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Editorial on the Research Topic 
Nucleic Acid Polymerases: The Two-Metal-Ion Mechanism and Beyond

Nucleic acid polymerases are essential for all forms of life, performing diverse functions from genome replication and repair to the transcription of a wide variety of RNAs. Although these enzymes differ widely in substrate specificity, efficiency, accuracy, and evolutionary origin, they all catalyze the same nucleotidyltransferase reaction. This eBook on “Nucleic Acid Polymerases: The Two-Metal-Ion Mechanism and Beyond” highlights both the similarities and differences among these enzymes.
The two-metal-ion catalytic mechanism for polymerases was proposed in 1993 by Thomas A. Steitz (Steitz, 1993), based on structural studies of the 3′-5′ exonuclease active site of the Klenow fragment of E. coli DNA polymerase I (Beese and Steitz, 1991; Beese et al., 1993) and mutagenesis of the polymerase active site (Polesky et al., 1992). Structural support for this mechanism came over the next several years, when crystal structures were determined with primer-template DNA and dNTP poised for catalysis at the polymerase active sites of several different DNA polymerases and HIV-1 reverse transcriptase (Pelletier et al., 1994; Doublié et al., 1998; Huang et al., 1998; Li et al., 1998). These and subsequent structures show that polymerases have two absolutely conserved aspartate residues that coordinate two divalent cations in the polymerase active site (Figure 1A), demonstrating that the two-metal-ion catalytic mechanism is also applicable to DNA synthesis (Brautigam and Steitz, 1998).
[image: Figure 1]FIGURE 1 | The two-metal-ion catalytic mechanism for nucleic acid polymerases (A) Two universally conserved aspartate residues (numbering is for the Klenow fragment of E. coli DNA polymerase I) coordinate two divalent cations, usually Mg2+, that facilitate deprotonation of the 3′-hydroxyl of the primer and stabilize the negative charges on the phosphates of the nucleotide and formation of the pentacovalent transition state. Figure is based on the structure of T7 DNA polymerase (Doublié et al., 1998) and is reproduced from Brautigam and Steitz (Brautigam and Steitz, 1998) with permission (B) The original mechanism proposed for polymerization based on the structure of the 3′-to-5′ exonuclease active site of Klenow fragment (Beese and Steitz, 1991). The possibility of a third metal ion binding to the beta and gamma phosphates was considered. Figure reproduced from Steitz (Steitz, 1993) with permission.
More recently, however, a three-metal-ion polymerase mechanism has been proposed based on time-resolved crystallographic studies of translesion and repair DNA polymerases eta and beta, respectively (Nakamura et al., 2012; Gao and Yang, 2016). In fact, Thomas Steitz had initially considered that a third metal ion might be involved (Figure 1B). In the first article in this eBook, Wang and Konigsberg review the effects of pH and Mg2+ concentration on high-fidelity DNA polymerase activity and argue that the three-metal-ion mechanism may not be universal to all polymerases, suggesting instead that the third metal ion stabilizes pyrophosphate binding after catalysis and thus slows product release (Wang and Konigsberg, 2022).
The review of viral RNA-directed RNA polymerases by Gong highlights the complexities of the nucleotide incorporation cycle, including conformational changes that accompany nucleotide binding and pyrophosphate release, polymerase translocation along the template that is required for processive synthesis, and events outside of the standard catalytic cycle that can impact the fidelity of replication (Gong, 2021).
Carvajal-Maldonado provide a comprehensive review of the other catalytic activities that are frequently associated with DNA polymerases: 3′-5′ exonuclease proofreading that increases replication fidelity, structure-specific 5′-nuclease activity required for Okazaki fragment maturation during lagging strand synthesis, 5′dRP lyase activity required in the base excision repair pathway, and 3′-end-trimming and single-strand extension involved in double-strand break repair (Carvajal-Maldonado et al., 2021).
Kaszubowski and Trakselis focus on the challenges of coordinating multiple polymerases during translesion synthesis where a high-fidelity replicative DNA polymerase encounters DNA damage and is replaced by one of a number of possible specialized enzymes with lower fidelity that allow replication of damaged DNA (Kaszubowski and Trakselis, 2021). The review compares passive and active mechanisms for the handoff of DNA between the polymerases and discusses the role of the sliding clamp processivity factor.
Nucleic acid synthesis is a highly dynamic process and the review by Millar emphasizes how single-molecule Fluorescent Energy Transfer techniques have been able to elucidate the conformational changes that occur during the E. coli DNA polymerase I nucleotide incorporation cycle and as the DNA transitions between the polymerase and nuclease active sites–processes that are difficult to resolve using more static structural methods (Millar, 2022).
The original research articles in this eBook emphasize how much there still is to learn about the wide variety of polymerases. Frey et al. use X-ray crystallography and molecular dynamics simulation to describe new non-nucleoside inhibitors of HIV-1 reverse transcriptase that are effective to mutants that are resistant to previously designed compounds (Frey et al., 2022). This work highlights the importance of polymerases as drug targets but also emphasizes the importance of understanding the entire nucleotide incorporation cycle, both kinetically and structurally, in the drug development process.
The work by Park et al. demonstrates that mitochondrial DNA polymerase gamma is capable of efficiently bypassing a CPD lesion at physiological concentrations of Mn2+ (Park et al., 2022). This ability is specific to polymerase gamma, not a general property of A-family DNA polymerases, underscoring the diversity of polymerases and emphasizing the role of cellular conditions in regulating activity.
Vaisman et al. address the evolutionary diversity of the translesion DNA polymerases. Biochemical characterization of the four Y-family polymerases (eta, iota, kappa and Rev1) from a lower eukaryote shows that their major properties are very similar to those of their human homologs (Vaisman et al., 2021). This work indicates that polymerase iota evolved earlier than previous sequence analysis had suggested, raising the question of what critical role this enzyme plays in both lower and higher eukaryotes.
In the final research article in this volume, Park et al. present two structures of phage RB69 DNA polymerase in open binary and partially closed ternary complexes that are distinct from previous structures of this enzyme (Park et al., 2021). Since these structures exist in a single crystal form, they suggest that initial binding of the correct incoming nucleotide and the second divalent metal ion are much weaker than expected.
The various articles in this issue demonstrate that, despite decades of seminal work on polymerases in replication and transcription, there are still many unknowns that require future research. We hope this issue will inspire graduate students and postdocs to devote their research to studying these fascinating processes that are fundamental to all life.
We wish to dedicate this special polymerase issue to the memory of Tom Steitz who was a mentor to all of us, both directly (JDP and YWY) and indirectly (IL). His pioneering structural work, insights into catalytic mechanism, and deep appreciation of the connections between biological structure and function continue to inspire our own research. We miss him deeply.
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Almost all DNA polymerases (pols) exhibit bell-shaped activity curves as a function of both pH and Mg2+ concentration. The pol activity is reduced when the pH deviates from the optimal value. When the pH is too low the concentration of a deprotonated general base (namely, the attacking 3′-hydroxyl of the 3′ terminal residue of the primer strand) is reduced exponentially. When the pH is too high the concentration of a protonated general acid (i.e., the leaving pyrophosphate group) is reduced. Similarly, the pol activity also decreases when the concentration of the divalent metal ions deviates from its optimal value: when it is too low, the binding of the two catalytic divalent metal ions required for the full activity is incomplete, and when it is too high a third divalent metal ion binds to pyrophosphate, keeping it in the replication complex longer and serving as a substrate for pyrophosphorylysis within the complex. Currently, there is a controversy about the role of the third metal ion which we will address in this review.
Keywords: two-metal-ion catalysis, third inhibitory divalent metal ion, bell shaped pol activity plots, Hill coefficient, Brønsted equation
INTRODUCTION
The first DNA polymerase (pol) was discovered by Arthur Kornberg and others (Bessman et al., 1958; Lehman et al., 1958), and was shown to be responsible for faithfully copying double-stranded DNA through Watson-Crick basepairing between template and primer strands and between the templating nucleotide and incoming dNTPs. It catalyzed the polymerization reaction with a rate enhancement of over 1017-fold relative to the uncatalyzed reaction (Schroeder et al., 2006; Lassila et al., 2011). This unique ability for rate enhancement can be attributed to the stabilization provided by this enzyme specifically only to the transition state (TS) relative to the enzyme-substrate (ES) or enzyme-product (EP) complexes as shown by the steady-state kinetics (Figure 1) (Knowles, 1980; Lassila et al., 2011). The pol-catalyzed reaction absolutely requires divalent Mg2+ ions (Goulian et al., 1968; Slater et al., 1972; Kornberg and Baker, 1992). When the logarithm of the steady-state rate was plotted as a function of [Mg2+], the slope was +2.0 (not 3) before [Mg2+] reached the maximal rate (Bolton et al., 2002). Beyond its optimal concentration, the rate decreased linearly with the increasing concentration, with a slope of -1.0 in both linear and log plots (Slater et al., 1972; Sirover et al., 1979; Vashishtha et al., 2016; Vashishtha and Konigsberg, 2016). The slopes of these plots suggest that pols bind two divalent metal ions for catalytic enhancement and a third divalent metal ion for inhibition according to classic enzymology (Fersht, 2017).
[image: Figure 1]FIGURE 1 | Two-metal-ion catalytic mechanism or three metal ions? (A) Hypothetical transition state for the hydrolysis of phosphodiester bond in the 3′,5′-exonuclease active site of Klenow fragment (adapted from Steitz and Steitz, 1993, with permission, ©National Academy of Sciences, 1993). (B) Free energy diagram of the classic TS theory involving two metal ions A and B, which are intrisic parts of both ES and EP complexes and remain unchanged during catalysis. Simultaneous bond-breaking and bond-formation at the transition state is a zero order reaction. (C) Hypothetical 3-metal ion catalytic mechanism with the third metal ion C entering near or at the TS point, which is not compatabile with the classic TS theory. In this hypothesis, simultaneous bond-breaking and bond formation is a first order reaction, dependent on the occupancy of the third divalent metal ion. This hypothesis predicts a complex dependence of the pol activity on the concentration of divalent metal ions invovling all three sites, which has never been supported by any biochemical data (see text).
Based on extensive biochemical data, Thomas A. Steitz proposed a two-metal-ion catalytic mechanism for phosphoryltransfer (PT) reactions (Figure 1) (Steitz, 1999). More recently, the discovery that a third divalent metal ion binds to the two products in the pol EP complex (but not to the enzyme itself or to the ES complex) led to the proposal of an alternate mechanism that assumes that the third divalent metal ion is directly invovled in catalysis of the chemical step of the pol reaction (Nakamura et al., 2012; Gao and Yang, 2016). We have some concerns about this proposed mechanism and about the underlying assumption because we predict that this third metal ion could also bind the two products outside of an enzyme in solution in the uncatalyzed reaction in the same way as it was observed within the pol complex, without directly interacting with the enzyme itself. If this is the case, this metal ion cannot be assigned to be part of the enzyme-catalyzed rate enhancement in the pol reaction.
The pol active site is formed by several negatively charged residues that serve to bind metal ions. These metal ions and positively charged residues bind triphosphate groups or pyrophosphates and phosphate groups from substrates and products. These charged residues are kept apart from each other so that no direct interaction can occur between them. As a result, substrates and products can readily bind to these charged pol active site residues. Whether simple electrostatic potential (ESP) interactions play an important role in the enzyme-catalyzed PT reactions remains debatable because a similar ESP interaction could be generated by the metal ions outside of an enzyme when bound in a similar manner to the substrates in non-enzymatic reaction (Maegley et al., 1996). However, the ESP of an enzyme active site cannot be simply described by positive or negative charges only. Rather, it is composed of many long-range ESP terms from all charged residues of enzymes nearby in so-called local ESP frustration with very steep gradients (Freiberger et al., 2019). It is likely that these unique ESP gradients help to improve the base selectivity of pols on the basis of small energetic differences in basepairing geometry.
TWO-METAL-ION MECHANISM IN ENZYME-CATALYZED PHOSPHOTRANSFER REACTIONS
In 1985 Thomas Steitz and others determined the first polymerase structure, namely, the large fragment of E. coli pol I or the Klenow fragment (KF) in complex with dTMP bound in the exonuclease active site (Brutlag et al., 1969; Klenow and Henningsen, 1970; Ollis et al., 1985). Following that in 1991 Lorena Beese and Thomas Steitz provided direct evidence for the two-metal-ion catalysis for a PT reaction at the exonuclease active site of the KF (Beese and Steitz, 1991). In 1992 Thomas Steitz and others published the second DNA polymerase structure, HIV-1 RT in complex with an inhibitor, and suggested that all DNA polymerases exhibit a hand-like architecture and have highly conserved carboxylates for binding of two metal ions (Kohlstaedt et al., 1992). In 1993 Thomas and Joan Steitz further extended the requirement for two metal ions that are necessary for catalytic RNA to have a high catalytic function (Figure 1) (Steitz and Steitz, 1993). The two-metal-ion catalytic mechanism has been found to be involved in many known enzymatic processing of nucleic acids (Palermo et al., 2015).
Human/rat pol β and RB69 DNA pol are the three most extensively studied DNA pols using both X-ray crystallography (by Joseph Kraut, Samuel Wilson and others) and biochemistry (by Zucai Suo, Min-Daw Tsai and others), as well as by combined approaches (used by us and others) (Pelletier et al., 1994; Sawaya et al., 1994; Ahn et al., 1997; Wang et al., 1997; Franklin et al., 2001; Batra et al., 2006; Showalter et al., 2006; Xia et al., 2011; Xia et al., 2013; Xia and Konigsberg, 2014; Vyas et al., 2015; Reed et al., 2017; Reed and Suo, 2017; Vyas et al., 2017; Whitaker and Freudenthal, 2020). Other pols that have been extensively studied using both kinetic and structural methods include Dpo4, which binds additional divalent metal ions to the primer/template DNA duplex outside the pol active site (Fiala and Suo, 2004; Irimia et al., 2010). The fact that these metal ions bind makes it very challenging to correlate structures with kinetics, particularly in the chemical step of the pol reaction. In addition to catalysis, divalent metal ions can also modulate noncovalent kinetic behaviors (Dahl et al., 2016).
THE OBSERVATION OF A THIRD METAL ION IN THE ENZYME-PRODUCT COMPLEXES OF DNA POLYMERASES
Wei Yang and others were the first to observe binding of a third divalent metal ion in replication complexes of low-efficiency and low-fidelity lesion-bypass DNA pols (Nakamura et al., 2012; Gao and Yang, 2016). Because the reaction catalyzed by these pols is rather slow, intermediate structures have been characterized by time-resolved X-ray crystallography when crystals were frozen at different times after initiation of the pol reaction (Nakamura et al., 2012; Freudenthal et al., 2013; Gao and Yang, 2016; Jamsen et al., 2017; Reed and Suo, 2017). Yang and others observed a strong correlation between the formation of products and the binding of this third metal ion (Nakamura et al., 2012; Gao and Yang, 2016). In these structures, both ES and EP complexes were simultaneously observed as an inter-convertible mixture at various time points. However, these EP complexes had an extra divalent metal ion bound, which was not found in the other pol complexes discussed above.
One interpretation is that this third metal ion is involved in catalyzing the chemical step in the pol reaction, which would fundamentally change the paradigm of the two-metal-ion catalytic mechanism (Yang et al., 2016; Wu et al., 2017). If, on the other hand, the classic TS theory can fully explain these observations as discussed below, there is no need for revising the original mechanism (Perera et al., 2017; Wu et al., 2017; Yoon and Warshel, 2017; Raper et al., 2018; Stevens and Hammes-Schiffer, 2018). Theoretical calculations can only address whether a given hypothetical chemical mechanism is compatible with chemical principles, but often do not address whether the given mechanism is consistent with existing experimental data. By definition, an enzyme and its cofactors are not reactants or products and not a consumable part of the reaction, thus they remain unchanged in any enzymatic reaction. With this definition, it is hard to classify this third divalent metal ion as a cofactor because it does not directly interact with the enzyme itself but only binds products without an involvement of the enzyme at all (Figure 1).
CLASSIC VIEW OF THE ENZYME-CATALYZED REACTION AND ITS APPLICATION TO THE PRESENCE OF A THIRD METAL ION
An enzyme does not change the equilibrium of the reaction it catalyzes (Kraut, 1988). It only accelerates the rate of both forward and reverse reactions by the same amount, i.e., it simply lowers the free energy barrier of the reaction. Joseph Kraut noted in 1988 that the classic TS theory originally proposed by Linus Pauling was simple, and yet many investigators who attempted to revise it often misunderstood it, including Kraut himself before 1988 (Pauling, 1946; Pauling, 1948; Kraut, 1988). All elementary reactions must be fully reversible, including the reactions of the polymerization-pyrophosphorylysis pair (Kraut, 1988). The reason DNA pols catalyze DNA synthesis irreversibly in vivo is because the pyrophosphate product is continuously degraded by cellular pyrophosphatases and dNTP substrates are continuously resupplied. However, evidence also exists that E. coli pol IV and S. cerevisiea Rev1 are capable of directly hydrolyzing pyrophosphate, making the polymerization reaction irreversible (Kottur and Nair, 2018; Weaver et al., 2020). The classic TS theory postulates that the TS is a saddle point on the energy landscape with the spatial gradient being zero, i.e., the highest energy point on the reaction trejactory but also the lowest energy point in all other directions with a fixed chemical composition. At the TS, the vibration frequency of an existing bond being broken for formation of a new bond determines the rate of the chemical reaction for either polymerization or pyrophosphorylysis (Kraut, 1988). This property suggests that rate of the chemical reaction at the TS is independent of the TS concentration and is zero order whereas the experimentally observed rate is proportional to the concentration of the TS. Any metal ion must be part of both the ES and EP complexes before it can be considered as part of the TS along the reaction coordinate.
A new metal ion cannot enter the TS saddle point as part of the EP complexes but not as part of the ES complex. If the third metal ion are indeed part of the TS, as hypothesized by some investigators (Stevens and Hammes-Schiffer, 2018), the concentration of the TS would be proportional to the cube of the metal ion concentration when the metal ion concentration is below the saturation point of the tightest bound catalytically metal ion. The logarithm of the pol activity (which is proportional to the concentration of the TS versus the concentration of metal ions) should have a slope of three (Fersht, 2017). If the third metal ion binds only weakly with a much larger dissociation constant than the first two metal ions, the metal ion-dependent activation phase would be biphasic (Fersht, 2017). The logarithm of the pol activity in the first phase has a slope of three when the metal ion concentration is below the saturation point of the first two metal ions. The second phase occurs when the metal ion concentration is below the saturation point of the third metal ion but above that of the first two metal ions. The slope of this new phase is one. Currently, there are no data to support the hypothesis proposed by Stevens and Hammes-Schiffer for any pol.
For pyrophosphorylysis, this third metal ion may be characterized as part of substrate-assisted catalysis as it is part of the ES complex (it should be noted that the terms substrate and product are reversed in the forward and reverse reactions) (Figure 1). However, if this third metal ion leaves before the ES complex approaches to the TS (which by definition is at the highest energy point of the reaction coordinate at the saddle point of the energy landscape of the reaction), it cannot contribute to stabilization of the TS. Therefore, it cannot be assigned for any function in pyrophosphorylysis; and if it has no function in pyrophosphorylsis, it cannot have any function in polymerization either, in accordance with the full reversibility principle of any elemental reaction according to the TS theory. Even so, it could still play an indirect role only in the overall reaction of pyrophosphorylysis asymmetrically (but not in polymerization) by retaining the pyrophosphate substrate longer in the ES complex, i.e., increasing the local concentration of the substrate.
When the EP complex of pyrophospholysis is extrapolated from the ES complex, this third metal ion is expected to interact with two phosphate oxygens of Pα of the dNTP product, one with the non-bridging O and the other with the bridging O between the α- and β-phosphate groups. Within an idealized hexacoordination of a Mg2+ complex ion (Pavlov et al., 1998), the distance between its two adjacent O ligands is 2.94 Å, which is the distance that the third metal ion is observed in the various pol structures (Nakamura et al., 2012; Gao and Yang, 2016). Within the same Pα phosphate group, the distance between its two O atoms is 2.46 Å (which is shorter by 0.48 Å than the idealized value for simultaneous coordination to any Mg2+ ion). If two O atoms of the given phosphate group could become two adjacent ligands for a Mg2+ ion with ideal coordination bond length of 2.17 Å, the coordination bond angle O-Mg-O would be 75° (which is a 15° deviation from the ideal value), and if the coordination bond angle to the Mg2+ ion would maintain 90°, its coordination bond length would be 1.81 Å (which is a 0.36 Å deviation from the ideal value). With this coordination geometry, other O ligands of Mg2+ ion could sterically clash with the O atoms of both α- and β-phosphates of the incoming dNTP. Therefore, on these theoretical grounds, within the energy landscape of the reaction diagram, a Mg2+ ion can never be simultaneously coordinate two O atoms of the same phosphate group for stable geometry (particularly if the coordination involves a bridging O atom of reduced charge) as observed in the two products. Because this third Mg2+ ion stabilizes only the pyrophosphorylysis ES complex but not the pyrophosphorolysis EP complex, its binding would increase the TS barrier of the reaction. This third metal ion must first leave before pyrophosphorylysis can take place and thus is not part of the catalytic apparatus. The coordination geometry of Mn-O is very similar to Mg-O, although variation of Mn-O coordination bond lengths is larger due to the involvement of its 3d electrons compared to that of Mg-O (Sasaki et al., 1979; Pavlov et al., 1998). Due to different rigidities of metal ion coordination octahedra, the two divalent metal ions could have very different degrees of covalency in their coordination bonds.
KINETICS OF BINDING OF THE THIRD DIVALENT ION IN CRYSTAL STRUCTURES
Does the third divalent metal ion bind to the replication complex immediately before the catalysis of the chemical step of the pol reaction or shortly after it? The kinetic consequences in a crystal differ between these two events (Wang and Smithline, 2019). If the metal ion binds before catalysis, the concentration or the occupancy of this metal ion in the crystals will be larger than the fraction of the formed product. This is especially true if the time is extrapolated to t = 0. If it binds after catalysis, the situation is reversed when t = 0. With increasing time, the situation becomes more complex because the diffusion rates of this third divalent metal ion and the pyrophosphate product away from the replication complex could vary with time.
The fraction of the newly formed bond between the primer-terminal O3′ and Pα of the triphosphate and that of the bond breaking between the Pα and Pβ phosphates of the triphosphate in the complexes can be directly evaluated by the electron density at the midpoint of the corresponding atoms in each pair of the two bonds (Figure 2) (Wang and Smithline, 2019). The relative occupancy of the third metal ion relative to the first two metal ions can be quantitatively estimated using analytic procedures (Figure 3) (Wang and Smithline, 2019). This analysis shows that the occupancy of this third divalent metal ion is always smaller than that of the product formation at any time point, including when the time is extrapolated to the t = 0 point. This result suggests that the third metal ion is not involved directly in catalysis of the chemical step of the pol reaction.
[image: Figure 2]FIGURE 2 | Time-dependent human polymerase η structures (adapted from Wang and Smithline, 2019). (A) At 30 s time point. The σA-weighted 2Fo-Fc electron density map contoured at 2σ (blue for overall structure, green for two metal ions A and B, and magenta for the phosphate group). (B) At 600 s. New features for MnC and its ligand water molecules (cyan) gradually appear with time. (C) Stereodiagram of the 600 s structure. (D) Stereodiagram of difference Fourier maps between the 600 s and 30 s structures contoured at +10σ (green) and −10σ (red).
[image: Figure 3]FIGURE 3 | Quantitative analysis of time-dependent electron density for bond formation, bond breaking, and occupancy of the third metal ion MnC (adapted from Wang and Smithline, 2019). (A) Plots of the σA-weighted Fo-Fc electron density along the reaction coordinate from pt O 3′ to Pα to O3α. (B) Electron density at the positions defining bond formation and bond breaking. (C) Fractions of bond formation and bond breaking. (D) Comparison of new bond formation relative to the occupancy of bound MnC helps to establish the relative order of the first bond formation, followed by binding of MnC.
UNIVERSAL BELL-SHAPED POL ACTIVITY CURVES AS A FUNCTION OF DIVALENT METAL IONS AND PH
Min-Daw Tsai noted that many kinetic data generated from his laboratory on pol β could be fully explained using the two-metal-ion catalytic mechanism previously known at the time, but could be equally well explained using the new three metal ion-based catalytic mechanism, i.e., his data cannot distinguish between the two mechanisms (Tsai, 2019; Wang and Smithline, 2019). He suggested that new kinetic experiments might be needed to distinguish these two mechanisms. However, extensive kinetic data already exist in the literature that allow one to discriminate between them, even before the classic two-metal-ion catalytic mechanism was proposed. These results are briefly reviewed below (Figure 4), which include data from both pol β and pol η that strongly support the two-metal-ion catalytic mechanism but cannot be explained by a three-metal-ion mechanism.
[image: Figure 4]FIGURE 4 | Bell-shaped polymerase activity profiles as a function of divalent metal ions and pH. With the exception of (A) and (C), which show nucleotide incorporation under given experimental conditions on the pol product scale, all others are shown on a relative scale. With the exception of (G), which is a pH-activity profile, all others are metal ion-activity profiles. (A) E. coli DNA polymerase I (adapted from Sirover et al., 1979, J. Biol. Chem.). (B) Taq DNA polymerase (adapted from Lawyer et al., 1993, PCR Methods Appl.). (C) T7 DNA polymerase (adapted from Tabor and Richardson, 1989, with permission, ©National Academy of Sciences, 1989). (D–G) D. rerio (zebrafish) pol β and rat pol β (adapted from Ishido et al., 2011, Microbial Cell Factories). (F) scale factor between two metal ions and two species. (H, I) Human pol η and pol ι (adapted from Frank and Woodgate, 2007, J. Biol. Chem.).
During the initial partial purification of E. coli DNA pol I, it was found that its pol activity absolutely required divalent metal ions and was pH dependent (Goulian et al., 1968; Slater et al., 1972; Kornberg and Baker, 1992). When the pH deviated from its optimal value or when the concentration of divalent metal ions deviated from their optimal value, the pol activity was reduced. Thus the bell-shaped pol activity profile as a function of pH remains universal, and is a hallmark of general acid-general base catalysis. If one acid is involved in catalysis, the overall activity is linearly proportional to the concentration of the acid, which would be exponentially reduced with increasing pH. The slope of the log of activity versus pH plot is based on the Brønsted equation (Brønsted and Pedersen, 1924; Dissanayake et al., 2015). If one base is involved, the overall activity is proportional to the concentration of the base, which would decrease with decreasing pH. The bell-shaped pol activity curve as a function of pH for DNA pols suggests that both acid(s) and base(s) are involved in catalysis. The slope of the plot based on the Brønsted equation shows that there is one acid and one base involved in catalysis, which is consistent with hydrogen/dueterium (H/D) effects of the pol reaction catalyzed by DNA pols (Castro et al., 2007; Castro et al., 2009).
Similarly, a bell-shaped pol activity curve as a function of divalent metal ion concentration for DNA polymerases indicates that divalent metal ions act both as an activation cofactor and as an inhibitor in the overall pol reaction (Figure 4). The semi-log activity versus log[Mg2+] or log[Mn2+] plot, known as Hill-Langmuir plot, provides the cooperativity Hill coefficients for activation and inhibition of the pol activity, where the coefficient is 2 for the activation phase (Bolton et al., 2002). The optimal metal ion concentration for pol activity is pH dependent, and the optimal pH is dependent on the metal ion concentration because the binding of metal ion can alter the pKa value of the general base.
The DNA pol from bacteriophage T4 exhibits pol activity profiles that follow bell-shaped curves for both pH and divalent metal ions (Goulian et al., 1968). In the most recent studies on a DNA pol from a closely-related bacteriophage, RB69, Konigsberg and others showed that the pol activity was reduced by ∼ 2-fold when [Mn2+] increased from 10 to 20 mM with the estimated slope of −1 in the plot of log activity versus log[Mn2+] (Vashishtha and Konigsberg, 2016; Vashishtha et al., 2016). The optimal activity of E. coli DNA pol I is at 0.07 mM [Mn2+], and was reduced by more than 3-fold when [Mn2+] increased to 0.21 mM (3-fold), highlighting the inhibitory effect of Mn2+ ion on its pol activity (Figure 4A) (Slater et al., 1972). The estimated slope of the log activity vs log[Mn2+] plot is −1.0 unit, indicating that there is just a single inhibitory binding site. At all pHs, the pol activity on the inhibitory side of the profiles is reduced by approximately 2-fold for every 2-fold increase of divalent metal ion concentration for all DNA pols (Figure 4), implying that there is only a single inhibitory divalent metal ion-binding site according to the Hill-Langmuir plot of the log activity-versus-log concentration for divalent metal ions.
Ekaterina Frank and Roger Woodgate have determined the activity profile of human pol η as a function of both Mn2+ and Mg2+ ions (Figure 4H) (Frank and Woodgate, 2007). With Mn2+, the optimal condition is << 0.1 mM in solution. At ∼1 mM [Mn2+], the activity is reduced by 3-fold relative to the optimal [Mn2+] condition, and at ∼2 mM [Mn2+], the activity is reduced by 10-fold. Gao and Yang have determined that the binding affinity of MnA and that of MnB in crystal is <0.5 mM, and that of MnC is about 3.2 ± 1.5 mM (Gao and Yang, 2016). Subtle differences in kinetic parameters between solutions and crystals is expected because, in crystals, slower diffusion rates can play a role. The MnC site, with weaker affinity in crystals, likely corresponds to an inhibitory site according to the pol activity profile discussed above (Figure 4H). The bell-shaped activity profiles as a function of pH can be readily explained by the deprotonation and protonation processes associated with catalysis. For example, from the maximal activity of rat or zebrafish pol β, the value of log activity versus pH (i.e., −log [H+]) decreases with increasing or decreasing pH, and the slope of the resulting lines has a unit value (Figure 4G) (Ishido et al., 2011).
The bell-shaped pol activity profiles as a function of both pH and divalent metal ions have universally been observed for all DNA polymerases (Kornberg and Baker, 1992). This feature has also been described for human/rat DNA pol α, β, γ, λ, and η, for Taq DNA pol, bacterial and archael DNA pol Dpo4, for T7 DNA pol, T4, and RB69 pol, and for avian myeloblastosis viral DNA pol as well as for Ty1 and HIV-1 RT (Figure 4) (Slater et al., 1972; Dube and Loeb, 1975; Sirover et al., 1979; Starnes and Cheng, 1989; Tabor and Richardson, 1989; Lawyer et al., 1993; Bolton et al., 2002; Kokoska et al., 2002; Fiala and Suo, 2004; Castro et al., 2007; Frank and Woodgate, 2007; Ishido et al., 2011; Vashishtha et al., 2016; Vashishtha and Konigsberg, 2016).
KINETIC ASSIGNMENT OF THE THIRD DIVALENT METAL ION AS AN INHIBITOR OF THE POL ACTIVITY
Linda Rehra-Kranz and others have studied the Mn2+-dependent inhibition of the pyrophosphorylysis reaction by the L412M mutant T4 DNA pol using externally supplied pyrophosphate (PPi) (Reha-Krantz et al., 2014). They showed that a high concentration of Mn2+ ion clearly inhibited pyrophosphorylysis within the ranges of both the [Mn2+] and [PPi] that they studied. However, the nature of the inhibition could not be easily described using classic kinetic schemes because there was a significant amount of the Mn2+-PPi complex formation, and because Mn2+ ion was both an activator and an inhibitor. The half maximal inhibitory concentration (IC50) of Mn2+ ion was >3 mM when [PPi] = 4 mM, and IC50([Mn2+]) was ∼2 mM when [PPi] = 2 mM, and IC50([Mn2+]) was ∼1 mM when [PPi] = 1 mM, and so on. However, these IC50 values are not very meaningful because they there was no report on the activation phase of the reaction, nor the maximal activity at the optimal [Mn2+]. Upon comparison with the typical pol activity curves as a function of [Mn2+] for DNA pols (Figure 4), the [Mn2+] used in their studies was clearly on the inhibitory side of the curve. Thus, the inhibitory Mn2+ ion most likely corresponds to the binding at the third Mn2+ site.
Given that the third Mn2+ site does not bind to the ES complex of the polymerization reaction but binds only to a non-productive ES complex for pyrophosphorylysis, its apparent inhibition with respect to the pol activity profile of the steady-state reaction is only indirect. We propose that this third Mn2+ site helps to retain the pyrophosphate product longer than usual within the ternary complex, thus increasing its local concentration and making pyrophosphorylysis increasingly likely. Our proposal is also based the fact that the unreleased pyrophosphate product is the only source of substrate for pyrophosphorylysis. Consistent with our proposal is the observation that when citrate or isocitrate is included in the Mn2+ ion-containing reaction, the third Mn2+ ion, which has relatively low affinity, can be removed so that the Mn2+-dependent inhibition can be eliminated and the maximal pol activity can be restored (Figure 4C) (Tabor and Richardson, 1989).
CONCLUDING REMARKS
The existing biochemical and structural literature on DNA pols is fully consistent with the generalized mechanism of the two-metal-ion catalysis proposed by Thomas Steitz together with the existing TS theory for enzymatic reactions. This review provides a structural basis for the bell-shaped activity profiles of DNA pols as a function of pH and divalent metal ion concentrations. Weak binding of a third divalent metal ion appears to be responsible for retaining pyrophosphate, allowing extra time for pyrophosphorylysis. This could be important for hydrolysis of incorrectly incorporated nucleotide residues for some DNA pols before mismatches are transferred to the exonuclease site.
