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Editorial on the Research Topic

Regulation of lipid metabolism in adipose tissue and skeletal muscle

Introduction

Obesity due to excessive deposition of lipids in adipose tissue (AT) has become a

global epidemic. Obesity and its increased risks of chronic diseases including Type

2 Diabetes (T2D), chronic inflammation, hypertension, and cancer have posed formidable

challenges to human health. Adipocytes are highly plastic and can uptake, esterificate, and

store excess lipids in the form of triacylglycerols (TAG) within lipid droplets (LDs), as well

as undergo lipolysis to provide energy when nutrition is limited. Non-AT such as skeletal

muscle, which has a comparatively high capacity for fatty acid oxidation to generate

energy, becomes dysfunctional with “lipid overload”. Thus, the dysregulation of lipid

metabolism in skeletal muscle highly contributes to obese-related insulin resistance. Thus,

understanding how lipid storage and utilization are regulated in AT and skeletal muscle is

critical for the development of therapeutics to overcome obesity. Indeed, interventions

that increase AT/muscle fatty acid oxidation and/or limit lipid storage have been

postulated as therapies for treating obesity-related conditions. Besides, lipid

metabolism in AT and skeletal muscle are also closely associated with growth

performance, meat quality, and reproduction in livestock farming. Therefore, this

Research Topic aims to compile articles that expand our understanding of the lipid

metabolism processes within the AT and skeletal muscle.
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Beige/brown adipocyte
thermogenesis

There are three types of adipocytes: brown adipocyte, white

adipocyte, and beige adipocyte. Brown and beige adipocyte

dissipate glucose and fatty acid (FA) to generate heat and play

important roles in cold- and diet-induced thermogenesis

(Kajimura et al., 2015). Therefore, genetically and

pharmaceutically activation of beige/brown adipocyte has

drawn great attention in the treatment of metabolic diseases.

Li et al. analyze and compare the transcriptomics of AT after

chronic cold exposure and β3-AR agonist CL316,243 (CL)

administration. The results reveal that cold and CL treatment

both upregulates genes in lipid metabolism and TCA cycle

pathways. CL treatment uniquely activates genes in

carbohydrate mobilization, while cold uniquely promotes

genes in glycolipid and specific amino acids metabolism. In

addition, cold and CL treatment could separately suppress

different inflammatory pathways. In particular, cold

specifically inhibits fibrotic programs.

Lipoprotein lipase (LPL) expressed by brown adipocyte play

a central role in lipid metabolism by processing triglyceride-rich

lipoproteins (TRL). Thiemann et al. observe that Lpl is also

expressed by endothelial cells in cold-activated brown adipose

tissue (BAT). By using a VE-cadherin (Cdh5)-Cre to drive the

knockout of lpl, they demonstrate that endothelial Lpl is

dispensable for lipoprotein handling and adaptive

thermogenesis. The authors hypothesize that a compensatory

high expression of LPL in brown adipocyte may enhance BAT

TRL disposal in this model, but the mechanism remains unclear.

In another interesting review, Bruder et al. discuss the

potential physiological purposes of postnatal AT remodeling.

They state that postnatal AT remodeling is an ideal model

process to investigate beige/brown adipocyte thermogenesis

since there is less external manipulation.

Epigenetic regulation

In the condition of overnutrition, AT is able to expand in two

ways: Hyperplasia that is dependent on increasing adipocyte

number through adipogenesis and hypertrophy by enlargement

of adipocyte cell size (Ghaben and Scherer, 2019). Notably,

targeting adipogenesis is now emerging for the treatment of

obesity. Interest in the epigenetic roles of non-coding RNAs

during adipogenesis has been growing rapidly (Sun et al., 2013).

Zhang et al. review the recent advances in long non-coding RNAs

(lncRNAs) that regulate AT development and metabolism. In

particular, they summarize the potential involvement of

lncRNAs in metabolic disorders and prospect the potential of

targeting lncRNAs in the treatment of obesity and metabolic

diseases by using antisense oligonucleotides (ASO). Besides non-

coding RNA, RNA m6A methylation (m6A) also plays many

aspects in various diseases (He and He, 2021). Wang et al.

introduce the up-to-date research advances between m6A and

lipid metabolism, especially those within non-alcoholic fatty liver

disease (NAFLD), diabetes, and cardiovascular diseases. This

review provides insights into the possibilities that modify RNA

m6A methylation in the fight against metabolic diseases.

Circular RNA (circRNA) is a newly discovered type of non-

coding RNAs that participates in numerous cellular processes.

Zhang et al. perform RNA-sequencing and identify

3,711 circRNAs at different stages of adipogenesis

(preadipocyte, differentiating preadipocyte, and mature

adipocyte). They find that many circRNAs share similar

expression patterns with their parental genes. In addition,

they discover multiple microRNA (miRNA) binding sites

from the differential expressed circRNAs, which indicates that

crircRNAs may act as miRNA sponges. However, the function of

circRNA during adipogenesis requires to be further evaluated.

Disease-relevant study

Besides its role in energy storage, AT also contributes to

systemic metabolism as an endocrine organ, especially through

the secretion of adipokines (Fasshauer and Blüher, 2015). Ji et al.

review the role of retinol-binding protein 4 (RBP4) in lipid

metabolism and highlight the emerging importance of

RBP4 with cardiovascular diseases (CVDs). By comparing

published datasets, they predict that RBP4 might not only be

a new biomarker for CVD, but targeting RBP4 preserves

therapeutic potentials.

For years, scientists have been investigating

antihyperglycemic drugs to protect against tissue damage in

T2D (Verma and McMurray, 2018). The administration of a

sodium-glucose cotransporter 2 inhibitor (SGLT2i) has been

proven as a candidate therapy for hyperglycemia in T2D

patients (Chao and Henry, 2010). Nagayama et al. extend the

application of SGLT2i to incomplete acquired lipodystrophy.

They report a case wherein a patient is treated with a

combination of metreleptin supplementation and SGLT2i to

improve hyperglycemia and insulin sensitivity. This study

provides the potential benefits of using SGLT2i for non-obese

diabetic patients.

Skeletal muscle metabolism

The skeletal muscle is the largest metabolic organ in the body

and is extremely important for energy homeostasis (Sheffield-

Moore and Urban, 2004). Antony et al. investigate the role of

UCHL1 in skeletal muscle lipid metabolism. They observe that in

fasting or glucose starvation conditions, UCHL1 protein levels

are decreased in both skeletal muscle and differentiated

myotubes. Muscle-specific Uchl1 knockout reduces lipid
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content and improves glucose tolerance, which may be correlated

with the stabilization of Perilipin 2. In another research article on

patients with spinal cord injury (SCI), Goldsmith et al. show that

increased visceral adiposity, and inflammatory signaling, as well

as reduced testosterone levels, predict mitochondrial dysfunction

in these patients. However, due to the restriction in patient size of

the current study, it remains unclear the complex causal

relationships among those factors with chronic SCI. To better

address the limitations more effectively, a large multi-centered

trial is highly warranted.

Comparative studies

In addition to its association with human health, lipid

metabolism in AT and skeletal muscle are also extremely

popular among non-medical researchers, especially for

those working in agriculture. Conserved signaling pathways

that govern adipose and skeletal muscle development and

metabolism have been investigated in agricultural animals,

such as liver kinase B1 (LKB1) (Shan et al., 2014; Shan et al.,

2016). Xiong et al. report a role of LKB1 in goat intramuscular

preadipocytes differentiation via the focal adhesion kinase

(FAK) pathway. The results indicate that targeting

LKB1 might be a potential strategy to manipulate

intramuscular fat deposition to improve the meat quality of

goat. Pig farming requires stale temperature control as piglets

lack the ability for thermogenesis. For this purpose, Xu et al.

explore the effect of acute cold exposure on carcass indicators,

enzyme activity, fatty acid composition, and gene expression

profiles in the longissimus dorsi muscle (LDM) of growing-

finishing pigs. The results suggest that chronic cold exposure

significantly changes fatty acid profile and lipid metabolism,

which emphasizes the importance of pre-slaughter

temperature conditions in the fatty acid metabolism of

pork. However, no difference is found in the content of

amino acids, which needs to be further investigated in a

longer time of cold treatment.

Conclusion

In sum, the 12 articles in this Research Topic are

representative of the depth content of lipid metabolism in AT

and skeletal muscle, as well as their application in metabolic

diseases. Results from the aforementioned articles could help

better unravel the selective and specific biomarkers and

therapeutic targets of various metabolic diseases.
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Comparative Transcriptome Profiling
of Cold Exposure and β3-AR Agonist
CL316,243-Induced Browning of
White Fat
Yu Li†, Xiaodan Ping†, Yankang Zhang†, Guoqiang Li, Ting Zhang, Geng Chen,
Xinran Ma* , Dongmei Wang* and Lingyan Xu*

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China
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Beige adipocytes are newly identified thermogenic-poised adipocytes that could be
activated by cold or β3-adrenergic receptor (β3-AR) signaling and offer therapeutic
potential for treating obesity and metabolic diseases. Here we applied RNA-sequencing
analysis in the beige fat of mice under cold exposure or β3-AR agonist CL316,243 (CL)
treatment to provide a comparative and comprehensive analysis for the similarity and
heterogeneity of these two stimulants. Importantly, via KEGG analysis, we found that
cold and CL commonly induced oxidative phosphorylation. Meanwhile, cold increased
glycerolipid and amino acids metabolism while CL treatment triggered a broader
spectrum of metabolic responses including carbohydrate metabolism. Besides, cold or
CL treatment featured greater heterogeneity in downregulated gene programs. Of note,
the top changed genes in each category were confirmed by qPCR analysis. Overall,
our analysis provided a better understanding of the heterogeneity of differential models
for beige adipocytes activation and a possible clue for optimizing β3-AR agonists in
the future.

Keywords: browning of white fat, cold exposure, β3-AR agonist, heterogeneity analysis, transcriptomics

INTRODUCTION

Obesity, manifested as excess fat accumulation caused by the imbalance between energy intake and
expenditure, is a severe public health crisis throughout the world since it is the major risk factor
for metabolic diseases including type 2 diabetes, hypertension, cardiovascular disease, and certain
types of cancers (Harms and Seale, 2013). Fat tissues are divided into three categories. White fat
stores energy in the form of triglyceride and classic brown fat dissipates chemical energy as heat via
uncoupling protein 1 (UCP1). Recently, beige adipocytes have been discovered and characterized
by their high thermogenic and energy dissipating capacity upon cold exposure or β3-adrenergic
signaling (Himms-Hagen et al., 1994; Rosell et al., 2014), which is called the “browning of white
fat.” Of note, the browning phenomenon was also observed in cold-exposed human adults in
the supraclavicular region revealed by PET-CT scans with characteristics resembling beige/brown
adipocytes in rodents (Nedergaard et al., 2007; Sharp et al., 2012). The existence of beige/brown fat
in human adults has attracted great attention and has been considered a novel peripheral target to
treat obesity and metabolic diseases.
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Under cold exposure, norepinephrine (NE) release from
sympathetic nerves is critical for the induction of white fat
browning through the β3-adrenergic receptor (β3-AR) since β3-
AR loss in mice almost abolished the cold-induced browning in
WAT (Galitzky et al., 1995; Jimenez et al., 2003; Collins, 2011).
In detail, NE binds to β3-AR and triggers a signal transduction
cascade involving cyclic AMP (cAMP)-PKA-CREB signaling,
which eventually activates the transcriptions of mitochondrial,
lipolytic, lipid oxidative, and thermogenic gene programs (Harms
and Seale, 2013; Bargut et al., 2017). CL316,243 (CL), one kind
of β3-adrenergic activator, is widely used in cellular models
and rodents to mimic cold stimulation with potent effects
on metabolic rate and thermogenic effects at least partially
via activating browning of white fat since the thermogenic
effects of CL still exist in mice lacking brown adipose tissues
(Lowell et al., 1993).

Due to the importance of β3-AR signaling in the browning
of white fat, the β3-AR agonists are considered a potential
therapeutic strategy to combat obesity and metabolic diseases.
However, compared to cold, distinct β3-AR agonists featured
different efficacies in thermogenic activation and side effects,
which complicated its wide and safe use. For example, the
applications of various β3-AR agonists have been hindered
in clinical use due to their potential adverse effects on the
cardiovascular system, which call for continuous efforts for
developing novel and safer β3-AR agonists (Arch, 2011). Besides,
previous studies have shown that β3-AR stimulation with
sympathomimetic ephedrine had no thermogenic effect on
human BAT, while mirabegron, a β3-AR agonist used to treat an
overactive bladder, was effective in activating BAT as compared
to placebo but may have adverse impacts on glucose homeostasis
(Cypess et al., 2012, 2015). Moreover, it has been reported
that cold exposure and β3-AR agonists may activate distinct
cellular populations that express different β-adrenergic receptors
(Jiang et al., 2017). Overall, this evidence suggested the obvious
heterogeneity of cold exposure and β3-AR agonists on the process
of white fat browning, while the detailed differences between two
stimulants are not well clarified. A detailed comparative study
would offer previously unappreciated mechanisms and strategies
for better β3-AR agonists development.

In the present study, via analyzing the transcriptomics
of chronic cold exposure or CL administration, we revealed
the commonalities and heterogeneity of these two powerful
instigators of white fat browning, which may provide novel
insights into the theoretical basis in order to optimize β3-AR
agonists for the treatment of obesity and metabolic diseases.

MATERIALS AND METHODS

Animals
All of the procedures involving mice were performed according
to guidelines of East China Normal University. Male C57BL/6J
mice were purchased from Shanghai Model Organisms Center
and housed under standard experimental environments
controlled at room temperature (22◦C) with a 12 h light/dark
cycle and free access to food and water. For the establishment

of the animal model, mice were housed at either 22◦C or 4◦C
for 7 days in a temperature-controlled incubator (LP-LED,
NK system, Japan), or injected daily with 1 mg/kg of PBS or
CL316,243 (Sigma-Aldrich) for 7 days. Mice were subsequently
sacrificed and inguinal fat was dissected and frozen immediately
in liquid nitrogen and stored at −80◦C for further analysis. To
monitor the effect of the cold or CL treatment, body weight and
food intake were measured after 7 days. Serum triglyceride (TG)
and total cholesterol (TC) were determined according to the
manufacturer’s instructions (Sigma).

Hematoxylin & Eosin (H&E) and
Immunohistochemical (IHC) Staining
Inguinal fat (iWAT) from room temperature (RT) and cold-
exposed mice or PBS and CL treated mice were fixed in 10%
formalin (Sigma Aldrich). The tissues were embedded into
paraffin, blocked, and cut at 5 µm for H&E staining. For UCP1
IHC staining, 5-µm-thick iWAT sections were incubated with 3%
H2O2 to inactivate the endogenous peroxidase and blocked with
5% goat serum for 2 h. Afterward, the slides were incubated with
UCP1 antibody (1:200, Abcam) overnight at 4◦C and followed
with goat-anti rabbit IgG HRP for 1 h. The chromogen DAB was
used to detect the immunoreactivity peroxidase. These images
were acquired using a microscope (Nikon) and adipocyte sizes
were quantified. Briefly, ImageJ software was used to calculate
the total area and the number of adipocytes in the whole field
of vision, then the sizes were calculated by dividing the total area
by the number of adipocytes. Five random fields per section per
mouse were analyzed.

Total RNA Extraction, RNA-Sequencing,
and Quantitative Real-Time PCR
Total RNA was extracted from the iWAT of mice with TRIzol
(Takara). The RNA library was generated and RNA sequencing
(RNA-seq) was performed on an Illumina Hiseq instrument
(Cloud-Seq Biotechnology, Shanghai). Reverse transcription
and quantitative real-time PCR (qPCR) were performed to
confirm the RNA sequencing results. A total of 1 µg of
RNA was reversely transcribed using SuperScriptTM III Reverse
Transcriptase (Takara) for cDNA synthesis, and Universal SYBR
Green Master Mix (Yeasen, Shanghai) was used to perform qPCR
on the Light cycler 480II machine (Roche, United States). After
normalization to 36b4, the relative expression level of RNA was
calculated by using the 2−11Ct method.

The sequences of primers are listed in Supplementary Table 2.

RNA-Seq Analysis of In-House and NCBI
Gene Expression Omnibus (GEO)
Datasets
A unified method was adopted for all datasets. EdgeR was
used to find differentially expressed genes. All sequencing reads
were mapped to the mouse reference genome (UCSC mm10)
using hisat2 (Kim et al., 2015), and StringTie was used to
calculate the read counts (Pertea et al., 2015). EdgeR was used
to identify the differentially expressed genes (Robinson et al.,
2010). A gene was considered as differentially expressed with the
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following criteria: adjusted p-value < 0.05 and log2| fold change|
≥ 1. Raw datasets have been uploaded to the Gene Expression
Omnibus (GSE164219).

To avoid bias or randomization of datasets, we cross-
analyzed RNA-seq data from our in-house data GSE164219
and GEO datasets GSE86338 both containing iWAT under
room temperature or cold exposure for 7 days, as well as
GSE86338 and GSE129083 datasets both for PBS or CL treatment
chronologically (Bai et al., 2017; Wang et al., 2019).

Pathway Enrichment Analysis (KEGG)
and Gene Ontology (GO) Analysis
The gene set enrichment analysis (GSEA) was performed
to identify the significant pathways and functions using
clusterprofiler (Yu et al., 2012). Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis identifies significantly
enriched metabolic pathways or signal transduction pathways
enriched in differentially expressed genes (DEGs) compared to
those with reference gene background using the hypergeometric
test. The functional enrichment analysis was carried out to map
the DEGs to genes in the GO terms list. The GO terms and
KEGG pathways were considered as significantly enriched if
p-value< 0.05.

Statistical Analyses
The data analysis was performed with GraphPad Prism 7. The
normalcy of data was examined by the Shapiro–Wilk normality
test. Statistical comparisons between two groups were made
by a two-tailed unpaired student t-test. Data are presented as
mean ± SEM. Differences between groups were considered
statistically significant when p-value< 0.05.

RESULTS

Chronic Cold Exposure or CL316,243
Administration Induce Browning of White
Fat and Thermogenic Marker UCP1
Expression to a Similar Extent in Mice
To confirm the effects of cold exposure or β3-AR agonist
stimulation on the browning of white fat, two groups of mice
at 8 weeks old were kept under either room temperature (RT,
22◦C) or 4◦C for 7 days, while the other two groups of mice of
a similar age were intraperitoneally (IP) administrated with PBS
or CL316,243 (CL) at RT for 7 days (Figure 1A). To explore
the effect of the cold or CL treatment on whole-body energy
metabolism, we monitored the body weights and food intake
changes during cold or CL treatment, as well as triglyceride and
cholesterol level after cold or CL treatment. These data showed
that both cold and CL treatment reduced body weight and serum
lipid parameters (Supplementary Figures 1A–D). Interestingly,
cold exposure also exhibited strong effects on increasing food
intake compared to CL treatment, which was consistent with
previous reports (Yoshida et al., 1996; Jia et al., 2016; Xu et al.,
2019). At the end of interventions, inguinal white adipose tissues
(iWAT) were dissected from these mice for histological and gene

expression analysis (Figure 1A). The hematoxylin & eosin (H&E)
staining of iWAT showed reduced adipocyte sizes upon either
cold or CL treatment, compared to their respective controls
(Figure 1B). In addition, cold and CL both led to a similar
strong induction of UCP1, the marker for thermogenesis, at
mRNA and protein levels compared to their controls, as shown
by qPCR, UCP1 immunohistochemical staining, and western
blot analysis (Figures 1C–E). Thus, these results indicated that,
physiologically, both cold and CL treatment strongly induced the
browning of white fat to a similar extent in mice.

We then set out to analyze the common and differential
changes in gene transcriptome during the browning process
induced by cold or CL treatment in mice iWAT. Of note, to
avoid biased results from a single dataset, we cross-analyzed
RNA-seq data using our in-house data GSE164219 and dataset
GSE86338 from the GEO database which both analyzed the
changes in mRNA landscapes in iWAT under cold exposure
or room temperature for 7 days, while the other cross-analysis
was performed between datasets GSE86338 and GSE129083
which both evaluated iWAT mRNA changes upon chronic CL
or PBS administration (Figure 2). Consistent with a critical
role for energy expenditure and thermogenesis in these two
browning models, GSEA revealed that cold exposure and CL
treatment commonly induced DEGs strongly correlated with
fatty acid metabolism and the tricarboxylic acid (TCA) cycle in
mitochondria in all datasets (Figures 3A–D).

Overall, these data indicated that cold and CL induced white
fat browning featured common characterizations in both fat
physiology and critical gene pathways, though the reported
differences in functionality and side effects of cold or CL
treatment may lie in their individual distinct gene expressions.

Cold Exposure Enhances Metabolism
While Inhibits Inflammatory and Fibrotic
Pathways in iWAT
We thus set out to investigate if cold or CL treatment
induce different patterns of gene expressions and pathway
enrichments in iWAT. We overlapped two datasets (GSE164219
and GSE86338) to highlight the commonly regulated gene
sets upon cold exposure and performed bioinformatic analysis
(Overlap-Cold). The results revealed 120 upregulated genes
and 204 downregulated genes commonly regulated by cold
in both datasets (Figures 4A,B). KEGG analysis revealed
that cold stimulated classic metabolic pathways including
the adipocyte differentiation-related PPAR signaling pathway,
energy homeostasis related carbon metabolism, and TCA cycle
(Figure 4C). This was in accordance with GO analysis showing
that the lipid metabolic process and mitochondrial regulation
were upregulated (Supplementary Figure 2A). Notably, in
our analysis, cold exposure induced gene programs enriched
in cardiac muscle contraction, suggesting that chronic cold
may also pose potential threats to the cardiovascular system.
Meanwhile, KEGG analysis also revealed that cold exposure
inhibited complement and coagulation cascades, ECM-receptor
interaction, and the TGF-β signaling pathway (Figure 4D),
and GO analysis highlighted that the regulated genes were
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FIGURE 1 | Chronic old exposure and CL316,243 administration induce browning of white fat and thermogenic marker UCP1 levels in mice. (A) Schematic
illustration of the browning of white fat induced by 7-day cold exposure or β-adrenergic agonist CL316,243 (CL) administration. (B) Representative H&E staining of
adipocyte size quantification from iWAT of mice treated with RT or cold and PBS or CL. Scale bars: 50 µm. (C–E) Representative immunohistochemical images of
UCP1 staining (C), mRNA (D), and protein levels of UCP1 (E) in iWAT from mice treated with RT or cold and PBS or CL. Scale bars: 50 µm. N = 6 per group. Data
are presented as mean ± SEM and **P < 0.01 compared to control group.

involved in extracellular matrix organization (Supplementary
Figure 2B), which potentially contributed to adipose tissue
fibrosis (Sun et al., 2013).

Taken together, these transcriptional data suggested that cold
exposure promoted classic energy metabolism while it suppressed
the inflammatory and fibrotic pathways in iWAT.

CL Stimulates a Broader Spectrum of
Metabolic Gene Pathways and
Decreases Immune Responses
We also overlapped genes from two datasets (GSE86338
and GSE129083) that study CL treatment, which rendered
664 commonly upregulated and 63 commonly downregulated

genes (Overlap-CL, Figures 5A,B). Interestingly, the counts
of commonly upregulated genes treated with CL were far
more than those found in cold, suggesting that CL may cause
changes to a broader spectrum of gene programs in iWAT
(Figures 5A,C). Indeed, in addition to fatty acid metabolism
and TCA cycle, KEGG analysis uncovered that CL positively
regulated peroxisome and pyruvate metabolism, suggesting other
cellular organelles and glucose metabolism were mobilized
by CL treatment (Figure 5C). Consistently, GO analysis also
showed that the upregulated DEGs were associated with lipid
and carbohydrate metabolism (Supplementary Figure 3A). In
comparison, only 5% of commonly downregulated genes were
affected, including immune response pathways such as the
toll-like receptor signaling pathway and NF-kappa B signaling
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FIGURE 2 | Flow chart of RNA-sequencing data processing.

pathway (Figure 5D), which were consistent with GO analysis
results showing a suppressed acute inflammatory response and
IL-8 production (Supplementary Figure 3B).

Therefore, our transcriptional analysis revealed that
aside from the classic energy metabolism observed in cold
stimulation, CL treatment also induced peroxisomal and
pyruvate metabolism, while subduing classic immune responses.

Comparative Analysis Revealed That
Cold and CL Exposure Commonly
Increase Oxidative Phosphorylation and
Metabolic Pathways and Decrease
Complement and Coagulation Cascades
Subsequently, we investigated the commonality between cold
and CL treatment by further cross-analyzing the overlap-
cold and overlap-CL datasets. Intriguingly, the majority of
upregulated genes under the cold condition were covered by
DEGs set under CL treatment (Figure 6A). The 98 genes
commonly upregulated by cold and CL were majorly involved
in oxidative phosphorylation and the metabolic pathways
required for thermogenesis as revealed by KEGG analysis
(Figures 6B,C). Furthermore, among the top enriched genes
were classic thermogenic and mitochondrial genes including
Ucp1, Cpt1b, and Cox7a1, which were confirmed by qPCR
analysis (Supplementary Table 1 and Figures 1D, 6D). On the
contrary, only nine genes, mainly related to complement and

coagulation cascades, were commonly downregulated by cold
and CL, with complement components C2 and C4b confirmed
by qPCR (Figures 6E–H). Complement components are a critical
part of the innate immune system and contribute to excessive
inflammatory responses (Lin et al., 2018; Lung et al., 2019).

These results indicated that both cold and CL treatment
promoted thermogenesis and energy metabolism via oxidative
phosphorylation, while they suppressed complement and
coagulation cascades.

Analysis of Unique Gene Programs of
Cold Exposure and CL Treatment
Suggest Distinct Energy Substrates
Utilization and Physiological Events
Lastly but most importantly, we explored the heterogeneity
in gene expression patterns between cold exposure and CL
treatment during iWAT browning. Notably, after overlapping
datasets, we found that 3.2% of DEGs (22 genes) were uniquely
upregulated by cold, while 82.5% of DEGs (566 genes) were
uniquely upregulated by CL (Figure 6A). These results suggested
that though cold and CL both strongly induce white fat browning,
CL regulates a unique set of gene programs compared to cold,
which may explain the different functionality and side effects
induced by these two stimulations.

Kyoto Encyclopedia of Genes and Genomes analysis revealed
a significant enrichment of glycerolipid metabolism, as well
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FIGURE 3 | DEGs and GSEA of RNA-seq datasets for iWAT under cold exposure or CL administration in mice. (A–D) Volcano plots for DEGs and GSEA of different
datasets. (A) GSE164219 and (B) GSE86338: Cold vs. RT; (C) GSE86338 and (D) GSE129083: CL316,243 vs. PBS. Red dots for upregulated genes, blue dots for
downregulated genes, and gray dots for non-DEGs.
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FIGURE 4 | Cold exposure enhances metabolism and inhibits inflammatory and fibrotic pathways in iWAT. (A,B) Venn diagram of overlapped upregulated (A) and
downregulated (B) genes from iWAT of mice exposed to cold shown in the GSE86338 and GSE164219 datasets. (C,D) KEGG analysis for the DEGs of common
upregulated 120 genes (C) shown in (A) and downregulated 204 genes (D) shown in (B).

as glycine, serine, and threonine metabolism as a feature
of cold-induced gene patterns (Figure 7A). qPCR analysis
confirmed the increase in mRNA levels of aminolaevulinic
acid synthase 2 (ALAS2), the rating-limiting enzyme in heme
synthesis which can maintain the mitochondrial function in
brown adipocytes (Galmozzi et al., 2019), as well as glycerol
kinase (Gyk), which catalyzes the phosphorylation of glycerol
to glycerol 3-phosphate and is reported to be involved in
UCP1 level induction (Iwase et al., 2020), in cold-treated
iWAT versus CL treatment (Figure 7C). Meanwhile, we noted
that pyruvate metabolism, carbon metabolism, and glycolysis
were uniquely enriched in CL treatment, suggesting that in
addition to oxidative phosphorylation, fatty acid metabolism,
and TCA cycle that were commonly regulated by cold and

CL, CL treatment features active glucose mobilization for
energy demands (Figure 7B). Among the top regulated genes,
qPCR analysis confirmed enhanced expression of acetyl-CoA
carboxylase alpha (ACACA), hydroxyacylglutathione hydrolase
(HAGH), and acyl-CoA synthetase short chain family member
2 (ACSS2) in the pyruvate catabolism (Figure 7C) in CL-
treated iWAT versus cold. These results suggested that cold
uniquely regulated glycerolipid metabolism and specific amino
acids metabolism, while compared to cold, CL treatment
tended to mobilize both carbon and lipid substrates for the
browning of white fat.

Besides, 75.6% of DEGs (195 genes) were uniquely
downregulated upon cold exposure while 20.9% of DEGs (54
genes) were uniquely suppressed by CL treatment (Figure 6E),
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FIGURE 5 | CL stimulates a broader spectrum of metabolic gene pathways and decreases immune responses. (A,B) Venn diagram of overlapped upregulated (A)
and downregulated (B) genes from iWAT of mice administrated with CL shown in GSE86338 and GSE129083 datasets. (C,D) KEGG analysis for the DEGs of
common upregulated 664 genes (C) shown in (A) and downregulated 63 genes (D) shown in (B).

suggesting that cold suppressed a large number of distinct genes
compared to CL. KEGG analysis showed that cold exposure
mainly inhibited ECM-receptor interaction and focal adhesion,
while CL inhibited pathways included the MAPK signaling
pathway, toll-like receptor signaling pathway, and glutamatergic
synapse (Figures 8A,B). Besides, the unique genes suppressed by
cold or CL treatment were confirmed by qPCR, including fibrotic
and collagen related genes Fn1, Col6a6 regulated by cold, as well
as Fos and proinflammatory cytokine IL-1b regulated by CL
(Figure 8C). These results indicated that cold treatment tended
to downregulate ECM-related pathways, while CL treatment
decreased specific intracellular and receptor signaling pathways.

Altogether, our analyses revealed different energy substrates
utilization and specific physiological events induced by cold or
CL stimulated in beige adipocytes.

DISCUSSION

Chronic cold exposure and β3-AR treatment induce
transcriptional signaling pathways in beige adipocytes for
thermogenesis. In the present study, we examined the
transcriptomic alterations that occur in the iWAT of mice
during cold exposure or CL treatment by analyzing overlapped
RNA-seq datasets and revealed that these two triggers of
browning commonly drove lipid metabolism and TCA cycle
in mitochondria for thermogenesis. Interestingly, we found
differences between datasets generated from mice under similar
treatment, which may be caused by multiple factors behind
this phenomenon. First, the mice strains used by different labs
may have differences due to sub-strains formed by long-term
inbreeding in different facilities. Second, it has been more and
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FIGURE 6 | Comparative analysis of commonly regulated genes by cold and CL exposure. Analysis of overlapped DEGs between cold (commonly regulated genes
from GSE86338 and GSE164219 datasets) and CL (commonly regulated genes from GSE86338 and GSE129083 datasets). (A,E) Venn diagrams for commonly
upregulated (A) and downregulated (E) DEGs between cold and CL treatment. (B,C,F,G) KEGG analysis and pathway-gene network for the upregulated 98 genes
(B,C) shown in (A) and downregulated 9 genes (F,G) shown in (E). (D,H) mRNA levels of top ranked upregulated (D) genes from (A) and downregulated (H) genes
from (E). N = 6 per group. Data are presented as mean ± SEM and *P < 0.05, **P < 0.01 compared to control group.

more recognized that housing environments may have a major
influence on experimental outcomes, including different diet
formula and bedding materials that the mice are kept on, distinct
circadian rhythm due to different lighting schedules in the
facility, or different times when the experiments were performed,
etc. Last but not least, gut microbiota in animals from different
facilities are different, which may contribute to the different
metabolic performances and responsive gene programs under

cold or CL treatment. To circumvent this factor, we overlapped
different datasets to identify the stable alternations of gene
programs between datasets under cold or CL treatment. Of note,
CL treatment uniquely activated carbohydrates mobilization
for energy demands, and cold uniquely promoted glycerolipid
and specific amino acids metabolism. Meanwhile, we found that
cold and CL treatment each suppressed different inflammatory
events, while cold additionally downregulated fibrotic programs.
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FIGURE 7 | Analysis of uniquely upregulated gene programs of cold exposure and CL administration. (A,B) KEGG analysis and pathway-gene network for uniquely
upregulated DEGs [(A) 22 genes in cold datasets, (B) 566 genes in CL datasets]. (C) mRNA levels of top ranked genes exclusively upregulated in iWAT of mice
under cold exposure or CL administration. N = 6 per group. Data are presented as mean ± SEM and *P < 0.05, **P < 0.01 compared to control group.

These results may provide novel insights for understanding the
molecular mechanisms behind the functional differences and
distinct side effects caused by cold or β3-AR agonist stimulation
in the browning process.

We found that both cold and CL stimulation on beige
fat significantly enhanced pathways related to oxidative
phosphorylation for energy metabolism. White adipose tissue
mainly stores energy in the form of triglycerides (TG). In
the face of energy demand, for example, during cold or CL
stimulation, TG breaks into glycerol and fatty acid (Beale

et al., 2002) to provide energy substrates. Via transcriptome
data and qPCR confirmation, we confirmed that Gyk, an
enzyme critical for glycerol/fatty acid metabolism and UCP1
induction partially through the β3AR-cAMP-CREB pathway
(Iwase et al., 2020), was upregulated upon cold exposure,
indicating a critical role of lipid metabolism in cold-stimulated
browning. Besides, we found that compared to CL treatment,
cold exposure specifically promoted glycerolipid metabolism
that is an integral part of the glycerolipid/FFA cycle essential for
maintaining body temperature by releasing heat at the expense
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FIGURE 8 | Analysis of uniquely downregulated gene programs of cold exposure and CL administration. (A,B) KEGG analysis and pathway-gene network for
uniquely downregulated DEGs [(A) 195 genes in cold datasets, (B) 54 genes in CL datasets]. (C) mRNA levels of top ranked genes exclusively downregulated in
iWAT of mice under cold exposure or CL administration. N = 6 per group. Data are presented as mean ± SEM and *P < 0.05, **P < 0.01 compared to control group.

of ATP (Prentki and Madiraju, 2008). Since we found changes
in glycerolipid metabolism uniquely in cold treatment but not
CL treatment, it is possible that cold exposure also promoted
thermogenesis by enhancing glycerolipid metabolism in a
β3-AR-independent way. In addition, an interesting observation
from our transcriptome data was that the upregulated DEGs
in CL-induced browning included the majority of upregulated
DEGs of cold-induced browning, while CL also featured unique
DEGs, i.e., pyruvate metabolism among the top ranking pathway
categories by KEGG analysis. This indicates that cold and CL
activated an array of similar gene pathways, i.e., lipid metabolism
for substrate consumption, while CL additionally promoted

multiple substrate utilization, for example, glucose metabolism
for enhanced oxidation phosphorylation, suggesting that CL
was more prone to mobilize both carbohydrate and lipids for
adequate heat production.

It is well known that proinflammatory macrophages infiltrate
adipose tissues in obese mice, which leads to chronic low-grade
systemic inflammation and obesity-related metabolic syndrome
(Weisberg et al., 2003; Lumeng and Saltiel, 2011; Nguyen et al.,
2011). This local pro-inflammatory environment in fat tissues
directly impairs thermogenic activity, which also impacts brown-
versus-white plasticity in subcutaneous adipose tissue (Villarroya
et al., 2018). Meanwhile, thermogenic stimuli such as cold
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exposure and β3-AR agonists treatment, have been reported to
protect against metabolic derangements in obesity partially via
triggering anti-inflammatory responses during tissue remodeling
and beige adipogenesis (Lee et al., 2013; Hui et al., 2015; Burl
et al., 2018). In our study, among the uniquely downregulated
gene pathways in cold, we found that fibrotic genes, such
as the fibronectin Fn1 and Col family involved in ECM-
receptor interaction, were highlighted in the top ranking gene
list (Supplementary Table 1), indicating that tissue remodeling
is a critical event during cold-induced white fat browning. It
is known that adipocytes undergo dramatic expansion during
strong obesogenic insults, whereas collagen families are key
factors in maintaining ECM integrity and promoting ECM
remodeling (Khan et al., 2009; Mariman and Wang, 2010;
Villarroya et al., 2018). Col4a5, Col6a6, and Fn1 genes in
charge of producing collagen of ECM components and markers
of iWAT fibrosis, were discovered to be uniquely decreased
in cold (Zhang et al., 2020). Therefore, our results indicated
that cold exposure could relieve adipose tissue fibrosis, which
is one of the major characteristics for adipose tissue aging,
thus offering a potential therapeutic method for treating aging-
associated metabolic decline. Besides, the adaptive immune
system is activated along with the development of adipose
tissue inflammation during adipocytes hypertrophy (Kintscher
et al., 2008). In this study, we found that interleukin family
member IL-1b and Fos, a nucleoprotein transcription factor
reported to orchestrate the functions of interleukin-family such
as IL-17 and IL-1b for inflammatory responses (Frohnert et al.,
2014; Camarena et al., 2017), were downregulated upon CL
administration. It is thus interesting that although both cold and
CL inhibit inflammation in iWAT, they impact different immune
signaling pathways and inflammatory genes, which may provide
a theoretical basis for studies on the interactions between obesity
and inflammation.

Recently, single cell RNA sequencing (scRNA-seq) and single
nucleus RNA-seq (snRNA-seq) have emerged as powerful tools
to dissect tissue heterogeneity, which have been applied to the
studies of development and function of adipose tissue (Burl et al.,
2018; Rajbhandari et al., 2019; Henriques et al., 2020; Sun et al.,
2020). These studies characterize various cell populations in SVF
or mature adipocytes of iWAT as well as changes in immune
cells including the upregulated expression of IL-10 and increased
ratio of M2/M1 macrophages during iWAT browning process
via scRNA-seq and snRNA-seq, which was similar to our result
that both cold exposure and CL treatment affected the immune
response pathways (Rajbhandari et al., 2019; Henriques et al.,
2020). However, few single-nuclei transcriptome analyses have
focused on the different impacts between cold and CL treatment
on iWAT, which warrants further study. Besides, epigenetic
modification has been demonstrated to play a critical role in
regulating the development and function of adipose tissue. For
example, upon activating β3-AR signaling, JMJD1A-mediated
H3K9me2 demethylation promotes beige fat adipogenesis and
KMT5c-mediated H4K20 methylation activates thermogenic
gene program in iWAT (Abe et al., 2018; Zhao et al., 2020). In
addition, studying different protein characteristics would offer
additional dimensions in interpreting the differential responses

caused by cold or CL stimulation. In this study, we explored
the commonalities and heterogeneity of cold exposure and CL
administration on iWAT transcriptome during the induction
of beige fat browning. Future studies on how different stimuli
convey different changes in epigenetic regulation, cell subsets, or
proteomics within iWAT remain to be further explored.

Besides adipose tissues, liver, and skeletal muscle may also
play important roles in regulating systemic energy homeostasis
in response to cold or CL treatments (Baskin et al., 2015).
In acute cold, muscles provide heat for body temperature
defenses through shivering and non-shivering thermogenesis.
For example, Sarcolipin (Sln) has been shown to be an important
mediator in muscle-based non-shivering thermogenesis. Under
acute cold exposure, Sln knock-out mice failed to maintain
their core body temperatures (Bal et al., 2012). Meanwhile,
CL treatment has been shown to promote the expression of
uncoupling proteins such as UCP2 and UCP3 in skeletal muscle
(Nagase et al., 1996; Nakamura et al., 2001). Besides, it has
been reported that cold stimulation promoted FFA release
from white adipocytes, which caused a metabolic switch in the
liver by activating the nuclear receptor HNF4α and producing
acylcarnitines (Simcox et al., 2017). Here, we aimed to explore
the commonalities and heterogeneity of cold exposure and CL
administration on iWAT transcriptome during the induction of
beige fat browning, though contributions from other metabolic
organs may also play a role in the overall outcomes.

CONCLUSION

In summary, our results specify both common and unique
features of the molecular signatures in white fat brown activated
by cold exposure or CL treatment. They commonly activate
mitochondrial gene programs. Moreover, both stimulations
inhibit inflammation and cause physiological changes in cellular
components, though with different preferences. In terms of
substrate utilization, both stimulants mobilize lipid metabolism
for heat production, while CL is additionally prone to utilize
carbohydrates for energy demands. Overall, our data offer novel
insights toward the complex molecular events induced by various
thermogenic stimulants, and provides further understanding of
the thermogenic mechanism and physiological application of
β3-AR agonists.
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Supplementary Figure 1 | Effect of chronic cold exposure and CL316,243
administration on systemic energy homeostasis. (A–D) Body weight gain, food
intake, serum triglyceride (TG), and total cholesterol (TC) levels of mice treated
with RT or cold (A,B) and PBS or CL (C,D). N = 6 per group. Data are presented
as mean ± SEM and ∗∗P < 0.01 compared to control group.

Supplementary Figure 2 | Gene ontology (GO) biological process analysis of
commonly regulated genes in iWAT of mice upon cold exposure from two
RNA-seq datasets. (A,B) GO enrichment analysis for overlapped upregulated (A)
and downregulated (B) DEGs from iWAT of mice under cold exposure as shown in
GSE86338 and GSE164219 datasets.

Supplementary Figure 3 | Gene ontology (GO) biological process analysis of
commonly regulated genes in iWAT of mice upon CL administration from two
RNA-seq datasets. (A,B) GO analysis for overlapped upregulated (A) and
downregulated (B) DEGs from iWAT of mice under CL administration as shown in
GSE86338 and GSE129083 datasets.
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Childhood cancer survivors (CCSs) who have undergone bone marrow transplantation
with systemic chemotherapy and whole-body irradiation often experience impaired
glucose tolerance with marked insulin resistance. Incomplete acquired diabetic
lipodystrophy should be considered as a late complication of bone marrow
transplantation. A 24-year-old Japanese female patient with incomplete acquired
lipodystrophy, a CCS of acute lymphocytic leukemia at the age of 3 years, was treated
for diabetes mellitus and dyslipidemia at our hospital. Administration of multiple daily
insulin injections (70 units/day), and oral administration of 500 mg/day metformin, 15 mg/
day pioglitazone, and 200 mg/day bezafibrate had proven ineffective for her metabolic
disorders. Subcutaneous administration of metreleptin improved her insulin resistance
and hypertriglyceridemia within a month; however, it failed to maintain adequate plasma
glucose levels in the long term. When oral administration of 10 mg/day empagliflozin was
added to the metreleptin supplementation, her HbA1c value (National Glycohemoglobin
Standardization Program) improved from 11% to 8%, which was maintained for an
additional 18 months. This is the first case report of incomplete lipodystrophy that shows
efficacy of a combination therapy with metreleptin and a sodium glucose cotransporter 2
(SGLT2) inhibitor for the treatment of diabetes and dyslipidemia. An SGLT2 inhibitor
attenuates hyperglycemia through urinary glucose excretion and has been suggested to
enhance lipid catabolism in the extra-adipose tissues, especially in the liver and skeletal
muscles. Furthermore, metreleptin supplementation could enhance the action of the
SGLT2 inhibitor by promoting satiety and lipolysis through the central nervous system.
Combination therapy with metreleptin and an SGLT2 inhibitor was suggested to recover
the volume of adipose tissue, possibly through improvement of insulin resistance in the
adipose tissue. This report highlights the pathophysiological mechanism of an SGLT2
inhibitor in the improvement of glucose metabolism in non-healthy lean CCSs with insulin
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resistance. Administration of SGLT2 inhibitor, along with metreleptin supplementation,
could be a good alternative therapy for diabetic lipodystrophy observed in CCSs.
Keywords: lipodystrophy, SGLT2 inhibitor, metreleptin, hypertriglyceridemia, diabetes mellitus
INTRODUCTION

Childhood cancer survivors (CCS) are at a high risk of
cardiovascular events and mortality (1, 2), even after they have
overcome their critical malignancies. CCSs often experience
impaired glucose tolerance with marked insulin resistance as a
late complication of hematopoietic stem cell transplantation and
whole-body irradiation during childhood (3). Acquired
incomplete lipodystrophy is considered as the pathogenesis for
these conditions (4). Accordingly, supplementation with
recombinant leptin, metreleptin, is a reasonable therapy for
CCS for the improvement of their lipid and blood glucose
profi l e s (5–7) , and for the prevent ion of cr i t ica l
cardiovascular complications.

Disturbance in both white and brown adipose tissues has been
suggested to occur during radiation therapy-related acquired
incomplete lipodystrophy (4), although white adipose tissue
abnormalities are the predominant disorder in congenital
generalized lipodystrophy (8). Administration of a sodium
glucose cotransporter 2 (SGLT2) inhibitor has been suggested
as a candidate therapy for glucose impairment in a patient with
congenital generalized lipodystrophy (9). SGLT2 inhibitor
administration reduces hyperglycemia and fat accumulation in
adipose tissues by increasing urinary glucose excretion in
patients with type 2 diabetes mellitus (T2DM) (10).
Additionally, an SGLT2 inhibitor has been suggested to
improve glucose impairment through changes in glucose and
lipid metabolisms in both adipose and extra-adipose tissues (11,
12). However, the precise mechanism of the beneficial effects of
the SGLT2 inhibitor on lipodystrophy remains to be clarified.
n.org 223
We present a case of acquired incomplete diabetic
lipodystrophy wherein the patient was treated with a
combination of metreleptin supplementation and an SGLT2
inhibitor. We have previously reported the effect of metreleptin
administration on lipid and glucose metabolisms in this case (5).
An additional 2-year observation revealed dysregulation of
hyperglycemia and continuous amelioration of hyperlipidemia.
Herein, we observed that SGLT2 inhibitor administration in
addition to metreleptin supplementation could regulate the
patient’s hyperglycemia and hyperlipidemia. An improvement
was observed in her glucose and lipid profiles for an additional 18
months. Furthermore, recovery of adipose accumulation in the
subcutaneous and visceral adipose tissues was demonstrated.
SGLT2 inhibitor administration has the potential to be a suitable
alternative for the treatment of major abnormalities in glucose
and lipid metabolism and body composition in CCSs.
CASE DESCRIPTION

A 24-year-old Japanese female patient presented to our
endocrinology center with hyperglycemia, and a 13-year
history of acquired incomplete diabetic lipodystrophy with
hypertriglyceridemia and non-alcoholic fatty liver disease (5).
Systemic chemotherapy and whole-body irradiation before
allogeneic stem cell transplantation for acute lymphocytic
leukemia at 3 years of age were considered as possible reasons
for lipodystrophy development (3, 5). Administration of 500 mg/
day metformin and 15 mg/day pioglitazone, along with multiple
daily subcutaneous injections of high-dose insulin (70 units/day)
FIGURE 1 | Clinical course of the patient in this case. Hemoglobin A1c levels of the patient in this case show rapid reduction after oral administration of
empagliflozin, with continuation of 15 mg/day pioglitazone and 1000 mg/day metformin, and 2.88 mg/day of subcutaneous metreleptin supplementation, with
termination of insulin injection. The HbA1c level is maintained at ~8.0%, 18 months after empagliflozin initiation.
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had failed to improve her hyperglycemia (Figure 1). Moreover,
oral administration of 200 mg/day bezafibrate had failed to
improve the hypertriglyceridemia. However, subcutaneous
administration of metreleptin (0.08 mg/kg bodyweight/day)
markedly improved her hypertriglyceridemia from 3897 mg/dL
to 1828 mg/dL (reference range, 30–149 mg/dL) and the insulin
resistance; the glucose infusion rate (GIR) during euglycemic
glucose clamp examination (<5.7 mg/kg/min indicates insulin
resistance) increased from 2.1 mg/kg bodyweight/min to 3.2 mg/
kg bodyweight/min in 1 month. Her glycemic control improved,
and the HbA1c value attenuated rapidly from 9.6% to 8.1%
(National Glycohemoglobin Standardization Program: NGSP)
(reference range, 4.6–6.2%) (5); however, no further consistent
improvement was observed, and her HbA1c levels increased to
11.3% before empagliflozin initiation (Figure 1 and Table 1).

After 1 year of metreleptin administration, oral administration
of 10 mg/day empagliflozin was initiated, as her HbA1c level was
still high at 11% (NGSP). Her glycemic control improved
immediately, and the HbA1c level decreased to ~8% (NGSP). On
physical examination, her bodyweight and body mass index of
30.5 kg and 15.6 kg/m2, respectively, before administration of
metreleptin and empagliflozin, had reduced to 28.6 kg and 14.6 kg/
m2, respectively, following 18 months from empagliflozin initiation
and continuous metreleptin supplementation. The area under the
curve and fluctuations in the daily plasma glucose, measured using
a flash glucose monitoring (FGM) system, demonstrated
significant improvements (Supplementary Figure 1). Notably,
body composition analysis using computed tomography imaging
disclosed an increase in visceral and subcutaneous fat
accumulation, with reduced liver steatosis and unchanged muscle
areas (Figure 2). Additionally, her insulin resistance and liver
steatosis, evaluated using proton density fat fraction and T1
subtraction imaging on magnetic resonance imaging, improved
Frontiers in Endocrinology | www.frontiersin.org 324
(13) (Figure 2). Furthermore, her triglyceride level had decreased
to 652 mg/dL (Table 2). For an additional 18 months from SGLT2
inhibitor initiation, her HbA1c level remained steady at 7.8%
(NGSP); no specific adverse events, including urinary tract
infection, were observed (Figure 1 and Table 1). Evaluations
using a questionnaire that comprised a visual analogue scale
analysis revealed enhanced satiety in the patient; her appetite had
reduced to 70% of what it was prior to metreleptin administration.
Based on the ideal body mass index for the patient and her routine
activities, a diet therapy with an intake of 1380 kcal/day was
recommended (14). Administration of the SGLT2 inhibitor did
not alter her satiety or adherence to the therapies. Her adherence to
the combination therapy was well-preserved and her vigor
had increased.
DISCUSSION

We observed the first case of acquired diabetic lipodystrophy in
which hyperglycemia improved with administration of SGLT2
inhibitor in addit ion to subcutaneous metre lept in
supplementation. Additionally, combination therapy with
metreleptin and empagliflozin decreased adipose accumulation
in the extra-adipose tissues, and increased it in the adipose
tissues. This study revealed the potential benefits of using
SGLT2 inhibitors for non-obese patients with diabetes,
especially in CCSs with lipodystrophy.

