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Editorial on the Research Topic

Tectonic and Environmental Reconstructions: Perspectives From Geochemistry and Isotopes of
Sedimentary Rocks

Sedimentary sequences hold the remarkable advantage that they comprise a vertically
accumulated and relatively undistorted record of erosion, sedimentation, and climatic-
tectonic environments and, therefore, obviate many of the difficulties intrinsic in
disentangling complex structural overprints (McLennan et al., 2001; Zhang, 2004;
Pietranik et al., 2008; Zhang et al., 2007; 2012, 2017). The geochemical and isotopic
studies of sedimentary rocks and minerals therein form a vital approach to tectonic and
environmental reconstructions. Latest decades have witnessed significant progress in
geochemistry and isotopes of sedimentary rocks and minerals and their applications to
fundamental geological issues. For example, advances in dating on calcite using U–Pb
isotopic system (e.g., Roberts et al., 2017; Godeau et al., 2018) and dating on illite using
K–Ar isotopic system (e.g., Hamilton et al., 1989; Pevear, 1999) provide additional methods to
define the ages of sedimentation/strata besides the conventional paleontological method;
documentation of U–Pb–Lu–Hf isotope systematics of detrital zircons from siliciclastic rocks
makes it possible to examine the nature of major crustal growth events (e.g., McLennan et al.,
2001; Pietranik et al., 2008), both regional and global; work on the geochemistry of limestones
deposited in various plate tectonic settings permits the development of proxies for the
discrimination of depositional regimes (Zhang et al., 2017). Therefore, the collection of
works regarding this topic is timely and essential to exchange new ideas in the international
community and provoke and promote studies in this field.

In the collection of this Research Topic, 11 contributions were published, with a focus on the
recent advances in sedimentary geochemistry and isotopes at whole-rock and/or single mineral scale
and their applications to tectonic and environmental reconstructions. Besides, this topic collected
provocative ideas regarding the methodology and give summaries of its recent development.
Importantly, this Research Topic presented new datasets or summaries on the geochemistry and
isotopes of specific sedimentary rock or mineral on key regimes. Moreover, this Research Topic
published practice examples on a regional scale that can be tracked and referred to by researchers in
the same field.

The collection covers the following several major themes.
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1) Sedimentary geochemistry and isotopes and their applications
to unraveling the paleogeographic, paleoclimatic, and
sedimentary evolution of the maritime space in the western
Pacific.

For example, Li et al. and Liu et al. explored the sources of
organic carbon in the Mariana Trench, the deepest part of the
earth, and the paleoclimate of the middle Okinawa Trough Since
the Middle Holocene, respectively, both based on analysis of
glycerol dialkyl glycerol tetraether (GDGT). Wang et al.
documented the hydrocarbon geochemistry of core sediments
from the SW Basin of the South China Sea and probe the
implications for sedimentary environment. Xu et al. envisaged
topographic and climatic control on chemical weathering of
mountainous riverine sediments of Hainan Island, South
China Sea, based on investigation of sedimentary geochemistry.

2) New ideas on the methodology regarding sedimentary
geochemistry and isotopes as well as their applications to
geological issues.

Liu et al. analyzed Mesozoic tectono-thermal events of the
Qinshui Basin in central North China Craton, based on
measurements on illite crystallinity and vitrinite reflectance. Li
et al. reconstructed the maximum burial temperature of the
Sichuan Basin, southern China in use of clumped isotopes.
Shaogong et al. dated the paragneiss in the Dabie–Sulu UHP
orogen of easternChina bymeans of zirconU-Pb isotope systematics.

3) Geochemistry and isotopes of specific sedimentary rock or
mineral on important regimes.

Yang et al. investigated the whole-rock and in situ
geochemistry of siderites in the Lopingian coal-bearing series,
western Guizhou of southern China to reveal their genetic
mechanism and environment implications. Chenrai et al.
reported the occurrence and genesis of bedding-parallel fibrous
calcite veins in Permian siliciclastic and carbonate rocks in central
Thailand.

4) Applications of sedimentary geochemistry to petroleum
industry

This is the most characteristic brightness of this collection. For
example, Yingjie et al. reported the variation of clay minerals
during alkaline surfactant polymer flooding in the oilfields in the
Songliao Basin of eastern China. Fan et al. carried out pyrolysis
experiment on water-saturated shale plunger samples to shed
insight to oil generation and expulsion of shales.
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Hadal trenches have higher microbial carbon turnover rates as compared to adjacent
abyssal plains. However, the source of organic carbon in the trench remains enigmatic.
In this study, we show that a fraction of organic carbon is possibly derived in situ
and correlated with chemoautotrophic communities supported by the fluid discharge
of water-rock interaction in the trench wall, based on analysis of glycerol dialkyl glycerol
tetraether (GDGT) membrane lipids, including archaeal isoprenoid GDGTs (IsoGDGTs)
and bacterial branched GDGTs (BrGDGTs), in sediments and rocks of the Mariana
and Yap Trenches, northwest Pacific Ocean. These trench sediments contained relative
higher BrGDGTs ratios, which was a rare observation in the open ocean. The BrGDGT-
to-IsoGDGT ratios ranged in 0.02–0.88 (mean = 0.10 ± 0.11) in sediments and
0.09–0.38 (mean = 0.17 ± 0.13) in altered rocks. The calculated values of branched
and isoprenoid tetraether (BIT) index ranged from 0.02–0.73 (mean = 0.18 ± 0.11) in
sediments and from 0.16–0.9 in altered rocks (mean = 0.37 ± 0.27). Moreover, these
GDGTs exhibited similar characteristics to those of altered basalt rocks, indicating inputs
of organic carbon from the trench subsurface environment. Thus, in addition to organic-
rich material settling, we propose chemoautotrophic activity in oceanic crust could be an
additional source of organic carbon in the deepest part of the ocean, with an important
role in deep-sea carbon cycles.

Keywords: hadal trenches, organic carbon, water-rock interaction, membrane lipids, deep-sea carbon cycles,
chemoautotrophic activity

INTRODUCTION

Hadal trenches, which are located on the axis of subduction zones, are covered by water depths
ranging from 6,500 m to 11,000 m and represent some of the most remote and least-explored
regions on Earth (Jamieson et al., 2010; Jamieson et al., 2017, 2018). It has recently been revealed
that there is a significantly higher microbial carbon turnover rate in hadal sediment than that in
adjacent abyssal plain (Glud et al., 2013; Luo et al., 2018). This environment is also known to
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sustain a diverse array of metazoan organisms (Jamieson et al.,
2010) and heterotrophic microbial populations (Nunoura et al.,
2015). It has been speculated that the supply of nutritious
food at such great depths largely relied on the flux of fresh
organic-rich particulate matter (Glud et al., 2013; Nunoura et al.,
2015) and input of the decaying biota and carcasses from the
upper ocean (Oguri et al., 2013). Moreover, low temperature
water-rock interaction between bedrock and seawater, such
as serpentinization and basalt rock alteration, is a common
phenomenon at the bottom of trenches (Fryer et al., 1999; Stern
et al., 2006; Du et al., 2019) and chemosynthetic microbial
communities utilizing crustal fluid are also known to occur in
trenches (Fujikura et al., 1999; Hand et al., 2012; Ohara et al.,
2012). For example, the existence of fluid discharge features,
including fluid discharge points and associated pockmarks,
as well as chemosynthetic microorganisms, in the outer rise
region was directly observed by submersible investigations in
the southern Mariana trench (Du et al., 2019). Around these
fluid discharge features, iddingsite-rich muds with high hydrogen
and methane concentration were close association with augite,
indicating the occurrence of iddingsitisation in these altered
basalts (Du et al., 2019). However, the potential contribution of
carbon fixation by these chemosynthetic microbial communities,
which related to water-rock interaction, in the trench bottom
remains enigmatic.

The membrane lipid GDGTs of prokaryotes, including
IsoGDGTs and BrGDGTs (for structures see Supplementary
Figure 1), in marine sediments are important biomarkers
for tracing organic matter sources (Hopmans et al., 2004;
Schouten et al., 2013; Weijers et al., 2014). BrGDGTs have
been predominantly found in terrestrial settings such as soils
and peat deposits. Although BrGDGTs may also be in situ
formed in normal marine environments, the abundance of
marine BrGDGTs differs from that of terrestrial soil by orders
of magnitude (Peterse et al., 2009; Schouten et al., 2013; Weijers
et al., 2014). The BIT index was proposed based on BrGDGTs and
Crenarchaeol (representative of marine IsoGDGTs) contents (see
Supplementary Equations) (Hopmans et al., 2004). In terrestrial
soils, the BIT value is approximately 0.90 ± 0.14, whereas that
of open marine sediments is 0.04 ± 0.03 (Schouten et al.,
2013). Therefore, this index is previously used to characterize
the contribution of terrestrial soil inputs in marine environments
(Schouten et al., 2013). However, several previous studies have
found that relatively high BrGDGT content also presented in
some chemoautotrophic systems, such as cold seep (Zhang et al.,
2020), hydrothermal fields (Hu et al., 2012; Lincoln et al., 2013;
Pan et al., 2016), and serpentinite-hosted ecosystems (Newman
et al., 2020). These findings indicated that the high relative
abundance of BrGDGT in the sedimentary environment of Open
Ocean may be an indicator of the chemoautotrophic ecosystem.

To elucidate the source of organic matter at the bottom
of trenches, we examined the GDGT lipid profiles of the
sediments and rock samples retrieved from the southern Mariana
Trench and northern Yap Trench, northwest Pacific Ocean.
Our results demonstrated relatively high BrGDGT ratios within
trench sediments, with similar composition to those of altered
basaltic rocks rather than of sediments in open oceans, suggesting

chemoautotrophic carbon fixation in the subduction zone
could be an effective source of organic carbon in the deepest
parts of the ocean.

MATERIALS AND METHODS

Sample Collection
Sediment and rock samples were collected from the Yap and
Mariana Trenches during cruises that were conducted in 2016
and 2017 (Figure 1 and Supplementary Table 1). The multiple
sediment core sample, S01, was collected from the northern Yap
Trench at a water depth of 5,058 m using a sediment multi-core
sampler on the R/V XIANG-YANG-HONG-09, during cruise
DY-37 conducted by the China Ocean Mineral Resource R&D
Association in 2016.

Nine dives (Dive 114-112) were also performed at the
“Challenger deep” of Mariana trench by the “Jiaolong” Human
Occupied Vehicle during cruise DY-37. On the two sides of
the trench walls, a large number of rock fragments were
scattered on the seafloor which is covered with thin sediments
(Supplementary Figures 2A-C). These rock samples have
undergone varying degrees of alteration. During dive 114 and
115, a few fluid discharging points (1 m in height and 2–
5 m diameter) and small pockmarks (3–6 m in diameter) were
observed at the southern wall with water depths ranging from
5,448 m to 6,669 m (Du et al., 2019). During dive 121, high
altered basement rocks were observed at the Northern trench
wall (Supplementary Figure 2D). A total of six rock samples (7
subsamples) were used in this study (Supplementary Figure 3).
They were collected from the two sides of the “Challenger Deep”.
Three samples, including JL118-G01, JL119-G01, and JL121-G04,
were collected from northern wall with water depth ranging from
5,552 m to 6,697 m; while the other three samples JL115-G03,
JL120-G01, and JL120-G02, were collected from its southern wall
with water depths from 5,544 m to 6,296 m.

Four sediment box cores (B01, B06, B09, and B10) were
collected from the southern Marianna Trench with a water
depth from 5,525 m to 8,638 m using the box sediment
sampler onboard the R/V TAN-SUO-YI-HAO, during cruise
TS01 conducted by the Chinese Academy of Sciences in 2016.
After the sediment boxes were collected on deck, short sediment
cores were obtained by inserting PVC plastic pipes into the
sediments. LR01 was a 23 cm long sediment core, and was
sampled at the deepest site of the “Challenger Deep” onboard
the R/V TAN-SUO-YI-HAO, during cruise TS03 conducted by
the Chinese Academy of Sciences in 2017. It was collected by
using the “Tianya” deep-sea Lander system, designed by the
Institute of Deep-sea Science and Engineering, Chinese Academy
of Sciences, with the features of sediment sampling, capturing
macroorganisms and recording HD videos below 11,000 m water
depth (Supplementary Figure 4). The sediment sampler of
“Tianya” Lander, a cuboid cavity made of aluminum alloy, was
installed at the foot of the lander frame, and inserted into the
sediments by the dive gravity to complete the sampling process.
The cores in each recovery were immediately sectioned into
slices of 2 cm in thickness onboard, using an aseptic scalpel.
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FIGURE 1 | (A) The locations of Yap and Mariana trenches at the northwest Pacific Ocean. (B) Regional bathymetric map and the S01 sampling site at the northern
Yap trench. (C) Regional bathymetric map and the sampling sites at the Mariana Trench. The black triangles represent the rock samples and red circles represent the
sediment cores. The lately discovered fluid discharge field and pockmarks on the incoming plate of Mariana trench are marked in white circles (Du et al., 2019).

The LR01 sample was stored at −80◦C, whereas the remaining
sediment and altered rock samples were stored at −20◦C. To
avoid pollution, we removed the surface of rock sample using
sterile hammer, cleaned with ethanol (70% v) and milliQ water
after returning to the laboratory, and extracted the lipids from
the interior part.

Lipids Analysis
In the laboratory, the selected sediments and rocks were ground
into powders using an agate pestle and mortar after freeze-
drying. An aliquot of each sample (5–10 g) was extracted (× 5)
ultrasonically with a mixture of dichloromethane and methanol
(9:1, V/V) to obtain the total lipid extract. After condensation
via a rotary evaporator, the extracted total lipids were further
separated into alkanes and polar lipids using silica gel (60–
100 mesh) flash column chromatography with n-hexane and
methanol eluents, respectively. The polar fractions were then
passed through 0.45-µm PTFE syringe filters and dried under a
stream of nitrogen gas.

The n-alkanes and GDGTs were measured at the State
Key Laboratory of Biogeology and Environmental Geology,
China University of Geosciences (Wuhan), China. The aliphatic
fraction containing n-alkanes was analyzed in an Agilent
6890 gas chromatography and 5,973 mass spectrometer (GC-
MS), equipped with a silica capillary column (DB-5MS;
60 m × 0.25 mm × 0.25 µm). The GC oven temperature
program for n-alkanes ramped from 50◦C to 120◦C at 8◦C/min,
and then from 120◦C to 300◦C at 5◦C/min, held at 300◦C for
20 min with helium as the carrier gas. The ionization energy was
70 eV and the temperature of interface between GC and MS was
set as 280◦C.

With respect to GDGTs analysis, the dried polar fraction
was redissolved in n-hexane/isopropanol (99:1, v/v) for further
analysis. Synthesized C46 GDGT was added as an internal
standard in each redissolved sample. The GDGTs were analyzed
using an Agilent 1200 series liquid chromatography tandem
mass spectrometer, with ChemStation management software.
Following injection by an autosampler, the GDGT compounds
were separated using an Alltech Prevail Cyano column
(150 mm × 2.1 mm, 3 µm). Archaeal IsoGDGTs and bacterial
BrGDGTs were then analyzed using single ion monitoring at m/z
1302, 1300, 1298, 1296, 1292, 1050, 1048, 1046, 1036, 1034, 1032,
1022, 1020, and 1018. A few GDGT isomers, including 5- and
6- methyl GDGTs could not be separated by using the single ion
monitoring method of this study.

TOC, TN, and Carbon Stable Isotope
Analysis
The total organic carbon (TOC), total nitrogen (TN), and carbon
isotopic (δ13C) compositions of the sediments were measured
at the State Key Laboratory of Biogeology and Environmental
Geology, China University of Geosciences (Wuhan), China. The
freeze-dried sediment samples were rapidly homogenized by
grinding and weighed aliquots of the sample were acidified by
adding 2 mL of 1 M HCl to every 100 mg of sample. The acidified
samples were dried at >60◦C under a stream of filtered air, then
mixed with 1 mL of Milli-Q water and freeze-dried again. The
samples were weighed again to account for the change in weight
during the acid treatment. Aliquots of approximately 20 mg
were added into 5 × 8 mm tin capsules for the measurement of
TOC, TN, and carbon isotopes (δ13C) using a continuous-flow
isotope-ratio mass spectrometer (Delta V Advantage, Thermo
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Scientific, Germany) coupled to an elemental analyzer (Flash EA
1112 Thermo Scientific, Italy) in the laboratory. The δ13C results
are expressed relative to Vienna PeeDee Belemnite. Replicates
of an acetanilide standard (Thermo Scientific) were analyzed
along with samples, which indicated that the analytical errors
were <0.1h for δ13C. The C/N ratios were determined as
mol/mol ratios, which were transformed from the %TOC and
%TN weight data that were obtained as a part of the stable
isotope analyses.

X-Ray Diffraction Analysis
After freeze-drying, the selected sediment and rock samples
were thoroughly ground using a mortar and pestle before
passing through a 200-mesh sieve. X-ray diffraction analyses were
performed on the powdered sub-samples. Sample mounts were
step scanned from 2.5◦ to 65◦ 2θ with a step size of 0.02◦ and 50 s
counting time. The samples were run on a D/max2550VB3 + /PC
X-ray diffractometer at 20 kV and 30 mA with CuK-alpha
radiation (1.54061 Å) and a graphite monochromator. Phase
analyses were performed on a PDF2 (2004) computer with
Jada 5.0 software.

RESULTS

Bulk Organic Geochemical Parameters
In this study, the abundance of TOC ranged from 0.12 to 0.42%
in all sediment samples, with highest abundance at the core
top sediment in B06 (1,0911 m) and lowest abundance at 33–
34 cm of core B01 (5,525 m) (Figure 2 and Supplementary
Table 2). The δ13C and C/N molar ratio of the bulk TOC of
the sediment samples ranged between −21.72h and −16.70h
(mean = −19.02 ± 1.05h, n = 67) and between 3.00 and 8.21
(mean = 4.96 ± 1.12, n = 67), respectively, with no obvious trend

with the increasing water depth or core depth (Supplementary
Table 2 and Figure 3). As for reference site of 5,000 m water
depth, mean TOC of S01 (5,058 m) in Yap Trench was a bit
higher than that of B01 in Mariana Trench but still lower than
other deeper sites. Therefore, the mean TOC of sediment cores
of were generally increased with the increasing water depth
in Mariana Trench. Regarding to each sediment core, TOC
showed peak abundance at the surface (0–5 cm) of sediment
core and fluctuatingly decreased with the sediment core depth
(Figure 2).

GDGTs in Trench Sediments and Altered
Rocks
The sum abundance of BrGDGT and IsoGDGT (Chen et al.,
2020) in sediment was generally increased with increased water
depth as TOC (Figure 2), varied from 0.02 to 7.48 ng/g dw
and 0.16 to 363.85 ng/g dw, respectively. The distribution of
the BrGDGTs was dominated by hexamethylated BrGDGTs
(16-74%), followed by tetramethylated BrGDGTs (13-57%) and
pentamethylated BrGDGTs (13-64%) (Supplementary Table 2).
The domination of hexamethylated groups was coherent with
another investigation of the sedimentary BrGDGTs in the bottom
of Mariana trench (Xiao et al., 2019). The BrGDGT-to-IsoGDGT
(Br/Iso) ratios ranged in 0.02-0.88 (mean = 0.10, n = 67) and
0.09–0.38 (mean = 0.17, n = 7). The calculated BIT values
ranged in 0.02-0.73 (mean = 0.18, n = 67) (Supplementary
Table 2). Approximately 58% of the sediment samples had BIT
values over 0.15.

BrGDGTs of altered rock samples had also been identified.
The sum abundance of BrGDGTs in these altered rock samples
ranged from 0.03 to 0.41 ng/g dw. Similar distribution of
BrGDGT composition was found in altered rock as in sediments.
Dominated hexamethylated BrGDGTs were ranged from 44 to
72%, tetramethylated and pentamethylated groups contributed

FIGURE 2 | Abundance of TOC and GDGTs from 5000-11000 m in Mariana/Yap Trenches. The distribution of TOC, BrGDGTs and IsoGDGTs (normalized to dry
weight of sediment) in the trench sediments from Mariana and Yap Trench. (The asterisk represents the Yap sediment core S01; The mean value of TOC calculates
from the subsamples of the first 20 cm of each sediment column). The concentration of IsoGDGT has been published on Chen et al., 2020.
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FIGURE 3 | Relationship between δ13C of TOC and molar C/N ratios of organic matter. The domains of marine particle organic matter (Marine POC), marine
phytoplankton, soil organic matter (Soil OM), and C3 vascular plant are based on Goni et al., 2008; Khan et al., 2015 and references therein. The data of blue-green
points in this figure are derived from Luo et al., 2017.

10–28% and 15–29%, respectively. Br/Iso ratio in altered rocks
was ranged from 0.03 to 0.38 (mean = 0.17, n = 7). The
calculated BIT values ranged in 0.16-0.90 (mean = 0.37, n = 7)
(Supplementary Table 2).

n-Alkane and Related Index in Sediments

n-Alkanes in the range of C16 – C29 were mainly discovered
in the trench sediments. The n-alkanes presented unimodal
distribution pattern centered at C21 – C23 for S01 (5,058 m) and
B01 (5,525 m), while cantered at C16 – C18 for the sediment
cores below 7,000 m without odd/even predominance (Figure 4).
Inhomogeneous distribution of n-alkanes was found in both
abundance and composition in trench sediments. The total
n-alkanes concentrations ranged from 0.003 to 119.4 mg/g dw.
The n-alkane of C16 – C18 were the major components that led
to the increase in abundance of the total n-alkane below 7,000 m
(Figure 4 and Supplementary Table 3). The average chain length
(ACL) is the weight-averaged number of carbon atoms. The
majority value ACL ranged from 17.0 to 22.7 (only one sample
in B06 reached singularly high as 36.4). The carbon preference
index (CPI) of C15 – C25 ranged from 0.37 to 3.82, with
majority samples (65%) less than one (CP1 < 1). Uunresolved
Complex Mixture (UCM) was obviously observed in most of the
samples from trench slope (7,000-8,000 m) and several samples
at 5,000 m sites in this study, accompanying with substantial
branched alkanes and cycloalkanes indicated by Mass Spectrum
(Supplementary Figure 5). UCM was presented for 73, 46, and

80% of the samples in B06 (7,022 m), B09 (7,121 m) and B10
(8,638 m), respectively.

Mineral Composition of the Sediments
and Altered Rocks
We analyzed the mineral composition of selected sedimentary
layers and all altered rocks samples. The X-ray diffraction results
showed that quartz, feldspar, zeolite, montmorillonite, chlorite
and halite were commonly detected in these sediment samples.
While in these altered rocks, quartz, feldspar, chlorite, sepiolite,
daubreelite, and talc were detected. Among them, it should be
noted that zeolite presented in all of these altered rock samples
(Supplementary Table 4).

DISCUSSION

Unusually High Proportions of BrGDGTs
in Oceanic Trench Sediments and
Altered –Rocks
BrGDGTs have been reported in the trench sedimentary
environments, such as the Mariana Trench (Ta et al., 2019; Xu
et al., 2020), the Kermadec Trench (Xu et al., 2020), and Atacama
Trench (Xu et al., 2020). One notable observation was that
relative high abundance of BrGDGTs was examined at two sites
with water depths shallower than 6,000 m in the Mariana trench
(Ta et al., 2019). In consistent to result of Ta et al. (2019), our data
further shows that approximately 58% of the sediment samples
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FIGURE 4 | The mean relative concentration of n-alkanes in the trench sediment cores.

had BIT values over 0.15. Although the BIT values of these trench
sediments were lower than those observed in terrestrial soils, they
were on average far greater than those previously reported for
open marine sediments, and approached those of river mouth
sediments (Weijers et al., 2014). However, the Mariana and Yap
Trench are more than 2,000 km away from large landmasses, and
marine production of IsoGDGTs rapidly dilutes the terrestrial
BrGDGTs from river flows and dust inputs.

These BrGDGTs were possibly produced in situ in the ocean.
The abundance ratio of hexamethylated to pentamethylated
(IIIa/IIa) was inferred to be an indicator for BrGDGT source
with higher values in deep sea sediments (2.6-5.1) than in
soil (<0.59) (Xiao et al., 2016). BrGDGT was 3.87 ± 1.38
(n = 67) in the trench sediments (Supplementary Table 2),
indicating little contribution of terrestrial soil inputs (Xiao et al.,
2016). This conclusion was consistent with two recent studies,
which reported that BrGDGTs in the Mariana trench were
characterized by high cyclopentyl rings (Ta et al., 2019) and
predominance of hexamethylated 6-methyl BrGDGT (Xiao et al.,
2019). Furthermore, other organic geochemical indices also did
not support its terrestrial origin. Typically, TOC/TN molar ratio
of aquatic organic matter is restricted within values from ∼4 to
∼10, and δ13C from −34h to −12h (Lamb et al., 2006). Based
on the bulk TOC/TN molar ratios (4.2-11) and δ13C values of
TOC (−21.8h – −18.9h), Luo et al. (2017) suggested that the
organic matter in the Mariana sediments was primarily marine
origin. In this study, the TOC/TN molar ratio and δ13C of
the bulk organic matter of the sediment samples, which ranged

between 3.00 and 8.21 (mean = 4.96 ± 1.12, n = 67) and between
−21.72h and −16.70h (mean = −19.02 ± 1.05h, n = 67),
respectively (Supplementary Table 2 and Figure 3), confirmed
they were of marine sources (Lamb et al., 2006; Khan et al.,
2015). This conclusion was also supported by the characteristics
and distributions of n-alkanes in the trench sediments (n < 27,
Figure 4 and Supplementary Table 3), with a dominance of short
chain n-alkane and absence of odd-even preference (Nelson,
1978; Serrazanetti et al., 1995). Therefore, it seems likely that
the measured BrGDGTs have formed by in situ production in
the marine environment. Additionally, since the surface ocean
and deep seawater column in this region have constant aerobic
conditon (Nunoura et al., 2015) and very low BrGDGT ratios
(Schouten et al., 2013; Yamamoto et al., 2016), the relative
abundance of BrGDGTs in trench sediments cannot be explained
by funnelled inputs from the upper layers of the ocean. Therefore,
the relative abundance of BrGDGTs in trench sediments might
therefore be in situ production of the trench bottom (trench
sediments or altered rocks).

Comparative analysis of trench sediment BrGDGT
distributions with trench altered rocks and those from
other sources suggests BrGDGTs in trench sediments were
primarily derived from altered trench wall rocks. A ternary
diagram of BrGDGT-Crenarchaeol-GDGT-0 abundance
(Figure 5A) revealed significant differences between the GDGT
characteristics of trench samples (both of sediments and altered
rocks) and of terrestrial soil samples. Trench samples also
showed higher levels of BrGDGTs and GDGT-0, on average,
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FIGURE 5 | Ternary diagram revealing the source of the GDGTs in the trench sediment. (A) GDGT-0, Crenarchaeol and sum of BrGDGTs; (B) GDGT-II, GDGT-III and
rings of penta-hexa. In this figure, III/II refers to the ratio between GDGT-IIIa and GDGT-IIa (Xiao et al., 2016), whereas ringspenta−hexa is the sum of the abundances of
ring-shaped GDGT-II and GDGT-III. Br-GDGT refers to bacterial branched GDGT. The sources of data used in this Figure are as follows: open marine data containing
particles and surface sediments from NW Pacific (Yamamoto et al., 2016) and surface sediments from SE Pacific (Kaiser et al., 2015); lake data containing
particulates and surface sediments from 47 European lakes (Blaga et al., 2009); coastal sediment data containing surface sediments from Gulf of Lions (Kim et al.,
2010) and the east coastal sea of China (Lü et al., 2014); soil data containing soil samples from 6 provinces in eastern China (Wu, 2014); data on hydrothermal
sediments (Hu et al., 2012); data on low-temperature hydrothermal deposits (Pan et al., 2016). For structures see Supplementary Figure 1.

when compared to open marine sediments. When BrGDGTs
alone were taken into consideration, a ternary diagram was
drawn by plotting the composition of GDGT-II, GDGT-III, and
Ringspenta−hexa (the sum of GDGT-IIb, GDGT-IIc, GDGT-IIIb,
and GDGT-IIIc) (Figure 5B). This result shows that the lipids
of microbes in trench sediments differ significantly from those
of waters nearby this region (Yamamoto et al., 2016) yet shared
similar characteristics with lipids of microbes associated with
altered rocks from this study and some previous reported
hydrothermal sediment and deposits (Hu et al., 2012; Pan et al.,
2016). This conclusion is further supported by comparative
analysis of the interrelation between the BIT and two other
parameters calculated from BrGDGTs, the methylation of
branched tetraethers (MBT) and cyclization of branched
tetraether (CBT) ratio (Weijers et al., 2007) [see the Equation
(2) and (3)]. Again, the trench sediments cluster together with
the altered trench wall rocks as well as some of the hydrothermal
samples (Figure 6; Hu et al., 2012; Pan et al., 2016), characterized
by higher CBT values and lower MBT values when compared
to those of open ocean, soil and coastal sediments. Therefore,
these results indicated that most part of BrGDGTs in the trench
sediments might be sourced from the altered trench rocks.

Meanwhile, relatively high levels of BrGDGTs have also
been reported in studies on chemoautotrophic systems, such as
seafloor cold seep (Zhang et al., 2020), hydrothermal fields (Hu
et al., 2012; Lincoln et al., 2013; Pan et al., 2016), and serpentinite-
hosted ecosystems (Newman et al., 2020). For example, the
BIT of hydrothermal sediments of the Lau Basin (Hu et al.,
2012), and the low temperature hydrothermal deposits from
the Southwest Indian Ridge (Pan et al., 2016) ranged in 0.1–
0.76 and 0.24–0.69, respectively. Although they might not be
directly sourced from these chemoautotrophic microorganisms

(Pan et al., 2016), they were likely derived from heterotrophic
BrGDGT-producing bacteria which were fueled by the organic
production from the chemoautotrophic communities (Pan et al.,
2016). This inference was consistent with the recent findings
by Weber et al. (2018), which reported that some BrGDGTs
were indeed closely related to chemoautotrophic microorganisms
under methanotrophic conditions. Having similar microbial
composition is a sound explanation for the close BrGDGTs
characteristics between trench sediments, altered rocks, and
hydrothermal sediments and deposits. Additionally, wildly
distributed UCM in range of short carbon chain of hydrocarbon
fractions in slope sediments may further indicated similar
synthesis that found in petroleum contaminated or thermal
reaction influenced sediments (Frysinger et al., 2003; McCollom
et al., 2015), suggesting strongly biodegradation or weathering
(Wenger and Isaksen, 2002; Hasinger et al., 2012). UCM in
sediment of Mariana (4,000–7,000 m) was previously reported
in Guan et al. (2019) which suggested UCM source from
biodegraded oils with marine source and likely transported by
normal faults and strike-slip faults on the seafloor (Tao et al.,
2015; Guan et al., 2019).

In the hydrothermal microbial communities, one of
the most conspicuous manifestations is the dominance
of chemoautotrophic microorganisms. With regard to the
marine trenches, chemoautotrophic communities are far from
uncommon (Fujikura et al., 1999; Hand et al., 2012; Ohara
et al., 2012). On one hand, the geological settings of the trench
bottom can provide habitat niches (e.g., methanotrophic and
ammonia oxidizing conditions) for chemolithoautotrophic
life (Spang et al., 2010, Nunoura et al., 2015, 2018). The
distribution of IsoGDGT in Mariana Trench revealed increasing
presence of deep deweling ammonia oxidizing archaeal group
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FIGURE 6 | The interrelation between the BIT, MBT and CBT in sediments. (A) BIT and CBT. (B) BIT and MBT. (C) MBT and CBT. The sources of data used in the
Figure are as follows: open marine data containing particles and surface sediments from NW Pacific (Yamamoto et al., 2016); lake data containing particulates and
surface sediments from 47 European lakes (Blaga et al., 2009); coastal sediment data containing surface sediments from Gulf of Lions (Kim et al., 2010) and the east
coastal sea of China (Lü et al., 2014); soil data containing soil samples from 6 province in eastern China (Wu, 2014); data on hydrothermal sediments (Hu et al.,
2012); data on low-temperature hydrothermal deposits (Pan et al., 2016).

(Thaumarchaeota) in the sediments (Chen et al., 2020). On
the other hand, chemolithoautotrophic group of CH4 and H2
utilizing in sediment may raise its attention based on conspicuous
abundance of dissolved H2 and H2-utilizing chemolithotrophs
that were recently identified in the altered rocks and muds of
the fluid discharge field at the incoming plate of the southern
Mariana trench (Du et al., 2019). Meanwhile, the process of
serpentinization, which can generate substantial amounts of
crustal fluids for microbial CH4 and H2 utilization, has been
reported to widely occur at the southern Mariana forearc
(Ohara et al., 2012; Plümper et al., 2017). Moreover, Tarn et al.
(2016) suggested that the microbial communities of Mariana
Trench bottom water indeed characteristically display a degree
of overlap with microbial communities from low-temperature
diffuse flow hydrothermal vents and deep-subsurface locations.
Specifically, taxa frequently encountered in vent datasets,
such as Gammaproteobacteria, Epsilonproteobacteria, SAR324,
Thiovulgaceae, and SUP05, were also detected in the trench
sediments (Tarn et al., 2016). In addition, abundant of
hydrocarbon-degrading bacteria and unknown sources of
alkanes were also unexpectedly detected in the sediment of the
Mariana trench (Li et al., 2019; Liu et al., 2019). This phenomenon
may also be related to the activity of water-rock interaction in the
trench bottom (Li et al., 2019). Overall, high similarity in GDGTs
between the trench sediments and altered rocks together with
these previous microbial and geochemical evidence might imply
the wide distribution of chemoautotrophically-based microbial
communities in the trench walls, supported by active geological
fluid discharge from water-rock interaction.

The Schematic Model of
Chemoautotrophic Organic Carbon
Production in the Trench Zone
We proposed a schematic model to explore this relationship
between water-rock interaction and chemoautotrophic

organic carbon in the trench zone (Figure 7). On one hand,
fluid discharge and mud volcanoes induced by large-scale
serpentinization were widely distributed along the forearc of
the Mariana Trench (Fryer et al., 1999; Stern et al., 2006). The
chemoautotrophic communities fed by these fluids have been
reported in the literature. For example, the serpentinization-
formed “Shinkai Seep Field” was discovered at the Southern
Mariana Forearc (Ohara et al., 2012). Based on this discovery,
they proposed that fluid discharge from serpentinization could
be widespread in oceanic trenches. Moreover, Plümper et al.
(2017) found organic matter encapsulated in rock clasts from an
oceanic serpentinite mud volcano above the Izu–Bonin–Mariana
subduction zone. Because of this result, they predicted that
the serpentinization-fueled systems in the hydrated forearc
mantle of Mariana subduction zone may represent one of
Earth’s largest hidden microbial ecosystems. On the other hand,
low-temperature alteration reactions between basaltic rocks and
seawater also would be a pervasive phenomenon in the trench
environments. This conclusion is supported by the common
detection of zeolite in the trench sediments and altered rocks
(Supplementary Table 4). Zeolite is possibly formed by the
low-temperature hydrothermal alteration of basalt (Liou, 1979).
This process can also fuel the chemoautotrophic communities,
which constitute a trophic base of the basalt habitat in the
oceanic crust (Cowen et al., 2003; Santelli et al., 2008). At present,
chemoautotrophic carbon fixation associated with carbon and
sulfur cycling in seafloor basalts has been proved by multiple lines
of indirect evidence, such as depletions in δ34S-pyrite (Rouxel
et al., 2008) and DNA sequences (Cowen et al., 2003; Orcutt
et al., 2011; Lever et al., 2013). Additionally, the occurrence of
fluids discharge feature and H2-utilizing chemolithotrophs (Du
et al., 2019) in the outer rise zone of the incoming plate at the
southern Mariana trench further supported this conclusion.

In our schematic model, the plate bending caused by
subduction processes has generated numerous faults, fractures
and microfissures, both within the outer rise zone of the

Frontiers in Earth Science | www.frontiersin.org 8 April 2021 | Volume 9 | Article 65374214

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-653742 April 7, 2021 Time: 12:45 # 9

Li et al. Organic Carbon in Trench Environment

FIGURE 7 | A schematic model of the sources, production and transport of GDGTs in the trenches. Plate bending caused by subduction processes has generated
numerous fractures, faults and microfissures both within the subduction slab and overriding plate, triggering water-rock interactions in the oceanic crust. These
water-rock interactions facilitate the widespread growth of chemoautotrophic communities across the trench zone.

subduction slab and the forearc of the overriding plate, which
provides channels for the influx of water into the oceanic
crust, thereby triggering water-rock interactions on a large
scale. The geological fluids generated by these interactions are
then released in the same channels from the oceanic crust.
The fluids are rich in hydrogen, methane, hydrocarbons, and
other reduced inorganic matter (e.g., Fe, Mn, and S), making
them excellent substrates for chemoautotrophic microorganisms.
These water-rock interactions facilitate the widespread growth
of chemoautotrophic communities across the trench. As shown
in Supplementary Figure 6, an increasing trend of BIT was
observed in S01, B01 and B06, that corresponds to results in Ta
et al. (2019), where an identical trend from surface to bottom
was reported in a meter-long sediment core recovered from the
Mariana Trench subduction zone (∼5000 m). Higher BIT values
in the core bottom at water depths of 5,000–7,000 m, underlain
by subducted oceanic crust, suggested abnormal distribution of
BrGDGT, compared to those recorded from open oceans with
low BIT values. However, such distribution pattern was weak or
even reversed at deeper water sites (see B09 and B10). Previously,
low BIT values were reported in the sediment cores at the bottom
of the Trench (∼11,000 m) by Xiao et al. (2019), which is in
line with our findings in core LR01. We speculate that with
weakening tectonic distortion of the subducted plate at deeper
water depths, increasing BIT values are rarely observed at surface
and subsurface sediment (at least 40 cm in this study).

Finally, in the schematic model, the excess labile organic
matter produced by these communities are transported laterally
to the deeper parts of the trenches through gravity flows, leading
to relatively higher microbial carbon turnover rate. No direct

evidence of synthesis of BrGDGTs by the chemoautotrophic
group is evident yet. However, increasing trend of BIT values
from surface to bottom core at subduction zones, and similar
composition of BrGDGTs with altered rocks and minerals implies
a strong connection between the ecology shaped by chemical
fluids in deep sediments and microbial synthesizers of BrGDGT.
Overall, we propose that chemoautotrophy driven by geological
activity could be an effective supplement to the trench organic
carbon pool in addition to photosynthetic products sourced from
the upper ocean.

CONCLUSION

In this study, mineralogical compositions, bulk organic
geochemical parameters and membrane lipids compositions
were examined in sediments and rocks of the Mariana and
Yap Trenches, northwest Pacific Ocean. The results shown that
these trench sediments and altered rocks contained relative
higher BrGDGTs contents, with the BrGDGT-to-IsoGDGT
ratios ranged in 0.02–0.88 (mean = 0.10 ± 0.11) and 0.09–0.38
(mean = 0.17 ± 0.13), respectively. Meanwhile, the BIT index
ranged in 0.02–0.73 (mean = 0.18 ± 0.11) in sediments and
from 0.16–0.9 in altered rocks (mean = 0.37 ± 0.27), which are
much higher than those of open ocean. Together with bulk TOC,
TN and n-alkanes data, we suggested that these BrGDGTs were
in situ production in the trench zone. Furthermore, these GDGTs
exhibited similar characteristics to those of altered basalt rocks,
indicating a fraction of organic carbon was possibly derived from
chemoautotrophic communities supported by the fluid discharge
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of water-rock interaction in the trench walls. This was further
supported by the common detection of zeolite, indicative of
water-rock alteration, in both altered rocks and trench sediments.
Thus, we propose chemoautotrophic activity in oceanic crust
could be an additional source of organic carbon in the trench
sedimentary environments.
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Marine sediments are found to record various information for example the evolution of
ocean and the exchange of matter and energy between the surrounding continents
and oceans. The Southwest Sub-basin is one of the most important tectonic unit in
the South China Sea Basin. The geochemical information of the sediments provides
potential to understand the sedimentary history of the Southwest Sub-basin of South
China Sea. In this paper, the aliphatic hydrocarbon compounds in two core sediments
from the Southwest sub-basin were analyzed using lipid biomarker analysis. The
average concentration of the total organic carbon (TOC) and the total nitrogen (TN) for
both core sediment A and sediment B are similar, falling in the range of 0.64% ± 0.18
and 0.10% ± 0.02%, respectively. The C/N ratios vary from 3.2 to 11.1, reflecting
that the organic carbon was a mixture of terrestrial and marine sources with more
contributions from marine sources in core sediment B than sediment A. The long-
chain n-alkanes of both core sediments show an even-odd predominance, reflecting
the contributions of terrestrial higher plants and short-chain n-alkanes from marine
plankton or bacteria. The Pr/Ph of core sediments A and B are 0.3–0.5 and 0.2–
0.4, respectively, both of which are far less than 1, indicating that the sedimentary
environment was dominated by strong reduction and long-term stability. The odd-even
distribution of medium-chain n-alkanes (n-C14−20) in the core sediments A and B is due
to the reduction of n-fatty acids with an odd carbon dominance in a strongly reductive
depositional environment.

Keywords: core sediments, organic matter, aliphatic hydrocarbons, Southwest sub-basin of South China Sea,
sedimentary environment

INTRODUCTION

The South China Sea, one of the marginal sea of the Pacific Northwest Sea. According to water
depth, topography and geology, and geophysical data, the South China Sea Basin was divided into
the Northwest sub-basin, Southwest sub-basin and Eastern sub-basin (Briais et al., 1993; Sun et al.,
2009). The Southwest sub-basin is located among the Xisha Islands, Zhongsha Islands and Nansha
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Islands. It is a NE-trending triangular basin with a northeast
direction of approximately 600 km and a northeast margin of
approximately 400 km with a water depth of 3,000–4,000 m
(Li, 2011). It is the lowest depression in the South China Sea
basin (Figure 1). As the interaction zone between the continent
and the ocean, the South China Sea’s unique geographical
location, complex tectonic environment and special ocean
currents have formed its complex sedimentary environment,
and its sedimentary material sources are various and diverse
(Hamilton, 1979; Tapponnier et al., 1982).

Due to bordering on many countries, the Southwest Sub-
basin of South China Sea is lack of comprehensive and
systematic investigations over decades. Most of the research was
concentrated on the northern South China Sea. For the southern
South China Sea, organic geochemistry research has also been
done (Duan, 2000; Hu et al., 2009; Tahir et al., 2015; Kerimov
et al., 2019). However, compared with other sea areas, the
geochemical studies in the southern South China Sea also appear
to be lagging and weak. There are few reports on the geochemical
characteristics, influencing factors and environmental records of
hydrocarbon compounds in the core sediments in this area.

Molecular fossils could maintain the carbon skeleton
of original biochemical components during the evolution
processes of organic matter, recording information about
original organisms and thus can be used to reveal information
of biological input, sedimentary environment and diagenetic
changes (Meyers and Lallier-Vergés, 1999; Meyers, 2003). In this
paper, two core sediments collected from the Southwest sub-
basin as the research object, analyzed the organic geochemical
index of n-alkanes and their carbon molecular assemblages,
the aim of this study was to trace the source of organic matter
and understand the sea-land interaction during modern marine
sedimentation in the southwest sub-basin, and to provide a
scientific basis for the indication of climate and environment.

SAMPLE AND ANALYSIS METHODS

Sample Collection
The sampling sites were located in the southwest sub-basin of the
South China Sea (Figure 1). Sediment cores were collected by the
“Haiyang 4” ship of the Guangzhou Marine Geological Survey
in September 2015, using a large gravity sampler. The sediment
cores were collected from water depths of 4,050–4,030 m with
their lengths of 4.75 and 5 m, respectively. Man-made damages
and obvious biological disturbances were not observed during
collection and sampling processes, therefore, the geochemical
information can be used as indicators for original sedimentary
characteristics. Core sediments were subsampled immediately
and stored at−20◦C for the further analyses.

Experimental Analysis
Total Organic Carbon (TOC)
Sediments were freeze-dried at −50◦C and ground into powder
about 200 mesh. Approximately120 mg of powder was put into a
crucible, and excess HCl at a concentration of 6 mol/l was added.
The samples were laid over night, followed by being heated at

80◦C for 2 h to remove the carbonate and rinsed with deionized
water until neutral. The cleaned samples were dried at 110◦C and
measured with LecoC230.

Sample Extraction and Separation of Soluble Organic
Matter
The organic matters were extracted by Soxhlet for 72 h with a
mixed solvent of dichloromethane/methanol (9:1, volume ratio).
Before extraction, the appropriate amount of activated copper
sheet was added to the receiving bottle of the extraction liquid
to remove the elemental sulfur. The internal standard C20D42
was added to the receiving bottle of extraction liquid. After
extraction, the extracts were concentrated by rotary evaporation
and transferred to a suitable bottle, which was then blown to
dryness with nitrogen and get soluble organic matter. The soluble
organic matter was saponified with KOH/CH3OH (1 mol/l) (i.e.,
70◦C heating reflux 2 h), then neutral components were extracted
by adding n-hexane. After the organic matter was transferred to a
silica gel column, the organic matter was washed with 3 volumes
of n-hexane to obtain hydrocarbon components.

Gas Chromatography—Mass Spectrometry (GC-MS)
Instrument Model: Thermo Trace GC Ultra-AL/AS3000 GC–MS;
ion source for the electron bombardment source (70 eV); ion
source temperature: 230◦C; inlet temperature: 290◦C; number
of scans: 0.7911/s; scanning rate: 500 amu/s, 30–750 amu. The
carrier gas was high-purity helium.

Hydrocarbon Detection: The column model was a HP-1
capillary column (60 m ∗0.32 mm, i.d., ∗0.25 µm coating). The
temperature program was as follows. The initial temperature
was 80◦C, the temperature was maintained for 3 min, and the
temperature was raised to 315◦C at 3◦C/min for 30 min. Using
a splitless injection mode, the carrier gas was high-purity helium
with a flow rate of 1.1 ml/min.

RESULTS

The Results of the TOC and Total
Nitrogen (TN)
The TOC, total TN and TOC/TN of the two core A and B in
the southwest sub-basin are listed in Table 1. The mean TOC of
core sediment A was 0.64% ± 0.18% (0.29–0.88%). The average
concentration of TN was 0.10% ± 0.02% (0.04–0.12%), and the
average C/N was 6.91 ± 2.03 (3.22–11.15). The mean TOC of
core sediment B was 0.64% ± 0.12% (0.43–0.86%). The average
concentration of TN was 0.10% ± 0.01% (0.08–0.11%), and the
average C/N was 6.38 ± 1.33 (4.8–9.3). The average TOC of
cores A and B were equivalent to 0.7 and 0.53% of the two cores
measured by Duan (2000) in the Nansha Sea.

Hydrocarbon Compounds
The hydrocarbons detected in the two cores sediments A and B
ranged from C14 to C33, mainly including n-alkanes and acyclic
diolefins (pristane and phytane) (Table 2). The concentrations
of total n-alkanes of core A varied from 716.7 to 2799.8 ng/g
(Table 2), and the concentration of total n-alkanes of core
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FIGURE 1 | The distribution of sampling sites and the tectonic location of the Southwest Sub-basin.

sediment B were 1008.3–2109.9 ng/g (Table 3). In the two core
A and B, n-C27, n-C29, and n-C31 were the main peak carbons,
and the values of CPI24−35 of long-chain n-alkanes were 3.6
(2.1–5.0) and 2.9 (1.8–3.6). The sum of the most abundant
n-alkanes related to terrestrial origins (n-C27, n-C29, and n-C31)
were defined as 6Ter-alkanes, which were 211.4–1004.0 ng/g,

TABLE 1 | The total organic carbon (TOC), total nitrogen (TN), carbon to
nitrogen ratio (C/N).

A B

Depth C (%) N (%) C/N Depth C (%) N (%) C/N

20 cm 0.76 0.12 6.5 20 cm 0.75 0.11 6.7

60 cm 0.88 0.12 7.3 60 cm 0.65 0.11 5.9

100 cm 0.82 0.12 7.1 100 cm 0.56 0.10 5.7

140 cm 0.55 0.11 5.1 140 cm 0.76 0.09 8.7

180 cm 0.65 0.10 6.3 180 cm 0.43 0.08 5.2

220 cm 0.80 0.10 8.0 220 cm 0.59 0.11 5.4

260 cm 0.37 0.04 9.6 260 cm 0.70 0.10 6.9

300 cm 0.50 0.10 5.1 300 cm 0.86 0.09 9.3

340 cm 0.66 0.10 6.4 340 cm 0.69 0.11 6.2

380 cm 0.60 0.10 6.1 380 cm 0.61 0.11 5.5

420 cm 0.29 0.09 3.2 420 cm 0.69 0.10 6.8

460 cm 0.76 0.09 8.1 460 cm 0.62 0.10 6.0

470 cm 0.67 0.06 11.1 495 cm 0.45 0.09 4.8

accounting for 18.8–48.9% of the total n-alkanes (averaging
31.1%) at station A. The 6Ter-alkanes for B ranged from 224.4
to 670.6 ng/g, representing 14.5–34.0% of the total n-alkanes
(averaging 23.4%).

Short-chain n-alkanes are attributed to be derived from
marine algae and bacteria (Blumer et al., 1971). Low-carbon
alkanes show a significant advantage of even carbon number, and
the maximum relative abundances are n-C16, n-C18, and n-C20.
For core sediment A, the 6Mar-alkanes, defined as the sum of
n-C15, n-C17, and n-C19, were 52.2–325.4 ng/g, accounting for
2.7–13.2% (averaging 8.9%) of the total n-alkanes. The 6Mar-
alkanes at B were 64.5–266.5 ng/g, accounting for 5.2–12.6%
(averaging 8.4%) of the total n-alkanes.

The concentrations of pristane in cores A and B were 10.2–
95.9 and 12.3–78.7 ng/g, respectively, and the concentrations of
phytane were 32.8–212.5 and 51.9–184.1 ng/g, respectively.

DISCUSSION

Downcore Profiles of TOC and TN in
Sediments and Their Source Indication
Carbon and nitrogen form the basis of life and play important
roles in many terrestrial and aquatic biogeochemical cycles
(Likens et al., 1981). Carbon in marine sediments is an important
part of the carbon cycle. Nitrogen is the most basic bioactive
element that limits the growth of phytoplankton in the ocean.
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TABLE 2 | Concentration (ng/g sed.dry weight) of hydrocarbon in A station of the Southwest Sub-basin.

