This explanation is in line with the
observation of increased concentrations of the inhibitory trans-
mitter GABA in regions of negative BOLD (Chatton et al., 2003;
Stefanovic et al., 2004). If negative BOLD reflects increased inhi-
bition, negative BOLD related to IEDs is suggestive of areas
with increased inhibition associated with IED. While IEDs are
considered excitatory phenomena, inhibition directly after the

IED has often been described (Urrestarazu et al., 2006). This
observation of postspike inhibition is in line with results from
EEG-fMRI, in which negative focal BOLD changes in the epilep-
tic focus were often preceded by a positive BOLD in the
same area (Jacobs et al., 2009). Thus, negative BOLD could
also been seen as an undershoot phenomenon or a post-spike
period of inhibition. Whether this interpretation can explain
negative BOLD in the DMN however is rather questionable
as no earlier positive responses were observed in the same
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FIGURE 3 | Example of the overlap between negative BOLD

responses and DMN regions. Patient # 13 had two different IED one
generated over the right temporal and the other over the right parietal
region. (A) Demonstrates that overlap for the temporal IED with 15%
of the negative BOLD located within the DMN and 29% of the DMN
covered by negative BOLD. In agreement with our findings the overlap

is larger than in the parietal IED of the same patient even if the
temporal IEDs only occurred 3 times, while the parietal time was seen
12 times during the measurement. (B) Shows the negative BOLD
changes related to the parietal IED. 14% of the negative BOLD are
located in the DMN region and 2% of the DMN are covered by
negative BOLD.

FIGURE 4 | Percentage of overlap between negative BOLD and

DMN structures. The percentage of DMN structures covered by
negative BOLD is significantly higher in temporal than extra-temporal

IED. Panel (A) display of the negative BOLD lying within regions of
the DMN. Panel (B) display of the percentage of DMN covered by
negative BOLD.

regions (Gotman et al., 2005; Jacobs et al., 2014). Nevertheless,
one could imagine that DMN structures or the connections
between them are inhibited during an IED. Independent of
mechanisms of negative BOLD the most important finding
of this and previous studies is that DMN structures can
be related to IED occurrence and that this effect is largely
variable.

INTERACTIONS BETWEEN DEFAULT MODE NETWORK AND EPILEPSY
The DMN was originally discovered as a network of structures
which are active or show positive BOLD during periods of rest in
contrast to the actual activity under examination (Shulman et al.,
1997; Mazoyer et al., 2001). Its functional role is not completely
understood yet, but it is strongly activated during biographi-
cal memory retrieval, envisioning the future and conceiving the
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perspectives of others, while its activity is reduced during periods
in which the brain focuses on external stimuli (Dosenbach et al.,
2006). Changes in the structures and functional connectivity of
the DMN as well as reduced activation of the network has been
described in several brain diseases such as Alzheimer’s dementia,
schizophrenia and autism disorders (Greene et al., 2001; Lustig
et al., 2003; Buckner et al., 2005; Fox et al., 2005). During inter-
ictal and ictal epileptic activity, studies so far mostly reported
negative BOLD changes in the DMN (Gotman et al., 2006; Laufs
et al., 2007). Negative BOLD in the DMN in studies with healthy
subjects have been interpreted as a decreased activity in the DMN
when comparing tasks in which the DMN was highly active to
those in which it was less active (Buckner et al., 2008). In line with
this it has been hypothesized that the IEDs associated with nega-
tive BOLD in the DMN act like an external stimulus interrupting
the function of the normal DMN (Cataldi et al., 2013). Fahoum
and colleagues analyzed IED-related changes in the intracranial
EEG in the DMN regions and observed a reduction of gamma
power and increase of lower frequency EEG activity specific to
these regions (Fahoum et al., 2013). Suppression in the gamma
band is in line with brain activity usually observed after external
stimulation such as visual stimuli (Ossandón et al., 2011). Thus,
it seems that the IED have similar effects on the epileptic brain’s
DMN as repetitive external stimuli.

Our study confirmed previous observations that the degree
to which IEDs affect the DMN is largely variable. While a clear
correlation between cognitive decline and disruption of the DMN
has been observed in Alzheimer’s dementia (Broyd et al., 2009;
Miao et al., 2011), the clinical importance of alterations in the
DMN is still unknown in epilepsy. Some authors suggest that neg-
ative BOLD on the DMN directly reflects a short interruption
of attention or consciousness during the epileptic events, while
others suggest rather a long-term effect on cognition due to the
repetitive interruption of the DMN by IEDs (Blumenfeld et al.,
2004; Laufs et al., 2007; Fahoum et al., 2012).

The first hypothesis would suggest a short repetitive interrup-
tion of consciousness or normal function of the region generating
the IED. Such loss of consciousness is especially observed in gen-
eralized epilepsies where trains of generalized spikes and waves
lead to interrupted consciousness during absence seizures. These
seizures are one of the very few seizure types which can be
observed during EEG-fMRI as they occur frequently and with-
out excessive motion. Absence seizures are associated with strong
negative BOLD changes in the DMN (Blumenfeld, 2005; Moeller
et al., 2008). Ictal EEG-fMRI in focal epilepsy is rare and only
a few reports demonstrated DMN changes during these seizures
(Blumenfeld and Taylor, 2003). Again during these focal seizures,
reduction in DMN activity was mainly observed when loss of
consciousness or secondary generalization occurred (Norden and
Blumenfeld, 2002; Blumenfeld et al., 2009). EEG studies sup-
port this observation by showing neocortical slowing during the
period of impaired consciousness in TLE (Blumenfeld et al., 2004;
Englot et al., 2010). The association between decreased conscious-
ness and DMN changes observed during ictal activity might also
be true for focal IEDs with the only difference that focal IEDs
are usually generated over too small brain areas to cause clinically
visible alterations of consciousness.

Short impairments of cognitive function as described in TCI
(Binnie, 2003) can only be detected using complex cognitive test-
ing and do not refer to consciousness levels in general but the
specific task at hand. Existing studies are biased like ours toward
patients with frequent IEDs and limited to short test periods.
However, it could be clearly shown that temporal, more precisely
hippocampal, IEDs can lead to transient cognitive impairment
by disrupting memory maintenance and retrieval (Kleen et al.,
2013). While cognitive interruption during working memory has
been associated with negative BOLD in the DMN during gener-
alized IEDs (Chaudhary et al., 2013), it remains unclear whether
transitory cognitive impairment related to focal, specifically tem-
poral, IEDs would result in negative BOLD changes. Thus, the
strongest evidence for the idea that negative BOLD in DMN
reflects short interruptions of cognition or even consciousness
comes from the observation that the DMN changes were stronger
in TLE, which is usually associated with earlier and stronger
impairment of consciousness than neocortical epilepsies (Laufs
et al., 2007; Cataldi et al., 2013).

The rare and scarce occurrence of DMN changes in the analy-
sis of single patients due to the low sensitivity of classical fMRI
sequences has been a major challenge for such a study design.
The fact that we saw negative BOLD changes in the DMN in all
patients suggests that MREG will facilitate this type of investi-
gation and hopefully enable us to answer the question whether
focal IED have the potential to interrupt consciousness or
cognition.

The alternative hypothesis suggests that negative BOLD in
the DMN reflects negative long-term effect of IED on cogni-
tion. This would mean that IEDs associated with DMN changes
reflect stronger long-term interference with cognition than IEDs
which do not deactivate the DMN. Again this question could
only be answered by having long-term studies correlating DMN
deactivation and cognitive decline in patients with epilepsy, as
has been done for Alzheimer’s dementia (Broyd et al., 2009;
Miao et al., 2011). In our study most patients had long-lasting
refractory epilepsy as they were recruited from an epilepsy cen-
ter specialized in pre-surgical diagnostics and epilepsy surgery.
Cognitive decline and loss of specific cognitive function are
well-known disabilities in epilepsy and recurrent uncontrolled
seizure are correlated with more severe impairments (Carreño
et al., 2008; Avanzini et al., 2013). It might therefore be that
the frequent occurrence of negative BOLD of DMN network
reflects the fact that most of our patients had more severe
epilepsy and cognitive disability than the average population of
patients with epilepsy. Nevertheless, most studies using EEG-
fMRI in epilepsy are performed in large epilepsy centers and
pre-surgical units (Moeller et al., 2009; Thornton et al., 2010).
Thus, the frequent occurrence of negative BOLD in DMN is
probably mostly reflecting increased sensitivity of MREG and
again studies correlating cognitive performance and strength
of DMN disruption are necessary to understand the clinical
importance of our findings. As EEG-MREG is a non-invasive
tool it might be even more interesting to investigate patients
with new onset focal epilepsy to see whether changes in DMN
during IED are prognostic for cognitive problems in these
patients.
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EFFECT OF FREQUENT SPIKING
IED are often believed to reflect the epileptic potential of the
underlying tissue and are usually monitored in EEG recordings
to assess treatment control. While it is certainly true that fre-
quent inter-ictal activity is associated with severity of disease and
cognitive decline in some epileptic syndromes such as continuous
spike wave status (CSWS) in sleep (Pera et al., 2013), for most
epilepsies there is no clinical correlation between frequency of
IED and seizure frequency or cognitive decline (Spencer et al.,
2008). Nevertheless, one could imagine that a frequent occur-
rence of IED disturbs the brain networks more extensively than
rare occurrence, resulting in more prominent negative effects on
attention and cognition. Our study did however not suggest any
correlation between IED frequency and DMN changes. It has to
be noted that our study was biased toward patients with regular
IED occurrence on the EEG, as this was a necessary requirement
for successful EEG-fMRI analysis in the time-limited framework
of MR scanning. It is therefore not possible to draw conclusion
about patients in whom rare or no IEDs are seen on the scalp
EEG. Still IED numbers varied quite strongly between 1 and
46 IED within the 40-min measurement and no evidence was
found suggesting that patients with high IED numbers showed
more prominent DMN involvement. This suggests that DMN
involvement is not dependent on the acute likelihood of epileptic
tissue to generate spikes but rather on the anatomical structure
generating the IED and its connections with other brain regions.

DMN INVOLVEMENT DURING TEMPORAL AND NEOCORTICAL IEDs
It was the aim of the present study to investigate the overlap
between DMN and negative BOLD occurrence. As we hypothe-
sized this overlap was larger in temporal than neocortical IEDs,
as has been shown in previous group analysis (Laufs et al., 2007).
Changes in the DMN in TLE have been investigated quite exten-
sively. It seems unclear whether these are more of a structural or
functional nature. The hippocampal formation itself is not only
the generator of IEDs but also sometimes considered to be part
of the DMN and it often shows extensive structural damage as
part of the epilepsy syndrome. Thus, it has been debated whether
reduced connectivity and activity of DMN might be a result of
these structural changes rather than reflecting an ongoing inter-
ruption of DMN function (Liao et al., 2010, 2011). However,
functional studies like ours which find negative BOLD at the
time of IEDs in contrast to baseline activity underline the sugges-
tion that the DMN undergoes a continuous functional alteration.
The same is suggested by studies of functional connectivity which
not only discovered decreased connectivity between DMN nodes
but also hyper-connectivity between others in TLE (Zhang et al.,
2010; Pittau et al., 2012).

Recently TLE is increasingly believed to be a network dis-
ease and permanent changes such as atrophy of brain regions
have been described even far from the focus (Spencer, 2002;
Bartolomei et al., 2005, 2008). EEG-fMRI analysis of patients
with TLE support this observation, as positive as well as negative
BOLD responses are rarely focal but often suggest involvement
of subcortical and distant cortical regions (Laufs et al., 2007;
Kobayashi et al., 2009). The present study focused on the anal-
ysis of negative BOLD responses and it is therefore remarkable

that not only the overlap between DMN structures and nega-
tive BOLD was larger in temporal spikes but it was also the case
for the overall extent of negative BOLD. Indeed, while the ini-
tial focus of the study was to investigate deactivations in DMN
structures associated with IEDs, the large majority of negative
BOLD responses actually occurred outside DMN regions. This
finding might be interpreted as an indication that IED generated
over temporal regions affect larger networks by fast propagation
and that this effect might be predominantly inhibitory. Moreover
not only the DMN but also other resting state networks such as
the attention network and executive control network have been
described to be impaired in TLE (Cataldi et al., 2013). The lack
of significant difference in the percentage of negative BOLD in
DMN regions between temporal and extratemporal spikes also
indicates that deactivations are not necessarily specific to the
DMN, and additionally may suggest a large variability within the
temporal and extra-temporal groups. Therefore, our study sug-
gests that additional investigation of the localization of negative
BOLD responses outside the DMN might reveal other resting
state that show interference by focal IEDs not only in TLE patients
in general, but also at the individual patient level.

CONCLUSION
In the present study quantification of overlap between DMN
regions and negative BOLD occurrence after focal IED revealed
involvement of DMN structures to varying extent in all patients.
MREG as a method of fast fMRI allows very sensitive detection
of BOLD changes in the DMN structures. Interestingly the fre-
quency of IEDs did not affect the occurrence of negative BOLD
in the DMN, but the origin of IED did. Thus, preexisting network
structures seem to be a relevant factor for the ability of an IED to
interfere with the DMN. IED generated from the mesial temporal
structures which are part of the DMN or their vicinity result in
stronger interruption of the DMN activity. The clinical implica-
tions of these findings are unknown, but if spontaneous repetitive
IEDs interrupt the resting state networks of the brain in similar
but less directed way as external stimuli, a resulting impairment
of consciousness and cognition are likely.
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This research introduces a new method for functional brain imaging via a process of
model inversion. By estimating parameters of a computational model, we are able to track
effective connectivity and mean membrane potential dynamics that cannot be directly
measured using electrophysiological measurements alone. The ability to track the hidden
aspects of neurophysiology will have a profound impact on the way we understand and
treat epilepsy. For example, under the assumption the model captures the key features of
the cortical circuits of interest, the framework will provide insights into seizure initiation
and termination on a patient-specific basis. It will enable investigation into the effect
a particular drug has on specific neural populations and connectivity structures using
minimally invasive measurements. The method is based on approximating brain networks
using an interconnected neural population model. The neural population model is based
on a neural mass model that describes the functional activity of the brain, capturing
the mesoscopic biophysics and anatomical structure. The model is made subject-specific
by estimating the strength of intra-cortical connections within a region and inter-cortical
connections between regions using a novel Kalman filtering method. We demonstrate
through simulation how the framework can be used to track the mechanisms involved in
seizure initiation and termination.

Keywords: functional connectivity, neural mass model, model inversion, Kalman filter, epilepsy, seizures,

parameter estimation, effective connectivity

1. INTRODUCTION
This paper presents a model-based framework for imaging neu-
ral dynamics from electrophysiological data. This paper builds
on a rich history of research in computational neuroscience that
has been increasingly focused on the development of generative
models to understand the link between neural activity and neu-
roimaging data (David et al., 2004; Coombes and Terry, 2012;
Moran et al., 2013), with emphasis on two main areas. The first
area of focus is forward modeling, or the mapping of relevant
neuronal variables to recorded data that facilitates the devel-
opment of theoretical predictions. The second area of focus is
inverse modeling, which is the prediction of states, parameters
and neuronal outputs given measured data (David, 2007). The
new research presented in this manuscript provides a framework
that contributes to solving the inversion problem. A key contri-
bution of this paper is the development of an estimation scheme
that is applicable to many alternate neural architectures that can
be described by a core set of equations, which encapsulates our
knowledge of the biophysics of large-scale neural systems.

Large-scale neural models can combine information from
multiple neuroimaging modalities (fMRI, EEG, MEG, etc.),
allowing a systems approach for data analysis. The behavior of
such models is described by system states, whose dynamics are set

by parameters, which are static variables. The systems approach
of conducting analyses allows one to study all interactions as a
whole. This has advantages over correlation-based science, where
correlations do not necessarily reveal causation in large-scale sys-
tems. A systems approach provides a unified picture of both
local properties and remote interactions, and is considered crit-
ical to form an understanding of many of the brain’s activities
(Freeman, 1975; Deco et al., 2008) including seizure generation
(Wendling et al., 2000; Breakspear et al., 2006), which is the focus
of this study. In the context of this study, the local properties are
described by the connectivity strengths between neural subtypes
within the circuitry of a functional processing unit (cortical area
or cortical column) and the remote interactions are the functional
changes that occur between cortical areas.

The definition of cortical connectivity is multi-faceted and is
informed by structural, functional and, more recently, model-
based experimentation and analysis (Friston, 1994; David et al.,
2004). Despite being multi-faceted, it has been hypothesized that
the key characteristics of connectivity within functional process-
ing units in the neocortex can be represented at a high level by
canonical neural circuits that are repeated throughout the neo-
cortex (Douglas et al., 1989; Douglas and Martin, 2004; Haeusler
et al., 2009). These canonical cortical circuits are able to adapt
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to the specific functional requirements of the brain through tem-
poral and spatial fluctuations in their interrelationships (da Costa
and Martin, 2010). The neural mass model (Jansen and Rit, 1995)
that is used for inferring connectivity in this current study can be
considered a simplified form of a canonical cortical circuit.

For biological systems, structure is usually a good starting
point to study functional interactions (Crick and Koch, 2005).
For the brain, this process usually starts with building a map of
the anatomic pathways (Sporns, 2013; Van Essen et al., 2013).
Often quite separately from the anatomical data, functional rela-
tionships are also analyzed through temporal correlations in neu-
roimaging data, which is recorded from spatially distinct regions
of the brain. For example, PET, fMRI, and EEG data have all been
used to infer connectivity within and between regions of cor-
tex using a variety of quantitative measures (Biswal et al., 1995;
Horwitz et al., 1995; Bokde et al., 2001; Horwitz, 2003). A major
challenge lies in consolidating the anatomical data and the func-
tional data to form a unified causative model. This challenge is
addressed by the framework presented in this paper.

This paper is concerned with the investigation of effective con-
nectivity through causal modeling. In the context of this paper,
effective connectivity is defined as the influence one neural area
has on another (Friston, 1994). It is anticipated that the use of
causal models, which encapsulate our knowledge of the anatom-
ical connectivity and biophysics of neural populations in con-
junction with experimental measurements, will provide a more
complete picture of how neural connectivity mediates function.
The generation of patient-specific models will also be benefi-
cial in a clinical context, providing greater insight into the cause
and progression of neurological disorders, such as epilepsy, and
enabling treatment regimes to be investigated through computer
simulations.

Analysis of mesoscopic neural dynamics through the use of
mean-field models has been validated through several alter-
native approaches. For example, the so-called neural mass
model (Wilson and Cowan, 1972; Da Silva et al., 1974; Freeman,
1987) has been able to describe a large range of neural dynam-
ics such as alpha rhythms (Jansen and Rit, 1995), MEG/EEG
oscillations (David and Friston, 2003) and epileptic activ-
ity (Wendling et al., 2002). Neural mass models can also be
easily extended to define additional population types and larger
cortical regions (Babajani-Feremi and Soltanian-Zadeh, 2010;
Cui et al., 2011; Goodfellow et al., 2011). The aforementioned
results motivate the use of the neural mass model as the basis
of a canonical cortical circuit. Furthermore, neural mass mod-
els offer a reasonable trade-off between biological realism and
parsimony, allowing for practical implementation and subse-
quent inversion. Inversion is the key to using recorded data to
estimate the neural states (membrane dynamics of various neu-
ral population subtypes) and parameters (defining connectivity
strengths). Estimation of system variables provides new infor-
mation about underlying population dynamics and physiological
properties that cannot be directly measured using other neu-
roimaging methods (without destroying the tissue). For instance,
the connectivity strength between neural population subtypes
(i.e., pyramidal, spiny stellate and inhibitory interneurons) have
been implicated in seizure generation and have also been found to

be patient-specific (Wendling et al., 2000; Breakspear et al., 2006;
Blenkinsop et al., 2012).

It has previously been demonstrated that a model-based neu-
rophysiological framework can be used to image parameters
associated with seizure onset, evolution and termination in an
individual epilepsy patient using ECoG data (Freestone et al.,
2013). The framework presented in this manuscript builds on this
with improvements to the estimation algorithm and an expansion
to include multiple brain regions. Numerous other formulations
exist for fitting spatially extended mesoscopic neural models to
data. For instance, dynamic causal modeling (DCM) is a tech-
nique that is often applied to investigate connectivity of neural
areas using generative models (Friston et al., 2003; Kiebel et al.,
2006). DCM applies Bayesian inference to determine the most
probable configuration of model parameters (i.e., neural cou-
pling coefficients) given a window of recorded data. Therefore, the
resulting model is contextualized by the experimentally applied
stimuli or conditions under which data was generated (Daunizeau
et al., 2011). Another approach has been to apply genetic algo-
rithms to search the parameter space of the model for a structure
that is optimal for generating the observed data (Wendling et al.,
2005; Nevado-Holgado et al., 2012). In relation to the current
work, the aforementioned methods of model optimization can
be used to initialize the inversion technique outlined in this
paper.

The inversion method outlined in this paper is based on the
Kalman filter (Kalman, 1960). The model dynamics are assumed
to adhere to a Markov process and estimation quantities (states
and parameters) are approximated as random variables with
Gaussian distributions. For every electrocorticography (ECoG)
measurement, the multivariate state and parameter distribution
is propagated through the neural population model; then Bayes
rule is used to determine the posterior probability distribution of
parameters given measured data. In the case of a linear model,
this method is known as the augmented Kalman filter, which
provides the optimal (minimizing the variance of the estimation
errors) unbiased estimate for states and parameters. Various ver-
sions of the Kalman filter equations for nonlinear models have
been previously applied for model inversion (Voss et al., 2004;
Schiff and Sauer, 2008; Deng et al., 2009; Freestone et al., 2011;
Aram et al., 2013; Liu and Gao, 2013). However, these stud-
ies were based on either simplified field equations or a single
region population model. A key advantage of the Kalman filter-
based estimation algorithm outlined in this paper over other
expectation maximization or genetic algorithm type schemes is
the ability to track states and parameters in real time. Tracking
in real time provides a greater level of temporal accuracy in
the detection of transitions that underly specific neural activity
(such as seizure generation). Furthermore, this paper demon-
strates a flexible predictive framework that can be readily adapted
to alternative forms of the neural population model (that are
based on the same fundamental building blocks) in order to
reflect our most current understanding of the architecture of the
brain.

The organization of this paper is as follows. The first section
outlines the formulation of the computational model of multi-
ple cortical regions and the algorithm for tailoring the model to
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subject-specific data. Next, example simulations and results are
provided that validate the framework for both single and multiple
cortical areas. We then provide an example specific to study-
ing epilepsy, where we show how the framework can be used to
identify a seizure onset site and the mechanism for seizure ini-
tiation and termination. The final section discusses the benefits
of this approach in a wider context of understanding seizures
and developing much needed new therapies as well as the current
limitations of the proposed framework and directions for further
work.

2. MATERIALS AND METHODS
This section discusses the core biophysics of the mass action of
the cortical regions that are incorporated into our mathemati-
cal model along with the algorithm for tailoring the model to
subject-specific data. Together, the mathematical model and the
estimation algorithm form a lens that focuses on the parameters
that govern connectivity and function of neural networks.

2.1. NEURAL POPULATION MODEL
The neural population model that is used for the framework
is based on the neural mass model. This type of neural model
describes the dynamics of the mean membrane potential of a
population of a specific neuron subtype given firing rate inputs.
Populations of this type with varied parameters can be connected
together to form local networks to describe the dynamics of spe-
cific cortical regions, such as a cortical column. Multiple cortical
regions can then be interconnected to form a large-scale net-
work model. Within this section, the building blocks of all neural
populations of our large-scale network model are presented that
describe the action of the synaptic connections (mean firing rate
to mean membrane potential) and the action of the somas (mean
membrane to firing rate). The notation used to derive the neu-
ral population model in the following section is summarized in
Table 1.

Table 1 | Notation for the neural population model.

Notation Interpretation

αmn Connectivity parameter, population m to n

vmn Post-synaptic potential

zmn Derivative of post-synaptic potential

vn Net mean membrane potential for population n

hmn(t) Post-synaptic response kernel

φm Mean firing rate

g( · ) Sigmoidal activation function

u Input from external unmodeled population

τmn Synaptic time constant

ς Standard deviation of firing thresholds

v0 Mean firing threshold

M Total number of populations in the model

N Total number of intra-region connections

J Total number of regions in the model

K Total number of inter-region connection

δ Time step

2.1.1. Single population model
To derive a population model, we begin by defining the mean
membrane potential of a neural population, vn, as the sum of
contributing mean post-synaptic potentials, vmn, where the post-
synaptic and pre-synaptic neural populations are indexed by n
and m, respectively,

vn =
M∑

m= 1

vmn. (1)

Each post-synaptic potential arises from the convolution of the
input firing rate, φm(t), with the post-synaptic response kernel

vmn(t) = αmn
∫ t
−∞ hmn(t − t′)φm(t′) dt′, (2)

where αmn is a lumped connectivity parameter that incorporates
the average synaptic gain, the number of connections and the
average maximum firing rate of the presynaptic populations. All
lumped connectivity parameters are assumed to be unknown, so
must be inferred from data. The post-synaptic response kernels
denoted by hmn(t) describe the profile of the post-synaptic mem-
brane potential of population n that is induced by an infinites-
imally short pulse from the inputs (like an action potential).
The post-synaptic response kernels are parameterized by the time
constant τmn and are given by

hmn(t) = η(t)
t

τmn
exp

(
− t

τmn

)
, (3)

where η(t) is the Heaviside step function. Typically, αmn and
τmn are assumed to be constants (particularly for current-based
synapses) that define the presynaptic population type. For exam-
ple, GABAergic inhibitory interneurons typically induce a higher
amplitude post-synaptic potential with a longer time constant
than glutamatergic excitatory cells. For the model that we are con-
sidering, the index n (post-synaptic) may represent either pyra-
midal (p), excitatory interneuron (spiny stellate) (e) or inhibitory
interneuron (i) populations.

The inputs to the population, φmn, may come from external
regions, u, or from other populations within the model, gmn(vm),
where

φm =
{

um if m indexes external inputs
g(vm) if m indexes internal inputs

. (4)

The various populations within the model are linked via the
activation function, g( · ), that describes a mean firing rate as
a function of the pre-synaptic population’s mean membrane
potential. The activation function exploits a sigmoidal relation-
ship (limited firing rate due to refractory period of the neurons)
between the mean membrane potential and firing rate of each of
the populations. This sigmoidal nonlinearity may take different
forms, but for this study the error function form is used where
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g(vm) = 1√
2πς

∫ vm

−∞
exp

(
− (z − v0)

2

2ς2

)
dz (5)

= 1

2

(
erf

(
vm − v0√

2ς

)
+ 1

)
. (6)

The quantity ς describes the slope of the sigmoid or, equiva-
lently, the variance of firing thresholds of the presynaptic pop-
ulation (assuming a Gaussian distribution of firing thresholds).
The mean firing threshold relative to the mean resting mem-
brane potential is denoted by v0 (v0 = vthresh + vrest). The resting
membrane potential is not usually explicitly defined for forward
models of this type. However, for inverse models, it is important
to understand how the resting membrane potential is included
in the equations. The parameters of the sigmoidal activation
functions, ς and v0, are usually assumed to be constants.

The convolution in Equation 2 can conveniently be written as
two coupled, first-order ordinary differential equations, which is
a second-order state-space model. This gives the system

dvmn

dt
= zmn

dzmn

dt
= αmn

τmn
φmn − 2

τmn
zmn − 1

τ 2
mn

vmn. (7)

In summary, this single neural population model maps from a
mean pre-synaptic firing rate to a post-synaptic potential. The
terms that are usually considered parameters of the model are
the synaptic time constants, τ , the connectivity constants, α,

the mean firing thresholds, v0, and firing threshold variances, ς .
These parameters can be set to describe connections between spe-
cific neural populations, such as pyramidal neurons, spiny stellate
cells and fast and slow inhibitory interneurons.

2.1.2. Multiple populations for a cortical region
Multiple populations in the form of Equation 7 can be config-
ured and interconnected to represent the circuitry of a cortical
region, such as a cortical column. Each synaptic connection
in the model is described by the set of coupled first-order
ODEs of Equation 7; however, the parameters are connection-
specific. Models exist in the literature describing from two to
five different neural types with two to thirteen synaptic con-
nections (4th to 26th order) (Da Silva et al., 1974; Wang
and Knösche, 2013). Contributions in this regard have been
made by David and Friston (2003); Wendling et al. (2002);
Jansen and Rit (1995) and others. An illustration of the
model of a cortical region used in this study is shown in
Figure 1.

The parameters of the neural populations not only define
the population type, but also the behavior the model of the
cortical region exhibits. For example, for a certain parameter
combination, we obtain a model of a cortical region that will
generate alpha-wave type activity; for another set of parameters,
we obtain a different model that will exhibit epileptic behavior.
The parameters used in this study have been determined previ-
ously for similar models (Jansen and Rit, 1995) and are shown
in Table 2. The parameters to be estimated are the synaptic gain
terms, αmn.

FIGURE 1 | Population model of a cortical region. The left hand side
shows a cross section of the cortical laminar, highlighting the stratification
and different population the various layers. A graphical representation of the
population model is presented on the right hand side, showing three
interconnected neural populations, which are inhibitory interneurons
(supragranular layers), excitatory spiny stellate cells (granular layer), and

pyramidal neurons (infraganualar layers). The specific subtype of neural
population is defined by the parameters that describe the post-synaptic
response kernels. The intra-region connectivity are denoted by αmn, where
the subscript denotes a connection from population m to n. An example of
the post-synaptic potentials that are generated at each connection are also
shown.
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Table 2 | Fixed parameter values for the neural population model that

are not estimated.

Parameter Value

ς 3 mV

v0 6 mV

τup, τpe, τpi , τep 10 ms

τip 20 ms

τd 30.3 ms

um 220

σ 2
u 5.74

δ 1 ms

2.1.3. Multiple region model
Coupling of cortical region j to region k is achieved by connect-
ing the output firing rate of the pyramidal population in region
j to the input of the pyramidal population in region k via a delay
kernel. The delay kernel is of the same form as the post-synaptic
response kernel of Equation 3, but maps a firing rate to a delayed
firing rate. The inputs from the delayed firing rates are modeled
for every pyramidal population using the same form of second-
order model defined in Equation 7. All interconnections between
regions were assumed to have the same delay kernel, which was
parameterized by a time constant, τd (Wendling et al., 2000)
(see Table 2). The delayed firing rates form standard inputs to
the pyramidal cells in the adjoining cortical region and induce
post-synaptic potentials via a convolution kernel as described by
Equation 2. However, the connectivity parameter αjk describes the
interconnection gain between regions rather than between pop-
ulations. In this study, we consider four interconnected cortical
regions as shown in Figure 2. The values of the interconnection
gains for forward simulations were tuned to achieve the desired
behavior in the ECoG outputs, while avoiding saturation of neu-
ral populations. Different interconnection gains were used to
either simulate data consistent with alpha rhythms or to achieve
transition to seizure. Further details about the simulations and
parameters used are given in Section 2.3.

2.1.4. Augmented discrete time state-space model
For notational convenience, the subscripts for the synaptic gains,
denoted αmn and αjk, and the post-synaptic potentials, denoted
by vmn in the previous section, will now be numbered sequentially
from 1 to N + K. N is the number of intra-regional connections
and K is the number of inter-regional connections in the multi-
area model.

The state vector is a concatenation of discrete time values of the
post-synaptic membrane potentials, the derivatives of the poten-
tials, the delayed firing rates (inter-region) and their derivatives
by

x �
[

v1 z1 . . . vN zN vφ,1 zφ,1 . . . vφ,K zφ,K
]�

,

where the large-scale model has N intra-region connections and
K inter-region connections. The subscript φ indicates that the
post-synaptic potential/derivative is associated with the delayed
firing rate from a pyramidal population of a neighboring region.

FIGURE 2 | Graphical representation of the four region population

model with differential ECoG measurements. Each region is
interconnected to its immediate neighbor. The inter-region connectivity
strength is governed by the parameter αjk , where j and k ∈ {1, 2, 3, 4} and
j �= k. The differential montage provides a more realistic measurement
model then what is typically used for model inversion.

The parameters to be estimated can also be concatenated into
a vector by

θ �
[
αl,1 . . . αl,N αd,1 . . . αd,K

]�
,

where l denotes local connections within regions (including from
inputs, u), d denotes distant connections between regions. For a
four-region model, assuming the number of connections within
each region is equal, then the number of connections within
each region is equal to N ÷ 4. In this formulation of the model
the parameter vector is written in differential form, with trivial
dynamics as

θ̇ = 0. (8)

The differential form of the parameter vector facilitates augment-
ing the parameters to the state vector for estimation purposes.

The augmented state space vector is created by

ξ �
[

x θ
]�

, (9)

www.frontiersin.org November 2014 | Volume 8 | Article 383 | 5186

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Freestone et al. Effective connectivity via data-driven modeling

which has dimensionality ξ ∈ R
nξ where nξ = 3(N + K). The

augmented large-scale state space model is given by

ξ̇ = Aξ + Bξ ◦ g (Cξ)+D (u) ξ , (10)

where ◦ denotes element-wise multiplication. The matrices A, B,
C, and D(u) are defined in Appendix 5.2. The large-scale model
can be written in a compact form that is useful for deriving the
estimation algorithm by

ξ̇ = F (ξ , u) . (11)

It is necessary to discretize the model for estimation purposes.
The Euler method was used for discretizing the model and is pre-
sented in Appendix 5.1. For the Bayesian inference scheme, it is
also necessary to model uncertainty in our model by an additive
noise term. With the inclusion of the additive noise term, wt , the
discrete time augmented state space model is denoted by

ξ t+ 1 = Aδξ t + Bδξ t ◦ g
(

Cξ t

)+Dδ (ut) ξ t + wt (12)

and can be written in compact form by

ξ t+ 1 = Fδ

(
ξ t, ut

)+ wt . (13)

The model uncertainty is defined by a zero mean, temporally
white Gaussian with known covariance matrix Q. In forward
models, wt is used as a driving term to simulate unknown input
to the system from afferent connections or from other cortical
regions. However, for model inversion purposes, this additional
term also facilitates estimation and tracking of parameters via
Kalman filtering or other Bayesian inference schemes. For the
Kalman filter, the covariance of wt quantifies the error in the pre-
dictions through the model. If we believed our model is accurate,
then we would set all of the elements of Q to a small value. On
the other hand, a high degree of model-to-brain mismatch can be
quantified by setting the elements of Q to larger values.

2.1.5. Model of ECoG measurements
It is well accepted that the field potentials that are measured with
ECoG are predominately generated by synaptic currents arising
from inputs to the pyramidal neurons (Nunez and Srinivasan,
2006). In our model, these currents are linearly proportional
to the mean membrane potential of the pyramidal population.
Therefore, the ECoG signal is modeled as the mean membrane
potential of the pyramidal population, which is the sum of the
incoming post-synaptic membrane potentials.

For the multi-region neural population the ECoG measure-
ment is taken to be the difference between neighboring regions.
This provides a differential montage that is compatible with
experimental data. Typically, the generators of ECoG signals are
modeled by the individual mean membrane potentials of the
pyramidal populations, effectively ignoring the differential nature
of actual ECoG recordings. In this paper, we demonstrate that
parameters can be accurately estimating when using the more
realistic measurement model.

The measurement model that relates the ECoG measurements
to the augmented state vector, ξ t , is given by

yt = Hξ t + vt, (14)

where vt ∼ N (0, R) is a zero mean, spatially and temporally
white Gaussian noise process with a standard deviation of 1 mV,
that simulates measurement errors. For model inversion pur-
poses, the variance of vt quantifies the confidence we have in the
measurements. The matrix H defines a summation of the mem-
brane potentials (corresponding to pyramidal populations) that
contribute to each ECoG channel along with the differential mon-
taging scheme. The number of channels used in this case was
equal to the number of regions (four), as seen in Figure 2.

2.2. A KALMAN FILTER FOR THE POPULATION MODEL
The aim of the Kalman filter is to estimate the most likely

sequences of states, ξ̂
+
t , and the associated error covariances, P̂+t ,

given (uncertain) knowledge of the biophysics and anatomy of
the brain regions of interest combined with the noisy ECoG mea-
surements, yt . The optimal state estimates can be formally stated
using the expectations

ξ̂
+
t = E

[
ξ t |y1, y2, . . . , yt

]
(15)

P̂+t = E

[
(ξ t − ξ̂

+
t )(ξ t − ξ̂

+
t )�

]
, (16)

which are known as the a posteriori state estimate and state esti-
mate covariance, respectively. The a posteriori state estimate is
computed by correcting the a priori state estimate, which is a
prediction though our model and defined as

ξ̂
−
t = E

[
ξ t |y1, y2, . . . , yt− 1

]
, (17)

using a weighted difference between a prediction of the observa-
tions and the actual noisy measurements. The a posteriori state
estimate is calculated by updating the prediction using measured
data by

ξ̂
+
t = ξ̂

−
t +Kt

(
yt −Hξ̂

−
t

)
︸ ︷︷ ︸

ECoG prediction error

. (18)

The weighting to correct the a priori augmented state estimate,
Kt , is known as the Kalman gain (Kalman, 1960). The Kalman
gain is calculated using the available information regarding the
confidence in a prediction of the augmented states through the
model and the observation model that includes noise by

Kt = P̂−t H�
(

HP̂−t H� + R
)−1

, (19)

where

P̂−t = E

[(
ξ t − ξ̂

−
t

) (
ξ t − ξ̂

−
t

)�]
(20)
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is the a priori state estimate error covariance, R is the observation
noise covariance, and H is the observation matrix. For a linear
observation function, the a posteriori covariance is then updated
by using the Kalman gain to provide the correction

P̂+t = (I−KtH) P̂−t . (21)

Practically, the actual state is not known so the Kalman filter must

be initialized with the best guess for ξ̂
+
0 and P̂+0 , which provides

the a posteriori state estimate and state estimate covariance for
time t = 0. The a priori state estimate for time t = 1 can then be
computed by propagating the initial guess through the model and
taking the expectation,

ξ̂
−
t = E

[
Fδ

(
ξ̂
+
t− 1, ut− 1

)]
(22)

= E

[
Aδ ξ̂
+
t− 1 + Bδ ξ̂

+
t− 1 ◦ g

(
Cξ̂
+
t− 1

)
+Dδ (ut− 1) ξ̂

+
t− 1

]
(23)

= Aδ ξ̂
+
t− 1 + E

[
Bδ ξ̂
+
t− 1 ◦ g

(
Cξ̂
+
t− 1

)]
+Dδ (ut− 1) ξ̂

+
t− 1(24)

Generally, for nonlinear systems, the solution to this expectation
is not known. Therefore, approximations are often used, such as
the extended and unscented Kalman filters, respectively.

We approximate the expectation by

E

[
Bδ ξ̂
+
t− 1 ◦ g

(
Cξ̂
+
t− 1

)]
≈ Bδ ξ̂

+
t− 1 ◦ E

[
g
(

Cξ̂
+
t− 1

)]
, (25)

where the accuracy of the approximation depends on the width of
the distributions for the parameters, Bξ+t− 1. Since we are assum-
ing the parameters are unknown with the possibility of slow
changes, a small amount of uncertainty is added. For known
parameters, Equation 25 would be exact. Therefore, the accuracy
of the approximation improves as parameter estimates converge
toward their actual values.

In an effort to improve state and parameter estimation accu-
racy, a new innovation in this study is an analytic solution to the
expectation of the mean membrane potential, which is modeled
as a Gaussian, transformed by the sigmoid. To show the solution,
we first point out that

γ jξ̂
+
t− 1 = v̂t,j (26)

corresponds to the total pre-synaptic mean membrane poten-
tial of the jth neural population, where γ j is a row vector
from the adjacency matrix, C, which is described in detail in
Appendix 5.2. Also, the variance of the pre-synaptic mean mem-
brane potential is

γ jP̂
+
t− 1γ

�
j = σ̂ 2

t,j. (27)

The analytic solution for the expectation of a Gaussian distributed
random variable (total membrane potential of the respective pop-
ulation) transformed by the sigmoid error function, g( · ), is
given by

E

[
g
(
γ jξ̂
+
t− 1

)]
= 1

2

⎛
⎜⎜⎝erf

⎛
⎜⎜⎝

γ jξ̂
+
t− 1 − v0√

2
(
ς2 + γ jP̂

+
t− 1γ

�
j

)

⎞
⎟⎟⎠+ 1

⎞
⎟⎟⎠.(28)

The derivation of this new result is shown in Appendix 5.3.
The a-priori covariance is approximated using the unscented

transform, which approximates the statistics of a multivariate
Gaussian that undergoes a nonlinear transformation (Julier and
Uhlmann, 1997). The approximation is given by

P̂−t ≈
2nx∑
i= 0

Wi

(
f
(
X i

t− 1, u
)
− ξ̂
−
t

) (
f
(
X i

t− 1, u
)
− ξ̂
−
t

)�
,

(29)

where X i
t− 1 is a matrix of sigma vectors, which are carefully

chosen samples from the distribution of x̂+t− 1, and Wi are vec-
tors of weights associated with the transform. For completeness,
the method of computing the sigma vectors and the weights is
provided in Appendix 5.4.

It is likely that the parameters and states described by a cortical
circuit will be subject to identifiable physiological constraints that
should be included in an inversion problem in order to exploit
all available information. There are various ways to constrain
the parameter space by truncating the distribution of the prior
(Simon, 2006). In this study, a computationally simple method
known as “clipping” (Kandepu et al., 2008) was used to con-
strain the synaptic gains. Upper and lower bounds on synaptic
gain estimates were enforced during the calculation of the poste-
rior distribution by imposing limits on the analytic calculation
of the mean and on the sample space of the unscented trans-
form (used to approximate the covariance). The bounds were set
larger than proposed ranges for the intra-regional parameters of
a multi-area neural mass model, determined by Babajani-Feremi
and Soltanian-Zadeh (2010). The bounds for the constraints are
shown in Table 3.

2.3. SIMULATIONS FOR VALIDATION
In order to test the performance capabilities of the model-based
framework, it is necessary to use data where the actual parameter
values are known. While it is impossible to accurately measure
parameter values in an experiment, it is possible to know the
actual values when using data that is generated in a forward
simulation. Therefore, artificial data was used to test the estima-
tion performance. This type of test does not guarantee that the
method will work with clinical recordings, but provides a proof
of principal based on the assumption that our neural population
model provides a reasonable representation of cortical dynamics.
Considering the wide range of phenomena that the population
model has been able to describe and the wide acceptance in the
literature, this assumption is a reasonable starting point.

In order to test the robustness of the estimation algorithm, a
Monte Carlo simulation was performed by testing the estimation
algorithm with 50 realizations of synthetic data, each with a differ-
ent unknown input. For each of the realizations, the parameters
were set such that the model generated activity with a dominate
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spectral peak at around 10 Hz (alpha activity). The parameter val-
ues are shown in Table 4. The accuracy of parameters estimates
(connectivity gains) are measured in terms of percentage bias and
were taken as the absolute difference between the estimated and
true values at the end of each simulation. Simulations were run
for 60 s for the single-region model and 100 s for the four-region
model, as the parameter estimates were observed to converge
well within this time. For state tracking, only the results of the
post-synaptic potentials are shown, although the derivatives of
the post-synaptic potentials were also tracked. State accuracy was
measured by the root mean squared (RMS) error over 1 s of data,
since the states (and their estimates) are dynamic. The RMS error
was measured from the final second of the simulation, when
parameter estimates were assumed to be constant. Results are also
presented for a single realization for both the single and four
region models (normal and epileptiform) in order to illustrate the
convergence properties over time of the parameter estimates. The
parameters used to simulate the epileptic-type behavior seen in
the simulated seizure transition are given in Table 5. The bounds
that were used to constrain the parameter estimates are shown in
Table 3.

3. RESULTS
3.1. COMPARISON OF ANALYTIC MEAN AND UNSCENTED

TRANSFORM
The performance of the modified Kalman filter and the unscented
Kalman filter were compared in order to quantify the increase
in estimation performance from using the analytic mean. Both
methods approximated the covariance of the joint distribution
using the unscented transform. Since the mean and covari-
ance cannot be considered separately when the distribution is
propagated through the neural population model, the Kalman
filter that uses the analytic mean is really an approximation of
a Gaussian distribution. However, the difference between the
standard UKF and this novel application of the Kalman fil-
ter, which is tailored to the neural population model, is that

Table 3 | Parameter constraints used in the clipping method of the

estimation algorithm.

Parameter Lower bound Upper bound

αup 0 300

αep, αpi , αpe 0 20, 000

αip −40, 000 0

αjk , αkj 0 5000

Table 4 | Connectivity parameters to simulate an alpha rhythm in the

multi-region population model.

Parameter Value Parameter Value

αup 3.2 α21, α41 76

αep 1755 α12, α32 63

αpi 548.4 α23, α43 44

αip −3712.5 α14, α34 70

αpe 2197

the new approach based on the analytic mean has the poten-
tial to improve state and parameter estimation for this particular
application.

Tables 6, 7 show the mean estimation bias for intra-
connectivity gains and post-synaptic potentials (PSPs) of a single
cortical region. Table 6 demonstrates that the analytic mean
approach is approximately twice as accurate as the UKF for state
tracking of vup, vpi and vip and has equal accuracy with the UKF
for vep and vpe. This is consistent with the parameter estimates in
Table 7, which shows that the analytic mean method gave two to
three times improved accuracy over the UKF for αup, αpi and αip

(and has the same accuracy for αep and αpe). Figure 3 shows the
results for the entire Monte Carlo simulation and again demon-
strates that the Kalman filter using an analytic mean outperforms
the UKF for the single region model. Figures 3A,B show that the
intra-connectivity gain estimation is within 60% for all parame-
ters for the UKF and less than 25% for the analytic mean method.

Table 5 | Connectivity parameters used to simulate epileptic behavior

in the multi-region population model.

Region 1 Regions 2, 3, 4 Interconnectivity

αup 8.1 αup 3.2 α21, α41 1.6

αep 4387 αep 1755 α12, α32 162.5

αpi 1370.9 αpi 548.4 α23, α43 162.5

αip −3712.5 αip −3712.5 α14, α34 162.5

αpe 5483.7 αpe 2197

Table 6 | Mean bias (over 50 simulations) of the post-synaptic

potential estimates for a single region model of alpha rhythms, with

comparison between the UKF and the new modified Kalman filter.

Post-synaptic potential RMS Bias (mV)

Unscented transform Analytic mean

vup 0.57 0.32

vep 0.26 0.24

vpi 0.47 0.16

vip 0.58 0.31

vpe 0.30 0.29

Table 7 | Mean bias (over 50 simulations) of the connectivity gain

estimates for a single region model of alpha-type rhythms, with

comparison between the UKF and the new modified Kalman filter.

Connectivity gain Bias (%)

Unscented transform Analytic mean

αup 7.33 3.45

αep 1.07 1.05

αpi 13.29 4.01

αip 24.01 7.69

αpe 0.73 0.58
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FIGURE 3 | Comparison of the estimation results from the modified

Kalman filter with the unscented Kalman filter from the Monte-Carlo

simulation (50 realizations). (A) The bias for parameter estimation as a
percentage of the true value for the connectivity gain using the UKF. (B)

The bias for parameter estimation as a percentage of the true value for the
connectivity gain using the analytic mean. (C) RMS error for state tracking
of the post synaptic potentials using the UKF. (D) RMS error for state
tracking of the post synaptic potentials using the analytic mean. The center
line of the box plots shows the median error and the box covers are the
25th to 75th percentiles. The whiskers cover the entire range of errors that
are not considered outliers, which are shown by the dots. The outliers are
determined to be outside q1 − 1.5(q3 − q1) to q3 + 1.5(q3 − q1) where q1

and q3 denote the 25th and 75th percentiles.