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DNA polymerases catalyze nucleotidyl transfer, the central reaction in synthesis of DNA polynucleotide chains. They function not only in DNA replication, but also in diverse aspects of DNA repair and recombination. Some DNA polymerases can perform translesion DNA synthesis, facilitating damage tolerance and leading to mutagenesis. In addition to these functions, many DNA polymerases conduct biochemically distinct reactions. This review presents examples of DNA polymerases that carry out nuclease (3ʹ—5′ exonuclease, 5′ nuclease, or end-trimming nuclease) or lyase (5′ dRP lyase) extracurricular activities. The discussion underscores how DNA polymerases have a remarkable ability to manipulate DNA strands, sometimes involving relatively large intramolecular movement.
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INTRODUCTION
DNA polymerases have been intensively studied for decades because of their fundamental importance in DNA replication. Organisms throughout nature possess an array of polymerases encoded by their genomes, specialized for functions in DNA repair, recombination, and DNA damage tolerance. The canonical DNA polymerase reaction is the addition of a nucleotide, usually a deoxynucleoside triphosphate, to the 3′ end of a growing DNA chain, liberating pyrophosphate (Figure 1). The reverse reaction, pyrophosphorolysis, catalyzed by some DNA polymerases, is driven backwards by an excess of pyrophosphate. The purpose of this review is to highlight the existence of additional activities associated with DNA polymerases beyond canonical nucleotidyl transfer (Figure 2). We briefly summarize each activity, emphasizing recent results and unsolved issues.
[image: Figure 1]FIGURE 1 | Canonical DNA polymerase nucleotidyl transfer activity. (A) T7 DNA polymerase structure 1SKR (Li et al., 2004), (B) T7 DNA polymerase rotated 90o with magnified inset, (C) two-metal DNA polymerase mechanism. Subdomain color scheme: fingers (blue), palm (red), thumb (green), 3′-5′ exonuclease (cyan).
[image: Figure 2]FIGURE 2 | Extracurricular functions of DNA polymerases. (A) 3′-5′ exonuclease, (B) 5′ structure-specific nuclease, (C) dRP lyase, (D) end-trimming nuclease.
3′–5′ Exonuclease Activity
All DNA polymerases share a common polymerase fold, which has been compared to a human right hand, composed of three subdomains: fingers, palm, and thumb (Steitz, 1999). In addition, the DNA polymerase toolbox can include a 3′–5′ exonuclease domain whose main role is to proofread new DNA synthesis to remove nucleotides that have been incorrectly incorporated. This reduces the error rate of DNA polymerases by one or more orders of magnitude during DNA replication (Joyce, 2013). In certain contexts, this 3′–5′ exonuclease activity is essential. Loss of editing activity results in increased incidence of cancer and pronounced genome instability (Shevelev and Hübscher, 2002; Shanbhag et al., 2018).
Multiple families of DNA polymerases harbor a 3′–5′ exonuclease activity: B-, C-, and D-family replicative polymerases (δ and ε in eukaryotes, Pol III in E. coli, PolD in euryarchaeota) and A-family repair polymerases, such as E. coli Pol I (Filée et al., 2002). Many A-family and some B-family polymerases have a conserved 3′–5′ exonuclease domain located in the N-terminal region of the larger polymerase domain (Khare and Eckert, 2002). In other B-family polymerases, the location of the exonuclease domain is found in a structurally distant region. The exonuclease active site in E. coli DNA polymerase I, an A-family polymerase, is ∼30 Å away from the polymerase active site (Figure 3A), whereas the distance between the two active sites is closer to ∼40 Å in B-family polymerases (Figure 3B) (Franklin et al., 2001; Hogg et al., 2004). Most B-family DNA polymerases have an extended β-hairpin loop that facilitates primer movement by holding the template strand in place as the primer switches into the exonuclease active site, a feature not found in A-family polymerases with 3′–5′ exonuclease activity (Hogg et al., 2007).
[image: Figure 3]FIGURE 3 | 3′–5′ exonuclease. (A) Family- A polymerase Klenow fragment with DNA in the editing site (1KLN) (Beese et al., 1993), (B) Family-B polymerase RB69 gp43 with DNA in the editing site (2P5O) (Hogg et al., 2004). Subdomain color scheme same as Figure 1, with RB69 gp43 N-terminal domain in gold.
Although homology among DNA polymerases varies significantly, the 3′–5′ exonuclease active site itself is very conserved within A-family polymerases. There are three highly conserved amino acid regions containing critical residues that coordinate two divalent metal ions, ssDNA and deoxyribonucleoside monophosphates (dNMPs) (Bernad et al., 1989; Pinz and Bogenhagen, 2000). A key catalytic step required for 3′–5′ exonuclease activity is the chelation of two metal ions by active-site aspartates and glutamates (carboxylates) (Park et al., 1997). The Exo I, Exo II, and Exo III regions are essential for the exonuclease activity, as they contain the carboxylates that directly bind the metal ions required for catalysis (Bernad et al., 1989). Recent studies have identified other residues that help facilitate catalysis in the exonuclease active site. In bacteriophage ϕ29 DNA polymerase, tyrosine, threonine, and glutamine residues help coordinate the binding of DNA to the exonuclease active site. Specifically, Tyr 101 and Thr 189 assist in melting dsDNA to form ssDNA that can bind the active site (Rodriguez et al., 2019). Although Thermus aquaticus DNA polymerase (Taq) comprises an exonuclease domain, the enzyme lacks the three aspartates and one glutamate essential for catalysis and therefore has no proofreading activity (Kim et al., 1995); nevertheless exonuclease activity can be conferred to some extent by introducing the four carboxylates into the Taq sequence (Park et al., 1997).
To ensure replication fidelity the exonuclease activity operates in a delicate balance with the polymerase activity, with the exonuclease favored when a mismatch is inserted (Doublié and Zahn, 2014). The enzyme contributes to this regulation by monitoring the newly incorporated bases. The polymerase senses a mismatch by using strategically positioned protein residues that detect the minor groove N3 and exocyclic O2 positions of incorrect base pairs after incorporation, such as Arg 429 and Gln 615 in T7 DNA polymerase, and Tyr 567 and Lys 706 in RB69 gp43, respectively (Doublié et al., 1998; Franklin et al., 2001; Hogg et al., 2004). In Family B DNA polymerase ϵ, conserved Lys 967 and Arg 988 were found essential in regulating the switching of the DNA primer between the polymerase active site and exonuclease active site. Both residues lie between the palm and thumb domains and directly interact with the minor groove (Ganai et al., 2015). When a mismatch is present, the melting temperature of the bases at the 3′ terminus is lower favoring the formation of ssDNA ends. In fact, the binding of at least 3-4 bp ssDNA in the exonuclease active site is required to favor the cleavage reaction over the polymerase reaction, (Derbyshire et al., 1988; Beese et al., 1993). The functional separation of the two active sites also helps in the regulation of the exonuclease activity, to ensure it is used sparingly and only when mismatches are introduced. To achieve proper binding in the exonuclease active site, the enzyme must translocate backwards, leading to sufficient DNA unwinding to allow the primer terminus to leave the polymerase active site and bind the exonuclease active site (Beese et al., 1993). More recent FRET experiments mapped the trajectories recorded by a DNA primer translocating from the polymerase active site to the exonuclease active site of the Klenow fragment of DNA pol I. These data revealed that the enzyme can shuttle the primer between the two sites without dissociating from DNA (intramolecular transfer) (Lamichhane et al., 2013).
In some B-family polymerases, the two domains may be more structurally distant, complicating this active site switching step. To overcome this obstacle, some polymerases can bend the DNA in the active site to bring the exonuclease domain closer to the polymerase domain, facilitating the cleavage reaction. In the bacteriophage ϕ29 DNA pol, the primer terminus moves in one dimension from the polymerization site to the exonuclease site by a 40° rotation in the helix of the DNA (Khare and Eckert, 2002; Del Prado et al., 2018). In addition to the conserved catalytic aspartates in the exonuclease domain discussed above, a non-catalytic conserved aspartate with a regulatory role has recently been identified (Del Prado et al., 2018). In ϕ29 DNA pol, this residue, Asp 121, is located between the Exo II and Exo III motifs. This Asp facilitates the binding of ssDNA substrates at the 3′–5′ exonuclease active site, but, interestingly, it does not come into contact with the metal ions or the ssDNA. Asp 121 facilitates the melting of dsDNA to form the ssDNA primer required to catalyze the cleavage reaction. Similar invariant aspartates have also been identified in other enzymes, such as Asp 150 in E. coli RNase T (Zuo and Deutscher, 2002). In bacteriophage T7 DNA pol, mutating the predicted invariant Asp90 in the active site of the exonuclease domain completely ablated the exonuclease activity of the enzyme (Del Prado et al., 2018). The proximity of Asp 90 to multiple residues required for the exonuclease reaction suggested to the authors that this residue functions in a “Romanesque vault” structure, facilitating bending of the DNA to bring the primer into the correct orientation in the active site for cleavage (Del Prado et al., 2018).
Even further redundancies and regulators have been found that facilitate the switch between polymerase activity and exonuclease activity, which is essential for replication fidelity. The switch between polymerase active site and exonuclease active site is also controlled by the concentration of dNTP present in the active site (Beechem et al., 1998). Decreased occupancy of the polymerase active site by incoming dNTP shifts the balance towards exonuclease catalysis. More recently, it was shown that phosphorylation of yeast Pol ε during replication fork stalling can also shift the equilibrium. Checkpoint kinases mediate the phosphorylation of Ser 430 in S. cerevisiae pol2, preventing primer DNA switching to exonuclease sites. This post-translational modification regulates the DNA switching between the polymerase active site and the exonuclease site, limiting fork resection and subsequent collapse (Pellicanò et al., 2021).
Beyond proofreading, polymerase 3′–5′ exonuclease activity is important in promoting virus genetic recombination, as seen in Poxviruses. Vaccinia DNA Polymerase mutants lacking 3′–5′ exonucleolytic activity showed a dramatic reduction in recombination (Gammon and Evans, 2009). The authors propose a model in which the polymerase may use 3′–5′ exonuclease activity to rescue a double-strand break (DSB) by exposing sufficient homology in ssDNA to allow annealing at the break, repair by DNA polymerase and ligase, and subsequent resumption of DNA replication (Gammon and Evans, 2009).
5′-Nuclease Activity
Some DNA polymerases, such as Taq, also possess a 5′- nuclease activity located in a separate domain (Figure 4) (Longley et al., 1990; Lyamichev et al., 1999). The 5′-nuclease activity was originally referred to as a 5′–3′ exonuclease activity, but it has since been established as a structure specific-cleavage of a 5′-ssDNA end joined to duplex DNA, a structure that is formed during lagging strand DNA synthesis (Joyce, 2013). Conserved residues in the 5’ nuclease domain (Gutman and Minton, 1993) share homology with the flap endonuclease (FEN1/XPG) family of proteins (Harrington and Lieber, 1994; Robins et al., 1994; Patel et al., 2001; Tsutakawa et al., 2011). In E. coli Pol I, the 5′-nuclease domain is tethered to the polymerase domain by an unstructured 16 amino acid peptide that is susceptible to proteolytic cleavage, allowing isolation of a Pol I “Klenow fragment” that lacks the 5′-nuclease domain (Klenow and Overgaard-Hansen, 1970). As such, the Pol I 5′-nuclease primarily operates during lagging strand synthesis to remove 5′ flaps formed when Pol I encounters Okazaki fragments during synthesis. The 5′-nuclease activity recognizes the 5′ flap and cuts between the first two bases, creating a nick on the DNA that is subsequently filled by DNA ligase (Ceska and Sayers, 1998; Xu et al., 2000).
[image: Figure 4]FIGURE 4 | 5′ structure specific nuclease. (A): Taq polymerase with 5′ nuclease domain shown in purple, (B): Taq polymerase rotated 180o to show 5′ nuclease residue conservation across 150 homologs (1TAQ) (Kim et al., 1995). Subdomain color scheme same as Figure 1.
DNA travels between the polymerase and 5′- nuclease domains through several conformational transitions (Joyce et al., 1992). The 5′-nuclease domain is flexible and adopts different positions within the Pol I-DNA complex to remove 5′ flaps (Ceska and Sayers, 1998). The polymerase and 5′ nuclease active sites compete for access to DNA ends, with dramatic shifts between the two active sites occurring during ongoing lagging strand synthesis. The 5’ nuclease activity also requires 2 divalent metal ions for cleavage. The selection of activity is likely intricately regulated by molecular “gates” in the active site, although details of this regulation are unknown (Joyce, 2013). However, the intricate gating mechanisms in FEN family proteins that help discern between different substrates can be used to glean insights into how 5′- nuclease is regulated in Pol I (Grasby et al., 2012; Pauszek et al., 2021).
5′-dRP Lyase Activity
Steps in base excision repair (BER) occur in a coordinated manner and enzymes are sequentially displaced to facilitate the next step in the pathway. During BER, a damaged base (for example, one modified by reactive oxygen species) is removed by a lesion-specific DNA glycosylase. This process leaves an apurinic/apyrimidinic (AP) site or abasic site that is recognized and cleaved by an AP endonuclease. This cleavage leaves a 5′-terminal deoxyribophosphate (dRP) residue that must be removed in concert with replacement of the base. In mammalian cells, Pol β is the main DNA polymerase involved in BER, and it is able to carry out both of these enzymatic steps. Pol β removes 5′- dRP and fills the gap (Matsumoto and Kim, 1995; Sobol et al., 1996; Allinson et al., 2001).
The 5′-dRP lyase activity is contained within an 8 kDa N-terminal domain of Pol β (Prasad et al., 1994; Prasad et al., 1998) (Figure 5A). A metal ion is required for release of the 5′dRP from double-stranded DNA allowing the gap in the DNA to be filled and subsequently ligated (Matsumoto and Kim, 1995).
[image: Figure 5]FIGURE 5 | dRP lyase. (A) Pol β structure with dRP lyase residues highlighted in yellow in magnified inset (2FMS) (Batra et al., 2006), (B) Pol θ structure with dRP lyase residue highlighted in blue in magnified inset (4×0P) (Zahn et al., 2015). Subdomain color scheme same as Figure 1.
A nick adjacent to a 5′-dRP residue is a small target, and Pol β must bind non-specifically along the DNA as it searches for the right substrate to cleave. PARP1 has a high affinity for this substrate and may help recruit pol β (Khodyreva et al., 2010; Prasad et al., 2014). Recently, it was found that three lysines in the lyase active site of Pol β facilitate the search for the 5′- flap substrate on the dsDNA and destabilize non-specific DNA binding. Mutating these three lysine residues to alanines in the lyase active site of Pol β (Lys 35, Lys 68, and Lys 72), increased the binding affinity of Pol β for nonspecific DNA, indicating a role of the 5′dRP lyase in the specificity of lesion recognition (Howard et al., 2020). A tumor-associated variant in the N-terminal 8 kDa domain of Pol β retains polymerase activity but is dRP lyase deficient (Dalal et al., 2008). DNA methylating agents such as methyl methane sulfonate (MMS) create base lesions that are removed by BER. Fibroblasts of Pol β null mice are hypersensitive to MMS. This sensitivity can be rescued by complementation with the 5′dRP lyase activity of Pol β, without requiring the DNA polymerase activity (Sobol et al., 2000). In this case, another DNA polymerase such as pol δ accomplishes gap filling (Klungland and Lindahl, 1997; Fortini et al., 1998). Furthermore, Pol β 5′dRP lyase activity is suggested to be important in preventing trinucleotide repeat instability. Pol β defective in 5′-dRP lyase activity can be tightly bound to a repair site, forcing slippage that can result in deletions of trinucleotides (Lai et al., 2018).
Other polymerases also carry out 5′-dRP lyase activity. Y-Family pol iota (Pol ι) possesses 5′-dRP lyase activity and can alleviate BER deficiency in vitro (Bebenek et al., 2001; Prasad et al., 2003). Loss of Pol ι sensitizes the cells to treatment with oxidative damaging agents (Petta et al., 2008). Pol ι accumulates in sites of oxidative DNA damage and associates with BER modulator XRCC1 to facilitate repair. The recruitment of Pol ι to sites of DNA damage in human cells requires the 5-dRP lyase domain of the enzyme. It is not clear whether the dRPase of Pol ι is functionally relevant to its operation in a pathway to counteract DNA replication stress (Wang et al., 2020), involving p53-dependent reactivation of DNA replication forks (Hampp et al., 2016; Biber et al., 2020).
The A-Family polymerase Pol θ also possesses 5′-dRP lyase activity within its polymerase domain. In vitro, Pol θ can participate in BER reactions (Prasad et al., 2009). Lys 2383, a residue critical for AP lyase, is also important for the DNA polymerase activity of Pol θ (Figure 5B) (Laverty et al., 2018). The 5′-dRP lyase activity of Pol θ can also operate in structurally clustered lesions (Laverty and Greenberg, 2018). In these clustered regions, Pol β is 15–20 fold slower at excising the 5′-dRP lyase compared to Pol θ, which suggests that the two polymerases may have evolved to take care of a larger variety of substrates, with Pol β being favored for excising lesions with opposite polarity than those excised by Pol θ (Laverty and Greenberg, 2018). BER is also important for repair of oxidative lesions in mitochondrial DNA. Mitochondrial DNA polymerase y (Pol γ) also possesses 5′-dRP lyase activity, although with a much slower release of the dRP group from the enzyme compared to Pol β. In fact, the 5′-dRP lyase activity in A-family polymerases such as Pol γ, Pol θ, and Pol I is significantly slower than in Pol β, which suggests that this function may not be sufficient to complete repair of abundant AP sites (Pinz and Bogenhagen, 2000).
3′-End-Trimming and Single-Strand Extension
A DNA end-trimming activity, distinct from the nuclease activities discussed above, was identified in human Pol θ (Zahn et al., 2021). The rapid end-trimming activity acts on single-stranded DNA when placed in a transient and appropriate self-pairing conformation within pol θ (Figure 6). This end-trimming activity is different from 3′ to 5′ exonuclease activity. Although Pol θ contains a proofreading domain, it lacks two of the conserved amino acids necessary for 3′–5′ exonuclease activity. Further, a short loop in the exonuclease-like domain of pol θ would impede access of DNA to the exonuclease active site (Zahn et al., 2015).
[image: Figure 6]FIGURE 6 | End-trimming. (A) The top strand of DNA cannot serve as a primer for successful repair because the microhomology (red) is internal. Two terminal 3′ nt (violet) are unpaired. Pol θ can process ssDNA ends by two modes: (B) Transient self-pairing of a 3′ end within pol θ (violet nt) can lead to end-trimming catalysis, resulting in removal of 2 nt (in this case). This allows the internal microhomology (red) to engage in productive priming. (C) Transient self-pairing of a 3′ end within pol θ (violet nt) can alternatively result in limited synthesis. In this case, 4 nt (green) that are complementary to an internal microhomology on the bottom strand of DNA are synthesized. The result of this process is a short, templated insertion.
This end-trimming activity shares many of the dependencies and catalytic residues that are required for the DNA polymerase reaction. For example, end-trimming is dependent on the presence of divalent cation (Mg2+ or Mn2+), on catalytic residues including invariant aspartate Asp 2330 that coordinates Mg2+ in the active site, and on the addition of dNTPs (Zahn et al., 2021). Catalysis of both extension and nuclease activity from the same active site is plausible in principle because the two-metal ion active sites of nucleotidyl transfer enzymes share close similarities with the active sites of many nucleases (Yang et al., 2006).
Experimentally, dNTP-dependent end-trimming activity is observed with some, but not all single-stranded oligonucleotides. For those substrates that are end-trimmed, a unifying feature is that the 3′ terminus is capable of potential self-pairing with a short sequence within the oligonucleotide, suggesting that a hairpin-type configuration is transiently formed within the active site of pol θ (Figure 6B). On the most-studied substrate, 2 nt are cleaved from the 3’ terminus in an endonucleolytic reaction; on some substrates 1 nt is removed; on others, possibly more than 2 nt may be end-trimmed. The end-trimming configuration appears to be unimolecular, because all substrate is quickly consumed. Further, the proposed end-trimming configuration explains another activity of pol θ, the ability to extend single-stranded DNA substrate.
Pol θ DNA polymerase can extend some single-stranded DNA molecules, an activity that is not shared by other known A-family polymerases (Hogg et al., 2012). In the presence of Mg2+, the products observed are both primed and largely templated by the same oligonucleotide (Figure 6C) (Hogg et al., 2012; Yousefzadeh et al., 2014). It was suggested that the single-stranded extension activity of Pol θ was the result of non-templated terminal transferase activity (Kent et al., 2016). However, Pol θ is not a terminal transferase. Experiments in the study suggesting terminal transferase activity were conducted using Mn2+. This metal leads to promiscuous synthesis and a high rate of mismatch incorporation, and it is known that Pol θ can extend readily from a 3′-terminal mismatch (Seki and Wood, 2008; He and Yang, 2018). Like other A family polymerases, Pol θ can add an additional dATP to a blunt DNA end, but otherwise shows predictable template requirements in a first round of DNA synthesis (He and Yang, 2018).
DNA polymerase θ is the defining enzyme in a double strand break repair pathway, termed theta-mediated end-joining (TMEJ). During TMEJ, Pol θ engages single stranded 3′ ends by microhomology. It thus makes sense that Pol θ recognizes and processes ssDNA in several ways. Pol θ apparently manipulates the 3′ end of the ssDNA in the active site, forming a transitory hairpin that serves as the intermediate for either cleavage or extension of the 3′-end (Zahn et al., 2021). The factors that dictate the choice between these two activities are being investigated, as well as how processed single-strands are then advanced to a repair stage that uses pairing at microhomologies and primed extension on double-stranded DNA. Statistically, microhomologies will rarely be found at the ends of a double-strand break but will more often occur internal to the break (Figure 6A). The two steps of processing of DNA ends and templated extension appear to largely explain the mutational “signature” of TMEJ, involving short sequence insertions and deletions at the site of repair (Schimmel et al., 2019; Carvajal-Garcia et al., 2020; Hwang et al., 2020).
Endonucleolytic cleavage of a polynucleotide chain is also a feature of RNA polymerases, which edit transcripts by cleaving off 1 or 2 nucleotides from the 3′ end (Izban and Luse, 1992; Reines, 1992; Borukhov et al., 1993). This editing reactions are conducted in a Mg2+ - dependent manner from the RNA polymerase active site. The regulation of extension vs. cleavage is enhanced by protein cofactors that participate directly in reorganizing the amino acids in the catalytic site, referred to as “active center tuning” (Sosunova et al., 2013). For example, the endonuclease activity of E. coli RNA polymerase is stimulated by Gre proteins, and eukaryotic RNA pol II by TFIIS. Stimulated by Gre, RNA polymerase clips off the two terminal nt of a synthetic RNA fragment (Sosunov et al., 2003; Sosunova et al., 2013). In contrast to the pol θ end-trimming reaction, RNA polymerase editing does not seem to be directly dNTP- or NTP-dependent, although it can be modulated by nucleotide concentration. Other nucleotidyl transferases may also engage in a form of end-trimming or editing. For example, telomerase, including highly purified human telomerase, can shorten products as well as extend them (Collins and Greider, 1993; Rubtsova et al., 2012; Fouquerel et al., 2016).
Activity on RNA
Some DNA polymerases perform nucleotidyl transferase reactions that do not involve the usual DNA substrates or primers, and are briefly mentioned here to further illustrate the enzymatic versatility of DNA polymerases.
Reverse Transcriptase
Reverse transcriptases are RNA-dependent DNA polymerases, which use an RNA template to synthesize DNA. Some DNA-dependent DNA polymerases have been reported to have reverse transcriptase activity. Two bacterial A-family polymerases, Bst DNA polymerase and the Klenow fragment of E. coli Pol I, were successfully used to reverse transcribe RNA in vitro (Shi et al., 2015). Taq DNA polymerase can also engage in this activity, after mutating a single aspartate into asparagine (Barnes et al., 2021). Human pol η can use either a DNA duplex or and RNA/DNA mixed duplex during synthesis (Franklin et al., 2004; Su et al., 2017), and was shown to function as a reverse transcriptase in a cellular environment (Su et al., 2019). Pol θ was recently reported to also have a reverse transcriptase activity, although additional studies are warranted to establish the physiological relevance of this finding (Chandramouly et al., 2021).
Primase-Polymerase
Some DNA polymerases, for example eukaryotic DNA pol α, have a separate primase subunit that allows RNA priming for DNA replication. PrimPol is the only known eukaryotic DNA polymerase with intrinsic priming activity. Both primase and DNA synthesis are mediated by the same active site. Recently it was found that a priming activity of DNA polymerase PrimPol is used for replication restart after DNA damage (Garcia-Gomez et al., 2013; Mouron et al., 2013). PrimPol is primarily a TLS polymerase which is found in both the nucleus and the mitochondria, and is capable of bypassing 7,8-dihydro-8-oxoguanine (oxoG) and cyclobutane pyrimidine dimers (CPD) (Mouron et al., 2013; Rechkoblit et al., 2021). PrimPol can synthesize short DNA primers which other polymerases, like mitochondrial polymerase γ, can use to restart replication promoting overall mitochondrial genome maintenance. Recent studies have found that PrimPol repriming activity is used by stalled replication forks to skip DNA lesions and restart replication, leaving behind ssDNA gaps that can be filled by other repair polymerases (Quinet et al., 2020; Tirman et al., 2021).
CONCLUSION
DNA polymerases catalyze the nucleotidyl transfer reaction to generate a DNA polymer. In practice, however, this class of enzymes is able to catalyze a host of other DNA processing reactions that make DNA polymerases a multi-tool of genomic integrity. Redundancy in the activities of DNA polymerases is critical for replication and maintenance of the cell. If a DNA polymerase is unable to perform its function, other DNA polymerases are poised to intervene and assume the role of replication and repair typically filled by the compromised enzyme. These redundancies also facilitate the sheer amount of DNA replication and repair that must continuously occur in the cell throughout its life. It must be noted that the existence of redundant polymerase roles makes targeting DNA polymerases in cancer a challenge due to the ability of the cell to compensate for the loss by employing a different polymerase.
By using a DNA polymerase to execute more than one aspect of DNA processing, the cell can benefit energetically. Requiring a separate enzyme for each step would necessitate a greater energetic commitment from the cell to synthesize and recruit these enzymes than employing an existing polymerase. Furthermore, repurposing the active site of a DNA polymerase can facilitate spatial organization of enzymatic activities. By utilizing a common active site for multiple reactions, the polymerase becomes a hub where each activity may be performed sequentially. This arrangement is advantageous to the cell as a polymerase can process DNA in multiple ways before diffusing from the DNA, further minimizing the amount of energy required to attain appropriately processed DNA.
While DNA polymerases have been investigated for close to 60 years, we continue to discover noncanonical polymerase activities. From the addition of an enzymatic domain to exploiting an existing active site, DNA polymerases act like Swiss army knives of DNA processing. We can look forward to discovering what other functions these DNA multi-tools utilize to tackle DNA processing errors. Conveniently these multiple functions present additional opportunities to design small molecule inhibitors against these multitasking enzymes.
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High fidelity (HiFi) DNA polymerases (Pols) perform the bulk of DNA synthesis required to duplicate genomes in all forms of life. Their structural features, enzymatic mechanisms, and inherent properties are well-described over several decades of research. HiFi Pols are so accurate that they become stalled at sites of DNA damage or lesions that are not one of the four canonical DNA bases. Once stalled, the replisome becomes compromised and vulnerable to further DNA damage. One mechanism to relieve stalling is to recruit a translesion synthesis (TLS) Pol to rapidly synthesize over and past the damage. These TLS Pols have good specificities for the lesion but are less accurate when synthesizing opposite undamaged DNA, and so, mechanisms are needed to limit TLS Pol synthesis and recruit back a HiFi Pol to reestablish the replisome. The overall TLS process can be complicated with several cellular Pols, multifaceted protein contacts, and variable nucleotide incorporation kinetics all contributing to several discrete substitution (or template hand-off) steps. In this review, we highlight the mechanistic differences between distributive equilibrium exchange events and concerted contact-dependent switching by DNA Pols for insertion, extension, and resumption of high-fidelity synthesis beyond the lesion.
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INTRODUCTION
DNA damage can come from a variety of endogenous and exogenous sources and persist within the genome into the synthesis (S) phase of the cell cycle (Hakem, 2008). During S-phase, high fidelity (HiFi) polymerases (Pols) duplicate complementary DNA strands with a rapid rate of synthesis and a low rate of error. However, upon encountering DNA base damage within a template strand, HiFi Pols are unable to continue DNA synthesis and are stalled in place. Specialized Pols capable of bypassing the template-strand lesion, known as translesion synthesis (TLS) Pols, are recruited to the site of the damage, substituted in for the HiFi Pol, and then used to synthesize over and past the lesion (Figure 1A). TLS Pols have evolved to ensure error-free synthesis across preferred lesions but have overall lower fidelity than HiFi Pols (Waters et al., 2009; Goodman and Woodgate, 2013; Sale, 2013; Fujii and Fuchs, 2020). Following successful insertion of one or more nucleotides opposite (or past) the lesion, TLS Pols must dissociate from the DNA template and substitute back to the replicative Pol to resume high fidelity genomic synthesis (Trakselis et al., 2017).
[image: Figure 1]FIGURE 1 | Steps required for the overall translesion synthesis (TLS) process. (A) A high fidelity (HiFi) polymerase (Pol) will stall at a lesion requiring two- or three-substitution TLS for bypass. In a two-substitution mechanism, the first TLS substitution (sub) will recruit an inserter TLS Pol (green) for translesion DNA insertion (green) followed by substitution back to a HiFi Pol (purple). In a three-substitution mechanism, an extender (Ext) TLS Pol is substituted after insertion and is required for limited downstream extension (orange) prior to substitution back to the HiFi Pol. (B) TLS substitution will be influenced by the available TLS Pol Pool as well as the specificity for a particular lesion. (C) Compares the polymerase domain structure (N-term—yellow, Exo—grey, Palm—red, Fingers—blue, Thumb—green, and Little Finger—pink) for the more closed structures of HiFi B-family Pols KOD (Thermococcus kodakarensis) (Kropp et al., 2017) and Pol δ (Saccharomyces cerevisiae) (Swan et al., 2009) with the more open active sites of TLS Y-family Pols SsoDpo4 (Wong et al., 2010) and Pol η (Saccharomyces cerevisiae) (Alt et al., 2007) in complex with DNA, all arranged in the same orientation.
Although relatively simple in description, there are many intricate elements of the TLS mechanism. Previously, TLS has been described by a “one-polymerase” or “two-polymerase” process; however, the number and subunit composition of Pols found at TLS sites is expanding, and while some Pols have direct synthesis activities, others act only as scaffolds for assemblies. Therefore, the diversity of TLS processes would be better defined by a “two-substitution” or “three-substitution” mechanism (Figure 1A), focusing primarily on the steps required for synthesis instead of individual Pols involved. Insertion opposite a lesion requires that an appropriately selected TLS “inserter” Pol is substituted for the HiFi Pol. After TLS insertion, there can be direct substitution back to the HiFi Pol to resume synthesis (i.e., two-substitution) or subsequently an intermediary “extender” Pol can synthesize downstream of the lesion prior to substitution back to the HiFi Pol in a three-substitution mechanism. There are several mechanistic facets that regulate this process to help select TLS Pols from the cellular pool (Figure 1B) and restrict their activities after TLS for the benefit of maintaining a stable genome. Although many of these basic principles have been better characterized in prokaryotic systems, where a more limited set of Pols are available, this review will focus primarily on defining the TLS process in more complex eukaryotic systems, culminating with mechanistic hypotheses for limiting lower fidelity TLS Pol synthesis downstream of the lesion to favor resumption of high-fidelity synthesis.
Translesion Synthesis Pol Open Active Site
All DNA Pols resemble a right hand, with a structure consisting minimally of palm, finger, and thumb domains, comprising the catalytic core (Figure 1C). This conformation allows for binding of the DNA substrate while simultaneously inserting nucleotides during DNA synthesis. HiFi Pols also include a second exonuclease (Exo) active site that is utilized to proofread insertions and ensure fidelity. While HiFi Pols of the B-family have smaller and more closed active sites to ensure efficient and accurate DNA replication opposite undamaged template strands, TLS Pols of the Y-family have larger and more open active sites that allow insertion of one or more nucleotides opposite a lesion. Y-family TLS Pols generally have small finger domains and have an additional little finger (LF) domain that attenuates lesion bypass abilities and processivities (Boudsocq et al., 2004; Pata, 2010). Varying distances between the LF and the catalytic core, creating a structural gap, add specificity to the size of lesions that each TLS Pol can bypass (Yang and Gao, 2018). As a result of these structural differences, TLS Pols are capable “inserters” opposite specific lesions but are inherently less accurate and can quickly generate errors in the nascent DNA strand when synthesizing opposite undamaged DNA (Vaisman and Woodgate, 2017). Although these Pols have tolerant active sites to accommodate bulky lesions, mutagenesis even during TLS is fairly common (Volkova et al., 2020). Therefore, it is paramount to cellular survival that synthesis by certain TLS Pols be restricted only to base insertion opposite DNA lesions to prevent misincorporations downstream. HiFi Pols with more discriminative active sites must promptly resume replicating DNA to minimize inaccurate synthesis. To facilitate the end of a TLS event, the DNA replisome needs to exchange or switch back to the HiFi Pol to proceed with faithful DNA replication.
Translesion Synthesis Pols and Lesion Specificity
DNA damage can lead to genomic instability and carcinogenesis (Hoeijmakers, 2009; Shilkin et al., 2020). TLS serves as a DNA damage tolerance mechanism by allowing DNA replication to persevere in the presence of DNA lesions. By allowing DNA synthesis to continue upon the encountering of a template-strand lesion, TLS Pols reduce the risk of cellular apoptosis and prevent occurrence of double-strand breaks from excessive replisome stalling (Chatterjee and Walker, 2017).