Depth 20 cm 60 cm 100 cm 140 cm 180 cm 220 cm 260 cm 300 cm 340 cm 380 cm 420 cm 460 cm 470 cm

Compounds

n-C14 36.2 3.1 4.5 3.6 0.6 1.0 0.1 8.3 4.0 2.9 0.7 0.5 3.1

n-C15 43.7 9.6 21.5 20.2 6.0 8.3 1.9 14.9 11.9 8.4 5.3 5.1 7.2

n-C16 306.4 133.5 157.1 153.8 101.3 115.5 56.1 138.9 120.5 88.5 87.9 59.7 64.8

n-C17 187.7 84.6 114.3 110.9 86.4 89.4 59.3 92.0 114.3 34.2 31.0 28.4 25.5

Pr 95.9 40.0 53.4 68.9 45.9 45.6 35.9 47.7 75.3 13.7 11.9 10.7 10.2

n-C18 371.1 197.8 203.0 177.4 147.3 156.9 95.3 159.9 180.8 115.1 129.3 100.6 85.9

Phy 212.5 97.3 118.6 140.5 95.4 107.8 69.1 101.4 198.0 44.6 45.2 32.8 32.2

n-C19 94.1 40.8 90.7 52.7 37.0 50.5 19.0 36.3 62.0 27.1 25.5 21.9 19.5

n-C20 286.1 157.7 153.2 132.2 103.8 113.9 59.3 102.6 100.5 80.2 93.8 74.8 65.3

n-C21 97.1 47.6 69.2 54.0 42.3 54.8 21.2 40.6 40.3 33.5 33.8 37.1 32.2

n-C22 199.7 99.0 87.0 83.5 67.5 69.5 34.3 62.9 60.1 46.5 61.1 54.5 45.6

n-C23 102.7 59.3 56.8 59.4 51.1 58.8 23.4 48.3 45.3 40.3 53.0 74.5 57.5

n-C24 132.0 61.4 55.2 59.2 46.7 49.5 21.8 49.1 43.2 35.0 48.0 50.3 41.6

n-C25 55.0 69.7 67.1 65.4 61.1 66.7 27.9 55.7 54.0 51.4 69.6 116.5 85.9

n-C26 107.5 51.6 77.1 48.5 45.8 48.4 18.5 38.7 38.4 32.4 43.8 51.1 41.7

n-C27 91.6 84.6 77.1 81.2 76.7 82.0 37.7 59.3 74.2 75.9 105.6 197.9 157.3

n-C28 82.0 55.3 42.6 53.5 43.9 42.8 18.7 33.5 39.8 37.2 44.2 72.5 55.7

n-C29 213.1 176.7 147.6 169.7 157.3 157.8 86.1 109.1 150.1 160.8 243.6 382.1 286.1

n-C30 53.4 36.8 34.4 39.8 36.2 37.4 13.4 23.0 30.5 28.4 36.5 73.3 58.5

n-C31 220.7 193.3 167.4 172.3 172.8 173.4 87.6 119.8 158.8 161.9 244.0 424.0 315.2

n-C32 27.5 17.3 18.5 22.2 20.0 20.8 6.5 10.6 14.6 14.3 18.8 41.2 33.0

n-C33 92.2 72.1 69.1 79.7 74.5 87.3 28.5 41.5 61.4 59.2 75.9 187.5 133.4

Total n-alkanes 2799.8 1651.8 1713.4 1639.1 1378.3 1484.5 716.7 1245.0 1404.7 1133.2 1451.5 2053.5 1615.0

6Ter-alkanes 525.3 454.6 392.1 423.2 406.7 413.1 211.4 288.2 383.1 398.6 593.1 1004.0 758.6

6Mar-alkanes 325.4 135.0 226.6 183.7 129.4 148.2 80.3 143.2 188.2 69.6 61.8 55.3 52.2

TAR 1.6 3.4 1.7 2.3 3.1 2.8 2.6 2.0 2.0 5.7 9.6 18.2 14.5

CPI24−33 2.1 3.2 2.7 3.0 3.3 3.3 4.0 3.1 3.5 4.0 4.5 5.0 4.7

Pr/Ph 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.4 0.3 0.3 0.3 0.3

Pr, pristane; Phy, phytane; CPI, carbon preference index; 6Ter-alkanes, 6C27+29+31; 6Mar-alkanes, 6C15+17+19; TAR, 6Ter-alkanes/6Mar-alkanes; N.D., not detected.

Therefore, it is very important to study the distribution of carbon
and nitrogen in core sediments.

The downcore profiles of TOC, TN and TOC/TN with depth
of core sediment A are shown in Figure 2. From bottom to
top, according to the vertical concentration changes of TOC
and TN, 4 stages were identified: (1) Under the layer below a
depth of 380 cm, the concentration of TOC was low and varied
significantly. The concentration first increased from the bottom,
dropped to the lowest value (0.29%) at 420 cm, and then increased
again. The concentration of TN had a similar trend but did
not change as strong as TOC; (2) At depths between 380cm
and 340 cm, the concentration of TOC was low and consistent;
the concentration of TN was also relatively uniform; (3) The
concentration of TOC varied greatly at depths between 340m
and 220 cm, and the lowest TN value were found at a depth of
260 cm (0.04%); (4) Above the depth of 220 cm, the concentration
of TOC showed a high, rising, but fluctuating trend; however,
the change was small; the concentration of TN generally rose,
with the highest value (0.04%) appearing at the depth of 60 cm.
Overall, the vertical concentration variation trends of TOC and
TN in core sediment A was generally the same, with differences
in individual locations.

The curves of TOC, TN and TOC/TN with depth for core
sediment B are shown in Figure 3. From bottom to top, 3 stages
were identified. (1) In the layer below 300 cm, the TOC of core
sediment B changed slightly, showing an upward trend overall,
with a high value (0.86%) at a depth of 300 cm and a low value
of TN (0.09%). (2) At a depth of 300–180 cm, the concentration
of TOC showed a downward trend, and the concentration of TN
fluctuated greatly. (3) At a depth above 180 cm, the TOC showed
an upward trend but fluctuated while the concentration of TN
increased gently. According to the change of TOC, we can find
that the trend of TOC and TN are the same at a depth of 340 cm
and below, while TOC and TN have an opposite trend at a depth
of 340 cm and above.

The C/N of organic matter in marine sediments can be used
to determine the source of organic matter. Organic matter is
usually thought to originate from marine organisms at a C/N of
5-7 (Redfield et al., 1963), while the C/N of organic matter in
higher plants from terrestrial sources is generally greater than
15 (Meyers, 1997). As seen from Figures 2, 3, the C/N of the
core A and B vary greatly with depth, and the average C/N of
core sediment A is 6.91 ± 2.03, ranging from 3.22 to 11.15 and
indicating that organic carbon in sediments is a mixed source
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TABLE 3 | Concentration (ng/g sed.dry weight) of hydrocarbon in B station of the Southwest Sub-basin.

Depth 20 cm 60 cm 100 cm 140 cm 180 cm 220 cm 260 cm 300 cm 340 cm 380 cm 420 cm 460 cm 495 cm

Compounds

n-C14 18.6 8.7 42.2 0.9 4.7 1.9 0.4 0.3 0.7 19.6 24.4 6.9 30.7

n-C15 26.5 25.8 31.1 11.2 15.2 11.2 5.0 4.1 8.5 22.5 31.2 26.9 66.9

n-C16 235.9 166.8 204.3 104.8 181.4 148.1 98.9 86.5 142.0 175.2 183.2 226.8 296.7

n-C17 78.4 70.1 80.1 54.2 58.2 52.8 41.0 32.0 61.6 55.6 56.1 88.2 124.4

Pr 32.1 26.2 24.1 26.9 21.6 20.9 18.9 12.3 26.7 22.4 22.4 39.4 78.7

n-C18 245.4 206.4 228.5 143.6 218.6 195.9 199.1 135.0 224.4 190.5 176.1 227.1 282.4

Phy 113.8 101.9 98.5 78.4 90.2 80.7 75.1 51.9 92.0 77.7 80.8 124.1 184.1

n-C19 60.4 44.5 60.1 36.9 55.8 41.1 38.9 28.5 50.1 43.8 41.4 62.1 75.3

n-C20 165.4 109.2 164.3 75.7 163.3 139.1 133.5 98.6 171.0 129.7 118.8 155.9 185.3

n-C21 71.8 47.1 68.1 40.4 63.6 50.1 38.8 36.5 65.8 55.1 52.3 68.9 88.0

n-C22 88.5 91.9 94.9 58.2 93.1 74.4 65.5 60.8 102.5 76.4 69.8 87.7 109.8

n-C23 71.6 85.7 71.3 81.4 71.1 59.4 55.5 42.8 77.3 65.3 55.8 71.8 92.5

n-C24 59.8 86.4 60.2 70.0 56.8 46.8 42.2 38.0 78.6 58.5 52.2 60.2 69.0

n-C25 62.0 96.8 70.9 114.4 76.3 65.2 54.7 47.4 72.7 67.1 61.8 67.4 63.1

n-C26 43.4 91.8 51.6 78.7 53.6 41.4 40.4 35.9 64.4 48.3 41.1 46.6 59.3

n-C27 40.5 80.8 52.7 153.0 75.4 71.5 62.7 50.7 69.1 70.1 63.7 56.4 68.9

n-C28 28.7 64.4 38.0 89.2 52.6 41.1 30.8 28.1 51.2 38.5 42.2 45.3 51.0

n-C29 94.1 164.2 113.1 265.0 184.3 166.4 127.7 101.8 149.1 151.7 136.5 136.9 169.0

n-C30 20.8 47.8 25.2 85.7 33.3 26.0 23.6 21.3 33.0 29.3 30.1 24.1 32.0

n-C31 89.7 196.0 115.5 252.6 174.4 147.6 129.7 108.9 151.3 157.8 146.3 136.2 170.6

n-C32 10.8 36.0 12.7 64.5 15.4 11.3 10.6 10.5 14.1 12.8 14.1 12.4 14.5

n-C33 30.7 98.5 42.9 190.8 69.2 52.2 39.8 40.6 54.6 54.5 54.3 48.8 60.5

Total n-alkanes 1542.7 1818.9 1627.6 1971.3 1716.4 1443.5 1238.8 1008.3 1642.0 1522.2 1451.4 1656.7 2109.9

6Ter-alkanes 224.4 441.0 281.3 670.6 434.2 385.5 320.2 261.4 369.5 379.6 346.5 329.4 408.5

6Mar-alkanes 165.2 140.4 171.4 102.3 129.2 105.1 84.8 64.5 120.2 121.9 128.7 177.2 266.5

TAR 1.4 3.1 1.6 6.6 3.4 3.7 3.8 4.1 3.1 3.1 2.7 1.9 1.5

CPI24−33 2.5 2.3 2.6 2.8 3.2 3.6 3.4 3.1 2.6 3.3 3.1 1.8 2.9

Pr/Ph 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.4

Pr, pristane; Phy, phytane; CPI, carbon preference index; 6Ter-alkanes, 6C27+29+31; 6Mar-alkanes, 6C15+17+19; TAR, 6Ter-alkanes/6Mar-alkanes; N.D., not detected.

of terrigenous and marine. Meanwhile, the average C/N of core
sediment B is 6.38 ± 1.33 (4.79–9.34), which also reflects the
input of both terrigenous and marine organic matter. The C/N
of A and B are both lower, indicating that the organic carbon
is mainly from a marine source, while the lower C/N value of
B indicates that the contribution of marine sources to organic
carbon in core sediment B are larger than that of A.

In the two cores, the TOC and TN have a positive correlation
(Figure 4), the positive relationship of TOC and TN suggests
that TN measured in the sediments mostly exists in the form
of organic nitrogen (Goñi et al., 1998). In addition, Qian et al.
(1997) also proposed a method to quantitatively estimate the
concentration of aquatic organic carbon (Ca), terrestrial organic
carbon (Ct), aquatic nitrogen (Na) and terrestrial nitrogen (Nt).
According to this method, assuming that the TOC/TN ratios of
aquatic and terrestrial organic matter are 5 and 20, respectively
(as a zero-order approximation) (Jia et al., 2002), the above
parameters have the following relationship:

TOC = Ca+ Ct

TN = Na+ Nt

Ca/Na = 5

Ct/Nt = 20

Among them, TOC and TN represent the measured values.
The solution of this equation formed by the above relationship
calculates the available aquatic organic carbon and terrestrial
organic carbon as follows:

Ca = (20TN − TOC)/3

Ct = 4(TOC − 5TN)/3

The concentrations of aquatic organic carbon (Ca) and terrestrial
organic carbon (Ct) in the core sediment A are 72.2 and 27.8%
of the TOC, as calculated by the above formula; aquatic nitrogen
(Na) and terrigenous nitrogen (Nt) account for 87.2 and 22.8%
of the TN, respectively. Therefore, TOC and TN in the core
sediment A are mainly marine sources. The concentration of
aquatic organic carbon (Ca) and terrestrial organic carbon (Ct) in
core sediment B account for 74.9 and 25.1% of the total organic
carbon, and aquatic N and Nt account for 90.8 and 9.2% of
the total nitrogen, respectively. Therefore, organic carbon and
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FIGURE 2 | Vertical profiles of TOC, TN, and CN in core sediment A.

FIGURE 3 | Vertical profiles of TOC, TN, and C/N in core sediment B.
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FIGURE 4 | The correlation of TOC and TN in core sediments (A,B).

FIGURE 5 | Vertical profiles of the typical molecular compositional patterns of core (A,B).

FIGURE 6 | Distribution of n-alkanes in the representative horizon in the core sediments (A,B).

nitrogen in the core sediment B are also mostly marine sources,
which is consistent with the result of the C/N.

Molecular Composition of Hydrocarbons
and Indication Sedimentary Environment
n-alkanes are widely distributed in organisms such as bacteria,
algae and higher plants. The n-alkanes derived from specific
organisms usually with distinct distribution patterns and

compositions (Parker et al., 1967; Han and Calvin, 1969; Winters
et al., 1969). The distribution of n-alkanes detected in sediment
samples was C14 − C33, with an average CPI24−33 of long-chain
n-alkanes for A and B stations being 3.6 and 2.9, respectively,
while the CPI was 2–10, which is a hallmark of terrestrial organic
matter inputs in typical marine sediment (Clark and Blumer,
1967). Short-chain n-alkanes are derived from marine plankton
or bacteria (Blumer et al., 1971). In addition, n-C29, n-C31
and n-C33 are the main peak carbons of long-chain n-alkanes
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FIGURE 7 | The chromatogram of the typical samples in core sediments (A,B).

in all layers of sediments, reflecting the organic characteristics
of typical modern sediments (Bray and Evans, 1961; Eglinton
et al., 1962; Eglinton and Hamilton, 1963; Clark and Blumer,
1967; Cranwell, 1973; Weete, 1976; Meyers, 2003), in which
the n-C27 and n-C29 represent the input of woody plants and
n-C31 and n-C33 represent the inputs of herbs (Meyers, 2003;
Cranwell, 2010); pristane and phytane are mainly produced from
degradation products of chlorophyllophyton-based side chains
from photosynthetic plants (Powell and McKirdy, 1973). There
are isotope data on the surface sediments of the Southwest Sub-
basin. Most of the hydrocarbons cannot be detected due to their
low concentration. The carbon isotope composition detected is
between−25.41∼−32.41h (Wan et al., 2019).

The concentration of total n-alkanes in core A was ranging
from 716.7 to 2799.8 ng/g (Table 2), with the lowest content
was found in the middle layer and higher contents were
observed in the top and bottom layers. The concentration of
total n-alkanes in core B was varying from 1008.3 to 2109.9
ng/g (Table 3), and the vertical variation was quite fluctuant.
TAR(TAR = 6C27 + C29 + C31/6C15 + C17 + C19) was used
to evaluate the relative contributions of ternary alkanes from
terrestrial and marine sources (Meyers, 1997). The TAR in the
core sediment A range from 1.6 to 18.2 with an average of 5.4
(Table 2). The TAR ranged from 1.4 to 6.6 in the core sediment
B with an average of 3.1 (Table 3), it shows that the contribution
of terrestrial organic matter to n-alkanes is dominant in the two
core sediments. The vertical features of TAR in the core sediment
A can be divided into two sections: TAR values were bigger below
the depth of 340 cm in the core sediment A, while those above the
depth of 340 cm remained stable, indicating that the terrigenous
organic matter had a greater contribution to n-alkanes at the
bottom of the core sediment A.

Pr/Ph is usually used as a parameter for the degree of
oxidation-reduction of sedimentary environments and

reconstruction of paleoenvironment (Powell and McKirdy,
1973; Didyk et al., 1978). Both pristane and phytane are
derived from phytol, which is favorable for the formation of
Pr under oxidative conditions during the evolution process,
whereas production of Ph is favored in reducing conditions
(Didyk et al., 1978). Therefore, it is generally believed that
Pr/Ph < 1.0 indicates a depositional environment of anoxia
reduction, whereas Pr/Ph > 1.0 reveals an oxidized depositional
environment (Peters and Moldowan, 1993). The Pr/Ph value of
core sediment A was 0.3–0.5, with an average of 0.4, and was
slightly increased downward the vertical direction. The Pr/Ph
value of the core sediment B was 0.2–0.4 with an average of 0.3,
and it vertically decreased. The Pr/Ph values of the both cores
are far less than 1, similar to the Pr/Ph values of 0.44–0.73 in
the four samples measured by Duan et al. (1996) in the Nansha
Sea area. The Pr/Ph values of the core sediments remain the
same with depth (Figure 5), which shows that the depositional
environment was strongly reduced and stable over long term,
which is beneficial for the preservation of marine organic matter.
These conclusions thus highlight the contribution of marine
organic matter (Meyers, 1997; Hu et al., 2013) and are consistent
with the conclusion of the C/N ratio of both core sediments.

Indication of Medium-Chain n-Alkanes
Distribution
The even/odd predominance patterns in the n-alkane (n-
C14−20) of core A and B (Figures 6, 7) show an anomalous
sedimentary environment (Kuhn et al., 2010). It is generally
believed that this phenomenon may be caused by (1) high-
salt carbonate environments (Dembicki et al., 1976; Guoying
et al., 1980; Ten Haven et al., 1985); (2) anthropogenic fossil
fuel contamination or hydrocarbon leaks in the underlying high-
maturity formations (Lichtfouse et al., 1997); (3) the strong
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reduction of the environment and the reduction in the n-fatty
acids with an odd carbon dominance (Welte and Ebhardt, 1968;
Welte and Waples, 1973).

Both cores were predominantly comprised of medium-fine
sand and clay silt, suggesting that the presence of high-
salt carbonate environments is impossible. The distribution of
n-alkanes (CPI= 1.8–5.0) of both cores shows the characteristics
of modern sedimentation. Therefore, it is also impossible for the
even/odd predominance patterns in the medium-chain n-alkane
in sediments to be dominated by the fossilization of modern
fossil fuels or the leakage of hydrocarbons from deeper strata to
lower strata (CPI ≈ 1) (Nishimura and Baker, 1986; Freeman
and Colarusso, 2001). The ratio of Pr/Ph in the sediment ranged
from 0.2 to 0.5, indicating a strong reduction depositional
environment, and strong reduction makes the odd-carbon n-fatty
acids reduce to even-carbon n-alkanes. Therefore, we speculate
that the even/odd predominance patterns in the n-alkane (n-
C14−20) of core A and B are results from the intense reduction
environment during deposition.

CONCLUSION

(1) The mean TOC of core sediment A is 0.64% ± 0.18%,
and the average concentration of TN is 0.10% ± 0.02%
(0.04–0.12%). The average concentration of TOC of
core sediment B is 0.64% ± 0.12%, and the average
concentration of TN is 0.10% ± 0.01%. The C/N ratio
reflects that the organic carbon in the sediments is a
mixture of terrestrial and marine sources, the contribution
of marine sources to organic carbon in core sediment B is
bigger than that of A.

(2) The long-chain n-alkanes in all layers of the both core
sediments show an odd-even predominance, with n-C29,
n-C31 and n-C33 being the main carbons, which reflect the
contribution of terrigenous higher plants and short-chain
n-alkanes from marine plankton or bacteria. The Pr/Ph of
core A and B were 0.3–0.5 and 0.2–0.4, respectively, which
are both far less than 1, and the Pr/Ph values remained the
same with depth changes, indicating that the sedimentary
environment was dominated by strong reduction and long-
term stability.

(3) The even-odd distribution patterns of medium-chain
n-alkanes (n-C14−20) in the core A and B possibly caused
by the strong reductive depositional environment. The
strong reduction allowed the conversion of odd-carbon
n-fatty acids to even-carbon n-alkanes.
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Using Clumped Isotopes to
Reconstruct the Maximum Burial
Temperature: A Case Study in the
Sichuan Basin
Pingping Li1,2*, Jinbao Duan3, Zhongzhen Cheng2 and Huayao Zou1,2

1State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, China, 2College of
Geosciences, China University of Petroleum, Beijing, China, 3SINOPEC Exploration Company, Chengdu, China

For strata that have experienced continual burial in the early stage and uplift in the late
stage, the present-day temperature is lower than the maximum burial temperature (MBT),
which is a key parameter for studying the hydrocarbon generation history of source rocks
in petroliferous basins. In this paper, a newmethod for reconstructing theMBT is proposed
based on the solid-state reordering model of carbonate clumped isotopes (Δ47). The MBT
reconstructed using the Δ47 was compared with the MBT constrained using the traditional
Easy%Ro model. The clumped isotope temperature (TΔ47) of the Permian micritic
limestone from the Xibeixiang outcrop (about 62°C) is much higher than its initial
formation temperature (20–25°C), suggesting that the limestone experienced partial
solid-state reordering during the late burial process. The MBT of the calcite obtained
from the solid-state reordering model is 139–147°C, which is quite similar to the MBT
determined using the Easy%Ro model (139.5–147.5°C). TΔ47 of the Permian and Triassic
limestone and calcite cements in the Puguang gas field are 150–180°C, while TΔ47 of the
micritic dolostone is about 70°C, suggesting that the Δ47 of the limestone and calcite
cements experienced complete solid-state reordering and the dolostone only experienced
partial solid-state reordering. The MBT of the dolomite determined using the solid-state
reorderingmodel is 200–220°C, which is also similar to theMBT determined using the Easy
%Ro model (202–227°C). Therefore, the case studies from the Sichuan Basin suggest that
Δ47 can be used to reconstruct the MBT of ancient carbonate strata lacking vitrinite and
detrital zircon data. However, different types of carbonate samples should be used to
reconstruct the MBT for strata that have experienced different temperature histories.
Micritic limestone and very finely crystallized dolostone can be used to reconstruct the
MBT of strata that have experiencedMBTs of <150–200°C and >200–250°C, respectively.

Keywords: clumped isotopes, maximum burial temperature, carbonate, solid-state reordering, Sichuan Basin,
vitrinite reflectance
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INTRODUCTION

The burial temperature (especially the maximum burial
temperature, MBT) of certain strata in a particular
sedimentary basin is closely related to the maturity of the
organic matter and the hydrocarbon generation of the source
rocks (Hunt, 1996; Helgeson et al., 2009; Qiu et al., 2012), and it
can also affect the phases in oil and gas reservoirs (Barker, 1990;
Hill et al., 2003; Zhu et al., 2018). As a result, the MBT is one of
the key parameters for basin modeling and the evaluation of oil
and gas resources (Kinley et al., 2008; Qiu et al., 2012; Wood,
2018). For sedimentary basins that have experienced continuous
subsidence and burial, the burial depth of certain strata was the
largest during the burial process, and its present-day burial
temperature is the MBT, which can be determined using
current heat flow or geothermal gradient models (Zuo et al.,
2011). However, for sedimentary basins that subsided in the early
stage and were uplifted and exhumed in the late stage, the
present-day burial temperature of certain strata is usually
lower than the MBT (Hao et al., 2008; English et al., 2016;
Dou et al., 2021), which cannot be directly determined using
current heat flow or geothermal gradient models. As a result,
reconstructing the MBT of certain strata in a basin that
experienced late uplift and exhumation is key to the
evaluation of the oil and gas exploration potential, and it is
also a research focus in basin modeling.

Common methods of MBT reconstruction include the maturity
index of the organic matter (Héroux et al., 1979; Hackley et al., 2015;
Luo et al., 2020b) and low temperature thermochronology (Carlson,
1990; Craddock and Houseknecht, 2016; Ehlers and Farley, 2003;
Yamada et al., 2007). The maturity index of the organic matter is
commonly characterized by the vitrinite reflectance
(Mukhopadhyay, 1994; Katz and Lin, 2021), which is mainly
controlled by the temperature (Hunt, 1996). Therefore, the
current vitrinite reflectance (Ro), combined with an organic
matter maturation model (such as the Easy%Ro model; Sweeney
and Burnham, 1990), can be used to determine the MBT. For strata
without vitrinite data, the bitumen reflectance and graptolite
reflectance can be used to calculate the equivalent Ro (Jacob,
1989; Luo et al., 2020b), but different conversion methods exist,
and they have different application scopes (Schmidt et al., 2019; Katz
and Lin, 2021). Low temperature thermochronology mainly uses
annealing kineticmodels of fission tracks inminerals (such as apatite
and zircon) and (U-Th)/He thermochronology to determine the
temperature evolution (Carlson, 1990; Craddock and Houseknecht,
2016; Ehlers and Farley, 2003; Yamada et al., 2007). The annealing
kinetic model of apatite fission tracks is only applicable at relatively
low temperatures (below 125°C; Carlson, 1990). For strata that have
experienced temperatures of >150°C, only the annealing of zircon
fission tracks can be used (Yamada et al., 2007), but a unified
annealing kinetic model of zircon has not yet been established. The
(U-Th)/He thermochronology of zircon can be used to determine
the corresponding MBT and time (Reiners, 2005), but for ancient
marine strata, detrital zircons are often not easy to obtain, which
limits the use of this method. Therefore, for ancient marine strata,
both the maturity index of the organic matter and low temperature
thermochronology have certain limitations in MBT reconstruction.

Carbonate minerals (such as calcite and dolomite) are
commonly present in ancient marine strata. Carbonate
clumped isotopes (Δ47), developed in recent years, can be used
to determine the formation temperature of carbonate minerals
(TΔ47), which have been called clumped isotope thermometers
(Ghosh et al., 2006; Eiler, 2007). Unlike traditional oxygen isotope
(δ18O) thermometers, clumped isotopes can be used to directly
determine the formation temperature of carbonate minerals
using the abundance of 13C-18O in the carbonate minerals,
without relying on the δ18O of the fluid from which the
carbonate minerals grew (Eiler, 2007). However, TΔ47
determined from the clumped isotopes can differ from the
original formation temperature due to solid-state reordering. If
the carbonate minerals experienced high temperatures during late
burial, the 13C and 18O underwent solid-state diffusion, resulting
in changes in the abundance of 13C-18O in the minerals and TΔ47
of the minerals (Passey and Henkes, 2012; Stolper and Eiler,
2015). Kinetic models of the solid-state reordering of carbonate
minerals have been developed in recent years (Passey and
Henkes, 2012; Stolper and Eiler, 2015; Lloyd et al., 2018;
Hemingway and Henkes, 2021). The carbonate minerals in
ancient carbonate strata have usually experienced high
temperatures and solid-state reordering of 13C and 18O.
Therefore, the solid-state reordering of calcite and dolomite in
ancient carbonate strata can be used to reconstruct the MBT
according to the established solid-state reordering models for
calcite and dolomite (Passey and Henkes, 2012; Stolper and Eiler,
2015; Lloyd et al., 2018). This provides a potential newmethod for
reconstructing the MBT of ancient marine carbonate strata
lacking vitrinite and detrital zircon data.

The purpose of this study was to reconstruct the MBT using
the clumped isotopes of the Permian and Triassic limestone and
dolostone samples from the Sichuan Basin and to compare the
MBT determined using carbonate clumped isotopes and the Easy
%Ro model in order to verify the reliability of using the carbonate
clumped isotope method to reconstruct theMBT and to provide a
good case study for MBT reconstruction of ancient marine
carbonate strata.

GEOLOGIC SETTING

The Sichuan Basin is a multi-cycle basin located in southwestern
China (Figure 1), with the Ediacaran to Quaternary sediments. It
experienced six main tectonic cycles: the Yangtze (before
630 Ma), Caledonian (630–320 Ma), Hercynian (320–252 Ma),
Indosinian (252–195 Ma), Yanshanian (195–65 Ma), and
Himalayan (65–0 Ma) movements (Zhai, 1989). Among them,
the marine deposits were mainly developed from the Yangtze to
the Early Indosinian, while the continental deposits were mainly
developed from the Late Indosinian to the Himalayan.

The Sichuan Basin experienced early extension and late
compression and uplift (Zhai, 1989). From the Yangtze to the
Early Indosinian, two weak extension events resulted in the
development of two intracratonic sags in the Sichuan Basin
(the Early Cambrian Mianyang-Changning sag and the Late
Permian Kaijiang-Liangping sag) (Liu et al., 2021). Strong
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compression and uplift have occurred since the Late Indosinian,
and the Sichuan Basin has evolved into a foreland basin. In
particular, the Longmanshan, located in the western boundary of
the Sichuan Basin, uplifted gradually from the northeast to the
southwest (Burchfiel et al., 1995). During the Yanshanian, many
large northeast-southwest striking folds and faults were formed in
the eastern Sichuan Basin due to regional northwest-southeast
compression (Zhai, 1989). Then, rapid uplift and exhumation
occurred during the Late Yanshanian and Himalayan (Deng et al.,
2013). It is a typical basin that has experienced early subsidence
and late uplift and exhumation in western China.

Marine carbonates and shales were deposited during the
Permian and Early Triassic. From the bottom to top, the
Permian can be divided into the Liangshan (P1l), Qixia (P1q),
Maokou (P1m), Longtan (P2l)/Wujiaping (P2w), and Changxing
(P2c)/Dalong (P2d) formations, and the Lower Triassic can be
divided into the Feixianguan (T1f) and Jialingjiang (T1j) formations
(Zhai, 1989). The P2l/P2w and P2d mainly consist of shales, which
are the main source rocks of the P2c and T1f gas reservoirs (Li et al.,
2005; Yu et al., 2021), while the P2c and T1f mainly consist of
dolostone and limestone, which are themain reservoirs rocks of the
main large gas fields (such as the Puguang, Yuanba, and Longgang
gas fields) discovered in recent years (Ma et al., 2007; Du et al.,
2010; Guo et al., 2018). The dolostone in the P2c and T1f was
mainly developed on the platform margins of the Kaijiang-
liangping trough, and it was formed in a near surface to quite
shallow burial environment. The dolomitization fluids were
sourced from the T1f evaporated sea water (Jiang et al., 2014; Li
et al., 2021).

SAMPLING AND ANALYTICAL METHODS

Three P1q limestone samples (D1, D4, and D6) and two P2d shale
samples were collected from the XBX outcrop (Figure 1), and three
P2c-T1f limestone samples (L56, L61, and L62), four P2c-T1f dolostone
samples (D83, D89, D90, and D99), three P2c-T1f calcite cement
samples (Cem5, Cem8, and Cem25), and thirteen P2w shale samples
were collected from the Puguang (PG) gas field (Figure 1).

All of the shale samples were analyzed for Ro using
conventional microphotometric methods (Stach et al., 1982) at
the State Key Laboratory of Petroleum Resources and
Prospecting, China University of Petroleum (Beijing). The
number of readings was generally >20 for the random
reflectance, and the error of each sample was within 0.2%.

Thin sections of all of the limestone and dolostone samples were
prepared for petrographic observations. Then, all of the limestone and
dolostone samples and calcite cement samples were powdered to less
than 0.15mm (100mesh) for δ13C, δ18O, and clumped isotope (Δ47)
analyses at the California Institute of Technology (Caltech). The
detailed analytical procedures have been described in previously
published papers (Ghosh et al., 2006; Huntington et al., 2009; Ryb
and Eiler, 2018; Li et al., 2020). First, about 10mg of carbonate sample
was reacted with 103% phosphoric acid at 90°C, and the CO2

produced was purified using a gas-chromatography column. Then,
the 44–49 masses of the CO2 were measured using a Thermo
MAT253 isotope ratio mass spectrometer. Then, the δ13C, δ18O,
and Δ47 values were calculated using the methods described by
Huntington et al. (2009). Finally, the Δ47 values were converted
into the absolute reference frame (Dennis et al., 2011), and the

FIGURE 1 | Locations of the Puguang (PG) gas field, well-K2, and the Xibeixiang (XBX) outcrop in the Sichuan Basin. I � eastern complete fault-fold zone, II �
southern gentle fault-fold zone, III � southwestern gentle fault-fold zone, IV � central flat zone, V � northern gentle fault-fold zone, VI � western gentle fault-fold zone.
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clumped isotopes temperature (TΔ47) of each sample was calculated
using the temperature calibrations developed by Bonifacie et al. (2017).
Most of the samples were measured two or three times. The standard
deviation of the δ13C and δ18O measurement is <0.01‰, and that of
theΔ47measurements is <0.02‰. The standard errors of the in-house
standard (CITCarrara andTV04)were<0.01‰. The rawdata of d45-
d79, D47 of samples, standards, equilibrated gases and heated gases
were listed in the Supplementary Table 1.

RESULTS

Petrography
The crystal size of the carbonate minerals can be divided into micritic
(<50 µm), very fine (50–100 µm), fine (100–250 µm), medium
(250–500 µm), and coarse (>500 µm) (Bissell and Chilingar, 1967).
All of the limestone samples collected from the XBX outcrop are
bioclastic limestone, the cement between the bioclastics is micritic
calcite with crystal sizes of <10 μm, and no obvious crystallization was
observed in the bioclastics and calcite cement (Figure 2A). The
limestone samples collected from the Puguang gas field include
bioclastic limestone (Figure 2B) and micritic limestone
(Figure 2C). The crystal sizes of the calcite are <10 μm, and no

obvious crystallization occurred in these limestone samples. The
dolostone samples collected from the Puguang gas field include
micritic dolostone (Figures 2D,E), very fine crystallized dolostone
(Figure 2F), and fine crystallized dolostone (Figure 2G). The crystal
size of the two micritic dolostone samples is about 10 µm (average of
12 μmforD87 and 10 µm forD90), and intercrystal poreswere hardly
observed in the two micritic dolostone samples. The average crystal
size of the very fine crystallized dolostone (D89) is about 70 μm, with
very limited dolomite recrystallization, and some pores are developed
between the subhedral dolomite crystals (Figure 2F). The crystal sizes
of the fine crystallized dolostone (D99) are 150–200 µm (average of
194 µm), with obvious dolomite recrystallization, and black solid
bitumen was observed in the pores between the subhedral
dolomite crystals (Figure 2G). The calcite cement samples (crystal
sizes of 0.3–1.0 cm) collected from the Puguang gas field are mainly
developed in vugs in dolostone, and it is generally associated with
black solid bitumen (Figures 2H,I).

δ13C, δ18O, Δ47, and Clumped Isotope
Temperature (TΔ47)
The δ13C, δ18O, Δ47, and TΔ47 values of all of the carbonate samples
collected from the XBX outcrop and the Puguang gas field are

FIGURE 2 | (A–G) Thin-section photomicrographs of limestone and dolostone samples, and (H,I) photographs of calcite cements. (A) Sample D1, XBX outcrop,
bioclastic limestone. (B) Sample L56, well PG6, 5383.1 m, P2c, bioclastic limestone. (C) Sample L62, well MB3, 4014.0 m, T1f, micritic limestone. (D) Sample D83, well
MB4, 3892.5 m, T1f, micritic dolostone. (E) Sample D90, well PG2, 4878.0 m, T1f, micritic dolostone. (F) Sample D89, well PG12, 6007.0 m, T1f, fine crystallized
dolostone. (G) Sample D99, well PG6, 5339.0 m, P2c, medium crystallized dolostone. (H) Sample Cem8, well MB3, P2c, 4394.6 m, coarse calcite cements (the
length of the small purple stick is 2.0 cm). (I) Sample Cem5, well DW102, 4825.0 m, T1f, coarse calcite cements in vugs in dolostone. Note: the wells MB3, MB4, DW102,
PG2, PG6 and PG12 are all located in the Puguang gas field.
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presented in Table 1. The δ13C, δ18O, and Δ47 values of the three
limestone samples from the XBX outcrop range from 3.451 to
3.788‰, −6.336‰ to −4.793‰, and 0.499–0.514‰. For the
limestone, dolostone, and calcite cement samples collected from
then Puguang gas field, the δ13C values range from 2.505 to
4.014‰, 2.478–3.903‰, and −1.108‰ to −0.227‰, respectively;
the δ18O values range from −6.943‰ to −6.366‰, −6.300‰ to
−4.044‰, and −7.732‰ to −4.722‰, respectively; and the Δ47 values
range from 0.333 to 0.347‰, 0.391–0.481‰, and 0.355–0.368‰,
respectively. The δ13C values of the limestone and dolostone samples
from the Puguang gas field are basically similar (2.505–4.014‰), while
the δ13C values of the calcite cement (−1.108‰ to −0.227‰) are
significantly lower than those of the limestone and dolostone samples.

TΔ47 of all of the carbonate samples exhibit a relatively large
variation (Table 1). TΔ47 of the limestone from the XBX outcrop
are 57.6–65.6°C (average of 61.9°C); while TΔ47 of the calcite
cement and limestone samples from the Puguang gas field are

145–156.5°C (average of 151.4°C) and 163.9–179.1°C (average of
173.8°C), respectively. There is a large difference in TΔ47 of the
four dolostone samples from the Puguang gas field. TΔ47 of the
two micritic dolostone samples are 71.7 ± 8.9°C (D90) and 72.5 ±
4.5°C (D83), that of the very fine crystallized dolostone is 88.5 ±
5.4°C, and that of the fine crystallized dolostone is 126.3 ±
7.6°C (D99).

Vitrinite Reflectance (Ro)
The Ro values of the Permian shales from the XBX outcrop and
the Puguang gas field are presented in Table 2. The Ro values of
the two P2d shale samples from the XBX outcrop are 0.92 and
0.96%, while the Ro values of the P2w shales from the Puguang gas
field are 2.39–3.11% (average of 2.80%).

DISCUSSION

EASY%Ro Model and Maximum Burial
Temperature Reconstruction for the
Xibeixiang Outcrop and Puguang Gas Field
The maturity of organic matter, which is usually characterized by
Ro and/or equivalent Ro (such as the solid bitumen reflectance or
graptolite reflectance), is a commonly used method for
paleotemperature reconstruction (Mukhopadhyay, 1994;
Hackley et al., 2015; Luo et al., 2020b). The maturity evolution
of organic matter is an irreversible process and can be
characterized by a first-order chemical kinetics reaction.
According to the Arrhenius equation, the maturity of organic
matter has an exponential relationship with temperature and a
linear relationship with time. As a result, temperature is the most
important parameter affecting the maturity evolution of organic
matter (Hunt, 1996). Theoretically, the MBT can be obtained
based on amodel of the evolution of the organic matter’s maturity
with temperature (such as the EASY%Ro model; Sweeney and
Burnham, 1990).

TABLE 1 | The δ13C, δ18O, Δ47, and TΔ47 values of the carbonate samples from the XBX outcrop and the PG gas field in the Sichuan Basin.

Area Sample ID Sample
Type

Strata Depth (m) BT (°C) N δ13C
‰VPDB

δ18O
‰VPDB

Δ47 CDES, ‰ TΔ47(°C)

XBX D1* L P2q — 17 3 3.878 ± 0.027 –6.336 ± 0.109 0.494 ± 0.008 65.6 ± 3.6
XBX D4* L P2q — 17 3 3.451 ± 0.036 –5.296 ± 0.108 0.514 ± 0.017 56.7 ± 7.0
XBX D6* L P2q — 17 3 3.479 ± 0.008 –4.793 ± 0.038 0.499 ± 0.004 63.3 ± 1.8
PG Cem5 C T1f 4,825 115 2 –0.840 ± 0.003 –7.732 ± 0.036 0.355 ± 0.008 156.5 ± 7.9
PG Cem8 C P2c 4,395 108 1 –1.108 ± 0.003 –4.722 ± 0.007 0.368 ± 0.010 145.0 ± 8.9
PG Cem25 C P2c 4,360 108 2 –0.227 ± 0.004 –6.535 ± 0.005 0.359 ± 0.007 152.7 ± 6.1
PG L56 L P2c 5,383 133 1 2.505 ± 0.010 –6.943 ± 0.007 0.333 ± 0.013 178.4 ± 14.9
PG L61 L T1f 5,350 133 1 4.014 ± 0.006 –6.868 ± 0.004 0.347 ± 0.015 163.9 ± 15.6
PG L62 L T1f 4,014 101 1 3.701 ± 0.004 –6.366 ± 0.005 0.333 ± 0.014 179.1 ± 16.2
PG D83 MD T1f 3,892 100 3 2.478 ± 0.007 –4.257 ± 0.010 0.479 ± 0.009 72.5 ± 4.5
PG D90 MD T1f 4,878 123 2 2.748 ± 0.001 –4.044 ± 0.005 0.481 ± 0.019 71.7 ± 8.9
PG D89 VFCD T1f 6,007 137 2 2.765 ± 0.005 –4.209 ± 0.005 0.449 ± 0.009 88.5 ± 5.4
PG D99 FCD P2c 5,339 128 2 3.903 ± 0.005 –6.300 ± 0.008 0.391 ± 0.010 126.3 ± 7.6

Note: L � limestone, C � calcite, MD � micritic dolostone, VFCD � very fine crystallized dolostone, FCD � fine crystallized dolostone, BT � burial temperature. N is the number of sample
tests, the δ13C, δ18O, and Δ47 values are the average values of eachmeasurement, the errors of the δ13C, δ18O, and Δ47 values are average standard deviations. TΔ47 was calculated using
the following equation: Δ47 CDES90 � 0.0422 × 106 × T−2 + 0.1262 (Bonifacie et al., 2017). * denotes from Li et al. (2020).

TABLE 2 | The vitrinite reflectance (Ro) of the shale samples from the XBX outcrop
and PG gas field in the Sichuan Basin.

Area Well Depth (m) Strata Number of
measuring points

Ro (%)

XBX — — P2d 20 0.92
XBX — — P2d 20 0.96
PG MB3 4,891–4,892 P2w 34 2.39
PG MB3 4,930–4,933 P2w 27 2.43
PG MB3 4,952–4,954 P2w 33 2.67
PG MB3 4,952–4,954 P2w 25 2.60
PG MB3 5,153–5,157 P2w 34 2.71
PG MB3 5,185–5,186 P2w 20 2.79
PG MB3 5,185–5,186 P2w 21 2.76
PG PG5 5,586–5,591 P2w 25 3.05
PG PG5 5,596–5,602 P2w 25 2.95
PG PG5 5,674–5,678 P2w 25 3.19
PG PG5 5,681–5,687 P2w 30 2.68
PG PG5 5,732–5,734 P2w 24 3.10
PG PG5 5,744–5,747 P2w 36 3.11
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The EASY%Ro model is a widely accepted model for the
evolution of the maturity of organic matter, and the organic
matter maturity (Ro) can be calculated for a given heating rate
(Sweeney and Burnham, 1990). According to apatite fission track
analysis (Deng et al., 2013), the Permian and Triassic strata in the
XBX outcrop and the Puguang gas field reached their maximum
burial depths at about 80 and 120 Ma, respectively (Figure 3).
The area of the XBX outcrop was uplifted in the Late Indosinian

(Burchfiel et al., 1995), and the Ro of the Permian shale near the
XBX outcrop in the NW Sichuan Basin is <1.3% (Fu et al., 2010),
so the MBT of the Permian shale should be less than 160°C
(Figure 4). A lot of solid bitumen with a relatively high maturity
(Ro>1.7%) is commonly present in the Permian and Triassic gas
reservoir in the Puguang gas field, suggesting that large scale oil-
cracking occurred in this gas field, and the maximum burial
temperature may have exceeded 200°C (Hao et al., 2008). In
addition, the heat flow has decreased gradually since the Late
Permian (Zhu et al., 2016). Thus, the burial temperature of the
Permian and Triassic strata in the XBX outcrop and the Puguang
gas field should have reached the maximum values when the
burial depths reached the maximum values at about 80 and
120 Ma (Figure 3), respectively. As a result, the heating rates
should be about 1.0°C/Ma (150°C/(260–80 Ma) � 0.83°C/Ma) and
2.0°C/Ma (220°C/(250–120 Ma) � 1.7°C/Ma) for the XBX outcrop
and the Puguang gas field, respectively.

The evolution of Ro with temperature based on the EASY%Ro

model for heating rates of 1.0 and 2.0°C/Ma is shown in Figure 4.
According to this model, Ro of the P2d shale in the XBX outcrop is
0.92–0.96%, so theMBT of the P2d should be 132–140°C, while Ro

of the P2w shale in the Puguang gas field is 2.39–3.11%, so the
MBT of the P2w should be 207–232°C (Figure 4). The thicknesses
of the intervals between the P1q limestone and the P2d shale in the
XBX outcrop and between the P2c-T1f dolostone and the P2w
shale in the Puguang gas field are about 300 and 200m (Figure 3),
respectively. In addition, the paleotemperature gradient in the
Late Cretaceous was about 25°C/km (Zhu et al., 2016). As a result,
the MBTs of the P1q limestone in the XBX outcrop and the
P2c-T1f dolostone in the Puguang gas field should be 139.5–147.5
and 202–227°C, respectively. The MBT determined using the

FIGURE 3 | The general burial history of (A)well K2 near the Xibeixiang outcrop (modified from Luo et al., 2020a) and (B)well PG5 in the Puguang gas field (modified
from Hao et al., 2008). P�Permian, T�Triassic, J�Jurassic, K�Cretaceous, N�Neogene, Q�Quaternary.

FIGURE 4 | The evolution of the vitrinite reflectance (Ro) vs. temperature
based on the Easy%Ro model (Sweeney and Burnham, 1990). Note the
maximum burial temperatures of the Permian shale in the Xibeixiang (XBX)
outcrop and the Puguang (PG) gas field are 132–140 and 207–232°C,
respectively.
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EASY%Ro model supplies a basic constraint on the MBT
determined using the solid-state reordering model of
carbonate clumped isotopes.

Solid-State Reordering of Calcite and
Maximum Burial Temperature of P1q in the
Xibeixiang Outcrop
Carbonate clumped isotopes (Δ47) can be used to directly
determine the formation temperature or the equilibrium
temperature of carbonate minerals, and they are independent
of the δ18O of the fluid from which the carbonate minerals were
deposited. This is called the clumped isotope thermometer
(Ghosh et al., 2006; Eiler, 2007). The clumped isotope
thermometer is mainly based on the exchange reactions of
the 13C and 18O in carbonate minerals, and the abundance of
13C-18O in carbonate minerals is a function of temperature
(Eiler, 2007). However, the clumped isotope temperature (TΔ47)
may be altered by high temperatures and/or recrystallization
during the late burial process and can be completely different
from the original formation temperature (Passey and Henkes,
2012). Ancient carbonate minerals have usually experienced
relatively high temperatures during late burial, which resulted in
solid-state exchange (reordering) of the 13C-18O in the
carbonate minerals. Consequently, the abundances of 13C-18O
in carbonate minerals will differ from the original abundances
when the carbonate minerals were formed, and the TΔ47 values
should also be different from the original formation
temperature of the carbonate minerals. In addition,
recrystallization after mineral formation can also change the
abundance of 13C-18O and TΔ47 of the carbonate minerals (Ryb
and Eiler, 2018). Therefore, for ancient carbonate minerals, the

present-day TΔ47 is often the result of the combined effect of
recrystallization and solid-state reordering. The solid-state
reordering of Δ47 can be characterized using a kinetic model,
and the MBT of the carbonate minerals can be reconstructed if
the carbonate minerals experienced no or limited
recrystallization.

There are two main kinetic models for characterizing the
solid-state reordering of carbonate minerals: the transient
defect/equilibrium defect model (Henkes et al., 2014) and the
exchange-diffusion model (Stolper and Eiler, 2015). The best
agreement between model predictions and natural dolomite
marbles was found when using the exchange-diffusion model
(Lloyd et al., 2018). Therefore, the exchange-diffusion model was
used to in this study. According to the exchange-diffusion model,
the variation of TΔ47 was shown in Figure 5, if the Permian-
Triassic limestone was formed at about 30°C and reached a
maximum temperature of about 220°C at 120 Ma. When the
burial temperature was <100°C, no solid-state reordering
occurred and TΔ47 of the calcite would be stable. When the
burial temperature was between 100 and 200°C, partial solid-state
reordering occurred and TΔ47 of the calcite increased as the burial
temperature increased. When the burial temperature was >200°C,
full solid-state reordering occurred and TΔ47 of the calcite reached
equilibrium with the burial temperature. When the burial
temperature was <200°C during the late uplift and
exhumation, partial solid-state reordering occurred again and
TΔ47 of the calcite decreased as the burial temperature decreased.
If the burial temperature was decreased from above 200°C to
below 150°C during the uplift, TΔ47 of the calcite would have
decreased to a blocking temperature (final apparent temperature)
of about 175–200°C (Henkes et al., 2014), and it did not decrease
as the burial temperature decreased (Figure 5). The solid-state
reordering of dolomite is similar to that of calcite, but TΔ47 of
dolomite is stable when the burial temperature is <150°C, and it
does not reach equilibrium with the burial temperature when the
burial temperature is <250–300°C (Lloyd et al., 2018).

TΔ47 of the limestone from the XBX outcrop is 62°C on
average, which is significantly higher than the seawater
temperature (20–30°C) during the deposition of P1q (Henkes
et al., 2018), but is far lower than the blocking temperature after
reaching the equilibrium temperature. According to the kinetic
model of the solid-state reordering of calcite, it can be inferred
that the limestone only underwent partial solid-state reordering,
and it did not reach equilibrium. The petrological characteristics
of the three bioclastic limestone samples (D1–D3) from the XBX
outcrop show that the bioclastics were cemented with micritic
calcite, and no obvious recrystallization was observed. Therefore,
the TΔ47 values of the present-day limestone samples were mainly
affected by the solid-state reordering process. As a result, the
solid-state reordering model can be used to reconstruct the MBT
of these limestone samples. Based on the solid-state reordering
model for the calcite in the XBX outcrop, the relationship
between TΔ47 and MBT is shown in Figure 6. TΔ47 of the
present-day limestone is 62°C, and the corresponding MBT of
the XBX limestone is about 139–147°C (Figure 6), which is
basically consistent with the MBT constrained by the EASY%
Ro model (139.5–147.5°C).

FIGURE 5 | The general clumped isotope temperature (TΔ47) evolution of
the P2c-T1f dolomite and calcite from the Puguang gas field in the Sichuan
Basin, assuming that the maximum burial temperature reached 220°C and
then decreased to 110°C during the late uplift event. The solid-state
reordering models for calcite and dolomite are from Stolper and Eiler (2015)
and Lloyd et al. (2018), respectively. FAT � Final apparent temperature.
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Solid-State Reordering of Dolomite and the
Maximum Burial Temperature of the P2c-T1f
in the Puguang Gas Field
The MBT determined using the EASY%Ro model is >200°C
(202–227°C; Figure 4), which supports the fact that
widespread oil cracking occurred in the Puguang gas field
(Hao et al., 2008), while the present-day burial temperature of
the P2c-T1f is 100–135°C. According to the solid-state reordering
model of calcite (Figure 5) and the temperature history of the
Puguang gas field, the limestone or early-formed calcite cements
should have experienced complete solid-state reordering, and the
final apparent temperature of the limestone and calcite cement
should be similar to the blocking temperature (150–160°C)
because the present-day burial temperature is 100–135°C due
to the late uplift and exhumation. TΔ47 of the micritic limestone
and bioclastic limestone is 150–170°C, which is consistent with
the blocking temperature predicted by the solid-state reordering
model for calcite. The coarse calcite cements, associated with the
solid bitumen and havingmore negative δ13C values (−1.108‰ to
−0.227‰) than that of its bulk rock (dolostone), are considered to
be the product of oil cracking and thermochemical sulfate
reduction (TSR) processes (Hao et al., 2008), and they were
deposited during the early burial process not during the late
uplift and exhumation. TΔ47 of the calcite cements in the Puguang
gas field are 145–156.5°C (average of 151.4°C), which is also very
close to the blocking temperature of calcite predicted by the
model. The small differences in the final apparent temperatures of
the limestone and the coarse calcite cements in the Puguang gas
field according to the uniform solid-state reordering model may
be due to the different kinetic parameters used in the solid-state
reordering models of the coarse calcite and micritic limestone,
especially during the cooling process. However, no published
paper has discussed this problem, and it is not discussed in detail
in this paper. However, it is certain that the relatively high
temperature (>200°C) in the Puguang gas field resulted in the
complete solid-state reordering of the micritic limestone and the

coarse calcite cements. Therefore, the micritic limestone and
coarse calcite cements cannot be used to reconstruct the MBT
in the Puguang gas field.

However, the temperature of the onset of the partial
reordering of dolomite is much higher than that of calcite, and
the complete solid-state reordering temperature of dolomite can
be as high as 250–300°C (Lloyd et al., 2018). As a result, the solid-
state reordering of the dolostone samples can be used to
reconstruct the MBT in the Puguang gas field. The TΔ47 values
of the dolostone with different dolomite crystal sizes from the
Puguang gas field are significantly different (Table 1). TΔ47 of the
micritic dolostone (71.7–72.5°C) is the lowest, followed by TΔ47 of
the very finely crystallized dolostone (88.5 ± 5.4°C), but TΔ47 of
the two types of dolostone are very close to each other. TΔ47 of the
finely crystallized dolostone (126.3 ± 7.6°C) is significantly higher
than that of the micritic dolostone and the very finely crystallized
dolostone, suggesting that TΔ47 of the finely crystallized dolostone
was also affected by relatively strong recrystallization, while the
very finely crystallized dolostone only experienced very limited
recrystallization.