Combination therapy with SGLT2 inhibitor and metreleptin
supplementation has the potential to improve glycemic control
in patients with acquired diabetic lipodystrophy. The role of
ectopic adipose accumulation in insulin resistance has been
indicated in both complete and incomplete lipodystrophies,
which is consistent with the findings of previous literature (9).
Administration of an SGLT2 inhibitor increased urinary glucose
excretion, and significantly improved the daily plasma glucose
fluctuation and fasting plasma glucose levels (Table 1, Figure 1,
and Supplementary Figure 1) (12, 15). Administration of an
SGLT2 inhibitor promotes glucagon secretion. Chronic
promotion of glucagon secretion activates mitochondrial
oxidative phosphorylation, which leads to the attenuation of
liver steatosis and insulin resistance (16). Moreover, a previous
study has described a case of complete diabetic lipodystrophy
wherein hyperglycemia rapidly improved after SGLT2 inhibitor
administration (9). The glucose metabolism impairment in our
case improved to approximately the same level as that in the
complete lipodystrophy case; the HbA1c level of our patient
changed from 11.3% to 7.6% in 7 months, and in the previously
reported case (9), from 9.3% to 6.9% in 6 months. We confirmed
consistent improvement in the glucose metabolism with regard
to insulin resistance and plasma glucose variability, evaluated by
GIR and the homeostasis model assessment of insulin resistance
(HOMA-IR), and FGM, respectively. Although metreleptin
supplementation failed to improve the hyperglycemia in this
study before SGLT2 inhibitor administration, a previous study
demonstrated consistent improvement in glucose levels in a
patient with CCS-related diabetic dystrophy (7). Leptin
TABLE 1 | Laboratory findings of glucose metabolisms evaluated pre- and post-
treatment with an SGLT2 inhibitor.

Variables, unit Value Reference
range

Pre-treatment Post-treatment

Diabetes mellitus profile

Plasma glucose, mg/dL 215 98 73–109

HbA1c, % (NGSP) 11.3 7.8 4.9–6.0

Serum C-peptide, ng/dL 3.9 3.3 0.8–2.5

3-OHBA, mmol/L 66 90 0–74.0

HOMA-IR 6.37 2.46

Glucagon loading test†

DC-peptide, ng/dL 2.92 2.10

Urinalysis

Albumin, mg/day 1963.5 1051.5

Glucose, g/day 29.14 24.64
†DC-peptide is defined as an elevated value of the serum C-peptide level measured 6
minutes after the administration of 1-mg glucagon intravenous injection when compared
with the baseline level.
HbA1c, hemoglobin A1c; 3-OHBA, 3-hydroxybutyric acid; GIR, glucose infusion rate;
NGSP, National Glycohemoglobin Standardization Program.
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administration has been shown to improve insulin sensitivity
through the activation of adenosine monophosphate-activated
protein kinase (17). Furthermore, metreleptin supplementation
enhances satiety through the hypothalamus (18), while SGLT2
inhibitor administration enhances appetite as an adverse effect
(15). Considering these findings, sufficient leptin activity is
required in patients with lipodystrophy for effective diabetes
mellitus therapy using an SGLT2 inhibitor.

SGLT2 inhibitor administration under sufficient leptin
function was suggested to decrease adipose accumulation in
the extra-adipose tissues, and increased it in the adipose
tissues. Combination therapy with SGLT2 inhibitor and
metreleptin increased both subcutaneous and visceral adipose
volume in our patient, who had low adiposity. Administration of
an SGLT2 inhibitor may demonstrate adipose redistribution
through attenuation of insulin resistance and lipolysis in the
extra-adipose tissues (11). Additionally, a recent study has
described a case of CCS-related acquired partial lipodystrophy
with high adiposity wherein adiposity in the fat tissue was
decreased after metreleptin administration. Furthermore,
metreleptin supplementation activates brown adipose tissue
and lipolysis in some regions, including extra-adipose tissues,
Frontiers in Endocrinology | www.frontiersin.org 425
through sympathetic nerve stimulation (18, 19). In this context,
the combination therapy should lead to the redistribution of
adipose tissues in the patients with CCS-related lipodystrophy.
Notably, disturbance in both white and brown adipose tissues
has been observed in CCSs with lipodystrophy, although white
adipose tissue insufficiency is observed predominantly in patients
with inherited complete lipodystrophy (8). Furthermore, both
visceral and subcutaneous fat volumes were recovered using the
combination therapy of metreleptin and SGLT2 inhibitor
administration in this case. SGLT2 inhibitor with metreleptin
supplementation may improve glucose metabolism impairment,
compensating for the brown and white adipose tissue
dysfunction and preserving skeletal muscle volume (9–11) in
CCSs with diabetic lipodystrophy.

SGLT2 inhibitor could improve the prognosis of CCSs
through risk reduction of their cardiovascular events. The
patient in this case had multiple risk factors for cardiovascular
disease, including diabetes mellitus with insulin resistance and
high daily glucose fluctuation, hypertriglyceridemia, non-
alcoholic fatty liver disease, and low adiponectin level.
Empagliflozin has been shown to improve cardiovascular
outcomes such as the all-cause mortality rate of patients with
A

B D

E

C

FIGURE 2 | Evaluations of fat accumulation in the adipose and extra-adipose tissues. Body fat accumulation has been evaluated during the clinical course.
(A) The time of evaluation using computed tomography (CT) imaging and magnetic resonance imaging as well as clinical time course of medications are presented.
Fat accumulation in liver is decreased and eventually, not detected using the proton density fat fraction (PDFF) method and T1 subtraction imaging. Areas of visceral,
subcutaneous, and total fat are increased, observed in the CT imaging analysis between before (B) and after (C, D) metreleptin and empagliflozin administrations,
although muscle areas are not increased (E). Additionally, changes in fat volume and body mass index between before- and after-combination therapy using SGLT2
inhibitor and metreleptin administration are demonstrated. CT, computed tomography; PDFF, proton density fat fraction.
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T2DM (20). Furthermore, several advantages of SGLT2 inhibitor
use have been reported, which includes reduction in
hyperinsulinemia in patients with T2DM (21). Additionally,
improvements in daily glucose fluctuation, which promote
cardiovascular events (22), have been studied (11, 23). Both
amelioration of insulin resistance and daily glucose fluctuation
are plausible pathophysiological mechanisms of reducing the risk
of a cardiovascular event. Ectopic adiposities, especially as liver
and muscle steatosis, can be the targets of SGLT2 inhibitor use in
non-obese patients with T2DM (11, 24). CCSs, with
accumulating re-distributed ectopic fat from the adipose tissues
to the liver and muscles, are good candidates to explain the
pathophysiological mechanism of SGLT2 inhibitors, beyond its
glucose-lowering effect.

Our case study had few limitations. Administration of the
SGLT2 inhibitor alone might have improved the glucose
impairment and dyslipidemia in this case. Additional
observation is required to demonstrate the long-term
effectiveness and safety of SGLT2 inhibitors in CCSs. We
believe that further case studies or large-scale studies might
confirm our conclusion.
Frontiers in Endocrinology | www.frontiersin.org 526
CONCLUSION

Hyperglycemia associated with acquired diabetic lipodystrophy
improved with the administration of an SGLT2 inhibitor in
addition to metreleptin supplementation. This study revealed the
potential benefits of combination therapy using metreleptin and
an SGLT2 inhibitor for non-obese patients with diabetes,
especially CCSs with lipodystrophy. SGLT2 inhibitors could
improve the prognosis of CCSs through risk reduction of their
cardiovascular events. Further, this study revealed the
pathophysiological mechanisms of glucose metabolism in CCSs
and non-healthy non-obese patients with insulin resistance.
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4. Araújo-Vilar D, Santini F. Diagnosis and Treatment of Lipodystrophy: A
Step-by-Step Approach. J Endocrinol Invest (2019) 42:61–73. doi: 10.1007/
s40618-018-0887-z

5. Nagayama A, Ashida K, Moritaka K, Hidaka M, Gobaru M, Tanaka S, et al.
Metreleptin Supplementation for Improving Lipid and Glycemic Profiles in
Acquired Diabetes Lipodystrophy: A Case Report. J Endocr Soc (2019)
3:2179–83. doi: 10.1210/js.2019-00251

6. Hosokawa M, Shibata H, Hosokawa T, Irie J, Ito H, Hasegawa T. Acquired
Partial Lipodystrophy With Metabolic Disease in Children Following
Hematopoietic Stem Cell Transplantation: A Report of Two Cases and a
Review of the Literature. J Pediatr Endocrinol Metab (2019) 32:537–41.
doi: 10.1515/jpem-2018-0356

7. Adachi M, Muroya K, Hanakawa J, Asakura Y. Metreleptin Worked in a
Diabetic WomanWith a History of Hematopoietic Stem Cell Transplantation
(HSCT) During Infancy: Further Support for the Concept of ‘HSCT-
Associated Lipodystrophy’. Endocr J (2021) 68:399–407. doi: 10.1507/
endocrj.EJ20-0325

8. Mann JP, Savage DB. What Lipodystrophies Teach Us About the Metabolic
Syndrome. J Clin Invest (2019) 129:4009–21. doi: 10.1172/JCI129190

9. Kawana Y, Imai J, Sawada S, Yamada T, Katagiri H. Sodium-Glucose
Cotransporter 2 Inhibitor Improves Complications of Lipodystrophy: A
Case Report. Ann Intern Med (2017) 166:450–1. doi: 10.7326/L16-0372

10. Cai X, YangW, Gao X, Chen Y, Zhou L, Zhang S, et al. The Association Between
the Dosage of SGLT2 Inhibitor and Weight Reduction in Type 2 Diabetes
Patients: A Meta-Analysis. Obesity (2018) 26:70–80. doi: 10.1002/oby.22066

11. Goto Y, Otsuka Y, Ashida K, Nagayama A, Hasuzawa N, Iwata S, et al.
Improvement of Skeletal Muscle Insulin Sensitivity by 1-Week SGLT2
Inhibitor Use. Endocr Connect (2020) 9:599–606. doi: 10.1530/EC-20-0082

12. Vallon V, Thomson SC. Targeting Renal Glucose Reabsorption to Treat
Hyperglycaemia: The Pleiotropic Effects of SGLT2 Inhibition. Diabetologia
(2017) 60:215–25. doi: 10.1007/s00125-016-4157-3

13. Bannas P, Hernando D Motosugi U, Roldan A, Reeder SB. Emerging
Quantitative MRI Biomarkers of Diffuse Liver Disease. Clin Liver Dis
(Hoboken) (2015) 4:129–32. doi: 10.1002/cld.424

14. Yamada S, Kabeya Y, Noto H. Dietary Approaches for Japanese Patients With
Diabetes: A Systematic Review.Nutrients (2018) 10:1080. doi: 10.3390/nu10081080

15. Devenny JJ, Godonis HE, Harvey SJ, Rooney S, Cullen MJ, Pelleymounter
MA. Weight Loss Induced by Chronic Dapagliflozin Treatment is Attenuated
by Compensatory Hyperphagia in Diet-Induced Obese (DIO) Rats. Obes
(Silver Spring) (2012) 20:1645–52. doi: 10.1038/oby.2012.59
Frontiers in Endocrinology | www.frontiersin.org 627
16. Perry RJ, Zhang D, Guerra MT, Brill AL, Goedeke L, Nasiri AR, et al.
Glucagon Stimulates Gluconeogenesis by INSP3R1-mediated Hepatic
Lipolysis. Nature (2020) 579:279–83. doi: 10.1038/s41586-020-2074-6

17. Stern JH, Rutkowski JM, Scherer PE. Adiponectin, Leptin, and Fatty Acids in
the Maintenance of Metabolic Homeostasis Through Adipose Tissue
Crosstalk. Cell Metab (2016) 23:770–84. doi: 10.1016/j.cmet.2016.04.011

18. Zeng W, Pirzgalska RM, Pereira MMA, Kubasova N, Barateiro A, Seixas E,
et al. Sympathetic Neuro-Adipose Connections Mediate Leptin-Driven
Lipolysis. Cell (2015) 163:84–94. doi: 10.1016/j.cell.2015.08.055

19. Pandit R, Beerens S, Adan RAH. Role of Leptin in Energy Expenditure: The
Hypothalamic Perspective. Am J Physiol Regul Integr Comp Physiol (2017)
312:R938–47. doi: 10.1152/ajpregu.00045.2016

20. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al.
Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N
Engl J Med (2015) 373:2117–28. doi: 10.1056/NEJMoa1504720

21. Kaneto H, Obata A, Kimura T, Shimoda M, Okauchi S, Shimo N, et al.
Beneficial Effects of Sodium-Glucose Cotransporter 2 Inhibitors for
Preservation of Pancreatic b-Cell Function and Reduction of Insulin
Resistance. J Diabetes (2017) 9:219–25. doi: 10.1111/1753-0407.12494

22. Torimoto K, Okada Y, Mori H, Tanaka Y. Relationship Between Fluctuations
in Glucose Levels Measured by Continuous Glucose Monitoring and Vascular
Endothelial Dysfunction in Type 2 Diabetes Mellitus. Cardiovasc Diabetol
(2013) 12:1. doi: 10.1186/1475-2840-12-1

23. Henry RR, Rosenstock J, Edelman S, Mudaliar S, Chalamandaris A-G,
Kasichayanula S, et al. Exploring the Potential of the SGLT2 Inhibitor
Dapagliflozin in Type 1 Diabetes: A Randomized, Double-Blind, Placebo-
Controlled Pilot Study. Diabetes Care (2015) 38:412–9. doi: 10.2337/dc13-
2955

24. Sheu WHH, Chan SP, Matawaran BJ, Deerochanawong C, Mithal A, Chan J,
et al. Use of SGLT-2 Inhibitors in Patients With Type 2 Diabetes Mellitus and
Abdominal Obesity: An Asian Perspective and Expert Recommendations.
Diabetes Metab J (2020) 44:11–32. doi: 10.4093/dmj.2019.0208
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Nagayama, Ashida, Watanabe, Moritaka, Sonezaki, Kitajima,
Takahashi, Yoshinobu, Iwata, Yasuda, Hasuzawa, Ozono, Motomura and Nomura.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
May 2021 | Volume 12 | Article 690996

https://doi.org/10.1056/NEJMoa1510795
https://doi.org/10.1056/NEJMoa1510795
https://doi.org/10.1016/S0140-6736(00)02717-3
https://doi.org/10.1016/S0140-6736(00)02717-3
https://doi.org/10.1007/s40618-018-0887-z
https://doi.org/10.1007/s40618-018-0887-z
https://doi.org/10.1210/js.2019-00251
https://doi.org/10.1515/jpem-2018-0356
https://doi.org/10.1507/endocrj.EJ20-0325
https://doi.org/10.1507/endocrj.EJ20-0325
https://doi.org/10.1172/JCI129190
https://doi.org/10.7326/L16-0372
https://doi.org/10.1002/oby.22066
https://doi.org/10.1530/EC-20-0082
https://doi.org/10.1007/s00125-016-4157-3
https://doi.org/10.1002/cld.424
https://doi.org/10.3390/nu10081080
https://doi.org/10.1038/oby.2012.59
https://doi.org/10.1038/s41586-020-2074-6
https://doi.org/10.1016/j.cmet.2016.04.011
https://doi.org/10.1016/j.cell.2015.08.055
https://doi.org/10.1152/ajpregu.00045.2016
https://doi.org/10.1056/NEJMoa1504720
https://doi.org/10.1111/1753-0407.12494
https://doi.org/10.1186/1475-2840-12-1
https://doi.org/10.2337/dc13-2955
https://doi.org/10.2337/dc13-2955
https://doi.org/10.4093/dmj.2019.0208
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Frontiers in Physiology | www.frontiersin.org 1 June 2021 | Volume 12 | Article 691824

MINI REVIEW
published: 08 June 2021

doi: 10.3389/fphys.2021.691824

Edited by: 
Tizhong Shan,  

Zhejiang University, China

Reviewed by: 
Weiqin Chen,  

Augusta University, United States
Yan Xiong,  

Southwest Minzu University, China
Tongxing Song,  

Huazhong Agricultural University,  
China

*Correspondence: 
Yong Xie 

yxie@implad.ac.cn
Sun Xiaobo  

sun_xiaobo163@163.com

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to  

Lipid and Fatty Acid Research,  
a section of the journal  
Frontiers in Physiology

Received: 07 April 2021
Accepted: 14 May 2021

Published: 08 June 2021

Citation:
Zhang B, Xu S, Liu J, Xie Y and 

Xiaobo S (2021) Long Noncoding 
RNAs: Novel Important Players in 
Adipocyte Lipid Metabolism and 

Derivative Diseases.
Front. Physiol. 12:691824.

doi: 10.3389/fphys.2021.691824

Long Noncoding RNAs: Novel 
Important Players in Adipocyte Lipid 
Metabolism and Derivative Diseases
Bin Zhang †, Saijun Xu †, Jinyan Liu , Yong Xie * and Sun Xiaobo *

Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 
China

Obesity, a global public health issue, is characterized by excessive adiposity and is strongly 
related to some chronic diseases including cardiovascular diseases and diabetes. Extra 
energy intake-induced adipogenesis involves various transcription factors and long 
noncoding RNAs (lncRNAs) that control lipogenic mRNA expression. Currently, lncRNAs 
draw much attention for their contribution to adipogenesis and adipose tissue function. 
Increasing evidence also manifests the pivotal role of lncRNAs in modulating white, brown, 
and beige adipose tissue development and affecting the progression of the diseases 
induced by adipose dysfunction. The aim of this review is to summarize the roles of 
lncRNAs in adipose tissue development and obesity-caused diseases to provide novel 
drug targets for the treatment of obesity and metabolic diseases.

Keywords: long noncoding RNAs, lipid metabolism, adipogenesis, brown/beige adipose, fat, insulin resistance

INTRODUCTION

Emerging data show that excessive body fat, particularly obesity, is a major risk factor of 
mortality worldwide (Peeters et  al., 2003; Blüher, 2019; Chooi et  al., 2019). As the main lipid 
storage organ, excess adipose tissue is closely related to the occurrence and development of 
obesity (Sun et  al., 2011). When obesity occurs, pathological changes in the morphology, 
composition, and function of adipose tissues can lead to the occurrence of various metabolic 
diseases, such as insulin resistance, fatty liver, diabetes, and cardiovascular diseases (Lavie 
et  al., 2009; Blüher, 2019; Ghaben and Scherer, 2019; Schetz et  al., 2019). It is of great 
significance to identify new therapeutic targets for obesity and its related metabolic diseases.

Adipose tissues are physiologically classified into white adipose tissue (WAT) and brown 
adipose tissue (BAT). WAT is mainly responsible for unnecessary energy storage, whereas BAT 
functions as fuel oxidation and energy expenditure because of containing abundant mitochondria. 
With the drug treatments or thermogenic stimuli, WAT possesses the potential to convert 
into “brown-like” cells. These brite adipocytes can also dissipate energy. Thus, promoting WAT 
browning might be  an effective strategy to prevent obesity.

Recently, many studies have focused on the roles of nonconding RNAs in regulation of 
adipose tissue activities. Thereinto, long noncoding RNAs (lncRNAs) are defined as long RNA 
transcripts (>200  bp) not encoding proteins and these lncRNAs are a class of RNA observed 
to play modulatory roles in many biological processes consistent with their tissue-specificity. 
LncRNAs are crucial to the regulatory network of adipocyte biology, generating both positive 

28

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.691824﻿&domain=pdf&date_stamp=2021--08
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.691824
https://creativecommons.org/licenses/by/4.0/
mailto:yxie@implad.ac.cn
mailto:sun_xiaobo163@163.com
https://doi.org/10.3389/fphys.2021.691824
https://www.frontiersin.org/articles/10.3389/fphys.2021.691824/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.691824/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.691824/full


Zhang et al. LncRNAs in Adipocyte Lipid Metabolism

Frontiers in Physiology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 691824

A

B

FIGURE 1 | Classification and function modes of Long noncoding RNAs (lncRNAs). (A) LncRNAs can be classified into five categories, including sense, antisense, 
intergenic, intronic, and bidirectional groups according to their relative location with the protein-coding genes. (B) LncRNAs function in four archetypes. Archetype I: 
As signals, lncRNAs can take part in signaling pathways to regulate gene expression. Archetype II: As decoys, lncRNAs combine with transcription factors to block 
the pathways. Archetype III: As guides, lncRNAs direct protein complexes to specific genome sites. Archetype IV: As scaffolds, lncRNAs recruit several proteins to 
form ribonucleoprotein complexes.

and negative control in lipogenesis and adipogenesis. They 
also affect adipose tissue functions like white fat browning 
and brown fat thermogenesis.

This wide range in regulatory roles may make lncRNAs, a 
promising new therapeutic area in the fight against obesity 
and related metabolic diseases. However, reviews on the roles 
of lncRNAs in adipose tissue dysplasia, abnormal lipid metabolism, 
and associated diseases are very limited. Thus, it is necessary 
to summarize the latest research progress into the regulation 
of lncRNAs in lipid metabolism and adipocyte biology. The 
present review focuses on summarizing the potential of lncRNAs 
as therapeutic targets for obesity and related diseases caused 
by lipid metabolism disorders and adipose tissue dysfunction.

LncRNAs: THE EMERGING 
REGULATORS

Discovery and Definition of LncRNAs
The development of new technologies, including genome tiling 
arrays, Global Nuclear Run-On sequencing (GRO-Seq), and 
Chromatin Isolation by RNA Purification (ChIRP-Seq), helped 
to identify a mass of new RNAs. LncRNAs are defined as RNA 
molecules longer than 200 nucleotides (Core et al., 2008; Guttman 
et  al., 2009; Chu et  al., 2011). H19, reported in 1990, may be  the 
first identified lncRNA. After transcription by RNA polymerase 
II, H19 is spliced and polyadenylated like an mRNA, but it encodes 
no almost protein (Brannan et  al., 1990; Bartolomei et  al., 1991).

Since the discovery of H19, advances in genome sequencing 
have identified many more lncRNAs. They generally possess 
little potential to encode protein for the lack of open reading 
frames, 3′ untranslated regions, and typical terminal regions 

(Jarroux et  al., 2017), but they play critical roles in a diversity 
of cellular processes, such as translation, transcription, and 
epigenetic modification.

Structure and Function of LncRNAs
A vast number of lncRNAs have been identified, but they 
urgently need to be  annotated to be  useful in therapeutic 
applications. Annotation begins by dividing newly discovered 
lncRNAs into one of five categories based on their relative 
location in the genome to protein-coding genes (Mattick and 
Rinn, 2015): sense lncRNAs overlap the nearest protein coding 
gene along the sense direction; antisense lncRNAs are those 
whose transcription overlaps an mRNA in any portion; intronic 
lncRNAs are located in an intron of a protein-coding gene; 
intergenic lncRNAs that are found between two protein-coding 
genes; and bidirectional lncRNAs are those whose transcription 
start site is within 1,000 base pairs (bp) from the neighboring 
exon and is transcribed in the opposite direction (Figure  1A).

Long noncoding RNAs have diverse structural motifs, including 
pseudoknots, stem-loops, G-quadruplexes, and triplexes. They 
mediate gene expression by interacting with DNA and mRNA 
in the nucleus, or miRNA and protein in the cytoplasm 
(Willingham et  al., 2005; Ulitsky and Bartel, 2013; Sun and 
Kraus, 2015; Qian et al., 2019). Some lncRNAs act as molecular 
signals to promote transcription in various metabolic pathways. 
Others play modulatory roles like decoy, blocking pathways by 
binding transcription factors. LncRNAs also function as guides, 
joining with protein complexes and directing them to specific 
genome sites. These regulatory RNAs can also form scaffolds 
that recruit modifying enzymes to integrate different signaling 
pathways (Figure 1B). These four roles are interconnected, and 
a single lncRNA may exhibit different functions depending on 
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cellular conditions (Wang and Chang, 2011). Taken together, 
the regulatory role of lncRNAs acts across the whole process 
of gene expression variability.

LncRNAs and Diseases
Genome-wide association studies (GWAS) have recognized 
thousands of single nucleotide polymorphisms (SNPs) from 
noncoding regions associated with clinical phenotypes, and 
this intimately links lncRNAs to cardiovascular, liver, and 
kidney disease as well as some cancers (Figure  2; Table  1; 
Gao and Wei, 2017; Gong et  al., 2018; Hu et  al., 2019).

Long noncoding RNAs are variably expressed in the 
cardiovascular system under different physiological and 
pathological conditions. For instance, some lncRNAs regulate 
apoptosis of cardiomyocytes, like lncRNA Sarrah, and hypertrophy, 
like lncRNA cardiac-hypertrophy-associated epigenetic regulator 
(Chaer). Some lncRNAs can also reduce the risk of heart failure 
and acute myocardial infarction. For example, Mhrt prevents 
Brg1, a chromatin remodeling factor, from binding its DNA 
targets to prevent heart failure (Han et  al., 2014). Another 
lncRNA, ZFAS1, is a marker of acute myocardial infarction in 
cardiac systolic function by inhibiting the activity of SERCA2a 
protein (Zhang Y. et  al., 2018). These functions indicate that 
the roles of lncRNAs are critical to cardiovascular diseases.

High-throughput technologies have also characterized some 
lncRNAs in liver fibrosis (Bian et  al., 2019). Evidence strongly 
support that lncRNAs are involved in regulating protein-encoding 
genes in liver fibrosis. For example, Zhang et al. have demonstrated 
that lncLFAR1 could activate TGFβ and Notch signaling pathways 
to promote hepatic stellate cell (HSC) activation and liver fibrosis 
(Zhang et  al., 2017). Lnc-HSER, specifically expressed in 
hepatocytes (HCs), was reported to prevent the apoptosis of 
hepatocytes through C5AR1-Hippo-YAP pathway and alleviate 
hepatic fibrosis by inhibiting the HCs epithelial-mesenchymal 
transition mediated by Notch signaling pathway (Zhang et al., 2019).

Long noncoding RNAs also play vital roles in 
kidney pathogenesis (Moghaddas Sani et  al., 2018). 

Whole transcriptome profiling analyses identified some lncRNAs 
associated with acute and chronic renal injury in human 
proximal renal tubular epithelial cells. Among them, two 
highlighted lncRNAs, lnc-KiAA1737-2 and lnc-MIR210HG, 
might participate in renal injury response (Lin et  al., 2015). 
Furthermore, Feng et  al. (2018) reported a novel lncRNA 
Erbb4-IR mediated by transforming growth factor/(TGFβ)/
Smad3 responsible for renal fibrosis. Zhou et  al. (2015) 
found Arid2-ir stimulated the nuclear factor kappa-B 

FIGURE 2 | Long noncoding RNAs play critical roles in the pathogenesis of cardiovascular, liver, and kidney disease as well as cancers.

TABLE 1 | Key roles of LncRNAs in the diseases.

Disease LncRNA Function References

Cardiovascular 
disease

Lnc Chaer
Regulates 
hypertrophy

Wang et al., 2016

LncRNA Sarrah
Suppresses 
cardiomyocytes’ 
apoptosis

Trembinski et al., 
2020

Mhrt
Prevents heart 
failure

Han et al., 2014

Liver disease

Lnc-LFAR1
Promotes hepatic 
stellate cell (HSC) 
activation

Zhang et al., 2017

Lnc-HSER
Prevents the 
apoptosis of 
hepatocytes

Zhang et al., 2019

Kidney disease

Linc-KiAA1737-2, 
lincMIR210HG

Participates in renal 
injury response

Lin et al., 2015

Erbb4-IR
Responsible for 
renal fibrosis

Feng et al., 2018

Arid2-IR

Activates the 
nuclear factor 
kappa-B (NF-κB) 
pathway

Zhou et al., 2015

Cancer

DINO
Participates in P53 
signal pathway

Schmitt et al., 
2016

TUG1
Promotes the 
renewal of glioma 
stem cells (GSCs)

Katsushima et al., 
2016

TROLL-2, 
TROLL-3

Activates AKT 
pathway

Napoli et al., 2020
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FIGURE 3 | The role of lncRNA in adipogenesis. Adipogenesis mainly includes two stages: mesenchymal stem cells (MSCs) or human adipose tissue-derived stem 
cells (hASCs) in adipose tissue differentiate into adipose progenitor cells and further into preadipocytes. In the second stage, preadipocytes differentiate into mature 
adipocytes including white adipose tissue (WAT) and brown adipose tissue (BAT).

(NF-κB)- dependent renal inflammation pathway to function 
in in vitro and in vivo fibrotic models.

Long noncoding RNAs also participate in the emergence 
and progression of cancers (Iyengar et  al., 2016; Peng et  al., 
2017). For instance, lncRNA DINO forms a positive feed-back 
loop with p53 protein to amplify DNA damage signals in the 
nucleus (Schmitt et  al., 2016). Also, activation of the Notch1 
signal pathway in glioma stem cells (GSCs) specifically induced 
expression of the lncRNA TUG1. TUG1 functions to sponge 
miR-145  in cytoplasm and recruit polycomb in the nucleus 
to promote the renewal of GSCs (Katsushima et  al., 2016). 
Two TAp63-regulated lncRNAs, TROLL-2, and TROLL-3, can 
form a trimer complex with the effector WDR26  in cytoplasm 
to activate AKT pathway (Napoli et  al., 2020).

In summary, lncRNAs participate in different disease processes, 
hinting at their key roles in maintaining homeostasis of 
human bodies.

KEY ROLES OF LncRNAs IN 
CONTROLLING LIPID METABOLISM 
AND ADIPOCYTE DEVELOPMENT

The Roles of LncRNAs in Controlling White 
Adipogenesis
Adipogenesis mainly includes two stages. The first stage occurs 
when embryonic stem cells or mesenchymal stem cells in adipose 
tissue differentiate into adipose progenitor cells and then to 
preadipocytes. In the second stage, preadipocytes differentiate 
into mature adipocytes (Figure  3; Ali et  al., 2013; Ambele 
et al., 2020). The whole process is accompanied by the temporal 
expression of many crucial adipogenesis-related genes and key 
transcriptional factors such as lipoprotein lipase (LPL) and 

sterol regulatory element binding proteins-1c (SREBP-1C). 
Peroxisome proliferators-activated receptor γ (PPARγ) and 
CCAAT/enhancer binding proteins (C/EBPs) are common 
markers of mature adipocytes and the major drivers of adipocyte 
differentiation. An increasing body of research has found that 
lncRNAs can regulate these pivotal genes and exert key roles 
in adipogenesis (Cipolletta et al., 2012; Ghaben and Scherer, 2019).

Human adipose tissue-derived stem cells (hASCs) have the 
ability to differentiate into both osteocytes and adipocytes. LncRNA 
MEG3 is upregulated in osteocyte differentiation and downregulated 
in adipocyte differentiation. Accordingly, MEG3 knockouts promote 
adipogenic differentiation but suppress osteogenic differentiation, 
suggesting that MEG3 may serve as a switch for hASCs’ adipogenic 
or osteogenic differentiation (Li Z. et  al., 2017).

Long noncoding RNA ADINR, transcribed from a position 
about 450  bp upstream of the C/EBPα gene, is induced during 
adipogenic differentiation. Xiao et al. (2015) revealed that ADINR 
increases the H3K4me3 methylation but impairs the H3K27me3 
histone modification of C/EBPα during adipogenic differentiation 
to coordinate the transcription of C/EBPα, and this finally 
promoted adipogenesis in hMSCs. Plnc1 was an lncRNA 
transcribed from a position 25,000  bp upstream of PPARγ2. In 
vitro studies showed that a plnc1 knockout decreases the expression 
of PPARγ, C/EBPα, and Fatty Acid Binding Protein 4 (AP2), 
which subsequently suppresses the differentiation of ST2 cells 
and BMSCs into mature adipocytes. However, overexpression 
of Plnc1 has the opposite effect. Mechanistically, plnc1 enhances 
the transcriptional activity of PPARγ2 by decreasing the 
methylation level of CPG in PPARγ2 promoter (Zhu et al., 2019).

Long noncoding RNA MIR-140 knockout decreases the 
expression of key transcription factors (C/EBP and PPARγ), 
which directly impairs the mice’s adipogenic capabilities. It 
suggestd that MIR-140 is a necessary regulatory factor for 
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adipocyte differentiation. Non-coding RNA qPCR array showed 
that NEAT1 is highly conserved between humans and mice 
and is upregulated in hASC differentiation. Using RNA hybrid, 
Gernapudi et  al. (2016) identified the miR140 binding site in 
NEAT1 and they found that mature miR-140 can physically 
interact with NEAT1 in the nucleus. Further experimental data 
indicated that the binding of MIR-140 to NEAT1 in the nucleus 
increases NEAT1 stability, thus promoting adipogenesis.

Nuermaimaiti et al. (2018) found HOXA11-AS1 knockdown 
inhibits the transcription of adipogenesis-related genes in hASCs 
differentiation model, leading to the suppression of adipogenic 
differentiation and alleviation of lipid accumulation. Moreover, 
HOXA11-AS1 is highly expressed during the process of adipocyte 
differentiation in obese patients, indicating that it might be  a 
potential target for the treatment of obesity.

In addition, bioinformatics analyses were used to identify a 
series of key mRNAs, miRNAs, and lncRNAs in hASCs adipogenesis. 
Several interaction axes were observed to regulate the adipogenic 
differentiation of hASCs, among which the leptin (LEP)-related 
axis was particularly important by analyzing the region upstream 
and downstream of leptin gene (Guo and Cao, 2019).

Some lncRNAs are reported to be  potential targets that 
inhibit adipogenesis. The investigation based on a cDNA 
chip to analyze the adipogenesis regulatory genes found that 
the expression of lnc-U90926 was negatively correlated with 
the differentiation of 3 T3-L1 preadipocyte. Then, using RNA 
fluorescence in situ hybridization (FISH), researchers confirmed 
lnc-U90926 mainly localized to the cytoplasm of mice’s 
preadipocytes. Gain- and loss-of-function experiments showed 
that the overexpression of lnc-U90926 blocked adipocyte 
differentiation in 3  T3-L1 as evidenced by reductions in 
lipid accumulation and specific protein expression, like that 
of PPARγ and AP2. Additionally, lnc-U90926 had lower 
expression levels in obese mice, which indicates it can inhibit 
adipogenesis by suppressing the transcriptional activity of 
key genes (Chen et  al., 2017).

In a study on adipogenic differentiation, Li M. et  al. (2018) 
found lncRNA GAS5 is negatively associated with adipogenesis 
of mesenchymal stromal cells (MSCs). Using luciferase reporter 
assays they further discovered that GAS5 inhibits MSCs’ 
adipogenic differentiation by competitively sponging miR-18a. 
Likewise, Liu et al. (2018) determined that GAS5 has a negative 
role in 3 T3 cells’ adipogenesis by repressing miR-21a-5p. Thus, 
GAS5 is an important regulator in the adipogenic differentiation.

LncHCG11 is another target for inhibiting adipogenesis. Li 
et  al. (2020) found that the expression of lncHCG11 declines 
during the adipogenic differentiation in an in vitro hADMSCs 
differentiation model. Specifically, both the activity of related 
lipogenesis enzymes and the expressions of adipogenic proteins 
increase in HCG11 knockdowns, while the reverse response 
is observed when HCG11 is overexpressed. Bioinformatics 
analyses of the HCG11/miR204-5p/SIRT1 axis, in addition to 
experimental evidence, show that when co-transfected with a 
miR-204-5p mimic and pcDNA-HCG11, the miR-204-5p mimic 
reduced SIRT1’s inhibitory effects on the expression of lipogenesis 
enzymes and adipogenic marker proteins to reverse 
pcDNA-HCG11’s depression effects on adipogenesis.

The majority of lncRNAs are poorly conserved among 
mammals, many therapeutic applications necessitate that more 
attention is placed on identifying and characterizing lncRNAs 
in human adipose tissue. Zhang X. et  al. (2018) performed 
RNA-seq on subcutaneous biopsy samples from healthy, lean 
humans and detected 1,001 adipose-enriched lncRNAs, among 
which lnc-ADAL is the most highly expressed. Lnc-ADAL is 
a non-conserved lncRNA closely tied to obesity. ShRNA-mediated 
knockouts suppressed the expression of lipid synthesis genes, 
while ASO-mediated knockouts not only impaired the expression 
of lipid synthesis genes in mature adipocytes but also damaged 
the preadipocyte differentiation. Researchers then verified that 
lnc-ADAL interacted with both the nuclear protein hnRNPU 
and cytoplasmic protein IGF2BP2 to control preadipocyte 
differentiation and de novo lipogenesis. These studies collectively 
support that lncRNAs emerge as important regulatory players 
in the process of white adipogenesis (Table  2).

The Roles of LncRNAs in Brown/Beige Fat 
Development and Their Function
Brown adipocytes (BAT) possess abundant mitochondria in the 
cytoplasm and high levels of uncoupling protein 1 (UCP1; 
Cannon et al., 1982). Accordingly, they can generate heat through 
uncoupling the lipid oxidative phosphorylation, facilitating the 
burning of fatty acid and glucose. Earlier studies supported 
that BAT is present and active in newborns to maintain their 
body temperature through non-shivering thermogenesis (Cannon 
and Nedergaard, 2004). Positron emission tomography (PET) 
detected considerable amounts of BAT in adult males, suggesting 
that BAT also plays an essential role in adult metabolism 
(Nedergaard et  al., 2007). To date, a series of studies have 
indicated that lncRNAs are indispensable regulators in brown 
adipogenesis and thermogenesis (You et  al., 2015).

For example, H19, a maternally inherited lncRNA, is inversely 
correlated with Body Mass Index (BMI) in humans. Schmidt 
et  al. (2018) reported that H19 overexpression promotes 
adipogenesis and mitochondrial respiration in BAT by recruiting 
PEG-inactivating H19-MBD1 complexes. This study illustrated 
the function of H19  in regulating the BAT thermogenic gene 
program and metabolism.

Cui et al. (2016) identified uc.417, an ultra-conserved lncRNA 
that is abundant in differentiated brown adipocytes. They found 
that overexpression of uc.417 inhibits the differentiation of 
brown fat cells. They also analyzed oxygen consumption of 
brown adipocytes with uc.417 overexpressed and evaluated the 
negative roles of uc.417 overexpression in BAT’s thermogenesis 
progress. However, knockouts of uc.417 had no significant 
impact on the differentiation and thermogenesis of brown 
adipocytes. Another lncRNA, lncBATE1, has been found to 
interact with hnRNP U that is necessary for brown adipogenesis 
and maintaining its thermogenic capacity (Alvarez-Dominguez 
et  al., 2015). These data strongly support lncRNAs’ roles in 
driving brown fat formation and maintaining energy balance.

Beige fat is usually stored in white fat warehouses and can 
be  differentiated into specific beige precursor cells in WAT or 
derived directly from the browning of mature white fat cells under 
exposure to cold or other stimuli. Because they can highly express 
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TABLE 3 | Key roles of LncRNAs in regulating brown/beige adipogenesis.

LncRNA Roles in BAT or 
beige adipocytes

Proposed 
mechanism of 
action

References

H19 Positive

Recruits PEG-
inactivating H19-
MBD1 complexes to 
control brown 
adipocyte 
differentiation

Schmidt et al., 
2018

uc.417 Negative

Suppresses 
p38MAPK’s 
phosphorylation to 
impair adipogenesis

Cui et al., 2016

LncBATE1 Positive
Binds to hnRNP U to 
facilitate brown 
adipogenesis

Alvarez-Dominguez 
et al., 2015

FOXC2-AS1 Positive

Promote white-to-
brown adipocyte 
conversion through 
autophagy activation

Wang Y. et al., 
2020

LncBATE10 Positive
Elevate Pgc1α 
expression through 
decoying Celf1 from it

Bai et al., 2017

BLNC1 Positive

Form Blnc1/hnRNPU/
EBF2/Zbtb7b 
ribonucleoprotein 
complexes to 
accelerate white 
adipose tissue (WAT) 
browning

Zhao et al., 2014; 
Li S. et al., 2017; 
Mi et al., 2017

UCP1 protein and function as BAT, induction of beige fat 
adipogenesis helps resist obesity and is assumed to be a promising 
strategy to covert unhealthy WAT into metabolically active BAT 
(Guerra et al., 1998; Bartelt and Heeren, 2014; Wang and Seale, 2016).

Wang Y. et  al. (2020) found high expression of FOXC2-
AS1  in the forskolin (Fsk)-stimulating adipocytes with high 
levels of UCP1 and peroxisome proliferator-activated 
receptorγcoactivator-1α (PGC1α). They found that FOXC2-AS1 
may promote WAT browning and thermogenic program through 
the autophagy signaling pathway. The result showed that lncRNAs 
also play crucial roles in the development and functional 
activation of beige adipose.

In fact, some lncRNAs regulate through the co-expression 
network. For instance, Bai et  al. (2017) found a large number 
of lncRNAs embedded into metabolic pathways by establishing 
an mRNA-lncRNA co-expression network. Through this network, 
they identified lncBATE10 that is rich in BAT and can decoy 
Celf1 from Pgc1α, activating Pgc1α expression and promoting 
thermogenesis and WAT browning.

Additionally, AK079912 is another BAT-enriched lncRNA. 
Knockdown of AK079912 decreases the expression of vital 
adipogenic and thermogenic genes; while overexpression 
upregulates the thermogenic program by increasing protein 
expressions of UCP1 and mitochondria electron transport chain 
(ETC) complexes. Moreover, Xiong et al. (2018) found expression 
of AK079912  in inguinal WAT could induce their browning.

Blnc1 is rich in both the brown and beige adipocytes. Over-
expression of BLNC1 in brown adipocytes increases the expression 
of thermogenic genes through the formation of the Blnc1/
hnRNPU/EBF2 ribonucleoprotein complex (Mi et  al., 2017). 
The effects of Blnc1 on beige adipocytes were also evaluated. 
During brown fat whitening induced by a high-fat diet (HFD), 
specific deactivation of Blnc1 in the fat tissue not only accelerated 
the BAT to bleach, but also exacerbated the inflammation. 
However, fat-specific Blnc1 transgenic mice have the opposite 
effects. The molecular mechanism is that Blnc1, as a target 
of EBF2, built a feedforward regulatory loop to promote 
browning of WAT (Zhao et  al., 2014). Additionally, Lin et  al. 
(2015) found that BTB domain-containing 7b (Zbtb7b) could 
recruit the lncRNA Blnc1 through hnRNP U to increase 
thermogenic genes expression, and the function of Blnc1 is 
conserved in mice and humans (Li S. et  al., 2017).

Thus, lncRNAs are important regulators for activating brown/
beige adipocytes to function with the benefit of decreasing 
serum triglycerides and fighting against obesity (Table  3).

LncRNA and Lipid Homeostasis in the Liver
Besides the known roles in adipocytes, a series of studies have 
shown that lncRNAs regulate lipid metabolism in the liver by 
targeting several crucial transcription factors, such as liver X 
receptor (LXRs), sterol-regulatory element binding proteins 
(SREBPs), and peroxisome proliferation-activated receptor α 
(PPARα). These transcription factors are regulators of gene 
expression for the synthesis and uptake of cholesterol, fatty 

TABLE 2 | Key roles of LncRNAs in regulating white adipogenesis.

LncRNA Roles in 
adipogenesis

Proposed 
mechanism of 
action

References

MEG3 Negative
Inhibits adipogenesis 
via downregulation of 
miR-140-5p

Li Z. et al., 2017

ADINR Positive
Activates C/enhancer 
binding proteins 
(EBPs) transcription

Xiao et al., 2015

Plnc1 Positive
Increases PPAR-γ2 
promoter activity

Zhu et al., 2019

NEAT1 Positive

Mature miR-140 
binds to NEAT1 to 
increase NEAT1 
expression

Gernapudi et al., 
2016

HOXA11-AS1 Positive

Promotes adipogenic-
related genes’ 
transcription 
(CEBP-α, DGAT2, 
etc.)

Nuermaimaiti et al., 
2018

LncRNA-LEP Positive

Activation of RP11-
552F3.9- hsa-miR-
130b-5p- LEP 
interaction axes 
increases leptin 
expression

Guo and Cao, 
2019

GAS5 Negative
Suppression of miR-
18a decreases CTGF 
expression

Li M. et al., 2018; 
Liu et al., 2018

Linc-ADAL Both
Interacts with 
hnRNPU and 
IGF2BP2

Zhang X. et al., 
2018
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acids, and phospholipids in the liver (Sun and Lin, 2019). 
Here, we  summarize the regulatory mechanisms of lncRNAs 
in liver lipid homeostasis (Table  4).

LncHR1, identified in human hepatoma cells infected with 
HCV, negatively regulates the expression of SREBP-1c and fatty 
acid synthase. Overexpression of lncHR1 inhibits the 
accumulation of triglyceride and lipid droplets in liver cells 
(Li D. et al., 2017). Li et al. (2015) found liver-enriched lncLSTR 
could decrease the plasma triglyceride levels (TDP43/FXR/
APOC2) by competitively binding with TDP-43 to regulate 
the expression of Cyp8b1, leading to the activation of Apoc2 
via the nuclear receptor farnesoid-X-receptor (FXR) pathway.

Additionally, Wang J. et  al. (2020) found that Lnc19959.2 was 
upregulated in high fat-induced hepatocytes. Mechanically, 
overexpressed lnc19959.2 promotes the expression of ApoA4 by 
interacting with nuclear protein Purb. Lnc19959.2 specifically binds 
to hnRNPA2B1 to negatively regulate the expression of genes 
related to TG metabolism. Taken together, the investigations of 
lncHR1 and lnc19959.2 indicate that lncRNAs specifically expressed 
in liver are emerging as key players in the regulation of triglycerides.

Long noncoding RNAs are also closely related to the cholesterol 
metabolism. Hu et  al. (2019) found that ox-LDL could 
significantly upregulate the expression of lincRNA-DYN-LRB2-2, 
directly leading to an increased expression of ATP-binding 
cassette transporter A1 (ABCA1). Elevated expression of ABCA1 
mediated cholesterol efflux (CE) in foam cells, thus reducing 
cholesterol levels (Li Y. et  al., 2018). Another study found that 
lncTUG1 inhibited CE by inhibiting the expression of APOM 
in an miR-92a/FXR1 dependent manner (Yang and Li, 2020). 
Additionally, Huang et  al. (2018) found overexpression of 
lncARSR can activate PI3K/Akt signal pathway, promoting the 
expression of transcription factor SREBP2. This transcription 
factor, in turn, increased the expression level of the rate-liming 
enzyme in cholesterol, HMG-CoA reductase (HMGCR), and 
accelerated cholesterol biosynthesis in liver.

Another group of lncRNAs can influence both the cholesterol 
and triglyceride level. HULC was reported to mediate abnormal 
lipid metabolism in hepatocellular carcinoma and elevate the 
levels of intracellular triglycerides and cholesterol by activating 
ACSL1/miR-9/PPARA signaling pathway (Cui et  al., 2015). 
Moreover, Lan et  al. (2019) identified a novel noncoding RNA 
lnc-HC that not only reduced cholesterol efflux by inhibiting 
the expression of cholesterol 7α-hydroxylase (Cyp7a1) and 
ABCA1, but also promoted hepatic triglyceride metabolism by 
negatively regulating PPARγ expression. Overall, lncRNAs play 
vital roles in maintaining lipid homeostasis in the liver and 
emerge as important targets to alleviate liver diseases caused 
by fat metabolic disorders, such as nonalcoholic fatty liver disease.

THE POTENTIAL OF LncRNAs AS 
THERAPEUTIC TARGETS OF RELATED 
DISEASES INDUCED BY ADIPOCYTE 
DYSFUNCTION

Obesity is becoming a global pandemic and usually leads to 
some metabolic diseases, including nonalcoholic fatty liver disease 
(NAFLD), diabetes, and other diabetic complications (Kusminski 
et  al., 2009). However, therapeutic targets and methods for the 
treatment of obesity and related metabolic diseases remain limited 
in the clinic (Kakkar and Dahiya, 2015). The existing approved 
drugs mainly function to combat obesity by reducing intestinal 
fat absorption or suppressing appetite (Tsilingiris et  al., 2020). 
Treatments to improve related metabolic disease are mainly 
through the use of drugs with hypoglycemic, anti-hypertensive 
or lipid-lowering activity. However, these agents usually have 
larger side effects on human body and their protective effect 
is limited. For examples, statins commonly cause muscular 
adverse reactions such as fatal rhabdomyolysis (Bouitbir et  al., 
2020). Chronic administration of niacin can decrease glucose 
tolerance and increase uric acid level, potentially induce gouty 
attacks and impaired liver function (Kei et  al., 2011). Thus, 
there is an urgent need to identify novel targets and develop 
new effective and safe drug candidates. Functional studies of 
lncRNAs provide new insight for the establishment of related drugs.

The Roles of LncRNAs in Insulin Resistance
Low-grade chronic inflammation, as a marker of obesity, has 
been identified as a vital risk factor for the occurrence of 
insulin resistance (Glass and Olefsky, 2012). The increased free 
fatty acids in the obese can promote NF-κB signaling, which 
upregulates the expression of pro-inflammatory cytokines, such 
as TNF-α and IL-6 (Tangvarasittichai, 2015). The 
pro-inflammatory signals then inhibit the function of insulin 
in metabolic tissue, thereby mediating insulin resistance.

Because the inflammation reaction is a phenotype caused 
by macrophages responding to excessive lipid accumulation, 
researchers have focused on macrophages to reduce this 
inflammation. These studies have found several novel lncRNAs 
enriched in macrophages and differentially expressed in 
diet-induced mice models with obesity and early diabetes. 

TABLE 4 | Key roles of LncRNAs in regulating lipid homeostasis in the liver.