Before discussing the plethora of Pols capable of performing TLS, it is important to understand the types of lesions that are encountered as well as their sources. For DNA-damaging agents that have been prevalent for long periods of time, it is possible that TLS Pols have evolved to specifically bypass the resulting lesions (Livneh et al., 2010). For example, eukaryotic TLS Pol η is capable of perfectly bypassing thymine cyclobutane pyrimidine dimers (CPDs) following UV radiation from sunlight with correctly base-paired adenines (Johnson et al., 2000b; Biertumpfel et al., 2010) (Figure 1C). Separately, archaeal DNA polymerase 4 (Dpo4) can synthesize nascent DNA beyond 7,8-dihydro-8-oxoguanine (8-oxoG) lesions generated by reactive oxygen species, as well as many additional lesions (Yang, 2014; Cranford et al., 2020; Jung and Lee, 2020) (Figure 1C).
Relatively newer sources of exogenous damage, such as platinating agents used in cancer treatment, have not yielded an evolutionary adaptation in a specific TLS Pol and are instead bypassed by the most suitable (or a combination of multiple) Pol(s). In organisms with multiple available TLS Pols, specificity to lesions is a determining factor for which Pol will perform the bypass (Yang, 2014). Human cells contain four Y-family TLS Pols: Pols η, ι, κ, and Rev1, each with varying active site dimensions and unique bypass capabilities. Pols η, ι, and κ have all been shown to act as the “inserter” Pol opposite a variety of lesions, with the large active site of Pol κ allowing bypass of the bulkiest lesions (Vaisman et al., 2001; Kusumoto et al., 2002; Albertella et al., 2005a; Alt et al., 2007; Yoon et al., 2009; Phi et al., 2019; Jung et al., 2020; Vaisman and Woodgate, 2020; Ghodke et al., 2021). Human Pol ν, an A-family Pol, has also demonstrated an ability to act as an “inserter” TLS Pol opposite lesions (Takata et al., 2006; Gowda and Spratt, 2016; Du et al., 2020). While structurally similar to other Y-family Pols, Rev1 acts less frequently as an “inserter” and more often as a scaffold to facilitate the binding of other Pols through conserved Rev1-interacting regions (RIRs) (Qin et al., 2013; Boehm et al., 2016b; Pustovalova et al., 2016). Recent studies have shown that Pol λ, an X-family Pol, can also perform this scaffolding role during TLS (Yoon et al., 2021). The varying active site structures, activities, and potential contacts of TLS Pols regulate Pol selection for lesion bypass.
POLYMERASE HOLOENZYME COMPLEXES WITH PCNA
A polymerase holoenzyme complex is assembled to provide some stability when bound to DNA that presents biochemically as processivity. Processivity can be defined by an equation that quantifies the probability of a Pol continuing at a specific site based on the kpol for nucleotide incorporation relative to koff for dissociation from the DNA template (Hippel et al., 1994). Several mechanisms have evolved to increase processivities of HiFi Pols and limit processivities of TLS Pols to ensure genome stability. For Pols, the trimeric clamp protein (proliferating cell nuclear antigen, PCNA, in archaea and eukaryotes) encircles duplex DNA and provides a topological link to the DNA, effectively reducing koff (Trakselis and Benkovic, 2001; Boehm et al., 2016a).
The binding affinity of the Pol itself for DNA can also impact the processivity. Interestingly, HiFi Pols generally have a higher affinity for PCNA than DNA, while TLS Pols have a higher affinity for DNA than for PCNA (Lin et al., 2012; Hedglin et al., 2016a). This implies that binding to clamp proteins is often required for high fidelity and processive DNA synthesis, while TLS activity may be more restricted directly by the DNA lesion. This provides a plausible mechanism for limiting TLS, however, the mechanism for releasing a TLS Pol from DNA after translesion synthesis is not well understood.
Pols have several interaction sites with the clamp, but in eukaryotes and archaea, the primary interaction site is through a hydrophobic PCNA-Interacting Protein (PIP) patch, adjacent to the interdomain connecting loop within a single PCNA monomer (Figure 2). This PIP binding site is located on the front (or leading face) of PCNA and interacts with proteins through a specific motif in a partner protein containing the general consensus sequence, Qxxhxxaa, where h is hydrophobic and a is aromatic (Warbrick, 1998). Glutamine binds to a Q-pocket through specific hydrogen bonding contacts, while the aromatic residues lay within the hydrophobic pocket. Although more than 75 proteins, including several DNA repair proteins and cell cycle regulators, contain this consensus PIP motif, TLS Pols generally encode a nonconsensus PIP motif, (K/G)xx(I/L)xx(FY/L)(FY/L) that bypasses the Q-pocket (Slade, 2018; Dash and Hadden, 2021). One to three PIP motifs are located in the unstructured C-terminal extensions of Y-family Pols (Powers and Washington, 2018). The variability within the consensus and nonconsensus PIP motifs can alter the Kd of interaction widely from 10 nM to >30 µM (Slade, 2018; Prestel et al., 2019).
[image: Figure 2]FIGURE 2 | PCNA is a dynamic “landing-pad” (or platform). PIP binding sites at the interdomain connecting loop (IDL) and ubiquitination at K164 are available on each of the three PCNA subunits, providing for multivalency. Structural model derived from PCNA/p21 peptide structure (PDBID: 1AXC) (Gulbis et al., 1996) and monoubiquitinated PCNA structure (PDBID: 3TBL) (Zhang et al., 2012).
It is well known that upon extreme stalling, PCNA becomes monoubiquitinated (mUB) at K164 (Figure 2) (Stelter and Ulrich, 2003; Kannouche et al., 2004; Chang et al., 2006). This additional ubiquitin facet on PCNA can further increase the binding affinity of TLS Pols though a ubiquitin-binding zinc finger (UBZ) motif (Bomar et al., 2007; Pillaire et al., 2014) or a ubiquitin-binding motif (UBM) (McIntyre et al., 2015; Vanarotti et al., 2018) also within the unstructured C-terminal tails of Y-family TLS Pols (Yang and Gao, 2018). mUb-PCNA acts to not only recruit TLS Pols at stalled replication forks but also to increase their residence times to carry out TLS (Sabbioneda et al., 2008; Sabbioneda et al., 2009). The covalent addition of Ub to the back side of PCNAK164 and the flexibility inherent within the unstructured C-terminal tails containing these motifs allow these TLS Pols to adopt several conformations on PCNA in inactive carrier or active polymerizing states (Shen et al., 2021). Therefore, based on this multivalency for trimeric mUb-PCNA, there are now at least six specific contact points for recruiting and interacting with Pols, providing a landing platform for assemblies (Figure 2) in what has been described previously as a “tool-belt” model (Kath et al., 2014; Boehm et al., 2016b; Cranford et al., 2017). A holoenzyme complex, consisting of the synthesizing Pol bound to PCNA, or a supraholoenzyme complex, comprised of multiple Pols bound to PCNA, contain many protein-protein interactions (PPIs) for added stability during DNA synthesis.
MECHANISMS FOR THE TRANSLESION SYNTHESIS SWITCH OR EXCHANGE
Substitution of a HiFi Pol for a TLS Pol to hand off the primer opposite a damaged template is required to insert opposite a variety of template lesions, however, the exact mechanism for the polymerase exchange or switch is uncharacterized. Moreover, the diversity of lesion types and abundance of Pols within the cell would not suggest that a single mechanism is utilized. Instead, it is likely that several mechanisms are employed dependent on the specific lesion, the DNA context, and the signaling pathways. Conceptually, substitution of one Pol for another that relies primarily on kinetic modulation (i.e., koff) can be considered equilibrium exchange events, while those that are mediated through PPIs directly between Pols or through PCNA in a “tool-belt” or “landing-pad” fashion are switches (Figure 3). It is probable that aspects of both of these basic mechanisms are employed. For example, recruitment of a TLS Pol to a stalled HiFi holoenzyme may be brought in by specific contacts with PCNA (Figure 2) or combined with Pol-Pol interactions creating a transient supraholoenzyme to initiate a switch only to then have the HiFi Pol and/or PCNA dissociate in a subsequent exchange for insertion opposite a lesion.
[image: Figure 3]FIGURE 3 | Schematic of the potential equilibrium exchanges and PCNA-directed switches that occur for TLS. (i) a distributive Pol exchange before two-substitution TLS. (ii) A distributive Pol exchange before three-substitution TLSs.(iii) a distributive PCNA/Pol exchange before two (or three)-substitution TLS. (iv) A concerted Pol switch with a pre-associated TLS Pol. (v) A concerted Pol switch with the HiFi Pol remaining bound to PCNA throughout TLS. (vi) Concerted Pol switches during three-substitution TLS.
A Distributive Mechanism of Polymerase “Exchange”
Stalling of a DNA Pol at a lesion or template-blocking event will render it catalytically inactive. In that case, kpol becomes extremely slow, and the koff event will predominate, dissociating the Pol from DNA. koff can be increased further by minor DNA distortions caused by the lesion itself (Broyde et al., 2008) or from shuttling between polymerase and exonuclease active sites within the HiFi Pol (Khare and Eckert, 2002). In this situation, multiequilibrium processes will predominate, and depending on the affinity of an exchanged Pol for the lesion and the concentration of Pols within the cell, a new TLS Pol would be selected (Figure 3). In the exchange model, very little, if any, contacts are retained between an incoming TLS Pol and either the HiFi Pol or PCNA. Instead, the template becomes accessible after a koff event, and a new TLS Pol can bind the damaged template for an insertion event. After insertion, the same TLS Pol can extend for several bases past the lesion, dependent on its own processivity and synthesis properties. Alternatively, another Pol substitution event can be utilized to synthesize past the lesion functioning as an “extender” Pol. Thus, the “hand-off” is indirect and is more consistent with an external equilibrium Pol active site exchange of the primer/template.
A Concerted Polymerase ‘Switching’ Mechanism
There is also evidence for several PPIs or contacts within a Pol holoenzyme. This occurs primarily through multivalency of binding to the trimeric PCNA clamp but can also be through direct Pol-Pol interactions. Several Pol interactions have been discovered between B- and Y-family Pols (designated YB sites) (Baldeck et al., 2015; Cranford et al., 2017). The key to a successful switch is that enzyme dissociation-association events from DNA are restricted in favor of pre-bound Pols releasing and swapping active-site binding to the damaged template (Figure 3). The affinity of TLS Pols for PCNA or the HiFi Pol itself effectively increases the local concentrations of TLS Pols at the replication fork, allowing for a more coordinated switch. To be clear, there can be several koff events involved in a switch. The first, and more traditional event, would be koff-DNA of the HiFi Pol from DNA, but in that case, localized binding can be retained by PCNA. Should the HiFi Pol dissociate from PCNA, a second koff-PCNA event can occur. Of course, further contacts such as koff-Pol between Pols (i.e., YB site) can also help mediate a switching event. In support, mutation of the YB site in the archaeal Saccharalobus solfataricus (Sso)Dpo4 enzyme results in decreased processivity of DNA synthesis suggesting that the supraholoenzyme complex is a more stable synthesizer (Cranford et al., 2017). Upon successful switching, the fate of the HiFi Pol is not always clear. It can dissociate from PCNA and the DNA template and be lost to solution, or it can be held in check within the supraholoenzyme complex. In a TLS switch, the “hand-off” is direct with contacts between Pols or coordinated through multivalent PCNA contacts facilitating primer/template binding to a preassociated Pol.
The kinetics of the entire TLS process from stall, substitution, insertion, and extension will be influential in determining whether an exchange or switch is more likely. For example, weaker PPI contacts and slower rates of insertion opposite more difficult lesions may favor a more distributive exchange of Pols from solution. However, stronger interactions and faster insertion kinetics may allow a concerted switch to be more likely, through the confines of a supraholoenzyme complex. Therefore, the PPI affinities, the equilibria concentrations of Pols, and the catalytic efficiency of an insertion (dependent on the lesion type) will be linked, making this highly dynamic process difficult to measure and accurately characterize.
Limitations for Biochemical Assays Designed to Examine Polymerase Substitutions
There are several inherent complexities for a biochemical experiment to fully examine Pol substitutions preceding, during, or after a TLS event. Typically, an in vitro dynamic biochemical kinetic characterization can be performed with only a limited and feasible number of biological components in a single experiment. Countless kinetic fidelity measurements have been made for many DNA Pols for even more DNA lesions in a single enzyme—single substrate experiment (Figure 4A), providing valuable quantitative understanding of lesion bypass and fidelity (Berdis, 2009; Liu et al., 2016; Powers and Washington, 2017; Raper et al., 2018). As the overall TLS process can include several proteins, numerous PPIs, differing kinetics, and variable equilibria, this experimental setup can be complicated. It is common to mutate the exonuclease proofreading site of the HiFi Pol to eliminate the degradation of the primer strand that complicates the extension kinetics, but the shuttling between Pol and Exo sites may be influential in directing the TLS process (Reha-Krantz, 2010). Moreover, it is also common to truncate TLS Pols to their core polymerase domain, removing important PIP/RIR/UBM/UBZ motifs in the unstructured C-terminal tails and making the examination of switching impossible.
[image: Figure 4]FIGURE 4 | Experimental presteady-state schemes to examine the TLS process both pre and post lesion. (A) TLS Pol and various DNA template lesions to examine inherent fidelity in isolation. (B) Prebound HiFi Pol with PCNA stalled to examine a kinetic exchange process. Preassembled supraholoenzyme complex with HiFi and TLS Pols bound to DNA to examine kinetics of switching directed (C) by interactions with PCNA (PIP sites) or (D) through Pol-Pol interactions (YB site) (yellow circles). (E) A TLS Pol with a primer that is a defined number of bases past a lesion is used to examine a distributive exchange, (F) a PCNA directed switch, or (G) a YB directed switch. (H) The kinetics of a preassembled PCNA/TLS/HiFi Pol directed switch back to high fidelity synthesis can be validated by utilizing PIP− or YB− mutants of all Pols.
The presteady-state kinetics of TLS insertions and extensions can be monitored to better understand the impact of various exchange or switch processes using a rapid quench setup (Figures 4B–D). The experimental design is important as it impacts the desired measured outcome. For example, the kon for a TLS pol is usually diffusion-limited and rapid. However, if that is not the case then the method used to examine an exchange (Figure 4B) may be affected. Addition of a TLS Pol after a stalled HiFi Pol will simulate an incoming (or recruited) TLS Pol. The TLS Pol concentration can be varied to examine critical aspects of competitive binding exchange. Preincubation of HiFi and TLS Pols with PCNA and DNA can simulate and test a “tool-belt” model of concerted Pol switching. The kinetics of insertion and extension may vary depending on whether the TLS Pol is included initially or subsequently to help validate one particular model. The DNA primer length can also be altered to examine any kinetic differences of an approaching DNA Pol holoenzyme with a pre-stalled one in a “running start” assay. Catalytically deficient mutations (cat−) in either the HiFi or TLS Pol active sites can be used to distinguish extension products when multiple Pols are included. PPIs can be disrupted through site-specific mutations of the PIP (PIP−) or YB (YB−) sites for each Pol to test the impact of these contacts in facilitating a TLS switch. To fully understand the implications of Pol interactions with PCNA in a switch, full length, and not truncated core forms, of TLS Pols should be utilized.
After insertion, the stability and processivity of the TLS Pol can be examined. The design of these experiments will again test whether there is a second distributive exchange or facilitated switch to resume processive synthesis (Figures 4E–H). The DNA primer is systematically lengthened to determine whether there is a position of inherent destabilization of the TLS Pol that limits further extension. PCNA can be excluded or included with the TLS Pol (+/− Rev1) to initiate extension with mixing the HiFi Pol. The resulting product distributions and maximal kinetics of extension will inform on the preferred scheme. For eukaryotic systems, Ub can be covalently added to PCNA through several chemical biology approaches (Freudenthal et al., 2010; Hibbert and Sixma, 2012; Yang et al., 2016; Gong et al., 2018). Combined with UBM/UBZ mutations in the C-termini of TLS Pols, the role for mUb-PCNA in the TLS process can also be explored through the kinetics of extension.
PRELESION: STALLING OF THE HIGH FIDELITY POLYMERASE
Upon encountering a template lesion or a difficult to replicate region from secondary structure or physical impediments, the HiFi Pol will stall (Marians, 2018; Maiorano et al., 2021). The HiFi Pol will attempt insertion of a nucleotide opposite the lesion, however it is almost always unsuccessful (McCulloch and Kunkel, 2008). If insertion opposite a lesion is successful, then further extension is severely inhibited because of distortion in the duplex that is sensed, and the terminal nucleotide is removed at the exonuclease proofreading active site of the HiFi Pol. This stalling (or shuttling between active sites) will set in motion a series of events that act to either stabilize the replication fork for downstream repair or initiate TLS to rapidly continue (Aguilera and Gomez-Gonzalez, 2008; Marechal and Zou, 2013).
After stalling, the HiFi Pol will decouple from the replication helicase causing a buildup of single-strand DNA (ssDNA) (Byun et al., 2005; Chang et al., 2006; Guilliam and Yeeles, 2020). ssDNA alone is fragile and must be protected from breakage by RPA or Rad51 to prevent loss of genetic material and can be a checkpoint signal for repair through the ATR kinase signaling pathway (Cimprich and Cortez, 2008; Blackford and Jackson, 2017; Lanz et al., 2019). Transient stalls, where no direct DNA damage is present, may be relieved by a host of fork stabilizers, accessory factors, and restart proteins that can remove a physical block and allow synthesis and coupling to resume (Lopes et al., 2006; Rickman and Smogorzewska, 2019; Qiu et al., 2021). It has even been shown that the eukaryotic lagging strand Pol δ can efficiently substitute for a decoupled leading strand Pol ε when smaller lesions such as 8-oxoG or thymine glycol are present (Guilliam and Yeeles, 2021). However, if a template lesion is more severe and unsurpassable by the HiFi Pol, then other TLS Pols will be recruited to attempt bypass (Ma et al., 2020).
PRELESION: THE FIRST TRANSLESION SYNTHESIS POLYMERASE SUBSTITUTION
After stalling of the HiFi Pol at a lesion, it must dissociate from the primer/template DNA through one of the above substitution mechanisms (Figure 3). The replicative Pol will either fully dissociate from the primer-template junction into solution, following a distributive exchange mechanism, or it will remain bound to PCNA in accordance with a concerted switching mechanism. For both the archaeal Pol B1 and eukaryotic Pol δ HiFi Pol holoenzyme systems, it was found that the HiFi Pol readily dissociates in a distributive exchange mechanism even during normal DNA synthesis (Bauer et al., 2013; Hedglin et al., 2016b). The lagging strand HiFi Pol in humans, Pol δ, has PIP-sites on three of its four subunits, however only mutation of the PIP-site in the large catalytic subunit significantly reduces Pol activity (Lancey et al., 2020). This potentiates multiple Pols being bound to other PCNA subunits simultaneously in a supraholoenzyme, or at least that multiple PCNA subunits can facilitate exchange of Pols (as a landing pad) during TLS. Aside from specific contacts with PCNA, there are several other factors regulating TLS Pol recruitment and selection prior to lesion bypass.
Translesion Synthesis Pol Recruitment and Selection
In mammalian cells, Pol δ is known to convert from a four-subunit to a three-subunit enzyme complex both upon S-phase entry (Zhang et al., 2013) and specifically in response to DNA damage (Zhang et al., 2007; Lee et al., 2014a). Degradation of the smallest subunit, p12, serves as a regulatory mechanism to activate Pol δ for synthesis normally and is further directed by ATR signaling (Zhang et al., 2007; Lee et al., 2019). From here, TLS Pol recruitment and selection can depend on a multitude of factors, including the aforementioned PIP or UBZ/UBM interactions with (Ub-)PCNA (Figure 2), Pol affinity for the damaged DNA substrate, and Pol-Pol interactions. Various types of DNA-damaging conditions have been shown to localize TLS Pols in replication foci in nuclei, indicating that Pol concentration is an early contributor of selection for TLS (Maiorano et al., 2021). Once TLS Pols are in the vicinity of the damage site, Pol affinity for the DNA substrate becomes a driver of Pol selection. Accommodation of lesions by TLS Pols can be influenced by template-strand sequence and steric hindrance between bulkier lesions and Pol active sites (Zhao and Washington, 2017; Thomforde et al., 2021). Sequence context has also been shown to affect Pol efficiency and accuracy during TLS opposite various lesions, however the molecular basis for this effect is not well understood (Shriber et al., 2015; Bacurio et al., 2021).
Despite these qualifications for TLS by certain Pols to occur, it should be noted that backup TLS pathways exist in eukaryotes. Certain lesions deter recruitment of some TLS Pols in favor of more suitable inserters, however in the absence of the favored Pol, a less-favored TLS Pol(s) can bypass these lesions. Secondary TLS mechanisms have been demonstrated both in vivo, through Pol knockdowns, and in vitro, by examining multiple TLS Pol bypass capabilities opposite an assortment of lesions (Yoon et al., 2009; Livneh et al., 2010; Jha and Ling, 2018; Inomata et al., 2021). The presence of backup TLS pathways indicates that steric effects may not fully regulate Pol selection, but likely contribute significantly.
POSTLESION: EXTENSION PAST THE LESION, A POSSIBLE SECOND SUBSTITUTION
After insertion of a base opposite a lesion, the TLS Pol can continue synthesizing and extending downstream until inherent enzymatic properties, PPIs, or multiequilibria processes allow for substitution of other Pols. TLS Pols have no exonuclease proofreading domains and lower fidelities compared to HiFi Pols (Figure 1C), and so, their lower processivities serve a vital function to limit further DNA synthesis past a lesion to maintain genome integrity. However, the mechanisms for extension and reestablishing the HiFi holoenzyme past a TLS event are not well studied.
Translesion Synthesis Polymerases: From Inserters to Extenders
Beyond the lesion, “inserter” TLS Pols extend the nascent DNA strand to a position where either an “extender” TLS Pol, such as eukaryotic Pol ζ, can continue TLS or where the HiFi Pol can resume synthesis. A TLS mechanism in which an “inserter” Pol is the only Pol required for TLS can be termed “two-substitution” TLS. In the event both an “inserter” and “extender” Pol is required for TLS, the term “three-substitution” TLS can be used. The vocabulary of “substitution” is preferred over other vague describers including “one-“ or “two-polymerase” TLS (Johnson et al., 2000a) to focus more on the mechanistic process. With Rev1 potentially being involved as a scaffold in both two- and three-substitution mechanisms, defining the TLS by the number of Pols may be inaccurate and confusing. Therefore, nomenclature referring to the number of “substitutions” is preferred. Pol ζ has been shown to function as the primary “extender” Pol after the “inserter” in a “three-substitution” TLS process for certain lesions (Shachar et al., 2009; Lee Y.-S. et al., 2014). A-family Pol θ has also displayed some “extender” activity, although its exact role is still not fully defined (Seki et al., 2004; Bacurio et al., 2021). Recently, Sulfolobus islandicus B-family polymerase Dpo2 has been shown to act as the “extender” Pol in combination with “inserter” Pol Dpo4 during bypass of abasic sites (Feng et al., 2021).
Pol ζ Recruitment and Assembly
Assembly of the five-subunit extender Pol ζ is facilitated by HiFi Pol δ and the Y-family Rev1. Although the precise timing of this mechanism is not clear, Pol δ can rearrange and share subunits with Pol ζ to form the active Pol ζ complex. Pol δ shares subunits Pol31 and Pol32 in yeast and subunits p50 (Polδ2) and p66 (Polδ3) in humans with Pol ζ (Baranovskiy et al., 2012; Malik et al., 2020). Aside from the shared subunits, Pol ζ is comprised of Rev3, the catalytic subunit, simultaneously bound to two Rev7 subunits (Rizzo et al., 2018). The entire Pol ζ complex interacts in a 1:1 ratio with the scaffold TLS Pol Rev1. Rev1 is presumably bound to the replisome during an initial response to DNA damage and is soon thereafter able to recruit Pol ζ to the primer/template junction, coordinating the inserter-to-extender three-substitution mechanism (Makarova and Burgers, 2015; Liu et al., 2018). In a two-substitution mechanism, such as Pol η bypass of a UV-induced CPD, there is no requirement for an extender Pol. Under such circumstances, Pol ζ recruitment and assembly would likely not occur, even though the initial DNA damage response may generate mUb-PCNA and recruit Rev1. Interestingly, when Pol η is absent, Pol ζ functions in subsequence to Pol ι or Pol κ in TLS opposite this exact lesion (Ziv et al., 2009). The ability of the extender Pol ζ to function in a backup TLS mechanism when it is not required in the primary bypass mechanism for a certain lesion indicates that Pol ζ recruitment and assembly may always occur in response to DNA damage. Another possibility is that Pol ζ assembly does not occur until after the “inserter” Pol has performed the first step of TLS, at which time synthesis is stalled until a suitable “extender” can be recruited to the DNA substrate. Further experimentation needs to be performed to ascertain the exact timing of Pol ζ recruitment and assembly.
POSTLESION: RESUMING HIGH FIDELITY SYNTHESIS, A FINAL SUBSTITUTION
While most TLS studies have focused on the capability of TLS Pols to insert nucleotides opposite a template-strand DNA lesion, less focus has been placed on resumption of high-fidelity synthesis beyond the lesion. As TLS Pols are often inaccurate and less processive for synthesis opposite an undamaged DNA template, they are limited in their extension capabilities after lesion bypass (Vaisman and Woodgate, 2017). Limiting extension by TLS Pols requires a mechanism for substitution back to a HiFi Pol. The length of extension beyond the lesion by TLS Pols can vary, and likely has to do with the native processivity of the TLS Pol on DNA templates (Figure 5A), additional Pols in the vicinity of the primer/template junction (Figure 5B), the contacts that the TLS Pol active site residues make with the DNA substrate (Figure 5C), and possibly even structural impediments to extension (Figure 5D). After TLS has been completed, the TLS Pols extend to a position beyond the lesion, which is now outside of the Pol active site. At this point, structural characteristics of the TLS Pol can cause dissociation from the DNA substrate and initiate a substitution back to the HiFi Pol.
[image: Figure 5]FIGURE 5 | Mechanisms to initiate resumption of high-fidelity synthesis. (A) The processivity of a Pol represents the number of nucleotides inserted before dissociating from DNA and calculated as a ratio of kpol to koff. TLS Pols have lower processivity than HiFi Pols and can readily dissociate from DNA when the bypassed lesion is no longer in the active site. (B) DNA-damaging events can cause upregulation of TLS Pols, leading to concentration-dependent competition between Pols in solution for access to the DNA substrate. (C) DNA lesions can alter the conformation of the DNA, making extension of the nascent strand more difficult for the synthesizing Pol. Abasic site duplex (pink, PDB: 2HSS (Chen et al., 2007)) show more distortion than 8-oxo-G duplex (orange, PDB: 5IZP (Hoppins et al., 2016)) compared to B-form DNA (grey). Arrow shows the position of the lesion (D) Template-strand lesions are bypassed by TLS Pols, however as the lesion is exiting the active site, a steric clash may occur between a specific amino acid residue (i.e., Pinky Trigger) and the damaged template base to destabilize binding and further extension. Shown is the ternary SsoDpo4 complex (PDB:ID 1JX4) with oxygen modelled in the 8-position of the guanine in the −3 position on the primer strand.
Inherent Translesion Synthesis Pol Processivity
A primary reason for why TLS Pol synthesis is limited is due to low processivity on undamaged substrates (Figure 5A). TLS Pols have the structural features to allow bulky lesions into the active site (Figure 1C), but they dissociate readily from undamaged DNA (Raper et al., 2016). The large, tolerant active sites of TLS Pols are optimal for TLS but make the TLS Pol inherently less stable, less processive, and more mutagenic on undamaged substrates. “Extender” Pols have slightly increased processivity compared to “inserter” Pols but remain limited in synthesis capability once far enough downstream from the lesion. Recent structural studies have identified the position of the N-terminal domain-palm domain linker in the catalytic subunit of human Pol ζ as paramount in allowing the extender to tolerate distorted templates (Malik et al., 2020). Beyond active-site recognition of the DNA damage, Pol ζ processivity is greatly reduced. This finding is supported in vivo by examination of human Pol ζ mutational signatures in extension past damaged DNA. Recently, human Pol ζ was found to extend the nascent strand of DNA roughly 30 nucleotides from BPDE-induced damage (Table 1) (Suzuki et al., 2021). The mutational frequency data also indicated that Pol ζ may be recruited multiple times during extension, even after Pol δ has performed some synthesis. Therefore, further research needs to be performed to confirm the exact mechanism of limiting “extender” Pols in TLS. Adding to this complexity are the shared subunits (PolD2 and D3) between replicative Pol δ and extender Pol ζ. It also remains unclear the exact position of the exchange or switch back following Pol ζ extension, and whether or not this position is the same for extension past all types of DNA lesions.
TABLE 1 | The position of substitution back to high fidelity synthesis.
[image: Table 1]Direct contacts between the TLS Pol active site and the damaged DNA template also contribute to the position of the hand-off to a replicative Pol. Likely contributing to processivity, the ability of a TLS Pol to interact with the lesion as it leaves the active site can dictate how many additional nucleotides the Pol will synthesize before dissociating from DNA. For certain Pols, such as human Pol η and its bypass of UV-induced TT-dimers, the TLS mechanism has been thoroughly examined. Crystal structures of Pol η in complex with CPD-containing DNA have shown that the Pol η active site can easily accommodate two template-strand nucleotides (Biertumpfel et al., 2010). Having the dimer within the Pol η active site is crucial to maintaining interaction with the DNA and allows for efficient TLS across dimerized lesions in eukaryotes (Prakash and Prakash, 2002). During bypass of a CPD, it has been shown that Pol η inserts nucleotides opposite the dimer, extends two positions beyond the lesion, and then destabilizes from DNA (Kusumoto et al., 2004; McCulloch et al., 2004). When Pol η is three nucleotides from the template-strand dimer it becomes deprived of these stabilizing contacts (Biertumpfel et al., 2010). This correlates with the position at which the HiFi Pol is able to resume synthesis after TLS. For bypass of this particular DNA lesion in humans, an “extender” Pol is not necessary, confirming +2 nucleotides past the lesion as the position for the HiFi substitution (Table 1).
Equilibrium Competition for DNA Binding
The concentrations of TLS Pols are generally kept lower than HiFi Pols to prevent their equilibrium association and low fidelity synthesis. In fact, altered expression of the TLS Pols have been linked with increased mutation rates (Pavlov et al., 2001; Qi et al., 2012; Sasatani et al., 2017), correlated with various cancers (O-Wang et al., 2001; Albertella et al., 2005b; Flanagan et al., 2007; Wang et al., 2010), and give rise to chemotherapeutic resistance (Saha et al., 2021). There is evidence that TLS Pols are cell cycle regulated under normal conditions, peaking in G2 phase to facilitate any required TLS prior to cell division (Waters and Walker, 2006; Plachta et al., 2015; Sobolewska et al., 2020). Even reorganization of Pol δ in eukaryotes from a three to four subunit enzyme (Zhang et al., 2007; Lee et al., 2019) or exchanging with Rev3/7 to form Pol ζ (Rizzo et al., 2018) can impact activity. The return of the p12 subunit to reestablish a four subunit Pol δ is influential in providing greater processivity and strand displacement activity possibly reserved for other DNA repair pathways (Meng et al., 2010; Lin et al., 2013).
Several eukaryotic TLS Pols, including Pol η (Tomicic et al., 2014), Rev1 (Uchiyama et al., 2015), and Pol κ (Velasco-Miguel et al., 2003) are upregulated after specific DNA damage, however the prototypical upregulation of TLS Pols occurs during the SOS response in bacteria to overcome substantial DNA damage and induce DNA mutagenesis for survival (Kenyon and Walker, 1980; Napolitano et al., 2000; Yeiser et al., 2002). Deubiquitination of PCNA may also serve to recruit HiFi Pols back after insertion/extension events, although this may be more influential in the yeast system (Zhuang et al., 2008) compared to mammalian systems (Niimi et al., 2008; Brown et al., 2009). Therefore, with all of these potential expression changes occurring normally during the cell cycle and more specifically in response to DNA damage and in cells with multiple TLS Pols, it is likely that even small changes in the cellular multiequilibrium will affect Pol binding and selection (Figure 5B).
Altered DNA Conformation
Some TLS Pols have active sites evolved for specific lesions (Sale et al., 2012; Sale, 2013) either to recognize the lesion itself or the alternative conformation of the primer-template DNA duplex induced by the lesion. Of the most common lesions, 8-oxoG does not induce significant structural duplex distortion (Plum et al., 1995), unlike that for an abasic site (Bignon et al., 2016) (Figure 5C). Other lesions such as benzopyrene dG adducts (Menzies et al., 2015), CPDs (Mcateer et al., 1998), or cis-Pt (Hartog et al., 1983) also induce major structural distortions (Pages and Fuchs, 2002; Lukin and De los Santos, 2006; Zhao et al., 2012). After insertion of a base across these lesions, the “inserter” Pol will move to the +1 position. From there, the “inserter” or “extender” will continue to synthesize downstream of the lesion. The structural perturbations that these Pols encounter past the lesions has not been studied in great detail and provide a plausible model for binding destabilization that limits further extension. Interestingly, the extender Pol ζ includes structural features to tolerate lesion-distorted DNA upstream (Malik et al., 2020).
Steric Impediments to Extension
While the aforementioned contacts with DNA stabilize the Pol during TLS, some interactions between the Pol active site and the lesion can promote dissociation from the substrate. Recent studies on the bypass of 8-oxoG lesions by SsoDpo4 have indicated that this Pol is able to insert a nucleotide opposite the lesion and extend three bases beyond the lesion before becoming catalytically inefficient (Table 1) (Cranford et al., 2020). This coincided with the exact position (+3) that the replicative Pol B1 is capable of reengaging and efficiently extending the primer to resume high fidelity synthesis. Upon structural examination of Dpo4 in complex with DNA, specific residues of the little finger domain may be directly clashing with the 8-oxoG lesion as it exits the active site. This hypothetical “pinky trigger” may dictate the position where HiFi synthesis resumes for the archaeal system (Figure 5D). The ability of TLS Pols to sense the template lesion outside of the active site may destabilize binding of the TLS Pol downstream and provide an opportunity for a HiFi Pol to resume synthesis.