It is widely accepted that the micritic and very finely crystallized
dolostones were caused by penecontemporaneous dolomitization,
which occurred under near surface conditions or quite shallow
burial conditions. As a result, the initial formation temperatures of
the micritic and very finely crystallized dolostones should be
similar to the temperature of the coeval seawater. The
temperature (30–40°C) in Southern China was lethally hot
during the Late Permian-Early Triassic (Sun et al., 2012), so the
initial formation temperature of the micritic and very finely
crystallized dolostones can be assumed to be 30–40°C.
Assuming that the MBT reached 180°C, 200°C, 220°C, and
240°C, the corresponding TΔ47 evolution of the dolostone can
be predicted using the solid-state reordering model for dolomite
(Figure 7). If the MBT reached 180°C, only TΔ47 of the micritic
dolostone (D83) and the very finely crystallized dolostone (D89)
are within the predicted range (1.0 σ error included; Figure 7A),
while TΔ47 of the finely crystallized dolostone (D99) is significantly
higher than the predicted range. If the MBT reached 200°C or
220°C, only TΔ47 of the very finely crystallized dolostone (D89) is
within the predicted range, and TΔ47 of the micritic dolostone and
the finely crystallized dolostone (D99) are slightly lower and
significantly higher than the predicted range, respectively
(Figures 7B,C). If the MBT reached 240°C, only TΔ47 of the
finely crystallized dolostone (D99) is within the predicted range,
and TΔ47 of the micritic dolostone and the very finely crystallized
dolostone are lower than the predicted range (Figure 7D). As was
discussed above, TΔ47 of the limestone and calcite cements were
similar to the blocking temperature during the late cooling process,
suggesting that the calcite experienced complete solid-state reordering,
and the MBT should be >200°C. Combined with the TΔ47 evolution
shown in Figure 6, the MBT of the P2c-T1f in the PG gas field should
be 200–220°C, which is similar to the MBT determined using the
EASY%Ro model (202–227°C).

Based on the model of the relationship between the final apparent
temperature (present-day TΔ47) and the MBT (Figure 8), the MBTs
determined using the present-day TΔ47 of the micritic dolostone (D83
and D90), the very finely crystallized dolostone (D89), and the finely

FIGURE 6 | Relationship between the final apparent temperature (FAT)
and the maximum burial temperature of the limestone from the Xibeixiang
(XBX) outcrop, assuming that the calcite crystalized at 20 and 25°C at 270 Ma
using Stolper and Eiler (2015) solid-state reordering model for calcite.
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crystallized dolostone (D99) are 162–174, 171–220, and 245–252°C,
respectively. Only the MBT determined using the finely crystallized
dolostone falls within the temperature range determined using the

EASY%Ro model. The MBT determined using the micritic dolostone
is slightly lower than the temperature range determined using the
EASY%Ro model. This may be due to the kinetic parameter of the
solid-state reordering model for dolomite was constructed based on
dolomite with some recrystallization. While the MBT determined
using the finely crystallized dolostone is significantly higher than the
temperature range determined using the EASY%Ro model, which is
most likely due to the occurrence of significant recrystallization.
However, the time and temperature at which the recrystallization
reached final equilibrium is unknown. Consequently, the present-day
TΔ47 of the finely crystallized dolostone cannot be used to determine
theMBT. Perhaps U-Pb dating of carbonate can be used to accurately
determine the final equilibrium age of the dolostone (Pan et al., 2020),
and combined with the general burial and thermal gradient
information, it can be used to reconstruct the MBT based on the
solid-state reorderingmodel, which is a valuable research direction for
future studies.

CONCLUSION

The maximum burial temperature (MBT) of the XBX outcrop
and the Puguang gas field was reconstructed using the solid-state

FIGURE 7 | The general clumped isotope temperature (TΔ47) evolution of the dolostone from the Puguang gas field, assuming that the dolomite crystalized at 30
and 40°C at 250 Ma, and the maximum burial temperature reached 180, 200, 220, or 240°C and then decreased to 110°C during the late uplift event. The solid-state
reordering model for dolomite is from Lloyd et al. (2018). Note: the D83, D89, and D99 represent dolostone samples, the black horizontal lines and columns in the right
side represent the TΔ47 and error bar of the samples D83, D89, and D99.

FIGURE 8 | Relationship between the final apparent temperature (FAT)
and the maximum burial temperature of the dolostone from the Puguang gas
field, assuming that the dolomite crystalized at 30 and 40°C at 250 Ma. The
solid-state reordering model for dolomite is from Lloyd et al. (2018).
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reordering models for calcite and dolomite. The MBTs of the P1q
limestone in the XBX outcrop and the P2c-T1f dolostone in the
Puguang gas field determined using the solid-state reordering
models for calcite and dolomite are 139–147 and 200–220°C,
respectively, which are similar to the ranges determined using the
EASY%Ro model (139.5–147.5 and 202–227°C, respectively).
Based on this study in the Sichuan Basin, the solid-state
reordering models for calcite and dolomite provide a new
potential method for reconstructing the MBT of ancient
carbonate strata with MBTs of <150–200 and 250–300°C,
respectively. In particular, the MBT determined using the
solid-state reordering model for dolostone with limited
crystallization is acceptable, while that of dolostone with
obvious crystallization is significantly higher than the actual
MBT. In addition, the solid-state reordering kinetic model for
micritic dolostone also needs to be further optimized in future
research.
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Mesozoic Tectono-Thermal Event of
the Qinshui Basin, Central North China
Craton: Insights From Illite Crystallinity
and Vitrinite Reflectance
Runchuan Liu1,2,3,4, Zhanli Ren2*, Peng Yang2*, Huaiyu He1,3,4, Thomas M. Smith1,3,4,
Wei Guo1,3,4 and Lin Wu1,3,4

1State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing,
China, 2State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an, China, 3Institutes of
Earth Science, Chinese Academy of Sciences, Beijing, China, 4College of Earth and Planetary Sciences, University of Chinese
Academy of Sciences, Beijing, China

The Qinshui Basin is in the Central Orogenic Belt of the North China Craton (NCC), and the
production of coalbed methane accounts for 70% of China’s total coalbed methane
output. Aiming at the unclear dynamic causes of large-scale coalbed methane
accumulation in the basin and the unclear response relationship with the destruction of
the NCC, we present joint illite crystallinity and vitrinite reflectance study across the Zijin
Mountain and Qincan 1 wells of the Qinshui Basin, respectively. Inverse modeling
suggested that tectono-thermal events occurred during the Early Cretaceous,
associated with the maximum burial depth and heat flow. The maximum paleo-
geothermal temperature and gradient reconstruction results recorded at the
Carboniferous strata are 180–190°C and 6.5°C/100 m. The denudation thicknesses
recorded by illite crystallinity of Zijinshan and the vitrinite reflectance of the Qincan 1
Well are 3,180.63 m and 3,269.32 m, respectively. We propose that the Qinshui Basin was
affected by the extensional environment of the NCC, which caused deep lithospheric
thinning and magma upwelling, and a tectono-thermal event occurred during the Early
Cretaceous in Qinshui Basin. In addition, the accumulation of coalbed methane, triggered
by a tectono-thermal event during the Early Cretaceous, is consistent with the early
Cretaceous accumulation and mineralization events in the NCC. Overall, our results reflect
the subduction event influence of the western Pacific plate into the East Asian continental
plate on the tectono-thermal history of the Central Orogenic Belt of the NCC, which is
theoretically significant for clarifying the thermal lithospheric thickness and rheological
structure of the basin, as well as the evolutionary history of coalbedmethane, and the basin
response relationship to the destruction of the NCC.

Keywords: Qinshui Basin, North China Craton, Tectono-thermal event, Illite, Basin modeling

INTRODUCTION

Structurally, the Qinshui Basin belongs to the Shanxi block in the center of the North China Craton
(NCC) (He, 2015; Zhu et al., 2015). It is one of the areas with the most abundant coal resources
within the NCC, and the production of coalbed methane ranks first in China. At present, there are
about 11,000 coalbed methane wells in the basin, accounting for more than 70% of the total number
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of coalbed methane drilling wells in China, making it one of
China’s most important energy sources (Zhao et al., 2016; Li Z.
et al., 2018, Li et al., 2018 R.).

During the late Mesozoic, the NCC has experienced intense
transformation and destruction, and the early Cretaceous was a
critical period of lithospheric thinning and destruction for the
eastern NCC (Li et al., 2012b). Numerous studies, therefore,
focused on the spatial distribution of the transformation and
of the destruction of the NCC (Zhang et al., 2006; Zhang, 2012;
Zhu et al., 2015; Meng et al., 2019; Liu, 2020). Up to now, the
timing, the spatial range, the specific process, and the dynamic
mechanism of lithospheric thinning and destruction have been
investigated (Ying et al., 2011; Zhu et al., 2012, 2014, 2017; Zhu
and Xu, 2019; Zhai et al., 2020, 2021a, 2021b). The range of
destruction of the NCC is thought to be limited to only the eastern
region. However, additional evidence shows that the lithospheric
thickness in the central and western parts of the NCC varies
greatly (Chen, 2009; Chang et al., 2011; Ling et al., 2017),
indicating that the thinning and reformation of the
lithospheric mantle also occurred in the central and western
NCC, but the influence of destruction event on the Qinshui Basin
remains unclear.

Due to the limited spatial distribution of mantle xenoliths and
magmatic rocks, the research on lithospheric thinning and the
evolution history of the Ordos Basin in the western part of the
NCC is limited, and the research on whole strata of the Qinshui
Basin in the central part is even weaker. It is still under debate
whether there is excessive thinning of lithosphere and cratonic
destruction in the central (Qinshui Basin) and western (Ordos
Basin) parts of the NCC (SongLin et al., 2011; Zhu et al., 2012;
Ling et al., 2017; Xinhui et al., 2017; Liu, 2020). In addition to
abnormal changes in the geothermal field, which can to a certain
extent reveal the process of deep lithospheric activity, the tectono-
thermal history during the Mesozoic and Cenozoic in the basin
and the restoration of the paleotemperature field are the keys to
recovering the thermal structure of the lithosphere in different
periods. In other words, the tectono-thermal history of different
parts of the Qinshui Basin needs to be accurately described and
compared to improve the understanding of its tectono-thermal
history, which is directly related to the generation, migration, and
accumulation processes of coal/gas and the evaluation of the
mature evolution of the organic matter.

To date, many petroleum geologists have focused on the
tectonic uplift history, thermal evolution history, and coalbed
methane of the Qinshui basin, suggesting that the Qinshui Basin
was affected by the destruction of the NCC, which caused a
tectonic thermal event in the basin during the Early Cretaceous,
prompting the rapid over-maturation of source rocks and the
production of coalbed methane (Ren et al., 2005; Sun et al., 2005;
Ren et al., 2006; Sun et al., 2006; Wei et al., 2007; Meng et al.,
2015a, 2015b; Sun et al., 2018; Meng et al., 2019; Yu et al., 2020a;
Ren et al., 2020). It has been demonstrated by hydrocarbon
explorations that a large amount of coalbed methane was
preserved in the north and south parts of the basin. All of
these past works provide a very important foundation for our
research. In addition, the study of both the geothermal field and
the thermal structure of the lithosphere is an effective way to

examine the deep geodynamics and the evolution of the craton.
Strengthening the study of geothermal events in The Qinshui
Basin in the Early Cretaceous is not only of great theoretical
significance to improve the understanding of the dynamic
evolution mechanism of the lithosphere in NCC, but it is also
of great practical significance to mineralization research,
reservoir-forming, and the exploration of coal, coalbed
methane and other mineral resources in the Qinshui Basin of
the central NCC. Recently, geologists and industry paid close
attention to the dynamic evolution of the lithosphere and its
relationship with mineral accumulation (mineralization) in the
central and western parts of the NCC.

The purpose of this study is to reveal the tectonic thermal
evolution history and its deep mechanism of different strata, and
to discuss the response relationship with basin hydrocarbon
source generation and the NCC craton destruction, using the
paleotemperature scale and a standard basin modeling procedure.
Therefore, in this work, an integrated method combining the illite
crystallinity, vitrinite reflectivity, and Basin Mod 1D is proposed
to improve the understanding of the thermal history of the
formation in the central Qinshui basin. For such a purpose,
we systematically collected, tested, and analyzed samples from
different layers in the central basin, combined with vitrinite
reflectance (Ro) data from different layers in Well Qincan 1.
Based on our data, we obtained a comprehensive reconstruction
of the thermal history of different stratum in the central basin,
which is of theoretical significance for clarifying the thermal
lithospheric thickness and rheological structure of the basin, as
well as the evolution history of coalbed methane, and the basin
response relationship to the destruction of the NCC.

GEOLOGICAL SETTING

The intracratonic NCC is located between the Central Asian
Orogen Belt (CAOB) and the Central China Orogenic Belt
(CCOB), and by convention, the NCC has been subdivided
into the West Block, Eastern Block, and the Trans-North China
Orogen (Zhao et al., 2009, 2001) (Figure 1). Variably exposed
Archean to Paleoproterozoic rocks compose the basement of the
NCC, it is unconformably overlaid on the Mesoproterozoic
unmodified volcano-sedimentary sequence and Phanerozoic
caprock (Shanxi, 1989). Archean stratigraphy is represented
by strata of the Wutai Group and Huping Group, dominated
by Tiebao movement and forms a lithology represented by
schist, gneiss, marble, and migmatite, whereas Proterozoic
stratigraphy consists of schist, gneiss, sandstone, powder
sandstone, and mud shale, from bottom to top. The early
Paleozoic strata in the Qinshui Basin are mainly represented
by the Cambrian-Middle Ordovician thick carbonate rocks,
including argillaceous limestone, oolitic limestone, dolomite,
and other huge thick deposits, and a large-scale unconformity
denudation event was experienced between the Middle
Ordovician and the Early Carboniferous, leading to the
absence of the Silurian, Devonian, and part of the Early
Carboniferous strata. Late Carboniferous to Early Permian
alternate marine and terrestrial sequences, and is
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characterized by coal-bearing strata, overlaid by the Late
Permian to Triassic red beds and conglomerates (Shanxi,
1989; Zhu et al., 2014).

The Qinshui Basin is located in the south-central part of the
Trans-North China Orogen, surrounded by the Taihang
Mountains in the east, the Huo Mountains in the west, the
Zhongtiao Mountains in the south, and the Wutai Mountains
in the north (Cai et al., 2011) (Figure 2). The crust of the study
area is relatively thin, and the strata of Paleozoic are
widely exposed around the basin while the Mesozoic strata
are exposed in the center part of the basin. Besides, the
provenance of the strata is extensive, the tectono-thermal
history of the Qinshui Basin is complex, and the
stratigraphic denudation discontinuity is obvious and its
development experienced multi-cyclic tectonic-sedimentary
evolution (Cai et al., 2011; Li et al., 2012a; Zhu et al., 2014;
Chen et al., 2018). It is an ideal place to study the tectono-
thermal history of the south-central NCC during the Paleozoic
and Mesozoic (Figure 1; Figure 2).

SAMPLING AND METHODOLOGY

Sample Collection and Preparation
To investigate the tectono-thermal history and denudation
thickness of the Qinshui Basin, we collected the vitrinite
reflectance data of the Qincan 1 well from PetroChina Huabei
Oilfield Company, the vitrinite reflectance was tested with the

same methods as described in Yu et al. (2020a) (Table 3); note
that the abnormal high reflectance of vitrinite near the
unconformity of the Carboniferous and Ordovician strata has
been eliminated.

We also collected mudstones and shale stones from the
western edge of the basin to the center of the basin to purify
illite (Figures 2, 3). We sampled unaltered outcrops of fresh rocks
in the elevated area to maximize the relief wherever lithology and
access were permitted. All samples collected in this work are
Permian–Jurassic mudstones at an elevation ranging from 956 to
1,680 m (Supplementary Table S1; Figure 2). All the samples
were analyzed for XRF to calculate the illite crystallinity and
relative content of clay minerals and analyzed at the Exploration
and Development Research Institute of Daqing Oilfield (China
National Petroleum Corporation), China.

Scanning Electron Microscopy Analysis
Polished thin sections were made from representative samples for
microscopic observation. To further identify the clay minerals
and composition of the illite structure, scanning electron
microscopy (SEM) observations and energy dispersive
spectrometry (EDS) analyses were carried out with an
acceleration voltage of 15 kV and a working distance of 10 cm
at the Electron Microprobe Analysis and Scanning Electron
Microscope Laboratory of the Institute of Geology and
Geophysics, Chinese Academy of Sciences (IGGCAS). To
obtain high-quality images, the polished samples were coated
with 8 nm carbon before analysis.

FIGURE 1 | Geological Setting of Qinshui Basin (A) Tectonic and basin map of China. Structures are modified from (Yang et al., 2018, 2021a) (B) Regional
topographic and neotectonic map of North China. Structures are modified from Ye et al. (1987); Deng et al. (1987); Qi and Yang, (2010), Zhang et al. (2019), and Su et al.
(2021). Red boxes show the location of the study areas. (B) Distribution map of North China Craton and Qinshui Basin.
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XRD Analysis
To achieve illite XRD analysis tests, the mudstone, siltstone, and
calcareous mudstone samples needed to be ∼150 g with more than
40% clay content. We chose clay-rich samples (argillaceous
siltstone, silty mudstone, mudstone, etc.,.) and crushed them to
the diameter of 0.5–1 cm with a hammer; we subsequently used a
DF-4 hammer crusher to crush the samples for less than 30 s. We
used the Stockmethod to collect 40mg of particles having diameter
<2 μm and removed the liquid in suspension using an LXJ-64-1
centrifuge (Kisch, 1987; H.J.; Kisch, 1990).

We prepared the Oriented Clay Tablets by Precipitation Method
with density >3mg/cm2 and dried the tablets naturally at room
temperature (Kisch, 1987; H.J.; Kisch, 1990). We carried out the
ethylene glycol expansion experiment at 50°C, then according to
the clay minerals contained in the sample, we heated the sample at
500°C, the precision on the temperature of the muffle furnace used for
heating is ±2°C. The experimental instrument is the Rigaku D/max-
2200X diffractometer, with the following measurement parameters:
40 kV voltage, 40mA current, Cu target, 1/2° emitting slit, 5.5mm
receiving slit, 0.04° Soller slit, scanning step length of 0.017°Δ2θ, and
scan time of the 20 s by X’ Celerator detector. The scanning range for
mineral phase and polytype identification is 4–60°Δ2θ. The test range
of crystallinity of illite and chlorite for oriented flake is 2.6–15°Δ2θ.

RESULTS

Clay Mineral Assemblage
Through the X-ray diffraction analysis of the sample, we can
determine the dominant authigenic clay mineral assemblages in
each stratigraphic unit (Supplementary Table S2). The clay
minerals in the Triassic, Jurassic, Permian, and Cambrian strata in
the central area of the Qinshui Basin are dominated by illite, and the
combination of clay minerals is I + C + K. The interlayer ratio of I/S
disorder is high, and illite accounts for 70–90%. The clay mineral
assemblage in the Carboniferous strata is dominated by kaolinite, and
the clay mineral assemblage is I + C + Kwith the high interlayer ratio
of I/S disorder, and illite accounts for 80–90% (Figure 4; Figure 5A).

According to Figure 5, there is a high illite content in each layer,
most samples account for 50–80% of the total content of clay
minerals (Figure 5A), and the illite proportion in the shallow
layer is higher than that the deep layer (Figure 5B), which may
be caused by the sample difference. Kaolinite and the I/S mixed layer
account for less than 30% of clay minerals. As the burial depth
increases, kaolinite will turn into chlorite when the medium changes
from acidic to alkaline (Gao et al., 2020; Zhu et al., 2021). The I/S
trend of different layers stays stable, but the proportion of illite is
high, indicating the high TTI (Time-Temperature Indicator) of the

FIGURE 2 | (A) Sample location in Qinshui Basin, includes crack, well location, and city location. Structures modified fromMeng et al. (2015), Zhu et al. (2014). (B)
Regional stratigraphy column of the Cambrian-Cenozoic strata in the Qinshui Basin (Shanxi, 1989; Zhu, 2013; Zhu et al., 2014; Li Z. et al., 2018; Liu, 2020).
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study area (Figure 5B) (Ramseyer and Boles, 1986). The distribution
of clay mineral content shows that the basin has experienced a high
paleogeothermal evolution process.

Through SEM observation (Figure 6 and Supplementary
Material), except for the upper Paleozoic Carboniferous
Hutian section, the interlayer illite of mudstone and sandy
mudstone in other layers is the main clay mineral of most
samples. Illite associated with illite/smectite (I/S) and illite
without I/S can be observed in different horizons, we can
identify illite in four forms according to microstructure: ①.
Strip illite associated with I/S (Figure 6A). ②. Feather and
filamentous illite associated with I/S (Figure 6D). ③. Feather
and Bridge illite (Figure 6E). ④. Rosette illite (Figure 6I).

The illite energy spectrum is characterized by Al/Si ratio is close to
0.8 and high K content, and the main elements are O, Al, Si, and K,
and the K/Al ratio is close to 0.4 (Uysal, 2000; Uysal et al., 2000, 2001,
2006; Zhu et al., 2021). I/S (R � 3) mainly appears in the form of
cotton floc (Figures 6A,G), and its energy spectrum is characterized
by K/Ca content close to 0.5 and Al/Si ratio close to 0.5 (More details

in the Supplementarymaterial). Chlorite mainly occurs in the Shihezi
Formation of Upper Paleozoic and Heshanggou formation of Lower
Triassic of Mesozoic. Leaf-like (Figure 6C) and needle/layered liked
chlorite can be observed, and its energy spectrum is characterized by
high Fe content, and the Fe/Si ratio is greater than 0.5 (Figure 6F).
Kaolinite is mainly observed in the maroon iron clay rock of
the upper series of the Hutian section of the Carboniferous in the
upper Paleozoic, and it is hard to find kaolinite in the other horizons,
which is in the form of vermicular porous (Figure 6B), and its energy
spectrum characteristics show that the elements only contain O, Al,
and Si, with Si/O ∼1, the Si/Al ∼0.8 (More details in the
Supplementary material). It can be observed that kaolinite rarely
contains other clay mineral components (Uysal, 2000; Uysal et al.,
2000, 2001, 2006; Zhu et al., 2021).

In the SEM experimental observation, it is obvious that illite is the
main component of sandstone interlayer clay minerals, and the
other clay mineral components are relatively rare, indicating that the
higher paleogeothermal temperature is conducive to the formation
of illite in the process of basin evolution. Illite associated with I/S

FIGURE 3 | Geological profile of the Qinshui Basin. (A) Dark purple red shale of Guanjiashan, Guanjialiang village, Huozhou (B) Cambrian Mantou formation shale in East
Qiliyu village, Huozhou (C)Maroon ferruginous claystone of theCarboniferousHutian section, Huozhou (D)Gray blackmud shale of the Shihezi Formation inDonggou,Qinyuan (E)
Purple-redmudstone in the Triassic Heshanggou formation, Qinyuan (F) Sandymudstone in the Triassic Liujiagou formation, Qinyuan (G) Fuchsiamudstone of the Jurassic Ruqu
formation, Zijinshan (H) Hujiacun Stage of Yanchang Formation, Zijinshan (I) Gray-black silty mudstone of the Permian Shihezi 1-2 Formation, Qinyuan.
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may be authigenic illite, but it may be affected by grinding flakes
resulting in the formation of imperfect plates. However, it can be
seen that many illite crystals growing alone have good crystal forms,
showing rose and feather crystal forms (Figure 6I). Generally, illite

with good crystal form represents the authigenic illite, but the
crystalline morphology of terrigenous clastic illite is generally
poor and is easy to be damaged in the process of long-distance
transportation.

FIGURE 5 |Distribution of crystallinity and claymineralsmap (A) Illite content and stratum change diagram in I/S layer (B)Claymineral and stratum distribution diagram.

FIGURE 4 | X-ray diffraction of illite in central Qinshui Basin. (A) Carboniferous carbonaceous mudstone. (B) Ruqu formation of Jurassic sample. (C) Shihezi
formation of Permian sample. (D) Triassic formation sample.
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Paleotemperature Restoration
Paleotemperature Restored by Vitrinite Reflectance
The vitrinite reflectance of the Qincan 1 well is between 1.0 and
2.5% at the range of 500–1,000 m depth (Supplementary Table S3).
The evolution degree of organic matter belongs to high maturity or
over-maturity, combined with low current geothermal gradient,
indicating that the basin has experienced high paleotemperature.

Based on the strong correlation between vitrinite
reflectance and maximum paleotemperature, the maximum
paleotemperature that the stratum experienced can be calculated
(Barker et al., 2016; Yang et al., 2017a, 2020). According to the
relationship between the maximum paleotemperature and the
burial depth, we can determine the paleo-gradient, the
relationship between ln (Ro) and Tmax/°C is calculated as follows:

ln(Ro) � 0.0096Tmax − 1.4

According to this formula, the relationship between the
maximum paleotemperature and depth of the Qincan 1 well

in the central part of the Qinshui Basin can be obtained
(Supplementary Table S3; Figure 7).

According to Vitrinite reflectance data from the Qincan 1 well,
we calculated the maximum paleotemperature gradient to be 6.5°C/
100m, however, the current geothermal gradient of the Qincan 1
well is 2.4°C/100m, which means the paleotemperature gradient is
significantly higher than the current geothermal gradient (Figure 7).

Paleotemperature Restored by Illite Crystallinity
We tested the illite crystallinity of mudstone samples from
Permian to Triassic, which we also calibrated with international
standard samples.

According to Supplementary Table S1, we observed a
correlation between the age of the stratum and the altitude;
when altitude decreases and formation ages get older, the illite
crystallinity of outcropping samples in the field gradually
decreases, implying that the paleotemperature gradually
increases. Therefore, there is a strong correlation between the

FIGURE 6 | The “(A)” represents BSE section photomicrographs and “(A-1)” represents SE section photomicrographs, which are the same structure, and so are
other pictures. (A) and (A-1) illustrating textural features of cotton wadded I-S (R � 3) and strip illite in Cambrian mudstone (HZS-3). (B) and (B-1) illustrating textural
features of vermicular porous kaolinite in maroon iron clay rock of the Carboniferous Hutian section (QY-8). (C) and (C-1) illustrating textural features of blade chlorite in
Grayish black mud shale of the upper Paleozoic Shihezi Formation (QY-11). (D) and (-1) illustrating textural features of feathery and filamentous illite in Grayish black
silty mudstone of the upper Paleozoic Shihezi Formation (QY-12). (E) and (-1) illustrating textural features of feathery and bridged illite in the purple-red mudstone of
Lower Triassic Heshanggou Formation of Mesozoic (QY-15). (F) and (-1) illustrating textural features of needle-shaped and laminated chlorite in the purple-red mudstone
of Lower Triassic Heshanggou Formation of Mesozoic (QY-15). (G) and (-1) illustrating textural features of cotton wadded I/S (R � 3) in mudstone of the Lower Triassic
Heshanggou Formation of Mesozoic (YS-4). (H) and (-1) illustrating textural features of ribbon-packed, strip-shaped illite in mudstone of the Lower Triassic Heshanggou
Formation of Mesozoic (YS-4). (I) and (-1) illustrating textural features of roseate illite in purple mudstone of theMiddle Triassic Ermaying Formation of Mesozoic (YS-7). (J)
and (-1) illustrating textural features of filamentous and feathery illite in purple mudstone of the Upper Triassic Yanchang Formation of Mesozoic (TG-15).
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sampling altitude and the maximum paleotemperature calculated
by illite crystallinity (Figure 8).

The characteristics of illite crystallinity of mudstone in the
central Qinshui Basin decrease from top to bottom,
indicating that the basin and surrounding orogenic belt were
continuously uplifted and denuded to deeper and higher
metamorphic degrees after the Late Triassic. For some of the
samples, illite crystallinity is between 0.25 and 0.42°, it belongs to
low-grade metamorphism, reflecting the characteristics of illite
of denuded Precambrian metamorphic around the basin.
Combined with the high content of illite in the I/S mixed
layer (Figure 5A) and moderate contents of kaolinite in the
clay minerals (Figure 5B), this indicated that the clay minerals
in the mudstone were affected by a high-temperature
geothermal field.

Illite/smectite (I/S) mixed-layer minerals are the most widely
distributed mixed-layer clay minerals in sedimentary rocks. It is
produced due to the mixing of the two terminal elements of illite
and smectite in different proportions. Experimental studies have
confirmed that when the temperature or depth increases, the
proportion of the illite layer in the I/S layer gradually increases
(Ramseyer and Boles, 1986). This is associated with the gradual
transformation of the mixed layer from a disordered to an
ordered structure. The degree of order of various types of I/S
layer mineral structure and its existence temperature ranges are
respectively (Harvey and Browne, 1991; M, 1993):

R � 0 type, R0 I/S, illite content <60%, stable temperature
<140°C; R � 1 type, R1 I/S, illite content 60–85%, stable
temperature 100–180°C; R � 3 type, R3 I/S, illite content
>85%, stable temperature >190°C; The relationship between

FIGURE 7 | Vitrinite reflectance (Ro) and depth map. (A)The relationship between ln (Ro) and depth of Qincan 1. (B) The relationship between Ro and depth of
Qincan 1. (C) Maximum palegeotemperature of Qincan 1 well in central basin reverted by Ro.

FIGURE 8 | Illite crystallinity, Illite crystallinity inversion of maximum paleotemperature and elevation map (A) Illite crystallinity and elevation map in central Qinshui
Basin. (B) Maximum paleotemperature inverted by Illite crystallinity in central Qinshui Basin.
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the crystallinity of illite and its formation temperature has already
been established in previous studies from Ji (2000). Our work
relies on these results to calculate the formation temperature of
authigenic illite. The relationship between the crystallinity of
authigenic illite (IC/°) and its formation temperature (T/°C) is as
follows:

T � 384.98e − 0.6219 × IC

To use crystallinity of illite minerals (including I/S minerals),
recovery paleotemperatures, and stratum denudation depths, we
considered the distribution of outcrop strata and studied two
sections, the paleo-geothermal temperature of illite crystallinity
recovery is between 200 and 220 °C (Supplementary Table S1);
overall, the temperature increases with the age of the stratum, and
decreases with the sample elevation.

Erosion Thickness Restoration
Erosion Thickness Restored by Vitrinite Reflectance
With the increase of burial temperature, the degree of the thermal
evolution of organic matter gradually increases, and the value of
vitrinite reflectance (Ro) increases. However, the thermal
evolution process of vitrinite reflectance is irreversible; in
other words, when a formation is uplifted and cooled, the
Vitrinite reflectance value will not decrease as the temperature
decreases. Therefore, through a certain conversion relationship
(Barker and Pawlewicz, 1986), it is possible to restore the highest
ancient geothermal temperature reached in the geological period
recorded by vitrinite reflectance. Based on the vitrinite reflectance
distributed in the upper and lower structural layers of the
unconformity, Dow (1977) used a different method to
estimate the denudation thickness of a certain period for a
formation. The application of the vitrinite reflectance
difference method in the research fields of basin subsidence
history, tectonic evolution history, or tectono-thermal
evolution history, has shortcomings, as explained by several
authors (Chen et al., 1999; Hu et al., 1999; Tong et al., 2005;
Tong and Zhu, 2006), who made reasonable improvements,
which we as describe below.

Hu et al. (1999) pointed out that the method proposed by
Dow (1977) to directly estimate the uplift scale and denudation
amount of strata by using the Vitrinite reflectance data
above and below the unconformity surface lacks theoretical
basis, and the results obtained by this method does not
correspond to the represented denudation thickness but is
equivalent to the loss amount of strata caused by normal
fault dislocation. Chen et al. (1999) considered that the effect
of reburial on the vitrinite reflectance distributed above and
below the unconformity surface is different, and considered that
in the early stage of reburial, the vitrinite reflectance in the upper
part of the unconformity surface changes greatly, while that in
the lower part of the unconformity surface it changes less. When
the reburial process reaches a certain extent, the difference
between the vitrinite reflectance above and below the
unconformity surface will become smaller and smaller, even
unable to be distinguished, which brings some difficulties to
estimating the denudation thickness by using the alternate
method by Dow (1977). Therefore, Chen et al. (1999)

proposed a vitrinite reflectance method based on the Dow
(1977) method to restore the denudation thickness. Based on
the theory of Dow (1977), Chen et al. (1999), Tong et al. (2005),
and Tong and Zhu. (2006) further developed the maximum
paleotemperature method which links the denudation thickness
and Vitrinite reflectance value. First, this new method has the
advantage of being similar in the determination of the highest
paleotemperature, and second, it has a simple calculation
process. We reconstructed the denudation thickness by using
the vitrinite reflectance distributed in the underlying stratum of
the unconformity. Based on vitrinite reflectance, we also
established a linear regression relationship between Vitrinite
reflectance and the depth, and by extrapolating it to ln (0.2) �
1.61, we obtained the approximate paleo-surface elevation.
The elevation difference between the paleo-surface and
unconformity is the denudation thickness of the formation.
Through this method, we estimated the denudation thickness
of Jurassic formation in the Qincan 1 well to be ∼3,269 m
(Figure 9).

Erosion Thickness Restored by Illite Crystallinity
The principle of using paleogeotemperature and
paleotemperature gradient to estimate the denudation
thickness of the formation is similar to the calculation of the
denudation thickness by vitrinite reflectance, both being
based on the difference between paleo-surface and current
surface. Additionally, we can use the diversity of the
paleotemperature and the current temperature for a similar
depth to reconstruct the denudation thickness (Figure 9).
Firstly, we should calculate the paleo-gradient using both
paleotemperature and depth data (Supplementary Table S1;
Figure 9). Concerning heat balance basin (the paleo-gradient
is similar to the current gradient), we use the difference
between paleogeotemperature and the current temperature at
denudation surface or stratum interface to calculate the
denudation thickness by the relationship between
geotemperature and depth (Dow, 1977). For our purposes,
we should first apply heat balance correction for the heat
imbalance basin, in other words, we should subtract the
temperature drop caused by the nature of the basin, cooling
from paleogeotemperature to the current geotemperature, and
then calculate the ablation thickness based on geotemperature
difference between paleogeotemperature and current
geotemperature at the denudation surface (Dow, 1977). Here,
the ablation thickness represents the height difference between
ancient and present surfaces (Figure 9).

Such corrections, as described above, must be applied in the
case of the Qinshui Basin, an imbalance basin, since the
paleotemperature gradient is much higher than the present
gradient. Therefore, we use the paleotemperature data
(Supplementary Table S1) which was calculated by illite
crystallinity from mudstone in the Zijinshan mountain section,
and by extrapolation on the graph of temperature vs depth, we
obtain the trend line of paleotemperature gradient (Figure 8). By
comparing the current geotemperature gradient with heat
balance correction, we calculate an erosion thickness of
∼3181 m (Figure 9).
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Burial History and Tectono-Thermal History
Restoration
Based on the reconstruction of the maximum paleotemperature
of the basin, the tectono-thermal history of well Qincan 1 was
simulated by the software Basin Mod 1D (Figure 10). The
software includes several models, such as burial history,
tectono-thermal history, hydrocarbon generation history,
migration, and accumulation history. In this study, we mainly
use the Basin Mod 1D module to simulate the burial history and
tectono-thermal history of the Qinshui basin.

Firstly, the relationship between vitrinite reflectance and depth
is used to calculate the denudation thickness since the Early
Cretaceous thermal event (Figure 9), estimated at 3,269.32 m.
Secondly, combined with geological parameters such as stratum
stratification data of the Qincan 1 well and the geological
background in the middle of Qinshui Basin, the burial history
curve of the Qincan 1 well is established. According to the apatite
fission-track (AFT) study results (Zhu et al., 2014), the AFT data
(Zhu, 2013) reflect the uplift process since the Early Cretaceous.
Finally, by adjusting the amount of strata denudation and
geothermal gradient, the simulated Vitrinite reflectance should
be consistent with the measured Vitrinite reflectance, and the
accurate tectono-thermal history evolution path can be obtained.

From Figure 10, it appears clear that the change of geothermal
flow can be divided into two stages. The first stage is characterized
by a large geothermal flow of ∼68 Mw/m2, in the Early
Carboniferous, and slowly decreasing to 60 mW/m2 in the
Late Triassic; the second stage corresponds to a geothermal

flow gradually rising, reaching a peak value of 84.8 mW/m2 in
the Early Cretaceous, and then decreasing to 61.69 mW/m2 at the
present-day.

According to simulations, the evolution of the
paleogeotemperature gradient is also divided into two stages.
The first stage, from the Early Carboniferous to the Late
Triassic, is relatively stable at 2.9°C/100m, and a second stage,
taking place after the Late Triassic, where the paleogeotemperature
gradient increased to a maximum value of 6.51°C/100m during the
Early Cretaceous (Figure 10). According to the burial history
(Figure 10), the basin reached its maximum depth at the Early-
Middle Cretaceous, and gradually uplifted from the Middle-Late
Cretaceous. The relationship between the simulated vitrinite
reflectance curve and the measured vitrinite reflectance curve fit
well, indicating that the tectono-thermal history recovery is reliable.

DISCUSSION

Separation of Illite
If the separation of illite is not so pure, the determined value of the
crystallinity of illite may include some bias due to the presence
of detrital illite. Detrital illite refers here to terrigenous illite
detritus deposited concomitantly with sediments, mainly from
metamorphic illite originating from the study area.
Consequently, the paleo-geotemperature reflected by the
crystallinity of illite may not reflect the paleo-geotemperature of
the source strata, but the provenance. Therefore, the separation and

FIGURE 9 | Denudation thickness of central Qinshui Basin (A) Denudation thickness restored by illite crystallinity. (B) Denudation thickness of Qincan 1 well
restored by ln (Ro).
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purification of authigenic illite is an important step to avoid the
presence of detrital illite. To determine the crystallinity of
authigenic illite, we must separate the authigenic illite from
sandstone, mudstone, fault gouge, and other types of rock
samples first, then remove the non-authigenic illite components
from the rock samples and finally extract the authigenic illite.

As explained, the separation of authigenic illite will have a
direct influence on the quality of the testing results; separation
and purification of illite are essential to maximize the complete
removal of detrital K-bearing minerals such as detrital K-feldspar
and detrital illite. Moreover, the authigenic illite should also be
enriched to the greatest extent, whereas the content of kaolinite,
chlorite, smectite, and other non-authigenic illite components
should be reduced to the greatest extent. Judging from the current
situation, the only effective way to achieve this goal is to extract
more fine-grained clay components.

The separation of illite is quite challenging for two reasons.
Firstly, the separation of authigenic illite requires a fine particle
size. Conventional clay separation generally requires the extraction
of <2 μm components, while the separation of authigenic illite
requires at least particle size of<0.3 μm; Secondly, the separation of
authigenic illite requires successive separation steps to extract
different continuous fractions simultaneously, e.g., 1–0.5 μm,
0.5–0.3 μm, 0.3–0.15 μm, and <0.15 μm. The separation and
purification of illite are generally limited by instruments and
equipment, and the separation was carried out to fraction sizes
of 0.5 μm. Therefore, the clay minerals finally separated and

purified may contain some detrital illite, chlorite, kaolinite, and
other clay minerals, which might affect the test results. According
to the XRD patterns (Figure 6 and Figure 4), we can observe
diffraction patterns characteristics of chlorite and kaolinite, which
therefore indicate that the separation of early authigenic illite is not
completely pure. Consequently, the calculated illite crystallinity
might include detrital illite crystallinity, which might have an
impact on the paleotemperature inversion calculation. But
through the SEM (Supplementary Material, Figure 6), Most of
the clay minerals in the sandstone interlayer are illite with a good
crystal shape (Figure 6), and some illites are associated with I/S
(Figure 6A), indicating that there are many authigenic illites to
some extent.

Tectono-Thermal Event Time and Coalbed
Methane Accumulation Period
According to the calculation results of the illite crystallinity and
the vitrinite reflectance of well Qincan 1, a strong tectono-thermal
event occurred in the basin. As a result, the maximum ancient
geothermal gradient is 6.5°C/100 m, which is larger than the
current geothermal gradient of 2.4°C/100 m, and the
maximum paleo-geotemperature was around 180–190°C as
recorded at the Carboniferous strata.

Previous studies have attempted to determine the occurrence
time of tectono-thermal events in Qinshui Basin; the fission-track
age of apatite, for example, is estimated at ∼20–40 Ma, and the

FIGURE 10 | Recovery of burial history and tectono-thermal history of Qincan 1 well in central Qinshui Basin. (A) Burial history and tectono-thermal history of
Qincan 1 well. (B) Fitting relationship between measured Ro and simulated Ro. (C) Geothermal flow evolution in different periods of Qincan 1 well.
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zircon fission-track age is ∼100–150 Ma (Ren et al., 2005; Zhu
et al., 2014). If the fission-track age of zircon happened to be
smaller than the age of the formation, it would indicate that the
formation temperature was once greater than 250 °C and that the
zircon has undergone annealing (Hurford, 1986; Fitzgerald and
Gleadow, 1988; Yan et al., 2010; Malusà and Fitzgerald, 2019).
Secondly, the isotope age determination results of the igneous
rocks around the Qinshui Basin indicate that the time of magma
intrusion and eruption is between the Late Jurassic and Early
Cretaceous. For example, the Taershan-Erfengshan alkaline
complex, which is in the southwest of the Qinshui Basin, has
an Ar-Ar age of about 124 ± 0.3 Ma. In addition, the U-Pb age of
the Wanrong-Gufeng Mountain in the southern Qinshui Basin
ranges between 127 ± 1 Ma∼140.5 ± 5.3 Ma (Yan et al., 1988;
Shanxi, 1989; Wu et al., 1996, 2008; Ying et al., 2011; Si, 2015;
Huo, 2016; Yang, 2016; Chang et al., 2017; Yang et al., 2017). It
shows that the tectono-thermal events mainly occurred in the
Late Jurassic to the Early Cretaceous period (More details in
Supplementary Table S4 and Supplementary Figure S1).

Among the geological factors, thermal field, tectonic stress
field, hydrodynamic field, and formation conditions have an
important influence on the formation of coalbed methane
(Wu et al., 2014). The coal deposits in the Qinshui Basin
began to form in the Late Carboniferous and gradually ceased
when the delta deposits were formed in the early Permian (Sun
et al., 2005; Ma et al., 2016; Chen et al., 2019; Yu et al., 2020a). The
subsidence of the basin lasted until the Late Triassic when the
temperature of the coal seam reached 135°C (the burial depth was
up to 4 km). Influenced by the increase of temperature, the first
stage of methane generation began, and the vitrinite reflectance
maturity of the coal seam reached a medium level (Ro ≈ 1.2%)
(Zeng et al., 1999; Cai et al., 2011). Then, the subsequent
Indosinian orogenic movement caused the uplift and

inversion of the basin during the Early Jurassic, and it
remained in a state of slow deposition until the Late Jurassic
(Zeng et al., 1999; Ma et al., 2016). At the same time, the exposed
rocks around the Qinshui Basin, which include Taershan,
Huyanshan, Zijinshan, Erfengshan, Gufengshan, etc, started to
form (Yan et al., 1988; Shanxi, 1989; Wu et al., 1996, 2008; Ying
et al., 2011; Si, 2015; Huo, 2016; Yang, 2016; Chang et al., 2017;
Yang et al., 2017). It can be seen that there was a tectono-thermal
event represented by intense magmatic activity in the Late
Jurassic to Early Cretaceous, which is generally considered to
be closely related to the secondary gas peak of coal seams in the
basin at the same time (Figure 11) (Zeng et al., 1999; Xu et al.,
2004; Jiang et al., 2005; Ren et al., 2005; Sun et al., 2005; Duan
et al., 2011; Chen et al., 2019, 2019; Yu et al., 2020a; Gao et al.,
2021).

From Late Jurassic to Early Cretaceous, magmatic thermal
events caused rapid temperature increase of coal measures. A
large amount of hydrocarbon was generated by coal measures,
with coal rock as the main source of hydrocarbon generation. The
rapid increase of gas led to hydrocarbon generation
pressurization in the coal body (Ju et al., 2018); furthermore,
the increase of temperature led to the expansion of gas to form
abnormal high pressure (Figure 11).

Response of Thermal Events in Qinshui
Basin to Destruction of NCC
The tectono-thermal event in Qinshui Basin between the Late
Jurassic to Early Cretaceous was associated with the large-scale
magmatic eruption and the formation of the Ultra-High-
Pressure metamorphic belt (Yan et al., 1988; Shanxi, 1989;
Wu et al., 1996; Zhang, 1997, 2002; Wu et al., 2008; Ying
et al., 2011; Chen and Ding, 2012; Si, 2015; Huo, 2016; Yang,

FIGURE 11 | Evolution of hydrocarbon generation potential and rate of source rocks in Qinshui Basin, modified from Hou, (2020).
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2016; Chang et al., 2017; Yang et al., 2017; Yu et al., 2020a).
Combined with the estimation of the maximum
paleotemperature and paleotemperature gradient of illite
crystallinity and vitrinite reflectance, the deep mantle of
the basin was active during the Late Jurassic—Early
Cretaceous with the lithosphere thinned and led to the
formation of a high geothermal background value of
mantle upwelling, which was the main reason for the
tectono-thermal event and uplift denudation event of the
basin in this period.

Previous studies have shown that the thickness of the thermal
lithosphere of the present orogenic belt in the central part of the
NCC is about 76–90 km (He et al., 2001; Wang et al., 2001; Zhang
et al., 2006; Zhang, 2012). Based on their data, these authors
estimated that the thickness of the thermal lithosphere of the
Qinshui Basin in the Early Cretaceous was about 50–60 km,
indicating that the lithosphere of the basin was thinned during
the Early Cretaceous. At the same time, previous studies suggest
that the NCC experienced strong lithospheric thinning and
lithospheric mantle property transformation during the
Mesozoic (Menzies et al., 1993; Griffin et al., 1998; Xu, 2001;
Wu et al., 2008), accompanied by strongmagmatism (F.Wu et al.,
2005a; F.-Y. Wu et al., 2005b; Yang et al., 2008). Combined with
the magmatism around the Qinshui Basin, we suggest that the
lithospheric thinning in the Qinshui Basin is controlled by the
thinning and destruction of the NCC.

Previous investigations have been conducted on the
destruction of the NCC (Zhu et al., 2012, 2017; Yang et al.,
2021b). According to Zhu et al. (2017), at 165 Ma, from the
beginning of the Middle Jurassic Yanshanian movement
episode A, the West Pacific plate subducted to the East
Asian continental margin with a high speed and low angle,
the tectonic environment in Qinshui Basin, therefore,
corresponds to a compression environment, and angular
unconformity events were generally developed. Starting from
the Late Jurassic at 155 Ma, the western Pacific plate subducted
from a low angle to a high angle subduction toward the edge of
the East Asian continent (Zheng et al., 2018). With the rotation
and retreat of the subducted plate, the corresponding tectonic
environment of the Qinshui Basin became extensional, and
magmatic activity began to appear; during this period, the
Taihang Mountains began to uplift, and the eastern part of
the Qinshui Basin as the western wing of the Taihang
Mountains began to fold and uplift (Zhu, 2013).
Accompanied by strong magmatism, the Late Paleozoic coal-
measure strata experienced a high-temperature heating
process. The regional tectonic stress field of the basin during
the Middle-Late Jurassic is consistent with that of the whole of
eastern China. The NNE trending folds are the most developed
in the basin, covering the whole area on a large scale, reflecting
the horizontal compressive stress field in the direction of
NWW-SEE in the Yanshanian period. Under the action of
this stress field, a wide and gently deformed syncline, Qinshui
Basin, is formed (Zhu et al., 2015). At 140 Ma, the Yanshanian
movement episode B began in the early Cretaceous, and the
subduction angle of the Western Pacific plate to the East Asian
continental margin began to decrease again. The tectonic

environment corresponding to the Qinshui Basin was
compressional, and crustal shortening, folding and
stratigraphic angular unconformity events were widely
developed (Zheng et al., 2018). From 125 Ma in the Early
Cretaceous, the subduction angle of the Western Pacific
plate to the East Asian continental margin changed to a
high angle again, and the rate of subduction, rotation, and
retreat reached the maximum, and finally left a retentive body
in the mantle transition zone (Zhu et al., 2015). The
corresponding area of Qinshui Basin, which was subjected to
compression, thrust, and folds uplifting, began to develop
structural inversion and normal faults. Since the late
Cretaceous, the young and buoyant paleo Western Pacific
plate gradually entered the subduction zone, and magmatic
activity in the corresponding area of the Qinshui Basin
gradually ceased, and the extensional tectonic activity was
much weaker than that of the early Cretaceous (Shanxi,
1989). Throughout the Cretaceous period, there was a major
structural system transition in eastern China, that is, the early
continental collision and compression thrust structures were
transformed into extensional structures, and the eastern NCC
and Ordos basin became active with the lithosphere thinned
(Ren et al., 2002; Chen and Ding, 2012; Yu et al., 2020b).

The Qinshui Basin is a transitional zone between rift basins in
the east of the NCC and the Ordos Basin in theWest, the thinning
of the lithosphere and crustal extension also affected this area,
forming a small amount of magmatic activity. The basin was
subjected to weak NW-SE extensional tectonism and formed a
series of small to normal faults based on the Yanshanian
conjugate joints. Previous studies have shown that the deep
cause of the early Cretaceous tectono-thermal events and the
uplift and denudation events in the Qinshui Basin is mainly due
to the subduction of the western Pacific plate into the deep part of
the NCC, and the current low geothermal gradient in the Qinshui
Basin is also affected by the withdrawal of the West Pacific Plate.
Combined with the results of previous studies (Ren et al., 2020),
our work suggests that the Qinshui Basin experienced a tectono-
thermal event during the Late Jurassic to Early Cretaceous which
is in response to deep lithospheric thinning of the NCC.

CONCLUSION

Paleotemperature and denudation restoration by vitrinite
reflectance and illite crystallinity shed new light on the
tectono-thermal history and mechanisms for the evolution of
the Qinshui Basin of the NCC, which also expounded the
generation mechanism of coalbed methane and its response to
the destruction of the NCC from the tectono-thermal history
perspective. The Qinshui basin experienced a tectono-thermal
event during the Late Jurassic-Early Cretaceous. The deep reason
for this thermal event may be that relate to the subduction of the
Western Pacific Plate to the East Asian Continent resulting in the
upwelling of deep asthenosphere material and the thinning of
lithosphere thickness in the Qingshui area. During the Late
Jurassic-Early Cretaceous, the maximum pale-geotemoerature
and the highest pale-geotemperature gradient are 200°C, and
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6.5°C/100 m, respectively, which is the main control on the scale
of hydrocarbon generation.
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Genetic Mechanism and Environment
Implications of Siderites in the
Lopingian Coal-Bearing Series,
Western Guizhou of China:
Constrained by Whole-Rock and In
Situ Geochemistry
Tianyang Yang1,2, Yulin Shen1,2*, Yong Qin1,2, Yijie Zhang3, Lu Lu1,2, Jun Jin1,2,4, Yong Zhao5,
Yulin Zhu1,2 and Yunfei Zhang1,2

1Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education, Xuzhou, China,
2School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China, 3Sinopec Shengli Oilfield
Administration Bureau Co., Ltd., Dongying, China, 4Guizhou Engineering Technology Research Center for Coalbed Methane and
Shale Gas, Guiyang, China, 5Sinopec Xinjiang Xinchun Petroleum Development Co., Ltd., Dongying, China

A large number of siderites have been found in the Lopingian (Late Permian) coal-bearing
series in western Guizhou, which occurs in various microscopic morphologies and has
potential insights into the sedimentary and diagenetic environments. An integrated set of
analyses, such as microscopic observation; X-ray diffraction; whole-rock major and trace
element, carbon, and oxygen isotope; and in situ major and trace element, has been
carried out to unravel the genetic mechanism of the siderites and their environmental
implications. According to the microscopic morphology, the siderites can be generally
divided into three types and six subtypes, including gelatinous siderites (I), microcrystal-
silty siderite [II; microlite siderites (II1), powder crystal siderites (II2)], and spheroidal siderite
[III, petal-like siderite (III1), radiating fibrous siderite (III2) and concentric siderite (III3)]. Whole-
rock geochemical results show that the iron source for the formation of the siderites was
mainly from extensive weathering of the Emeishan high-titanium basalts in hot climate
conditions. The carbon and oxygen isotopic results indicate that the origin of CO2 in type I
siderites is derived from the dehydroxylation of organic matter. The CO2 in types II1 and II2
siderites is mainly derived from deposited organic matter and marine carbonate rocks,
respectively. The CO2 source of type III siderites is sedimentary organic matter and marine
carbonate rocks and is affected by different fluids during diagenesis. The whole-rock and in
situ geochemical characteristics further point to that type I siderites were formed in the
synsedimentary period most strongly affected by seawater. Redox proxies, such as V/Sc,
V/(V+Ni), and δ Ce, constrained their formation in a stable and weakly reduced condition.
Type II siderites could have been developed in saltwater. Among them, type II1 siderites
were formed in the early diagenetic stage, whereas type II2 siderites originated from
recrystallization of type II1 siderites and accompanied by metasomatism with calcites
under diagenetic fluids of weak reduction to weak oxidation conditions. Type III siderites
were formed under the influence of multistage diagenetic fluids. Among them, type III1
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siderites formed by the growth of powder crystal siderites (II2) under diagenetic fluids with a
weak reducing condition. Type III2 siderites formed by growth around microlite siderites
under weak reducing diagenetic fluids. Type III3 siderites formed by concentric growth in
diagenetic fluids with weak reduction to weak oxidation conditions and relatively active
conditions.