Figures 3C,D show that the bias for tracking of PSPs is consis-
tently less than 1.4 mV for the UKF and less than 0.7 mV for the
analytic mean approach. On the whole, these results demonstrate
the value of the novel application of the modified Kalman filter
for the neural population model.

3.2. SINGLE REGION MODEL
Figure 4 shows an example of state tracking and parameter esti-
mation for a single cortical region. The plots show that the
algorithm was able to reliably track all postsynaptic potentials
and estimate all connectivity gains in the region. This remarkable
result was achieved using only the noisy ECoG signal and knowl-
edge of the structure of the cortical circuit. Figure 4 also shows
that the standard deviation of the estimated parameters also con-
verged, which demonstrates the filter was performing as expected.
The standard deviation of the estimate for αip remained larger
than the estimates for the other connectivity gains, as it had the
largest bounds representing greater uncertainty.

Figures 3B,D show the results for parameter estimation and
state tracking using the Kalman filter with the analytic mean
for a Monte Carlo simulation with 50 realizations. Both fig-
ures demonstrate good accordance for estimation results to the
actual states and parameters, with the possible exception of the

FIGURE 4 | Estimation results showing convergence of parameters in

the single region model. 30 s of ECoG data simulating an alpha rhythm
from a single region model was used. Each panel shows the PSP (upper)
and connectivity gain (lower) estimates. The actual states are shown in red
and the estimated values are shown in black. The gray shaded regions
show the estimated standard deviation estimates of the connectivity gains.
The scale in the lower left of each subpanel is distinct for the PSP (LHS) and
connectivity gain (RHS) (A) PSP and connectivity gain for spiny stellate to
pyramidal connection. (B) PSP and connectivity gain for pyramidal to
inhibitory interneuron connection. (C) PSP and connectivity gain for
pyramidal to spiny stellate connection. (D) PSP and connectivity gain for
inhibitory interneuron to pyramidal connection. (E) PSP and connectivity
gain for external input to pyramidal connection.

inhibitory-to-pyramidal connectivity gain estimate (αip) when
using the standard unscented Kalman filter.

From Figure 3D and Table 6 it can be seen that the bias of
the state (PSP) tracking was consistently less than 0.7 mV and
the mean RMS bias was less than 0.4 mV for all the poten-
tials when using the modified filter. The amplitude of the PSPs
was on the order of 10–30 mV, thus an average bias of less
than 0.4 mV represents satisfactory performance. The tracking
of post-synaptic potential induced from the input, vup, was the
worst performer. This is to be expected since it is linked to the
connection from the stochastic input, u(t), and the pyramidal
population. Figure 3B and Table 7 show that the mean estimation
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FIGURE 5 | Post-synaptic potential and connectivity gain estimation

results for the four region model showing parameter convergence.

ECoG data was obtained over a 50 s simulation using the four region model
to generate alpha-type rhythms. The filter output for PSP tracking is over a
short time segment and the connectivity gain estimation is for the entire
simulation. The actual states are shown in red and the filter output is
shown in black. The gray bar around the plot of the connectivity gain
estimates shows the standard deviation of the estimate. (A) PSP and
interconnectivity gains from region one to two (upper) and four (lower). (B)

PSP and interconnectivity gains from region two to one (upper) and three
(lower). (C) PSP and interconnectivity gains from region four to one (upper)
and four to three (lower). (D) PSP and interconnectivity gains from region
three to four (upper) and three to two (lower).

bias for all of the connectivity coefficients (slow states) was less
than 22% with a mean of less than than 8%. It is anticipated that
this level of accuracy in state estimation will provide a strong
basis for a classification algorithm that distinguishes between

FIGURE 6 | Post-synaptic potential estimation results in the four

region model from a Monte-Carlo simulation. Each subplot shows the
RMS bias for state tracking of a PSP associated with a specific synapse
over 50 simulations. (A) RMS bias for vup. (B) RMS bias for vpi . (C) RMS
bias for vpe. (D) RMS bias for vjk . (E) RMS bias for vep. (F) RMS bias for vip.
(G) RMS bias for vkj . ECoG data was obtained using the four-region model
generating alpha-type rhythms, with different stochastic input for every
simulation. For every subplot, the centerline of the boxplots are the median
and the edges are the 25th and 75th percentiles. Outliers are determined
to be outside q1 − 1.5(q3 − q1) to q3 + 1.5(q3 − q1) where q1 and q3

denote the 25th and 75th percentiles.

healthy and abnormal oscillations (such as observed during
seizures).

3.3. FOUR REGION MODEL
Figure 5 shows an example estimation result for the four region
model. The four region model has four times as many measure-
ments that are inputs to the filter, as there are additional ECoG
voltage signals (one per region). However, the dimensionality of
the system is more than four times larger than the single column,
as each new column introduces an equal number of intra-regional
connections as well as two inter-regional connections with its
neighbors. In Figure 5, only the inter-regional connections are
shown, although all of the PSPs and connectivity gains were esti-
mated. The results that are presented in Figure 5 demonstrate that
the estimation method was capable of scaling up from a single
region model to a larger model of coupled regions, while main-
taining the ability to simultaneously estimate all the connectivity
gains and track the PSPs associated with every synapse. The ability
to scale up to a larger area is crucial in order to apply estimation
to patient-specific models of epilepsy.

Figures 6, 7 show the estimation bias over 50 simulations for
the connectivity gains and PSP tracking, respectively. Each simu-
lation was run for 100 s (as in Figure 5) with a different randomly
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FIGURE 7 | Connectivity estimation results in the four region model

from a Monte-Carlo simulation. Each subplot shows the estimation bias
as a percentage of the true value for the connectivity gain for every synapse
over 50 simulations. (A) Bias for αup . (B) Bias for αpi . (C) Bias for αpe. (D)

Bias for αjk . (E) Bias for αep. (F) Bias for αip . (G) Bias for αkj . ECoG data was
obtained using the four-region model generating alpha-type rhythms, with
different stochastic input for every simulation. For every subplot, the
centerline of the boxplots are the median and the edges are the 25th and
75th percentile. Outliers are determined to be outside q1 − 1.5(q3 − q1) to
q3 + 1.5(q3 − q1) where q1 and q3 denote the 25th and 75th percentiles.

generated sequence for u(t) as external input. Tables 8, 9 summa-
rize the mean (over the 50 simulations) values of the estimation
biases for both fast and slow states. Figure 6 and Table 8 show that
the RMS bias for PSP tracking was consistently less than 1.5 mV
and the mean RMS bias was less than 1 mV for all connections.
The amplitude of the PSP signals was on the order of 10–30 mV
and the variance of noise added to the ECoG voltages was 1 mV.
Therefore, the bias for PSP tracking represents a high level of
accuracy. As was seen for the single region model, the tracking
performance was less accurate for vup due to the stochastic input
that generates this PSP.

Figure 7 and Table 9 show that the estimation bias for the con-
nectivity gains was less than 40% and the mean bias was less than
10%, except for αip and αjk which were less than 15%. The param-
eter estimation accuracy for the coupled model compared with
the single region model was comparable in terms of the mean
value for all connectivity gains. Over the entire Monte Carlo sim-
ulation, the estimation performance for αep, αpi and αpe were
similar to the single region model. The decrease in performance
is most evident for αip (from within 20% to within 40%). This is
consistent with the results from the single region model where αip

was the least accurate of the estimated gains. The estimation per-
formance for αjk and αkj cannot be compared to the single region
model. However, the estimation accuracy of the interconnectivity
gains was worse than the intra-region gains (apart from αip). It

Table 8 | Mean RMS estimation bias (over 50 realizations in mV) for

post-synaptic potential tracking in the multi-region model.

R1 R2 R3 R4

vup 0.72 0.71 0.91 0.71

vep 0.51 0.61 0.74 0.57

vpi 0.78 0.88 0.95 0.84

vip 0.63 0.74 0.74 0.62

vpe 0.26 0.26 0.32 0.24

vjk 0.14 0.13 0.11 0.07

vkj 0.19 0.15 0.12 0.2

Table 9 | Mean bias (over 50 realizations in %) for connectivity

parameter estimates in the multi-region model.

R1 R2 R3 R4

αup 6.11 3.6 7.32 6.15

αep 1.05 1.24 1.35 0.63

αpi 6.87 4.01 6.68 4.91

αip 12.21 7.62 13.02 9.14

αpe 1.94 2.16 2.06 2.58

αjk 7.76 8.28 12.92 8.35

αkj 4.48 4.81 8.01 4.94

is difficult to pinpoint sources of error for this parameter, as all
of the estimated states are highly interactive with each other. A
potential source of the decreased accuracy for αjk and αkj (as well
as αup) is that their values are an order of magnitude smaller than
the other estimated connectivity gains, which can lead to numeri-
cal problems for the Kalman filter equations. On the whole, the
consequences of scaling up the model from a single region to
four coupled regions has not resulted in major loss of estimation
accuracy.

3.4. SIMULATION OF AN EPILEPTIC SEIZURE
Figure 8 shows a simulated ECoG time series with transitions
from a background rhythm to seizure-like oscillations and back.
The transitions were achieved in the forward simulation by ramp-
ing the amplitude of the excitatory gains of one cortical region
(region 1 in Figure 8) and then decreasing them back to their
usual values. The values used to generate the seizure-type behav-
ior are shown in Table 5. In order to ensure that the seizure-like
oscillations would spread from one region to the neighboring
regions, the interconnectivity between the first area (where the
seizure was initiated) to its neighbors was increased from the pre-
vious example over the entire time course of the simulation, while
the interconnectivity gains from all other regions back to the first
region were decreased (as shown in Table 5).

Figure 9 shows the estimation results of the connectivity
gains for each cortical area during the simulated seizure. In
order to track parameter changes (compared with the previ-
ous estimation when parameters were assumed to be static),
additional uncertainty was added to the estimate error covari-
ance in the Kalman filter (see Appendix 5.4. ). The addi-
tional uncertainty was required to inflate the estimation error
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FIGURE 8 | Simulation of an epileptiform transition. ECoG signals were
obtained using a 100 s forward simulation and adjusting the connectivity
gains from alpha to seizure rhythms and vice versa (see Tables 4, 5). The
simulation output shows the epileptiform activity rapidly spreading from
Region 1 (where the pathology was simulated), to the rest of the network.
The figure also shows a graphical representation of the model of the
differential measurement function. The blue and red sub-panels show
example alpha and seizure-type rhythms, respectively.

covariance to capture unmodeled transitions in parameter val-
ues. It is clear that the method has successfully identified the
transitions in the cortical region that led to the seizure gen-
eration, as the filter tracked the increase in these gains for
region 1, while accurately estimating the corresponding con-
nectivity gains for the other cortical regions that remained
constant.

It can be seen from Figure 9A that the estimation accuracy
for αup was lower than the other connectivity gains due to the
stochastic input. The estimated interconnectivity gains that were
associated with inputs to region 1 (the epileptic region), α21 and
α41, also do not quite converge (Figures 9F,G) the actual val-
ues. This could be due to the much smaller magnitude of these
gains compared with the corresponding interconnectivity gains

FIGURE 9 | Results from tracking pathological changes in the

connectivity gains that lead to epileptiform activity. In each subplot, the
red line shows the actual values. (A–G) Show the estimation results from
Region 1, where the internal excitatory connectivity gains were transiently
increased to induce the epileptiform discharge. The mean is shown by the
black line and the gray shaded area shows the standard deviation of the
estimate. (H–N) Show the estimates from the non-pathological regions (no
change in parameters from baseline), where the solid lines show the mean
and shaded regions show the standard deviation of the parameters.

in the other regions. From Figure 9D, it can also be noted that
the estimation accuracy of inhibitory to pyramidal connectivity,
αip, did not converge to the actual value in first part of the sim-
ulation (alpha rhythm), which was also consistent with previous
results. However, the estimates of αip converged to actual values
during the seizure and had a lower estimation standard deviation,
which can be attributed to the higher signal-to-noise ratio during
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larger amplitude oscillations. If this method of estimation can be
translated for use on real data, it has the potential to provide valu-
able insight into the cause and spread of seizures and enable more
informed treatment measures for epilepsy patients.

4. DISCUSSION
This paper presented a framework for model inversion that facil-
itates estimation and imaging of the physiological properties of
the brain using electrocorticography (ECoG) data , under the
assumption that the model captures the key features of the corti-
cal circuits of interest. Tracking of the mean membrane potentials
of the various neural populations and connectivity parameters
(within and between cortical regions) may provide a clear pic-
ture of the causal relationships between cortical dynamics and
seizures. The link between physiological parameters and data will
undoubtedly improve detection and treatment outcomes across a
range of pathologies.

We have demonstrated that is possible to reliably track the
post-synaptic potentials and estimate the connectivity parame-
ters of a large-scale neural population model. This demonstration
highlights the power of combining the prior information we have
about neural dynamics and cortical structure (that is encoded in
the computational model) to estimate the parameters of interest.
For the single region case, the average prediction bias for connec-
tivity parameters is less than 8% and the average RMS error in
the mean post-synaptic potential estimates within the local cir-
cuit was less than 0.4 mV (the peak to peak potential of a typical
post-synaptic potential was approximately 20 mV). We demon-
strated that the framework can be scaled up to a larger-scale
model (of four cortical regions) with more realistic measure-
ments without a major decrease in estimation accuracy. The
average estimation error remained less than 10% except for three
parameters (errors in αip, αjk, and αkj were less than 15%). The
tracking of post-synaptic potentials in the four-region model had
mean RMS error of less than 1 mV. Importantly, we demonstrated
the ability to track slow changes in the connectivity parame-
ters, that led to transitions to and from seizures. Traditionally,
functional neuroimaging methods have been very successful, but
limited to determining where and when seizures occur. This new
method can be used with ECoG data to also determine the mecha-
nisms. This knowledge will provide opportunities to develop new
therapies.

Traditionally, amplitude, frequency and phase correlations in
neuroimaging data have been used as features to study connectiv-
ity. While these techniques imply a causal relationship, they can be
misleading. For instance, correlations that arise between multiple
microelectrode neural recordings could be the result of neurons
independently responding to a common stimulus or could be
caused by synaptic coupling between neural populations (Friston,
1994). Other possibilities that need to be taken into account
are neural populations receiving a common modulatory input
from another unobserved region of the brain, or indirect cou-
pling between neural populations where connectivity is affected
via multiple regions (Friston, 1994). Questions about the sources
of correlation in neural recordings are difficult to disambiguate
without resorting to more invasive methods of measurement. On
the other hand, computational models can directly infer cortical

connectivity patterns and neural dynamics from data, providing
the probable cause of empirical observations. The degree to which
such causal relationships correspond to the true state of the cortex
is limited by the model uncertainty, just as correlations iden-
tified using other types of neuroimaging are limited by spatial
and/or temporal resolution constraints. However, model uncer-
tainty can be quantified, which is a highly useful property for
many classification applications.

Under a Gaussian assumption, the Kalman filter provides esti-
mates of the probability distributions of the states and parameters
of the population model, which is updated as new measurements
become available. If the Gaussian assumption holds, the Kalman
filter provides the minimum variance estimate of the states and
parameters (Simon, 2006). However, the nonlinearities in the
model lead to non-Gaussian states. Nevertheless, the Gaussian
approximation leads to good estimation results, as demonstrated
by the Monte Carlo simulations. However, these results do not
guarantee that the state and parameter estimates will not eventu-
ally diverge from the actual values, given a measurement times
series of a longer duration. This is due to the approximations
of the unscented transform. Possible improvements in the esti-
mation results could come from using sequential Monte Carlo
(SMC) filtering methods, when the Gaussian assumption can be
relaxed. However, SMC methods impose a much larger com-
putation burden that may make them prohibitive for imaging
large-scale neural systems.

The derivation of the analytic a-priori (prediction through the
model) state and parameter estimates provided in this paper gives
an exact solution for the expected value for a Gaussian trans-
formed by a sigmoid, regardless of the shape of the resultant
distribution. This improves on the the unscented or extended
Kalman filters, which have previously been used in a similar con-
text (Voss et al., 2004; Schiff and Sauer, 2008; Liu and Gao, 2013).
The Gaussian approximation of the uncertainty in the state and
parameter estimates that are predicted by the model is maintained
in our framework using the unscented transform.

The implementation of the unscented transform with large
covariance matrices is a well established limitation of the filter
(Wan and Van Der Merwe, 2000; Simon, 2006; Särkkä, 2013).
While scaling up the size of the model did not significantly
increase the estimation bias in this case, it does exponentially
increase the computation time to the point where it becomes
impractical for real-time applications. For increasing numbers
of variables to be estimated, the covariance matrix eventually
becomes so large that the use of the unscented transform becomes
computationally infeasible. The extended Kalman filter is one
possible alternative for approximating the covariance, but esti-
mation accuracy is compromised (for the sigmoid nonlinearity).
A possible direction of future research is improved methods of
covariance estimation.

A probabilistic (Bayesian) approach is also used in the dynamic
causal modeling (DCM) framework, which utilizes an expecta-
tion maximization algorithm. However, in the DCM framework,
individual distributions of states and parameters are not esti-
mated, where uncertainty is placed over the full model including
the measurement function. DCM fits a range of candidate models
with various inter-region connectivity structures, and then selects
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the most appropriate candidate using an information theoretic
criterion (Daunizeau et al., 2009). DCM has been applied across
a range of data from fMRI (David et al., 2008), ECoG time series
(David, 2007) and EEG spectral response (Moran et al., 2008), as
well as different phenomena such as seizure prediction (Aarabi
and He, 2013) and auditory habituation (Wang and Knösche,
2013). A possible advantage of the Kalman (and sequential) fil-
tering approaches over the DCM framework and other similar
methods (such as genetic algorithms) is the ability to track slowly
changing parameters in real time, which is likely to be particu-
larly important when investigating transitions observed in data,
such as epileptic seizures.

The algorithm presented in this paper utilized known con-
straints of physiological variables. Enforcing constraints on states
and parameters greatly improved the convergence properties of
the filter. Without any bounds applied to the distributions of
parameter estimates, the results typically did not converge to a
steady value within the simulation time-frame. There are a num-
ber of alternative and more theoretically rigorous approaches for
constraining the parameter estimates. However, most constraint
methods add a significant computational burden to the filter
(Simon, 2006; Kandepu et al., 2008), rendering them impracti-
cal for implementation in large-scale systems. The large number
of states and parameters to be estimated restricted the constraint
method to clipping, which is computationally efficient to imple-
ment. Future work in this area should be to investigate effect of
constraints on the estimation performance (such as the estimate
variance).

The initialization of the filter, in particular the covariance
matrix, is a notoriously inexact science (Wan and Nelson, 1997;
Wan and Van Der Merwe, 2000; Simon, 2006; Schiff, 2012).
In practice, significant tuning is often required to achieve sta-
ble and accurate estimation results. For this study, the initial
covariance was based on knowledge obtained from forward sim-
ulations. A larger initial covariance was used when the number of
hidden variables was increased. The initial uncertainty for param-
eters was increased by broadening the range of the constraints.
Furthermore, when parameters to be estimated are dynamic
rather than static (as would be the case for most parameters of
interest in neural models), an additional constant error term is
added to the covariance matrix to prevent an overestimate of
confidence in the model (Voss et al., 2004). In this case it was
found that additional uncertainty should be very small relative
to the magnitude of the parameter. The amplitude of the addi-
tive uncertainty is analogous to a learning rate parameter in other
algorithms. It can be relatively easily tuned by examining the
convergence rate the parameters (i.e., see Figure 9).

The estimation framework presented in this paper can be nat-
urally integrated with other existing imaging technologies and
computational methods in the field of neuroscience. All methods
of neuroimaging are essentially inversion problems, that rely on a
transformation from the measurement space to the source space.
An example is the transformation of magnetic radiation to the
haemodynamic response in fMRI. Typically, measurements are
transformed using a specific inversion technique to determine the
state of the neural tissue. The framework presented in this paper
applies the same philosophy. However, the transformation from

the measurement to the source space is via a generative model.
The generative model reflects the current state-of-the-art of our
knowledge of the mesoscopic biophysics and anatomy of cortical
circuits. By the same token, limitations and uncertainties in our
current knowledge can also be quantified and incorporated into
the model, making all predictions reflect probability distributions
rather than scalar values. The mapping from neural population
models to measurements can be readily adapted to describe dif-
ferent modalities, via alternative observation equations, enabling
multiple sources of data to be combined to form a unifying
model. The difficulty of measuring brain activity in a minimally
invasive manner makes it imperative to use as much informa-
tion as possible to predict neural states and inter-connectivities.
A framework that combines patient-specific measurements with
well accepted principles of brain structure and function, and
importantly, knowledge of uncertainty, is an important step
toward the lofty goal of reverse engineering the brain.

The estimation framework presented in this model could be
used as the first stage of a seizure prediction system, providing the
necessary features that are used as inputs to a classifier. It is neces-
sary to represent neural data using representative features in order
to reduce the dimensionality of the problem prior to applying a
classification algorithm. In the past, efforts have focused on defin-
ing features that are correlated with ictal and pre-ictal periods
and, as such, can be used in a predictive capacity (Andrzejak et al.,
2001; Lehnertz et al., 2003). Recently a patient-specific seizure
classifier for ECoG was implemented using parameters identified
from a neural mass model (Aarabi and He, 2013). The advan-
tages of using neural states and parameters as features for seizure
classification is that they are naturally patient-specific (since they
are directly relatable to the neural activity) and may also provide
clues as to the underlying cause of seizures, which could inform
treatment strategies.

The capability of neural models to be tailored to an individ-
ual patient’s data is particularly relevant to the investigation and
treatment of epilepsy, since it is a highly patient-specific disorder.
The mechanisms for seizure onset and propagation vary signifi-
cantly between patients (Wendling et al., 2005; Mormann et al.,
2007; Coombes and Terry, 2012). Ideally, information about neu-
ral interconnectivity should be obtained on a case-by-case basis
using an individualized model (Blenkinsop et al., 2012; Nevado-
Holgado et al., 2012). A reliable model inversion framework
will enable more precise targeting of therapies. The information
provided by a model-based framework could also predict the
response to drug treatments or electrical stimulation in a simu-
lated environment, sparing a patient the negative side effects that
may arise from a trial-and-error approach. Models can also be
used to provide feedback for deep brain stimulators for robust
prevention of seizures (Mormann et al., 2007; Adhikari et al.,
2009).

This paper presented a framework rather than a specific
method. Within the framework, the level of realism of the model
can be increased to include more neural population subtypes and
the spatial extent can increased to model larger cortical networks.
The end goal is to provide the tools to create patient-specific
models that use all of the available patient-specific neuroimag-
ing data. Existing studies have demonstrated that this framework
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is capable of being extended to describe more complex phenom-
ena through the inclusion of, for example; more populations
and regions (Babajani-Feremi and Soltanian-Zadeh, 2010; Wang
and Knösche, 2013), self feedback connections (Ursino et al.,
2010) and firing rate modulated plasticity/habituation of synapses
(Deco et al., 2008; Moran et al., 2013) or spatially dependent
dynamics (Freestone et al., 2011; Aram et al., 2013). As the model
size and complexity increases, there will be new parameters that
need to be estimated as they are not directly measurable by other
means. There are a number of potential directions that should
be investigated to address the problem of dimensionality, such as
model reduction, improved methods of covariance approxima-
tion or linearization techniques. Finally, further validation of the
proposed estimation framework on patient data is necessary to
evaluate the true predictive capability of this method.
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Cook all contributed toward conceiving the ideas and drafting
the manuscript. All authors have provided final approval and are
accountable for all aspects of the research.

FUNDING
This work was funded by the Australian Research Council
(Linkage Project LP100200571).

ACKNOWLEDGMENTS
Thanks to Richard Balson, Amirhossein Jafarian, Saeed
Ahmadizadeh, Omid Monfred, Elmira Karami, Andre Peterson,
Alan Lai, Anthony Burkitt, Tianlin (Stella) Ying, Benjamin
Guo, Tatiana Kameneva, Raymond Boston, and Tim Esler,
who all contributed to this paper either by providing feedback,
stimulating discussions, and/or provided support.

REFERENCES
Aarabi, A., and He, B. (2013). Seizure prediction in hippocampal and neocortical

epilepsy using a model-based approach. Clin. Neurophysiol. 125, 930–940. doi:
10.1016/j.clinph.2013.10.051

Adhikari, M. H., Heeroma, J. H., di Bernardo, M., Krauskopf, B., Richardson,
M. P., Walker, M. C., et al. (2009). Characterisation of cortical activity in
response to deep brain stimulation of ventral–lateral nucleus: modelling and
experiment. J. Neurosci. Methods 183, 77–85. doi: 10.1016/j.jneumeth.2009.
06.044

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E.
(2001). Indications of nonlinear deterministic and finite-dimensional structures
in time series of brain electrical activity: dependence on recording region and
brain state. Phys. Rev. E 64, 1–8. doi: 10.1103/PhysRevE.64.061907

Aram, P., Freestone, D., Dewar, M., Scerri, K., Jirsa, V., Grayden, D. B., et al. (2013).
Spatiotemporal multi-resolution approximation of the amari type neural field
model. Neuroimage 66, 88–102. doi: 10.1016/j.neuroimage.2012.10.039
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5. APPENDIX
5.1. DISCRETIZATION
To begin, we start with the exact continuous time system

ξ̇ = [ ẋ θ̇
]�

(A1)

= [ f e (x, θ , u) 0
]�

(A2)

= F (ξ , u) . (A3)

Discretization is performed using the Euler method, where the
integration time step is denoted by δ by

Fa
δ (ξ , u) � ξ + δF (ξ , u) . (A4)

The approximate discrete time system can be written in the
compact form

ξ a
t+ 1 = Fa

δ

(
ξ t, ut

)
, (A5)

where a denotes approximate and the subscript δ indicates that
the model is parametrized by integration step size. Now, if we let
the discrete time system that corresponds to an exact solution to
the continuous system at the integration steps be f e

δ (xt, ut), then
under reasonable conditions it can be proven that the solution to
the approximate discrete time system is consistent, such that

∣∣Fe
δ

(
ξ t, ut

)− Fa
δ

(
ξ t, ut

)∣∣ ≤ δρ(δ), (A6)

where ρ( · ) is a class-K function that has a dependance on size
of the set of ξ and u (see Arcak and Nešić, 2004 for details). In
the body of this paper, we will drop the subscript δ for notational
convenience. However, we stress that the discrete time model is an
approximation of the continuous system and is parameterized by
the integration time step.

5.2. DEFINITION OF MATRICES A, B, C, AND D
The continuous time system can be written as

ξ̇ = Aξ + Bξ ◦ g(Cξ)+D(u)ξ (A7)

where the matrices A, B, C, and D(u) ∈ R
nξ×nξ and nξ = 3(N +

K). For a fixed integration time step, δ, the discrete time model
can be written in the form

ξ t+ 1 = Aδξ t + Bδξ t ◦ g(Cξ t)+Dδ(u)ξ t (A8)

where Aδ , Bδ , and Dδ(u) have the same dimension as their con-
tinuous time counterparts. (Note ◦ is the element-wise vector
product)

In this appendix, we define all the matrices in Equations A7
and A8 and show the relationship between the models. The
model contains (N + K) synaptic connections (N local connec-
tions and K inter-regional connections). Therefore, the number
of parameters (connectivity coefficients) is defined as nθ = (N +
K) and the number of states (PSPs and their derivatives) is defined
as nx = 2(N + K).

The matrix A has a block diagonal structure that is comprised
of two sub-matrices,

A =
⎡
⎣

� 0

0 Inθ ,nθ

⎤
⎦ , (A9)

where Inθ ,nθ ∈ R
nθ×nθ is the identity matrix and � ∈ R

nx×nx is
also composed of the sub-matrices;

� = diag(� j) (A10)

� j =
[

0 1
− 1

τ 2
j
− 2

τj

]
, (A11)

where j = 1, . . . , N + K indexes connections.
The discrete time version Aδ is related to A by

Aδ =
⎡
⎣

I+ δ� 0

0 I

⎤
⎦ . (A12)

The matrix B has the form

B =
[

0nx,nx �

0nθ ,nx 0nθ ,nθ

]
, (A13)

where 0nθ ,n ∈ R
nθ×n are zero matrices (for n = nx, nθ ). � ∈

R
nx×nθ maps the connectivity gains to the relevant sigmoidal

activation function and is of the form

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
b1
τ1

0
...

. . .
...

0 0

0 . . .
bN +K
τN +K

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A14)

where bj = 1 if the relevant connectivity gain is associated with
an internal connection, otherwise bj = 0 (where uj �= 0) and the
input is from an external population and is captured in the matrix
Dδ(u), which is described below. The discrete time version is
simply

Bδ = δB. (A15)

The adjacency matrix C is the same for both the continuous
and discrete version of the model. It has a block diagonal structure
where

C = diag(�, 0nθ ,nθ ) (A16)

and � ∈ R
nx×nx sums the relevant post-synaptic potentials to

form the mean membrane potentials then maps them to the
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activation function and is of the form

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
γ2,1 0 γ1,nx−1 0
...

. . .
...

0 0 0 0
γnx,1 0 . . . γnx,nx−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A17)

The rows of �, which we will denote by γj, index the PSPs that
contribute to the mean membrane potential of the presynaptic
populations.

The input matrix D(u) has the structure

D(u) =
[

0nx,nx U
0nθ ,nx 0nθ ,nθ

]
, (A18)

where the matrix U ∈ R
nx,nθ is given by

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
u1
τ1

0
...

. . .
...

0 0
0 . . .

uN +K
τN +K

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A19)

The inputs um are zero for the majority of the elements, where
there is only one external input per region in the current for-
mulation. Each active input is a constant value. The discrete time
version is

Dδ(u) = δD(u). (A20)

5.3. EXPECTATION OF A GAUSSIAN MEMBRANE POTENTIAL
TRANSFORMED BY A SIGMOID

The prediction step in Kalman filter for the neural population
model can be solved analytically given the solution of the expected
value of the Gaussian membrane potential that is transformed
by the nonlinear sigmoidal activation function. The solution for
this problem is provided in this appendix. In order to provide
the most concise derivation as possible, we will let mean firing
threshold parameter v0 = 0 and firing threshold variance ς = 1.
The solution is provided for an arbitrary v0 and ς , which can be
found via the same sequence of steps in the derivation.

Let our Gaussian random variable, v, be described by the
probability density function

p(v) = 1

σ
√

2π
exp

(
− (v − μ)2

2σ 2

)
. (A21)

The expected value of the Gaussian random variable transformed
by the sigmoid is defined by

E
[
g(v)

] = ∫∞
−∞ g(v)p(v) dv (A22)

= 1√
2π

∫∞
−∞

∫ v
−∞ exp

(
− z2

2

)
p(v) dz dv. (A23)

To proceed, we can make the substitution z = w − v to get v out
of the integral terminal giving

E
[
g(v)

] = 1√
2π

∫∞
−∞

∫ 0
−∞ exp

(
− (w− v)2

2

)
p(v) dw dv.(A24)

Next we substitute in the equation for the probability density
function of the membrane potential and switch the order of inte-
gration, which can be changed without altering the limits of
integration giving

E
[
g(v)

] = 1

2πσ

∫ 0

−∞

∫ ∞
−∞

(A25)

exp

(
− (w − v)2

2
− (v − μ)2

2σ 2

)
dv dw (A26)

Now we need to integrate out v, so we collect all the v-related
terms

E
[
g(v)

] = 1

2πσ

∫ 0

−∞
exp

(
− 1

2σ 2

(
σ 2w2 + μ2)

)

×
∫ ∞
−∞

exp

(
−σ 2 + 1

2σ 2
v2 + σ 2w + μ

σ 2
v

)
dv dw.

(A27)

Integrating out v in the second term we get

∫ ∞
−∞

exp

(
−σ 2 + 1

2σ 2
v2 + σ 2w + μ

σ 2
v

)
dv

=
√

2πσ√
σ 2 + 1

exp

( (
σ 2w + μ

)2

2σ 2(σ 2 + 1)

)
. (A28)

The solution in Equation A28 is then recombined with
Equation A27. After rearranging and simplifying, the expected
value becomes

E
[
g(v)

] = 1

2π

√
2π√

σ 2 + 1

∫ 0

−∞
exp

(
− (w − μ)2

2
(
σ 2 + 1

)
)

dw.

(A29)

To solve this last integral, we perform a change of variables

z = w − μ√
σ 2 + 1

,
dz

dw
= 1√

σ 2 + 1
(A30)

dw =
√

σ 2 + 1dz, (A31)

giving the final result,

E
[
g(v)

] = 1√
2π

∫ μ√
σ2 + 1

−∞
exp

(
− z2

2

)
dz

= 1

2

(
erf

(
μ√

2(σ 2 + 1)

)
+ 1

)
. (A32)
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The more general solution for an arbitrary mean firing thresh-
old, v0, and firing threshold variance, ς , is

E
[
g(v)

] = 1

2

⎛
⎝erf

⎛
⎝ μ− v0√

2
(
ς2 + σ 2

)

⎞
⎠ + 1

⎞
⎠ . (A33)

5.4. UNSCENTED TRANSFORM
The sigma vectors are defined as

X 0
t− 1 = ξ̂

+
t− 1 (A34)

X i
t− 1 = ξ̂

+
t− 1 +

(√
(nx + κ) P̂+t− 1

)

i
(A35)

X nx + i
t− 1 = ξ̂

+
t− 1 −

(√
(nx + κ) P̂+t− 1

)

i
, (A36)

where κ is a constant that can be tuned which determines the
spread of the sigma vectors around the mean and β is a parameter
that can be used to incorporate information about the distri-
bution of the states (2 is optimal for Gaussians) (Wan and Van

Der Merwe, 2001). The vector

(√
(nx + κ) P̂+t− 1

)

i
is the ith col-

umn of the matrix square root (e.g., the lower triangular matrix
that can be computed using the Cholesky decomposition), where
i = 1, . . . , nx.

The weights, Wi, for the unscented transform are calculated as

W0 = κ

nx + κ
+ β (A37)

Wi = 1

2 (nx + κ)
i = 1, . . . , 2nx. (A38)

For the initialization of the Kalman filter in this paper, algo-
rithm values were

β = 2 (A39)

κ = 3− 2nx, (A40)

where N is the number of synapses.

5.4. ALGORITHM INITIALIZATION
To initialize the filter, ξ̂

+
0 and off-diagonal elements of P̂+0 were set

to zero. The diagonal elements of P̂+0 corresponding to fast states
(PSPs and their derivatives) were set to the variances of the states
obtained from forward simulations. The initial variance estimate
for the slow states (connectivity parameters) were set by recogniz-
ing that the variance of each PSP in the state vector is proportional
to the amplitude of the connectivity parameter that is associated
with that particular connection. Therefore, the initial estimation
variance for each connectivity parameter was set to be propor-
tional (by a scaling parameter) to the variance of the associated
PSP obtained from forward simulation. Scaling parameters were
chosen for each connection subtype to reflect the different orders
of magnitude of the connectivity strengths (shown in Table A1).
The weighting for the slow state P̂+0 values was determined by

Table A1 | Initial values for the elements of P̂+
0

that correspond to

connectivity gain estimates.

Parameter Initial variance

αup 0.1 Mj,1

αep 10 Mj,2

αpi 1 Mj,3

αip 60 Mj,4

αpe 10 Mj,5

αjk 5 Mj,6

αkj 5 Mj,7

The matrix M is derived from the PSP variances from a forward simulation and

j = 1, · · · , J indexes the cortical region.

normalizing across all the regions for connection specific PSPs;
i.e., let

β �

⎡
⎢⎢⎣

var(v1
up) var(v1

ep) var(v1
pi) var(v1

ip) var(v1
pe) var(v1

jk) var(v1
kj)

.

.

.
.
.
.

var(vJ
up) · · · var(vJ

kj)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

	1
v
.
.
.

	J
v

⎤
⎥⎥⎦ (A41)

for J cortical regions. The normalized matrix is given by

M = diag
(‖ 	1

v ‖−1∞ , . . . , ‖ 	J
v ‖−1∞

)
β, (A42)

where we are normalizing using the L∞ norm of each of the rows

of β, which are denoted by 	
j
v. The resultant matrix M is scaled

to form the initial values of the variances for the connectivity esti-
mates. The scaling values to set the values of P̂+0 are shown in
Table A1.

To initialize the filter values for the model and measure-
ment variance in the Kalman filter equations (denoted 	 and R,
respectively) knowledge of the forward simulation was used. The
measurement variance was set to

R = σ 2
y Iny,ny , (A43)

where σy is the standard deviation of the additive measurement
noise used in the forward simulation for the ECoG signal, which
was 1 mV. Iny,ny is the identity matrix and ny is the number of
measurements (i.e., the number of regions in this case).

The model uncertainty was set to

	 =
{

10−16 Inξ ,nξ +Q for static parameters
10−16 Inξ ,nξ +Q+Qθ for parameter tracking

,(A44)

where the first term on the left hand side is for numerical stability,
Q is the known covariance matrix of process noise, wt , that was
used in the forward simulations, and the Qθ term represents a
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constant additive covariance for parameter tracking purposes,

Qθ = diag(0nx,nx , 	
θ ). (A45)

When the filter is used to track parameter dynamics, 	θ is used to
capture the unexpected changes (this is not necessary for the state
as their dynamics are modeled, whereas parameters are assumed
to be static by the filter). 	θ was a diagonal matrix, where for
j = 1 · · · nθ ,

	θ
j,j =

{
10−7O(αj) if j indexes αup

10−5O(αj) if j indexes all other αmn

. (A46)

The O notation shows that the uncertainty is proportional to
the order of the connectivity gain (αj). The coefficients can be
tuned to adjust the rate of estimation convergence. The smaller
value for αup was the result of tuning based on the estimation
results.

Frontiers in Neuroscience | Brain Imaging Methods November 2014 | Volume 8 | Article 383 | 20201

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL RESEARCH ARTICLE
published: 08 December 2014
doi: 10.3389/fneur.2014.00261

A critical role for network structure in seizure onset: a
computational modeling approach
George Petkov 1†, Marc Goodfellow 1†, Mark P. Richardson2 and John R.Terry 1*
1 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
2 Institute of Psychiatry, King’s College London, London, UK

Edited by:
David F. Abbott, The Florey Institute of
Neuroscience and Mental Health,
Australia

Reviewed by:
Andreas Schulze-Bonhage, University
of Freiburg, Germany
Amir Omidvarnia, The Florey Institute
of Neuroscience and Mental Health,
Australia

*Correspondence:
John R. Terry , College of Engineering,
Mathematics and Physical Sciences,
University of Exeter, Exeter, Devon
EX4 4QF, UK
e-mail: j.terry@exeter.ac.uk
†Denotes an equal contribution as
first author.

Recent clinical work has implicated network structure as critically important in the initiation
of seizures in people with idiopathic generalized epilepsies. In line with this idea, functional
networks derived from the electroencephalogram (EEG) at rest have been shown to be sig-
nificantly different in people with generalized epilepsy compared to controls. In particular,
the mean node degree of networks from the epilepsy cohort was found to be statisti-
cally significantly higher than those of controls. However, the mechanisms by which these
network differences can support recurrent transitions into seizures remain unclear. In this
study, we use a computational model of the transition into seizure dynamics to explore the
dynamic consequences of these differences in functional networks. We demonstrate that
networks with higher mean node degree are more prone to generating seizure dynamics
in the model and therefore suggest a mechanism by which increased mean node degree
of brain networks can cause heightened ictogenicity.

Keywords: network dynamics, epilepsy, dynamical systems, graph theory, EEG

INTRODUCTION
Epilepsy is a serious neurological disorder characterized by the
propensity of the brain to generate spontaneous and recurrent
seizures. Traditionally, seizures have been defined as “a tran-
sient occurrence of signs and/or symptoms due to abnormal,
excessive, or synchronous neural activity in the brain” (1). Very
recently, the international league against epilepsy (ILAE) has fur-
ther refined the definition of epilepsy (2) whereby an individual is
now proposed to have epilepsy if one of the following conditions
is met:

1. Experiencing two unprovoked seizures more than 24 h apart.
2. Experiencing a single unprovoked (or reflex) seizure with a

probability of further seizures similar to the general risk of
recurrence (~60%) if two unprovoked seizures had occurred.

3. An epilepsy syndrome is diagnosed.

It is important to note that epilepsy is a general term to cap-
ture over forty, often diverse, syndromes. However, in each case, the
generation of clinical signs and symptoms are presumed to require
large regions of the brain to be subject to abnormal dynamics and
the initiation, recruitment, and spreading of such dynamics is facil-
itated by the network of synaptic connections between neurons
and between regions of the brain. This is reflected in the recogni-
tion of the ILAE that many epilepsy syndromes are associated with
disruptions to either global or local brain networks (3).

However, a precise definition of global and local brain net-
works is surprisingly non-trivial. In the global case, one can
consider large-scale structural networks as defined by white matter
tracts of axons that connect distal brain regions. These networks

can be estimated non-invasively using diffusion imaging. An
alternative is to examine the statistical inter-relationship between
time series recorded at different locations in the brain, thus, defin-
ing a “functional” rather than a structural network. While to
some extent, functional networks are constrained by the struc-
tural architecture of the brain, they also carry contributions from
the dynamics of brain activity (4). We recently studied func-
tional networks derived from scalp electroencephalogram (EEG)
at rest and demonstrated significant differences between func-
tional networks of people with idiopathic generalized epilepsy
(IGE), their first-degree relatives, and healthy controls (5). Sig-
nificant differences across a number of graph theory measures
highlighted abnormalities in both the epilepsy cohort and their
first-degree relatives. The most significant of these was that the
mean node degree of networks inferred from both people with
IGE and their relatives was much greater than that of controls, but
that no differences were found between patients and their rela-
tives. This observation suggests that differences between patients
and controls cannot be attributed to medication, and thus, altered
functional networks are associated with a propensity to gener-
ate recurrent seizures (i.e., epilepsy). However, abnormalities in
these networks alone are not sufficient to generate seizures (since
they are present in the relatives of people with IGE, whom them-
selves are seizures free) suggesting that the interplay between
functional network structure and the dynamics supported by
them must play an important role in seizure generating capability
(ictogenicity).

The use of mathematical modeling to attempt to address this
and related questions has grown substantially in the past few
years. Particularly at the macroscopic scale, where the average
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response of a mass of neurons is represented by systems of dif-
ferential equations, several studies have derived insight into the
potential dynamic mechanisms that enable seizures associated
with spike-wave discharges to emerge spontaneously from back-
ground activity (6–10). Lopes da Silva et al. (11) proposed a
scenario in which the spontaneous transitions between back-
ground activity and seizure states arise due to bistability, i.e.,
that the background state and seizure state “coexist” and ran-
dom inputs can perturb the brain from one state to another.
This can be interpreted in terms of either state being able to
be reached without a change in underlying constants or slowly
varying parameters of the system. This type of model was used
to demonstrate that the emergence of either focal or generalized
seizure like events could occur due to either specific network dis-
ruptions or to alterations in excitability within apparently normal
network structures (12).

Motivated by a desire to understand the fundamental mecha-
nisms of seizure transitions more clearly, the concept of bistability
has formed the basis of more abstract models of the brain, for
example, the so-called Z6 model (13), which provides a phenom-
enological representation of the critical features of more realistic
physiological models. These abstract models, which we might con-
sider to represent a normal form of the more detailed physiological
representations, have recently been extended to study the role
that explicit network structures have in facilitating transitions into
seizure activity (14, 15).

Here, we build on this previous modeling work to further
understand the role of network topology in the generation of
transitions into seizure dynamics. In order to understand the
potential consequence on ictogenecity of the differences in net-
work structure highlighted by Chowdhury et al. (5), we artificially
construct networks that preserve the values of mean node degree
for each subject. When these networks are used as the connectivity
structure for a bistable dynamic network model, we observe that
networks with higher mean node degree transition more read-
ily to a seizure state. We therefore suggest a mechanism by which
increased mean node degree of brain networks can cause increased
ictogenicity.

MATERIALS AND METHODS
MATHEMATICAL MODEL
Since we focus on the role that network structure plays in tran-
sitions between background and seizure states, we do not con-
sider a detailed model of each node in a network. Instead, the
foundation of our present work is a network of abstract mod-
els that are designed to capture a bistable transition between a
“background” state and a high-amplitude “seizure” state [see, e.g.,
Kalitzin et al. (16)]:

d

dt
Z =

(
a|Z |4 + b|Z |2 + C

)
Z + ε (t ) , (1)

where Z= x+ iy is a complex variable (function of time); (a, b)
are real constant coefficients, and C= c+ iω is a constant com-
plex coefficient. The term ε(t ) is the complex input to the system,
which incorporates a white noise component to mimic the effects
of exogenous fluctuations.

A network model, where each node has as its basis the system
described in Eq. 1 is then constructed:

d

dt
Zi =

(
a|Zi |

4
+ b|Zi |

2
+ c + iω

)
Zi +

N∑
j=1

Gij Zj + εi (t ) (2)

Here, we consider the dynamics of N units, with linear interac-
tion through an adjacency matrix G, where white noise is generated
independently for each node within the network. In the current
work, G is scaled by a factor of 0.1 to preserve transitions between
states.

Model parameters are based upon our previous work (16) so
that each node lies within the bistable regime. This allows tran-
sitions to occur between the steady state (SS), and limit cycle
(LC) attractors, where the LC is considered to represent seizure
dynamics.

CLINICAL EEG RECORDINGS AND CONSTRUCTION OF FUNCTIONAL
NETWORKS
The network measures that form the basis of this study were
inferred from clinical EEG recordings as described in Ref. (5).
In brief, these recordings consisted of 19 channel scalp EEG
obtained using standard 10–20 placing with an average reference,
and sampled at 256 Hz. The recordings were band-passed between
1 and 70 Hz, and notch-filtered between 48 and 52 Hz to exclude
mains frequency interference. The subjects from whom the EEG
recordings were taken are divided into two main groups: 35 peo-
ple with heterogeneous IGE and 40 healthy controls. From each
EEG recording, one artifact-free, eyes-closed, 20 s segment was
extracted representing a“resting state”or“background”EEG activ-
ity. Chowdhury et al. (5) found significant differences between
controls and patients in the 6 and 9 Hz“low alpha”frequency band,
and we therefore focus on that band here. The Hilbert transform
was applied to the band-pass filtered EEG to generate instanta-
neous phase and amplitude estimates. For each electrode pair, the
phase-locking factor [PLF, also known as phase-locking value (17)
or mean phase coherence (18)] was calculated as follows:

C1 = cij =
1

Ns

∣∣∣∣∣
Ns∑

k=1

e i∆φij (tk )

∣∣∣∣∣ (3)

where ∆φij(tk) is the instantaneous phase difference between sig-
nals i and j at the time point tk. The ∆φij(tk) were reconstructed
from the original signals using the Hilbert transform.

This yields a value between 0 and 1 reflecting the strength of
synchronous activity between each pair of signals. Functional net-
works were then constructed using electrode locations as nodes
and PLF values as connectivity weights. Since the PLF measure
is symmetrical, the resulting functional connectivity networks are
undirected.

NETWORK MEASURES
The derived functional networks were quantified using the follow-
ing graph theory measures: mean degree (MD), degree variance
(DV), and local clustering coefficient (CC). The degree of a node
is defined as the sum of the weights of the edges incident to that
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particular node. The MD and DV are defined as the average and the
variance, respectively, of degrees over all nodes in the network. The
local CC of a node in a network measures how close its neighbors
are to a complete network (graph).