THERAPEUTIC STRATEGIES TARGETING TLS STEPS
Polymerase inhibitors have become part of the ever-growing list of chemotherapeutics. As accurate and complete replication of DNA is vital to cellular growth and viability, inhibition of this process can block growth and promote apoptosis of aberrant cells. By specifically targeting cancer cells with molecules designed to impede DNA replication, one could limit tumor growth. Chain-terminating nucleoside analogs are among the most popular in this class of therapeutics (Berdis, 2017). These nucleotide mimics are inserted by Pols to a nascent strand of DNA during replication and promptly conclude extension of that strand. The potential impact of these chain terminators can be escalated when combined with DNA-damaging agents. TLS Pols are known to bypass lesions generated by platinum chemotherapeutics (Albertella et al., 2005a) and are upregulated in multiple cancer cell lines (Tomicic et al., 2014). The overzealous activity of these TLS Pols desensitizes cancer cells to chemotherapeutics by enabling cell survival amid DNA-damaging conditions. By inhibiting these TLS Pols and preventing insertions opposite chemotherapy-induced lesions or other steps in the TLS process, the efficacy of the treatment is amplified overall.
In accordance with this principle, alternate methods of TLS Pol inhibition would suffice for ameliorated chemotherapy. Pol-Pol and PCNA-Pol contacts that are involved in TLS Pol recruitment, stabilization, and substitutions make ideal targets for cancer drug research (Altieri and Kelman, 2018). TLS in humans across cisplatin-induced intrastrand crosslinks is a three-substitution mechanism requiring Pol η as the inserter, Pol ζ as the extender, and Rev1 as a scaffold. Recently, JH-RE-06, a small molecule inhibitor of this bypass, has been shown to dimerize Rev1 and prevent Pol ζ from binding (Wojtaszek et al., 2019). Without an efficient extender, TLS opposite Pt-GG lesions is reduced, and cisplatin becomes more effective at counteracting tumors. JH-RE-06, along with other small molecule inhibitors of protein-protein interactions, serve to block a specific element of TLS mechanisms in order to minimize obstructions to DNA-damaging agents (Wojtaszek et al., 2019; Dash and Hadden, 2021).
DISCUSSION
All of the examples described in the Postlesion: Resuming High Fidelity Synthesis, a Final Substitution section are mechanisms used to limit synthesis by a TLS Pol after insertion to maintain downstream genome fidelity. The same structural features of TLS Pols that allow bulky lesions to enter the Pol active site are the features that make TLS Pols inaccurate and unstable on undamaged DNA substrates. TLS Pols are more mutagenic on undamaged templates than on suitable damaged substrates; so strict regulation outside of a specific TLS insertion is necessary. Thus, TLS Pols must insert nucleotides opposite the lesion, extend beyond the lesion, and then hand the DNA back to a HiFi Pol at a position that is both favorable to TLS Pol dissociation and subsequent HiFi Pol extension. Integral to the positioning of the resumption of HiFi synthesis are direct Pol-DNA, Pol-PCNA, and Pol-Pol interactions. Pol-Pol binding has been shown to stabilize the replicating Pol throughout TLS (Cranford et al., 2017). Pol-PCNA contacts through PIP motifs, UBZ/UBM contacts, and Rev1 bridges are also known to improve Pol stability and processivity (Boehm et al., 2016b; Acharya et al., 2020). These precise interactions that provide stability during TLS may also be involved in regulation of steps after TLS insertion. Further experimentation needs to be performed to identify the exact substitution mechanism(s) and steps that occur during lesion bypass.
Many in vitro experiments examine the TLS lesion bypass capability of truncated core TLS Pols in isolation. However, these absent regions are precisely the ones that facilitate Pol-Pol and PCNA-Pol binding and are needed to examine the entire TLS process. Full-length TLS and HiFi Pols, in the presence of PCNA and a suitable “extender” Pol will allow for interactions that may influence extension beyond the lesion, thus providing confidence in the kinetic characterizations required to determine a position where high fidelity synthesis resumes. Ultimately, translesion synthesis needs to be rapid, but distributive, to limit successive nucleotide incorporations so that replicative Pols can resume high fidelity synthesis and recouple with the replisome. The entire TLS mechanism, from the initial HiFi Pol stalling, “inserter” Pol recruitment, and TLS Pol(s) selection to the second (and possibly third) Pol substitutions to an “extender” Pol or HiFi Pol, respectively, remains to be fully understood. Location of the substitution positions and identification of the kinetically favored TLS mechanisms for bypass of DNA damage has direct applications in drug discovery. Future experiments should seek to expand our understanding of the complete TLS process to identify additional therapeutic targets within TLS.
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Nucleotide addition cycle (NAC) is a fundamental process utilized by nucleic acid polymerases when carrying out nucleic acid biosynthesis. An induced-fit mechanism is usually taken by these polymerases upon NTP/dNTP substrate binding, leading to active site closure and formation of a phosphodiester bond. In viral RNA-dependent RNA polymerases, the post-chemistry translocation is stringently controlled by a structurally conserved motif, resulting in asymmetric movement of the template-product duplex. This perspective focuses on viral RdRP NAC and related mechanisms that have not been structurally clarified to date. Firstly, RdRP movement along the template strand in the absence of catalytic events may be relevant to catalytic complex dissociation or proofreading. Secondly, pyrophosphate or non-cognate NTP-mediated cleavage of the product strand 3′-nucleotide can also play a role in reactivating paused or arrested catalytic complexes. Furthermore, non-cognate NTP substrates, including NTP analog inhibitors, can not only alter NAC when being misincorporated, but also impact on subsequent NACs. Complications and challenges related to these topics are also discussed.
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INTRODUCTION
RNA viruses are a large collection of diverse, rapidly evolving viruses with a wide host range covering bacteria and eukaryotes (Krupovic et al., 2018). In recent years, emerging and re-remerging RNA viruses causing human and animal diseases have posed a great impact to our daily life. Understanding the fundamental features of RNA viruses has become an attractive and rapid growing research area ever since the emergence of severe and acute syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease 2019 (COVID-19) (Zhou et al., 2020). Effective antivirals and vaccines are in urgent need for prevention and control of known and future RNA virus pathogens. One unique feature of RNA viruses is that their genome replication and transcription processes are DNA-independent, thus requiring a virally-encoded RNA-dependent RNA polymerase (RdRP) to carry out these essential processes of the virus life cycle (Wolf et al., 2018). Due to their essentialness and highest conservation level, RdRPs have become attractive targets to develop antivirals with high potency and/or broad-spectrum potential. Although being considered the most conserved protein of RNA viruses, RdRPs are still quite diverse with respect to their global structure organization (Lesburg et al., 1999; Thompson and Peersen, 2004; Lu and Gong, 2013; Pflug et al., 2014; Liang et al., 2015; Jia and Gong, 2019; Kirchdoerfer and Ward, 2019), initiation mechanisms (Butcher et al., 2001; Reich et al., 2014; Appleby et al., 2015; Zhang et al., 2021), and regulation by host and viral factors (Kidmose et al., 2010; Liu et al., 2018; Chen et al., 2020; Yan et al., 2021a). Nucleotide addition cycle (NAC), a process shared by all nucleic acid polymerases carrying out NTP/dNTP-driven phosphodiester bond formation (Huang et al., 1998; Li et al., 1998; Yin and Steitz, 2004; Kornberg, 2007; Gong and Peersen, 2010), may thus be the most conservative part of viral RdRP working mechanisms. Understandings of common features in RdRP NAC can help describe the viral genome replication and transcription processes that are composed of thousands of NACs and can benefit development of nucleot(s)ide analog drugs targeting viral RdRPs (Gong, 2021; Johnson and Dangerfield, 2021).
NAC of nucleic acid polymerase typically contain four microsteps: NTP/dNTP binding, active site closure, phosphoryl transfer reaction (chemistry), and translocation, while four structural reference states (S1-S4) are usually used to help depict these microsteps (Figure 1A, central part with pink background). Critical conformational changes have been found accompanying active site closure (S2 to S3) and translocation (S4 to S1) (Temiakov et al., 2004; Yin and Steitz, 2004; Wang et al., 2006). In viral RdRPs, a unique palm-domain-based conformational change takes place upon active site closure (Zamyatkin et al., 2008; Gong and Peersen, 2010; Appleby et al., 2015). By contrast, A-family polymerases represented by bacteriophage T7 RNA polymerase and Thermus aquaticus (Taq) DNA polymerase close the active site through a large-scale conformational change of their fingers domain (Li et al., 1998; Yin and Steitz, 2004). S3 and S4 structures that both have a closed active site have been solved in multiple polymerase systems, and consistently demonstrate the critical role of two divalent metal ions in forming the transition state of the phosphoryl transfer reaction (Steitz and Steitz, 1993). Two types of RdRP translocation intermediate structures both highlight an asymmetric movement of the template-product RNA strands and stringent control of the template RNA movement by the RdRP-specific template-interacting motif G (Shu and Gong, 2016; Wang et al., 2020a). Similar intermediates have been observed with transcriptional pausing-related multi-subunit DNA-dependent RNA polymerases (DdRPs) (Guo et al., 2018; Kang et al., 2018), suggesting that this phenomenon may be shared even by structurally unrelated polymerase families.
[image: Figure 1]FIGURE 1 | Viral RdRP NAC and possibly related processes. (A) RdRP NAC and its relationship with nucleotide addition-free translocation events and intrinsic product cleavage activities. (a–d): four reference states of NAC; e–g: states derived from RdRP forward translocation; (h–j): states derived from polymerase backtracking; d to k: PPi mediated product cleavage; d to l: non-cognate NTP-mediated cleavage. The gray “pacman” represents a virally encoded exonuclease. (B) NAC intervention by incorporation of non-cognate NTP or NTP analogs. Gray and pink ovals represent RdRP and its active site, respectively. Wherever necessary, double slashes were used to indicate continuation of an RNA strand.
Although numerous NAC-state-related structures from various viral RdRPs have provided a relatively complete structural view of the cognate NTP-driven NAC, several aspects directly or indirectly related to NAC have rarely been addressed structurally in RdRPs including nucleotide addition-free translocation, intrinsic product cleavage activities, and perturbation of NAC by non-cognate NTPs and NTP analogs. As discussed below, these events are possibly related to important events including but not limited to RdRP catalytic complex dissociation, proofreading, reactivation, fidelity control, and effective intervention. In the following sections, a synoptic introduction of these events and structural challenges to approach them are discussed.
RDRP TRANSLOCATION BEYOND NAC
S1 and S4 represent the post- and pre-translocation states, respectively. In a classic NAC, a post-translocation S1 complex directs the binding of the incoming NTP, while the polymerase in the pre-translocation S4 complex needs to translocate to the next register and reopen its active site for the next NAC (Figure 1A, central panel with pink background). By contrast, “forward” movement from the post-translocation S1 and “backward” movement from the pre-translocation S4 of the polymerase can move the polymerase out of an NAC. The former, if occurs successively, makes the 3′-end of the product RNA move toward the upstream. The template-product duplex in contact with the polymerase thus shortens and may lead to dissociation of the complex (Figure 1Aa,e–g). These forward-translocated states occur in DdRPs during intrinsic transcription termination or in halted transcription elongation complexes, both resulting in dissociation of the polymerase complex (Yarnell and Roberts, 1999; Zhou et al., 2007). Similar situations may also be induced by other nucleic acid binding proteins or nucleic acid elements such as bacterial translocase Rho, bacterial transcription-repair coupling factor Mfd, or the class I transcription termination signal in T7 RNA polymerase transcription (Kassavetis and Chamberlin, 1981; Macdonald et al., 1994; Deaconescu et al., 2006; Murphy et al., 2009; Roberts, 2019). However, dissociation routes unrelated to RdRP forward translocation cannot be ruled out. Furthermore, a Brownian ratchet model applied to DdRPs suggests that polymerase can slide along the nucleic acid template driven by thermal motion with the binding of incoming NTP serving as the “ratchet” to favor the forward-translocated state (Guajardo and Sousa, 1997; Vassylyev and Artsimovitch, 2005). Therefore, RdRP may forward translocate simply through “diffusing” along the template even without cis-acting elements or trans-acting factors.
The “backward” movement of the polymerase, better known as backtracking in DdRP transcription, results in unraveling of the template-product duplex downstream of the +1 site (the position where incoming NTP binds during NAC). In DdRPs, there is a channel to accommodate the single-stranded 3′-portion of the product RNA and transcription factors such as bacterial GreA/GreB and eukaryotic TFIIS can facilitate intrinsic endonuclease activity of DdRP to reactivate transcription (Abdelkareem et al., 2019; Bradley et al., 2019; Wang et al., 2009). Proofreading activities in viral RdRPs have been found in CoVs, with the virally encoded nsp14 protein utilizing its exonuclease module to excise the 3′-nucleotide(s) of the product RNA (Subissi et al., 2014) (Figure 1Ad,h–j). Backtracking-related proofreading models were proposed in SARS-CoV-2 RdRP studies, in which the viral helicase hypothetically facilitates RdRP backtracking upon misincorporation and the 3′-end of the product therefore is delivered to the exonuclease active site for cleavage after multiple rounds of translocation events (Chen et al., 2020; Yan et al., 2021b).
Except for recently reported backtracked SARS-CoV-2 RdRP structures obtained using RNA scaffolds with designed mismatches at the 3′-portion of the product RNA (Malone et al., 2021), structures with the 3′-end of the product strand poise upstream of position −1 (the position of the priming nucleotide of the product strand) or downstream of position +1 have rarely been captured in viral RdRPs. Nevertheless, these nucleotide-addition-free translocation events likely occurs and may indeed play important roles under certain circumstances. On one hand, assembling an RdRP-RNA complex with other factors may help visualize the forward translocated or backtracked states. On the other hand, RdRP variants (i.e., from different viruses or virus strains) or mutants with altered nature in controlling the movement of either the template or the product strand may have different odds in capturing these states by structural biology approaches.
RDRP INTRINSIC CLEAVAGE ACTIVITIES AND THEIR RELEVANCE TO REACTIVATION
Pyrophosphate (PPi) is the byproduct of the NTP/dNTP-driven phosphoryl transfer reaction in NAC. Under certain circumstances (e.g., high PPi concentration in polymerase assays), PPi can reverse the reaction through pyrophosphorolysis (Figure 1Ac,d–k). Pyrophosphorolysis can not only participate in proofreading by excising the non-cognate nucleotide, but also play regulatory roles by modulating the overall progress of nucleic acid synthesis (Imashimizu et al., 2019). While PPi can be observed in pre-translocation polymerase complex structures (Yin and Steitz, 2004; Gong and Peersen, 2010), it has not been observed in polymerase structures that has completed translocation, suggesting that PPi release and translocation likely coincide in timing. Starting from a post-translocation S1 complex crystal, an interesting reverse translocation intermediate structure was captured in an enterovirus RdRP with PPi present in the soaking solution (Wang et al., 2020a). In such a structure, the 3′-nucleotide of the product moved from position −1 to almost position +1. Although pyrophosphorolysis did not occur in the crystal, solution trials mimicking the crystal soaking condition led to observation of PPi-mediated cleavage (Wang et al., 2020a) (Figure 1Ad–k), suggesting reverse translocation as a prerequisite of the cleavage of a post-translocation complex. Another interesting observation in this structure is the “slippage” between the template-product RNA, resulting in a duplex only partially matched. Completion of this reverse translocation thus requires realigning of the two strands. Such a slippage-and-realigning process was not observed in regular forward translocation, in which basepairing interactions between the two strands were maintained (Shu and Gong, 2016; Peersen, 2017; Wang et al., 2020a). Hence, the reverse translocation is relatively energetically-unfavorable.
Another known polymerase activity cleaving the 3′-nucleotide of the product strand is mediated by non-cognate NTPs. First reported in human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT), a non-cognate NTP can induce the cleavage of the product strand 3′-nucleotide, forming a dinucleotide with a 5–5′ poly-phosphate (tetra- or tri-phosphate) linkage when the incoming cognate dNTP is not available (Meyer et al., 1998). Similar activities were subsequently observed in hepatitis C virus (HCV) RdRP (Jin et al., 2013a). In both systems, a chain terminating nucleotide can be cleaved by this NTP-mediated activity to yield an extendable 3′-end, and thus implying its potential role in proofreading.
Unlike CoVs, many other RNA viruses do not encode an exonulease and thus sometimes are considered error-prone. However, PPi- and NTP-mediated cleavage activities by RdRP itself may play key roles in maintaining viral genome stability and keeping the virus away from the error-catastrophe threshold (Crotty et al., 2001). Furthermore, RdRP pausing or arrest caused by RNA elements or regulatory proteins can in principle also be resolved by these activities. As polymerases can pause at either pre- or post-translocation NAC states (Figures 1Aa,d) but both cleavage activities likely occur at pre-translocation state (Figure 1Ad–l), polymerase backtracking to the pre-translocational position for cleavage may increase the opportunity of rescuing the complex from a “trapped” status. To date, the structural basis of the NTP-mediated cleavage has remained elusive, while structural understandings of pyrophosphorolysis can be readily achieved through its reverse steps of nucleotide addition and the preceding reverse translocation.
RDRP NAC REGULATION BY NON-COGNATE NTP OR NTP ANALOGS
As the major source of nucleotide mutations, misincorporation by nucleic acid polymerases and its mechanisms are of great interest in understanding evolution of species. Misincorporations, often considering basepairing mismatch derived events, occur at a rate of 10−3–10−5 if not considering proofreading (Drake and Holland, 1999; Chen et al., 2000; Johnson et al., 2000; Zhang et al., 2000). Therefore, it is generally difficult to capture misincorporation-related polymerase structural states. A classic work in this aspect is from a systematic study in Bacillus stearothermophilus DNA polymerase I fragment (BF), a high-fidelity DNA polymerase (Johnson and Beese, 2004). By attempting every possible mismatched base pair combination, multiple mismatch-containing crystal structures were solved at atomic resolution, depicting various types of mismatches and their direct impact on NAC. By solving a set of structures with extension of a G:T mismatch in successive NACs, distortion of a mismatch up to six register from the 3′-end of the product was found to have an impact on the active site through long-range transmission. By contrast, systematic structure determination of mismatch-containing RdRP catalytic complexes is lacking.
The successful usage (Rubin et al., 2020) of nucleotide/nucleoside analog (NA) drugs in treating RNA virus related disease have emphasized the importance of this class of compounds in prevention and control of existing and future pathogens (Furuta et al., 2013; Gane et al., 2013; Rubin et al., 2020). However, multiple factors including but not limited to the differences among RdRP active sites, differences in optimal prodrug forms targeting certain cell types, and emergence of drug-resistant virus strains determine the effectiveness of an NA on a certain virus and its broad-spectrum potential (Feng and Ray, 2021; Jia et al., 2021; Seley-Radtke et al., 2021). Understanding the intervention mechanism of the NTP form of NA (the effective molecule in vivo) at enzymology and structural levels is a key not only to identify repurposed NA drugs, but also to design new NA drugs (Appleby et al., 2015; Xu et al., 2017). As an example, remdesivir (RDV), a ribose 1′-substituted adenosine analog, was first developed for Ebola treatment and was found effective on other viruses including various CoVs (Cho et al., 2012; Jacobs et al., 2016; Agostini et al., 2018; Gordon et al., 2020a). A delayed intervention by the NTP form of RDV (RDV-TP) likely at the third NAC after the first incorporation was found in CoVs and subsequently in enterovirus 71 (EV71) (Gordon et al., 2020b; Wu et al., 2021), demonstrating both uniqueness and diversity of this compound in RdRP intervention. Further characterizations revealed that structurally equivalent S861 and S417 in SARS-CoV-2 and EV71 RdRPs are responsible for this delayed intervention likely through steric hindrance of the RDV 1′-cyano group, and under certain circumstances the incorporated RDV (i.e., the monophosphate form of RDV) can overcome this serine roadblock (Tchesnokov et al., 2020; Kokic et al., 2021; Seifert et al., 2021; Wu et al., 2021). The non-terminating feature of RDV intervention awaits further investigation considering the entire replication/transcription process as well as viral protein translation if RDV-containing transcripts are utilized to direct protein synthesis. The 1′-substitutions are therefore endowed with broad-spectrum and delayed intervention potentials in NA drug development. Another notable NA type is represented by ribavirin, favipiravir, and molnupiravir, all with ambiguous basepairing capability (Crotty et al., 2000; Jin et al., 2013b; Gordon et al., 2021). For example, the N4-hydroxyl cytosine of molnupiravir was structurally captured to direct the incorporation of either a GMP or an AMP in SARS-CoV-2 RdRP (Kabinger et al., 2021). Unlike immediate chain-terminating NAs or RDV, these mutagenic NAs likely generate antiviral effects by driving the viral population beyond the error-catastrophe threshold.
To date, structures of RdRP-RNA complexes containing non-cognate NTP-derived mismatches are rarely reported, while related structures depicting intervention mechanisms of representative NAs have been emerging with the fast growing of RNA virus research (Ferrer-Orta et al., 2007; Appleby et al., 2015; Wang et al., 2020b; Kabinger et al., 2021; Kokic et al., 2021). NAs with immediate chain terminating features may directly interfere with the NAC at the +1 or -1 site (Figure 1Aa–d,Bm–n); those are not immediately terminating can possibly propagate its impact on NAC from remote sites (Figure 1Bo,p); incorporated NAs that eventually become part of the full-length product may affect NAC when reaching the active site and the template-product binding regions as a template nucleotide (Figure 1Bq–t). Together with enzymology characterizations, solving more NA-containing RdRP-RNA structures with representative modifications and intervention mechanisms will provide key references for cell- and animal model-based NA effectiveness assessment and a comprehensive pre-clinical evaluation of NA drug candidates.
DISCUSSION
Representative NAC-related RdRP-RNA complex structures have been reported in picornaviruses, HCV, influenza viruses, bacteriophage ϕ6, and more recently in bunyaviruses and CoVs (Butcher et al., 2001; Gong and Peersen, 2010; Gong et al., 2013; Appleby et al., 2015; Arragain et al., 2020; Wang et al., 2020b; Wandzik et al., 2020). However, a comprehensive structural understanding of NAC requires much more representative RdRP systems and determination of RdRP structures at different phases of its replication and transcription. In most cases, the replication/transcription complex (RTC) works as a multi-subunit machinery and its components vary in different processes and at different stages of a certain process (Reed and Rice, 2000; Bollati et al., 2010; Smith and Denison, 2013). Therefore, structures building on RdRP-RNA complex with other RTC components in the assembly are also highly valuable and in some cases more functionally relevant. Continuing progress in cryo electron microscopy (cryo-EM)-related techniques and deep learning-based structure prediction of biological macromolecule and its complexes have been providing a boost in understanding the RTC as well as the NAC carried out by it (Frank, 2018; Tunyasuvunakool et al., 2021).
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DNA polymerases are intrinsically dynamic macromolecular machines. The purpose of this review is to describe the single-molecule Förster resonance energy transfer (smFRET) methods that are used to probe the conformational dynamics of DNA polymerases, focusing on E. coli DNA polymerase I. The studies reviewed here reveal the conformational dynamics underpinning the nucleotide selection, proofreading and 5′ nuclease activities of Pol I. Moreover, the mechanisms revealed for Pol I are likely employed across the DNA polymerase family. smFRET methods have also been used to examine other aspects of DNA polymerase activity.
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INTRODUCTION
DNA polymerases are intrinsically dynamic macromolecular machines. During elongation of a nascent DNA strand, a polymerase must select the correct nucleotide substrate, adopt a conformation that promotes catalysis of the phosphoryl transfer reaction, release the pyrophosphate by product and move to the next templating position. This sequence of events likely involves dynamic conformational changes of the polymerase-DNA complex. In addition, many DNA polymerases harbor additional enzymatic activities, such as 3′-5′ exonuclease activity used for proofreading or 5′ nuclease activity used to remove DNA 5′ flaps. The various activities of DNA polymerases must be carefully coordinated to ensure efficient and accurate product formation. Since the respective active sites are widely separated in space, the conversion from one mode of activity to another may involve physical movement of the polymerase on the DNA substrate and/or conformational changes within the polymerase or DNA. While structural studies have provided high resolution snapshots of DNA polymerases in specific functional states (Doublié et al., 1998; Kiefer et al., 1998; Johnson and Beese, 2004; Zahn et al., 2015; Huang et al., 2018; Jain et al., 2018; Jain et al., 2019; Hoitsma et al., 2020), much less is known about the conformational dynamics that underpin DNA polymerase activity.
Experiments performed at the single-molecule level can directly resolve conformational heterogeneity and provide kinetic information without the need to synchronize a population of molecules (Tinoco and Gonzalez, 2011; Monachino et al., 2017; Gruszka, 2021). With these capabilities, single-molecule studies have provided new mechanistic insights across a wide range of biological systems (Hilario and Kowalczykowski, 2010; Pljevaljčić et al., 2012; Hughes et al., 2014; McCluskey et al., 2014; Ordu et al., 2016; Banerjee et al., 2018; Okamoto et al., 2018; Jalihal et al., 2019; Kiss et al., 2020). Single-molecule studies of DNA polymerases and related replication enzymes have also been informative (Liu and Lou, 2017; Mueller et al., 2019; Bocanegra et al., 2021a; Bocanegra et al., 2021b). Observation of polymerase activity on single DNA templates under applied mechanical force have provided insights into the mechanochemistry of the elongation cycle (Maier et al., 2000; Wuite et al., 2000; Morin et al., 2015), strand displacement activity (Morin et al., 2012a; Morin et al., 2012b; Manosas et al., 2012) and the transition from polymerase activity to 3′-5′ exonuclease activity (Wuite et al., 2000; Ibarra et al., 2009; Hoekstra et al., 2017; Naufer et al., 2017). DNA polymerase activity has also been monitored at the single-molecule level using bioelectronic (Olsen et al., 2013) or nanopore (Cockroft et al., 2008; Lieberman et al., 2010; Olasagasti et al., 2010; Dahl et al., 2012; Lieberman et al., 2012; Lieberman et al., 2013) devices.
Fluorescence-based measurements provide additional insights by revealing conformational changes during polymerase activity. The spectroscopic phenomenon of Förster resonance energy transfer, which probes the distance between donor and acceptor fluorophores, is especially informative when monitored at the single-molecule level (Voith von Voithenberg and Lamb, 2018). Single-molecule Förster resonance energy transfer (smFRET) measurements can readily resolve different conformational states of a DNA polymerase, quantify their relative populations and the rate constants for exchange between them. Importantly, smFRET measurements can detect conformational transitions during a single encounter between a DNA polymerase and a DNA substrate, which can give insights into the mechanism of interconversion between different modes of polymerase activity.
The purpose of this review is to describe the smFRET methods that are used to probe the conformational dynamics of DNA polymerases. The review focuses on E. coli DNA polymerase I (Pol I), an A family polymerase, because this polymerase has been extensively studied by smFRET methods. Pol I is an informative model system because it contains template-directed 5′-3′ polymerase (pol), 3′-5′ exonuclease (exo) and 5′ nuclease (5′ nuc) activities in a single 928 aa polypeptide and does not require accessory proteins for proper function. The conformational dynamics underpinning all three activities of Pol I have been investigated by smFRET (Berezhna et al., 2012; Lamichhane et al., 2013; Pauszek et al., 2021). Related smFRET studies of other DNA polymerases are also described. The studies reviewed here provide new mechanistic insights into the biochemical functions of Pol I and highlight the novel information forthcoming from smFRET measurements of DNA polymerases.
smFRET Measurements
For any FRET study, whether performed at the single-molecule or ensemble levels, it is necessary to covalently attach donor and acceptor fluorophores to the biomolecules of interest. In the case of DNA polymerases, one fluorophore can be attached to the DNA substrate and the other to the polymerase. Synthetic DNA oligonucleotides can be used as substrates for the polymerase and these can be readily labeled with fluorophores by incorporating amino-alkyl groups at the 3′ or 5′ ends or an internal base during oligonucleotide synthesis, followed by chemical reaction with succinimidyl ester fluorophore derivatives (Bailey et al., 2004). Site-specific fluorophore labeling of DNA polymerases can be achieved by introducing a single cysteine residue into the desired location, after removal of endogenous cysteines, followed by covalent attachment of maleimide fluorophore derivatives to the cysteine (Berezhna et al., 2012). Hence, to study a given polymerase using smFRET, it is necessary that the polymerase can be mutagenized at specific sites, expressed in reasonable yield (usually in bacteria) and purified to homogeneity. It is important to ensure that neither the protein mutations nor the presence of the fluorophores within the polymerase or DNA substrate perturb the enzymatic activity. An alternative approach is to introduce both donor and acceptor fluorophores into the polymerase. This requires creation of a double cysteine protein mutant, followed by covalent labeling with donor and acceptor (Santoso et al., 2010). Site-specific labeling can be achieved if the two cysteines have different reactivities towards maleimides (Santoso et al., 2010). Otherwise, the doubly labeled polymerase is a statistical mixture of the two possible labeling orientations.
One informative method for smFRET analysis is to attach DNA substrates to a quartz surface and to introduce a polymerase into the surrounding solution. A laser beam impinging on the surface at an angle of incidence beyond the critical angle for total internal reflection creates an evanescent field that penetrates ∼ 100–200 nm beyond the surface, allowing for selective excitation of surface-immobilized complexes. The laser is tuned to excite the donor and the emission from both donor and acceptor is recorded over time on a charge coupled device camera. The advantage of this approach is that hundreds of immobilized DNA molecules can be monitored in parallel and encounters between each DNA molecule and a polymerase from solution can be followed for extended periods of time (typically a few hundred seconds). A potential disadvantage is that the proximity of the surface perturbs the interaction between the polymerase and DNA. Accordingly, the quartz surface is generally passivated by a layer of polyethylene glycol (PEG) or similar polymers (Roy et al., 2008). A small fraction of the PEG molecules is biotinylated, enabling streptavidin or neutravidin to be captured on the surface. These multivalent proteins then serve to capture biotinylated DNA substrates on the passivated surface (Roy et al., 2008).
For every immobilized DNA molecule in the imaging field, the FRET efficiency at each time point, E(t), is calculated according to the following formula: E(t) = IA(t)/(IA(t) + ID(t)), where ID(t) and IA(t) are the corresponding donor and acceptor intensities (after any necessary instrumental corrections). A plot of E(t) versus t, known as a FRET trajectory, is constructed for each immobilized DNA. These trajectories can reveal abrupt changes in FRET efficiency as the polymerase switches between different DNA binding modes or different conformational states. Examples of FRET trajectories are shown in Figures 2, 5, 9, 10. Hundreds of individual FRET trajectories are then combined in the form of FRET efficiency histograms (shown in Figures 2, 5, 9, 10). These histograms reveal separate peaks (FRET states) corresponding to different DNA binding modes or polymerase conformations, and the areas enclosed by each peak reflect the equilibrium populations of each state. The FRET efficiency for each state is determined by the corresponding donor-acceptor distance, RDA, according to the formula: E = [1 + (RDA/R0)6]−1, where R0 is the Förster distance. The point of this analysis is not to determine RDA itself, but rather to resolve different binding modes or polymerase conformations. To do so, the RDA values for each state should be as different as possible, which is dependent on the donor and acceptor labeling positions and the underlying three-dimensional structure of the polymerase-DNA complex. While structural information can be helpful in selecting donor and acceptor labeling sites, these can also be identified by simple trial and error. Another informative statistical method of analysis is to compile two-dimensional plots of transition probability density (TPD) (McKinney et al., 2006). To do so, the final FRET efficiency is plotted versus the initial FRET efficiency for every transition observed in the entire set of FRET trajectories (typically thousands of transitions). These plots reveal prominent off-diagonal cross peaks that reflect how individual FRET states are interconnected. Examples of TPD plots are shown in Figures 5, 9, 10. Finally, to obtain kinetic information, each FRET trajectory is fitted using Hidden Markov modeling to provide the dwell times spent in one FRET state (state i) before transition to a different FRET state (state j) (McKinney et al., 2006). The dwell times from all trajectories are then compiled in the form of dwell time histograms. These histograms have an exponential shape and can be fitted with a single exponential function to quantify the rate constant for the state-to-state transition, kij. An example of dwell time analysis is shown in Figure 6A. The depth of information available from these smFRET analyses is difficult to obtain using other biophysical or structural methods.
An alternative smFRET method is based on observation of freely diffusing molecules or complexes. In this approach, donor/acceptor-labeled polymerases or polymerase-DNA complexes are observed as they diffuse through the excitation volume of a tightly focused laser beam (tuned to excite the donor) (Santoso et al., 2010). Bursts of emission from both donor and acceptor are recorded on separate avalanche photodiode detectors. The advantage of this approach is that avalanche photodiodes have faster time resolution than charge-coupled device cameras, enabling observation of rapid conformational transitions, although the total observation period is limited by the transit time through the focal region. Another limitation is that molecules or complexes are observed one at a time, rather than in parallel, which reduces the throughput of data acquisition. Details of data acquisition and analysis, with specific reference to DNA polymerases, are described elsewhere (Hohlbein and Kapanidis, 2016). An elaboration of this method is to alternately excite the donor and acceptor with separate lasers, which provides information on both FRET efficiency and the stoichiometry of donor and acceptor labeling (Hohlbein and Kapanidis, 2016).