Keywords: siderites, sedimentary environments, diagenetic environments, coal-bearing series, Lopingian, western
Guizhou

1 INTRODUCTION

Siderite is a common carbonate mineral, and sedimentary siderite is
formed by complex reactions of iron and organic matter precipitated
during quasi-syngenesis (Sánchez-Román et al., 2014; Wittkop et al.,
2014; Weibel et al., 2016). Siderite mostly forms in sediments with
organic-rich, low Eh (oxidation–reduction potential), weak oxidation
to weak reduction conditions, high alkalinity, and low sulfur
concentrations (Berner, 1981; Mozley, 1989; Haese et al., 1997;
Uysal et al., 2000; Passey, 2014; Phillips et al., 2018; Hiatt et al.,
2020). The geochemical characteristics of siderite have been used to
characterize the porewater during diagenetic phases (Curtis et al.,
1986; Mozley, 1989; El Albani et al., 2001; Passey, 2014; Hiatt et al.,
2020), and the combination with other minerals can be used to
distinguish marine and freshwater environments (Mozley and
Wersin, 1992; Ludvigson et al., 1998; Choi et al., 2003; Lim et al.,
2004; Rodrigues et al., 2015). For example, siderites in marine
mudstones usually point to a rapid transgression in early
diagenetic phase (Laenen and Craen, 2004). Moreover, the siderite
morphology has been widely studied, and it is generally believed that
cryptocrystalline siderite is mostly occurring in the marine
environment, and authigenic spheroidal siderite is common in
freshwater and organic-rich environment (Mozley, 1989; Laenen
and Craen, 2004; Passey and Jolley, 2009; Passey, 2014; Weibel
et al., 2016).

The siderite-bearing strata are widely developed in coal measures
in western Guizhou, and some studies have been conducted to
determine its characteristics, as well as the genesis (Shen et al.,
2017; Shen et al., 2019; Zhang et al., 2018; Zhang et al., 2020).
For example, various forms of siderite have been recently identified by
Zhang et al. (2020), and the suggested morphology of siderites is
controlled by sedimentary sequence. However, how the sedimentary
and diagenetic environments control the formation of siderites has
always been an extensively debated topic. In this article, we identified
multiple siderite-bearing strata with variable micromorphological
types of siderite at Lopingian coal-bearing series in Panxian,
western Guizhou, China, and performed an integrated analysis on
the samples and obtained a set of new petrological, mineralogical, and
geochemical data. Based on these data, we analyzed the formation
model of siderite and their implications for the depositional and
diagenetic environment.

2 GEOLOGICAL BACKGROUND

The study area is located in Panxian, western Guizhou, at the
junction of Yunnan and Guizhou, on the margin of an

epicontinental basin covering South China (Figure 1A).
During the late Permian, this area was in the Liupanshui fault
depression (Xu and He, 2003). The Lopingian is a representative
Upper Permian coal-bearing sequence in the region, and there are
various sedimentary environments including continental, delta,
and marine facies from west to east (Wang et al., 2011; Shen et al.,
2016; Shen et al., 2019; Qin et al., 2018). Lopingian can be divided
into Wuchiapingian and Changhsingian from bottom to top. The
Wuchiapingian is mainly composed of gray, dark gray, and
gray–yellow mudstones, silty mudstones, siltstones, fine
sandstones, carbonate rocks, and coal seams. Multiple layers of
marine key beds and regionally stable coal seams as products of
pulsating transgression events can be used as good correlation
marker beds (Wang et al., 2011; Shen et al., 2016). Meanwhile, the
Changhsingian is mainly composed of gray and dark gray
argillaceous siltstone, mudstone, limestone, and fine sandstone,
with 6 to 20 coal seams (Shen et al., 2016). According to the
sequence stratigraphic framework established by previous studies
(Shao et al., 2011; Shen et al., 2016; Shen et al., 2019), the study
strata can be divided into four third-order sequences.

The Y2 and Y3 drillings are located between Tucheng and
Panzhou; Y3 drilling is located west of Panzhou (Figure 1A). The
study strata are interpreted as delta, lagoonal tidal flat facies (Xu
and He, 2003). Note that the siderite-bearing strata are usually
grayish black to grayish yellow, which is different from the
surrounding rock (Figures 2A–C). The main lithologies are
mainly mudstone, silty mudstone, and few siltstones.

3 SAMPLES AND ANALYTICAL METHODS

A total of 25 siderite samples were taken from three drilling wells
in the study area, among which J3 well samples were evenly
distributed in the Late Permian coal-bearing series. To investigate
the formation model of siderite and their implications for the
sedimentary and diagenetic environments the following
analytical methods were performed (Figure 1B).

The petrographical and mineralogical characteristics of the
samples were detected by an Olympus BX53M microscope in the
School of Resources and Geosciences, China University ofMining
and Technology.

The whole-rock X-ray diffraction (XRD) analysis by X′ Pert
Pro X-ray powder diffractometer was conducted in Regional
Geology and Mineral Resources Institute of Hebei. The test
conditions were as follows: (1) working voltage 40 kV; (2)
working current 40 mA; (3) Cu-Kα ray, wavelength
0.15416 nm, Ni filter; and (4) continuous step scanning with a
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step size of 0.017, the scanning speed is of 0.417782/s and the
preset time is of 2′ 36″.

Whole-rock major element analyses were conducted on XRF
(Primus II, Rigaku, Japan) at the Wuhan Sample solution
Analytical Technology Co., Ltd., Wuhan, China. Detailed
analysis procedure referred to “Methods for chemical analysis
of silicate rocks-Part 28: Determination of 16 major and minor
components” in the standard GB/T14506.28-2010.

Whole-rock trace element analyses were conducted on Agilent
7700e ICP-MS at the Wuhan Sample Solution Analytical
Technology Co., Ltd., Wuhan, China. Detailed analysis
procedure referred to “Methods for chemical analysis of
silicate rocks-Part 30: Determination of 44 elements” in the
standard GB/T14506.30-2010.

The samples for carbon and oxygen isotopic analysis were
collected from Y2 and Y3 wells, and the analysis was conducted in

the Geological and Environmental Institute of CUG (Wuhan).
The siderite samples were first ground to less than 200-mesh and
then reacted with phosphoric acid in a constant temperature tank
at 72°C for 1 h. The collected CO2 was transferred to the MAT-
253 for the C-O isotopes analysis. The analysis precision better is
than ±0.2‰.

In situmajor and trace element analysis of siderite by LA-ICP-
MS was conducted at the Wuhan Sample Solution Analytical
Technology Co., Ltd., Wuhan, China. Laser sampling was
performed using a GeolasPro laser ablation system that
consists of a COMPexPro 102 ArF excimer laser (wavelength
of 193 nm and maximum energy of 200 mJ) and a MicroLas
optical system. Beam size of 32 μm and laser frequencies of 5 Hz
were used during the analyses. An Agilent 7700e ICP-MS
instrument was used to acquire ion-signal intensities. Each
analysis incorporated a background acquisition of

FIGURE 1 | (A): Lopingian sedimentary system and drillings location in western Guizhou (modified after Shen et al., 2016). (B): Strata column, sampling positions,
and analytical methods of J3, Y2, and Y3 wells.
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approximately 20 s followed by 50-s data acquisition from the
sample.

4 RESULTS

4.1 Petrographic Characteristics
There are many siderite-bearing strata in western Guizhou, and
the occurrence forms are diverse (Figure 2), mainly including
nodular (Figure 2A), lenticular (Figure 2B), irregular (Figures
2B,C), and banded (Figure 2C). The banded siderite is usually

surrounded by horizontal bedding and does not cut across the
bedding (Figure 2C).

According to the microscopic morphology, the siderites can be
generally divided into three types and six subtypes (Figure 2):
gelatinous siderites (I), microlite siderites (II1), powder crystal
siderites (II2), petal-like siderites (III1), radiating fibrous siderites
(III2), and concentric siderites (III3).

4.1.1 Gelatinous Siderite (I)
The gelatinous siderite is yellowish-brown under the polarizing
microscope, and it is difficult to observe the grain boundary

FIGURE 2 | Observation of drilling core and characteristics of siderites. (A) Siderite nodules and banded are discovered in the gray–black mudstone, J-3. (B)
Siderite is lenticular and irregular agglomerated in the silty mudstone, J-7. (C) Irregular and banded siderite, J-11. (D) Gelatinous siderite mixed with clay minerals,
showing angular glauconite, Y-3. (E) Gelatinous siderite is aggregated, and pyrite is locally developed, J-1. (F) Microlite siderite aggregate, evenly distributed, J-5. (G)
Microlite siderite and powder crystal siderite are recrystallized around the shell of paleontology, J-13. (H) The paleontological shell is recrystallized into powder
crystal siderite, J-14. (I) Powder crystal siderite, with large grains and developed to petal-like siderite, J-17. (J) Powder crystal siderite is recrystallized around calcite, and
some are developed to petal-like siderite, Y-8. (K) Petal-like siderite, lane-polarized light, Y-2. (L) Cross-polarized light of “K.” (M) Radiating fibrous siderite, lane-
polarized light, Y-4. (N) Cross-polarized light of “M.” (O) Concentric siderite, lane-polarized light, J-4. Sd, siderite; Qz, quartz; Ge, glauconite; OM, organic matter; Cal,
calcite.

Frontiers in Earth Science | www.frontiersin.org November 2021 | Volume 9 | Article 7799914

Yang et al. Genetic Mechanism and Environment Implications

59

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


(Figures 2D,E). Note that they were divided into two forms. One
of which is evenly distributed in the pores between clastic
particles, and the other is aggregated into blocks. Among
them, uniform gelatinous siderite distributed in rocks is often
filled in the pores between clastic particles in the form of cement
and mixed with clay minerals (Figure 2D). The block-like
gelatinous siderite is often surrounded by clastic particles, clay
minerals, and organic matter (Figure 2E).

4.1.2 Microcrystal-Silty Siderite (II)
Crystal boundaries can be observed in microlite and powder
crystal siderites under the microscope, which appear as
hypidiomorphic or automorphic granular single crystal or
aggregates with various shapes and sizes (Figures 2F–J).
Among them, the microlite siderite often has color of light
brown–yellow to light yellow, grain size between 0.004 and
0.03 mm, and mainly hypidiomorphic shapes. This kind of
siderite is evenly distributed and mixed with clay minerals and
organic matter or appears surrounding clastic particles
(Figure 2F). The powder crystal siderite (II2) is light yellow,
and the grain size is between 0.015 and 0.09 mm with a good
degree of crystallization. Siderite crystals are mainly automorphic
and often develop at the edge of the cavity filled with calcite
(Figures 2G,H) or in the area with high calcite content
(Figures 2I,J).

4.1.3 Spheroidal Siderite (III)
This type of siderite has relatively large grain size, ranging from
0.1 to 1 mm, and appears light yellow to light yellowish brown
under plane-polarized light (Figure 2). Although the petal-like
siderite (III1) has similar ring shapes, differences in morphology
still exist. The fully developed siderite is spherical, and the
incomplete siderite is bow-tie morphology (Figure 2K). Under

cross-polarized light, the interference color is from pink to bright
green (Figure 2L). Radiating fibrous siderite has a radiating
texture, internal cleavage, and cross extinction under cross-
polarized light (Figures 2M,N). Concentric siderite (III3) has
obvious concentric ring morphology (Figure 2O), and its
distribution in the bedding is highly heterogeneous, usually
concentrated in the form of aggregate.

XRD results show that the minerals in the samples include
clay, quartz, siderite, plagioclase, calcite, ankerite, anatase, pyrite,
hematite, and thenardite (Table 1). The siderite content ranges
from 3.06 to 90.7 wt%. Other main components quartz, clay
minerals, and calcite range from 4.4 to 52 wt%, 3 to 77.6 wt%,
and 0 to 16.6 wt%, respectively. Other components are low, and
some samples contain high ankerite. The content of type I siderite
in rocks is relatively low. The XRD results show that the average
content is only 26.3 wt%, with an exception of J-3 sample more
than 40%. Type II siderite is common in rocks with high relative
content (Table 1). The XRD analysis results showed that the
average content in rocks reached up to 48.72% (Table 1). The
distribution of spheroidal siderite in the rock is heterogeneous.
The XRD analysis results show that the content varied largely
among different samples (Table 1).

4.2 Whole Rock Geochemistry
4.2.1 Major Elements
The whole-rock major elements results are listed in Table 2. By
normalizing the major elements results based on the upper crust
(UC) (Taylor and McLennan, 1985), we find the concentration of
main oxides in the studied samples is comparable to that in the
UC, except the depletion of K2O and the enrichment of TiO2,
TFeO (total iron), MnO, MgO, and CaO. The type I siderite-
bearing samples have the highest content of SiO2, and the samples
containing the other two types of siderite are similar. All of

TABLE 1 | Mineral compositions of the studied samples determined by XRD analysis (wt%).

Sample Clays Quartz Siderite Plagioclase Calcite Ankerite Anatase Pyrite Hematite Thenardite

J-1 17.0 20.6 49.4 — 5.3 — 5.2 — — 2.4
J-3 9.0 38.6 37.4 6.3 — 8.7 — — —

J-4 77.6 13.0 3.06 3.4 — — 2.9 — — —

J-5 16.6 18.0 62.8 — — — 2.6 — — —

J-6 13.5 37.4 28.2 — 1.9 16.8 — 2.3 —

J-7 19.4 11.2 66.7 1.7 1.0 — — — —

J-8 11.0 52.0 23.6 1.3 5.1 — 6.8 — — —

J-9 21.0 39.1 31.1 1.4 — — 7.4 — — —

J-10 20.0 23.6 48.2 2.8 — — 5.4 — — —

J-11 16.4 39.6 23.9 3.0 1.3 — 6.0 — — 9.7
J-12 42.8 26.3 21.7 4.7 — 4.5 — — — —

J-13 14.9 8.2 72.3 — 1.6 — — 3 — —

J-14 23.4 13.3 50.8 — — — — 2.4 — —

J-15 19.4 23.2 12.0 — — 42.8 — — 2.6 —

J-16 9.0 39.1 10.9 4.5 11.2 11.5 12.0 1.8 — —

J-17 16.5 26.1 42.6 1.7 12.1 1.0 — — — —

Y-3 24.9 32.4 19.5 — 16.6 — 6.6 — — —

Y-4 3.6 4.4 90.7 — 1.4 — — — — —

Y-5 24.4 43.4 18.6 — 13.6 — — — — —

Y-6 16.3 12.4 57.9 — 13.4 — — — — —

Y-7 15.0 7.0 57.0 1.7 5.7 13.6 — — — —

Y-8 3.0 9.4 77.7 — 9.9 — — — — —
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TABLE 2 | Statistics of major element oxide content (wt%), trace element, and rare earth element concentrations (μg/g) of the studied samples.

Sample J-1 J-2 J-3 J-4 J-5 J-6 J-7 J-8 J-9 J-10 J-11 J-12 J-13 J-14 J-16 J-17 Y-1 Y-2 Y-3 Y-4 Y-5 Y-6 Y-7 Y-8

SiO2 27.29 54.7 47.42 48.77 34.68 32.07 28.11 31.81 26.24 25.43 41.77 37.38 33.44 21.13 39.61 15.34 36.03 25.12 39.73 15.29 28.89 11.03 24.96 12

TiO2 1.98 3.8 3.76 5.12 3.41 1.21 2.24 1.41 1.69 1.99 2.23 2.34 2.1 0.97 2.68 1.03 2.84 15.79 2.07 0.93 1.01 1.25 2.14 1.01

Al2O3 9.1 19 18.04 23.64 14.85 6.24 9.92 5.8 7.51 8.38 10.36 11.08 8.79 5.42 12.34 5.02 14.15 2.07 11.3 6.28 4.97 4.92 8.21 4.31

TFeO 33.74 9.46 14.36 7.98 22.6 26.91 34.42 34.27 35.43 35.4 23.87 25.71 27.72 35.15 21.18 43.57 26.77 32.19 17.25 47.13 27.68 38.72 25.05 39.17

MnO 0.72 0.03 0.18 0.03 0.26 0.66 0.86 0.69 0.65 0.6 0.4 0.27 0.38 0.5 0.36 1.21 0.27 0.17 0.56 0.3 1.24 1.04 0.42 0.59

MgO 1.51 1.09 1.18 1.5 1.56 3.88 2.16 3.68 3.76 3.91 3.32 4.3 4.42 5.64 3.96 3.2 1.05 0.52 0.9 1 1.81 3.16 3.54 2.96

CaO 4.04 0.96 1.74 0.39 1.06 6.06 1.81 2.46 3.16 2.39 2.23 3.02 3.38 5.23 4.94 3.24 5.93 0.72 9.18 1.48 7.04 5.93 7.05 5.54

Na2O 0.34 0.6 0.58 1.04 0.67 0.49 0.63 0.14 0.32 0.47 0.74 0.81 0.74 0.26 0.68 0.29 0.08 0.17 0.22 0.09 0.15 0.23 0.47 0.16

K2O 0.6 1.34 0.98 2.9 0.87 0.33 0.7 0.12 0.27 0.41 0.51 0.38 0.41 0.16 0.54 0.34 0.02 0.2 0.53 0.04 0.36 0.35 0.87 0.24

P2O5 0.36 0.43 0.42 0.11 0.28 0.64 0.3 0.35 0.38 0.42 0.21 0.48 0.53 0.64 0.91 0.38 0.35 0.3 0.28 0.22 0.77 0.97 0.42 0.5

LOI 20.05 8.3 11.02 7.46 19.75 20.88 19 19.7 20.66 20.97 14.3 14.29 17.49 24.05 12.39 26.63 11.73 22.21 17.49 26.52 25.77 31.67 26.59 31.16

SUM 99.73 99.69 99.69 98.96 99.98 99.37 100.14 100.42 100.06 100.36 99.93 100.06 99.41 99.15 99.58 100.24 99.22 99.44 99.5 99.29 99.68 99.27 99.71 97.64

CIA 83.69 84.77 85.84 81.68 82.49 76.07 77.72 90.79 84.7 80.69 77.61 78.2 75.28 84.18 81.33 79.11 97.92 95.38 89.68 94.95 84.92 81.16 76.82 84.38

Li 15.5 25.5 28 13.3 32 32.8 37 34.1 38.4 38.4 46.6 54.5 38.9 29.4 46.2 15 14.6 17 15.1 9.7 12.5 9.3 7.7 6.5

Be 2.6 3.4 3.4 5.5 3 1.9 2.7 2.2 2.5 3.3 2.5 1.9 2.3 2.1 2 2.8 1.4 3.8 2.9 2.9 2.8 2.9 2.4 3.4

Sc 16.2 27.8 24.8 32.3 22 11.9 18.6 15.9 20.5 20.4 17 21.6 14.6 10.8 19.1 13.2 23.5 14.3 15.4 11.2 9.4 13.3 14.7 17

V 169.4 325.1 297.8 357.1 260.6 109.6 206.1 151.2 199.5 220 194.5 213.2 166.3 153.4 221 126.1 391.1 147.8 153 93 137.9 86.9 158.8 118.9

Cr 72.5 105.3 123.2 227.3 72.7 62.3 73.8 37.9 55 75.9 105.1 157.2 108.1 79.2 89.5 38.6 63.9 41.7 62.5 17.1 33.5 60.1 143.7 37.2

Co. 49.2 30.4 36.9 22.2 39.5 15.4 57.7 22.2 26.5 28 33.2 21 26.4 20.1 31.6 67.3 84.5 45.2 38.7 51.6 11.2 31.6 22 76.1

Ni 53.3 71.9 81.2 67.7 53.1 31.5 81.6 61.9 67.8 65.8 97.2 89 71 46.8 118.3 47.7 44.1 42.1 49 47.4 11.3 30.8 33.6 57.1

Cu 92.3 193.5 187 212.6 146.9 35.6 99.3 63.9 71 83.1 85.5 79.7 85.3 30.9 113.3 51.1 105 60.5 101.5 38.1 40.1 51.5 70.7 45.7

Zn 81.5 133.4 168.2 158.9 130.8 61.3 150.3 71.7 76.6 88.3 96.8 120.4 89.9 54.3 111.9 115.2 197.8 130.5 173.8 302.1 49.6 81 105.6 221.1

Ga 18 35.3 34.2 41.8 27.1 11.3 20.6 13.4 15 16.7 19.6 21.6 16.3 11.1 23.6 9.9 31.7 32.4 21.2 19.6 9.3 9.4 15.6 6.4

Rb 22.7 46.7 36.2 88.5 28.2 11.4 22.7 4.6 9.5 13.7 17.5 14.3 14.4 5.5 20.1 12.2 1.8 9.6 25.3 3.7 14.6 13.7 33.3 8

Sr 180.2 276.8 248.8 441 229.5 224.2 243.3 102 241.5 150.9 198.2 195.9 155.8 159.5 365.1 138.5 190.9 199.1 140.1 64.2 148.8 145.1 234.2 181.3

Zr 250.7 574 492.3 592 361.8 159.7 238.2 157.3 185.7 222.6 271.9 251.6 235.7 130.7 358.8 137.5 196.1 463.2 359 124.9 147.1 163.8 193.9 194

Nb 41.3 87.5 77.6 75 51.1 22.4 32.8 18.9 24.3 29.5 41.6 38.7 36.9 18.7 39.3 17.7 25.5 48.7 46.2 15 17.5 21.4 28.5 14.3

Sn 2 4.1 3.8 4.5 3 1.2 2.2 1.3 1.5 1.8 2.3 2.2 1.8 1.2 2.7 1.1 1.7 4.9 2.7 1.1 1 0.9 1.5

Cs 0.7 1.8 1.6 3.1 1.3 0.3 0.7 0.2 0.3 0.5 0.8 0.5 0.5 0.2 0.5 0.4 0 0.3 0.6 0.2 0.4 0.4 0.8 0.3

Ba 136.6 341 275.3 1,142.9 459.4 144.7 341 135.9 171.6 263.8 257.7 169.7 215.2 107.2 167.4 167.2 140.5 184.5 122.5 103 193.4 223.7 354.6 224.1

Hf 6.2 14 12.3 15.6 8.7 4 6 3.6 4.3 5.2 6.7 6.2 5.8 3.2 8.2 3.1 5.8 11.5 9 3.3 3.9 4.3 5.4 4.6

Ta 2.3 5.4 5 4.4 3.1 1.4 2 1.1 1.4 1.8 2.4 2.2 2.1 1.1 2.3 1.1 2.3 3.9 3.7 1.2 1.4 1.7 2.2 1

Tl 0.1 0.2 0.3 0.2 0.1 0 0 0 0 0 0.1 0 0.1 0 0.1 0 0 0 0 0 0 0 0.1 0

Pb 4.5 8.7 7.8 13.8 6.2 4.1 4.3 3.3 4.8 3.3 7.9 2.3 7.3 4.5 6.1 3.5 10.3 21 11.3 12.9 2.9 4.9 4.4 8.5

Th 6.2 16 13.6 16.7 8.4 3.9 5.7 3.3 4.2 5 7.1 6.1 6.1 3.6 8.5 3.2 5.3 13.7 10.1 3.3 4.6 4.6 5.2 3.8

U 1.4 3.7 3.2 3.7 1.9 1.8 1.2 0.8 1 1.1 1.4 1.4 1.4 1.5 1.6 0.8 1.5 2.5 2.3 1.1 1.9 1 1.2 0.8

La 44 93.4 82.5 118.3 50.9 39 43.5 25.1 30.9 37.7 43.6 38.6 40 32.2 61.7 21.6 35.8 54.3 68 18 38 40.8 32.9 31.4

Ce 86.5 201.1 176 228.9 110.8 79 89.7 52.4 63.4 74.8 87.8 83.7 84.4 69.2 139 47.1 102.4 125.6 144.9 39.8 78.4 90.5 68.5 66.3

Pr 10.6 24 21 26 14 9.4 10.9 6.4 7.8 9 10.2 10.4 10 8.4 17.4 5.6 13.5 15 15.3 5.5 11.5 12.3 9.1 8.5

Nd 42.3 91 82.9 95.1 55 39.6 45.1 27.9 33.6 38.8 39.5 44.2 42.1 36 76.8 24.3 57.9 59.9 68.5 23.9 53.1 54.4 38.4 35.5

Sm 8.9 15.8 15.5 13.8 11.3 8.4 8.2 6.9 7.9 9.2 7.6 10.7 9.6 8.5 18.6 6.1 15 14.6 12.6 6.3 16.1 12.4 8.6 7.9

Eu 3 3.7 4.2 2.9 3.2 2.7 2.3 2.4 2.6 2.9 2.4 3.7 3.2 3.5 6 1.7 4.9 3.7 3.3 2.1 5.7 4.2 2.8 2.4

Gd 7.9 12.4 14 9.4 10 7.2 7.4 7.9 8.5 8.7 7.5 10.8 9.2 8.9 16 6 15.5 15.2 12.8 7.1 17.6 11.3 8.7 6.9

Tb 1.1 2 2.1 1.7 1.6 1 1.2 1.1 1.2 1.2 1.2 1.3 1.3 1.2 1.9 0.9 2.6 2.6 1.8 1.2 2.3 1.4 1.3 1.1

Dy 6.6 11.2 11 10.8 8.8 5 7 5.8 5.9 6.6 6.5 6.7 6.2 6.4 9.4 5.1 13.6 15.5 9.4 7.3 10.8 6.3 6.6 6.2

Ho 1.1 2.2 2 2.2 1.7 0.8 1.4 1.1 1.1 1.1 1.2 1.1 1 1.1 1.5 0.9 2.3 2.9 1.6 1.4 1.8 1 1.2 1.2

Er 3.2 5.9 5.3 6.3 4.5 2.2 3.9 3 3 3.2 3.2 3 2.8 2.7 3.9 2.6 5.8 8.4 4.5 3.7 4.7 2.7 3.1 3.4

Tm 0.4 0.8 0.7 0.9 0.6 0.3 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.3 0.8 1.4 0.7 0.6 0.7 0.4 0.5 0.6

Yb 2.8 5.2 4.5 5.8 3.6 1.6 3.3 2.5 2.6 2.4 2.6 2.4 2.2 2.2 3.1 2.3 4.8 9 4.1 3.6 4.3 2.2 2.9 3.2

Lu 0.4 0.7 0.6 0.8 0.5 0.2 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.5 0.3 0.7 1.4 0.6 0.6 0.7 0.3 0.4 0.5

Sr/Ba 1.3 0.8 0.9 0.4 0.5 1.6 0.7 0.8 1.4 0.6 0.8 1.2 0.7 1.5 2.2 0.8 1.4 1.1 1.1 0.6 0.8 0.7 0.7 0.8

V/Cr 2.3 3.1 2.4 1.6 3.6 1.8 2.8 4 3.6 2.9 1.9 1.4 1.5 1.9 2.5 3.3 6.1 3.5 2.5 5.4 4.1 1.4 1.1 3.2

V/(V + Ni) 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.8 0.7 0.7 0.9 0.8 0.8 0.7 0.9 0.7 0.8 0.7

V/Sc 10.4 11.7 12 11.1 11.9 9.2 11.1 9.5 9.7 10.8 11.5 9.9 11.4 14.2 11.6 9.6 16.7 10.3 10 8.3 14.7 6.5 10.8 7

Sr/Cu 2 1.4 1.3 2.1 1.6 6.3 2.5 1.6 3.4 1.8 2.3 2.5 1.8 5.2 3.2 2.7 1.8 3.3 1.4 1.7 3.7 2.8 3.3 4

δ Ce −0.05 −0.02 −0.03 −0.04 −0.03 −0.05 −0.04 −0.05 −0.05 −0.06 −0.04 −0.04 −0.04 −0.04 −0.03 −0.03 0.02 0 −0.03 −0.05 −0.09 −0.05 −0.06 −0.05

ΔEu 1.08 0.77 0.86 0.74 0.89 1.02 0.9 0.99 0.98 0.97 0.97 1.04 1.04 1.21 1.03 0.83 0.97 0.76 0.78 0.95 1.04 1.06 0.97 0.96

δ Ce � lg(3*CeN)/(2*LaN+NdN).
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siderite-bearing samples have a high content of TiO2, MgO, and
MnO, which is likely related to the provenance. In addition, the
TFeO content of samples containing type I siderite is the lowest,
and the content of CaO gradually decreases from Samples
containing type I to those containing type III.

4.2.2 Trace Elements
For most sedimentary deposits, some trace elements and
aluminum can be well preserved and transported along with
clastic materials and are usually immobile during diagenesis.
These elements can be used for paleoenvironmental
reconstruction only if their contents deviate greatly from
average shale and have a good correlation with Al
(Tribovillard et al., 2006). The enrichment factors of elements
[EFelement X � X/Alsample/(X/Alaverage shale)] are obtained by Al
normalization, and the results are shown in Figure 3B

(Tribovillard et al., 2006). Among them, the enrichment
factors of Cr, Ni, Ga, Sr, Ba, Th, and U are between 0.5 and 2,
close to the average shale. Th, Ga, and U have a good positive
correlation with Al, whereas Sr, Ba, Ni, Cr, and Rb have a poor
correlation (Figure 4).

4.2.3 Rare Earth Elements
The ΣREE values of the siderite-bearing samples are relatively
high varying between 121 and 523 ppm. Figure 3C shows the
distribution pattern of REE. The REE distribution pattern of all
samples shows a significant enrichment of LREE. By comparing
them with the values of the high-titanium basalts, trachytes, and
rhyolites in the study area (Xiao et al., 2004; Xu et al., 2010)
(Figure 3C), it was found that all samples are similar to the high-
titanium basalts. The δ Ce values [δ Ce � lg (3 * CeN)/
(2 * LaN + NdN)] range from −0.09 to 0.02, whereas δ Eu

FIGURE 3 | (A)Major elements concentration coefficients (CC) of the studied samples, normalized by the UC. (B) Enrichment factors of trace elements of different
types of siderite; (C) REE distribution pattern of different types of siderite. The pink and green areas are for trachyte and rhyolite (Xu et al., 2010), and the blue area is for
high-Ti basalt (Xiao et al., 2004).
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values of samples with different types of siderite are different
(Table 2). Most samples containing gelatinous siderite have δ Eu
value larger than 1, whereas samples with type II siderite have δ
Eu greatly variable from 0.77 to 1.04, (Table 2). The samples with
type III siderite have δ Eu values ranging from 0.76 to 0.97,
indicating slightly negative anomalies in element Eu.

4.3 Carbon–Oxygen Isotopic Compositions
The results of carbon–oxygen isotopes are shown in Table 3. The
samples with type I siderite have uniform δ13CPDB and δ18OSMOW

values of −9.20‰ to −10.06‰ and 17.34‰ to 20.65‰,
respectively. The δ13CPDB values of samples with type II
siderite range greatly from −2.80‰ to −10.58‰, which are
dependent on the crystal types. The δ18OSMOW values are

similar ranging from 23.23% to 24.64‰. The samples with
type III siderite have δ13CPDB and δ18OSMOW of −6.33‰ to
−11.94‰ and 25.78‰ to 28.38‰, respectively, with large
fluctuation.

4.4 In Situ Geochemistry
The detailed results are shown in Supplementary Appendix S1,
and the in situ spots are shown in Figures 5, 6. Among them, the
type I siderite has FeCO3 (wt%) ranging from 26.62% to 51.64%,
with an average of 36.63%, average CaCO3 of 3.56%, and average
MgCO3 of 6.76%. For microlite siderite, the content of FeCO3 (wt
%) ranges from 47.34% to 86.8%, with an average of 72.67%. The
contents of CaCO3 and MgCO3 vary greatly in different samples.
The average content of CaCO3 and MgCO3 in J-5 is 4.43% and
2.79%, whereas that in J-11 is 7.64% and 7.99%, and that in J-13 is
8.58% and 10.27%, respectively. The environment formed by
microlite siderite may be more extensive than that of gelatinous.
The content of FeCO3 (wt%) in powder crystal siderite ranges
from 64.11% to 90.68%, with an average of 76.39%; the content of
CaCO3 ranges from 5.62% to 11.22%; and the content of MgCO3

ranges from 2.76% to 16.76%, which are similar to the results of
microcrystalline siderite samples. The content of FeCO3 in type
III siderite ranges from 71.26% to 91.87%, and the contents of
CaCO3 andMgCO3 are lower than those in the other two types of
siderite.

FIGURE 4 | Covariant relationship between Al and some trace elements, in which Th, Ga, and U are positively correlated with Al.

TABLE 3 | The results of carbon–oxygen isotope.

Sample Siderite type δ13C‰ (PDB) δ18OSMOW‰

Y-1 Ⅰ −10.06 17.34
Y-2 Ⅲ −6.33 28.38
Y-3 Ⅰ −9.20 20.65
Y-4 Ⅲ −11.94 25.78
Y-5 Ⅱ −10.58 23.23
Y-6 Ⅱ −2.80 24.64
Y-7 Ⅱ −4.01 23.31
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The Sr/Ba value of type I siderite ranges from 0.79 to 3.75,
with an average of 2.26, higher than that of the whole rock. δ
Ce is between −0.08 and 0.06, with an average of 0.01; V/
(V+Ni) is between 0.58 and 0.90, with an average of 0.73; and
V/Cr is between 1.34 and 11.12, with an average of 2.36,
which are also close to the whole rock. The V/Sc value is
higher than the whole rock, with an average of 35.85.
Different samples of type II1 siderite are different in
composition, although the in situ results are similar to that
of the whole rock. The Sr/Ba value of type II2 siderite ranges
from 0.38 to 1.66, with an average of 0.58, which is quite
different from the whole rock. There is little difference in Sr/
Ba values of type III siderite, and the total average value is
0.50. The δCe value is between −0.19 and 0, and types III1 and
III2 are different, reflecting the different diagenetic water
where type III siderite formed. The V/(V+Ni), V/Cr, and
V/Sc of III1 and III2 are also different.

5 DISCUSSION

5.1 Provenance Analysis of Siderite-Bearing
Strata
The abundance of trace elements and the ratio of some immobile
elements such as Al2O3/TiO2, ΣREE, and La/Yb in mudstone can
help to perform provenance analysis (Spears and Rice, 1973;
McLennan et al., 1993; He et al., 2007; Dai et al., 2017; Xie et al.,
2018; Liu et al., 2020). Rare earth elements are not easy to migrate
during sedimentation and diagenesis, and the distribution pattern
of REE can be used for provenance analysis (Boynton, 1984; Dai
et al., 2017; Liu et al., 2019). Figure 3C shows that the REE
distribution curves of all of siderite-bearing strata samples are
relatively similar, which are characterized by enrichment in LREE
and depletion in HREE. Eu has no obvious anomaly similar to
Emeishan high-titanium basalt (Xiao et al., 2004). To study the
provenance of the siderite-bearing strata, the discrimination

FIGURE 5 | In situ sites of gelatinous siderite and microlite siderite, (A) J-1, gelatinous siderite and partly recrystallized into powder crystal siderite (lane-polarized
light); (B,C) J-6, mass aggregate, distributed among debris particles (lane-polarized light); (D) J-12, siderite is evenly distributed (lane-polarized light); (E) J-16, mass
aggregate siderite and evenly distributed gelatinous siderite (lane-polarized light); (F,G) J-5, uniform distribution, microlite siderite (lane-polarized light); (H) J-11, microlite
siderite is evenly distributed (lane-polarized light); (I) J-10 (1), mass microlite siderite is distributed between clastic particles (lane-polarized light).
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diagram of ΣREE versus La/Yb was applied (Allègre andMichard,
1974; Xie et al., 2018) (Figure 7A). Apart from a small number of
samples with gelatinous siderite that fall within the region of
sedimentary rock, the others fall in the alkaline basalt
(Figure 7A). Positive Eu anomalies indicate the existence of a
large amount of mafic rock detritus, whereas strong negative Eu
anomalies indicate the incorporation of felsic magmatic material
(Dai et al., 2017; Liu et al., 2020). Al2O3/TiO2 is also a reliable
index used to discriminate the provenance of sedimentary rocks
(Spears and Rice, 1973; He et al., 2003; He et al., 2007; Dai et al.,
2017; Liu et al., 2020), and previous studies have suggested that
Al2O3/TiO2 <7 is characteristic of the Emeishan high-titanium
basalt (He et al., 2007). Figure 7B shows that the δ Eu value of
samples ranges from 0.74 to 1.21, and Al2O3/TiO2 values are less
than 7, falling in or similar to the field of Emeishan high-titanium
basalt (Xiao et al., 2004; Dai et al., 2016; Liu et al., 2020). The high-
titanium basalt in the east of Emeishan Large Igneous Province
located in the Kangdian Upland is the most likely provenance

area of the Late Permian coal-bearing strata in western Guizhou
(Chung and Jahn, 1995; Xiao et al., 2004). During Late Permian,
the South China was hot and humid (Bercovici et al., 2015; He
et al., 2020; Zhang et al., 2020). In this case, the source rock
suffered strong chemical weathering, and the iron was
continuously leached under strong weathering and brought
into the sedimentary basin after frequent regression and
transgression, providing a sufficient iron source for the
formation of siderite.

There are two major possible sources of carbon in sedimentary
rocks: sedimentary organic matter and marine carbonate rocks
(Ohmoto, 1972; Veizer et al., 1980; Liu et al., 2021). The CO2

source was determined based on the discrimination diagram of
δ13CPDB versus δ18OSMOW (Figure 8). The data of gelatinous
siderite indicate that the source of CO2 was derived from the
dehydroxylation of organic matter, and its formation was affected
by seawater and organic matter. The data distribution of
microcrystal-silty siderite (II) is scattered, and its CO2 source

FIGURE 6 | In situ sites of microlite siderite, powder crystal siderite and sphaerosiderite, (A) J-13, microlite siderite, surrounded by clay minerals (lane-polarized
light); (B) J-10 (2), powder crystal siderite, partially developed to petal-like siderite (lane-polarized light); (C) J-14, the powder crystal siderite is evenly distributed (lane-
polarized light); (D) J-17 (1), powder crystal siderite and calcite (lane-polarized light); (E) reflecting light of (D); (F) J-17 (2), powder crystal siderite, partially developed to
petal-like siderite (lane-polarized light); (G) J-17 (3), powder crystal siderite (lane-polarized light); (H) J-4, concentric siderite (lane-polarized light); (I). J-7, petal-like
siderite (lane-polarized light).
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may be sedimentary organic matter and marine carbonate.
Microlite siderite is evenly distributed in the strata (Figure 2),
and its source is more likely sedimentary organic matter, whereas
powder crystal siderite is formed by metasomatic calcite or
paleontological shell. The CO2 sources of spheroidal siderite
are sedimentary organic matter and marine carbonate rocks,
which are affected by different water during diagenesis.
Moreover, the analysis results of spheroidal siderite may
indicate the genesis of various spheroidal siderite.

5.2 Depositional Conditions of
Siderite-Bearing Strata
Elemental concentration ratios such as Sr/Ba, Sr/Cu, V/(V+Ni) in
clastic rocks can indicate the depositional conditions (Hatch and
Leventhal, 1992; Mongenot et al., 1996; Rimmer et al., 2004;

Akinlua et al., 2010; Zhao et al., 2016; Xu et al., 2017). Generally,
Sr is enriched in the marine, and Ba is concentrated in the
continental deposition. The Sr/Ba ratio reflects the influence
degree by seawater and freshwater during the deposition
period. The higher the value, the stronger the influence degree
by seawater (Johnsson, 1993; Armstrong-Altrin et al., 2015). The
whole-rock Sr/Ba value of samples with gelatinous siderite ranged
from 1.14 to 2.18, with an average of 1.45 (Figure 9A). In
addition, the gelatinous siderite-bearing strata contain
glauconite (Figure 2D), indicating that the gelatinous siderite
is strongly affected by seawater (Odin and Matter, 1981;
Johnsson, 1993; Armstrong-Altrin et al., 2015; Banerjee et al.,
2016). The whole-rock Sr/Ba value of samples with microlite-
powder crystal siderite ranges from 0.5 to 0.9, with an average of
0.74, indicating that this kind of siderite was deposited under the
joint action of seawater and freshwater (Johnsson, 1993;
Armstrong-Altrin et al., 2015). The whole-rock Sr/Ba value of
samples with sphaerosiderites ranged from 0.39 to 1.08,
indicating that the paleosalinity of the water column during
the sedimentary period of this type was relatively low, and the
morphology was different under different paleosalinity.

The Sr/Cu ratio can indicate the paleoclimate (Roy and Roser,
2013; Sarki Yandoka et al., 2015). Under warm and humid
climatic conditions, sediments usually show a low Sr/Cu ratio
(Roy and Roser, 2013; Sarki Yandoka et al., 2015). Figure 9B
shows that the whole-rock Sr/Cu of samples with gelatinous
siderite ranges from 1.38 to 6.30 (mostly from 1 to 5), with an
average of 3.21; that of the microlite-powder crystal siderite
ranges from 1.33 to 3.97, with an average of 2.42. The
spheroidal siderite has an Sr/Cu ranging from 1.69 to 3.29,
and there is no significant difference in the value. The
chemical index of alteration (CIA) indicates that the
paleoclimate where types II and III siderite formed is warm
and humid. The CIA of gelatinous siderite is greater than 80,

FIGURE 7 | Provenance analysis, (A) La/Yb vs. REE diagram; (B) δEu vs. Al2O3/TiO2 diagram (data for high-Ti basalt are from Xiao et al., 2004).

FIGURE 8 | Plot of δ13CPDB vs δ18OSMOW for the siderite samples
(modified from Hoefs, 2009).
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reflecting the hot and humid climate (Nesbitt and Young, 1982;
McLennan, 1993).

The concentrations of V, Ni, and Ce in fine-grained
sediments are sensitive to redox conditions and can help to
characterize the depositional conditions (Wright et al., 1987;
Jones and Manning, 1994; Holser, 1997; Chen et al., 2015). In
general, the value of δ Ce > −0.1 indicates the anoxic condition,
and less than −0.1 indicates the oxic condition (Wright et al.,
1987; Holser, 1997; Chen et al., 2015). V/(V+Ni) ratios >0.84,
0.84–0.6, and <0.6 represent euxinic, anoxic, and dysoxic
conditions, respectively (Hatch and Leventhal, 1992; Zhao
et al., 2016; Xu et al., 2017). Moreover, V/Sc and V/Cr ratios
can also provide information of depositional conditions (Jones
and Manning, 1994; Rimmer et al., 2004). Figure 9C shows that
the whole-rock δ Ce values of all samples are greater than −0.1,
indicating that the water column in the sedimentary period was

anoxic. The whole-rock V/(V+Ni) ratio of most samples is
between 0.6 and 0.84, showing that they were formed under
the weak reducing condition with weak stratification of the
water column (Hatch and Leventhal, 1992; Zhao et al., 2016; Xu
et al., 2017). The whole-rock V/Sc value of the samples varies
little (Figure 9D). Among them, the type I siderite was 9.19 to
16.66, with a mean value of 11.45; the types II and III siderite
ranges from 6.53 to 14.65 and 8.29 to 11.07, with an average
value of 10.59 and 10.31, respectively. It shows that most
siderite-bearing strata are formed in a weak reduction
environment (Jones and Manning, 1994). The whole-rock
V/Cr values of gelatinous siderite, microcrystal-silty siderite,
and spheroidal siderites are 1.36 to 6.12, 1.11 to 4.12, 1.57 to
5.44, with an average value of 2.76, 2.69, and 3.25, respectively.
Although the V/Cr values of some samples are low, the existing
geochemical indicators show that most siderite-bearing strata

FIGURE 9 | Distribution diagrams of paleosalinity and redox proxies for siderite-bearing strata samples.
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samples are formed in a weak reduction to reduction
environment (Jones and Manning, 1994; Rimmer et al., 2004).

5.3 Diagenetic Environment and Genesis of
Siderite
Siderite is an authigenic mineral, and thus, different micro forms
of siderite retain the information of diagenetic water during its
formation.

According to the in situ test results, the FeCO3 content of type
I siderite is the lowest among the three types. The Al and Si
contents are high, and the Al/Si ratio is almost the same, close to
0.9. The results show that gelatinous siderite is symbiotic with fine
clay. The Sr/Ba value of each spot in type I siderite is between 0.79
and 3.75, with an average of 2.26 (Figure 10A), higher than that
of the whole rock (Figure 9A). These characteristics indicate that
the diagenetic fluid is mainly seawater with high paleosalinity,
similar to sedimentary water (Johnsson, 1993; Armstrong-Altrin
et al., 2015). The average value of δ Ce is −0.03 (Figure 10B),
which is similar to the whole rock (Table 2). The mean value of

V/(V+Ni) of the in situmineral is 0.73. Compared with the whole-
rock V/(V+Ni) of the corresponding samples, the V/(V+Ni) value
of the in situ mineral is basically unchanged. The value of V/Sc of
the in situ mineral is 10.25 to 79.02, with an average of 35.85,
significantly higher than the whole rock (Figure 10D). These
characters indicate that the type I siderite was formed in an
early diagenetic environment, and the diagenetic water is
mainly reduced and stagnant seawater (Hatch and Leventhal,
1992; Zhao et al., 2016). During the gelatinous siderite
formation, the content of the clastic particles is low, and a large
number of clay minerals are distributed in the sediments. During
the syngenetic stage, the cryptic crystalline siderite precipitates
from the seawater and filled in the limited space as cements.

The FeCO3 content of type II1 siderite is higher than that of
type Ⅰ siderite, whereas the content of Al and Si is lower, with
average Al/Si value of 0.41. The type II1 siderite appears
hypidiomorphic granular aggregates, and the crystal
morphology is not obvious, only with the boundary between
crystal particles vaguely observed (Figure 2F). Moreover, the clay
mineral content in the pores is relatively low, and the siderite is

FIGURE 10 | In situ geochemical characteristics of different types of siderite.
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relatively pure. The above characteristics indicate that the
microlite siderite is likely to be formed in the original
intergranular pores. The average in situ Sr/Ba of type II1
siderite is 0.64, and that of the whole rock is 0.66. There is
almost no difference between them, meaning that the
paleosalinity of the diagenetic water is similar to the
sedimentary water body, that is, saltwater (Johnsson, 1993;
Armstrong-Altrin et al., 2015). The average value of δ Ce in in
situmineral is −0.06, V/(V+Ni) is 0.93, and V/Sc is 4.80; δ Ce and
V/(V+Ni) are similar to the average values of whole rock, whereas
V/Sc is obviously lower than the average value of whole rock
(Figure 10D; the average value of whole rock is 11.58). Therefore,
the diagenetic water where type II1 siderite formed is weakly
reduced (Hatch and Leventhal, 1992; Jones and Manning, 1994;
Rimmer et al., 2004; Zhao et al., 2016). The diagenetic
environment of type II1 siderite is similar to its sedimentary
environment. It is a saltwater fluid with weak
oxidation–reduction, and the diagenetic water is likely to be
primary porewater. During the sedimentation of the strata
with type II1 siderite, the fluid washed the original pores, and
the intergranular clay minerals decreased. The primary porewater
through layers provides Fe-forming materials for the
crystallization of siderite, which promotes the precipitation of
siderite in intergranular pores and forms microlite siderite.
However, because of the limited crystallization space, the
siderite is filled in the pores and developed in the form of
microlite siderite aggregate.

The type II1 siderite appears as silty-sized crystal aggregates,
and some develop into petal-like siderite (Figures 2L,J). The

FeCO3 content is approximately 80 wt%. The Sr/Ba ranges from
0.38 to 1.66, with an average value of 0.58 (Figure 10A), different
from the average Sr/Ba of the whole rock of 0.96. The Sr/Ba value
indicates that the type II2 siderite was transformed by freshwater
in the later diagenetic stage (Johnsson, 1993; Armstrong-Altrin
et al., 2015). The in situ V/Sc values are 2.9 to 9.0, with an average
of 5.24, which are lower than those of the whole rock (Figure 9B)
(averagely 11.52). The V/(V+Ni) value is between 0.7 and 0.97
(Figure 10C), with an average of 0.85, which is higher than the
whole rock (average 0.75). The δ Ce values range from −0.1 to
−0.01 (Figure 10B), which is slightly lower than whole rock (from
−0.03 to −0.06, average −0.04). These characteristics reveal the
diagenetic water where type II2 siderite formed is different from
its sedimentary water; that is, the diagenetic water is not seawater
sealed in sedimentary period or primary porewater, but relatively
freshwater with weak oxidation to weak reduction (Hatch and
Leventhal, 1992; Jones and Manning, 1994; Rimmer et al., 2004).
During the burial period, the siderite had been transformed by the
diagenetic fluid, which promoted the recrystallization of siderite
crystals with smaller particles formed in the sedimentary period
and formed powder crystal siderite with silty size and better
crystal morphology.

The type III siderite can be divided into three subtypes based
on microscopic morphology. According to the observed type III1
siderite, the morphologies range from powder crystals through
fan-shaped to petal-like morphologies (Figures 2K,L); it is likely
to be formed by a single crystal, and the morphology is affected by
pores and diagenetic fluid (Passey, 2014). According to the in situ
results (Figure 10), the Sr/Ba ranges from 0.38 to 0.63, indicating

FIGURE 11 | Variation curves from center to edge of concentric siderite.
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that the formation environment was affected by freshwater. The
in situV/Sc, V/(V+Ni), and δ Ce values are 5.6 to 9.3, 0.74 to 0.94,
and −0.21 to −0.04, respectively. These characteristics indicate
that the type III2 siderite grows radially around the core with
weak oxidation to weak reduction. The variation curves of many
geochemical indexes from the core to the rim of type III3 siderite
show obvious symmetry (Figure 11), indicating that its growth is
slow and continuous and carried out together with the diagenesis.
Under the repeated action of diagenetic fluid, the type III3 siderite
grows in a circle around the cryptocrystalline core in a fluid with
the weak oxidation–reduction property.

5.4 Evolution Model of Siderite and
Geological Significance
Siderite in the study area shows various forms and has been
affected by sedimentary environment and diagenetic
environment. Regarding the sedimentary environment, the
Upper Permian coal-bearing strata developed under carbonate
tidal flat-barrier-lagoon-shallow delta conditions (Wang et al.,
2011; Shen et al., 2016; Shen et al., 2019; Qin et al., 2018), and the
climate was hot and humid. Such sedimentary condition was
beneficial to the formation of siderite (Bercovici et al., 2015). The
development and evolution model of siderite is shown in
Figure 12. The formation of type I siderite is strongly affected

by seawater during transgression, and the sedimentary water is
stagnant seawater. During diagenesis, the diagenetic water along
the fissures and beddings promoted the recrystallization of the
gelatinous siderite to form the powder siderite (Figure 12). The
sedimentary water of type II siderite gradually changed from
seawater to brackish water in the transitional environment.
During diagenesis, the diagenetic fluid of freshwater promoted
the recrystallization of siderite along fissures and beddings or
metasomatism with calcite to evolve into type II2 siderite and
sometimes into petal-like siderite (Figure 12). The type III2
siderite grows radially around the core. The type III3 siderite
grows in a circle around the cryptocrystalline core in a relatively
active fluid with weak oxidation–reduction under the repeated
diagenetic fluid. Under the influence of multistage diagenetic
fluid, the type III3 siderite grows around the
cryptocrystalline core.