GENERATION OF ARTIFICIAL NETWORKS
We note that the networks used for connectivity in the model in
this study were not directly inferred from patient data, rather “sur-
rogate” networks were prepared, which preserved properties of the
networks studied in Chowdhury et al. (5). Each matrix was orig-
inally based on the functional connectivity matrix inferred from
the aforementioned EEG data. An undirected binary network with
the equivalent value of MD as the original matrix was constructed
by applying a set of thresholds to the original, and choosing the
threshold for which MD was preserved. Further a computational
algorithm was applied (19) in order to randomize the matrix, pre-
serving the degree vector and therefore the MD value. In brief,
the algorithm randomly swaps nodes and recalculates the degree
vector, checking for disparity. For each original matrix, we con-
structed 30 artificial random binary matrices with the same MD
value as the original weighted connectivity matrix. We verified that
the spectrum of the artificial patient and control derived networks
was different, confirming a difference in topology of the artificial
networks.

MEASURE OF BRAIN NETWORK ICTOGENICITY
We measured the “ictogenicity” of each network by performing
simulations using the network as the connectivity matrix for the
mathematical model. Since we calculated this measure of icto-
genicity from model simulations, we could define an appropriate
model state that captured transitions between the non-seizure and
seizure dynamics of the model. In the current work, the model
seizure state was defined as a solution with local maxima and
minima having magnitude >0.5.

For each simulation, of the model Eq. 2, we calculated the time
that each node spent in a LC, normalized to the simulation time.
Averaging over all the nodes, we obtain the probability of any node
to be in a LC and we refer to this probability as the brain network
ictogenicity (BNI).

STATISTICAL ANALYSIS
For comparison of quantitative network measures between groups,
we used a non-parametric Kruskal–Wallis one-way ANOVA test.
Results are declared significant for p < 0.05. For post hoc pairwise
comparisons between groups, a Bonferroni corrected multiple
comparison test was performed with significance level of 0.05.

RESULTS
FUNCTIONAL NETWORKS
Chowdhury et al. (5) reported that the MD of functional networks
derived from people with epilepsy was higher than controls. In
Figure 1, we show the distribution of MD for both epilepsy and
control subjects included in that study. In this study, we focus on
the dynamic consequences of changes in node degree independent
of specific network topology and connectivity weights. We remove
a layer of complexity from these networks by transforming them
into binary (unweighted) networks, while preserving the MD of
networks extracted from the EEG data. Figure 1 demonstrates the
match in value of mean node degree between the original net-
works and the artificially derived alternatives (see Materials and
Methods).

Since the MD is accurately preserved in our artificial networks,
the significant difference in MD between patients and controls is
also maintained, as shown in Figure 2. The use of binary, rather
than weighted networks leads our artificial networks to have higher
DV than the original networks, as demonstrated in Figures 2B,E.
A further reason for this difference is that the networks in Chowd-
hury et al. (5) were normalized to the DV value of 500 surrogate
random networks, while in the present case of binary networks
such normalization is not possible. However, Figures 2B,E show
that a significant difference in DV between epilepsy and control
subject derived networks is preserved.

Figures 2C,F demonstrate a lack of significant difference in
CC between artificial “control” and “epilepsy” networks, in con-
trast to the EEG derived networks. This demonstrates that our
artificially generated networks have removed some specific topo-
logical features of the original data, including those related to
clustering.

FIGURE 1 | Mean node degree values for each subject (blue dots) and each corresponding artificially constructed binary network (red dots).
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FIGURE 2 | Statistical analysis of the differences between the group
mean values of people with epilepsy and healthy controls based on
the MD, DV, and CC measures of the connectivity matrices. (A–C)
represent data from original networks, whereas (D–F) represent data for
artificial networks. (A,D) show MD, (B,E) show DV, and (C,F) show CC.
The y -axis of each panel separates the two groups (control and patients),
and the x -axis represents the group values of the corresponding network

measure. The results are color coded blue for the control group and red
for the epilepsy group (except for panel F, in which the epilepsy group is
colored grey to indicate a lack of statistically significant difference). The
horizontal line and the circle show the variance and the mean value of the
corresponding network measure. The mean values are considered as
statistically significant different if there is no overlap between the lines
within a panel.

MODELING RESULTS
For each value of MD extracted from the epilepsy and control
cohorts, 30 artificial networks were generated, preserving the MD.
These networks were used as the connectivity scheme in the
bistable model as described in Section “Materials and Methods.”
For all simulations of our network model Eq. 2, we fixed model
parameters corresponding to the bistable phase space of a single
node {a, b, c, ω}= {−1, 2, −0.9, 1+ δω}, where δω is a random
number distributed equally in the interval [−0.2, 0.2]. This choice
is made to avoid artificial phase locking because of the equal phase
velocities within our multi-unit configuration. For each network,
30 simulations were performed with random initial conditions.
The resulting dynamics were quantified according to the BNI mea-
sure described in Section “Materials and Methods.”An example of
the calculation of BNI and the effect of changes in node degree is
given in Figure 3.

Four different kinds of dynamics can be seen in Figure 3. In
Figure 3A, the model spends a large portion of the simulation time
in the “background” attractor before transitioning to the seizure
state. Thus, the BNI measurement is low. In contrast, the trajec-
tory of the model in Figures 3B–D moves more quickly into the
“seizure” attractor, and so BNI is higher. In addition, in Figure 3C,
one of the nodes has not transitioned to the trajectory correspond-
ing to the LC attractor in a single node. Rather, this node is being
driven around the corresponding fixed point and therefore the

BNI in this case is lower. It is clear that in this model, BNI provides
a measure of how quickly the trajectory of the system performs an
“escape” from the background to the seizure attractor.

Figure 4 shows BNI calculated from all simulations for artificial
networks derived from the patient and control networks. It can be
seen that BNI is significantly higher in the patient versus the con-
trol networks, and thus, networks with an increased node degree
are shown to have a greater tendency toward seizure activity in this
model.

DISCUSSION
In this study, we used mathematical modeling to investigate the
link between the structure of brain networks and their propensity
to generate seizure dynamics. Building upon previous studies, we
used human EEG data to generate artificial networks preserving
MD values, and thus, “isolating” this property for investigation.
When networks with high MD were used as connectivity matrices
in a model of seizure transitions, we observed significantly more
time in the seizure state, as compared to networks with lower MD.
We therefore provide evidence for a link between certain prop-
erties of network structure (here the MD) and the potential to
generate seizure dynamics.

From the network perspective, MD and DV reflect how well
connected the nodes within a graph are. Thus, networks with high
MD and low DV would tend toward being fully connected, whereas
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FIGURE 3 |Trajectories of four simulations with the Z6 model over
different artificially created networks. The figure contains (A–D) four
simulations with different BNI values (as indicated). The x -axis of each panel

represents the simulation time (arbitrary units) and the y -axis represents the
amplitude of the simulated signal. In each case, all 19 channels are overlaid in
different colors.

networks with high MD and high DV will have an increased num-
ber of “hub-like” nodes. Our randomized networks in the patient
group displayed higher MD and DV than controls and there-
fore fall predominantly into this latter category. This suggests that
“hub-like” nodes can more easily drive the rest of the network into
the seizure state if they themselves enter that state.

Previous modeling studies in the context of temporal lobe
seizures and the hippocampus have suggested a role for hub-like
connectivity in generating hyper-excitability (20). Such structures
have also been shown to be critical for dementia (21), a condition
with which epilepsy is comorbid (22), as well as other patholo-
gies of the brain (23). In a related study, Clemens et al. (24)
performed a resting EEG derived, functional connectivity net-
work analysis of people with juvenile myoclonic epilepsy (JME)
and control subjects. They found no statistically significant dif-
ferences in measures of local and global efficiency of the derived
networks, where “efficiency” relates to the length of the shortest
paths between nodes. We should therefore aim to elucidate exactly
which topological features of networks can contribute to the gen-
eration of seizure dynamics. In future work, we will explore in
more detail the dynamic role of centrality, efficiency, and other
features of network topology (25) on seizure generation in our
model.

The model employed in this study provides an abstract rep-
resentation of the epileptic brain. It preserves the potential for
transitions between “background” and “seizure” dynamics as pos-
tulated in the bistable perspective of generalized seizures (11). This
simplified approach allows one to focus upon the role that net-
work structure plays in the propensity for dynamic transitions.

Indeed, this approach has been used with success in terms of
estimating transition frequencies (26), exploring the key dynamic
components for intermittent transitions (15) and examining the
role of specific connection topologies in small networks (14). An
interesting extension to the current work would be to assess the
interplay between intrinsic node dynamics and network structure.
This could be achieved by using abstract models with richer bifur-
cation structures (15, 27), or by employing neural mass models of
specific epileptiform dynamics (8, 10, 28, 29).

We built artificial networks preserving MD so as to focus on
the implications of changes in this property, with respect to the
process of transitions from SS to LC. Precise analysis of the model
Eq. 2 leads to the conclusion that the behavior of the system in
these terms may depend on several factors such as (a) noise level,
(b) initial conditions, (c) connection strength, and (d) network
topology. As the main goal was to examine the influence of net-
work topology, we removed the influence of all other factors by
setting appropriate noise levels, randomly sampling initial condi-
tions, and using binary instead of weighted networks. In future
work, we will consider the effects of adding larger variance noise
into the model, in order to facilitate recurrent transitions. In addi-
tion, we can expand upon the approach by analyzing weighted
networks. We envisage that the addition of these kinds of het-
erogeneities will lead to a richer repertoire of model dynamics,
and therefore, might be useful in further stratifying the effect of
network topology on dynamic transitions.

Benjamin et al. (14) examined escape times into seizure dynam-
ics in a similar model applied to networks with a small number of
nodes. In that case, it was possible to derive analytic expressions
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FIGURE 4 | Statistical analysis of the significant differences between
control and patient groups based on the mean BNI measure. The y -axis
separates the two groups, while the x -axis represents the mean BNI value.
The horizontal line and the circle represent the variance and the mean value
of BNI, respectively.

for escape times depending on the topology of networks. How-
ever, the complexity of this problem grows significantly as larger
networks are considered. Here, in order to link directly with clini-
cal data, we used a model with 19 nodes to represent EEG sensor
space. Rather than focusing on explicit network structure, we were
able to correlate changes in BNI with properties of the network,
e.g., the MD. This provides an avenue to explore the seizure gener-
ating potential of more complex networks and could be extended
in future work to include other graph theoretic measures, such as
the CC, which has also been shown to vary significantly between
people with IGE and controls (5, 27).

We used functional connectivity as the basis for the networks
applied to our model, reflecting the nature of the available clin-
ical data. This approach means that our model is not a direct
representation of brain regions interacting over large scales via
axonal connections, though such a model can be built in a patient
specific way using diffusion data (29, 30). Rather, our model pro-
vides an abstract representation of the resting state of the brain,
as projected onto the level of EEG. Networks derived from this
projection are thought to be constrained by structural connectiv-
ity, though they are not a direct reflection of it (4). Functional
networks by definition represent nodes that are evolving similarly,
and therefore, capture a potentially important means by which
information can be exchanged between brain regions (31). We
should therefore consider that the “connections” of such networks
can facilitate the emergence of pathological dynamics through

synchronization, and we demonstrate here that this can lead to
greater seizure generating potential in the epileptic brain.

On the other hand, functional networks can be viewed more
simply as transformations of time series data recorded from sub-
jects, i.e., as mappings from multivariate time series onto a static
topological network that reflects a combination of structural and
dynamic contributions for that instance of time. From this per-
spective, our modeling approach gives us a tool with which to
interrogate data from people with epilepsy and compare these
with control subjects. We therefore aim to explore further whether
properties of the BNI derived from functional networks can be
used as a marker in the clinical setting. We postulate that in
some instances BNI may be able to distinguish between networks
that appear similar when examined by traditional graph theoretic
measures.
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It is surprising that the piriform cortex, when compared to the hippocampus, has been
given relatively little significance in human epilepsy. Like the hippocampus, it has a phylo-
genetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad
connections to both limbic and cortical areas, and is highly epileptogenic – being critical
to the kindling process. The well-known phenomenon of early olfactory auras in tempo-
ral lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is
anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral
artery, it has, until now, been understandably neglected. In this review, we emphasize how
its unique anatomical and functional properties, as primary olfactory cortex, predispose it
to involvement in focal epilepsy. From recent convergent findings in human neuroimaging,
clinical epileptology, and experimental animal models, we make the case that the piriform
cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and
may influence progression to epileptic intractability.

Keywords: pyriform, area tempestas, claustrum, olfaction, olfactory aura, EEG-fMRI, temporal lobe epilepsy,
intracranial electrodes

INTRODUCTION
One of the important human senses and one of life’s great plea-
sures is olfaction. From the aroma of a floral bouquet, to the flavor
of a meal, and even to the familiar scent of a family member,
odors provide us with rich information about our environment
that influences our decisions, emotions, and memories.

The piriform cortex is a unique brain region that underlies the
mechanisms that produce these olfactory experiences. It forms
the major part of the primary olfactory cortex and has extensive
connections with other parts of the olfactory network. It is a phy-
logenetically old structure that can also be found in amphibians,
reptiles, and other mammals, and as such has a number of special
properties. Unlike other primary cortical regions, it receives input
directly from the olfactory bulb without this information being
relayed through the thalamus. Additionally, it has a three-layered
allocortical structure, which in human beings is otherwise only
found in the hippocampus – one of the regions most implicated
in focal epilepsy.

Historically, the role that the piriform cortex may play in
epilepsy has not been widely recognized. In the study of human
focal epilepsy, attention has mostly been given to mesial temporal
structures, especially the hippocampus, and to regions of abnor-
mal brain structure. The earliest indications that seizures may
involve olfactory cortex were descriptions in the late nineteenth
century of “uncinate seizures,” which begin with an olfactory hal-
lucination, and were generally thought to herald a progressive
tumor of the temporal lobe. Separately, the clinical observation
that some people with epilepsy have impaired olfactory function
also hinted at seizure involvement of olfactory cortex. It was not
until the 1980s that the particular epileptogenicity of the piriform
cortex in animal models was discovered, although this finding did
not have an immediate impact on human clinical epileptology.

Over the last two decades, the application of functional neu-
roimaging to human brain function has led to many new insights
into the role of the piriform cortex in olfactory perception. In
the field of epilepsy, similar techniques have emphasized a net-
work view of seizures. Most recently, several studies using data
from electroencephalography, functional MRI and nuclear medi-
cine imaging, have suggested that the human piriform cortex may
be a common node in focal epilepsy arising from different brain
regions.

Therefore, it is now timely to revisit the piriform cortex and
to re-examine its relevance to focal epilepsy. Beginning with a
description of the anatomy and function of the piriform cortex,
we go on to review the literature regarding seizures that arise within
olfactory cortex in animal models and human beings, the involve-
ment of piriform cortex in distant inter-ictal discharges, and the
impact of epilepsy on olfaction. Finally, we discuss the potential
for the piriform cortex to become a therapeutic target in treat-
ment of epilepsy, and describe a case of possible piriform epilepsy
where resection of the piriform cortex was performed. From con-
sideration of these convergent lines of evidence, we argue that
the piriform cortex is critically placed between limbic and cortical
networks, to distribute epileptic activity, facilitate epileptogenesis,
and potentially contribute toward the development of intractable
human epilepsy.

THE ANATOMY AND FUNCTION OF THE PIRIFORM CORTEX
HAS PROPERTIES THAT PREDISPOSE IT TO EPILEPTIC
SEIZURES
Synonymously referred to as “piriform,” “pyriform,” and
sometimes “prepyriform” (indicating the anterior piriform), the
piriform cortex is the largest component of primary olfactory
cortex (1–3).
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Odors are first detected in the nasal epithelium by olfac-
tory sensory neurons. These cells project to the olfactory bulb,
where inputs from similar receptor types are collected together in
glomeruli. Here, they synapse onto mitral and tufted cells, which
project to cortical regions via the olfactory tract (4).

Primary olfactory cortex is defined as regions that receive
direct input from the lateral olfactory tract. In addition to pir-
iform cortex this includes the anterior olfactory nucleus, olfac-
tory tubercle, periamygdaloid cortex, and the anterior part of the
entorhinal cortex (5). Beyond these regions, the olfactory network
includes orbitofrontal cortex, thalamus, and insula cortex (6) and
interactions with other cortical networks.

ANATOMICAL LOCATION OF THE PIRIFORM CORTEX
The human piriform cortex is located at the junction of the tem-
poral and frontal lobes, medial to the temporal stem (7), and lines
the superior and inferior banks of the endorhinal sulcus (Figures 1
and 2). The name piriform comes from its “pear-shaped” appear-
ance in some mammals such as cats (3), although in human beings,
it is a relatively smaller structure and does not have this shape (8).

In human beings, it can be subdivided anatomically into frontal
or temporal lobe parts. In the temporal lobe it begins anteriorly
at the level of the limen insulae, and extends posteriorly to overlie
the amygdaloid nuclei (10), becoming contiguous with the cor-
tical amygdala. Medially, the piriform cortex transitions into the
perirhinal or entorhinal cortex, with this border marked more
posteriorly by a small depression, the sulcus semiannularis. In the
frontal lobe, the piriform cortex extends from the fundus of the
endorhinal sulcus, forming a triangular region that is bounded
medially by the olfactory tubercle and lateral olfactory tract (11,
12). Laterally, it merges into the insular neocortex (7).

In rats, the piriform cortex is comparatively much larger, and
does not have the curvature around a deep sulcus that is seen in
human beings. It lies along a rostrocaudal axis, and can be divided
into an anterior and posterior part on the basis of the thickness
of cell layer III, and the presence of the overlying lateral olfactory
tract (3).

Histological studies in the macaque (5) indicate that the pri-
mate frontal and temporal piriform cortex correspond to the

rodent anterior and posterior piriform, respectively. Despite this,
some human MRI studies have divided the piriform cortex into
anterior and posterior parts, using at a given y-axis value in the
MNI coordinate system (13), or at the most anterior coronal slice
where frontal and temporal lobes meet (14). Therefore, the spe-
cific criteria used in each study to subdivide the piriform should
be carefully noted when comparing results.

HISTOLOGY OF THE PIRIFORM CORTEX
The defining histological feature of piriform cortex is its allocor-
tical three-layered structure (11).

The main excitatory neuron types are superficial pyramidal
cells, deep pyramidal cells, and semilunar cells. The pyramidal
cells are found densely packed in layer IIb and more sparsely in
layer III, with dendrites projecting up to layer I to receive inputs
from the olfactory bulb (15, 16). Semilunar cells are a distinct pop-
ulation found in layer IIa, which also receive olfactory bulb inputs,
and are similar to pyramidal cells but do not have basal dendrites
and show a distinct firing pattern (15, 17).

The interneurons of the piriform cortex are mostly inhibitory
GABAergic cells. They are found across all layers and multiple
classes can be identified on the basis of unique electrophysiologi-
cal and morphological properties (18, 19). They variously provide
both feed-forward and feedback inhibition onto the pyramidal
cells (20–23), which allows the pyramidal cells to produce tempo-
rally sparse but accurate responses to trains of olfactory bulb input.

The endopiriform nucleus is a separate population of neurons
that lies deep to the piriform cortex (24), being found along its
full rostrocaudal extent. These multipolar cells project widely to
piriform cortex, orbitofrontal, and thalamic regions (25). In rats,
the endopiriform nucleus provides a layer of integration between
olfactory and gustatory processing (26). The endopiriform nucleus
is also found in primates (5). In human beings, it corresponds to
the parts of the ventral claustrum that lie adjacent to the piriform
cortex and amygdala (27), which have been labeled “prepiriform
claustrum” and “periamygdalar claustrum,” respectively (7). These
areas should not be confused with the dorsal (or insular) part of
the claustrum (28), which has a different embryological origin and
different patterns of connectivity (29).

FIGURE 1 | Anatomical location of the piriform cortex. Nissl stained
coronal brain slice at the level of the anterior commissure of a 65-year-old
woman, from the BigBrain dataset (9). Labels were placed with

reference to Mai et al. (7): ac, anterior commissure; PirF, frontal piriform
cortex; PirT, temporal piriform cortex; Cl, claustrum; Unc, uncus; Ent,
entorhinal cortex.
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FIGURE 2 |The “piriform axis”. T1-weighted MPRAGE image of a
37-year-old man, displayed in a (A) para-sagittal and (B) oblique-axial
orientation, approximately +20° relative to the anterior
commissure-posterior commissure axis. This orientation allows the
relationship between the piriform cortex (Pir), amygdala (Am), and
hippocampus (Hip) to be seen. The arrow indicates the position of the
middle cerebral artery within the endorhinal sulcus.

There are several striking similarities between the structure
of piriform cortex and that of the hippocampus (8). As pale-
ocortex, both have a phylogenetically conserved structure with
three layers, pyramidal neurons with similar morphology, a pre-
dominantly horizontal arrangement of fiber projections, and the
presence of GABAergic interneurons. Analogous microcircuits in
both piriform cortex and hippocampus provide excitation, feed-
forward inhibition, and feedback inhibition (30). Their main
structural difference is that the piriform does not have a dis-
tinct zone that corresponds to the dentate gyrus, although the
distributed semilunar cells do have morphology that is similar to
granule cells.

STRUCTURAL CONNECTIVITY OF THE PIRIFORM CORTEX
The main input to the piriform cortex is from mitral cells, and to a
lesser extent tufted cells, of the olfactory bulb (15). Each glomeru-
lus in the olfactory bulb, which represents a specific olfactory
chemoreceptor type, projects to a broad region of the piriform cor-
tex to synapse with many pyramidal cells (31, 32). Each pyramidal
cell receives input from a random selection of glomeruli, allowing
cells to respond to complex features of odor mixtures (33).

Additional inputs to the piriform are from the anterior olfac-
tory nucleus and association fibers from all other olfactory cortical
regions, as well as lighter commissural projections from the con-
tralateral piriform cortex (34). Neuromodulatory inputs include
cholinergic modulation from the horizontal limb of the diagonal
band, serotonergic modulation from the raphe nuclei (activating
inhibitory GABAergic interneurons), noradrenergic input from
the locus coeruleus (35), and dopaminergic modulation from the
ventral tegmental area (3, 6).

Within the piriform cortex, pyramidal cells are strongly inter-
connected, by recurrent projections onto many other pyramidal
cells (1). A single pyramidal cell has an arbor that extends over

much of the piriform cortex, and in the rat, synapses with more
than 1000 other cells (36). This forms a large excitatory network
that requires strong local feedback inhibition to prevent runaway
activation (20). However, the benefit of this arrangement of dif-
fusely projecting inputs, combined with extensive intra-piriform
connectivity, is the ability to perform pattern matching in an archi-
tecture described as “content-addressable memory” (37). This
allows partially degraded patterns of input to produce consis-
tent reproducible responses that are spatially distributed across
the piriform cortex (38).

The outputs from piriform cortex pyramidal cells are wide-
spread to cortical and subcortical regions (15, 39). There are strong
limbic connections, especially to the entorhinal cortex and to the
amygdala (36, 40, 41), frontal lobe connections to multiple parts of
the orbitofrontal cortex, and projections to agranular insular cor-
tex (5). Important subcortical connections are to the mediodorsal
nucleus of the thalamus (42, 43), and to the hypothalamus (44).
There are also return projections from the piriform to the ipsilat-
eral olfactory bulb, which has been likened to the cortico-thalamic
circuit in other sensory modalities by some authors (45).

Based on these connections, several local recurrent circuits may
provide a substrate for seizure activity (3). Firstly, the projections
from piriform pyramidal cells to amygdala nuclei are returned
by projections from the basolateral amygdala to the endopiriform
nucleus. Secondly, projections to the subiculum link the piriform
with the hippocampus, a loop that is returned to the piriform via
the entorhinal cortex. Finally, piriform feedback to the olfactory
bulb could also form a reentrant circuit (46).

FUNCTIONAL ROLE OF THE PIRIFORM CORTEX WITHIN OLFACTORY
NETWORKS
The perception of odors involves activation of distributed cortical
and subcortical networks, with regional nodes that are variably
recruited depending on the nature and complexity of the olfac-
tory task (47). Activation of the piriform cortex is seen commonly
across all olfactory tasks, and it appears to be the key region for
representation of the “olfactory object” (48). However, the piri-
form also has an important role in discrimination of odors (49),
in olfactory working memory (50), and acts as an information
distributing node to other brain regions (51).

Within piriform cortex, odors are represented as spatially dis-
tributed ensembles (52, 53). This activity is not static over time,
and shows variability with the phase of the respiratory cycle (54),
and especially with sniffing (55). The anterior piriform cortex
encodes for molecular features of the odorant, whereas the pos-
terior piriform encodes for the quality of the odor (14). There is
rapid habituation of the piriform response to a sustained odor
within seconds (56), which is a property that may be the basis
for figure-ground segmentation, that is, to allow a novel odor to
stand out in a complex olfactory environment (48). Piriform acti-
vation can also occur in the absence of an odorant, for example, by
imagining a smell (57), or on viewing a picture or word that has a
strong olfactory association (58, 59), which is consistent with the
behavior of primary cortical regions for other sensory modalities.

Larger scale network interactions of the piriform cortex can
be conceptualized as including an orbitofrontal-thalamic circuit, a
limbic stream, and a fronto-temporal cortical stream. Additional
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cortical regions including the anterior insula are important for
integration of olfaction into taste and flavor (60).

The orbitofrontal cortex is the principal higher-order target for
piriform cortex, both directly and indirectly via the thalamus. The
olfactory functions of orbitofrontal cortex include involvement
in encoding for odor identity and valence, predicting anticipated
olfactory stimuli (61), multisensory integration of olfactory infor-
mation, assessment of reward and value signals, and a role in
emotion (62). The mediodorsal nucleus of the thalamus provides
an indirect pathway between piriform cortex and the orbitofrontal
cortex, and is therefore well placed to provide assessment of predic-
tion error (63), or to control olfactory attention (64). Furthermore,
the connectivity between these three regions is modulated during
olfactory learning (65), and by olfactory attention (66).

Limbic processing of olfactory stimuli plays an important role
in memory, emotion and social behavior. Indeed the spontaneous
recall of a vivid memory or emotion on smelling a particular odor
is a common human experience (67). Entorhinal cortex and hip-
pocampal activation occurs during odor identification and mem-
ory tasks, reflecting the involvement of autobiographical memory
systems (68). Exposure to odors of varying degrees of pleasant-
ness produces amygdala activation that reflects the valence (69)
and also the intensity and overall emotional value of an odor (70).

The semantic network, which involves the dominant inferior
frontal gyrus and its downstream influence on the fusiform gyrus
and posterior temporal regions, is important for naming odors and
for olfactory working memory when odors are nameable (50, 71).
The temporal pole may be the critical area for interaction between
olfactory and semantic networks based on an apparent disconnec-
tion syndrome in people with atrophy of this region (72).

PIRIFORM CORTEX IS THE MOST SUSCEPTIBLE REGION TO
EPILEPTOGENIC STIMULATION
PIRIFORM CORTEX SENSITIVITY TO CHEMICAL STIMULATION
A unique property of the piriform cortex is its sensitivity for induc-
ing epileptic seizures in experimental animals. In 1985, Piredda
and Gale identified a site in the forebrain of the rat, which
is exquisitely responsive to pro-convulsant chemical stimulation
(73), naming it the “area tempestas” (74). Injections into this
region produced bilateral clonic seizures, at much lower concen-
trations than are required when applied to other brain regions.
Picomolar amounts of bicuculline (a GABA antagonist), carba-
chol (a cholinergic agonist), kainic acid (an excitatory amino acid),
and micromolar concentrations of glutamate all demonstrated
this effect. Preventing glutamatergic excitation via either AMPA
or NMDA receptors in the area tempestas can prevent seizures,
indicating that both receptor types are needed for this regions to
become epileptogenic (75, 76).

The location of the area tempestas is deep to the anterior
piriform cortex, overlapping cellular layer III and the adjacent
endopiriform nucleus (25, 73). Some studies have shown wider
sensitivity to bicuculline across both anterior and posterior pir-
iform cortex, however, and some variability in the expression of
seizures between different rat strains (77).

The area tempestas cannot be ethically demonstrated in human
beings, as it is defined by an epileptic response to chemical stim-
ulation, and is not a circumscribed anatomical structure. This

study has been performed in non-human primates, however (78),
using bicuculline injections into the frontal piriform cortex. A
highly focal 2 mm region of chemosensitivity was identified. The
resulting seizures consisted of automatisms and myoclonus of the
mouth and face, contralateral arm clonus, salivation, behavioral
arrest, and unresponsiveness, with retained postural control (79),
consistent with the features of focal dycognitive and focal motor
seizures in human beings.

The brain regions most affected by seizure activity triggered
from area tempestas, are the posterior piriform cortex and ipsilat-
eral entorhinal cortex (80), the olfactory bulbs, perirhinal cortex,
amygdala, and the mediodorsal thalamus (81). This has been
demonstrated by ictal uptake of radiolabeled glucose, and also
by the ictal expression of c-fos and other immediate-early genes
in vivo (82–84). Examination of in vitro slice preparations shows
that discharge propagation from the endopiriform nucleus up
to the superficial layers of piriform cortex is via longitudinally
orientated rostrocaudal association fibers (85).

The posterior piriform cortex,perirhinal cortex,and mediodor-
sal thalamus are important regions for seizure propagation from
the area tempestas. Blockade of glutamatergic transmission at
these locations prevents such seizures occurring (76, 80, 81). This
is mediated primarily by the action of AMPA receptors, as selective
blockade of NMDA receptors did not prevent seizures occurring.

PIRIFORM SUSCEPTIBILITY TO ELECTRICAL KINDLING
Seizures may also be produced from the piriform cortex by
repeated electrical stimulation (3, 86). Comparison to other
nearby structures shows that perirhinal cortex and dorsal claus-
trum also kindle as rapidly, or even faster (87). The amygdala,
entorhinal cortex, and hippocampus are less sensitive (88).

The location within piriform cortex for the most rapid kin-
dling in rodents has been reported as the central part (layer III
of the rostral part of the posterior piriform cortex) (89) or in the
endopiriform nucleus (90). Deep layers of the posterior piriform
cortex also show the lowest afterdischarge thresholds. In human
beings, these areas correspond to the frontal piriform close to the
temporal stem, or to the prepiriform claustrum. Several authors
have emphasized that the region corresponding to area tempes-
tas (in the deep anterior piriform cortex) does not respond to
electrical kindling as quickly (91, 92).

Seizures produced during the course of piriform kindling
follow the same progression of motor features as kindling in
other limbic regions (93). During piriform-kindled status epilep-
ticus (type 2), where the animals show intermittent freezing and
exploratory behaviors, the affected regions are the olfactory cor-
tex and amygdala. When facial and limb clonus was also present
(type 3), the hippocampus, prefrontal cortex, and insular cortex
were also seen to be involved (94). Piriform kindling produces
chronic network-wide changes, for example, altered potentiation
at the entorhinal cortex (95), which may relate to emergence of
spontaneous seizure after kindling is completed.

Therefore, the piriform cortex is highly susceptible to the
induction of seizures by both chemical and electrical means,
although the exact positioning of the intervention within the pir-
iform appears to be less important, than whether an extended
olfactory-limbic network can be recruited.
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HUMAN SEIZURES WITH OLFACTORY AURAS TELL US
ABOUT EPILEPTIC INVOLVEMENT OF THE OLFACTORY
NETWORK
Focal seizures that begin with an olfactory sensation as their ear-
liest feature can be inferred to arise within the olfactory network.
In human beings, this is a relatively uncommon type of seizure,
but examining these events in detail can tells us about the pat-
terns seizure spread from the piriform cortex. The most common
olfactory ictal phenomenon is a hallucination, where the percep-
tion of an odor is unrelated to any environmental stimulus. There
can also be olfactory illusions, where odors in the environment
are misperceived (96, 97), or vaguer episodes with the quality of a
reminiscence (98).

The earliest influential descriptions of seizures with an olfac-
tory aura were by Hughlings Jackson in 1889. He described a
woman who developed stereotyped episodes of a horrible smell
of “dirty burning stuff” associated with a complicated visual
hallucination and a feeling of suffocation. A sarcoma of the
“temporo-sphenoidal lobe” was found at postmortem. Review of
their diagrams shows invasion of the piriform cortex, temporal
pole, amygdala, adjacent white matter, and compression of the
lenticular nucleus (99). Subsequently the name “uncinate group
of fits” was given to seizures beginning with a crude sensation of
smell or taste, and variably associated with oral automatisms and
the “dreamy state” (100, 101). Importantly, this label was intended
to convey that these seizures involved a broad region of which
the uncus is a part, and should not be interpreted as a precise
anatomical localization.

CLINICAL CHARACTERISTICS OF SEIZURES WITH AN OLFACTORY AURA
Estimates of the prevalence of olfactory epileptic auras are quite
variable due to patient selection criteria and how auras were ascer-
tained. Considering all people with focal epilepsy, rates between
0.9 and 8.1% are reported (102–107). If restricted to epilepsy aris-
ing from the temporal lobe, with or without selection for epilepsy
surgery, olfactory auras are present in 0.6–16% (108–113). Out of
people who experience an epileptic aura of any kind, between 19
and 30% have an olfactory aura (114–116).

The character of olfactory hallucinations is usually unpleasant,
and may be described as rotten, fetid, sulfurous, or burned (110,
117). This may correspond to epileptic activity causing particu-
larly intense activation of the piriform cortex and amygdala, as
occurs with non-pathological smelling of unpleasant odors in the
environment (57). Less commonly the olfactory hallucination is
neutral and only rarely pleasant (102, 106). Some descriptions have
emphasized the “crude” nature of the experience, without hav-
ing the full experiential quality of smelling an actual odor (100).
Indeed many patients find the hallucination “indescribable,” or
refer to it as “like” the aroma of something else (98), suggesting
that the engagement of the olfactory network is not the full physio-
logical pattern of olfactory perception. The olfactory hallucination
is usually pervasive, but in rare cases is experienced as coming from
one nostril (98), or from one side of the body (118), which may
be due to lateralized involvement of primary olfactory cortex or
activation of the superior temporal gyrus (12).

A particular “rhinostomal” sensation of tickling or pressure in
the nose or pharynx often accompanies olfactory hallucinations

(98). This may be analogous to the trigeminal nerve stimulation
that is physiologically produced by many odorants. A similar sen-
sation of unilateral itching inside the nose has also been triggered
by electrical stimulation near the olfactory bulb (119).

Olfactory auras may be accompanied by other aura symptoms,
pointing to epileptic activation of multiple sensory or cognitive
networks. The association of olfactory auras with ictal emotion
(120) suggests epileptic co-involvement of olfactory and limbic
networks. Olfactory auras are often accompanied by gustatory or
psychic auras when the underlying epileptogenic lesion is a tumor
(102, 105, 106). However, patients with mesial temporal sclero-
sis tended to have epigastic sensations and autonomic phenomena
accompanying the olfactory aura (110), indicating different spread
patterns depending on etiology.

When there are multiple aura types during the same seizure, the
order of progression indicates the direction of epileptic spread. In
a small case series, one patient with a neocortical temporal lesion
had an olfactory aura followed by a sensory aura. Another similar
patient had a concurrent olfactory and psychic aura (116). These
examples may represent epileptic spread from the olfactory net-
work into cortical networks and limbic networks respectively. Two
further patients with mesial temporal sclerosis were described in
this cohort. The first had a concurrent olfactory-abdominal aura,
and the second had a progression of autonomic, sensory, and psy-
chic symptoms before the olfactory aura emerged. This latter case
is an example where the seizure likely began outside the olfac-
tory network, but it became engaged as the seizure progressed. In
patients with mesial temporal sclerosis, imaging data has shown
that patients with an olfactory aura are more likely to have an
accompanying abnormality of the amygdala (121). This suggests
that the amygdala may be a possible gateway for seizure spread
from mesial temporal into olfactory networks.

The etiology of seizures with an olfactory aura is commonly
found to be a tumor (102, 108, 113) or mesial temporal sclerosis
(109, 110, 114), with debate over which of these is more common.
Other cases have been caused by intracerebral hemorrhage (122),
middle cerebral artery aneurysm (118), arteriovenous malforma-
tion, head injury (103, 123), and previous encephalitis (124). In
rare cases, there is no obvious cause and no structural abnor-
mality is found on MRI (110). It is the anatomical location of
these lesions, rather than the nature of the pathology, that is most
relevant to the occurrence of olfactory auras, although the close
relationship of the middle cerebral artery to the piriform cortex at
the endorhinal sulcus should be noted.

THE POST-ICTAL NOSE-WIPE COULD BE EXPLAINED BY AN ICTAL
RHINOSTOMAL SENSATION
A movement of the hand to wipe or rub the nose is often observed
in the immediate post-ictal phase following focal seizures. It is
most common in seizures from the mesial temporal lobe, occur-
ring in more than half of mesial temporal lobe epilepsy patients
having video-EEG prior to surgery (125, 126), but it may also
be seen in frontal lobe epilepsy. It may be accompanied by post-
ictal coughing (127), and does not occur if the seizure evolves
to a bilateral convulsion (119). Typically, the hand ipsilateral
to the seizure focus is used, because of contralateral neglect or
weakness (125).
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We hypothesize that the ictal nose-wipe is a voluntary action
performed in response to the ictal rhinostomal sensation, as a
result of epileptic activation of olfactory regions. Geyer et al. (119)
have previously suggested that olfactory hallucinations and post-
ictal nose-rubbing are linked by epileptic involvement arising from
the uncus. However, many patients with post-ictal nose-wiping do
not have awareness of any olfactory aura (128). Hirsch et al. (125)
proposed that the nose-wipe is caused by increased nasal secre-
tions from ictal activation of autonomic pathways, particularly the
amygdala (129). Intracranial EEG recordings from the amygdala
can show early ictal involvement in seizures, which include nose-
wiping, but this is neither sufficient nor necessary for nose-wiping
to occur (130).

LESION “LOCALIZATION” IN SEIZURES WITH AN OLFACTORY
HALLUCINATION
The anatomical location of epileptogenic lesions indicates how
seizure discharges gain access to the olfactory network. It should
not be assumed however that the lesion equates to the location
where the aura is produced, as emergence of an olfactory percept
likely requires coordinated activation of multiple olfactory brain
regions (131, 132).

Olfactory auras are not lateralizing, and are associated with
similar rates of left and right-sided lesions (107, 110, 111). The
most common location is in the anteromesial temporal lobe, with
some tumors extending into the frontal lobe (102, 108). Other
series have found only temporal lobe lesions, both with and with-
out involvement of mesial temporal structures (107, 114). In a few
cases, lesions have been isolated to the amygdala (102, 110, 123).

The case most strongly indicating primary involvement of the
piriform cortex is provided by Mizobuchi et al. (118). The cause
of seizures was a 1 cm aneurysm of the middle cerebral artery,
“between the tip of the right temporal lobe and the orbitofrontal
gyrus.” MRI clearly shows compression of both frontal and tem-
poral piriform cortex, although the authors do not label it as such.
The olfactory aura was followed by a phase of retained aware-
ness and speech, but impaired memory, suggesting limited seizure
spread to either autobiographical (limbic) or perhaps semantic
(cortical) memory networks.

Whether purely frontal lobe lesions can cause seizures with an
olfactory hallucination is less clear, even though this is often said to
be the case (106, 133). In some series of patients with frontal lobe
epilepsy, confirmed by curative frontal lobe resection, there have
been no instances of olfactory auras (134). Possible cases include
one out of a series of 28 patients with extra-temporal focal epilepsy
studied by intracranial stereo-EEG,although this patient was cured
by temporal lobe resection (135). Another study described two
patients under the heading of an olfactory-gustatory-fear aura,
who had frontal lobe lesions at the supplementary motor area and
lateral premotor cortex, respectively (105).

The only unequivocal report of a frontal lobe lesion causing
an epileptic olfactory aura was due to an abscess at the frontal
pole (136). Several pathways to involvement of the olfactory net-
work are possible here; seizure activity could have spread from
the lesion into adjacent orbitofrontal cortex, activity could have
propagated via the uncinate fasciculus into the temporal lobe, or
there may have been local inflammatory or epileptic irritation of
the olfactory tract. Of these sites, an olfactory hallucination has

been produced most consistently by electrical stimulation of the
olfactory tract (137).

ICTAL EEG IN SEIZURES WITH OLFACTORY AURAS
Scalp EEG during seizures with an olfactory aura has shown epilep-
tiform discharges at the ipsilateral sphenoidal electrode, consistent
with seizure involvement of mesial temporal structures (102, 120,
138). This confirms that these olfactory hallucinations are epilep-
tic in origin, and are not due to mere inter-ictal dysfunction of the
olfactory network.

Intracranial EEG recording has much greater sensitivity for
detecting focal epileptic activity, but sparse spatial sampling often
limits the precision of localization. Electrodes have typically been
placed into mesial temporal structures, over the lateral and inferior
temporal lobes, and into frontal regions, with the piriform cortex
seldom being an explicit target for recording.

The following five reports demonstrate intracranial recordings
of epileptic activity in the temporal and/or frontal lobe associ-
ated with an olfactory aura, although it must be noted that no
cases had an electrode directly in piriform cortex. (i) Epileptic
activity at the amygdala and hippocampus was seen in a patient
who had a temporo-basal cyst and habitually experienced an
epigastric-olfactory-gustatory aura (139). (ii) Discharges from the
hippocampus were seen in two patients who had mesial tempo-
ral sclerosis, during an olfactory aura (140). (iii) A patient with
a more elaborate aura, consisting of initial déjà vu then an olfac-
tory hallucination, detachment, fear, and auditory illusions, had
ictal rhythms that were widespread across the right hippocam-
pus, amygdala, anterior cingulate, middle, and superior temporal
gyri (141). (iv) A patient who experienced seizures with a sense
of foreboding, dissociation, and a “sickening” smell, showed initial
activity in superior temporal electrodes, with consistent spread
of the discharge into orbital areas (135). (v) A further three
patients had simultaneous epileptic activity in the temporal and
orbitofrontal regions during the olfactory aura, however, no aura
occurred in seizures when only the frontal lobe was involved, or
when temporal lobe involvement was late (142).

Therefore, the seizures that produce olfactory hallucinations
typically involve relatively widespread activity in the orbitofrontal
and anterior temporal lobe. Although recordings directly from
piriform cortex were not obtained in these cases, we infer its
involvement from its location at the center of the regions that
were sampled, and its core role in olfactory perception.

INTRACRANIAL STIMULATION DEMONSTRATES SITES THAT MAY
PRODUCE AN OLFACTORY HALLUCINATION
Direct electrical stimulation of the human brain, either during
surgery or via long-term implanted electrodes, has identified loca-
tions that may trigger an olfactory sensation similar to the epileptic
aura. Findings are somewhat variable, and several large studies of
temporal lobe stimulations have induced no olfactory sensations
at all (143).

The earliest reports are of a crude sense of smell produced by
stimulation of the uncus, or of the olfactory bulb (144). Only
a few authors have applied stimulation near the piriform (145).
Overall, stimulation of the amygdala is the location that most
often produces an olfactory percept, although reproducibility in
individual patients is not consistent (145–148).
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In one patient with epilepsy, amygdala stimulation produced an
afterdischarge that propagated to the hippocampus, at the same
time accompanied by a “foul rotten odor” typical of their usual
seizures. Transection adjacent to the amygdala prevented propa-
gation to the hippocampus, but the olfactory aura on amygdala
stimulation still occurred. The patient became seizure free after
resection of the amygdala and overlying anterior cortex, including
temporal piriform cortex (123). This suggests that either amyg-
dala activity itself or spread into the adjacent piriform cortex is
the relevant pathway, and that amygdala-to-hippocampus spread
is less important.

Stimulation over the orbitofrontal cortex does not elicit an
olfactory hallucination, unless the electrodes are in a position
to stimulate the olfactory bulb or tract (137). The induced odor
is always unpleasant. This could be because a large number of
fibers are stimulated through the use of macro-electrodes, and
the subsequent activation of olfactory cortex, which is relatively
intense.

SEIZURES MAY INVOLVE THE PIRIFORM CORTEX WITHOUT AN
OLFACTORY HALLUCINATION
An intriguing possibility is that some human seizures may arise
from the piriform cortex, without being accompanied by an olfac-
tory aura. This has been demonstrated in a single case of reading
epilepsy, that was intensively investigated using combined imag-
ing techniques and advanced statistical modeling (149). Clinically,

covert reading induced peri-oral myoclonus, however, no accom-
panying olfactory hallucination was described. Both magnetoen-
cephalography and EEG-fMRI demonstrated seizure-related activ-
ity at the dominant left premotor cortex, with fMRI showing a
more extensive network of activation involving left piriform cor-
tex, left thalamus, and right inferior frontal gyrus, consistent with
findings from a larger group of people with reading epilepsy (150).
Modeling of fMRI timecourses showed the earliest BOLD response
was in the left piriform cortex. An effective connectivity analysis
identified a model where piriform cortex activity drives activation
of the premotor cortex and then onto other regions. While this
case report suggests a possible role of piriform cortex in driving
seizures into premotor regions, whether this is generally the case
in patients with reading epilepsy remains to be confirmed.

PIRIFORM CORTEX IS A NODE FOR SECONDARY SPREAD OF
INTER-ICTAL DISCHARGES IN HUMAN BEINGS
Beyond its role in olfactory auras, the piriform cortex may be
one of the common pathways for propagation of epileptic dis-
charges in focal epilepsy. The first study to suggest this used com-
bined encephalography and functional MRI (EEG-fMRI) (151).
They studied a diverse group of 19 patients, who had focal
epilepsy arising from all lobes. After aligning the epileptic side
between patients, a second-level random effects analysis was per-
formed, and showed significant clusters with peak BOLD response
overlying the ipsilateral piriform cortex (Figure 3A). Regions of

FIGURE 3 | Comparison of piriform cortex activation in EEG-fMRI
studies of focal epilepsy. (A) Group EEG-fMRI analysis for a mixed
cohort of focal epilepsy at threshold p < 0.001 (n = 19). (B) Group
EEG-fMRI random effects analysis for a mixed epilepsy cohort (n = 27)
showing p-values <0.05 FWE corrected. Reproduced from Flanagan

et al. (153) with permission from Elsevier. (C) Group EEG-fMRI analysis
of a purely TLE cohort (n = 32), with hemodynamic response function
peaking at 5 s (p < 0.05 cluster corrected). Reproduced from Fahoum
et al. (154) with permission from Wiley Periodicals, Inc. ©2012
International League against Epilepsy.
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activation also extended over the ipsilateral dorsal claustrum and
anterior cingulate. The interpretation is that these areas are acti-
vated by inter-ictal discharges in many individuals, regardless of
the site where the discharge begins. A recent paper has commented
that the peak coordinates in this study favor activation of the dorsal
claustrum (152), although the shape of the activation clusters do
not entirely follow this structure, and activation specifically within
the thin sheet of the claustrum would be difficult to resolve at this
fMRI resolution.

Replication of this analysis using functional MRI acquired
at 3 T, in an independent cohort of 27 patients with heteroge-
neous epileptic foci, again identified a common area of temporal
lobe activation, in the region of the ipsilateral piriform cortex
(Figure 3B) (153).