Role of Polymerase Conformational Dynamics During Nucleotide Selection
DNA replication fidelity begins with the selection of the correct nucleotide substrate during template-directed polymerization of a nascent DNA strand. During each cycle, the polymerase selects the correct dNTP substrate from among the pool of all four possible substrates. While this selection is based on Watson-Crick pairing of the incoming nucleobase with the template base, the observed fidelity of correct nucleotide incorporation significantly exceeds that expected from thermodynamic differences between correct and incorrect base pairs (Kunkel and Bebenek, 2000; Kunkel, 2004), suggesting that the polymerase actively discriminates against incorrect pairings. This discrimination might be linked to conformational changes within the polymerase. X-ray crystallographic studies of DNA polymerases reveal an architecture akin to a human right hand, with thumb, fingers and palm domains (Ollis et al., 1985). In addition, structural studies have also revealed two major polymerase conformations, termed open and closed (Li et al., 1998). In the open conformation, the fingers are retracted away from the DNA substrate, leaving an open cavity that allows for binding of nucleotide substrates, while in the closed conformation the fingers close over the incoming nucleotide.
Berezhna et al. (Berezhna et al., 2012) designed a single-molecule spectroscopic system to detect open and closed conformations in solution and to investigate the possible linkage between nucleotide selection and the conformational dynamics of the polymerase. In this system, a defined oligonucleotide primer/template labeled with Alexa Fluor 488 (A488) at a specific base was immobilized on a quartz surface by biotin-neutravidin attachment (Figure 1A). The Klenow fragment (KF) of Pol I, present in solution, was labeled with Alexa Fluor 594 (A594) at a cysteine residue introduced into the fingers domain (at the tip of the O-helix) (Figure 1B). KF constitutes the main core of Pol I, but lacks the 5′ nuc domain, allowing the nucleotide selection step to be decoupled from the 5′ nuc activity of Pol I. The primer 3′ terminus contained a dideoxy modification, to block covalent incorporation of nucleotide substrates. Accordingly, this system was designed to probe conformational changes of KF that occur after nucleotide binding and precede the chemical step of covalent phosphodiester bond formation. The A488 and A594 fluorophores form a donor/acceptor (D/A) pair for measurement of Förster resonance energy transfer (FRET). The efficiency of FRET is strongly dependent on the D/A distance (Voith von Voithenberg and Lamb, 2018). Based on the expected shortening of the distance, the FRET efficiency should be higher in the closed conformation than in the open conformation (Figures 1B,C).
[image: Figure 1]FIGURE 1 | Labeling strategy used to probe the fingers-closure transition in KF. (A) Sequence of the primer/template. Y denotes the labeling site for A488 (green) and the H subscript at the 3′ end of the primer denotes a dideoxy modification. The biotin moiety on the template strand is used for surface attachment. (B) Crystal structure of the KF homolog Bst Pol I in open conformation (PDB code 1L3S). Primer strand is yellow and template strand is orange. (C) Crystal structure of Bst Pol I in closed conformation (PDB code 1LV5). In both (B,C), the A488 donor is shown as a green sphere and the A594 acceptor attached to the fingers domain as a red sphere. The donor-acceptor distance (black lines) is shorter in the closed conformation than in the open conformation, leading to higher FRET efficiency. For some experiments (not described here), A594 was attached to the thumb domain. Reproduced from reference (Berezhna et al., 2012) with permission.
This system was initially used to examine the behavior of the polymerase in the absence of any nucleotide substrates. The polymerase was highly labile under these conditions, transiently binding the immobilized DNA and sampling three distinct FRET states during the brief periods while bound (Figures 2A,B). While the low-FRET and high-FRET states were assigned to open and closed conformations, respectively (Figure 2A), the observation of an intermediate FRET state was initially unexpected. However, a crystal structure of Bst polymerase, a KF homolog, bound to DNA and a mismatched nucleotide revealed a third conformation of the fingers domain, intermediate between open and closed, termed “ajar” (Wu and Beese, 2011) (Figure 3). Accordingly, the intermediate FRET state was assigned to an ajar conformation of KF (Figure 2A). These observations revealed that KF is intrinsically dynamic in solution, sampling open, ajar and closed conformations, all of which were significantly populated (Figure 2B). The results also highlighted the ability of smFRET measurements to resolve conformational heterogeneity of a DNA polymerase.
[image: Figure 2]FIGURE 2 | Single-molecule FRET analysis of the fingers closure transition in KF. (A) Schematic illustration of the three FRET states associated with different conformations of the fingers domain, with the observed FRET efficiencies indicated. (B) smFRET data in the absence of nucleotide substrates. Representative donor intensity (green), acceptor intensity (red) and corresponding FRET efficiency (blue) trajectories are shown on left. The perfect anticorrelation of the donor and acceptor intensity fluctuations is proof that FRET is occurring. The dashed horizontal lines superimposed on the FRET trajectory indicate the FRET efficiencies of the open (E = 0.4), ajar (E = 0.5) and closed (E = 0.6) states. Histogram of FRET efficiencies compiled from multiple traces and fit to four distinct states is shown at right. (C) In the presence of the correct dTTP substrate. (D) In the presence of the incorrect dATP substrate. Reproduced from reference (Berezhna et al., 2012) with permission.
[image: Figure 3]FIGURE 3 | Overlay of crystal structures of Bst Pol I reveals three distinct conformations of the O-helix within the fingers domain. Adapted from reference (Berezhna et al., 2012) with permission.
Strikingly different behavior was observed in the presence of a correct nucleotide substrate (dTTP, complementary to the A templating base). Only the closed conformation was significantly populated, and the residence time of the polymerase on DNA was markedly prolonged, indicating more extensive contacts between DNA and the polymerase (Figure 2C). Presumably, the polymerase was poised to incorporate the nucleotide, which was blocked in this study by the dideoxy modification of the primer 3′ terminus. These results revealed that the presence of a correct nucleotide had a significant impact on the local conformational preference of the fingers domain and the global stability of the ternary enzyme-DNA-dNTP complex.
The polymerase was also examined in the presence of an incorrect nucleotide substrate (dATP, mismatched with respect to the A templating base). The polymerase dissociated rapidly after each encounter with the DNA substrate, reminiscent of the binary complex (Figure 2D). However, the population of the ajar state was markedly higher than in the binary complex, while the populations of the open and closed states were correspondingly reduced. Based on these observations, the ajar conformation was proposed to serve as a fidelity checkpoint to examine the identity of an incoming nucleotide substrate. In the presence of a correct nucleotide, the fingers domain rapidly proceeds to the closed conformation and the polymerase remains stably bound to DNA. However, in the presence of an incorrect nucleotide, the fingers domain remains in the ajar conformation and the polymerase rapidly dissociates from the DNA.
Another novel observation of the study by Berezhna et al. (Berezhna et al., 2012) was the appearance of a state with high FRET efficiency, clearly evident in the binary complex (Figure 2B). This state was assigned to a subpopulation of KF molecules engaging the immobilized primer/template via the exo site. This state vanished in the presence of a correct nucleotide (Figure 2C), indicating that the polymerase engaged the DNA exclusively via the pol site, as expected. Surprisingly, the high-FRET state was enhanced in the presence of the incorrect nucleotide substrate (Figure 2D), suggesting that the incorrect nucleotide promotes movement of the primer 3′ terminus from the pol site to the exo site. Shifting the primer terminus out of the pol site is an additional mechanism to suppress misincorporation of the incorrect nucleotide. This contribution to polymerase fidelity had not been recognized previously.
The fingers closure transition was also monitored using a complementary smFRET system in which KF was labeled with donor and acceptor in the fingers and thumb domains and freely diffusing polymerase molecules were detected as they passed through the focal volume of a laser (Santoso et al., 2010). This system enabled observation of the apo enzyme, as well as complexes with DNA and nucleotide substrates. Interestingly, the unliganded enzyme was observed to exchange rapidly between low-FRET and high-FRET states, assigned to open and closed conformations, showing that the fingers domain is an intrinsically mobile element of KF. Both open and closed conformations were observed in a binary KF-DNA complex, whereas the closed conformation was preferred in a ternary complex with DNA and a correct dNTP substrate. These observations mirror the results presented above (Figure 2). Hence, smFRET analyses of KF employing donor and acceptor within the DNA substrate and polymerase, described above, or both within the polymerase (Santoso et al., 2010; Hohlbein et al., 2013) yield consistent findings.
Doubly labeled KF was also examined in the presence of DNA and an incorrect dNTP (Santoso et al., 2010; Hohlbein et al., 2013). The low-FRET state showed a small shift to higher FRET efficiency, consistent with the formation of a partially closed conformation, presumably the ajar conformation. However, the open and ajar states were not resolved as separate peaks in the FRET histograms, as in Figure 2. It appears that the smFRET system described above (Figures 1, 2) is better able to resolve different conformations of the fingers domain. The diffusion-based smFRET system employing doubly labeled KF was also used to investigate the impact of polymerase mutations (with mutator phenotypes) on nucleotide recognition and the fingers closure transition (Hohlbein et al., 2013).
In a related study, doubly labeled KF was visualized as it interacted with immobilized (unlabeled) DNA primer/templates (Evans et al., 2015). In contrast to diffusion-based smFRET measurements, immobilization of DNA significantly extended the observation time window. This allowed measurement of the rate constants for closure and reopening of the fingers domain, both in the absence and presence of dNTP substrates. These observations provided new information on the pre-chemistry reaction steps in the nucleotide incorporation cycle of KF.
DNA polymerase B1 (PolB1) from S. solfataricus, a B family polymerase, has also been investigated using smFRET methods (Maxwell and Suo, 2013). The experimental strategy was similar to that described above for KF, utilizing a FRET donor attached to the primer strand of an immobilized DNA substrate and an acceptor attached to the fingers domain of the polymerase. This system revealed open and closed conformations of the fingers (but not an ajar conformation), as well as a subpopulation of DNA substrates bound at the exo site. Notably, the smFRET observations revealed transitions among these different states without dissociation from the DNA, as observed with KF (also see next section). Similar smFRET methods were used to monitor the fingers closure transition in DNA polymerase β (an X family polymerase) (Fijen et al., 2020) and Dpo4 polymerase (a Y family polymerase) (Raper and Suo, 2016).
Role of Polymerase Conformational Dynamics During Proofreading
Despite the mechanisms that promote selection of correct nucleotide substrates and prevent misincorporation of incorrect nucleotides, mistakes are still sometimes made. Many DNA polymerases contain a 3′-5′ exonuclease activity to remove misincorporated nucleotides (proofreading) (Reha-Krantz, 2010; Bebenek and Ziuzia-Graczyk, 2018). Structural studies of A family (KF) (Freemont et al., 1988), B family (Berman et al., 2007) and C family (E. coli pol III) (Fernandez-Leiro et al., 2015; Fernandez-Leiro et al., 2017) polymerases have revealed that the active sites for pol activity and exo activity are spatially separated in distinct protein domains, indicating that mechanisms must exist to promote movement of a DNA substrate from the pol site to the exo site during proofreading.
Lamichhane et al. (Lamichhane et al., 2013) developed a smFRET system to monitor switching of DNA between pol and exo sites in KF. A similar experimental strategy to the assay described in the previous section was employed, featuring an immobilized primer/template labeled with an A488 donor (Figure 4A). However, the A594 acceptor was attached to the thumb domain of the polymerase (via a K550C mutation), a rigid structural element that provides a static reference point to detect any physical movement relative to the DNA substrate (Figures 4B,C). Again, KF was used rather than full length Pol I, since the pol and exo sites are both contained within the KF portion. Different FRET efficiencies were expected for DNA substrates bound to the pol site or the exo site (Figures 4B,C). To promote occupancy of the exo site, the DNA substrate contained a G:G mismatch at the primer 3’ terminus (Figure 4A), mimicking the product of a misincorporation event.
[image: Figure 4]FIGURE 4 | FRET labeling system designed to monitor switching of DNA between pol and exo sites of KF. (A) Sequence of primer/template containing terminal G:G mismatch. (B) Crystal structure of Bst Pol I with DNA at the pol site, P (PDB code 1L3S). Same strand colors as in Figures 1B,C. (C) Crystal structure of KF with DNA at the exo site, E (PDB code 1KLN). In (B,C), the locations of the donor (green) and acceptor (red) are indicated. Different FRET efficiencies are expected for DNA bound to the pol site or the exo site. Adapted from reference (Lamichhane et al., 2013) with permission.
This system exhibited two distinct FRET states, with FRET efficiencies ∼ 0.6 and ∼ 0.8, which were assigned to DNA occupying the exo site or pol site, respectively (Figure 5A). These assignments were confirmed using a L361A KF mutant, which is defective in binding DNA at the exo site (Figure 5C). Importantly, multiple transitions were observed between these FRET states during single encounters between KF and DNA (Figure 5B). These direct transitions were also manifested as prominent cross peaks in two-dimensional plots of transition probability density (TPD) (Figure 5D). These observations revealed that DNA substrates could transfer reversibly between the pol and exo sites while remaining associated with the polymerase. This intramolecular transfer mechanism had been inferred from earlier biochemical studies (Joyce, 1989) and was directly revealed by the smFRET results. Moreover, dwell time analysis was used to quantify the rate constants for intramolecular transfer of DNA between the two sites, in either direction (the dwell time histogram for transitions from the pol site to the exo site is shown in Figure 6A). The rate constants for the intramolecular transfer pathway are summarized in Figure 6B.
[image: Figure 5]FIGURE 5 | smFRET data for KF interacting with mismatched DNA. (A) Representative donor intensity (green), acceptor intensity (red) and FRET efficiency (blue) trajectories. (B) Expanded view of a single encounter between KF and DNA. (C) FRET efficiency histograms compiled from multiple traces. (D) Plot of transition probability density. Reproduced from reference (Lamichhane et al., 2013) with permission.
[image: Figure 6]FIGURE 6 | Pathways and rate constants for switching of DNA between pol and exo sites in KF. (A) Dwell time histogram for direct transitions from the pol site to the exo site. The smooth line is the best fit to a single exponential function, with the rate constant indicated. (B) Summary of the two observed transfer pathways. The intramolecular transfer pathway between bound complexes is shown at the top, together with the measured rate constants obtained from dwell time analysis of smFRET trajectories. The intermolecular pathway, involving dissociation from one site and rebinding from solution to the other site, is shown below, together with the respective rate constants.
The smFRET results also revealed that KF bound to DNA via the pol site could dissociate into bulk solution and then rebind DNA via the exo site (and vice versa). The rate constants for this intermolecular transfer pathway were also determined from dwell time analysis (summarized in Figure 6B). During DNA replication in vivo, the polymerase is tethered to a replication fork via clamp proteins, which would inhibit dissociation of the complex. Intramolecular transfer of DNA is likely to be the relevant pathway during proofreading in vivo.
A recent computational study predicted the intramolecular transfer path between pol and exo sites in E. coli Pol III (Dodd et al., 2020). To test the model, the smFRET site switching assay originally developed for KF could be used to quantify how mutations of specific residues lying on the predicted transfer path in Pol III impact the switching kinetics.
Role of Polymerase Conformational Dynamics During 5’ Nuclease Activity
Pol I can extend a primer strand in the presence of a downstream strand, resulting in displacement of the downstream strand and formation of a 5′ flap (Figure 7A). The flap is then cleaved by the 5′ nuclease (5′ nuc) activity of Pol I, leaving a nick that can subsequently be sealed by a DNA ligase. The processing steps depicted in Figure 7A are carried out by Pol I during lagging strand DNA synthesis (Balakrishnan and Bambara, 2013) and DNA base excision repair (Imai et al., 2007) in E. coli. The 5′ nuc activity is contained in a separate domain that is connected to the main body of the enzyme (the KF portion) by a flexible 16 aa peptide linker (Figure 7B). Moreover, the 5′ nuc domain is homologous to various structure-specific flap endonucleases (Figure 7C) (Harrington and Lieber, 1994).
[image: Figure 7]FIGURE 7 | Activities of Pol I and three-dimensional structures of Pol I homologs. (A) Processes catalyzed by Pol I during lagging strand DNA synthesis and base excision repair. (B) Crystal structure of the Pol I homolog Taq polymerase with primer/template DNA at the pol site (PDB code 1TAU). The polymerase core is grey and the 5′ nuc domain is blue. (C) Crystal structure of human FEN1 (homologous to the 5′ nuc domain of Pol I) bound to a DNA substrate (PDB code 3Q8M). In (B,C), the primer, template and downstream strands are colored as in (A). Reproduced from reference (Pauszek et al., 2021) with permission.
The pol and 5′ nuc activities of Pol I must be carefully coordinated to ensure that the resulting DNA product contains a nick rather than an extended gap or overhanging 5′ strand. However, the physical basis for this coordination is not well understood. Pauszek et al. (Pauszek et al., 2021) designed a single-molecule FRET system to monitor the transition from pol activity to 5′ nuc activity in Pol I. A variety of DNA substrates (Figures 8A–E) and two complementary labeling schemes were employed (Figures 8F,G). The first scheme was identical to that used to monitor pol to exo site switching in KF (same donor and acceptor sites), except that full length Pol I was employed (Figure 8F). This system was designed to monitor any movement of the DNA substrate relative to the enzyme core. The second FRET scheme employed an A488 donor attached to the 5′ nuc domain of Pol I and an A594 acceptor attached to the template strand downstream of the primer 3′ terminus (Figure 8G). This scheme was designed to probe the proximity of the 5’ nuc domain to the downstream DNA.
[image: Figure 8]FIGURE 8 | DNA substrates and FRET labeling strategies. (A) Substrate containing a 5′ flap on the downstream strand. (B) Substrate containing flaps on the primer and downstream strands (double-flap). (C) Substrate that exists as a mixture of downstream flap and double-flap forms. (D) Substrates containing gaps of various sizes. (E) Primer/template substrate, lacking a downstream strand entirely. (F) First FRET labeling scheme. Donor is green and acceptor is red. (G) Second FRET labeling scheme. Donor is yellow and acceptor is blue. Reproduced from reference (Pauszek et al., 2021) with permission.
For the first labeling scheme (Figure 9A), Pol I exhibited two distinct FRET states, ∼ 0.6 and ∼ 0.8 efficiency, when interacting with any of the flap-containing DNA substrates (Figures 9B,C). The population of the 0.6 FRET state was not responsive, or only weakly responsive, to a L361A mutation in Pol I (Figure 9C), indicating that this state was not associated with binding of DNA to the exo site. In contrast, the 0.6 FRET state was not observed for any of the flap-containing DNAs interacting with KF (Figure 9C), which lacks the 5′ nuc domain entirely. Based on these results, the 0.8 and 0.6 FRET states were assigned to DNA engaging the pol site (state P) or the 5′ nuc site (state N), respectively. State N was most highly populated with the double-flap DNA (Figure 9C), which is the natural substrate for 5′ nuc activity (blocked here by a D116A mutation).
[image: Figure 9]FIGURE 9 | smFRET data for Pol I—DNA complexes obtained using labeling. (A) Locations of donor (green) and acceptor (red). Polymerase core is grey and 5′ nuc domain is blue. (B) Donor intensity (green), acceptor intensity (red) and FRET efficiency (blue) trajectories are shown. The black line is a fit from Hidden Markov modeling. (C) FRET efficiency histograms compiled from n trajectories, separated into states P and N. (D) Transition probability density plots, compiled from n transitions. From left to right: double flap DNA, mixed flap DNA and downstream flap DNA. (E) Rate constants for intramolecular transitions between states P and N. Reproduced from reference (Pauszek et al., 2021) with permission.
Two distinct FRET states were also observed with the second labeling scheme (Figures 10A-C), which probes the proximity of the 5′ nuc domain to the downstream DNA. The high-FRET and mid-FRET states were assigned to states N and P, respectively, based on the correspondence in the species populations observed with the two labeling schemes. Hence, the two FRET schemes yield a consistent description of the conformational states populated with flap-containing DNA substrates. Moreover, the results with the second labeling scheme confirmed that the 5′ nuc domain was in close physical proximity to the downstream DNA in state N. Notably, only a single low-FRET state was observed for a primer/template substrate, indicating that the 5′ nuc domain was extended away from the DNA (Figures 11A-D). Thus, the presence of a downstream strand is necessary to engage the 5′ nuc domain. This low-FRET state was designated P′ (see below).
[image: Figure 10]FIGURE 10 | smFRET data for Pol I—DNA complexes obtained using the second labeling scheme. (A) Locations of donor (yellow) and acceptor (blue). The polymerase core is grey and 5′ nuc domain is blue. (B) Donor intensity (green), acceptor intensity (red) and FRET efficiency (blue) trajectories are shown. The black line is a fit from Hidden Markov modeling. (C) FRET efficiency histograms compiled from n trajectories, separated into states P and N. (D) Transition probability density plots, compiled from n transitions. Reproduced from reference (Pauszek et al., 2021) with permission.
[image: Figure 11]FIGURE 11 | Probing the location of the 5′ nuc domain in the absence of a downstream DNA strand. (A) Schematic representation of donor (yellow) and acceptor (blue) sites. (B) Donor intensity (green), acceptor intensity (red) and FRET efficiency (blue) traces are shown. The black line is a fit from Hidden Markov modeling. (C) FRET efficiency histogram compiled from n trajectories, separated into states P′ and P. (D) Transition probability density plot, compiled from n transitions. Reproduced from reference (Pauszek et al., 2021) with permission.
For both FRET systems, direct transitions were observed between states P and N during single encounters between Pol I and the flap-containing DNAs (Figure 9B, Figure 10B). Similarly, prominent cross-peaks were observed in two-dimensional TPD plots (Figure 9D, Figure 10D). These observations establish that DNA substrates initially engaging the pol site can switch to the 5′ nuc site while remaining associated with Pol I (and vice versa). Hence, transfer of DNA from the pol site to the 5′ nuc site is governed by an intramolecular pathway, as observed for DNA switching between pol and exo sites. Rate constants for site switching were determined from dwell-time analysis (Figure 9E). The double-flap DNA substrate exhibited the fastest transfer from the pol site to the 5′ nuc site and the slowest return to the pol site, accounting for the high population of state N (Figure 9C).
Together, these observations revealed that three distinct complexes can form during encounters between Pol I and DNA substrates (Figure 12). State P′ is formed when the primer 3′ terminus is remote from a downstream strand: the primer terminus is positioned in the pol site and the 5′ nuc domain is extended away from the DNA. State P is formed as the primer 3′ terminus approaches a downstream strand: the primer terminus is still located in the pol site, but the 5′ nuc domain is in proximity to the downstream DNA. State N is formed after the primer 3′ terminus has shifted out of the pol site and the 5′ nuc domain is poised to cleave the downstream strand. Importantly, the smFRET results showed that states P and N can reversibly exchange without dissociation, explaining how the pol and 5’ nuc modes of activity are physically coordinated in Pol I.
[image: Figure 12]FIGURE 12 | Possible configurations of Pol I—DNA complexes. The FRET efficiencies measured with labeling are denoted E1 and E2, respectively. Reproduced from reference (Pauszek et al., 2021) with permission.
Other Applications of smFRET to DNA Polymerases
While the central focus of this review has been on the conformational dynamics underpinning the DNA replication fidelity of Pol I, smFRET methods have also been used to examine other aspects of DNA polymerase function. In an early application, smFRET was used to monitor the movement of KF on a DNA template during DNA synthesis, enabling measurement of primer elongation with single base-pair resolution (Christian et al., 2009). This approach was also used to elucidate the impact of bulky benzopyrene adducts on translesion DNA synthesis by the Y family polymerase Dpo4 (Liyanage et al., 2017).
Craggs et al. studied the structure-specific recognition of gapped DNA substrates by KF (Craggs et al., 2019). A large set of DNA substrates containing donors and acceptors at various sites were examined by smFRET, both in the presence and absence of KF. Using a docking approach based on the resulting network of D/A distances, a solution structure of the gapped DNA bound by KF was established, revealing a sharp bend in the DNA. This comprehensive study exemplified how smFRET data can be combined with structural modeling methods to provide a detailed structural description of an intrinsically dynamic macromolecular complex. Interestingly, the results also showed that the DNA alone could adopt a similar bent conformation, supporting a model wherein KF recognized a pre-bent DNA conformation.
CONCLUDING REMARKS
The smFRET studies of Pol I, reviewed above, highlight the intrinsically dynamic character of the enzyme. Each of the three biochemical activities is linked to conformational dynamics of the enzyme-DNA complex. Moreover, the results reveal the different physical mechanisms employed in each case: 1) nucleotide selection is coupled to movement of the fingers domain, 2) proofreading involves physical movement of the DNA substrate between separated pol and exo sites, and 3) the 5′ nuc activity requires both movement of DNA and a large conformational change of the polymerase (docking of the 5’ nuc domain with the downstream DNA).
The smFRET methods reviewed here can readily resolve different binding modes of a polymerase-DNA complex, quantify their relative populations and the rates of exchange between them. The results also establish whether a polymerase switches from one mode of activity to another during a single encounter between the polymerase and DNA substrate (intramolecular events) or after dissociation and rebinding (intermolecular events). With the ability to label both the DNA substrate and the enzyme at specific locations with donor and acceptor probes, smFRET provides a general tool to probe the conformational dynamics of DNA polymerases in a region-specific manner. Further highlighting the versatility of the method, smFRET can also be used to monitor polymerase-mediated primer extension or to establish structural features of polymerase-DNA complexes. With these wide-ranging capabilities, smFRET is emerging as a powerful adjunct to traditional three-dimensional structural analyses of DNA polymerases.
The smFRET studies of Pol I performed to date were conducted under equilibrium conditions, in which the various enzymatic activities were blocked by enzyme mutations or modifications to the DNA substrate. Future smFRET studies employing fully active Pol I and extendable DNA substrates should reveal the sequence of polymerase conformational changes and DNA movements during each of the DNA processing steps performed by Pol I.
While this review has focused on E. coli Pol I, DNA polymerases from other organisms also possess multiple enzymatic activities that must be carefully coordinated to ensure efficient and accurate DNA replication and repair. In many polymerases, including those from eukaryotes, the various enzymatic activities are contained in distinct protein subunits within a multi-protein holoenzyme complex (McHenry, 2011; Burgers and Kunkel, 2017; Raia et al., 2019). The resulting spatial separation of the various active sites poses the same challenge facing Pol I: how to regulate the movement of a DNA substrate between physically remote active sites ? The mechanisms employed by Pol I to coordinate it is three activities, involving intramolecular shuttling of DNA between spatially separated active sites, combined with enzyme conformational changes, are likely employed across the DNA polymerase family. Accordingly, the smFRET methods reviewed here provide general tools to understand the physical basis of functional coordination in multi-functional DNA polymerases.
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Reverse transcriptase (RT) from the human immunodeficiency virus continues to be an attractive drug target for antiretroviral therapy. June 2022 will commemorate the 30th anniversary of the first Human Immunodeficiency Virus (HIV) RT crystal structure complex that was solved with non-nucleoside reverse transcriptase inhibitor nevirapine. The release of this structure opened opportunities for designing many families of non-nucleoside reverse transcriptase inhibitors (NNRTIs). In paying tribute to the first RT-nevirapine structure, we have developed several compound classes targeting the non-nucleoside inhibitor binding pocket of HIV RT. Extensive analysis of crystal structures of RT in complex with the compounds informed iterations of structure-based drug design. Structures of seven additional complexes were determined and analyzed to summarize key interactions with residues in the non-nucleoside inhibitor binding pocket (NNIBP) of RT. Additional insights comparing structures with antiviral data and results from molecular dynamics simulations elucidate key interactions and dynamics between the nucleotide and non-nucleoside binding sites.
Keywords: non-nucleoside reverse transcriptase inhibitors, HIV RT, structural studies, computational chemistry, drug design
INTRODUCTION
The HIV-1 (Human Immunodeficiency Virus) is a member of the retroviral family which contains a single-stranded RNA genome and is the major etiological agent involved in the development of acquired immunodeficiency syndrome or AIDS. The World Health Organization now estimates that in 2019 over 40 million people worldwide were infected. The most recent CDC report estimates that in the US over 1.2 million people are infected including about 13% who are unaware of their infections. Over the past decade, the number of people living with HIV has increased, while the annual number of new infections has remained relatively stable. Still, the pace of new infections, at 50,000 per year, continues at far too high a level, particularly among certain socio-economic groups. With the development of antiretroviral therapy (ART), there has been much needed progress over the past decade. Individuals diagnosed with AIDS no longer face a death sentence, but there continues to be a significant need for new therapeutic strategies, new drugs, and new drug combinations to combat this disease. It is imperative to continue to develop new, effective, and safe antiviral compounds in order to stay in front of the HIV virus with its propensity for rapid mutation and resistance. There are several potential targets in the life cycle of the HIV virus including HIV reverse transcriptase (HIV-RT or RT), HIV protease, and more recently viral entry, attachment, and integration (Richman et al., 2009). Drugs targeting RT remain a cornerstone of AIDS therapy as approximately 90% of conventional therapeutic regimens. The drugs that target HIV-1 RT are divided into two classes: nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). The rapid development of drug resistance by the error prone RT, off-target side effects, and issues of viral versus host polymerase selectivity continue to necessitate the discovery of more effective NRTIs and NNRTIs with improved safety, pharmacological, and drug resistance profiles.
The first three-dimensional (3D)-structure of RT was solved by the Steitz lab in 1992. This structure was solved in the presence of the NNRTI, nevirapine (Kohlstaedt et al., 1992). The 3-D structure revealed that nevirapine was bound in an allosteric binding pocket 10-Å away from the RT polymerase active site, which is absent in the apo form of RT (Clark et al., 1995; Rodgers et al., 1995). NNRTIs significantly inhibit the catalytic function of RT by binding in the non-nucleoside inhibitor binding pocket (NNIBP). Previous kinetic studies have shown that NNRTIs act as non-competitive inhibitors by slowing the polymerization reaction (Hopkins et al., 1989; Spence et al., 1995b; Rittinger et al., 1995; Nissley et al., 2007).
A major clinical concern in the use of these drugs is the development of resistant strains of HIV harboring mutations in RT (de Bethune, 2010; Iyidogan and Anderson, 2014). For NNRTIs, among the most common resistance mutations are Lys103Asn (K103N) and Tyr181Cys (Y181C), which are observed in 57 and 25% of patients failing treatment (Iyidogan and Anderson, 2014). In particular, Y181C has been a major hurdle in development of NNRTIs (Bollini et al., 2011; Jorgensen et al., 2011; Gubernick et al., 2016); it renders many NNRTIs including nevirapine ineffective. Moreover, nevirapine remains on the World Health Organization (WHO’s) Model List of Essential Medicines which is used as a single agent to prevent mother-to-child viral transmission. The double variant Y181C/K103N abrogates efficacy for all NNRTIs except those most recently introduced etravirine, rilpivirine, and doravirine (Janssen et al., 2005; Iyidogan and Anderson, 2014; Martin et al., 2020). More recently, mutations at K101 including K101P have been reported to be problematic with these newer generation NNRTIs including rilpivirine (Balamane et al., 2012). In addition, rilpivirine has very low aqueous solubility and potential cardiotoxicity liabilities due to inhibition of the HERG ion channel that limit dosing regimens (Kudalkar et al., 2018).
Over the past several years, our research has focused on developing improved NNRTIs relative to current FDA approved NNRTIs such as rilpivirine. This includes better pharmacological properties including enhanced aqueous solubility, lack of inhibition on HERG ion channel as well as efficacy on drug resistant HIV variants including Y181C, Y181C/K103N, and K101P. Our strategy combines state-of-the-art technology for in silico virtual screening/structure-based drug design, synthetic organic chemistry, mechanistic enzymology and protein crystallography, and pharmacological assays (Kudalkar et al., 2017; Kudalkar et al., 2018). In the current study, we describe the structure activity relationship and structural analysis of some of these NNRTIs and their interactions with HIV-1 RT. Analysis of the crystal structures, paired with antiviral data and molecular dynamics (MD) simulations, elucidate key interactions between the NNRTI and residues in the NNIBP.
MATERIALS AND METHODS
Protein Expression and Purification
RT52A construct expression for RT (WT), RT (Y181C) and RT (K103N/Y181C) were expressed recombinantly in E. coli strain BL21(DE3) using methods described previously (Frey et al., 2015). Recombinant RT was purified using cobalt IMAC followed by removal of the N-terminal 6x-histidine tag via overnight cleavage with HRV protease. The collected sample was then further purified using ion exchange chromatography. Purified sample was flash frozen with liquid nitrogen until needed for crystallization.
Protein Crystallization, Data Collection, and Refinement
Chemical synthesis for all compounds crystallized with RT enzymes except compound 1 (vide infra) have been reported previously (Frey et al., 2012; Frey et al., 2015). Crystals of RT were prepared using co-crystallization and/or soaking methods described previously. The final optimized condition for crystal growth consisted of 18% (w/v) PEG 8000, 100 mM ammonium sulfate, 15 mM magnesium sulfate, 5 mM spermine, and 50 mM citric acid, pH 7.5. Crystals were transferred to a cryo-solution containing 27% (v/v) ethylene glycol and flash-cooled with liquid nitrogen.
Diffraction datasets for all crystals were collected at Brookhaven NSLS on beamline X29A and APS on beam line 24-ID-E through NE-CAT. Diffraction data was scaled and merged in space group C2 using HKL3000 (Minor et al., 2006). Difference Fourier methods or molecular replacement was used to determined phases using the program Phaser (McCoy et al., 2007). Models for all RT complexes were built into the electron density using program Coot (Emsley et al., 2010) followed by refinement using Phenix Refine (Adams et al., 2010). Several iterations of refinement continued until acceptable R-values and geometric parameters were achieved. All structures were validated using Molprobity and Ramachandran plots (Chen et al., 2010). Structures were analyzed using molecular viewer Pymol (Schrödinger, 2021b). Iterative build omit σA-weighted 2mF0—Fc electron density maps were generated using Phenix Autobuild (Terwilliger et al., 2008).