The formation of siderite is obviously controlled by the
different sedimentary and diagenetic environments. Among
them, types I and II1 siderite mainly formed in the
syndiagenetic and early diagenetic stages, and their
morphology is controlled by the sedimentary environment.
Therefore, types I and II1 siderite can indicate the sedimentary
environments. Gelatinous siderite was most affected by seawater,
mostly formed in the transgression or near the maximum
flooding surface (Shen et al., 2019; Zhang et al., 2020).

FIGURE 12 | Evolution model of different types of Siderite.
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Microlite siderite was influenced by freshwater during its
formation and was most developed in the early stage of
transgression or high-stand system tract.

6 CONCLUSION

Based on the morphology of siderite in coal-bearing series, it can
be divided into three types and six subtypes. There is barely any
difference in the sedimentary sources of various siderite-bearing
strata, which are Emeishan high-titanium basalt developed in the
west of the study area. Type I siderite CO2 comes from
sedimentary organic matter. Types II and III siderite CO2 is
mainly derived from sedimentary organic matter and marine
carbonate.

The most significant difference in the sedimentary period of
various siderite-bearing strata lies in the influence degree of
seawater. Among them, type I siderite-bearing strata are
strongly affected by seawater, whereas types II and III siderite-
bearing strata are affected by seawater and freshwater. Different
types of siderite bearing strata are formed in depositional
conditions from weak oxidation to weak reduction.

The in situ results show that types I and II1 siderites were
formed in the early diagenetic stage. The diagenetic water of type I
siderite is sedimentary seawater, and type II1 siderite is mainly
primary porewater. The diagenetic water of type II2 siderite is
freshwater, and type III is multistage fluid.

The siderite morphologies are controlled by the sedimentary
environment and diagenetic environment. Among them,
gelatinous siderite and microlite siderite are mainly formed in
the syndiagenetic stage and early diagenetic stage, thus indicating
the sedimentary environment. Gelatinous siderite is strongly
influenced by seawater and is mainly formed in the carbonate
tidal flat and barrier lagoon. Microlite siderite is formed in the

shallow delta with relatively low sea level by the interaction of
seawater and freshwater.
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In this paper, the variation of clay minerals and their influence on reservoir physical
properties and residual oil before and after ASP flooding are analyzed. The results show
that the total amount of clay minerals in reservoirs decreases after ASP flooding in the
ultra-high-water-cut-stage reservoirs of the Naner Zone in the Saertu Oilfield, Songliao
Basin. Therein, the illite content reduces, while the content of illite smectite mixed-layer
and chlorite increases. The content of kaolinite varies greatly. The content of kaolinite
decreases in some samples, while it increases in other samples. The clay minerals block
the pore throat after ASP flooding. As a result, the pore structure coefficient and the
seepage tortuosity increase, the primary intergranular pore throat shrinks, and the
pore–throat coordination number decreases. Nevertheless, the dissolution of clay
minerals reduces the pore–throat ratio and increases porosity and permeability. The
variation of clay minerals after ASP flooding not only intensifies the reservoir
heterogeneity but also affects the formation and distribution of residual oil. The
residual oil of the oil–clay mixed adsorption state is a newly formed residual oil type
related to clay, which accounts for 44.2% of the total residual oil reserves, so it is the main
occurrence form of the oil in reservoirs after ASP flooding. Therefore, the exploitation of
this type of residual oil has great significance to enhance the oil recovery in ultra-high-
water-cut-stage reservoirs.

Keywords: ASP flooding, clay minerals, pore structure and physical properties, residual oil, ultra-high water cut
stage, the Songliao basin

INTRODUCTION

ASP flooding refers to a chemical flooding method that utilizes a composite system of alkali,
surfactant, and polymer for petroleum exploitation. It is one of the enhanced oil recovery (EOR)
technologies used in many ultra-high-water-cut-stage reservoirs (Zhang et al., 2009; Cheng et al.,
2012; Cheng et al., 2014; Wu et al., 2015a; Xv et al., 2015). A large amount of studies indicates that
the composition, distribution, and content of clay minerals in the reservoirs have a great influence
on the pore structure and physical properties (e.g., porosity and permeability), which will directly
affect the oil production efficiency (Chen et al., 2016; Zhao et al., 2017; Zhu et al., 2021). There are
many physical and chemical reactions between pore fluids and rock components in the formation
during ASP flooding (Song et al., 2011; Wu et al., 2015a; Song et al., 2015; Sheng., 2016), especially
the strong water–rock reaction of clay minerals. Pore structure and physical properties in
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reservoirs change under the chemical dissolution of rock
minerals and the precipitation and agglomeration of clay
mineral particles in the pore fluid because of the adsorption-
flocculation of the polymer (Kazempour et al., 2013; Huang
et al., 2020). Ultimately, all these changes of the pore structure
and physical properties of reservoirs will affect the formation
and distribution of residual oil (Liu et al., 2013; Liu et al., 2014;
Liu et al., 2015; Mansa et al., 2017; Wu et al., 2015b). Therefore,
it is significant for the effective development of residual oil to
investigate the variation of clay minerals after ASP flooding in
ultra-high-water-cut-stage reservoirs. In the paper, the response
to the variation of clay minerals in reservoirs during ASP
flooding is studied for the ultra-high-water-cut-stage
reservoirs of the Naner Zone in the Saertu Oilfield, Songliao
Basin. Besides, the effect of these variations on pore structure,
physical properties, and residual oil distribution are also
investigated. The results of this study provide technical
support for the effective development of residual oil after
ASP flooding.

GEOLOGICAL SETTING

The Naner Zone (research zone) of the Saertu Oilfield is located
in the northern part of Daqing Placanticline from the Songliao
Basin (Figure 1) (Hu et al., 2005). Three sets of oil reservoirs
(Saertu, Putaohua, and Gaotaizi) are developed in the Naner Zone
(Figure 2). These reservoirs belong to the fluern part of the
daqivial-delta deposition, and their burial depth is about
827–1,200 m (Sui et al., 2000; Zhao et al., 2000). In this study,
the second segment of the Saertu reservoir (member Sa II) is
selected as the target layer.

Member Sa II is a sandstone reservoir with good
permeability, and its thickness is about 52–56 m. The
sandstone type is arkose, and a small part is hard sandy
arkose with a fine sand-like structure. The detrital minerals
are mainly composed of feldspar and quartz. Feldspar accounts
for 43%–54% of the total content, consisting of a large amount
of orthoclase and a small amount of plagioclase and
microcline. In addition, quartz accounts for 30%–43% of
the total content. The cement is mainly composed of argilla,
and the argillaceous content is more than 3%. The clay mineral
composition of cement is mainly kaolinite, followed by
chlorite, illite, and illite smectite mixed layers. The
cementation type is pore-contact, and the intergranular
pore is the main type of pores (Xing and Jiang, 1993; Gao,
et al., 2015).

At present, ASP flooding has been conducted on the Sa II
reservoir, that is, injection of an alkali (sodium
hydroxide)–surfactant (petroleum sulfonate)–polymer
(polyacrylamide) system to the Sa II reservoir for oil
displacement. The injection concentrations of the ASP system
of alkali, surfactant, and polymer are 1.2, 0.3, and 0.18 wt%,
respectively. The molecular weight of the polymer is 25 million.
The salinities of formation water before and after ASP flooding
are 7,178 and 7,463 mg/L, respectively, and the type of formation
water is sodium bicarbonate (NaHCO).

MATERIALS AND METHODS

Materials
The core samples required for this study were collected from the
Sa II reservoir of the Saertu Formation in the Naner Zone of the
Saertu Oilfield, and the core depth is 930–943 m. A total of 10
core samples were taken, including five ASP flooding samples
with an average air permeability of 0.638 μm2 and an average
porosity of 27.9% and five water flooding samples (before ASP
flooding) with an average air permeability of 0.443 μm2 and an
average porosity of 26.9%. The lithologies are all oil-bearing
siltstones with good reservoir properties.

Methods
Scanning electron microscopy (SEM) and X-ray diffraction
methods were applied to the surface morphology, and whole-
rock mineral and clay mineral analysis of the core samples was
conducted to determine the pore structure and mineral
composition of the cores and to explore the characteristics of

FIGURE 1 | Location of the Naner Zone in the Saertu Oilfield (A: Location
of the Songliao Basin).
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changes in the pore structure and clay minerals of the cores before
and after ASP flooding (Fang, et al., 2016; Zhu et al., 2021).

Scanning Electron Microscope Analysis Method
SEM was used to directly observe the morphology and pore
structure of core samples, including the shape, size, and
distribution characteristics of pores, inter-pore connectivity,
and the distribution characteristics of solid particle skeleton
and clay minerals (Houben et al., 2013; Zhu et al., 2018). A
scanning electron microscope was used to observe the samples,
which were then firstly dried by the critical point drying method,
i.e., using the property that the surface tension of a substance is
equal to zero at the critical state to completely vaporize the liquid
of the sample and exhaust it as a gas to achieve the purpose of
complete drying. Then the sample is treated with conductive
treatment to make the sample surface conductive. In this paper,
the metal coating method is used, which uses a special device to
cover the sample surface with metals of low resistivity, such as
gold, platinum, and palladium, after evaporation.

X-Ray Diffraction Analysis Method
X-ray diffraction is applied to the analysis of whole-rock minerals
and clay minerals in core samples (Wang et al., 2019). To
determine the core samples by X-ray diffraction, the natural
orientation sheet (N) is firstly prepared by the extraction
method; i.e., start the vacuum pump, put the soaked
microporous filter membrane on the funnel, pour the
suspension in several times, pump the suspension in 10 min
each time, remove the filter membrane when the clay

membrane reaches a thickness of 30–40 μm, put the
membrane on the slide backward, and put it in the culture
blood to dry. Then the naturally oriented slides were
thermostated with ethylene glycol vapor at 45°C for 7 h and
cooled to room temperature to make ethylene glycol-saturated
slides (EG), and the ethylene glycol-saturated slides were
thermostated at (550 + 10)°C for 2 h and cooled naturally to
room temperature to make heated slides (550°C). And the ray
diffraction spectra of the naturally oriented sheet (N), glycol-
treated sheet (EG), and heated sheet (550°C) were completed
under certain experimental conditions. Finally, for the specific
characteristics of clay minerals in sedimentary rocks, the
percentages of every single mineral in clay minerals were
calculated by taking advantage of the phenomenon where
swelling minerals in clay minerals are heated and dehydrated
and their crystalline spacing shrinks to 1.0 nm, and the
characteristic peaks of kaolinite and chlorite overlap at 0.7 nm
in the diffractogram of natural orientation.

VARIATION CHARACTERISTICS OF
RESERVOIR CLAY MINERALS BEFORE
AND AFTER ASP FLOODING

Morphology and Distribution
Characteristics of Clay Minerals
SEM images show that different types of clay minerals have
different morphologies and distribution characteristics.
Kaolinite is an alteration product of feldspar, and its

FIGURE 2 | Profile map of the different reservoirs in the Naner Zone.
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morphologies are book-page-like, worm-like, and accordion-
like. Kaolinite is mostly distributed in the intergranular pores in
the form of pore filling (Figure 3A). Kaolinite is easy to move
with fluids under the scouring of fluids because of the loose
intracrystalline structure and then block and divide the pores
and throats. Therefore, kaolinite is an important velocity-
sensitive mineral. Illite is attached to the particle surface or
filled in the intergranular pores in the form of leaves or silk hairs
(Figure 3B). The leaf-like crystallites separate the pores into
several fine pores, which increase the tortuosity of flow
channels. The hair-like crystallites are easily washed away by
water and then block pores and throats, which leads to the
decrease of porosity and permeability of reservoirs. The illite
smectite mixed layer is an intermediate product of
montmorillonite transformed to illite, and its morphologies
are burr and curl. It has three typical structures, namely,
lamellar structure, honeycomb structure, and flocculent
structure (Figure 3C). Compared with other clay minerals,
the illite smectite mixed layer has very strong water
sensitivity. Chlorite is often symbiotic with authigenic quartz,
and its morphologies are needle-like, pompon-like, and rose-
like. The chlorite is distributed in pores in the form of pore
filling and pore backing. Generally, the needle-like chlorite is
mostly filled with pore backing on the surface of the particles,
while the pompon-like and rose-like chlorites are filled in the

pores (Figure 3D). Chlorite can be transformed from minerals
such as biotite, hornblende, and montmorillonite. However, the
authigenic chlorite is generally rich in high-valence iron ions,
which easily react with the acid solution (e.g., HCl) in the
drilling fluid to cause precipitation and reservoir damage.
Therefore, chlorite is an acid-sensitive mineral.

Variation Characteristics of the Content and
Composition of Clay Minerals
The 10 selected core samples were extracted and dried at first,
and then the X-ray diffraction method was used for the
quantitative analysis of whole-rock minerals and clay
minerals. The analysis results are presented in Table 1. As
shown in Table 1, the alkali in the ASP system affects the
content of the rock-forming minerals and clay mineral rock. The
total amount of quartz is reduced after ASP flooding, and the
potassium feldspar content is also reduced, while the plagioclase
(albite) content increases slightly. Furthermore, the total
content of clay minerals decreases after ASP flooding;
therein, the relative content of the illite decreases, but the
relative content of the chlorite and illite smectite mixed layer
increases. However, the variation of kaolinite content in
different core samples is quite different. Kaolinite contents in
some samples decrease, while they increase in others.

FIGURE 3 | SEM images of clay minerals [(A) kaolinite, (B) illite, (C) illite smectite mixed layer, (D) chlorite].
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In addition, ASP flooding changes the chemical composition
of the rock. The ASP system injected into the reservoir, especially
the alkali, on the one hand, will dissolve the rock minerals (e.g.,
kaolinite and feldspar), thereby causing the elemental
components (e.g., silicon and aluminum) in the rock minerals
to be transferred from the solid phase to the formation water; on
the other hand, the aluminum and silicon ions which are
dissolved by the alkali will regenerate the crystalline precipitate
of aluminosilicate in other places under certain conditions
(Maggio et al., 2010; Wu et al., 2015a; Song et al., 2015).

The feldspar of rock-forming minerals and some kaolinites are
mostly eroded by alkali in the ASP flooding system. As a non-
expanded clay mineral, kaolinite is one of the most common
authigenic clay minerals in sandstone reservoirs, and it is also an
indicator mineral for feldspar dissolution (Xing, 1983). The
feldspar can generate kaolinite under eluviation, and its
chemical reaction is as follows:

(K,Na,Ca)[AlSi3O8] +H+ →Al2Si2O5(OH)4 + (K+, Na+,Ca2+)

+ Si4+.

The reaction equation for the dissolution of kaolinite by alkali
is as follows:

Al4[Si4O10](OH)8 + 8OH− � 4Al(OH)3↓ + 4SiO2−
3 + 2H2O.

Kaolinite can be transformed into albite under the action of
alkali, and the reaction equation is as follows:

Al2[Si2O5](OH)4 + 2Na+ + 2OH− + 4Si(OH)4� 2NaAlSi3O3

+ 11H2O.

It can be concluded that the increase of anorthose content after
ASP flooding is due to the formation of albite from kaolinite
under the action of alkali. The content of the illite smectite mixed
layer is increased, which is the aluminosilicate scale formed by

mineral recrystallization (Lu and Guan, 1999). There are two
reasons for the increase in kaolinite content. One is the newly
formed kaolinite by feldspar under eluviation, and the other is the
precipitation and accumulation of kaolinite particles in formation
water caused by the adsorption flocculation of the polymer in the
ASP system (Liu et al., 2014; Mansa et al., 2017). The increase in
chlorite content is an aluminosilicate precipitate formed by
mineral recrystallization in an alkaline environment.

INFLUENCE OF VARIATION OF CLAY
MINERALS ON RESERVOIR PHYSICAL
PROPERTIES
Influence on the Pore Structure of Reservoir
It can be seen from the SEM images of core samples before ASP
flooding that the core intergranular pores include the primary
intergranular pores and the secondary intergranular pores. The
main cements in the core are clay minerals. Among the clay
mineral cements, it can be seen from Figure 4A that the
kaolinite cements in the pores in the form of pore-filling and
blocks the pore throats; parts of illite and chlorite are cemented
on the surface of the particles in the form of pore-backing to
decrease the pore space, and the other part is cemented in the
pores in the form of pore-filling and blocks the pore throats
(Figure 4B).

It can be seen from the SEM images of core samples after ASP
flooding that the clay minerals block the pore throat, and the pore
structure coefficient and the tortuosity of pore throat increase
after ASP flooding. The kaolinite and illite in the clay minerals
adhere to the surface of the rock particles and extend into the pore
space, thereby causing the shrinkage of the primary intergranular
pore throat (Figure 5A). In addition, the local pore throat is
enlarged due to the dissolution of clay minerals and rock particles
by alkali (Figure 5B).

TABLE 1 | Variation of rock mineral composition and content before and after ASP flooding.

Core number Depth (m) Mineral composition and
relative content (%)

Mixed-
layer ratio

(%S)

Type and relative content
of clay mineral (%)

Total amount
of clay minerals (%)

Remark

Quartz Potassium feldspar Anorthose Calcite I/Sa C/Sb Sc Id Ke Cf I/S C/S

W1 941.42 50.8 20.9 24.6 — 15 — — 20 69 4 7 — 3.7 Water flooding
W2 941.44 51.9 21.7 22.8 — 15 — — 18 71 6 5 — 3.6 Water flooding
W3 941.99 52.5 19.8 23.5 0.3 15 37 — 8 73 5 5 9 3.9 Water flooding
W4 942.01 48.4 26.5 21.6 — 15 — — 15 76 6 3 — 3.5 Water flooding
W5 942.03 50.2 21.6 22.1 — 15 — — 10 77 8 5 — 6.1 Water flooding
S1 941.43 38.9 17.8 39.8 — 20 — — 3 83 8 6 — 3.5 ASP flooding
S2 942.00 37.1 18.2 41.1 — 20 — — 2 85 6 7 — 3.6 ASP flooding
S3 942.07 36.2 18.6 42.8 — 20 — — 8 58 20 14 — 2.4 ASP flooding
S4 942.13 34.8 18.9 42.9 — 20 — — 7 56 21 16 — 3.4 ASP flooding
S5 942.14 44.3 16.9 35.7 — 20 — — 4 61 18 17 — 3.1 ASP flooding

aIllite smectite mixed mineral.
bChlorite smectite mixed mineral.
cSmectite.
dIllite.
eKaolinite.
fChlorite.
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In addition, according to the analysis of the 3D
nondestructive core sample pore structure obtained by CT
scanning, the reservoir pore–throat ratio (ratio of pore radius
and throat radius) and pore throat coordination number (throat

number connecting each pore) decreased significantly after ASP
flooding (Figure 6 and Figure 7). The reason for this
phenomenon is that the alkali component in the ASP system
erodes the clay minerals and rock particles (feldspar) in the

FIGURE 4 | Intergranular pore morphology before ASP flooding (A: surface of particles and pore throats, B: pore throats).

FIGURE 5 | Intergranular pore morphology after ASP flooding (A: primary intergranular pore throat, B: local pore throat).

FIGURE 6 | Variation characteristics of pore–throat ratio before and after ASP flooding.
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reservoir during ASP flooding. The clay minerals and rock
particles are chemically unstable, which are then dissolved by
alkali migrating with the composite system, thereby increasing
the diameter of the local pore throat (Loucks et al., 2012). In
addition, the fine particles in reservoir fluids are easily adsorbed,
trapped, and retained in the narrow throat by the polymer,
causing throat blockage and reducing the effective
communication in throats.

Influence on Porosity and Permeability of
Reservoir
Figure 8 and Figure 9 show the physical properties of core
samples before and after ASP flooding; we can conclude that the
changing trends of porosity and permeability are consistent after

ASP flooding. The average porosity of the core samples increases,
which is 0.97% higher than the value before ASP flooding. Sixty
percent of the core porosity increases by more than 28%, and the
maximum value is 28.66%. The core permeability after ASP
flooding is mainly distributed between 663.19 and 882.88 mD.
Compared with that of the cores before ASP flooding, the
permeability increases significantly, and the increment is
195.09 mD. The influence of ASP flooding on the physical
properties of cores is mainly caused by the dissolution of rock
skeleton, clay minerals, and cuttings by alkali components in the
ASP system (Olajire, 2014). Part of the pore throats become large
because of alkali dissolution and fine particle migration;
therefore, the physical properties become better. However,
some parts of pore throats become smaller, and the tortuosity
of the pore throat increases because of the accumulation and

FIGURE 7 | Variation characteristics of pore throat coordinate number before and after ASP flooding.

FIGURE 8 | Variation characteristics of porosity before and after ASP flooding.
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precipitation of fine particles in the pore fluids, thereby leading to
a decrease in porosity and permeability. The porosity and
permeability of the reservoir are polarized and the
heterogeneity is enhanced after ASP flooding.

INFLUENCE OF VARIATION OF CLAY
MINERALS ON RESIDUAL OIL

The transformation of clay minerals leads to changes in the pore
structure of the reservoir, which affects the formation and
distribution of residual oil. It can be seen from the fluorescence
images of core samples after ASP flooding in ultra-high-water-cut-
stage reservoirs that there are many isolated “petroleum-clay
mixed” residual oil in the middle of pores after ASP flooding
(Figure 10).

At present, the Naner Zone in the north of Daqing
placanticline in Songliao Basin has entered the stage of ultra-

high water cut development. The kaolinite in the Sa II reservoir is
a velocity-sensitive mineral. The kaolinite aggregation has poor
adhesion to the skeleton particles, and the binding force between
kaolinite wafers is also very weak. The kaolinite lamellar crystal
aggregation is mechanically and chemically eroded by the
injected ASP flooding solutions, causing the crystal skeleton of
aggregation to be destroyed to form fine particles. In addition, the
feldspar eluviation also produces new kaolinite. These tiny
mineral fragments or newly formed kaolinite are driven by the
injection fluid flow to produce particle migration. Then, the
kaolinite particles migrating with the fluid are mixed with the
microspheres of emulsified crude oil and are adsorbed and
accumulated by the polymer in the local intergranular pores
(Zhang et al., 2007; Zhang et al., 2010; Ren et al., 2015; Mansa
et al., 2017). As a result, the isolated petroleum-clay mixed
residual oil is formed and distributed in the intergranular
pores and pore throats of the reservoir (Figure 10). The laser
confocal scanning microscopy technique was used to quantify the
proportion of different types of residual oil (Liang et al., 2018).
The average content of petroleum-clay mixed residual oil is 4.8%
(a percentage of the total volume of the sample), accounting for
44.2% of the total residual oil reserves. Compared with the core
samples before the ASP flooding, the proportion of petroleum-
clay mixed residual oil content in the total residual oil reserves
after ASP flooding increased by 12.9%. The petroleum-clay mixed
residual oil associated with clay minerals is the main occurrence
state of residual oil after ASP flooding.

CONCLUSION

1) After ASP flooding, the total amount of clay minerals
decreases, and the content of illite decreases, while the
contents of the illite smectite mixed layer and chlorite
increase. The kaolinite content varies greatly. On the one
hand, the kaolinite is dissolved by alkali, and its content
decreases; on the other hand, the kaolinite particle in pore
fluid precipitates and gathers under the adsorption
flocculation of the polymer, and its content increases.

FIGURE 9 | Variation characteristics of permeability before and after ASP flooding.

FIGURE 10 | Distribution of petroleum-clay mixed residual oil.
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Because kaolinite can block the reservoir pore throat, it
increases the difficulty of subsequent enhanced oil
recovery (EOR).

2) After ASP flooding, the clay minerals block the pore throat,
increase the tortuosity of pore fluid flow, and shrink the
original intergranular pore throats. In addition, the
dissolution of the clay minerals enlarges the local pore
throat, decreases the pore–throat ratio and coordination
number, and increases the porosity and permeability.
Variation of clay minerals after ASP flooding not only
enhances the reservoir heterogeneity but also influences the
formation and distribution of residual oil.

3) The petroleum-clay mixed residual oil associated with clay
minerals is a new type of residual oil. It is formed by the
mixed aggregation of clay minerals and oil under the action
of polymer in the process of ASP flooding and is mainly
distributed in the intergranular pores or the pore throats with
high clay mineral content. The clay-petroleum mixed oil is the
main occurrence state of residual oil after ASP flooding, and the
development of this type of residual oil will greatly improve
the oil recovery of ultra-high-water-cut-stage oilfields.
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Evolutions of Oil Generation and
Expulsion of Marine-Terrestrial
Transitional Shales: Implications From
a Pyrolysis Experiment on
Water-Saturated Shale Plunger
Samples
Qizhang Fan1,2, Peng Cheng2,3*, Xianming Xiao1, Haifeng Gai2,3, Qin Zhou2,3, Tengfei Li 2,3

and Ping Gao1

1School of Energy Resources, China University of Geosciences (Beijing), Beijing, China, 2State Key Laboratory of Organic
Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China, 3CAS Center for
Excellence in Deep Earth Science, Guangzhou, China

Shale reservoirs are characterized by self-generation and self-accumulation, and the oil
generation and expulsion evolution model of organic-rich shales is one of important factors
that obviously influence the enrichment and accumulation of shale oil and gas resources.
At present, however, relevant studies on marine-terrestrial transitional shales are
inadequate. In this study, a pyrolysis experiment was performed on water-saturated
marine-terrestrial transitional shale plunger samples with type Ⅱb kerogen to simulate the
evolutions of oil generation and expulsion. The results indicate that marine-terrestrial
transitional shales have wider maturity ranges of oil generation and expulsion than marine
and lacustrine shales, and the main stages of oil expulsion are later than those of oil
generation, with corresponding Ro values of 0.85%–1.15% and 0.70%–0.95%,
respectively. Although the oil generation and expulsion process induced a fractionation
in compositions between the expelled and retained oils, both the expelled and retained oils
of marine-terrestrial transitional shales are dominated by heavy compositions (resins and
asphaltenes), which significantly differs from those of marine and lacustrine shales. The
kerogen of marine-terrestrial transitional shales initially depolymerized to transitional
asphaltenes, which further cracked into hydrocarbons, and the weak swelling effects
of the kerogen promoted oil expulsions. The oil generation and expulsion evolutions of
these shales are largely determined by their organic sources of terrigenous higher
organisms. This study provides a preliminary theoretical basis to reveal the enrichment
mechanism of marine-terrestrial transitional shale oil and gas resources.

Keywords:marine-terrestrial transitional shale, pyrolysis experiment, oil generation and expulsion, organic sources,
maturity
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INTRODUCTION

Organic-rich shales are widely developed in marine, lacustrine,
and marine-terrestrial transitional strata in China, and the
three types of shales significantly contributed to the oil and gas
resources of both conventional and unconventional reservoirs
(Zou et al., 2019; Zou et al., 2020). In the Sichuan Basin, for
example, giant gas fields in the central Sichuan Basin,
including the Anyue, Weiyuan, and Ziyang shale gas plays,
were mainly sourced from the Lower Paleozoic marine shales
(Zou et al., 2014); several tight sandstone gas reservoirs in the
paleo-uplift of the central Sichuan Basin largely came from the
Jurassic lacustrine shales (Huang et al., 2019); the Xinchang
gas field in the western Sichuan Basin were basically derived
from the Upper Triassic marine-terrestrial transitional shales
(Chen et al., 2010; Wu et al., 2016). In the last 2 decades,
developments of marine shale oil and gas resources in the
North America have achieved a great success (Zhou et al.,
2019). Marine shale gases and lacustrine shale oils in China
also have been commercially developed in the past 10 years (Jin
et al., 2019; Zhao et al., 2020). Although marine-terrestrial
transitional shales were believed to have a large potential of
shale oil and gas resources, few of them have achieved
commercial developments until now (Guo et al., 2015; Guo
et al., 2021).

Marine-terrestrial transitional source rocks generally have low
yields of oil generation, and most of the generated oils remained
in source rocks (Liu et al., 2005; Mao et al., 2012). Therefore, these
source rocks are commonly believed to have few contributions to
normal petroleum reservoirs. However, the oil and gas resources
of marine-terrestrial transitional shale reservoirs are largely
determined by their oil generation and expulsion model
because shale strata generally acted as both source rocks and
reservoirs. Although oil generation and expulsion models have
been well documented for marine and lacustrine shales in many
previous studies (Wei et al., 2012; Han et al., 2015; Tang et al.,
2015; Han et al., 2017; Ziegs et al., 2017; Hakimi et al., 2018; Wu
et al., 2018), relevant studies on marine-terrestrial transitional
shales are still inadequate presently. Marine-terrestrial
transitional shales generally have thin single layers and thick
cumulative thickness. The sedimentary facies of marine-
terrestrial transitional shales vary obviously with burial depth
resulting in their organic and inorganic compositions exhibiting
obvious heterogeneity, and these shales are obviously richer in
terrestrial organic sources than the marine and lacustrine shales
(Qin et al., 2016; Su et al., 2016). Because marine-terrestrial
transitional shales are quite different from marine and
lacustrine shales in both geological and geochemical
characteristics, the oil generation and expulsion models
deduced from the latter shales failed to be applied on the
former shales. At present, oil generation and expulsion
characteristics of marine-terrestrial transitional shales are still
not fully understood, which limits the development of their oil
and gas resources.

In previous studies, dried shale powder samples were
commonly used for pyrolysis experiments (Inan and
Schenk, 2001; Carr et al., 2009; Liang et al., 2015; Ko et al.,

2018). However, this method has several disadvantages to
simulate oil generation and expulsion of shale samples.
Shale pore structures, especially the microfractures, may be
obviously broken during crushing process, which affects the
expulsion and storage of generated shale oils. In addition,
connate pore waters in source rocks significantly influence oil
generation process and the properties of generated oils (Sun
et al., 2015). For example, artificially simulated oils generated
under water-bearing conditions are more similar with natural
oil samples than those generated under anhydrous conditions
(Lewan et al., 1979). Differing from the methods in previous
studies, in this study, small shale plunger samples that drilled
from a lowly mature marine-terrestrial transitional shale core
sample were first saturated with water, and then they were used
for a pyrolysis experiment to simulate the oil generation and
expulsion characteristics. This study intends to provide a
preliminary theoretical model to further reveal the
enrichment mechanism of marine-terrestrial transitional
shale oil and gas resources.

EXPERIMENTS

Pyrolysis Experiments
In this study, water-saturated shale plunger samples were used
for the pyrolysis experiment performed in gold tube reactors
(Tang et al., 2005; Tian et al., 2012; Gai et al., 2015; Ko et al.,
2018). The main experimental procedures are as follows: small
shale plunger samples (30 mm in height × 8 mm in diameter)
were drilled from the inner part of a big shale core sample in
vertical stratification direction. After they were dried in an
oven at 105°C for 24 h, the shale plunger samples were
saturated with deionized water in a BH-1 pressurized
instrument (Cheng et al., 2019). Then, the water-saturate
shale plungers were loaded in gold tubes (70 mm length ×
9 mm inside diameter), and both sides of the gold tube were
filled with quartz sands to collect expelled oils. Next, the gold
tubes were separately loaded into pressure vessels in a high-
temperature high-pressure pyrolysis oven. The given
temperatures of this experiment were 350°C, 375°C, 395°C,
415°C, 435°C, and 460°C, respectively. During the experiment,
the pyrolysis instrument was heated at a rate of 20°C/h, and the
experimental pressure was maintained approximately 50 MPa
(±1 MPa).

TOC and Mineralogical Analysis
Shale samples were powdered to a grain size of less than
180 μm and were eluted by diluted hydrochloric acids to
remove the carbonates. After the shale powders were dried
in an oven, their TOC contents were analyzed by an Eario El
Cube Elemental Analyzer. The analytical errors of the
instrument is less than 0.1%. The mineralogical
compositions of shales were analyzed by a Bruker D8
Advance x-ray diffractometer. The measurements were
performed on shale grains less than 75 μm at 40 kV and
30 mA with Cu Kα radiation. The relative content of
minerals was semi-quantitatively calculated based on their
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peak areas and was corrected with Lorentz-Polarization
method (Chalmers and Bustin, 2008).

Measurement of Vitrinite Reflectance (Ro)
The Ro values of shale samples were measured by a 3Y-DMR
microphotometer equipped with a Leica microscope. The light
source of this instrument is a high-pressure mercury vapor lamp
with an excitationfilter of 420–490 nm, and an oil immersion objective
50/1.0 is used for the measurement. Before the measurements, the
instrument was calibrated by a standard yttrium aluminum garnet
sample (YAG-08–57). A total of 50 individual vitrinite particles was
measured for each shale sample, and the average value of these
measured Ro values was used in this study.

Collection and Pretreatment of Liquid
Hydrocarbons
After the pyrolysis experiment, shale plunger samples and quartz
in the gold tube were separated. The shale plunger samples were
crushed to powders less than 80 mesh, and then they were
extracted with dichloromethane to obtain the retained oils.
The collected quartz and gold tube were extracted together
with dichloromethane to obtain the expelled oils. Both the
retained and expelled oils were weighted by a Sartorius
electronic balance with an analytical precision of 0.01 mg. The
sum of the expelled and retained oils was the total generated oils.
The gross compositions of these oil samples were further
separated into four fractions, including saturates, aromatics,

FIGURE 1 | Schematic maps showing the location and stratum of the studied shale sample (modified after Cao et al., 2019 and Su et al., 2005).

TABLE 1 | Geological and geochemical data of the shale sample used for pyrolysis experiment in this study.

Sample Region Stratum Lithology TOC
(%)

Ro

(%)
Rock-eval Mineral compositions (%)

Tmax

(°C)
HI

(mg/
g

TOC)

OI
(mg/
g

TOC)

Quart Clay Pyrite Siderite Feldspar Anatase Dolomite

BLG14 Ordos
Basin

Lower
Permian
Shanxi
Formation

Black
shale

15.65 0.68 434 292 2 33.6 47.5 13.6 1.5 1.3 1.6 0.9
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resins, and asphaltenes, by a liquid chromatography on silica
columns (Tang et al., 2005).

RESULTS AND DISCUSSION

Geological and Geochemical
Characteristics of the Studied Shale
The shale sample used for the pyrolysis experiment was collected
from the marine-terrestrial transitional strata of the Lower

Permian Shanxi Formation in the northeast of the Ordos
Basin (Figure 1). It has a low maturity with a Ro value of
0.68% and a high TOC content of 15.65%. The kerogen type
of the shale belongs to type IIb based on the van Krevelen diagram
(van Krevelen, 1961), and its HI and OI values are 292 mg/g TOC
and 2 mg/g TOC, respectively. The minerals of this shale mainly
include clays and quartz, with contents of 47.5% and 33.6%,
respectively (Table 1).

Organic petrology analysis shows that this shale sample has
various macerals. It contains plenty of vitrinite and inertinite that

FIGURE 2 | Photomicrographs showing different macerals and organic sources of the studied marine-terrestrial transitional shale sample. (A, D) The exinite
(sporophore), lamalginite, and mineral-bituminous under reflected light and fluorescence, respectively; (B, E) the inertinite, lamalginite, and its debris under reflected light
and fluorescence, respectively; (C, F) the vitrinite and exinite (sporophore) under reflected light and fluorescence, respectively.

FIGURE 3 | Correlations of the Ro values with the experimental temperatures in this study.
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exhibit gray color under reflected light (Figure 2A–C), and it also
contains abundant exinite (sporophore) and lamalginite, which
exhibit dark and bright yellow colors, respectively, under
fluorescence excitation (Figure 2D–F). These characteristics
indicate that the organic matter of this shale came from both
terrigenous higher organisms and aquatic alga, and the
contribution of the former sources was greater than that of
latter sources.

Evolutions of Oil Generation and Expulsion
In this study, the Ro values of the artificially maturated shale
samples correspond well with experimental temperatures, and
they exhibit a significant positive relationship (Figure 3). With
the experimental temperature increasing from 350°C to 460°C,
the Ro value increases from 0.75% to 1.53% (Table 2). The
maturity range of artificially maturated shales covers from the
early oil generation stages to the wet gas stages.

The yields of the expelled oils (YEO), retained oils (YRO), and
total generated oils (YTO) are listed in Table 2, and the YEO, YRO,
and YTO exhibit different evolutions with the increasing maturity
(Figure 4A). The YEO increases from 1.07 mg/g rock to the
maximum yield of 9.49 mg/g rock with the Ro increasing from
0.75% to 1.25%. However, when the Ro > 1.25%, the YEO

gradually decreases to 7.79 mg/g rock as the Ro increases to
1.53% (Table 3 and Figure 4A). The YRO increases from

6.92 mg/g rock to the maximum yield of 13.72 mg/g rock with
the Ro increasing from 0.75% to 0.97%. However, when the Ro >
0.97%, the YRO gradually decreases to 5.36 mg/g rock as the Ro

increases to 1.53% (Table 3 and Figure 4A). The YTO increases
from 8.00 mg/g rock to the maximum yield of 20.53 mg/g rock
with the Ro increasing from 0.75% to 1.09%, which indicates that
the generation rates of oils are greater than their pyrolysis rates at
this stage. However, when the Ro > 1.09%, the YTO gradually
decreases to 13.15 mg/g rock as the Ro increases to 1.53%, which
indicates that the generation rates of oils are smaller than their
pyrolysis rates at this stage (Table 2 and Figure 4A). The main oil
generation and expulsion stages are generally defined in the range
of 30%–80% of the maximum oil yield (Sun et al., 2019).
According to this definition, the main stages of oil generation
and expulsion are 0.85%–1.15% and 0.70%–0.95%, respectively,
for the studied marine-terrestrial transitional shale sample. The
main stages of oil expulsion are later than those of oil generation
(Figure 4B).

Previous pyrolysis experiments performed on lacustrine
shales with type I or type II kerogen indicate that these
shales begin to generate oils when the Ro > 0.70%, and the
oil generation windows are in the Ro range of 0.75%–0.90%
(Sun et al., 2019). The differences in oil generation stages of
various shales are largely determined by their organic sources.
For example, the oil generation thresholds of terrestrial organic

TABLE 2 | Yields of the expelled oil, retained oil, and total oil for the studied marine-terrestrial transitional shale sample at different maturity stages.

Sample number Ro (%) Retained oil Expelled oil Total oil Percentage of
retained oil

(%)a

Percentage of
expelled oil

(%)b
(mg/g rock) (mg/g TOC) (mg/g rock) (mg/g TOC) (mg/g rock) (mg/g TOC)

BLG14–1 0.75 6.92 44.22 1.07 6.84 8.00 51.12 86.57 13.43
BLG14–2 0.88 11.30 72.20 2.84 18.15 14.14 90.35 79.89 20.11
BLG14–3 0.97 13.72 87.67 5.05 32.27 18.77 119.94 73.12 26.88
BLG14–4 1.09 13.67 87.35 6.86 43.83 20.53 131.18 66.60 33.40
BLG14–5 1.25 10.47 66.90 9.49 60.64 19.95 127.48 52.46 47.55
BLG14–6 1.53 5.36 34.25 7.79 49.78 13.15 84.03 40.78 59.22

aPercentage of retained oil (PRO): ratio of the retained oil yield to the total oil yield.
bPercentage of expelled oil (PEO): ratio of the expelled oil yield to the total oil yield.

FIGURE 4 | Evolutions of total oil, expelled oil, and retained oil yield (A) and their relative yields (B) for the studied shale sample at different maturity stages.
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matters, such as vitrinite and exinite, are generally at relative
low maturity stages with Ro values of 0.50%–0.55%, and the
main oil generation stages covered a wide maturity range with
Ro values of 0.55%–1.00% (Li et al., 2002; Shuai et al., 2009).
However, the oil generation threshold of aquatic alginates is
generally at a higher maturity stage with the Ro value of 0.70%,
and its main oil generation stage generally covers a shorter
maturity range with Ro values of 0.70%–0.90%. In contrast to
lacustrine shales, the studied marine-terrestrial transitional
shale is richer in terrestrial organic matter, which results in
an earlier oil generation threshold and a wider oil generation
window.

The relative percentages of expelled (PEO) and retained oils
(PRO) in total generated oils obviously vary at different maturity
stages (Figure 5). With the Ro increasing from 0.75 to 0.97%, the
PEO successively increases from 14% to 34%, while the PRO
progressively decreases from 86% to 67%. When the Ro values
<1.25%, the PRO is higher than the PRO; however, the PRO is lower
than the PRO when the Ro values >1.25% (Figure 5). Heavy liquid
hydrocarbons in the retained oils progressively cracked into light
liquid hydrocarbons and promoted oil expulsions during the high
maturity stages (Li et al., 2017). Shao et al. (2020) also reported
that the peak PEO value of Barnett lacustrine shales occurred in

the late wet gas stage with the Ro value of 1.75%. For the Shahejie
Formation lacustrine shales in the Bohaiwan Basin (Sun et al.,
2021), the shales with type I and IIa kerogen generally have higher
PEO values than the shales with type IIb and III kerogen
(Figure 5). Under similar maturity conditions, the studied
marine-terrestrial transitional shale has lower PEO values than
the lacustrine shales; however, its PEO values significantly increase
at high maturity stages, which indicates that oil expulsions are
enhanced at high maturity stages for the studied shale.

The evolution model of oil generation and expulsion of the
studied marine-terrestrial transitional shale is different from that
of lacustrine shales reported by previous studies. Compared with
the lacustrine shales, the marine-terrestrial transitional shales
have earlier oil generation thresholds and wider oil generation
windows. In addition, the PEO values are similar for the two types
of shales, while the PEO values of marine-terrestrial transitional
shales are significantly enhanced at high maturity stages.
However, it should be pointed out that further studies need to
be performed on more marine-terrestrial transitional shale
samples to verify the applications of this oil generation and
expulsion model under geological conditions.

Changes in Gross Compositions of the
Expelled and Retained Oils
The changes in gross compositions of the expelled and retained
oils can be approximately divided into three stages. At the early
stage with Ro < 0.97%, the gross compositions slightly changed
with the maturity for both expelled and retained oils (Figure 6),
which indicates that the fractionation effect caused by oil
generation and expulsion is weak at this stage. At the middle
stage with the Ro ranging from 0.97% to 1.25%, the light
compositions (saturates and aromatics) obviously enriched
while the heavy compositions (resins and asphaltenes)
significantly decreased for both expelled and retained oils
(Figure 6), because the kerogen generated more light
compositions at this maturity stage. The percentages of the
light compositions in expelled oils are significantly higher than
those in retained oils (Figure 6), because the light compositions
have low viscosity and tend to migrate (Pepper and Corvi, 1995).
Therefore, a significant fractionation occurred between the
expelled and retained oils at this maturity stage. At the late
stage with Ro > 1.25%, only a small number of light
compositions were generated from kerogen; meanwhile, part
of the retained and expelled oils cracked into gaseous

FIGURE 5 | Relative percentages of the expelled (PEO) and retained oils
(PRO) in total generated oils at different maturity stages for the studied marine-
terrestrial transitional shale. The data of type I and Ⅱb lacustrine shales are cited
from Sun et al. (2021).

TABLE 3 | Gross compositions of the expelled and retained oils at different maturity stages.

Sample number Ro (%) Expelled oil (%) Retained oil (%)

Saturates Aromatics Resins Asphaltenes Saturates Aromatics Resins Asphaltenes

BLG14-1 0.75 7.27 18.18 5.45 69.09 1.93 8.82 11.30 77.96
BLG14-2 0.88 6.33 25.32 13.90 54.43 2.45 7.34 20.00 70.17
BLG14-3 0.97 9.79 20.28 20.30 49.65 3.87 9.61 22.40 64.11
BLG14-4 1.09 15.85 16.67 30.10 37.40 7.17 11.03 22.00 59.85
BLG14-5 1.25 18.75 17.75 31.80 31.75 14.30 16.93 27.80 40.94
BLG14-6 1.53 19.59 26.32 32.20 21.93 20.17 17.85 35.50 26.50
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hydrocarbons. Therefore, with the increasing maturity, the
differences in gross compositions between the two types of oils
gradually decrease.

It is noteworthy that heavy compositions, especially the
asphaltenes, are dominated in both retained and expelled oils
during the oil generation and expulsion processes. At the
maturity stages with the Ro range from 0.75% to 0.97%, the
percentages of asphaltene in the expelled and retained oils
account for 50%–69% and 63%–77%, respectively. At the high
maturity stage with Ro of 1.53%, the percentages of asphaltene in
the two types of oils account for 54% and 62%, respectively
(Table 3). The gross compositions of expelled and retained oils
significantly differ from those of lacustrine shales. At the stages
with Ro values of 0.71%–1.41%, the light compositions account
for 50%–69% and 63%–77% for the Eocene Shahejie lacustrine
shales in the Bohaiwan Basin, respectively; moreover, with the
increasing maturity, the resin content decreases while the
asphaltene content increases for the lacustrine shales (Sun
et al., 2021). Asphaltenes are dominated in the retained and
expelled oils of marine-terrestrial transitional shales because of
their abundant terrestrial organic sources.

Mechanisms of Oil Generation and
Expulsion
Ungerer et al. (1990) proposed that hydrocarbon generations
from kerogen pyrolysis were mainly through two approaches,
i.e., the depolymerization and functional group desorption. The
former refers to the idea that kerogen initially cracks to
intermediate products (resin and asphaltene), and then these
intermediate products are further decomposed to oils and gases.
The latter refers to the notion that functional groups initially
bonded in kerogen skeletons can be directly liberated from the
kerogen and form hydrocarbons. In this study, the YTO exhibits
obvious positive correlations with the resin yield (YR) and its
percentage during the main oil generation and expulsion stages

(Figures 7A,B). The YTO is positively correlated with the
asphaltenes yield (YA) and its percentage when the Ro <
1.09%, while it shows no obvious correlations with the YA and
its percentage when Ro > 1.09% (Figures 7C,D). Combined with
the gross compositions and their evolutions of the expelled and
retained oils (Figure 6), this study indicates that the organic
matter of this studied marine-terrestrial transitional shale first
depolymerized to asphaltenes at the early stages of oil generation,
and then the transitional asphaltenes were further cracked into
hydrocarbons at the late stages of oil generation, while the organic
matter of lacustrine shales generates hydrocarbons mainly via
transitional resins (Sun et al., 2021). Therefore, shales with
different sedimentary facies are diverse in oil generation
mechanism.

The oil generation and expulsion of shales are mainly
controlled by their geochemical properties, including TOC
content, kerogen type, maturity, and mineral compositions
(Pepper and Corvi, 1995; Chen et al., 2014; Liang et al., 2015),
and by their geological conditions, including geological
temperature and pressure, water-bearing characteristic, strata
thickness, and its boundary condition (Lewan 1997; Chen and
Cha, 2005). Previous studies indicated that the pore systems of
shales were fully adsorbed and filled by generated oils before oil
expulsions, and kerogen swelling effects were the controlling
factor on the oil retention in shale reservoirs (Li et al., 2016;
Han et al., 2017; Ziegs et al., 2017; Shao et al., 2018). This study
further shows that the marine-terrestrial transitional shale
exhibits obvious oil expulsion under experimental conditions.
Under similar maturity and kerogen-type conditions, marine-
terrestrial transitional shales have similar PEO values with
lacustrine shales. The high PEO values of the studied marine-
terrestrial transitional shale can be illustrated by the following
factors.

The kerogen swelling effect is closely related to kerogen types,
and it decreases in the order of type I, type IIa, and type IIb
kerogen. For example, the swelling amounts of type I, IIa, and IIb

FIGURE 6 |Changes in the gross compositions of the expelled and retained oils with increasing maturity for the studied marine-terrestrial transitional shale sample.
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kerogen, with a lowmaturity of 0.5%, are 142 mg/g TOC, 119 mg/
g TOC, and 95 mg/g TOC, respectively (Tian et al., 2014).
According to the intercept of the linear correlation equations
in Figure 8, this study further estimated that the oil expulsion
threshold of the studied marine-terrestrial transitional shale

corresponded to the YTO value of 6.4 mg/g rock and the YRO

value of 5.9 mg/g rock. The maximum YRO value of this shale is
88 mg/g TOC (Figure 4) and is much lower than the maximum
YRO values of the type I and type IIa lacustrine shales, with values
of 300–350 mg/g TOC and 150–200 mg/g TOC, respectively (Sun

FIGURE 7 | Correlations of the total oil yield (YTO) with the resin (YR) and asphaltene yields (YA) as well as their percentages in total oils at different maturity stages.

FIGURE 8 |Correlations of the expelled oil contents with the total generated oil contents (A) and the retained oil contents (B) for the studied shale sample during the
main oil generation and expulsion stages with the Ro value of 0.75%–1.09%.
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et al., 2021). Although some retained oils are stored in inorganic-
hosted nanopores of minerals, most of the retained oils are
associated with the kerogen swelling effect (Li et al., 2016;
Zhao et al., 2019). The studied marine-terrestrial transitional
shale with type IIb kerogen has a low capacity of retaining oils
resulting from its weak kerogen swelling effect, which may be the
main mechanism for its high oil expulsion efficiency.

Under geological conditions, shale reservoirs generally contain
some pore waters that significantly influence the accumulation
and enrichment of shale oil and gas resources (Lewan 1997;
Burnham 1998; Carr et al., 2009; Lewan and Roy, 2011; Cheng
et al., 2018). The pore waters not only take up the pore spaces
available for oil storage, but also occupy pore surfaces and change
the interfaces between hydrocarbons and pore walls, which
significantly prompts oil migrations and expulsions (Korb
et al., 2014; Ma et al., 2015; Cheng et al., 2017; Zolfaghari
et al., 2017). Moreover, pore waters may also cause an
overpressure in shale pore systems, and thus enhance the oil
expulsion efficiency (Zhang et al., 2011; Huang et al., 2017). In
addition, since the oil expulsion efficiency is positively correlated
with the TOC content (Zhang et al., 2006; Sun et al., 2021), the
high TOC content of the studied shale sample may also raise its
oil expulsion efficiency.

At present, the oil generation and expulsion model of marine-
terrestrial transitional shale remains unclear. The results of this
study show that oil expulsions of marine-terrestrial transitional
shales with high TOC contents may occur under geological
conditions, and the oil expulsion efficiency and the
geochemical properties of expelled and retained oils are largely
determined by the organic sources and maturities of shales. The
new understanding on the oil generation and expulsion model in
this study may have a certain theoretical significance for the
exploration and development of marine-terrestrial transitional
shale resources. However, the oil generation and expulsion model
of marine-terrestrial transitional shales with type III kerogen
needs to be investigated in further studies.

CONCLUSION

In this study, a pyrolysis experiment was performed on water-
saturated marine-terrestrial transitional shale plunger samples, to
simulate the evolutions of oil generation and expulsion. The main
conclusions are as follows:

1) In contrast to marine and lacustrine shales, marine-terrestrial
transitional shales have wider maturity ranges of oil generation
and expulsion, and the main stages of oil expulsion are later
than those of oil generation, with corresponding Ro values of
0.85%–1.15% and 0.70%–0.95%, respectively.

2) The expelled and retained oils of marine-terrestrial
transitional shales exhibit obvious fractionations in
compositions during the oil generation and expulsion
process. However, the two types of oils are dominated by
heavy compositions, which significantly differs from the
generated oils from marine and lacustrine shales.