LncRNA Tissue/cell 
type

Loss-of-
Function

Gain-of-
function

References

LncHR1
Hepatic 
cells

-
Decreases 
triglycerides and 
lipid droplets

Li D. et al., 
2017

LncLSTR Human liver
Reduces 
triglyceride 
levels

- Li et al., 2015

Lnc19959.2 Rat liver
Lowers plasma 
triglyceride

-
Wang J. et al., 
2020

DYN-LRB2-2
THP-1 and 
Raw264.7 
cells

-
Upregulates 
cholesterol 
efflux

Li Y. et al., 
2018

TUG1
NCTC 1469 
cells

-
Slows down CE 
rate

Yang and Li, 
2020

LncARSR
Hepatic 
cells

-
Promotes 
cholesterol 
biosynthesis

Huang et al., 
2018

HULC HCC cells - - Cui et al., 2015

Lnc-HC Rat liver
Increases lipid 
accumulation

-
Lan et al., 
2019
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For example, Stapleton et  al. (2020) found that MIST was 
associated with a macrophage anti-inflammatory phenotype 
during gain- and loss-of-function experiments. When transcription 
or interaction with RNAs of MIST was disrupted, expression 
of inflammatory genes heavily increased. They then discovered 
that MIST interacted with poly ADP-ribose polymerase (PARP1) 
in the nucleus. It may act as a protective lncRNA by interfering 
with the formation of pro-inflammatory cytokines that are closely 
correlated with insulin sensitivity index. In addition, Zhang 
et  al. (2020) identified lncRNA uc.333 that improved obesity-
induced insulin resistance by binding to miR-223. Moreover, 
Liu S. et  al. (2014) reported that knocking out lncRNA SRA 
protected mice against high fat diet-induced obesity and improved 
their glucose tolerance. All the above indicate that lncRNAs 
are potential therapeutic targets for improving insulin resistance.

The Roles of LncRNAs in Hepatic Steatosis
Metabolic disorders often cause non-alcoholic fatty liver disease 
(NAFLD) and hepatic steatosis (NASH) that are characterized 
by the accumulation of liver lipids (Kawano and Cohen, 2013). 
If NAFLD is not treated in time, it can gradually develop into 
NASH and then into hepatocellular cancer or other malignant 
diseases (Kanwal et  al., 2018; Lindenmeyer and McCullough, 
2018). LncRNAs may be checkpoints to enable unhealthy hepatic 
lipogenesis and impair liver lipid homeostasis. In an animal 
model with NAFLD, Wang (2018) found that lncRNA-NEAT1 
knockdown may alleviate the NAFLD via regulating the mTOR/
S6K1 signaling pathway. Another lncRNA, MALAT1, is highly 
expressed in livers of ob/ob mice. Mechanism research 
demonstrated that inhibiting MALAT1 suppresses hepatic lipid 
accumulation and attenuates hepatic steatosis by reducing the 
stability of nuclear SREBP-1c protein in hepatocytes (Yan et  al., 
2016). Considering that hepatic expression of BLNC1 is evidently 
elevated in the obesity and NAFLD in mice, researchers studied 
the effects of BLNC1 on HFD – induced hepatic steatosis. They 
found that BlNC1 deficiency greatly inhibits both the plasma 
TAG levels and the induction of SREBP1 protein expression 
by LXR agonists. Additionally, liver-specific BLNC1 knockout 
mice exhibited resistance to HFD-induced hepatic steatosis, 
manifested as reduced hepatic damage and fibrosis. These responses 
indicated that BLNC1 may work cooperatively with LXR to 
control hepatic lipid metabolism, which may serve as a therapeutic 
target for the treatment of NAFLD patients (Zhao et  al., 2018).

The Roles of LncRNAs in Atherosclerosis
The pathogenesis of atherosclerosis is complex, although current 
research as established that dyslipidemia (abnormal plasma 
cholesterol and lipoprotein levels) is one of the crucial risk 
factors (Gisterå and Ketelhuth, 2018). Since many studies have 
confirmed lncRNAs’ regulatory roles in lipid homeostasis, some 
researchers think they may take part in the development of 
atherosclerosis. LncRNA KCNQ1OT1 could inhibit cholesterol 
efflux and promote lipid accumulation in macrophages via 
the miR-452-3p/HDAC3/ABCA1 pathway, and, thus, contribute 
to the development of atherosclerosis (Yu et  al., 2020). A key 
node in atherosclerosis is when macrophages uptake 
lipoproteins and form foam cells (Tabas and Bornfeldt, 2020). 

Kanwal et  al. (2018) found lncRNA E330013P06 upregulated 
the expression of CD36  in macrophages to promote foam cells 
formation (Reddy et  al., 2014). Another lncRNA, AT102202, 
controls the expression of mRNA-3-hydroxy-3-methylglutaryl 
coenzyme A reductase (HMGCR) to affect the accumulation 
of cholesterol in macrophages (Liu et  al., 2015). Although the 
function and mechanism of lncRNAs in atherosclerosis still 
need further exploration, lncRNAs are apparently vital regulatory 
factors implicated in the pathological process of atherosclerosis. 
LncRNAs have may have future clinical applications as biomarkers 
and potential therapeutic targets of atherosclerosis.

The Roles of LncRNAs in Diabetic 
Complications
Epidemiological studies have reported a large increase in the 
prevalence of diabetes, which mainly happens among people 
with long-term abdominal obesity (Ampofo and Boateng, 2020). 
The main harm of diabetes lies in its severe complications, 
such as diabetic retinopathy, nephropathy, cardiomyopathy, etc.; 
however, the therapeutic targets and drugs still remain limited 
(Harding et  al., 2019). LncRNAs recently gained attention for 
their regulatory roles in diabetic complications (Figure  4).

Diabetic retinopathy is a common complication caused by 
hyperglycemia and dyslipidemia. At present, retinal gene 
expression profiles have identified more than 300 differentially 
expressed lncRNAs associated with diabetic retinopathy (Yan 
et  al., 2014). One study showed that an lncRNA MALAT1 
knockdown can inhibit the proliferation, migration, and tube 
formation of retinal endothelial cells (Liu J.-Y. et  al., 2014). 
Radhakrishnan and Kowluru (2021) verified MALAT1 
suppression attenuates oxidative damage via the Keap1-Nrf2 
pathway to improve retinal vascular function and slow diabetic 
retinopathy. Additionally, Yan et al. found lncRNA MIAT can 
form a feedback loop with VEGF and miR-150-5p to regulate 
endothelial cell function and improve the microvascular 
dysfunction induced by diabetes (Yan et  al., 2015). Thus, 
lncRNAs are involved in the development of diabetic retinopathy 
and may be  potential therapeutic targets for the disease.

Chronic hyperglycemia and dyslipidemia are also the main 
causes of diabetic nephropathy, a microvascular complication 
characterized by the damage of glomerular capillaries (Opazo-
Ríos et  al., 2020). Accumulating evidence supports lncRNAs’ 
involvement in the occurrence and development of this disease.

For example, LncRNA Tug1 was found to interact with PGC-1 
to regulate its expression and affect the mitochondrial bioenergetics 
in podocytes (Long et al., 2016). Additionally, in type II diabetic 
patients with end-stage renal disease, lncPVT1 controlled the 
accumulation of the extracellular matrix and the progression 
of renal cells fibrosis, thereby mediating the development of 
diabetic kidney disease (Alvarez and DiStefano, 2011).

Diabetic cardiomyopathy is mainly caused by cardiac lipotoxicity 
(Nakamura and Sadoshima, 2020). LncRNA GAS5 regulates the 
miR-34b-3p/AHR pathway to repress the pyroptosis induced by 
NLRP3 inflammasome activation, making GAS5 a potential 
therapeutic target (Xu et  al., 2020). Wang et  al. (2021) found 
that silencing lncRNA MALAT1 could inhibit EZH2 expression 
via the EZH2/miR-22/ABCA1 signaling axis, which prevents 
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cardiomyocyte apoptosis and attenuates cardiac dysfunction. Above 
all, many studies have demonstrated that lncRNAs play functional 
roles in the pathological processes of diabetic complications and 
have potential therapeutic significance for the diseases.

CONCLUSION

This review mainly summarized the studies on the regulation 
of lncRNAs in lipid metabolism in the liver as well as the 
development and function of adipose tissue. Meanwhile, 
numerous examples have been provided of a series of lncRNAs 
involved in adipocyte dysfunction-induced diseases, such as 
insulin resistance, hepatic steatosis, and diabetic complications. 
Currently, most of the drugs used to fight obesity target proteins, 
but these drugs have side effects because of the unintended 
regulation of non-target protein. Thus, the development of new 
drugs that target nucleic acids might provide a novel therapeutic 
strategy for the treatment of obesity and its related diseases.

Some targeted nucleic acid therapies, such as antibacterial 
and anticancer therapy are gradually being applied to treat some 
diseases (Aradi et  al., 2020; Javanmard et  al., 2020). Nucleic 
acid targeting methods are considered the third generation of 
therapeutic drugs, and three main strategies have been reported 
thus far: (i) small interfering RNA (siRNA), targeting cytoplasmic 
lncRNAs, like Givlaari (Givosiran) which was approved to treat 
adult acute hepatic porphyria; (ii) antisense oligonucleotides 
(ASO), targeting nuclear lncRNAs. LNA gapmeR ASO-targeting 
lncRNA MALAT1 possesses anti-multiple myeloma activity 
(Amodio et  al., 2018); (iii) CRISPR/Cas9 technology is suitable 
for dual-located lncRNAs, and it has been widely used in the 
discovery and annotation of lncRNAs but, as of yet, is not ideal 
for systematic drug delivery. These three therapies have been 
approved for clinical application, but all face off-target problems 
(Caffrey et  al., 2011; Fu et  al., 2014; Rinaldi and Wood, 2018).

Some lncRNAs positively regulate white adipogenesis and 
are upregulated in the obese patients, and they might be suitable 
ASO targets. However, no lncRNA targeting drugs have entered 
clinical trials, and many therapies are still in the preclinical 
stage. Because many lncRNAs are poorly conserved, researchers 
often struggle to transfer successful mouse model experiments 
to human treatments. Thus, more humanized lncRNAs remain 
to be  probed and more applicable preclinical study models 
need to be  established. On the other hand, the regulation 
network of lncRNAs is complex and it is not easy to achieve 
accurate regulation in vivo. Accordingly, it is necessary to 
establish a highly organized lncRNA research database, D-LNC 
platform is such an attempt to query and analyze the modification 
effects of drugs on the expression of lncRNAs (Jiang et al., 2019).

To sum up, the study of lncRNAs in adipose metabolism 
and obesity-caused diseases, as well as the therapeutic strategies 
presented above, may provide novel medication for the treatment 
of obesity and related metabolic diseases.
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FIGURE 4 | Summary of key roles of lncRNAs in diabetic complications.
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Obesity and its related metabolic diseases have become great public health threats
worldwide. Although accumulated evidence suggests that circRNA is a new type of
non-coding RNAs regulating various physiological and pathological processes, little
attention has been paid to the expression profiles and functions of circRNAs in white
adipose tissue. In this study, 3,771 circRNAs were detected in three stages of white
adipogenesis (preadipocyte, differentiating preadipocyte, and mature adipocyte) by
RNA-seq. Experimental validation suggested that the RNA-seq results are highly reliable.
We found that nearly 10% of genes which expressed linear RNAs in adipocytes could
also generate circRNAs. In addition, 40% of them produced multiple circRNA isoforms.
We performed correlation analysis and found that a great deal of circRNAs (nearly
50%) and their parental genes were highly correlated in expression levels. A total of
41 differential expression circRNAs (DECs) were detected during adipogenesis and an
extremely high ratio of them (80%) were correlated with their parental genes, indicating
these circRNAs may potentially play roles in regulating the expression of their parental
genes. KEGG enrichment and GO annotation of the parental genes suggesting that
the DECs may participate in several adipogenesis-related pathways. Following rigorous
selection, we found that many up-regulated circRNAs contain multiple miRNAs binding
sites, such as miR17, miR-30c, and miR-130, indicating they may potentially facilitate
their regulatory functions by acting as miRNA sponges. These results suggest that plenty
of circRNAs are expressed in white adipogenesis and the DECs may serve as new
candidates for future adipogenesis regulation.

Keywords: circRNA, adipocyte, adipogenesis, obesity, high-throughout RNA sequencing

INTRODUCTION

Obesity is recognized as one of the severe threats to public health due to its strong positive
association with various diseases, including diabetes, hypertension, cardiovascular diseases, and
even cancers (Blüher, 2019). Obesity is characterized by the accumulation of white adipose tissue,
which is dependent on an increase of adipocyte number (adipogenesis) and enlargement of
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adipocytes (hypertrophy) (Stefan, 2020). One possible approach
to prevent obesity is to reduce adipocyte number, but a better
understanding of the regulators controlling adipogenesis is
needed. In the last few decades, scientists have identified many
key protein-encoding genes, such as PPARγ and C/EBP family
genes, which are essential for adipogenesis (Rosen et al., 2000).
Despite that, there has been a rapidly growing interest in the
role of non-coding RNAs in adipogenesis. A larger number of
microRNAs and long-non-coding RNAs have been reported to
play vital roles in adipogenesis (Sun et al., 2013; Arner and Kulyté,
2015; Lorente-Cebrián et al., 2019). In recent years, circRNA is
emerging as another type of non-coding RNA, with important
functions in physiological systems and disease contexts.

CircRNA is a type of covalently closed and single-stranded
RNA, which is produced by back-splicing of pre-mRNA (Li
et al., 2018). It was first reported in the 1990s. However, it is
considered as an abnormal splicing product with little function.
Until recently, with the progress of high throughout technology,
it has been revealed that circRNAs are widely expressed across all
eukaryotic species and participate in regulating various biological
activities (Kristensen et al., 2019; Patop et al., 2019). CircRNAs
can act as miRNA sponges or protein decoys to regulate
transcription, splicing, and RNA stability (Hansen et al., 2013;
Conn et al., 2017; Du et al., 2017). Some circRNAs may even
encode functional proteins by IRES-driven mechanisms (Fan
et al., 2019). Through the above ways, circRNAs control many
cellular processes such as cell proliferation, differentiation, and
apoptosis, which are deeply related to correct tissue development
and proper tissue functions. CircRNAs have been extensively
studied in the organogenesis of various human organs, such as
the central nervous system, cardiovascular system, and skeletal
muscle (Khan et al., 2016; Piwecka et al., 2017; Zhang P. et al.,
2019). It is also reported that abnormal expression of circRNAs
leads to human disease, including cancers and Alzheimer’s
disease (Haque and Harries, 2017).

Unlike the central nervous system and cancers, fewer studies
have aimed to define circRNA function in adipose tissue.
Arcinas et al. (2019) performed global circRNA profiles in
both epididymal and inguinal fat of humans and mice, they
identified thousands of adipose circRNAs. Liu et al. (2020)
tried to identify differentially expressed adipose circRNAs from
obese and lean individuals. Otherwise, Zhang H. et al. (2019)
reported that exosomal circRNAs, which were derived from a
gastric tumor, could regulate white adipose browning. Liu et al.
(2018) analyzed the expression patterns of circRNAs during
porcine subcutaneous preadipocyte differentiation. However,
the expression of circRNAs in the process of mouse white
adipogenesis remains unknown.

The majority of research investigates adipogenesis molecular
pathways was performed in vitro using cell lines, e.g., 3T3-L1
or C3H/10T1/2 (Bahmad et al., 2020). However, their ability
to differentiate in vivo is limited. An alternative approach is
the use of primary preadipocytes. Cells isolated from WAT
stromal vascular fraction (SVF) can differentiate into mature
adipocytes. Regardless some cells are included in SVF other than
preadipocytes, such as endothelial cells, pericytes, and fibroblasts,
it may more accurately represent adipose tissue function in vivo

(Rodeheffer et al., 2008), thus WAT SVF is a widely used model
to study adipogenesis in vitro.

The main goal of the current study was to determine
the circRNA profiles during adipogenesis. We isolated SVF
cells from mouse white adipose tissue and identify circRNAs
by RNA-seq. We discovered a lot of novel circRNAs and
characterized their expression profiles in the process of
adipogenesis. Furthermore, we identified differential expression
circRNAs (DECs) and determined their correlation with the
corresponding parental genes. The miRNA binding sites of
circRNAs were predicted, suggesting the potential roles of
circRNAs in adipogenesis.

MATERIALS AND METHODS

Animals
Mice were bought from the Model Animal Research Centre
of Nanjing University in a C57BL/6J background. All the
experiments involving mice were guided by the Xinyang Normal
University Animal Care and Use Committee.

Cell Culture
Primary white adipose SVF cells were cultured as we described
previously (Shan et al., 2016). Briefly, the inguinal fat pad
was collected from 6-week-old female mice and washed with
PBS twice. Then, the fat pad was minced with scissors
and digested with collagenase type I (1.5 mg/ml, #SCR103,
Sigma-Aldrich) at 37◦C for 40 min. When the digestion was
finished, the growth medium contained 85% high glucose
DMEM medium (#11965126, Thermo Fisher Scientific) and
15% fetal bovine serum (#10099141, Thermo Fisher Scientific)
was added to dilute the collagenase. The tissue debris was
removed through a 70-µm cell strainer. The medium was
subjected to centrifuge to get SVF cells pellet. SVF cells
were resuspended with the growth medium. When the cells
reached 90% confluence, they were induced to adipogenesis,
with a cocktail containing DMEM, 10% fetal bovine serum,
2.85 mM recombinant human insulin (#I8830, Solarbio), 0.3 mM
dexamethasone (#D8040, Solarbio), and 0.63 mM 3-isobutyl-
methylxanthine (#I7018, Sigma-Aldrich). After 4 days, the
cocktail was switched to a DMEM medium supplemented
with 10% fetal bovine serum, 10 nM triiodothyronine (T3,
#T6397, Sigma-Aldrich), and 200 nM insulin to induce
mature adipocytes.

Total RNA Preparation and
RNA-Sequencing
Total RNA was purified from adipocytes using Trizol Reagent
(#15596026, Thermo Fisher Scientific). To enrich circRNAs,
the rRNA was removed with Ribo-zero rRNA Removal Kit
(#RZH1046, Epicentre) and linear RNA was digested with
RNase R (#RNR07250, Epicentre). Then, the sequencing libraries
were prepared by RNA Library Prep Kit (#E7760S, NEB) and
sequenced on an illumine platform. Raw datasets have been
deposited at the Gene Expression Omnibus (#GSE178502).
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Identification of CircRNA
The circRNA was identified as previously described (Zhang P.
et al., 2018). First, the adapter reads and low-quality reads were
removed using Fastp (version 0.20.1) (Chen S. et al., 2018). Then,
the clean data were mapped to the reference mouse genome
mm9 using BWA-MEM (version 0.7.17) (Li, 2013). Subsequently,
circRNAs were identified using CIRI2 (Gao et al., 2018). The
expression levels of circRNAs were measured by “circRNA
counts per million circRNA reads” (circCPM) (Shao et al., 2019).
Then, DECs were detected by DESeq2 (version 1.10.1) with a
likelihood ratio test (Love et al., 2014). Expression patterns of
the DECs were obtained by using degPatterns function from
the R package DEGreport (version 1.28.0) (Pantano, 2021). The
degPatterns function was run using the default parameters, except
that the minimum number of circRNAs in each group was set
to 1 (minc = 1).

qPCR Analysis
Random primers and Reverse Transcription Kit (#RR037A,
Takara) were used to obtain cDNA according to the
manufacturer’s protocol. CircPrimer 2.0 software was used
to annotate and obtain circRNA sequences (Zhong et al., 2018).
Then, the divergent primers, which coved the back-splicing
regions, were designed by Primer31 (Untergasser et al., 2012).
The PCR products of divergent primers were sequenced to
validate the corresponding back-splicing sites. The relative
expression levels of selected circRNAs were detected by qRT-
PCR using TB Green Premix Ex II (#RR820A, Takara) on a
LightCycler 96 system (Roche, Germany) according to the
instructions. 18S was used to normalize the threshold cycle (Ct)
values, and gene expression was quantified using the relative
quantitation method (2−11Ct). All experimental data are
presented as means ± SD.

GO and KEGG Pathway Analyses
The parental genes of circRNAs were subjected to functional
annotation. ClusterProfiler package in Bioconductor was used
to perform GO analysis (Yu et al., 2012) and q-values < 0.05
were considered statistically significant. KEGG pathways
were enriched by KOBAS online software2 (Bu et al.,
2021) and the corrected P-values < 0.05 were considered
statistically significant.

Correlation Analyses Between CircRNAs
and Their Parental Genes
To examine the correlation between each circRNA and the
parental gene, expression levels of mRNA were extracted from
our previous study (GEO accession number GSE173710). Then
the average expression levels of circRNA and mRNA on D0,
D4, and D8 were used to calculate the correlation by using the
Pearson correlation test and the P-values < 0.05 were considered
statistically significant.

1https://primer3.ut.ee/
2http://kobas.cbi.pku.edu.cn/kobas3

Construction of the CircRNA-miRNA
Network
The circRNA-miRNA interactions were predicted using miRDB
with a predicted score over 85 (Chen and Wang, 2020). Then, the
circRNA-miRNA network was constructed using Cytoscape 3.8.2
(Shannon et al., 2003).

RESULTS

Identification of CircRNAs in Growth and
Differentiation WAT Adipocytes
To identify circRNAs in adipogenesis, RNA was collected from
WAT SVF on day 0 (D0), day 4 (D4), and day 8 (D8) post
differentiation, corresponding to the proliferation, premature
and mature stages of WAT adipocytes differentiation, with
two biological replicates for each stage (Figure 1A). To enrich
circRNA, the rRNA and linear RNA were removed. Then the
RNA samples were subjected to RNA-seq. The CIRI2 was
used to predict de novo circRNAs. As circRNAs identified
between replicates are usually showed low consistency, we kept
the circRNAs with a minimum of two reads identified in
both two replicates. A total of 3,711 circRNAs were identified
(Supplementary Table 1). Compared to the publicly available
circBase database,3 we found 1,324 circRNAs were novel
(35.11%). As shown in Figure 1B, circRNAs were identified
on D0, D4, and D8, respectively. It is noticed that 1,023
circRNAs (27.13%) were continually expressed in all stages of
adipogenesis, while 588, 489, and 671 circRNAs were only
detected on D0, D4, and D8 respectively, indicating the stage-
specific expression of circRNAs.

Characteristics of the Adipocyte
CircRNAs
We analyzed the chromosome distribution of the circRNAs.
We noticed that chromosome 2 generated the greatest number
of circRNAs, while chromosome X was the least (Figure 1C).
Considering that chromosome X is the shortest, we calculated
the relationship between circRNA number and chromosome
length. The results showed that the correlation was significant
(R = 0.69, P < 0.001). As circRNAs share pre-RNAs with
mRNAs, we further analyzed the correlation between linear
mRNA number and circRNA number in each chromosome, and
a much higher correlation was found (R = 0.77, P < 0.05;
Figure 1D), indicating that the generation of circRNAs may
associate with linear mRNAs.

Upon the genomic origin of junction sites, circRNAs can
be classified into exonic, intronic, and intergenic circRNA. As
described in Figure 1E, the ratio of circRNA types was similar
in all the stages. The majority of the circRNAs were derived
from protein-coding exons (94.53%) of circRNAs. The other
circRNAs were derived from introns or intergenic regions. Our
previous study showed that 20,703 mRNAs could be detected
during white adipogenesis (with a minimum of two reads in both

3http://www.circbase.org/
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FIGURE 1 | Identification and characterization of circRNAs in white adipogenesis. (A) Representative pictures of WAT adipocytes during adipogenesis. Scale bar,
20 µm. (B) Identification of circRNAs at each adipogenesis stage. (C) Distribution of circRNAs on each chromosome. (D) Association of circRNAs and mRNA
numbers from the same chromosome. (E) Genomic origins of the circRNA type in each adipogenesis stage. (F) The number of circRNAs derived from per gene.

two replicates, accession number GSE173710). We found nearly
10% (2,018 genes) of them can generate circRNAs. Further, we
found that a great deal of these parental genes (about 40%) gave
rise to more than one type of circRNA isoforms. Arhgap10 even
produced up to 20 distinct circRNA isoforms (Figure 1F). The
above results suggest that alternative splicing is very common
in circRNA biogenesis, thus expand the diversity of circRNA
expression profiles in adipogenesis.

Experimental Validation of the Predicted
CircRNAs
To confirm the authenticity of the RNA-seq results, we randomly
chose 12 circRNAs and designed divergent primers (primers
are list in Supplementary Table 2). As shown in Figure 2A,
11 of the 12 circRNAs were successfully amplified. In some
of the cases, double products were detected which may be
generated by multiple rounds of RT around a circular RNA

template (Danan et al., 2012). Further, Sanger sequence results
detected the expected back-splicing sites (Figure 2B). Next, we
checked circRNAs expression levels of the 11 circRNAs by qPCR
(Figure 2C). Then the correlation between the RNA-seq results
and qPCR results was examined. We found a strong correlation
between them (R = 0.800, P < 0.0001; Figure 2D). The above
results suggested that RNA-seq results are reliable.

Differential Expression of CircRNA
During Adipogenesis
To compare expression levels of circRNA between different
stages, we first checked the overall expression of circRNAs with
the boxplot. As shown in Figure 3A, the average abundance of
circRNAs in all the three stages of adipogenesis was comparable
to each other. To explore the similarity of the samples,
we performed principal component analysis. As indicated in
Figure 3B, the distance between two biological replicates was
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FIGURE 2 | Verification of circular RNAs. (A) Electrophoretic band of circRNAs. The red triangle represents double-size products. (B) Representative Sanger
sequencing results of circRNAs. The red star represents the back-splicing site. (C) Relative circRNA expression levels detected by qPCR (n = 3). (D) Correlation
analysis of qPCR results and RNA-seq results.

very close to each other, indicating high repeatability. Meanwhile,
the D0 group was located far away from the other groups,
suggesting a great difference in circRNA expression patterns
between the proliferation and differentiation stages. Consistent
with the principal component analysis, the hierarchical tree also
showed biological replicates were highly correlated with each
other (Figure 3C). Subsequently, we identified DECs across
adipogenesis by DESeq2 with the Likelihood ratio test. We
set the cut-off as padj < 0.05. Only 41 DECs were identified.
The majority of them were upregulated (28 of 41) and 13
were downregulated (Figure 3D and Supplementary Table 3).
Consistent with the above results, the heatmap showed marked
differences between the proliferation stage and the differentiation
stages (Figure 3E). As many circRNAs regulate the expression
of their parental genes, the roles of circRNAs may be revealed
through functional analysis of their parental genes. Despite the
two circRNAs fell outside the genomic regions of annotated
genes, the parental genes of the other 39 DECs were used. KOBAS
gene-list enrichment showed that many adipogenesis and fat
metabolism pathways were significantly enriched, such as GnRH
signaling pathway, MAPK signaling pathway, type II diabetes
mellitus, calcium signaling pathway, and cAMP signaling
pathway. GO annotations indicated that calcium channels,
actinin binding, and transmembrane receptor protein kinase
activity were significantly enriched (Supplementary Table 4).

We further examined the expression patterns of the 41
DECs using DegPatterns function of R package DEGreport.
A total of four groups were identified (Figure 3F and

Supplementary Table 3). The circRNA numbers ranged from
2 to 26 in the four groups. Group 1 was the largest, which
contained 26 circRNAs. In group 1, the circRNAs showed
increased expression levels in the differentiation stages compared
to the proliferation stage. In contrast to group 1, group 4 showed
an opposite trend, the circRNAs decreased in the differentiation
stages. Both group 2 and group 3 contained only two circRNAs.
Group 2 showed a transient increase on D4 followed by a
decrease. Group 3 showed a transient decrease on D4 followed
by a sharp increase. To annotate the role of the circRNAs in
group 1 and group 4. We performed GO and KEGG analysis
(Supplementary Table 5). Unfortunately, few GO terms were
significantly enriched. The results showed four GO terms were
enriched in group 1, they were transmembrane receptor protein
kinase activity, transmembrane receptor protein serine/threonine
kinase activity, activin binding, growth factor binding, and
growth factor binding. In group 4, actinin binding and alpha-
actinin binding were enriched. KOBAS enrichment showed no
pathway was significantly enriched in group 4 and only a
few pathways were enriched in group 1, such as propanoate
metabolism, MAPK signaling pathway, GnRH signaling pathway,
and TGF-beta signaling pathway.

Correlation of the Expression Between
CircRNAs and Linear RNAs
To evaluate the change of circRNAs expression and their
parental genes between different stages of adipogenesis. The
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FIGURE 3 | Differential circRNAs expression during adipogenesis. (A) Relative expression abundance of circRNAs during adipogenesis (circCPM). (B) Principal
component analysis (PCA) plot of RNA samples. (C) Hierarchical clustering analyses of samples correlation using DESeq2 rlog-normalized RNA-seq results.
(D) Volcano plot comparing circRNAs abundance between different adipogenesis stages. The green color indicates the differentially expressed circRNAs
(padj < 0.05), while the red color indicates not significant change circRNAs. (E) Heatmap showing differentially expressed circRNAs across different stages of
adipogenesis. (F) Expression patterns of the differential expressed circRNAs during adipogenesis.

expression data of mRNA counterparts were collected from
our previous study (GEO accession number GSE173710). We
tried to calculate the overall correlation between circRNAs
expression and their parental genes, but no significant correlation
was found. However, when we checked the expression of
individual circRNA and the parental gene in adipogenesis,
we identified 1,806 circRNA-mRNA pairs (48.67%) that were
significantly correlated with each other, including 1,379 (37.16%)
positively correlation and 427 (11.51%) negatively correlation
(Supplementary Table 6).

We further analyzed the correlation between the 39 DECs
and their linear counterparts. We found 33 of the DECs were
correlated with their linear counterparts. Interestingly, all of
them showed positive correlation, ranging from 0.812 to 0.999
(P < 0.05, Figure 4 showed the representative results and
the other results could be found in Supplementary Figure 1).

Notably, circRNA generated by Acvr2a showed almost the same
trend as the linear counterpart (R = 0.999), while circRNAs
generated by Fancl and Megf8 were not significantly correlated
with their linear counterparts. In Figure 4D, the expression of
Fancl linear counterpart continuously decreased in the process of
adipogenesis, while the expression of circRNA showed a transient
increase on D4 followed by a decrease on D8. As shown in
Figure 4A, both two circRNA isoforms generated by Acss3 were
highly correlated with the linear counterpart. But in Figure 4C,
only one of the circRNA isoforms generated by Arhgap10 was
significantly correlated with the linear counterpart. In Figure 4L,
it seemed that the expression of the Zfx linear counterpart and
the circRNA were not correlated. However, after we inspected
the data, we found that the Zfx linear counterpart increased
by 20% on D4, then it decreased to a similar level as D0. The
corresponding circRNA showed the same expression pattern
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FIGURE 4 | Representative results of correlation analysis between differentially expression circRNAs and their parental genes during adipogenesis. For the
convenience of drawing both circRNA and mRNA expression in the figure, the relative expression level was used (expression level at each time point was divided by
its average expression level across adipogenesis). (A–P) The correlation between Acss3, Acvr2a, Arhgap10, Fancl, Cacna1d, Cped1, Egfr, Fkbp5, Bckdhb, Bmper,
Pde4d, Zfx, Cacna1c, Dcbld2, Megf8, Rad18, and their corresponding circRNAs.

despite much more change on D4, hence they showed a high
correlation. In summary, these results indicated that many of
the circRNAs are highly correlated with their linear counterparts.
CircRNAs may be potentially involved in the regulation of linear
RNA expression in adipogenesis.

Potential CircRNA-miRNA Interaction
Network
CircRNAs may affect gene expression by interacting with
miRNAs (Zhong Q. et al., 2019). In the up-regulated circRNAs,
we chose the top 15 highly expressed circRNAs. The potential
miRNA binding sites of these circRNAs were predicted using
miRDB. As some of the circRNAs may not express in adipocytes,
we filtered them according to the previous data studying miRNA
profiles in adipogenesis (GEO accession: GSE75697). Then, 8 of
the15 circRNAs were left, which contain many miRNA binding
sites. A total of 148 circRNA-miRNA interactions were identified

with a predicted score over 85. Then the circRNA-miRNA
interactions were used to draw an interaction network (Figure 5
and Supplementary Table 7). We noticed several miRNAs which
have been reported to regulate adipogenesis were included in
the network, such as miR17, miR-30c, and miR-130. These
results indicating that these circRNAs may potentially regulate
adipogenesis by interacting with miRNAs. However, it should be
noted that those results were not obtained experimentally and
future work should validate the circRNA-miRNA interactions.

DISCUSSION

Prior studies have described circRNAs are abundant in white
adipose tissue. Arcinas et al. (2019), for example, reported
that up to 6,000 and 2,000 circRNAs were detected in
human adipose tissue and mouse adipose tissue respectively.
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FIGURE 5 | The potential circRNA-miRNA interaction network. The width of the edge indicates the prediction score (range from 85 to 100).

Liu et al. (2020) compared the circRNA expression profiles of
obese and lean individuals. They identified that circSAMD4
was highly expressed in obese individuals. However, these
studies mainly focused on mature adipose tissue. Little attention
has been paid to the expression profiles and functions of
circRNAs in adipocytes. In the present study, we detected the
expression profile of circRNAs in proliferation, pre-mature and
mature stages of adipogenesis. We identified 3,711circRNAs and
nearly 35% of them are novel. We noticed a dramatic change
of circRNA expression profiles between the proliferation and
differentiation stages. These findings confirmed that circRNAs
are abundant in adipose tissue, not a by-product of splicing.
In addition, we noticed the circRNA number in our study
is different from the previous study, which may result from
differences in cell conditions, circRNA identification methods,
and sequence depth. Thus, it is essential to investigate
circRNAs expression profiles in various cell lines, tissues, and
developmental stages.

Several reports indicated that circRNAs can regulate the
expression of their parental genes. It has been suggested that
circRNAs and their linear counterparts share the same pre-RNA
(Aufiero et al., 2018), thus they may compete and negatively
regulate the abundance of each other. In contrast to that, other
reports suggested that circRNAs can also positively regulate
gene expression. Some circRNAs accumulate at promoter
regions and interact with Pol II and U1 snRNP to increase
transcription of their parental genes (Li et al., 2015). Another
circRNA, circFECR1, can bind to its parental gene and regulate
transcription by an epigenetic mechanism. CircFECR1 recruits
a demethylase and induces DNA hypomethylation in CpG

islands of the promoter, thus enhanced parental gene expression
(Chen N. et al., 2018). We examined the correlation between
individual circRNA and parental genes. We discovered that
nearly 50% of circRNAs were significantly correlated with their
parental genes. When we checked them in detail, we found 37%
of them were positively correlated, while the other 12% were
negatively correlated. The complex correlation between circRNAs
and parental genes may explain why the overall correlation is very
weak and not significant. Further, when we check the correlation
of the DECs and their parental genes, a much higher ratio of
positive correlation was found. We also noted that the circRNAs
which were derived from the same parental gene show different
expression trends.

The functions of circRNAs largely remained to be investigated.
One clue to predict circRNA functions is their parental genes.
Functional analysis showed that the parental genes of DECs
were enriched in many adipogenesis and fat metabolism-related
pathways, such as GnRH signaling pathway, MAPK signaling
pathway, type II diabetes mellitus, and cAMP signaling pathway.
We also found several parental genes of the DECs play key
roles in regulating adipogenesis. Nsd2 is the parental gene of
circ_0001335. Depleting Nsd2 impairs adipogenesis by increasing
H3K27me3, thus preventing the induction of C/EBPα and
PPARγ (Zhuang et al., 2018). The parental gene Selenbp1
is identified as an H2S-producing enzyme. Selenbp1 silencing
downregulates H2S levels and inhibits adipogenesis (Randi et al.,
2021). The Fkbp5 and Fndc3b are also circRNA parental genes
that are essential for adipogenesis (Tominaga et al., 2004; Zhang
L. et al., 2017). Another clue to predict circRNA functions
is based on miRNAs. As circRNAs were reported to act as
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sponges to titrate the levels of miRNAs, they can regulate miRNA
target genes indirectly. CircSAMD4A is highly expressed in
obese people and acts as a sponge for miR-138-5p to promote
adipogenesis (Liu et al., 2020). The miR-138 effectively reduces
lipid droplet accumulation by targeting adipogenesis genes (Yang
et al., 2011). In bovine adipose tissue, circFUT10 directly interacts
with let-7c/let-e to promote adipocyte proliferation and inhibit
differentiation (Jiang et al., 2020). In the current study, we noticed
that DECs could interact with a great number of miRNAs and
many of the miRNAs have been reported to regulate adipogenesis.
We predicted that circ_0010609 may act as a sponge for miR130a
which was reported to inhibit adipogenesis differentiation via
suppressing PPARγ expression (Lee et al., 2011). The miR-30
family represents 4.9% of the miRNA reads in adipocytes and
positively regulates adipogenesis (Zaragosi et al., 2011; Irani
and Hussain, 2015). According to our results, circSlc10a7 and
circ_0010609 contained multiple binding sites for distinct miR-30
family members, indicating the potential roles of these circRNAs
in regulating adipocyte activity.

CONCLUSION

In summary, we globally detected the circRNA expression
profiles during adipogenesis. We concluded that circRNAs are
abundant and dynamically express in adipogenesis. Nearly
50% of the circRNAs are correlated with their parental gene
expression. Adipose circRNAs may be involved in adipogenesis-
related pathways and act as miRNA sponges to modulate
gene expression. These identified circRNAs may serve as
new candidates to regulate adipogenesis and combat obesity.
However, some limitations are worth noting. Although our
hypotheses were supported statistically, future experimental work
is needed to understand the functions of the indicated circRNAs
in adipogenesis.
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Cold exposure promotes glucose oxidation and modulates the lipid metabolism in
adipose tissue, but it is still not fully clear whether cold exposure could affect meat quality
and fatty acid metabolism in skeletal muscle of pig in vivo. Here, we kept finishing pigs
under cold or room temperature overnight and determined the effects of cold exposure
on meat quality, fatty acids composition and transcriptional changes in skeletal muscle of
pigs. We found that cold exposure significantly reduced the meat colour24 h and pH24 h,
without affecting carcass characteristics and other meat quality traits. Considerable
changes were found in the proportions of individual fatty acids and the total content
of saturated fatty acid, polyunsaturated fatty acids, monounsaturated fatty acid and
n3-fatty acids. RNA-seq results showed upregulated fatty acid biosynthesis genes and
downregulated mitochondrial beta-oxidation genes. The lipid metabolism in cold-treated
longissimus dorsi muscle might be regulated by functions of the lipoprotein particle, the
extracellular matrix, and the PPAR signaling pathways. Our study revealed the potential
of cold exposure to regulate the lipid metabolism and fatty acid composition in skeletal
muscle of farmed animals.

Keywords: cold exposure, meat quality, fatty acid, transcriptome, pig, skeletal muscle

INTRODUCTION

Emerging evidences have indicated that cold exposure plays a crucial role in whole-body lipid
metabolism, including reduced plasma triglyceride (TG) concentrations by activating brown
adipose tissue (BAT)-mediated non-shivering thermogenesis (Bartelt et al., 2011), reversed
cholesterol transport by high-density lipoprotein (HDL) particles (Bartelt et al., 2017) and increased
conversion of cholesterol to bile acids (BAs) (Worthmann et al., 2017). Cold exposure also has
multiple effects on hepatic lipid metabolism and microbiome composition, which collaborates
with thermogenic BAT in maintaining whole-body metabolic homeostasis in mice (Ziêtak et al.,
2016; Grefhorst et al., 2018). Our previous results revealed that short-term cold exposure induces
significant changes in lipid dynamics and gene expression pathways in inguinal WAT (iWAT) (Xu
Z. Y. et al., 2019). These results demonstrate that cold stimulation is an effective way to modulate
the systemic metabolic homeostasis, especially glucose and lipid metabolism.
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Pork is the most widely consumed meat in the world
accounting for over 36% of the world-wide meat intake (Dugan
et al., 2015). Studies on improving pork quality and nutritive
values have received wide attention over the recent 10 years,
mainly in response to the stricter quality controls and increased
customer awareness (Grunert et al., 2004). Pork quality generally
is evaluated through water-holding capacity, meat color, pH,
fat content and oxidative stability, and its nutritive value is
mainly determined by fatty acid profile, especially the n-3 PUFA
proportion (Rosenvold and Andersen, 2003; Hocquette et al.,
2010). Intramuscular fat (IMF), also known as intramuscular
triglycerides, which refers to adipose tissue located in myofibers
(Liu et al., 2019). In pork production, IMF has been recognized as
an important meat-quality trait of pigs owning to influencing the
shearing force, tenderness and juicy flavor (Zhang et al., 2021).
Moreover, IMF accumulation in muscle is related to diseases
such as insulin resistance and type 2 diabetes (Buras et al., 2019).
Scientists have put forward various strategies to improve pork
quality and nutritive values in the past few decades, including
improving the genetic background of pig breeds, optimizing
nutrient supply and the production systems (Rosenvold and
Andersen, 2003; Hocquette et al., 2010). However, the pork
industry is challenged because many of these efforts were
imperceptible to the consumer with at the same time causing
increased production costs.

Improving pre-slaughtering conditions, such as housing and
exercise, could be a novel and effective method to amend the
sensory and nutrient quality of pork (Ngapo and Gariepy, 2008).
As temperature changes are easily perceived by mammals, we
hypothesized that meat quality might be improved by acute
cold exposure before slaughter. Unlike rodents, pigs reportedly
have no BAT and defending their body temperature depends on
skeletal muscle shivering as a primary source of heat production
when exposed to cold (Hou et al., 2017; Blondin and Haman,
2018). The skeletal musculature might produce heat through
both shivering and non-shivering thermogenesis, both of which
influence mitochondrial energetics and remodels fat content
and composition (Blondin and Haman, 2018). In addition, cold
exposure increases whole-body energy expenditure and improves
glucose metabolism by inducing sympathetic nervous system
activity and recruiting brown adipocytes as shown recently from
human (Van Der Lans et al., 2013; Iwen et al., 2017). By
reconstitution of the functional uncoupling protein 1 (UCP1)
gene in white adipose tissue of pigs, a browning-like adipocyte of
BAT was induced resulting in decreased fat deposition, increased
lean percentage and altered lipid metabolism in adipose (Pan
et al., 2019). In pigs, UCP3 was shown to mediate some non-
shivering thermogenic activity (Lin et al., 2017). Based on
these previous results, we supposed that cold exposure might
influence meat quality in the skeletal muscle of pigs both
directly and indirectly.

In the present study, we kept growing-finishing pigs under
cold (5–7◦C) or room temperature (22–25◦C) overnight (14 h)
and investigated the effects of acute cold exposure on carcass
indicators, enzyme activity, fatty acid composition, and gene
expression profiles in longissimus dorsi muscle (LDM). We
revealed cold exposure plays a key role in pork lipid metabolism

and fatty acid profiles. Moreover, these results were accompanied
by changes in transcriptional dynamics in vivo, especially fatty
acid oxidation and fat biosynthesis. Our results point out the
importance of pre-slaughter temperature conditions for fatty acid
metabolism of pork.

MATERIALS AND METHODS

Animals and Experimental Design
All procedures were approved by the University of Zhejiang
Institutional Animal Care and Use Committee. The
ethical committee number for the study is ZJU20170466.
Duroc × Landrace × Yorkshire (DLY) boars were raised in
Shandong Chunteng Food Co., Ltd., (Tengzhou city, Shangdong,
China) and fed twice a day with the same diet with 67% of
corn, 21% of soybean meal, 8% of wheat bran and 4% series
of pig premixed feed and provided free access to water under
similar environmental. At slaughter weight (120–125 kg,6.0–
6.5 months), twelve finishing pigs were randomly selected and
used to investigate the influence of acute cold exposure on pork
meat quality and fatty acids composition.

These pigs were divided into two groups randomly and each
contains six animals. These two groups experimental animals
were placed at room temperature (RT, 22–25◦C) and under
cold conditions (COLD, 5–7◦C) overnight (14 h), respectively.
During the 14 h, all pigs were fasted but free access to water.
These pigs were weighed and sampled immediately after short-
term cold exposure.

Slaughtering, Carcass and Meat Quality
Measurements
Pigs were slaughtered in a commercial abattoir by exsanguination
after electric stunning (90∼100 V, 0.9–1.0 A, 50 Hz). After that,
the pigs were immediately hoisted for bleeding and dehairing.
Evisceration was completed about 20 min post mortem.

The carcass was split longitudinally after the head, legs, tail,
and viscera were removed. Carcass traits were measured by
using standard methodology for testing carcass traits in lean-
type pig (Gu et al., 2019). Both the left and right hot carcass
weights were recorded. Carcass yield was calculated by hot
carcass weight/preslaughter weight ×100% (Gu et al., 2019). Body
length was measured as the distance from the anterior edge of
the first cervical vertebra to the anterior edge of the pubis (Gu
et al., 2019). Skin thickness was assessed at the 6rd/7th rib of the
centerline of the carcass by using a Vernier caliper (Li et al., 2020).
Backfat thickness was determined by calculate the average scores
of three regions of the right carcass sides (first- and last-rib, and
last-lumbar) (Li et al., 2018). Simultaneously, samples of LDM
from the right side of each carcass were collected and rapidly
frozen in liquid nitrogen and subsequently stored at −80◦C for
fatty acid composition and RNA-seq analysis.

Meat quality measurements including marbling, pH45 min,
pH24 h, drip loss (24 h), meat color45 min and meat color24 h were
carried out in LDM obtained from the 3rd to 11th rib. Subjective
marbling was scored from a mean of scores made by three people
using the National Pork Producer Council (NPPC) standards as
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previous described (Xu X. et al., 2019). The pH45 min values were
determined on LDM at 45 min postmortem using a portable pH
meter (pH-STAR, MATTHAUS, German), previously calibrated
with pH 4.6 and 7.0 buffers (Xu X. et al., 2019). The meat
color45 min values were measured from a mean of three random
readings on LDM at 45 min postmortem using a portable
chromameter (opto-STAR, MATTHAUS, German), which was
calibrated with a white tile according to the manufacturer’s
manual (Xu X. et al., 2019). Samples were stored at 4◦C for
24 h, and then pH24 h and meat color24 h were measured in the
same way. Drip loss was measured using the hanging bag method
(Honikel, 1998), 2.5 cm thick loin chops were taken from LDM at
the third and fourth lumbar vertebrae after slaughter. The initial
weights of these loin chops were collected, and meat samples were
reweighed after stored for 24 h at 4◦C to collect the terminal
weights. Drip loss was calculated as the percentage of weight
lost over the 24 h period. LDM samples were homogenized into
freeze-dried powder and then weighed. Intramuscular fat (IMF)
content was measured by determining the crude fat of LDM by
using Soxhlet Extraction with petroleum ether (Tyra and Żak,
2012). Inosinic acid content was measured described by Xu X.
et al. (2019). The IMF and inosinic acid contents were indicated
by the weights of fat or inosinic acid, respectively, in per 100 g
freeze-dried LDM (g/100 g).

Enzyme Activities
Longissimus dorsi muscle samples were lysed in phosphate
buffered saline (PBS) and the supernatant was obtained by
centrifugation at 2,000 rpm for 10 min and used for subsequent
enzyme activities measurements. The BCA Protein Assay
Kit (Thermo Fisher Scientific) was used to measure protein
concentrations. The contents of triglyceride (TG) and non-
esterified free fatty acids (NEFA), and the enzyme activities of
lactate dehydrogenase (LDH), succinate dehydrogenase (SDH),
malate dehydrogenase (MDH), malondialdehyde (MDA), lipid
peroxide (LPO), total antioxidant capacity (T-AOC), glutathione
peroxidase (GSH-Px), catalase (CAT) and peroxidase (POD) in
COLD or RT group were measured using commercially available
kits according to the manufacturer’s instructions (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China).

Analysis of the Fatty Acid Composition
Lipids in the LDM were extracted and hydrolyzed in 2 mL KOH-
methanol to obtain the free fatty acid mixture. The free fatty acid
mixture was esterified in 2 mL BF3-methanol solution to obtain
fatty acid methyl esters. Next, 800 µL fatty acid methyl esters were
separated and analyzed with a GC-2010 plus gas chromatograph
(Shimadzu, Japan). By comparing the retention times of the peaks
with the known standards (Sigma, United States), fatty acids
contents could be identified.

Analysis of the Amino Acid Composition
About 150 mg of the dried LDM sample were weighed and put
into a glass cylinder before 15 mL of 6 molar HCl was added.
After adding nitrogen and sealing, the mixture was hydrolyzed at
110◦C for 22–24 h. Subsequently, the hydrolysate was transferred
to a 50 mL volumetric flask and diluted into a calibration tail
with ultrapure water. The solution was filtered using a 0.45 µm

membrane filter into an autosampler vial before amino acid
analysis with an L-8900 amino acid analyzer (HI-TACHI, Japan).

RNA Isolation, Library Construction,
RNA-Seq Analysis and Quantitative
Real-Time
PCR
RNA extraction, library construction, RNA-seq analysis and
quantitative real-time PCR (qPCR) of LDM samples from RT
and cold-treated pigs were performed as previously published
methods (Xu Z. et al., 2019; Xu et al., 2020). Briefly, total
RNA was extracted using the Total RNA Extractor (TRIzol) Kit
(B511311, Sangon, China) and the quality of the RNA samples
was examined with a NanoDrop 2000 spectrophotometer
(Agilent Technologies, Santa Clara, CA, United States). A total
amount of 2-µg RNA per sample was used for library
preparation. Subsequently, paired-end sequencing of the library
was performed on HiSeq XTen sequencers (Illumina, San Diego,
CA, United States). FastQC (version 0.11.2) was used to evaluate
the quality of the sequenced data. Trimmomatic (version 0.36)
and HISAT2 (version 2.0) were applied to filter raw reads and
mapped to the reference genome, respectively. Package DESeq2
(version 1.12.4) was used to identify differentially expressed genes
(DEGs) between the two groups. Genes with p value < 0.05
and | Log2 (fold change) | > 1 were considered significant
DEGs. QPCR was performed with an Applied Biosystems
StepOnePlusTM Real-Time PCR System using SYBR Green
Master Mix (Roche, Indianapolis, IN, United States). The
relative changes in gene expression were analyzed by using the
2−11CT method.

Pathway-Enrichment Assay
Gene Ontology (GO) functional analysis and KEGG pathway
analysis were performed as previously published methods (Xu
Z. et al., 2019; Xu et al., 2020). Briefly, DEGs are subjected
to GO biological process (BP) and KEGG pathway enrichment
analysis using the packages clusterProfiler and org.Ss.eg.db. P
value < 0.05 was defined as statistical significance. Enriched
terms and pathways were visualized by the barplot and
cnetplot function.

Statistical Analysis
Data on carcass and meat characteristics, enzyme activities and
fatty acid composition were presented as the mean ± SEM.
Comparisons were made by unpaired two-tailed Student’s
t-tests. Differences between groups were considered statistically
significant at p < 0.05.