Molecular Dynamics Simulation
Crystal structures for compound 1, compound 2, RT:dsDNA:dCTP (PDB code: 6P1I), and RT:dsDNA:(-)3TC-TP (PDB code: 6OUN) complexes were used for molecular dynamics (MD) simulations and analysis. All structures were prepared by adding hydrogens, assigning charges, capping the termini, and deleting non-interacting water molecules using the Protein Preparation tool in Maestro (Schrödinger, 2021a). The Protein Preparation tool is a collection of programs that prepare biomolecular models for modeling calculations. Prepared models were used to build the system for MD. The models were energy minimized prior to simulation.
Using the System Builder in Desmond (Schrödinger, 2021a), we predefined the solvent model to be TIP4P, calculated the box volume, and then minimized the structure. The system was neutralized by the addition of Mg2+ and Cl− ions, simulating a concentration of 0.15 M. The force field applied to each system was OPLS within the System Builder in Desmond. Water molecules and ions around the enzyme were built into the system within the calculated orthorhombic box volume for soluble proteins. The average calculated box volume = 1,337,030 Å3. MD using Desmond (Schrödinger, 2021a) was performed for each model system. The models were relaxed before the simulation. The canonical ensemble or NVT was applied using the Berendsen thermostat (temperature = 300°K) and Berendsen barostat (pressure = 1.01325 bar). Simulation time was set to 24 nanoseconds (ns) to allow for system equilibration. A total of 1000 snapshots (24 picoseconds/interval) were generated for each RT:NNRTI complex. Trajectories from each simulation were analyzed using Simulation Interaction Analysis and Simulation Event Analysis programs in Desmond (Schrödinger, 2021a). Simulations were analyzed for equilibration and convergence by examining root mean square deviation (RMSD) versus simulation time plots.
Antiviral Data and Synthesis for Compound 1
The antiviral efficacy of compound 1 was evaluated in MT-2 cells infected with HIV-1 as previously described (Lee et al., 2014; Lee et al., 2015; Kudalkar et al., 2017). Briefly, the antiviral activities against the IIIB strain of HIV-1 were measured using human lymphoid MT-2 T-cells; The antiviral efficacy (EC50) values are obtained as the dose required to achieve 50% protection of the infected cells by the MTT colorimetric method (Pannecouque et al., 2008). Simultaneously, the cytotoxicity (CC50) values for inhibition of growth of MT-2 cells in the absence of virus are determined. The analyses used triplicate samples at each concentration and typically at least two biological replicates. Representative data for compound 1 is shown in (Supplementary Figure S11).
The synthesis and characterization data for compound 1 is described in Supplementary Material. The synthesis and antiviral activities of compounds 2-4 have previously been reported (Lee et al., 2014; Lee et al., 2015). A summary of the antiviral activities and aqueous solubilities is reported in Table 1.
TABLE 1 | Antiviral data and solubility measurements for Compounds 1-4.
[image: Table 1]RESULTS
For several years, we have been designing NNRTIs targeting variants of RT. Figure 1 depicts the various compounds designed to target RT and variants. New antiviral data for compound 1 along with 7 new crystal structures help elucidate structure activity relationships (SAR) for major compound classes. The following vignettes summarize our design of these various chemical classes of NNRTIs that possess antiviral activity.
[image: Figure 1]FIGURE 1 | Structures of NNRTI compounds co-crystallized with RT and evaluated for SAR. Synthesis and characterization for compound 1 is provided in Supplementary Material. Synthesis and characterization for compounds 2-4 have been reported previously (Lee et al., 2014; Lee et al., 2015).
General Structure Details for RT Complexes
We determined crystal structure complexes for wildtype (WT) and variants of RT with various NNRTI compounds. Resolution for the collected crystal structures ranged from 2.368–3.089 Å. Data collection and refinement statistics for all RT complexes are listed in Tables 2, 3. The electron density defines the compounds and all interacting residues for all RT complexes Figure 2. The compounds co-crystallized bind the NNIBP causing RT to adopt an “open” conformation commonly observed for RT NNRTI complexes (Das et al., 2008; Lansdon et al., 2010; Frey et al., 2015).
TABLE 2 | Data collection and refinement statistics for RT crystal structures in complex with compound 2.
[image: Table 2]TABLE 3 | Data collection and refinement statistics for RT (WT) crystal structures in complex with compounds 1 and 4, RT (Y181C) with compound 3, and RT (K103N/Y181C) with compound 3.
[image: Table 3][image: Figure 2]FIGURE 2 | Omit electron density of the non-nucleoside inhibitor binding site for all crystal structure complexes: (A) RT (WT):2. (B) RT (Y181C):2. (C) RT (K103N/Y181C):2. (D) RT (WT):1. (E) RT (WT):4. (F) RT (Y181C):3. (G) RT (K103N/Y181C):3. Omit electron density maps were generated using simulated annealing omit build in Phenix (Adams et al., 2010).
Structure Activity Relationships for Novel NNRTIs
Extensive SAR has been conducted to design novel NNRTIs with improved resistance profiles and optimal physiochemical properties (Bollini et al., 2011; Jorgensen et al., 2011; Lee et al., 2013; Lee et al., 2014; Lee et al., 2015; Chan et al., 2017; Ippolito et al., 2021). Through each iteration of design, new insights were gained regarding key interactions with RT and the NNIBP. The following specific insights led us to develop some of the most potent NNRTIs with improved drug-like properties to date as compared to the current FDA approved NNRTIs as well as others previously published (De Clercq, 1998; De Clercq, 2007; De Clercq, 2010).
DAPY/DATA Versus Catechol Diether
Diarylpyrimidine (DAPY) and diaryltriazine (DATA) SAR led to the development of NNRTIs etravirine and rilpivirine, 2 flexible DAPY NNRTIs that remain potent for RT variants (Das et al., 2008; Lansdon et al., 2010). While the DAPY pharmacophore retained interactions with RT variants, solubility remained a major limitation. The development of the catechol diether system with a terminal uracil resulted in NNRTI compounds with picomolar potency and increased solubility (Bollini et al., 2011). Further optimization focused on improving potency for major RT variants RT (Y181C) and RT (K103N/Y181C) in addition to increasing solubility (Bollini et al., 2011; Bollini et al., 2013a; Bollini et al., 2013b; Frey et al., 2015).
The NNIBP consists of several hydrophobic residues requiring complementary nonpolar NNRTIs. Consequently, solubility for some of the most potent NNRTIs remains a major limitation. In order to improve aqueous solubility, ether-linked morpholine groups were added to DATA and catechol diether systems (Lee et al., 2013). The addition of an ethoxy morpholine to catechol diether compound 1 significantly reduced potency for RT (WT). The attachment of a longer propoxy morpholine to DATA compound 2 retained potency for RT (WT), RT (Y181C), and RT (K103N/Y181C) variants.
Crystal structures for RT (WT) in complex with both 1 and 2 and were determined and analyzed to explain the difference in potency. Compound 2 appears to make several van der Waals contacts with residues in the NNIBP. Compound 2 also hydrogen bonds with K101 via the 1) backbone CO and aniline linker; and 2) the backbone NH and the triazine N. Key interactions between RT (WT) and 1 include hydrogen bonds between the uracil carbonyl and 1) the N side chain of K102; and 2) the backbone NH of K103. Additional π-π stacking interactions were observed between Y188 and W229 with compound 1 along with several van der Waals contacts (Figure 3). Based on the analysis from crystal structures, the interactions between compounds 1 and 2 are similar and it remained unclear why 2 retained potency for RT (WT), RT (Y181C) and RT (K103N/Y181C).
[image: Figure 3]FIGURE 3 | Interactions between (A) Compound 2 and (B) Compound 1 with residues in the NNIBP of RT (WT). 3D depiction of interactions (left) and 2D schematic diagram of interactions (right). Hydrogen bonds are represented by purple arrows; π-π interactions are represented by green lines between aromatic rings and residues; van der Waals contacts are made between all listed residues within a radius of 4 Å. The key provided specifies residue type, water molecules, and interactions.
The crystal structures could not provide an explanation for why compound 1 has reduced affinity for RT (WT). In order to explore this more, we conducted MD for RT (WT) crystal structures in complex with compound 1 and compound 2. Results from a 24 ns simulation identified key interactions maintained between ether-linked morpholine compounds 1 and 2. Compound 2 maintains stronger contacts with K101 and E138 (observed in >100% of snapshots due to multiple bonds with K101), whereas compound 1 only maintains one strong hydrogen bond with K103 (Figure 4; Supplementary Figures S3, S6). The propoxy-linked morpholine in compound 2 is longer and makes additional ionic and hydrogen bonds with E138. The ethoxy-linked morpholine in compound 1 does not make any strong contacts with E138 or residues in the binding site. The salt bridge formed between K101 and E138 has been associated with stabilizing NNRTI binding in the NNIBP (Das et al., 2008). In the case of compound 2, the addition of the propoxy morpholine disrupts the salt bridge interaction but permits an additional contact with E138.
[image: Figure 4]FIGURE 4 | Interaction fractions for RT (WT) and compounds 1 and 2 in the 24 ns simulations. Protein interactions with compounds 1 and 2 were monitored throughout the simulation and are characterized by hydrogen bonds (H-bonds; green); hydrophobic contacts (purple); ionic bonds (pink), and water bridges (blue). Simulation interactions diagrams provided in Supplementary Material (Supplementary Figures S3, S6) show % interactions between specific residues and functional groups of the compounds. The interaction fraction describes how long interactions are maintained over the course of the trajectory snapshots. An interaction fraction of 1.0 suggests that this interaction is maintained in the simulation 100% of the time. Interactions fractions >1.0 represent residues capable of making multiple contacts with the compound.
In addition to the stabilizing hydrogen bond, compound 2 maintains more stronger contacts with residues during the simulation (Figure 4). Compound 3 makes more van der Waals contacts with hydrophobic residues such as P95, L100, V106, V179, Y181, Y188, W229, L234, Y318, and I135. A π-π interaction between the cyanovinylphenyl of compound 2 and W229 is also apparent.
Cyanovinyl Phenyl to Cyanonaphthyl/Cyanoindolizine
Previous work conducting SAR for DAPYs/DATAs and catechol diether compounds concluded that the CN-vinyl phenyl moiety was important for π-π interaction and van der Waals contacts with aromatic residues Y181, Y188, and W229 (Frey et al., 2012; Frey et al., 2015). Concern for unwanted Michael additions to the cyanovinyl group prompted the design of new derivatives that replaced the CN-vinyl with naphthyl and indolizine aromatics. Replacement of the CN-vinyl phenyl with a CN-naphthyl in the catechol diether series resulted in compounds such as compound 3 (Figure 2). The addition of the naphthyl in compound 3 enhances edge-to-face π-π interactions with residues Y188 and W229; each benzene ring in the naphthyl can interact with the residues as opposed to the single phenyl (Figure 5). For the DAPY series, replacing the CN-vinyl phenyl with an CN-indolizine in compound 4 increases edge-to-face π-π interaction with W229 (Figure 5). The pyrimidine maintains hydrogen bonding with Lys101 and several van der Waals contacts.
[image: Figure 5]FIGURE 5 | 2D Interaction diagrams for RT complexes with compound 4 (A) and compound 3 (B). Hydrogen bonds are represented by purple arrows; π-π interactions are represented by green lines between aromatic rings and residues; van der Waals contacts are made between all listed residues within a radius of 4 Å. The key provided below specifies residue type, water molecules, and interactions.
Compound 3 also retains potency for RT (Y181C) and RT (K103N/Y181C) variants as shown in the antiviral data (Table 1). Analysis of the crystal structures suggest that many key interactions are maintained with residues in the NNIBP (Figure 6). Most notably, π-π interactions with residues Y188 and W229 are retained in crystal structures of compound 3 and RT (Y181C) and RT (K103N/Y181C) variants. The key π-π interaction along with the maintained hydrogen bond with K/N103 results in potent nanomolar activity for both variants.
[image: Figure 6]FIGURE 6 | RT complexes with compound 3. (A) An overlay of RT (WT) (teal); RT (Y181C) (lavender); and RT (K103N/Y181C) (gold) in complex with compound 3. (B) 2D interaction diagram for RT (WT) in complex with compound 3. (C) 2D interaction diagram for RT (Y181C) in complex with compound 3. (D) 2D interaction diagram for RT (K103N/Y181C) in complex with compound 3. Hydrogen bonds are represented by purple arrows; π-π interactions are represented by green lines between aromatic rings and residues; van der Waals contacts are made between all listed residues within a radius of 4 Å. The key provided specifies residue type, water molecules, and interactions.
SAR for Variants RT (Y181C) and RT (K103N/Y181C)
Compound 2 has increased solubility compared to other compounds tested (solubility = 14.2 μg/ml and maintains affinity for Y181C and K103N/Y181C variants of RT. Table 1 reports solubility for compounds 2-4 in addition to antiviral data for variants RT (WT), RT (Y181C) and RT (K103N, Y181C. We compared 3 crystal structures of compound 2 in complex with RT (WT), RT (Y181C), and RT (K103N/Y181C) to examine interactions that promote affinity for Y181C and K103N/Y181C variants. Key interactions such as the 2 hydrogen bonds with K101 are maintained in the RT (Y181C) and RT (K103N/Y181C) crystal structures (Figure 7). In both RT (Y181C) and RT (K103N/Y181C) structures, the absence of Y181 causes the DATA scaffold to shift toward aromatic residues Y183, Y188, and W229 to make van der Waals contacts. Antiviral data also complements the analysis from the structures as compound 2 retains nanomolar potency for the virus containing wild-type RT and variants with Y181C and K103N/Y181C mutations (Table 1; WT: 0.0012 µM; Y181C: 0.012 µM Y181C/K103N: 0.0013 µM). (Lee et al., 2014; Lee et al., 2015)
[image: Figure 7]FIGURE 7 | 2D Interaction diagrams for RT (Y181C): Compound 2 (A) and RT (K103N/Y181C): Compound 2 (B). Compound 2 retains hydrogen bonds with K101 and van der Waals contacts with several residues for both variants. Hydrogen bonds are represented by purple arrows; π-π interactions are represented by green lines between aromatic rings and residues; van der Waals contacts are made between all listed residues within a radius of 4 Å. The key provided below specifies residue type, water molecules, and interactions.
MD Simulation to Understand NRTI and NNRTI Effects on Polymerase Activity
NNRTIs have a different mechanism of action than NRTIs that compete with nucleotides for the active site and DNA incorporation. Several kinetic and structural studies have shown that NNRTIs slow the rate of polymerization by causing a conformational change in RT upon binding the allosteric NNIBP (Spence et al., 1995b) Kinetic studies have also shown coordination between the polymerase active site and NNIBP, where NNRTIs enhance the binding of NRTIs (Spence et al., 1995a; Rittinger et al., 1995).
In order to compare the global movement within NRTI/DNA complexes, we conducted additional MD simulations for a catalytic complex of RT bound to a double-stranded DNA primer-template and 1) dCTP (PDB code: 6P1I) and NRTI (-)-3TC (PDB code: 6OUN) (Bertoletti et al., 2019). For the complex with dCTP, we examined root mean square fluctuations (RMSFs) for all residues in RT during the 24 ns simulation. The RMSF values show minimal fluctuations in the catalytic triad (Asp 110, 185, 186), primer grip region (residues 227–235), and thumb subdomain (residues 237–318). The RMSF analysis suggests that regions of RT important for catalysis and DNA binding are stabilized by the primer-template and dCTP in the active site.
In comparison with NNRTIs, we examined the RMSF values for RT (WT) in complex with NNRTI compound 2. RMSF values increase by ∼1–2 Å in the thumb region suggesting an increase in residue flexibility (Figure 8). Most significantly, RMSF values for the thumb subdomain increases by ∼2–5 Å when the NNRTI is bound to RT (WT). Residues in the thumb subdomain appear to have greater fluctuation when the NNRTI is bound compared to the complex with dsDNA primer-template and dCTP (Figure 8).
[image: Figure 8]FIGURE 8 | (A): Comparison of root mean square fluctuation (RMSF) values from MD in Å per residue in RT (WT):2, RT (WT):dSDNA:dCTP (PDB: 6P1I), and RT (WT):dsDNA:(-)3TC (PDB code: 6OUN). RMSF values in Å were calculated using the RMSF equation in Supplementary Figure S1 using the initial structure (snapshot or frame 0) as reference. The RMSF values represent the average RMSF for each residue during the 24 ns simulation. (B): Overlay of RMSF values for all 3 complexes in Å and scaled to structure B-factors. A noticeable difference in the thumb region of RT is observed when bound to NNRTI compound 2.
Interestingly, the thumb subdomain for the (-)-3TC complex are slightly more flexible in the MD simulation, with RMSF values increasing to ∼ 1–2 Å in this region when the NRTI is bound Figure 8). Some residues that show fluctuation are within the subdomain such as L234, H235, P236, and Y318. Both NRTIs and NNRTIs may increase flexibility in the thumb subdomain and destabilize residues that bind to the primer-template.
DISCUSSION AND CONCLUSION
NNRTIs and NRTIs are commonly used for prevention and treatment of HIV. Structure optimization of NNRTIs is still important for designing new compounds that can overcome physiochemical property and resistance limitations. In our current work, we describe iterations of NNRTI compound optimization guided by crystal structures. We also employed MD simulations to understand the effects of such NNRTIs and NRTIs on RT binding affinity and inhibition of polymerase activity. For all NNRTI complexes examined, the primer grip region is displaced suggesting conformational changes that affect RT polymerase activity. These findings are in accord with our previous kinetic studies to understand how NNRTI binding influences the kinetic reaction pathway (Spence et al., 1995b).
Compound 2 retains affinity for RT (WT), RT (Y181C), and RT (K103N/Y181C) variants. Crystal structures reveal that 2 can maintain most interactions observed in the RT (WT) structure and new interactions with Cys181 of the RT (Y181C) variant are present. The addition of the propoxy linked morpholine also provides potential new interactions while improving solubility. Compounds such as compound 3 and 4 that replace the common cyanovinyl moiety in NNRTIs with CN-naphthyl or CN-indolizine groups also gain additional π- π interactions.
The MD simulations identified structural areas that may be flexible in RT complexes with NNRTIs or DNA/NRTIs. The MD simulations for compound 1 helped identify key reasons why the compound was not effective for RT (WT) compared to compound 2. The MD simulations also revealed that flexibility of the thumb subdomain is influenced by whether a nucleotide, NNRTI, or NRTI is bound. NNRTIs such as compound 2 appear to increase flexibility of this region in addition to distorting the primer grip and YMDD motif. NRTI (-)-3TC also causes an increase in flexibility within the thumb subdomain. Future work using hydrogen deuterium exchange (HDX) experiments with catalytic complexes can help guide our understanding of how NRTIs and NNRTIs affect polymerase activity alone or synergistically.
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Human mitochondrial DNA contains more UV-induced lesions than the nuclear DNA due to lack of mechanism to remove bulky photoproducts. Human DNA polymerase gamma (Pol γ) is the sole DNA replicase in mitochondria, which contains a polymerase (pol) and an exonuclease (exo) active site. Previous studies showed that Pol γ only displays UV lesion bypassing when its exonuclease activity is obliterated. To investigate the reaction environment on Pol γ translesion activity, we tested Pol γ DNA activity in the presence of different metal ions. While Pol γ is unable to replicate through UV lesions on DNA templates in the presence of Mg2+, it exhibits robust translesion DNA synthesis (TLS) on cyclobutane pyrimidine dimer (CPD)-containing template when Mg2+ was mixed with or completely replaced by Mn2+. Under these conditions, the efficiency of Pol γ′s TLS opposite CPD is near to that on a non-damaged template and is 800-fold higher than that of exonuclease-deficient Pol γ. Interestingly, Pol γ exhibits higher exonuclease activity in the presence of Mn2+ than with Mg2+, suggesting Mn2+-stimulated Pol γ TLS is not via suppressing its exonuclease activity. We suggest that Mn2+ ion expands Pol γ′s pol active site relative to Mg2+ so that a UV lesion can be accommodated and blocks the communication between pol and exo active sites to execute translesion DNA synthesis.
Keywords: mitochondrial DNA, DNA polymerase gamma, UV lesion, metal-dependence, TLS
INTRODUCTION
Ultraviolet (UV) exposure of DNA causes dimerization of two adjacent pyrimidines, forming cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidones ((6-4)PP), which stalls replicating polymerases (Varghese and Wang, 1967a; Varghese and Wang, 1967b; Brash and Haseltine, 1982). Human mitochondria lack nucleotide excision repair or photolyase that removes the photoproducts (Maher et al., 1976; Maher et al., 1979; Maher et al., 1982); therefore, mitochondrial DNA replication machinery would inevitably encounter the UV photoproducts. Increasing sun exposure is correlated to a large spectrum of mitochondrial DNA (mtDNA) deletions in dermis, which, albeit unknown in mechanism, has been used as a biomarker for UV exposure and chronological aging (Birch-Machin et al., 1998; Kawasaki et al., 2000; Ray et al., 2000; Harbottle et al., 2010; Bharti et al., 2014). Deletions and mutations of mtDNA are also associated with skin cancers (Durham et al., 2003; Yang et al., 2004).
Human mitochondria DNA is replicated by DNA polymerase gamma (Pol γ), which consists of a catalytic subunit Pol γA and a dimeric accessory subunit Pol γB. Pol γ possesses activities of 5′-3′ polymerization (pol) for DNA synthesis, 3′-5′ exonuclease (exo) for proofreading, and 5′-deoxyribose phosphate lyase for DNA repair. Pol γB has no intrinsic enzymatic activity, but it accelerates polymerization rate, increases affinity to DNA, and enhances processivity of the holoenzyme (Johnson et al., 2000; Johnson and Johnson, 2001; Lee et al., 2010). Pol γA belongs to the A-family polymerases that are single polypeptide enzymes structurally resembling a right-hand shape and containing fingers, palm, and thumb domains (Steitz, 1999; Garcia-Diaz and Bebenek, 2007; Bębenek and Ziuzia-Graczyk, 2018). Other replicative A-family DNA polymerase members include bacterial DNA polymerase I and phage T7 DNA polymerase.
All known DNA polymerases require divalent metal ions to catalyze DNA synthesis. A general mechanism of two-metal-ion catalysis established a foundation for DNA and RNA polymerases’ enzymatic reactions (Steitz and Steitz, 1993). An exonuclease-deficient Pol γ variant was shown to have limited translesion DNA synthesis (TLS) activity on UV lesion-containing DNA in the presence of Mg2+, suggesting that Pol γ possesses intrinsic TLS ability (Kasiviswanathan et al., 2012). Mitochondria are the main storage site of intracellular Mn2+ ion (Maynard and Cotzias, 1955; Liccione and Maines, 1988; Gavin et al., 1990; Gavin et al., 1992), which raises an important question on impact of Mn2+ or Mg2+/Mn2+ mixture on Pol γ mtDNA replication as well as TLS.
We report here studies of the A-family member Pol γ lesion bypassing across UV lesions in the presence of different metal ions. We show that Pol γ is unable to replicate past the CPD- or (6-4)PP-containing DNA template in the presence of Mg2+, but displays efficient TLS ability comparable to that on the non-damaged template in the presence of Mn2+ or Mg2+/Mn2+ mixture. Mn2+ promotes TLS activity without involvement of the polymerase’s exonucleolytic activity. The Mn2+-mediated trans-UV lesion DNA synthesis appears uniquely to mitochondrial DNA polymerase and is absent in other A-family DNA polymerases tested. These results also give a novel insight into the metal-regulated error recognition and communication between the pol and exo active sites in Pol γ.
RESULTS
Mn2+ Ion Stimulates Robust Translesion DNA Synthesis Across CPD but Not (6-4)PP
DNA templates (49 nt) containing either a CPD (T-CPD) or (6-4)PP (T-(6-4)PP) (Table 1) at the 28th position from the 3′-end was synthesized as described in Methods. Pol γ translesion replication was first tested on a 27 nt primer (PN) annealed to the T-CPD where the 3′- thymine (3′- T) in the CPD serves as the coding base (Figure 1A, lanes 9–16, Table 1). Time-dependent (0–20 min) primer extension assay was conducted in the presence of Mg2+. As a control, a parallel assay was carried out on a non-damaged template (T-ND) with identical sequence except that the CPD is replaced by 2 dT (Figure 1A, lanes 1–8, Table 1). In anticipation of higher polymerase activity on T-ND, the Pol γ concentration was reduced (see Methods). For convenience, only the full-length product formation rate at normalized enzyme concentration was used for rate calculation. Full-length formation rate of Pol γ on T-ND was 4.5 nM/s (Figure 1C). However, on T-CPD, the primer was not extended, but instead was degraded to PN-1 to PN-3 over time (Figure 1A lanes 9–16).
TABLE 1 | Sequences of DNA templates and primer.
[image: Table 1][image: Figure 1]FIGURE 1 | DNA synthesis of wild-type Pol γ on non-damaged and CPD-containing templates in the presence of Mg2+ or Mn2+. (A) Structure of thymine bases, CPD, and (6-4)PP where nitrogen is represented in blue spheres, oxygen in red spheres, carbon in black spheres, and phosphorus in golden spheres. (B) Time-dependent DNA synthesis of wild-type Pol γ on 5′-32P-Primer N (PN) annealed to a non-damaged template (T-ND) (lanes 1–8) or CPD-containing template (T-CPD) (lanes 9–16) in the presence of Mg2+. (C) Time-dependent DNA synthesis of wild-type Pol γ on 5′-32P-PN annealed to T-ND (lanes 1–8) or T-CPD (lanes 9–16) in the presence of Mn2+. (D) Quantification of normalized full-length (FL) products from (B) and (C) over time in seconds. The results are presented as mean and standard deviation from three independent experiments.
To evaluate the effect of high Mn2+ content in mitochondria on Pol γ activity, we substitute Mg2+ with Mn2+ and repeated the above experiments. In stark contrast to results with Mg2+, Pol γ exhibited strong TLS across CPD in the presence of Mn2+ (Figure 1B, lanes 9–16). The rates of full-length product formation by Pol γ on T-CPD were calculated to be 0.58 nM/s, which is only 1.7-fold lower than that on T-ND at 1 nM/s (Figure 1C). Interestingly, Pol γ is 4.5-fold less efficient on the non-damaged template in the presence of Mn2+ than in the presence of Mg2+.
Previous studies showed that exonuclease-deficient (exo-) Pol γ displayed limited intrinsic CPD-bypassing ability (Kasiviswanathan et al., 2012). To assess whether Mn2+ plays a redundant role with exonuclease activity in Pol γ TLS activity, Pol γ exo- (D198A/E200A) (Spelbrink et al., 2000) was analyzed on T-ND and T-CPD. In the presence of Mg2+, Pol γ exo- extended a small amount of the primer PN over the CPD site to full-length product, consistent with the previously reported data (Kasiviswanathan et al., 2012). However, a predominant amount of primer was extended by only a single nucleotide and formed product PN+1 (Figure 2A, lanes 1–8). Accumulation of the PN+1 indicates that silencing exonuclease enables the polymerase to synthesize across the 3′-T but not 5′-T of the CPD, suggesting that synthesis using the 5′-T as a coding base is the rate-limiting step of Pol γ TLS.
[image: Figure 2]FIGURE 2 | DNA synthesis of exonuclease-deficient Pol γ on non-damaged and CPD-containing templates in the presence of Mg2+ or Mn2+. (A) Time-dependent DNA synthesis of exonuclease-deficient (exo-) Pol γ on 5′-32P-PN annealed to T-ND in the presence of Mg2+ (lanes 1–8) or Mn2+ (lanes 9–16) (B) Time-dependent DNA synthesis of Pol γ exo-on 5′-32P-PN annealed to T-CPD in the presence of Mg2+ (lanes 1–8) or Mn2+ (lanes 9–16). (C) Quantification of normalized full-length (FL) products from (A) and (B) over time in seconds. The results are presented as mean and standard deviation from three independent experiments.
In the presence of Mn2+, Pol γ exo- exhibited significantly elevated TLS activity (Figure 2B, lanes 9–16). The rate of Pol γ exo- full-length product formation on T-CPD was calculated to be 0.81 nM/s with Mn2+, which is more than 800-fold increase than that with Mg2+ (0.001 nM/s) and exceeds that of wild-type (0.58 nM/s) (Figure 2C), confirming that suppressing exo activity indeed increases TLS in the presence of either metal ion. PN+1 product was drastically diminished, indicating Mn2+ facilitates Pol γ to overcome the energy barrier at the rate-limiting step. Similar to wild-type enzyme, Mn2+ exhibits inferior activity (eightfold lower) on Pol γ exo- synthesis on T-ND than Mg2+.
When translesion synthesis was tested on (6-4)PP lesion containing template, wild-type Pol γ showed no activity in the presence of either Mg2+ or Mn2+ (Figure 3, lanes 4 and 5). However, Pol γ exo- extended the primer to PN+1 with Mg2+, similarly to that on the T-CPD (Figure 3, lanes 7 and 8). Similarly, no full-length product was formed in the presence of Mn2+, and only PN+1 and a small amount of PN+2 was formed (Figure 3, lanes 9–10). Taken together, these results show that exonuclease activity contributes to the Pol γ′s lack of TLS activity, and Mn2+ further promotes Pol γ′s TLS ability independent of exonuclease activity.
[image: Figure 3]FIGURE 3 | Metal-dependent DNA synthesis of wild-type and exonuclease-deficient Pol γ on a (6-4)PP-containing template. Time-dependent polymerization assay of wild-type Pol γ (exo+) on 5′-32P-PN annealed to T-(6–4)PP in the presence of Mg2+ (lanes 2 and 3) or in the presence of Mn2+ (lanes 4 and 5) and of Pol γ (exo-) on identical DNA substrates in the presence of Mg2+ (lanes 7 and 8) or Mn2+ (lanes 9 and 10).
Mn2+ Stimulation of Pol γ TLS Is Independent of Exo Activity
The results thus far showed Mn2+ promotes TLS ability to both Pol γ wild-type and exo- variant, suggesting Mn2+ functions independent of exonuclease activity. To test the conclusion, we tested the exo activity of Pol γ with Mn2+ and compared it to that with Mg2+. We defined the rate of exonucleolysis as disappearance of the substrate and exonuclease events following the initial reaction were discounted, thus it is an underestimate of the actual rate. The rate of exonucleolysis of Pol γ on single-stranded DNA PN is 12.6 min−1 with Mn2+, sevenfold faster than that of Mg2+ at 1.8 min−1 (Figures 4A,C). Pol γ exo activity was also assayed on duplex PN/T-ND (Figure 4B). The excision rate of the duplex PN/T-ND in the presence of Mn2+ is at 3.9 min−1, which is about eightfold higher than Mg2+ at 0.5 min−1 (Figure 4C). Our results are consistent with a previous report where Mn2+ stimulates porcine liver Pol γ excision of terminal mismatch (Longley and Mosbaugh, 1991). As Mn2+ increased exo activity of Pol γ on PN/N-ND, which is free of error, it suggests that primer is sent more frequently from the pol to the exo site. As suppressing exo activity as well as addition of Mn2+ that increases exo activity both promote Pol γ′s TLS, we predict that Mn2+ must reduce error recognition ability of reading correct Watson-Crick base pairing geometry, which in turn promotes erroneous shuttling of the primer strand to the exo site.
[image: Figure 4]FIGURE 4 | Metal-regulated exonuclease activity of wild-type Pol γ. (A) Exonuclease assay of Pol γ on a single-stranded DNA, 5′-32P-PN, in the presence of Mg2+ (lanes 1–8) or in the presence of Mn2+ (lanes 9–16). (B) Exonuclease assay Pol γ on primer/template, 5′-32P-PN/T-ND, in the presence of Mg2+ (lanes 1–8) or in the presence of Mn2+ (lanes 9–16) (C). Quantification of normalized fraction of substrate remaining in (A) and (B) over time in seconds shown. The results are presented as mean and standard deviation from three independent experiments. Shorter time points (0–200 s) are shown as an inset.
Pol γ CPD Bypassing Activity in the Presence of Metal Ions Mixture
We show that Mg2+ and Mn2+ play opposite roles on Pol γ TLS. Since both ions are present in mitochondria, we tested the effects of metal ion mixture. Pol γ′s translesion synthesis assays were carried out at a fixed, near physiological concentration of one metal ion and varying the concentrations of the other. Specifically, Mg2+ was kept constant at 1.0 mM, and Mn2+ varied from 0.1 to 10 mM (Figure 6A); Mn2+ was kept constant at 0.4 mM, and Mg2+ varied from 0.1 to 10 mM (Figure 6C). Titrations of a single metal were also performed (Figure 5). As each dNTP is capable of binding to one of either metal ion and with higher affinity to Mn2+, the precise concentrations of free Mg2+ and Mn2+ ions for catalysis cannot be accurately calculated, but, in the presence of a total 0.8 mM dNTPs, it should be significantly lower than the initial concentrations.
[image: Figure 5]FIGURE 5 | Effect of a single metal ion on wild-type Pol γ DNA activity on non-damaged and CPD-containing templates. (A) Wild-type Pol γ primer extension on T-ND annealed to 5′-32P-PN in the presence of Mg2+(lanes 1–9) or Mn2+ (lanes 10-18). (B) Quantification of the full-length product on T-ND vs. a gradient of Mg2+ or Mn2+ shown in (A). (C) Wild-type Pol γ primer extension on T-CPD annealed to 5′-32P-PN in the presence of Mg2+ (lanes 1–9) or Mn2+ (lanes 10-18). (D) Quantification of the full-length product on T-CPD vs. a gradient of Mg2+ or Mn2+ shown in (C).
In the presence of Mg2+ alone, Pol γ showed no TLS activity on CPD at any concentration tested (Figure 5C, lanes 1-9, 5D), whereas, in the presence of Mn2+ alone, it produced full-length (FL) TLS product from 0.025 to 10 mM (Figure 5C, lanes 10–18, 5D).