3) The oil generation and expulsion evolutions of marine-
terrestrial transitional shales are largely determined by their
organic sources of terrigenous higher organisms. The kerogen
of these shales initially depolymerized to transitional
asphaltenes, which further cracked into hydrocarbons, and
the weak swelling effects of the kerogen promoted oil
expulsions.
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The Occurrence of Bedding-Parallel
Fibrous Calcite Veins in Permian
Siliciclastic and Carbonate Rocks in
Central Thailand
Piyaphong Chenrai1,2, Thitiphan Assawincharoenkij 1*, John Warren2,
Sannaporn Sa-nguankaew2, Sriamara Meepring1, Kasira Laitrakull 3 and Ian Cartwright 4

1Applied Mineral and Petrology Special Task Force for Activating Research (AMP STAR), Department of Geology, Faculty of
Science, Chulalongkorn University, Bangkok, Thailand, 2M.Sc. Program in Petroleum Geoscience, Faculty of Science,
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Bedding-parallel fibrous calcite veins crop out at two Permian carbonate localities in the
Phetchabun area, central Thailand, within the Nam Duk and Khao Khwang Formations.
Samples are studied to determine their petrographic, geochemical and isotopic character,
depositional and diagenetic associations and controls on the formation of fibrous calcite
across the region. Biomarker and non-biomarker parameters are used to interpret organic
matter sources in the vein-hosting units, the depositional environment and levels of source
rock maturation in order to evaluate source rock potential in the two Formations. Carbon
and oxygen isotope values of the veins and the host are determined to discuss the source
of carbonates and diagenetic conditions. The petroleum assessment from the Khao
Khwang and Nam Duk Formations suggests that both Formations are a petroleum
potential source rock with type II/III kerogen deposited in an estuarine environment or
a shallowmarine environment and a slope-to-basin marine environment or an open marine
environment, respectively. The bedding-parallel fibrous calcite veins from the Khao
Khwang and Nam Duk Formations are divided into two types: 1) beef and, 2) cone-in-
cone veins. The carbon and oxygen isotope compositions from the fibrous calcite veins
suggest that the calcite veins could be precipitated from a carbon source generated in the
microbial methanogenic zone. The results in this study provide a better understanding of
the interrelationship between the bedding-parallel fibrous calcite veins and petroleum
source rock potential.
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1 INTRODUCTION

Bedding-parallel fibrous calcite veins are found in sedimentary rocks from Cambrian to Palaeogene
strata in many locations worldwide (Cobbold and Rodrigues, 2007; Cobbold et al., 2013; Heindel
et al., 2015; Kershaw and Guo, 2016; Ma et al., 2016; Cabral et al., 2019). Rocks hosting the veins are
typically mixed siliciclastic–carbonate rocks, such as calcareous mudstones, argillaceous limestones
and lime muds consistently rich in organic matter with low permeabilities (Franks, 1969; Cobbold
and Rodrigues, 2007; Rodrigues et al., 2009; Cobbold et al., 2013; Heindel et al., 2015; Meng et al.,
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2017; Tribovillard et al., 2018). Such fibrous calcite veins are
globally identified across organic-entraining sedimentary basins,
and are used in petroleum exploration as monitors of
hydrocarbon generation (e.g., Zanella, and Cobbold, 2012;
Meng et al., 2017; Luan et al., 2019; Zhang et al., 2021).
Despite many studies of these veins, their origin is still
debated; many studies infer the veins relate to overpressuring
at times of hydrocarbon generation (e.g., Warren et al., 1998;
Zhang et al., 2016; Meng et al., 2017; Luan et al., 2019). Other
studies suggest the veins precipitate in unconsolidated sediments
at shallow depth beneath the seafloor during times of increased
concentrations of carbon dioxide in seawater and the atmosphere
(Greene et al., 2012; Heindel et al., 2015; Kershaw and Guo, 2016).
Times of elevated carbon dioxide concentration are generally
associated with mass extinction events, including end-Permian
(P-T) boundary and the end-Triassic (T-J) boundary, and are tied
to large scale volcanic eruptions (e.g., Greene et al., 2012; Kershaw
and Guo, 2016).

The studied fibrous calcite veins are divided into two
endmembers; 1) beef and, 2) cone-in-cone veins (Cobbold
et al., 2013). Calcite beef vein contains subvertical fibrous
calcite crystals perpendicular to bedding in the host rock, with
a smooth boundary between the host rock and the vein. Cone-in-
cone veins generally consist of conical bundles of calcite fibrous
representing a crystal growth character radiating from the
bedding plane of the host rock. The mechanism of the calcite
vein development is interpreted open-fracture fill into
accommodation space created once pore pressure exceeds
lithostatic pressure and hydrofracturing occurs (Zanella and
Cobbold, 2012; Cobbold et al., 2013). The overpressure
process can be driven by sediment degassing, especially in
organic-rich rocks with low permeability, or during
hydrocarbon generation (Osborne and Swarbrick, 1997;
Simms, 2004; Zhang et al., 2016).

Bedding-parallel fibrous calcite veins have been found (this
study) within petroleum carbonate source rocks in Thailand. In
addition, the carbonate rocks hosted the fibrous calcite veins are
believed to be the main petroleum source rock that contributes
hydrocarbons to commercial gas fields in the Khorat Plateau
located in northeast Thailand (Racey, 2011). These carbonate
source rocks are Permian rocks having hydrocarbon peak
generation in Late Triassic (Kozar et al., 1992). Thus, the
fibrous calcite veins from this study could contribute to the
ongoing discussion on the forming mechanism of fibrous
calcite veins and their use as potential indicators of
hydrocarbon expulsion in sedimentary basins. Carbon and
oxygen isotope signatures of calcite veins offer valuable
information as to the nature of changing fluid activity and
geochemistry in sedimentary basins during diagenesis. Recent
publications of isotope studies of fibrous calcite crystals in
sedimentary basins have quantified formation mechanisms and
the nature of parent waters (e.g., Demeny et al., 2010; Yu et al.,
2015; Hooker et al., 2019; Luan et al., 2019).

This paper is the first to document and quantify bedding-
parallel fibrous calcite veins in Thailand. It is part of our groups
ongoing geochemical and isotopic documentation of Permian
carbonate and siliciclastic rocks in Thailand. The aim of this study

is to describe characteristics of the calcite fibrous veins and to
assess the petroleum source rock potential of the hosting fine-
grained Permian carbonates. Results of our study are relevant to
petroleum exploration in the region and worldwide.

2 GEOLOGICAL BACKGROUND

Permian carbonates in central Thailand are exposed along the
western edge of the Khorat Plateau (Figure 1). Permian rocks in
this region consist of three major elements: the Khao Khwang
Platform, the Pha Nok Khao Platform and the Nam Duk Basin
located in the west, the east and middle of the Loei-Phetchabun
Fold Belt, respectively (Wieldchowsky and Young, 1985;
Figure 1A). Geologically, the Permian carbonate rocks are
interpreted as a suite of Permian rift basins on the southern
margin of the Indochina terrane, controlled by extensional faults
(Booth and Sattayarak, 2011; Morley et al., 2013). The Indochina
terrane drifted away from the northern margin of Gondwana by
the Early-Middle Permian (Yan et al., 2018). Both Permian
carbonate platforms, Khao Khwang and Pha Nok Khao, are
extensive, distally-steepened ramps, composed of varying
proportions of carbonates and lesser siliciclastics. Based on
outcrop data, in what is a structurally complex orogenic
region, a simplified regional model is made up of a
siliciclastic-rich Nam Duk basin lies adjacent to and separates
two large carbonate-dominant platforms (Wieldchowsky and
Young, 1985; Figure 1A). To the south, the Nam Duk Basin
also forms outer western boundary of the Indochina terrane. Our
study focuses on the carbonates and siliciclastic rocks of the Khao
Khwang and Nam Duk Formations that crop out in this area
(Udchachon et al., 2014).

The Khao Khwang Formation was deposited in a shallow-
marine carbonate platform characterized by mixing of carbonate
rocks (massive to medium-to-thick, well-bedded to muddy
limestones) mixed with siliciclastic sediments (Nakornsri,
1981; Ridd et al., 2011). The age of the Khao Khwang
Formation is late Early Permian (Kungurian) to early Middle
Permian (Guadalupian) (Metcalfe and Sone, 2008; Chitnarin
et al., 2012). To the east, the somewhat deeper water Nam
Duk Formation is dominated by siliciclastic and pelagic rocks
of Early to Late Permian age, deposited in a slope-to-basin marine
environment (Booth and Sattayarak, 2011; Ueno and
Charoentitirat, 2011). The Nam Duk Formation comprises
cherts, tuffs, shales, sandstones and calci-turbidites and
limestone-dominated mass transport deposits (Helmcke and
Kraikhong, 1982; Chonglakmani, 2005; Vattanasak et al.,
2020). At the end of the Guadalupian across the Khao
Khwang Platform, the limestone sequence is truncated by two
major erosional surfaces which were responses to global sea-level
lowstands (Udchachon et al., 2014). Tectonic uplift in parts of the
Loei-Phetchabun Fold Belt began around the
Guadalupian–Lopingian boundary and continued up to the
Triassic (e.g., Bunopas, 1983; Chonglakmani and Sattayarak,
1984; Chonglakmani and Helmcke, 2001). Permian strata are
now separated from overlying Mesozoic sediments by the
Indosinian I unconformity; moreover, most Paleozoic strata in
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the region were widely deformed during this same Indosinian I
event (Ridd et al., 2011).

Potential source rocks in these Formations are both marine
shales and micritic limestones and are known to be regionally
extensive throughout the various Permian carbonate platforms
(Racey, 2011; Chenrai and Fuengfu, 2019). Although Permian
source rocks, based on limited well and outcrop data, are
interpreted as thermally overmature with peak generation in
Late Triassic (Kozar et al., 1992), regionally they are still
attractive, with potential for further exploration in central and
northern Thailand.

3 MATERIALS AND METHODS

3.1 Field Sampling and Sample Preparation
Field study and rock sampling are performed in two study areas in
Phetchabun Province (Figure 1B). In total, 12 rock samples were
selected for detailed study from a range of samples from the Khao
Kwang and Nam Duk Formations. The 12 samples contained
fibrous calcite veins suitable for petrography and geochemical
analyses. Generally, bedding-parallel fibrous calcite veins
documented in this study occur within calcareous mudstones
and argillaceous limestones. Samples referred to as “outcrop
samples” in this paper are not taken directly from the surface.
Instead, samples were collected by digging some 0.10 and 0.30 m

into the outcrop to ensure that visibly unweathered material was
obtained. Any remaining weathered parts of the samples were
removed before proceeding with detailed analysis. Samples were
then cleaned with distilled water, acetone, and dichloromethane
to eliminating any remaining surface contamination. All washed
samples for organic geochemical analysis were crushed into small
chips in a hammer and jaw-crusher and then into powder by dish
mill grinder. Powder samples were then put into pre-washed
glassware for further extractable organic matter and gas
chromatography–mass spectrometric determinations.
Petrographic samples were cut into rock slabs, and thin
sections were made to observe fibrous calcite characteristics.
Samples for isotope analysis were extracted from vein regions
in rock slabs by using a dental technician’s drill in traverses that
extracted a sample volume every 5 mm along traverses than ran
from the host rock across a vein, or stacked veins, and back into
host rock on the other side of the vein.

3.2 Gas Chromatography-Mass
Spectrometry
Gas chromatography-mass spectrometry (GC-MS) is an
instrumental technique for identifying the molecular mass of
organic compounds by their ionized compositions. In this study,
GC-MS was performed at the Scientific and Technological
Research Equipment Centre Chulalongkorn University to

FIGURE 1 | (A) distribution of the Permian rocks, the Khao Khwang and Pha Nok Khao Platforms, separated by the Nam Duk Basin in the Loei-Phetchabun Fold
Belt, central Thailand (modified from Ueno and Charoentitirat, 2011); (B) sample locations (Nam Duk and Khao Khwang sites) in Phetchabun Province, Thailand; (C)
sample collection at Khao Khwang Formation; (D) sample collection at Nam Duk Formation.
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analyze biomarker and non-biomarker compounds from
bitumen extracts. The saturated hydrocarbon fraction from the
rock samples was dissolved in n-pentane and analyzed with an
Agilent 7000C GC/MS (triple quadrupole) machine, with an ion
source temperature of 250°C and ionizing energy of 70 eV. The
column used in this study is a 30 m long DB-5 (5% Phenyl Methyl
Siloxane) with a 250 µm inner diameter and 0.25 µm film
thickness. Starting temperature is 80°C and is held for 3 min.
The column temperature is heated from 80°C to 310°C at 4°C/
minutes and held for 30 min at 310°C. The total analysis time is
90 min. Chromatograms were acquired in scanning: 35–700
molecular weight and selected-ion-monitored (SIM) for
compound identification and integration. The distribution of
organic compounds in the bitumen extracts was monitored by
fragmentograms of n-alkane (m/z 85) and steranes (m/z 217).
Details of the analytical procedure used are summarized in
Moustafa and Morsi (2012).

3.2.1 Long-Chain Saturated Hydrocarbon (n-Alkane)
Distribution
Chromatogram distribution of n-alkane and isoprenoids from the
saturated hydrocarbon extraction displays aliphatic fractions of
all analyzed samples. The distribution of n-alkanes can be used to
indicate organic matter source. Short chain n-alkanes (lower than
C20) are characteristic of microbial input. In addition, medium
chain n-alkanes (C11–C20) are considered to indicate algal and/or
bacterial origin for the organic materials. Long chain n-alkanes
(more than C20), high boiling point n-alkanes, are commonly
attributed to the contribution of terrestrial waxes, especially in the
C25–C33 range (Peters and Moldowan, 1993). In this study, the
Pr/Ph, Pr/n-C17 and Ph/n-C18 outputs are also used for
determining the source of organic matter and conditions in
the depositional environment (e.g., Shanmugam, 1985; Wang
et al., 2010; Al-Khafaji et al., 2020). Biomarker parameters used in
this study are presented as follows:

1) Pristane (C19H40) and phytane (C20H42) are regular
isoprenoid hydrocarbons, which both were derived from
the phytol side chain of chlorophyll molecule (Miles, 1989).
Pristane and phytane ratio (Pr/Ph) is commonly used for
determining redox conditions and organic matter inputs in
various depositional environments during sedimentation and
diagenesis (Powell, 1988; Chandra et al., 1994; Large and Gize,
1996). High Pr/Ph values (>3.0) indicates oxic conditions
often associated with terrigenous organic matter input, while
low values (<1.0) typify anoxic conditions, commonly
hypersaline or carbonate environments and values between
1.0 and 3.0 suggest intermediate conditions (sub-oxic
conditions) (Amane and Hideki, 1997; Peters et al., 2005).
In addition, Pr/Ph ratio can be used to indicate lithology from
analyzed samples, for instance, marine carbonates (Pr/Ph < 1),
marine shales (Pr/Ph 1–3), and non-marine shales/coals (Pr/
Ph > 3) (Hughes et al., 1995).

2) The combination of acyclic isoprenoids compared to
n-alkanes (Pr/n-C17 and Ph/n-C18) provides valuable
information about organic matter source, biodegradation,
maturation and depositional environment. In general,

isoprenoids are more resistant to biodegradation than
n-alkanes, and are used to determine any influence from
early microbial degradation (Landais, 1996). Moreover, the
Ph/n-C17 ratio tends to be less than 0.5 in environments with
abundant aerobic bacterial activity, whereas values of more
than 1 tend to indicate low levels of aerobic bacterial activity
(Lijmbach, 1975).

3) Sterane biomarker measures indicate carbon number
distribution of sterols that can be used to interpret organic
matter source and depositional environment by plotting
regular sterane compositions (C27, C28 and C29) in a
tertiary diagram (Huang and Meinschein, 1979; Moldowan
et al., 1985; Shanmugam 1985). The domination of C27

steranes represents a marine-influenced system and marine
plankton, C28 sterane predominance suggests an organic
matter deposited in lacustrine facies, and the influence of
C29 sterane suggests a terrestrial environment as higher plant
input and a swamp deposit environment (Peters and
Moldowan, 1993).

3.3 Carbon and Oxygen Stable Isotope
Analysis
Stable isotopes of δ13C and δ18O of the veins and host rock
samples are measured by utilizing techniques outlined in
Allègre (2008) after extracting powder samples using a
dental technician’s drill. The stable isotopes were carried
out at Monash University, Australia. The purpose of this
study is to better understand fluid carbon sources for the
fibrous calcite veins and fluid evolution during different
burial stages, tied to calcite precipitation. The carbon
sources for the fibrous calcite vein in organic-rich rocks
come from inorganic carbon in the host sediment and
organic carbon from organic matter (both depositional and
catagenic). The inorganic carbon source is expected to have
δ13C values near the seawater δ13C value through time,
whereas the organic carbon source is significantly depleted
in the host rock by biological processes (Luan et al., 2019).
Therefore, if no external fluids contributed to the host rock,
especially within low permeability host rocks, the fibrous
calcite vein is expected to have bulk isotopic compositions
close to the host rock. All analyses are reported in per mill (‰)
relative to the Vienna-PeeDee Belemnite (V-PDB) standard.

4 RESULTS

4.1 Bedding Parallel Fibrous Character
The dominant lithology of samples from the Khao Khwang
Formation is argillaceous limestone. In general, the
succession in the study area comprises limestone
(approximately 1–50 cm) interbedded with calcareous
mudstone to argillaceous limestone (approximately
1–10 cm) (Figures 2A,B). In contrast, the rock samples
from the Nam Duk Formation are calcareous mudstones
interbedded with sandstones (Figures 2C,D). Bedding-
parallel fibrous calcite veins are around 1–7 cm from
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exposed bedding plane surfaces in their host rock outcrops
(Figures 2E,F) and oriented approximately parallel to the
inferred bedding planes in both Khao Khwang and Nam Duk
Formations (Figures 2E,F).

4.1.1 Khao Khwang Formation
Both types of the fibrous calcite vein (beef and cone-in-cone) are
observed in this Formation, but cone-in-cone veins tend to
dominate. Most fibrous calcite crystals commonly entrain solid
inclusions composed of variable proportions of insoluble mud
components, organic matter, and pyrite (Figure 3A). In some
samples, cone-in-cone veins and granulars grade into beef veins
at the base of the cone interval (Figures 3A,B). Generally, solid
(host-mud) inclusions outline sinusoidal patterns within the
fibrous calcite of the cone-in-cone vein intervals (Figure 3C).
In contrasts, there are few to no solid inclusions in the beef veins
(Figure 3D). Accompanying pressure solution features are seen
in the host rock matrix in Khao Khwang samples, especially
stylolites and microstylolite (Figure 3E). Framboidal pyrite
ranging from 5.7 to 65 µm is common in most recrystallized
host rock (Figure 3F).

4.1.2 Nam Duk Formation
In contrast to the Khao Khwang samples, fibrous calcites in the
NamDuk Formation are mostly in beef veins, with sharp contacts
with the adjacent the host rock surfaces (Figure 4A). A median
suture line is observed in the Nam Duk vein samples indicating
the growth direction of the fibrous calcites (Figure 4B). The
fibrous calcite crystals have widths around 0.2–1.0 cm, with
twinning (Figure 4C). Solid inclusions are indistinctive to
absent in the samples from this Formation. When present they
are mostly small amounts of insoluble clay minerals, organic
matter and pyrite. In addition, irregular quartz vein crystals are
found in the calcite veins and in the siliciclastic rock matrix of this
Formation (Figure 4C). Shear deformation is seen in sand grains
floating in a clay-dominated matrix (Figure 4D). Pyrite is also
present within the host rocks in various forms, including
euhedral, framboidal, and aggregate framboid morphologies
ranging from 0.1 to 0.5 mm.

4.2 Molecular Geochemistry
The quality of TOC and pyrolysis data as published in previous
studies, using standard petroleum industry methodologies, is

FIGURE 2 | (A),(B) the fibrous calcite veins of the Khao Khwang Formation; (C),(D) the fibrous calcite veins of the Nam Duk Formation; (E),(F) polished slab of
bedding-parallel fibrous calcite veins from the Khao Khwang Formation (E) and the Nam Duk Formation (F).
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compromised, likely due to strong maturation (e.g., Chenrai and
Fuengfu, 2019). Accordingly, in this study, organic matter source
and the depositional conditions are determined using alternative
tools such as non-biomarker and biomarker parameters.
Molecular geochemical results and biomarker ratios from
samples measured in this study are summarized in Table 1.

4.2.1 n-Alkanes Distribution
Gas chromatograms of saturated hydrocarbon fractions from
the analyzed samples are shown in Figure 5 and display a full
suite of saturated hydrocarbons including C8–C35 n-alkanes,
isoprenoids, pristane (Pr) and phytane (Ph). The n-alkane
distribution from the two Formations suggests that the

FIGURE 3 | Photomicrographs of the Khao Khwang Formation. (A) Solid inclusions in the fibrous calcite vein and a change from equant calcite to fibrous calcite; (B)
a change from cone-in-cone to beef vein textures; (C) beef veins in the Khao Khwang samples; (D) cone-in-cone veins are commonly found in the Khao Khwang samples
and are characterized by a nested cone geometry; (E) microstylolite; and (F) framboidal pyrite is common in the host rock matrix.

FIGURE 4 | Photomicrographs of the Nam Duk Formation. (A) Beef veins typify the Nam Duk samples; (B) a change from the host rock to beef vein with a median
suture line; (C) calcite twining in beef vein associated with quartz crystals; (D) sand grains floating in the host rock matrix.
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organic materials are derived from different sources. A
predominance of medium to long molecular weight
compounds (nC20–nC30) in the Khao Khwang samples
suggest a mixed contribution from terrigenous and marine
organic matter (Figure 5A). Nam Duk samples exhibit a
predominance of short molecular weight compounds
(nC15–nC18) suggesting marine organism inputs
(Figure 5B; Tissot et al., 1978). Pr/Ph ratios (less than 3)
also confirm that samples from both Formations were
deposited in a marine environment (Table 1).

4.2.2 Pristane (Pr)/n-C17 and Phytane (Ph)/n-C18

A cross-plot diagram between Pr/n-C17 and Ph/n-C18 shows that the
Khao Khwang and Nam Duk samples are dominated by a
combination of terrigenous kerogen type III and marine kerogen
type II (Figure 6). These plots also suggest both Formations were
deposited in sub-oxic to oxic condition and that the Nam Duk
samples are more mature than the Khao Khwang samples. Pristane
and phytane concentrations of both Formations are typically lower

TABLE 1 | The molecular geochemical results and biomarker ratios of the Khao
Khwang (KK) and Nam Duk (ND) samples. C27, C28 and C29 are regular
sterane compositions converted to a percentage.

Sample Pr/Ph Pr/n-C17 Ph/n-C18 C27 (%) C28 (%) C29 (%)

KK-1 1.55 0.48 0.34 38.57 25.68 35.75
KK-2 1.29 0.58 0.16 37.95 30.86 31.19
KK-3 0.94 0.57 0.17 37.89 18.68 43.43
KK-4 0.32 0.25 0.31 28.13 27.74 44.13
KK-5 0.38 0.23 0.20 33.03 29.50 37.47
KK-6 0.47 0.21 0.32 30.61 27.15 42.24
ND-1 0.84 0.22 0.13 55.40 17.93 26.67
ND-2 1.20 0.32 0.14 53.29 14.21 32.50
ND-3 1.58 0.38 0.14 51.85 21.95 26.20
ND-4 1.04 0.14 0.14 54.36 18.46 27.18
ND-5 0.96 0.06 0.04 53.68 18.69 27.62
ND-6 1.22 0.15 0.09 48.87 18.80 32.33

KK average 0.83 0.39 0.25 34.36 26.60 39.04

ND average 1.14 0.22 0.12 52.91 18.34 28.75

FIGURE 5 | The examples of mass chromatograms showing n-alkane distributions for (A) the Khao Khwang Formation (KK-4, KK-5, KK-6) and (B) the Nam Duk
Formation (ND-1, ND-2, ND-3).
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than n-C17 and n-C18, respectively. The Pr/n-C17 ratios of the Khao
Khwang samples range from 0.2 to 0.6, and from 0.1 to 0.9 for the
NamDuk samples (Table 1). Additionally, the Ph/n-C18 ratios of the
KhaoKhwang samples range from 0.2 to 0.3, and from 0.04 to 0.1 for
the Nam Duk samples (Table 1).

4.2.3 Steranes and Terpanes
The relative abundance of C27, C28 and C29 steranes from this
study was converted to a percentage and plotted in a ternary
diagram (Table 1; Figure 7). The average abundances of C27, C28

and C29 regular steranes of the Khao Khwang samples are 34.36,

FIGURE 6 | Plot of pristane/n-C17 (Pr/n-C17) versus phytane/n-C18 (Ph/n-C18) for the Khao Khwang (KK) and Nam Duk (ND) Formations.

FIGURE 7 | Ternary diagram of relative abundance of C27, C28 and C29 regular steranes shows organic matter source and depositional environment of the samples
from the Khao Khwang (KK) and Nam Duk (ND) Formations.
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26.60 and 39.04%; and 52.91, 18.34 and 28.75% for the Nam Duk
samples (Table 1). The regular steranes suggest that the organic
matter came from a marine environment with elevated C27 and
C29, and were deposited in estuarine (or shallow marine) to open
marine settings. This interpretation is also supported by Pr/n-C17

and Ph/n-C18 ratios (Figure 6).

4.3 Carbon and Oxygen Stable Isotopes
The results of stable carbon and oxygen isotope analyses of the
samples from both Formations are summarized in Table 2 and

plotted in Figure 8. The δ18O values of the fibrous calcite veins
and host rock matrices of the Nam Duk samples are more
depleted than the Khao Khwang samples. The fibrous calcite
veins from the Nam Duk samples also show higher values of δ13C
compared to the Khao Khwang samples, indicating overall
heavier carbon isotope compositions. The carbon and oxygen
isotope compositions of the Khao Khwang andNamDuk samples
are plotted along with the sample profile in Figure 9 and
Figure 10, respectively. The carbon and oxygen isotope
compositions of the fibrous calcite veins are generally quite
similar to those in the host rock matrix, especially within the
Khao Khwang samples (Figures 9, 10). The carbon isotope
compositions of the fibrous calcite vein are slightly more
elevated than in the host rock matrix, presumably reflecting
incorporation of organic carbon into vein cement.

4.3.1 Khao Khwang Formation
The δ13C values of the fibrous calcite veins range from +2.77 to
+3.15‰ with an average value of +2.94‰. The δ13C values of the
host rock matrix ranges from +2.20 to +2.78‰ with an average
value of +2.57‰. The δ18O values of the fibrous calcite veins
range from −9.96 to −11.09‰ with an average value of −10.55‰
and between −10.06 and −11.83‰ in the matrix with an average
value of −10.59‰. Accordingly, the δ13C and δ18O values of the
fibrous calcite are slightly different from the matrix.

4.3.2 Nam Duk Formation
The δ13C values of the fibrous calcite vein range from +3.13 to
+4.36‰ with an average value of +3.85‰. In the host rock
matrix, the δ13C values range from +1.67 to +2.69‰ with an
average value of +2.17‰. The δ18O values of the fibrous calcite
vein are between −11.19 and −12.42‰ with an average value of
−11.74‰ and are between −12.53 and −14.88‰ in the host rock
matrix with an average value of −13.26‰. The δ18O values from
the host rock matrix are more depleted than from the fibrous

TABLE 2 | The carbon and oxygen isotope compositions of the fibrous calcite vein
and host rock matrix of the Khao Khwang (KK-5) and Nam Duk (ND-1)
samples.

δ18O PDB
(‰)

δ13C PDB
(‰)

Sample δ18O PDB
(‰)

δ13C PDB
(‰)

Sample

KK-5 ND-1

Vein −10.65 2.87 Vein −12.42 3.75
Vein −11.09 2.77 Vein −11.45 4.15
Vein −10.36 2.96 Vein −11.19 4.36
Vein −10.56 2.97 Vein −11.91 3.13
Vein −10.67 2.96 Matrix −12.53 2.69
Matrix −10.20 2.69 Matrix −13.79 2.20
Matrix −10.38 2.78 Matrix −13.49 2.45
Matrix −10.48 2.70 Matrix −14.03 2.04
Matrix −11.83 2.20 Matrix −13.34 2.23
Matrix −10.06 2.50 Matrix −14.27 1.67
Vein −9.98 3.01 Matrix −13.64 2.12
Vein −9.96 3.15 Matrix −14.02 2.16
Vein −11.14 2.82 Matrix −13.85 2.26

Matrix −14.10 2.14
Matrix −14.88 1.95

Avg. total −10.57 2.80 −13.26 2.62

Avg. vein −10.55 2.94 −11.74 3.85

Avg. matrix −10.59 2.57 −13.81 2.17

FIGURE 8 | Carbon and oxygen isotope compositions from the fibrous calcite vein and host rock of the Khao Khwang (KK-5) and Nam Duk (ND-1) samples.
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FIGURE 9 | The transection diagram of the Khao Khwang sample (KK-5) shows δ13C PDB and δ18O PDB isotopic composition of host rock (black dots) and fibrous
calcite veins (red dots) from top to bottom of the samples. The boundary between the fibrous calcite vein and host rock is indicated by yellow dashed lines.

FIGURE 10 | The transection diagram of the Nam Duk sample (ND-1) shows δ13C PDB and δ18O PDB isotopic composition of host rock (black dots) and fibrous
calcite veins (red dots) from top to bottom of the samples. The boundary between the fibrous calcite vein and host rock is indicated by a yellow dashed line.
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calcite veins. The δ13C values of the fibrous calcite veins are
heavier than from the host rock matrix.

5 DISCUSSION

5.1 Paleo-Depositional Environment
Biomarker analysis of soluble organic matter (bitumen) from the
rock samples hosting the fibrous calcite veins has contributed to a
better understanding of the characteristics of the depositional
environments (e.g., Waples and Machihara, 1991; Sivan et al.,
2008). In this study, organic facies and depositional environment
are interpreted using Pr/Ph ratio, Pr/n-C17 and Ph/n-C18 cross
plots and sterane distributions (e.g., Shanmugam, 1985). Samples
from both Formations have similar isoprenoid, n-alkane and
sterane distributions, and thus are similar in depositional
environment, organic matter type and maturity (Figures 5–7;
Table 1). Molecular geochemical data from both Formations
suggest that the rock samples are deposited in a marine
environment with a mixed source of organic matter from the
marine and terrestrial. However, there are slight differences in
likely paleo-geography and thermal maturation between the two
Formations.

Based on these data, rock samples from the Khao Khwang
Formation are believed to have been deposited in a lagoonal/
estuarine or shallow marine environment. In contrast, based on
n-alkane and sterane distributions, the Nam Duk Formation was
deposited in a somewhat deeper water slope environment. That is,
a higher proportion of land plant material was deposited within
the Khao Khwang Formation. These interpretations coincide
with results from previous studies on depositional
environments for both Formations (e.g., Chitnarin et al., 2008;
Chenrai and Fuengfu, 2019). The same settings of the relevant
organic facies are confirmed by the bivariate plot trends of the Pr/
Ph ratio, the Pr/n-C17 and Ph/n-C18 cross plot and the tertiary
diagram of regular steranes (Figure 7).

5.2 Petroleum Potential Source Rock
Total organic carbon (TOC) contents in the Khao Khwang
Formation imply fair to excellent source rock potential (Racey,
2011; Chenrai and Fuengfu, 2019). Unfortunately, there is no
similar data measure for the Nam Duk Formation. However, the
Pr/n-C17 and Ph/n-C18 cross plot reveals that the samples from
both Formations contain a mixed kerogen, between type III and
type II, deposited under sub-oxic to oxic conditions. It should be
noted that these analyzed data are from outcrop samples that may
be somewhat oxidized, tied to exposure to the more oxic
conditions near the present-day landsurface. If organic matter
was first deposited in anoxic to sub-oxic conditions, the rock
samples would be considered potential oil and gas sources for
both Formations. Abundant framboidal pyrites having a various
size from 5.7 µm to 0.5 mm within the rock samples, especially
from the Khao Khwang Formation, also suggest that the samples
were deposited under relatively anoxic conditions (Wilkin et al.,
1996; Liu et al., 2019). The Nam Duk Formation was likely
deposited further from a terrestrial organic matter source than
the Khao Khwang Formation, based on n-alkane and sterane

distributions. This implies fine-grained rocks in the Khao
Khwang Formation have a higher petroleum potential than the
Nam Duk Formation. Thermal maturation of the Nam Duk
Formation is interpreted to be higher than the Khao Khwang
Formation, based on the Pr/n-C17 and Ph/n-C18 cross plot
(Figure 6). This higher thermal maturation interpretation is
supported by the δ18O values of the Khao Khwang samples
being more negative than the Nam Duk samples (Figure 8),
indicating that the calcites within the Khao Khwang samples were
precipitated at somewhat higher temperatures (Al-Aasm et al.,
1993).

5.3 Fibrous Calcite Development
Bedding-parallel calcite veins are widely documented, as are
interpretations of the formative mechanisms driving aligned
fibrous crystal growth within sedimentary strata during burial
diagenesis and compaction (Franks, 1969; Cobbold et al., 2013).
Nam Duk samples are dominated by beef veins with a smooth
continuous boundary between the fibrous calcites and host rock
bedding surface. This probably indicates that the beef veins grew
at a consistent rate. On the other hand, the Khao Khwang samples
mostly fibrous calcite cone-in-cone veins, with abundant
inclusions of host-mud. These samples likely grew under more
fluctuating conditions, with times of rapid growth indicated by
intervals enclosing more mud inclusions. The ability of the calcite
to encase mud inclusions likely indicates that the host rock was
also semi to unconsolidated at the time of calcite crystal growth.
Beef veins without mud inclusions suggest a more brittle or
consolidated host rock at the time of fibrous calcite
precipitation (e.g., Meng et al., 2017). Hence, beef veins in the
Nam Duk Formation likely formed during deeper burial
diagenesis and in more compacted situations than cone-in-
cone veins in the Khao Khwang Formation. Both the cone-in-
cone and beef vein fabrics are a fibrous growth response to
saturated conditions in a hydrologic regime derived from local
carbonaceous fluids within the host rock. Individual crystal fibers
grew vertically and inward during the periodic opening of the
vein space.

Stable isotope compositions can be used to refine
interpretations of growth style and relative timing of fibrous
calcite development. Negative signatures in organic matter can
provide evidence of an organic bicarbonate (HCO3

−) sourced in
zones of bacterial sulphate reduction in shallow-burial anaerobic
environments (Irwin et al., 1977). The bicarbonate fixed in
fibrous calcites precipitated in this zone usually inherit δ13C
signatures from this organic matter; hence a much-depleted
carbon isotope composition is expected to occur in calcites
formed in this zone (δ13C < −25‰ PDB; Irwin et al., 1977).
After sulphate is totally consumed in the bacterial sulphate
reduction zone, the microbial methanogenic zone is entered;
there Archaeal methanogens can continue to be active until
temperatures reach ∼75°C (the petroleum generation window;
Morad, 2009).

Samples from the two Formations show positive δ13C values,
suggesting that the heavy carbon in the formative bicarbonate was
influenced by microbial activity in a methanogenic zone that
underlay the bacterial sulphate reduction zone. There the carbon
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dioxide (CO2) generated within the microbial methanogenic zone
tends to have heavy carbon isotope compositions (δ13C ≈ 0–15‰
PDB) via microbial fermentation (Raiswell, 1987; Wolff et al.,
1992). Thus, if the buried organic-rich rocks still have organic
matter remaining after passing through the bacterial sulphate
reduction zone, they can generate carbon dioxide with δ13C
enriched carbon. This leads to progressive 13C enrichment in
bicarbonate fixed as calcite forming within the rocks. Fibrous
calcite veins in this zone are expected to be similar to the veins in
the two Formations. Overall δ13C carbon composition will be
positive if there is no subsequent external fluid intrusion, as is
likely due to the ongoing low permeability of the host rocks
(Luan, et al., 2019). Thus, moderate positive δ13C values from the
Khao Khwang and Nam Duk Formations possibly suggest a
carbon source from carbon dioxide influenced by microbial
methanogenesis.

Oxygen isotope compositions of the fibrous calcite veins from
both Formations are more depleted when compared to the range
of Permian carbonate rock precipitation in equilibrium with
Permian seawater as −4.8‰ PDB (Veizer et al., 1999). The
measured negative oxygen isotope signatures (≈−10 to −13‰)
are too negative and likely reflect ongoing local rock-buffered
rock-fluid interactions, carbonate precipitation and re-
equilibration is occurring in modified marine pore waters
within adiagenetic systems at somewhat deeper burial depths
where the temperature are progressively increasing (Hodgson,
1966; Dickson and Coleman, 1980; Marshall, 1982; Nuriel, et al.,
2011; Uysal, et al., 2011; Warren et al., 2014).

6 CONCLUSION

The bedding-parallel fibrous calcite veins from the Khao Khwang
and Nam Duk Formations are divided into two types; beef and
cone-in-cone veins. Their carbon and oxygen isotope
compositions suggest that the calcite veins were precipitated
from a carbon source by carbon dioxide generated in the zone
of microbial methanogenesis, giving δ13C-enriched carbon
isotope compositions. Thus, the fibrous calcite veins of the
two Formations exhibit moderate positive δ13C values at the
present day. Their δ18O-depleted isotope compositions indicated
that the fibrous calcite veins re-equilibrated in locally-derived
warmer fluids (no external carbon source) likely tied to somewhat
deeper burial. The fibrous calcite veins are interpreted to be

precipitated in the surrounding semi-consolidated sediments,
and so calcite crystals are preserved as cone-in-cone veins with
abundant host-mud inclusions. Beef veins that typify the Nam
Duk Formation are believed to have precipitated in more
consolidated fine-grained sediment hosts in the somewhat
deeper burial zone compared to the Khao Khwang Formation.

Our petroleum assessment of the Khao Khwang and Nam
Duk Formations suggests that both Formation are a petroleum
potential source rock with type II/III kerogen. The
depositional environment of organic matter in the Khao
Khwang Formation was either an estuarine environment or
a shallow marine environment. Organic signatures in the Nam
Duk Formation suggest a somewhat deeper water slope-to-
basin marine setting or an open marine environment. Thus,
results in this study provide a better understanding between
the bedding-parallel fibrous calcite veins and petroleum source
rock potential in a sedimentary basin using analytical
approaches that could also be applied for petroleum
exploration in a frontier area.
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Chemical Weathering of Mountainous
Riverine Sediments of Hainan Island,
South China Sea
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Resources, Qingdao, China, 4College of Marine Geosciences Key Laboratory of Submarine Geosciences and Prospecting
Technology, Ocean University of China, Qingdao, China, 5State Key Laboratory of Loess and Quaternary Geology, Institute of
Earth Environment, Chinese Academy of Sciences, Xi’an, China, 6Marine Geological Institute of Hainan Province, Haikou, China,
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Hainan Island, the largest island in the northwestern South China Sea (SCS), is characterized
bymany tropical mountainous rivers that flow into the SCS. The geochemistry of these riverine
sediments and the factors controlling the weathering intensity are still not well understood. In
this study, sedimentary geochemistry has been investigated by using 45 riverine sediments
collected from 18 major rivers on Hainan Island. The Hainan riverine sediments are only first-
cycle rather than polycyclic sediments, and they faithfully reflect the present weathering
intensity. The high and steady values of the Chemical Index of Alteration (CIA) indicate that the
riverine sediments at different parts of the Hainan Island have overall undergone intensive
chemical weathering. The low values ofWeathering Index of Parker (WIP) and high αCa, αK , αSr,
and αBa values of north Hainan indicate the highest weathering degree, which is mainly
influenced by the flat topography. The values of αNa, αK , αSr , and αBa of southwest Hainan
which are higher than those of east Hainan suggest that the leaching of elements such as Na,
K, Sr, andBa ismore extreme (i.e.,more intensiveweathering). These aremainly caused by the
different physical denudation due to different summer precipitation. Overall, the Hainan Island
is featured by intensive chemical weathering and is classified as a typical transport-limited
weathering regime. Therefore, the geochemistry of the riverine sediments of the Hainan Island
is different from that of sediments in tectonically active regions (e.g., Taiwan Island).

Keywords: geochemistry, riverine sediment, weathering, Hainan Island, South China Sea

HIGHLIGHTS

The Hainan riverine sediments have undergone high weathering conditions.
The highest chemical weathering intensities of sediments in north Hainan are mainly influenced
by the flat topography.
Weathering difference between southwest and east Hainan is caused by different summer rainfall
conditions due to the orographic effect of the central mountains.
The weathering processes of the sediments in Hainan are typical transport-limited weathering
regimes.
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INTRODUCTION

Rivers are the main passages of land-derived sediments into the
sea. The mineralogical and geochemical characteristics of
sediments are controlled by lithology, topographic settings,
weathering, diagenesis, sedimentary sorting, and recycling in
catchments, and can be used to better understand the
geochemical cycle, land–ocean interaction, and global change
(Gaillardet et al., 1997; Yang et al., 2004; Liu et al., 2007; Li and
Yang, 2010; Clift et al., 2014; Li G. et al., 2016; Jian et al., 2020; Xu
et al., 2021).

Numerous studies have focused mainly on world-class rivers,
such as the Amazon (Gaillardet et al., 1997; Bouchez et al., 2011),
Mekong (Egashira et al., 1997), Congo (Dupré et al., 1996; Dinis
et al., 2020), Yangtze and Yellow (Yang et al., 2004), and Pearl
(Liu et al., 2007) rivers, because they play leading roles in
delivering the great mass of water and terrestrial materials to
the sea. However, subsequent studies have found that small rivers
may have distinctive features in comparison to the major river
systems in the world (Milliman and Syvitski, 1992; Milliman and
Farnsworth, 2011; Yang and Yin, 2018). Thus, the significance of
rivers with small drainage basins has been reconsidered. Recently,
the characteristics of sediment geochemistry in small rivers, for

example, central Japan (Ohta et al., 2005), western Korea (Xu
et al., 2009), southeast China (Zhou et al., 2010; Su et al.,
2017; Jian et al., 2020), Taiwan Island (Li et al., 2013; Deng
et al., 2019), Malaysia, Sumatra, Borneo (Liu et al., 2012),
Luzon, and Philippines (Liu et al., 2009), have aroused wide
concern.

Hainan Island is the second largest island in China and the
highest island in the northern South China Sea (SCS) and is
located at the low latitude tropical area with heavy rainfall but low
sediment load (∼4 Mt/yr, million tons per year, Zhang et al.,
2013). Clay mineralogy analysis suggested that the weathering
status of Hainan is comparable with that of the Pearl River and is
inconsistent with that of rivers in Taiwan (Hu et al., 2014). To our
knowledge, the geochemistry of the riverine sediments of Hainan
Island and the weathering mechanism have not been constrained
systemically, which are characterized by different lithological and
topographic settings, and along with the tropical East Asian
monsoon climate but with different rainfall. In this study,
sediment geochemistry has been investigated on 45 riverine
sediments collected from 18 major rivers on the Hainan
Island. Our objectives are to 1) reveal the characteristic
features of sediment geochemistry, 2) establish a geochemistry
database for riverine sediments from Hainan Island, and 3)

FIGURE 1 | (A) Location map of the Hainan Island and the surface currents in the South China Sea. (B) Topographic map of the Hainan Island. Numbers for winter
(white) and summer (red) surface currents: 1, loop current; 2, SCS branch of Kuroshio; 3, NW Luzon Cyclonic Gyre; 4, NW Luzon Cyclonic Eddy; 5, NW Luzon Coastal
Current; 6, SCS Warm Current; 7, Guangdong Coastal Current; 8, SCS Southern Cyclonic Gyre; 9, SCS Southern Anticyclonic Gyre; 10, SE Vietnam Offshore Current;
11, Gulf of Tonkin Surface Current; 12, Gulf of Thailand Surface Current. Major surface currents after Liu et al. (2016).
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discuss the factors controlling the chemical weathering intensity
of sediments in tropical Hainan.

Regional Setting
Hainan Island is the second largest island (35.4 × 103 km2,
Figure 1A) in China. The Hainan Island is tectonically stable
(Metcalfe, 2009) and is characterized by central high mountains
surrounding low hills, platforms, and plains in coastal regions
(Figure 1B). The high mountains are located south of the central
part of the island, accounting for 25.1% of the island’s area. The
vast platforms are mainly distributed in the north Hainan
(20–50 m above sea level), accounting for about one-third of
the total area of the island (http://www.hnszw.org.cn/xiangqing.
php?ID�54349, Figure 1B). The main rock types are granitic
rocks which are mainly exposed in the southwest and east
Hainan, and basalts are distributed predominantly in north
Hainan. Sedimentary rocks, including slate, sandstone,
limestone, and volcanic clastic, are scattered on the island,
while Quaternary sediments have existed mainly in the coastal
plain regions (Figure 2A, Shi et al., 2011).

The Hainan Island is located on the northern edge of the
tropics and is dominated by a tropical monsoon climate with
dense vegetation cover (Committee of Vegetation Map of China,
2007; Zhang et al., 2013). The annual mean rainfall is ∼1,500 mm,
with ∼80% of it occurring between May and October (http://
www.worldweather.org), especially during the tropical cyclone
period (Zhang et al., 2013). A large rainfall difference occurred

between different parts of Hainan because of the orographic effect
of the central mountains. The annual mean rainfall is distributed
in a ring pattern, tending to reduce from more than 2,000 mm in
the east and central Hainan to less than 1,000 mm in the
southwest Hainan (Figure 2B). Fluvial drainage systems are
well developed in the region. There are more than 100 rivers
with a drainage area of over 100 km2 each. Over the past several
decades, the total discharge and the total riverine sediment load
from Hainan are ∼31 × 109 m3/yr and ∼4 Mt/yr (Zhang et al.,
2013), respectively.

The annual mean temperature is 25.4°C, with a maximum
between May and October (http://www.worldweather.org). In
July, the isotherm showed concentric circles, increasing from
the central mountain to the coastal areas. In January,
temperatures were lower in north Hainan, increasing from the
northern to the southern areas (Figure 2C). In general, there is a
relatively wet and dry climate in east and southwest Hainan.

MATERIALS AND METHODS

Sampling and Analytical Methods
A total of 45 riverine samples were collected downstream of
estuary sites from 18 rivers on the Hainan Island in 2013
(Figure 2A). According to the lithology and climate
conditions, the 18 studied rivers were grouped into three
provinces: north Hainan (3 rivers), east Hainan (6 rivers), and

FIGURE 2 | (A)Geological map and the locations of riverine samples on the Hainan Island. Modified from Shi et al. (2011) and Hu et al. (2014). (B) Annual rainfall and
(C) temperature of January (dashed lines) and July (solid lines) of the Hainan Island (modified from http://gzdl.cooco.net.cn/testdetail/91943/). The blue lines indicate the
river networks. Note that some of the sampling sites are overlapped on the map.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 7702363

Xu et al. Factors Controlling Hainan Sediments

111

http://www.hnszw.org.cn/xiangqing.php?ID=54349
http://www.hnszw.org.cn/xiangqing.php?ID=54349
http://www.hnszw.org.cn/xiangqing.php?ID=54349
http://www.worldweather.org
http://www.worldweather.org
http://www.worldweather.org
http://gzdl.cooco.net.cn/testdetail/91943/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


southwest Hainan (9 rivers). These sediment samples were
collected from surface channels or bed deposits. The fine-
grained fraction (<63 μm, after eliminating sand) used for
geochemical analysis was wet-sieved from the bulk samples to
minimize the grain-size effect (Yang et al., 2002; Bouchez et al.,
2011; Li et al., 2013; Guo et al., 2018), then oven-dried, and
ground to a powder. The major and trace elements were analyzed
using an X-ray fluorescence spectrometer (XRF, Axios PW4400)
and Perkin Elmer ELAN DRC II ICP-MS, respectively. The
analytical accuracy was determined by analyzing certified
reference materials (BCR-2, BHVO-2, GBW07315, and
GBW07316). The analytical precision, as verified by replicate
analysis, was better than 5%. The clay mineral compositions of
the sediments have been reported by Hu et al. (2014).

Calculation of Weathering Indexes
The Chemical Index of Alteration (CIA) and the Weathering
Index of Parker (WIP) have been widely used as proxies for the
chemical weathering intensity in drainage basins. The CIA value
is used to quantify the chemical weathering degree experienced by
sediments, referring to the progressive loss of mobile elements
such as Na, Ca, and K (Nesbitt and Young, 1982). The higher CIA
values indicate stronger weathering which could be interpreted as
a measure of the conversion extent of feldspars to clays. In
contrast, the WIP simply reflects concentrations of Mg, Ca,
Na, and K, and thus, it is considerably affected by quartz
dilution and used to evaluate weathering in quartz-rich
sediments (Garzanti et al., 2013; Garzanti et al., 2014). Using
molecular proportions, the CIA and WIP were calculated as
follows:

CIA � 100 × (
Al2O3

Al2O3 + CaOp +Na2O +K2O
), (1)

WIP � 100 × (
CaOp

0.7
+ 2Na2O

0.35
+ 2K2O

0.25
+ MgO

0.9
), (2)

where CaO* represents CaO associated with the silicate fraction
only and is corrected for carbonate and phosphate (apatite). If the
mole fraction of CaO ≤ Na2O, then the value of CaO was used. If
CaO > Na2O, then the mole of CaO* was taken equivalent to
Na2O (McLennan, 1993).

Weathering intensities can be calculated for each single
element (Ca, Na, K, Sr, and Ba) mobilized during incongruent
weathering of silicates by comparing its concentration to that of
an immobile element in samples and the upper continental crust
(UCC, i.e., α value, Gaillardet et al., 1999; Garzanti et al., 2013).
We calculated the α value with reference to the concentration of
an immobile element whose magmatic compatibility is close to
that of the mobile element (Gaillardet et al., 1999):

αCa � [Ti/Ca]Sample

[Ti/Ca]UCC , (3)

αNa � [Sm/Na]Sample

[Sm/Na]UCC , (4)

αK � [Th/K]Sample

[Th/K]UCC , (5)

αSr � [Nd/Sr]Sample

[Nd/Sr]UCC , (6)

αBa � [Th/Ba]Sample

[Th/Ba]UCC . (7)

The α ratios could also minimize the effects of quartz dilution,
grain size, and recycling. According to the definition of the α
value, α <1 indicates enrichment and α >1 implies depletion with
respect to the UCC.

Major and Trace Elements, and the
Chemical Weathering Intensity
The element concentrations are shown in Table 1. Most of the
Hainan riverine sediments have Sc/Th values smaller than 1, while
two samples have values higher than 1 on the north Hainan
(Figure 3A). The CIA values of all the samples range from 72 to
90 (mean of 81), which indicates moderate to intensive weathering
occurred in the Hainan Island. The CIA values exhibit no obvious
correlation with Sc/Th ratios (Figure 3A). The WIP values of all the
samples range from 18 to 52 (mean of 34). The CIA andWIP values
of all the samples display an inverse linear relationship (Figure 3B),
showing a similar trend with the Taiwan rivers (Selvaraj and Chen,
2006), Pearl, Red, and Mekong (Liu et al., 2007), Malay Peninsula,
Sumatra, Borneo (Liu et al., 2012), and Luzon rivers (Liu et al., 2009).
As shown inTable 2, the similar values of the CIA at different parts of
the Hainan Island suggest the similar weathering degree of Hainan
riverine sediments. However, the lower mean WIP value of north
Hainan suggests a higher weathering degree.

The weathering indexes, such as αCa, αNa, αK, αSr, and αBa, are
also >1 (Table 2). As shown in Figure 3C, a high coefficient
correlation can be observed between some indexes indicating that
these indexes give relatively consistent information on the
weathering degree of Hainan riverine sediments. Overall, the
αCa, αK, αSr, and αBa values of north Hainan are higher than those
of the southwest and east Hainan (Figure 3C). This also suggests
the higher weathering degree of the north Hainan Island.

DISCUSSION

Topographic Control on the Highest
Weathering of North Hainan
The elements Sc and Th are largely water immobile during
chemical weathering. Typically, felsic rocks generally have Sc/
Th values smaller than 1, and mafic rocks have higher Sc/Th
values (Taylor andMcLennan, 1985). Most of the Hainan riverine
sediments have Sc/Th values smaller than 1, indicating the
dominance of the felsic rocks in the catchment (i.e., granitic
rocks and Quaternary sediments). Only two samples have Sc/Th
values higher than 1 on the north Hainan, indicating the influence
of the mafic rocks in the catchment (i.e., basalt rocks). The CIA
values exhibit no obvious correlation with Sc/Th ratios
(Figure 3A), suggesting that the chemical weathering
intensities are mostly independent of the lithology of their
source areas. This is consistent with the previous studies on
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TABLE 1 | Major (unit %) and trace element (unit mg kg−1) concentrations in the Hainan riverine sediments.