RESULTS

Cold Exposure Induced Alterations in
Meat Characteristics and Enzyme
Activities
The carcass and meat characteristics from immediate post-
mortem are given in Table 1. There were no significant
differences in body weights (BW), carcass weights, body lengths,
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skin thickness, and mean backfat thickness between cold-treated
and RT pigs (Table 1). Next, we found that overnight cold
exposure significantly reduced the meat colour24 h (p = 0.046)
and pH24 h (p = 0.009), without affecting the meat colour45 min,
pH45 min, marbling and drip loss of pigs (Table 1). Moreover,
the content of IMF had an increasing tendency (p = 0.061) in
cold-treated meat (Table 1). While the flavor substance and the
content of inosinic acid, were not affected by cold exposure
(p > 0.05, Table 1). Besides, we neither found a pH24 h value
above 6.0 nor a pH45 min value below 5.8 in this study, indicating
no dark, firm and dry (DFD) or pale, soft and exudative (PSE)
meat (Table 1).

To further determine the effect of cold exposure on IMF
content, we also measured the level of TG and NEFA in pork.
Consistent with change trend of IMF content, the content of
TG showed an increased trend in cold-treated LDM, while,
the content of NEFA showed a decreased trend (Figure 1A).
To explore the changes in oxidative stability and antioxidant
enzymes stability in skeletal muscle from COLD pigs, we
measured enzyme activities associated with oxidation-reduction,
lipid oxidative, and antioxidation (Figures 1B–D). The activity
of LDH, which is responsible for lactic acid production in
glycolysis, was significantly inhibited by cold exposure. These
results suggest cold exposure may inhibit glycolysis capacities
in LDM. The activities of oxidative enzymes, such as SDH

TABLE 1 | Effects of cold exposure on carcass characteristics, meat quality traits
and flavor substances of LDM in pigs.

Variable RT COLD

Mean SEM Mean SEM P-value

BW (kg) 1 121.917 2.491 124.250 5.261 0.697

Carcass weight (kg) 94.817 2.485 97.183 4.106 0.633

Carcass yield 0.777 0.007 0.784 0.021 0.777

Body length (cm) 108.333 1.498 112.167 3.027 0.283

Skin thickness (mm) 3.342 0.107 3.135 0.318 0.552

Backfat thickness (mm) 33.247 2.604 33.647 2.160 0.908

Marbling 1.000 0.000 1.167 0.167 0.341

Meat colour45 min 2 86.361 0.983 86.589 1.333 0.893

Meat colour24 h 3 72.778 1.593 68.400 1.083 0.046*

pH45 min 4 6.389 0.085 6.234 0.091 0.241

pH24 h 5 5.667 0.056 5.453 0.034 0.009**

Drip loss (%) 2.047 0.065 2.071 0.091 0.837

IMF (g/100 g) 6 12.150 0.274 13.117 0.368 0.061

Inosinic acid (g/100 g) 7 0.830 0.034 0.838 0.034 0.866

Statistical effect of cold exposure on carcass and meat characteristics of pigs
were analyzed by two-tailed Student’s t-test (n=6). SEM, standard error of means.
*P < 0.05, **P < 0.01. RT, pigs at room temperature of 22–25◦C; COLD, pigs at
cold temperature of 5–7◦C.
1BW, body weight.
2Meat color45 min, meat color measured 45 min after slaughter.
3Meat color24 h, meat color measured 24 h after slaughter.
4pH45 min, pH value measured 45 min after slaughter.
5pH24 h, pH value measured 24 h after slaughter.
6 IMF, intramuscular fat. The IMF content was indicated by the weight of fat (g) in
pre 100 g freeze-dried LDM (g/100 g).
7The inosinic acid content was indicated by the weights of inosinic acid (g) in pre
100 g freeze-dried LDM (g/100 g).

and MDH, showed no change (Figure 1B). Besides, the qPCR
results indicated the mRNA level of MYH2 was significantly
downregulated, while the mRNA level of MYH4 was significantly
upregulated (Supplementary Figure 1A). Slightly decreased lipid
peroxidation related enzymes (MDA, and LPO) were found in
COLD pigs (Figure 1C), suggesting that cold exposure prior
to slaughter might improve the quality and shelf-life of meats
by lipid oxidative stability. COLD pigs also had differentially
expressed antioxidant-related enzymes (T-AOC, GSH-PX, CAT,
and POD) (Figure 1D). Taken together, cold exposure may have
a positive impact on meat quality and flavor through increasing
IMF content, improving oxidative capacity, inhibiting lipid
peroxidation, although it did not reach statistical significance.

Cold Exposure Changed the
Composition and Content of Fatty Acids
We further explored overall fatty acid composition in LDM
of COLD pigs compared to RT pigs (Figure 2). Absolute
proportions showed that cold exposure induced extensive
increases in the following fatty acids: palmitic acid (C16:0),
palmitoleic acid (C16:1), oleic acid (C18:1n9c), linoleic acid
(C18:2n-6c), capric acid (C10:0), lauric acid (C12:0), myristic
acid (C14:0), margaric acid (C17:0), arachidic acid (C20:0),
eicosenic acid (C20:1), α-linolenic (C18:3n-3), eicosadienoic
acid (C20:2), pentadecanoic acid (C15:0) and γ-linolenic
(C18:3n6) (Figures 2A–C). Notably, the saturated fatty acids
(SFAs), including margaric acid (C17:0), palmitic acid (C16:0),
capric acid (C10:0), lauric acid (C12:0), myristic acid (C14:0),
eicosadienoic acid (C20:2) and pentadecanoic acid (C15:0) were
largely increased in COLD pigs (Figures 2A–C). In line with
the increases in individual fatty acid, the total contents of
saturated fatty acids (SFAs)and unsaturated fatty acids (UFAs)
were significantly elevated in COLD LDM (Figure 2D). We
further analyzed the percentages of total SFAs, monounsaturated
fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs),
respectively, and found no difference (Figure 2E). Besides, we
calculated the ratio of MUFAs: PUFAs, the ratio of n6-fatty
acids: n3-fatty acids (n6: n3) and the total content of n3-fatty
acids (Figures 2F–I), all known for improving human health.
Cold exposure treatment did not affect the ratio of MUFAs:
PUFAs (Figure 2F), but significantly increased the ratio of n6:
n3 in LDM (Figure 2G). However, the total content of n3-fatty
acids was significantly increased by cold exposure (Figure 2H).
The total content of individual fatty acids was also dramatically
elevated by cold exposure treatment (Figure 2I). These results
suggest that cold exposure induced considerable alterations in the
composition and content of fatty acids in LDM.

Cold Exposure Changed the
Transcriptome Profiles of Longissimus
Dorsi Muscle in Pigs
To explore how the LDM transcriptome is altered upon cold
exposure, we next utilized RNA-seq to map the transcriptional
changes. A total of 660 DEGs were identified in the RT and
COLD group using the filter criteria of | Log2 (fold change) |
> 1 and p-value < 0.05. Of these DEGs, 452 were up-regulated
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FIGURE 1 | Effects of cold exposure on lipid metabolism and various enzymes activities. (A) Triglyceride (TG) and non-esterified free fatty acids (NEFA) levels in LDM
of pigs from room temperature (RT) or cold condition (COLD). (B) The activities of oxidoreductases, including Lactate dehydrogenase (LDH), succinate
dehydrogenase (SDH), malate dehydrogenase (MDH). (C) The levels of lipid peroxide contents, including malondialdehyde (MDA), lipid peroxidation (LPO). (D) The
levels of antioxidant non-enzymatic activity, total antioxidant capacity (T-AOC), and enzymatic activities, including glutathione peroxidase (GSH-Px), peroxidase
(POD), catalase (CAT). n = 5. Error bars represent S.E.M. *P < 0.05, two-tailed Student’s t-test.

and 208 were down-regulated by cold exposure (Figure 3A). The
mRNA expression levels of several genes reported previously as
having altered expression upon cold exposure in skeletal muscle,
including UCP2, UCP3, PPARG, SLC2A4, NR4A3, MSTN, MFN2,
were reflected by TPM (Transcripts Per Kilobase of exon model
per Million mapped read) values (Figures 3B,C). Interestingly,
only myogenesis related genes (MSTN, MFN2) were decreased by
cold exposure in LDM of pigs (Figure 3B). These genes (UCP2,
UCP3, FGF21, SLC2A4, NR4A3) were not significantly altered
in COLD groups (Figure 3B). We also analyzed the expression
levels of lipid droplets markers (FABP1, FABP3, FABP5, PLIN1,
PLIN2, PLIN4, PLIN5) and found that cold exposure significantly
elevated the expression level of FABP3 (Figure 3C). Expression
levels of genes involved in the main pathways associated to
fatty acid metabolism are given in Figure 3. And include fatty
acid biosynthesis (Figure 3D), fatty acid elongation (Figure 3E),
biosynthesis of unsaturated fatty acids (Figure 3F) and fatty
acid degradation (Figure 3G). These significantly altered genes
(CBR4, ACSL1, OXSM, TECR, ELOVL1, SCD5, FADS2, ELOVL7,
ACADL, ACADM, ACAT1, ACASL4, ALDH3A2) are highlighted
in the heatmaps (Figures 3D–G). The expression levels of CBR4,
ACSL1 and OXSM, which participate in the biosynthesis of fatty
acids in mitochondria (Zhang et al., 2005; Venkatesan et al.,
2014), FADS2, which regulates the unsaturation of fatty acids,
ELOVL1, TECR and ELOVL7 which catalyze the long-chain fatty

acids elongation (Moon and Horton, 2003; Naganuma et al.,
2011), SCD5, which catalyzes the formation of monounsaturated
fatty acids, was significantly altered by cold exposure. And the
expression levels of mitochondrial beta-oxidation related genes
(ACADL, ACADM, ACAT1) were significantly suppressed in
COLD LDM. The RNA-seq results were further confirmed by
qPCR on several key genes including ACC, FABP4, SREBP1,
SCD, ACAA1, PPARG, ELOVL6 CPT1, CPT2, and PPARGC1A
(Figures 3H,I). Taken together, we found extensive changes in
the transcriptome of LDM in pigs in response to overnight cold
compared with RT. Notably, the fatty acid anabolism related
genes were activated, while fatty acid catabolism related genes
were inhibited in COLD LDM.

Cold Exposure Induced Alterations in
Apolipoprotein Function
Functional enrichment analysis of cold-induced DEGs were
carried out using GO enrichment analysis. GO enrichment
analysis for genes on biological processes (BP) revealed that
cold-induced DEGs were abundant in the processes of lipid
catabolism, negative regulation of coagulation and protein-lipid
complex remodeling (Figure 4A). The cnetplot showed that
these apolipoprotein encoding genes (APOC3, APOA4, APOE,
APOA2, APOC2, APOA5), involved in natural lipid catabolic
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FIGURE 2 | Cold exposure changed the composition and proportions of fatty acids. Fatty acid composition analyses of LDM isolated from pigs maintained at room
temperature (RT, 22–25◦C) or in cold (5–7◦C) for 14 h. (A–C) The concentration of individual fatty acids in LDM from COLD and RT pigs. Fatty acids are divided into
major (A), middle (B) and minor (C) species based on abundance. Fatty acids are sorted by a degree of saturation. (D,E) The contents (D) and percentages (E) of
total SFAs, MUFAs and PUFAs in LDM from COLD and RT pigs. SFAs, saturated fatty acids; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty
acids containing two or three to six double bonds. (F,G) The ratio of MUFAs: PUFAs (F) and n6-fatty acids: n3-fatty acids (n6: n3) (G) in LDM from COLD and RT
pigs. (H,I) The contents of total n3-fatty acids (H) and total individual fatty acids (I). n = 5. Error bars represent S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001,
two-tailed Student’s t-test.

progress, negative regulation of coagulation, protein-lipid
complex remodeling, were significantly upregulated by cold
exposure (Figure 4D), suggesting that cold exposure might
influence lipid metabolism in LDM through these processes.
GO enrichment analysis for genes on molecular function
(MF) revealed enrichment in lipid binding, endopeptidase
inhibitor activity and extracellular matrix structural constituent
(Figure 4B). These upregulated apolipoprotein encoding
genes also participated in lipid binding (Figure 4E). These
endopeptidase inhibitor activity related genes (SERPIND1,

AMBP, AHSG, SERPINA3-2) were markedly upregulated by
cold exposure (Figure 4C), suggesting that cold treatment
induced alteration on lipid metabolism might be entangled
with endopeptidase inhibitor activity, which reportedly could
improve hepatic steatosis and inflammation (Jiang et al., 2020).
GO enrichment analysis for genes on cellular components
(CC) revealed that cold-induced DEGs were enriched in the
extracellular matrix and lipoprotein particle (Figure 4C). The
cneplot showed that lipoprotein particles were regulated by these
upregulated apolipoprotein encoding genes, and extracellular
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FIGURE 3 | Cold exposure changed the transcriptome profile of LDM in pigs. (A) Volcano plot of differently expressed genes (DEGs) expression patterns were
illustrated. Red denotes upregulated genes in cold pigs; blue denotes downregulated genes in cold pigs; gray denotes genes with no significant changes. (B,C)
Transcripts per million (TPM) expression values of cold-induced genes and lipid droplets markers LDM from cold-treated and RT pigs were shown to estimate relative
gene expression abundance (n = 3). Error bars represent SEM. *P < 0.05, **P < 0.01, two-tailed Student’s t-test. (D–G) Heatmaps of the TPM expression values of
selected fatty acid biosynthesis, fatty acid elongation, biosynthesis of unsaturated fatty acids, fatty acid degradation regulated genes from the RNA-seq dataset.
*P < 0.05, **P < 0.01. (H–I) qPCR validation of the expression of genes related to fatty acid metabolism in LDM from cold-treated and RT pigs.

matrix was mainly regulated by the matrix metalloproteinase
(MMP) family (MMP11, MMP8, MMP9, MMP2), fibulin
encoding genes (FBLN5), and fibrillin encoding gene (FBN1)
upon cold exposure (Figure 4F). These results highlight
the regulatory roles of lipid catabolic progress, lipoprotein
complex remodeling and extracellular matrix, especially
apolipoproteins, in lipid metabolism of LDM under cold
exposure treatment.

Cold Exposure Induced Alterations in
Metabolism and Inflammation
Regulatory Pathways
KEGG pathways analysis were applied on these DEGs and
revealed most enrichment in complement and coagulation
cascades, ECM-receptor interaction, phenylalanine metabolism,
focal adhesion, tyrosine metabolism, protein digestion and
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FIGURE 4 | Cold exposure induced alterations in apolipoprotein function. (A-C) GO annotation for DEGs in the category of biological process (BP) (A), molecular
function (MF) (B), and cell component (CC) (C). (D–F) The cnetplot depicts the linkages of the selected GO terms in the category of BP (D), MF (E), CC (F) and
genes involved in these terms as a network.

absorption, and PPAR signaling pathways (Figure 5A). Heatmaps
showed the expressions of genes involved in complement and
coagulation cascades, ECM-receptor interaction, PPAR signaling
pathways and arachidonic acid metabolism (Figures 5B–
E). Most genes involved in complement and coagulation
cascades were induced by cold exposure in LDM of pigs,
especially ACADL, ACADM, ACSL3, ACSL4 (Figure 5B).
These collagen-alpha-proteins encoding genes (COL4A2,
COL6A2, COL6A3, COL4A1, and COL1A2) involved in the
ECM-receptor interaction were significantly increased in cold-
treated LDM (Figure 5C). The expression level of hyaluronan

mediated motility receptor (HMMR) whose function blocking
reportedly promotes adipogenesis was significantly inhibited
by cold exposure in LDM (Figure 5C), which might be partly
responsible for the increased trend of IMF content. Cold
exposure treatment upregulated the expression levels of fatty
acid binding protein encoding genes (FABP1, FABP3) and
apolipoprotein encoding genes (APOA2, APOA5, APOC3),
and downregulated mitochondrial fatty acid beta-oxidation
related genes (ACADM, ACADL), which are involved in PPAR
signaling pathway (Figure 5D). The expression level of retinoid
X receptor gamma (RXRG) was increased in LDM of pigs upon
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cold exposure (Figure 5D). Notably, cold exposure significantly
altered the expression of genes involved in arachidonic acid
metabolism (Figure 5E). We found that cold exposure elevated
the expression levels of PTGIS, PTGS1, PTGS2, ALOX5, GGT5
(Figure 5E). These pathways enrichment results suggested that
alterations in meat quality and fatty acid composition of LDM
induced by cold exposure might be regulated by both metabolic
and inflammatory pathways. Besides, these cold-induced
DEGs were also enriched in various amino acids metabolism
related pathways, including phenylalanine metabolism, tyrosine
metabolism, tryptophan metabolism, alanine, aspartate and
glutamate metabolism, glutathione metabolism, cysteine and
methionine metabolism, which are also associated with meat
nutritional values (Figure 5A). We further examined the
amino acid contents in LDM from COLD and RT pigs, but
observed no significant difference between these two groups
(Supplementary Table 1).

DISCUSSION

Many studies have reported that cold exposure could induce
various alterations on whole-body metabolism in mammals
including mice, humans and birds (Chung et al., 2017;
Wakabayashi et al., 2017; Nyuiadzi et al., 2020). In our
experiment, we investigated the changes in meat quality
and nutritional values and further discovered the regulatory
mechanisms in the LDM of pigs in response to cold exposure
through RNA-seq technology. Our results showed that cold
exposure induced significant changes in meat colour24 h, pH24 h
and fatty acid composition, as well as lead to an increase in IMF.
RNA-seq results indicated that cold exposure activated fatty acid
anabolism while inhibiting fatty acid catabolism in LDM, which
might be regulated by metabolic and inflammatory pathways.
Our results suggest that pre-slaughter cold exposure treatment
in pigs might improve the meat quality and nutritional values of
skeletal muscle.

The “juiciness” and “tenderness” in pork are strongly
influenced by the fat deposition and collagens proportions
contained within the meat (Weston et al., 2002; Font-I-Furnols
et al., 2012). In this study, we observed that the IMF content,
fatty acid contents and expression levels of fatty acid metabolism
related genes were altered in pigs LDM under pre-slaughter cold
exposure as well as collagen synthesis enzymes encoding genes.
These findings suggest that cold exposure might improve the
pork eating quality through regulating the lipid metabolism and
collagens synthesis toward a more beneficial direction. Besides,
the water-holding capacity (WHC), the ability of meat to hold
all or part of its water, is considered one of the most important
trait of product yield and pork quality, and is largely influenced
by meat pH. A low meat pH (below 5.8) 45 min after slaughter
is often associated with low WHC and pale meat color, resulting
in PSE pork. In contrast, high meat pH (above 6.0) 24 h
after slaughter often causes DFD pork. The variation in meat
pH, WHC and color results from the different post-mortem
processes such as muscle metabolism (glycolysis) and conversion
rates of glycogen into lactic acid, which are influenced by

environmental factors, including breeding conditions, nutrition,
transport conditions, stress, weather conditions, and the methods
of slaughter (Przybylski et al., 2016). In this study, despite the
stress related to a sudden lowering of temperature overnight
before slaughter resulted in lower meat colour24 h and pH24 h
while drip loss after 24 h was not affected. Also, we observed
neither pH24 h values above 6.0 nor pH45 min below 5.8 in any of
the COLD pigs or the RT controls. Thus, cold exposure treatment
might prove a useful future strategy to improve meat quality.

Pork represents a rich source of lipids, which have been an
important topic of discussion for consumers of meat due to
the disadvantageous correlation between dietary fat intake and
the incidence of various lifestyle disorders, including obesity
and cardiovascular diseases (Dugan et al., 2015). Any imbalance
in the ratio between PUFAs to SFAs ratio as well as omega-
6 (n-6) to omega-3 (n-3) fatty acids ratio have been related to
a variety of pathologies, such as cardiovascular, inflammatory
diseases, diabetes and autoimmune disorders. This led to several
studies suggesting to rebalance the fatty acid profiles of pork by
increasing the PUFAs to SFAs ratio and n-3 fatty acids contents
while decreasing its n-6: n-3 ratio (Kouba et al., 2003; Corino
et al., 2014). In our study, we found that overnight cold exposure
significantly increased the contents of SFAs, MUFAs, PUFAs, and
n-3 fatty acids, while, the PUFAs to SFAs ratio decreased with
the n-6: n-3 ratio being significantly increased. As the majority
of these detected fatty acids were increased in cold-treated LDM,
we conclude that the alterations in fatty acid composition in
LDM were mainly the result of the increased the proportion of
IMF due to cold. Previous reviews have pointed out that the
fatty acid composition of pork can be regulated by reducing total
fat content, due to the fairly constant proportion of PUFA-rich
phospholipids in the cell membrane, with at the same time the
relatively flexible proportion of SFA-rich triacylglycerol in lipid
droplet (Wood et al., 2008; Huang et al., 2014). However, too
low IMF content may lead to palatability issues. Thus, some
strategies using dietary adjustments to ameliorate pork fatty acid
profiles without changing the total fat content were used. We
thus speculate that overlapping the dietary influence with pre-
slaughter cold exposure treatment in pigs might become an
efficient and satisfying method to improve pork quality and its
nutritive value. It is useful to compare fatty acid composition in
LDM from meat described in the literature. When assessing the
nutritional values of pork, it is important to consider site-specific
differences, because the fibrous tissue envelope, the epimysium
and adipose tissue are extensive constituents of pork pieces cut
from different parts, while adipose tissue always contains much
more lipids than muscle fibers (Turner et al., 2014; Dugan et al.,
2015). Thus, future work will have to address even precisely the
effects of cold exposure on fatty acid composition of the adipose
tissues on top of skeletal muscle in pigs, especially from the
muscle-associated adipose tissue.

Our RNA-seq results revealed that cold exposure significantly
upregulated fatty acid biosynthesis related genes (ACSL1,
FADS2, ELOVL1, SCD5) and downregulated the expression of
mitochondrial beta-oxidation related genes (ACADL, ACADM,
ACAT1, ACSL4) in skeletal muscle, which might directly explain
the increased trend of IMF content and alterations of fatty acids
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FIGURE 5 | Cold exposure induced alterations in metabolism and inflammation regulatory pathways. (A) Functional enrichment analyses for DEGs. (B–E) Heatmaps
of TPM expression values of Complement and coagulation cascades (B), ECM-receptor interaction (C), PPAR signaling pathways (D) and Arachidonic acid
metabolism (E) regulated genes from the RNA-seq dataset. Only genes with P < 0.05 are displayed.

in LDM of COLD pigs. In white and brown adipose tissue, cold
exposure induces dynamic, heterogeneous alterations in lipid
content and lipid metabolism regulatory pathways, especially
the dramatically activated fatty acid beta-oxidation (Coolbaugh
et al., 2019; Xu Z. et al., 2019). Both skeletal muscle and
adipose tissues are considered important metabolic organs, while
these two organ systems might play distinct roles in maintaining
whole-body homeostasis under cold exposure treatment. The
GO enrichment analysis of our RNA-seq results highlighted the
alterations of apolipoprotein encoding genes (APOA2, APOA5,

APOC3). APOC3 was reported to be among the key proteins
regulating the different lipid deposition ability in skeletal muscle
from Chinese native mini-type breeds’ pigs and introduced
western breeds (Wang et al., 2017). Thus, we concluded that
lipoprotein particles might also participate in the regulation of
lipid metabolism in skeletal muscle following cold exposure.

KEGG enrichment analysis of our RNA-seq results revealed
that DEGs were abundant in complement and coagulation
cascades, ECM-receptor interaction, phenylalanine metabolism,
focal adhesion, tyrosine metabolism, protein digestion and
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absorption and PPAR signaling pathway. These upregulated
fatty acid binding and transport related genes (FABP1, FABP3,
SLC27A4, and FATP4) might function in conjunction with fatty
acid biosynthesis and oxidation related genes to adapt the
lipid metabolism in skeletal muscle upon cold exposure. On
the other hand, complement and coagulation are evolutionarily
related proteolytic cascades in the blood, which is essential
for inflammatory responses (Oikonomopoulou et al., 2012;
Conway, 2018). The network of ECM-receptor interaction,
focal adhesion, protein digestion and absorption play several
roles including but not limited to force transmission, growth
factors regulation, inflammatory responses, and muscle stem cell
proliferation and differentiation (Mohassel et al., 2018; Sorensen
et al., 2018; Lionello et al., 2019). Besides, previous studies
demonstrated that reduced temperatures impair glutamine-
induced anabolic response in human primary myotubes (Rantala
and Chaillou, 2019) while cold acclimation affects L-arginine-
modulated antioxidative defense in skeletal muscle (Petrovic
et al., 2008). We also found an enrichment of amino acid
metabolism pathways, including phenylalanine metabolism,
tyrosine metabolism, tryptophan metabolism, alanine, aspartate
and glutamate metabolism, glutathione metabolism, cysteine and
methionine metabolism in this study. However, the content of
amino acids showed no significant difference. The overnight
cold exposure treatment may have been too short to cause
obvious changes in the content of amino acids or amino acids
are somewhat less responsive to compositional changes due
to a temperature drop. Taken together, our RNA-seq results
revealed various alterations in cold-treated skeletal muscle, with
the specific impact and regulatory mechanisms cold exposure on
skeletal muscle still unclear.

CONCLUSION

In conclusion, our study reveals significant alterations in fatty
acid profile and lipid metabolism of pig skeletal muscle upon
overnight cold exposure. We carefully evaluated the potential
regulations for meat quality and nutritional values of pigs with
our experimental test. More detailed investigations uncovering
the cold exposure induced specific effects and regulatory
mechanisms in skeletal muscles of economically relevant meat
should be performed.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in NCBI under
the sample ID are SRR15694341, SRR15694342, SRR15694343,
SRR15694344, SRR15694345, and SRR15694346.

ETHICS STATEMENT

The animal study was reviewed and approved by the
University of Zhejiang Institutional Animal Care and Use
Committee.

AUTHOR CONTRIBUTIONS

ZX: investigation, methodology, formal analysis, and writing–
original draft. WC and LW: investigation and writing–original
draft. YZ and QN: investigation. TV: writing–review and editing.
YW and JX: resources. TS: project administration, writing–
review and editing, and supervision. All authors have read and
approved the final manuscript.

FUNDING

This research was funded by the Zaozhuang Talent Program
Funding, the Key Research and Development Program of
Zhejiang Province (2021C02008), the “Hundred Talents
Program” funding from Zhejiang University to TS.

ACKNOWLEDGMENTS

We would like to thank the members of the Shan laboratory
for their comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2021.748801/full#supplementary-material

REFERENCES
Bartelt, A., Bruns, O., Reimer, R., Hohenberg, H., Ittrich, H., Peldschus, K., et al.

(2011). Brown adipose tissue activity controls triglyceride clearance. Nat. Med.
17, 200–205. doi: 10.1038/nm.2297

Bartelt, A., John, C., Schaltenberg, N., Berbée, J., Worthmann, A., Cherradi, M.,
et al. (2017). Thermogenic adipocytes promote HDL turnover and reverse
cholesterol transport. Nat. Commun. 8:15010. doi: 10.1038/ncomms15010

Blondin, D. P., and Haman, F. (2018). Shivering and nonshivering thermogenesis
in skeletal muscles. Handb. Clin. Neurol. 156, 153–173. doi: 10.1016/B978-0-
444-63912-7.00010-2

Buras, E. D., Converso-Baran, K., Davis, C. S., Akama, T., Hikage, F., Michele,
D. E., et al. (2019). Fibro-Adipogenic Remodeling of the Diaphragm in
Obesity-Associated Respiratory Dysfunction. Diabetes 68, 45–56. doi: 10.2337/
db18-0209

Chung, N., Park, J., and Lim, K. (2017). The effects of exercise and cold exposure on
mitochondrial biogenesis in skeletal muscle and white adipose tissue. J. Exerc.
Nutrit. Biochem. 21, 39–47. doi: 10.20463/jenb.2017.0020

Conway, E. M. (2018). Complement-coagulation connections. Blood Coagul.
Fibrinolysis 29, 243–251. doi: 10.1097/MBC.0000000000000720

Coolbaugh, C. L., Damon, B. M., Bush, E. C., Welch, E. B., and Towse, T. F. (2019).
Cold exposure induces dynamic, heterogeneous alterations in human brown
adipose tissue lipid content. Sci. Rep. 9:13600. doi: 10.1038/s41598-019-49
936-x

Corino, C., Rossi, R., Cannata, S., and Ratti, S. (2014). Effect of dietary linseed on
the nutritional value and quality of pork and pork products: systematic review
and meta-analysis. Meat Sci. 98, 679–688. doi: 10.1016/j.meatsci.2014.06.041

Dugan, M. E., Vahmani, P., Turner, T. D., Mapiye, C., Juarez, M., Prieto, N.,
et al. (2015). Pork as a Source of Omega-3 (n-3) Fatty Acids. J. Clin. Med. 4,
1999–2011. doi: 10.3390/jcm4121956

Frontiers in Physiology | www.frontiersin.org 11 October 2021 | Volume 12 | Article 74880161

https://www.frontiersin.org/articles/10.3389/fphys.2021.748801/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2021.748801/full#supplementary-material
https://doi.org/10.1038/nm.2297
https://doi.org/10.1038/ncomms15010
https://doi.org/10.1016/B978-0-444-63912-7.00010-2
https://doi.org/10.1016/B978-0-444-63912-7.00010-2
https://doi.org/10.2337/db18-0209
https://doi.org/10.2337/db18-0209
https://doi.org/10.20463/jenb.2017.0020
https://doi.org/10.1097/MBC.0000000000000720
https://doi.org/10.1038/s41598-019-49936-x
https://doi.org/10.1038/s41598-019-49936-x
https://doi.org/10.1016/j.meatsci.2014.06.041
https://doi.org/10.3390/jcm4121956
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-748801 September 30, 2021 Time: 15:31 # 12

Xu et al. Cold Exposure Affects Pork

Font-I-Furnols, M., Tous, N., Esteve-Garcia, E., and Gispert, M. (2012). Do all the
consumers accept marbling in the same way? The relationship between eating
and visual acceptability of pork with different intramuscular fat content. Meat
Sci. 91, 448–453. doi: 10.1016/j.meatsci.2012.02.030

Grefhorst, A., Van Den Beukel, J. C., Dijk, W., Steenbergen, J., Voortman, G. J.,
Leeuwenburgh, S., et al. (2018). Multiple effects of cold exposure on livers of
male mice. J. Endocrinol. 238, 91–106. doi: 10.1530/JOE-18-0076

Grunert, K. G., Bredahl, L., and Brunsø, K. (2004). Consumer perception of meat
quality and implications for product development in the meat sector-a review.
Meat Sci. 66, 259–272 .doi: 10.1016/S0309-1740(03)00130-X

Gu, T., Shi, J., Luo, L., Li, Z., Zheng, E., Cai, G., et al. (2019). Comparison of Carcass
Traits, Meat Quality, and Chemical Composition of Tissues from Progeny
Derived from Cloned and Noncloned Pigs. Cell Reprogram. 21, 296–300. doi:
10.1089/cell.2019.0040

Hocquette, J. F., Gondret, F., Baeza, E., Medale, F., Jurie, C., and Pethick, D. W.
(2010). Intramuscular fat content in meat-producing animals: development,
genetic and nutritional control, and identification of putative markers. Animal
4, 303–319. doi: 10.1017/S1751731109991091

Honikel, K. O. (1998). Reference methods for the assessment of physical
characteristics of meat. Meat Sci. 49, 447–457. doi: 10.1016/S0309-1740(98)
00034-5

Hou, L., Shi, J., Cao, L., Xu, G., Hu, C., and Wang, C. (2017). Pig has no uncoupling
protein 1. Biochem. Biophys. Res. Commun. 487, 795–800. doi: 10.1016/j.bbrc.
2017.04.118

Huang, L., Kong, B., Zhao, J., Liu, Q., and Diao, X. (2014). Contributions of
fat content and oxidation to the changes in physicochemical and sensory
attributes of pork dumpling filler during frozen storage. J. Agric. Food Chem.
62, 6390–6399. doi: 10.1021/jf5008083

Iwen, K. A., Backhaus, J., Cassens, M., Waltl, M., Hedesan, O. C., Merkel, M., et al.
(2017). Cold-Induced Brown Adipose Tissue Activity Alters Plasma Fatty Acids
and Improves Glucose Metabolism in Men. J. Clin. Endocrinol. Metab. 102,
4226–4234. doi: 10.1210/jc.2017-01250

Jiang, D. X., Zhang, J. B., Li, M. T., Lin, S. Z., Wang, Y. Q., Chen, Y. W., et al.
(2020). Prolyl endopeptidase gene disruption attenuates high fat diet-induced
nonalcoholic fatty liver disease in mice by improving hepatic steatosis and
inflammation. Ann. Transl. Med. 8:218. doi: 10.21037/atm.2020.01.14

Kouba, M., Enser, M., Whittington, F. M., Nute, G. R., and Wood, J. D. (2003).
Effect of a high-linolenic acid diet on lipogenic enzyme activities, fatty acid
composition, and meat quality in the growing pig. J. Anim. Sci. 81, 1967–1979.
doi: 10.2527/2003.8181967x

Li, W., Li, R., Wei, Y., Meng, X., Wang, B., Zhang, Z., et al. (2020). Effect of MSTN
Mutation on Growth and Carcass Performance in Duroc x Meishan Hybrid
Population. Animals 10:932. doi: 10.3390/ani10060932

Li, Y., Liu, Y., Li, F., Lin, Q., Dai, Q., Sun, J., et al. (2018). Effects of dietary ramie
powder at various levels on carcass traits and meat quality in finishing pigs.
Meat Sci. 143, 52–59. doi: 10.1016/j.meatsci.2018.04.019

Lin, J., Cao, C., Tao, C., Ye, R., Dong, M., Zheng, Q., et al. (2017). Cold adaptation
in pigs depends on UCP3 in beige adipocytes. J. Mol. Cell Biol. 9, 364–375.
doi: 10.1093/jmcb/mjx018

Lionello, V. M., Nicot, A. S., Sartori, M., Kretz, C., Kessler, P., Buono, S., et al.
(2019). Amphiphysin 2 modulation rescues myotubular myopathy and prevents
focal adhesion defects in mice. Sci. Transl. Med. 11:eaav1866. doi: 10.1126/
scitranslmed.aav1866

Liu, K., Yu, W., Wei, W., Zhang, X., Tian, Y., Sherif, M., et al. (2019). Melatonin
reduces intramuscular fat deposition by promoting lipolysis and increasing
mitochondrial function. J. Lipid Res. 60, 767–782. doi: 10.1194/jlr.M087619

Mohassel, P., Foley, A. R., and Bönnemann, C. G. (2018). Extracellular matrix-
driven congenital muscular dystrophies. Matrix Biol. 71-72, 188–204. doi: 10.
1016/j.matbio.2018.06.005

Moon, Y. A., and Horton, J. D. (2003). Identification of two mammalian reductases
involved in the two-carbon fatty acyl elongation cascade. J. Biol. Chem. 278,
7335–7343. doi: 10.1074/jbc.M211684200

Naganuma, T., Sato, Y., Sassa, T., Ohno, Y., and Kihara, A. (2011). Biochemical
characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett.
585, 3337–3341. doi: 10.1016/j.febslet.2011.09.024

Ngapo, T. M., and Gariepy, C. (2008). Factors affecting the eating quality of pork.
Crit. Rev. Food Sci. Nutr. 48, 599–633.

Nyuiadzi, D., Berri, C., Dusart, L., Travel, A., Meda, B., Bouvarel, I., et al. (2020).
Short cold exposures during incubation and postnatal cold temperature affect

performance, breast meat quality, and welfare parameters in broiler chickens.
Poult. Sci. 99, 857–868.

Oikonomopoulou, K., Ricklin, D., Ward, P. A., and Lambris, J. D. (2012).
Interactions between coagulation and complement–their role in inflammation.
Semin. Immunopathol. 34, 151–165.

Pan, J., Tao, C., Cao, C., Zheng, Q., Lam, S. M., Shui, G., et al. (2019).
Adipose lipidomics and RNA-Seq analysis revealed the enhanced mitochondrial
function in UCP1 knock-in pigs. Biochim. Biophys. Acta Mol. Cell Biol. Lipids
1864, 1375–1383. doi: 10.1016/j.bbalip.2019.06.017

Petrovic, V., Buzadzic, B., Korac, A., Vasilijevic, A., Jankovic, A., Micunovic,
K., et al. (2008). Antioxidative defence alterations in skeletal muscle during
prolonged acclimation to cold: role of L-arginine/NO-producing pathway.
J. Exp. Biol. 211, 114–120. doi: 10.1242/jeb.012674

Przybylski, W., Sionek, B., Jaworska, D., and Santé-Lhoutellier, V. (2016). The
application of biosensors for drip loss analysis and glycolytic potential
evaluation. Meat Sci. 117, 7–11. doi: 10.1016/j.meatsci.2016.02.025

Rantala, R., and Chaillou, T. (2019). Mild hypothermia affects the morphology and
impairs glutamine-induced anabolic response in human primary myotubes.
Am. J. Physiol. Cell Physiol. 317, C101–C110. doi: 10.1152/ajpcell.00008.
2019

Rosenvold, K., and Andersen, H. J. (2003). Factors of significance for pork
quality-a review. Meat Sci. 64, 219–237. doi: 10.1016/S0309-1740(02)00
186-9

Sorensen, J. R., Skousen, C., Holland, A., Williams, K., and Hyldahl, R. D. (2018).
Acute extracellular matrix, inflammatory and MAPK response to lengthening
contractions in elderly human skeletal muscle. Exp. Gerontol. 106, 28–38. doi:
10.1016/j.exger.2018.02.013

Turner, T. D., Mapiye, C., Aalhus, J. L., Beaulieu, A. D., Patience, J. F., Zijlstra, R. T.,
et al. (2014). Flaxseed fed pork: n-3 fatty acid enrichment and contribution to
dietary recommendations. Meat Sci. 96, 541–547. doi: 10.1016/j.meatsci.2013.
08.021
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Intramuscular fat (IMF) deposition is one of the most important factors to affect meat

quality in livestock and induce insulin resistance and adverse metabolic phenotypes for

humans. However, the key regulators involved in this process remain largely unknown.

Although liver kinase B1 (LKB1) was reported to participate in the development of

skeletal muscles and classical adipose tissues. Due to the specific autonomic location

of intramuscular adipocytes, deposited between or within muscle bundles, the exact

roles of LKB1 in IMF deposition need further verified. Here, we cloned the goat LKB1

coding sequence with 1,317 bp, encoding a 438 amino acid peptide. LKB1 was

extensively expressed in detected tissues and displayed a trend from decline to rise

during intramuscular adipogenesis. Functionally, knockdown of LKB1 by two individual

siRNAs enhanced the intramuscular preadipocytes differentiation, accompanied by

promoting lipid accumulation and inducing adipogenic transcriptional factors and

triglyceride synthesis-related genes expression. Conversely, overexpression of LKB1

restrained these biological signatures. To further explore the mechanisms, the RNA-seq

technique was performed to compare the difference between siLKB1 and the control

group. There were 1,043 differential expression genes (DEGs) were screened, i.e., 425

upregulated genes and 618 downregulated genes in the siLKB1 group. The Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis predicted that the DEGs were

mainly enriched in the focal adhesion pathway and its classical downstream signal,

the PI3K-Akt signaling pathway. Specifically, knockdown of LKB1 increased the mRNA

level of focal adhesion kinase (FAK) and vice versa in LKB1-overexpressed cells, a key

component of the activated focal adhesion pathway. Convincingly, blocking this pathway

by a specific FAK inhibitor (PF573228) rescued the observed phenotypes in LKB1

knockdown adipocytes. In conclusion, LKB1 inhibited goat intramuscular adipogenesis

through the focal adhesion pathway. This work expanded the genetic regulator networks

of IMF deposition and provided theoretical support for improving human health and meat

quality from the aspect of IMF deposition.

Keywords: IMF, intramuscular adipocyte, adipogenesis, LKB1, focal adhesion pathway, FAK, RNA-seq, RNA

sequencing
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INTRODUCTION

Intramuscular fat (IMF) was regarded as the most intramuscular
adipocytes deposited between primary and secondary muscle
bundles of perimysium, and a small population was also founded
within muscle bundles (Li et al., 2020). The IMF accumulation
was mainly determined by the hyperplasia and hypertrophy of
intramuscular adipocytes, indicated by an increase in the number
and size of adipocytes, respectively (Haczeyni et al., 2018). For
farm animals, IMF was also referred to as marbling fat, which
was highly desirable for improving the tenderness and flavor of
meat quality (Hocquette et al., 2010; Hunt et al., 2016; Sun et al.,
2019), while increasing IMF content in humans was associated
with the occurrence of insulin resistance and adverse metabolic
phenotypes, such as type 2 diabetes (Lim, 2014). Therefore, there
are intensive efforts for elucidating the molecular mechanism
of IMF deposition to enhance meat quality or defend against
metabolic syndrome because of ectopic fat accumulation in
skeletal muscle.

Liver kinase B1 (LKB1) also known as serine/threonine kinase
11 (STK11) is a serine/ threonine kinase (Berthelsen et al.,
2021), which participates in the regulation of a variety of
cellular physiological and pathological processes (Shan et al.,
2016a,b; Xiong et al., 2017, 2018b) and phosphorylates 14
kinases of AMPK subfamily and regulates systemic glucose and
energy balance (Lizcano et al., 2004). In skeletal muscle, LKB1
ablation exhibited a severe myopathy characterized by centrally
nucleated myofibers, reduced mobility, growth retardation,
and premature death (Shan et al., 2014), which is essential
for the development and function of skeletal muscle (Shan
et al., 2017). In classical adipose tissue, LKB1 gene knockout
expanded the brown fat growth and increased mice energy
expenditure and insulin sensitivity, associated with elevation
of expression of thermogenesis-related genes (Shan et al.,
2016b). Specifically, MyoD-Cre-derived Lkb1 deletion of muscle
stem cells (satellite cells) and their descendent mature muscles
increased lipid accumulation in proliferating myoblasts and
myofibers (Shan et al., 2015). Intramuscular adipocyte was
located within perimysium or muscle bundles, whose hyperplasia
and hypertrophy were associated with reduced contractile
function, insulin resistance, and type 2 diabetes (Li et al.,
2020). Whether Lkb1 is involved in intramuscular adipocyte
differentiation and lipid accumulation remains largely unclear.
Additionally, the specific autonomic location and absence of
maker genes of intramuscular adipocyte limited researchers to
explore the molecular mechanism of its deposition in vivo.

Thus, the cultured intramuscular preadipocytes from the goat
were used as the adipogenesis model to reveal the function and
molecular mechanism of LKB1 regulation on IMF deposition.
Here, the goat LKB1 gene-coding sequence was first cloned
and further explored its function in intramuscular adipocytes
by knockdown and overexpression techniques. Moreover, the
RNA-seq was carried out to screen the differential transcripts
affected by Lkb1 loss of function. Next, we provided sufficient
evidence that LKB1 regulated adipogenesis of goat intramuscular
preadipocytes through the focal adhesion pathway. Conclusively,
these findings elucidated the specific molecular mechanism of

LKB1 regulating the differentiation of intramuscular adipocytes
and provided theoretical support for improving meat quality and
human health.

MATERIALS AND METHODS

Ethical Statement
All experimental procedures were reviewed and approved by
the Institutional Animal Care and Use Committee, Southwest
Minzu University (Chengdu). In addition, all the experiments
complied with the requirements of the directory of the Ethical
Treatment of Experimental Animals of China. The 7-day-old
and 1-year-old Jianzhou Daer goats were reared by standard
diet and housed in a comfortable environment. The goats were
purchased from Sichuan Jianyang Dageda Animal Husbandry
Co., Ltd. (Sichuan, China), and humanely slaughtered in the Key
Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource
Reservation and Utilization, Ministry of Education, Southwest
Minzu University, Chengdu, China. The experimental animal
certification number was SYXK-2019-216.

Isolation and Adipogenic Differentiation of
Primary Goat Intramuscular Preadipocytes
The isolation of primary goat intramuscular preadipocytes
was carried out as previously reported (Xiong et al.,
2018a; Huang et al., 2020). Briefly, longissimus dorsi was
collected from slaughtered 7-day-old Jianzhou Daer goat after
euthanatized by CO2. The samples were washed three times
in phosphate-buffered solution (PBS) supplemented with 1%
penicillin/streptomycin (P/S) and then were minced into a 1
mm3 cube. Enzymatic digestion dilution (DMEM/F12 with
2 mg/ml collagenase type II and 1% P/S) was used to isolate
intramuscular preadipocytes at 37◦C in the water bath for
1–1.5 h with gentle shaking and was terminated digestion
by the same volume of DMEM/F12 (Hyclone, Logan, UT,
USA) supplemented with 10% fetal bovine serum (FBS). The
suspension was filtered through a 75-µm nylon cell strainer to
remove connective tissues and undigested trunks of tissues. Cells
then were centrifuged at 2,000 r/min for 5min and re-suspended
by red blood cell lysed solution for 30min to lyse red blood cells.
Next, the suspension was centrifuged at 2,000 r/min for 5min
again and the pre-adipocytes were resuspended in a growth
medium (DMEM/F12 supplemented with 10% FBS and 1% P/S)
and diluted to a final concentration of 106 cells/ml. These cells
were cultured at 37◦C in a humidified atmosphere containing
5% CO2. It was previously reported that preadipocytes attached
much earlier than myoblasts, the cultured cells were rinsed with
PBS three times 1 h after plating to remove myoblasts, insoluble
myofibrillar proteins, and other insoluble debris (Zhao et al.,
2016; Sun et al., 2020). Cells were fed with fresh growth medium
every 2 days until they reached 80% confluence and digested
with 0.05% trypsin, then seeded at a density of 5 × 104 cells/cm
in a 6-well plate. The preadipocytes with 100% confluence were
induced by induction medium (IM), containing 10% FBS, 1%
P/S, and 50µM of oleic acid (Sigma) and change the IM every 2
days. The time point of cells with 100% confluence was defined
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as day 0, and cell samples were collected at day 2 and day
4 post-induction.

Adenovirus Generation and Infection
The adenovirus with goat LKB1 insertion was generated using
the AdMax system as reported (Zhu et al., 2018). Briefly, the
Coding Sequence (CDS) of LKB1 was cloned, inserted into
the pHBAd plasmid, and verified by enzyme digestion and
sequencing. The positive plasmid-containing goat LKB1 was
named pHBAd-LKB1. Then, HEK293A cells (50–60% confluent)
in 6 cm culture dishes were co-transfected 4 µg backbone
plasmid (pBHGlox(delta) E1, 3Cre) with 2 µg pHBAd-LKB1
or 2 µg pHBAd empty plasmid using Lipofectamine 3000 (Life
Technologies, Carlsbad, CA, USA) according to the protocol of
the manufacturer. After 2 weeks, the two strains of recombinant
adenovirus were collected by three freezes–thaw–vortex cycles,
named LKB1OE and NC, respectively. Two more round infected
HEK293A cells were adapted to amplify the recombinant virus,
and the titers were determined by the expression of red
fluorescence protein. Adenovirus purification by CsCl2 grade
ultra-centrifuge based on described procedure (Mueller et al.,
2012).

Chemical Synthesis of siRNA and
Transfection
Two individual siRNAs targeted for goat LKB1 were synthesized
these sequences by Thermo Fisher Scientific. siRNA-1 (5′-
CCAAGCUCAUCGGAAAGUACCUGAU-3′) and siRNA-2
(5′-GACAUUGAGGACGACGUCAUCUACA-3′). Negative
control (NC) was provided by Invitrogen (5′-UUCUCCGAA
CGUGUCACGsUTT-3′). siRNA transfection was performed
by Lipofectamine R© RNAIMAX Reagent (Invitrogen, Waltham,
MA, USA) at 70–80% preadipocytes confluence. Then, cells were
analyzed by qPCR and oil red O staining at day 2 and day 4 after
adipogenic induction.

Oil Red O Staining
The oil red O staining was carried out as previously described
(Xiong et al., 2018a). In brief, goat intramuscular adipocytes were
washed with PBS two times and fixed with 4% formaldehyde
for 15min at room temperature. Then the cells were incubated
using the oil red O working solution containing 6ml oil red O
stock solution (5 g/L in isopropanol) and 4ml ddH2O for 30min.
After staining, the cells were washed with 60% isopropanol in
PBS and pictured. Oil red O dye was extracted from stained
adipocytes with 100% isopropanol, and the oil red O signal
was quantified by measuring the optical density at 490 nm
(OD 490).

Bodipy Staining
The goat intramuscular adipocytes were removed from the
IM and incubated by 2µM of BODIPYTM493/503 (Thermo
Fisher Scientific, D3922) diluted in IM for 1 h. Then cells
were washed with PBS three times, added fresh IM, and
took pictures. Fluorescent images were captured using an
Olympus TH4-200 microscope (Tokyo, Japan) with the
10× objective (NA 0.70) for higher magnification views.

Images for control and treatment cells were captured using
identical parameters.

Total RNA Extraction and Quantitative
Real-Time PCR (qPCR)
Total RNA was extracted from various tissues and intramuscular
adipocytes using Trizol reagent (Takara) according to the
protocol of the manufacturer. RNA was treated with RNase-
free DNase I to remove genomic DNA. The purity and
concentration of total RNA were measured by Nanodrop 3000
(Thermo Fisher). Ratios of absorption (260/280 nm) of all
samples were between 1.8 and 2.0. Then 2 µg of total RNA
were reversed transcribed using random primers and Moloney
murine leukemia virus reverse transcriptase. qPCR was carried
out with a Bio-Rad CFX96 PCR System using SYBR Green
Master Mix (Takara) and gene-specific primers (Table S1). The
2−11CT method was used to analyze the relative changes of
gene expression normalized against peptidylprolyl isomerase A
(PPIA) as the internal control (Xiong et al., 2018a; Xu et al.,
2018).