A further EEG-fMRI study analyzed subjects with focal epilepsy,
this time grouped by lobe (154, 155). In total, 32 patients had
temporal lobe epilepsy, 14 frontal lobe epilepsy, and 20 poste-
rior quadrant epilepsy. The activations detected by this approach
were more extensive than in previous studies, suggesting greater
homogeneity of epileptic networks within these selected groups.
The temporal lobe epilepsy cohort showed an ipsilateral network
of activation over the insula, claustrum, temporal piriform cor-
tex, and amygdala (Figure 3C), as well as anterior hippocampus,
mid-cingulate and cerebellum. The frontal lobe epilepsy group
did not have significant activation of piriform cortex, although
other sites of activation were seen in the mid-cingulate, ipsilat-
eral frontal operculum, thalamus, and cerebellum. The posterior
quadrant epilepsy group had no significant regions of common
activation (154).

Taken together, these results indicate that inter-ictal discharges
arising from the temporal lobe, and perhaps those from the frontal
lobe, can produce common activation within the piriform cor-
tex, along with other ipsilateral brain regions. This occurs in the
absence of positive olfactory symptoms. Whether discharges from
parietal and occipital lobe foci also engage the piriform cortex in
this way requires further clarification.

PIRIFORM CORTEX IS SUSCEPTIBLE TO SEIZURE-INDUCED
INJURY AND FACILITATES PROGRESSION OF FOCAL
EPILEPTOGENESIS
STATUS EPILEPTICUS INJURES THE HUMAN PIRIFORM CORTEX
A characteristic property of the piriform cortex is its tendency to
sustain neuronal injury as a consequence of repeated seizures.
This is demonstrated by three unusual human cases of sta-
tus epilepticus, in people who had no prior history of epilepsy
(156). The causes were neuroleptic malignant syndrome, carci-
nomatous meningitis, and unknown, respectively. The duration
of status epilepticus on EEG was between 9 h and 3 days. The
three individuals died between 11 and 27 days after status epilep-
ticus. At postmortem, neuronal loss was most prominent in the
piriform cortex, hippocampal subfields, and amygdala, although
with some asymmetry and variability between individuals. Milder
widespread changes were seen in the deep layers of the neocor-
tex, the Purkinje cell layer of the cerebellum, and the dorsomedial
nucleus of the thalamus. Glutamate-mediated excitotoxicity has
been suggested as the mechanism of neuronal necrosis, by analogy
to animal studies of status epilepticus.

Domoic acid, a glutamate analog, has also been seen to cause
neuronal toxicity in the human piriform cortex following status
epilepticus. The most prominent injury is to the hippocampus,
which is likely related to kainate receptor excitotoxicity (157), but
more widespread injury also occurs, affecting the piriform cortex,
olfactory tubercle, amygdala, mediodorsal thalamus, and nucleus
accumbens (158). The same pattern is seen with domoic acid in
experimental animals (159), although one study in rats has sug-
gested that the most significant early changes are in the olfactory
bulb and endopiriform nucleus (160). The mechanism of piriform
cortex injury in these cases may be either the direct effect of the
toxin, or the kindling effect of repeated seizures.

INDUCED STATUS EPILEPTICUS INJURES THE PIRIFORM CORTEX IN
EXPERIMENTAL ANIMALS
Status epilepticus induced by pilocarpine or kainic acid also pro-
duces early injury to the piriform cortex, even though greater
attention is often given to the hippocampus in these studies.

Rodents treated with pilocarpine, a potent muscarinic agonist,
are often presented as a model of human chronic temporal lobe
epilepsy (161, 162). Following systemic administration of pilo-
carpine, there is an initial phase of limbic status epilepticus, then
a latent period of several weeks, before spontaneous recurrent
seizures develop. Here, we discuss the initial phase only. Although
many brain regions are affected, serial MRI shows the earliest
changes in the piriform and entorhinal cortex, as early as 6 h after
the status epilepticus (163, 164), reflecting cellular edema, and
neuronal loss in these regions (165). Cellular hyperactivity, imaged
by c-fos expression, is first seen (at 30 min) at the piriform cortex,
olfactory tubercle, thalamus, caudate, and lateral habenula, with
later changes (at 60–90 min) in hippocampus, amygdala, and basal
ganglia (166). Early neuronal loss and gliosis occur in the piriform
cortex, hippocampus, amydala, thalamus, and substantia nigra
(167). More specifically within the piriform cortex and endopiri-
form nucleus, it is the posterior two-thirds that are affected, which
reflects the pattern of arborization of efferents from the endopiri-
form nucleus (168). It is primarily the pyramidal cells that are lost,
but immunocytochemistry also shows loss of distinct populations
of piriform GABAergic interneurons, some of which have analo-
gous labeling to hippocampal basket cells (169). Involvement of
the piriform cortex may be explained by cholinergic innervation
from the diagnonal band of Broca (170), or the tendency of piri-
form cortex to produce burst firing with muscarinic antagonism
(171). Subsequent neuronal loss may be caused by excitotoxic glu-
tamate release and neuronal calcium influx during seizures (172)
or by concurrent ischemic mechanisms (173).

Kainic acid is an analog of glutamate, which like pilocarpine,
produces limbic status epilepticus after systemic administration.
This results in damage to the hippocampus, amygdala, piriform
cortex, entorhinal cortex, thalamus, and septal regions, although
with some differences in timing relative to the pilocarpine model
(174). The regions showing greatest oxidative stress are the piri-
form cortex, hippocampus, and cerebellum (175), and the greatest
subsequent volume loss is again in the posterior olfactory cor-
tex and amygdala, with loss of approximately one-third loss of
neurons in these areas (176). GABAergic neurons of the piriform
cortex also show a unique property in this situation, of increasing
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mRNA expression for glutamate decarboxylase (GAD), perhaps
in an attempt to control excitotoxic injury in the face of ongoing
neuronal loss (177). The mechanisms of piriform cortex injury
here are either the direct excitotoxic effect of the kainic acid, or via
release of glutamate during the seizure, and although disentan-
gling these possibilities is difficult, the ability of specific blockade
of glutamatergic NMDA receptors to prevent neuronal loss in this
model favors the latter (178).

Lesion studies of the piriform cortex further indicate that
piriform cortex involvement may be a critical for the develop-
ment of chemically induced seizures. In the administration of
soman, a powerful inhibitor of acetylcholinesterase that causes
seizures via stimulation of muscarinic and nicotinic receptors,
pre-lesioning of posterior piriform cortex or perirhinal cortex sig-
nificantly increased the latency to seizure onset. This prevention
did not occur with ablation of the amygdala, entorhinal cortex, or
hippocampus (179).

AMYGDALA KINDLING CAUSES CHANGES WITHIN PIRIFORM CORTEX
Neuronal injury at the piriform cortex, and subsequent change
in its function, is seen following electrical kindling at sites such
as the amygdala or hippocampus (3). During amygdala kindling,
afterdischarges are induced from the piriform from the very first
stimulation, indicating the high connectivity from the amygdala
and propensity of piriform cortex to sustain epileptic discharges
(180). During this process, neuronal loss not only occurs at the
primary kindling site, but is also at the central piriform cortex,
particularly with loss of GABAergic interneurons (181, 182). Once
amygdala kindling is completed, there is increased background fir-
ing of neurons in the upper layers of the central piriform. These
are most likely inhibitory interneurons, which have pathologi-
cally reduced sensitivity to glutamate, and are compensating for
loss of feed-forward inhibition (183, 184). There is also increased
excitability at the piriform cortex, which is demonstrated by a
significant drop in its afterdischarge threshold (185).

Many other changes occur in the piriform cortex following
amygdala kindling, which may underlie this increased excitabil-
ity. These include expression of markers of synaptogenesis on
excitatory neurons (186, 187), altered regulation of glutamate
transporters (188), abnormal transcription of AMPA and GABA
receptor subunits (189, 190), altered expression of voltage gated
potassium channels on multipolar inhibitory interneurons (191),
alteration of chloride transport that further exacerbates the fail-
ure of GABAergic inhibition (192) and proliferation of astrocytes
(193). The most recent observation has been the breakdown of per-
ineuronal nets around specific interneurons, leading to increased
sites of GABA release, and the pathological rewiring of local
microcircuits (194).

PIRIFORM CORTEX FACILITATES EPILEPTOGENESIS IN THE AMYGDALA
KINDLING MODEL
As the epileptic state develops, the piriform cortex plays a key
role in the facilitation and distribution of kindled afterdischarges.
Early in the process, uptake of radiolabeled deoxyglucose during
seizures shows involvement only of the amygdala and the regions
it is directly connected to, including the piriform. After kindling
is completed, much more widespread activation is seen during

seizures, affecting substantia nigra, thalamic nuclei, basal ganglia,
and bilateral neocortex (3, 195). Similarly using c-fos expression as
a marker of cellular activity, a limited expression of seizures is seen
in the early phases, confined to either a unilateral amygdala-insula-
temporal network, or a bilateral amygdala-hippocampal network.
Following kindling, this becomes much more extensive involv-
ing extensive amygdala, olfactory, hippocampal, and neocortical
regions bilaterally (196). Furthermore, during amygdala kindling,
spontaneous discharges arise most frequently from the piriform
cortex (197). Together this suggests that the piriform is involved in
converting the kindled seizure discharge from one that is confined
to the stimulation site and immediate projections, into an event
having more widespread distribution (3).

The role of the piriform cortex in facilitating epileptogenesis
can be further explored by blocking it prior to the kindling process.
This approach has given variable results depending on the site and
method of piriform inhibition. Permanent lesions that alter the
progression of amygdala or hippocampal kindling have included
the destruction of the central piriform cortex with ibotenate (198,
199), electrical ablation of the ipsilateral piriform, and knife-cut
disconnection of the anterior piriform (200). These increased the
number of stimulations to achieve kindling, prolonging either
during the early or later phases, and increased the post-kindling
seizure threshold. Other approaches such as injecting the anterior
piriform, or bilateral radio-ablation of the area tempestas did not
alter kindling (91), re-enforcing that it is the posterior piriform,
which is the critical site for discharge propagation.

Chemical modulation of the piriform cortex also can alter the
course of amygdala kindling. Microinjection of a GABAA receptor
agonist, or an NMDA receptor antagonist reduces the duration of
kindled afterdischarges (92, 201). Microinjection of vigabatrin, an
antiepileptic medication, which elevates local GABA levels, inhib-
ited seizures in previously kindled animals, showing greatest effect
when applied to the central piriform cortex (201, 202). Finally,
local application of adenosine to the piriform cortex (an endoge-
nous neurotransmitter that may have an antiepileptic effect by
decreasing glutamate release), inhibited kindling from both the
amygdala and the hippocampus (203, 204). Kindling of the amyg-
dala can also be blocked by lesions at the dorsal claustrum (205),
demonstrating that the piriform cortex is not the only critical
structure in limbic epileptogenesis.

In summary, the available evidence shows that either chemi-
cal or repeated electrical stimulation applied to limbic sites can
produce complex changes in the piriform cortex, which ultimately
results in increased piriform cortex excitability. Therefore, the piri-
form cortex can provide a pathway for focal epileptogenesis, via the
facilitation and widespread distribution of epileptic discharges.

As a corollary, we should consider whether the piriform cor-
tex has any influence on the progression to intractable epilepsy.
Defined in clinical populations as ongoing seizures despite ade-
quate trials of two appropriate and tolerated medications (206),
medication resistance in epilepsy is likely to be a multifactorial
process (207), and is often related to the intrinsic severity of the
epilepsy syndrome (208). The epilepsy most strongly associated
with piriform cortex involvement is temporal lobe epilepsy (as
discussed in Sections “Human Seizures with Olfactory Auras Tell
us About Epileptic Involvement of the Olfactory Network” and
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“The Impact of Epilepsy on Olfaction and its Imaging Correlates
in Human Beings”), which has high rates of medical intractability
that may either be present from the onset, or develop over time
(209). Hippocampal atrophy is a particular marker for progres-
sion to intractability in this group, and an association between
hippocampal atrophy and piriform atrophy has been noted (10).
High initial seizure frequency and the occurrence of status epilep-
ticus are known to cause piriform cortex injury and are also risk
factors for intractability (210). A further mechanism of phar-
macoresistance is the expression of the multi-drug transporter
P-glycoprotein, which can cause efflux of medications from epilep-
togenic sites (211). Marked P-glycoprotein expression has been
seen at both hippocampus and piriform cortex in phenobarbitone-
resistant rat models (212). However, there may be significant inter-
species variation for this mechanism, and recent in vivo human
imaging of P-glycoprotein did not detect significant changes at
the piriform cortex (213). Lastly, alterations in neural networks
due to axonal sprouting and synaptic reorganization may con-
tribute to pharmacoresistance (214). Therefore, the piriform cor-
tex has anatomical and functional characteristics that position it
to contribute to the phenomena associated with intractability.

THE IMPACT OF EPILEPSY ON OLFACTION AND ITS IMAGING
CORRELATES IN HUMAN BEINGS
OLFACTORY FUNCTION IS IMPAIRED BY FOCAL EPILEPSY
A common theme in focal epilepsy is that overlap of epilep-
tic regions with sensory networks produces dysfunction of that
modality (215). In patients with temporal lobe epilepsy, many
aspects of olfactory function are abnormal (115), which is most
likely caused by epileptic involvement of the olfactory network.

The threshold for detection of odors is normal for people with
temporal lobe epilepsy, on standard testing with n-butanol or
phenyl ethyl alcohol (124, 216–220). However, some studies have
found reduced sensitivity for odors by using broader panels of
odorants (115, 221). The occurrence of seizures may transiently
alter odor detection thresholds, with heightened olfactory sensi-
tivity during the seizure prodrome, and reduced sensitivity lasting
for hours or days in the post-ictal phase (115).

In contrast, odor discrimination, memory, and identifica-
tion/naming are all commonly impaired in temporal lobe epilepsy.
Odor discrimination relies on the piriform cortex, orbitofrontal
regions, and the hippocampus (222), and failure on this task
reflects dysfunction of these networks (219, 220, 223, 224),
although this deficit has not been confirmed on all studies (217).
Single-nostril presentation of odorants lateralizes the deficit to the
same side as the epileptic focus (220).

Memory recall of odors activates an extensive network includ-
ing olfactory cortex, semantic networks, and attention systems
(13). Impaired odor memory has been demonstrated with a variety
of protocols (216, 220). Some studies have detected abnormality
only in left sided (225), or in right-sided temporal lobe epilepsy
(226), probably related to the relative involvement of the autobi-
ographical memory network versus semantic networks on a given
task (227). Single-nostril presentation again shows an ipsilateral
deficit, being more pronounced in left sided epilepsy (223).

Identification of odors, for example by selecting from a list
of names, is also impaired (124, 217, 219). This deficit occurs

equally with left and right-sided temporal lobe epilepsy (216, 225)
or can have a right temporal lobe predominance (218). Correct
odor identification activates olfactory, limbic and semantic net-
works, plus other primary cortical areas (68), but may have more
pronounced involvement of the non-dominant hemisphere when
non-verbal identification is used (228, 229).

Olfactory function in patients with generalized or extra-
temporal focal epilepsy has rarely been tested. Impaired odor
identification was found in a mixed group mostly with general-
ized epilepsy (225). Another group with extra-temporal epilepsies
had normal odor detection, discrimination, and memory (220).
This may be surprising in light of the EEG-fMRI findings indicat-
ing common involvement of the piriform cortex in some extra-
temporal focal epilepsies, although more behavioral data is clearly
needed to address this discordance.

NEUROIMAGING OF PIRIFORM CORTEX SHOWS OLFACTORY
DYSFUNCTION IN FOCAL EPILEPSY
Multiple neuroimaging modalities have shown changes to piri-
form cortex in focal epilepsy, which parallel the dysfunction of
olfactory processing we have described above.

Volumetric MRI shows piriform cortex atrophy in temporal
lobe epilepsy. This was examined by manual tracing of the tem-
poral and periamygdaloid cortex, identifying reduced volume on
the same side as the epileptic focus (10). This effect is greater
with right-sided epilepsy. Piriform cortex atrophy is bilateral in
a subgroup of patients with left temporal lobe epilepsy. There
is a significant correlation between atrophy of piriform cortex
and atrophy of the hippocampus, amygdala, and entorhinal cor-
tex, indicating that the piriform changes are not isolated, but are
part of a distributed network effect. The olfactory bulb volume
is also reduced in temporal lobe epilepsy (230), which may be a
“top-down” effect driven by pathology within primary olfactory
cortex.

In frontal lobe epilepsy, voxel-based morphometry has sur-
prisingly shown increased volumes of the piriform cortex and
amygdala bilaterally compared to controls, and no regions of atro-
phy were found (231). The meaning of increased gray matter
volume in this context is uncertain.

Chemosensory evoked potentials (CSERPs) can tell us about
the relative timing of olfactory processing. In temporal lobe
epilepsy, evoked potentials are delayed when an odor is presented
to the side of the epileptic focus (232). This effect was most pro-
nounced in right temporal lobe epilepsy, reflecting the relative
importance of the right hemisphere in olfaction.

The functional activity of olfactory brain regions in epilepsy
has been investigated with positron emission tomography (PET)
using an [15O]-H2O tracer (233). People with temporal lobe
epilepsy failed to activate the ipsilateral piriform cortex, amygdala,
and anterior insula when smelling various odors. Furthermore,
when smelling familiar (nameable) odors patients with left mesial
temporal lobe epilepsy failed to activate left inferior frontal cor-
tex, which the authors suggest may be due to impairment of
connections between olfactory and semantic networks.

PET using a [11C]-flumazenil tracer has been used to probe
GABAA receptor expression. In a group of patients with focal
epilepsy from all lobes, flumazenil binding was inversely correlated
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with seizure frequency in the frontal piriform cortex (151). The
finding that people with more seizures have the weaker expression
of GABAA receptors, suggests that altered GABAergic inhibition
in the piriform cortex may be a consequence of increased seizure
frequency, and potentially even a cause for frequent seizures.

CAN STIMULATION OF THE PIRIFORM CORTEX BE USED
THERAPEUTICALLY?
ABORTING SEIZURES WITH AN OLFACTORY STIMULUS
As early as 1881, Gowers suggested that the application of a strong
aroma, such as ammonia or amyl nitrite, may in some cases
arrest the course of a seizure (234). Other historical accounts
have described the use of other unpleasant odors such as “shoe-
smell” (235). Setting aside any direct pharmacological effect of
these odors, a plausible hypothesis is that strong physiological
activation of olfactory cortex can temporarily prevent or disrupt
the progression of epileptic discharges. An alternative interpre-
tation would be that the smell produces a change in cognitive
state, for example alertness, which is less permissive for seizures to
evolve.

In a detailed clinical account of this technique, Efron describes
a woman with “uncinate” seizures, who had an exceptionally long
olfactory prodrome that would reliably evolve into an olfactory
hallucination and eventually a generalized convulsion (236, 237).
Medial temporal epileptic discharges during her attacks were con-
firmed using sphenoidal electrodes. Smelling an unpleasant odor
in the early phase of her attacks (such as hydrogen sulfide, dimer-
caprol or jasmine) would reliably prevent the seizure progressing,
and she was able to use this approach for seizure control.

Experimental evidence from the amygdala-kindling model sup-
ports olfactory stimulation as a plausible treatment. After rats had
been fully kindled, olfactory presentation of toluene was effective
at preventing seizures (238). Smelling either toluene or ammonia
increased the amygdala stimulation threshold for inducing events,
and with ammonia the seizure duration was also decreased.

Conversely, there are rare reports of seizures being triggered
by an olfactory stimulus. During depth-electrode recording from
the amygdala in an awake patient (239), smelling various odors
induced an amygdala discharge accompanied by similar symptoms
to her usual focal seizures.

The therapeutic use of an odor to abort seizures is unfortunately
only applicable to a very small number of patients. It requires
that the patient have a long aura phase with preserved awareness
where they can take this action, and the even then, the probability
of this intervention being successful is unknown. Nonetheless, it
does demonstrate an important mechanism of relevance to more
invasive treatment approaches.

DEEP BRAIN STIMULATION OF PIRIFORM CORTEX
If physiological stimulation of piriform cortex can interrupt or
prevent seizures, then perhaps direct electrical stimulation at this
site could have the same effect. Deep brain stimulation (DBS)
for focal epilepsy in human beings has shown promising results,
particularly with stimulation of the anterior nucleus of the thala-
mus (240, 241). However, piriform DBS has not been performed
in human beings, and only a few studies have been done in
experimental animals.

In rats, low-frequency electrical stimulation of the piriform
cortex at 1Hz has been used. With an amygdala-kindling model,
piriform stimulation inhibits the kindling process (242), and also
decreases the incidence of generalized seizures in fully kindled
animals. More specifically, this was achieved by stimulation of
the ipsilateral central piriform cortex, with contralateral stimula-
tion being less effective (243, 244). On the other hand, when the
kindling was initially directed at the piriform cortex, inhibitory
piriform stimulation was not effective (245). Therefore, piriform
stimulation may be most useful when it is a secondary relay
for discharges, rather than the primary epileptogenic site, with
the aim being to preventing piriform-mediated amplification and
distribution of widespread discharges.

Therefore, whether piriform cortex or endopiriform nucleus
DBS may be of any benefit in human focal epilepsy is currently
unknown. At a minimum, further studies of DBS to these tar-
gets in animal models of epilepsy will be needed to approach this
question.

CASE REPORT: SURGICAL TREATMENT OF POSSIBLE
PIRIFORM EPILEPSY
Surgical intervention involving the piriform cortex may be benefi-
cial for carefully selected patients, but poses a particular diagnostic
and anatomical challenge. Here, we report a 37-year-old woman
who had seizures from the second year of life, which consisted of an
aura of feeling scared, followed by screaming and wild flailing of all
limbs or cycling leg movements. She did not have an olfactory aura.
Events were brief, lasting less than 1 min. Ictal scalp EEG showed
bitemporal rhythmic delta. High-resolution MRI did not iden-
tify any lesion. FDG-PET was non-localizing. One ictal-interictal
SPECT suggested right orbitofrontal hyperperfusion.

Video-EEG monitoring was performed with multiple frontal
and temporal intracranial electrodes, including a depth-electrode
targeting the frontal piriform cortex, placed via the lateral frontal
lobe (Figures 4A,B). Inter-ictal recordings showed bursts of
epileptiform gamma over the orbitofrontal cortex, and spiking at
the hippocampus and temporal pole. Sub-clinical electrographic
seizures (Figure 4D) were recorded from the piriform cortex
electrode, showing 1–2 min runs of rhythmic sharp waves. Her
stereotyped clinical seizures (Figure 4E) showed attenuation and
gamma frequencies at the piriform and orbitofrontal electrodes,
then an evolving ictal rhythm at these locations and over the right
temporal lobe.

A right temporal lobectomy was performed, and was extended
into the frontal lobe to remove frontal piriform cortex, along with
posterior parts of the inferior frontal gyrus and lateral orbital
gyrus. Resection was also extended to remove temporal piri-
form cortex, the antero-inferior amygdala, and the hippocampus
(Figure 4C). Histology of the orbitofrontal tissue showed some
disorganized architecture and prominent single white matter neu-
rons, interpreted by the neuropathologist as possible focal cortical
dysplasia (MCD 1) although no balloon cells or dysmorphic neu-
rons were seen. No tissue abnormality was found in temporal lobe
structures.

Following surgery, she had a marked reduction of seizure
frequency, from several events per day to occasional and mainly
nocturnal events. There was immediate improvement in her
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FIGURE 4 | Clinical imaging of a patient with possible piriform epilepsy.
(A) Lateral skull X-ray showing positions of intracranial electrodes. RF, right
frontal subdural electrodes; RT, right temporal subdural electrode strip; RHip,
right hippocampal depth electrode; RAm, right amygdala depth electrodes;
RPir, right piriform electrodes; ROF, right orbitofrontal subdural electrodes; LT,
left temporal subdural electrode strip. (B) CT performed in the piriform axis
showing the position of the most inferomesial RPir electrode contact, in

orbitofrontal cortex adjacent to frontal piriform cortex. (C) CoronalT1-weighted
MRI, showing posterior extent of surgical resection, with removal of right
frontal piriform cortex. (D) EEG recorded from most inferomesial RPir
electrode, showing trains of inter-ictal spiking, and (E) a seizure from sleep,
with progressively building discharges, then gamma activity and attenuation,
followed 7 s later by an evolving ictal rhythm. At the “clinical onset,” there
was explosive onset of screaming and flailing movements of the limbs.

responsiveness and speed of processing compared to her preoper-
ative psychomotor slowness. Although the semiology in this case
simultaneously suggested frontal lobe (ictal hypermotor activity)
and amygdala activity (prolonged episodes of fear), the implan-
tation identified orbitofrontal cortex or frontal piriform cortex as
the most likely regions of onset. Resection of these structures was
by necessity incomplete, in part because of the dangerous proxim-
ity of the middle cerebral artery and other vessels traversing the
anterior perforated substance.

DISCUSSION
In this review, we have examined several lines of evidence that asso-
ciate the piriform cortex with focal epilepsy. The central question
is therefore, what role does the piriform cortex play?

It is clearly the generator of seizures in animal models where
chemical or electrical stimulation is applied directly to the piri-
form cortex. The human piriform cortex is very likely to share this
exquisite sensitivity to pro-convulsive stimulation. However, only
very rare cases of human epilepsy arising directly from piriform
cortex have been described, such as that of Mizobuchi et al. (118),
and arguably the case report described above.

Conversely, the piriform cortex will be an unrelated bystander
in some forms of epilepsy, with no role in seizure onset or spread.
Focal seizures from the occipital or parietal lobes may be examples
in this category, although only limited data about the piriform
cortex has been reported for these patients so far (154, 220, 225).

Of greater clinical relevance, the piriform cortex is a com-
mon target of discharge spread, particularly in frontal lobe and
temporal lobe epilepsy. This is indicated by the site of lesions
that can produce an olfactory epileptic aura (102), the impact

of fronto-temporal epilepsy on olfactory function (115), and
the detection of piriform cortex activity on EEG-fMRI in these
cases (151).

A role for the piriform cortex during human epileptogenesis
is probable, but remains to be confirmed. Its tendency to suffer
preferential neuronal loss following seizures, as observed in both
human status epilepticus (156), and in animal models of induced
epilepsy (181), may lead to electrophysiological and local microcir-
cuit changes (185), which result in piriform hyper-excitability. We
hypothesize that when the piriform cortex is a target of discharge
spread, it can be readily recruited as a secondary hyper-excitable
node in the epileptic network by this mechanism. However, inhi-
bition of the piriform cortex only partially blocks the development
of epilepsy (86), meaning that it is still possible for epileptogenesis
to occur via other less sensitive pathways.

Subsequently the piriform cortex can act as a distributor of
epileptic discharges, by facilitating seizures with a limbic origin
to spread into olfactory and cortical networks, and vice versa. The
evidence for this comes from the amygdala-kindling model of focal
epilepsy (3), and clinical descriptions of aura progression (116).

This predisposition of piriform cortex to become involved in
focal epilepsy may be understood from the perspective of the
architecture that has developed to achieve its normal function.
The high inter-connectivity of excitatory neurons provides the
basis for a spatially distributed representation of odors, with an
intrinsic method for template completion and pattern match-
ing (37). However, this same architecture makes it prone to
forming hyper-excitable local networks if local inhibitory circuits
are altered or lost. Furthermore, strong reciprocal connectivity
to nearby structures such as the olfactory bulb, amygdala, and
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hippocampus-entorhinal cortex are essential for top-down modu-
lation of olfactory inputs, olfactory memory, and the processing of
emotional salience. However, these loops pose the risk of becoming
reentrant circuits that sustain seizure activity (3).

Therefore the piriform cortex is highly relevant to the under-
standing of human focal epilepsy arising from the temporal or
frontal lobes. It is a common node of discharge spread, can be
injured and kindled by seizure activity, and may be involved in
the facilitation and distribution of epileptic discharges through-
out limbic and cortical networks. It is a potential target for invasive
therapies, including EEG recording and surgical resection, and its
unique properties and anatomical relationships must be taken into
account.
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The advent of MRI has revolutionized the evaluation and management of drug-resistant
epilepsy by allowing the detection of the lesion associated with the region that gives
rise to seizures. Recent evidence indicates marked chronic alterations in the functional
organization of lesional tissue and large-scale cortico-subcortical networks. In this review,
we focus on recent methodological developments in functional MRI (fMRI) analysis
techniques and their application to the two most common drug-resistant focal epilepsies,
i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe
epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological
developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of
intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal
lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral
mesiotemporal lobe, together with contralateral compensatory reorganization and striking
reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate
functional alterations in lesional, peri-lesional, and remote neocortical regions. While future
research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI
mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and
outcome prediction.

Keywords: epilepsy, connectivity, resting-state, graph-theory

INTRODUCTION
About 50 million people worldwide suffer from epilepsy (Kwan
and Brodie, 2000). This condition is one of the most prevalent
chronic neurological disorders, affecting about 1% of the gen-
eral population (Leonardi and Ustun, 2002). Epilepsy is broadly
characterized by recurrent spontaneous seizures resulting from an
altered balance between excitation and inhibition in brain net-
works (Scharfman, 2007). Approximately one third of epileptic
patients suffer from intractable seizures despite adequate med-
ical treatment (Kwan et al., 2010). Patients with drug-resistant
epilepsy should be promptly identified and successfully managed,
as refractory seizures are associated with progressive brain dam-
age (Cascino, 2009), devastating cognitive and socio-economic
consequences (Pugliatti et al., 2007), as well as an increased
risk of mortality (Mohanraj et al., 2006). The most frequent
drug-resistant epilepsy syndromes are temporal lobe epilepsy
(TLE) related to hippocampal sclerosis, and extra-temporal lobe
epilepsy related to focal cortical dysplasia (FCD). Epilepsy surgery
is recognized as the most effective treatment strategy to ensure
seizure freedom (Engel et al., 2012).

The advent of structural Magnetic Resonance Imaging (MRI)
has revolutionized the preoperative workup in intractable
epilepsy (Koepp and Woermann, 2005; Duncan, 2010; Bernasconi
et al., 2011). Furthermore, by allowing a reliable identification of
the lesion giving rise to the seizures, MRI quantitative analysis
lends non-invasive markers that have substantially increased the
success rate of epilepsy surgery (Duncan, 2010; Bernasconi et al.,

2011; Engel et al., 2013). Nevertheless, despite constant improve-
ments in MRI acquisition and analysis technology, up to 50% of
operated patients continue having seizures (McIntosh et al., 2004;
Tellez-Zenteno et al., 2005; De Tisi et al., 2011). Although reasons
for unfavorable results are not fully understood, emerging imag-
ing data suggest that anomalies extending beyond the lesion may
negatively impact outcome (Keller et al., 2007; Bernhardt et al.,
2010, 2011; Voets et al., 2011; Bonilha et al., 2013). These obser-
vations challenge the conventional model of “focal epilepsy” and
revive the concept of distributed neural networks (Spencer, 2002;
Richardson, 2012).

Advances in non-invasive neuroimaging techniques allow
probing connectivity in vivo. While physical properties of struc-
tural brain networks can be derived from diffusion MRI, func-
tional techniques (such as functional MRI and magnetoen-
cephalography) model connectivity as statistical dependencies of
neurophysiological time series (Biswal et al., 1995; Srinivasan
et al., 2007; Friston, 2011). Functional MRI (fMRI) utilizes
changes in blood oxygen level-dependent (BOLD) signal to infer
neuronal activity (Logothetis et al., 2001). The link is under-
stood under a neurovascular coupling model: neuronal activity
in a region leads to increased blood flow to supply oxygen and
nutrients. The vascular response leads to a biomagnetic per-
turbation of susceptibility, which is detected by T2∗ sequence
used for BOLD fMRI. Conventionally, fMRI has a relatively
coarse time-resolution (order of seconds; but see Feinberg et al.,
2010), but good spatial-resolution and whole-brain coverage. In
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drug-resistant epilepsy, most earlier studies have used task-related
fMRI to map brain activation of eloquent areas, mainly those
subserving language, memory (Berl et al., 2005; Janszky et al.,
2005; Voets et al., 2009), and sensory-motor function (Janszky
et al., 2003; Jirsch et al., 2006; Dumoulin et al., 2007; Sommer
et al., 2013). Recent advances focus on spontaneous modula-
tions in BOLD signal that occur during “resting” (i.e., task-free)
conditions (Figure 1) (Fox and Raichle, 2007; Van Essen et al.,
2012; Cabral et al., 2014). Advantages over task-related paradigms
include the possibility to examine multiple cortical areas in one
session, minimal demands on patients with reduced ability to
perform tasks, and the possibility to aggregate data across sites.
Resting-state networks are highly reproducible across subjects
(Damoiseaux et al., 2006; Biswal et al., 2010; Cabral et al., 2014)
and have been shown to correspond closely to brain systems
engaging in specific tasks (Greicius et al., 2003; Fox et al., 2006;
Smith et al., 2009).

In this review, we will principally focus on TLE, and outline the
available evidence of functional anomalies spanning from limbic
circuits to whole-brain networks. We will also detail preliminary
findings on functional disruptions in FCD, although studies on
patients with this condition are relatively sparse and cohorts often
inhomogeneous. We will discuss how functional alterations could
be related to those observed in structural MRI. Finally, we will
critically evaluate whether and how fMRI measures could serve as
effective biomarkers for the pre-surgical workup in drug-resistant
epilepsy. Figure 1 provides a schematic overview of the methods
to assess resting-state brain function and Figure 2 summarizes
findings in TLE.

THE STUDY OF FUNCTIONAL NETWORKS USING
RESTING-STATE FMRI
Recent years have witnessed a dramatic increase in resting-state
fMRI analyses to probe intrinsic functional networks in healthy
and diseased populations (Biswal et al., 1995, 2010; Greicius et al.,
2003; Smith et al., 2009). In most studies, the participant lies still
in the scanner for 5–7 min, a scan-time that was previously shown
to deliver stable connectivity measures (Van Dijk et al., 2010).
More recent work suggests that reliability can be further improved
when with longer duration scans of 9–12 min (Birn et al., 2013),
and work focusing on individual subject classification suggests
even longer acquisitions (Anderson et al., 2011). There is some
evidence for variable effects of eye opening (with or without fix-
ation) or closure on connectivity measures, possibly hampering
replication of findings (Yan et al., 2009; Patriat et al., 2013).

Reflecting the growing importance of resting-state acquisi-
tions, numerous software packages have been developed for auto-
matic data processing (e.g., Yan and Zang, 2010). Conventional
processing includes the discarding of a few time points at the
onset of the recording to ensure steady-state magnetization, fol-
lowed by correction for subject motion through linear regis-
tration of individual time points to a reference time point, as
well as co-registration between structural and functional images.
These basic operations are often followed by statistical correc-
tion for subject-motion and average signal from the white matter
and cerebro-spinal fluid as a proxy for physiological activity.
While most early resting-state studies corrected for global signal,
the validity of this preprocessing step is currently controver-
sially discussed (Fox et al., 2009; Murphy et al., 2009). More

FIGURE 1 | Methods to assess resting-state brain function. Resting-state
fMRI time series allow the description of functional networks at multiple
levels. Local markers of functional integrity can be derived from the
amplitude of low-frequency fluctuations. Seed-based analysis of connectivity

relies on cross-correlations between time-series of seed and target regions.
Systematic seeding across multiple regions allows for the generation of
connectivity matrices and equivalent connectivity graphs; these can, in turn,
be analyzed using graph-theory to address large-scale network topology.
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FIGURE 2 | Summary of studies reporting functional connectivity anomalies in temporal lobe epilepsy. Cortical and subcortical regions displaying
functional alterations are color-coded with respect to the associated network. See text for details.

recent work invokes scrubbing, an approach that models time
points affected by heavy motion as additional nuisance regres-
sors (Power et al., 2012). Corrected time-series are filtered, mostly
to a pass-band close to 0.1–0.01 Hz, and often subsequently
mapped to individual cortical surface models and/or a standard
stereotaxic space for group-level inference. Analytical approaches
include seed-based functional connectivity assessments, data-
driven approaches that cluster the brain into regional assemblies
showing similar functional activations such as independent com-
ponent analysis (ICA), the extraction of voxel-based regional
markers, and graph theoretical assessments to study topology at
large scale.

Previous work in healthy individuals has shown that resting-
state fMRI networks are generally reproducible across subjects
(Damoiseaux et al., 2006), show appropriate test-retest reliabil-
ity (Shehzad et al., 2009), and may closely correspond to brain
systems engaging in specific tasks (Biswal et al., 1995; Smith et al.,
2009; Laird et al., 2011; Tusche et al., 2014). Studies in primates
have suggested a close correspondence between intrinsic func-
tional connections and anatomical pathways derived from tract
tracing (Margulies et al., 2009; Mantini et al., 2011; Shen et al.,
2012). Analysis of resting-state patterns may furthermore help
to subdivide specific anatomical regions (Margulies et al., 2007;
Mars et al., 2011; Steinbeis et al., 2014). Finally, resting-state con-
nectivity may be altered in disease conditions (Greicius, 2008; Fox
and Greicius, 2010; Kelly et al., 2012).

FUNCTIONAL NETWORK DISRUPTIONS IN TLE: LIMBIC AND
PERI-LIMBIC CONNECTIVITY
The majority of resting-state fMRI work in TLE addressed the
functional connectivity of limbic structures through seed-based
analysis. Impaired connectivity has been consistently detected
within mesiotemporal structures ipsilateral to the seizure focus;
the most prominent local alterations involve the links between
rostral and caudal hippocampus, and between the rostral hip-
pocampus and the enthorinal cortex (Bettus et al., 2009, 2010).
Reduced functional connectivity is observed between ipsilateral

and contralateral hippocampi (Pereira et al., 2010; Morgan et al.,
2011; Maccotta et al., 2013), as well as between the epileptogenic
mesial temporal structures and bilateral lateral temporal neocor-
tices (Pereira et al., 2010; Maccotta et al., 2013; Doucet et al.,
2013a). Left TLE patients seem to display more marked connec-
tivity alterations than those with right TLE, both in the epilepto-
genic hemisphere and in contralateral limbic areas (Pereira et al.,
2010). Breakdowns in ipsilateral functional connectivity may
co-occur with connectivity increases in contralateral mesiotem-
poral networks, which have been shown to positively correlate
with working memory performance (Bettus et al., 2009, 2010).
Such increases may reflect reorganization of limbic networks.
Supporting evidence for abnormal local functional connectivity
within peri-limbic regions comes from a preliminary observa-
tion of enhanced amplitude of the low-frequency fluctuations
of BOLD signal, a local functional marker possibly reflective
of long-range neuronal synchronization (Balduzzi et al., 2008),
in the ipsilateral mesiotemporal structures and lateral temporal
neocortex (Zhang et al., 2010b).

The spatial patterns of resting-state functional alterations seem
to parallel the structural damage identified by quantitative MRI
analysis. In agreement with histopathological studies, atrophy has
been confirmed beyond the hippocampus to include the enthori-
nal cortex and the amygdala complex (Bernasconi et al., 1999,
2001b, 2003; Salmenperä et al., 2000; Bartolomei et al., 2005),
with evidence for subregional disease progression (Briellmann
et al., 2002; Fuerst et al., 2003; Bernasconi et al., 2005; Bernhardt
et al., 2013b). Besides, morphological disruptions have been
identified in the perirhinal, temporo-polar, and lateral temporal
neocortices ipsilateral to the focus (Jutila et al., 2001; Moran et al.,
2001; Coste et al., 2002; Bernasconi et al., 2004; Sankar et al., 2008;
Voets et al., 2011). Interestingly, we detected increased cortical
folding complexity, which involved the contralateral temporo-
polar region in right TLE (Voets et al., 2011). Differently from the
cognitively adaptive functional reorganization (Bettus et al., 2009,
2010), the contralateral increase in cortical folding predicted
unfavorable post-surgical outcome (Voets et al., 2011).
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Further evidence for limbic and peri-limbic disruptions comes
from structural connectivity studies, which have employed either
diffusion imaging or structural MRI covariance (Bernhardt et al.,
2013a). Diffusion imaging constitutes a versatile tool to assess
the microstructural integrity of the white matter, and to investi-
gate its architecture through the reconstruction of fiber pathways.
Fractional anisotropy, indicating the extent to which water dif-
fusion deviates from a random spherical model, is consistently
decreased in temporo-limbic tracts, such as the fornix, the cingu-
lum (Ahmadi et al., 2009; Concha et al., 2009), and the uncinate
fasciculus (Rodrigo et al., 2007; Diehl et al., 2008; McDonald et al.,
2008). Mean diffusivity, a scalar measure of overall diffusivity,
appears markedly altered in the proximity of the epileptogenic
zone (Focke et al., 2008; Concha et al., 2009, 2012). Structural
MRI covariance analysis relies instead on inter-regional corre-
lations of structural markers, such as cortical thickness or gray
matter volume, to infer network properties (Alexander-Bloch
et al., 2013). We and others (Bonilha et al., 2007; Bernhardt et al.,
2008) have shown decreased structural coordination between
mesiotemporal regions and lateral temporal neocortices. These
results parallel functional connectivity derangement within the
temporo-limbic circuits (Maccotta et al., 2013).

FUNCTIONAL DISRUPTIONS IN TLE: INVOLVEMENT OF
WIDESPREAD BRAIN NETWORKS
Several studies have identified abnormal connectivity patterns
between seeds placed within the epileptogenic mesiotemporal
region and bilateral clusters in the posterior cingulate cortices,
precuneus, inferior parietal lobules and mesial prefrontal cortices
(Pittau et al., 2012; James et al., 2013; Doucet et al., 2013b; Haneef
et al., 2014). Along with the hippocampi and the parahippocam-
pal gyri, this set of regions constitutes the default mode network
(DMN), a system putatively involved in internally-focused activi-
ties including memory retrieval, mind wandering and envisioning
the future (Buckner et al., 2008; Christoff et al., 2009). Functional
connectivity disruptions in the DMN have been elucidated in
TLE patients also by studies extracting resting-state networks via
ICA (Zhang et al., 2010a; Liao et al., 2011; Voets et al., 2012),
placing seeds in non-temporal DMN areas (Haneef et al., 2012),
or assessing regional homogeneity of resting fMRI time-courses
(Zeng et al., 2013). Prominent DMN alterations in TLE could
be explained in view of the relevance of the hippocampi in this
resting-state network (Buckner et al., 2008). As a complemen-
tary finding, EEG-fMRI analyses have also shown dysfunction
in relation to epileptic spikes in areas pertaining to the DMN
(Kobayashi et al., 2006; Laufs et al., 2007). The extent to which
left and right TLE patients differ with respect to DMN con-
nectivity is not clear: some studies did not identify substantial
differences (Pittau et al., 2012), while others reported greater
functional disconnectivity in left (James et al., 2013; Doucet et al.,
2013b; Haneef et al., 2014) or right TLE (Zhang et al., 2010a;
Haneef et al., 2012; Voets et al., 2012). Inconsistencies regarding
the extent of DMN abnormalities and divergences with regard
to seizure focus could be ascribed to methodological discrep-
ancies among studies, such as procedures involved in network
extraction (e.g., seed-based vs. ICA-based approaches), statistical
thresholding and differences across patient cohorts, particularly

in relation to pharmaco-response. Resting-state fMRI analyses,
both ICA and seed-based, have also detected connectional dis-
ruptions in areas involved in primary sensory processing (Zhang
et al., 2009a; Voets et al., 2012; Haneef et al., 2014) and attention
(Zhang et al., 2009b). Furthermore, impaired functional inter-
actions are reported between the epileptogenic mesiotemporal
lobes and subcortical areas, including the thalamus and the brain-
stem (Pereira et al., 2010; Pittau et al., 2012; Doucet et al., 2013b;
Haneef et al., 2014).

Addressing the relationship between connectivity and cogni-
tive performance, Waites et al. (2006) described altered functional
signaling at rest in middle and inferior frontal as well as cin-
gulate regions in patients with left TLE (Waites et al., 2006).
Their findings might represent an intrinsic functional corre-
late of the subtle language disturbances often identified in this
group (Hermann et al., 1997). In left TLE, increased functional
interactions between epileptogenic mesial temporal structures
and the ipsilateral posterior DMN appear to be associated with
poorer verbal memory abilities (Doucet et al., 2013a; Holmes
et al., 2014), while increased coupling between the ipsilateral
hippocampus and contralateral posterior DMN shows a positive
relation with improved verbal memory (Holmes et al., 2014). In
right TLE, strengthening of connections between the left mesial
temporal lobe and ROIs in the ipsilateral mesial prefrontal cor-
tex predicted better non-verbal memory (Doucet et al., 2013a).
This suggests that functional reorganization involving the recruit-
ment of contralateral areas might represent a compensatory
phenomenon favoring cognitive performance.

A number of seed-based studies have sought for possible
functional correlates of psychiatric comorbidities in relation to
depression. Derangements in functional connectivity between
mesiotemporal lobes and prefrontal cortices might occur in
depressed TLE patients (Chen et al., 2012; Kemmotsu et al.,
2013). Compared to non-depressed subjects, depressed patients
seem also to exhibit increased functional coupling between the
limbic system and the angular gyrus, possibly suggestive of an
intensified susceptibility to environmental cues (Chen et al.,
2012). Furthermore, there is preliminary evidence that maladap-
tive reorganizations of functional connections between bilateral
amygdalae and prefrontal (Kemmotsu et al., 2013), lateral tem-
poral cortex and the cuneus (Doucet et al., 2013b) might relate to
depressive and anxiety symptoms.

Evidence for functional disruptions in multiple brain networks
in TLE confirms and expands the literature on extra-temporal
structural abnormalities. Extensive neocortical anomalies have
been pinpointed in several volumetric and cortical thickness anal-
yses (Bernasconi et al., 2004; Lin et al., 2007; Bernhardt et al.,
2008, 2009b; Keller and Roberts, 2008; Mueller et al., 2009),
and gray matter loss has been observed in subcortical struc-
tures, including the thalamus and basal ganglia (Dreifuss et al.,
2001; Natsume et al., 2003; Bernhardt et al., 2012). Structural
connectivity studies employing diffusion imaging have demon-
strated decreased fractional anisotropy in a consistent set of white
matter tracts, including the inferior and superior longitudinal
fascicles (Focke et al., 2008; Lin et al., 2008; Ahmadi et al.,
2009), the internal and external capsule, and the corpus callo-
sum (Arfanakis et al., 2002; Gross et al., 2006; Concha et al.,
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2009). On the other hand, disruptions in mean diffusivity seem
to be relatively less extended (Concha et al., 2005; Focke et al.,
2008). Our group has recently shown that diffusivity values nor-
malize as a function of the anatomical distance from the seizure
focus (Concha et al., 2012). Structural covariance analyses have
described abnormal correlations between mesiotemporal regions
and a variety of areas, including pre-frontal, fronto-central, cin-
gulate and occipito-temporal neocortices (Bonilha et al., 2007;
Bernhardt et al., 2008; Mueller et al., 2009). We demonstrated that
thalamic atrophy co-varies with cortical thickness of mesiotem-
poral, fronto-central and lateral temporal cortices (Bernhardt
et al., 2012).