Station SiO2 Al2O3 Fe2O3 MgO MnO CaO Na2O K2O TiO2 P2O5 Sc V Rb Sr Zr Nb Ba Hf Th Nd Sm

SW Hainan NYH-1C 56.0 18.5 6.0 2.20 0.15 0.84 0.26 3.60 0.92 0.19 10.2 74 175 117 343 27.5 446 11.4 26.3 51.2 9.0
NYH-2C 56.4 21.2 7.5 2.49 0.21 0.84 0.24 3.89 1.01 0.27 12.6 78 205 96 305 25.5 413 9.5 33.4 53.7 9.7
WLH-1C 53.8 18.3 5.5 2.06 0.17 0.71 0.36 3.50 0.93 0.20 12.0 78 217 105 136 25.9 446 4.5 39.3 55.3 9.8
WLH-2C 53.4 21.5 3.8 2.11 0.03 0.62 0.37 3.73 1.05 0.10 15.0 89 269 103 114 29.6 424 3.9 53.5 74.7 13.5
WLH-4C 52.3 19.6 6.0 2.11 0.19 0.80 0.42 3.40 0.94 0.20 12.9 88 233 103 116 25.5 439 3.7 43.6 55.3 10.5
BSH-2C 58.2 16.2 3.6 1.98 0.06 0.85 0.16 5.30 0.75 0.13 10.1 54 307 103 299 34.4 438 10.5 67.5 71.6 12.8
NGH-1C 57.5 15.1 4.6 2.07 0.09 1.17 0.19 4.45 0.88 0.17 11.3 64 253 116 293 31.1 454 9.5 84.7 74.3 12.8
NGH-2C 58.5 15.0 4.0 2.10 0.07 0.89 0.14 4.27 0.90 0.16 9.2 58 227 114 292 28.5 481 9.9 46.9 60.1 10.3
GEH-2C 60.1 16.2 4.1 2.09 0.11 0.33 0.07 4.16 0.80 0.14 11.2 55 256 51 227 31.5 415 7.2 48.8 67.8 13.8
CHJ-1C 46.3 18.1 13.3 2.69 0.44 1.31 0.24 2.76 0.75 0.27 12.9 72 178 151 283 23.5 506 9.4 39.5 58.7 11.4
CHJ-2C 44.6 17.9 13.9 2.64 0.42 1.21 0.23 2.58 0.71 0.27 11.8 69 162 156 246 20.8 588 8.1 28.0 53.3 10.2
CHJ-3C 43.8 17.9 14.4 2.73 0.49 1.25 0.18 2.53 0.73 0.26 13.2 77 176 153 169 19.9 591 5.2 30.1 58.1 11.7
CHJ-4C 45.3 18.9 15.6 2.62 0.52 1.65 0.22 2.72 0.82 0.26 13.5 80 184 159 559 25.4 573 16.9 57.7 84.7 16.2
CHJ-5C 46.2 18.8 15.8 2.64 0.55 1.65 0.22 2.82 0.85 0.26 13.4 82 188 153 528 24.2 550 15.1 42.0 67.9 14.0
CHJ-6C 43.6 18.5 16.2 2.62 0.67 1.53 0.26 2.71 0.85 0.27 14.0 88 192 137 710 26.5 468 20.4 72.0 91.3 18.2
ZBJ-1C 51.5 17.8 6.7 2.30 0.26 0.87 0.46 2.50 0.89 0.27 13.8 110 154 64 168 16.5 411 5.0 18.1 38.7 7.4
ZBJ-2C 51.5 17.7 6.9 2.48 0.26 0.89 0.10 2.75 0.87 0.32 14.2 115 180 77 239 17.8 467 6.8 28.0 45.4 9.1
ZBJ-3C 54.0 20.3 7.3 2.80 0.25 0.78 0.39 2.96 1.14 0.27 13.5 94 181 102 603 26.0 328 18.0 64.3 61.4 11.6
ZBJ-4C 50.6 19.2 6.9 2.70 0.24 0.67 0.06 2.77 0.97 0.36 13.1 96 184 102 245 21.3 312 7.2 30.2 41.9 8.1
PPQ-1C 48.8 21.3 6.6 2.92 0.24 0.62 0.24 3.43 1.03 0.34 10.5 95 178 89 432 27.1 300 11.6 27.7 43.2 8.2
PPQ-2C 51.8 22.1 7.3 3.15 0.27 0.66 0.42 3.59 1.05 0.38 14.5 97 232 95 229 26.5 303 6.8 34.8 49.9 9.4
CJ-1C 61.2 12.5 2.9 2.07 0.09 0.92 0.02 3.02 0.59 0.16 7.4 52 142 117 322 14.8 400 9.0 24.5 38.8 7.7

N Hainan BMJ-1C 66.7 11.1 3.1 1.76 0.05 0.40 0.23 1.98 0.99 0.15 8.2 57 89 62 796 24.8 256 25.5 94.5 137.3 23.1
BMJ-2C 65.1 12.4 3.0 1.83 0.05 0.41 0.15 2.03 1.08 0.18 10.2 57 88 64 1,438 29.3 256 40.8 116.9 186.2 34.3
BMJ-3C 63.4 11.8 2.9 1.81 0.04 0.38 0.08 2.26 0.77 0.13 10.2 61 115 65 269 18.9 304 7.8 32.3 39.7 7.5
WLJ-1C 55.4 17.2 6.2 1.80 0.09 0.46 0.51 1.47 1.61 0.33 11.4 100 73 54 225 26.0 273 6.2 20.1 39.1 6.9
WLJ-2C 52.5 18.4 7.4 1.73 0.09 0.50 0.48 1.44 1.88 0.38 14.4 120 79 56 303 31.0 279 8.3 31.4 60.4 10.9
WLJ-3C 49.1 20.0 8.7 1.70 0.10 0.57 0.49 1.34 2.00 0.37 14.4 136 79 52 336 31.8 284 9.1 40.3 71.6 13.2
WLJ-4C 49.2 17.8 9.8 1.93 0.13 0.43 0.51 1.59 2.02 0.23 16.2 154 94 57 210 29.6 287 5.5 16.7 36.9 7.5
WLJ-5C 52.3 17.8 7.8 1.74 0.13 0.40 0.47 1.46 1.88 0.31 13.9 123 81 53 202 28.9 264 5.5 18.4 36.8 7.0
WLJ-6C 31.0 23.3 20.9 1.25 0.17 0.10 1.37 0.14 3.25 0.19 29.0 255 11 9 206 26.9 87 5.4 5.4 16.6 4.2
NDJ-1C 38.1 22.4 12.6 2.28 0.12 0.91 1.13 1.71 2.21 0.34 21.5 192 101 76 197 31.2 277 5.2 18.5 40.7 7.9
NDJ-2C 50.0 17.9 8.5 2.82 0.07 0.59 0.78 2.70 1.00 0.25 16.0 132 147 76 173 20.7 377 4.8 22.7 34.1 6.4
NDJ-3C 44.5 19.2 8.3 2.47 0.04 1.05 1.32 2.22 1.05 0.69 12.9 111 122 106 150 21.7 333 4.0 22.2 41.8 8.0
NDJ-5C 48.9 20.7 8.2 2.94 0.10 0.58 0.88 2.54 1.17 0.33 15.3 123 141 80 147 23.2 336 4.3 22.4 47.5 8.8
NDJ-6C 47.0 21.0 9.6 2.01 0.15 0.72 0.62 1.84 2.12 0.29 15.1 145 103 74 195 29.3 347 5.4 19.3 35.9 7.1

E Hainan WJH-1C 50.2 17.7 5.8 1.33 0.04 0.35 0.74 1.14 2.15 0.24 11.8 112 65 62 274 35.8 191 7.2 21.8 32.0 6.0
WJH-2C 53.0 15.3 7.6 2.89 0.08 4.14 1.06 1.53 1.25 0.39 9.8 97 63 171 140 21.6 262 3.6 13.4 19.8 4.1
WQH-8C 56.0 25.0 10.8 2.98 0.18 2.24 0.13 3.89 1.32 0.36 14.5 136 186 144 247 24.0 477 6.5 39.1 63.8 12.2
JQJ-1C 60.9 15.3 4.8 2.24 0.04 0.35 0.43 1.76 0.74 0.30 8.9 88 71 71 192 12.1 323 5.2 12.6 24.3 4.4
JQJ-2C 57.0 15.3 5.5 2.13 0.05 0.34 0.27 1.86 0.77 0.36 9.8 99 82 66 178 12.9 345 4.8 11.6 22.9 4.1
LSH-1C 49.4 22.5 6.0 2.25 0.08 1.10 0.56 3.37 1.04 0.19 12.6 82 193 200 313 28.7 525 9.8 46.2 54.7 9.7
LSH-2C 50.2 21.5 5.7 2.29 0.08 1.21 0.52 3.55 1.02 0.18 13.0 79 195 214 349 28.2 549 11.3 57.7 55.1 10.0
STH-1C 47.8 25.6 6.2 1.82 0.07 0.85 0.19 2.67 1.03 0.13 13.4 100 147 158 270 22.8 551 7.6 29.3 45.8 7.8
TQH-3C 52.0 21.0 6.1 2.25 0.06 0.64 0.44 3.64 0.92 0.18 13.7 78 191 115 174 23.1 460 5.3 38.7 57.1 10.5
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silicate weathering in river basins of mainland China (Li and
Yang, 2010; Shao et al., 2012; Bi et al., 2015).

The comparison of CIA and WIP indexes could be used to
identify the composition changes caused by weathering and
recycling. The relationship between CIA and WIP is linear for
first-cycle muds as well as for quartz-poor igneous materials
(Garzanti et al., 2013; Garzanti et al., 2014; Guo et al., 2018). The
inverse linear relationship of the CIA and WIP (Figure 3B) indeed
suggests that the Hainan sediments only experienced a first
sedimentary cycle, and thus faithfully reflects the present
weathering intensity. Thus, the significantly low WIP values of
sediments in north Hainan indicate strong chemical weathering
intensity in the area.

Alkaline and alkaline earth metals tend to be depleted in riverine
sediments due to their mobility during water–rock interactions
(Stallard, 1988; Canfield, 1997; Garzanti et al., 2013). The αCa,
αNa, αK, αSr, and αBa values are always >1 (Table 2), indicating
that most alkali and alkaline elements in parent rocks on the Hainan
Island can be easily and intensively weathered under warm and
humid climate conditions. As shown inTable 2, the αCa, αK, αSr, and
αBa values of the northHainan aremuch higher than those of the east

and southwest Hainan, also indicating higher weathering degree than
the latter. As noted above, the vast platforms aremainly distributed in
the north Hainan, while the high mountains are located south of the
central part of the island. Indeed, the topography could exert an
important impact on sediment and its comminution process (Bi et al.,
2015; Li C. et al., 2016). Considering that there is no obvious
difference in climate conditions between the north and east
Hainan (Figure 2), the chemical weathering intensities are also
independent of the lithology of their source areas. We suggest that
the highest chemical weathering intensities of sediments in north
Hainan are mainly influenced by the flat topography under a
favorable monsoon climate.

Lower Rainfall Control on Higher
Weathering of Southwest Than East Hainan
The CIA and WIP values of sediments on the southwest and east
Hainan Island are similar, indicating the similar weathering degree of
the riverine sediments. However, the αNa, αK, αSr, and αBa values of
southwest Hainan are much higher than those of the east Hainan.
These suggest that although the overall weathering degree of the
southwest Hainan is comparable with the east Hainan, the leaching of
elements such as Na, K, Sr, and Ba is more extreme. This is also
supported by the more negative Eu anomalies at the southwest than
the east Hainan (0.45 and 0.65, respectively, unpublished data),
reflecting stronger feldspar dissolution. The east and southwest
Hainan are both located in a tectonically stable area (Metcalfe,
2009). Moreover, the main rock types are the same, that is,
granitic rocks (Shi et al., 2011). As noted above, located in the
rain shadow because of the orographic effect of the central
mountains, the summer rainfall of southwest Hainan is lower
than that of east Hainan. In addition, southwest Hainan is rich in
light and heat, leading to a large amount of evaporation, while
evaporation of the east part is relatively small due to heavy
rainfall and the long rain period (Yang et al., 2013). Thus, the
physical denudation should be stronger in the east than the
southwest Hainan Island. The riverine sediments in southwest
Hainan may experience longer residence time and stronger
weathering intensity than those in east Hainan. Further studies on
the “residence time” (Suresh et al., 2013) or “comminution age”
(DePaolo et al., 2006; Li et al., 2015) of sediments from the small
mountainous rivers in the southwest and east Hainan are needed to
confirm this proposal.

Intensive Weathering of Hainan Compared
With the Adjacent Area
The weathering trend can be further examined by ternary
diagrams of Al2O3-CaO*+Na2O-K2O (A-CN-K) (Nesbitt and

FIGURE 3 | Relationships between (A) CIA and Sc/Th, (B) CIA andWIP,
and (C) αK and αSr in riverine sediments of the Hainan Island. The CIA andWIP
values of the UCC (Rudnick and Gao, 2003), Taiwan rivers (Selvaraj and Chen,
2006), Pearl, Red, and Mekong (Liu et al., 2007), Malay Peninsula,
Sumatra, Borneo (Liu et al., 2012), and Luzon rivers (Liu et al., 2009) are also
shown for comparison.

TABLE 2 | Proxies for the chemical weathering intensity of the Hainan riverine
sediments.

CIA WIP αCa αNa αK αSr αBa

Southwest Hainan 80.5 37.9 6.0 52.5 3.4 6.6 5.9
North Hainan 82.5 27.7 16.1 27.9 5.6 12.4 7.5
East Hainan 82 33.8 9.9 17.9 3.1 4.1 4.3
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Young, 1984). Most of the samples of the Hainan Rivers are
subparallel to the A–K axis (Figure 4). This reflects the strong
removal of K-bearing minerals from the parent rocks, indicating
the riverine sediments of the Hainan Island have undergone
extensive weathering conditions. The chemical weathering
intensity of Hainan Island is higher than that of UCC
(Rudnick and Gao, 2003), Luzon (Liu et al., 2009), Taiwan
rivers (Selvaraj and Chen, 2006), and Red and Mekong (Liu
et al., 2007), and comparable with that of Pearl (Liu et al., 2007)
and Borneo rivers (Liu et al., 2012), but less than that of Sumatra
and Malay Peninsula rivers (Liu et al., 2012).

Clay minerals in riverine sediments originate mainly from the
weathering products of parent rocks, and thus can also provide
abundant information about weathering types and intensities.
The kaolinite formation strongly depends on intensive hydrolysis
under warm and humid climates. Illite and chlorite are mainly
formed by weak hydrolysis and/or strong physical erosion of
bedrock under relatively cold and dry climates (Chamley, 1989).
Thus, the kaolinite/(illite + chlorite) ratios could be used to
indicate the weathering types (physical erosion vs chemical
weathering) of the sediments. The higher kaolinite/(illite +
chlorite) values indicate stronger chemical weathering and
weaker physical erosion, and vice versa (Colin et al., 2010;
Wan et al., 2010; Alizai et al., 2012; Hu et al., 2014).

As shown in Figure 5, the CIA and kaolinite/(illite + chlorite)
show good correlations of the different weathering degrees in the
surrounding areas of the SCS. The weathering status of Hainan is
comparable with that of the Pearl River in South China, Borneo,
and weaker than those of the Malay Peninsula and Sumatra in
tropical Southeast Asia. The Malay Peninsula and Sumatra are
benefited from stable tectonic settings and tropical climate (Liu
et al., 2012), favoring the intensity of chemical weathering with
strong hydrolysis. However, the sediments of Taiwan in tropical/
subtropical climate, highland part of the Mekong and Red River
drainage basins in a subtropical climate, and even North Borneo
in a tropical climate are characterized by strong physical erosion

and moderate weathering conditions due to the combined effects
of tectonic uplift and abundant monsoon rainfall (Liu et al., 2007;
Liu et al., 2008; Liu et al., 2012; Sang et al., 2018). The correlations
of CIA with kaolinite/(illite + chlorite) support our previous
understandings based on the A–CN–K diagram analysis.

For the first and second largest islands in China, the sediment
weathering intensities are different on Taiwan and Hainan Island.
We can ascribe this to the tectonically active and stable conditions
on the two islands (Selvaraj and Chen, 2006; Metcalfe, 2009). The
silicate weathering processes of the small rivers in Taiwan Island
are typical weathering-limited regimes because of the steep
topographic relief and rapid erosion due to plate collision (Bi
et al., 2015). The intensive chemical weathering of Hainan
suggests that the weathering processes exceed the
transportability to remove materials due to the dense
vegetation cover (Committee of Vegetation Map of China,
2007) although the heavy rainfall and tropical cyclones can
trigger short-term extreme flood events (Zhang et al., 2013).
Soils and sediments exposed for long periods could be gradually
leached and become strongly depleted in soluble cations (Stallard,
1988; Garzanti et al., 2013). Thus, the weathering processes of the
sediments in the Hainan Island are typical transport-limited
weathering regimes. This can also be supported by the ∼4 Mt/
yr riverine sediment load fromHainan (Zhang et al., 2013), which
shows a huge difference with Taiwan Island, that is, ∼384 Mt/yr
(Dadson et al., 2003). Located in a tectonically stable area with

FIGURE 4 | A–CN–K diagram showing the weathering trends of the
Hainan riverine sediments. Average data of UCC (Rudnick and Gao, 2003),
Luzon (Liu et al., 2009), Taiwan rivers (Selvaraj and Chen, 2006), Red,
Mekong, and Pearl (Liu et al., 2007), Borneo (Liu et al., 2012), Sumatra
andMalay Peninsula (Liu et al., 2012) rivers are plotted for comparison. Arrows
indicate weathering trends exhibited by these sediments.

FIGURE 5 | Correlation of CIA with kaolinite/(illite + chlorite) showing the
different weathering degrees in the surrounding areas of the SCS. Data of the
geochemical elements of Luzon rivers are from the study by Liu et al. (2009),
Taiwan rivers from the study by Selvaraj and Chen (2006), the Red,
Mekong, and Pearl rivers from the study by Liu et al. (2007), the Malay
Peninsula, Sumatra, and Borneo rivers from the study by Liu et al. (2012), and
Hainan rivers (this study). Data of the clay minerals of the Luzon rivers are from
the study by Liu et al. (2009), the Taiwan rivers from the study by Liu et al.
(2008), the Red, Mekong, and Pearl rivers from the study by Liu et al. (2007),
the Malay Peninsula, Sumatra, and Borneo rivers from the study by Liu et al.
(2012), and Hainan rivers from the study by Hu et al. (2014).
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high temperature and rainfall, the Hainan Island could afford
sediments with intensive chemical weathering to the sea.

CONCLUSIONS

The concentrations of major and trace elements in the Hainan
riverine sediments were analyzed. The high CIA, low WIP, and
high weathering indexes (such as αCa, αNa, αK, αSr, and αBa
values) indicate an advanced stage of weathering of Hainan
sediments. The similar values of the CIA at different parts of
the Hainan Island suggest that there is little difference in
weathering products although the parent rocks are different.
The low WIP and high αCa, αK, αSr, and αBa values of north
Hainan indicate the highest weathering degree, which is mainly
influenced by the flat topography. The higher αNa, αK, αSr, and
αBa values of southwest Hainan suggest that although the overall
weathering degree of the southwest Hainan is comparable with
the east Hainan, the leaching of elements such as Na, K, Sr, and Ba
is more extreme. Their main rock types are the same, that is,
granitic rocks. The significant difference between the southwest
and east Hainan is the low and high summer rainfall. The
stronger physical denudation should lead to shorter residence
time and lower leaching intensity in the east Hainan than those of
the southwest Hainan. Further studies on the “residence time” or
“comminution age” of sediments from the small mountainous
rivers on the Hainan Island are needed in the future. Compared
with the adjacent area, the weathering degree of the Hainan
Island is intensive. The weathering status is comparable with that
of the Pearl River and Borneo, and relatively weaker than that of
the Malay Peninsula and Sumatra due to their stable tectonic
settings, and warm and humid climate. The weathering status of
Hainan sediments is stronger than those of the Taiwan, Red, and
Mekong rivers. Compared to the Taiwan riverine sediments, the
weathering processes of the sediments in the Hainan Island are
typical transport-limited weathering regimes.
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Zircon U-Pb Dating for Paragneiss in
the Xinxian Area in the Dabie–Sulu
Orogenic Belt and Its Geochemical
Characteristics
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In order to understand the subduction of the Yangtze block and its collision with the North
China Craton, we performed the elements analysis and zircon U-Pb dating on paragneiss
from Xinxian area, which located along the west edge of the Dabie-Sulu ultrahigh-pressure
(UHP) metamorphic belt. The major elements analysis showed SiO2, Al2O3, and K2O were
enriched and the rare-earth element (REE) analysis showed the paragneiss had a high
content of REEs, especially light rare Earth elements (LREEs). The elements analysis
suggest that the protolith of paragneiss may be formed by terrestrial materials. As reflected
by cathode luminescence (CL), zircon in rocks was metomorphic and had a core-edge
microstructure. The edge of zircon was dated by LA-ICP-MS at 233 ± 24Ma, which
suggests that the paragneiss was formed later than the Triassic. The inherited zircon had a
large age range of 456–1,727 Ma, mainly in the range of 705–811Ma. The wide range of
ages suggests that the protolith of paragneiss was sedimentary rocks formed no earlier
than the Paleozoic. And the paragneiss from Xinxian area were generated in the Dabie-Sulu
ocean basin or abortive ocean basin in the Paleozoic era.

Keywords: zircon U-Pb age, dabie-sulu UHP metamorphic belt, paragneisses, xinxian, protolith of paragneiss

INTRODUCTION

As one of the largest UHP metamorphic belts in the world, the Dabie-Sulu belt, located between the
northern margin of the Yangtze Craton and the southern margin of the North China Craton, has
received much attention. It has been widely investigated since the discovery of coesite and
microgranular diamond in its eclogite (Okay et al., 1989; Wang et al., 1989; Shutong et al., 1992;
Shu-tong et al., 2003). Many geochronological researches have shown that the Dabie-Sulu UHP
metamorphic belt was formed by the subduction of the Yangtze block and its collision with the North
China Craton during the Triassic (Liu et al., 2003; Shu-tian and You, 2005). The tectonic evolution of
the subduction-collision was recorded by the rock assemblies in this metamorphic belt.

The metamorphic belt is mainly composed of eclogite, gneiss and jadeitite quartzite, among which
gneiss is the dominant rock and accounts for a larger proportion than any other rock (Dao-gong
et al., 2000; Wang et al., 2000; Zheng et al., 2000; Liu et al., 2004). Some geochronological and
geochemical studies showed that the protolith of gneiss was related to the Neoproterozoic rift
magmatism on the northern edge of the Yangtze block (Zheng et al., 2003; Zheng et al., 2006).
Besides, other studies found that the protolith also contained Paleoproterozoic and Archean
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metamorphic rocks and some Neoproterozoic and Paleozoic
granites (Chen et al., 2013). Geochronological and geochemical
analysis of gneiss is helpful for the determination of the
characteristics of the protolith and understanding of the
magmatic activities of the Yangtze Plate during different ages.
Meanwhile, it also helps to understand the subduction of the
Yangtze block and its collision with the North China Craton.

Although several geochronological and isotopic studies on
metamorphic rocks in the Dabie-Sulu UHP metamorphic belt
were carried out in the 1990s, most of them only focused on the
northern Dabie area in the east of the metamorphic belt (Wu
et al., 2001). The researches of the Xinxian area at the western
edge of the metamorphic were largely limited to eclogite and
gneiss (Wang et al., 1993; Xue-xie et al., 1993), while paragneiss
was less studied (Yang et al., 2009; Yang et al., 2009). Based on
these previous studies, we investigated the paragneiss and ages of
zircon in paragneiss and further discussed the protolith of
paragneiss.

REGIONAL GEOLOGY

The paragneiss in the Xinxian area is distributed in the west edge
of the Dabie-Sulu UHP metamorphic belt and is classified into
the quartz andesite gneiss assemblage as shown on the 1:500,000
geological map of the Dabieshan orogenic belt (Figure 1): The
assemblage refers to mica plagioclase gneiss with lenticles of
marble, jadeitite, and eclogite (YG1) and mica plagioclase gneiss
with lenticles of eclogite (YG2) (Shu-tong et al., 2005).
Outcropping strata in the Xinxian area mainly include the

Lower Paleozoic Erlangping Group (Pz1er), Middle Proterozoic
Huwan Formation (Pt2h), Middle Proterozoic Guishan
Formation-Complex (Pt2g), Sinian to Ordovician Xiaojiamiao
Formation (Z-O1x), Devonian Nanwan Formation (Dn), Lower
Cretaceous Chenpeng Formation (Kc), and Quaternary (Q).

The paragneiss in the Xinxian area was earlier classified into
the Archean Dabie Group (Ar3db) and Neoproterozoic Tianpu
Sequence granite paragneiss (Pt3T ηc). It is dominated by the
Dabie gneissic complex composed of metamorphic supracrustal
rocks and metamorphic plutonic rocks. Metamorphic
supracrustal rocks consisted of biotite monzonite paragneiss,
plagioclase hornblende paragneiss, dolomite quartz schist and
magnetite quartzite, among others. Metamorphic plutonic rocks
were composed of monzonite granite gneiss, muscovite diorite
paragneiss and biotite plagioclase paragneiss (Liu et al., 2004).
The Archean Dabie Group (Ar3db) is distributed in the Tongbai-
Dabieshan subzone of the Qinling Stratigraphic Zone and is the
oldest strata of the Qinling Fold System. It mainly outcrops in the
mountainous area at the junction of the three provinces of Henan,
Hubei, and Anhui, and its main body is located in the territories
of Hubei and Anhui provinces. This group was composed of
quartz schist, biotite schist, dolomite plagioclase paragneiss,
dolomite monzonite paragneiss, biotite plagioclase paragneiss,
hornblende diorite paragneiss and banded migmatite, etc. It is in
unconformable contact with the underlying Archean Dabie
Group.

Paragneiss samples were collected for subsequent analysis
from the Xinxian Qianhe quarry and the north of Xinxian
county (the No. 1 and 2 sampling points marked by black
stars in Figure 1). Samples QH-1, QH1A, and QH-2 were

FIGURE 1 |Geological map of the Xinxian area in the Dabie orogenic belt (modified after Kun-guang et al., 2009; Dong-xing et al., 2011). J-K, Jurassic–Cretaceous
volcanic rocks and volcano-sedimentary rocks; Kc, Lower Cretaceous Chenpeng Formation; Dn, Devonian Nanwan Formation; Pz1er, Lower Paleozoic Erlangping
Group; Z-O1, Sinian–Lower Ordovician Xiaojiamiao Formation-Complex; Pt2h, Middle Proterozoic Huwan Formation-Complex; Pt2g, Middle Proterozoic Guishan
Formation-Complex; Ar3db, Neoarchean Dabie Formation-Complex; ηc35, Late Yanshanian monzonitic granite; cπ35, Yanshanian granite porphyry; hg

3
5, Yanshanian

quartz diorite; Pt3T ηc, Neoproterozoic Tianpu Sequence granite paragneiss.
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TABLE 1 | Analytical results of major (%) and trace elements (μg/g) for the Xinxian paragneisses.

Samples QH-1 QH-2 QH-3 XX4-1 XX4-2 Samples QH-1 QH-2 QH-3 XX4-1 XX4-2 Samples QH-1 QH-2 QH-3 XX4-1 XX4-2

SiO2 76.42 76.10 76.41 75.93 68.29 As 8.22 8.56 8.86 0.00 0.00 Ba 162.00 167.00 181.00 864.90 1176.60
TiO2 0.09 0.09 0.10 0.18 0.56 Li 1.30 1.15 1.65 0.00 0.00 Hf 9.80 8.76 8.73 7.16 4.90
Al2O3 11.65 11.58 11.91 12.58 16.06 Be 4.17 3.79 4.90 0.00 0.00 Ta 1.68 1.61 1.81 1.05 0.77
Fe2O3 1.56 1.56 1.49 1.59 3.02 Sc 3.94 4.37 4.17 4.26 6.55 W 0.48 1.06 0.35 0.00 0.00
MnO 0.03 0.03 0.04 0.06 0.07 V 1.35 0.72 2.18 6.42 30.27 Tl 0.40 0.40 0.45 0.00 0.00
MgO 0.00 0.00 0.00 0.15 1.07 Cr 12.30 18.70 6.98 307.50 213.10 Pb 17.40 17.00 20.60 16.74 11.29
CaO 0.13 0.17 0.26 0.14 0.53 Co 0.91 0.82 0.62 2.81 4.28 Bi 0.07 0.05 0.08 0.00 0.00
Na2O 4.09 3.90 4.07 3.70 4.43 Ni 5.92 7.84 3.22 20.96 14.73 Th 10.20 11.30 11.70 9.22 8.40
K2O 4.26 4.48 4.43 4.93 3.71 Cu 6.89 5.19 2.68 33.10 24.35 U 2.16 2.05 2.45 1.83 1.67
P2O5 0.01 0.01 0.01 0.01 0.09 Zn 55.10 42.70 68.60 30.44 52.59 La 35.20 43.20 43.40 20.29 53.53
LOI 0.45 0.44 0.38 0.23 1.68 Ga 16.90 17.20 18.30 18.20 21.40 Ce 70.70 87.10 84.60 45.50 99.66
Total 98.69 98.35 99.09 99.50 99.51 Ge 1.25 1.40 1.52 2.09 1.65 Pr 8.07 9.75 9.87 6.14 11.64
Na2O + K2O 8.35 8.38 8.50 8.63 8.14 As 8.22 8.56 8.86 0.00 0.00 Nd 29.00 34.90 34.90 23.71 43.14
Na2O/K2O 0.96 0.87 0.92 0.75 1.19 Rb 97.80 101.00 117.00 147.00 116.00 Sm 6.32 7.50 7.84 5.39 7.41
Li 1.30 1.15 1.65 0.00 0.00 Sr 18.80 19.50 10.40 50.24 116.60 Eu 0.25 0.27 0.28 0.91 1.69
Be 4.17 3.79 4.90 0.00 0.00 Y 42.18 54.10 59.07 38.54 43.26 Gd 5.69 6.61 6.66 5.03 6.83
Sc 3.94 4.37 4.17 4.26 6.55 Zr 230.00 212.00 216.00 210.10 178.10 Tb 1.20 1.39 1.45 0.92 1.10
V 1.35 0.72 2.18 6.42 30.27 Nb 18.90 19.60 22.30 14.70 11.38 Dy 7.69 9.04 9.30 5.61 6.28
Cr 12.30 18.70 6.98 307.50 213.10 Mo 6.39 3.86 2.66 0.00 0.00 Ho 1.75 2.13 2.22 1.21 1.29
Co 0.91 0.82 0.62 2.81 4.28 Ag 0.46 0.41 0.48 0.00 0.00 Er 4.99 6.24 6.53 3.52 3.50
Ni 5.92 7.84 3.22 20.96 14.73 Cd 0.18 0.17 0.19 0.00 0.00 Tm 0.78 1.01 1.05 0.54 0.50
Cu 6.89 5.19 2.68 33.10 24.35 In 0.06 0.06 0.07 0.00 0.00 Yb 5.19 6.79 7.29 3.64 3.28
Zn 55.10 42.70 68.60 30.44 52.59 Sn 2.84 3.25 3.63 0.00 0.00 Lu 0.72 0.96 1.04 0.56 0.52
Ga 16.90 17.20 18.30 18.20 21.40 Sb 0.63 0.65 1.77 0.00 0.00 TREE 177.55 216.89 216.43 122.97 240.37
Ge 1.25 1.40 1.52 2.09 1.65 Cs 0.45 0.45 0.96 1.04 2.64 LREE/HREE 5.34 5.35 5.09 4.85 9.32
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collected from the quarry (N 31°41.551′, E 114°56.921′) located
on the east side of the road to the south of Qianhe village. Samples
XX4-1 and XX4-2 were collected from a hill behind the coach
station in the north of Xinxian county (N 31°41.329′, E
114°54.262′) (Figure 2). These rocks are off-white and
medium to fine-grained and have black and white strips. They
are composed of potassium feldspar, plagioclase, quartz, biotite,
etc. Samples XX4-1 and XX4-2 were obtained from thick-layered
and thin-layered paragneiss, respectively.

ANALYTICAL METHODS

Petrochemical Analysis
Petrochemical tests were conducted on 5 samples from Qianhe and
the north of Xinxian county for major and trace elements analyses.
Experiments were carried out at the State Key Laboratory of Isotope
Geochemistry, Guangzhou Institute of Geochemistry, Chinese
Academy of Sciences. Major elements were determined by the
Varian Vista-PRO ICP-AES (CCD full-spectrum direct reading
ICP-AES), with an analytical error (RSD) of less than 5%.
Detailed procedures can be found in (Goto and Tatsumi, 1994).
Trace elements were determined by the PE-Elan 6000 ICP-MS in the
ultra-purification laboratory of the Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences, with a RSD of less
than 10%. Detailed procedures can be found in (Liu et al., 1996).

Zircon U-Pb Dating
Zircon samples were processed before U-Pb dating to get rid of
mixtures. First, ca. 500 g of rock sample was weighed out and crushed
into 1 cm3 grains. Then these grains were put into a 20 cm-size
stainless steel bowl and were ground repetitively for 3–5 s each time
in an XZW100 vibrating mill until they were broken into 60 mesh.
Dust was removed and an aluminum-made batea was used to
concentrate heavy minerals. Then through magnetic and
electromagnetic processing, magnetic minerals were removed and
refined zircon was obtained. Finally, zircon grains with good crystals
were hand picked under binocular for dating (Zhang et al., 2004).

LA-ICP-MS zircon U-Pb dating was conducted at the Key
Laboratory of Isotope Geochronology and Geochemistry,
Guangzhou Institute of Geochemistry, Chinese Academy of
Sciences. Zircon grains were fixed by epoxy resin and made

into laser ablation sample targets. The sample targets were
ground and polished until the central surface of the zircon
was exposed. Carbon dust was sprayed on zircon for CL
imaging and then was wiped off for LA-ICP-MS U-Pb analysis
(single spot laser ablation was used with a diameter of the laser
spot of 31 μm and at a firing frequency of 8 Hz). Detailed
analytical procedures can be found in (Tu et al., 2011). 204Pb
data were used to correct Pb data in zircon. The errors of single
data points were within 1σ. The 206Pb/238U age was obtained,
whose weighted averages were at the 95% confidence level.
Experimental results were plotted into concordia diagrams
using the software of Isoplot 3.0 (Ludwig, 2012).

EXPERIMENTAL RESULTS

Characteristics of Major Elements
As shown in Table 1, results were obtained through the
geochemical analysis of major elements. It can be seen that
the paragneiss in the Qianhe area has a high content of silicon
(SiO2 � 76.10–76.42%), aluminum (Al2O3 � 11.58–11.91%), and
alkali elements (Na2O + K2O � 8.35–8.50%) but shows a
deficiency in titanium (TiO2 � 0.09–0.10%) and calcium
(CaO � 0.13–0.26%). Its potassium content is comparatively
high (Na2O/K2O � 0.57–0.76) and Aluminous Saturation Index
(A/CNK) is in the range of 1.35–1.38, suggesting that the rock is
peraluminous.

The paragneiss in the north of Xinxian county is consistent
with the one in the Qianhe area in terms of chemical composition,
as it is rich in silicon (SiO2 � 68.29–75.93%), aluminum (Al2O3 �
12.58–16.06%) and alkali elements (Na2O + K2O � 8.14–8.63%)
but poor in titanium and calcium (CaO � 0.14–0.53%). By
comparison, its content of potassium (Na2O/K2O � 0.79–1.19)
is lower than that of the paragneiss in the Qianhe area. As the
A/CNK is in the range of 1.43–1.85, it is evident that the rock is
peraluminous.

Characteristics of Trace and Rare Earth
Elements
The results of trace element analysis are shown in Table 1. The
total amount of REE was high in the Qianhe paragneiss (QH-1,

FIGURE 2 | Outcrops of paragneiss in the north of Xinxian county (A) and in the Xinxian Qianhe quarry (B).
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QH-2, and QH-3), up to 117.55–216.89 μg/g. As shown in the
chondrite-normalized REE diagram (Figure 3), LREEs were
enriched as La/Yb was between 4.27 and 4.86 and the negative
Eu anomaly was evident (δEu is 0.12–0.13) (Sun and
McDonough, 1989). Besides, its pattern curve was skewed to
the right and had an obvious V valley. As shown in the primitive
mantle-normalized trace element spider diagram (Figure 4),

elements such as Rb, K, Th, and U were enriched in the
paragneiss in the Qianhe area whereas elements such as Ba,
Nb, Sr, and Ti were depleted.

The total amount of REEs was also high in the Xinxian
paragneiss (XX4-1, XX4-2), up to 122.97–240.37 μg/g. Its
chondrite-normalized REE plot was similar to that of the
paragneiss of the Qianhe area; however, the content of heavy

TABLE 2 | Zircon LA ICP MS U-Pb age data of Qianhe and Chengbei paragneisses in Xinxian.

No. Sample Pb Th U Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U

1 QH-1-01 40 210 229 0.92 0.0714 ± 37 1.1861 ± 662 0.1195 ± 20 727.7 ± 11.4
2 QH-1-02 51 276 270 1.02 0.0664 ± 24 1.2130 ± 495 0.1311 ± 22 793.9 ± 12.6
3 QH-1-03 99 139 2381 0.06 0.0764 ± 25 0.3534 ± 119 0.0334 ± 4 211.5 ± 2.3
4 QH-1-04 69 145 1536 0.09 0.0732 ± 27 0.3682 ± 147 0.0361 ± 5 228.6 ± 3.0
5 QH-1-05 106 235 1941 0.12 0.0702 ± 21 0.4249 ± 128 0.0436 ± 6 275.0 ± 3.5
6 QH-1-06 50 253 274 0.92 0.0639 ± 25 1.1170 ± 436 0.1261 ± 27 765.9 ± 15.3
7 QH-1-07 59 222 297 0.75 0.1149 ± 57 1.9402 ± 899 0.1222 ± 16 743.4 ± 9.1
8 QH-1-08 28 113 156 0.72 0.0606 ± 23 1.1113 ± 447 0.1324 ± 22 801.6 ± 12.7
9 QH-1-09 103 753 2008 0.37 0.0920 ± 35 0.4554 ± 174 0.0358 ± 6 227.0 ± 3.9
10 QH-1-10 128 324 2348 0.14 0.0814 ± 31 0.4535 ± 206 0.0398 ± 8 251.7 ± 5.1
11 QH1A-01 63 341 357 0.95 0.0628 ± 30 1.1044 ± 530 0.1261 ± 20 765.4 ± 11.3
12 QH1A-02 39 211 221 0.96 0.0665 ± 38 1.1492 ± 657 0.1237 ± 21 752.1 ± 12.0
13 QH1A-03 45 252 252 1 0.0603 ± 39 1.1180 ± 707 0.1328 ± 24 803.8 ± 13.9
14 QH1A-04 60 355 354 1 0.0608 ± 39 1.0201 ± 639 0.1189 ± 20 724.4 ± 11.7
15 QH1A-05 76 481 429 1.12 0.0639 ± 45 1.1445 ± 786 0.1266 ± 24 768.7 ± 13.8
16 QH1A-06 60 314 333 0.94 0.0622 ± 50 1.1760 ± 915 0.1332 ± 28 805.9 ± 15.9
17 QH1A-07 35 173 214 0.81 0.0621 ± 51 1.1070 ± 858 0.1259 ± 30 764.6 ± 17.2
18 QH1A-08 52 315 306 1.03 0.0633 ± 48 1.1247 ± 830 0.1236 ± 27 751.1 ± 15.4
19 QH1A-09 127 271 358 0.76 0.1749 ± 308 6.9620 ± 2.0643 0.1523 ± 190 913.6 ± 106.5
20 QH1A-10 32 42 532 0.08 0.0810 ± 120 0.8841 ± 2528 0.0563 ± 40 352.9 ± 24.6
21 QH1A-11 60 352 312 1.13 0.0646 ± 55 1.2665 ± 1035 0.1337 ± 26 809.1 ± 14.9
22 QH1A-12 49 276 258 1.07 0.0615 ± 61 1.2061 ± 1155 0.1327 ± 31 803.0 ± 17.4
23 QH1A-13 27 118 157 0.75 0.0597 ± 55 1.0881 ± 981 0.1233 ± 28 749.5 ± 16.3
24 QH1A-14 53 309 295 1.05 0.0563 ± 43 1.0710 ± 796 0.1294 ± 27 784.3 ± 15.6
25 QH1A-15 42 227 271 0.84 0.0548 ± 44 0.8942 ± 675 0.1119 ± 24 684.0 ± 14.0
26 QH1A-16 29 141 161 0.87 0.0490 ± 44 0.9469 ± 795 0.1342 ± 31 811.9 ± 17.7
27 QH1A-17 38 193 209 0.92 0.0478 ± 40 0.9223 ± 719 0.1332 ± 27 806.0 ± 15.6
28 QH1A-18 49 241 278 0.87 0.0529 ± 45 0.9714 ± 789 0.1268 ± 32 769.5 ± 18.1
1 XX4-1-1 34.9 329 230 1.43 0.0781 ± 84 1.0141 ± 1135 0.0914 ± 21 564.0 ± 12.6
2 XX4-1-2 12.7 80 77 1.04 0.1279 ± 157 1.5972 ± 1976 0.0861 ± 27 532.7 ± 15.8
3 XX4-1-3 10.8 92 49 1.88 0.0589 ± 79 1.1037 ± 1517 0.1338 ± 43 809.7 ± 24.5
4 XX4-1-4 30 115 570 0.2 0.0541 ± 66 0.3111 ± 369 0.0406 ± 11 256.3 ± 7.1
5 XX4-1-5 12.6 78 35 2.26 0.2597 ± 331 5.8428 ± 9430 0.1471 ± 102 884.5 ± 57.4
6 XX4-1-6 7.3 87 27 3.28 0.0829 ± 114 1.4493 ± 1909 0.1276 ± 56 774.4 ± 32.1
7 XX4-1-7 50.7 1029 366 2.81 0.0595 ± 62 0.6289 ± 605 0.0734 ± 21 456.8 ± 12.9
8 XX4-1-8 36.5 195 227 0.86 0.0444 ± 46 0.7755 ± 755 0.1181 ± 39 719.7 ± 22.7
9 XX4-1-9 38.1 59 52 1.14 0.2620 ± 372 17.1777 ± 2.9396 0.3072 ± 336 1727.1 ± 165.8
10 XX4-1-10 13.5 73 106 0.69 0.0319 ± 47 0.5059 ± 808 0.1063 ± 56 651.4 ± 32.6
11 XX4-1-11 21.8 116 114 1.01 0.0492 ± 59 0.8956 ± 1072 0.1235 ± 41 750.7 ± 23.5
12 XX4-1-12 20.8 593 83 7.15 0,1119 ± 171 1.7061 ± 4296 0.1011 ± 77 620.8 ± 45.2
13 XX4-1-13 18.8 89 106 0.84 0.0536 ± 73 0.9852 ± 1320 0.1278 ± 36 775.1 ± 20.8
14 XX4-1-14 183.5 346 605 0.57 0.1024 ± 130 3.6523 ± 4709 0.2446 ± 77 1410.5 ± 40.0
1 XX4-2-3 12 125 52 2.41 0.0659 ± 87 1.0539 ± 1352 0.1207 ± 39 734.8 ± 22.3
2 XX4-2-4 19.3 173 100 1.72 0.0915 ± 103 1.3240 ± 1624 0.1032 ± 30 633.4 ± 17.7
3 XX4-2-5 16.1 138 90 1.53 0.0639 ± 72 0.9180 ± 982 0.1078 ± 33 660.2 ± 18.9
4 XX4-2-6 21.5 209 130 1.61 0.0496 ± 69 0.6700 ± 907 0.0966 ± 29 594.5 ± 17.3
5 XX4-2-7 14.9 105 75 1.4 0.0830 ± 90 1.4476 ± 1451 0.1289 ± 45 781.6 ± 25.5
6 XX4-2-8 11.7 93 62 1.49 0.0647 ± 86 1.0191 ± 1356 0.1156 ± 36 705.4 ± 20.8
7 XX4-2-9 8.1 72 41 1.74 0.0734 ± 137 1.1542 ± 1995 0.1171 ± 44 713.8 ± 25.5
8 XX4-2-10 16.1 136 74 1.84 0.0845 ± 102 1.3956 ± 1534 0.1208 ± 35 735.1 ± 20.2
9 XX4-2-11 11.9 64 68 0.94 0.0561 ± 121 0.9941 ± 1955 0.1276 ± 59 774.1 ± 33.7
10 XX4-2-12 22.2 224 104 2.16 0.0667 ± 217 1.1527 ± 3379 0.1229 ± 87 747.4 ± 50.1
11 XX4-2-13 10 81 45 1.82 0.0879 ± 395 1.6321 ± 6640 0.1293 ± 12 783.7 ± 73.0
12 XX4-2-14 14.1 73 53 1.39 0.2033 ± 1171 5.3510 ± 2.7974 0.1599 ± 208 956.0 ± 115.8
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rare Earth elements (HREE) was higher with La/Yb in the range
of 4.00–11.71. Besides, the negative Eu anomaly was relatively
indistinct with δEu of 0.53–0.73. As shown in the spider diagram
(Figure 4), elements such as Rb, K, Ba, Th, and U were enriched
in the paragneiss in the north of Xinxian county whereas elements
such as Nb, Sr, and Ti were depleted.

Results of Zircon Dating
Zircon U-Pb dating was conducted on Samples QH-1 and QH-1-
A from the Qianhe area and Samples XX4-1 and XX4-2 from the
north of Xixian county. The CL image (Figure 5) shows that
zircon grains were of similar sizes with a length to width ratio of
about 1:2. All zircons contained detrital zircon and most of them
had a clear core-edge double structure. Detrital zircon in the core
of zircons had oscillatory zoning. For most zircons, the edge was
darker than the core (Table 2).

Five points on the detrital zircon of the metamorphic
composite zircon sample QH-1 were selected for the
determination of Th and U concentrations (Figure 5A). The
ratio of Th/U suggests that these zircons were formed during the
Proterozoic at the ages of 801, 793, 756, 743, and 727 Ma,
respectively. Five points on the edge of the metamorphic
composite zircon were dated at 251, 228, 226, and 211 Ma,
respectively (Figure 6).

A total of 17 points on the detrital zircon of the metamorphic
composite zircon sample QH-1-A were selected for the
determination of Th and U concentrations (Figure 5B). Four
age ranges were obtained: 913, 811-803, 784-724, and 684 Ma.
One point on the edge of the metamorphic zircon was dated at
352 Ma.

A total of 24 points on the detrital zircon of Xinxian
metamorphic composite zircon samples were selected for the
determination of Th and U concentrations (Figure 5C). These
points have a wide age range: 456–1,727 Ma. One point on the
edge of the metamorphic zircon was dated at 256 Ma.

U-Pb dating results for the edge of the metamorphic zircon
and the metamorphic composite zircon were more concentrated,
with ages ranging from 211 to 352 Ma and concordant ages of
233 ± 24 Ma. Besides, the Th/U ratios of these seven points are in
the range of 0.08–0.37 while three of them are below 0.1,
significantly smaller than the Th/U ratio of magmatic zircon
(generally greater than 0.4) and closer to that of metamorphic

FIGURE 5 |CL images of zircon in paragneiss ((A)Qianhe QH-1 sample,
(B) Qianhe QH-1-A sample, (C) XX4-1 thick-layered paragneiss sample and
XX4-2 thin-layered paragneiss sample from the north of Xinxian county).

FIGURE 3 | Primitive mantle-normalized trace-elements spider diagram.

FIGURE 4 | Chondrite-normalized REE plot of paragneiss.
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zircon (Bryant et al., 2002). As suggested by the U-Pb dating
results, the detrital zircons in the samples were mainly formed
during the Neoproterozoic (564–884 Ma), with their ages mainly
in the range of 705-811 Ma. However, some detrital zircons were
formed in the Paleozoic and Middle Proterozoic as shown by
dating results.

DISCUSSION

Analysis of Zircon U-Pb Dating Results
Two results were obtained from zircon U-Pb dating. The first one
was about the edge of metamorphic zircon, whose age was in the
range of 211–352 Ma and concordant age was 233 ± 24 Ma. The
other result was about detrital zircon in metamorphic zircon,
whose age ranged from 456 to 1,727 Ma, mostly between 705 and
811 Ma.

The edge of the metamorphic zircon in samples was dated to
the Triassic, suggesting that paragneiss in Xinxian county
experienced high-pressure metamorphism during the Triassic.
It was consistent with a large amount of previous research on the
metamorphic age of the Dabie-Sulu UHP metamorphic belt
which confined the age to the Triassic. Hacker et al. (1998)
suggested that the metamorphism of the Dabie-Sulu UHP
metamorphic belt reached its peak at 245 Ma through zircon
dating for paragneiss. Liu et al. (2006) found through U-Pb dating
for the edge of metamorphic zircon with coesite that the
metamorphic event of the Dabie-Sulu UHP metamorphic belt
took place during 240–225 Ma. Our work suggests that the edge
of metamorphic zircon is consistent with the data reported by
previous researchers, providing further evidence that paragneiss
in Xinxian county experienced ultrahigh-pressure metamorphic
events during the Triassic.

The dating results of detrital zircon showed that many
samples were dated to the middle of the Neoproterozoic,

which accounted for about 72% of the total number of
samples. Their age range of 700–800 Ma was consistent
with the characteristic zircon age of rocks in the Yangtze
block (Rowley et al., 1997; Hacker et al., 1998). Considering no
large-scale magmatic activity was recorded in the Middle
Neoproterozoic in the North China craton, the protolith of
the paragneiss in Xinxian county was hence supposed to
originate from the Yangtze block. As the magmatic activity
was caused by the breakdown of the Rodinia supercontinent,
the protolith of the paragneiss of Xinxian county may
contain granite formed in the Middle Neoproterozoic in
the Yangtze block. In addition, part of detrital zircon in
Sample XX4-2 was dated to the Paleozoic (456–532 Ma),
which was consistent with data obtained by previous
researches of the paragneiss of the UHP belt (Hacker et al.,
1998; Liu et al., 2004). However, such age data were in small
amount in previous researches and were considered to be the
result of the loss of Pb, or due to the fact that the core and edge
of zircon were not separated. Hence, these data were not
widely discussed or constraining the age by the fugacity state
of the paragneiss and orthogneiss (Fu-lai and Xue, 2007).
Additionally, (Yuan et al., 2015) found that the core of
metamorphic zircon in paragneiss in Luotian of Hubei
province was mostly dated to the Paleozoic. No signs of Pb
loss could be found, and the boundary between the margin
and core was also clear on CL images. Further, considering
parts of zircon were dated to the Paleozoic in our work and
they had the Th/U ratio close to the ratio range of zircon of
magmatic origin (Dao-gong et al., 2001), part of the protolith
of the paragneiss was supposed to form later than 456 Ma. As
some detrital zircon in the samples was dated to the Middle
Proterozoic, the source material of the protolith could
possibly come from the crustal residual of the Middle
Proterozoic in the Yangtze block rather than from the
Paleozoic sedimentary cover.

FIGURE 6 | Zircon U-Pb concordia diagram for paragneisses (A); zircon U-Pb concordant ages in the range of 705–811 Ma (B).
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Protolith Analysis
With regard to the protolith of the paragneiss of the Dabie-Sulu
UHP metamorphic belt, it was considered in previous research to
be mainly granite formed by the magma coming from the Rodinia
rift in the Neoproterozoic at the north edge of the Yangtze block
(Zheng et al., 2003). Based on geochemical analysis of the
paragneiss in the Dabie belt and Cretaceous granite, the source
materials were likely to come from the north edge of the
subducting Yangtze block (Frost and Frost, 2011). Therefore,
some researchers proposed that the paragneiss in the Dabie belt
and Cretaceous granite were produced at different horizons of the
Yangtze block (Shu-guang et al., 1997).