Construction of RNA-Seq Library and
Sequencing
A total amount of 3 µg RNA per sample was used as input
material for the RNA sample preparations. First, ribosomal
RNA was removed by Epicentre Ribo-zeroTM rRNA Removal Kit
(Epicentre, USA), and the rRNA-free residue was cleaned up
by ethanol precipitation. Subsequently, sequencing libraries were
generated using the rRNA depleted RNA by NEBNext R© UltraTM

Directional RNA Library Prep Kit for Illumina R© (NEB, Ipswich,
MA, USA) following the recommendations of the manufacturer.
Briefly, fragmentation was carried out using divalent cations
under elevated temperature in NEBNext First Strand Synthesis
Reaction Buffer (5×). First-strand cDNA was synthesized using
random hexamer primer and M-MuLV Reverse Transcriptase
(RNaseH-). Second strand cDNA synthesis was subsequently
performed using DNA polymerase I and RNase H. In
the reaction buffer, deoxynucleotide triphosphatesd (dNTPs)
with deoxythymidine triphosphate (dTTP) were replaced by
deoxyuridine triphosphate (dUTP). The remaining overhangs
were converted into blunt ends via exonuclease/polymerase
activities. After adenylation of 3′ ends of DNA fragments,
NEBNext Adaptor with hairpin loop structure was ligated
to prepare for hybridization. To select cDNA fragments of
preferentially 150–200 bp in length, the library fragments were
purified with the AMPure XP system (Beckman Coulter, Beverly,
MA, USA). Then 3 µl USER Enzyme (NEB, Ipswich, MA,
USA) was used with size-selected, adaptor-ligated cDNA at 37◦C
for 15min followed by 5min at 95◦C before PCR. Then PCR
was performed with Phusion High-Fidelity DNA polymerase,
Universal PCR primers, and Index (X) Primer. At last, products
were purified (AMPure XP system) and library quality was
assessed on the Agilent Bioanalyzer 2100 system.

The clustering of the index-coded samples was performed
on a cBot Cluster Generation System using TruSeq PE Cluster
Kit v3-cBot-HS (Illumia) according to the instructions of
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the manufacturer. After cluster generation, the libraries were
sequenced on an Illumina Hiseq 4000 platform and 150 bp
paired-end reads were generated.

DEG and KEGG Analysis
Cuffdiff provides statistical routines for determining differential
expression in digital transcript or gene expression data using
a model based on the negative binomial distribution (Trapnell
et al., 2010). Transcripts with a P-adjust < 0.05 were assigned
as differentially expressed. KEGG is a database resource for
understanding high-level functions and utilities of the biological
system (Kanehisa et al., 2008). We used KOBAS software to test
the statistical enrichment of differential expression genes (DEGs)
in KEGG pathways (Mao et al., 2005).

MTT Assay
MTT (50mg) was dissolved in 10ml PBS (pH 7.2) to obtain a
concentration of 5 mg/ml. The induced intramuscular adipocytes
were seeded in 96-well plates with approximately 3,000 cells per
well. Different final concentrations (0, 5, 10, 50, and 100 nM) of
focal adhesion kinase (FAK) inhibitor (PF573228) were added
into wells, respectively. After 24 and 48 h treated by FAK
inhibitor, 10% MTT was added to wells to incubate for 4 h at
37◦C. Then, the sediment was dissolved in dimethylsulfoxide
(DMSO) and the absorbance was measured at 490 nm.

Statistical Analysis
All the data are presented as means ± SEM. Comparisons were
made by unpaired Student’s t-test using SPSS 17.0 software (SPSS
Science, Chicago, IL, USA). Effects were considered significant at
P < 0.05.

RESULTS

Cloning and Bioinformatics Analysis of
Goat LKB1 Gene
As the loss of validated sequence of goat LKB1 gene in the
NCBI database, its mRNA sequence was first cloned to further
elucidate its function in intramuscular adipogenesis. The data
showed that the full length of the LKB1 gene was 1,380 bp
and was cloned by PCR using cDNA of longissimus dorsi as a
template, including 1,317 bp complete open reading frame (ORF)
region sequence, encoding a 438 amino acid peptide, and 63
bp 3′ untranslated region (3′UTR) sequence (Figure 1A). Next,
the protein functional prediction showed that goat LKB1 protein
had a typical (serine/threonine kinases catalytic) S-TKC domain
(Figure 1B). Then, the amino acid sequence homology of LKB1
protein between goat and other animals was analyzed by NCBI
blast (Figure 1C). The results showed that goat LKB1 protein
was highly identical to Bos Taurus (98.68%). Furthermore, the
phylogenetic trees of LKB1 proteins, constructed by clustalx1.83
and mega5.0, showed that goat LKB1 protein had the closest
relationship with those of cattle and pig, and the farthest
relationship with that ofDanio rerio andDrosophila (Figure 1D).
These results suggest that the function of the LKB1 gene was
relative conservation among species.

The Expression Patterns of LKB1 Gene in
Goat Various Tissue and During
Intramuscular Adipogenesis
As shown in Figure 2A, the expression patterns of the LKB1 gene
in goat various tissues, such as the heart, liver, spleen, kidney,
large intestine, rumen, subcutaneous adipose tissue, abdominal
adipose tissue, longissimus dorsi muscle, biceps femoris muscle,
and triceps brachii muscle, were measured by qPCR. The data
showed that LKB1 mRNA was widely expressed in detected
tissues of goats, and the highest expression level was found in the
kidney, which was significantly higher than that in other tissues
(P < 0.01). During intramuscular adipogenesis, the mRNA level
of the LKB1 gene first displayed a declined trend, reaching the
lowest point at 24 h post-induction, and then gradually increased
in the late stage (Figure 2B). These results suggest that the LKB1
gene might be related to IMF deposition in goats.

Knockdown of LKB1 Promotes
Intramuscular Preadipocytes
Differentiation
To elucidate the role of LKB1 in regulating intramuscular
lipid accumulation in goats, two individual LKB1 siRNAs were
transfected into goat intramuscular preadipocytes to perform
loss of function. As shown in Figures 3A,D, these siRNAs
significantly decreased the mRNA levels of LKB1 at day 2 and
day 4 post-adipogenic induction, with knockdown efficiency of
∼ 50% and ∼ 60% to that of NC, respectively (P < 0.001). At
the morphology, bodipy staining showed that the LKB1 loss of
function increased the bodipy dye in intramuscular adipocytes
at day 2 adipogenic differentiation (Figure 3B). Consistently,
oil red O staining also showed that knockdown of LKB1
promoted lipid droplet accumulation (Figure 3B). Statistically,
LKB1 interference exhibited a dramatic increase in the signal of
oil red O, indicated by the OD value at 490 nm (Figure 3C, P <

0.01). On day 4 after adipogenic induction, knockdown of LKB1
also significantly increased both signals of bodipy and oil red O
in intramuscular adipocytes (Figures 3D–F). These data suggest
that loss of LKB1 function promotes lipid accumulation in goat
intramuscular adipocytes.

The lipid droplets accumulation of adipocytes is a complex
biological process, which is associated with preadipocyte initial
adipogenic differentiation statue, triglyceride (TG) synthesis,
and decomposition, summarized as adipocyte precursor
cells differentiated into mature adipocytes (Gulyaeva et al.,
2019). It was well known that adipogenesis is regulated by
the central cascade transcription factors (CCAAT enhancer-
binding proteins/peroxisome proliferator-activated receptor γ,
C/EBPs/PPARγ), TG biogenic-related genes (FASN, fatty acid
synthase; ACC, acetyl-CoAcarboxyla; DGAT2, diacylglycerol
acyltransferase), and TG lipolytic-related genes (HSL, hormone-
sensitive lipase; LPL, lipoprotein lipase; ATGL, adipose
triglyceride lipase) (Engin, 2017). The qPCR analysis was
carried out to determine the LKB1 loss of function effect on
intramuscular adipogenesis at the molecular level. The data
showed that siRNAs treatment significantly elevated the mRNA
level of PPARγ , CEBPα, and CEBPβ . Specifically, interference
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FIGURE 1 | The cloning of goat LKB1 gene and its alignment analysis among species. (A) The nucleotide sequence and the translated amino acid sequence of goat

LKB1 (* Represents the stop codon). (B) Prediction of the biological function of LKB1 amino acid sequence. (C) The amino acid sequence identity was analyzed by

NCBI blast for LKB1 protein between goat and other mammalian species retrieved from GenBank. Capra hircus (MW664927), Sus scrofa (XP_020939922.1),

Ailuropoda melanoleuca (XP_002923557.1), Felis catus (XP_003981653.1), Homo sapiens (NP_000446.1), Pan troglodytes (XP_024206909.1), Gallus gallus

(NP_001039298.1), Mus musculus (NP_035622.1), Bos taurus (XP_024850893.1), Danio rerio (NP_001017839.1), and Drosophila melanogaster (NP_001163606.1).

(D) LKB1 amino acid sequence phylogenetic tree was constructed by ClustalX 1.83 and MEGA7.0. LKB1, liver kinase B1.

of LKB1 respectively led to increasing by 5-fold and 4-fold
changes of CEBPβ in siRNA1 and siRNA2 transfected cells to
that of NC at day 2 post-adipogenic induction (Figure 4A).
Conversely, knockdown of LKB1 suppressed the mRNA level
of delta-like non-canonical Notch ligand 1 (DLK1 or PREF1),
a marker gene of preadipocytes (Figure 4A). Furthermore, the
mRNA level of FASN and DGAT2 was upregulated in siRNA1
treatment, while that of ACC was not significant between siRNAs
and NC (Figure 4A). In addition, inhibition of LKB1 by siRNAs
promoted the expression of lipolysis genes LPL, but not HSL
and ATGL (Figure 4A). Consistently, similar trends of the
aforementioned genes mRNA level were also observed at day
4 post-adipogenic induction, as shown in Figure 4B. Thus,
these data indicated that LKB1 loss of function promotes goat
intramuscular adipogenesis.

Overexpression of LKB1 Inhibits
Intramuscular Adipogenesis
Our results provide evidence that LKB1 knockdown promotes
intramuscular preadipocytes differentiation. Here, we generated

adenovirus overexpressing LKB1 and infected goat intramuscular
preadipocytes to further clarify the exact role of LKB1 by the gain
of function. The images showed that the highly infected efficiency
was observed in both control (NC) and LKB1 overexpression
(LKB1OE) groups (Figure 5A). The expression of LKB1 was
largely upregulated in LKB1OE cells, the elevation of ∼40-
fold changes expressional level to that of NC with detail
(Figure 5B). At the morphology, there were fewer lipid droplets
labeled by bodipy dye in the LKB1OE group than that of the
control, and a similar phenomenon was observed by oil red
O staining (Figure 5C). Statically, the OD value at 490 nm
showed that the oil red O signal in the overexpression group
was significantly lower than that in the control group (P <

0.05; Figure 5D). In principle, the occurrence of adipogenesis
depends on the efficiency of lipid accumulation of preadipocytes
differentiating into adipocytes and terminal differentiation,
which are regulated by adipogenic transcription factors and genes
related to triglyceride synthesis and decomposition (Gulyaeva
et al., 2019). Therefore, the mRNA levels of these genes were
detected by qPCR. The results showed that LKB1 overexpression
significantly downregulated the mRNA levels of adipogenic
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FIGURE 2 | The mRNA expression patterns of the LKB1 gene in goat tissues and during intramuscular adipocyte differentiation. (A) The LKB1 mRNA level in heart,

liver, spleen, kidney, large intestine, subcutaneous fat, between abdominal fat, longissimus dorsi, biceps muscle, rumen, and arm triceps, n = 6. Ribosomal protein

lateral stalk subunit P0 (RPLP0) as the internal reference gene. (B) The LKB1 mRNA level at day 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 h in induced

differentiation intramuscular adipocyte (n = 6), both UXT and PPIB are as reference genes. **P < 0.01, the LKB1 level of kidney compared to other tissues. Different

letters indicate the significant difference (P < 0.05), and the same lowercase indicates an insignificant difference (P > 0.05). LKB1, liver kinase B1.

transcription factors, including PPARγ (P< 0.01) and SREBP1(P
< 0.01). Moreover, LKB1 gain of function also significantly
reduced the mRNA levels of TG biogenesis-related genes (P
< 0.05), such as FASN, DGAT2, and a lipolysis gene, LPL
(Figure 5E). Altogether, it is concluded that LKB1 overexpression
inhibits lipid accumulation in intramuscular adipocytes.

LKB1 Loss of Function Affects the Mrna

Transcript Profiles in Goat Intramuscular
Adipocytes
To elucidate the underlying molecular mechanism of the LKB1
regulating intramuscular adipogenesis. The total RNAs from NC
and LKB1 knockdown intramuscular adipocytes were performed
RNA-seq analysis to identify their altered transcriptional profiles.
Differentially expressed genes (DEGs) were screened based
on the criteria of padj < 0.05 and fold change >2. Volcano
plots showed a broad overview of changes in gene expression
between NC and LKB1 knockdown groups (Figure 6A). Clearly,
a strong transcriptional response was observed in LKB1
knockdown intramuscular adipocytes, exhibiting 1,043 genes
with significantly altered expression levels, compared to those
of NC. Of the 1,043 genes, 425 genes were upregulated,
while 618 genes were downregulated (Figure 6A). Next, the
DEGs of each group were analyzed by hierarchical cluster
analysis in the form of a heat map to provide the visualization
of the whole effect of gene expression change (Figure 6B).
Subsequently, to further confirm the potential function of DEGs
in the intramuscular adipogenesis effect by LKB1 and KEGG
pathway analyses were performed. The top 20 of significant
difference signaling pathways are shown in Figure 6C, such

as arrhythmogenic right ventricular cardiomyopathy (ARVC),
focal adhesion pathway, PI3K-Akt signaling pathway, fatty acid
metabolism pathway, ErbB signaling pathway, regulation of actin
cytoskeleton, VEGF signaling pathway, FoxO signaling pathway,
and others (Figure 6C). Of them, PI3K-Akt signaling pathway
and focal adhesion had the top 2 enrichment, with 35- and
26-DEGs enriched in these pathways, respectively (Figure 6C),
suggesting that the two pathways may be associated with the IMF
deposition effect by LKB1. Furthermore, 12 genes were randomly
selected from DEGs for validation using qPCR analysis, and
all genes we examined showed the same expression trend as
observed by RNA-seq, with 10 of them reaching statistical
significance (Figure 6D), which confirmed the accuracy of the
sequencing data.

Elevation of Intramuscular Adipocyte Lipid
Accumulation Induced by LKB1 Partial
Depends on Focal Adhesion Pathway
Our RNA-seq data showed that the DEGs were enriched
in the focal adhesion pathway, and FAK is one of the
main components of the focal adhesion complex to activate
this pathway (Tapial Martinez et al., 2020). The expression
level of FAK was significantly upregulated in the siRNA
treatment by both RNA-seq and qPCR analysis, compared to
those of control (Figure 7A). Comparatively, overexpression of
LKB1 dramatically downregulated the expression level of FAK
(Figure 7B). Hypothetically, the promotion of intramuscular
adipogenesis mediated by LKB1 knockdown might be through
enhancement of focal adhesion pathway. Previous research
reported that PF-573228 was a specific inhibitor for FAK (Bai
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FIGURE 3 | Knockdown of LKB1 promotes goat intramuscular adipocyte lipid accumulation. (A,D) The knockdown efficiency of LKB1 at day 2 (A) and day 4 (D)

post-adipogenic induction (n = 6). (B,E) The bodipy and oil red O staining between control and siRNAs treatment intramuscular adipocyte cells. (C,F) The quantitative

analysis of lipid accumulation in the negative control (NC) and siRNAs transfected groups was indicated by the OD value of oil red O dye at 490 nm at day 2 (C) and

day 4 (F) after adipogenic induction (n = 6). **P < 0.01, ***P < 0.001, compared to that of NC. Scale bar: 100µm. LKB1, liver kinase B1.

et al., 2021), which was used to determine whether inhibition
of the FAK pathway rescues the effect of LKB1 knockdown in
goat intramuscular adipocytes. Thus, different concentrations (5,
10, 50, and 100 nM) were set for the rescue experiments, and
the data showed that these concentrations did not affect cell
viability (Figure S1). The images stained by oil red O showed
that siRNA combined with 5 nM FAK inhibitor treatment has
less oil red O labeled lipid droplets than that of only siRNA
transfected adipocytes (Figures 7C,D). Moreover, this reduction
extent became larger and larger at a concentration of 10, 50,
and 100 nM and exhibited the dose-dependent manner. In
accordance with the above phenotype, the FAK inhibitor rescued
all the mRNA levels of detected genes, including adipogenic
transcription factor (PPARγ and C/EBPβ , Figures 7E,F), TG
synthesis-related genes (FASN and ACC, Figures 7G,H), except
for LPL (Figure 7I). Taken together, these data indicated that
LKB1 loss of function induced enhancement of intramuscular
adipocyte lipid accumulation at least partially depends on the
focal adhesion pathway.

DISCUSSION

In this study, the goat LKB1 nucleotide sequence was cloned, and
expression patterns in various tissues and during intramuscular

adipogenesis were revealed. Functionally, we investigated the
exact role of LKB1 regulation on goat IMF deposition in vitro
by loss of and gain of function. Mechanistically, the altered
transcript profiles affected by LKB1 knockdownwere constructed
by RNA-seq and found that knockdown of LKB1 enhanced
the goat IMF deposition through the focal adhesion pathway.
Overall, this work elucidates the specific molecular mechanism of
LKB1 regulating the differentiation of intramuscular adipocytes
and provides theoretical support for improving human health
and meat quality from the aspect of IMF deposition.

The goat LKB1 gene was cloned, and its tissue expression
characteristics were elucidated. It was found that the LKB1 gene
was widely expressed in goat various tissues, and the highest
expression level was measured in the kidney. Two pieces of
evidence might account for this phenomenon. First, the kidney
as one of the important and high-energy demanding organs
of the body ensures normal metabolism of the organism by
removing the poisons and wastes in the body (Han et al., 2016),
and LKB1/AMPK pathway was regarded as the metabolic sensor
in energy metabolism (Jansen et al., 2009; Han et al., 2016).
Second, previous studies reported that epithelial-specific Lkb1
deletion exhibited progressive kidney disease characterized by
flattened dedifferentiated tubule epithelial cells, interstitial matrix
accumulation, and dilated cystic-appearing tubules (Han et al.,
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FIGURE 4 | Knockdown of LKB1 promotes adipogenic and lipid accumulation-related genes. (A,B) The mRNA level of adipogenic transcription factors (PPARγ ,

C/EBPα, C/EBPβ, and PREF1), TG synthesis genes (FASN, ACC, and DGAT2), and TG lipolysis genes (HSL, LPL, and ATGL) between control and siRNAs groups at

day 2 (A) and day 4 (B) post-adipogenic induction. *P < 0.05, **P < 0.01, ***P < 0.001, compared to that of control. FASN, fatty acid synthase; ACC, acetyl-CoA

carboxylase alpha; DGAT2, diacylglycerol acyltransferase, HSL, hormone-sensitive lipase; LPL, lipoprotein lipase; ATGL, adipose triglyceride lipase.

2016) and indicated that Lkb1 is essential for maintaining the
normal physiological function of the kidney. Thus, the highest
mRNA level in the kidney was observed among detected tissues.

In this work, we provided pieces of strong evidence that
supported this conclusion LKB1 as a negative regulator for goat
intramuscular preadipocytes adipogenesis. Knockdown of LKB1
promoted goat intramuscular preadipocytes differentiation,
manifested by elevation of bodipy and oil red O signal, enhanced
the expression levels of adipogenic transcriptional factors and
TG synthesis-related genes. Moreover, overexpression of LKB1
reduced the lipid accumulation and decreased adipogenic and
lipid droplets biogenic-related genes. It was known that fat
deposition was mainly determined by the hyperplasia and
hypertrophy of intramuscular adipocytes, the latter is associated
with TG biogenesis and its lipolysis (Haczeyni et al., 2018).
However, it seems contradictory observation is that promotion
of lipid accumulation in LKB1 is also accompanied with
upregulation of mRNA level of LPL, a key lipolytic gene, while
this gene is downregulated by a gain of LKB1 function. The
adipocyte lipid accumulation is a gross effect of the imbalance of
TG synthesis and lipolysis (Ducharme and Bickel, 2008; Saponaro
et al., 2015). Thus, this might be explained by the role of TG
synthesis is greater than that of lipolysis influenced by LKB1

knockdown and the total response is exhibiting promotion of
lipid accumulation in this case.

The genome-wide altered transcriptional profiles were
constructed by RNA-seq, and 1,043 DEGs were screened
in loss of LKB1 intramuscular adipocytes, to uncover the
underlying specific molecular mechanism. Interestingly, the
PI3K-Akt signaling pathway and the focal adhesion pathway
were analyzed as the top two enrichment functional pathways
by the KEGG analysis of DEGs. Previous extensive research
reported that PI3K/Akt is the classic downstream molecules
of FAK signaling (Gao et al., 2018; Zhang et al., 2019b;
Wang et al., 2020) and we, therefore, focused on the Focal
adhesion pathway as the direct candidate downstream of LKB1.
Consistently, knockdown of LKB1 upregulated expression
level of FAK, while overexpression of LKB1 downregulated
its level. Similarly, it was reported that LKB1 deficiency
promotes proliferation and invasion of glioblastoma through
activation of focal adhesion kinase signaling pathways (Zhang
et al., 2019a). In addition, Kline et al. concluded that LKB1
serves as a FAK repressor to stabilize focal adhesion sites by
protein-protein interaction in tumor cells, and when LKB1
function is compromised, aberrant FAK signaling ensues,
resulting in rapid FAK site maturation and poor directional
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FIGURE 5 | Overexpression of LKB1 inhibits intramuscular adipocyte lipid accumulation and downregulates mRNA level of adipogenic-related genes. (A) The images

of intramuscular preadipocytes infected by control or overexpressed LKB1 adenovirus. (B) The overexpression efficiency of LKB1 in intramuscular adipocyte mediated

by adenovirus. (C) The images of mature intramuscular adipocytes stained by bodipy and oil red O dye. (D) Quantitative analysis of oil red O staining signal was

indicated by absorbance at 490 nm. (E) The mRNA level of adipogenic transcription factors (PPARγ , C/EBPα, C/EBPβ, and PREF1), TG synthesis genes (FASN,

ACC, and DGAT2), and TG lipolysis genes (HSL, LPL, and ATGL) between control and LKB1OE groups post-adipogenic induction. *P < 0.05, **P < 0.01, ***P <

0.001. Scale bar: 100µm. LKB1, liver kinase B1; FASN, fatty acid synthase; ACC, acetyl-CoA carboxylase alpha; DGAT2, diacylglycerol acyltransferase, HSL,

hormone-sensitive lipase; LPL, lipoprotein lipase; ATGL, adipose triglyceride lipase.

persistence (Kline et al., 2013). In intramuscular adipocyte,
whether LKB1 direct associates in a complex with FAK or
regulated FAK mRNA level through indirect molecules need be
further explored.

In intramuscular adipocytes, interference of LKB1 activated
the focal adhesion pathway and subsequently led to enhancing
the intramuscular adipogenic differentiation. Intriguingly, FAK
inhibitor treatment of the siRNA groups rescued the phenotype
caused by the decrease of LKB1 expression in themanner of dose-
dependent, manifested by debasement of oil red O signal and
adipogenic-related genes expression. Thus, we concluded that
loss of LKB1 function induced enhancement of intramuscular

adipogenic differentiation at least partially depends on the
focal adhesion pathway. Supporting our interpretation, previous
studies found that FAK signaling is essential in adipocyte
differentiation (Li and Xie, 2007; Yuan et al., 2018). In detail,
preadipocytes differentiated into the physiological function of
adipocytes are characterized by major cell morphology from
fibroblastic to a rounded shape, which is closely associated
with alterations in cytoskeleton and cell–ECM contacts (O’Shea
Alvarez, 1991). FAK signaling pathway was proved to playing
an important role in the both above biological processes
(Nagamatsu et al., 2017; Zhao et al., 2018; Tapial Martinez
et al., 2020). Thus, we speculated that LKB1 regulated the
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FIGURE 6 | Knockdown of LKB1 affects the mRNA transcript profiles. (A) RNA-seq volcano plot of significantly differential expression genes (DEGs) in siLKB1 (n = 3)

vs. NC (n = 3) goat intramuscular adipocytes. Red and blue dots denote upregulated and downregulated genes, respectively. P < 0.05 is indicated by the gray

dashed horizontal lines. (B) The heat map showing the relative levels (fold changes = siLKB1 signal/NC signal) of DEGs. (C) The KEGG pathway analysis of related

DEGs. (D–O) Verification of representative DEGs by qPCR (n = 3), including 3-hydroxyacyl-CoA dehydratase 4 (HACD4), STE20-related adaptor beta (STRAD),

upregulated during skeletal muscle growth protein 5 (USMG5), Zinc finger and BTB domain containing 38 (ZBTB38), protein kinase N2 (PKN2),

phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), integrin subunit beta 3 (ITGB3), integrin subunit alpha 7 (ITGA7), acyl-CoA synthetase long-chain family

member 1 (ACSL1), stearoyl-CoA Desaturase 1 (SCD1), acyl-CoA synthetase short-chain family member 3 (ACSS3), fatty acid-binding protein 3 (FABP3). *P < 0.05,

**P < 0.01, ***P < 0.001. LKB1, liver kinase B1; NC, negative control.
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FIGURE 7 | Knockdown of LKB1 promotes intramuscular adipocyte lipid accumulation through FAK pathway. (A,B) The mRNA level of FAK gene in siRNA treatment

(A) and LKB1 overexpressed (B) cells by qPCR analysis. (C) The oil red O staining images of intramuscular adipocyte cells in NC, siLKB1, and siLKB1 combined with

different concentrations of FAK inhibitor (PF573228) treatment groups. (D–I) The mRNA level of LKB1 (D), PPAR γ (E), C/EBPβ (F), FASN (G), ACC (H), LPL (I) cells

in NC, siLKB1, and siLKB1 combined with different concentrations of FAK inhibitor (PF573228) treatment intramuscular adipocyte cells. N = 6. *P < 0.05, **P < 0.01,

compared to those of NC group; #P < 0.05, ## P < 0.01, ### P < 0.001, compared to those of siLKB1 group. LKB1, liver kinase B1; FAK, focal adhesion kinase;

NC, negative control. FASN, fatty acid synthase; ACC, acetyl-CoA carboxylase alpha; LPL, lipoprotein lipase.

focal adhesion pathway and subsequently at least partially affect
preadipocyte differentiation through altering the morphology
of cells.

In conclusion, our studies validate LKB1 as the key negative
factor for goat intramuscular preadipocytes differentiation and
reveal LKB1 regulation on intramuscular adipogenesis through
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the focal adhesion pathway. These findings contribute to expand
themolecular regulation network on IMF deposition and provide
theoretical support for improving human health andmeat quality
from this aspect.
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United States, 6 Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States

Background: Mitochondrial health is an important predictor of several health-related
comorbidities including obesity, type 2 diabetes mellitus, and cardiovascular disease.
In persons with spinal cord injury (SCI), mitochondrial health has been linked to several
important body composition and metabolic parameters. However, the complex interplay
of how mitochondrial health is affected has yet to be determined in this population.

Objective: In this study, we examined the contribution of visceral adiposity,
inflammatory biomarkers, testosterone and circulating serum growth factors as
predictors of mitochondrial health in persons with chronic SCI.

Participants: Thirty-three individuals with chronic SCI (n = 27 Males, n = 6 Females,
age: 40 ± 13.26 years, level of injury: C4-L1, BMI: 23 ± 5.57) participated in this cross-
sectional study.

Methods: Visceral adipose tissue (VAT) was measured via magnetic resonance
imaging (MRI). After an overnight fast, serum testosterone, inflammatory biomarkers
[interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), c-reactive protein (CRP)],
and anabolic growth factors [insulin-like growth factor 1 (IGF-1), insulin-like growth
factor binding protein 3 (IGFBP-3)] were measured. Skeletal muscle biopsies were
obtained from the vastus lateralis muscle to measure citrate synthase (CS) and Complex
III activity. Regression analyses were used to examine predictors of mitochondrial
mass and activity.

Results: CS activity was negatively associated with VAT (r2 = 0.360, p < 0.001),
CRP (r2 = 0.168, p = 0.047), and positively associated with testosterone (r2 = 0.145,
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p = 0.042). Complex III activity was negatively associated with VAT relative to total lean
mass (VAT:TLM) (r2 = 0.169, p = 0.033), trended for CRP (r2 = 0.142, p = 0.069),
and positively associated with testosterone (r2 = 0.224, p = 0.010). Multiple regression
showed CS activity was significantly associated with VAT + CRP (r2 = 0.412, p = 0.008)
and VAT + Testosterone (r2 = 0.433, p = 0.001). Complex III activity was significantly
associated with VAT relative to total trunk cross-sectional area (CSA) + CRP (VAT:total
trunk CSA + CRP; r2 = 0.286, p = 0.048) and VAT + Testosterone (r2 = 0.277,
p = 0.024).

Conclusion: Increased visceral adiposity and associated inflammatory signaling (CRP)
along with reduced testosterone levels predict mitochondrial dysfunction following SCI.
Specifically, lower VATCSA and higher testosterone levels or lower VATCSA and lower CRP
levels positively predict mitochondrial mass and enzyme activity in persons with chronic
SCI. Future research should investigate the efficacy of diet, exercise, and potentially
testosterone replacement therapy on enhancing mitochondrial health in chronic SCI.

Clinical Trial Registration: [www.ClinicalTrials.gov], identifier: [NCT02660073].

Keywords: spinal cord injury, visceral adipose tissue, mitochondria, inflammation, growth factors, testosterone

INTRODUCTION

Cardiometabolic disorders are a leading cause of mortality
among persons with spinal cord injury (SCI) (Schladen and
Groah, 2014). Recent guidelines have emerged to highlight the
magnitude of the problem and provide assessment tools for
researchers and clinicians to distinguish those at risk (Nash
and Gater, 2020). Cardiometabolic syndrome presents as a
cluster of disorders, including impaired glucose tolerance, insulin
resistance, dyslipidemia, central obesity, and elevated blood
pressure (Després and Lamarche, 1993; Després et al., 2001;
Grundy et al., 2004). Cardiometabolic syndrome impacts more
than 50% of persons with SCI (LaVela et al., 2006; Dopier Nelson
et al., 2007). Today, the root of the problem remains unresolved
and likely to continue without appropriate intervention.

Recent emerging cross-sectional studies have clearly
associated central obesity with cardiometabolic disorder
after SCI. Earlier studies indicated the link between waist
circumference and cardiometabolic diseases in persons with
SCI (Buchholz and Bugaresti, 2005; Gill et al., 2020). It appears
that waist circumference reflects increased visceral adiposity.
Gorgey and Gater (2011) were among the first to show that
with increasing visceral adipose tissue (VAT), persons with
SCI may suffer from impaired glucose intolerance, insulin
resistance, and dyslipidemia. Another study showed that people
with SCI had 58% greater VAT than waist circumference
matched controls (Edwards et al., 2008). Using a simple linear
regression model, Sumrell et al. (2018) showed that a waist
circumference greater than 86.5 cm is equivalent to VAT equal

Abbreviations: SCI, spinal cord injury; LOI, level of injury; MRI, magnetic
resonance imaging; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue;
VAT:SAT, ratio of VAT to SAT; LM, Lean mass; TLM, total lean mass; IL-6,
interleukin-6; IGF-1, insulin-like growth factor 1; IGFBP-3, insulin-like growth
factor binding protein 3; CRP, c-reactive protein; CS, citrate synthase; TNF-α,
tumor necrosis factor alpha.

to or greater than 100 cm2. The same work demonstrated
that VAT > 100 cm2 was associated with decreased insulin
sensitivity, increased inflammatory biomarkers, and reduced
oxygen uptake. In a follow-up trial, the same research group
showed that a waist circumference of 86.5 cm distinguishes those
at risk of developing cardiometabolic disorders in persons with
SCI (Gill et al., 2020). A recent review summarized potential
mechanisms for increasing VAT to contribute to the prevalence
of cardiometabolic diseases after SCI (Goldsmith et al., 2021).

Previous work has alluded to several potential mechanisms
that likely trigger VAT-associated cardiometabolic disorders
(Seidell et al., 1990; Nicklas et al., 2003; Fox et al., 2007;
Katzmarzyk et al., 2013; Lee et al., 2018; Gorgey et al., 2021).
Although most studies have not demonstrated causality,
these studies established potential mechanisms that warrant
further investigation. Farkas et al. (2018) and Farkas and
Gater (2018) noted that with increasing VAT, there is a
potential increase in inflammatory biomarkers, mainly tumor
necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6).
Abilmona et al. (2019) noted that, in persons with SCI,
hypogonadal individuals (<300 ng/dL) are likely to have
greater VAT than persons with normal testosterone levels.
Finally, O’Brien et al. (2017b) described an association
between increasing VAT and mitochondrial dysfunction in
persons with SCI.

Mitochondrial health is an important predictor of several
health-related comorbidities, including obesity, type 2 diabetes
mellitus and cardiovascular disease (Poznyak et al., 2020).
Mitochondrial function is linked to several important body
composition and metabolic parameters in persons with SCI.
Specifically, mitochondrial mass (citrate synthase activity) and
Complex III activity have been negatively associated with
increased body fat and reduced cardiometabolic health (O’Brien
et al., 2017a,b, 2018). Based on the above evidence, it appears
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that VAT exerts deleterious cardiometabolic effects in persons
with SCI, by increasing systemic inflammation and diminishing
testosterone levels that lead to mitochondrial dysfunction. This
cross-sectional study aimed to examine the contribution of
visceral adiposity, inflammatory biomarkers, testosterone, and
circulating serum growth factors as predictors of mitochondrial
health in persons with chronic SCI.

MATERIALS AND METHODS

Participants
Thirty-three individuals with chronic SCI (age: 40 ± 13.26 years,
level of injury: C5-L1, BMI: 23 ± 5.57) participated in this cross-
sectional study (registered at clinicaltrials.gov: NCT02660073).
Only cross-sectional baseline data are presented in this
manuscript. All procedures were in accordance with the
ethical standards of the Helsinki Declaration of 1,964 and its
later amendments. The McGuire Veteran Affairs Investigation
Research Board and the Virginia Commonwealth University
(VCU) Office of Research and Innovation approved the
current study. A neurological examination was performed
per the International Standards for Neurological Classification
of SCI (ISNCSCI) to determine the American Spinal Injury
Association (ASIA) Impairment Scale (AIS) for each participant.
Participants provided written, informed consent before the
study commenced. Participants with the following pre-existing
medical conditions were excluded: active urinary tract infection,
those using insulin, hematocrit > 50%, stage 3 pressure sore
or above, uncontrolled hypertension, cardiovascular disease or
uncontrolled type 2 diabetes mellitus, and individuals with neck
of femur or total body osteoporosis (T-score≤−2.5 according to
the World health organization guidelines) (Reginster and Burlet,
2006; Gorgey et al., 2019a). All participants were instructed
to abstain from exercise, alcohol, and caffeine consumption
24 h before the examination. Participants underwent a general
physical examination to rule out any preexisting cardiac
problems that included measuring vital signs and a resting 12-
lead electrocardiogram. After a 10–12 h fast, a cannula was
inserted into an antecubital vein of one arm for blood sampling.
Fasting whole-blood samples were drawn into serum separator
and potassium oxalate/sodium fluoride tubes and centrifuged to
collect serum and plasma samples, respectively. The majority of
blood samples were sent to the Chemistry Pathology Laboratory
for analysis; however, a subset was sent to a research lab at
VCU for further analysis using the same protocol and assay kits.
Inflammatory biomarkers (Tumor necrosis factor-alpha; TNF-
α, Interleukin-6; IL-6, and c-reactive protein; CRP) were also
analyzed in serum samples by enzyme-linked immunosorbent
assays (ELISA) (ALPACO; Salem, NH). Total serum testosterone
was measured by liquid chromatography with isotope dilution
mass spectrometry detection after supported liquid extraction
(Esoterix, Inc.). Testosterone levels in each sample were
calculated from a linear plot generated by purified testosterone
standards ranging from 2.5 to 5,000 ng/dL. Serum insulin-
like growth factor-1 (IGF-I) and insulin-like growth factor-
binding protein 3 (IGFBP-3) concentrations were measured with

immunoassays (Quantikine R&D Systems, Inc., Minneapolis,
MN, United States).

Magnetic Resonance Imaging
Abdominal MRI scans were imaged using a 1.5- or 3 Tesla magnet
(General Electric, Waukesha, WI) whole-body scanner, using
a fast spin-echo sequence described previously (Gorgey et al.,
2019b). Transverse images (slice thickness of 0.8 cm, inter-slice
space of 1.2 cm) were captured from the xiphoid process to
the femoral heads. Depending on the individual’s torso length,
approximately 20 ± 30 images were obtained. Participants were
asked to remain as still as possible during the entirety of the
scan. In addition, participants were instructed to hold their
breath for approximately 20 s to prevent respiratory artifacts
from altering image quality. Images were sequenced anatomically
using Image-J software (National Institute of Health, Bethesda,
Maryland) and analyzed using Win Vessel software (Win Vessel
2.0, Ronald Meyer, Michigan State University, East Lansing, MI,
United States). Each image was automatically segmented into fat
and muscle, with bone and background tissue identified based
on its signal intensity. Abdominal adipose tissue was separated
into subcutaneous adipose tissue (SAT) and VAT depots. An
experienced technician manually identified regions of interest
guided by anatomical landmarks. The cross-sectional areas (CSA)
of these different compartments were used to derive the VAT:SAT
ratio to control for regional adiposity. The total area within the
outer border of the trunk represented the total trunk CSA, which
was used to normalize VATCSA to Total trunk CSA (VAT:total
trunk CSA ratio) (Abilmona and Gorgey, 2018). All values were
averaged across images to reflect the whole torso.

Dual-Energy X-Ray Absorptiometry
Total body and regional DXA scans were performed using a
GE Lunar iDXA (Lunar Inc., Madison, WI, United States) bone
densitometer at the Hunter Holmes VA Medical Center. All
scans were performed and analyzed using Lunar software version
10.5. After scanning, total and regional % fat mass and fat-free
mass were determined using DXA software. The longitudinal
precision of total and regional body composition using DXA
has been determined in persons with SCI (Lester et al., 2019).
As previously described, VAT mass was made relative to SAT
mass to account for differences in SAT mass between individuals.
Additionally, VAT was made relative to total lean mass (TLM)
and trunk CSA to account for differences between individuals,
as previous research has demonstrated a relationship between
VAT mass, total trunk mass, and LM (O’Brien et al., 2017b;
Abilmona et al., 2019).

Enzyme Activities
Muscle biopsies from the vastus lateralis of the right leg
were collected using a 14-gauge Tru CutTM needle under
local anesthesia (2% lidocaine). Samples were snap-frozen in
liquid nitrogen and stored at −70◦C. Connective and adipose
tissue was removed from a portion of the sample (∼10–
25 mg), then homogenized in ice-cold buffer containing 220 mM
mannitol, 70 mM sucrose, 5 mM MOPS, 2 mM EDTA, with
cOmpleteTM protease inhibitor cocktail, pH 7.4 (Sigma-Aldrich).
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The homogenate was centrifuged at 2,000 rpm (371 g) for
5 min at 4◦C and the supernatant was used for analysis. Protein
concentration was quantified, and samples were solubilized in 1%
potassium cholate. Homogenization and assays were completed
on the same day. CS and Complex III activity were measured
spectrophotometrically in duplicate or triplicate as previously
described (Brass et al., 2001; O’Brien et al., 2017a). CS activity,
a measure of mitochondrial mass, was measured as the formation
of thionitrobenzoate at 412 nm after the addition of 5, 5-
dithiobis-(2, 4-nitrobenzoic acid), acetyl-CoA, and oxaloacetate
(n = 32). Complex III activity was reflected by the rate of
cytochrome c reduction in absorbance at 550 nm (n = 32) (Brass
et al., 2001; Spinazzi et al., 2012). Antimycin A was used to inhibit
Complex III. The activity of Complex III was expressed as the
antimycin A-sensitive rate. Absorbance was measured before and
after the addition of oxaloacetate, and background absorbance
was subtracted from the final reading. Data were converted from
arbitrary units per minute to nmol/min by using the extinction
coefficients of 13.6 mM−1 cm−1 for CS and 19.1 mM−1 cm−1

for Complex III. Data were normalized to mg of protein added.

Statistical Analysis
All data were analyzed for normality of distribution. Data that
were not normally distributed were log-transformed to permit the
use of parametric statistics. Single and multiple linear regression
models were used to examine the relationships between
measures of mitochondrial mass (citrate synthase activity) and
activity (Complex III), visceral adiposity, serum inflammatory
biomarkers, anabolic growth factors, and testosterone. We used
a maximum of two predictors in each regression to avoid
multicollinearity issues due to the relatively low sample size.
Instead of adding variables including time since injury (TSI),
level of injury (LOI), and age as predictors in these models,
we controlled these variables using weighted least squares
regressions. We continued with multiple regression models only
if a predictor was independently significant with either CS
or Complex III activity. Statistical analyses were performed
using SPSS (SPSS Statistics version 24, IBM Corp., Armonk,
United States). Statistical significance was accepted at a priori of
α ≤ 0.05.

RESULTS

Participant Characteristics
Participant demographics and injury characteristics are presented
in Table 1. Twenty-two were paraplegic (T1-L1) and 11
were tetraplegic (C4-C8). Participants ranged in age from
20 to 61 and BMI ranged from 14.2 to 35.3 kg/m2. Age,
height, weight, BMI, and TSI were not significantly different
between tetraplegics and paraplegics or Caucasians and African
Americans. Inflammatory biomarkers, anabolic growth factors,
serum testosterone levels, mitochondrial enzyme activity, and
MRI outcomes are presented in Table 2. Values were not
significantly different between paraplegics and tetraplegics or
Caucasians and African Americans. Central adiposity was
apparent in 21 and 32% of the participants using cutoffs of≥ 100

TABLE 1 | Baseline demographics and spinal cord injury characteristics for
33 participants.

Ethnicity Caucasian: n = 18

African American: n = 15

Sex Male: n = 27
Female: n = 6

Age (year) 40 ± 13.00

Weight (kg) 70 ± 15.18

Height (cm) 175 ± 8.99

BMI (kg/m2) 23 ± 5.25

Level of injury (range) C5–L1

Time since injury (yr) 11 ± 10.59

AIS (score) A: n = 19

B: n = 9

C: n = 5

SCI classification Paraplegia: n = 22

Tetraplegia: n = 11

BMI, body mass index; AIS, American Spinal Injury Association Impairment Scale;
AIS-A, complete motor and sensory loss below the level of injury; AIS-B, complete
motor loss and incomplete sensory loss below the level of injury; AIS-C, incomplete
motor and sensory loss with less than half of the muscles tested below the LOI
graded ≥ 3. Mean ± SD unless otherwise noted.

TABLE 2 | Citrate synthase activity, inflammatory biomarkers, anabolic growth
factors, and serum testosterone levels.

Anabolic growth factors Mean ± SD Range Sample
size

IGF-1 (ng/mL) 143.99 ± 58.73 72.90–267.85 25

IGFBP-3 (ng/mL) 1851.40 ± 368.57 1320.50–2598.55 25

MRI and DXA measures

Total trunkCSA (cm2) 571.44 ± 174.17 323.16–940.64 28

SATCSA (cm2) 136.43 ± 100.30 22.97–369.89 28

VATCSA (cm2) 71.73 ± 64.97 4.06–220.01 28

VAT:SAT ratio 0.64 ± 0.47 0.10–2.22 28

VAT:total trunk CSA 0.11 ± 0.08 0.01–0.30 28

VAT:TLM 0.0015 ± 0.0013 0.0001–0.0043 28

VAT:Leg LM 0.0054 ± 0.0049 0.0004–0.02 28

TLM (kg) 448.48 ± 77.57 288.83–616.34 32

Leg LM (kg) 131.69 ± 28.58 64.55–188.77 32

Inflammatory biomarkers

CRP (ng/mL) 14580.81 ± 19705.45 185.0–73530.25 25

IL-6 (pg/mL) 3.18 ± 2.49 0.68–9.27 22

TNF-α (pg/mL) 22.50 ± 3.96 15.24–30.63 25

Serum testosterone levels

Testosterone (ng/dL) 346.72 ± 223.71 8.30–751.00 30

Enzyme activity

CS (nmol/mg/min) 101.22 ± 59.83 24.00–303.00 32

Complex III (nmol/mg/min) 190.00 ± 125.51 47.10–679.00 32

MRI, magnetic resonance imaging; DXA, Dual energy x-ray absorptiometry; SAT,
subcutaneous adipose tissue; VAT, visceral adipose tissue; ng/dL, IGF-1, insulin-
like growth factor 1; IGFBP-3, insulin-like growth factor binding protein 3; CRP,
c-reactive protein; IL-6, interleukin 6; CS, citrate synthase; TNF-α, tumor necrosis
factor alpha; nanograms per deciliter; CSA, cross sectional area; Kg, kilograms.
Mean ± SD unless otherwise noted.

cm2 MRI VATCSA, and ≥ 0.66 VAT:SAT ratio, respectively
(Gorgey et al., 2011, 2014). Importantly, a fraction of the samples
(eight samples used for IL-6, TNF-α, IGF-1, and IGFBP-3) sent to
VCU for further analysis experienced degradation that resulted
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in erroneous values. Therefore, we excluded these samples from
analyses, which resulted in an uneven sample size depending
on the marker be analyzed (Table 2). Figure 1 shows the
hypothesized factors predicting mitochondrial health following
SCI. This hypothesized model shows that, after SCI, visceral
adiposity increases and releases inflammatory cytokines that
negatively affect testosterone levels and mitochondrial health.
While it is clear that visceral adiposity, inflammation, and
testosterone are involved in this deleterious process, there are still
factors that remain unidentified.

Independent Predictors of Citrate
Synthase Activity
Figure 2 shows the significant relationships predicting Citrate
Synthase (CS) activity. CS activity was negatively associated with
VAT (r2 = 0.360, p< 0.001), CRP (r2 = 0.168, p = 0.047), VAT:total
trunk CSA (r2 = 0.372, p < 0.001), and VAT:TLM (r2 = 0.434,
p< 0.001), and positively associated with testosterone (r2 = 0.145,
p = 0.042) (Table 3). CS activity was not independently associated
with VAT:SAT, IL-6, TNF-α, IGF-1, or IGFBP-3 (data not shown).
The relationships between CS activity and VAT, VAT:total trunk
CSA, and VAT:TLM remained significant when controlling for
TSI, age, and LOI (Table 4). However, testosterone (r2 = 0.087,
p = 0.119) and CRP (r2 = 0.081, p = 0.176) were no longer
significant when controlling for TSI. When controlling for age or
LOI (paraplegic vs. tetraplegic), CRP (r2 = 0.249, p = 0.013) and
testosterone (r2 = 0.170, p = 0.026) were negatively and positively
significant, respectively. Moreover, IL-6 showed a significant
negative association with CS activity when controlling for age
(r2 = 0.237, p = 0.019). IL-6 was only a significant predictor of
CS activity in participants over 40 (r2 = 0.466, p = 0.014) but not
participants under 40 (r2 = 0.068, p = 0.437).

Multiple Regressions to Predict Citrate
Synthase Activity
CS activity was significantly associated with VAT + CRP
(r2 = 0.412, p = 0.008) and VAT + testosterone (r2 = 0.433,
p = 0.001). Within this model, individuals with lower VATCSA

FIGURE 1 | Hypothesized diagram of factors predicting mitochondrial health
following spinal cord injury (SCI). After SCI, visceral adiposity increases and
releases inflammatory cytokines that negatively affect testosterone levels and
mitochondrial health. Visceral adiposity, inflammation, and testosterone are
involved in this deleterious process; however, there are still factors that remain
unidentified. CRP, c-reactive protein; VAT, visceral adipose tissue.

and lower CRP levels had higher CS activity. Furthermore,
individuals with lower VATCSA and higher testosterone levels had
higher CS activity. These relationships remained significant when
VAT was made relative to total trunk CSA (CRP: r2 = 0.454,
p = 0.004, testosterone: r2 = 0.467, p < 0.001), and TLM (CRP:
r2 = 0.444, p = 0.005; testosterone: r2 = 0.473, p < 0.001)
(Table 3). These relationships also remained significant when
controlling for age [VAT + CRP (r2 = 0.365, p = 0.017),
VAT + testosterone (r2 = 0.382, p = 0.004)]. As previously
stated, IL-6 became significantly negatively associated with CS
activity when controlling for age, and VAT + IL-6 (r2 = 0.412,
p = 0.011) was also significantly negatively associated when
controlling for age. Specifically, VAT + IL-6 was a significant
predictor of CS activity in participants over 40 (r2 = 0.511,
p = 0.041) but not in individuals under 40 (r2 = 0.293, p = 0.353).
Multiple regressions (VAT + CRP, VAT:total trunk CSA + CRP,
VAT:TLM + CRP, VAT:total trunk CSA + testosterone, and
VAT:TLM+ testosterone), remained significant when controlling
for TSI, while VAT + testosterone trended toward significance
(p = 0.053) (Table 4). When controlling for LOI, VAT + CRP
(r2 = 0.503, p = 0.002), VAT + testosterone (r2 = 0.508,
p < 0.001), VAT:total trunk CSA + CRP (r2 = 0.537,
p = 0.001), VAT:total trunk CSA + testosterone (r2 = 0.534,
p = < 0.001), VAT:TLM + CRP (r2 = 0.531, p = 0.001), and
VAT:TLM + testosterone (r2 = 0.548, p < 0.001) remained
significant (Table 4). All other possible models to predict CS
activity were tested and not significant.

Independent Predictors of Complex III
Activity
Figure 3 shows the significant relationships predicting Complex
III activity. Complex III activity was negatively associated with
VAT:TLM (r2 = 0.169, p = 0.033) but positively associated with
testosterone (r2 = 0.224, p = 0.010). Complex III trended toward
significance and was negatively associated with VAT (r2 = 0.134,
p = 0.061), CRP (r2 = 0.142, p = 0.069), and VAT:total trunk CSA
(r2 = 0.140, p = 0.055) (Table 5). Complex III activity was not
independently associated with VAT:SAT, IL-6, TNF-α, IGF-1, or
IGFBP-3 (data not shown). Testosterone (r2 = 0.177, p = 0.023)
and VAT:TLM (r2 = 0.210, p = 0.016) remained significant when
controlling for TSI, but CRP became insignificant. Testosterone
(r2 = 0.269, p = 0.004), IL-6 (r2 = 0.195, p = 0.035), and VAT:TLM
(r2 = 0.148, p = 0.047) were significant when controlling for age,
while VAT and VAT:total trunk CSA were no longer significantly
associated with Complex III activity (p > 0.05; Table 6). All
predictors remained significantly associated with Complex III
activity when controlling for LOI, while VAT (r2 = 0.245,
p = 0.009), CRP (r2 = 0.204, p = 0.027), and VAT:total trunk CSA
(r2 = 0.239, p = 0.010) became significant when controlling for
LOI (Table 6).