Although there are similarities in the location of functional
and structural abnormalities, systematic assessments of the rela-
tionship between changes in both domains are scarce. On the one
hand, it is not very well understood whether more gray matter
in a certain region relates to stronger functional activation, or
changes in functional connectivity. On the other hand, patients
may express significantly higher structural variability of certain
brain regions than controls. This may possibly impact the quality
of across-subjects alignment during preprocessing differentially
in both groups, particularly when conventional group-level anal-
yses are carried out in a standard voxel space. Functional analysis
in subject-specific space, ideally on anatomy-informed models of
the cortex, may control for some of these confounds. While multi-
modal imaging could shed light on structure-function relation-
ships in epilepsy, few studies have directly addressed this question.
For instance, a study showed that impaired functional connectiv-
ity between mesial temporal lobes and posterior cingulate cortex
correlated with reduced white matter density of bundles con-
necting the two regions (Liao et al., 2011). Using whole-brain
analysis, our group found disruptions in functional connectivity
between mesiotemporal regions and neocortical areas, including
regions in the DMN and sensory-motor networks. Importantly,
functional connectivity changes of the hippocampus were par-
tially explained by gray matter density estimates of this region,
suggesting that altered signal coupling may reflect hippocampal
damage. Moreover, functional connectivity changes outside of
mesiotemporal region correlated with diffusion parameters inter-
connecting fiber tracts (Voets et al., 2012). This lead us postulate
that morphological and architectural derangements account for
alterations in intrinsic functional connectivity in TLE.

EVIDENCE OF DISRUPTED NETWORK TOPOLOGY IN TLE:
INSIGHTS FROM GRAPH THEORY
Although there is significant support for local and inter-regional
connectivity disruptions in TLE, the above-discussed analyses
have not characterized organizational properties of brain net-
works. In this context, graph theoretical analysis provides a
unique framework to quantify whole-brain network topology
(Bullmore and Sporns, 2009; Bassett and Gazzaniga, 2011).
Networks can be modeled as collections of nodes, corresponding
to brain regions, which are interconnected via links (or edges).
Nodal selection exerts a crucial influence on graph-theoretical
parameters (Zalesky et al., 2010), and several investigations have
aimed at improving the reliability of parcellation techniques
(Geyer et al., 2011; Glasser and Van Essen, 2011). Network edges

can be derived from both structural and functional connectiv-
ity datasets, as shown by the variety of graph-theoretical analyses
relying on electrophysiology (Ponten et al., 2007), fMRI (Salvador
et al., 2005), diffusion MRI (Gong et al., 2009), and structural
MRI covariance (He et al., 2007). While segregation measures
refer to the existence of tightly interconnected nodes within the
network, known as clusters or modules, their integration is medi-
ated via interconnecting paths (Bullmore and Sporns, 2009).
Centrality measures are employed to identify hubs, i.e., nodes with
a high degree of connections (Van Den Heuvel and Sporns, 2011).
The global topology of brain networks in healthy individuals
exhibits a small-world organization (Bullmore and Sporns, 2009).
This architecture, which has been consistently shown across vari-
ous imaging modalities, enables both segregation and integration
of information processing while being maximally efficient in
terms of wiring costs.

In TLE, only a few studies performed graph-theoretical analy-
ses on functional (Liao et al., 2010; Wang et al., 2014) or structural
(Bernhardt et al., 2011; Bonilha et al., 2012; Liu et al., 2014)
MRI datasets. Deriving brain networks from resting-state fMRI
measures, a study reported decreased clustering and path length,
and disruptions in the distribution of network hubs, in favor
of a random network topology (Liao et al., 2010). Conversely, a
more recent study showed increased clustering and path length,
a finding rather typical of a regularized topology (Wang et al.,
2014). Interestingly, the latter findings are in line with our
graph-theory analysis of structural networks constructed from
cortical thickness correlations (Bernhardt et al., 2011), with
graph-theoretical studies on diffusion MRI data (Bonilha et al.,
2012; Liu et al., 2014) and with electrophysiology-derived net-
work analyses (Bartolomei et al., 2013). Preliminary evidence
suggests that alterations in brain structural (Bernhardt et al.,
2011) and functional (Wang et al., 2014) networks intensify over
time. We have shown that patients with a poor outcome after
surgery exhibit more pronounced network disruptions compared
to those who achieved seizure freedom. These findings suggest
that whole-brain network analysis might be a valuable asset for
clinical decision-making (Bernhardt et al., 2011).

FOCAL CORTICAL DYSPLASIA: EVIDENCE FOR WIDESPREAD
EXTRA-LESIONAL ABNORMALITIES
Focal cortical dysplasia (FCD) is an epileptogenic malformation
of cortical development resulting from localized abnormalities in
neuronal migration and organization (Barkovich et al., 2012).
Neocortical epilepsy secondary to FCD accounts for approxi-
mately half of pediatric patients and a quarter of adult subjects
(Lerner et al., 2009; Bernasconi et al., 2011). Cortical dysplasias
encompass a wide spectrum of histopathological changes related
to cortical disorganization, including isolated dyslamination typ-
ical of FCD type I, and more severe lesions characterized by
dyslamination and cytological abnormalities such as dysmorphic
cells or balloon cells in FCD type II (Blumcke et al., 2011).
Associated alterations in the subcortical white matter adjacent
to the lesion are also frequently observed in pathological spec-
imens (Andres et al., 2005; Sisodiya et al., 2009). The degree
of histopathological disruptions influences lesional visibility on
structural MRI (Lerner et al., 2009; Bernasconi et al., 2011). In
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this regard, patients with FCD type II display a significantly wider
spectrum of MRI abnormalities compared to those with FCD type
I, of whom the vast majority shows unremarkable routine MRI
(Tassi et al., 2002; Krsek et al., 2008).

In recent years, MRI processing has allowed for an increased
detection of subtle dysplasias (Bernasconi et al., 2001a; Antel
et al., 2003; Wilke et al., 2003; Huppertz et al., 2005; Srivastava
et al., 2005; Colliot et al., 2006a; Besson et al., 2008; Hong et al.,
2014). Morphological anomalies, including increased gray mat-
ter density and sulcal depth may be found in areas remote from
the dysplastic cortex (Bonilha et al., 2006; Colliot et al., 2006b;
Besson et al., 2008). We recently employed surface-based multi-
variate pattern recognition to automatically detect FCD type II,
and showed that 50% of patients presented at least one extra-
lesional cluster characterized by abnormal sulcal morphology
(Hong et al., 2014). Whole-brain diffusion imaging studies have
shown evidence for peri-lesional abnormalities in the subcortical
white matter contiguous to the dysplastic cortex (Lee et al., 2004;
Gross et al., 2005; Widjaja et al., 2007, 2009; Diehl et al., 2010)
and at distance (Eriksson et al., 2001; Guye et al., 2007; Fonseca
Vde et al., 2012).

To date, relatively few fMRI studies have probed the integrity
of functional networks in FCD. Assessing various malformations
of cortical development, a study reported impaired activation of
dysplasias located in language areas (Vitali et al., 2008). Other
task-related fMRI studies assessing language in a variety of cor-
tical malformations, have shown that disruptions may not be
limited to the lesional cortex, with evidence for intra- and inter-
hemispheric redistribution of function (Janszky et al., 2003; Yuan
et al., 2006; Gaillard et al., 2007; Mbwana et al., 2009). Location
of the lesions may have a differential impact on the expression of
language dominance (Duke et al., 2012). In heterogeneous pop-
ulations of non-operated adults and children with focal epilepsy
and presumed dysplasia, functional connectivity disruptions have
been detailed in language networks (Vlooswijk et al., 2010) and
in a wide set of intrinsic functional networks (Luo et al., 2011;
Widjaja et al., 2013). Additional indications of widespread func-
tional disruptions may come from EEG-fMRI studies, which
showed that spike-related BOLD signal changes occur in brain
areas distant from the putative seizure onset zone, suggestive
of diffuse epileptogenic networks (Federico et al., 2005; Tyvaert
et al., 2008; Thornton et al., 2011). A graph-theoretical study
in adults with MRI-negative focal epilepsy reported decreased
global network efficiency, together with reductions in network
clustering, indicative of a reorganized topology relative to con-
trols (Vlooswijk et al., 2011). In more recent work in children
with non-lesional frontal lobe epilepsy, the same group has sug-
gested that patients present with a more regular global topology
than typically developing children (Vaessen et al., 2013, 2014). It is
tempting to interpret these findings in light of the fine-tuning in
global network properties taking place during brain maturation
(Fair et al., 2009; Dosenbach et al., 2010), which could account
for shifts in brain topology across lifespan.

CONCLUSIONS
The advent of functional mapping techniques has substantially
advanced our knowledge of brain connectivity in drug-resistant

epilepsy. In TLE, a growing body of evidence indicates marked
connectional derangements primarily in limbic circuits, but also
across multiple networks, together with profound shifts in global
network topology. FCD may also be associated with complex
connectional reconfigurations, both locally and at a whole-brain
level, although the literature is rather sparse and patient groups
are frequently inhomogeneous. On the whole, current findings
suggest that these focal epilepsy syndromes may be interpreted
as disorders of distributed networks in both structural and func-
tional domains.

An important avenue for future research will be to advance
our understanding of how functional connectivity relates to brain
structure. Studies in healthy controls have provided evidence for
substantial overlap (Honey et al., 2007; Skudlarski et al., 2008;
Greicius et al., 2009). In focal epilepsy, although impairments in
resting-state functional coupling seem to parallel morphological
disruptions unveiled by structural MRI, very few multi-modal
imaging studies specifically addressed this issue so far (Liao
et al., 2011; Voets et al., 2012). Importantly, causal links between
changes in both domains have not been addressed. The puta-
tive polysynaptic features of functional coupling across the brain
occasionally allow for the detection of functional connectivity in
the absence of direct structural connections (Uddin et al., 2008;
Honey et al., 2009; Lu et al., 2011), and this complicates the
interpretation and the evaluation of accuracy. Another avenue for
future research is the assessment of possible variations in intrinsic
connectivity over time. So far, despite ample evidence for progres-
sive structural damage (Bernasconi and Bernhardt, 2009; Cascino,
2009; Bernhardt et al., 2009a), the ability of functional markers to
track disease progression is unclear. A first assessment suggested
that ipsilateral and contralateral hippocampal functional connec-
tivity alterations might undergo variable trajectories throughout
the course of the disease (Morgan et al., 2011). Combined lon-
gitudinal analysis of structure and function in clinically well
characterized groups of newly diagnosed patients, particularly
those with acquired conditions such as post-traumatic epilepsy
may shed light on seizure-related alterations vs. those related to
the epileptogenic process.

Due to their relative accessibility and ability in unveiling func-
tional disruptions, resting-state fMRI has strongly impacted the
neuroimaging community. In epilepsy, preliminary results sug-
gest a promising role for this technique to provide biomarkers
for the diagnosis, pre-surgical planning, and prediction of sur-
gical outcome (Bettus et al., 2010; Negishi et al., 2011; Castellanos
et al., 2013). Despite some evidence in psychiatric conditions for
medication affecting intrinsic networks, both in the context of
treatment (Schmidt et al., 2013) drug abuse (Kelly et al., 2011),
there are currently no reliable predictors of drug-response and
monitoring of drug-related side effects in epilepsy (Koepp, 2014).
A number of caveats need to be addressed. Firstly, it is paramount
to evaluate and likely improve the reliability (Castellanos et al.,
2013; Fiecas et al., 2013) and validity of functional markers, given
potentially profound influences of artifacts and preprocessing
choices on results (Birn et al., 2006; Niazy et al., 2011; Power
et al., 2012; Buckner et al., 2013). A further prerequisite will be the
evaluation of sensitivity and specificity; only few studies have sys-
tematically addressed this issue in patients in the context of focus
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(Bettus et al., 2010; Zhang et al., 2010b; Chiang et al., 2014) and
language lateralization based on resting-state fMRI data (Doucet
et al., 2014). Analyzing clinically well-defined patient cohorts
and cross-site assessment of reproducibility will be important to
determine the clinical applicability of resting fMRI. To address the
complex pathophysiology and individual susceptibilities future
approaches will likely require a combination of quantitative func-
tional and structural imaging modalities to generate biomarkers
that operate at various stages of the epileptogenic process.
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Measures of brain connectivity are currently subject to intense scientific and clinical inter-
est. Multiple measures are available, each with advantages and disadvantages. Here, we
study epilepsy patients with intracranial electrodes, and compare four different measures
of connectivity. Perhaps the most direct measure derives from intracranial electrodes; how-
ever, this is invasive and spatial coverage is incomplete. These electrodes can be actively
stimulated to trigger electrophysical responses to provide the first measure of connec-
tivity. A second measure is the recent development of simultaneous BOLD fMRI and
intracranial electrode stimulation. The resulting BOLD maps form a measure of effective
connectivity. A third measure uses low frequency BOLD fluctuations measured by MRI,
with functional connectivity defined as the temporal correlation coefficient between their
BOLD waveforms. A fourth measure is structural, derived from diffusion MRI, with con-
nectivity defined as an integrated diffusivity measure along a connecting pathway. This
method addresses the difficult requirement to measure connectivity between any two
points in the brain, reflecting the relatively arbitrary location of the surgical placement
of intracranial electrodes. Using a group of eight epilepsy patients with intracranial elec-
trodes, the connectivity from one method is compared to another method using all paired
data points that are in common, yielding an overall correlation coefficient. This method is
performed for all six paired-comparisons between the four methods. While these show
statistically significant correlations, the magnitudes of the correlation are relatively mod-
est (r2 between 0.20 and 0.001). In summary, there are many pairs of points in the brain
that correlate well using one measure yet correlate poorly using another measure. These
experimental findings present a complicated picture regarding the measure or meaning of
brain connectivity.

Keywords: intracranial electrodes, brain stimulation, functional MRI, structural connectivity, functional connectivity

INTRODUCTION
The importance of brain connectivity is self-evident given the
underlying network structure of the brain. Structural MRI, which
interrogates each point in the brain, is invaluable to science and
medicine. The point-to-point relationships of connectivity imag-
ing are equally as invaluable, if not more so, given the inherent
network nature of brain functions. As such, connectivity imaging
represents the next step in the continuing evolution of neuroimag-
ing. However, unlike structural imaging, contemporary connectiv-
ity analyses have not yielded findings of relevance for treatment in
individual patients.

There are many measures of connectivity, which could be
dichotomized into functional and structural. Examples of struc-
tural connectivity are derived from invasive measures such as
axonal tracing or nuclear tracing, with the prime non-invasive
method of MRI using diffusion-weighted imaging (dMRI). Exam-
ples of functional connectivity include measures derived from
scalp EEG, intracranial EEG, PET studies, cortical thickness stud-
ies, task-related fMRI, and resting state fMRI (rsfMRI). All these

methods have advantages and disadvantages, related to spatial
and temporal resolution, coverage, effectiveness, and invasiveness.
Given numerous methodologies and metrics of connectivity (1,
2), it is natural to compare them with the hypothesis that if the
metrics are sensitive to the underlying network architecture of the
brain, then the connectivity measures should strongly correlate
with each other. This inquiry raises the question about the exact
definition of connectivity, and what could be considered the “gold
standard.”

The paper focuses on recent measurements obtained from
a group of eight patients with medically intractable epilepsy,
who underwent both invasive electroencephalographic (EEG)
and evoked potentials mapping with implantable intracra-
nial electrodes and advanced neuroimaging with MRI. Using
these methods, a total of four modalities of connectivity were
explored: structural connectivity using dMRI, functional connec-
tivity using rsfMRI, functional connectivity using precise electri-
cal stimulation and recording (cortico-cortical evoked potentials,
CCEPs) from intracranial electrodes, and combined intracranial
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Table 1 | Details of intracranial electrodes placed in eight patients.

Patient

Number

Age Implantation Number of

intracranial

contacts

Number of

CCEP

stimulations

dMRI

rsfMRI

DES-fMRI Location of stimulation

1 45 SDGa 123 4 Y Left Broca, Left Wernike, Ictal

onset zone ×2

2 40 SEEGb 57 9 Y Multiple bi-occipital and right

temporal

3 19 SDG 106 7 Y Left Broca, Wernike, ictal

onset zone ×3

4 40 SEEG 104 5 Y Multiple right frontoparietal

5 25 SEEG 120 1 Y Left orbito-frontal

6 41 SEEG 130 1 Y Right posterior cingulate

7 42 SEEG 160 1 Y Right peri-insula

8 54 SEEG 130 1 Y Right orbito-frontal

aSDG: subdural grids.
bSEEG: stereoencephalography.

stimulation and BOLD fMRI. These four modalities of connectiv-
ity are compared on a pairwise basis, and we show that although
the comparisons reveal statistically significant correlations, the
correlation values are modest. Furthermore, these methods, as
commonly interpreted today, do not reach the same consensus.
In other words, there are many pairs of points in the brain that
correlate strongly using modality A, but correlate weakly using
modality B, and visa versa. A possible future method to unify
these differences may incorporate a mathematical model of brain
function, which would permit the translation of one connectivity
measure to another.

MATERIALS AND METHODS
Four different measures of connectivity are used in this study;
all measured in epilepsy patients who underwent an invasive
evaluation to better localize and map the extent of the epilep-
togenic zone (EZ). The four measures are functional connec-
tivity derived from electrophysiological response to electrical
stimulation (CCEPs); functional connectivity derived from low-
frequency BOLD oscillations in the rsfMRI; functional connectiv-
ity derived from simultaneous direct electrical stimulation and
BOLD functional MRI (DES-fMRI); and structural connectiv-
ity derived from dMRI using high-angular resolution diffusion
imaging (HARDI).

After obtaining IRB approval, a total of eight patients were
enrolled. All patients were recruited from the Cleveland Clinic
Epilepsy Center with a diagnosis of intractable focal epilepsy, and
underwent an intensive evaluation culminating in the placement
of intracranial electrodes. All patients underwent CCEP stimula-
tion, with multiple locations of stimulation, including the Broca’s
speech region, and the presumed EZ. The first four patients had
HARDI and rsfMRI performed prior to implantation, and the last
four had HARDI and rsfMRI performed after implantation. These
measurements were performed as a“piggy back”during their stan-
dard clinical care, and did not interfere with their clinical care.

Table 1 lists some clinical characteristics of the patients and the
different modalities that were measured.

CORTICO-CORTICAL EVOKED POTENTIALs
All CCEP stimulations used a GRASS used current-controlled
Grass Technologies S88 and SUI-7 units (Astro-Med), with the
following parameters: 1 Hz unipolar pulses with alternating polar-
ity between pulses, 0.3 ms pulsewidth, with variable current (4–
15 mA), applied across an adjacent electrode pair. An optical cur-
rent isolator was used to ensure that the patient was isolated from
ground. For each CCEP stimulation location shown in Table 1,
between 16 and 60 (typically around 45) stimulating pulses were
sent from the chosen electrode pair, and waveform responses were
recorded from all other implanted contacts, at a 1 kHz recording
rate. Four patients also had CCEP performed while simultaneously
undergoing MRI, and for these patients a stimulation frequency
of at least 10 Hz was required to elicit a robust BOLD response
(3). The CCEP voltage waveforms obtained at each electrode were
averaged, discarding any outliers that were usually due to motion
and other artifacts. Because of the alternating polarity of each
pulse, most of the stimulus artifact was removed, and average
waveforms could be reliable seen as early as 5 ms after the stimu-
lus. A scalar baseline was subtracted from each waveform, derived
from an average of the waveform during a 40 ms window obtained
just before the stimulus. There are many methods to “score” the
strength of the averaged CCEP waveform, which can be used as
the measure of electrophysiological connectivity. Typically, these
methods use the average voltage during a time window after stimu-
lus. Other methods can use the slope, latency, integral, magnitude,
and other features of the voltage waveform. For this paper, the
chosen time window depended on the other modality used to
compare CCEP connectivity: for comparison with structural con-
nectivity, a 5 ms window starting 10 ms after the stimulus was used
to reflect the rapid first-pass excitation of distal cortex; for com-
parison with resting state connectivity a 100 ms window starting
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at 20 ms was used to reflect the longer timescale of an integrative
process.

RESTING STATE fMRI
For all studies, rsfMRI was performed on a 3T Siemens
Trio (Siemens Medical Solutions, Erlangen, Germany), using a
whole-brain EPI sequence: 132 repetitions of 31 4-mm thick
axial slices; TE/TR, 29 ms/2,800 ms; matrix, 128× 128; FOV,
256 mm× 256 mm; receive bandwidth, 250 kHz. EPI data were
unwarped using a field map prior to coregistration to the
unwarped diffusion acquisition space (described below in Section
Structural connectivity), which was used to cross-compare the
different measures. Patients were instructed to rest with their eyes
closed and refrain from any voluntary motion. The data were cor-
rected for motion, adaptive physiologic noise sources (4, 5), and
second-order motion (6). The data were interpolated to the DWI
space (see below). Functional connectivity maps of the brain were
produced using a seed approach, yielding a pairwise temporal cor-
relation coefficient to every other brain voxel. The seed was selected
to be the site of stimulation. The time waveforms used in the cor-
relation were the average waveforms of the 27 voxels of a voxel and
its nearest neighbors, excluding any CSF-containing voxels.

DIRECT ELECTRICAL STIMULATION AND FUNCTIONAL MRI
Direct electrical stimulation and functional MRI (DES-fMRI) is
a recently developed modality (3) in which simultaneous fMRI is
acquired during stimulation of a single intracranial electrode. The
procedure was conducted in an intraoperative MRI suite with the
patients under general anesthesia. Using appropriate stimulation
frequencies and currents (typically around 20 Hz and 4–8 mA),
robust BOLD activation could be generated both proximal and dis-
tal to the electrodes. Typically, the activation occurred in patterns
that reflect the underlying network. Both positive and “negative”
activation could be triggered. Activation could also be induced
by white matter stimulation. Using this method, the connectiv-
ity metric between the stimulation point S and another point
P can be defined as the degree of BOLD change or its statis-
tical significance at point P. Thus, the usual 3D BOLD maps
can be viewed as a connectivity map. Prior to DES-fMRI the
patients had a comparable CCEP stimulation performed outside
of the MRI with all electrodes in place and recording the stimu-
lation’s response, thereby measuring electrophysiological connec-
tivity. By co-localizing the electrode location to the DES-fMRI, a
comparison could be directly made between electrophysiological
connectivity and DES-fMRI connectivity.

STRUCTURAL CONNECTIVITY
High-angular resolution diffusion imaging images were obtained
on a Siemens Trio (Siemens Medical Solutions, Erlangen, Ger-
many) with a standard 12-channel head coil. The HARDI acquisi-
tion provided whole-brain coverage with 2.5 mm isotropic voxels
(256 mm× 256 mm FOV, 102× 102 matrix, 48 slices. TE= 77 ms,
TR= 6500 ms, BW= 1442 Hz/pixel, partial Fourier factor= 5/8,
61 non-collinear diffusion-weighting gradients with robust order-
ing with b= 1000 s/mm2 and 7 b= 0 volumes, two averages).
Warping effects were addressed by using static image-based
unwarping (7) on the diffusion data prior to diffusivity calculation.

Motion correction was performed with an iterative algorithm (8)
that updated gradient vectors (9). Fiber orientation distributions
were calculated in each voxel by spherical deconvolution (10) with
user-independent optimized regularization (11). Local transition
probabilities were calculated by integrating over the solid angle of
a vector connecting each voxel with its 26 neighbors.

The cross-modal comparison performed in this project places
additional demands on metrics to measure structural connectivity.
For example, since intracranial electrode contacts can be placed in
any arbitrary place in the brain, the task of comparing structural
to electrophysiological connectivity requires that the structural
metric be able to assess or “score” a connection between any two
points in the brain. Since these two points may not necessarily
both lie along a large fiber track, deterministic methods will fail
and probabilistic methods are favored. A further demand is that
the “seed” and/or “target” points may lie on the cortical surface, in
a region of low FA that hinders the reliable start to a trajectory. One
difficulty with probabilistic methods is that they can be computa-
tionally inefficient, if they adopt a method of randomly forming
a path and discarding it if it fails to reach a target. To account for
this difficulty a partial differential equation (PDE) approach was
developed that is the solution of a probabilistic method assuming
an infinite number of trials, akin to the underlying relationship
between a PDE and Monte Carlo solution to classes of differential
equations (12). Details of this method are presented in the Data
Sheet 1 in Supplementary Material.

COREGISTRATION
The processes of coregistration of the electrode positions to the
MRI voxels started with a thin section head CT following implan-
tation of electrodes. Then using in-house techniques, all elec-
trode contact positions were identified and recorded (13). The
CT scan was then registered to the anatomical scan (T1-weighted
MPRAGE) obtained prior to surgery, and the positions of all elec-
trodes translated into the MRI-space. All image registration was
affine and performed using FSL FLIRT (14, 15). Segmentation
was performed on the T1 MPRAGE images using the Freesurfer
package (http://surfer.nmr.mgh.harvard.edu/), whose parcelation
maps were interpolated into the dMRI space.

PAIRED CORRELATION AND STATISTICAL MEASURES
For each of the four modalities, as summarized in Table 2, using a
single location as a “seed,” a large set of connectivity values can be
computed to targets outside of the seed: for the CCEP modality the
targets are the other recording electrodes (which can number up
to 200), and for each target a connectivity value can be computed;
for the other modalities the targets are the remaining voxels occu-
pying cortical gray matter, which can number up to 5000–10,000.
For a given patient with an intracranial electrode used for CCEP
stimulation, all four measures of connectivity can be computed
using the stimulation location as a common seed. This permits a
cross-comparison between the modalities; specifically the connec-
tivity from the seed to any target point can be compared between
the four modalities. The comparison can be made for all targets in
the form of a two-dimensional scatter plot, with each axis repre-
senting the magnitude of a modality’s connectivity. One measure
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Table 2 | Summary of the four measures of connectivity used for

comparisons in epilepsy patients who underwent evaluation with

intracranial electrodes.

Category Method Measure of connectivity

1 Electrophysiological-

stimulated

CCEP Mean voltage during short

time window

2 Functional-passive Resting state

fMRI

Temporal correlation

coefficient, seed-based

approach

3 Functional-

stimulated

DES-fMRI t -score from a BOLD

activation map

4 Structural-passive dMRI Product of local connectivities

along pathway determined

from PDE approach

of the consistency between two modalities is the Pearson corre-
lation coefficient, such that a value of 1 is a perfect correlation
and 0 is no correlation. A p-value for the correlation coefficient is
also obtained. These values were computed using Interactive Data
Language (IDL, Exelis, Boulder CO, USA).

Aside from AFNI (22), FSL, and Freesurfer routines, all soft-
ware routines were developed in house using the Interactive Data
Language (IDL, Exelis, Boulder CO, USA). All IRB and HIPPA
requirements were strictly followed.

RESULTS
CORTICO-CORTICAL EVOKED POTENTIALs
Robust distal and proximal activation is easily elicited with this
technique. The top panel of Figure 1 shows a typical example of
one complete electrode recording obtained in the parietal lobe of
a patient with a large subdural grid array (#1), who was stimulated
in the frontal Broca’s regions (as determined earlier by speech
arrest using higher currents and frequencies). A series of 46 CCEP
recordings are seen via their stimulation artifact (tall alternating
spikes), occurring over a recording duration of 50 s. The middle
panel of Figure 1 shows an overlay of the 46 CCEP recordings from
the same electrode mapped to a common stimulation time point,
with the red line showing the mean signal. This plot reveals the
degree of variability typical in these electrophysiological exper-
iments. The white line in the bottom panel of Figure 1 shows
the mean signal from an electrode in the parietal lobe known to be
associated with language (as determined earlier using speech arrest
obtained after stimulation at higher currents and frequencies). The
observation of speech arrest and the robust CCEP signal implies
that both the stimulation and recording points lie on a portion of
the language network, i.e., the presumed Broca’s and Wernicke’s
area. The overlaid red line was obtained from an adjacent electrode
about 10 mm distant, which appears markedly different, show-
ing minimal evoked potential. The difference in these two graphs
across 10 mm indicates the spatial scale across which markedly
different EP connectivities can be measured using this technique.

Figure 2 shows an inflated surface reconstruction with an over-
lay of the CCEP response, obtained over a grid array of 120 elec-
trodes. The electrical stimulation was applied to the left inferior

FIGURE 1 |Top: example of raw data recorded from one intracranial
electrode (in this case overlaying the presumed Wernicke’s area in the
left angular gyrus) in response to stimulation from left Broca’s region.
There are a total of 46 alternating unipolar stimulations seen as spikes from
stimulation artifact. The middle panel shows the overlay of all 46 waveforms
as referenced to a common stimulation time. The red line shows the
average of the waveforms, with a prominent downward peak at 100 ms,
followed by an upward peak at 230 ms. The bottom panel shows the same
average waveform overlaid with the waveform obtained from one adjacent
electrode 10 mm away, showing strong spatial variability from distal
stimulation.

frontal gyrus at t = 0 ms for a duration of 0.3 ms, at the location
shown by the two small white circles in the first image. Red colors
represent positive voltage and blue are negative, using a threshold
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FIGURE 2 | Voltage patterns recorded from left-sided subdural
grids in response to a CCEP stimulation at left Broca’s region
(whose electrode-pair is shown as two white circles in the first
image). The underlay is the inflated brain. Voltages are taken as the
average during a 5 ms window. Red represents positive voltages

greater than 50 mV; blue represents voltages less than −50 mV. A total
of six images are shown with mean voltages taken from the displayed
time intervals. Note the rapid evolution of voltage spread, which
qualitatively follows the expected connection along the arcuate
fasciculus.

of± 50 µV, respectively. The displayed time periods are the times
during which the voltage was averaged. The figure shows the rel-
atively rapid evolution of the pattern of response during the first
50 ms: a very early negative response is seen around the supramar-
ginal gyrus, followed by intense activation in the temporal lobe
which reverses polarity by 50 ms. Other temporal patterns can be
seen, and altogether reveals the complex nature of globally evoked
potentials stimulated by a point source.

RESTING STATE fMRI
Figure 3 shows an example of resting state connectivity as revealed
from the temporal correlation coefficients using a seed method.
Using the same patient in Figure 2, the seed point was taken as the
stimulation location in the inferior frontal lobe, at the functional
location of Broca’s area as determined by earlier speech arrest. The
green-yellow color indicates a positive correlation value greater
than 0.5. The seed points are shown by the white circles, repre-
senting the locations of the stimulation electrode pair. The image
reveals the widespread network of correlated resting-state fluctu-
ations, which roughly correspond to the presumed distal language
regions of the superior and inferior temporal gyri. We define our
second measure of connectivity as the magnitude of the corre-
lation coefficient. Due to the inherent three-dimensional nature
of MRI, a complete map of connectivity can be produced and
compared with other measures.

DIRECT ELECTRICAL STIMULATION AND FUNCTIONAL MRI
The major results of the DES-fMRI experiments has been recently
reported (3), and was performed safely and successfully in four
patients using the methods described above. Figure 4 shows
an example from one patient (#5 in Table 1) who was stim-
ulated in the left orbito-frontal region, as shown by the small
black asterisk highlighted by the magenta arrow. The overlaid
color represents the magnitude of the statistical map (t -score)

FIGURE 3 | Resting state connectivity map of left hemisphere, using
seed-based approach with seed located at left Broca’s region as
indicated by two white circles. These are the same locations used for
CCEP stimulation in Figure 2. The color scale reflects the value of the
temporal correlation coefficient, with green-yellow representing any value
greater than 0.5. Qualitatively there is strong correlation from Broca’s
region to other expected language areas in the left temporal lobe.

as indicated by the color bar. This image reveals many of the
salient features from all patients: (1) robust BOLD activation can
be induced; (2) activation is seen both proximally (e.g., adjacent
insula and hippocampus) and distally (e.g., opposite hemisphere);
(4) the patterns of activation are suggestive of underlying net-
works, e.g., the strong linear activation along the limbic system
of the cingulate gyrus; and (5) robust deactivation (or “negative”
activation) is seen, which also appears to conform to underly-
ing networks. We hypothesize for this research that the magni-
tude of the t -score is our third measure of connectivity. Due
to the inherent three-dimensional nature of MRI, a complete
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FIGURE 4 | Map of BOLD response in brain due to stimulation of an
electrode-contact pair shown as asterisks indicated by the magenta
arrow. The color bar to the right shows the value of the t -statistic, using a
threshold magnitude of 3. Among the features represented are activation
both proximal and distal to the contacts (including contralateral side);

activation along known anatomic features such as the left cingulate gyrus; and
strong negative activation as seen in the bilateral sensorimotor regions. The
stimulation used a 32 s block design with an alternating unipolar 8 mA pulse at
20 Hz. The TR was 2 s, over four blocks for a 5 min acquisition. The patient was
under general anesthesia (3).

map of connectivity can be produced and compared with other
measures.

dMRI CONNECTIVITY
Figure 5 shows an example of the PDE method of tractography,
using for the seed the mid-pons, and for the target the entire
neocortex. A total of 200,000 tracks are produced, but for clarity
only the 14,000 connecting to the precentral gyrus are displayed,
which is an anterior view showing the resulting cortico-spinal
tracks. Each pathway is color-coded by the magnitude of the
pathway-score described in the methods. Note the method suc-
cessfully tracks to all portions of the precentral gyrus, and is not
affected by problems from crossing fibers from the corpus callo-
sum or the superior longitudinal fasciculus. As expected, there is
relatively strong connectivity to the upper and lower extremities,
and lower connectivity to the bulbar region. The collective path-
way follows the expected twisting-ribbon geometry of the known
cortico-spinal tract.

By applying this method to the invasive patients, using as the
seed the location of the stimulating electrodes and using as the
target the remaining neocortex, a full cortical map can be pro-
duced wherein every cortical voxel obtains a value related to the
pathway score. We assume for this research that the magnitude of
the pathways-score is our fourth measure of connectivity. Again,
due to the inherent three-dimensional nature of MRI, a complete
map of connectivity can be produced and compared with other
measures.

Figure 6 is an example of the dMRI method applied to the same
patient in Figures 2 and 3, using as a seed the left Broca’s region
and then tracking to and scoring all remaining gray matter voxels.
The white circles again represent the location of the stimulating
electrodes, which were identified to stimulate Broca’s region. The

FIGURE 5 | Example of tractography using the method developed for
this work, using as a seed the cortical spinal tract at the level of the
central pons, and displaying all tracts connecting that location to all
voxels located in the precentral gyrus. Each path is color-coded by the
strength of the global connectivity score as described in the Data Sheet 1 in
Supplementary Material (yellow-green represents high structural
connectivity; blue is intermediate; red is low). The method recapitulates the
known set of pathways connecting both medial and lateral aspects of the
precentral gyrus, and is not significantly affected by crossing fibers from the
transcallosal and superior longitudinal fasciculus.
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Jones et al. Connectivity measures from intracranial electrodes

FIGURE 6 | Left lateral view of structural connectivity, using the
electrode locations (white circles) stimulating Broca’s region as a seed
and connecting to all other cortical gray matter voxels. This is the same
patient shown in Figures 2 and 3. The green color indicates higher structural
connectivity, whereas blue color indicates lower structural connectivity.

color scale is normalized so that yellow-green is a higher pathway-
score than blue. The pattern shows increased connectivity to the
presumed language regions of the parietal lobe, in addition to con-
nections in the frontal lobe. This procedure was repeated for all
stimulation sites in patients #1–4. Since all cortical voxels can be
scored, complete comparisons can be made to the other methods
that compute a connectivity value at all cortical voxels, namely
rsfMRI and DES-fMRI. CCEP is the only method of the four
presented that computes a connectivity score at a relatively small
number (100–200) of locations.

CROSS-CORRELATIONS
After applying these four methods of computing connectivity to a
common seed location in an epilepsy patient with intracranial elec-
trodes, a paired comparison can be made between any two selected
methods. Figure 7 displays the six different paired comparisons
possible from four methods, each shown as a two-dimensional
scatter plot with each axis representing the connectivity value of
a selected method. The data from different seed locations are
superimposed on each plot. In addition, all available data from
the eight patients are also superimposed on each plot. For each
plot, the Pearson correlation coefficient r2 and its associated p-
value are computed from the entire ensemble of displayed data
points. These numbers are printed at the top and also listed in
Table 3. Hypothesizing that the value of the correlation coefficient
is a measure of the consistency between two methods of connec-
tivity, there is a wide range of correspondence ranging from 0.001
to 0.20. All of the correlations show statistical significance, even
for the lowest values, and is likely due to the enormous number of
data points available for comparison. The lowest correlations are
associated with rsfMRI, which the highest are related to CCEPs.

DISCUSSION
Although the four measures of connectivity show statistically sig-
nificant correlation coefficients, the most striking observation for
a given pair-correlation is the large scatter of points, particularly
on the measures that permit inclusion of all voxels in the brain.

That is, for a given pair of measures, there are many pairs of voxels
in the brain that show a high level correlation using method A,
with a low correlation using method B; and visa versa. While the
statistically significant trend is scientifically useful for group com-
parisons,any possible medical applications to an individual patient
require more robust metrics or another paradigm for understand-
ing these discrepancies. There are many possible causes for the
low correlation values, some may be intrinsic to the brain and its
function, while others are technical and methodological, both of
which are now discussed.

One likely contributor to the discrepancy in the pair correla-
tion is the failure to correctly co-localize a point in MRI space
with the source of an EEG signal. One reason is technical, that the
co-registered position of the electrode as determined by CT is not
correctly co-located to the corresponding point on the MRI. The
error can be due to either the CT or MRI: brain shift occurring
during the presence of implanted electrodes during CT, or warping
of the MRI due to field gradients, particularly at the brain’s base.
Another reason is the exact location of the voltage source. That
is, although the subtraction of an adjacent electrode-contact pair
measures a given signal, there exists some uncertainty about the
exact location of the source of the signal with respect to the paired
contacts. If it is a point source, it is likely that the distance from the
source to the electrode pair is comparable to the distance between
the electrode contacts. For example, if the contacts are separated
by 5 mm, that could represent a distance of two voxels from the
imaged locations of the electrodes. This possibility is complicated
by the reality that most sources will be distributed, likely over a
spatial scale at least as large as 5 mm. One approach to address
this consideration is to incorporate a source model of the CCEP
waveforms (16) rather than directly use the electric signals that
come from the equipment. However, source modeling is complex
and introduces its own assumptions and uncertainties.

In addition to robust positive BOLD activation seen during
stimulated fMRI, there are network-like regions of “negative” acti-
vation, or relative deactivation. This phenomenon is often seen
with task-related paradigms and sometimes is attributed to the
design, for example where the “rest” cycle is not truly at rest. How-
ever, in our DES-fMRI experiments the patient is anesthetized and
the negative BOLD patterns appear as a consequence of positive
stimulation. It is uncertain if this negative activation is the result of
direct point-to-point action potentials from the stimulated region
to the negatively activated cortex, or the result of positive stimula-
tion to secondary cortex that in turn deactivates cortex. Regardless,
it raises the question of how a shower of signals delivered to cortex
results in relative deactivation. One possible explanation is that
there is tremendous neuronal processing that occurs in a segment
of cortex before electrical responses that synchronize sufficiently to
produce a macroscopic voltage capable of detection with intracra-
nial or extracranial electrodes. For example, it is known that an area
at least 10 cm2 of synchronized cortex is required for detection by
a scalp electrode (17). The vast number of neurons required for
this ensemble response is likely much more than the number ini-
tially stimulated by an incoming wave of action potentials. Thus,
between the moment of initial stimulation and macroscopic signal
detection there must be a computational buildup with tremen-
dous intra-cortical processing. Although initially stimulated in a
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Jones et al. Connectivity measures from intracranial electrodes

FIGURE 7 |The main result is displayed as a set of six paired
comparisons from four different methods of measuring connectivity.
Each square shows a two-dimensional scatter plot of points using the
methods labeled along the axes. The data are a compilation from all eight
patients. For data comparing the CCEP method, a point is plotted for each
electrode contact. For the other comparisons a point is plotted for each
cortical voxel, thus these plots have a higher density of points. The units of

the CCEPs scale in µV; the units of the rsfMRI are the Pearson correlation
coefficient typically ranging from −1 to 1; the units of fMRI are the statistical
t -score (using the absolute value when compared with CCEP); and the units
of the dMRI are arbitrary with 0 representing negligible structural connectivity
and 10 representing strong structural connectivity. The value of the Pearson
correlation coefficient r 2 computed from the data within each plot is printed in
the top right corner; its associated p-value is printed in the top left corner.

positive sense by a relative small number of neurons, this intra-
cortical processing could proceed in either increased or decreased
tone, that is, either positive or negative reaction.

Another uncertainty likely contributing to the poor correla-
tion regarding comparisons with CCEP signals is the scalar metric
derived from the signal and used for comparison. One detail is
which time window of the CCEP signal is most appropriate for
comparison? For example, regarding comparison with structural
connectivity may best compare with the early time course of the
signal, perhaps a time scale comparable to the axonal transit time,
say between 5 and 15 ms. On the contrary, regarding comparison
with resting state connectivity or DES-fMRI, which likely elicit

and more steady-state ensemble reaction of brain activity, a better
comparison with structural activity might be to average the signal
intensity over a much longer period of time, perhaps 0.1–1.0 s.

A source of variability leading to poor correlation may be the
manner of electrical stimulation, particularly with the variables
of current and frequency. Regarding current, larger currents will
stimulate a larger volume of tissue, which may alter the distal pat-
terns of response (18). Experimentally it is difficult to know the
optimum current since the current is raised until a desired effect
is noticed, whose threshold can vary in different brain regions.
Similarly, the 1 Hz stimulation frequency of CCEP may elicit
a different network of activation than at a higher – and more
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Jones et al. Connectivity measures from intracranial electrodes

Table 3 | Paired comparison of four methods for brain connectivity.

CCEP DES-fMRI rsfMRI dMRI

CCEP r2
=0.20 r2

=0.004 r2
=0.11

<10−5 <10−4 <10−5

DES-fMRI r2
=0.001 r2

=0.04

<10−4 <10−6

rsfMRI r2
=0.001

<10−6

dMRI

The top number is the Pearson correlation coefficient r2, and the number below

is the associated p-value.

physiologic – frequency. These are all experimental values worthy
of exploration in future studies.

All data were derived from patients with long-standing and
intractable epilepsy, whose brains feature foci of abnormal corti-
cal excitability. These foci likely correspond to the nodes of some
network, which raises the possibility of associated abnormal con-
nectivity. This variation could contribute to the scatter seen with
an ensemble of paired correlations.

In addition to the large scatter of paired correlations between
two given modalities, there is strong variation of the overall cor-
relation between the various pairs of modalities, for example
the correlation between CCEP and DES-fMRI is the largest at
r2
= 0.20, while that between DES-fMRI and rsfMRI (and dMRI

and rsfMRI) is the weakest at r2
= 0.001. This difference may

reflect the underlying scale of the modality: at one extreme dMRI
reflects simple node-to-node connectivity between any two corti-
cal points, whereas rsfMRI connectivity reflects a more “ensemble”
of brain activity including the effects of feedback circuits contain-
ing multiple nodes. Thus the correlation coefficient may be highest
between modalities featuring simple node-to-node connectivity
(for example dMRI, and CCEPS derived from early time measure-
ments), and lowest between any modality compared with rsfMRI.
The initial expectancy that different measures of connectivity are
mutually consistent may be misguided, for example a strong cor-
relation between structural and functional connectivity, and that
a pathway to better understanding one measure of connectivity it
a detailed analysis of its difference to other measures.

While the quantitative comparison of the different connectiv-
ity measures is poor, often the qualitative patterns of the maps can
seem similar. For example, the lateral surface images in Figures 2,
3, and 6 are from the same patient for the modalities of CCEPs,
rsfMRI, and dMRI connectivity, where the seed for each modality
is the left Broca’s area. While detailed pair-correlations of voxel-
to-voxel scatter plots show the typical finding of a significant but
weak correlation, the overall patterns of correlation compare well
qualitatively to the eye. This could raise the possibility that coarse
features of connectivity are similar, but there are errors in the
details.

The practical clinical question arises about how such sophis-
ticated comparisons, metrics, or models could be used to ben-
efit patients with epilepsy. For example, how might knowledge
of a network directly help the clinician? The ultimate goal is

identification of the EZ, wherein removal of that tissue inhibits
the electrophysiological cascade that erupts into a seizure. Assum-
ing the EZ is one node in a network, an alternative approach
could be resection of non-EZ node in the network such that its
removal interrupts any epileptogenic circuitry that contributes to
seizure generation. One of the major problems in the process of
the presurgical localization of the EZ through scalp EEG record-
ings is the issue of false localization of a surface activity that is
the result of a network/subcortical spread from a distant focus (in
a different gyrus, lobe and at times hemisphere) (19). Optimiz-
ing non-invasive measures of connectivities would undoubtedly
assist in the identification of the correct focus and would there-
fore result in the optimization of the surgical results through the
resection of the source of the electrical activity rather than a non-
needed resection of the wrong falsely localized “focus.” Another
approach to how epilepsy might benefit from an accurate relation
of the different measures of connectivity is discussed in Figure 8.
The data in Figure 8 illustrate the more comprehensive nature
of DES-fMRI for the mapping of all the nodes of a particular
epileptic network as fMRI measures BOLD changes in the whole
brain while depth or subdural electrodes measure a much more
restricted part of the cortex that is based on a hypothesis that is gen-
erated from less than optimal non-invasive methods as discussed
above.

One possible approach is to compare activated networks that
are indigenously and spontaneously activated by interictal dis-
charges to those stimulated externally. A technical problem to
surmount is that, at a sufficiently small spatial scale, the exact
location of depth electrode contacts can be relatively random with
respect to the exact location of the EZ. But if sufficiently close,
stimulation of the electrode contacts involving the EZ might acti-
vate the same spatial network as indigenous activation from an
interictal discharge. If these patterns can be observed, for example
using the full 3D capability of BOLD imaging, then overlap of the
two maps can serve as verification that the location of stimulation
by an electrode is the same location as the EZ. In effect, the BOLD
pattern revealed by an interictal discharge could serve as a finger-
print regarding the origin of activation (the epileptic focus). In the
far future, an enticing strategy would be any new method that can
elicit an interictal discharge, or a seizure, which can be turned on
and off as desired, and thereby forms the “task” in a BOLD fMRI
experiment. This might be accomplished using a pharmacologi-
cal method to “stress” the system, or modulate the thresholds to
uncover epileptic activities in a controlled fashion.

Another approach is to examine the local vs. distal patterns
of activation. The hypothesis could be that local cortical acti-
vation in the region of the EZ is augmented by the underlying
disease and seizure history. Similar to a spreading depression,
and propagated by innumerable interneurons along the cortical
layers, local activation could appear different than distal stimu-
lation elicited by long range white matter fiber tracks in terms
of both amplitude and speed. For example, the mono-synaptic
character of long range connections may proceed at a faster rate
than polysynaptic connections within the cortical layers. (20) The
presence of disease could alter this comparison whereby local
activation proceeds abnormally quickly with abnormally high
magnitude. The concept of altered local reactivity is supported
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Jones et al. Connectivity measures from intracranial electrodes

FIGURE 8 | Example of the possible clinical utility derived from accurate
correspondence of different connectivity measures. While EEG or CCEP
measures may form a gold standard, the drawback is limited brain coverage.
The use of an EEG source model may improve local coverage between
electrodes, but fails to adequately compute electrophysiological activity
further outside these regions. The top row of images shows the EEG source
model (computed using Brainstorm) from stimulation of an electrode in the
right insular region in a patient with 12 right-sided stereotactically placed EEG
depth electrodes (not shown). Visualization of the brain’s response to
stimulation appears more continuous in the regions of reliable computation

(region bounded by white line), and may offer superior comparison to other
methods of connectivity. Note the region of reliable results is only covers a
minority of the entire brain. The bottom row shows the corresponding
DES-fMRI BOLD connectivity map derived from stimulation of the same
electrode-pair as the top row. While there is qualitative correspondence of the
connectivity maps in the region of the temporal lobe and insula, the DES-fMRI
map encompasses the entire brain and reveals strong areas of activation
outside the coverage of SEEG electrodes, namely in the right parietal lobe.
Establishing a reliable relation between these two measures of connectivity
could synergistically enhance the coverage of invasive electrodes.

by electrophysiological observations to local electrodes upon
stimulation of the EZ, wherein the magnitude of local electrodes
is exaggerated (21).