The samples of paragneiss from Xinxian had a high SiO2

content, up to 68.29–76.42%, and their A/CNK reached
1.35–1.85, indicating they are peraluminous. The alkali content
ranged between 8.14 and 8.63%, in which the content of
potassium is relatively high as the ratio of Na2O/K2O is
between 0.57 and 1.19. The content of calcium was low and in
the range of 0.13–0.53% (Wong et al., 2009; Frost and Frost,
2011). Light rare Earth elements (LREEs) were enriched in the
samples and negative Eu anomaly was distinct. Elements such as
Rb, K, Th, and U were enriched whereas elements such as Nb, Sr,
and Ti were depleted. This distribution pattern suggests that the
protolith was formed by the materials of the continental crust
(Chen et al., 2006). Felsic magma generated by partial melting of
felsic rock under high pressure can extract Si, K, Na, LILEs, and
LREEs (Hermann and Green, 2001), and hence, the magma can
become enriched in silicon, alkali, aluminum and LREEs
while depleted in calcium and magnesium and iron. As Gu
found LILEs and LREEs were depleted in eclogite (Gu et al.,
2013), it suggests that the paragneiss in Xinxian county might be
partially melted, like the felsic magma formed under high
pressure. The continuous process from sub-solidus
dehydration to partial melting within the UHP gneissic rocks
is also evidenced by experimental and petrological observations in
Shuanghe paragneiss (Liu and Wu, 2013). According to the
geochemical characteristics of the samples, the protolith is
likely to be sedimentary rock that has been partially melted
during the subduction and retreat of the Yangtze block (Wallis
et al., 2005).

Tectonic Setting of the Shuanghe UHP
Metamorphic Protolith
By volume, the gneiss occupies between 70 and 80% of the Dabie-
Sulu complex (e.g., Dao-gong et al., 2000; Wang et al., 2000; Hui-
fen et al., 2001). Of these, 40–60% comprise foliated, garnet-
bearing, A-type granitic rock (Shu-tian and You, 2005). These
rocks are associated with jadeite-quartzites and marbles that
formed from quartz sandstone and limestone respectively.
According to the zircon U-Pb dating results, the protoliths of
these rocks are controlled by Paleozoic Dabie - Sulu basin.
Distributions of the major-elements of these rocks are high
SiO2, alkali-rich, high Na2O and low Al2O3. The mineral
component is more rich in alkaline ferromagnesian. The
sedimentary origins of these protoliths appear to be neritic
facies, some of which are clastic sediments (quartz sandstone

to arkoses) and chemical sediments (limestone). These are
characteristic of the continental slope environment. The
Dabie-Sulu ocean basin was not a mature ocean; it lacked
deep-water sedimentation, such as siliceous deposits and
turbidites. It evidently lacked contemporaneous pillow lavas
and cumulates of ophiolite rock assemblages which is why we
have not found remnants of ophiolitic melanges (Wang and Cong
Bo-lin, 1998). As the Dabie-Sulu ocean basin was an aborted
oceanic basin, it narrowed, with a resultant increase in salinity.
This ultimately led to the oceanic basin sediments becoming
increasingly alkaline. This provided the necessary material
conditions for the formation of alkaline mafic minerals (sodic
pyroxenes and amphiboles) during the Late Triassic
metamorphism of these rocks.

CONCLUSION

1) Paragneiss in the Qianhe and Chengbei areas of Xinxian
county experienced a metamorphic event during 233 ±
24 Ma, suggesting that the rock was formed later than the
Permian.

2) Paragneiss in Xixian county is enriched in silicon, alkali,
aluminum and LREEs while depleted in calcium,
magnesium and iron. Besides, negative Eu anomalies are
evident. It suggests that the protolith may be formed by
terrestrial materials.

3) Detrital zircon in paragneiss in the Qianhe area and north of
Xinxian county was dated to 456–1727 Ma, mainly in the
range of 705–811 Ma. It suggests that the protolith should be
formed no earlier than 456 Ma. And they were generated in
the Dabie-Sulu ocean basin or abortive ocean basin in the
Paleozoic era.
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The ubiquity of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and their temperature
sensitivity make them one of the most effective tools for paleoclimate reconstruction. High-
and low-latitude climates influence the Okinawa Trough (OT). It receives diverse inputs
from the East China Sea, the western Pacific, and the Kuroshio Current, providing good
conditions for paleoclimate studies. Here, isoprenoid GDGTs (isoGDGTs), branched
GDGTs, and hydroxylated GDGTs (OH-GDGTs) were studied to reconstruct the sea
surface temperature (SST) of the central OT for the past 8.2 kyr using the tetraether index of
86 carbon atoms at low latitudes (TEXH86) and the ring index of OH-GDGTs (RI-OH). The
GDGT-0/crenarchaeol ratios ranged from 0.39 to 0.98. The branched and isoprenoid
tetraether index and the methane index values were lower than 0.1 and 0.5, respectively,
indicating that the isoGDGTs were mainly derived from marine Thaumarchaeota and that
TEXH86 could be used to reconstruct the paleotemperatures. The TEXH86 SSTs ranged from
21.6 to 27.2°C during 8.2 kyr. The overall range of TEXH86 SSTs is close to the UK’

37 SST of
the middle OT and reflects the mean annual SST. In contrast, RI-OH temperatures varied
from 17.4 to 26.0°C, showing a lower trend than TEXH86 SSTs. The core top RI-OH
temperature is 24.1°C, in line with the mean annual seawater temperature at 40 m (24.2°C)
in the study area, which likely reflects the subsurface temperature in this case. The small
overall warming trend of TEXH86 SSTs agrees with the increasing intensity of the Kuroshio
Current during the last 8.2 kyr, indicating that the SST evolution is governed by the
Kuroshio Current that transports heat from the western tropical Pacific. The decreasing
temperature differences between TEXH86 and RI-OH and between UK’

37 and RI-OH showed
increased mixing of the upper water column, which was in good accordance with the
increasing low-latitude winter insolation decoupling from the East Asian summermonsoon.
The cold event that occurred at 7.4–6.6 kyr was magnified (~5°C) at the TEXH86 and RI-OH
temperatures and possibly caused by tephra’s significant input (~7.3 kyr).

Keywords: isoprenoid glycerol dibiphytanyl glycerol tetraethers, hydroxylated glycerol dibiphytanyl glycerol
tetraethers, TEXH

86, sea surface temperature, okinawa trough
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INTRODUCTION

The Okinawa Trough, located in the western North Pacific, was
influenced by the East Asian monsoon (ESM). Paleoclimate
records indicated that correlations between temperature
variation and East Asian summer monsoon (EASM)
precipitation have become weak since the middle Holocene
(Liew et al., 2006; Peterse et al., 2011; Park et al., 2014).
However, such records in marine sediments are sparse (Xu
et al., 2018 and references therein). The Okinawa Trough (OT)
has been regarded as an ideal location for paleoclimatic,
paleohydrogeological, and paleoceanographic studies because
it is within the influence of the climate of both the high-latitude
North Atlantic and the low-latitude western Pacific Ocean (Sun
et al., 2005; Kubota et al., 2010; Ruan et al., 2015; Xu et al., 2018).
The seasonal variations in EAM are driven by Northern
Hemisphere summer and winter solar insolation, reflecting
teleconnection with the high-latitude North Atlantic (An et
al., 2001; Wang et al., 2005; Ruan et al., 2015; Huang and
Sarnthein, 2021). The Kuroshio Current (KC) originates from
the western Pacific warm pool and transports massive amounts
of warm and salty water into the OT (Hu et al., 2015; Zheng
et al., 2016). Paleoclimate indicators have demonstrated the
influences of both the EAM and KC on the OT paleoclimate,
such as oxygen isotopes (Kubota et al., 2010), Mg/Ca ratios of
planktonic foraminifera (Sun et al., 2005), alkenone
unsaturation index (UK’

37; Ruan et al., 2015), and the
tetraether index of 86 carbon atoms (TEX86; Xu et al., 2018).
Sea surface temperatures (SSTs) from different locations of the
OT tend to reveal different controlling factors on the
paleoclimate (Ruan et al., 2015; Zhao et al., 2015; Xu et al.,
2018). The cold anomalies recorded in the northern Atlantic,
such as the 4 kyr event, have affected the northern and southern
OT paleoclimate (Sun et al., 2005; Ruan et al., 2015; Zhao et al.,
2015). The UK’

37 SST of the southern OT has been observed to
have decreased since 7.4 kyr BP (Ruan et al., 2015), which was
attributed to the reduction in Northern Hemisphere summer
solar insolation and the weakening of EASM intensity (Ruan
et al., 2015 and references therein). However, in the southern
OT, Xu et al. (2018) found that paleotemperatures from UK’

37/
TEX86 decoupled from the EASM during the last 13.3 kyr BP. In
contrast, the western tropical Pacific and Northern Hemisphere
winter solar insolation were demonstrated to be the controlling
factors of SSTs. Whether EAM changes in the OT are in phase

with temperature changes in the EAM region during the
Holocene remains unsolved (Liew et al., 2006; Peterse et al.,
2011; Park et al., 2014). Therefore, further investigations are
needed to elucidate the OT paleotemperature evolution and the
controlling factors.

TheTEX86 index (Table 1) was proposed by Schouten et al. (2002)
based on the increasing number of cyclopentane rings in isoprenoid
glycerol dibiphytanyl glycerol tetraethers (isoGDGTs) with increasing
temperature (Gliozzi et al., 1983; Uda et al., 2001; Sinninghe Damsté
et al., 2002). The export depth of the TEX86 signal in the water
column is still under debate (Schouten et al., 2002, 2013; Ingalls et al.,
2006; Rueda et al., 2009; Jia et al., 2012; Zhang and Liu, 2018). Most
researchers now regard TEX86 as a better reflection of subsurface
temperatures (Huguet et al., 2007; Jia et al., 2012). However, some
studies have shown that TEX86 corresponds well with the annual
mean SST (Ingalls et al., 2006; Rueda et al., 2009). Consequently, the
use of TEX86 for temperature reconstruction in specific areas needs to
be evaluated.

Marine Group I (MG-I) Thaumarchaeota were proposed to
produce isoGDGTs used in the TEX86 equation (Table 1;
Supplementary Figure S1; Brochier-Armanet et al., 2008; Spang
et al., 2010). To achieve better accuracy, Kim et al. (2010) proposed
TEXL

86 for high latitudes (<15°C) and TEXH
86 for low latitudes (>15°C)

according to studies on global ocean samples (Table 1). To further
assess the proxy, the Bayesian regression approach, which offers
several advantages, was introduced to the TEX86–SST calibration to
provide a comprehensive estimation of past changes in SST from
TEX86 in both modern and ancient environments (Tierney and
Tingley, 2014). However, many environmental factors, except for
SSTs, are included in the Bayesian regression approach for
TEX86–SST calibrations, making it more challenging to apply in
geological sites than TEXL

86/TEX
H
86 (Kim et al., 2010; Tierney and

Tingley, 2014). Since isoprenoid tetraethers produced by marine
Thaumarchaeota can be mixed with those from Euryarchaeota
thriving in seawater and Thaumarchaeota in soils, indicators
such as branched and isoprenoid tetraether index (BIT;
Hopmans et al., 2004) and methane index (MI; Zhang et al.,
2011) are used to assess isoGDGTs contributed from soil origin
and Euryarchaeota. For example, an MI less than 0.5 is used to
preclude the contribution of methanotrophic archaea (Zhang
et al., 2011). In addition to isoGDGTs, hydroxylated GDGTs
(OH-GDGTs) are widespread in marine environments
(Liu et al., 2012; Fietz et al., 2013; Huguet et al., 2013; Lü
et al., 2015). In culture experiments, archaea affiliated with
Thaumarchaeota Group I.1a have produced OH-GDGTs (Liu
et al., 2012; Elling et al., 2014), which were not observed
in Thaumarchaeota Group I.1b (Sinninghe Damsté et al.,
2012b). The ratio of sum OH-GDGTs relative to sum
isoGDGTs was related to SSTs and increased with increasing
latitude (Huguet et al., 2013). In addition, a positive correlation
between the number of cyclopentane rings of OH-GDGTs and
SSTs was reported in the surface sediments from the subpolar
and polar areas (Fietz et al., 2013). Although the mechanism for
OH-GDGTs in response to SST is unclear, the ring index
based on OH-GDGTs (RI-OH) is a potential approach for
temperature reconstruction (Table 1; Lü et al., 2015; Yang
et al., 2018).

TABLE 1 | Initial definitions of various proxies are used in this article.

Index Definitions authors

TEX86 � ( GDGT−2+GDGT−3+crenarchaeol isomer
GDGT−1+GDGT−2+GDGT−3+crenarchaeol isomer) Schouten et al.

(2002)

TEXL
86 � log( GDGT−2

GDGT−1+GDGT−2+GDGT−3) Kim et al. (2010)

RI − OH � [OH−GDGT−1]+2 × [OH−GDGT−2]
[OH−GDGT−1]+[OH−GDGT−2] Lü et al. (2015)

BIT � ([GDGT−Ia]+[GDGT−IIa]+[GDGT−IIIa])
([GDGT−Ia]+[GDGT−IIa]+[GDGT−IIIa]+Crenarchaeol) Hopmans et al.

(2004)

MI � [GDGT−1]+[GDGT−2]+[GDGT−3]
[GDGT−1]+[GDGT−2]+[GDGT−3]+[Crenarchaeol]+[crenarchaeol isomer] Zhang et al. (2011)

%GDGT − 2 � GDGT−2
[GDGT−1]+[GDGT−2]+[GDGT−3]+[crenarchaeol isomer] Sinninghe Damsté

et al. (2012a)

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 7992802

Liu et al. Paleoclimate Records from GDGTs

130

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


TEXH
86 has been used to reconstruct the paleotemperature records

of the southern and northern OT, and a gradual warming trend has
been identified since the Holocene (Yamamoto et al., 2013; Zhao
et al., 2015; Xu et al., 2018). Generally, shifts in the main axis and
changes in theKC strength, variations in EAM, sea-level changes, and
freshwater inputs are potential factors for paleoclimate changes
in the OT (Jian et al., 2000; Kubota et al., 2010; Zhao et al., 2015).
The influence of the EAM on SST variations was identified in the
middle and northern OT (Yu et al., 2009; Kubota et al., 2010).
However, low-latitude western tropical Pacific dominance via
KC variations has been demonstrated in the southern OT (Xu
et al., 2018). Therefore, factors controlling the paleotemperature
in specific areas of the OT need to be clarified. Here, we used
TEXH

86 temperatures and temperatures calibrated from RI-
OH as an approach to reconstruct the paleoclimate and
hydrological evolution of the middle OT since the middle
Holocene.

OCEANOGRAPHIC SETTING

The OT, a back-arc basin, formed from the subduction of the
Philippine Sea Plate beneath the Eurasian Plate at the Ryukyu

Trench (Figure 1; Sibuet et al., 1998; Guo et al., 2022). The strike
direction of the middle OT is approximately NE–SW, E–W to the
south, and NNE–SSW to the north (Wu et al., 2014). The EAM
and KC have been reported to dominate the modern
oceanography of the middle OT (Ruan et al., 2015; Zhao
et al., 2015). Two distinct seasons are present due to the
seasonal reversals of the EAM, driven by the annual cycle of
insolation and its effect on the land-sea thermal contrast (Dykoski
et al., 2005; Sun et al., 2005; Wang et al., 2005; Huang and
Sarnthein, 2021). In the boreal summer, a warm, wet season
caused by the northward migration of the intertropical
convergence zone and the maximum monsoonal convective
rainfall dominates the OT (Wang et al., 2005; Zheng et al.,
2014). In contrast, northeasterly winds lead to a cool, dry season
in the boreal winter (Diekmann et al., 2008; Zheng et al., 2014).
The KC, originating from the Western Pacific warm pool, flows
northeast above the OT and returns to the North Pacific through
the Tokara Strait (Yu et al., 2009; Hu et al., 2015), taking warm,
saline water into the OT (Hu et al., 2015).

The sea level has been roughly constant for the study area
during the last 8.2 kyr BP (Liu et al., 2004). The sediment core
C14 is far from the coastline and the shelf of the East China Sea
(ECS; Figure 1). At present, the mean annual SST is 24.8°C, with

FIGURE 1 | Location of core C14 in the middle Okinawa Trough (OT) and selected paleoenvironmental settings, including Dongge Cave in southern China (Dykoski
et al., 2005), core MD98-2176 in the western tropical Pacific (Stott et al., 2004), cores A7 (Sun et al., 2005) and DGKS9604 (Yu et al., 2009) in the middle OT, cores OKT-
3 (Zhao et al., 2015) and OKI-151 (Xu et al., 2018) in the southern OT, and core MD98-2195 (Yamamoto et al., 2013) in the northern OT. The map was revised from Dou
et al. (2010). The Contour unit is meter. Volcano locations around Japan were modified according to Machida (1999).
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summer and winter seasonal temperatures of approximately 27.8
and 22.1°C, respectively. The maximum SST near the core site is
28.7 °C in August, and the minimum is 21.5°C in February
(Locarnini et al., 2013).

METHODS

Materials and Age Model
Sediment core C14 (580 cm in length) was retrieved from the
middle OT at a water depth of approximately 1100 m (Figure 1;
28°39.587′N, 127°19.194′E). The top part of the core was lost
during sampling. To make up the lost part, the upper 10 cm of
core C10 (28°38.8′N, 127°21.283′E; water depth of 960 m) was
utilized to represent the missing top part. After sampling, the
sediment core was segmented, transported to the laboratory, and
kept at −20°C until analysis. A tephra layer was found between
depths of 532.5 and 442.5 cm.

To obtain AMS 14C dating for the core, eight samples of the
planktonic foraminifer Globigerinoides ruber (G. ruber) and
G. sacculifer were selected at equal intervals and analyzed by
Beta Analytic Inc., United States (Table 2). The raw 14C dates
were calibrated using the Marine13 dataset (Reimer et al.,
2013) and expressed in calibrated years BP (years before AD
1950). We adopted a ΔR value of 30 ± 41 years in the
calibration.

Lipid Extraction
37 samples were collected at 15–30 cm intervals from core C14
(36 samples from core C14 and 1 from core C10). They were
freeze-dried and homogenized. Twenty to 30 g of powder (dry
weight) were Soxhlet-extracted for 72 h with a mixture of
dichloromethane and methanol (9:1; v:v) to obtain the total
lipid extracts (TLEs). The TLE was separated into neutral
(n-hexane) and polar (methanol) fractions with a silica gel
column. The polar fractions were filtered through a 0.45 μm
polytetrafluoroethylene filter membrane (PTFE) to remove
particulate matter and stored at −20°C.

Instrumental Analysis
The dried polar fractions were redissolved in 300 μl n-hexane
and isopropanol (98.2:1.8, v/v). No internal standard was

added. The analysis was performed on an Agilent 1200
series high-performance liquid
chromatography–atmospheric pressure chemical ionization-
6460 triple, quadruple mass spectrometer (HPLC–APCI-MS2)
following the analytical protocol of Hopmans et al. (2016).
Separation was achieved on two HPLC silica columns (BEH
HILIC columns, 2.1 × 150 mm, 1.7 μm) in series, maintained
at 30°C. The GDGTs were eluted isocratically for 25 min with
18% B, followed by a linear gradient to 35% B in 25 min and
then a linear gradient to 100% B in 30 min and kept in for
10 min to clean the column with a constant flow rate of 0.2 ml/
min. Finally, the gradient of B was back at 18% for 20 min to
re-equilibrate the column. Solvent A was n-hexane, and B was
n-hexane: isopropanol (9:1, v/v). The GDGTs were ionized in
an atmospheric pressure chemical ionization chamber and
detected using single ion monitoring (SIM) mode. The relative
abundance of compounds was determined by integrating the
areas of the (M + H]+ (protonated molecular ion) peaks at
1302, 1300, 1298, 1296, and 1292 for isoGDGTs and OH-
GDGTs (Liu et al., 2012) and 1050, 1048, 1046, 1036, 1034,
1032, 1022, 1020, and 1018 for branched GDGTs (brGDGTs).
The analytical error for duplicate measurements was better
than ±0.008. The positive ion APCI settings were set as follows
(Hopmans et al., 2016): probe heater temperature, 400°C;
sheath gas (N2) pressure, 50 AU (arbitrary units); auxiliary
gas (N2) pressure, 5 AU; spray current, 5 μ A; capillary
temperature, 3500°C; S-lens, 100 V.

TEXH
86, RI-OH and BIT

In this study, the SST calibration of the TEXH
86 proxy (Kim et al.,

2010) was used to reconstruct the paleoclimate evolution due to
the high temperatures of over 15°C (low latitude) in the OT. Cren’
represents the crenarchaeol isomer (see Supplementary Figure
S1 for details).

TEXH
86 � log(

GDGT − 2 + GDGT − 3 + Cren′
GDGT − 1 + GDGT − 2 + GDGT − 3 + Cren′);

SST � 68.4 × (TEXH
86) + 38.6

(1)
The empirical equation of RI-OH (Lü et al., 2015) was used to

supplement the SST reconstruction.

TABLE 2 | Planktonic foraminifera 14C age data.

series Depth (cmbsf) Planktonic foraminifera AMS 14C age
(yr BP)

Calibrated
age (yr BP)

498910 35–37.5a G.ruber + G.sacculifer 660±30 616–730
498911 65–67.5 G.ruber + G.sacculifer 930±30 994–820
498912 155–157.5a G.ruber + G.sacculifer 1890±30 1858–2045
498913 245–247.5 G.ruber + G.sacculifer 2800±30 3172–2957
498914 365–367.5a G.ruber + G.sacculifer 4350±30 4943–5227
498915 455–457.5 G.ruber + G.sacculifer 5840±30 6831–6646
498916 545–547.5 G.ruber + G.sacculifer 6500±30 7520–7385
498917 575–577.5a G.ruber + G.sacculifer 7340±30 8170–8327

aData from Xu et al. (2020).
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RI − OH � [OH − GDGT − 1] + 2 × [OH − GDGT − 2]
[OH − GDGT − 1] + [OH − GDGT − 2] ;

SST � 35.71 × RI −OH − 32.86

(2)
Based on the analytical error (±0.008), we calculated the

corresponding errors, which are approximately ±0.4°C and
±0.3°C for calibrations 1) and (2), respectively.

As brGDGT regio isomers were detected (Supplementary
Figure S1; De Jonge et al., 2014), the BIT formula used in this
article was modified as follows:

BIT �
GDGT − Ia + GDGT − IIa + GDGT − IIa’+GDGT − IIIa + GDGT − IIIa′
Crenarcheaol + GDGT − Ia + GDGT − IIa

+GDGT − IIa’ + GDGT − IIIa + GDGT − IIIa′
(3)

RESULTS

AMS 14C Dating
The AMS 14C dating results are listed in Table 2. The time scale was
established by linear interpolation and extrapolation. An age model
was set for coreC14 after calibration, and themean sedimentation rate
of core C14was ~70 cm/kyr during the last 8.2 kyr BP (Figures 2A,B).

For the tephra layer at 532.5–442.5 cm (7.4–6.6 kyr BP), an extremely
high sedimentation rate of ~126 cm/kyr was identified (Figure 2B).

Distribution of GDGTs
The relative contributions of the isoGDGTs, brGDGTs, and OH-
GDGTs are listed in Table 3. The isoGDGTs dominated all GDGTs,
with contributions ranging from 88 to 98%, while brGDGTs
accounted for 1.4–10.3%, and OH-GDGTs accounted for less
than 6.0% of the total GDGTs. Crenarchaeol was the most
abundant component among the isoGDGTs in all of the samples,
accounting for 32–50% of all of the isoGDGTs, followed by GDGT-0
(range 16–32%), whereas only small amounts of GDGT-1, -2, -3, and
the crenarchaeol isomer were detected in all of the samples.

Past Temperatures Reconstructed by
isoGDGT- and OH-GDGT-Based Proxies
For the past 8.2 kyr BP, the TEXH

86 values in core C14 ranged from
−0.25 to −0.17, corresponding to temperatures ranging from 21.6
to 27.2°C (Equation 2; Table 4; Figure 3C). The index of RI-OH
in core C14 ranged from 1.41 to 1.65, revealing temperatures
ranging from 17.4 to 26.0°C (Equation 3; Table 4; Figure 3C). To
better understand TEXH86 and RI-OH temperatures, the mean
seasonal and annual temperatures and monthly mean water

FIGURE 2 | (A) Age-depth model of core C14; (B) sedimentation rates of core C14.
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temperatures at different depths are summarized in
Figures 3A,B.

DISCUSSION

Constrains of GDGT Sources
The isoGDGTs used in TEX86 are derived from marine
Thaumarchaeota (Brochier-Armanet et al., 2008; Spang et al.,
2010; Schouten et al., 2013). However, GDGTs-1, -2, -3, and the
crenarchaeol isomer can also be synthesized by additional archaea
(Sinninghe Damsté et al., 2002; Schouten et al., 2008; Pitcher et al.,
2011). For example, marine group II (MG-II) Euryarchaeota thriving
in shallow water can synthesize GDGTs-1, -2, and -3 (Turich et al.,
2007; Schouten et al., 2008). IsoGDGTs from soil and brGDGTs
produced in situ in marine environments may contribute to the
GDGT pool (Hopmans et al., 2004; Peterse et al., 2009; Schouten
et al., 2013). Such inputs may affect the application of TEX86 in

paleotemperature reconstruction. Therefore, indicators such as BIT
(Hopmans et al., 2004; De Jonge et al., 2014), GDGT-0/crenarchaeol
(Blaga et al., 2009), MI (Zhang et al., 2011), GDGT-2/crenarchaeol
(Weijers et al., 2011), %GDGT-2 (Sinninghe Damsté et al., 2012a),
andGDGT-2/GDGT-3 (Taylor et al., 2013) were introduced to assess
the biological precursors of the isoGDGTs (Table 1).

In this study, crenarchaeol was the most abundant component
among isoGDGTs, with GDGT-0/crenarchaeol ratios ranging from
0.4 to 1.0 (between 0.2 and 2), suggesting that the isoGDGTs were
predominantly produced by MG-I Thaumarchaeota in core 14
(Schouten et al., 2008, 2013; Spang et al., 2010). IsoGDGTs
introduced by soil and rivers were negligible, as indicated by the
low BIT values of 0.01–0.10 (<0.10; Table 4; Hopmans et al., 2004;
Kim et al., 2010; De Jonge et al., 2014). Apart from terrestrial input,
methanotrophic Euryarchaeota prevailing in cold seeps can
contribute to GDGT-1, -2, and -3 and modify the distribution of
isoGDGTs (Elvert et al., 2005; Guan et al., 2019). In this study, the
ratios of GDGT-2/crenarchaeol varied from 0.1 to 0.4 (<0.4), GDGT-

TABLE 3 | The contribution of specific GDGTs with depth in core C14.

Sample Depth
(cmbsf)

%isoGDGTs % (b] % (OH]

% [0] % [1] % [2] % [3] % [4] %Cren %cren’ % [OH-0] % [OH-1] % [OH-2]

C10_01 7.5 21.45 5.54 5.82 1.26 12.48 47.67 2.78 2.09 0.25 0.27 0.39
C14_01 37.5 21.68 5.10 5.75 1.21 12.22 47.81 3.16 1.96 0.31 0.33 0.47
C14_02 67.5 20.82 5.45 5.54 1.22 12.00 48.40 3.61 1.93 0.24 0.29 0.50
C14_03 83.75 18.28 9.52 9.78 3.10 3.93 46.79 5.66 2.94 - - -
C14_04 97.5 20.79 5.14 5.58 1.20 12.78 48.82 3.13 1.71 0.22 0.25 0.38
C14_05 127.5 20.54 5.14 6.13 1.31 12.46 47.98 3.56 1.87 0.23 0.31 0.47
C14_06 143.75 17.33 7.18 8.69 2.48 8.18 44.51 4.20 7.43 - - -
C14_07 157.5 20.96 5.29 5.93 1.26 11.62 48.91 3.41 1.80 0.20 0.27 0.35
C14_08 173.75 25.23 9.14 11.31 1.69 5.60 36.62 4.46 3.33 1.15 0.58 0.89
C14_09 187.5 21.57 5.26 6.07 1.24 11.53 48.52 3.11 1.85 0.20 0.23 0.42
C14_10 203.75 16.29 10.37 12.02 3.03 5.76 36.25 4.91 6.71 1.68 1.19 1.79
C14_11 212.5 20.34 5.45 6.14 1.29 11.86 49.36 3.15 1.57 0.21 0.24 0.39
C14_12 217.5 19.74 5.47 5.55 1.31 11.77 50.44 3.26 1.56 0.22 0.26 0.42
C14_13 228.75 29.09 8.98 9.72 2.30 5.86 33.58 4.74 5.73 - - -
C14_14 247.5 20.34 5.31 5.54 1.23 12.97 48.41 3.61 1.76 0.19 0.23 0.41
C14_15 263.75 23.73 9.36 9.82 2.80 4.97 35.58 4.34 5.77 1.74 0.75 1.14
C14_16 277.5 21.19 5.13 5.47 1.18 11.98 49.71 2.95 1.50 0.24 0.25 0.40
C14_17 293.75 27.12 9.35 8.92 2.26 6.14 34.96 5.35 5.90 - - -
C14_18 307.5 21.13 5.67 5.65 1.30 12.54 48.32 3.04 1.47 0.24 0.26 0.38
C14_19 323.75 21.95 9.35 10.71 2.11 5.16 34.73 5.66 10.33 - - -
C14_20 337.5 19.93 5.24 5.61 1.26 12.36 49.93 3.44 1.42 0.18 0.24 0.39
C14_21 353.75 19.68 9.25 10.39 2.93 6.70 35.68 5.49 5.94 1.80 0.84 1.30
C14_22 367.5 19.90 5.12 5.59 1.17 12.51 50.20 3.22 1.47 0.21 0.25 0.36
C14_23 383.75 18.78 12.18 13.76 3.63 6.19 37.11 5.63 2.72 - - -
C14_24 397.5 21.86 5.26 5.80 1.20 12.42 48.27 2.91 1.43 0.23 0.25 0.37
C14_25 413.75 24.83 7.63 9.14 2.24 6.38 37.73 3.98 4.58 1.23 0.94 1.32
C14_26 427.5 22.82 5.83 5.80 1.19 11.66 47.11 2.90 1.62 0.32 0.32 0.43
C14_27 443.75 29.44 7.63 7.50 1.92 4.85 38.14 4.21 3.63 1.24 0.73 0.71
C14_28 457.5 28.62 4.67 3.72 0.86 10.68 46.05 1.90 1.93 0.66 0.53 0.38
C14_29 473.75 23.81 8.90 7.59 1.77 6.13 38.92 2.74 5.37 2.50 1.31 0.96
C14_30 487.5 29.24 4.81 3.62 0.91 11.43 44.48 1.74 2.06 0.73 0.57 0.41
C14_31 503.75 26.67 7.06 6.04 1.46 7.27 40.36 2.16 4.53 2.60 1.10 0.75
C14_32 517.5 29.25 5.17 4.02 0.90 11.48 43.30 1.79 2.18 0.88 0.58 0.45
C14_33 533.75 31.63 6.41 6.54 1.48 8.39 32.20 2.37 5.32 2.32 1.66 1.68
C14_34 547.5 20.13 5.60 5.71 1.14 12.45 49.15 3.09 1.79 0.25 0.31 0.38
C14_35 563.75 23.21 8.50 9.94 2.38 5.47 33.10 5.71 8.29 1.27 1.01 1.12
C14_36 577.5 21.56 5.34 5.96 1.10 12.81 47.57 3.12 1.68 0.25 0.25 0.36

(x), GDGT-x; Cren, crenarchaeol; Cren’, crenarchaeol isomer; (b), brGDGTs; (OH-x), OH-GDGT-x
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2/GDGT-3 showed a constant trend below 5.0, the MI index
ranged between 0.2 and 0.4 (<0.5), and %GDGT-2 fell in the
range of 33–39 (<45), indicating that the contributions of
methanotrophic archaea and MG-II Euryarchaeota were low
(Table 4; Blaga et al., 2009; Weijers et al., 2011; Zhang et al.,
2011; Sinninghe Damsté et al., 2012a; Taylor et al., 2013).
Consequently, isoGDGTs predominantly originating from
MG-I Thaumarchaeota and TEXH

86 can be used to reconstruct
paleotemperatures in core C14.

Implications of TEXH
86 Temperatures

TEXH
86 studies revealed relatively variable temperature records in

the OT and ECS (Nakanishi et al., 2012; Xu et al., 2018; Yuan
et al., 2018). Yamamoto et al. (2013) compared temperatures
derived from Mg/Ca, UK’

37 and TEXH
86 at site MD98-2195 of the

northern OT. Mg/Ca- and UK’
37-derived temperatures were

assigned to summer and spring seawater temperatures,
respectively, because they behaved differently to seasonal
variations in the sinking fluxes. Still, the core-top values

yielded similarities to summer and spring SSTs, respectively
(Yamamoto et al., 2013 and references therein). Since GDGTs
in sinking particles were well mixed, the lower TEXH

86 temperature
most likely represented the annual subsurface seawater
temperature, as assumed by Yamamoto et al. (2013). However,
Zhao et al. (2015) showed similarity between modern summer
seawater temperature and core-top TEXH

86 temperature at the
southern OT and concluded that both UK’

37 and TEXH
86

temperatures represented summer SSTs. Similar observations
were made by Xu et al. (2018), and both UK’

37 and TEXH
86

temperatures were used to indicate annual SST at the southern
OT. Therefore, TEXH

86 calibrations for specific locations may be
closely related to the specific local hydrology. In this study, the
core-top TEXH

86 and RI-OH temperatures at the study site were
25.2 and 24.1°C, respectively. This is in line with the mean annual
SST (24.8°C) and mean annual seawater temperature at 40 m
below the sea surface (24.2°C) (Figure 3A). In addition, the core-
top TEXH

86 temperature agreed well with the SST in June and
November and the average temperature from June to November

TABLE 4 | Various indices were used to evaluate the application of TEX86 and reconstruct paleotemperatures in core C14.

Sample Depth
(cmbsf)

Age (kyr) %GDGT-2 GDGT-0/Cren GDGT-2/Cren GDGT-2/GDGT-3 MI BIT TEXH
86 RI-OH

Values SST (°C) Values SST (°C)

C10_01 7.5 0.1 38 0.5 0.1 4.6 0.2 0.02 −0.196 25.2 1.596 24.1
C14_01 37.5 0.7 38 0.5 0.1 4.7 0.2 0.02 −0.177 26.5 1.593 24
C14_02 67.5 0.9 35 0.4 0.1 4.6 0.2 0.01 −0.184 26 1.631 25.4
C14_03 83.75 1.1 35 0.4 0.2 3.2 0.3 0.02 −0.18 26.3 - -
C14_04 97.5 1.2 37 0.4 0.1 4.7 0.2 0.01 −0.182 26.2 1.605 24.5
C14_05 127.5 1.6 38 0.4 0.1 4.7 0.2 0.02 −0.167 27.2 1.599 24.3
C14_06 143.75 1.8 39 0.4 0.2 3.5 0.3 0.1 −0.166 27.2 - -
C14_07 157.5 2.0 37 0.4 0.1 4.7 0.2 0.01 −0.176 26.6 1.564 23
C14_08 173.75 2.2 43 0.7 0.3 6.7 0.4 0.06 −0.183 26.1 1.605 24.5
C14_09 187.5 2.3 39 0.4 0.1 4.9 0.2 0.01 −0.177 26.5 1.647 26
C14_10 203.75 2.5 40 0.5 0.3 4.0 0.4 0.05 −0.182 26.2 1.601 24.3
C14_11 212.5 2.6 38 0.4 0.1 4.8 0.2 0.01 −0.18 26.3 1.621 25
C14_12 217.5 2.8 36 0.4 0.1 4.3 0.2 0.01 −0.188 25.8 1.615 24.8
C14_13 228.75 2.9 38 0.9 0.3 4.2 0.4 0.06 −0.186 25.8 - -
C14_14 247.5 3.1 35 0.4 0.1 4.5 0.2 0.01 −0.179 26.3 1.634 25.5
C14_15 263.75 3.4 37 0.7 0.3 3.5 0.4 0.06 −0.191 25.5 1.601 24.3
C14_16 277.5 3.6 37 0.4 0.1 4.6 0.2 0.01 −0.186 25.9 1.611 24.7
C14_17 293.75 3.9 35 0.8 0.3 4.0 0.3 0.07 −0.195 25.3 - -
C14_18 307.5 4.1 36 0.4 0.1 4.3 0.2 0.01 −0.195 25.2 1.593 24
C14_19 323.75 4.4 39 0.6 0.3 5.1 0.4 0.1 −0.178 26.4 - -
C14_20 337.5 4.6 36 0.4 0.1 4.5 0.2 0.01 −0.178 26.4 1.622 25.1
C14_21 353.75 4.9 37 0.6 0.3 3.5 0.4 0.06 −0.174 26.7 1.608 24.6
C14_22 367.5 5.1 37 0.4 0.1 4.8 0.2 0.01 −0.18 26.3 1.59 23.9
C14_23 383.75 5.4 39 0.5 0.4 3.8 0.4 0.03 −0.184 26 - -
C14_24 397.5 5.6 38 0.5 0.1 4.8 0.2 0.01 −0.185 26 1.591 24
C14_25 413.75 5.9 40 0.7 0.2 4.1 0.3 0.04 −0.175 26.6 1.584 23.7
C14_26 427.5 6.2 37 0.5 0.1 4.9 0.2 0.01 −0.201 24.8 1.575 23.4
C14_27 443.75 6.5 35 0.8 0.2 3.9 0.3 0.03 −0.193 25.4 1.496 20.6
C14_28 457.5 6.7 33 0.6 0.1 4.3 0.2 0.02 −0.236 22.5 1.421 17.9
C14_29 473.75 6.9 36 0.6 0.2 4.3 0.3 0.04 −0.239 22.2 1.424 18
C14_30 487.5 7.0 33 0.7 0.1 4.0 0.2 0.02 −0.247 21.7 1.417 17.7
C14_31 503.75 7.1 36 0.7 0.2 4.1 0.3 0.04 −0.238 22.3 1.406 17.4
C14_32 517.5 7.2 34 0.7 0.1 4.5 0.2 0.02 −0.248 21.6 1.436 18.4
C14_33 533.75 7.4 39 1.0 0.2 4.4 0.3 0.04 −0.209 24.3 1.504 20.9
C14_34 547.5 7.5 37 0.4 0.1 5.0 0.2 0.01 −0.194 25.3 1.548 22.4
C14_35 563.75 7.9 38 0.7 0.3 4.2 0.4 0.08 −0.168 27.1 1.526 21.6
C14_36 577.5 8.2 38 0.5 0.1 5.4 0.2 0.01 −0.183 26.1 1.586 23.8

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 7992807

Liu et al. Paleoclimate Records from GDGTs

135

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


at depths of 50–7 m (Figure 3B). However, TEXH
86 reflects SST in

a specific month, which is unlikely because the GDGTs produced
in different seasons have been demonstrated to be suspended and
well mixed in the surface water in both the western North Pacific
(Yamamoto et al., 2012) and the northern OT (Nakanishi et al.,
2012). In this study, the average TEXH

86 SST (26.1 ± 1°C; except for
7.4–6.6 kyr BP) in core C14 is comparable to the TEXH

86 SST of the
southern OT from 8.2 kyr BP to the present (Figure 3C; Zhao
et al., 2015; Xu et al., 2018), which is close to the average UK’

37 SST
(26.0 ± 1.3°C; Figure 3C) when compared to a nearby site (core
DGKS9604; Yu et al., 2009), indicating that the TEXH

86

temperatures during the last 8.2 kyr BP reflected mean annual
SSTs rather than temperatures in a specific short period.

Interestingly, the temperatures derived from RI-OH were
generally lower than the TEXH

86 and UK’
37 SSTs with a similar

changing pattern and trend (Table 4; Figures 3A,C). To date, the
biological precursors of OH-GDGTs remain unclear. To date, OH-
GDGTs have been observed in cultures of archaea affiliated with
Thaumarchaeota Group I.1a (Sinninghe Damsté et al., 2012b; Elling
et al., 2014), whereas TEX86-related isoGDGTs are explicitly ascribed
to Thaumarchaeota Group I.1b (Brochier-Armanet et al., 2008;
Spang et al., 2010). The potentially different origins of OH-
GDGTs suggest that the RI-OH index may supplement TEXH

86 in
marine environments (Lü et al., 2015). Lü et al. (2015) and Yang et al.
(2018) analyzed the surface sediments of the marginal sea in China
and revealed a high correlation between RI-OH and the local mean

FIGURE 3 | Paleotemperatures derived from core C14 and nearby sites. (A) Mean seasonal and annual temperatures at the study site; (B) monthly mean water
temperatures at different depths at the study site. Data are from Locarnini et al. (2013). (C) Comparisons between BIT, TEXH86 and RI-OH temperatures from core C14
from themiddle OT, TEXH86 temperatures fromOKT-3 and OKI-151 from the southern OT (Zhao et al., 2015; Xu et al., 2018), and UK’

37 temperatures fromDGKS9604 from
the middle OT (Yu et al., 2009).

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 7992808

Liu et al. Paleoclimate Records from GDGTs

136

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


annual SST. Such correlations possibly suggested that OH-GDGTs
produced in different seasons have been well mixed in seawater
before preservation in sediments (Lü et al., 2015). The core-top RI-
OH temperature agreed well with the SSTs in May and December,
which most likely reflected subsurface temperatures in the present
study (Figure 3B).

Cold Events Identified in the Middle
Okinawa Trough
In core 14, a warming trend during the last 8.2 kyr BP with an
apparent cold event at 7.4–6.6 kyr BP was found using TEXH

86 and
RI-OH proxies. Paleoclimate studies have indicated that the cold
anomalies in the North Atlantic may have spread signals of rapid
climate changes via the westerlies to the Asian monsoon regions
(Dykoski et al., 2005; Sun et al., 2005; Wang et al., 2005).
However, studies on the Holocene paleoclimate suggested that
the tropical Pacific likely controlled the paleotemperature in East
Asia via KC variations rather than the North Atlantic (Lim and
Fujiki, 2011; Xu et al., 2018). The KC, the northward branch of
the North Pacific subtropical gyre, exerts an influence on the
exchange of climatic properties of downstream regions in the
Pacific Ocean and is a mediator of the Pacific to the OT (Hu et al.,
2015). An intensified trend of the KC since the Holocene has been
demonstrated (Sun et al., 2005; Xiang et al., 2007; Diekmann et al.,
2008; Yamamoto, 2009). These warm and highly saline waters
transported by the KCmay have significantly increased the SST of
the OT (Figure 4J; Zheng et al., 2016). Therefore, the warming of
the middle OT may be caused by the enhancement of KC
intensities driven by the tropical Pacific during the Holocene.
Furthermore, the most remarkable cold event at 7.4–6.6 kyr BP
(~7.3 kyr BP) was widely reported in the southern andmiddle OT
(Sun et al., 2005; Zhao et al., 2015; Xu et al., 2018). Since this ~7.3
kyr BP cold event has not been reported in the North Atlantic,
factors other than the North Atlantic were likely responsible for
the SST decrease in the middle OT (Figure 4I; Stuiver and
Grootes, 2000). During the 7.4–6.6 kyr BP period, the KC
intensity was weakened (Xiang et al., 2007; Hu et al., 2015),
potentially contributing to the decreased temperatures of the
middle OT (Figures 4C,J; Zheng et al., 2016).

However, the ~7.3 kyr BP cold event wasmagnified in theGDGT-
related SST records. In core C14, the TEXH

86 SST showed a drop of
~5°C at 7.4–6.6 kyr BP (Figure 4C). A similar observation has been
reported in the southern OT: the TEXH

86 SST dropped approximately
3–14°C during 7.6–6.9 kyr BP, whereas the Mg/Ca and UK’

37 SST only
showed a drop of 1–3°C during this period (Sun et al., 2005; Kubota
et al., 2010; Zhao et al., 2015; Xu et al., 2018). Xu et al. (2018)
attributed the 7.6–6.9 kyr BP SST drop to an unknown cold event that
occurred during KC intensity weakening. However, the cold event
during that period may not be solely responsible for such a large
amplitude of decline in TEXH

86 SST. Global climate change cycles
could also have regular influences on the SST of marginal seas (Ho
and Laepple, 2015; Ignatov and Gutman, 1999; Debret et al., 2007).
Sometimes, the SST of the OT could have suffered from strongly
enhanced temperature amplitudes across climate cycles (Debret et al.,
2007; Zhao et al., 2014). However, no noticeable long- and short-term
climate effect on OT hydrology was reported during the last 7.4–6.6
kyr BP (Bond et al., 1997; Zhao et al., 2014). Factors controlling the
abnormal TEXH

86 SST drop at ~7.3 kyr BP have not been resolved. In
core C14, a tephra layer was found from 532.5 to 442.5 cm (K-Ah
tephra; 7.4–6.6 kyr BP). A volcanic eruption that occurred at ~7.3 kyr
BP has been identified in southwestern Japan (K-Ah tephra; Kitagawa
et al., 1995), suggesting that the core C14 site was likely under the
scope of the volcanic eruption (Figure 1). The K-Ah tephra has been

FIGURE 4 | Comparison of paleotemperature variations inferred from
core C14with other paleoclimate data. (A) Postglacial sea-level changes in the
western Pacific (Liu et al., 2004); (B) Temperatures from UK’

37 (blue) and TEXH86
(dark) in core MD98-2195 (Yamamoto et al., 2013); (C) TEXH86 SST of
C14 in this article; (D) Temperatures from RI-OH in core C14 in this article; (E)
Mg/Ca SST of A7 (Sun et al., 2005); (F) SST from TEXH86 in core OKI-151 (Xu
et al., 2018); (G) SST from Mg/Ca (red), UK’

37 (blue) and TEXH86 (black) in core
OKT-3 (Zhao et al., 2015); (H) Mg/Ca SST data from core MD98–2176 in the
western tropical Pacific (Stott et al., 2004); (I) δ18O record from the GISP2 ice
core (Stuiver and Grootes, 2000); (J) the factor representing the western
tropical Pacific (Stott et al., 2004); (i) δ18O record from the GISP2 ice core
(Stuiver and Grootes, 2000).
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widely reported in sediments from the northern to middle OT (Sun
et al., 2005; Kubota et al., 2010; Zheng et al., 2016). Modeling studies
on Toba volcano in Sumatra have indicated that volcanic eruptions
could result in spreading tephra, blocking sunlight, and thus leading
to global or regional temperature cooling (Rampino and Self, 1992;
Machida, 1999; Oppenheimer, 2002). For core C14, the
sedimentation rate during the last 7.4–6.6 kyr BP is exceptionally
high (~126 cm/kyr) compared to a nearby site (~20 cm/kyr;
DGKS9604; Yu et al., 2009). Therefore, except for the decrease in
KC intensity, the cold event and the extremely high sedimentation
rate at ~7.3 kyr in core C14 were probably related to volcanic
eruptions. The differences between TEXH

86 SST and SST records
from the UK’

37 and Mg/Ca at ~7.3 kyr BP in the OT may result
from distinct sensibilities and responses of specific organisms to
climate events (Schouten et al., 2013; Steinke et al., 2008 and
references therein). However, the specific and detailed mechanism

of the ash impacts on living communities remains unclear and
requires further investigation.

Decoupling of the East Asian Summer
Monsoon and Paleotemperatures in the
Middle OT
The temperature difference between the sea surface and subsurface
(ΔT) is sensitive to trace heat and water exchanges, reflecting the
depth of the thermocline (DOT) of marginal seas (Jian et al., 2000;
Lopes dos Santos et al., 2010; Jia et al., 2012; Yuan et al., 2018). In
marginal seas, ΔT has been reported to have a negative relationship
with DOT (Jian et al., 2000; Lopes dos Santos et al., 2010; Jia et al.,
2012). In the OT, the DOT is mainly controlled by the EAM and KC,
which stir the surface of the seawater and cause fluctuations in the
DOT. Specifically, the enhancement in the EAM or KC intensities
will lead to strengthened mixing of upper water and deepening of the
DOT (a reduction in ΔT), and vice versa (Jian et al., 2000; Yamamoto
et al., 2013).

In this study, TEXH
86 and UK’

37 temperatures (DGKS9604; Yu
et al., 2009) were used as SSTs, whereas RI-OH temperatures
tentatively served as subsurface temperatures (Figure 3C).
The temperature differences between TEXH

86 and RI-OH
[ΔTEXH

86−RI−OH (°C)] and between UK’
37 and RI-OH

[ΔUK’
37−RI−OH (°C)] were calculated (Figure 5E). From 8.2 kyr

BP to the present, a slight overall decrease was found for
ΔTEXH

86−RI−OH (°C) and ΔUK’
37−RI−OH (°C), suggesting an

increased mixing of the upper water column in the middle
OT (Figure 5E). Studies on the Holocene EASM intensity
showed that the EASM intensity reached a maximum at ~7.0
kyr or ~9.0 kyr (Yang et al., 2019; Liu et al., 2015; Wang et al.,
2005; Dykoski et al., 2005). However, the EASM is primarily
impacted by summer (June) insolation at 30°N, exhibiting a
gradually decreasing trend since 8.2 kyr (Figure 5C; Berger and
Loutre, 1991). Therefore, the increased mixing of upper water
was inconsistent with the EASM intensity, especially over the
last 7.0 kyr BP, indicating the decoupling of SSTs in the middle
OT with the EASM (Figures 5A–C). In the middle Holocene, a
decoupling trend between thermal conditions and precipitation
has been revealed by pollen sequences from Taiwan (Liew et al.,
2006). For land records, decoupling between temperature warming,
which was likely caused by the strong influence of low-latitude
warm currents, and the EASM intensities were common during the
Holocene (Peterse et al., 2011; Park et al., 2014;Wu et al., 2017). The
low-latitude warm currents flowing through the OT, such as the KC,
may warm and stir the seawater and overstep the influence of high-
latitude climates, causing the decoupling of SSTs in the middle OT
with the EASM (Zheng et al., 2014, 2016; Xu et al., 2018).

In the present study, the TEXH
86 SST, revealed a gradual

warming trend in the middle OT since 8.2 kyr BP
(Figure 5F). Modeling of the Holocene climate showed that
moderate temperature warming was caused by winter warming
that slightly exceeded summer cooling in the tropics (Lorenz
et al., 2006). Therefore, the warming trend in the middle OT
might be caused by the increased boreal winter insolation at low
latitudes (Figures 5D,F).

FIGURE 5 | Comparison of sea surface and subsurface temperature
differences between TEXH86 and RI-OH [ΔTEXH

86−RI−OH (°C)] and between UK’
37 and

RI-OH [ΔUK’
37−RI−OH (°C)] from core C14 (UK’

37 SST from core DGKS9604 in the
study area; Yu et al., 2009) with other paleoclimate data. (A) δ18O
records from Dongge Cave stalagmites, China (green: Wang et al., 2005; red:
Dykoski et al., 2005); (B) the synthesized East Asian summer monsoon
(EASM) moisture indices (Wang et al., 2010); (C) summer (June) insolation at
30°N (Berger and Loutre, 1991); (D) winter (December) insolation at 0°N
(Berger and Loutre, 1991); (E) ΔTEXH

86−RI−OH (°C) (black) of core C14 and
ΔUK’

37−RI−OH (°C) (blue) (UK’
37 SST from core DGKS9604; Yu et al., 2009); (F)

temperatures from TEXH86 (dark) and RI-OH (gray) in core C14.
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CONCLUSION

Paleotemperatures were reconstructed for the last 8.2 kyr in
the middle Okinawa Trough (OT) using TEXH

86 and RI-OH.
IsoGDGTs were mainly derived from marine
Thaumarchaeota, and TEXH

86 can be used to reconstruct
temperatures of the middle OT, as revealed by GDGT-0/
crenarchaeol, BIT, %GDGT-2, and MI. TEXH

86 temperatures
in this study indicated mean annual SSTs close to the UK’

37 SST
of the middle OT. In contrast, RI-OH temperatures were
interpreted to represent subsurface temperatures relatively
lower than the TEXH

86 and U
K’
37 SSTs. The cold event at ~7.3 kyr

BP and the general warming trend, as revealed by the TEXH
86

and RI-OH temperatures at 8.2 kyr BP, were attributed to the
increasing Kuroshio Current intensity punctuated by a decline at
~7.3 kyr BP. The decreasing temperature differences between
TEXH

86 and RI-OH and between UK’
37 and RI-OH indicated the

decoupling of the SSTs in the middle OT and the East Asian
summermonsoon during 8.2 kyr BP. Themagnification of the cold
phase in TEXH

86 and the extremely high sedimentation rate at
7.4–6.6 kyr BPwere probably partially due to the widespreadKikai-
Akahoya tephra (~7.3 kyr).
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