The TLS activity with mixed metal ions differs from that with a single metal ion alone. For example, assays with constant 1.0 mM Mg2+ and increasing Mn2+, Pol γ began to show TLS activity at 0.1 mM Mn2+ (Figure 6A, lane 10–18, 6B). Nonetheless, different from Pol γ producing 97% FL product with 0.1 mM Mn2+ on T-ND (Figure 5B), it only produced 5% FL TLS product with 0.1 mM Mn2+/1.0 mM Mg2+ on T-CPD (Figure 6B); the polymerase produced 95% FL product with 0.2 mM Mn2+ alone on T-ND (Figure 5B) but no activity with 1.0 mM Mg2+ on T-CPD (Figure 5C, lanes1-9), yet producing 12% FL TLS product with metal mixture (Figure 6B). These results suggest that Pol γ′s metal binding sites are unlikely occupied by the same metal ion. We thus hypothesize that both metals are bound to the polymerase simultaneously.
[image: Figure 6]FIGURE 6 | Effect of mixed metal ions on wild-type Pol γ DNA synthesis on non-damaged and CPD-containing templates in a mixture of Mg2+ and Mn2+. (A) Wild-type Pol γ primer extension on T-ND (lanes 1–9) or T-CPD (lanes 10–18) annealed to the 5′-32P-PN at a constant concentration of Mg2+ and varied concentrations of Mn2+. (B) Quantification of the full-length product vs. concentration of Mn2+ shown in (A). (C) Wild-type Pol γ primer extension on T-ND (lanes 1–9) or T-CPD (lanes 10–18) annealed to the 5′-32P-PN at constant concentration of Mn2+ and varied concentrations of Mg2+. (D) Quantification of the full-length product vs. concentration of Mg2+ shown in (C).
A similar conclusion can be drawn from assays with fixed Mn2+ and varying Mg2+. In the presence of 0.4 mM Mn2+ and substoichiometric (0.1–0.3 mM), equimolar (0.4–0.5 mM) to slightly excess stoichiometric among Mg2+ (1.0 mM), Pol γ generated 35–40% FL TLS product (Figure 6C, lanes 10–17, 6D). Even with the addition of 25-fold excess, 10 mM Mg2+, Pol γ still displays 10% of TLS activity (Figure 6C, lane 18, 6D), suggesting high probability of Pol γ binding to both metal ions.
We should note that under the reaction condition Pol γ TLS activity was observed (0.2 mM Mn2+ and 1.0 mM Mg2+, Figure 6A, lane 13), and assume dNTPs exhibit equal affinity to Mg2+ and Mn2+ ions and ignore metal binding to DNA, the free Mn2+ ions available for Pol γ catalysis is ∼67 µM [image: image] (mM), below the reported physiological concentration of Mn2+ in mitochondria (Corkey et al., 1986; Romani, 2011).
Mn2+ Does Not Stimulate Translesion Synthesis in Other Family A Polymerases
Previous studies show that Mn2+ does not stimulate TLS activity in other A-family DNA polymerase members, such as E. coli Pol I and Klenow Fragment (Moore et al., 1981; Rabkin et al., 1983). To further evaluate the uniqueness of Mn2+ activity on Pol γ, we analyzed Mn2+ function on another A-family member, T7 DNA polymerase (T7 DNAP), a structural homolog of Pol γ. Neither Mg2+ nor Mn2+ enables wild-type T7 DNAP to bypass CPD (Figures 7A,B, lanes 8–14), while both metals support activity on T-ND (Figures 7A,B lanes 1–7). Similar to Pol γ, T7 DNAP exonuclease activity appeared to be higher in the presence of Mn2+ than Mg2+. The results suggest Mn2+ exclusively stimulates Pol γ′s TLS activity among replicative A-family polymerases.
[image: Figure 7]FIGURE 7 | Evaluation of wild-type T7 polymerase activity on a non-damaged and CPD substrates in the presence of Mg2+ or Mn2+. (A) Time course activity assay of wild-type T7 DNA polymerase on T-ND (lanes 1–8) and on T-CPD (lanes 9–16) annealed to 5′- 32P-PN in the presence of Mg2+. (B) Time course activity assay of wild-type T7 DNA polymerase on T-ND (lanes 1–8) and on T-CPD (lanes 9–16) annealed to 5′-32P-PN in the presence of Mn2+.
DISCUSSION
Perhaps due to lack of UV lesion repair mechanism, mtDNA bares more pyrimidine dimers than chromosomal DNA (Birch-Machin et al., 2013). Nuclear DNA polymerases assume distinct functions in replication or lesion bypassing, but mitochondrial DNA polymerase, Pol γ, is the sole replicase responsible for synthesis on normal as well as lesion-containing mtDNA. Thus, the mitochondrial replicase will unavoidably encounter these bulky photoproducts during mtDNA replication. We present here studies of Pol γ replicating on CPD- and (6-4)PP-containing DNA templates. We showed that Pol γ exerts robust metal dependent activity on lesioned templates under physiological concentrations of Mg2+ and Mn2+ mixture or Mn2+ alone. The metal dependent UV dimer bypassing under a wide range of Mg2+ and Mn2+ concentrations is unique to Pol γ and has not been found in other A-family DNA polymerases.
Pol γ May Bind to Both Mg2+ and Mn2+ in Mitochondria
Manganese is an essential element for biological functions and many ubiquitous enzymatic reactions in mitochondria. Mn2+ is rapidly transported into mitochondria via the uniporter with activated Ca2+ but slowly exported (Chance, 1965; Gavin et al., 1992), thus the organelle concentration is higher than that in cytosol. Mitochondrial concentration of Mn2+ is reported at 0.1–0.35 mM with an upper limit of ∼1 mM in brain, heart, and liver (Konji et al., 1985; Gunter et al., 2004), and a concentration of Mg2+ was 0.37–0.95 mM with upper limit of ∼1.5 mM in the heart (Corkey et al., 1986; Romani, 2011). We showed that, under the sub-stoichiometric concentrations of Mg2+/Mn2+, Pol γ displayed significant trans-CPD synthesis ability and presented features of binding to both metal ions. Based on these results, we hypothesize that Pol γ could bind to both metals in vivo and is therefore capable of replicating on non-damaged and CPD-containing templates. At very low Mg2+ or Mn2+ concentration, Pol γ is still able to replicate on both non-damaged and CPD-containing templates. Although the exact affinities of Mg2+ and Mn2+ to Pol γ are not known, it must be higher than the affinities toward dNTPs. Mg2+ or Mn2+ will first bind to metal A site in Pol γ, then Pol γ will selectively recruit incoming nucleotide pre-bound to metal ion, or metal B site. This feature of Pol γ partially compensates for lack of UV-lesion repair mechanism and TLS polymerase in mitochondria.
It is interesting to speculate Pol γ replication fidelity in the presence of Mg2+/Mn2+ mixture. At a high concentration of Mn2+ (above mM), many DNA polymerases become mutagenic and exhibit elevated replication errors with Mg2+ (Sirover and Loeb, 1976). A simplistic hypothesis would be that Mn2+ suppresses the proofreading exonuclease activity in DNA polymerases. However, others (Longley and Mosbaugh, 1991) and we show here that Pol γ displayed increased exo activity in the presence of Mn2+ relative to that of Mg2+. Thus, high concentrations in Mn2+-induced replication errors are not by direct inhibition of exo activity, rather by hindrance of error recognition. Nevertheless, at low concentrations of Mn2+, DNA polymerases can replicate accurately. For example, at 2 µM free Mn2+ concentration, E. coli Pol I was shown to synthesize DNA with similar error frequency as with Mg2+ (Beckman et al., 1985). We predict Pol γ would also replicate with high fidelity at a physiological concentration of Mn2+ and Mg2+. Needless to say, the hypothesis should be rigorously tested experimentally in future investigations. Lack of TLS activity on (6-4)PP-containing template by Pol γ suggests two possible outcomes: there may be another TLS polymerase that can overcome this UV lesion, or the damaged mtDNA is eliminated by a mitochondrial degradation mechanism as observed in C. elegans and primary human fibroblasts upon UV radiation damage (Bess et al., 2012; Bess et al., 2013).
Selective Stimulation of CPD Bypassing Among Pol I Family Members
Pol γ is the only A-family polymerase found to have an intrinsic TLS activity across UV lesions as a wild-type enzyme. Studies from the Copeland and Meyer groups showed that silencing Pol γ′s exonuclease activity led to limited CPD bypassing activity, despite the diminished activity for wild-type enzymes (Miller and Grollman, 1997; Kasiviswanathan et al., 2012). We show that the TLS activities of both wild-type and exonuclease-deficient Pol γ are greatly stimulated by the presence of Mn2+. Additionally, plant and yeast mitochondrial DNA polymerases also exhibited TLS activity similar to human Pol γ (unpublished results). However, such activities are not found in other replicative A-family DNA polymerases. E. coli Pol I and Klenow Fragment lack intrinsic TLS activity and only insert one nucleotide against 3′-T in the CPD in presence of Mn2+ (Moore et al., 1981; Rabkin et al., 1983; Smith et al., 1998). We showed here that wild-type T7 DNAP does not display Mn2+-stimulated TLS activity. The Mn2+-stimulated TLS activity appears to be reserved only to mitochondrial DNA polymerases, perhaps to take advantage of higher Mn2+ concentration in the mitochondria.
Nevertheless, Mn2+-dependent activity is observed in certain TLS polymerases (Putrament et al., 1975; Kunkel and Loeb, 1979; Goodman et al., 1983). For example, Dpo4 bypasses abasic sites and CPD much more efficiently with Mn2+ than with Mg2+ (Vaisman et al., 2005), and DNA polymerase ι bypasses abasic sites, benzopyrenes, CPD, and (6-4)PP only in the presence of Mn2+ (Frank and Woodgate, 2007). In addition, PrimPol bypasses more lesions when bound to Mn2+ relative to Mg2+ (Tokarsky et al., 2017; Makarova et al., 2018).
Manganese Ion Likely Alters Pol γ′s Pol Active Site Structure
A distinct structural difference between high fidelity DNA polymerase such as Pol γ and bona fide TLS polymerases such as Pol η is the pol active site conformation and polymerase-enforced template DNA conformation. Crystal structures of Pol γ showed that Pol γ belongs to the A-family polymerases with characteristic fingers, thumb, and palm domains (Lee et al., 2009). Upon binding to a correct incoming nucleotide, the fingers domain undergoes large open-closed conformational changes to align the γ-phosphate of dNTP, 3′-OH of the primer, and catalytic metal ions for optimal catalysis for phosphodiester bond formation (Lee et al., 2009; Szymanski et al., 2015; Sohl et al., 2015). Significantly, the template bends 90° at the coding base (n) and downstream neighboring residue (n+1) (Figure 8, right). DNA template bending in Pol γ is accomplished by the helices O and O1 in the finger domain. Such template strand bending is thought to prevent template ‘slippage’ and ensuring replication fidelity. A non-bendable dimer is deterred from entering the pol site and stalls replication (Li et al., 2004). Indeed, the structure of T7 DNA polymerase, a Pol γ homolog, complexed with CPD lesion (Li et al., 2004) shows that after incorporating a nucleotide opposing the 3′-T of CPD, base pairing with the 5′-T of CPD is severely crooked, preventing replication at the n+1 position.
[image: Figure 8]FIGURE 8 | Comparison of pol site conformation of Pol η and Pol γ. Left, Pol η ternary complex with CPD (red)-containing template (blue) and primer (magenta) and incoming nucleotide (green) (PDB: 3MR3). Middle, modeled Pol γ-CPD containing primer/template DNA showing the CPD (red) steric clashes with the O helices. Right, Pol γ ternary complex with primer/template and incoming nucleotide showing the bending of the template by O- and O1-helix.
Contrary to the closed pol site in high-fidelity polymerases ternary conformation, the pol active site is more open in Y-family TLS polymerases Pol η. Structure of DNA polymerase η (Pol η) complexed with a CPD-containing template and primer duplex reveals that the bulky CPD can be easily accommodated in the pol site due to the preformed, spacious pol active site and highly mobile little-fingers and thumb domains, shared features in Y-family DNA polymerases (Figure 8, left) (Yang and Woodgate, 2007; Biertümpfel et al., 2010). Unlike replicative DNA polymerases, the fingers subdomain in Y-family DNA polymerases does not go through large conformational changes. Rather, the enzyme is already poised for DNA synthesis even in the absence of incoming nucleotides. Little-finger and thumb domains go through the largest conformational changes and seem to confer specific TLS activities (Boudsocq et al., 2004; Yang and Woodgate, 2007).
To provide a structural interpretation for Pol γ metal-dependent TLS activity, we composited a ternary complex of Pol γ, primer/CPD-template, and an incoming nucleotide by docking CPD-containing substrate from T7 DNA polymerase complex (PDB: 1SL2) onto Pol γ ternary complex (PDB: 4ZTZ) after superposition on the two pol active sites (Figure 8, middle). The resulting complex showed that the CPD would sterically clash with the O1 helix fingers domain severely if no conformational change occurs. For Pol γ to accommodate the bulky CPD, the fingers domain would have to adopt a more open configuration resembling the Pol γ-DNA binary complex. In addition, Mn2+ may also enlarge the pol site in a way that no longer bends the template strand, allowing the bulky thymine dimers to enter effortlessly. We thus hypothesize that Mn2+ may alter Pol γ structure from high-fidelity configuration to that of TLS polymerases. Under this idea, when Pol γ replicates on a non-damaged DNA, the catalytic site is not challenged for which a catalytic site reshaping is not needed (Figure 9A). But on a CPD-containing substrate, due to its volume, Pol γ′s catalytic site is reshaped in the presence of Mn2+ or a mixture with Mg2+ (Figure 9B). More studies should be addressed to better understand this mechanism.
[image: Figure 9]FIGURE 9 | Schematic model of the hypothetical function of Mg2+ and Mn2+ in reshaping Pol γ′s active site. Illustration of Pol γ (green) on an ND- (blue trapezoid) or CPD-containing template (violet rhomboid). (A) Representation of DNA replication by Pol γ on an ND-containing substrate in the presence of Mg2+, Mg2+/Mn2+, or Mn2+ showing full extension in all cases without significant changes in the catalytic site (yellow trapezoid). (B) Representation of DNA replication by Pol γ on a CPD-containing template illustrating a change of the Pol γ′s catalytic site (yellow trapezoid) in the presence of Mn2+ upon encountering CPD to trigger TLS activity.
Pol ι, another Y-family DNA polymerase, has better TLS activity across UV lesions in the presence of Mn2+ compared to Mg2+ (Frank and Woodgate, 2007). The mechanism behind Mn2+-mediated TLS in Pol ι is not by large conformational changes of protein. Crystal structures of Pol ι do not display noticeable overall structural changes in the presence of Mn2+ compared to Mg2+ except for small changes near divalent cations in the active site (Choi et al., 2016). Mn2+ supports more optimal octahedral coordination compared to Mg2+, explaining the higher activity and fidelity in presence of Mn2+. In addition, Pol ι does not go through large conformational change upon dNTP binding like replicative DNA polymerases do, which gives molecular explanation behind its ability to tolerate bulkier lesions in its wide and rigid active site (Nair et al., 2006). For replicative polymerases like Pol γ, finger domain movement upon dNTP binding is essential. It is possible that Mn2+ binding induces sufficient structural changes to accommodate CPD.
Mn2+-induced conformational changes are seen in other polymerases. The pol active site of Pol η widens when bound to Mn2+ relative to being bound to Mg2+ and Ca2+ (Yang and Woodgate, 2007; Ling et al., 2003; Rechkoblit et al., 2006; Weng et al., 2018). The proteolysis pattern for a catalytic subunit of herpes simplex virus DNA polymerase (UL30) bound to platinated DNA differs in the presence of Mn2+ than in the presence of Mg2+, implying that UL30 undergoes conformational changes between Mn2+ to Mg2+ bound states (Villani et al., 2002). If Mn2+ actually alters Pol γ pol site and the fingers domain resemble that in Pol η, Pol γ would be able to accommodate the rigid thymine dimer in the enlarged pol site and to incorporate incoming nucleotide opposite to the dimer without stringent geometry check for W-C base pairing complementarity. Crystal structures of RB69 DNA polymerase, replicative B-family DNA polymerase, in the presence of Mg2+ or Mn2+ do not display significant conformational changes (Xia et al., 2011). It is likely the same for Pol γ when it is replicating on T-ND. However, when Pol γ is challenged with bulky lesion like CPD, the Mn2+-mediated flexibility in the pol site may allow enlargement to accommodate CPD (Figure 8). Currently, structural studies revealed only two catalytic metal ions in the pol site; however, EPR study of E. coli Pol I showed at least 25 Mn2+ binding sites were present (Slater et al., 1972). Whether the catalytic metal ions or additional metal ions are involved in reshaping the pol site warrants further investigation.
METHODS
Proteins Preparation
His-tagged Pol γA and Pol γB subunits were expressed in Sf9 insect cells and E. coli Rosetta (DE3) cells, respectively, and purified as previously described (Lee et al., 2009). Wild-type Pol γA subunit and exonuclease-deficient (exo-) variant containing double mutation D198A/E200A lack N-terminal 25 residues (the putative mitochondrial localization sequence) as well as 10 of the 13 sequential glutamines (residues 43–52). Briefly, both Pol γA wild-type and exonuclease deficient variant were purified sequentially using TALON (Cytiva, Marlborough, MA) and gel filtration column Superdex 200. Pol γB subunit lacking N-terminal 25 residues was purified using Ni-NTA (Qiagen, Germantown, MD) and Mono S affinity chromatography. Purified Pol γA and Pol γB were complexed at 1:2 M ratio, respectively, then applied to a gel filtration column Superdex 200. After gel filtration, pure fractions were pooled and concentrated in a buffer containing 20 mM HEPES (pH 7.5), 140 mM KCl, 5% glycerol, 1 mM EDTA (pH 8,0), and 10 mM BME. Fractions were aliquoted and stored at −80°C.
Wild-type T7 DNA polymerase bound to thioredoxin was purchased from New England Biolab (Ipswich, MA). Concentrations of the proteins were determined on the NanoDrop™ spectrophotometer (Thermo Scientific, Waltham, MA) based on the absorbance at 280 nm. All experiments reported in this study were carried out with the same batch purified proteins. The protein concentrations are determined by A280 absorption and specific extinction coefficients, not active site concentration. The active site concentrations of purified Pol γ are routinely measured to be 80–84%.
DNA Substrates
All oligonucleotides are synthesized by Integrated DNA Technologies (Morrisville, NC) except for templates containing CPD and (6-4)PP (Table 1). The oligonucleotides containing the CPD and the (6-4)PP were synthesized as described previously (Murata et al., 1990; Iwai et al., 1996). Complementary oligonucleotides were mixed in solution containing 50 mM Tris (pH 7.8), 50 mM NaCl, and 1 mM EDTA (pH 8), then were annealed by heating at 95°C for 5 min followed by slowly cooling to room temperature overnight. For all activity assays, 5′-end of the primer strands were labeled using T4 polynucleotide kinase (New England Biolab, Ipswich, MA) using γ-32P-ATP (PerkinElmer, Waltham, MA).
Polymerase Activity Assays
Three primer/template duplexes were formed by primer PN (27 nt) annealed to a 49 nt non-damaged template (T-ND), a CPD-containing template (T-CPD), or a (6-4)PP-containing template (T-(6–4)PP) (Table 1). For UV product-containing DNA, 200 nM wild-type or exonuclease-deficient Pol γ was pre-incubated with 1000 nM PN/T-CPD or PN/T-(6–4)PP in Buffer N (25 mM HEPES pH 7.5, 140 mM KCl, 1 mM EDTA, 5% glycerol, and 100 μg/ml BSA) at 37°C for 5 min. For T-ND, 100 nM wild-type or exonuclease-deficient Polγ was preincubated with 1000 nM PN/T-ND in Buffer N. The reaction was started by the addition of equal volume of Buffer C (Buffer N supplemented with 400 µM dNTP mix and 40 mM MgCl2 or MnCl2) to a final concentration of 200 µM dNTP mix and 20 mM MgCl2 or MnCl2. Reaction was quenched at the indicated times by adding ninefold excess of Buffer Q (80% Formamide, 50 mM EDTA pH 8, 0.1% SDS, 5% glycerol, and 0.02% bromophenol blue). Quenched samples were heated at 95°C for 5 min and resolved on a 23% polyacrylamide gel containing 7 M urea. Gels were soaked in solution containing 50% methanol and 20% glycerol prior to drying overnight under vacuum at 50°C. Gels were exposed on a phosphor screen, which was imaged using Amersham Typhoon RGB scanner (Cytiva, Marlborough, MA). The intensities of bands were quantified using ImageQuant TL 8.2 (Cytiva, Marlborough, MA). Graphs were plotted using the mean and standard deviation in SigmaPlot 14 (Systat Software, San Jose, CA). To obtain the rate of full-length product formation, we used the following equation: [image: image], where IFL is the intensity of the full-length product band at 120 s, and I0 is the intensity of the original substrate band at 0 s. We normalized the enzyme concentration as polymerase activity assays on T-CPD contained 100 nM Pol γ whereas polymerase activity assays on T-ND contained 50 nM Pol γ.
For polymerase activity assays using wild-type T7 DNA polymerase, a total of 400 nM T7 DNA polymerase was pre-incubated with 200 nM of PN/T-ND or PN/T-CPD in Buffer N at 37°C for 5 min. The reaction was started by addition of equal volume of Buffer C to a final concentration of 200 µM dNTP mix and 20 mM MgCl2 or MnCl2. Quench step, electrophoresis, and autoradiography were carried out identically to polymerase activity assays using PN.
Exonuclease Assays
A total of 400 nM Polγ was pre-incubated with 1000 nM single stranded primer PN or duplex PN/T-ND in Buffer N, and the reaction was started by addition of an equal volume of Buffer C without dNTPs to a final concentration of 20 mM MgCl2 or MnCl2. Quench step, electrophoresis, autoradiography, and quantification were carried out identically to polymerase activity assays. The experimental data were fitted to an equation [image: image], where A is the amplitude and k is the rate of excision. Graphs were plotted using the mean and standard deviation in SigmaPlot 14 (Systat Software, San Jose, CA).
Polymerase Assays With Mixed Metal Ions
For polymerase assay using mixed metal ions, 1000 nM wild-type Polγ was pre-incubated with 1000 nM PN/T-ND or PN/T-CPD in Buffer N at 37°C for 5 min. The reaction was started by addition of an equal volume of Buffer C to final concentrations of either constant 1 mM MgCl2 and varied MnCl2 (0.1, 0.2, 0.3 0.4, 0.5, 1, and 10 mM) concentrations, or constant 0.4 mM MnCl2 and varied MgCl2 (0.1, 0.2, 0.4, 0.4, 0.5, 1, and 10 mM) concentrations. Reaction was quenched 5 min after adding ninefold excess of Buffer Q. Electrophoresis, autoradiography, and quantification were carried out identically to polymerase activity assays.
Polymerase Assays With Single Metal Ions
For polymerase assay using single metal ions, 200 nM wild-type Polγ was pre-incubated with 200 nM PN/T-ND or PN/T-CPD in Buffer N at 37°C for 5 min. Reaction was started by addition of an equal volume of Buffer C containing MgCl2 or MnCl2 (0.025, 0.05, 0.1 0.2, 0.4, 0.8, 1.0, and 10 mM). Reaction was quenched 5 min after adding ninefold excess of Buffer Q. Electrophoresis, autoradiography, and quantification were carried out identically to polymerase activity assays.
Experimental Replicas
Experiments with corresponding graphs containing error bars were repeated three times. The rest of the experiments with corresponding graphs not containing error bars were repeated twice.
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Y-family DNA polymerases (pols) consist of six phylogenetically separate subfamilies; two UmuC (polV) branches, DinB (pol IV, Dpo4, polκ), Rad30A/POLH (polη), and Rad30B/POLI (polι) and Rev1. Of these subfamilies, DinB orthologs are found in all three domains of life; eubacteria, archaea, and eukarya. UmuC orthologs are identified only in bacteria, whilst Rev1 and Rad30A/B orthologs are only detected in eukaryotes. Within eukaryotes, a wide array of evolutionary diversity exists. Humans possess all four Y-family pols (pols η, ι, κ, and Rev1), Schizosaccharomyces pombe has three Y-family pols (pols η, κ, and Rev1), and Saccharomyces cerevisiae only has polη and Rev1. Here, we report the cloning, expression, and biochemical characterization of the four Y-family pols from the lower eukaryotic thermophilic fungi, Thermomyces lanuginosus. Apart from the expected increased thermostability of the T. lanuginosus Y-family pols, their major biochemical properties are very similar to properties of their human counterparts. In particular, both Rad30B homologs (T. lanuginosus and human polɩ) exhibit remarkably low fidelity during DNA synthesis that is template sequence dependent. It was previously hypothesized that higher organisms had acquired this property during eukaryotic evolution, but these observations imply that polι originated earlier than previously known, suggesting a critical cellular function in both lower and higher eukaryotes.
Keywords: thermostable fungi, Y-family DNA polymerases, phylogenetic analysis, translesion DNA synthesis, DNA polymerase eta (polη), DNA polymerase iota (polι), DNA polymerase kappa (polκ), Rev1
INTRODUCTION
The Y-family DNA polymerases are responsible for copying damaged DNA during DNA replication in a process called translesion synthesis (TLS) (Sale et al., 2012). These enzymes are highly specialized in order to accommodate different structural DNA distortions caused by a wide variety of DNA lesions. The Y-family is divided into six phylogenetically distinct subfamilies: two UmuC (polV) branches; Rad30A/POLH (polη); Rad30B/POLI (polι); and DinB (pol IV, Dpo4, polκ); and Rev1 (Ohmori et al., 2001). Across the different domains of life, Y-family polymerase subfamilies are found in various combinations. For example, UmuC orthologs are only detected in Gram-positive and Gram-negative bacteria, whereas Rev1 and Rad30A/B orthologs are only detected in eukaryotes. The DinB subfamily is the most evolutionarily conserved, having members scattered throughout all three domains of life from unicellular bacteria to humans. However, differences in the distribution of Y-family DNA pols are present within each kingdom. For example, the eukaryote Saccharomyces cerevisiae (S. cerevisiae) contains neither a POLK nor a POLI gene. Indeed, it was originally assumed that polι was expressed only in higher eukaryotes. However, next generation whole genome sequencing has revealed that polι orthologs are actually distributed throughout the whole Eukaryota domain. One example is the thermophilic fungus, Thermomyces lanuginosus (T. lanuginosus) which possesses all four eukaryotic Y-family subfamilies much like humans, in contrast to its fungal relatives, S. cerevisiae and Schizosaccharomyces pombe (S. pombe). Is there logic in such seemingly random distribution of polι? Using phylogenetic analysis and comparing the biochemical characterization of Y-family pols from different species, we hoped to shed some light on this question.
The Y-family DNA pols are classically described as specializing in TLS activity that arises from their capacious active sites that accommodate DNA lesions which would otherwise obstruct the processive confined active sites of A- and B-family replicative pols (Sale et al., 2012). Each Y-family polymerase is tailored to process different lesions, leaving behind unique errors after gaining access to the replication fork (Yang and Gao, 2018). Polymerases belonging to the same subfamily often specialize in targeting the same type of DNA lesions. For example, DinB/polκ orthologs are very adept at bypassing minor groove DNA adducts (e.g., N2-dG adducts) (Liu et al., 2014; Basu et al., 2017; Jha and Ling, 2018; Stern et al., 2019). Although, the archaeal ortholog, Dpo4, is notably less efficient at bypassing bulky aromatic lesions than its eukaryotic ortholog polκ (Avkin et al., 2004; Ling et al., 2004b; Choi et al., 2006). Along with a common preference for bulky aromatics, DinB pols also share a propensity for template slippage that increases deletion events in the mutation spectra (Kokoska et al., 2002).
Eukaryotic Rad30 orthologs polη and polι are similar in sequence but exhibit very different TLS properties. Human and S. cerevisiae polη are exceptionally efficient at bypassing a thymine-thymine cyclobutane pyrimidine dimer (CPD) (Johnson et al., 2000c; Masutani et al., 2000; McCulloch et al., 2004). Although polι can insert nucleotides opposite CPDs, the efficiency is substantially lower than polη-catalyzed TLS (Tissier et al., 2000a; Vaisman et al., 2003). Polι also has a unique feature; it misincorporates dG opposite dT, 3- to 10- fold more frequently than the correct base dA (Johnson et al., 2000b; Tissier et al., 2000b; Zhang et al., 2000c; McIntyre, 2020). These dG:dT misinsertions arise from polι′s remarkably large aliphatic side chains in the finger domain, unlike any other Y-family pols (Kirouac and Ling, 2009; Makarova and Kulbachinskiy, 2012). Despite the extremely low fidelity of polι on a template dT, it is moderately accurate when incorporating opposite other target bases. The highest fidelity is found opposite the template A, where polι inserts the correct base dT with error rate of 10–4 (Johnson et al., 2000b; Tissier et al., 2000b; Zhang et al., 2000c).
The unique feature of eukaryotic Rev1 orthologs is their efficiency at bypassing both damaged guanines and abasic sites using a deoxycytidyl transferase mechanism that limits Rev1 to exclusively incorporate dC (Nelson et al., 1996). This is achieved by displacing the DNA lesion from the active site entirely and instead using a protein sidechain (R324 in S. cerevisiae and R357 in H. sapiens) as the “template” which base pairs solely with dC (Nair et al., 2005, 2011; Weaver et al., 2020).
In this manuscript, we describe the identification, purification and characterization of thermostable eukaryotic orthologs of polη, polι, polκ, and Rev1 from a thermophilic, multicellular fungal species, T. lanuginosus. Biochemical characterization of TLS DNA pols η, ι, κ, and Rev1 include determination of the enzyme’s fidelity, processivity, thermostability, metal ion requirements, and TLS specificity during bypass of CPDs, abasic sites, and benzo[a] pyrene diol epoxide (BPDE) adducts. Our findings serve as basis for comparative analysis of the properties of proteins from different species, thus providing an important insight into the functional evolution of the Y-family polymerases.
MATERIALS AND METHODS
Bacterial Plasmids
Plasmids used in this study are described in Table 1. Where noted, bacteria were grown on LB agar plates containing 20 μg/ml chloramphenicol; 25 μg/ml zeocin; 30 μg/ml kanamycin; 20 μg/ml spectinomycin; or 100 μg/ml ampicillin.
TABLE 1 | Plasmids used in this study.
[image: Table 1]1Identification and Cloning of Y-Family Orthologs From T. lanuginosus
At the onset of this investigation, the complete genomic sequence of T. lanuginosus was not yet available. Therefore, in order to identify and clone the various Y-family polymerase orthologs from T. lanuginosus, we used several PCR-based procedures. Initially, we employed a degenerate PCR approach by first generating protein homology comparisons for known fungal polη, polι, polκ, and Rev1 proteins. Regions of conserved amino acid stretches within these four polymerase families were identified and degenerate PCR primers were designed based on selected conserved amino acid regions. Purified T. lanuginosus genomic DNA was purchased from DSMZ (Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH) (DSM 10635). PCR and nested-PCR were performed utilizing this T. lanuginosus genomic DNA and amplicons of gene segments encoding these four Y-family polymerases were cloned and sequenced. Based on the cloned DNA sequences that encoded regions of the Y-family polymerase genes, gene-specific PCR primers were designed. Additional PCR reactions were performed either using genomic DNA or DNA from a T. lanuginosus cDNA library, kindly provided by the Fungal Genomics Project at Concordia University (Adrian Tsang; Director of the Center for Functional and Structural Genomics). PCR techniques employed included RACE PCR (cDNA library), Flanking-sequence PCR (Sorensen et al., 1993) utilizing degenerate biotinylated primers and over-lapping exon PCR (genomic DNA). Full-length genes were amplified with gene-specific primers with the addition of an NdeI site at the 5′ end and either a BamHI or BglII (POLK) site at the 3′ end and cloned into pGEM vectors for sequencing. The POLH, POLK and REV1 genes were subcloned into the NdeI to BamHI sites of pET22b+ for protein expression. An E. coli codon optimized version of the POLI gene was subsequently synthesized by Genscript (Piscataway, NJ) and cloned into the pJM871 low expression vector (Frank et al., 2012) from NdeI to BamHI.
Subsequently, the full T. lanuginosus SSBP genomic sequence was published and released (https://mycocosm.jgi.doe.gov/Thelan1/Thelan1.home.html) (McHunu et al., 2013) (GenBank assembly accession GCA_000315315935.1), and we were able to confirm that our clones do indeed encode the T. lanuginosus polη, polι, polκ, and Rev1 proteins. The POLH gene is encoded on contig00146 (Genbank accession ANHP01000280) from nucleotide 84213–86129. The POLI gene is encoded on contig00250 (Genbank accession ANHP01000232) from nucleotide 126087–127864 with two introns. The POLK gene is encoded on contig00025 (Genbank accession ANHP01000258) from nucleotide 58089–60067 with one intron. The Rev1 gene is encoded on contig00203 (Genbank accession ANHP01000194) from nucleotide 112065–115607 with one intron. The Joint Genome Institute MycoCosm database designations for theses proteins is as follows: polη – jgi|Thelan1|4409|TLAN_03021-R0; polι – jgi|Thelan1|3308|TLAN_02476-R0; polκ – jgi |Thelan1|3900|TLAN_01802-R0; Rev1 – jgi|Thelan1|3900|TLAN_01802-R0.