One potential avenue of failure represented in Figure 7 may
result from an ill-posed assumption, namely that the correct
comparison between different modalities is a simple pairwise cor-
relation between them. Perhaps a better metric for one modality
may incorporate information from other modalities. For example,
functional connectivity could be informed from structural con-
nectivity and thereby correct or exclude comparisons that that
are not structurally connected. Further, functional connectivity
between any pair of points may be influenced more by a multi-
nodal network that connects them rather than a single point-to-
point connection. This possibility suggests the future importance
of a complete brain model that incorporates all the measurable
modalities. Such a model can, in effect, translate between the
metrics of different modalities. The ultimate goal would be a
sufficiently sophisticated model that could conceivably model an
individual brain. Such a model could not practically occur at the
microscopic spatial scale of neurons, but at the mesoscopic scale
of the imaging voxel. The challenge is finding a method to reli-
ably inform the model, i.e., set all the innumerable parameters
with information obtained from a non-invasive modality. Such
a modality would need to be sufficiently content-rich to inform
a large model. One possibility would be long-term resting state

fMRI, informed by structural imaging from dMRI methods. This
development would represent the next step in the evolution of neu-
roimaging, in which the imaging biomarker moves from being the
images themselves, to a mathematical brain model that is informed
by images.

CONCLUSION
A significant next step in the future of imaging brain func-
tion is connectivity; however, there are many different metrics
for connectivity. This work presents experimental observations
with cross-comparisons of four methods produced from eight
epilepsy patients with intracranial electrodes. The major result
is that although the four methods show statistically significant
paired-consistency as computed by a non-zero correlation value,
the magnitude of the correlations is relatively poor. Thus there is
less cross-modal consensus than might be expected with a sim-
ple view of brain connectivity. For example, using two modalities
A and B, there are many regions of the brain that show strong
connectivity using A but low connectivity using B; and visa versa.
The reason for the discrepancies is likely inherent to fundamen-
tal differences in the different modalities, thus the objective of a
strong simple pairwise correlation is ill-posed. However, we envi-
sion that strong correlations can be recovered with the use of an
intermediary mathematical model of the brain that can translate
the connectivity between different modalities.
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SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/fneur.2014.00272/
abstract
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The spatial coherence of spontaneous slow fluctuations in the blood-oxygen-level
dependent (BOLD) signal at rest is routinely used to characterize the underlying
resting-state networks (RSNs). Studies have demonstrated that these patterns are
organized in space and highly reproducible from subject to subject. Moreover, RSNs
reorganizations have been suggested in pathological conditions. Comparisons of RSNs
organization have been performed between groups of subjects but have rarely been
applied at the individual level, a step required for clinical application. Defining the notion of
modularity as the organization of brain activity in stable networks, we propose Detection
of Abnormal Networks in Individuals (DANI) to identify modularity changes at the individual
level. The stability of each RSN was estimated using a spatial clustering method: Bootstrap
Analysis of Stable Clusters (BASC) (Bellec et al., 2010). Our contributions consisted in (i)
providing functional maps of the most stable cores of each networks and (ii) in detecting
“abnormal” individual changes in networks organization when compared to a population
of healthy controls. DANI was first evaluated using realistic simulated data, showing that
focussing on a conservative core size (50% most stable regions) improved the sensitivity
to detect modularity changes. DANI was then applied to resting state fMRI data of six
patients with focal epilepsy who underwent multimodal assessment using simultaneous
EEG/fMRI acquisition followed by surgery. Only patient with a seizure free outcome
were selected and the resected area was identified using a post-operative MRI. DANI
automatically detected abnormal changes in 5 out of 6 patients, with excellent sensitivity,
showing for each of them at least one “abnormal” lateralized network closely related
to the epileptic focus. For each patient, we also detected some distant networks as
abnormal, suggesting some remote reorganization in the epileptic brain.

Keywords: functional connectivity, resting state fMRI, focal epilepsy, single subject design, outlier detection

INTRODUCTION
Connectivity analysis in resting-state functional magnetic reso-
nance imaging (rs-fMRI) is a promising tool to study neuro-
logical disorders. So far, rs-fMRI has been applied mainly at
the level of groups of patients, as for instance in mental disor-
ders (Broyd et al., 2009), in Alzheimer’s disease (Goveas et al.,
2011; Damoiseaux et al., 2012; Jacobs et al., 2013) and also in
epilepsy (Bernhardt et al., 2013; Constable et al., 2013; Lang et al.,
2014). However, a large amount of inter-patient variability is typ-
ically observed in any neurological disorder. In some applications,
patient-specific features are the only clinically useful informa-
tion. A prominent example is the multimodal investigation of
patient with drug-resistant epilepsy, which aims at identifying an
epileptogenic focus that could be surgically resected (Stefan et al.,
2011; De Ciantis and Lemieux, 2013). The main goal of this study

is to develop a method to capture inter-individual variations in
resting-state networks (RSNs), and assess its potential usefulness
in patients with focal epilepsy.

Usually, the analysis of patient-specific epileptogenic focus
is based on analysing brain activity at the time of epilep-
tic discharges. However, epileptic discharges are spontaneous
and rare events that may not occur during time-limited
standard neuroimaging investigations, such as simultaneous
electro-encephalography/functional magnetic resonance imag-
ing (EEG/fMRI) (Gotman and Pittau, 2011) or magneto-
encephalography (MEG) (Stefan et al., 2011) explorations. When
studying resting-state activity in the absence of epileptic dis-
charges, some group-level studies have demonstrated rs-fMRI
connectivity patterns specific to idiopathic generalized epilepsy
(IGE) (Luo et al., 2011; Maneshi et al., 2012) and temporal
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lobe epilepsy (TLE) (Waites et al., 2006; Liao et al., 2011; Pittau
et al., 2012b). For example, using seed regions in the epileptic
focus, group comparison between TLE patients and age-matched
healthy controls, we found significant decreases in connectivity
between homologous mesio-temporal structures and also with
the dopaminergic mesolimbic and with the default mode net-
work (Pittau et al., 2012b). For IGE patients, we found significant
increases and decreases in FC when using seeds in the attention
network (Maneshi et al., 2012). The few studies, which have inves-
tigated FC changes at the individual level in patients with epilepsy,
did report some reorganization of functional networks, notably
in terms of their laterality (Negishi et al., 2011; Stufflebeam et al.,
2011; Luo et al., 2014). Taken together, these results support our
main hypothesis that resting-state fMRI connectivity could iden-
tify clinically relevant information in individual patients suffering
from epilepsy.

Resting-state functional connectivity captures the spatial cor-
relations of spontaneous fluctuations in the blood-oxygen-level
dependent (BOLD) fMRI signal (Biswal et al., 1995). Maps of
functional connectivity, i.e., temporal correlations of fMRI time
series across brain regions, reveal highly organized spatial RSNs.
These maps were found to be reproducible at the individual
(Himberg et al., 2004; Shehzad et al., 2009) and at the group levels
(Damoiseaux et al., 2006). Each RSN is a combination of mul-
tiple brain regions, not necessarily spatially contiguous, which
share similar low frequency BOLD signal fluctuations (Fox and
Raichle, 2007). These networks capture some aspects of the func-
tional organization of the brain (Yeo et al., 2011). Many methods
have been proposed to identify RSNs, including mainly variants
of independent component analysis (ICA) (Smith, 2012) and
cluster analysis (Yeo et al., 2011), see Smith et al. (2013) for a
review. Initial applications of these techniques have focussed on
group level analysis, (e.g., Damoiseaux et al., 2006), and it is
only recently that their capacity to establish a correspondence
between group and individual RSNs has been a topic of active
research. Techniques available to address this problem include
back-reconstruction in ICA (Calhoun et al., 2009) and dual-
regression ICA (Beckmann et al., 2009). Here, we decided to
build on a technique called Bootstrap Analysis of Stable Clusters
(BASC) (Bellec et al., 2010), because of two of its unique fea-
tures. First, the technique offers a statistical framework to assess
the stability of RSNs at the individual and at the group level, by
replicating a cluster analysis many times after small perturbations
of the original dataset. This quantification of stability is an asset to
establish whether atypical RSN organization observed in an indi-
vidual can simply be attributed to statistical noise or reflects bio-
logical individual characteristics. Second, BASC explicitly looks
at the modular organization of the brain, i.e., the ability to iden-
tify clusters based on the relative strength of intra-network vs.
inter-network connectivity, independently of the absolute value
of connectivity measures (see Alexander-Bloch et al., 2012 for a
discussion of the distinction between connectivity and modular-
ity). Dual-regression and back-reconstruction ICA, by contrast,
perform a regression of temporal dynamics, which is sensitive
to the absolute magnitude of connectivity. Absolute measures of
functional connectivity are particularly sensitive to physiological
noise, in particular motion (Power et al., 2012). We hypothesized

that modularity would be more robust to physiological noise than
absolute measures of connectivity.

To the best of our knowledge, none of the standard data-driven
techniques for RSN mapping (ICA, clustering) has been evalu-
ated at the individual level. They have rather been used to detect
changes between two groups. The objective of this study was
thus to develop and validate a statistical methodology, entitled
“Detection of Abnormal resting state Networks in Individuals,”
(DANI) aiming at identifying RSNs with atypical, or outlier, spa-
tial distribution, when compared to a population of controls.
The outlier RSNs were characterized by differences in stability
and spatial extent with respect to a typical RSN distribution.
We also extended BASC to include the notion of core of sta-
bility, defined as the most stable regions of a network. Because
every RSN includes regions with fairly unstable cluster assign-
ment, we hypothesized that focussing on RSN cores rather than
on full networks would translate into improved characterisation
of individual biological variability. In the first part of the paper,
we assessed the ability of DANI to identify atypical and individual
modular organization on a battery of simulated datasets.

Evaluation of RSN mapping for real individual fMRI datasets
is challenging because of the lack of ground truth. The quality
of individual mapping has been mainly assessed by test-retest
reliability studies (Shehzad et al., 2009; Zuo et al., 2010) but
test-retest reliability in itself does not indicate if reliable features
are clinically meaningful. Concerning patients with epilepsy, the
seizure outcome after surgery remains the gold standard to val-
idate a technique. For this reason, in the second part of this
study, DANI was applied to resting state fMRI data of six patients
with focal epilepsy who underwent multimodal assessment using
simultaneous EEG/fMRI acquisition followed by surgery.

MATERIALS AND METHODS
SUBJECT SELECTION
We selected healthy control subjects who underwent simulta-
neous EEG/fMRI acquisitions (Gotman et al., 2004), with the
following inclusion criteria:

(i) Right-handed.
(ii) EEG/fMRI runs during which the subject was awake: EEG

stage W according to Iber and American Academy of Sleep
Medicine (2007).

(iii) EEG/fMRI runs involving only minimal motion (less than
1 mm translation and 1◦ rotation between volumes).

Based on these criteria, we selected 25 right-handed healthy con-
trol subjects The mean age was 32.8 years, ranging from 18 to 55.
Written informed consent was obtained according to the guide-
lines and approval of the Montreal Neurological Institute research
ethics review board. Note that this database of healthy controls
acquired in our laboratory was the same as the one considered in
our previous study (Pittau et al., 2012b).

SIMULTANEOUS EEG/fMRI ACQUISITION
EEG was continuously recorded as described in Gotman et al.
(2004) inside a 3T MRI scanner (Siemens, Trio, Germany).
The EEG acquisition was performed with 25 MR compatible
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electrodes (Ag/AgCl) placed on the scalp using the 10–20 (ref-
erence at FCz) and the 10–10 (F9, T9, P9, F10, T10, and P10)
placement systems. Two electrodes were placed on the back to
record the electrocardiogram. The head of the subject was immo-
bilized with a pillow filled with foam microspheres (Siemens,
Germany) to minimize movement artifacts and for subject’s com-
fort. Data were transmitted from a BrainAmp amplifier (Brain
Products, Munich, Germany, 5 kHz sampling rate) to the EEG
monitor located outside the scanner room via an optical fiber
cable.

A T1-weighted anatomic acquisition was first done (1 mm
slice thickness, 256× 256 matrix; echo time TE = 7.4 ms and
repetition time TR = 23 ms; flip angle 30◦). This scan was used
for co-registration purposes and to superimpose the functional
images on the anatomy. Functional data were acquired in runs
of 6 min using a T2∗-weighted EPI sequence (64× 64 matrix;
33 slices, 3.7× 3.7× 3.7 mm, TE = 25 ms, TR = 1.9 s; flip angle
90◦). Subjects were instructed not to move and stay with eyes
closed, resting. Three runs were selected during wakefulness, with
less than 1 mm of variation between two volumes for the three
axes in translation and less then 1◦ of variation between two
volumes for the three axes in rotation.

fMRI DATA PREPROCESSING
The fMRI database was preprocessed using the Neuroimaging
Analysis Kit (NIAK) release 0.71 (Bellec et al., 2011). Each
fMRI dataset was corrected for inter-slice difference in acqui-
sition time. Parameters of a rigid-body motion transformation
were estimated for each time frame. Rigid-body motion was
estimated within as well as between runs. The median vol-
ume of one selected fMRI run for each subject was coregis-
tered with the individual anatomical T1 scan with Minctracc
(Collins and Evans, 1997), using a rigid transformation. The
T1 MRI of each subject was itself non-linearly co-registered to
the Montreal Neurological Institute (MNI) stereotaxic template
(Fonov et al., 2011), using CIVET pipeline (Zijdenbos et al.,
2002). We used the MNI symmetric template, generated from
the ICBM152 sample of 152 young adults, after 40 iterations
of non-linear co-registration. The rigid-body fMRI-to-T1 trans-
form and the non-linear T1-to-stereotaxic transform were all
combined, and the functional volumes were resampled in the
MNI space at a 3 mm isotropic resolution. The “scrubbing”
method proposed by Power et al. (2012) was used to remove
the volumes with excessive motion, i.e., all frames showing a
displacement greater than 0.5 mm were removed. On average,
4% of the frames were thus removed using this “scrubbing”
method. The following nuisance parameters were regressed out
from the time series at each voxel: slow time drifts (basis of
discrete cosines with a 0.01 Hz high-pass cut-off), average sig-
nals in conservative masks of the white matter and the lateral
ventricles as well as the first principal components (accounting
for 95% variance) of the six rigid-body motion parameters and
their squares (Lund et al., 2006; Giove et al., 2009). The fMRI
volumes were finally spatially smoothed with a 6 mm isotropic
Gaussian blurring kernel. A more detailed description of the

1NIAK website: http://www.nitrc.org/projects/niak.

pipeline can be found on NIAK website (http://www.nitrc.org/
projects/niak/).

To reduce the computational burden of the analysis, the spa-
tial dimension of the individual fMRI dataset was reduced using
a region-growing algorithm. The spatial dimension was selected
arbitrarily by setting the maximal size where the growing process
stopped: we chose a threshold of 800 mm3 resulting in R = 739
regions. The regions were built to maximize the homogeneity of
the time series within the regions, i.e., the average correlation
between the time series associated with any pair of voxels of the
region. The region growing was applied on the time series con-
catenated across all subjects (after transformation to zero mean
and unit variance), such that the homogeneity was maximized on
average for all subjects, ensuring the use of small homogeneous
and identical regions for all subjects. Because of the tempo-
ral concatenation of time series, we had to limit the memory
demand, and the region-growing was thus applied sequentially
and independently within each of the 116 anatomical areas of
the AAL atlas (Tzourio-Mazoyer et al., 2002). See Bellec et al.
(2006) for evaluation and further details regarding the imple-
mentation of this region-growing algorithm. Overall, this process
reduced the dataset Y of each subject into a (T × R) data array,
where T is the number of time samples and R is the number of
regions.

The analysis of neuroimaging databases typically involves a
large number of inter-connected steps. We used the Pipeline
System for Octave and Matlab PSOM (Bellec et al., 2012) to
execute processes in parallel on a cluster of workstations.

FULL BRAIN FUNCTIONAL CONNECTIVITY ANALYSIS USING BASC
Starting from preprocessed resting state fMRI data, we used
the clustering method entitled BASC (Bellec et al., 2010) to
quantify FC patterns at the individual and at the group level.
BASC models FC between distant regions using spatial clus-
tering of BOLD time courses. The key idea of BASC is to
associate spatial clustering with Bootstrap resampling (Efron
and Tibshirani, 1993) to assess the stability of such cluster-
ing among several replications, thus leading to a statistical
measure of stability of the FC patterns. Since all the anal-
yses were first done at the individual level and then across
subjects at a group level, BASC offers a unique possibility
to compare individual-level and group-level identifications of
RSNs.

BASC analysis at the individual level
For each data matrix Y obtained at the individual level, FC
was quantified using a spatial k-means clustering. Each clus-
tering estimated an R× R binary adjacency matrix, setting a
value of 1 when two regions were associated to the same clus-
ter, and 0 otherwise. To assess the statistical stability of this
clustering, the data matrix Y (T × R) was resampled using cir-
cular block bootstrap of the BOLD time-series, and a k-means
clustering was then applied on each of the B = 300 replica-
tions. The average of all the B adjacency matrices resulted in a
stability matrix Îi (i = 1, . . . , C, being the subject index) repre-
senting the likelihood to cluster together the time-series of two
regions.

www.frontiersin.org December 2014 | Volume 8 | Article 419 | 3252

http://www.nitrc.org/projects/niak
http://www.nitrc.org/projects/niak/
http://www.nitrc.org/projects/niak/
http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Dansereau et al. Detection of abnormal resting-state networks in individuals

BASC analysis at the group level
A similar process was considered to assess FC patterns at the inter-
subject group level. To do so, the individual stability matrices
of all the subjects Îi (i = 1, . . . , C) were first averaged in order
to generate a first group stability matrix. In a second step, a
hierarchical clustering was applied using the Euclidean distance
between columns of this group stability matrix as a similarity
index to identify the columns with similar stability profiles. A
threshold was then applied to cut the tree at L number of clusters,
thus providing a binarised group level adjacency matrix (matrix
exhibiting a 1 when two regions were associated within the same
cluster, 0 otherwise). In order to take into account the statistical
stability of such a clustering at the group level, standard boot-
strap resampling among the C subjects was applied 1000 times
and the same hierarchical clustering procedure was applied on
each bootstrap sample.

By averaging the resulting 1000 binary adjacency matrices at
the group level, we obtained the stability matrix at the group level
Ĝ representing the likelihood to cluster together pairs of regions,
while taking into account both single subject and group inherent
variability of the data.

PARTITION OF THE BRAIN INTO FUNCTIONAL RSN
To identify Consistent Resting State Networks (CRSNs) at the
group level, the stability matrix Ĝ was converted into a partition
of the whole brain, grouping regions that have been frequently
associated within the same cluster, i.e., regions exhibiting high
FC stability in Ĝ through bootstrap resampling. To do so, a last
hierarchical clustering was applied on Ĝ to identify brain regions
depicting similar stability profiles. Here again, the Euclidean dis-
tance between columns of Ĝ was used as a similarity index to
identify the columns with similar stability profiles. A threshold
was then applied to cut the tree at the desired number of clus-
ters. We decided to threshold the dendrogram in N = 12 clusters,
thus ensuring that we did not miss any important CRSN. Indeed,
the literature usually refers to 7–10 CRSNs in healthy subjects
(Damoiseaux et al., 2006; Smith et al., 2009). Note that for N =
12 CRSNs, we estimated k = 13 for the individual level k-means
clustering and L = 14 to threshold each group level hierarchi-
cal clustering. These thresholds were estimated by optimizing a
stability contrast as proposed in Bellec et al. (2010). This is a
two-pass procedure, a first pass consisted in a fast (B = 30 boot-
strap samples) exploration of a large grid of scales to find the
scales (k(N), L(N), N) maximizing the stability of the cluster-
ing, as measured with a modified silhouette criterion of the group
stability matrix, constraining k and L values within a close neigh-
borhood of N. Local maxima of the modified silhouette (as a
function of N) were then automatically identified. We chose to
focus here on the local maximum found for N = 12, as this level
of RSN decomposition was most similar to the ones traditionally
reported in the literature (Damoiseaux et al., 2006). For such a
scale of N = 12, the optimal parameters of k = 13 and L = 14
have been estimated. Following the scale selection procedure, the
individual stability matrices for N = 12 were estimated a second
time with a larger number of bootstrap samples (B = 300).

Let us define as P(r) for r ∈ [1, R] a vector representing the
resulting partition obtained after thresholding the hierarchical

clustering of Ĝ in N clusters. When two regions are associated
within the same cluster, they are associated to the same label in P
(Figure 1A).

DETECTION OF ABNORMAL NETWORKS IN INDIVIDUALS (DANI)
BASC allows estimating stability of FC patterns at the individ-
ual level and at the group level, what we will call modules. The
objective of DANI is to detect, at the individual level, possi-
ble modifications of those modules that could be considered as
deviant or outliers when compared to a population of controls.

BASC extension: from stability matrices to trimmed stability maps
Starting from the stability matrices estimated at the individual
level Îi or at the group level Ĝ using BASC, our first contribution
was to propose a method to improve the visualization of spatially
FC information represented in these stability matrices. Therefore,
we propose to convert a stability matrix into a series of N sta-
bility maps. Each of these maps is generated using information
provided by one of the N clusters of the partition P. Consequently,
the stability maps are reporting for each region the amount of sta-
bility estimated for one particular cluster of the partition. We will
refer to each of these spatial maps as a network.

This procedure to estimate “trimmed stability maps” is
applied on each cluster of the partition. It aims at generating 3D
stability maps with enhanced contrast and increased consistency
across runs. To do so, the rows of each cluster of the partition
matrix P were first reordered in decreasing order of average sta-
bility. We then considered a percentage μ of most stable rows,
representing the stability cores. The stability profile was then esti-
mated by averaging only these “most stable rows.” The resulting
3D trimmed stability map obtained from this procedure is illus-
trated in Figure 1C. It yielded greater contrast than when simply
averaging all the rows of the cluster (Figure 1B). We performed
simulations varying the values of the parameter μ of 25, 50,
and 75% to assess the impact of such threshold on the sensi-
tivity of our detection method. It is important to mention that,
whereas only rows corresponding to a particular cluster of P are
selected, stability values from all R regions are actually averaged
to generate stability maps. Consequently regions not belonging
to that specific cluster may also exhibit some non-null stability
values.

The 3D trimmed stability maps estimated at the group level
from the stability matrix Ĝ represent the CRSNs. These CRSNs
were considered as our reference when characterizing the func-
tional organization of RS brain activity over a population of
healthy controls.

The 3D trimmed stability maps, estimated at the individual
level from the stability matrices Îi, characterized the amount of
stability assessed for each subject, within each of the CRSNs iden-
tified at the group level. Since all maps were estimated within
the same referential space, comparison between maps estimated
at the individual level and at the group level became feasible.
Estimating all trimmed stability maps from the same partition is
a strong constraint but it was necessary to provide consistency
across subjects. While providing the similar basis for comparison,
this method allowed flexibility to adapt to the particularities of
each individual.
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FIGURE 1 | Methodology to convert a stability matrix into a spatial

stability map for each network. The same process is applied for each
cluster of the partition P , thus every stability map was constrained by the
corresponding CRSN. (A) Simplistic representation in which the first cluster
of the partition P was selected on the stability matrix. (B) Averaged stability

map obtained by averaging all the rows inside a network partition, resulting in
a diffuse and low contrast representation of the network. (C) Trimmed
stability map obtained by averaging the 50% rows showing the largest
stability values, resulting in a representation of the network with greater
contrast.

Detection of abnormal modifications of functional connectivity
Let us define as CIc

n (r) the R× N × C matrix containing the
trimmed stability values of the region r (r = 1 . . . R) for the net-
work n (n = 1 . . . N) and for the healthy control subject c (c =
1 . . . C). For a specific target subject to be tested with DANI, let
us denote Tn the vector of size R containing the trimmed sta-
bility values for the network n (n = 1 . . . N) for this particular
subject. The objective of DANI is to identify automatically which
of the trimmed stability maps Tn could be considered as out-
liers when compared to the trimmed stability maps of all controls
(CIc

n, c = 1 . . . C). The first step was to detect networks exhibiting
variations in stability when compared to controls maps. The sec-
ond step was to quantify whether these variations were statistically
significant.

Detecting stability variations in the functional network organi-
zation. When performing a region-based comparison of an indi-
vidual map Tn with all CIc

n maps (c = 1 . . . C) from a population
of controls, it was not possible to use a standard Z-score. Indeed,
each map quantifies stability in FC within a network, i.e., esti-
mated from a predefined cluster of the partition P. Consequently
these maps are not continuous through the whole brain volume

(see Figure 1C). Whereas some regions outside the corresponding
cluster may exhibit non-null stability values, many other voxels
exhibit stability values very close or equal to zero. Consequently,
estimating a voxel-based mean and a standard deviation both
close to zero among the controls would lead to unstable Z-score
values. Indeed, one can obtain large Z-values, even though the
local stability was very close to zero. This issue can cause problems
of interpretation since it will attract attention to a non-stable area
of rare occurrence.

To address this issue, instead of computing Z-scores, we pro-
pose to use a binary mask, denoted Zmaskn, to highlight brain
regions depicting significant differences in stability for the target
subject and the network n when compared to the population of C
controls. These masks were defined as follows:

Zmaskn (r) = [∣∣Tn (r)− CIn (r)
∣∣ > 3.17 × std (CIn (r))

]
(1)

Where r denotes the region within the brain volume (r = 1 . . . R),
CIn (r) and std (CIn (r)) refer to the mean and the standard devi-
ation maps estimated over all CIc

n maps (c = 1 . . . C), for the
network n (n = 1 . . . N). 3.17 was chosen as the Z-threshold
considered for a non-corrected significant level of p < 0.001.
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Note that Zmaskn will identify any significant change in the tar-
get subject, whether it consisted in an increase or a decrease of
stability.

Combined map assessing the amount of stability within the
detected Zmaskn. Since stability values estimated using BASC are
statistical measurements, i.e., a probability to belong to a spe-
cific network, we created a map exhibiting these stability values
within brain regions showing significant differences between the
target subject and the population of controls. To do so, we applied
the Zmaskn to the difference between the individual subject-map
Tn and the mean stability map CIn (r) from all the controls (see
Figure S1).

Cmapn (r) = Zmaskn (r)× [Tn (r)− CIn (r)
]

(2)

Where r denotes the region within the brain volume. Using
Cmapn instead of Z-scores maps will avoid biasing the interpreta-
tion toward brain regions showing large Z-score values and very
low stability values. Note that Figure 2 is showing a graphical
summary of all the steps included in this pipeline.

Thresholding the combined map Cmapn

In order to identify outliers when investigating changes in stabil-
ity for a particular target subject, the null hypothesis distribution
of Cmapn values was assessed by applying Equation (2) on each
of the C subjects of the control database and for each of the N
networks. Therefore, we estimated the distribution of so-called
“stability changes” likely to occur within a healthy control popu-
lation. When pooling values from all C = 25 controls and N = 12
networks, we obtained 0.1 and 99.9 percentile values of −0.34

and 0.34, respectively. Therefore, in order to consider only sta-
bility changes likely to be the most significant at the individual
level, all Cmapn values between −0.34 and 0.34 were threshold
and subsequently set to zero for the next analyses.

Analysis of the most salient findings for a specific individual
As mentioned earlier, stability measurements considered in this
study constitute already statistical measurements. Therefore, we
propose to consider first the most salient findings identified for
every target subject, i.e., for every patient with epilepsy selected
for this particular study. Consequently, for each of the six selected
patients, we carefully inspected all the N = 12 Cmapn and only
the maps exhibiting a maximum stability increase greater than 0.5
or a minimum stability decrease lower than −0.5 were reported.
Since the 0.1 and 99.9 percentiles of stability changes measured
over the control database were, respectively −0.34 and 0.34, the
threshold of 0.5 was chosen arbitrarily in order to investigate only
the most salient findings.

Automatic detection of modularity changes for a specific individual
In addition to the inspection of all Cmapn results, we also propose
a statistical analysis to automatically detect significant changes
in modularity. To do so, we proposed a new metric assessing,
for each individual network of each target subject, the strength
and spatial extent of stability interaction when compared to other
CRSNs.

Let us define Wn (r) a 3D spatial map estimating which of the
N CRSNs defined in the partition P (r) were involved in local
modifications detected using Zmaskn (r):

Wn (r) = P (r)× Zmaskn (r) (3)

FIGURE 2 | Pipeline summarizing the steps involved in DANI method starting from the preprocessed fMRI images of the control population and the

preprocessed images of the target subject on which DANI was applied.
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This operation simply consists in applying the binary mask
Zmaskn to the partition P. We then introduce the metric λn,j,
for n = 1 . . . N and j = 1 . . . N, assessing the interaction between
local changes of stability of the nth individual network (Cmapn)
with the jth CRSN (i.e., voxels where

(
Wn (r) == j

)
):

λn,j =
∑

r

((
Wn (r) == j

)× ∣∣Cmapn (r)
∣∣) (4)

λn,j quantifies the amount of stability change with which the jth
CRSN contributes to the nth network of the target subject to be
evaluated. As a summation, this metric is sensitive to both the
strength and the spatial extent of the stability changes. It is impor-
tant to mention that this metric is estimated only within Zmaskn,
therefore only significant changes in stability are accounted for
and only within regions belonging to the jth CRSN.

Therefore the N ×N matrix λn,j provides an overview of all
local changes in FC of a target subject when compared to all N
CRSNs extracted from the control database.

Using the interaction metric λn,j , outlier detection was applied
in order to detect abnormal networks, i.e., interactions that are
very unlikely to occur for a specific subject. Since the a priori null
distribution of this metric is not known, a non-parametric test
was considered. To estimate the null hypothesis distribution, a
N × N matrix λn,j was first estimated for each of the C subjects of
the control database. The null distribution for each network n and
CRSN j was then estimated using a generalized jackknife approach
(Sharot, 1976). To do so, 2/3rd of the control sample was ran-
domly selected to calculate the mean and standard deviation and
one target sample was randomly selected among the remaining
1/3rd to compute the metric λn,j under the null hypothesis. The
procedure was perform 10,000 times using the C = 25 controls
to characterize the null distribution H0 for each network n and
CRSN j. The values of the metric λn,j estimated for the target sub-
ject were then compared to the corresponding H0 distribution
and p-values were estimated.

VALIDATION OF DANI USING REALISTIC SIMULATED DATA
The objective of this section is to further evaluate DANI using
simulated data obtained within a fully controlled realistic envi-
ronment, thus providing a gold-standard to assess the perfor-
mance of the method.

Generation of simulated data
We evaluated the performance of DANI by adding different levels
of structured signal to perturb the underlying “network” organi-
zation of real resting state fMRI state data. This structured signal
actually consisted in the average time series of all regions belong-
ing to the visual network (CRSN #4) of another control subject.
We also evaluated the influence, on DANI detection properties,
of the core size parameter μ considered when estimating the
trimmed stability map.

The simulated Signal-to-Noise Ratio (SNR) was defined as
follows:

SNRdB = 20log10

(
RMSdata

RMSsimul

)
(5)

Where RMS is the root mean square amplitude of the time-series
corresponding to the region where the perturbation was applied.
We refer to RMSdata as the root mean square of the original fMRI
time-series of the subject and as RMSsimul as the root mean square
of the time-series introduced to perturb the system.

Perturbation with structured signal. To force the fusion of two
networks and assess the ability of DANI to detect it, structured
signal was added on specific parts of two networks within resting
state fMRI data of one control subject. Regions belonging to parts
of the right hemisphere of the sensory-motor network (CRSN #9)
and the auditory network (CRSN #3) were selected as the area to
be perturbed (denoted area A). Structured signal was estimated
as the average time series of all regions belonging to the visual
network (CRSN #4) of another control subject. We then assessed,
at what SNRdB level, DANI could detect the fusion of these two
parts of the perturbed networks, varying SNRdB from −25 to
25 dB by steps of 1 dB. Small SNRdB values then corresponded to
the addition of a large amount of structured signal to corrupt an
area involving some regions of the sensory-motor and auditory
networks (Figure S2).

Validation metric
To quantify the performance of DANI when applied on these sim-
ulated data, we first estimated the trimmed stability map of the
sensory-motor (Figure 4, CRSN #9) and the auditory (Figure 4,
CRSN #3) networks, using a specific core size parameter μ. For
each of these two CRSNs, we evaluated the resulting estimated
stability values inside and outside the perturbed zone on which
structured signal was added, but limited to the boundaries of the
CRSN of interest. Let us define as In0 the average of all stability
values inside the perturbed zone A for a specific network n0.

In0 =
1

card (A)

∑
r∈A

Tn0 (r) (6)

Where card (A) refers to the number of voxels belonging to the
perturbed zone A and Tn0 is the trimmed stability map of the
target subject for the network n0.

Let us define as A′ the area of the specific CRSN n0 located
outside the perturbed zone , we introduced the metric On0 as the
average of all the stability values outside the perturbed zone A but
within a specific network n0.

On0 =
1

card (A′)
∑
r ∈A′

Tn0 (r) (7)

The validation metrics In0 and On0 were evaluated for differ-
ent SNRdB levels over two different perturbed networks, namely
the sensory motor network and the auditory network. Figure 3
presents a schematic overview of this validation pipeline.

An increase in In0 would therefore be interpreted as the occur-
rence of a more stable and consistent network within the targeted
region, whereas a decrease in In0 would be interpreted as a lost
of the affected region in favor of another network. On the other
hand, a decrease in On0 would mean that the outside of the orig-
inal network is no longer associated with the new organization,
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FIGURE 3 | Pipeline summarizing the validation procedure: the input is

the preprocessed fMRI data perturbed within a region of size A (A = 1/2,

1/3, and 1/6 of the targeted networks) at a specific SNRdB and the

outputs are the metrics Cmapn , λn,j , In0 and On0. Simulations were
performed considering 3 core sizes (µ = 25, 50, and 75%) for the estimation
of the trimmed stability maps.

whereas a stable On0 value would mean that the integrity of the
original network was preserved.

Validation parameters
DANI performance was evaluated by varying the following
parameters:

• The SNRdB at which the structured signal was added ranged
from -25 to 25 dB by steps of 1 dB.
• The size of the perturbed zone A varied from 1/2, 1/3rd, and

1/6th of the sensory-motor network and the auditory network.
• The core size parameter μ considered when estimating the

trimmed stability maps varied from 25, 50, and 75% of the
most stable rows in a given cluster.

EVALUATION OF DANI ON CLINICAL DATA
This section describes the application of DANI on resting state
fMRI data of patients with focal epilepsy, who underwent mul-
timodal assessment using simultaneous EEG/fMRI acquisition
followed by surgery.

Subject selection criteria for clinical evaluation
Among a population of patients with history suggestive of drug-
resistant focal epilepsy (1989; Berg et al., 2010), we selected
patients who underwent surgery after simultaneous EEG/fMRI
investigation (Gotman et al., 2004), with at least 12 months
follow-up. Candidates underwent routine presurgical evalua-
tion, whereas EEG/fMRI was performed independently of other

modalities and not considered for placing intracranial electrodes
or for surgical decision.

Besides general criteria mentioned in Section Subject
Selection, we included the following additional inclusion criteria:

(i) Seizure free patients with at least 12 months follow up. The
location of the resection was obtained from postsurgical
morphological MRI data.

(ii) Patients who had at least two runs of EEG/fMRI show-
ing epileptic discharges, for which the BOLD response to
epileptic discharges was evaluated as either fully concordant
or partially concordant with the location of the resection,
following the methodology proposed in An et al. (2013).

(iii) Patients who had also at least two runs of EEG/fMRI
with no or small numbers of epileptic discharges on
scalp EEG in order to investigate functional connectivity
patterns independently from the occurrence of epileptic
discharges.

Six patients were selected for this study: patients 1 and 2 had right
orbito frontal epilepsy. Whereas the anatomical MRI was evalu-
ated as non-lesional, a small focal cortical dysplasia (FCD) was
confirmed by pathology. Patients 3 and 4 had, respectively left and
right mesio-temporal lobe epilepsy (MTLE) with hippocampal
sclerosis. Patients 5 and 6 had, respectively left and right frontal
lobe epilepsy (FLE) with the presence of a FCD detected on the
MRI and confirmed by pathology (see Table 1 for further details).
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Table 1 | Patients’ clinical data.

Numbers Age/Gender Anat MRI Syndrome (Etiology) Resection Pathology Follow up

1 16/F Normal R FLE (NL) R OF FCD IIa 24

2 38/M Normal R FLE (NL) R OF FCD IIb 12

3 20/M L MTS L TLE (MTS) L ant TL Gliosis 12

4 39/F R MTS R TLE (MTS) R ant TL Neuronal loss and gliosis 24

5 26/F L 2nd F gyrus FCD L FLE (FCD) L 2nd and 3rd F gyrus FCD IIb 12

6 15/M R F psagittal FCD R FLE (FCD) R 1st F gyrus FCD IIb 36

R, Right; L, Left; FLE, Frontal Lobe Epilepsy; NL, Non-Lesional; OF, Orbito-Frontal; FCD, Focal Cortical Dysplasia; MTS, Mesio-Temporal Sclerosis; TLE, Temporal

Lobe Epilepsy.

Estimation of the BOLD response to epileptic discharges
The analysis of BOLD response to epileptic discharges detected
on scalp EEG was identical to the method considered in pre-
vious studies from our group (Bagshaw et al., 2004; Gotman
and Pittau, 2011; An et al., 2013; Heers et al., 2014). fMRI data
were preprocessed following a similar methodology than the one
presented in Section fMRI Data Preprocessing. After correcting
EEG data from MR gradient artifact (Allen et al., 2000) and bal-
listocardiogram artifact (Benar et al., 2003), EEG was reviewed
by an expert epileptologist (FP) and epileptic discharges were
marked. Timing and duration of each discharge were considered
to generate regressors and convolved with four hemodynamic
response functions (HRFs) peaking at 3, 5, 7, and 9 s, in order
to model inherent variability of HRF in patients with epilepsy
(Bagshaw et al., 2004). Motion parameters were modeled as con-
founds and all regressors were included in the same general linear
model. A combined t-map was created by taking, at each voxel,
the maximum t value from the four t-maps based on four HRFs.
To be significant, a response required five contiguous voxels hav-
ing a t-value > 3.17 (p < 0.05 using Bonferroni correction to take
into account the four HRFs analyses).

Multimodal assessment
Postsurgical morphological MRI data consisted either in 3D high
resolution T1 weighted MRI (1 mm isotropic resolution) or T2
weighted axial or coronal slices (in plane resolution: 0.46 mm,
slice thickness: 5 mm). Postsurgical MRI data were co-registered
to the high resolution anatomical MRI acquired during the
EEG/fMRI session, by maximizing normalized mutual informa-
tion (Studholme et al., 1999), assuming an affine geometrical
transformation between the two volumes. Using the inverse trans-
formations of the rigid-body fMRI-to-T1 transform and the non-
linear T1-to-stereotaxic transform introduced in Section fMRI
Data Preprocessing, DANI results, i.e., the combined maps of
stability changes Cmapn for all n = 1 . . . N networks, were resam-
pled in the native space of the anatomical MRI of each patient.
Therefore, DANI results, BOLD responses to epileptic discharges
and postsurgical MRI data could be compared on a voxel/voxel
basis with the native MRI space of every patient.

RESULTS
CONSISTENT RESTING STATE NETWORKS
The resulting trimmed stability maps obtained from group
level BASC analysis of the 25 healthy controls, resulting in the

identification of 12 CRSNs, are presented in Figure 4. These
CRSNs were used as the reference functional networks to detect
possible abnormal networks in patients.

VALIDATION OF DANI USING SIMULATED DATA
Figure 5 shows the impact on DANI results when adding struc-
tured signals to perturb resting state fMRI data from parts of the
sensory-motor and the auditory CRSNs and when varying the
core size parameter μ, i.e., the percentage of stability considered
when estimating trimmed stability maps. The left column of the
Figure represents the average stability inside the target zone as a
function of SNRdB, the middle column shows the average stabil-
ity estimated outside of the target zone as a function of SNRdB

and the third column shows the resulting trimmed stability maps
for both networks at SNRdB = −25 dB, i.e., at the highest pertur-
bation level. Overall, DANI was able to identify changes around
7 dB regardless of the size of the target zone and with all core sizes.
When adding perturbation in half (Figure 5A), 1/3rd (Figure 5B)
and 1/6th (Figure 5C) of the two networks, choosing a core size μ

of 25% drastically enhanced the stability within the target region
(left column), whereas at the same time the resulting stability out-
side the target was significantly reduced, down to zero for the
auditory network, meaning that this network was lost and com-
pletely taken over by its fusion with the sensory-motor network.
Resulting trimmed stability maps obtained when most intense
perturbation was added (SNRdB = −25dB) are confirming this
trend, since mainly the fused perturbed network was detected for
both networks (Figure 5. right column). On the other hand, using
a core size μ of 75%, only moderate changes could be detected
from stability profiles especially when perturbation was added
on 1/6th of the two networks (Figure 5C), yielding a poor sta-
bility contrast between regions of interest. This trend was also
confirmed on the resulting trimmed stability maps obtained at
SNRdB = −25 dB (Figure 5 right column). Finally, choosing a
core size μ of 50% provided a good trade-off yielding good sen-
sitivity to detect the new fused network (Figure 5 left column),
while providing accurate stability measures within the remaining
sections of the non-perturbed networks (Figure 5 middle). This
trade-off corresponding to an ideal detection contrast obtained
at μ = 50% is illustrated on the resulted trimmed stability maps
obtained at SNRdB = −25 dB (Figure 5 right column).

When perturbing a large target zone involving half of both net-
works (Figure 5A), DANI detected one large fused network at the
detriment of the two original ones. The remaining non-perturbed
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FIGURE 4 | Visual representation of the 12 CRSNs identified using BASC

group level analysis of 25 healthy control subjects. For each CRSN: 3
slices (coronal, axial, sagittal) are shown superimposed on an anatomical MRI
template (MNI152). Labeling of each network was done visually based on
previously reported CRSNs in the literature. The figure shows the usual

networks: Default Mode Network (1,10), Auditory (3), Visual (4),
Sensory-Motor (9), Attention (7,11) and Language(12). BASC also identified 4
other networks, less often reported, but characterized by high statistical
stability: Mesio- Temporal (2), Mesolimbic (5), Cerebellum (6) and Deep Gray
Matter (8).

areas of the original networks were no longer classified as being
part of the network and a new fused network was detected. We
observed a different behavior when perturbing 1/3rd of the two
networks (Figure 5B) instead of completely merging the two net-
works together, DANI partially merged them. When perturbing
only a small region (1/6th of both networks, Figure 5C), the per-
turbed part of the sensory-motor network was associated with
the auditory network, resulting in the detection of a smaller
sensory-motor network and a larger auditory network.

EVALUATION OF DANI ON CLINICAL DATA
Results from both statistical analyses applied on DANI clini-
cal results are reported in Table 2. For every patient and for
every network n, the maximum and minimum values of Cmapn
were first reported. Networks exhibiting salient stability increases,

associated with a maximum value larger than 0.5, are indicated
in red font. Note that no network exhibited salient stability
decreases associated with a minimum value lower than −0.5.
The second analysis consisted in an automatic detection of mod-
ularity changes using a non-parametric approach (see Section
Automatic detection of modularity changes for a specific individ-
ual). Networks identified in a significant interaction, i.e., rejecting
the null hypothesis λn,j = 0 with p < 0.001, were reported using
a bold font and a “∗” sign in Table 2.

Note that results for each patient are represented using Cmapn,
measuring, for each network n, only the significant differences
in stability observed for the target individual patient when
compared to the population of controls. This is the reason why
remote regions from the underlying CRSN partition could be
detected in those maps, whereas main regions associated with the
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FIGURE 5 | Evaluation of DANI using simulated data. The first line shows
the initial trimmed stability maps Tn obtained for the Auditory network
(network 1) and the Sensory-Motor network (network 2) before adding any
perturbution. Graphs present the average stability inside In0 (left column)
outside On0 (middle column) the perturbed area as a function of SNRdB values
ranging from −25 dB to+25 dB, for both the Auditory (green) and the
Sensory-Motor (blue) networks. The right column shows the resulting
trimmed stability maps Tn obtained when adding the largest perturbation at
SNRdB = −25dB. (A) perturbation zone involving 1/2 of both Auditory and
Sensory-Motor networks, (B) perturbation zone involving 1/3rd of both
Auditory and Sensory-Motor networks, (C) perturbation zone involving 1/6th
of both Auditory and Sensory-Motor networks. In each case, results obtained
when varying the core size parameter μ at 25, 50, and 75% are presented.

underlying CRSN partition might not be present if no significant
stability changes were detected. All Cmapn have been thresh-
olded above the 99.9% percentile (resp. below the 0.1% per-
centile) measured over the control population, i.e., above 0.34 and
below−0.34.

Main results obtained for patient 1 with right orbito-frontal
epilepsy are presented in Figure 6. A BOLD activation to epilep-
tic discharges was found in the right orbito-frontal focus and
was fully concordant with the location of the resection (patient
seizure free at 24 months). Whereas the anatomical MRI was eval-
uated as non-lesional, pathology confirmed a FCD within the
focus. The networks that showed most salient stability increases
in Cmapn were the Mesio-Temporal, Mesolimbic, Cerebellum
and Dorsal Attention networks. All these networks except the
Dorsal Attention were also involved in significant interactions of
modularity changes (p < 0.001). Cmapn for the Mesolimbic net-
work, containing the focus, showed increases in stability within
the whole Mesolimbic network, involving notably the focus and
showing increase in stability within most bilateral regions of
this network. Increase stability suggest that, when compared to
a population of controls, these regions are more reliably con-
nected together for this specific patient. A local maximum in
Cmapn was found within the right frontal pole, actually in a close
neighborhood around the focus. Cmapn for the MesioTemporal
network showed large increases in stability (up to 0.74, i.e., 74%
more stable than within the control population) within bilat-
eral mesial and lateral temporal regions and the Cerebellum.
Connections between the Mesolimbic and Mesiotemporal net-
works are well-known propagation pathways in epilepsy. Cmapn
for the Cerebellum network showed increases in stability within
bilateral mesial and lateral temporal regions, involving notably
both temporal poles. Cmapn for the Dorsal Attention network
shows stability increases within itself, involving as well some
regions of the posterior Default Mode Network (DMN) (results
not shown).

Main results obtained for patient 2 with right orbito-frontal
epilepsy are presented in Figure 7. A BOLD activation fully con-
cordant with the resected area in the right orbito-frontal region
was also observed for this patient. The MRI was evaluated as
non-lesional and a FCD was identified by pathology analysis.
Most salient stability increases in Cmapn were found for the
Mesolimbic, Cerebellum, and the Dorsal Attention networks. On
the other hand, the Sensori-Motor network, the posterior DMN
and the Dorsal Attention network were also involved in significant
interactions of modularity changes. Cmapn for the Mesolimbic
network showed stability increases within the right frontal pole
(lateralized on the side of the focus), bilateral heads of the caudate
nuclei and bilateral insulae regions, suggesting notably increase
stability in several regions surrounding the focus. Cmapn for the
Cerebellum network showed stability increases in some regions
of the Cerebellum, with some involvement of bilateral temporal
structures. Cmapn for the Dorsal Attention network shows large
stability increases within itself, involving as well some regions of
the posterior DMN and a right anterior frontal region (also later-
alized on the side of the focus). A very similar pattern was found
for Cmapn of the posterior DMN network (results not shown).
Cmapn for the Sensory Motor network identified increase in
stability with itself, involving as well some frontal more anterior
regions, far from the focus (results not shown).