Multiple Regressions to Predict Complex
III Activity
Complex III was negatively associated with VAT:total trunk
CSA + CRP (r2 = 0.286, p = 0.048) and trended toward
significance for VAT + CRP (r2 = 0.270, p = 0.059) and
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FIGURE 2 | Linear regressions predicting Citrate Synthase (CS) activity. Data that were not normally distributed were log-transformed to permit the use of parametric
statistics. The log transformed values of CS enzyme activity are plotted on the Y axis against the predicted values for each variable on the X axis. (A) VAT (log
transformed) as a predictor of CS activity, (B) CRP (log transformed) as a predictor of CS activity, (C) testosterone (ng/dL) as a predictor of CS activity. VAT, visceral
adipose tissue; CRP, c-reactive protein; ng/dL, nanograms per deciliter.

VAT:TLM + CRP (r2 = 0.275, p = 0.055). Within this model,
individuals with lower VATCSA and lower CRP levels had higher
Complex III activity. Complex III was also significantly associated
with VAT + testosterone (r2 = 0.277, p = 0.024), even when VAT
was made relative to total trunk CSA (r2 = 0.303, p = 0.016)

TABLE 3 | Single and multiple regressions predicting citrate synthase activity.

Predictor variables β r2 p-value

VAT −0.600 0.360 <0.001

Testosterone 0.380 0.145 0.042

CRP −0.410 0.168 0.047

VAT:total trunk CSA −0.610 0.372 <0.001

VAT:TLM −0.659 0.434 <0.001

VAT + CRP −0.530, −0.194 0.412 0.008

VAT + Testosterone −0.540, 0.272 0.433 0.001

VAT:total trunk CSA + CRP −0.561, −0.211 0.454 0.004

VAT:total trunk CSA + Testosterone −0.562, 0.315 0.467 <0.001

VAT:TLM + CRP −0.579, −0.151 0.444 0.005

VAT:TLM + Testosterone −0.592, 0.210 0.473 <0.001

Single and multiple regressions predicting Citrate Synthase activity. Non-significant
r2 are not shown (non-significant = ns), but non-significant yet trending r2 are
included. Standardized Beta weights are presented to demonstrate directionality
of associations.
TSI, time since injury; LOI, level of injury; VAT, visceral adipose tissue; TEST,
testosterone; CRP, c-reactive protein; IL-6, interleukin 6; LM, lean mass; TLM, total
lean mass; CSA, cross sectional area.

and TLM (r2 = 0.286, p = 0.021) (Table 5). Within this model,
individuals with lower VATCSA and higher testosterone levels
had higher Complex III activity. VAT + testosterone (r2 = 0.264,
p = 0.029) and VAT + CRP (r2 = 0.286, p = 0.048) remained
significant when controlling for TSI, even when VAT was
made relative to total trunk CSA and TLM (Table 6). These
relationships remained significant when controlling for age, with
the exception of VAT + CRP (r2 = 0.264, p = 0.063) and
VAT:TLM + CRP (r2 = 0.279, p = 0.053) which trended toward
significance (Table 6). When controlling for LOI, VAT + CRP
(r2 = 0.371, p = 0.015) remained significant even when VAT was
made relative to total trunk CSA (r2 = 0.379, p = 0.014) and TLM
(r2 = 0.372, p = 0.015). VAT+ testosterone (r2 = 0.392, p = 0.003)
also remained significant when controlling for LOI, even when
VAT was made relative to total trunk CSA (r2 = 0.412, p = 0.002)
and TLM (r2 = 0.397, p = 0.003) (Table 6). Again, individuals with
lower VATCSA and higher testosterone levels had higher Complex
III activity within this model. All other possible models to predict
Complex III activity were tested and insignificant.

DISCUSSION

Major Findings
This study determined mitochondrial health by CS and
Complex III activity, surrogate markers for mitochondrial
mass, and electron transport chain activity, respectively
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TABLE 4 | Single and multiple regressions predicting Citrate Synthase activity after controlling for TSI, LOI, or age.

Citrate synthase activity
r2 (p-value)

Marker TSI β (TSI) LOI β (LOI) Age β (Age)

VAT 0.174 (0.030) −0.418 0.432 (<0.001) −0.657 0.277 (0.005) −0.526

Testosterone ns 0.296 0.170 (0.026) 0.412 0.176 (0.023) 0.420

CRP ns −0.285 0.249 (0.013) −0.499 0.184 (0.036) −0.429

VAT:total trunk CSA 0.162 (0.038) −0.402 0.435 ( 0.001) −0.660 0.285 (0.004) −0.534

VAT:TLM 0.264 (0.006) −0.514 0.507 ( 0.001) −0.712 0.376 ( 0.001) −0.613

VAT + CRP 0.294 (0.044) −0.479, −0.216 0.503 (0.002) −0.546, −0.251 0.365 (0.017) −0.449, −0.273

VAT + Testosterone 0.226 (0.053) −0.370, 0.238 0.508 ( 0.001) −0.592, 0.279 0.382 (0.004) −0.456, 0.334

VAT:total trunk CSA + CRP 0.245 (0.022) −0.529, −0.287 0.537 (0.001) −0.571, −0.263 0.415 (0.008) −0.494, −0.298

VAT:total trunk CSA + Testosterone 0.250 (0.037) −0.396, 0.306 0.534 ( 0.001) −0.606, 0.322 0.414 (0.002) −0.483, 0.374

VAT:TLM + CRP 0.343 (0.023) −0.533, −0.171 0.531 (0.001) −0.599, −0.200 0.410 (0.009) −0.515, −0.222

VAT:TLM + Testosterone 0.288 (0.020) −0.460, 0.176 0.548 ( 0.001) −0.642, 0.216 0.432 (0.001) −0.525, 0.265

IL-6 ns −0.382 ns −0.389 0.237 (0.019) −0.486

VAT + IL-6 ns −0.479, −0.399 ns −0.492, −0.326 0.412 (0.011) −0.419, −0.457

Weighted least squares regressions predicting Citrate Synthase activity when controlling for TSI, LOI, or age. Non-significant r2 are not shown (non-significant = ns), but
non-significant yet trending r2 are included. Standardized Beta weights are presented to demonstrate directionality of associations.
TSI, time since injury; LOI, level of injury; VAT, visceral adipose tissue; CRP, c-reactive protein; IL-6, interleukin 6; LM, lean mass; TLM, total lean mass; CSA, cross
sectional area.

FIGURE 3 | Linear regressions predicting Complex III activity. Data that were not normally distributed were log-transformed to permit the use of parametric statistics.
The log transformed values of Complex III enzyme activity are plotted on the Y axis against the predicted values for each variable on the X axis. (A) VAT (log
transformed) relative to TLM as a predictor of Complex III activity, (B) CRP (log transformed) as a predictor of Complex III activity, (C) testosterone (ng/dL) as a
predictor of Complex III activity. VAT, visceral adipose tissue; CRP, c-reactive protein; TLM, total lean mass; ng/dL, nanograms per deciliter.

(O’Brien et al., 2017b). The current findings suggest that reduced
mitochondrial mass and enzyme activity can be predicted
by increased visceral adiposity, inflammatory signaling, and
reduced testosterone levels. Research has demonstrated that
inflammation, markers of anabolism, and visceral adiposity are

independently associated with mitochondria dysfunction, yet
how these factors interact to predict mitochondrial function
in chronic SCI is unclear. The results of the current study
suggest that, in individuals with chronic SCI, lower VATCSA
and higher testosterone levels or lower VATCSA and lower CRP
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TABLE 5 | Single and multiple regressions predicting Complex III activity.

Predictor variables β r2 p-value

VAT −0.366 0.134 0.061

Testosterone 0.473 0.224 0.010

CRP −0.377 0.142 0.069

VAT:total trunk CSA −0.374 0.140 0.055

VAT:TLM −0.411 0.169 0.033

VAT + CRP −0.315, −0.294 0.270 0.059

VAT + Testosterone −0.275, 0.390 0.277 0.024

VAT:total trunk CSA + CRP −0.335, −0.304 0.286 0.048

VAT:total trunk CSA + Testosterone −0.316, 0.408 0.303 0.016

VAT:TLM + CRP −0.332, −0.275 0.275 0.055

VAT:TLM + Testosterone −0.299, 0.359 0.286 0.021

Single and multiple regressions predicting Complex III activity. Non-significant r2

are not reported, but non-significant yet trending r2 are included. Standardized
Beta weights are presented to demonstrate directionality of associations.
TSI, time since injury; LOI, level of injury; VAT, visceral adipose tissue; CRP,
c-reactive protein; IL-6, interleukin 6; LM, lean mass; TLM, total lean mass; CSA,
cross sectional area.

levels positively predict mitochondrial function. The goal of
the current study was to elucidate these relationships further
to inform future longitudinal intervention programs aimed
at enhancing mitochondrial function. The hypothesis that a
combination of increased VAT and inflammation along with
reduced testosterone levels are associated with the mitochondrial
dysfunction seen in chronic SCI was confirmed. To our
knowledge, this is the first report to examine the combination
of these variables on mitochondrial dysfunction in chronic
SCI. Based on the current results, an intervention that reduces
visceral adiposity, inflammatory signaling, and optimizes
testosterone levels may improve mitochondrial health. Prior
work demonstrated that neuromuscular electrical stimulation

resistance exercise decreases VAT and inflammatory biomarkers
while enhancing citrate synthase and succinate dehydrogenase
activities in persons with SCI (Gorgey et al., 2019b, 2020). Future
work may examine the effects of exercise or pharmaceutical
interventions on the VAT-inflammation-mitochondria axis.

Mitochondrial Function and Visceral
Adipose Tissue
VAT mass was negatively related to both CS and Complex
III activity, which agrees with previous results (O’Brien et al.,
2017b). The relationships between VAT and CS activity remained
significant when controlling for TSI, age, and LOI. VAT was
also negatively associated with Complex III activity when VAT
was made relative to LM. VAT and VAT:total trunk CSA
trended toward significance with Complex III and became
significant when controlling for LOI, which may be due to
VAT volume being associated with LOI (Farkas et al., 2018).
Unlike previous results, VAT:SAT ratio was not independently
associated with either CS or Complex III activity (O’Brien et al.,
2017b). However, unlike the current study, these previous results
were found only in men with motor complete SCI. Overall,
there was a clear relationship between visceral adiposity and
mitochondrial health. Individuals with lower VAT had higher
mitochondrial mass and enzyme activity, which is in agreement
with previous research (O’Brien et al., 2017b). Previous research
has clearly shown that excess accumulation of VAT appears
to play a significant detrimental role in cardiometabolic health
(Freedland, 2004; Emmons et al., 2011; Gorgey and Gater,
2011). Indeed, O’Brien et al. (2017) demonstrated that lipid
and metabolic profiles are related to mitochondrial mass and
activity in individuals with SCI. Similar to the current results,
O’Brien et al. (2017b) showed that many body composition
measures remained related to CS and Complex III activity when

TABLE 6 | Single and multiple regressions predicting Complex III Activity after controlling for TSI, LOI, or age.

Complex III Activity
r2 (p-value)

Marker TSI β (TSI) LOI β (LOI) Age β (Age)

VAT 0.142 (0.053) −0.377 0.245 (0.009) −0.495 ns −0.315

Testosterone 0.177 (0.023) 0.421 0.254 (0.005) 0.504 0.269 (0.004) 0.519

CRP ns −0.262 0.204 (0.027) −0.451 0.159 (0.053) −0.399

VAT:total trunk CSA 0.120 (0.077) −0.346 0.239 (0.010) −0.488 ns −0.321

VAT:TLM 0.210 (0.016) −0.459 0.283 (0.004) −0.532 0.148 (0.047) −0.385

VAT + CRP 0.286 (0.048) −0.459, −0.238 0.371 (0.015) −0.390, −0.308 0.264 (0.063) −0.289, −0.334

VAT + Testosterone 0.264 (0.029) −0.313, 0.355 0.392 (0.003) −0.401, 0.394 0.300 (0.016) −0.220, 0.458

VAT:total trunk CSA + CRP 0.317 (0.032) −0.491, −0.305 0.379 (0.014) −0.392, −0.324 0.290 (0.046) −0.326, −0.347

VAT:total trunk CSA + Testosterone 0.291 (0.019) −0.348, 0.412 0.412 (0.002) −0.421, 0.422 0.326 (0.011) −0.270, 0.474

VAT:TLM + CRP 0.316 (0.033) −0.496, −0.198 0.372 (0.015) −0.405, −0.284 0.279 (0.053) −0.323, −0.304

VAT:TLM + Testosterone 0.299 (0.017) −0.375, 0.307 0.397 (0.003) −0.418, 0.357 0.313 (0.013) −0.255, 0.425

IL−6 ns −0.396 ns −0.269 0.195 (0.035) −0.422

VAT + IL−6 ns −0.468, −398 ns −0.423, −0.211 0.290 (0.054) −0.312, −0.418

Weighted least squares regressions predicting Complex III activity when controlling for TSI, LOI, or age. Non-significant r2 are not shown (non-significant = ns), but
non-significant yet trending r2 are included. Standardized Beta weights are presented to demonstrate directionality of associations.
TSI, time since injury; LOI, level of injury; VAT, visceral adipose tissue; CRP, c-reactive protein; IL-6, interleukin 6; LM, lean mass; TLM, total lean mass; CSA, cross
sectional area.
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normalized to thigh muscle CSA. Together, these results suggest
that increased visceral adiposity results in decreased skeletal
muscle mitochondrial mass and activity in individuals with
chronic SCI. Future interventions targeting both reductions in
VAT mass and improved mitochondrial function may enhance
cardiometabolic health in individuals with chronic SCI.

Mitochondrial Function and Testosterone
Testosterone was independently associated with Complex III
and CS activity even when controlling for age and LOI.
VAT + testosterone was also significantly associated with both
Complex III and CS activity. Individuals with lower VATCSA
and higher testosterone levels had higher CS and Complex III
activity within these models. These relationships were robust and
remained significant when VAT was made relative to total trunk
CSA or LM. The levels in the current study were 346.72 ± 223.7
ng/dL, which included six females. When excluding the females,
the levels were 428.08 ± 168.93 ng/dL. Six males (25%) in
the current study were hypogonadal (<300 ng/dL), 11 males
(46%) were in the low normal range (i.e., 301–500 ng/dL), and
seven males (29%) were in the upper range of normal (>500
ng/dL). Therefore, the majority of the males in the current
study were either hypogonadal or in the low normal range and
could potentially benefit from therapeutic replacement. Men
with SCI have reduced testosterone levels (Clark et al., 2008;
Durga et al., 2011; Bauman et al., 2014; Sullivan et al., 2018),
and reduced testosterone levels are associated with greater VAT
mass in men with SCI (Abilmona et al., 2019). In persons
with SCI, the decline in testosterone levels is 50% greater
than in able-bodied individuals (Gray et al., 1991). VAT is
inversely related to plasma total and free testosterone levels in
healthy men (Seidell et al., 1990). Deficient testosterone levels
increase cardiometabolic risk in young men with chronic SCI.
Men with SCI that have total testosterone in the low normal
range (i.e., 301–500 ng/dL) have increased risk compared to
men with levels in the upper range of normal (>500 ng/dL)
(Sullivan et al., 2018). Indeed, low serum testosterone in men
with SCI is associated with a poorer cardiometabolic prognosis
than men with high serum testosterone (Abilmona et al., 2019).
Previous research showed that testosterone replacement therapy
can reduce VAT (Gorgey et al., 2019b) and increase peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α), the
master regulator of mitochondrial biogenesis (Gorgey et al.,
2020). Future interventions targeting both reductions in VAT
mass and optimization of testosterone levels may improve
cardiometabolic health in individuals with chronic SCI.

Mitochondrial Function and
Inflammation
CRP was significantly negatively associated with CS activity
and trended toward a significant association with Complex III.
VAT + CRP was also significantly negatively associated with CS
activity. VAT + CRP trended toward a significant association
with Complex III and became significant when VAT was made
relative to total trunk CSA. Within these models, individuals with
lower VATCSA and CRP levels had higher CS and Complex III

activity. CRP is elevated in persons with chronic SCI (Gibson
et al., 2008), is an important predictor of cardiovascular health,
and can predict myocardial infarction and stroke (Ridker, 2003).
In previous reports, CRP has been associated with VAT mass
in various populations (Saijo et al., 2004; Pou et al., 2007;
Faber et al., 2010). VAT surrounds the internal organs of the
abdominal cavity (Després et al., 2001) and synthesizes and
releases proinflammatory cytokines (Yudkin et al., 2005; Farkas
and Gater, 2018). VAT secretes higher levels of IL-6, plasminogen
activator inhibitor-1, and TNF-α compared to SAT (Farkas and
Gater, 2018). While IL-6 and TNF-α were not independently
associated with CS or Complex III activity in the current study,
CRP is elevated in chronic SCI and is reportedly stimulated by
both IL-6 and TNF-α (Edwards et al., 2008; Sam et al., 2009;
Farkas and Gater, 2018). However, it is unknown if VAT directly
contributes to elevated CRP levels in chronic SCI. Interestingly,
IL-6 predicted mitochondrial health, but only in individuals over
40. IL-6 levels have been shown to increase with aging and are
associated with increased cardiovascular disease risk (Rea et al.,
2018). Future interventions targeting both reductions in VAT
mass and inflammation may improve cardiometabolic health in
individuals with chronic SCI.

LIMITATIONS

It should be noted that this study does not precisely identify
the complex causal relationships between inflammation,
testosterone, anabolic markers, visceral adiposity, and
mitochondrial health among those with chronic SCI. This
is a correlative analysis based on baseline cross-sectional data.
A small number of females (n = 6 out of 33,∼18%) were included
in these analyses; however, this may serve as an added benefit to
the generalizability of the results of this study because this closely
mirrors the actual proportion of males and females living with
SCI (NSCISC Annual Report, 2020). This study used a small
sample of healthy individuals (i.e., no cardiovascular disease, type
2 diabetes, pressure ulcers, or common medical and psychiatric
comorbidities), limiting the generalizability of findings beyond
individuals with similar levels of function. Another concern is
that conducting simultaneous multiple regressions may result in
a multicollinearity problem, especially with a small sample size.

It has been suggested that for a multiple regression with six
or more predictors, a sample size of at least 100 is necessary
(Green, 1991). In this study, constraints such as access to this
specific population and the cost of MRI and DXA limited the
sample size. We attempted to limit this multicollinearity problem
by including a maximum of two predictors per model. Another
limitation is that high variability within the sample resulted in
non-normal distributions for several variables. Since we believe
it is essential to capture the true variability within the chronic
SCI population, we log transformed these variables rather than
eliminating statistical outliers, which would have reduced our
sample size. For example, removing outliers for VAT alone
would have decreased our sample by ∼17% (n = 5). The results
of this study are exploratory, evaluating potential predictors
of mitochondrial function in chronic SCI. Considering these
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limitations, the current findings identify potential predictors
of mitochondrial dysfunction following SCI. A large multi-
center trial is highly warranted to address the aforementioned
limitations effectively.

CONCLUSION

Increased visceral adiposity, associated inflammatory signaling
(CRP), and reduced testosterone levels predict mitochondrial
dysfunction following SCI. Specifically, lower VATCSA and
higher testosterone levels or lower VATCSA and lower CRP
levels positively predict mitochondrial mass and enzyme activity
in persons with chronic SCI (Figure 1). TNF-α, IGF-1,
and IGFBP-3 were not related to mitochondrial function in
this study. IL-6 predicted mitochondrial health, but only in
individuals over 40. Future research should further investigate
the causal relationships between visceral adiposity, inflammation,
testosterone, and mitochondrial health in persons with chronic
SCI. Furthermore, interventional studies should be designed
to examine the efficacy of diet, exercise, and potentially
testosterone replacement therapy on enhancing mitochondrial
health in chronic SCI.
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During the first month of postnatal life, adipose tissue depots of mice go through a drastic,
but transient, remodeling process. Between postnatal days 10 and 20, several white fat
depots display a strong and sudden surge in beige adipocyte emergence that reverts until
day 30. At the same time, brown fat depots appear to undergo an opposite phenomenon.
We comprehensively describe these events, their depot specificity and known
environmental and genetic interactions, such as maternal diet, housing temperature
and mouse strain. We further discuss potential mechanisms and plausible purposes,
including the tempting hypothesis that postnatal transient remodeling creates a lasting
adaptive capacity still detectable in adult animals. Finally, we propose postnatal adipose
tissue remodeling as a model process to investigate mechanisms of beige adipocyte
recruitment advantageous to cold exposure or adrenergic stimulation in its entirely
endogenous sequence of events without external manipulation.

Keywords: white adipose tissue (WAT), white adipose tissue (WAT) browning, brown adipose tissue (BAT), beige
adipocyte, postnatal, organ development
INTRODUCTION

Mammalian adipose tissue is a plastic organ with the capacity to dramatically alter size and
composition. White adipose tissue (WAT) represents the classical, fat-storing adipose tissue
composed of large cells with a single lipid droplet. It also acts as an endocrine organ secreting
hormones, such as adiponectin and leptin. Brown adipose tissue (BAT), on the other hand, provides
a means of non-shivering thermogenesis in many mammals including adult humans (1–3). It
consists of multilocular cells equipped with many mitochondria featuring uncoupling protein 1
(UCP1), the functional core of heat generation. By uncoupling respiration from ATP synthesis,
energy of proton motive force is dissipated as heat [reviewed in (4)]. Beyond BAT, UCP1 expressing
multilocular cells with high thermogenic capacity are also found interspersed within WAT depots, a
cell population called beige or brite adipocytes (5–7).

Mechanisms governing the considerable variability and plasticity of beige cell number are subject
to intense research for their potential targeting in humans. Beige and brown adipocyte overall
thermogenic capacity is a bottleneck in the efficacy of brown fat targeting drugs in development for
the treatment of metabolic disease (8–10).
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Well investigated models include cold exposure and
application of b-adrenergic agonists in rodents (6, 11). Less
studied is a phenomenon that occurs even in the absence of
external intervention, i.e. the global remodeling of adipose tissues
early in mouse postnatal life.
TRANSIENT, POSTNATAL ADIPOSE
TISSUE REMODELING

During the first threeweeks of postnatal life, murine adipose tissues
undergo a drastic, if transient, remodeling. This phenomenon was
first observed in retroperitoneal WAT (rWAT) of male A/J and
C57BL6/J mice (12). Here, UCP1 transcript and protein expression
sharply increases between postnatal day 10 and 20, only to decrease
again towards day 30. A similar transient browning of WAT was
again reported for rWAT and inguinal WAT (iWAT) of 1296sv/ev
and C57BL6/N mice (13). Thus, a surge in WAT browning takes
place around day 20 in multiple fat depots and all studied mouse
strains, while in BAT and epididymal WAT (eWAT), UCP1
expression remained unchanged during this period. The extent of
this transient remodeling is different by mouse strain and
ambient temperature, as comprehensively reviewed below. Our
understanding of its exact temporal sequence is limited by the
choice of time points studied with low resolution in the past: peak
browning has been varyingly detected at day 20 (12–15), several
days earlier (16) or later (17, 18).

Interestingly, inguinal and retroperitoneal – but not BAT -
depots display arrested growth during browning between
postnatal day 10 and 20, indicating a profound, depot-level
remodeling event (13). Indeed, visualized by phase contrast
computed tomography, virtually all mouse fat depots undergo
a significant transient period of remodeling around day 20 (14).
The evaluated electron density is a combined (alas inseparable)
measure of fat content and mitochondrial density and clearly
portrays the strong browning surge in rWAT, iWAT and other
white depots. Surprisingly, a concomitant, but reverse,
remodeling appears to occur in BAT depots. Since this
‘whitening’ surge in BAT does not include altered UCP1
expression (12), it is likely explained by altered fat, not
mitochondrial, content. To date it remains unclear whether
concurrent ‘whitening of BAT’ and ‘browning of WAT’ are
separate events or aspects of the same epi-phenomenon.
ADIPOSE TISSUE DEVELOPMENT
AND PLASTICITY

White and brown fat differ in extent and direction of postnatal
remodeling as well as in their preceding development. BAT fully
develops before birth, as determined bymass, UCP1 transcript and
protein expression (12, 19). Immediately at birth, pups have to be
able to defend body temperature. After birth, brown adipose tissue
still grows, mainly due to proliferation until postnatal day 14 and
thereafter by storing more lipid (20), a transition suggestively
synchronous to the observed whitening (14).
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Compared to BAT, development of WAT is less advanced at
birth. The iWAT and rWAT depots are still very small, although
development has started in the embryo already (21, 22) and
existing adipocytes are essentially functional (22, 23). In the first
days, these depots expand quickly (23–25). More delayed,
functional gonadal WAT (gWAT) is absent at birth (21–23).
The first fully differentiated cells do not appear until day 7 (23).
The depot specificity of this developmental timeline matches the
pattern of depot specific postnatal remodeling with transient
browning in fully differentiated WAT depots, but not in still
immature eWAT. Intriguingly, and plausibly a repercussion,
adult mouse eWAT is considered the whitest depot of all,
containing the least fraction of beige adipocytes.

In the adult mouse, adipose tissue remains an organ with
extraordinary plasticity that constantly adapts to environmental
challenges. Its most obvious flexibility is the huge expandability
by combined hyperplasia and hypertrophy, i.e. by adding more
adipocytes and by increasing their triglyceride stores (26). Fat
mass increase in response to positive energy balance is
predominantly attributable to the largest subcutaneous depot,
iWAT. The largest visceral adipose tissue depot, gWAT, also has
the capability to store an enormous amount of lipids, but in
contrast to iWAT it decreases expansion speed after several
weeks of high fat diet feeding (27, 28). In comparison to
postnatal remodeling, however, the pattern of expansion
potential (high in both gWAT and iWAT, low in rWAT) does
not seem to match the proneness to transient browning (high in
iWAT and rWAT, low in gWAT).

Another plastic characteristic of WAT in adult mice is the
flexible number of interspersed beige adipocytes. The
interconversion from white to beige adipocytes is a reversible,
adaptive process (29), conferring varying degrees of non-
shivering thermogenic capacity (30, 31). Accordingly, beige
adipocyte recruitment is intensely studied as putative
pharmacological target process in the field of metabolic disease
[reviewed in (32)]. In iWAT, cold stimulation leads to a strong
increase in the number of beige adipocytes (11). On the contrary,
thermoneutrality decreases thermogenic beige cell number in mice
(33). Being fully reversible, the process can repeatedly be re-
activated anytime by another bout of cold stimulation (34),
although to a lesser extent with increasing age (31). Intriguingly,
adaptive browning in response to cold in the adultmouse displays a
similar pattern as postnatal, transient browning, both on the level of
depot specificity and in the proneness of different mouse strains.
Either both the postnatal, transient process and its adult, adaptive
counterpart are subject to the same underlying preconditions or the
former establishes the capacity of the latter. Indeed, ablation of
postnatally recruited beige cells impairs cold-induced beige
adipocyte formation in the adult animal (18).
POTENTIAL MECHANISMS OF ADIPOSE
TISSUE REMODELING

Postnatal remodeling of mouse fat depots is characterized by
parallel changes in the abundance of UCP1 transcript,
February 2022 | Volume 13 | Article 849877
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mitochondrial density, fat content, and histological appearance
(12–14). Categorically, these changes can be driven by
differentiation of new cells with different characteristics or,
alternatively or additionally, by the transdifferentiation of
existing mature adipocytes. These same two options apply for
the second, reverting phase of remodeling and not necessarily to
the same extent.

Both mechanisms, stem cel l di fferent iat ion and
transdifferentiation, in principle exist and have been described to
contribute to adipose tissue plasticity. The existence of the former is
non-controversial as every mature adipocyte necessarily descends
from a precursor, i.e. a committed preadipocyte and that in turn
from a pluripotent, mesenchymal stem cell (35–37). During
maintenance, cellular turnover in adipose tissues is regarded to be
low, ~10%/year (38). At the same time, the vast expandability of
adipose tissue mass in response to prolonged, positive energy
balance showcases the massive capacity to generate new
adipocytes when hypertrophy of existing ones is exceeded
[reviewed in (39)]. In addition, the quick expansion of certain
virtually absent adipose tissue depots directly after birth provides
ample support for the possibility of rapid hyperplasia being behind
the observed remodeling.

The second option, transdifferentiation of preexisting
mature adipocytes, has long been suspected and recently
proved to constitute a relevant in vivo mechanism of white/
beige fat cell conversions (29, 40). During this process, formerly
white adipocytes acquire the characteristics of beige adipocytes
and vice versa. As of today, it is unknown whether all or most
white adipocytes inherently possess this ability or only a subset
of ‘camouflaged’, white-appearing beige precursors. In any case,
the sudden appearance and disappearance of white versus beige
adipocytes during postnatal adipose tissue remodeling would
be well in line with a transdifferentiation process and
importantly, would as such not require massive proliferation
and later apoptosis (41). These two latter processes thereby
represent indicators to differentiate between the underlying
processes at work, but have not been studied exhaustively in
this context. At least as far as proliferation is concerned,
virtually all adipocytes present at postnatal day 28 (late in the
remodeling phase) seem to have already been present at day 10
(early in the remodeling phase), in murine subcutaneous fat
that is prone to browning (21), arguing against progenitor
proliferation and differentiation as a significant source of
beige adipocytes.

Further available evidence to distinguish differentiation from
transdifferentiation is limited to depot mass and volume changes
concomitant to postnatal browning/whitening. While admittedly
crude proxies, these clearly correlate with adipose tissue
remodeling, i.e. depots arrest growth during browning and do
not during whitening, both on the level of individual fat depots
(13) and as a general trend across all depots (14). Specifically in
white fat and far from a final assessment, these observations are
in line with predominant transdifferentiation of existing cells
during both the browning of white fat and its reversion, possibly
accompanied by a diluting effect of newly differentiating cells
during the latter phase.
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POTENTIAL PHYSIOLOGICAL PURPOSES
OF POSTNATAL ADIPOSE TISSUE
REMODELING
Apart from the exact mechanisms at work bringing about
postnatal, transient fat browning or whitening, the overarching
question certainly pertains to the ‘why’ of this adipose organ-
wide phenomenon. Two alternative, principal scenarios are
possible: first, adipose tissues are transiently remodeled to
serve an acute functional purpose specific during this short
period in postnatal development, or second, postnatal adipose
tissue remodeling is a preparative phenomenon creating a
cellular complexity to be adaptively utilized during adult life.
The crucial difference between these is whether those adipocytes
that underwent a transient change revert to their original state
after fulfilling a transient role or whether they become a new type
of cell with perpetually altered adaptive potential.

At three weeks of age, mice are typically weaned and forced to
replace a diet of mother’s milk with solid food, a transition with
plausible profound effects on metabolism and adipose tissues.
Left with the dam, pups still undergo adipose tissue remodeling
(13), but must be expected to start nibbling solid food around the
same age. How and why this dietary transition would lead to a
massive bout of WAT browning seems questionable. More
intuitively, the thermoregulatory requirements of small, fur-less
mouse pups support a functional role of transient browning in
non-shivering thermogenesis. Birth marks a radical transition
from the controlled, thermoneutral environment of the womb
into a cool world. This plausibly requires a transient extra-
capacity of non-shivering thermogenesis that is later alleviated
by a rapidly decreasing surface-to-volume ratio and fur growth.
Indeed, brown adipose tissue is already fully developed at birth,
while non-thermogenic white adipose tissue development occurs
mostly postnatally (42, 43).

As plausible as this interpretation sounds, it fails to explain a
simultaneous whitening of brown adipose tissues, if these two
transitions are in fact causally connected. Both types of adipose
tissue undergo postnatal developmental stages possibly
accounting for the observed remodeling events: although
functional at birth, BAT continues growth by an initial
postnatal phase of rapid precursor proliferation and
subsequent terminal differentiation including triglyceride
loading (20). At the turning point, these events may be
misinterpreted as whitening of existing brown adipocytes. In
comparison with the adult version of BAT whitening during
extended periods of thermoneutrality, postnatal whitening
appears to be limited to fat content, not UCP1 abundance, and
thus to serve a different purpose (14). Possibly, increased fat
content is the consequence of a developmental bout of increased
de novo lipogenesis, a powerful, cold-stimulated process in
mature BAT (44, 45). Similarly, white adipose tissue
experiences a distinct postnatal phase of strong sympathetic
neurite innervation independent of ambient temperature
(16, 17). This may be accompanied by a transient increase in
sympathetic tone during the establishment of ligand-receptor
connections, in turn underlying an apparent browning.
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Importantly, none of these options are mutually exclusive and
the causal reason may be distinct from the final one. Browning
caused by developmental innervation may at the same time serve
the acute purpose of additional thermogenic capacity or create a
subset of adipocytes pre-programmed to serve as future beige
adipocytes in the adult animal. The existence of the latter, the
creation of a separate pool of cells with adaptive potential in the
adult animal, is clearly evidenced by reduced, cold-induced
browning of adult WAT after ablation of postnatal beige cells
(18). Their functional role can be probed by comprehensive
mapping of the adult, phenotypic response to a variety of
metabolic and environmental challenges after manipulating
postnatal browning/whitening surge intensity, as outlined in
the following.
FACTORS MODULATING POSTNATAL
ADIPOSE TISSUE REMODELING

Genetic background plays an important role in postnatal adipose
tissue remodeling. Several studies established a different
susceptibility to transient WAT browning, e.g. lower in C67BL6/J
and /N compared to A/J or 129SvEv mice (12, 13, 15). This pattern
matches well with the known propensity to adult, adaptive
browning (30, 46–48). Phenotypic strain differences offer the
chance to identify genetic factors (48), but efforts to identify adult
consequences of postnatal adipose tissue remodeling will be
superimposed by unrelated differences in genetic outfit. Ideally,
postnatal events could be gradually manipulated in genetically
identical animals followed by comprehensive mapping of the
adult response to metabolic challenges.

The ontogenetic earliness of postnatal adipose tissue
remodeling limits the experimental options to manipulate
these events to the first days in life or to maternal effects
(maternal programming). Luckily, there is evidence for the
efficacy of both. The most obvious environmental parameter
interacting with the abundance of thermogenic cells is ambient
temperature. Indeed, the peak of postnatal browning in iWAT
occurs earlier (day 21) and is more pronounced when offspring
and dam are housed at 30°C as compared to 22°C (day 28) (17).
Furthermore, offspring of dams housed at 17°C during lactation
showed higher UCP1 expression in iWAT at postnatal day 21
than of dams at thermoneutrality (15). When exposed to cold as
adults, however, temperature early in life did not impact later
browning capacity in fat depots in this study. Since ablation of
postnatally recruited beige cells did lead to an adult limitation of
browning capacity (18), it will be interesting to investigate the
extent at which a postnatal manipulation robustly manifests in
adult, metabolic consequences in future studies.

An alternative condition to manipulate postnatal adipose
tissue remodeling in pups is maternal diet quality and quantity
during gestation or lactation. Indeed, undernutrition of pups
leads to reduced postnatal browning at postnatal day 21 in
iWAT, while overfeeding does not (49). Interestingly, neither
affects susceptibility to diet induced obesity later in life or the
extent of browning in response to cold exposure. Adult UCP1
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expression and thermogenic capacity of BAT, however, is clearly
altered in response to manipulated maternal lactation, either by
high fat diet feeding or as a function of litter size (50–52).
Possibly, a direct effect of these regimes on postnatal BAT
remodeling programs this tissue to different states of adult
adaptability. And indeed, altered milk quality acutely impacts
postnatal adipose tissue remodeling, as demonstrated by
supplementation of n-3 polyunsaturated fatty acids to lactating
dams (53). This dietary challenge leads to increased BAT UCP1
transcript and protein expression in 21 day old pups. It remains
to be tested whether these direct, postnatal effects of lactation are
a causal step along the causal route of maternal programming of
adult BAT adaptability.

A further approach is based on the development of adipose
tissue sympathetic innervation. In adult mice, sympathetic
norepinephrine recruits and activates beige/brown adipocytes
(54). Sympathetic innervation development and postnatal
browning of white adipose tissue have recently been debated to
be causally linked (55) or not (17). In any case, from postnatal
day 6 onwards, sympathetic innervation and number of beige
cells concomitantly increase in iWAT of C57BL6/J mice, until a
peak around day 12-16 (16). Importantly, the hormone leptin
constitutes the key driver of sympathetic innervation, potentially
offering an experimental route to influence postnatal browning
in iWAT. Experiments with ob/ob mice, devoid of leptin,
revealed less beige adipocytes as well as less dense sympathetic
innervation in iWAT, while daily leptin injections between
postnatal days 8 and 16 rescued this phenotype (55).

Taken together, ambient temperature and maternal diet are
efficient means to manipulate both postnatal adipose tissue
remodeling and adult cold response. Initial such experiments
report conflicting evidence on a possible causal link between
the two.
DISCUSSION AND OUTLOOK

During the past decade, many studies have corroborated postnatal
adipose tissue remodeling (12–14, 17, 19, 21, 55) and addressed
putative functional aspects [reviewed in (56)] (Figure 1). It is now
clear that virtually all fat depots, white and brown, simultaneously
undergo transient remodelingduring thefirstweeksofpostnatal life
(14). It is unknownwhether ‘whitening in brown’ and ‘browning in
white’ fat are independent or linked.

The key question is why these changes occur and whether
they serve an acute physiological purpose or are a developmental
step in the preparation of later, adult capabilities. Both scenarios
can be addressed by similar experimental models, i.e. the targeted
manipulation of postnatal events and measurement of acute and
delayed impairment of metabolic flexibility. A first step in this
direction has already been undertaken by the targeted ablation of
postnatally recruited beige cells. This intervention does indeed
impair browning capacity later in life (18). Less drastic regimes
employing ambient temperature, litter size and maternal diet
quality and quantity did, however, not yield unequivocal results
so far (15, 17, 50–53, 55). Manipulations of leptin levels
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constitute additional, experimental opportunities via its role
during developmental adipose tissue innervation.

Beyond acute thermogenic activation, modulating the capacity
and number of brown and beige adipocytes has long been identified
a key challenge in their pharmacological exploitation in human
metabolic disease. While cold-induced and adrenergic recruitment
in rodent models have been intensely studied to identify putative
target mechanisms, postnatal adipose tissue remodeling has
attracted much less attention - an undeserved neglect in the light
of its endogenous occurrence without external intervention,
offering an unbiased mechanistic discovery potential.
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The morbidity and mortality of cardiovascular diseases (CVDs) have been increasing
year by year all over the world and expanding greatly to the younger population, which
becomes the leading causes of death globally that threatens human life safety. Prediction
of the occurrence of diseases by using risk related adverse events is crucial for screening
and early detection of CVDs. Thus, the discovery of new biomarkers that related to risks
of CVDs are of urgent in the field. Retinol-binding protein 4 (RBP4) is a 21-kDa adipokine,
mainly secreted by adipocytes. Besides its well-established function in the induction of
insulin resistance, it has also been found in recent years to be closely associated with
CVDs and other risk factors, such as hypertension, coronary heart disease, heart failure,
obesity, and hyperlipidemia. In this review, we mainly focus on the progress of research
that establishes the correlation between RBP4 and CVDs and the corresponding major
risk factors in recent years.

Keywords: retinol-binding protein 4, cardiovascular disease, lipids metabolism, vascular injury, adipokine

INTRODUCTION

Retinol-binding protein 4 (RBP4), whose gene is located near chromosome 10 (10q23-q24), is a
21-kDa protein secreted by hepatocytes and adipocytes. RBP4, as the sole carrier of retinol in
the blood, increases the hydrophilicity of retinol upon binding and completes the transport of
retinol from the liver to target tissues. Retinol-bound RBP4 (HoloRBP) further complexes with
the tetrameric structure of transthyretin protein (TTR) to form a retinol transport complex, which
prevents glomerular filtration of HoloRBP (Hamilton and Benson, 2001) and effectively increases
and maintains the circulating concentration of RBP4. Initially, RBP4 was found to be involved
in the pathogenesis of insulin resistance in type 2 diabetic patients (Yang et al., 2005). In recent
years, more studies have suggested that RBP4 is also closely associated with lipid parameters and
cardiovascular disease (Broch et al., 2010).

Multiple factors have now been found to influence circulating RBP4 concentrations. Adipose
tissue is not only an energy-preserving tissue but can also release numerous substances known
as “adipokines” or “adipocytokines.” Adipocytes are the main source of RBP4 secretion, Atrial
natriuretic peptide (ANP) directly regulates the secretory activity of adipocytes in adipose tissue
(Moro et al., 2007) and reduces the production of RBP4. RBP4 is excreted mainly from the
kidneys. In patients with type 2 diabetes, microalbuminuria and glomerular filtration rate (GFR)
are independent determinants of elevated serum RBP4 levels (Akbay et al., 2010). But it was shown
that RBP4 is already diagnostically elevated before their appearance (Abbasi et al., 2020).

There are other factors regulate the serum RPB4. The effect of exercise on RBP4 levels depends
on the intensity of exercise (Yu et al., 2009), with high levels of physical activity significantly
reducing circulating RBP4 concentrations, but moderate and lower intensity activities have no
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significant effect on RBP4 concentrations. Resistance exercise
reduces circulating RBP4 levels without altering intramuscular
adipocytes or insulin resistance (Ku et al., 2010), whereas neither
anaerobic exercise nor controls reduce RBP4. One mechanism
for the effect of exercise on RBP4 may be an elevation of ANP
(Niessner et al., 2003). The effect of diet on the magnitude of the
decrease in circulating RBP4 depends on the amount of weight
loss and the nature of the food, with carbohydrate-restricted diets
leading to a greater decrease in serum RBP4 levels compared to
low-fat diets (Volek et al., 2009). Statins do not seem to produce
a significant effect on RBP4 (Szendroedi et al., 2009). The effect
of glucose-lowering drugs on RBP4 concentrations in diabetic or
non-diabetic patients has not been consistently concluded (Yao-
Borengasser et al., 2007; Lin et al., 2008; Pfützner et al., 2009).

In recent years RBP4 have achieved significant efficacy
coronary heart disease, hypertension, heart failure (Zhang et al.,
2021). In this review, we will focus on RBP4 and their
implication in cardiovascular disorder. The purpose of this
review is to summarize current information on the RBP4 and
risk factors of CVD.

Retinol-Binding Protein 4 and Lipids
Metabolism
Abnormal lipid metabolism is the most important risk factor
for atherosclerosis, and hyperlipidemia, which includes
hypercholesterolemia, hypertriglyceridemia, or both, requires
binding to apolipoprotein plasm in plasma in the form
of lipoproteins due to its lipid-soluble physical properties.
The expression of RBP4 is negatively correlated with blood
cholesterol (TC) levels (Jugnam-Ang et al., 2015). and the
underlying mechanism may be that hypercholesterolemia causes
adipocyte cholesterol overload, which interferes with adipocyte
differentiation and maturation, causing adipocyte hypertrophy,
adipose tissue inflammation (Mohapatra et al., 2011; Aguilar
and Fernandez, 2014), and endocrine dysfunction, and adipose
inflammation can lead to the release of pro-inflammatory
factors (for example, TNF-α, IL-1β), and the accumulation of
pro-inflammatory factors further inhibits the release of RBP4
from adipocytes into the blood (Zoccali et al., 2003).

Usui et al. (2009) found that RBP4 was positively associated
with small and dense low-density lipoprotein (sdLDL) levels in
young women and RBP4 was one of major factors affecting
sdLDL-cholesterol levels. Similarly, sdLDL was found to be an
independent predictor of oxidized low-density lipoprotein (ox-
LDL) in patients with dyslipidemia, and sdLDL may be an
important link between RBP4 and ox-LDL (Wu et al., 2012).
It is now known that sdLDL and ox-LDL are components
of atherogenic lipoproteins, and RBP4 may be involved in
atherogenesis by directly or indirectly upregulating sdLDL levels.
SdLDL was found to be an independent predictor of RBP4 in
patients with dyslipidemia (Wu et al., 2012). Also, blood RBP4
levels were found to be negatively associated with indirect VLDL-
apoB100 FCR and not significantly associated with direct VLDL-
apoB100 FCR, suggesting that RBP4 is associated with more with
VLDL dilapidation compared to direct uptake (Vergès et al.,
2012), which may also explain the relationship between RBP4 and

blood triglycerides in patients with type 2 diabetes. Wessel et al.
(2019) found that RBP4 levels were positively correlated with
large very low-density lipoproteins (VLDL) versus small LDL,
but no physical interaction was found between them. In patients
with type 2 diabetes, RBP4 has a strong positive correlation with
blood triglyceride (TG) levels (Vergès et al., 2012; Wessel et al.,
2019; Table 1), The same correlation with blood triglycerides
and HDL was found in RBP4 single nucleotide polymorphisms
(Codoñer-Franch et al., 2016). All these results suggest that
RBP4 may be involved in the pathophysiological process of
atherosclerosis by altering the distribution of proatherosclerotic
plasma lipoproteins.

Obesity, one of the risk factors for atherosclerosis, can
lead to increased blood triglyceride and cholesterol levels. The
close correlation between visceral adiposity and cardiovascular
disease has been previously demonstrated (Després and Lemieux,
2006). Won et al. (2012) found that RBP4 levels increased
with the accumulation of visceral adiposity and were associated
with risk factors for cardiovascular diseases (CVDs). RBP4 was
more frequently expressed in visceral adipose tissue than in
subcutaneous adipose tissue and was not affected by adiposity
size, fat distribution, body fat percentage and other factors
(Klöting et al., 2007). Serum RBP4 levels decreased by 25.5%
in non-diabetic subjects after completing a 16-week weight loss
program, and changes of RBP4 levels were significantly and
positively associated with abdominal visceral fat loss, but not
with total body fat loss or abdominal subcutaneous fat loss
(Lee et al., 2008). In studies of genetic variants, different types
of RBP4 single nucleotide polymorphisms (SNPs) were found
to affect circulating RBP4 levels and were strongly associated
with obesity, with the association of SNPrs3758538 with obesity
being noteworthy, suggesting a possible predictive role of RBP4
gene variants on obesity risk (Tsutsumi et al., 1992). These
studies suggest that RBP4 has a predictive value for visceral fat
accumulation and that adipose tissue, as the main source of RBP4
secretion by the body (White and Kelly, 2001), suggests that RBP4
may be a key mediator of the increased risk of cardiovascular
disease in obese patients.

Retinol-Binding Protein 4 and
Cardiovascular Diseases
Retinol-Binding Protein 4 and Vascular Injury
Oxidative stress-mediated changes promoted the development
of cardiovascular disease (Massaeli and Pierce, 1995). It was
found that RBP4 induces mitochondrial dysfunction and
apoptosis, which in turn promotes vascular oxidative stress.
RBP4 impaired mitochondrial number and integrity and
reduced membrane potential by inducing reactive oxygen species
(ROS) in mitochondria, and increased ROS and decreased
ATP production affected normal endothelial cell. Increased
cytochrome C release from mitochondria, increased Bax (pro-
apoptotic protein) and decreased Bcl-2 were observed in arteries
from RBP4 overexpressing (RBP4-Tg) mice, suggesting that
RBP4 increased apoptosis of endothelial cell (Wang et al., 2015).

Chronic vascular inflammation plays an important role in
the development of atherosclerosis, and vascular dysfunction
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TABLE 1 | Associated factors and diseases correlated with RBP4 levels.

Involved diseases Correlation with
blood RBP4 levels

References

ANP Heart failure Negative Moro et al., 2007

GFR Chronic kidney disease Negative Akbay et al., 2010; Abbasi et al., 2020

High-intensity exercise — Negative Yu et al., 2009

Blood cholesterol Abnormal lipid metabolism,T2DM Negative Jugnam-Ang et al., 2015

Blood triglyceride Positive Vergès et al., 2012

Indirect VLDL-apoB100 FCR Negative Vergès et al., 2012

sdLDL Atherosclerosis Positive Usui et al., 2009

SNPrs3758538 Obesity Negative Codoñer-Franch et al., 2016

ROS Vascular injury,atherosclerosis Positive Wang et al., 2015

LVEF Heart failure Negative Li et al., 2020

LVMI and LAD Positive von Jeinsen et al., 2018

TLR4 and MyD88 Positive Gao et al., 2016

Carotid intima and plaque echogenicity Coronary heart disease Negative Stakhneva et al., 2020

TTR Amyloidosis Positive Suhr et al., 2015; Santos et al., 2016;
Chan et al., 2017

ANP, Atrial natriuretic peptide; GFR, glomerular filtration rate; VLDL, very low-density lipoproteins; sdLDL, small and dense low-density lipoprotein; ROS, reactive oxygen
species; LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; LAD, left atrial internal diameter; TLR4, Toll-like receptor 4; MyD88, myeloid differentiation
primary response gene 88; TTR, transthyretin protein.

promotes plaque initiation and progression (Endemann and
Schiffrin, 2004). RBP4 may be involved in the development of
cardiovascular disease by inducing an inflammatory response.
Norseen et al. (2012) found that RBP4 induced macrophage
pro-inflammatory cytokine secretion and expression through
activation of C-Jun N-terminal protein kinase (JNK) and Toll-
like receptor 4 (TLR4)-dependent signaling pathways (Figure 1).
Similarly, RBP4 was found to mediate vascular endothelial
cell inflammatory responses via NADPH oxidase and NF-κB-
dependent pathways (Farjo et al., 2012). In addition to endothelial
cells, RBP4 also increases the proliferation of vascular smooth
muscle cells through MAPK pathway and increases the risk
of cardiovascular diseases (Li et al., 2015). the receptor and
signaling pathways by which RBP4 acts with endothelial cells
and VSMCs deserve to be explored in further studies, which may
contribute to the understanding of the RBP4 and cardiovascular
disease linkage.