Main results obtained for patient 3 with left MTLE and hip-
pocampal sclerosis are presented in Figure 8. BOLD activations
to epileptic discharges were found within the left mesio-temporal
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Table 2 | Analysis of the most salient findings detected by DANI.

Network numbers S1 S2 S3 S4 S5 S6

1. Ant. DMN −0.16/0.44 −0.24/0.27 −0.21/0.43 −0.20/0.35* −0.19/0.43 −0.16/0.49

2. Mesio-Temporal −0.10/0.74* −0.10/0.38 −/− −0.10/0.70 −0.08/0.52 −0.10/0.54

3. Auditory −0.28/0.22 −0.24/0.35 −0.26/0.30 −0.30/0.38 −0.29/0.38 −0.30/0.50

4. Visual −0.18/0.37 −0.33/0.40 −0.24/0.57* −/0.46* −0.22/0.20 −0.26/0.70*

5. Mesolimbic −0.48/0.58* –/0.56 –/0.53 –/0.51 –/0.40 –/0.59*

6. Cerebellum −0.34/0.64* −0.41/0.54 −0.48/0.59* −0.49/0.48* −0.35/0.60 −0.47/0.72*

7. Working Memory −0.17/0.30 −0.15/0.24 −0.16/0.33 −0.17/0.34 −0.17/0.41 −0.16/0.33

8. Deep Gray Matter −0.29/0.29 −0.28/0.39 −0.26/0.37 −0.26/0.43 −0.22/0.50 −0.32/0.39

9. Sensory Motor −0.16/0.49 −0.30/0.43* −0.18/0.32 −0.17/0.55* −0.18/0.57 −0.16/0.60

10. Post. DMN −0.22/0.40 −0.30/0.47* −0.30/0.48 −0.30/0.43 −0.36/0.49 −0.27/0.47

11. Dorsal attention −0.13/0.50 −0.22/0.58* −0.17/0.56* −0.25/0.43 −0.23/0.51 −0.23/0.49

12. Language −0.17/0.30 −0.14/0.14 −0.16/0.41* −0.17/0.26 −0.15/0.40 −0.15/0.30

For each of the 12 networks and for each patient, we are reporting the global maximum and minimum value of stability changes identified in Cmapn. Networks

exhibiting the most salient increases in stability, i.e., more than 0.5, were indicated in red font (no salient findings showing a minimum decrease in stability lower than

−0.5 were found). Network involved in significant interactions of modularity changes with other CRSN at p < 0.001 (cf. Section Automatic detection of modularity

changes for a specific individual) were indicated with a “*” and in bold font. (“-” indicates that no negative values were found in Cmapn).

focus, involving as well the left temporal neocortex. BOLD
results were classified as fully concordant with the location
of the resection involving the anterior part of the tempo-
ral lobe. Most salient stability changes in Cmapn were found
for the Visual, Mesolimbic, Cerebellum and Dorsal Attention
networks. The Visual, Cerebellum, Dorsal Attention and also
the Language networks have been identified within significant
interaction in modularity changes. Very widespread stability
increases have been identified within Cmapn of the Visual net-
work, involving mainly the secondary-association visual areas
including the fusiform gyri bilaterally, and not the primary
visual areas. Stability increases were also found in the left hip-
pocampus, bilateral thalami, putamen, insulae, cerebellum and
some regions of the Dorsal Attention network. Interestingly,
Cmapn of the Mesolimbic network showed a well-localized
and lateralized left temporo-lateral stability increase, closely
related to the focus. Cmapn of the Cerebellum network exhib-
ited some reorganization resulting in stability increases and
decreases within the cerebellum itself. Cmapn of the Dorsal
Attention network suggests stability increases within itself, involv-
ing also some regions of the posterior DMN (results not
shown). Cmapn of the Language network shows increase in
stability in bilateral temporo-posterior regions at the temporo-
occipital junction, involving also bilateral fusiform gyri. Increase
stability in bilateral thalami was also identified (results not
shown).

Main results obtained for patient 4 with right MTLE and
hippocampal sclerosis are presented in Figure 9. BOLD acti-
vation to epileptic discharge was found in the right mesio-
temporal structures, fully concordant with the location of the
resection. Most salient stability changes in Cmapn were found
for the Mesio-Temporal, Mesolimbic and Sensory Motor net-
works, whereas significant interaction in modularity changes were
found for the anterior DMN, the Visual, the Cerebellum and
the Sensory Motor networks. The largest stability increases in
Cmapn were found for the MesioTemporal network (maximum

of 0.7), involving mainly the right mesio-temporal focus, as
well as left mesial and lateral temporal regions and bilateral
cerebellum. Cmapn of the Mesolimbic network shows stabil-
ity increases in the fronto-mesial and polar regions on the side
of the focus. Cmapn for the Cerebellum network shows very
interestingly a lateralized stability increase in the right tem-
poral region, very close to the focus, and a bilateral stability
decrease within the cerebellum itself. Slight stability increases
within regions of the Mesolimbic and Dorsal Attention net-
works were also observed. Note that even if Cerebellum Cmapn
was not considered among the most salient findings, the max-
imum stability increase of 0.48 was very close to our arbi-
trary threshold of 0.5. Within Cmapn of the Visual network,
we identified a bilateral stability increase within secondary-
association visual areas including the fusiform gyri and within
the right insula (lateralized on the side of the focus, results
not shown). Cmapn of the Sensory Motor network exhibited
stability increases withing itself involving also some regions of
the posterior DMN and Visual network, bilaterally (results not
shown). Cmapn of the anterior DMN showed a small focal sta-
bility increase in the supplementary motor area (results not
shown).

Main results obtained for patient 5 with left frontal FCD
are presented in Figure 10. The resection was circumscribed to
the lesional area and a BOLD deactivation response to epilep-
tic discharges had a maximum t-value (negative value) at the
anterior edge of the resection. Even if the overlapping voxels
were only few, the fact that they contained the maximum t-value
allowed us classifying this case as “partially concordant.” Most
salient stability increases in Cmapn involved MesioTemporal,
Cerebellum, Deep Gray Matter, Sensory Motor and Dorsal
Attention networks, whereas no significant interactions of mod-
ularity changes could be detected. None of these changes were
really spatially concordant with the left frontal focus or lat-
eralized to the side of the focus. Cmapn of the Deep Gray
Matter network exhibited increase stability within itself also
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FIGURE 6 | Evaluation of DANI on Patient 1 with right Orbito-Frontal

epilepsy. Results are presenting most salient stability changes observed in
Cmapn followed by a t-map of the BOLD response to epileptic discharges
and a postsurgical T1 MRI, all resampled in the native anatomical MRI space
of the patient. Most salient stability changes observed for Cmapn of

Mesio-Temporal, Mesolimbic, and Cerebellum networks are presented.
These three networks were also involved in significant interactions of
modularity changes at p < 0.001. Cmapn are presented between 0.34 and 0.8
(resp. −0.34 and −0.8) and BOLD t-map between 3.17 and 8.0 (resp. −3.17
and −8.0) using a yellow–red colormap (resp. white–blue colormap).

involving bilateral insulae. Cmapn of the Sensory-Motor net-
work shows increase stability within itself and also involving
regions of the posterior DMN. Cmapn of the Dorsal Attention
network shows increase stability within itself and in some bilat-
eral lateral and mesial frontal regions of the anterior DMN.
Cmapn of the MesioTemporal network shows increase in stabil-
ity in bilateral Cerebellum regions and Cmapn of the Cerebellum
shows increase in stability in bilateral temporal (results not
shown).

Main results obtained for patient 6 with right frontal FCD
are presented in Figure 11. The resection was circumscribed to
the lesional area. The BOLD response to epileptic discharges was
really noisy. The cluster of BOLD activation showing a maxi-
mum t-value in the right central region is partially concordant
with the edge of resection, but the presence of motion artifacts
cannot let us classify this case as “concordant.” Most salient stabil-
ity changes in Cmapn involved MesioTemporal, Auditory, Visual,
Mesolimbic, Cerebellum, and Sensory Motor networks. Among
these networks, the Visual, Mesolimbic and Cerebellum net-
works were also involved in significant interactions of modularity
changes. Cmapn of the visual network shows stability increase

within secondary-association visual areas including the fusiform
gyri. Cmapn of the Cerebellum network exhibited local stabil-
ity increases and decreases within the Cerebellum but also a
very focal and very intense right postcentral stability increase
(maximum increase of 0.72), partially concordant with BOLD
activation and lateralized to the side of the lesion. Cmapn of the
Sensory Motor network shows increase stability within itself and
involving some more posterior parietal bilateral regions. Cmapn
of the Mesolimbic network shows increase stability within bilat-
eral temporal regions, Cmapn of the Mesio-Temporal network
shows increase stability in bilateral temporal and anterior cingu-
late region (part of the Mesolimbic network) and Cmapn of the
auditory network shows bilateral increase in stability within itself
and within Thalami (results not shown). Since BOLD results to
epileptic discharges were really contaminated by motion artifacts,
similar artifact could have also biased DANI results in this case,
although we carefully removed all the frames showing a displace-
ment of more than 0.5 mm as suggested by Power et al. (2012).

Even though we reported mainly the concordance of the sta-
bility changes detected using DANI and the BOLD responses to
epileptic discharges with the resected area, it is important to point
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FIGURE 7 | Evaluation of DANI on Patient 2 with right

Orbito-Frontal epilepsy. Results are presenting most salient
stability changes observed in Cmapn followed by a t-map of the
BOLD response to epileptic discharges and a postsurgical T1 MRI,
all resampled in the native anatomical MRI space of the patient.

Most salient stability changes observed for Cmapn of Mesolimbic,
Cerebellum, and Dorsal Attention networks are presented. The
Dorsal Attention network was also involved in significant
interactions of modularity changes at p < 0.001. Same colormap
conventions than in Figure 6.

out that for most patients both results, i.e., DANI and BOLD
responses to epileptic discharges, were not only showing signif-
icant changes closely related to the presumed epileptic focus,
but were also exhibiting more complex connectivity patterns
reorganization extending to some more distant regions.

DISCUSSION
The advantage of our proposed method DANI is the ability to
identify atypical and individual modular organization of FC for
one specific individual. Besides extending BASC (Bellec et al.,
2010) to produce trimmed stability maps focussing on the core
of the networks, we reproduced the main CRSNs in agreement
with previous studies, using the group level BASC analysis on 25
healthy controls (Raichle et al., 2001; Damoiseaux et al., 2006;
Fox and Raichle, 2007; Smith et al., 2009). We notably repro-
duced group level BASC results presented in Bellec et al. (2010),
using another database of 25 healthy controls. The trimmed sta-
bility maps, representing at the group or at the individual the
statistically most stable networks allows focussing on RSN cores
rather than on full networks. Our evaluation using simulated data

demonstrated than an optimal sensitivity contrast was obtained
when choosing a core size μ of 50%. Using these maps, we
were able to characterize individual variability with a good
compromise between flexibility and consistency. This approach
provides consistency across subjects while allowing for flexibil-
ity to adapt the networks at the individual level. The combined
maps Cmapn exhibiting significant changes in stability, allowed
us to avoid the problem of large and unstable Z-scores in regions
where the mean and standard deviation of stability in the con-
trols were close to zero. In order to detect abnormal networks
statistically stable at the level of individuals, we proposed DANI,
which involves the following steps: (i) generation of trimmed sta-
bility maps of each network at the individual level, (ii) assessment
of significant stability variations in FC using Cmapn, (iii) non-
parametric test to automatically detect significant interactions of
modularity changes with other CRSNs.

DANI was first evaluated using realistic simulated data. Our
results demonstrate that detecting modular changes over vari-
ous spatial extents was possible. DANI is sensitive to changes
caused by the addition of structured signal to modify modular
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FIGURE 8 | Evaluation of DANI on Patient 3 with left MTLE. Results are
presenting most salient stability changes observed in Cmapn followed by a
t-map of the BOLD response to epileptic discharges and a postsurgical T2
MRI, all resampled in the native anatomical MRI space of the patient. Most

salient stability changes observed for Cmapn of Visual, Mesolimbic and
Cerebellum networks are presented. The Visual and Cerebellum networks
were also involved in significant interactions of modularity changes at
p < 0.001. Same colormap conventions than in Figure 6.

structures. Whatever was the size of the simulated perturbation,
DANI detected changes in modularity up to an energy ratio of
7 dB between the original signal and the simulated signal. The
criterion to choose an optimal core size μ for the trimmed map
is to be sensitive to small changes without completely changing
the modular structure, when the affected regions were represent-
ing a substantial fraction of the original module. A core size μ of
50% of the most stable regions in each cluster has proven to be a
good candidate to meet this criterion. We showed that when the
perturbed area was spatially limited (1/6th of the networks), the
modular reorganization tended to associate that perturbed zone
with one of the two original networks (the auditory network),
while removing it from the other one (the somato-sensory net-
work). When increasing the size of that perturbation zone, the
new perturbed zone started to overcome the stability of the two
original networks, resulting in the extinction of one or both of the
original networks.

We acknowledge the fact that the proposed method includes a
series of parameters that have to be set, for which the default (rec-
ommended) values are summarized in Table 3. First of all, BASC
and DANI have been applied on a parcellation of the brain in

R = 739 ROIs. These ROIs were obtained using a region-growing
algorithm proposed in Bellec et al. (2006), in order to ensure
homogeneity, over all control subjects, of the measurements on
small functional units or parcels. Although a target subject to be
evaluated using DANI might exhibit slightly different functional
parcels in theory, we believe that those changes will be reflected
in the stability strengths of the regions in question. We there-
fore think that this approach should allow sufficient flexibility
to capture individual changes while maintaining a good consis-
tency across subjects. Moreover, the main reason for applying
BASC and DANI on a parcellation of the brain was for dimen-
sionality reduction purposes, in order to limit the computational
burden of the proposed method. A potential improvement not
explored in this study would be to apply BASC and DANI directly
at the voxel-level instead of the parcel-level. This interesting mod-
ification of the method was out of the scope of the present
study. Secondly, the overall analysis was proposed using a scale
of N = 12 CRSNs, in order to be in agreement with the literature
describing those CRSNs (Damoiseaux et al., 2006; Smith et al.,
2009). However, in BASC, Bellec et al. (2010) suggested and eval-
uated an optimization strategy to estimate the parameters k, L
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FIGURE 9 | Evaluation of DANI on Patient 4 with right MTLE.

Results are presenting most salient stability changes observed in
Cmapn followed by a t-map of the BOLD response to epileptic
discharges and a postsurgical FLAIR MRI, all resampled in the
native anatomical MRI space of the patient. Most salient stability

changes observed for Cmapn of Mesio-Temporal and Mesolimbic
networks are presented. We also present Cmapn of the
Cerebellum network (max. stability increase of 0.48), since it was
involved in significant interactions of modularity changes at
p < 0.001. Same colormap conventions than in Figure 6.

and N for different scales of interest. In this context, it would be
highly relevant in a future study to investigate how the choice of
such a scale could impact the sensitivity and specificity of DANI
results. Finally, when presenting these preliminary results on 6
patients with focal epilepsy, we focussed our interest on the most
salient findings only (cf. Zmaskn threshold at 3.17 (p < 0.001
non-corrected), Cmapn threshold at 0.34 (99.9% percentile over
the control population and maximum Cmapn showing more than
50% of stability changes). It would be relevant to investigate fur-
thermore in a future study, the specificity of the method when
applied on a larger dataset of controls and patients as well as
the reproducibility of the results, using test/re-test reliability for
instance.

DANI was then evaluated on resting state fMRI data from
six patients with focal epilepsy who underwent simultaneous
EEG/fMRI acquisition followed by surgery. Only patients with
a seizure free outcome and at least 12 months follow up were
selected. For all patients, the BOLD responses to epileptic dis-
charges were evaluated as fully or partially concordant with the
location of the resection, following the methodology proposed by

An et al. (2013). Interpretation of BOLD responses for patient 5
and 6 was more difficult (details hereunder). The most signifi-
cant BOLD responses (maximum positive or negative t-values)
were considered to assess the level of concordance between
BOLD results and the location of the resection. Whereas we
acknowledge that BOLD responses are also often found distant
from the presumed focus (e.g., patients 1, 2, and 6), we previ-
ously demonstrated that considering the most significant BOLD
results provided best agreement with the presumed focus and
EEG results (Pittau et al., 2012a; Heers et al., 2014). Overall
DANI identified clearly several outlier networks for each patient.
These changes in the stability of FC patterns were salient, show-
ing increases in stability larger than 0.5, whereas the 99.9%
percentile of stability increase measured over the healthy con-
trols database was 0.34. For 5 out of 6 patient, “abnormal” or
outlier networks closely related to the epileptogenic focus were
detected. We also found reorganizations of some remote net-
works distant from the focus (e.g., Dorsal Attention network and
posterior DMN). These results suggest large reorganization of
FC patterns, extended far the from the focus. Similar findings
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FIGURE 10 | Evaluation of DANI on Patient 5 with left frontal FCD.

Results are presenting most salient stability changes observed in Cmapn
followed by a t-map of the BOLD response to epileptic discharges and a
postsurgical FLAIR MRI, all resampled in the native anatomical MRI space of

the patient. Most salient stability changes observed for Cmapn of Deep Gray
Matter, Sensory Motor, and Dorsal Attention networks are presented. No
networks were involved in significant interactions of modularity changes at
p < 0.001. Same colormap conventions than in Figure 6.

have been suggested in group analysis of MTLE patients (see
Bernhardt et al., 2013; for a recent review), but also in the few
studies including individual level analysis of patients with epilepsy
(Negishi et al., 2011; Stufflebeam et al., 2011; Luo et al., 2014).
Whereas CRSNs observed in healthy controls are usually bilateral,
we identified for 5 out of 6 patients at least one abnormal net-
work exhibiting increase in stability lateralized on the side of the
focus. Despite widespread involvement of several networks, the
importance of laterality in FC patterns of patients with epilepsy
has been suggested as a key feature by several studies (Bettus et al.,
2009; Negishi et al., 2011; Constable et al., 2013; Luo et al., 2014).
For instance, Negishi et al. (2011) proposed to use patient specific
BOLD responses to epileptic discharges to define seeds for a seed-
based FC analysis. They found that poor surgical outcome was
associated with a low degree of laterality of FC maps. The poten-
tial clinical impact of providing accurate and sensitive FC analysis
during presurgical investigation in the context of neurooncology,
epilepsy surgery, and deep brain stimulation has been recently
reviewed by Lang et al. (2014), pointing out the importance
of developing methods dedicated to single subject analysis of
FC patterns.

For patients 1 and 2 who had right orbito-frontal epilepsy,
DANI detected specific reorganization within the Mesolimbic,
Mesio-Temporal and Cerebellum networks. The right orbito-
frontal focus belongs to the Mesolimbic network, which exhib-
ited stability increases in the Mesolimbic and Mesio-Temporal
networks. Interaction between these two networks was not sur-
prising. Concerning the involvement of the cerebellum, BOLD
responses in cerebellum regions during frontal epileptic dis-
charges have been suggested by Fahoum et al. (2012). Several
studies have demonstrated the interaction among brain regions
belonging to the Mesolimbic and Mesio-Temporal networks. This
topic has been recently reviewed for TLE (Cataldi et al., 2013),
but it is much more difficult to establish connectivity starting
from the orbito-frontal region. Whereas the epileptogenic net-
work in TLE is relatively well-characterized (Spencer, 2002) and
encompasses orbito-frontal regions, it is not clear which brain
regions should be part of the orbito-frontal network in epilepsy.
Nevertheless, intracranial EEG studies in orbito-frontal epilepsy
showed that epileptic discharges from the orbito-frontal focus
have the tendency to spread toward the mesial temporal structures
(Munari et al., 1995; Smith et al., 2004).
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FIGURE 11 | Evaluation of DANI on Patient 6 with right frontal

FCD. Results are presenting most salient stability changes
observed in Cmapn followed by a t-map of the BOLD response
to epileptic discharges and a postsurgical FLAIR MRI, all
resampled in the native anatomical MRI space of the patient.

Most salient stability changes observed for Cmapn of Visual,
Cerebellum, and Sensory Motor networks are presented. The
Visual and Cerebellum networks were also involved in significant
interactions of modularity changes at p < 0.001. Same colormap
conventions than in Figure 6.

Table 3 | Parameters used in the method.

Symbol Description Value(s) Default

- Maximal size of a region in the region-growing process 800 mm3 800–1000 mm3

R Number of regions 739 This was obtained by the region-growing
on all controls

k Individual level clustering threshold 13 Estimated using BASC
L Group level hierarchical clustering threshold 14 Estimated using BASC
N Final clustering threshold at the group level 12 Selected scale in agreement with most

literature on CRSNs
µ Core size for estimating the trimmed stability maps 25%, 50%, 75% 50% according to our simulations
- Zmaskn threshold to identify the mask of significant stability changes

(p < 0.001, non-corrected)
3.17 3.17

- Cmapn threshold (combined map assessing the amount of stability change),
selected as the 99.9% percentile estimated over the control population

0.34

- Threshold for the detection of most salient findings: max |Cmapn| >
threshold

0.5 0.5

- Significant level testing for interaction of modularity changes between
network n and CRSN j: λn,j (non-parametric test)

p < 0.001 p < 0.001

List of the parameters that are referred in the method with their respective values as well as the default recommended values.
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For patients 3 and 4 with, respectively left and right MTLE
and hippocampal sclerosis, the most salient findings identified
using DANI involved mainly the Visual, the Mesolimbic and the
Cerebellum networks, as well as the Mesio-Temporal network
(patient 4 only). As stated before, the connection and propaga-
tion pathways between the Mesio-Temporal and the Mesolimbic
regions have been clearly identified in MTLE patients (Spencer,
2002) and associated changes in FC involving these networks
in MTLE patients have been identified by our group Pittau
et al. (2012b) and carefully reviewed in Cataldi et al. (2013) and
Bernhardt et al. (2013). The involvement of BOLD activation in
the mid-cingulate gyri, at the time of temporal lobe discharges,
has been demonstrated by Fahoum et al. (2012). Importantly,
DANI identified clearly lateralizing results, as for instance a left
temporal increase in stability observed for patient 3 within the
Mesolimbic Cmapn, and a right temporal increase in stability
observed for patient 4 within the Cerebellum Cmapn. The impor-
tance of laterality patterns in FC studies in MTLE has been
suggested in Bettus et al. (2009) showing increased connectivity
between temporal regions contralateral to the focus and in Pittau
et al. (2012b) showing decreased connectivity between ipsilat-
eral and contralateral temporo-mesial regions. Interestingly, the
Visual network Cmapn was detected by DANI for both patients.
Stability increases consisted mainly in lateral parts of this net-
work, containing the fusiform gyri. These regions are secondary-
association visual and memory areas and are connected to the
posterior part of mesial and lateral part of the temporal lobes.
Note that for patient 3, stability increases in Visual network
Cmapn were also found in subcortical sutructures (thalamus and
putamen).

Overall results obtained for patients 5 and 6 were less obvious
to interpret. Differently from the first four cases, some concerns
were raised regarding the BOLD responses to epileptic discharges:
case 5 had a deactivation only partially concordant with the loca-
tion of the resection; in case 6 the whole BOLD response was
affected by motion artifacts, and only a part of the activation was
found in “partial” agreement with the resected area. In both cases,
the lesion consisted in a relatively focal dysplasia clearly identi-
fied on structural MRI data and the resection was circumscribed
to the lesion. Some interesting findings were observed for patient
6, showing some partial concordance between a right postcentral
increase in stability observed for the Cerebellum network Cmapn,
stability increase within the sensory motor network, a right cen-
tral BOLD activation and a right precentral lesion. However, the
fact that a small resection allowed these patients to become seizure
free suggests that the network reorganization was less spread spa-
tially, despite clear involvement of the sensory-motor network for
patient 6.

For 4 out of 6 patients, DANI detected the Dorsal Attention
network as abnormal, showing mainly stability increases within
itself but also in posterior and anterior DMN regions and
Mesolimbic regions. Overall, these network reorganizations were
bilateral and distant from the focus. Whereas an involvement of
DMN is well-known for patients with temporal and extratem-
poral lobe epilepsy (Laufs et al., 2007; Kobayashi et al., 2009;
Fahoum et al., 2012), the attention network has been less studied,
especially in patients with extratemporal lobe epilepsy, probably

because of the difficulty of finding homogeneous groups for this
type of epilepsy. Nevertheless, the involvement of the dorsal atten-
tion network has been demonstrated as impaired in patients with
TLE (Zhang et al., 2009), frontal epilepsy (Fahoum et al., 2012)
as well as in patients with epileptic syndromes (Vaudano et al.,
2014).

In the last decade connectivity studies have shed light to several
aspects of the epileptic brain. However, clinical applications (for
diagnostic or prognostic purposes) of each method, including
our proposed method DANI, require further validations before
being consistently applied to the clinical management of the single
patient. Moreover, it is important to remember that each diagnos-
tic technique has to be integrated with all the other clinical and
diagnostic data of the individual patient.

CONCLUSION
We proposed DANI as a new method to capture inter-individual
variations in RSNs, and assess its performance in realistic simu-
lations and its potential usefulness in patients. DANI is based on
an extension of the BASC method to extract FC networks, allow-
ing the assessment of statistical stability in RSNs at the individual
level. Our results suggest that the ability of the method to cap-
ture modular changes is affected by the core size used to obtain
the trimmed map. BASC is indeed sensitive to modular changes
within the FC structure of a subject and DANI is able to detect
small perturbations of those modules as well as the fusion of
areas of various sizes with good sensitivity. The evaluation of the
method on subjects with epilepsy identified in most cases (5/6)
abnormal networks exhibiting significant changes in FC stability
closely related and lateralized to the epileptogenic focus. These
results are encouraging since the findings are supported by other
modalities and were obtained without any prior on the disease.
DANI also showed the involvement of distant networks, not con-
taining the focus, suggesting remote reorganization. Although the
fact that focal epilepsies affect distant networks is more and more
recognized (Richardson, 2012), it is still premature to evaluate
whether significant changes in FC are linked to effects of the dis-
charge of the individual patient, or to other effects more remotely
associated to the epilepsy of the patient (e.g., effect of medication,
neuropsychological impairment). Clinical studies involving more
patients and a specific comparison with the epileptogenic network
of each patient will be required to investigate these issues.

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and
Engineering Research Council of Canada Discovery Grant
Program (Christophe Grova) and the Canadian Institutes
of Health Research MOP 38079, #130442 (Jean Gotman).
Christophe Grova was also supported by a salary award from the
Fonds de Recherche en Santé du Québec (FRSQ). We would like
to thank Dr. D. An for providing help in patients selection and
Natalja Zazubovits for EEG/fMRI data acquisition. We would like
to thank the neurologists Dr. F. Dubeau and Dr. E. Kobayashi as
well as the neurosurgeons Dr. J. Hall and Dr. A. Olivier for pro-
viding clinical information and post-operative MRI data on the
selected patients.

www.frontiersin.org December 2014 | Volume 8 | Article 419 | 19268

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Dansereau et al. Detection of abnormal resting-state networks in individuals

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.2014.
00419/abstract

Figure S1 | Data workflow used to generate the combined significant

stability-map Cmapn comparing, for one particular network, the trimmed

stability map of one subject vs. the population of controls. A binary mask

Zmaskn assessing significant changes in local stability is first estimated.

This binary mask is then applied to the subject trimmed stability map

centered using the mean stability of all controls. Cmapn allows the

identification of most stable regions showing significant changes in

stability when compared to the average of controls. In this example,

Cmapn of the auditory network identified an increase in stability in

bilateral Thalami. Note that the most posterior region also identified in

Zmaskn was not detected in Cmapn, because it was associated with very

low stability values.

Figure S2 | Method used to combine some structured noise time-series

with the original fMRI signal of the sensory-motor and auditory network

time-series. This process is repeated for each region of these two

networks located inside the red area corresponding to the simulated

perturbed zone. The structured noise consisted in the averaged

time-series of the visual network of an independent control, thus

introducing additional correlations between the auditory and

sensory-motor networks.
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One of the most significant impediments to high-quality EEG recorded in an MRI scan-
ner is subject motion. Availability of motion artifact sensors can substantially improve the
quality of the recorded EEG. In the study of epilepsy, it can also dramatically increase the
confidence that one has in discriminating true epileptiform activity from artifact. This is
due both to the reduction in artifact and the ability to visually inspect the motion sen-
sor signals when reading the EEG, revealing whether or not head motion is present.
We have previously described the use of carbon fiber loops for detecting and correcting
artifact in EEG acquired simultaneously with MRI. The loops, attached to the subject’s
head, are electrically insulated from the scalp. They provide a simple and direct mea-
sure of specific artifact that is contaminating the EEG, including both subject motion and
residual artifact arising from magnetic field gradients applied during MRI. Our previous
implementation was used together with a custom-built EEG–fMRI system that differs sub-
stantially from current commercially available EEG–fMRI systems. The present technical
note extends this work, describing in more detail how to construct the carbon fiber motion-
detection loops, and how to interface them with a commercially available simultaneous
EEG–fMRI system. We hope that the information provided may help those wishing to uti-
lize a motion-detection/correction solution to improve the quality of EEG recorded within
an MRI scanner.

Keywords: EEG–fMRI, motion detection, cardioballistic artifact, cardioballistic artefact, gradient artifact, gradient
artefact, artifact removal, artefact removal

SAFETY WARNING
This technical note describes construction and application of
carbon fiber motion-detection leads. We have used these for
simultaneous EEG–fMRI experiments, where a number of safety
measures that are not detailed in this document have been taken
to avoid inducing large currents causing injury. If you are con-
sidering use of similar equipment in an environment such as an
MRI scanner then it is essential that you understand the safety
implications. We recommend you to consult the literature for
further information, for example, Ref. (1–3). We have used our
leads with an EEG system that we developed in-house, and with
commercially available systems. However, there is no guarantee
that these leads will work properly with your EEG equipment.
If you wish to use similar leads with a commercial EEG system
then you should consult the manufacturer to ensure that there are
no additional compatibility or safety issues. You should conduct
your own testing to ensure the safety of the leads in your desired
application.

DISCLAIMER
The authors do not warrant the quality, accuracy, completeness,
or suitability of any information in this note. The information is
provided “as is” without representations, warranties, or conditions
of any kind, express, or implied. Your use of any information

herein is entirely at your own risk. In no event shall we be liable
for any damages whatsoever, including special, indirect, or conse-
quential damages, arising out of or in connection with the use of
information in this note.

INTRODUCTION
This technical note is provided to assist those wishing to construct
carbon fiber motion-detection loops for use with simultaneous
EEG–fMRI apparatus. Please read and understand both the safety
warning and disclaimer above. Wires in an MRI scanner can be
very dangerous if the proper precautions are not taken; these
precautions are beyond the scope of this note.

Motion (including cardioballistic) artifact can be measured
using insulated carbon fiber loops that are physically but not
electrically attached to the subject’s head. The signals generated
by small movement of these wires in the magnetic field are then
used to estimate and remove motion artifact from the EEG. We
have already described, demonstrated, and validated the approach,
elsewhere (4). The purpose of the current note is to assist those
wishing to build their own motion detector loops as, at the time
of writing, we are not aware of an equivalent commercially avail-
able product. We also describe how these motion loops can be
used in conjunction with commercially available MRI-compatible
EEG equipment. Adaption to a commercial system incorporates
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additional processing steps to minimize the impact of motion on
gradient artifact reduction. These steps were not required for our
custom EEG system as it avoids the gradient artifact during the
EEG recording. In currently available commercial systems, the
gradient artifact is fully recorded by the EEG system and the sub-
sequent average-artifact correction techniques can be confounded
by subject motion artifact.

Availability of direct motion artifact sensors can substantially
improve the quality of the recorded EEG. In the application to
which we most often use the system – the study of epilepsy, it can
also dramatically increase the confidence that we have in discrim-
inating true epileptiform activity from artifact. This is due both
to the reduction in artifact and the ability to visually inspect the
motion sensor signals when reading the EEG, revealing whether
or not motion is present (5). Aside from motion-detection loops,
other methods for microscopic subject motion detection may be
suitable to reduce motion artifact in EEG acquired in an MRI
scanner. For example, a promising optical moiré phase tracking
method has recently been proposed (6). However, the carbon fiber
loops that we describe herein confer the advantage of being a sim-
ple direct measure of specific artifact that is contaminating the
EEG, including both subject motion and residual artifact arising
from magnetic field gradients applied during MRI.

Carbon fiber electrodes have been constructed at our insti-
tute and used in-house with our 3 T MRI scanner since the year
2000 with no adverse effects; for example, Ref. (7–14). We have
also used carbon fiber cables and electrodes for intracranial EEG
in sheep (15). Subsequently, we developed motion detector loops
(4), which are carbon fiber loops constructed in a similar manner
to our electrode leads. We began using these loops in conjunc-
tion with our own in-house-built MRI-compatible EEG recording
equipment, for example, Ref. (4, 5, 16–24) and more recently
we adapted them for use with a commercially available MRI-
compatible EEG recorder (BrainAmps, BrainProducts, Germany);
it is these particular leads that we describe in this note.

METHODS (LOOP CONSTRUCTION)
The lead is constructed from bundles of carbon fiber thread
(~1 mm bundles) enclosed in 2 mm diameter polyethylene tubing.
At the amplifier end, the carbon fiber is crimped onto an appro-
priate connector to interface with the amplifier (e.g., a standard
1.5 mm touch-proof medical connector).

KEY COMPONENTS
Carbon fiber
This comes in many forms, but to make our “wire” we use
weaved mats or tape, and small (1–2 mm diameter) bundles can
be extracted from these. The length of the bundle used to make
the wire will be determined by their intended use. We routinely
constructed 2 m lengths of wire to reach from the back of our MRI
scanner to the patient’s head. We have managed to source long
enough offcuts on eBay as needed (Figure 1).

Polyethylene tubing
The carbon fiber will be threaded into lengths of PE tubing.
We use 2 mm diameter tubing that we obtained from Microtube

FIGURE 1 | Roll of carbon fiber tape from which bundles of “wire” can
be extracted.

FIGURE 2 | Ferrules.

Extrusions Pty Ltd. in Australia [PE tubing 2.08 mm× 1.57 mm,
rolls (30 m), Product Code PE208157]1.

Ferrules
In order to make an electrical and physically robust connection
between the carbon fiber and any metal components such as resis-
tors, RF absorbers, or wire, we use ferrules (Figure 2) that can
be fitted into the PE tubing and crimped down onto the carbon
fiber and metal component. We obtain ferrules from element14
Pty. Ltd. in Australia [Ferrule, 1.0 mm (Packs of 100) Order Code:
224868]2.

RF absorber
In order to reduce radiofrequency contamination of the signal, we
attach an RF absorber to the electrode at the amplifier end of each
insulated carbon fiber wire (this is shown later in Figure 10F).
We use a Chomerics CHO-DROP® EMI absorber (part number
80-10-9714-1000), which has a specified insertion loss of 15 dB at

1http://www.microtube.com.au/
2http://au.element14.com/
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FIGURE 3 |Touch-proof safety connectors.

100 and 150 MHz. We obtain these from element14 Pty. Ltd. in
Australia (Order Code: 152658)2.

Resistors
We place a resistor of 32 kΩ in series with each motion loop. The
value was chosen conservatively to be at least twice the measured
DC resistance of a circuit consisting of two of the EEG electrodes
supplied with the BrainAmps system. This resistor dominates the
circuit, as the carbon fiber lead resistance is of the order of just a
couple of 100 Ω.

Connectors
To connect the insulated carbon fiber wires to the amplifier, we
use individual standard touch-proof safety connectors (Figure 3)
sourced from element14 Pty. Ltd. in Australia [Touch-proof Plugs
(typical EEG safety connectors); Pack Type: Black, Red (Packs of
4) Order Code: 41300, Pack Type: Multicolor (Packs of 6) Order
Code: 1085511].

CONSTRUCTION
We first determine the length desired for the cables. We require
different length wires for our different scanners; this depends on
the room and scanner configuration. We then cut the carbon fiber
tape and PE tubing to the appropriate length. We allow a little extra
at this stage to allow for braiding of the cables later.

Making the cable
Carbon fiber tape often comes in a simple weave, and it is possi-
ble to extract the fiber in bundles, a millimeter or so in diameter
(Figure 4). Inserting the fiber into the PE tubing is one of the
more tedious parts of the job. We create a simple guide wire to
help thread the carbon fiber (Figure 5). The guide wire is a long
piece of thin, fairly stiff wire that can be threaded through the PE
tubing. The wire must be longer than the PE tubing and much
thinner than the diameter of the bore of the PE tubing. We bend

FIGURE 4 | Extracting carbon fiber bundles from woven tape.

FIGURE 5 | Guide wire used to help thread carbon fiber through the PE
tubing.

a tight hook onto one end of the wire in order to catch the carbon
fibers and drag them back through the PE tubing.

Since we need to pull the carbon fiber and wire back through the
tubing, it works best if the wire is quite thin and has no kinks in it.
Any kinks will increase the friction, and make the job a lot harder,
and it may even result in perforation or tearing of the PE tubing. It
is very important that the tubing has no holes in it where current
may leak as that would be a significant patient safety problem.

We find the easiest way to thread the carbon fiber is to first lay
out the length of PE tubing on a long table. It will work best if
the table is longer than the intended cable. We tape the tubing in
a straight line (Figure 6A), then carefully push the wire through
the PE tubing until it comes out the other end (Figures 6B,C).
Then, we catch the end of the length of carbon fiber with the wire
hook and carefully pull the fiber all the way through the PE tub-
ing (Figures 6D,E). Once we have an insulated carbon fiber cable
(Figure 7), we visually check the cable closely to ensure that there
are no tears or perforations.

Turning the insulated carbon fiber cable into movement detectors:
We use three movement detection loops to ensure artifact sig-
nal arising from movement in all three spatial dimensions can be
captured. We have made them so that they can be individually
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FIGURE 6 |To thread the guide wire through the PE tubing: (A) tape
the tubing in a straight line then (B) carefully push the wire through
the PE tubing until (C) it comes out the other end. Then (D) catch the
end of the length of carbon fiber with the wire hook and (E) carefully pull
the fiber into and then all the way through the PE tubing.

FIGURE 7 | Carbon fiber successfully threaded through PE tubing.

positioned on the patient’s head in an approximately orthogonal
spatial arrangement. To make the three movement sensors, four
carbon fiber cables are used. Three (the sensors) have double loops
introduced near the head end (with a diameter of around 5 cm)
and the fourth (the ground) remains straight. After each move-
ment sensor cable leaves the double loop, the exposed carbon fiber

FIGURE 8 | Schematic diagram of carbon fiber movement loops. Each
loop has a diameter of approximately 5 cm, and all three loops share a
common ground carbon fiber wire.

FIGURE 9 | Photograph of completed carbon fiber movement
detection loops.

is twisted with the common ground fiber (Figure 8) and these are
secured as best as possible and completely insulated with layers of
heat-shrink tubing.

Due to the large loops of carbon fiber wire used in these
motion detectors, there is an increased chance of heating or
current leakage compared to conventional EEG electrodes. There-
fore, we take an extra precaution and place the movement
loops on a bed of neoprene of at least 4 mm thickness (4)
(Figure 9).

Aside from the large intentional loops insulated on the bed of
neoprene, it is important that we have no other loops near the
patient that may compromise safety. Therefore, we construct a full
lead set and adjust the length of each individual cable to min-
imize slack. We also plait the cables (this is critically important
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for EEG electrodes to reduce the gradient artifact as it minimizes
loop area and provides some cancelation of currents that would
otherwise arise from the remaining small loop area; it may be
less important for motion loops since they are designed to mea-
sure artifact, however, it does help keep the cable organized). It
is important to ensure that there is enough length of cable on
each individual motion loop before plaiting starts to accommo-
date the largest of head sizes. We have studied over 250 people
from 4 to 60 years of age with widely different head sizes and
shapes with the same motion-loop set. Our plaiting starts a short
distance (15–20 cm) from the vertex of the head with our cur-
rent MRI head-coil configuration; the electrodes will leave the
head from the vertex and travel down the bore of the magnet
away from the patient. We use cotton thread to tie the cable bun-
dle together at each end to stop the plaiting from unwinding,
and also periodically along the length of the bundle to keep it
tight.

Once all the cables are plaited and bundled together, they may
end up having slightly different lengths. We trim some of the longer
ones at this stage so that our final connections will be tidy. We also
label each cable at each end to aid troubleshooting. We do this
using printed paper labels that we slip under a section of clear
heat-shrink tubing (these labels will survive our normal between-
subject cleaning protocol). The labeling must be completed before
the addition of components at the amplifier end of the cable.
Applying the heat shrink can be tricky because the PE tubing will
deform if it gets too warm. It can take a little practice to get this
right, so we practice on some offcuts first until we are comfortable
with the process.

Connecting to the amplifier
At the amplifier end of each cable, we attach an RF absorber to
limit RF contamination of the signal of interest. This is partic-
ularly important for EEG electrodes as the absorber will filter
noise from the EEG electronics escaping the EEG shielded box,
and present high impedance to the patient. For the motion loops,
we ideally want the artifact measured to be similar to that con-
taminating the recorded EEG, so we use a similar RF absorber.
Note that the amplifier in our setup is sufficiently far from the
head and outside the bore of the magnet so we can use a small
amount of non-magnetic metal that will not compromise the
imaging.

We also need to attach the carbon fiber to some sort of input
plug for the amplifier. We do this by physically crimping the car-
bon fiber onto a ferrule threaded over the carbon fiber and inserted
into the bore of the PE tubing. In order to make this connection
more secure, we also fold the carbon fiber back on itself and hold
it in place with some heat-shrink tubing. These steps are explained
in more detail below.

First, we thread a small length of heat-shrink tubing onto the
carbon fiber cable. Then, we draw the carbon fiber through the
ferrule. While it might be possible to simply push the carbon fiber
through the ferrule without a guide wire, we found this very dif-
ficult. Therefore, we again utilize the wire hook technique: for
this purpose, we make another, smaller guide wire (Figure 10A).
We thread the wire hook through the ferrule, and then catch the
very end of the carbon fiber in the hook (Figures 10B,C). We

then carefully pull the wire hook through the ferrule and the fiber
comes with it (Figure 10D). We feed the carbon fiber through
the ferrule until it is up against the PE tubing, and then push
the ferrule into the PE tubing. If chosen appropriately, the fer-
rules fit snugly into the bore of the PE tubing (Figure 10E). Next,
we fold the wire coming out of the RF absorber and push that
into the ferrule (Figures 10F,G). We then use crimping pliers to
firmly crimp the ferrule onto the carbon fiber/RF absorber wire
(Figure 10H). Finally, we trim the excess carbon fiber and thread it
back through the heat-shrink tubing that we put on the electrode
cable earlier. We push this up to the RF absorber (Figure 10I) and
then apply some heat to the heat-shrink tubing to hold the excess
carbon fiber firmly. We make sure that there is no carbon fiber
exposed outside of the heat-shrink, as this may cause the cable to
short out if it touches any other conducting surface. We some-
times need to use another piece of heat-shrink to cover any loose
ends.

We now have a piece of wire (the other end of the RF absorber)
connected to the carbon fiber cable that we can solder things
onto. We use short color coded wires, soldering one end to the
RF absorber and the other end to the connector (Figure 10J). We
also label the individual wires to help with troubleshooting and
cover any exposed surfaces with heat-shrink tubing (remember-
ing to slip the heat-shrink over the wire before soldering the final
end of the wire on to the connector).

METHODS (APPLICATION)
We have previously described the principle of operation and vali-
dated the use of our motion loops for reduction of motion artifact
when used with our in-house EEG–fMRI system (4). We take the
opportunity in the present technical note to show that the system
can also be successfully employed in conjunction with a commer-
cially available fMRI-compatible EEG system: BrainAmp MR from
Brain Products GmbH.

SUBJECTS
A healthy male subject aged 25 years and a female epilepsy patient
aged 12 years, were studied. The patient had experienced seizure
onset at the age of 3 years with electrographic diagnosis of con-
tinuous spikes and waves during sleep (CSWS) at age of 6 years.
Ethical approval for this study was obtained from the Austin
Hospital Human Research Ethics Committee. Written informed
consent was obtained from the healthy subject and the father of
the patient.

DATA ACQUISITION
Functional MRI of the healthy subject was acquired with
a Siemens MAGNETOM TRIO MRI scanner (Siemens Med-
ical Solutions, Erlangen, Germany) equipped with a Siemens
Tx/Rx CP Head Coil. A gradient-echo echo-planar imaging
(EPI) sequence was utilized with TR= 3 s; TE= 30 ms; flip
angle= 85°; FOV= 216 mm× 216 mm; 72× 72 matrix; voxel size
3 mm× 3 mm× 3 mm; 44 contiguous slices 3 mm thick, provid-
ing whole-brain coverage. Two hundred T2*-weighted whole-
brain volumes were acquired in a 10 min scanning session.

Functional MRI of the patient was acquired with a Siemens
MAGNETOM Skyra MRI scanner (Siemens Medical Solutions,
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FIGURE 10 | Assembling the amplifier end of the carbon fiber cable.
First, we thread a small length of heat shrink tubing onto the carbon
fiber cable. Then a small guide wire (A), is fashioned into a hook and
used to thread the carbon fiber through a ferrule (B), by catching the
very end of the carbon fiber in the hook (C), and carefully pulling the
wire hook through the ferrule (D). We feed the carbon fiber through the
ferrule until it is up against the PE tubing, and then push the ferrule into
the PE tubing (E). Next, we fold the wire coming out of the RF Absorber

and push that into the ferrule (F,G). We then use crimping pliers to
firmly crimp the ferrule onto the carbon fiber/RF Absorber wire (H). We
trim the excess carbon fiber and thread it back through the heat shrink
tubing that we put on the electrode cable earlier. We push this up to the
RF Absorber (I), and then apply some heat to the heat shrink tubing to
hold the excess carbon fiber firmly. Finally, we solder a short color-
coded wire to the other end of the RF Absorber and connect the wire to
a touch-proof connector (J).

Erlangen, Germany) with an otherwise similar setup to that
described above. Six hundred T2*-weighted whole-brain volumes
were acquired in a 30 min scanning session.

EEG for both subjects was acquired using a Brain Products
MR-compatible EEG system configured for 32-channel operation
(BrainCap MR from EASYCAP GmbH). The cap is fitted with 32
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FIGURE 11 | Precise positioning of the motion loops is not critical;
however, they should be placed on the head in an approximately
orthogonal orientation, so they capture the effect of motion in any
direction (i.e. no loop should be parallel to another).

electrodes (including the reference) with sintered Ag/AgCl sensors.
Electrodes were arranged according to the international 10–20 sys-
tem. Electrocardiogram was recorded using an electrode placed
on the subject’s back. Head movement detection loops (perma-
nently attached to a bed of 4 mm thickness neoprene as shown in
Figure 9) were placed on top of the EEG cap such that loop orien-
tations were approximately mutually orthogonal. As a convenience
measure, prior to placing the loops, we wrapped the electrode cap
with a bandage to avoid getting surplus electrode gel on the motion
loops (Figure 11). The loops were then affixed in place with fur-
ther bandages. The EEG amplifier (BrainAmp MR, Brain Products
GmbH) and peripheral signal amplifier used for the motion loops
(BrainAmp ExG MR, Brain Products GmbH) were placed outside
the scanner bore. The cables connecting the EEG cap and motion
loops to the amplifiers were run down the center of the scanner
bore, fixed in place using plastic piping and sandbags (Figure 12).
The amplifiers were connected via fiber optic cabling to a com-
puter outside the scanner room. The EEG clock was synchronized
with the MRI scanner’s clock using Brain Products’ SyncBox. EEG
was acquired using BrainVision Recorder using a sampling rate of
5000 Hz.