Retinol-Binding Protein 4 and Hypertension
Hypertension is primarily a disease that results from genetic and
environmental interactions, and its prevalence in the population
is increasing year by year. It was found that blood RBP4 levels
were significantly elevated in patients with untreated essential
hypertension (Solini et al., 2009; Zachariah et al., 2016; Li
et al., 2019) and significantly correlated with left ventricular
diastolic function (Porcar-Almela et al., 2015; Li et al., 2019).
RBP4 may be related to the left ventricular hypertrophy, and
carotid intra-medial membrane thickness (IMT), suggesting that
RBP4 may serve as a marker of vascular injury in hypertensive
patients at early stage (Mansouri et al., 2012; Kraus et al., 2015).
Significantly elevated levels of RBP4 were also found in patients
with prehypertension, and RBP4 was independently associated
with elevated diastolic and systolic blood pressure (Zhang et al.,
2017). Insulin resistance (IR) has recently been suggested as

a common pathophysiological basis for the development of
type 2 diabetes and hypertension. Sasaki et al. (2020) found
that the prevalence of hypertension increased with the degree
of impaired glucose metabolism and elevated RBP4 may be
involved in the development of hypertension by inducing IR.
The mechanism of RBP4 in hypertension has not been clearly
elucidated. Chiba et al. (2010) found that the binding of
RBP4 to retinol activated inflammatory response that induced
atherosclerosis, decreased vascular compliance and thus raised
blood pressure. The correlation between RBP4 and arterial
stiffness was also confirmed (Chondrou et al., 2020). It was
found that blood pressure was reduced in RBP4 knockout (RBP-
KO) mice and increased in RBP4 overexpressing (RBP-Tg)
mice, while RBP-KO mice were protected from Ang-II-induced
hypertension, confirming the presence of RBP4 as a risk factor in
the development of hypertension (Kraus et al., 2015). The effect
of RBP4 on blood pressure may be partly attributed to its effect
on vascular endothelial function, as elevated RBP4 attenuates
eNOS Ser1177 phosphorylation, which in turn attenuates the
endothelium-dependent vasodilatory effect mediated by nitric
oxide (Kraus et al., 2015; Figure 1).

Although the underlying mechanisms need to be further
explored, more and more studies are now showing the
close correlation between RBP4 and hypertension, and
the monitoring of RBP4 may be a valuable indicator in
determining early ventricular diastolic insufficiency and changes
in vascular compliance in hypertensive patients. RBP4 may be
a potential targeted molecule for preventing the progression of
prehypertension and delaying ventricular remodeling.

Retinol-Binding Protein 4 and Heart Failure
Terminal B-type natriuretic peptide (NT-proBNP) is now known
to be widely used as a diagnostic indicator of heart failure.
Previous studies in elderly patients hospitalized with heart
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FIGURE 1 | Schematic diagram showing an association between RBP4 and cardiovascular diseases. (a) Binding to retinol, RBP4 activates an inflammatory
response that induces atherosclerosis and decreased vascular compliance, and thus raises blood pressure. (b) RBP4 could also result in high blood pressure by
attenuating eNOS Ser1177 phosphorylation and then the nitric-oxide (NO)-mediated vasodilatory effect. (c) RBP4 stimulates TLR4 and MyD88 experssion, which
significantly promotes the pro-inflammatory response and increases ROS, and then cause cardiomyocyte hypertrophy. (d) RBP4 promotes the formation of foam
cells, which upregulates CD36 expression and cholesterol uptake, and atherosclerosis, thereby leading to coronary heart disease. (e) RBP-retinol complex could
reduce TTR breakdown and then inhibit the formation of amyloid fibril and avoid cardiac amyloidosis.

failure have shown that RBP4 did not correlate with NT-
proBNP, and that changes of blood RBP4 levels are more likely
attributable to the deterioration of renal function in patients
with advanced heart failure, resulting in the accumulation of
circulating adipokines (Majerczyk et al., 2018). It was found
that alterations in RBP4 in patients with type 2 diabetes
were also attributed to the changes of renal function (Henze
et al., 2008). It seems to be no relationship between RBP4
and diagnosing of heart failure. But a subsequent prospective
cohort study showed that in elderly patients with chronic heart
failure, blood RBP4 levels were negatively correlated with left
ventricular ejection fraction (LVEF) and positively correlated
with NT-proBNP, and that serum RBP4 levels increased with
decreasing cardiac function (Li et al., 2020; Table 1), In addition,
the results of a 60-month follow-up suggested that blood
RBP4 levels were positively correlated with adverse events in
patients with chronic heart failure. The finding that RBP4
levels were positively correlated with left ventricular mass
index (LVMI) and left atrial internal diameter (LAD) also
suggests that RBP4 plays a role in the process of cardiac

remodeling (von Jeinsen et al., 2018). The blood RBP4 levels
in patients with advanced heart failure can be improved by
implantation of a ventricular assist device (Chavarria et al.,
2012). So RBP4 is a valuable diagnostic indicator of heart failure,
and may be involved in the pathogenesis and development
of heart failure.

Retinol-binding protein 4 is involved in the pathological
process of heart failure through a variety of mechanisms. The
elevation of RBP4 in patients with advanced heart failure may
result from upregulation of RBP4 mRNA expression by IL-8
(Bobbert et al., 2009). In addition, RBP4 was found to cause
cardiomyocyte hypertrophy, which may mediate a vicious cycle
between insulin resistance and heart failure (Gao et al., 2016; von
Jeinsen et al., 2018). RBP4 increased cell size, enhanced protein
synthesis, and elevated the expression of hypertrophic markers
including Anp, Bnp, and Myh7 in primary cardiomyocytes,
but inhibition or knockdown of the TLR4/MyD88 pathway
attenuated inflammatory and hypertrophic responses to RBP4
stimulation (Gao et al., 2016; Figure 1). Angiotensin II (Ang-
II) also increases the expression of RBP4 in adipocytes, and the
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use of Ang-II receptor antagonists may eliminate this effect,
which may explain another mechanism of the renin-angiotensin-
aldosterone system (RASS) in exacerbating the deterioration of
cardiac function (Gao et al., 2016). This needs to be explored in
more clinical studies in the future.

Retinol-Binding Protein 4 and Coronary Heart
Disease
Retinol-binding protein 4 levels in patients with coronary artery
disease were found to be significantly higher than in the non-
coronary artery disease (CAD) group (Ingelsson and Lind, 2009;
Li et al., 2014; Liu et al., 2019) and positively correlated with
the number of diseased vessels (Cubedo et al., 2014; Liu et al.,
2015; Wessel et al., 2019), some clinical results have shown that
serum RBP4 levels are reduced in patients with acute myocardial
infarction, in male patients with familial hypercholesterolemia,
a reduction in RBP4 has shown predictive significance for the
possibility of ischemic events in the next 2 years, suggesting
that RBP4 may be involved in the AMI (Cubedo et al., 2014).
Similarly, Liu et al. (2015) found that patients with CAD with
higher RBP4 had a concomitant increase in acute coronary
syndrome (ACS) events in a 3-year follow-up (Table 1).

Previously, Mallat found that RBP did not provide additional
predictive value compared to traditional risk factors in normal
subjects (Mallat et al., 2009). But in a 16-year prospective case-
control study (Sun et al., 2013), both full-length and total
RBP4 levels were found to be strongly associated with the
risk of coronary heart disease in women, with this association
diminishing over time. Full-length RBP4 may exist as the most
biologically active isoform of RBP4. In addition, increased
values of both RBP4 and lipoprotein conjugate index (LCI)
were found to be independent risk factors for ACS, and the
combined test results of LCI and RBP4 values may serve
as a potential indicator for the diagnosis of ACS (Wessel
et al., 2019). RBP4 gene polymorphism was also found to be
closely associated with coronary artery disease (Wan et al.,
2014). Liu et al. (2017) found that RBP4 was localized in
macrophage-rich foam cells, that RBP4 promotes the formation
of macrophage-derived foam cells by activating the c-Src-
JNK-STAT1 signaling pathway, which in turn upregulates
CD36 expression and cholesterol uptake, and that RBP4
concentration is negatively correlated with carotid intima and
plaque echogenicity (Stakhneva et al., 2020; Figure 1 and
Table 1). The results suggested that RBP4 was involved in the
progression of atherosclerosis. In conclusion, RBP4 involved in
the pathophysiological process of coronary heart disease, as a risk
factor, has shown valuable in predictor of coronary complexity
and the occurrence of adverse cardiovascular events in patients
with CAD. RBP4 is expected to be a new biological indicator
of coronary heart disease, and a clinical risk factor of coronary
heart disease.

Retinol-Binding Protein 4 and Cardiac Amyloidosis
Cardiac amyloidosis (CA) is an accumulation of insoluble fibrous
deposits composed of abnormally folded protein molecules in
the myocardial interstitial, which mainly manifests clinically as
cardiac insufficiency, various arrhythmias, and angina pectoris,

among which the transthyretin amyloidosis (ATTR) type is more
common in clinical work. It was found that blood RBP4 levels in
patients with transthyretin amyloidosis were significantly lower
than in controls (Arvanitis et al., 2017a,b). Chan et al. (2017)
further found that RBP4 was significantly decreased in mutant
myocardial amyloidosis (ATTRm) compared to controls, but
not in wild-type myocardial amyloidosis (ATTRwt) by using
blood proteomics analysis. The reduced level of serum TTR
was closely correlated with the reduced level of RBP4 (Suhr
et al., 2015). The lower levels of RBP4 paralleled to serum TTR
levels, which may be related to the fact that TTR acts as a
transporter protein to bind the RBP4-retinol complex and thus
reduces renal excretion of RBP4 (Hamilton and Benson, 2001;
Table 1).

Retinol-binding protein 4 has been found to have anti-
amyloidogenic properties, and the decrease of RBP4 alleviate
the formation of the RBP4-retinol complex and attenuates its
role in stabilizing the TTR tetrameric structure (White and
Kelly, 2001; Santos et al., 2016). In vitro assays have shown
that the RBP-retinol complex (holoRBP) inhibits the rate of
amyloid fibril formation in a concentration-dependent manner
(White and Kelly, 2001). holoRBP at physiological concentrations
slowed down the rate of TTR breakdown approximately sixfold
compared to TTR breakdown alone (Hyung et al., 2010). RBP4
concentrations higher than or equal to 50 µg/mL were found
to be up to 100% sensitive for the diagnosis of ATTRV122I
amyloidosis, although its specificity decreased to 38%, suggesting
that RBP4 could provide 100% negative predictive value when
used to rule out ATTRV122I amyloidosis (Arvanitis et al.,
2017a; Table 1). The diagnostic and predictive value of RBP4
in ATTR amyloidosis needs to be confirmed in larger and more
pathologically diverse cohort studies.

SUMMARY

As an adipokine, RBP4 has shown a close association with
dyslipidemia, obesity, and vascular impairment. RBP4 also
derives exclusively from hepatocytes, but liver-secreted RBP4
does not impair glucose homeostasis (Fedders et al., 2018). In
addition, RBP4 has shown promising value for cardiovascular
disease diagnosis and treatment, such as predicting the risk
of hypertension and coronary heart disease in the general
population, and assessing the prognosis of patients with coronary
heart disease and heart failure, etc. RBP4 is expected to be a new
biomarker for cardiovascular disease in the future. The study
of RBP4 antagonists may also be a new therapeutic agent for
cardiovascular diseases.
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Role of Endothelial Cell Lipoprotein
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Cold-induced activation of brown adipose tissue (BAT) has an important impact on
systemic lipoprotein metabolism by accelerating the processing of circulating
triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) expressed by adipocytes is
translocated via endothelial to the capillary lumen, where LPL acts as the central enzyme
for the vascular lipoprotein processing. Based on preliminary data showing that LPL is not
only expressed in adipocytes but also in endothelial cells of cold-activated BAT, we aimed
to dissect the relevance of endothelial versus adipocyte LPL for lipid and energy
metabolism in the context of adaptive thermogenesis. By metabolic studies we found
that cold-induced triglyceride uptake into BAT, lipoprotein disposal, glucose uptake and
adaptive thermogenesis were not impaired in mice lacking Lpl exclusively in endothelial
cells. This finding may be explained by a compensatory upregulation in the expression of
adipocyte-derived Lpl and endothelial lipase (Lipg).

Keywords: lipoprotein lipase, triglycerides, endothelial cells, adipocytes, lipoproteins, adipose tissue,
thermogenesis, de novo lipogenesis

INTRODUCTION

Brown adipose tissue (BAT) is a thermogenically active organ ofmammals that supports adaptation to cold
environments through non-shivering thermogenesis. Heat is generated in active brown adipocytes through
disconnection of the respiratory chain from oxidative phosphorylation by the proton transporter
uncoupling protein-1 (UCP1) at the inner mitochondrial membrane (Cannon and Nedergaard, 2004).
This process is highly connected with ß-oxidation of fatty acids that are released from intracellular lipid
droplets. Lipolysis of stored triglycerides is initiated by sympathetic stimulation of ß-adrenergic receptors
on brown adipocytes which initiates cyclic AMP (cAMP) signaling, resulting in activation of adipose
triglyceride lipase and hormone-sensitive lipase (Young and Zechner, 2013). In rodents, BAT
thermogenesis is mainly mediated by ß3-adrenergic receptor stimulation (Cannon and Nedergaard,
2004), whereas for human BAT evidence has been provided for both ß2-and ß3-adrenergic receptor
signaling (Blondin et al., 2020; Cero et al., 2021). As activated BAT utilizes large amounts of fatty acids,
efficient mechanisms are needed to replenish intracellular lipid stores. BAT is a highly vascularized tissue,
and upon cold exposure, glucose (Bartelt et al., 2011; Stanford et al., 2013; Heine et al., 2018; Fischer et al.,
2019) and fatty acids (Furler et al., 2000; Heine et al., 2018) are taken up in large quantities into brown
adipocytes via the endothelium. Glucose handling by activated brown adipocytes is quite complex and a
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recent elegant in vivo study employing 13C-labeleled glucose showed
that under acute cold exposure, glucose is primarily used as fuel for
thermogenesis and for the pentose phosphate pathway (Jung et al.,
2021). In response to sustained cold adaptation, 13C is also enriched
in lactate and glycerol 3-phosphate (Jung et al., 2021). Moreover,
under this condition glucose is also used for de novo lipogenesis
(DNL), which confirms previous studies demonstrating DNL to be a
highly active pathway in BAT (Mottillo et al., 2014;Weir et al., 2018).
Non-esterified fatty acids (NEFA) are taken up via transporters such
as CD36 and are either directly channeled into ß-oxidation or stored
in the form of triglycerides in lipid droplets. These fatty acids are
mostly derived from triglyceride-rich lipoproteins (TRL) which are
processed by lipoprotein lipase (LPL) in the capillary lumen (Bartelt
et al., 2011). LPL is the key enzyme for TRL degradation and is highly
expressed in organs that consume or store fatty acids in large
amounts such as heart, skeletal muscle, white adipose tissue
(WAT), and BAT (Merkel et al., 2002; Bartelt et al., 2011;
Kersten, 2014; Khedoe et al., 2015). In BAT, LPL is known to be
predominantly expressed by brown adipocytes and is translocated to
the luminal site of the vascular endothelium by
glycosylphosphatidylinositol anchored high density lipoprotein
binding protein 1 (GPIHBP1) (Beigneux et al., 2007; Davies et al.,
2010; Davies et al., 2012; Olivecrona, 2016). The expression and
activity of LPL is regulated in a tissue-specific manner and controlled
by different stimuli to provide the optimal supply of organs with fatty
acids (Olivecrona et al., 1997; Kersten, 2014). LPL in BAT is mainly
stimulated by cold-induction but also refeeding and insulin
administration can stimulate enzyme activity (Mitchell et al., 1992;
Deshaies et al., 1993; Klingenspor et al., 1996; Kuusela et al., 1997). On
the transcriptional level, adipocyte LPL expression is regulated by
several transcription factors including among others the peroxisome
proliferator-activated receptor gamma (Kersten, 2014). The
importance of LPL for systemic lipid metabolism is demonstrated
by the observation that LPL deficiency in humans and mice leads to
massive hypertriglyceridemia (Coleman et al., 1995; Weinstock et al.,
1995). In line, Gpihbp1−/−mice are characterized by highly increased
plasma triglyceride levels due to the missing translocation of LPL. In
the present study, we show that LPL is not only expressed in
adipocytes but surprisingly also in endothelial cells of cold-
activated BAT. Hence, we investigated the role of LPL expression
in these cells by studying transgenic mice lacking LpL exclusively in
endothelial cells (EndoLPLko). We observed that LPL expressed by
endothelial cells is dispensable for lipoprotein handling and adaptive
thermogenesis in both fasted and postprandial state. Furthermore, we
provide evidence that the lack of effect on lipoprotein processing in
EndoLPLko mice may be explained by a compensatory, higher
expression of LPL in brown adipocytes and of LIPG in
endothelial cells.

MATERIALS AND METHODS

Animals
All experiments were performed with permission of the Animal
Welfare Officers at University Medical Center Hamburg-
Eppendorf and Behörde für Gesundheit und
Verbraucherschutz Hamburg. To induce Cre-loxP

recombination, Cdh5-Cre/ERT2 x Lplflox/flox (EndoLPLko)
mice received three consecutive doses of 0.2 mg tamoxifen
(Sigma-Aldrich. St. Louis, Missouri, USA) dissolved in 100 µl
sunflower oil via gavage 1 week before the experiments. All mice
had ad libitum access to food and water and were kept in a
temperature-controlled room at given temperatures with a 12 h
light: 12 h dark cycle. The mice were fed a chow diet (P1324,
Altromin, Germany) or western type diet, ssniff Spezialdiäten
GmbH, Germany, duration: 2 weeks before necropsy), as
indicated in the text. For the experiments, age- and weight-
matched male mice were used. For the combined oral glucose
and fat tolerance test (OGFT), turnover study and indirect
calorimetry, mice were first fed chow diet and then received
western-type diet for 2 weeks. For OGFT and lipoprotein
turnover studies body composition (fat and lean mass) was
analyzed using a magnetic whole-body composition analyzer
(EchoMRI™, Zinsser Analytic GmbH, Eschborn, Germany)
1 day prior to the experiments. For all terminal procedures,
mice received 180 mg/kg ketamine and 24 mg/kg xylazine
before necropsy.

Metabolic Tracer Studies
For OGFT, mice were fasted for 2 h before receiving an oral
gavage of 200 µl of a glucose-lipid emulsion containing 47 mg
triglycerides/kg body weight and glucose (2 g/kg body
weight). The gavage solution was labelled with 14C-triolein
(0.15 MBq/kg body weight, Perkin Elmer, Waltham, MA,
USA) and 3H-deoxyglucose (3H-DOG; 0.72 MBq/kg body
weight, Hartmann Analytic, Braunschweig, Germany).
Organs were harvested 2 h after gavage. For lipoprotein
turnover studies, mice were fasted for 4 h and were
subsequently tail vein-injected with 100 µl radiolabeled
TRLs. Radiolabeled TRLs were prepared by extraction of
rat chylomicrons (Skottova et al., 1995) using the method
of Folch, addition of radiolabelled 14C-triolein and
subsequent sonication. Solvents were evaporated, and
labelled TRL were formed by addition of PBS and
14C-triolein (MBq/kg body weight) and subsequent
sonication. 3H-DOG (MBq/kg body weight) was added to
the emulsion to follow glucose uptake from the circulation
without triggering glucose-stimulated insulin secretion.
Organs were harvested 15 min after injection. For all
experiments, organs from anesthetized mice were harvested
after systemic perfusion with PBS-heparin (10 U/mL;
Rotexmedica) via the left heart ventricle. Organs were
homogenized using Solvable™ (Perkin Elmer) or frozen
immediately in liquid nitrogen and stored at −80°C for
further analysis. Radioactive counts were determined by
scintillation counting using a Tricarb scintillation counter
(Liquid Scintillation Analyzer Tri-Carb®2810TR, Perkin
Elmer).

For imaging of TRL disposal in BAT by confocal fluorescence
microscopy, an immunofluorescence-based method was used.
Briefly, BODIPY™ FL C 16 labeled TRL (BODIPY-TRL) were
prepared using a similar approach to radiolabeled TRL. Briefly,
0.2 mg BODIPY™ FL C 16 (D3821, Thermofischer) dissolved in
1 ml Intralipid® (CLINOLEIC 20%, Baxter S.A.) was applied
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intragastrically in rats and chylomicrons were obtained from
cannulated lymphatic vessels. Lipids were extracted to obtain
TRL particles as described above.

TRAP RNA Isolation
TRAP was performed as previously described (Long et al., 2014)
with modifications. In brief, small pieces (50–100 mg) of frozen
BAT were Dounce-homogenized in 4 ml homogenization buffer
(50 mM Tris [pH 7.5], 12 mM MgCl2, 100 mM KCl, 1% NP-40,
100 μg/ml Cycloheximide, 1 mg/ml sodium heparin, 2 mM DTT,
0.2 U/μL RNasin, and 1x Complete EDTA-free protease inhibitor;
Roche). After centrifugation at 13,000 rpm for 10 min, the lipid
layer was removed and the supernatant was collected and
incubated with anti-GFP antibody (5 μg/ml; Abcam, ab290)
for 1 h at 4°C. Protein G dynabeads were washed twice in low-
salt wash buffer (50 mM Tris [pH 7.5], 12 mM MgCl2, 100 mM
KCl, 1% NP-40, 100 μg/ml cycloheximide, and 2 mM DTT),
added to the homogenates with antibody, and subsequently
incubated for 30 min. Dynabeads with immunoprecipitates
were washed three times in high-salt wash buffer (50 mM Tris
[pH 7.5], 12 mM MgCl2, 300 mM KCl, 1% NP-40, 100 μg/ml
cycloheximide, and 2 mM DTT). Following the last wash, RLT
buffer with β-mercaptoethanol was added to dynabeads, and
RNA was extracted using a QIAGEN Micro RNeasy kit
according to the manufacturer’s instructions. For input RNA,
5% of homogenates were mixed with TRIzol and processed
according to the manufacturer’s instructions to extract total
RNA. Isolated RNA was quantified by Qubit.

Gene Expression Analysis
To obtain SVF, interscapular BAT was minced and then digested
with 1 mg/ml type II collagenase for 30 min at 37°C (Sigma
Aldrich). The dissociated cells were passed through a 100 μm
sieve to remove undigested particles. Centrifugation at 700 g for
10 min was then performed to separate the SVF pellet from the
floating adipocytes. The resulting SVF pellet was dissolved in PBS
and passed through a 40 µm sieve to achieve higher purity. For
isolation of endothelial cells and brown adipocytes, the filtrate
was centrifuged at 600 x g for 5 min, the cell pellet was
resuspended and incubated with CD11b MicroBeads for
depletion of the macrophage fraction (Miltenyi; 10 µl beads/
107 cells). CD11b + cells were captured from the lysate using
magnetic columns (Miltenyi). The flow through was centrifuged,
the pellet was resuspended and incubated with CD31MicroBeads
(Miltenyi; 10 µl beads/107 cells) to isolate endothelial cells. The
flow through, containing predominantly adipocytes, was
collected. RNA was isolated from cells, tissue samples and SVF
using TRIzol Reagent (ThermoFischer Scientific, Waltham, MA,
USA) and NucleoSpin RNA/Protein kit (Macherey & Nagel,
Düren, Germany) and used for cDNA preparation using the
High Capacity cDNA Reverse Transcription kit with RNase
Inhibitor (ThermoFischer Scientific) according to the
manufacturer’s instructions. Real-time PCR using TaqMan Assay-
on-Demand primer sets was performed on a QuantStudio 5 Real-
Time-PCR System (ThermoFischer Scientific) and relative expression
was normalized to the housekeeper Tbp. Taqman® assays used in this
study (assay IDs in brackets): Acaca (Mm01304285_m1), Angptl4

(Mm00480431_m1), Cd36 (Mm00432403_m1), Chrebpß
(AIVI4CH), Dio2 (Mm00515664_m1), Elovl3 (Mm00468164_m1),
Elovl6 (Mm00851223_s1), Fasn (Mm00662319_m1), Glut4
(Mm01245502_m1), Lipg (Mm00495368_m1), Ppargc1a
(Mm00447183_m1), Scd1 (Mm00772290_m1), Srebp1c
(AI89KJW), Tbp (Mm00446973_m1), Ucp1 (Mm00494069_m1).

Plasma and Lipid Parameters
Plasma triglyceride (Triglyceride FS Kit, DiaSys, Holzheim,
Germany), cholesterol (Cholesterin FS Kit, DiaSys), and NEFA
levels (NEFA-HR (2)-Kit, FUJIFILM Wako Chemicals, Neuss,
Germany) were determined using commercial kits according to
the manufacturer’s instructions. Blood glucose was determined
by conventional test stripes (Accu-Chek, Roche).

Histology and Adipocyte Diameter
Determination
A 5 µm thick hematoxylin and eosin-stained section were used for
microscopy and size determination. The adipocyte diameter
estimates were calculated by NIS-Elements from BAT of 5
independent mice per group.

Indirect Calorimetry and Body Core
Temperature
Indirect calorimetry was performed in a TSE phenomaster (TSE
Systems) in a temperature- and humidity-controlled chamber as
described before (Heine et al., 2018). During the experiment, all
mice were housed in single cages at a 12 h light: 12 h dark cycle
and had ad libitum access to food and water. EndoLPLko and
control mice were kept in the system at 22°C for 6d and for the
analysis of energy expenditure, the temperature was decreased to
6°C for 7d. Oxygen consumption and carbon dioxide production
were measured every 15 min. Body core temperature was
continuously determined using an implantable mouse
telemetry system based on G2 E- Mitter (Minimitter System
by Starr Life Science) in the TSE phenomaster.

Transwell System
Murine brown adipocytes were seeded and differentiated in the lower
chamber of a transwell system. On day seven of the brown adipocyte
differentiation protocol (Haas et al., 2009), murine microvascular
endothelial cells (InSCREENex GmbH) seeded in a 0.4 µM pore size
TC-insert (Sarstedt) were added on the top of the adipocytes. Both
brown adipocytes and endothelial cells were (co-)cultured for 4 hours
in a media containing 50% differentiation media (DMEM Glutamax
(ThermoFisher Scientific) supplemented with 10% FBS, 100 IU/ml
penicillin, 100 μg/ml streptomycin, 20 nM insulin, 1 nM
triiodothyronine) and 50% endothelial cell media (InSCREENex
GmbH) with or without 10 µM CL316,243. RNA was isolated
from brown adipocytes and endothelial cells separately.

Statistical Analyses
Data are presented as mean ± SEM. Two groups were compared
by unpaired two-tailed Student’s t test, more than two groups by
one-way or two-way ANOVA, as indicated in the figure legends.
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No method was used to determine whether the data met
assumptions of either Student’s t test or ANOVA. The
statistical parameters (i.e., p values, numbers of biological
repeats) can be found in the figure legends. No exclusion or
inclusion criteria were used for data analyses. Statistical analyses
were conducted using Graph Pad software; p < 0.05 was
considered significant.

RESULTS

Endothelial Cells in Murine Brown Adipose
Tissue Express LPL
Previously we described that Lpl is expressed in CD31-positive
endothelial cells of BAT (Fischer et al., 2021). To confirm this

finding, we employed NUTRAP mice, a Cre recombinase-
dependent transgenic model that allows cell type-specific gene
expression analysis by translating ribosome affinity purification
(TRAP). This method employs pulldown of polyribosomes and
thus does not require tissue disintegration (Roh et al., 2017).
Endothelium-specific NuTRAP (EndoNuTRAP) mice were
generated by crossing NuTRAP with VE-cadherin (Cdh5)-Cre
mice. To analyze the temperature-dependence of Lpl expression,
EndoNuTRAP mice were kept at room temperature (22 °C), or
exposed to either cold (6°C) or 30°C for 3 days. Efficient
enrichment of mRNA from endothelial cells in the BAT
lysates was confirmed by high expression of the endothelial
marker Gpihbp1 in the pulldown (TRAP) fraction as
compared to whole tissue lysate (input) at all temperatures
(Figure 1A). Of note, we observed substantial expression of

FIGURE 1 | Endothelial expression of LPL in BAT. (A–B) EndoNuTRAPmice were housed at 22°C, at 6°C or at 30°C for 3d. Expression ofGpihbp1 (A) and Lpl (B) in
endothelial cells (TRAP) and total tissue (input) of BAT were analyzed by qPCR (n = 4–5). (C) Transwell system for co-culturing of murine brown adipocytes with murine
microvascular endothelial cells. Endothelial cells were cultured in the presence or absence of differentiated brown adipocytes and were incubated without or with the β3-
adrenergic agonist CL316,243 at the same time to thermogenically activate the brown adipocytes. (D) Ucp1 expression in brown adipocytes co-cultured without
and with endothelial cells (ECs) (n = 4). (E) Lpl expression in endothelial cells co-cultured with brown adipocytes (+adipocytes) or without (-adipocytes), stimulated with
CL316,243 or with vehicle (none) (n = 4). (F) Wild type mice were housed at 6°C for 3 days and expression of Lpl was determined in CD31-positive endothelial cells and
thermogenic adipocytes of BAT that were isolated by MACS

®
(n = 3)Results are presented as mean values ±SEM. Statistical significance for (A,B) was determined by

one-way ANOVA and for (D,E) by two-way ANOVA. Same letter denotes groups that are not significantly different from each other (p ≥ 0.05). Statistical significance for
(F) was determined by Student’s t test; *p < 0.05.
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Lpl in the endothelial cell fraction that increased with decreasing
housing temperatures of the EndoNuTRAPmice (Figure 1B). To
further investigate the expression of Lpl in endothelial cells, we

established a transwell system for co-culturing murine
microvascular endothelial cells with murine brown adipocytes
(Figure 1C). To evaluate the potential mutual effects on gene

FIGURE 2 | Body composition and BAT lipid content in endothelial cell specific LPL knockout mice. (A)Control and EndoLPLko mice received a tamoxifen dosage
to generate mice lacking LPL in endothelial cells (Cre+) and controls (Cre-). Mice were exposed to 6°C for 1 day before SVF was isolated from BAT and analyzed for Cre
and Lpl expression by qPCR (n = 4). (B–E) EndoLPLko mice and litter mates (n = 6) were fed a western-type diet for 2 weeks, and housed at 6°C (cold) or 30°C (warm) in
the second week. (B) Body weight, (C) lean weight and (D) fat weight determined by EchoMRI, (E) plasma cholesterol (chol), (F) triglycerides (TG), (G) non-
esterified fatty acids (NEFA) and (H) blood glucose. (I) Hematoxylin eosin staining of BAT. Bars indicate 200 and 50 µm for lower and higher magnification, respectively.
(J)Ranges of adipocyte diameters calculated from (I) using NIS-Elements (Nikon

®
). Results are presented asmean values ±SEM. Statistical significance was determined

by Student’s t test (A) or by two-way ANOVA (B–D). Same letter denotes groups that are not significantly different from each other (p ≥ 0.05).
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expression, we cultured cells alone or in combination that were
treated without or with the β3-adrenergic agonist CL316,243.
Ucp1 expression was induced in CL316,243-treated brown
adipocytes (Figure 1D), which confirms their thermogenic
activation. Endothelial cells co-cultured with quiescent brown
adipocytes showed a trend for increased Lpl expression in
comparison to controls without adipocytes (Figure 1E). This
effect was significant after additional incubation with the ß3-
adrenergic receptor agonist CL316,243 (Figure 1E). These results
suggested that activated brown adipocytes produce paracrine
signals that lead to increased Lpl expression in endothelial
cells. To estimate Lpl expression in endothelial cells versus
adipocytes from BAT of cold-exposed mice, we employed
antibody-based magnetic-activated cell sorting (Fischer et al.,
2021). In this setup, Lpl mRNA levels were approximately 2.5-
fold higher in thermogenic adipocytes compared endothelial cells
(Figure 1F). Taken together, Lpl is expressed at appreciable levels
in endothelial cells of cold-activated BAT and endothelial Lpl
expression is stimulated by brown adipocytes.

Effect of Endothelial Cell Specific LPL
Knockout on Energy Homeostasis
To analyze the relevance of endothelial LPL for BAT energy
metabolism, endothelial specific LPL knockout mice were created
by crossing mice expressing a tamoxifen-inducible Cre
recombinase under the control of the VE-cadherin (Cdh5)
promoter with floxed Lpl mice to generate mice lacking LPL
in endothelial cells (EndoLPLko) and control littermates. Cre

recombinase expression was detected in stromal vascular fraction
(SVF) isolated from BAT of EndoLPLko but not in control mice
(Figure 2A). Moreover, significant reduced expression of Lpl in
the SVF confirmed efficient knockdown (Figure 2A). Next, we
assessed the effect of the endothelial cell-specific knockout on
energy balance and metabolism. To create nutritional conditions
typical for humans that go along with elevated lipoprotein
turnover in adipose tissues (Worthmann et al., 2017), the
study was performed with mice that were fed western type
diet for 2 weeks. Mice were then housed at thermoneutrality
(30°C), a state of thermogenic inactivity (Fischer et al., 2018), or at
6°C (cold) to strongly activate BAT. Under these conditions, body
weight (Figure 2B), lean weight (Figure 2C), fat weight
(Figure 2D), plasma cholesterol (Figure 2E), triglycerides
(Figure 2F), non-esterified fatty acids (Figure 2G) and blood
glucose (Figure 2H) were not different in EndoLPLko mice
compared to control littermates. Except for plasma
triglycerides, no significant effects of housing temperature on
these parameters was observed. Furthermore, lack of LPL in
endothelial cells had no effect on histological BAT appearance
studied by hematoxylin and eosin staining (Figure 2I). As
expected, the diameter of brown adipocytes was smaller in
cold-exposed compared to thermoneutral-housed mice but we
did not observe a major effect by the genotype (Figure 2J).

To further address the role of endothelial cell-specific LPL
expression for whole body energy balance in adaptation to cold
ambient temperature, EndoLPLko and control mice were
subjected to indirect calorimetry. Energy expenditure increased
in both genotypes when the mice were exposed to cold

FIGURE 3 | Energy expenditure of endothelial cell-specific LPL knockout mice. For indirect calorimetry analysis EndoLPLko (Cre+) and control (Cre-) mice fed a
western-type diet were placed in a TSE phenomaster system. (A) Energy expenditure and (B) respiratory exchange ratio were determined by indirect calorimetry (n =
3–4). Results are presented as mean values.
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temperature (Figure 3A). Furthermore, respiratory exchange rate
was slightly lower under these conditions, indicating higher lipid
compared to glucose oxidation (Figure 3B). However, the
EndoLPLko mice exhibited no significant difference in energy
expenditure or respiratory exchange rate compared to the Cre-
controls, indicating preserved systemic energy homeostasis in the
absence of endothelial LPL.

Organ Energy Uptake, Plasma Lipids and
BAT Gene Expression in the Postprandial
State
To study whether lack of endothelial LPL affects organ-
specific energy handling in the postprandial state,
EndoLPLko and control mice kept on a western-type diet
received a combined fat and glucose gavage containing
3H-deoxyglucose (3H-DOG) and 14C-triolein as
radiolabeled tracers. In line with previous data (Bartelt
et al., 2011), uptake of 14C-triolein into BAT was increased
in cold-exposed mice whereas lipid uptake into the liver was
diminished (Figure 4A). No significant differences were
detected in the other organs investigated. Of note, no effect
of endothelial-specific LPL knockdown on 14C-triolein uptake
in any organ could be detected, except for a significantly lower
hepatic lipid uptake in warm-housed mice (Figure 4A). As

expected, 3H-DOG uptake into BAT was higher in cold-
exposed mice, and this was additionally observed for heart,
inguinal WAT and liver (Figure 4B). Again, no effect of the
different genotypes was observed. Plasma analysis
demonstrated that the concentrations of triglycerides
(Figure 4C), cholesterol (Figure 4D) and non-esterified
fatty acids (Figure 4E) in these mice were not different
between the experimental groups.

These data indicate that TRL and glucose disposal in BAT is
independent of endothelial LPL expression in the postprandial
state. Next, we tested whether this, and the lacking effect of
endothelial LPL knockout on energy homeostasis (Figure 3),
might be due to compensation by altered BAT expression of genes
critical for thermogenesis (Figure 4F), lipoprotein and lipid
processing (Figure 4G) or glucose handling (Figure 4H). As
predicted, cold exposure led to the induction of Ucp1 (Figure 4F)
(Cannon and Nedergaard, 2004), endothelial lipase (Lipg)
(Schaltenberg et al., 2021) and fatty acid elongase 3 (Elovl3)
(Jakobsson et al., 2005) (Figure 4G). Also in line with previous
work (Sanchez-Gurmaches et al., 2018), glucose-regulated DNL
genes including carbohydrate response element-binding protein-
β (Chrebpβ), Elovl6, acetyl-CoA carboxylase-α (Acaca) and fatty
acid synthase (Fasn) were induced by cold (Figures 4G,H).
However, at a given housing temperature expression of these
genes was not different in EndoLPLko mice compared to

FIGURE 4 | Organ lipid and glucose uptake and BAT gene expression in the postprandial state. EndoLPLko (Cre+) mice and Cre-litter mates (n = 6) were fed a
western-type diet for 2 weeks, and housed at 6°C (cold) or 30°C (warm) in the second week. Organ and plasma harvest was performed 2 h after a combined oral glucose
and fat gavage. (A)Organ uptake of 14C-Triolein and (B) 3H-deoxyglucose (3H-DOG). Plasma levels of (C) triglycerides, (D) cholesterol and (E) Non-esterified fatty acids
(NEFA). Expression of (F) thermogenic, (G) lipoprotein and lipid-handling, and (H) glucose-handling genes in BAT of EndoLPLko mice. Results are presented as
mean values ±SEM. Statistical significance was determined by two-way ANOVA (p < 0.05). Same letter denotes groups that are not significantly different from each other
(p ≥ 0.05).
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littermates, suggesting that endothelial LPL does not influence
postprandial BAT energy and lipid homeostasis.

Lipoprotein Disposal and BAT Gene
Expression in the Fasted State
Insulin action on brown adipocytes has been shown to increase LPL-
dependent lipoprotein disposal in BAT (Heine et al., 2018), and thus
high insulin levels in the postprandial statemaymask potential effects
of LPL produced in endothelial cells. To investigate the role of
endothelial cell LPL in BAT lipid disposal under low insulin
conditions, we intravenously injected fluorescently-labeled TRL
into mice fasted for 4 h. Interscapular BAT was studied ex vivo by
confocal microscopy 15min after the injection. Brown adipocytes
from control animals (wild type) showed a strong accumulation of
BODIPY-labelled fatty acids within their lipid droplets and the same

was observed for EndoLPLko mice (Figure 5A). In contrast, mice
lacking LPL selectively in brown adipocyte (BAT-LPLko) showed
little accumulation of BODIPY fatty acids in BAT. Thus, LPL in
endothelial cells, unlike that in brown adipocytes, is not essential for
uptake of TRL-derived fatty acids in the fasted state. To further
address this notion in a more quantitative fashion, we intravenously
injected TRL labeled with 14C-triolein together with 3H-DOG in
tracer amounts into fasted mice that were kept on a western type diet
and either housed at 30°C (warm) or at 6°C (cold). Notably, we
observed that the cold-dependent increase in BAT 14C-triolein uptake
was moderately but significantly higher in EndoLPLko mice
compared to controls (Figure 5B). In contrast, other organs
exhibited no genotype effect. In contrast to lipid uptake, 3H-DOG
uptake into BAT was not influenced by the absence of LPL in
endothelial cells (Figure 5C). Of note, further BAT analysis revealed
that cold-exposed EndoLPLko mice compared to controls exhibited

FIGURE 5 | Lipoprotein disposal and BAT gene expression in the fasted state. (A) EndoLPLko, mice lacking LPL in brown adipocytes (BATLPLko), and wild type
control mice fed a chow diet were housed at 22°C followed by cold exposure (6°C) for 24 h. To analyze TRL uptake, BODIPY-labeled TRLwere injected intravenously into
animals fasted for 4 h. BAT was harvested for ex vivo confocal fluorescence microscopy 15 min after injection. The figure shows representative images of TRL uptake.
Bar indicates 20 µm. (B–F) EndoLPLko and control mice (n = 5–6) were fed a western-type diet for 2 weeks and housed at 30°C (warm) or 6°C (cold) in the second
week. 14C-Triolein labeled TRLs were injected intravenously together with tracer amounts of 3H-DOG. Organs were harvested 15 min after injection. (B)Organ uptake of
14C-triolein, and (C) 3H-DOG in EndoLPLko (Cre+) and control (Cre-) mice. Gene expression of (D) thermogenic, (E) lipoprotein and lipid-handling, and (F) glucose-
handling genes in BAT of EndoLPLko and Cre-control mice. Values are shown relative to Cre-warm. Results are presented as mean values ±SEM. Statistical significance
was determined by two-way ANOVA. Same letter denotes groups that are not significantly different from each other (p ≥ 0.05).
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increased expression of the thermogenic markers Ucp1 and
deiodinase-2 (Dio2) (Figure 5D), and of the lipases Lpl, Lipg as
well as the fatty acid elongases Elovl3 and Elovl6 (Figure 5E). In line
with the lack of genotype effect on glucose handling, no effect was
observed for glucose-handling genes includingDNL enzymes in cold-
exposed EndoLPLko versus control mice (Figure 5F). Altogether, the
lack of endothelial LPL resulted in higher lipid disposal by activated
BAT, which may be explained by the compensatory induction in the
expression of adipocyte LPL and endothelial LIPG.

DISCUSSION

Activated BAT is characterized by efficient, LPL-dependent disposal
of TRL, a metabolic action that is pronounced enough to reverse
pathological hypertriglyceridemia (Bartelt et al., 2011). While it was
originally assumed that expression of the enzyme in adipose tissue
occurs mainly in adipocytes and macrophages, in the present study
we detected substantial expression of LPL in endothelial cells of cold-
activated BAT. To address the functional role of LPL produced by
these cells, we generated and analyzed endothelium-specific LPL
knockout (EndoLPLko) mice. Notably, we observed that uptake of
fatty acids from TRL is not diminished in either the postprandial or
the fasted state. This indicates that LPL produced in endothelial cells
is not rate-limiting for TRL triglyceride hydrolysis, despite its close
proximity to the site of lipoprotein processing on the vascular face of
the endothelium (Goulbourne et al., 2014). Previous work showed
that lack of TRL processing in BAT andWAT results in induction of
glucose uptake and compensatory de novo synthesis of fatty acids
(Weinstock et al., 1997; Ullrich et al., 2001; Bartelt et al., 2013). In the
present study, we found no effect on BAT glucose uptake and
unaltered, glucose-dependent DNL enzyme expression in
EndoLPLko mice, indirectly supporting the notion, that influx of
lipids into the organ is not altered in a meaningful manner. The
underlying reason may be that endothelial LPL is quantitatively
irrelevant compared to LPL produced by brown adipocytes that
represent themajority of metabolic activity in BAT. LPL produced by
activated brown adipocytes controls BAT TRL disposal, as shown in
the present study using brown adipocyte-specific knockout, and
previously using adipocyte-specific knockouts (Bartelt et al., 2013).
Another reason might be, that LPL secretion is less efficient in
endothelial cells than in adipocytes, which has been shown to be
sensitive to intracellular disturbances requiring specific chaperones
and tight redox regulation (Kristensen et al., 2021).

Apart from the lack of direct contribution to TRL hydrolysis, we
provide clear evidence that endothelial LPL has a regulatory function
in BAT TRL disposal. This is demonstrated by the significant
induction of Lpl and Lipg in BAT of fasted EndoLPLko mice.
This unexpected finding suggests that, normally, endothelial LPL
generates specific autocrine and paracrine signals to suppress the
lipases LIPG and LPL. Consistent with such mechanisms, induction
of Lipg has previously been observed in mice lacking Lpl in whole
adipose tissues (Kratky et al., 2005) but not inmice lacking Lpl only in
adipocytes (Bartelt et al., 2013). Thus, endothelial LPL appears to have
specific regulatory functions. This notion is underlined by our
observation that not only lipases but also Ucp1, Dio2, Elovl3 and
Elovl6 are upregulated in BAT of the fasted EndoLPLko mice,

indicating that the genes of these thermogenic and fatty acid-
processing markers are under control of endothelial LPL. The
mechanisms underlying this regulation remain elusive but it is
tempting to speculate that LPL, which has no known function as
gene regulator, may affect gene expression via a fatty acid-related
transcriptional mechanism. Supporting that view, it was recently
shown that intracellular lipolysis mediated by lysosomal acid lipase
and subsequent fatty acid oxidation in capillary endothelial cells of
BAT is required for activation of the angiogenic transcription hypoxia
induced factor (Fischer et al., 2021). This process is important for
proper endothelial proliferation, vascularization and thermogenic
function of BAT and WAT in response to cold exposure (Fischer
et al., 2021; Fischer et al., 2022).

In conclusion, we found that LPL is expressed by endothelial cells
of cold-activated BAT. Interestingly, endothelial LPL activity seems
not to be involved in lipoprotein clearance needed for energy
replenishment but appears to fine-tune the metabolic balance by
generating fatty acid-dependent signals that modulate transcriptional
pathways in BAT in response to cold exposure.
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UCHL1 Regulates Lipid and Perilipin 2
Level in Skeletal Muscle
Ryan Antony, Katherine Aby, Hongbo Gao, Mary Eichholz, Rekha Srinivasan and Yifan Li*

Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that was originally
found in neurons. We found that UCHL1 is highly expressed in slow oxidative skeletal
muscles, but its functions remain to be fully understood. In this study, we observed that
UCHL1 protein levels in skeletal muscle and C2C12 myotubes were downregulated by
fasting or glucose starvation respectively. Skeletal muscle selective knockout (smKO) of
UCHL1 resulted in a significant reduction of lipid content in skeletal muscle and improved
glucose tolerance. UCHL1 smKO did not significantly change the levels of key proteins
involved in oxidative metabolism such as SDHA, Akt, or PDH. Interestingly, while the levels
of the major lipases and lipid transporters were unchanged, perilipin 2 was significantly
downregulated in UCHL1 smKO muscle. Consistently, in C2C12 myotubes, UCHL1
siRNA knockdown also reduced perilipin 2 protein level. This data suggests that
UCHL1 may stabilize perilipin 2 and thus lipid storage in skeletal muscle.

Keywords: skeletal muscle, lipid, ubiquitin C-terminal hydrolase L1, perilipin 2, mice, C2C12 cell

INTRODUCTION

Skeletal muscle is the largest tissue in the body and is critical for metabolism. Skeletal muscles are
highly heterogenous and plastic in terms of metabolism and contractility. Based on the nature of their
metabolism and contractile activities, skeletal muscle fibers are roughly classified as slow oxidative
(type I), fast oxidative (type IIa and IIx), and fast glycolytic (type IIb) fibers (Schiaffino and Reggiani,
2011). The oxidative fibers can use both glucose and fatty acids as energy fuels to generate ATP. The
ability of muscle fibers to shift fuel preferences due to various factors and stimuli is known as
metabolic plasticity (Kelley, 2005). Skeletal muscle metabolic plasticity is attenuated or diminished in
obesity, diabetes, and aging (Storlien et al., 2004), suggesting that metabolic plasticity is critical for
whole body metabolic homeostasis.

Fatty acids oxidation (FAO) is the major energy source for oxidative skeletal muscles (Hirabara et al.,
2007; Silveira et al., 2008; Turner et al., 2014; Lundsgaard et al., 2018). Free fatty acids (FFAs) are taken up
into cells via specific fatty acid transport proteins such as CD36 and fatty acid binding protein (FABP). In
the cytosol, FFAs are converted into acyl-coenzyme A (CoA), which is the substrate for FAO as well as
lipid synthesis. FAO is carried out in mitochondria through a cyclic process of a series of enzymatic
reactions. Muscle lipid homeostasis is determined by fatty acid uptake, β-oxidation, lipid synthesis, and
lipolysis (Kelley, 2005; Houten et al., 2016). Intramuscular lipid content is increased with excess fatty acids
availability or reduced fatty acid oxidation (Dyck et al., 1997). Impaired fatty acid metabolism and
increases intramuscular lipid accumulation in obesity are linked to muscle inflammation (Das, 2001;
Reidy et al., 2018) and insulin resistance (Stein and Wade, 2005; Koves et al., 2008; Turcotte and Fisher,
2008; Samuel et al., 2010; Dirks et al., 2016; Dominguez and Barbagallo, 2016; Lalia et al., 2016). On the
other hand, endurance exercise training also increases intramuscular lipid, which does not cause insulin
resistance but rather increases insulin sensitivity. This phenomenon is known as the athletic paradox
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(Goodpaster et al., 2001; Dubé et al., 2008). These facts suggest that it
is not the static intramuscular lipid content but the lipidmobilization
of the stored lipid that is critical for muscle metabolism and insulin
sensitivity. The regulation of intramuscular lipid storage and
utilization remain to be fully understood.

The excess FFA in the cytosol will be converted to triglyceride
(TG) and stored in lipid droplets (LDs) in the cells (Wang, 2016;
Ogasawara et al., 2020) as intramuscular lipids. LDs are the dynamic
organelles that control lipid synthesis, storage, mobilization, and
lipolysis (Walther and Farese, 2012; Olzmann and Carvalho, 2019).
LDs contain neutral lipid enveloped with a phospholipid monolayer
embedded with several proteins. The most abundant LD associated
proteins are perilipins (Kimmel et al., 2010). Of five members of
perilipin family, perilipin 2, 3, and 5 are expressed in skeletal muscle
and perilipin 2 is best characterized for its function in regulation of
LDs and muscle lipid content (Conte et al., 2016). Perilipin 2 is
positively correlated with muscle lipid content (Minnaard et al.,
2009). Perilipin 2 protein can be degraded through chaperone-
mediated autophagy pathway (Kaushik and Cuervo, 2015) or
ubiquitin-proteasome pathway (Xu et al., 2005; Masuda et al., 2006).

Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly
expressed in the nervous system and functions as a
deubiquitinating enzyme. UCHL1 is also expressed in some
peripheral tissues, including pancreas, liver, some cancer
tissues, as well as skeletal muscles, yet its function in skeletal
muscle needs to be better understood. Our recent work showed
that skeletal muscle UCHL1 is involved inmTORC1 activity (Gao
et al., 2019). In this study, we report that muscle UCHL1 affects
intramuscular lipid metabolism by stabilizing perilipin 2.

METHODS

Animals
All experimental protocols and use of animals in this study were
reviewed and approved by the University of South Dakota
Institutional Animal Care and Use Committee (IACUC) and
followed the NIH guideline of animal use in research under
protocol No. 1-03-19-22D. As previously mentioned (Gao et al.,
2020), the mouse line carrying floxed UCHL1 was generated from a
strain of “UCHL1 HEPD0603_7_h04” provided by the UK Medical
Research Council on behalf of the European Mouse Mutant Archive
(EMMA). The mouse strain with skeletal muscle specific knockout
(smKO) of UCHL1 was generated by crossing a mouse carrying
floxed UCHL1 and a mouse expressing cre under the skeletal muscle
specific myosin light polypeptide promoter (The Jackson Laboratory,
stock # 024713). For genotyping as well as for identification, a singular
toe was taken from each new born mouse around 5 days after birth.
The genomeDNAwas extracted from the toe tissue using protease K
digestion method. The genotype of each mouse was confirmed using
PCR with primers for floxed UCHL1 and Cre.

Glucose Tolerance and Insulin Tolerance
Tests
Glucose tolerance testing (GTT) and insulin tolerance test (ITT)
were done in 3-month-old WT and UCHL1 smKO mice. Both

groups of mice were trained for several days before testing by
placing the mice in a 50 ml tube for 2 minutes and allowing them
to adapt to the testing environment. Food was removed from
cages the night prior to testing to allow for a 1̴2 h fasting period.
Mice were placed in the tube for 1 min, a cut was made at the end
of the tail and the blood glucose was measured using a OneTouch
Ultra 2 blood glucose meter (LifeScan, Pennsylvania,
United States). Blood glucose was taken before (baseline) and
at 15, 30, 60, 90, and 120 min after intraperitoneal injection of
glucose solution (2 g/kg) or insulin saline (2 U/kg). The glucose
tolerance curves were generated and the areas under curve (AUC)
were analyzed using GraphPad Prism 9.0.

Tissue Collection
As previously described (Gao et al., 2020), mice were anesthetized
using isoflurane (3–4%). Muscles of the hind limb were exposed
by removing the skin. The soleus (slow oxidative fibers) and
extensor digitorum longus (EDL) (fast glycolytic fibers) muscles
were collected in DNase/RNase free tubes and frozen on dry ice
for Western blot assay. For tissue staining, soleus muscles were
isolated and snap frozen in pre-chilled 2-methylbutane (Kumar
et al., 2015), then embedded in optimal cutting temperature
compound (OCT) on dry ice and stored at −70°C for future
cryosectioning. Muscles were sectioned into 10-15 µm sections
and adhered onto slides for staining.

Muscle Staining
Intramuscular lipid was stained using Bodipy or oil red O
staining.

Bodipy staining was based on published works (Spangenburg
et al., 20112011; Qiu and Simon, 2016) with minor modifications.
Slides were removed from the −70°C freezer and immediately
fixed with 4% paraformaldehyde (PFA) for 15 min. Slides were
then washed in PBS 3 times for 5 min each, and then incubated
for 30 min at room temperature in a Bodipy 493/503
(ThermoFisher, D3922) in DMSO with a concentration of
3.8 mM. Following 3 washes in PBS for 5 min each, slides
were mounted with Fluoromount-G solution (Southern
Biotech, 0100-01) for imaging.

The oil red o staining was performed using the oil red o kit
(VitroVivo Biotech, VB-3007) following the manufacturer’s
protocol with modifications. Slides were brought to room
temperature for 30 min and fixed in 10% formalin for 20 min,
followed by 30 min of air drying at room temperature. Slides were
submerged in the pre-stain solution for 5 min, then incubated in
pre-warmed Oil Red O solution at 60°C for 10 min, and
immediately submerged into pre-warmed differentiating
solution for 5 min at 60°C. The slides were removed from the
solution and rinsed in 2 changes of Milli Q pure water before
submerging in Myers Hematoxylin solution for 20–30 s at room
temperature. The slides were then washed with tap water for
3 min, rinsed with Milli Q pure water, then mounted with
Fluoromount-G solution (Southern Biotech, 0100-01).

For fluorescent staining for type I muscle fiber and UCHL1,
muscle sections were fixed with 4% paraformaldehyde, washed
with PBST, and incubated overnight with mouse antibody for
type I myosin heavy chain (Developmental Studies Hydridoma
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Bank, BA-D5) and rabbit antibody for UCHL1 (Abcam,
ab108986). Following 3 washes with PBST, the sections were
incubated with secondary antibodies goat-anti-mouse conjugated
with Alexa-488 and goat-anti-rabbit conjugated with Alexa-594
(Invitrogen). Following 3 washes with PBST, the sections were
mounted with Fluoromount-G and imaged using a fluorescent
microscope (Olympus).

Cell Culture and Gene Knockdown
As previously described (Antony and Li, 2020), C2C12 myoblasts
were cultured in complete media (CM) made of dulbecco’s
modified eagle’s medium (DMEM, ThermoFisher-Gibco)
containing 10% fetal bovine serum (FBS), 1% penicillin-
streptomycin, and 1% HEPES. For glucose and serum
starvation experiments, fully confluent cells were switched into
fresh CM, incomplete media (ICM, FBS free), or FBS-free and
glucose-free media (NG) overnight and then harvested for
Western blot. To achieve UCHL1 knockdown (KD), once fully
confluent the cells were switched into 1 ml ICM and treated with
a mixture of Lipofectamine RNAiMAX (ThermoFisher,
13,778,075) and UCHL1 siRNA (IDT) for approximately 8 h.
Following this, 1 ml of differentiating media (DM) made of
DMEM containing 2% horse serum, 1% penicillin-
streptomycin, and 1% HEPES was added to the cells.
Following the overnight incubation, cells were switched to
2 ml of fresh DM. DM was changed every 72 h for a total
incubation time of 12 days before being harvested for Western
blot (WB).

Total Protein Extraction and Western Blot
Soleus muscle tissues were homogenized in 1X RIPA buffer
containing 1% protease inhibitor cocktail (Research Products
International, P50600-1), 1% phosphatase inhibitor cocktail
(Research Products International, P52104-1), 0.1% SDS, and
0.1% MG132. The muscle was placed in a 1.5 ml tube and
homogenized using a plastic pestles connected to an electric
driver. The tissue was crushed prior to adding the above
buffer, and then continuously homogenized for about 30 s in
the buffer. The homogenates were allowed to set in the buffer for
approximately 30 min on ice before being homogenized onemore
time. Tubes were then spun down at 10,000 xg for 5 min at 4°C.
Protein concentration of the supernatants of muscle
homogenates was determined by a standard BCA assay. The
protein concentration of all samples were normalized to the same
concentration. Cells were homogenized using the same buffer and
concentrations of cocktails.

Western blot was performed as described previously (Gao
et al., 2020). In addition to a mass ladder (BioRad Precision Plus
Protein All Blue Standard) loaded into each end lane, 15 µl of
homogenized muscle/cell samples containing loading buffer at a
concentration of approximately 2.5 μg/μl were subject to
electrophoresis in 11–16% gradient gels at 100 V for
approximately 3 h. Proteins were transferred on to 0.22 µM
nitrocellulose membranes at 350 mA using a trans-blot
apparatus (Bio-Rad, Hercules, CA). The membranes were fixed
in 50% methanol for 30 min at 4°C followed by 30 min at 37°C.
The membranes were then blocked with 3% non-fat milk in PBST

for 1 h on a rocker at room temperature. The membranes were
then incubated with primary antibodies and 0.5% BSA in PBST
overnight at 4°C. The following antibodies were used: anti
UCHL1 (Abcam, 108986), GAPDH (Santa Cruz, sc-47724),
Actin (Santa Cruz, sc-47778), DGAT2 (Santa Cruz, sc-
293211), ATGL (Cayman, 10,006,409), Perilipin 2 (Novus,
NB110-40877), Perilipin 3 (Novus, NB110-40764), OXPAT
(Novus, NB110-60509), MAGL (Cayman, 100035), CD36
(Protein tech, 18836-1-AP), Akt (Cell Signaling Technologies,
9,272), phosphor-Akt (Cell Signaling Technologies, 4,051),
AMPK (Cell Signaling Technologies, 2,793), phosphor-AMPK
(Cell Signaling Technologies, 2,535), SDHA (Abcam, ab14715),
SDHB (Abcam, ab178423), PDH (Cell Signaling Technologies,
3,205), and HSL (Cayman, 10,006,371). Following 3 washes with
PBST for 5 min each, membranes were incubated with the
appropriate secondary antibodies conjugated with Alexa-680
or 800 (Invitrogen) for 1 h at room temperature followed by 2
washes with PBST and 1 wash with PBS. The protein bands on the
membrane were imaged using a LICOR scanner (LICOR
Biosciences, Lincoln, NE). Following the imaging, some
membranes were stained for total protein load using Imperial
Protein Stain solution (ThermoFisher, UF286575) and de-stained
with 50% methanol and 10% glacial acetic acid. Band densities of
the proteins were analyzed using NIH ImageJ software and
normalized against total protein stain bands or GAPDH in
tissue samples or Actin in cell samples; the ratio of UCHL1
and other proteins were then calculated and compared between
KO/KD and WT/Control.

Triglyceride Assay
The triglyceride content in muscle homogenates was measured
using the triglyceride colorimetric assay kit (Cayman, 10,010,303)
by following the manufacturer’s protocol. In a 96 well plate, a
standard curve was prepared using the included standard
reagents and diluents. In each well, 10 µL of sample and
150 µL of the assay enzyme solution were added, thoroughly
mixed on a microplate shaker (FisherBrand, 88,861,023), and
then incubated for 30 min at 37°C. The absorbance of theassay
was measured using a TECAN plate reader (TECAN, Infinite
m200) and Magellan software. Absorbance of samples was
analyzed to determine differences between WT and KO groups.

Data Analysis
All data calculations, descriptive statistics, and graphing were
performed using Microsoft Excel and GraphPad Prism 9.0. To
quantify Western blot results, a protein band density was
normalized by total protein stain, GAPDH or beta actin as
loading controls. The mean value of the WT/Control group was
calculated, followed by calculating the ratio between each individual
sample to that of the WT/Control mean. The mean values of the
ratio of WT/Control and KO/KD samples were compared between
two groups by the two-tailed t-test; Statistical significance was
defined as p value less than 0.05. Data was presented as mean ±
SD. To quantify glucose testing results, the mean values of glucose at
each time point and an area under curve for both the WT and KO
groups were calculated and compared using a two-tailed t-test to
determine the statistical significance between the two groups.
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RESULT

UCHL1 Level is Downregulated by Fasting
In skeletal muscle, UCHL1 is highly expressed in soleus, a typical
slow oxidative muscle, and is very low in EDL, a typical fast

glycolytic muscle (Figure 1A). Immunofluorescent staining
showed the colocalization of UCHL1 and type I slow oxidative
fibers (Figure 1B). Fasting, which promotes muscles fatty acid
oxidation, downregulated UCHL1 in soleus (Figure 1C).
Consistent with this, in differentiated C2C12 myotubes,

FIGURE 1 | Western blot images (top) and quantifications (bottom) of UCHL1 in mouse skeletal muscles or C2C12 myotubes. (A): UCHL1 protein levels in slow
oxidative muscle soleus and fast glycolytic muscle EDL (n = 4); (B): Immunofluorescent staining for UCHL1 (red) and type I myosine heavy chain (green) in soleus muscle
section. The scale bar = 20 μm). (C): UCHL1 protein levels in soleus from fed or fasted mice (n = 3 per group); (D): UCHL1 protein levels in C2C12 myotubes complete
media (CM, containing 10% FBS and 4.5 g/L glucose), incomplete media (ICM, containing 4.5 g/L glucose but no FBS), or the media without FBS and glucose
(NG). (n = 4 per group).

FIGURE 2 | Lipid content in skeletal muscle. (A): Gel images of PCR genotyping to identify smKO, heterozygous, and WT genotypes; (B): Western blot for UCHL1
inmuscle fromWT andUCHL1 smKOmice. n = 4. (C): Oil-red-O staining for lipid in muscle fromWT or UCHL1 smKOmice. The scale bar = 5 μm. (D): Bodipy staining for
lipid in muscle from WT or UCHL1 smKO mice. The scale bar = 20 μm. (E): Lipid (triglyceride) in muscle homogenate of WT or UCHL1 smKO mice. n = 4 per group.
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UCHL1 level was also downregulated by glucose starvation
(Figure 1D). Since fasting is known to shift muscle energy
metabolism toward lipid oxidation, this data suggests that
UCHL1 may be involved in lipid metabolism in skeletal muscle.

UCHL1 smKO Reduced Lipid Content in
Skeletal Muscle
To test the functional role of UCHL1 in skeletal muscle, we have
generated skeletal muscle specific knockout (smKO) of UCHL1.
The genotype of homozygous floxed UCHL1 and cre transgene
was confirmed by PCR and a significant reduction of UCHL1
protein level in skeletal muscle was confirmed by Western blot
(Figure 2A). The intramuscular lipid content was measured by
oil-red-o staining (Figure 2B), BODIPY staining (Figure 2C),
and triglyceride assay (Figure 2D). As shown in these panels, the
intramuscular lipid content was significantly reduced in the
muscle from UCHL1 smKO mice when compared with WT.
This data suggests that skeletal muscle UCHL1 may play an
essential role in maintaining lipid content in skeletal muscle.

UCHL1 smKO did Not Affect the Levels of
Key Proteins Involved in Metabolism
Intramuscular lipid content can be affected by overall
metabolism. We then measured the level of some key proteins
that regulate metabolism and mitochondrial function, including
phosphorylated and total AMPKα (Figure 3B), phosphorylated
and total Akt (C), succinate dehydrogenase (SDH) (Figure 3D),
and pyruvate dehydrogenase (PDH) (Figure 3E). However, none
of these proteins were altered in the UCHL1 smKO muscle. The
levels of phosphorylated Akt and AMPK were nearly
undetectable in both WT and UCHL1 smKO samples.

Reduced perilipin2 in UCHL1 smKO Muscle
Lipid content is determined by fatty acid transport, lipid synthesis,
lipolysis, and lipid storage.We then assessed the level of proteins that
are related to these functions. CD36, which is the major protein
responsible for fatty acid transport, was not altered inUCHL1 smKO
muscle (Figure 4E). The levels of three major lipases, ATGL

(Figure 4B), HSL (Figure 4C), and MAGL (Figure 4D), also
remained unchanged in UCHL1 smKO muscle, suggesting that the
reduction of lipid content in UCHL1 smKOmuscle is unlikely due to
the increase in lipolysis activity. Interestingly, perilipin2, a key protein
that is associated with and stabilize lipid droplets, was significantly
reduced in UCHL1 smKO muscle (Figure 4H), suggesting the
possibility that UCHL1 may be essential to stabilize perilipin 2 and
thus lipid storage. Perilipin 3 level (Figure 4G) was significantly
upregulated in UCHL1 smKO muscle, potentially a compensatory
response to the reduction of perilipin2. The major lipid synthase
DGAT2 was also upregulated in UCHL1 smKO, which may also be a
compensatory response to the reduced lipid content.

Perilipin 2 Was Downregulated by UCHL1
Gene Knockdown in C2C12 Cells
To further determine whether UCHL1 regulates perilipin 2, we used
siRNA to knock down (KD) UCHL1 in differentiated C2C12
myotubes. Consistent with the animal data, UCHL1 KD
significantly reduced perilipin 2 protein level (Figures 5A,B).
UCHL1 KD also upregulated CD36 (Figure 5D) and
downregulated lipase HSL (Figure 5E) and MAGL (Figure 5F)
in C2C12 cells, potentially compensatory responses to the reduced
perilipin 2 and possible low lipid content. These later changes,
however, were not seen in the muscle with UCHL1 KO.

UCHL1 smKO Improved Insulin Sensitivity
To test whether the reduction of intramuscular lipid affected glucose
metabolism and insulin sensitivity, we conducted GTT and ITT.
Mice with UCHL1 smKO have improved glucose tolerance (Figures
6A,B) as well as insulin tolerance (Figure 6C), suggesting the lower
intramuscular lipid content induced byUCHL1 smKOhas favorable
effects on glucose metabolism and insulin sensitivity.

DISCUSSION

This study provides evidence for the first time showing that
skeletal muscle UCHL1 is involved in regulation of intramuscular
lipid content. In skeletal muscle, oxidative muscle uses both

FIGURE 3 | Western blot images (A) and quantifications (B–E) of muscle samples from WT and UCHL1 smKO mice for key proteins that are involved in lipid
metabolisms, including AMPKα ((B), n = 5), Akt ((C), n = 3), SDHA ((D), n = 5), and PHD ((E), n = 3).
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glucose and fatty acids as energy fuel, depending on the
availability. When extracellular glucose levels are low, such as
during fasting and exercise, the energy metabolism in oxidative
muscles shifts to fatty acid oxidation. We observed that UCHL1
was highly expressed in oxidative muscle such as soleus but has

very low levels in the glycolytic EDL. Moreover, skeletal muscle
UCHL1 was downregulated by fasting in mice and glucose
starvation in C2C12 cells, suggesting that UCHL1 may be
involved in energy metabolism shift. Consistent with this,
selective gene knockout of UCHL1 in skeletal muscle

FIGURE4 |Western blot images (A) and quantifications (B–I) of muscle samples fromWT andUCHL1 smKOmice for lipase ATGL (B), HSL (C), andMAGL (D), the
fatty acid transport protein CD36 (E), the key lipid synthesis enzyme DGAT2 (F), perilipin 3 (G), perilipin 2 (H), and UCHL1 (I). n = 4-5 per group.

FIGURE 5 |Western blot images (A) and quantifications (B–G) of cell lysates from C2C12 myotubes with control or UCHL1 siRNA knockdown for perilipin 2 (B),
perilipin 5 (C), CD36 (D), HSL (E), MAGL (F), and SDHB (G). n = 4 per group.
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significantly reduced intramuscular lipid. Together, these results
suggest that UCHL1 may function to facilitate lipid storage in
skeletal muscle, and downregulation of skeletal muscle UCHL1 in
fasting and starvation may be essential to mobilize stored lipid for
lipolysis to increase free fatty acid availability for oxidation.

The level of intramuscular lipid content can be affected by many
factors, including free fatty acid uptake, lipid synthesis, lipolysis, and
fatty acid oxidation. Our results showed that in UCHL1 smKO
skeletal muscle there were no changes with protein levels of
CD36, the major fatty acid transporter (Pepino et al., 2014),
ATGL, HSL, and MAGL, the major lipases (Badin et al., 2011),
suggesting that the reduced intramuscular lipid by UCHL1 smKO is
unlikely due to the reduced fatty acid transport and increased lipolysis.
It is also unlikely due to the reduced lipid synthesis because a major
lipid synthase, DGAT2, was upregulated in muscle with UCHL1
knockout, potentially a compensatory response to the low lipid levels.
AMPK and Akt pathways are major signaling pathways to promote
lipolysis, mitochondrial biogenesis, and fatty acid oxidation. Our data
did not show any changes in total protein level and phosphorylation
of AMPK and Akt, the two major pathways that regulate lipid
metabolism, in UCHL1 smKO muscle. Protein levels of SDHA
and PDH, two mitochondrial markers, were also unchanged in
UCHL1 smKO muscle. Together, these results suggest that the
reduced lipid content in UCHL1 smKO muscle may not be due
to the increased fatty acid oxidation.

Intramuscular lipids are stored into lipid droplets (LDs) (Walther
and Farese, 2012). LDs are active organelles that contain and store toxic
lipid as energy depots (Listenberger et al., 2003).When energy fuel runs
low such as during fasting or exercise, LDs canmobilize stored lipid for
lipolysis to increase free fatty acids for oxidation (Rambold et al., 2015).
LDmembranes are embedded with different proteins, among which is
the family of perilipin proteins (Kimmel and Sztalryd, 2016). Perilipin 2
(also known as adipose differentiation-related protein, ADFP) is one of
the 5 proteins in the perilipin family. Perilipin 2 is highly expressed in
adipose tissues and skeletal muscle in rodents and humans (Minnaard
et al., 2009). This protein is not only critical for LDs membrane
integrity but can also interact with major lipases such as ATGL
(MacPherson et al., 2013) or be targeted by chaperone-mediated
lipophagy to mobilize stored lipid for lipolysis (Kaushik and
Cuervo, 2015). Our results indicate that UCHL1 knockout in

mouse skeletal muscle or knockdown in C2C12 cells result in the
reduction of perilipin 2 protein level. It is plausible to propose that the
downregulation of perilipin 2 may be responsible for the reduction of
lipid content in UCHL1 knockout muscle. Indeed, perilipin knockout
resulted in reduced lipid content in myotubes (Feng et al., 2017).
UCHL1 functions as a deubiquitinating enzyme, while perilipin 2 is
subjected to ubiquitin-proteasome degradation (Xu et al., 2005;
Masuda et al., 2006). Therefore, UCHL1 may stabilize perilipin 2
by reducing its ubiquitination and proteasome-mediated degradation;
thus, UCHL1 downregulation or deletion can lead to increased
degradation of perilipin 2. Fasting-induced downregulation of
UCHL1 and subsequent perilipin 2 degradation may be a
mechanism for increasing access to lipids in LDs for lipolysis.

Our data showed an upregulation of perilipin 3 in UCHL1 smKO
muscle. This is likely a compensatory response to the downregulation
of perilipin 2 and/or low muscle lipid content. The role of perilipin 3
in skeletalmuscle is not clear (Morales et al., 2017). Perilipin 3 levels in
muscle biopsies from healthy human subjects are positively correlated
with whole-body oxidative capacity (Covington et al., 2015).Whether
this correlation is associated with lipid content is unknown. In the
muscle with UCHL1 smKO, the muscle lipid is low even though
perilipin 3was upregulated, suggesting the functions of perilipin 2 and
perilipin 3may not overlap, therefore, upregulation of perilipin 3 does
not compensate perilipin 2 downregulation-induced reduction of
muscle lipid content.

While lipids are an essential energy depot, intramuscular lipid
accumulation, as seen in obesity and aging muscle, contributes to
insulin resistance. We found that mice with UCHL1 smKO exhibit
improved glucose tolerance and insulin tolerance, suggesting that the
reduced intramuscular lipid by UCHL1 KO is protective. This is
consistent with the report that perilipin 2 KOmice showed increased
insulin sensitivity in obese mice (Chang et al., 2010). Therefore, the
reduced perilipin 2 by UCHL1 smKO may also contribute to the
increased insulin sensitivity in this study.We would like to point out
that in this study, fasting plasma insulin level was not measured.
Insulin sensitivity is also regulated by many factors. Therefore, the
mechanisms of the enhanced glucose tolerance and insulin tolerance
in UCHL1 smKO mice remain to be further investigated.

Further studies are needed to fully understand the role of skeletal
muscleUCHL1 in lipidmetabolism, particularlywhether upregulation

FIGURE 6 |Glucose tolerance test and insulin tolerance test. (A–B): GTT curve (A) and area under the curve (B); n = 5 per group. (C): ITT curve. n = 5–6 per group.
(D): body weight. n = 6 per group.
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of UCHL1 in skeletal muscle is involved in metabolic disorders and
insulin resistance. Interestingly, our previous work showed that
UCHL1 skeletal muscle knockout reduced mitochondria oxidation
activity (Gao et al., 2020), which seems contradictory to the present
data because reduction of mitochondrial oxidation can increase lipid
accumulation. One possibility for these seemingly contradictory
results in the same UCHL1 smKO mouse model is that the
reduced oxidative activity observed previously may be secondary to
the reduced muscle lipid content, that is, reduced lipid and fatty acids
lead to the reduced mitochondrial oxidation activity. This possibility
certainly needs to be further verified.
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The m6A methylation is the most numerous modification of mRNA in

mammals, coordinated by RNA m6A methyltransferases, RNA m6A

demethylases, and RNA m6A binding proteins. They change the RNA m6A

methylation level in their specific manner. RNA m6A modification has a

significant impact on lipid metabolic regulation. The “writer” METTL3/

METTL14 and the “eraser” FTO can promote the accumulation of lipids in

various cells by affecting the decomposition and synthesis of lipids. The

“reader” YTHDF recognizes m6A methylation sites of RNA and regulates the

target genes’ translation. Due to this function that regulates lipid metabolism,

RNA m6A methylation plays a pivotal role in metabolic diseases and makes it a

great potential target for therapy.

KEYWORDS

METTL3, obesity, FTO (fat mass and obesity-associated) gene, M6A, lipid
Introduction

Lipid metabolism exerts a profound impact on the maintenance of human physiology

and health status. Adipose tissue is an important site for lipid storage, and energy

homeostasis (1, 2). It is important to understand the mechanisms involved in adipose

tissue development (3). Adipogenesis of the white and brown adipocytes is regulated by

several endocrine hormones (1, 3). Fat mass and obesity-associated protein (FTO) pro-

obesity rs1421085 T-to-C single-nucleotide polymorphism (SNP) shifts differentiation

programming towards white adipocytes in subcutaneous fat (4). Meanwhile in community,

unhealthy lifestyles such as nutrient surplus and unhealthy eating patterns (5) act as the

main reason for the high incidence of lipid metabolism disorder. Furthermore, types of

diseases caused by abnormal lipid metabolisms like diabetes (6), hyperlipidaemia (7),

cardiovascular disease (8, 9), and non-alcoholic fatty liver disease (NAFLD) (10) are

becoming more and more pervasive all over the world. Therefore, there is a great desire to

deepen the understanding of the regulation of lipid metabolism.
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In mammals, the m6A methylation is the most numerous

modification of mRNA and accounts for more than sixty percent

of all RNA modifications (11, 12). The RNA m6A modification

is a kind of methylation modification positioned at the nitrogen

atom in the sixth position of adenosine (13). The process of RNA

m6A methylation is dynamically and reversibly coordinated by

m6A demethylases, m6A methyltransferases, and m6A binding

proteins, which are also referred to as “Writer”, “Eraser”, and

“Reader”, respectively (14). The writers methyltransferase-like 3

(METTL3), methyltransferase-like 14 (METTL14), and Wilms’

tumor 1-associated protein (WTAP) have m6A methylation

activity to catalyze m6A modification (15). Demethylases are

predominantly made out of ALKB homolog 5 (ALKBH5) and

FTO (16), catalyzing the demethylation process (17).

Furthermore, m6A binding proteins are found principally in

the YT521-B homology (YTH) family (18), which have the

potency to recognize and specifically bind to m6A-modified

transcripts (19). All kinds of RNA m6A methylation regulators

are involved in different physiological processes, while many

remain unknown.

In this article, we introduce the novel RNA modification and

its regulatory function for RNA. We summarize the main

regulators of RNA m6A methylation and describe their

function and regulatory mechanism toward mRNA. The

possible target gene by which RNA m6A methylation

regulators affect lipid metabolism is claimed. Finally, we

reviewed the RNA m6A methylation regulators on the

NAFLD, diabetes, and cardiovascular diseases and its

regulating pathway to provide some reference to the clinical

prevention, diagnosis, and therapy research in lipid metabolism-

related diseases.
Epigenetic regulatory mechanisms
of RNA m6A methylation

M6A methylation is a newly discovered epigenetic

regulatory mechanism in recent years. Among the more than

170 RNA modifications (20), m6A modification accounts for a

large proportion in eukaryocyte (21). It is a methylation

substitution reaction that takes place on the sixth nitrogen

atom of the RNA molecule adenosine, which is observed

enriching in 3’UTR and consensus motif RRACH in coding

region (22, 23).

M6A methylation is essential in determining the fate of

RNA, showing a regulatory function in multiple mRNA

biological processes. Firstly, it can regulate the stability of

mRNA. Facts that mRNA with lower m6A methylation level

had longer half-life was first revealed in 1978 (24). The m6A

reader YTHDF2 can recognize methylation sites in the coding

region of mRNA and destabilized mRNA (25, 26) while, the
Frontiers in Endocrinology
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newly identified reader Insulin-like growth factor-binding

proteins (IGFBP) recognized m6A in 3‘UTR inversely make

the mRNA more stable (27, 28). The opposite regulatory effect

may account for the different recognizing mRNA sites. Secondly,

m6A facilitates the initiation of the translation process of

mRNA. After reading the m6A methylation site, the m6A

reader like YTHFD1/3 can recruit eIF3 to connect to mRNA.

In addition, m6A at 5‘UTR can directly connect to eIF3 to

enhance mRNA translation (29–31). Furthermore, it also

regulates mRNA splicing, processing, and nuclear export (32,

33). Recent research also shows it to to exist in lncRNA,

microRNA, and non-coding RNA (32, 34, 35), considered a

widespread RNA modification.

In RNA molecules, methylation levels are regulated by a

series of enzymes reversibly and dynamically, which can be

identified as “Writer”, “Eraser”, and “Reader” and all specifically

interact with the m6A methylation site as follow.
The writer of m6A can catalyze
mRNA methylation

METTL3 is a high molecular weight subcomplex whose

component is still not fully understood, and METTL14 is its

homologues (21, 36). WTAP is the regulatory subunit of

methyltransferase by which METTL3 and METTL14 anchor to

mRNA to methylate subsequent target adenosine residues.

WTAP recruits METT3 and METT14, enabling the METTL3-

METT14 complex to perform m6A methyltransferase activity,

affecting m6A methylation, and thus RNA shearing (37). Junho

Choe’s team found that METTL3-elF3h interacts with each

other to mediate mRNA cycling and translation through the

association between the elF3h subunit at the mRNA 5‘end and

METTL3 binding to the specific site near the translation

termination codon. METTL3-elF3h mediates mRNA

cyclization. Thus, efficient translation of target mRNA was

promoted (38).
The eraser of m6A can remove
m6A from RNA

FTO was the first eraser to be identified, in 2011 (21). Since its

discovery, much research on its regulation in enormous

physiological and pathological processes has been carried out.

FTO in humans is an approximate 400 kb gene, containing 8

introns and 9 exons, located on 16q12.2 (39). FTO can remove the

m6A methylation from multiple mRNAs through an a-
Ketoglutarate (a-KG) and Fe (II)-dependent manner (40). Its

modification process is claimed in detail in previous research. In

brief, initially, FTO oxidizes m6A methylation to the intermediate

N6-hydroxymethyl adenosine (hm6A). In the second step, FTO
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oxidizes metastable hm6A in the same way as m6A, forming

further oxidized production N6 -formyladenosine (f6A) (41). As a

result, hm6A and f6a spontaneously break down to adenine and

the m6A methylation in RNA is removed (41, 42).

ALKBH5 is another eraser identified later which demethylates

the RNA efficiently (43). Research has shown its regulator

function in many regulator pathways by mRNA methylation.

However, the underlying mechanism remains mysterious.
The reader of m6A can capture
mRNA methylation

YTH domain is a module recognizing the methylation of m6A

dependently, consisting of YTHDC1, YTHDC2, YTHDF1,

YTHDF2, and YTHDF3 (25). The stability of m6A methylation

modifiedmRNA is regulated by YTHDF2 in the way of recognizing

m6A methylation and reducing the stability of the target transcript.

In addition, another m6A reading protein, YTHDF1, was found to

interact with the translation machinery of the related genes and

promote protein synthesis. The m6A mRNA modification enforces

rapid response of gene expression and controlled protein

production, improved translation efficiency through YTHDF1-

mediated translation, and controls target transcripts’ lifetime

through YTHDF2-mediated degradation (29).
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RNA m6A methylation regulates the
lipid metabolism

Lipid, which mainly consists of triglycerides, cholesterol,

phospholipids, and glycolipid, is involved in body energy

metabolism and is the component of the cell membrane. It is

also the precursor of various molecules that play important

biological roles. Thus, lipid metabolism, such as digestion,

absorption, synthesis, and decomposition is essential for the

maintenance of cellular homeostasis (44, 45).

The RNA m6A methylase METTL3 and METTL4 are also

involved in the regulation of lipid accumulation in cells.

METTL3-mediated m6A methylation makes the metabolism-

related gene’s mRNA more unstable, leading to metabolic

disorders and lipid accumulation in the liver (46). Likewise, in

cardiac cells, METTL3 deficiency decreases the RNA m6A

methylation and the triglyceride deposition (47). Fatty acid

synthase (FASN), acetyl-CoA carboxylase (ACCY), and

stearoyl-CoA desaturase 1 (SCD1) are the regulator targets, as

recently reported (Figure 1). Mechanistically, METTL3/

METTL14 complex induces the increase of mRNA to

accelerate the production of lipid (48, 49). Consistently,

METTL3 and the recognizing and binding protein YTHDF2

increase the m6A methylation level of peroxisome proliferator-

activated receptora(PPARa) and its expression, impacting the
FIGURE 1

The main steps of lipogenesis and the regulation of FTO and METTL3/14. SREBP, sterol regulatory element-binding protein; FASN, fatty acid
synthase; ACCY, acetyl-CoA carboxylase; SCD, stearoyl-CoA desaturase.
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downstream lipid accumulation (50). Inflammation is also

involved in the lipid accumulation procedure. METTL3

deficiency induces a lower level of m6A methylation of TNF

receptor-associated factor 6 (TRAF6) and therefore the

transcripts are entrapped in the nucleus, leading to the

downstream mitogen-activated protein kinase (MAPK) and

nuclear factor k-B (NF-kB) to be suppressed. In consequence,

inflammation and the absorption of long-chain fatty acids

(LCFA) are reduced (51).

Once introduced in 1974 (52), RNA m6A methylation

modification was found to affect diverse physiological and

pathological progressions in cardiomyocytes (53), hepatocyte

(54), axoneuron (11), and so on. Its regulation function in the

lipid metabolism is revealed over decades. In general, its

regulation function depends on the enhancement or reduction

of the m6A level and recognition of the m6A site by various

regulatory enzymes. But its interaction with genes related to lipid

synthesis and decomposition is complicated and remains to be

elucidated by research.

The first identified RNA m6A demethylase, FTO, is strongly

connected with lipid accumulation in multiple cells and tissues.

In the obesity group, high FTO level is positively correlated with

Body Mass Index (BMI) and body fat (55, 56). In vitro, it

promotes intracel lular l ipid accumulation by RNA

demethylation while FTO knockdown did not (57, 58).

As an enzyme that demethylates m6A (59), FTO regulates

m6A methylat ion levels of multiple RNA in l ipid

anabolism and catabolism. The process of lipid synthesis can

be improved by FTO-mediated RNA demethylation. In the

3’UTR region of multiple lipogenic genes’ mRNA such as

SCD, PPARg, and sterol regulatory element-bindin protein-1

(SREBP1), which are all involved in the triacylglycerol and

Cholesterol Synthesis. (Figure 1) FTO decreases their level of

m6A methylation to improve the stability of mRNA (60, 61). In

the hepatocyte, the m6A methylation level in FASN mRNA is

enhanced and lipogenesis is inhibited by the FTO knockdown

and YTHDF2 recognition (62). Angiopoietin-like protein 4

(ANGPTL4) is also the key target of triglycerides synthesis

and hydrolysis intracellularly and extracellularly. It inhibits

lipoprotein lipase(LPL), leading to inhibiting extracellular

lipolysis (63). FTO decreases the level of the translation of

ANGPTL4, hence hydrolysis of extracellular triglycerides is

promoted. The fatty acid is transported into adipocytes,

inducing lipid accumulation (39, 63). Conversely, ANGPTL4

promotes intracellular lipolysis (64). Evidence has shown

knockout of FTO affects intracellular ANGPTL4 level and

intracellular lipolysis (65). The different results may account

for the different mRNA sites where the m6A methylation is

located. It is an interesting issue to explore.

Nevertheless, the role played by FTO in lipolysis remains

disputed. FTO decreases the expression of interleukin 6 (IL-6)

mRNA in adipose tissues (66) and consequently inhibits the

lipolysis genes (67). In addition, FTO reduces lipolysis and fatty
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acid oxidation by reducing the adipose triglyceride lipase

(ATGL), hormone-sensitive lipase (LIPE), and carnitine

palmitoyltransferase 1 (CPT1) mRNA expression (68).

Interestingly, another FTO regulator pathway revealed that

the promotion of FTO downregulated the obesity-related gene

iroquois homeobox protein 3 (IRX3) level in the hypothalamus

and macrophage. So, lipolysis was inhibited through affecting

whole body modulated energy expenditure and metabolic

inflammation (69, 70). However, it should be noted that the

interaction of FTO and IRX3 is not the traditional m6A

methylation modification, but the noncoding regions of FTO

serve as a long-range regulatory element to influence the

expression of IRX3 (71).

Furthermore, FTO-mediated RNA m6A methylation shows

a close correlation with cellular triglyceride (TG) uptaking that is

regulated by adenosine 5’-monophosphate-activated protein

kinase (AMPK) (72, 73). AMPK suppresses the expression of

FTO to upregulate the m6A level of Parkin2 mRNA and

promote its decay. Then CD36 was translocated to the

membrane and LCFA uptaking of cells is increased (74, 75).

In summary, both FTO and METTL3 play vital regulatory

roles in lipid metabolism and can promote the accumulation of

lipids in various cells, affecting the decomposition and synthesis

of lipids. The regulation pathways of FTO and METTL3/

METTL14 are complex and diverse, which can methylate or

demethylate the RNA m6A of targets in multiple pathways such

as inflammation, energy homeostasis, nerve-related lipid

regulation, lipid metabolism balance, resulting in corresponding

high or low gene expression (Figure 2). In addition, YTHDF

protein plays an epigenetic role in recognizing m6A methylation

sites of RNA and regulates the translation. Although the area of

RNA m6A methylation is a popular spot in recent years, a

convincing and authoritative theory is urgently needed. The

function of RNA m6A methylation in many genes remains

controversial and the deeply regulation process requires

further investigation.
m6A methylation and lipid-related
metabolic diseases

When the cellular lipid metabolism is disordered, excessive

lipid accumulation or lipid accumulation in ectopic tissues due to

the imbalance of lipid uptake, decomposition, and synthesis in the

cell, can result in a series of intracellular pathophysiological

reactions. Inflammation (76), oxidative stress (77), chromatin

histone modification (78), etc. caused by lipid accumulation can

lead to cellular dysfunction, apoptosis, and even death. As

mentioned above, RNA m6A methylation is involved in

multiple pathways in lipid metabolism, and it also shows a vital

function in the occurrence and development of lipid metabolic

diseases (Table 1). Over the past decades, studies have investigated

some possible targets for the diagnosis, physiopathology process,
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FIGURE 2

RNA m6A regulators influence lipid cellar accumulation in various ways. TG, triglyceride; ANGPTL4, angiopoietin-like protein 4; IRX3, iroquois
homeobox protein 3; MAPK, mitogen-activated protein kinase; FFA, free fatty acid; IL-6, interleukin 6; Plin5, perilipin5; CPT1, carnitine
palmitoyltransferase 1; LIPE, hormone-sensitive lipase; ATGL, adipose triglyceride lipase; PPAR, peroxisome proliferator-activated receptor;
FASN, fatty acid synthase; LPL, lipoprotein lipase; SREBP1, sterol regulatory element-bindin protein-1; SCD, stearoyl-CoA desaturase; Traf6, TNF
receptor associated factor 6; ACCY, acetyl-CoA carboxylase; NF-kb, nuclear factor kappa-B; AMPK, adenosine 5’-monophosphate-activated
protein kinase.
TABLE 1 Multiple functions of RNA m6A methylation regulator in lipid metabolic disease.

Regulator Disease Influence
towards
disease

Target Function Year Ref.

METTL3 NAFLD NEGATIVE DDIT3 Loss of METTL3 results in increasing in DDIT 2021 (79)

METTL3 NAFLD NEGATIVE Rubicon axis METTL3 and its partner YTHDF1 promote the stability of Rubicon
mRNA

2021 (80)

METTL3 NAFLD/NASH POSITIVE CD36,CCL2 METTL3 inhibits the expression of CD36 and CCL2 2015 (81)

FTO NAFLD NEGATIVE SREBP1c, CIDEC Knockdown of FTO down-regulates the expression of SREBP1c and
CIDEC

2018 (82)

FTO NAFLD NEGATIVE FASN, SCD, MGAT1,
MTTP, APOB, LIPC

FTO overexpression in HepG2 cells positively regulate FASN,
SCD1, MAGT1 while negatively regulate MTTP, APOB, LIPC

2018 (57)

IGF2BP2 NAFLD NEGATIVE CCL2 Overexpression of p62/IMP2-2/IGF2BP2-2 elevated CCL2
expression levels

2014 (83)

IGF2BP1/
IGF2BP3

NAFLD/HCC NEGATIVE LINC01138 IGF2BP1/IGF2BP3 stabilized LINC01138 transcript 2018 (84)

METTL3 T2DM NEGATIVE FASN METTL3 silencing could decrease the m6A mRNA levels of FASN 2019 (48)

METTL3 HCC NEGATIVE SOCS YTHDF2 cooperates with METTL3 depressing the level of SOCS 2018 (85)

YTHDC2 NAFLD CRITICAL SREBP1c, FASN,
SCD1, and ACCY1

YTHDC2 decreases the stability of mRNA of SREBP1c, FASN,
SCD1, and ACCY1 and inhibit gene expression

2020 (86)

FTO HYPERLIPIDAEMIA NEGATIVE – the secretion of inflammatory factors IL-1band
the expression of FTO was high in dyslipidemia induced by LPS

2016 (87)

METTL14 ATHEROSCLEROSIS NEGATIVE ZFAS1/RAB22a METTL14 mediated m6A modification to LncRNA ZFAS1/RAB22a 2020 (88)
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and therapy of metabolic diseases such as NAFLD, diabetes,

hyperlipidemia, and atherosclerosis (Figure 3).
m6A methylation and the lipid
metabolism in NAFLD

The liver is one of the most significant organs in fatty acid

synthesis and decomposition. Recent studies have revealed that

RNA m6A methylation happened in hepatocyte matters in lipid

metabolism disorder. Patients who suffered from NAFLD were

detected to have a higher level of FTO mRNA in the liver (46).

Similar results were observed in several studies (89–91), which

have been widely acknowledged by researchers.

Thus, exploring the further mechanism is imperative. The

“writer” METTL3 is also considered to be related to liver lipid

accumulation (50, 92). Forkhead box O1 (FOXO1), Enoyl-CoA

Hydratase And 3-Hydroxyacyl CoA Dehydrogenase

(EHHADH), PPARa, FASN, and Sirtuin 1 (SIRT1) were the

regulator targets that had been reported (93). Furthermore, in

the recent 2 years of research, some other regulation targets have

been put forward. METTL3, as the m6A writer, improves DNA

damage-inducible transcript 4 (DDIT4) mRNA the methylation

level, as a result, affects its stability. When METTL3 is knocked

down, DDIT4 reduces the level of lipid accumulation and the

activity of inflammation in hepatocytes of the NAFLD patients

by the signaling pathway of the mechanistic target of rapamycin

complex 1 (mTORC1) and NF-kB (79). Autophagy also plays a
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role in RNA m6A methylation of the NAFLD progression.

METTL3 and its partner YTHDF1 inhibit the autophagic flux

in hepatocytes and block the clearance of lipid droplets by the

means of promoting the stability of Rubicon mRNA, which

inhibited the autophagy process of autophagosome-lysosome

fusion (80).

Conversely, METTL3 knockdown increased the free fatty

acid uptake mediated by CD36, and the inflammation reaction

induced by C-C motif chemokine ligand 2 (CCL2), as the result,

lead to the progression from NAFLD to non-alcoholic

steatohepatitis (NASH) (81). The regulation of METTL3 on

NAFLD may be diverse.

FTO can affect the expression of FASN, SCD,Monoacylglycerol

acyltransferase (MAGAT), SREBP1c, and cell death-inducing

DFF45-like effector C (CIDEC) (82) to regulate the lipogenesis in

hepatocytes. Meanwhile, FTO up/down-regulates the lipid

transport protein of microsomal triglyceride transfer protein

(MTTP), hepatic lipase (LIPC), apolipoprotein B (APOB) (57),

inducing the process of lipid transport (93). As a result, excessive

lipid deposition in hepatocytes results in hepatocyte steatosis.

Furthermore, the “reader” YTHDF2 is also involved in the

regulation of TG homeostasis and lipogenesis in NAFLD, and

SREBP1c, FASN, and SCD1, and ACCY1 is the gene related to the

process (86). In the next section, IGF2BP2, a recently identified

m6A reader, was also reported to be a promoter of NAFLD (83),

which can promote the stability of mRNA (28), and IGF2BP1/

IGF2BP3 was also reported to be associated with poor outcomes

of liver cancer (84).
FIGURE 3

RNA m6A regulators are involved in the regulation of lipid metabolic diseases in various ways. NAFLD, non-alcoholic fatty liver disease; CCL, C-
C motif chemokine ligand 2; SREBP1c, sterol regulatory element-bindin protein-1; FASN, Fatty acid synthase; SCD1, stearoyl-CoA desaturase;
ACCY1, acetyl-CoA carboxylase, CIDEC, cell death-inducing DFF45-like effector C; MAGAT, monoacylglycerol acyltransferases; LIPC, hepatic
lipase; APOB, apolipoprotein; ZFAS1/RAB22a, zinc finger antisense 1/ras-related protein rab-22a; DDIT3, DNA damage-inducible transcript 4;
T2DM, diabetes mellitus type 2; METTL, methyltransferase-like 3; YTHFD, YT521-B homology domain family; FTO, fat mass and obesity-
associated protein; IGFBP, Insulin-like growth factor-binding proteins; MTTP, microsomal triglyceride transfer protein.
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NAFLD is a complex metabolic disease and many

pathological changes happened in liver tissue (94).The RNA

m6A methylation regulator FTO, METTL3, and the recognition

protein family YTHDF affect the progression of NAFLD to

hepatocellular carcinoma (HCC) by the means of disorder

lipid metabolism, oxidative stress (87), and autophagy (80),

making it an important potential treatment target. Altering the

RNA m6A methylation level of various proteins reduces the

hepatic abnormal lipid accumulation, thereby further relieving

the abnormal state of cells. This epigenetic regulation may

significantly improve the development of NAFLD and even

reverse hepatocyte degeneration.
m6A methylation and lipid metabolism
in diabetes

Diabetes is one of the highest prevalence diseases and over

400 million patients live with this disease worldwide. Its

complication causes severe disease burden (95, 96). It has been

revealed that multiple m6A methylations target pathways like

Insulin-like growth factor 1-protein kinase B-pancreatic and

duodenal homeobox 1(IGF1-AKT-PDX1) and genes like

diacylglycerol acyltransferase 2 (DGAT2), glucose-6-

phsophatase catalytic subunit (G6PC), and FOXO1, are

involved in the glucose and insulin secretion regulation of

pancreatic islet B cell (97, 98). Besides, lipid metabolism

disorder related to m6A methylation also plays an important

part in insulin resistance.

FASN, the key protein in lipid metabolism, has proved to be

closely connected to insulin resistance by research that in

adipose tissue, FASN expression was increased and insulin

sensitivity was impaired (99). METTL3 also inhibits insulin

sensitivity via the modification of FASN mRNA. Along with

the overexpression or the METTL3 deficiency in high-fat diet

(HFD) rats, the level of FASN mRNA and lipid content in the

liver is higher or lower accordingly, and the insulin sensitivity is

improved (46, 48). However, further studies are still needed to

claim how exactly m6A interacts with insulin sensitivity.
RNA m6A methylation and lipid
metabolism in cardiovascular diseases

Cardiovascular disease is the leading cause of death

worldwide, while hyperlipidemia is responsible for about one-

third of all cardiovascular diseases (100, 101). The RNA m6A

methylation involved lipid metabolism disorder and chronic

inflammation reaction has been reported as a possible

mechanism in the past few years. Research has revealed that

hyperlipidemia level is highly connected with m6A-SNPs (102)

and FTO-associated inflammatory factor IL-1b, IL-6, and LPS

which induce hyperlipidemia may be the factors in the
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development of chronic heart disease (38, 87). Additionally, 6-

phosphogluconate dehydrogenase (6PGD) is also considered a

key point. YTHDF2 binds to 6PGD mRNA and promotes its

translation, while 6PGD deficiency can lead to lower blood

cholesterol making YTHDF2 a possible target for lowering

blood cholesterol (103–105). Moreover, very recent research

mentioned that the METTL14 mediating lncRNA zinc finger

antisense 1/ras-related protein rab-22a (ZFAS1/RAB22a) m6A

methylation modification is also a possible pathway to

atherosclerosis (88).
Conclusion and discussion

After decades of research, RNA m6A methylation remains a

broad research space that structures functions and regulation

mechanisms of many regulators remain critical and unknown

(106). RNA m6A methylation is an important and novel

regulatory manner in epigenetics. It has a regulatory role in

adipogenicity differentiation and adipogenesis in adipose tissue

(107, 108). In addition, it also exerts vital functions in lipid

metabolism, which is interwoven with human health. A greater

understanding of the regulatory mechanism of lipid metabolism

also leads to advances in life science research.

In the process of RNA m6A methylation regulating the lipid

metabolism, the m6A “writers”, “erasers”, and “readers” can add,

remove, or recognize the RNA m6A methylation sites in mRNA

and affect its translation, decay, splicing, and export, leading to

thousands of biological processes (109). Inflammation is one of

the parts, and it has proved closely connected with obesity and

fatty acid absorption (110, 111). In the process of RNA m6A

methylation regulating lipid metabolism, IL-6, CCL2, IRX3,

TRAF6, and many inflammation factors-related proteins

become the central regulatory targets. The lipid synthesis and

decomposition genes such as FASN, SREBP, and CES2 (112) are

also affected by mRNA m6A methylation and demethylation.

Lipogenesis and lipolysis are directly regulated. In addition,

some other cell signaling pathways are also involved. The

regulation of RNA m6A methylation is a complex process that

involves a variety of mechanisms in multiple cells. Research in

this area still has much to be done.

Disorder of the global or partial lipid metabolism causes

intractable chronic diseases. In the occurrence and development

of NAFLD, abnormal lipid accumulation in hepatocytes is one of

the major pathological changes, and METTL3, METTL14, FTO,

and YTHDF mediated key gene mRNA m6A methylation are all

related to it. Furthermore, lipid metabolism disorder is

responsible for insulin resistance, hyperlipidemia, and

atherosclerosis (113), in which RNA m6A methylation all

plays a critical part, making it a great potential therapeutic target.

At the present stage, further research on m6A mRNA

methylation in its effective metabolism is needed. Many

studies remain controversial, and m6A mRNA methylation
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may affect the expression of mRNA or protein levels of different

key positive or negative regulatory factors in different

pathophysiological processes, so, likely, the “Writer”, “Eraser”,

and “Reader” of the same RNAm6Amethylation regulators may

coregulate two pathophysiological processes with opposite

effects. Moreover, future studies on the regulatory mechanism

of m6A mRNA methylation on adipose metabolism should not

be limited to METTL3, FTO, and YTHDF2, and other “Writer”,

“Eraser”, and “Reader” of m6A mRNA methylation may also

participate in the occurrence of lipid metabolism through

different pathways while researches remain limited. In

summary, RNA m6A methylation regulates many targets,

including lipid synthesis, breakdown, as well as accumulation.

Moreover, RNA m6A methylation has the therapeutic potential

to be a target for metabolic diseases like obesity, NAFLD, and

diabetes which will foster the treatment of them and related

diseases better in humans in the future.
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