HEALTHY SUBJECT PARADIGM
EEG was first recorded for 10 min outside the scanner. The subject
was verbally instructed to open and close eyes for alternating peri-
ods of 30 s. The subject was then moved to the MRI scanner where
they were verbally instructed to open and close eyes for alternating
periods of 30 s for the first 5 min of the fMRI scanning. For the
next 5 min, the subject was instructed to keep their eyes closed.
This 10 min paradigm was then repeated in a second study within
the same scanning session, with the subject additionally instructed
to occasionally move their head at random times of their choice
throughout the scan.

EPILEPSY PATIENT PARADIGM
EEG was first recorded for 10 min outside the scanner to cap-
ture the morphology and distribution of epileptic discharges. The

FIGURE 12 | Photographs of inside-MRI-scanner EEG equipment layout
similar to that utilized in the present experiment. To obtain a clear view,
these photographs were taken in our mock-scanner; in our real scanner, we
use a head coil that permits entry of the cables directly from the rear.
(A) The EEG amplifier and peripheral signal amplifier are both placed
outside the scanner bore and the cable connecting the EEG cap to the
amplifiers fixed in place in the center of the bore using plastic piping
covered with sandbags, suspended on pieces of thick foam padding.
(B) View of the cables with the sandbags removed.

patient was instructed to keep their eyes closed for the duration
of the recording. The patient was then moved to the MRI scanner
where they were instructed to close their eyes during scanning,
and encouraged to fall asleep.

OFFLINE EEG ANALYSIS
Offline analysis of the EEG data was performed using BrainVision
Analyzer 2.0 software as follows:

1. Removal of MR gradient artifact from the EEG and motion-
loop signals using a sliding average artifact template subtraction
method. Twenty-one volume intervals (each corresponding to
one TR= 3 s) were used to compute each average.

2. EEG and motion-loop signals downsampled to 250 Hz.
3. EEG and motion-loop signals low- and high-pass filtered

at 70 and 0.5 Hz, respectively (Butterworth zero-phase filter,
48 dB/octave).

4. Motion/cardioballistic artifact (CBA) correction was then per-
formed using two different methods, each in separate analysis
streams that could be subsequently compared. The first method
is a conventional method that does not utilise the motion
loops. The second method utilises the motion loop signals.
The methods are described below.

Method 1: cardioballistic artifact removal using BrainVision
Analyzer algorithm. CBA removal was performed by identi-
fying R-peak markers of each QRS complex from the ECG
channel (R-peak search parameters: 60–100 pulses/min; aver-
age pulse length 800± 200 ms), and then performing a sliding
average artifact template subtraction (25), with each subtrac-
tion template consisting of 21 R-peak intervals. The delay time
(i.e., the time between the R-peak of the ECG and the CBA
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peak in the EEG trace) was computed across the whole EEG
recording and used to center the artifact correction template
to improve correction of each CBA episode (average delay
time was 0.408 s for the healthy control, and 0.100 s for the
patient).
Method 2: cardioballistic/motion artifact removal utilizing sig-
nals derived from the three motion loops. An estimate of the
artifact contained in each recorded EEG channel was derived
from the motion-loop signals and then subtracted from the
EEG (4). In the present implementation, this was achieved using
a multi-channel least squares algorithm implemented as an
external custom MATLAB procedure called from BrainVision
Analyzer (see Appendix).

We then took additional steps to check for and, if necessary,
mitigate the effect of motion deleteriously affecting the average-
gradient-artifact correction procedure. We first checked for the
presence of large EEG signal likely due to motion so extreme that
the motion-loop procedure was unable to remove it from the
EEG. Specifically, we used the automated “raw data inspection”
procedure available in BrainVision Analyzer software, applied
to the motion-corrected EEG channels, to automatically search
and mark periods of large EEG signal change as bad. Three crite-
ria were used as follows: (i) “Check Gradient” was used to detect
EEG signal amplitude steps >50 µV/ms and these were marked
as bad commencing 200 ms before and concluding 200 ms after
each instance; (ii) “check min/max amplitude” was used to
mark as bad time intervals of 200 ms in which the maximum–
minimum amplitude exceeded a threshold of 200 µV; (iii)
“check minimum and maximum allowed amplitude” was used
to mark as bad any instance of values lower than −200 µV or
higher than +200 µV, with the excluded window commencing
200 ms prior and extending 200 ms after the deleterious event. If
any epochs of large amplitude/change were identified, the gra-
dient artifact subtraction was re-done as follows: the markers
were upsampled to 5 kHz to match the original EEG acqui-
sition. The gradient artifact correction steps 1–3 above were
then re-done on the original uncorrected EEG and motion-loop

signals, informing the procedure not to use the marked-as-bad
epochs when generating average gradient correction templates.
Finally, the (possibly improved) motion-loop signals were then
inspected using the “raw data inspection” routine to detect sig-
nificant motion (using a tighter constraint for“Check minimum
and maximum allowed amplitude,”marking as bad any instance
of values lower than−100 µV or higher than+100 µV). If any
was found in epochs not already marked as bad, the gradient
artifact correction steps 1–3 above were re-done once more, this
time excluding the expanded set of bad epochs. An estimate of
the artifact contained in the newly processed EEG signals was
then derived from the newly processed motion-loop signals and
the artifact was subtracted as before.
Note that the voltage settings that we used in the “raw data
inspection” step were chosen heuristically. Appropriate settings
are likely to vary between systems. For example, the voltages
returned by the motion loops will depend upon the area and
number of turns of the constructed loops as well as the magnetic
field strength of the MRI.

RESULTS
The measured resistance of a single electrode included with our
BrainAmps system was 10 kΩ. Thus, a circuit consisting of two
electrodes would be at least 20 kΩ. Allowing for scalp impedance
(typically 8–10 kΩ as measured by the BrainAmps equipment at
15 Hz) and a comfortable margin, we selected a 32 kΩ resistor to
use in series with each of our motion loops.

EPI image quality with the EEG leads and motion loops in place
was acceptable (Figure 13). There were no adverse effects related
to the use of the motion loops during this or any other study
at our site. Segments of EEG demonstrating the performance of
each motion removal method are displayed for the healthy subject
in Figure 14 and for the epilepsy patient in Figure 15. A par-
ticularly extreme motion event example from the second study
undertaken by the healthy control is also shown in Figure 16 to
specifically demonstrate the ability of motion-loop correction to
reduce propagated artifact related to motion contamination of the
average-gradient-artifact correction template.

FIGURE 13 | Every fourth slice of an EPI volume acquired from the healthy subject while simultaneous EEG recording was in progress.
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DISCUSSION
We have described the methods that we use to construct and utilize
carbon fiber motion loops with a commercially available EEG–
fMRI system. We observe that the quality of the EEG corrected
by motion-loop signals is often superior to that of conventional
software-only correction methods, especially in the presence of
non-periodic motion. When applied in the study of epilepsy, the
motion loops also confer the advantage of displaying a direct mea-
sure of artifact to the EEG reader, providing information that can
increase confidence in EEG mark-up.

MITIGATING PROBLEMS WITH GRADIENT ARTIFACT CORRECTION
We have previously described the use of motion loops in con-
junction with an EEG–fMRI system that we built in-house. In
that EEG–fMRI system, gradient artifact was largely avoided dur-
ing acquisition of the EEG, so average-gradient-artifact post-
processing was not required. In current commercially available
systems, a different approach is taken to gradient signals: the
EEG including gradient artifact is measured in its entirety. A
gradient-artifact-removal post-acquisition processing step is then
performed – typically a gradient artifact waveform template of
temporal length TR (the MRI repetition time) is determined by
averaging the EEG over a number of successive time windows
each of length TR. This can provide a good estimate of the gra-
dient artifact, while the physiological signals of interest tend to
average close to zero in the template. However, subject motion
can contaminate the estimate of the average gradient artifact. This
can then degrade the corrected EEG for the entire time period
in which the affected average gradient template is used. A par-
ticularly severe example of this is shown in Figure 16A – gross
motion has occurred to the extent that even the fraction 1/21

of the resultant artifact is substantial and this fraction has been
propagated to surrounding epochs during the average template
subtraction procedure (the template being an average of 21 epochs
of length TR). This type of artifact also substantially affects gra-
dient correction of the motion-loop signals, so it is difficult to
be sure whether or not the motion-loop signals and EEG con-
tain propagated or real motion or both. In the case of Figure 16,
exclusion of the extreme epoch worked well to avoid large con-
tamination of the average-gradient-artifact correction, as shown
in Figure 16B. There are several methods available to help iden-
tify and remove such extreme epochs [for a comparison of several
gradient-artifact-removal algorithms, see Ref. (26)]. However, the
intent of this motion example is to illustrate that the motion loops
alone can mitigate failures in gradient artifact removal, and assist
with identification of real motion events. Figure 16C demonstrates
that subtraction of the fitted motion-loop signals has alone almost
completely removed the artifact that was propagated during gra-
dient artifact pre-processing, even in this extreme example. The
noise reduction benefits of the motion-loop subtraction method
therefore include reduction of any directly measured motion arti-
fact and reduction of artifact resulting from imperfect gradient
artifact removal. In practice, we recommend an iterative proce-
dure as this process yields the cleanest EEG (e.g., Figure 16D).
The second iteration avoids average gradient template contami-
nation by extreme events identified after the first iteration. This
iterative process is more straightforward when motion loops are
used because there can be a clearer distinction in the EEG between
potential non-motion epochs and extreme real motion epochs
(compare, for example, Figures 16A,C). The final iteration avoids
average gradient template contamination by more subtle motion
events that can now be identified from the improved motion-loop

FIGURE 14 | EEG of the healthy subject shown in longitudinal
bipolar (“double banana”) montage. In every figure (A–D), the lower
three traces are motion-loop signals. (A) Ten second segment of EEG
recorded outside the MRI scanner selected to show eyes closed then,
following the time point indicated by the arrow, eyes open. Typical
prominent alpha activity in the absence of MRI artifact is clearly evident

while the subject’s eyes are closed; a brief blink artifact is then evident
as the subject opens their eyes at the time indicated by the arrow,
followed by reduced alpha activity during the eyes open condition. Any
motion of the subject is not detectable in the motion loops because
they are not in a magnetic field.

(Continued)
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FIGURE 14 | Continued
(B–D) a 10 s segment of eyes-closed EEG recorded inside the scanner
during fMRI acquisition, selected to include an obvious large
movement event at the time indicated by the orange bar: (B) result
when the EEG is corrected using conventional average-pulse-artifact

subtraction; (C) result when motion-loop artifact removal is applied;
(D) expanded overlay of four selected EEG channels more clearly
demonstrating the superiority of the motion-loop artifact removal
technique (black trace) compared to conventional pulse-artifact
subtraction (red trace).
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signals of the second iteration, because the motion loops are no
longer substantially contaminated by propagated artifact from the
more extreme events. The more subtle events may not have been
detected in the EEG at the first iteration because they are more
effectively removed by the motion-loop subtraction. Of course,
the average gradient template subtraction procedure only needs
to be re-run at each of these stages if additional bad epochs are
actually detected.

Due to the high amplitude, high frequency, and highly con-
sistent periodic nature of the gradient artifact, the procedure
described above is substantially more effective than attempting
to correct the entire gradient artifact by direct regression of the
three motion-loop measurements. However, if residual gradient
artifact is present in the EEG after this procedure (even if not as
obvious as the extreme motion example presented in Figure 16), it
will also be present in the motion-loop signals and so will be fur-
ther attenuated by the subsequent motion-loop artifact regression
procedure.

LIMITATIONS AND POTENTIAL TO DETECT RAPID MOTION THAT MAY
ALSO AFFECT fMRI
We have previously shown that if motion artifact is too extreme, the
motion-loop correction procedure is unable to effectively remove
the contamination (although the motion loops do at least alert
the user to the presence of motion in those circumstances) (4).
Figure 16 provides another demonstration of this limitation: while
the propagated artifact could be removed, in this example, the
epoch in which the actual motion event occurred could not be
adequately corrected, suggesting substantial non-linear effects. We
wondered how much motion had occurred during this epoch. It is
not possible to determine the absolute amount of motion from our
uncalibrated motion-loop signals. The magnitude of the artifact

depends upon the rate of change of magnetic flux through the loop
formed by the conductor, which in turn depends upon both the
rate of movement and its direction with respect to the magnetic
field. However, we can obtain a crude estimate of the actual motion
from the fMRI acquisition. We determined the within-brain cen-
ter of intensity change of the fMRI for the extreme motion epoch
of Figure 16 using iBrain software (27)3: the change in 2D center-
of-mass (intensity) of each slice in the affected volume, compared
to the same slice in the previous volume, ranged from 0.14 to
2.1 mm, while the change in 3D center-of-mass between volumes
was 0.95 mm. We also estimated 3D shift and rotations using the
rigid-body realignment procedure in SPM software4. The volume-
to-volume change in displacement estimated this way was 0.76 mm
accompanied by a change in pitch rotation of 0.68°. The peak
motion detected in 2D slices in this example is thus considerably
larger than volumetric parameters would suggest (i.e., motion was
sufficiently rapid to affect slices within the volume differently, and
this effect was partially averaged out in the rigid-body motion
estimates across the entire volume). Given the relatively high tem-
poral sampling rate of the EEG compared to the volume or slice
acquisition time of fMRI, the motion-loop signals may have addi-
tional potential to be used to identify fMRI volumes that may
be affected by rapid subject motion. For example, the inability
of the motion loops to adequately remove motion artifact could
be used as an indicator of the presence of motion severe enough
to result in non-linear EEG artifact, and therefore, also likely to
have a deleterious effect on the fMRI acquisition at that particular
time. We recommend further work be undertaken to explore this
potential.

3http://www.brain.org.au/software
4http://www.fil.ion.ucl.ac.uk/spm

FIGURE 15 | EEG of the epilepsy patient shown in longitudinal bipolar
(“double banana”) montage. In every figure (A–D), the lower three traces
are motion-loop signals. (A) Ten second segment of EEG recorded outside the
MRI scanner selected to show a typical epileptiform discharge of this patient

(commencing at the time indicated by the arrow) in the absence of MRI
artifact. Any motion of the subject is not detectable in the motion loops
because they are not in a magnetic field.

(Continued)
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FIGURE 15 | Continued
(B–D) a 10 s segment of EEG recorded inside the scanner during fMRI

acquisition, selected to include both a large movement event (at the time
indicated by the orange bar) and a typical epileptiform discharge of this patient
(commencing at the time indicated by the double arrows): (B) result when the
EEG is corrected using conventional average-pulse-artifact subtraction;
(C) result when motion-loop artifact removal is applied to the EEG – notice the

large motion artifact early in the record is removed, as is cardioballistic artifact
throughout the study, while epileptiform activity evident later is retained (the
BrainAmps system also effectively removed the cardioballistic artifact in this
example, however, it failed to remove the non-periodic motion event);
(D) expanded overlay of four selected EEG channels more clearly
demonstrating the superiority of the motion-loop artifact removal technique
(black trace) compared to conventional pulse-artifact subtraction (red trace).
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SAFETY
We remind the reader again that wires in an MRI scanner can
be very dangerous if the proper precautions are not taken. For

simultaneous EEG–fMRI experiments conducted with our leads,
we have always used MRI head-coils that enable the EEG wires to
leave at the vertex of the head and travel directly away from the

FIGURE 16 |This figure demonstrates a particularly severe example of
deliberate motion contamination in the healthy control in which gross
motion has occurred to such an extent that even the fraction 1/21 is
substantial and has resulted in propagated artifact due to contamination
of the average-gradient-artifact template (the template being an average
of 21 epochs of lengthTR). In each of (A) through (D) the same 10 s period
is shown with different processing applied; in each figure, the upper four
traces are selected EEG traces, the lower three traces (with orange shading)
are the corresponding motion-loop signals. The extreme motion event
occurred during the time marked by the red indicator line. (A) is the
conventional result without motion-loop subtraction. In this result, it appears

as if there is also less intense yet still substantial motion contaminating the
entire time shown prior to the extreme motion event (i.e., during the epoch
indicated by the long green indicator line). In (B), the gradient artifact
correction has been re-run, excluding the use of the severe motion event
from the gradient artifact correction template (i.e., the epoch highlighted in
pink was excluded). This has substantially improved the remainder of the
displayed EEG. Notice also that the motion-loop signals leading up to the
extreme motion event no longer exhibit large motion signal, confirming the
large apparent motion in the green epoch seen in (A) was actually due to a
contaminated gradient correction template.

(Continued)
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FIGURE 16 | Continued
(C) is the result of the first iteration of the motion-loop correction
procedure, i.e., the same contaminated EEG shown in (A) has simply
been subjected to motion-loop subtraction: the extreme motion event
was too large to be completely removed (suggesting substantial
non-linear effects); however, the smaller propagated artifact has been
virtually eliminated from the EEG signal, and cardioballistic artifact is
also reduced, so the EEG during the green labeled epoch is noticeably

cleaner in (C) than in (B), even though the gradient artifact correction
template remains contaminated in (C). Finally in (D), the iterative
process has been applied: the bad epoch was automatically identified
from the result of the first iteration, then a second gradient artifact
correction was applied to avoid motion contamination of the gradient
artifact correction template, and finally motion-loop regression was
applied to this improved data. This provides the cleanest EEG signal
of all.

patient to the back of the scanner bore, rather than enclosed coils
that would require leads to run back alongside the patient. It is
likely that further insulating safety measures would be required to
render these cables safe in the latter configuration.
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APPENDIX

External MATLAB routine used to remove motion-loop artifact signal from each EEG channel:

% START MATLAB CODE
motion_channels = [34:36];

window_length = 2;

filter_channels = [1:numel(Properties.Channels)];
filter_channels(motion_channels) = [];

width = window_length*(1000000/Properties.SamplingInterval);
window = [0:width-1];
step = width;

for e = 1:step:(Properties.DatasetLength-width)

template = EEGData(e+window,motion_channels)’;
template = template - mean(template,2)*ones(1,width);

ptemplate = pinv(template’);

for c = 1:numel(filter_channels)

artifact = EEGData(e+window,c)’;
beta = ptemplate*(artifact - mean(artifact))’;
filtered = artifact - beta’*template;

EEGData(e+window,filter_channels(c)) = filtered’;

end
end
% END MATLAB CODE
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Lateralization of temporal lobe epilepsy (TLE) is critical for successful outcome of surgery
to relieve seizures. TLE affects brain regions beyond the temporal lobes and has been
associated with aberrant brain networks, based on evidence from functional magnetic
resonance imaging. We present here a machine learning-based method for determining
the laterality of TLE, using features extracted from resting-state functional connectivity of
the brain. A comprehensive feature space was constructed to include network properties
within local brain regions, between brain regions, and across the whole network. Feature
selection was performed based on random forest and a support vector machine was
employed to train a linear model to predict the laterality of TLE on unseen patients. A leave-
one-patient-out cross validation was carried out on 12 patients and a prediction accuracy
of 83% was achieved. The importance of selected features was analyzed to demonstrate
the contribution of resting-state connectivity attributes at voxel, region, and network levels
to TLE lateralization.

Keywords: temporal lobe epilepsy, laterality of TLE, resting-state functional connectivity, machine learning, feature
selection

Introduction

Surgical intervention is the treatment of choice for controlling seizures in patients with epilepsy
refractory to medication. Relief from seizures has been shown in 70% of patients with focal epilep-
sies, with the most positive outcome observed in temporal lobe epilepsy (TLE) (1). Lateralization
and localization of the locus of seizure are therefore a critical component of pre-surgical evaluation
in patients with TLE (2).

Evidence for altered functional connectivity (FC) and changes to the default mode network
(DMN) in patients with TLE has been reported using resting-state functional magnetic resonance
imaging (rfMRI) (3–10). For example, Pereira and colleagues found asymmetrical hippocampal
connectivity in mesial TLE patients (11), and reduced connectivity in the posterior (retrosple-
nium/precuneus) to anterior (ventromedial pre-frontal cortex) DMN in patients with TLE was
reported by Haneef et al. (5). These DMN characteristics have been utilized to define support
vector machine (SVM) features, including global connectivity asymmetry and pair-wise brain
region synchronization. In one report, this technique has resulted in an accuracy level of 83.9%
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for distinguishing patients with epilepsy from healthy controls
(12). A computer-aided diagnosis tool based on FDG–PET was
reported to have accuracy of 82 and 88% in distinguishing left TLE
and right TLE from non-seizures, respectively. The classifier that
both diagnosed and lateralized the disease had overall accuracy of
76%, where 89% of patients correctly identified with epilepsy were
correctly lateralized (13).

Morgan et al. identified that a network involving the right hip-
pocampus and right thalamus can be used to categorize patients
into left or right TLE (2). Reduced posterior DMN connectivity
in a group of patients with right TLE contrasted with increased
connectivity in the posterior and anterior DMN in a group of
patients with left TLE has also been reported (5). In a study on
lesion-negative TLE patients, an individual laterality index was
used to determine seizure lateralization, and found that 88% of
cases agreed with the clinical diagnosis (14). In addition to pair-
wise FC among spatially segregated brain regions, local network
properties have also been explored to localize TLE. In a cohort
of children with TLE, increased Regional Homogeneity (ReHo)
in the posterior cingulate gyrus and the right medial temporal
lobe was uncovered (15). Increased amplitude of low-frequency
fluctuation (ALFF) in the mesial temporal lobe and thalamus,
decreased ALFF in regions of the DMN, altered network topolog-
ical properties, and causal connectivity have been found in mesial
TLE patients (16–18). In four patients with focal TLE, ReHo
combined with an intra-regional connectivity defined as the ratio
of the mean pair-wise correlations of all voxels within a region
of interest (ROI) with the corresponding contralateral region was
used to select the epileptogenic zone from a set of anatomically
defined ROIs (19). We have previously identified brain regions
with significantly different FC, ReHo, or ALFF between left and
right TLE groups (20).

Based on these informative findings, the aim of the present
study was to test the hypothesis that resting-state FC and net-
work characteristics might be useful for lateralization of TLE,
providing complementary information to other clinical diagnos-
tic measures. We formulated the lateralization of TLE based on
rfMRI as a supervisedmachine learning problem.We constructed
a comprehensive feature space to include quantities that may
improve the localization of seizure foci. Feature selection was
carried out to deal with the “curse of dimensionality” and a leave-
one-out cross validation (LOOCV)was employed to train an SVM
model and test its performance. Feature importance analysis was
conducted to identify features or combinations of features that
were informative to TLE lateralization.

Materials and Methods

Participants
Twelve pre-surgical patients with unilateral left or right TLE
took part in the study. Seven patients had left TLE and five had
right TLE.Table 1 shows the demographic characteristics, clinical
ratings, and Wechsler Adult Intelligence Scale, third edition test
scores for participants. Groups were matched for age, onset age,
and intelligence scores. We note that all left TLE patients are
male. Subject-level demographics can be found in Supplementary
Material. There was no involvement of extratemporal structures,

TABLE 1 | Participant characteristics.

Characteristic Left TLE Right TLE p Value*

No. of participants 7 5
Age, mean (SD) [range]
(years)

38 (11) [22–54] 33 (13) [22–56] 0.41

Gender
Male 4 0 0.08
Female 3 5

Onset Age, mean (SD)
[range] {No. of valid
entries} (years)

31 (15) [18–47] {3} 8 (9) [0.5–19] {4} 0.11

WAIS-III, mean (SD)
[range] {No. of valid entries}

VIQ 49 (18) [34–73] {4} 62 (16) [44–75] {5} 0.29
PIQ 49 (12) [38–62] {4} 43 (4) [39–49] {5} 0.92
FSIQ 98 (29) [73–135] {4} 105 (18) [84–121] {5} 0.56

TLE, temporal lobe epilepsy; WAIS, Wechsler adult intelligence scale; VIQ, verbal IQ; PIQ,
performance IQ; FSIQ, full scale IQ.
*Calculated using Mann–Whitney U tests to compare the groups for age, onset age, and
WAIS-III scores, and Fisher’s exact test to compare the groups by gender.

based on clinical, electrographic, and neuroimaging assessments
carried out at the Neurology Department of the Royal Brisbane
and Women’s Hospital (RBWH), QLD, Australia. The study was
approved by the RBWH Research Ethics Committee and The
University of Queensland Medical Research Ethics Committee.
Written informed consent was obtained prior to scanning from
each patient.

Data Acquisition
All MRI images were acquired on a Siemens Trio® 3-T scanner.
The resting-state scan comprised one component of a larger func-
tional imaging study, for which patients underwent one resting-
state and four task-based functional runs, and one T1-weighted
structural scan. The resting-state scan was the final set of data
acquired, with duration of 6min, and patients were instructed
to lie still with their eyes closed. Functional images used a T2*-
weighted EPI sequence for blood oxygen level dependent (BOLD)
contrast. Imaging parameters were TR/TE 2500/34ms, flip angle
90°, 36 slices with acquisition matrix 64× 64, field of view
260mm× 260mm, slice thickness 3.0mm, and reconstructed
voxel size 3.3mm× 3.3mm× 3.3mm.

Image Preprocessing
DPARSFA (21) and REST (22) software were employed for fMRI
data processing. The image volumes at the first several time points
were removed to allow patient adaptation and signal stabilization,
resulting in 135 volumes of each patient retained for further
analysis. The time difference between slices was corrected and
scans were checked for excessive head motion (larger than 3mm
or 3°). The images were realigned to the middle slice and spatially
normalized to the MNI template (61× 73× 61, isotropic voxel
size of 3mm). A Gaussian smoothing kernel with a full-width at
half-maximum (FWHM) of 4mm was applied, followed by linear
detrending and bandpass filtering (0.01–0.08Hz).

Using the automated anatomical labeling (AAL) atlas (23), the
brain was parcellated into 116 regions, including 90 regions in the
cerebra (45 in each hemisphere) and 26 regions in the cerebella
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(9 in each cerebellar hemisphere and 8 in the vermis). These ROIs
were used as nodes for constructing the resting-state functional
network.

Feature Space Construction
In this study, features are informative attributes derived from
MRI data in discriminating left TLE from right TLE. We included
the following three categories of measurements to form a bag of
candidate features, from which important features were selected
for machine learning using SVM:

(1) Univariate features: these voxelwise features reflect the local
properties of resting-state brain activity at voxel level, includ-
ing ALFF, fractional ALFF (fALFF), and ReHo. ALFF mea-
sures the regional spontaneous activities and it was found
being significantly larger than the global mean ALFF in vicin-
ity of large blood vessels (24). To overcome the issue of ALFF
being sensitive to physiological noise, fALFF was proposed
as the ratio between the total amplitude with low-frequency
range (typically 0.01–0.08Hz) to the total amplitude of the
entire detectable frequency range (25). Unlike measuring the
signal synchrony of low-frequency fluctuation activities in
different parts of the brain, ReHo is defined as the dependence
of the resting-state time course of a given voxel with those
of its immediate neighbors (26). It thus quantifies the intra-
regional connectivity. ReHo was calculated using Kendall’s
coefficient of concordance (KCC) with 26 neighboring voxels
and then smoothed (FWHM= 4mm). The individual ReHo,
ALFF, and fALFF maps were divided by the correspond-
ing patient-specific global mean values for standardization
purpose. ALFF and fALFF were computed on data before
bandpass filtering. ReHowas calculated on unsmoothed data.

(2) Bivariate features: these features describe the pair-wise con-
nectivity between brain regions, or inter-regional connectiv-
ity. For each cerebral region, time courses were extracted and
averaged over the ROIs defined in the AAL atlas. Several
nuisance covariates associated with physiological processes
were regressed out, including the estimated head-motion
parameters, whole brain signal, white matter (WM) signal,
and cerebrospinal fluid (CSF) signal. We used the default
masks in REST for regressing out the WM and CSF signals.
The default masks were made from the a priori templates
found in SPM as follows (22): the whole brain mask was from
brainmask.nii with a threshold at 50% probability, the WM
mask was from white.nii with a threshold at 90% probability,
and the CSF mask was from csf.nii with a threshold at 70%
probability. The inter-regional connectivity was computed
using Pearson’s correlation coefficient, resulting in an FC
matrix with 116× 116 entries. To improve the normality of
the coefficients, a Fisher’s z transformation was applied. For
each FC, one-sample t-test against 0 was performed and FCs
survived the test were taken as candidate bivariate features.

(3) Multivariate features: these features, referring to the global
and nodal metrics of whole brain resting-state network, were
computed using the Brainnetome Toolkit (27). Individual
FC matrix was binarized to have entries indicating whether
connectivity exists between any two given regions. Differ-
ent threshold values result in different levels of connectivity

density. To cover a wide range of density levels and enable
the calculation of small-worldness (28), six threshold values
from 0.05 to 0.3 with a step of 0.05 were used for binarizing
the FC matrices. A binarized matrix represents a graph and
two categories of graph theory-based network metrics were
calculated (29, 30): (i) metrics defined for both the whole
network (network-wide) and each node (nodal), including
degree, shortest path length, global efficiency, local efficiency,
and clustering coefficient. (ii) Metrics defined for the whole
network only, including assortativity (31), transitivity (32),
and small-worldness (33). Therefore, two sub-categories of
multivariate features were included as candidate features:
global network metrics (NMglobal) and nodal network met-
rics (NMnodal). Brief descriptions of the networkmetrics can
be found in Table 5 in the Results Section.

Therefore, we had six sub-categories of features: ALFF, fALFF,
ReHo, FC, NMglobal, and NMnodal.

Group Comparison
As references of feature importance, significant group differences
in the features were identified using Mann–Whitney U-test
(p< 0.01). For ALFF, fALFF, and ReHo, multiple comparison
errors were corrected using the AlphaSim method (34) (6-
connection clusters, cluster size ≥16 voxels, i.e., 432mm3,
p< 0.01).

Classifier Training and Testing
Support vector machine is the most widely used classification
method for multivariate fMRI analysis (35). In this study, we
trained SVM models with linear kernels using LIBSVM toolbox
(36). In each LOOCV run, one patient was left out as “unseen”
test data and the remaining 11 subjects’ data were used for fea-
ture selection and SVM model training. The performance of the
trained classifiers was evaluated using correct rate, sensitivity, and
specificity.

Feature Selection and Feature Importance
The constructed feature space contains thousands of candidate
features. Problem of model over-fitting, i.e., the “curse of dimen-
sionality,” would occur if all of them were used for training a
classifier. Random forest (RF) (37) was used to select features in
this study. RF is a random ensemble of decision trees and has
intrinsic advantages in dealing with the “curse of dimensionality.”
In RF, every time a split of a node is made on a given feature the
Gini impurity criterion for the two descendent nodes is less than
the parent node. Feature importance of an individual feature was
estimated by adding up the decreases in Gini impurity over all
trees in the forest.

We adopted a feature selection strategy involving a ranking of
explanatory variables using RF (38). In each LOOCV run, feature
importance calculation was repeated 50 times for each category
separately, and the features in each sub-category were ranked by
their average importance. The top 50 features from each sub-
category were pooled to form a feature set with 300 features and
ranked again. A collection of RF models were trained by adding
features from the most important to the least important one by
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one. The minimum feature set leading to the smallest out-of-bag
(OOB) error rate was selected. Note that each LOOCV run might
have different numbers of final features.

To analyze the contribution of each sub-category of features to
the lateralization of TLE, we evaluated the importance of each fea-
ture according to its rank and occurrence in the 12 LOOCV runs.
In each run, the most important selected feature was assigned the
maximum score, which is the number of total features selected in
the run, while the least importance one was assigned a score of
1. Then, the scores in each run were normalized by dividing the
total score of that run. Feature-specific and sub-category-specific
importance was then calculated as the summation of relevant
normalized scores.

Results

All subjects had translational head motion less than one voxel
length (3mm) and rotational motion <3° in the scan session
and were included in the analyses. The left TLE group had a
larger mean value of the maximum translational motion along
all three axes than the right TLE group. The group mean of the
maximum translational motion along the z-axis was the largest
in the three axes in both left TLE group (0.73± 0.45mm, along
z-axis) and the right TLE group (0.46± 0.26mm). No significant
differences in themedian values of the sixmotion parameterswere
found (Mann–WhitneyU-test, p values were 0.43, 0.79, 0.43, 0.25,
1.00, and 0.33 for the three translational and the three rotational
motion, respectively).

Classification Performance
The SVMclassifier trained on the final feature set achieved 83.33%
correct rate in the 12 cross validation runs. The results of the 12
runs are shown in Table 2. The sensitivity and specificity to the
left TLE was 0.86 and 0.80, respectively.

Selected Features
There were 54,837 candidate features of ALFF, fALFF, and ReHo.
The numbers for FC, NMGlobal, and NMnodal were 1785, 66,
and 4176, respectively. In the final selected 123 features of the 12
runs, there were 118 unique ones. The average number of selected
feature per run was 10.25, ranging from 1 to 25.

The results of group comparison showed no region with group-
wise difference in ALFF. The clusters with significant group dif-
ference in fALFF and ReHo are plotted in Figure 1 using xjView
(http://www.alivelearn.net/xjview8/). The AAL ROIs containing
these clusters are listed in Table 3. The AAL ROIs, MNI coor-
dinates and scores of relative importance of the top five ranked

TABLE 2 | Classification results and the numbers of features selected for
the 12 LOOCV runs.

I D 1 2 3 4 5 6 7 8 9 10 11 12

Diagnosed L L L L L R R R R L R L
Guessed L L L R L L R R R L R L
No. of features 13 1 9 4 11 6 25 14 9 9 9 13

The correct rate is 0.83. Taking the left TLE as positive label, sensitivity is 0.86 and
specificity is 0.8.
The gray shades indicate the two misclassified subjects.

selected features of ALFF, fALFF, and ReHo are in Table 4. Note
that only 1 out of the 15 top ranked features was in AAL ROIs that
had group difference, which was ReHo of a voxel in right middle
frontal gyrus.Ho.

As illustrated in Figure 2, 50 FCs demonstrated significant
between-group differences. The top 10 FCs with significant
between-group difference and the top 10 selected FCs are shown
in Figure 3. It is noted that there was no overlap between the two
sets of FCs.

There were 66 global network metrics calculated, 11 at each of
the 6 network density levels. For each AAL ROI, 6 nodal network
metrics were computed at each network density level, resulting in
4176 candidate features. In the global networkmetrics, significant
group differences were found in Gamma (threshold= 0.25) and
shortest path length (threshold= 0.1 and 0.15). Compared with
the most informative global network metrics listed in Table 5,
both Gamma at threshold of 0.25 and shortest path length at
threshold of 0.10 were selected as features.

Sixty nodal network metrics in 22 AAL regions had group
difference at various network density levels. Among them, seven
regions demonstrated group differences when at least two dif-
ferent threshold values were used: left superior frontal gyrus in
degree, global efficiency, and shortest path length; left hippocam-
pus in degree, clustering coefficient, global efficiency, local effi-
ciency, and shortest path length; right medial orbitofrontal cortex
in global efficiency; left parahippocampal gyrus in clustering coef-
ficient; leftmiddle temporal pole in clustering coefficient and local
efficiency; right middle temporal pole in clustering coefficient;
lobule X of vermis in global efficiency and shortest path length. As
shown in Table 5, only the local efficiency of the left middle tem-
poral gyrus and the shortest path length of the left hippocampus
were ranked in the top 10 category-specific informative features
by RF.

The relative importance scores of the top 50 selected features
are shown in Figure 4A. We note the largest one corresponding
to the ALFF feature at a voxel at the left inferior temporal lobe
selected in the second LOOCV run, where it was the only feature
selected, thus having a score of 1. There were 18, 19, 29, 24, 11,
and 17 features selected from ALFF, fALFF, ReHo, FC, NMglobal,
and NMnodal, respectively. The percentage of the sub-category-
specific contribution to the classification is shown in the pie chart
of Figure 4, with ReHo and ALFF being the most (22% each) and
the global network metrics the least (9%).

Discussion

There is convergent evidence from fMRI and EEG studies
supporting brains networks underlying the core phenomena
in epilepsy, from seizure generation, cognitive dysfunction to
response to treatment (39). In this study, we developed a method
for predicting TLE lateralization based on a comprehensive fea-
ture space and 83% correct rate was achieved in a setting of
LOOCV on 12 patients. The feature space was constructed
to include information about intra-regional, inter-regional, and
network-wide connectivities derived from resting-state fMRI.
To deal with the problem of over-fitting, an efficient feature
selection method was developed based on RF. Feature impor-
tance analysis revealed that global network metrics are less
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A B

FIGURE 1 | Clusters with group difference in voxelwise properties of resting-state connectivity plotted in blue using xjView. (A) ReHo with four clusters
and (B) fALFF with one cluster. No cluster was found in ALFF.

TABLE 3 | Regions with significant differences in fALFF and ReHo between
the two groups.

Measure AAL regions (Tzourio-Mazoyer ID) MNI N

fALFF Cerebelum_9_R(106) 0 −42 −48 17

ReHo Insula_R(30), Rolandic_Oper_R(18) 45 6 3 36
Insula_L(29), Rolandic_Oper_L(17) −36 3 12 21
Frontal_Mid_R(8) 54 24 36 24
Temporal_Inf_L (89) −39 −6 −48 22

MNI: the coordinates of the voxel with peak U-test statistic in the cluster; N: the number
of voxels in the cluster.

informative than inter- or intra-regional connectivities in TLE
lateralization.

The discrepancies between the group-wise different connec-
tivities and the top ranked features are obvious. We note the
intrinsic difference between the two methods: the former is based
on univariate analysis, while the latter is a multivariate method

TABLE 4 | Top five ranked voxels in ALFF, fALFF, and ReHo.

Measure AAL regions MNI Score

ALFF Temporal_Inf_L −57 −60 −9 1.00
Parietal_Inf_L −27 −69 42 0.23
Frontal_Med_Orb_R 9 48 −12 0.17
Cerebelum_7b_L −39 −45 −42 0.12
Temporal_Mid_R 48 −3 −24 0.11

fALFF Middle Frontal Gyrus 45 30 45 0.24
Frontal_Mid_L −24 12 60 0.13
Frontal_Sup_R 27 3 60 0.11
Rectus_L −3 27 −18 0.11
Frontal_Inf_Tri_L −54 33 15 0.10

ReHo Vermis_6 0 −69 −24 0.27
Cerebelum_8_R 27 −42 −51 0.18
Cerebelum_8_R 39 −45 −54 0.15
Temporal_Sup_R 69 −24 0 0.13
Frontal_Mid_R 45 33 42 0.13

MNI: the coordinates of the peak in the cluster; score: the normalized score indicating the
relative features importance.
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A B C

FIGURE 2 | Inter-regional resting-state functional connectivity.
(A) shows the matrix of which the entries indicate FCs with significant group
difference (U-test, p<0.01) A 3D rendering of the FCs, 50 in total, is shown on
(B,C). The diameter of a node is proportional to the number of identified FCs

involving that node and the top five nodes are: right paracentral lobule
(degree= 6), left superior temporal gyrus (degree=5), left superior temporal
pole (degree= 5), left paracentral lobule (degree= 4), and right cuneus
(degree= 4).

Top 10 FCs identified by group comparison Top 10 Selected FCs

1. Left precentral gyrus - Right superior frontal gyrus, 

dorsolateral

2. Left area triangularis - Right angular gyrus

3. Left supplementary motor area - Right paracentral 

lobule

4. Right anterior cingulate gyrus - Left superior temporal 

gyrus

5. Left middle cingulate - Left paracentral lobule

6. Left parahippocampal gyrus - Right parahippocampal 

gyrus

7. Right parahippocampal gyrus - Left superior temporal 

pole

8. Left cuneus - Lobule VIII of vermis

9. Left superior occipital - Left lobule IX of cerebellar 

hemisphere

10. Right superior occipital - Left lobule IX of cerebellar 

hemisphere

1. Left precentral gyrus - Left opercular part of inferior 

frontal gyrus

2. Right parahippocampal gyrus - Right fusiform gyrus

3. Left cuneus - Left inferior parietal lobule

4. Left gyrus rectus - Left Lobule VI of cerebellar 

hemisphere

5. Left inferior occipital - Right Lobule VI of cerebellar 

hemisphere

6. Right superior frontal gyrus, orbital part - Left 

supplementary motor area

7. Right superior frontal gyrus, medial part - Left lobule

IV, V of cerebellar hemisphere

8. Right middle cingulate - Right lingual gyrus

9. Right middle frontal gyrus, orbital part - Left Lobule VI 

of cerebellar hemisphere

10. Left parahippocampal gyrus - Right lobule IX of 

cerebellar hemisphere

A B

FIGURE 3 | Inter-regional resting-state functional connectivity. (A) The top 10 FCs with smallest p value in group comparison. (B) The top 10 FCs selected by
RF as features. Top: 3D rendering demonstrating the FCs. The nodal size is proportional to the nodal degree. Bottom: the AAL ROI names of the identified regions.

per se, because the feature importance was estimated by the joint
contribution of a set of features to the prediction accuracy.

It is interesting, but not surprising, that the selected features
are from multiple sub-categories in most LOOCV runs. The sub-
category-specific important scores ranged from 9 to 22%. This
may be reflecting that the brain network characterization of TLE
laterality spans at different levels, from voxel, inter-regions, and
brain-wide. More sophisticated kernel functions might be able to
achieve higher prediction accuracy, but due to the small sample
size of the study, to prevent over-fitting we employed the widely
used linear kernel.

Morgan et al. identified a region in the ventral lateral nucleus
of the right thalamus whose resting-state FC to the hippocampi

separates left from right TLE patients (2). In the study on a cohort
of seven seizure-free left TLE and seven seizure-free right TLE
patients, a cut-off value of the mean connectivity between the
right hippocampus and a small region in the right thalamus was
found to be practicable for the lateralization of seizure-free TLE.
Nevertheless, the cut-off value was not determined in a LOOCV
setting. The performance of this method on unseen patients is
still unknown. In our study, we did not find any significant group
difference in the FC between the right thalamus and the right hip-
pocampus. In the left TLE group, the right thalamus was found to
have significant connectivity with six AAL regions, including the
right insula, the left superior occipital, the right putamen, the left
and the right globus pallidus, and the left thalamus, while the right
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TABLE 5 | Selected global and nodal network metric features.

NMglobal NMnodal

t Name t ROI Name

1 0.20 Shortest path length 0.30 Right globus pallidus Clustering coefficient
2 0.15 Assortivity 0.30 Left crus I of cerebellar hemisphere Clustering coefficient
3 0.15 Lambda 0.15 Left middle temporal pole Local efficiency
4 0.30 Small-worldness 0.25 Right cuneus Shortest path length
5 0.25 Shortest path length 0.05 Lobule X of vermis (nodulus) Degree
6 0.10 Clustering coefficient 0.10 Left orbital part of inferior frontal gyrus Shortest path length
7 0.10 Shortest path length 0.25 Left middle frontal gyrus, orbital part Shortest path length
8 0.15 Gamma 0.05 Left hippocampus Shortest path length
9 0.20 Degree 0.10 Right superior occipital Shortest path length
10 0.25 Gamma 0.05 Lobule X of vermis (nodulus) Shortest path length

The metric in bold indicates that it has been identified by group comparison as well.
t is the threshold used for matrix binarization.
Degree: the number of connections linked directly to a node
Neighbour degree: the average degree of the neighbours of a node
Global efficiency: the global efficiency of information propagation in the network
Local efficiency: the efficiency of information propagation through the direct neighbours of a node
Clustering coefficient: the extent of the local density or cliquishness of the network
Shortest path length: the extent of average connectivity or overall routing efficiency of the network
Gamma: the ratio between the extent of local clustering of a network and the surrogate random networks
Lambda: the ratio between the extent of overall routing efficiency of a network and the surrogate random networks
Smallworldness: the extent of a network between randomness and order
Assortativity: a bias in favour of connections between network nodes with similar characteristics
Transivity: the fraction of triple-nodes that have their third edge filled in to complete the triangle.

A B

FIGURE 4 | Feature sub-category importance. (A) Relative ranking of the top 50 features. (B) Relative importance of feature sub-categories.

hippocampus was significantly connected to the left hippocampus
only. In the right TLE group, significant connectivity between the
right thalamus and three regions, the right middle cingulate, the
right caudate nucleus, and the left thalamus, were found, while
the right hippocampus was significantly connected to the left
hippocampus and the right dorsolateral superior frontal gyrus.
The inconsistent results of the two studies with similar sample
size might be attributed to the differences in FC calculations and
cohorts. In Morgan’s study, the whole brain hippocampal FC was
focused, whichwas calculated aswhole brain voxelwise connectiv-
ity maps using the left and the right hippocampi as seed regions,
respectively. In this study, we were interested in inter-regional
connectivities between cerebral regions as predefined in AAL
template, to avoid dealing with themuch higher dimensionality of
whole brain connectivity maps. It is possible, however, to include
the connectivity identified in Morgan’s study as a promising fea-
ture in our framework for lateralization of TLE in futurework. The
inconsistency between the results also highlights the necessity of
a large dataset to be used for rigorous validation.

Although the classification performance of this study using
resting-state FC is promising, we note that there exist limitations

related to sample size. A large independent data set is needed
to further validate the proposed method and confirm the find-
ings. Respiration and cardiac cycle-induced noise (40) were not
considered because the required data were not available. Group
differences in fALFF, but not ALFF, were found in this study,
which contradicts the results of a pilot study (20) on a subset
of the cohort. The regions with significant group difference in
ReHo were not the same as in the pilot study. This can be partially
explained by the different sample sizes, different statistical tests,
and different multiple comparison correction criteria used in the
two studies, as well as the inter-subject reproducibility issue of
ALFF (25).Wepostulate that a large dataset is required to elucidate
the reasons behind the variations.

The current study was aimed at the lateralization of TLE,
which was solved as a binary classification problem. However,
the proposed method has the potential to predict the loci of
seizures at a finer scale, which can be formulated as a multi-class
classification task. To do so, a large dataset with sufficient number
of patients with TLE in different loci is needed. The characteristics
of the resting-state FC, intra- and inter-regional connections as
identified in this study, in particular, of patients with TLE in
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each brain region can be learned using the proposed method.
The approach to constructing a comprehensive feature space with
the ability to extract a wide range of information and subsequent
feature selection method might be applicable to the investigations
of other diseases based on resting-state fMRI.

Conclusion

We presented an approach to lateralization of TLE based on
resting-state fMRI scans. The approach relied on a feature set
integrating the information about laterality encoded in intra-
regional, inter-regional, and whole brain network connectivities

to achieve 83% correct rate on a small cohort. RF-based feature
selection, alongwith relative feature importance analysis, provides
a multivariate analysis method for characterizing TLE laterality.
Given the advantage of resting-state fMRI in terms of patient
tolerance, the proposed approach can be a potential pre-surgical
tool in future clinical practice, if validated in a larger independent
cohort.

Supplementary Material

The SupplementaryMaterial for this article can be found online at
http://journal.frontiersin.org/article/10.3389/fneur.2015.00184
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