Phylogenetic Tree Construction
A multiple sequence alignment of the newly described T. lanuginosus polι protein and polι proteins from various other organisms was performed using the ClustalW algorithm in MacVector (version 15.5.4). Known polι protein sequences were obtained from Genbank protein records or identified by BLAST homology searches of Genbank genomic sequence records. Genbank accession numbers are indicated within the legend of Figure 1. The alignment was exported from MacVector in the Nexus sequence file format. This Nexus file was imported into the SplitsTree4 (version 4.14.4) and an unrooted phylogenetic tree was generated by setting the distance method to BioNJ.
[image: Figure 1]FIGURE 1 | Phylogenetic analysis of polι. A multiple sequence alignment of polι proteins from a broad range of eukaryotic organisms, including T. lanuginosus polι and human polι, was performed using the ClustalW algorithm in MacVector (version 15.5.4). This alignment was exported from MacVector as a Nexus file which was then imported into SplitsTree4 (version 4.14.4) to generate an unrooted phylogenetic tree by setting the distance method to BioNJ. Most of the polι proteins cluster into several groups comprised of chordates (blue), lower animals (red), lower plants (green), fungi (orange) and diatoms (pink). Polι protein sequences for each organism were obtained from the following Genbank sequence files: Acanthaster planci (XP_022107640), Actinia tenebrosa (XP_031566011), Alligator mississippiensis (XP_006269716), Amblyraja radiata (XP_032889300), Anas platyrhynchos (XP_027302772), Anolis carolinensis (XP_016850726), Branchiostoma floridae (XP_035668094), Catenaria anguillulae (ORZ32752), Chara braunii (GBG75489), Crassostrea virginica (XP_022331447), Danio rerio (NP_001017834), Dimorphilus gyrociliatus (CAD5123533), Fistulifera solaris (GAX13589), Haliaeetus leucocephalus (XP_010581340), Homo sapiens (NP_001338561), Jimgerdemannia flammicorona (RUP43481), Klebsormidium nitens (GAQ87748), Latimeria chalumnae (XP_005994715), Limulus polyphemus (XP_022236329), Lipomyces starkeyi (ODQ70434), Mus musculus (NP_036102), Neurospora crassa (CAD70389), Penaeus monodon (XP_037797824), Petromyzon marinus (XP_032824552), Phaeodactylum tricornutum (XP_002178064), Raphidocelis subcapitata (GBF90329), Salpingoeca rosetta (XP_004998634), Selaginella moellendorffii (XP_024528028), Synchytrium microbalum (XP_031023241), T. lanuginosus (this study and ANHP01000232), Ustilago maydis (XP_011387208), Vitrella brassicaformis (CEL97102) and Xenopus laevis (XP_018100075).
Purification of the T. lanuginosus DNA Polη
E.coli strain RW644 [F− dcm ompT hsdS(rB− mB−) gal λ(DE3) ΔumuDC596:ermGT ΔdinB61:ble ΔaraD-polB:Ω Δ(gpt-proA)62] harboring pJM596 was grown overnight in 20 ml LB media containing 100 μg/ml ampicillin at 37°C. The overnight culture was then transferred into 1L fresh LB-ampicillin and grown at 37°C until an OD600 ∼0.5. At this point, IPTG was added to a final concentration of 1 mM to induce expression of T. lanuginosus DNA polη and grown for an additional 2 h before cells were harvested by centrifugation. The cell pellet was resuspended in 15 ml lysis buffer (50 mM Tris pH 8.0, 150 mM NaCl, 10 mM β-mercaptoethanol), sonicated, and cleared by ultracentrifugation at 45,000 rpm in a Beckman 50.2 Ti rotor for 45 min. Ammonium sulfate (45% saturation, 0.27 g/ml) was slowly added to the cleared lysate and stirred at 4°C for 30 min. Precipitated proteins were harvested by centrifugation and the resulting pellet resuspended in a buffer “A” (50 mM Tris pH 8.0, 20 mM NaCl, 10 mM β-mercaptoethanol, 20% v/v glycerol) and dialyzed overnight at 4°C against 1L of the same buffer. The dialyzed protein suspension was applied to a 5 ml HiTrap DEAE FF column (Cytiva, cat#17515401) and bound proteins were eluted with a 20–500 mM linear gradient of NaCl. Fractions containing polη were pooled and dialyzed against buffer “B” (10 mM sodium phosphate, pH 7.0,10 mM β-mercaptoethanol, 20% v/v glycerol) and applied to a 5 ml Bio-Scale™ Mini CHT™ Type II cartridge (BioRad, cat#7324332) and eluted with a 10–300 mM linear gradient of sodium phosphate in buffer B. Peak polη-containing fractions were pooled, aliquoted and stored at −80°C.
Purification of the T. lanuginosus DNA Polκ-
T. lanuginosus DNA polκ was expressed in RW644 harboring pJM682 and purified using the same protocol as described above for polη.
Purification of the T. lanuginosus DNA Polι
Our attempts to purify untagged T. lanuginosus polɩ using the above protocol for polη and polκ proved to be unsuccessful. We therefore decided to purify an N-terminal His-tagged version of T. lanuginosus polɩ. To do so, plasmid pJM966 was introduced into the E.coli SHuffle® T7 Express strain [F’ lac, pro, lacIq/Δ(ara-leu)7697 araD139 fhuA2 lacZ:T7 gene1 Δ(phoA)PvuII phoR ahpC galE galK λatt:pNEB3-r1-cDsbC (SpecR, lacIq) ΔtrxB rpsL150(StrR) Δgor Δ(malF)3] (New England Biolabs, cat#C3029J). Expression, cell harvest, lysis, and clearance were performed as described above for polη and polκ and the cleared lysate was dialyzed overnight at 4°C against 1L of buffer “C” (20 mM Sodium Phosphate, pH 7.5, 500 mM NaCl, 20 mM imidazole, 10 mM β-mercaptoethanol, 10% v/v glycerol) The dialysed lysate was applied to a 5 ml HisTrap HP column (Cytiva, cat#17524701) and eluted with a linear 20 mM to 1 M imidazole gradient. Fractions containing polι were pooled and dialyzed against 1L of buffer “D” (10 mM Sodium Phosphate, pH 7.5, 300 mM NaCl, 10 mM β-mercaptoethanol, 20% v/v glycerol) and applied to a 5 ml Bio-Scale™ Mini CHT™ Type II cartridge (BioRad, cat#7324332) and eluted with a 10–300 mM linear gradient of sodium phosphate. Peak polι-containing fractions were pooled, aliquoted and stored at −80°C.
Purification of T. lanuginosus Rev1
RW644 harboring pRARE2 (expressing tRNAs for seven rare codons; AGA, AGG, AUA, CUA, GGA, CCC, and CGG) was transformed with pJM863. The strain was grown overnight in 60 ml LB media containing 100 μg/ml ampicillin at 37°C. The overnight culture was then transferred into 3L fresh LB-ampicillin (1.5 L each in 2 x 4L flasks) and grown at 37 °C until an OD600 ∼0.5. At this point, IPTG was added to a final concentration of 1 mM to induce expression of T. lanuginosus Rev1 and grown for an additional 2 h before cells were harvested by centrifugation. The cell pellet was resuspended in 60 ml lysis buffer (50 mM Tris pH 7.5, 0.5 mM EDTA, 1 mM DTT, 20% glycerol), sonicated, and cleared by ultracentrifugation at 45,000 rpm in a Beckman 50.2 Ti rotor for 45 min. Ammonium sulfate (35% saturation, 0.2 g/ml) was slowly added to the cleared lysate and stirred at 4°C for 30 min. Precipitated proteins were harvested by centrifugation and the resulting pellet resuspended in a buffer “E” (10 mM Sodium phosphate pH 7.0, 25 mM NaCl) and dialyzed overnight against 2L of the same buffer at 4°C. The dialysed lysate was applied to a 20 ml HiPrep Heparin FF 16/10 column (Cytiva, cat#28936549) and eluted with a 25–400 mM NaCl linear gradient. Fractions containing Rev1 were pooled and applied to a HiPrep 16/60 Sephacryl S-200 HR size exclusion column (Cytiva, Cat#17116601) equilibrated in Phosphate Buffered Saline (PBS, pH6.8). Rev1 containing fractions were pooled and applied to a 5 ml Phosphocellulose P11 column (Whatman), equilibrated with buffer “F” (20 mM KPO4 pH 7.0, 100 μM EDTA, 10% glycerol, 1 mM DTT, and 100 mM KCl) and eluted with a 200–800 mM KCl linear gradient. Rev1-containing fractions were pooled, concentrated, and aliquoted for storage at −80°C.
DNA Templates
Undamaged synthetic oligonucleotide primers and an 48 bp abasic site-containing template were synthesized by Lofstrand Laboratories (Gaithersburg, MD) using standard technique and PAGE purified. A synthetic abasic site, dSpacer, was purchased from Glen Research (Sterling, VA) and incorporated into the oligonucleotide template using standard techniques by Lofstrand Laboratories. The 7.2 kb M13mp18 circular template was purchased from New England Biolabs (Ipswich, MA). The cis-syn CPD containing oligonucleotide was synthesized by TriLink BioTechnologies (San Diego, CA) and has been described previously (Boudsocq et al., 2004). The synthesis of a template with BPDE-dA adduct was described previously (Frank et al., 2002). The sequence of each primer-template pair is given in the legend of the respective figures. Radiolabeled primers were labeled with [γ-32P]ATP using T4 polynucleotide kinase by Lofstrand Laboratories (Gaithersburg, MD). The fluorescent primer containing a 5′-Fluorescein (6-FAM), 5′-6FAM-ATGGTACGGACGTGCTT-3′, was synthesized by Lofstrand Laboratories. The template strand complementary to the fluorescent primer used in Figure 7B–D had the following sequence: 5′-ATT​AAC​GAA​TGAAG​CAC​GTC​CGT​ACC​ATC​G-3′, whereby the underlined base indicates the identity of the templating base. For Figure 7E, the sequences of the three template strands used to investigate damaged and undamaged bypass were also complementary to the fluorescent primer and are as follows: dG: 5′-ATT​AAC​GAA​TGAAG​CAC​GTC​CGT​ACC​ATC​G-3'; abasic site (X): 5′-ATTAACGAATXAAGCACGTCCGTACCATCG-3'; and CPD: 5′-TCG​ATA​CTG​GTA​CTA​ATG​ATT​AAC​GAATTAAG​CAC​GTC​CGT​ACC​ATC​G-3'. All primers were annealed to the unlabeled templates at a ratio of 1:2 by heating the primer and template together at 95°C in annealing buffer (0.1 M Tris-HCl, pH 8.0, 10 mg/ml BSA, 14.2 mM β-mercaptoethanol) and allowing the mixture to slowly cool to room temperature.
Radiolabeled in vitro Primer Extension
Standard 10 μl reactions contained 50 mM Tris-HCl, pH 7.5, 100 μM each dNTP, 10 mM DTT, 10 nM primer-template DNA, unless specified otherwise in the legend, and supplemented with 4 mM MgCl2 for pols η- and κ-catalyzed reactions and 4 mM MnCl2 for polι-catalyzed reactions. Reactions were carried out at 37°C for 10 min except in thermostability and processivity experiments, where the temperature and duration varied as noted in the figure legends. Reactions were terminated by the addition of 10 μl of 95% Formamide, 17.5 mM EDTA, 0.025% Xylene cyanol, and 0.025% Bromophenol blue, heated at 95°C for 5 min, and briefly chilled on ice. Aliquots containing 5 μl of the samples were separated on 15% 8 M Urea polyacrylamide gels and visualized by PhosphorImager analysis.
6-FAM in vitro Primer Extension
For in vitro polymerase assays with T. lanuginosus Rev1, 12 μl reactions containing 50 mM Tris-HCl, pH 7.5, 10% glycerol w/v, 1 mM β-mercaptoethanol, 100 nM primer-template DNA, 5 nM T. lanuginosus Rev1, and 5 mM MgCl2 (with the exception of the Me2+ activation experiment) were initiated with 100 μM dNTP. Reactions were carried out at 37°C for 10 min except in the thermostability and processivity experiments, where the temperature and duration of experiments varied, respectively, as detailed in the figure legends. Reactions were terminated by the addition of 12 μl of 10 M Urea, 100 mM EDTA, 0.2% Xylene cyanol, and 0.02% Bromophenol blue, heated at 95°C for 5 min. Aliquots containing 12 μl of the samples were separated on 22% 8 M Urea polyacrylamide gels (Triple Wide Mini-Vertical gel system, C.B.S. Scientific) and visualized using 5′-fluorescein (6-FAM) fluorescence with a Typhoon FLA 7000 (GE Healthcare).
RESULTS AND DISCUSSION
Identification of Y-Family Polymerases in T. lanuginosus
Based on previous investigations and observations, it has been noted that the genomes of higher eukaryotes, such as humans and mice, possess genes for the four known eukaryotic Y-family pols, whereas, the model organism S. cerevisiae only possesses genes for two of the eukaryotic Y-family pols, RAD30 and REV1. Based on this observation, it has been suggested the genes encoding the closely related polη and polι proteins are paralogs of each other that diverged during evolution sometime after the origination of fungi. However, BLAST homology searches revealed that the genomes of filamentous fungi such as Neurospora crassa and Aspergillus nidulans and even the corn smut Ustilago maydis harbor a POLI gene, indicating to us that the genetic and biochemical characteristics of translesion synthesis in some “higher” fungi could be quite akin to that in higher eukaryotes such as humans. This notion of conserved functionality provided the impetus to embark on our efforts to identify and clone the four eukaryotic Y-family pols from the fungi, T. lanuginosus. Since T. lanuginosus is thermophilic, we reasoned the Y-family pols from this organism would exhibit enhanced stability during purification and biochemical analysis (see below).
In order to identify and clone the T. lanuginosus Y-family pols, protein sequence similarity comparisons were performed using known polη, polι, polκ, and Rev1 protein sequences, including other fungal sequences. Initially, degenerate PCR primers were designed based on highly conserved regions of protein homology between the various proteins within the four Y-family polymerase groups. Degenerate PCR was performed using T. lanuginosus genomic DNA and amplicons were cloned and sequenced. Subsequently, sequence of cloned regions of the Y-family polymerase genes were used to design gene-specific primers. A combination of various PCR techniques was then employed, for example degenerate PCR, nested PCR, RACE PCR, over-lapping exon PCR and flanking-sequence PCR using either genomic DNA or cDNA library DNA, to generate full-length sequences of each of the T. lanuginosus POLH, POLI, POLK and REV1 genes. Full-length genes were then subcloned into protein expression vectors to facilitate purification of the four Y-family DNA pols. After we completed cloning the Y-family pol genes, the T. lanuginosus genome was sequenced and published allowing us to confirm that our cloned sequences do indeed encode the correct T. lanuginosus proteins. Sequence comparisons between T. lanuginosus and human Y-family pols reveal modest similarities that are higher than those observed between S.cerevisiae and human homologs. T. lanuginosus and human polη have 22% identical and 15% similar residues (compare to S. cerevisiae versus human at 16% identical and 15% similar residues). T. lanuginosus and human Rev1 have 24% identical and 15% similar residues (compare to S. cerevisiae versus human at 16% identical and 16% similar residues). Additionally, T. lanuginosus and human polκ have 20% identical and 14% similar residues, and T. lanuginosus and human polι have 24% identical and 16% similar residues.
Phylogenetic analysis of the Y-Family Polymerase poli
The observation that the four eukaryotic Y-family pols are present in many filamentous fungi suggested to us that the divergence of POLI and POLH is even more ancient than the divergence of the fungi and metazoan (animals) groups. This supposition prompted us to perform a more in-depth phylogenetic analysis on the origins of the polι protein. We executed an exhaustive search for polι protein sequences within the Genbank database, including the fungi and metazoan groups, all other groups with clades containing various “lower” eukaryotes, and the plant kingdom. Although the POLI gene was absent from many “lower” or “simpler” eukaryotic organisms than fungi, as well as higher plants, we did find several examples of lower eukaryotes and simpler plants that do in fact encode a POLI gene.
A ClustalW alignment was performed using a group of sequenced POLI genes from organisms that include simple eukaryotes, lower plants, fungi and metazoans, all of which also possess genes for POLH, POLK and REV1. The unrooted phylogenetic tree of this alignment (Figure 1) reveals that the polι proteins cluster, for the most part, within several groups that include a chordate group, a lower animal grouping, including arthropods, annelids, echinoderms and mollusks, a fungi group, and a lower plant group. Polι proteins from other organisms that did not fit into these groups include a protein from a sea anemone (a Cnidarian), two proteins from diatom organisms and proteins from an Alveolate and a Choanoflagellate, which are examples of very simple single-celled eukaryotes. Interestingly, our analysis further supports the perception that the POLI gene is quite commonly found in fungal species, including some yeasts, and even other lower eukaryotic organisms and therefore substantiates our supposition that the evolutionary “split” between POLH and POLI may have preceded the emergence of fungi.
During this phylogenetic analysis of polι, one particularly noteworthy and unexpected observation was that POLI genes were quite frequently identified in some organisms within a particular group and absent in other organisms within that group. This finding holds true from the simplest eukaryotes to higher eukaryotes. For example, many protists do not possess a POLI gene such as Metamonads (e.g., diplomonads, i.e., Giardia lamblia and parabasalids, i.e., Trichomonas vaginalis), Euglenozoans (e.g., trypanosomatids, i.e., Trypanosoma brucei and Leishmania donovani) and Amoebozoans (e.g., Entamoeba histolytica). While other groups of protists do have a POLI gene such as Heteroloboseas (e.g., Naegleria gruberi) and Alveolates [e.g., Vitrella brassicaformis (Colpodellida clade)]. In direct contrast, other species of Alveolates in the Apicomplexans clade (e.g., Cryptosporidium parvum) and the Ciliophorans clade (ciliates) (e.g., Paramecium tetraurelia) do not have a POLI gene. In addition, some Stramenopiles have a POLI gene (e.g., diatoms, i.e., Phaeodactylum tricornutum and Fistulifera solaris) and some do not (e.g., diatoms, i.e., Thalassiosira oceanica and e.g., water mould, i.e., Saprolegnia parasitica). Thus, it seems the presence, or absence, of a POLI gene in the genome of any specific organism is quite indiscriminate.
This unpredictable “hit or miss” trait of POLI holds true in plants, fungi, and metazoans as well. For example, we found POLI genes in the genomes of lower plant forms such as microalga, green algae, and spikemoss but were unable to find POLI genes in any higher vascular plants. A similar situation exists in fungi. No POLI genes were found in lower fungal forms such as Microsporidia and Glomeromycota. Likewise, in Saccharomycotina (true yeasts) (e.g., S. cerevisiae) no POLI genes were found. Some fungi in the Taphrinomycotina subphylum, such as Saitoella complicate, have POLI genes, while the closely related fission yeasts, Schizosaccharomyces species, do not. Furthermore, POLI genes were found in other yeast forms (e.g., Lipomyces starkeyi), filamentous fungi, parasitic, and symbiotic fungi, and corn smut (Figure 1). However, we found no POLI genes in Basidiomycota which include club fungi and mushrooms.
Although most organisms within the various groups of animals, from the Choanoflagellates (considered to be the closest living relatives of the animals) up to the mammals, possess a POLI gene, we found it remarkable that there are numerous examples of higher eukaryotes organisms that do not possess a POLI gene. For example, we found no POLI genes in most Platyzoa (i.e., Platyhelminthes, e.g., flat worms), Rotifera (i.e., wheel animals), and Annelids (i.e., segmented worms), with the notable exception of Dimorphilus gyrociliatus which does harbor a POLI gene (Figure 1). While, many types of Mollusks do possess POLI genes, we found no POLI gene in octopi. Apparently, Arthopods such as spiders, scorpions, sea spiders, centipedes, millipedes and tardigrades (water bears) do not have POLI, but horseshoe crabs do. With a few exceptions, the majority of crustaceans and insects have POLI. Lastly, we found that the vast majority of chordates from the lancelet to humans do indeed possess a POLI gene (Figure 1). However, there are some extraordinary exceptions. We found that the tunicates (sea squirts), which are lower chordates, lack a POLI gene. Thus far, only a single fish species, Esox lucius (northern pike), was identified as lacking POLI. While alligators possess a POLI gene, the Australian saltwater crocodile (Crocodylus porosus) and the gharial (Gavialis gangeticus) both lack POLI. Most astoundingly, the majority of bird species, including Galliformes (e.g., chickens, turkeys, grouse, quail, partridges and pheasants), Bucerotiformes (hornbills), Upupiformes (hoopoes) and the vast majority of Passeriformes (e.g., sparrow, finch, tit, crow, canary, rifleman, and starlings) which includes more than half of all bird species, lack a POLI gene.
This phylogenetic analysis provides a “snapshot” of the evolution of POLI at this given moment in time. At some time in the past, the polη and polι paralogs diverged from one another due to a need to have two biochemically distinct translesion synthesis polymerases. The biochemical properties of both human polη and polι are well characterized. However, unlike polη which is defective in the human Xeroderma Pigmentosum Variant syndrome (Masutani et al., 1999), the cellular function of polι remains enigmatic (McIntyre, 2020; Vaisman and Woodgate, 2020). Therefore, the evolutionary pressure that led to this division of polη and polι remains a mystery. Perhaps this seemingly arbitrary “hit or miss” distribution of POLI genes in eukaryotic organisms can provide clues as to the cellular functioning of polι. Evaluation of the biological and biochemical translesion synthesis properties of polη and polι from closely related lower eukaryotes, one of which possesses a POLI gene and the other that does not, may provide hints as to when, and why, these two paralogs diverged and the cellular functions of polι.
Expression and Purification of T. lanuginosus Polymerases η, ι, κ, and Rev1
All four Y-family pols from T. lanuginosus were expressed in E. coli, but their expression levels, solubility, and ease of purification varied. Both pols η and κ were well-expressed in E. coli and readily purified by conventional protocols including ammonium sulfate precipitation and ion-exchange chromatography (Figure 2). Rev1 was initially poorly expressed (unpublished observations), but expression increased dramatically in the presence of the pRARE2 plasmid coding for rare E.coli tRNAs. T. lanuginosus Rev1 was also purified by conventional methods including ammonium sulfate precipitation, size-exclusion and ion-exchange chromatography (Figure 2). T. lanuginosus polι was the most problematic of the four Y-family polymerases to purify, requiring codon optimization for E.coli expression and the addition of an N-terminal Histidine tag. Subsequently, the protein was purified by affinity- and ion exchange-chromatography (Figure 2). Once the polymerases were purified to >95% homogeneity, they were characterized for metal ion requirement, ability to bypass lesions, fidelity, thermostability, and processivity.
[image: Figure 2]FIGURE 2 | Purified T. languinosus polymerases η, κ, ι and Rev1. Two to five μg of the final purified polymerases were separated on a 12% SDS-PAGE gel. Visual analysis suggests each polymerase is greater than 95% pure.
Activation of T. lanuginosus Polymerases η, κ, ι by Mn2+ and Mg2+
DNA polymerases are known to require divalent cations to catalyze the nucleotidyl transfer reaction (Bessman et al., 1958; Mildvan and Loeb, 1979; Loeb and Kunkel, 1982; Vashishtha et al., 2016). Although it is generally believed that Mg2+ is the activating co-factor in vivo due to its cellular abundance, other divalent metal cations such as Mn2+, Co2+, Ni2+, Zn2+ have the ability to substitute for Mg2+ under certain conditions (Mildvan and Loeb, 1979; Loeb and Kunkel, 1982). Different metal co-factors can affect the activity and fidelity of DNA polymerases, promote TLS, and in the case of X-family enzymes, increase polymerization efficiency (Martin et al., 2013). In rare cases, Mn2+ appears to serve as a natural metal activator of DNA polymerases. This has been shown for X-family polymerases λ and μ and Y-family polι which exhibit great preference for Mn2+ over Mg2+ as the activating metal ion (Dominguez et al., 2000; Frank and Woodgate, 2007; Garcia-Diaz et al., 2007). In particular, human polι was inhibited by MgCl2 present at physiological concentrations and exhibited peak activity at low MnCl2 levels (0.05–0.25 mM). Furthermore, at optimal concentrations, Mn2+ ions improved the fidelity of polι-catalyzed nucleotide incorporation opposite template dT.
We were interested in determining the optimal concentration and type of divalent metal ion that is required for activation of T. lanuginosus pols η, κ, and ι. We assessed the primer extension activity of these polymerases in the presence of Mg2+ and Mn2+ at concentrations ranging from 62.5 μM to 8 mM (Figure 3). Polη exhibited greatest activity in reactions with 4–8 mM Mg2+ and 0.5–8 mM Mn2+ (Figure 3A). Reactions catalyzed by polκ were most efficient at 1–8 mM Mg2+ and 0.25–8 mM Mn2+ (Figure 3C). Polι was most active in the presence of ∼4 mM Mn2+ (Figure 3B).
[image: Figure 3]FIGURE 3 | Determination of metal ion requirements (type and concentration) for optimal activity of (A) polη (B) polκ, and (C) polι. The extension of 32P-labeled primer 5′-CGA​TGG​TAC​GGA​CGT​GCT​T-3′ hybridized to a template 3′-GCT​ACC​ATG​CCT​GCA​CGA​AAA​AAA​AAA​AAG​C-5′ was carried out for 10 min at 37°C in the presence of 100 μM dNTPs mixture and with increasing concentrations of MgCl2 or MnCl2, ranging from 0.0625 to 8 mM. Concentrations of enzymes were 0.17 pM for polη, 0.32 pM for polκ, and 0.15 pM for polι. The sequence of the template immediately downstream of the primer (pr) is shown on the left-hand side of each gel pair.
As shown in Figure 3, Mn2+ appears to be a more conducive co-factor than Mg2+ in reactions with all three T. lanuginosus pols, as they all were active over a wider range of Mn2+ and exhibited greater activity at the same concentration of Mn2+ vs. Mg2+. However, there are some interesting differences seen between the reported metal ion requirements for human and T. lanuginosus polι. Human polι exhibits highest activity at 0.05–0.2 mM MnCl2 (Frank and Woodgate, 2007), whereas T. lanuginosus enzyme required much higher concentrations of Mn2+ with a sharp peak of activity at ∼4 mM MnCl2. In contrast, while human polι was inhibited by MgCl2 at concentrations >1 mM, T. lanuginosus polι required at least 0.5 mM Mg2+ and its activity gradually increased with concentrations up to 8 mM.
Because Mn2+ is generally known to decrease replication fidelity, we used 4 mM Mg2+ for the subsequent studies with polη and polκ. In contrast, further characterization of polι was performed in the presence of 4 mM Mn2+.
Processivity of T. lanuginosus Polymerases η, ι and κ
We next examined the processivity of T. lanuginosus pols η, ι, and κ (Figure 4A). As with the human enzymes, T. lanuginosus polη and polκ were much more processive than polι and incorporated ∼6 and ∼35 bases, respectively, in a single binding event after only 1 min. In contrast, polι incorporated ∼10–11 bases in a distributive manner. It then exhibited a strong pause after encountering two adjacent template dTs located 11 and 12 nucleotides from the 5′ end of the primer. Presumably this is due to misincorproration of dG opposite the dTs and its subsequent poor extension (Vaisman et al., 2001). These results indicate that the processivity of T. lanuginosus pols η, ι, and κ are therefore similar to their human counterparts (Washington et al., 1999; Ohashi et al., 2000a; Tissier et al., 2000b).
[image: Figure 4]FIGURE 4 | Thermostability and processivity of Thermomyces lanuginosus pols η, κ, and ι. Concentrations of enzymes were 0.17 pM for pol η, 0.32 pM for pol κ, and 0.15 pM for pol ι. (A) Processivity of pols η, κ, and ι were assayed in reactions containing 100 μM dNTPs and 4 mM MnCl2 for polι or MgCl2 for polη and polκ. Extension of 32P labeled primer 5′ TAT​TTA​TCC​CAA​TCC​AAA​TAA​GAA​ACG​A-3′ hybridized to the circular single-stranded 7.2 kb M13mp18 bacteriophage was at 37°C for various times ranging from 0.25 to 32 min. Reactions containing 100 μM dNTPs and 4 mM MnCl2 for reactions with polι and MgCl2 for reactions with polη and polκ. (B) Thermostability was assayed by primer extension reactions using DNA template generated by annealing of a32P-labeled primer 5′-TAT​TTA​TCC​CAA​TCC​AAA​TAA​GAA​ACG​A-3′ with an undamaged DNA template 5′-CGT​TAA​ACA​AAA​AAT​CGT​TTC​TTA​TTT​GGA​TTG​GGA​TAA​ATA-3'. Reactions were carried out for 10 min at various temperatures ranging from 25 to 75°C and contained 100 μM dNTPs and 4 mM Mn2+ to activate polι or Mg2+ to activate polη and polκ.
Thermostability of T. lanuginosus Polymerases
T. lanuginosus is a thermophilic fungus with a natural habitat of growing in organic soils, e.g., decomposing vegetable matter, composts, and animal excrements, at an optimal temperature between 48 and 52°C (Tsiklinsky, 1899; Maheshwari et al., 2000; Singh et al., 2003).The ability of this fungus to live in such an environment suggests that its proteins possess enhanced thermostability (Maheshwari et al., 2000). We therefore examined the optimum temperature for the T. lanuginosus pols η, κ, and ι by incubating primer extension reactions at temperatures ranging between 25 and 75°C. All three polymerases exhibited robust activity between 25 and 50°C, but there was sharp decline in activity at temperatures greater than 50°C (Figure 4B).
Polη, Polι, and polκ-dependent Lesion Bypass Past Abasic Sites, CPDs, and benzo[a] Pyrene Adducts
The Y-family polymerases are best characterized by their ability to catalyze translesion replication past a variety of DNA lesions, in a manner distinct from the cell’s conventional replicases (Sale et al., 2012; Vaisman and Woodgate, 2017). We were therefore interested in assessing the ability and fidelity of T. lanuginosus pols η, κ, ι and to carry out translesion synthesis across a cis-syn CPD, an abasic site, and a benzo[a]pyrene adduct.
Apurinic/apyrimidinic (or abasic) sites are generated as a result of spontaneous or enzymatically-induced base loss and are considered the most frequent form of DNA damage (Lindahl, 1993; Boiteux and Guillet, 2004). An estimated 10,000 abasic sites occur per human cell per day under physiological conditions (Loeb, 1989). It is therefore not surprising that the ability of polη to copy DNA templates containing this noninstructional lesion has been extensively investigated. What is surprising, is that studies performed by various groups with human and S. cerevisiae polη produced conflicting results, ranging from those stating that “hPolη has the highest abasic lesion bypass efficiency” among human Y-family DNA pols and “is a major pol involved in abasic site bypass” (Choi et al., 2010; Sherrer et al., 2011; Patra et al., 2015; Thompson and Cortez, 2020) to those which dismiss human, or S. cerevisiae polη, as contributing to in vivo abasic site bypass because of “negligible nucleotide insertion opposite the abasic site and primer extension past the lesion” (Haracska et al., 2001; Pages et al., 2008). Somewhere in between these polar extremes are studies suggesting that polη catalyzes insertion and/or extension steps of abasic site bypass efficiently enough to ensure its involvement in TLS in vivo, but not as a major player (Zhang et al., 2000a; Masutani et al., 2000; Zhao et al., 2004; Sherrer et al., 2011).
We show here that the efficiency and fidelity of T. lanuginosus polη during TLS of abasic sites is reminiscent of properties of human and yeast polη uncovered in the third group of studies described above (Zhang et al., 2000a; Masutani et al., 2000; Zhao et al., 2004). In particular, in standing-start primer extensions T. lanuginosus polη inserted dA and dG opposite the abasic site with moderate efficiency, but further primer elongation was largely obstructed (Figure 5A). However, minuscule extension of the primer with terminal dA opposite the abasic site occurred by incorporation of an additional dA when the base 5′ to the abasic site was dT (Figure 5A, incorporation of dA). It should be noted that base selectivity of polη on the template with an abasic site is similar to its moderate fidelity on the undamaged DNA. As shown in Figure 5A, polη preferentially incorporates a correct dA opposite the undamaged dT although substantial misinsertion of dG and low level of dC and dT misincorporation can also be seen.
[image: Figure 5]FIGURE 5 | Bypass of abasic and CPD site by Thermomyces lanuginosus polymerases. The ability to bypass abasic site and CPD by (A) polη, (B) polκ, and (C) polι was assayed by measuring extension of 32P labeled primer 5′-CGA​TGG​TAC​GGA​CGT​GCT​T-3′ hybridized to the undamaged or damaged DNA template. 5′-TCGATACTGGTACTAATGATTAACGAA-TN-AAGCACGTCCGTACCATCG-3'. The underlined bold TN sequence stands for the undamaged TT, TT-CPD, or TX, where X is an abasic site, pr is unextended primer. Reactions contained 100 μM each individual nucleotide (dC, dG, dA, dT) or mixture of all four dNTPs as indicated in the Figure, and 4 mM Mn2+ for reactions catalyzed by polι or Mg2+ for reactions with polη and polκ. Primer extension reactions were carried out at 37°C for 10 min. Concentrations of enzymes were 0.17 pM for pol η, 0.32 pM for polκ, and 0.15 pM for polι. The sequence of the template immediately downstream of the primer (pr) is shown on the left-hand side of each gel pair. “X” denotes the position of the abasic site and “[” indicates position of the T-T CPD. For panel C, primer extension (%Ext.) was quantified using ImageJ software and reported as the percentage of product density relative to total density for each reaction.
As with polη, there is no consensus regarding the ability of the DinB orthologs (polκ) to utilize DNA templates containing abasic sites (Strauss, 1991; Ohashi et al., 2000b; Zhang et al., 2000b; Boudsocq et al., 2001; Gerlach et al., 2001; Choi et al., 2010; Sherrer et al., 2011), which is at least partly explained by the strong effect of the surrounding sequence context on the bypass mechanism, base selectivity, and efficiency of insertion and extension steps of TLS. Thus, it has been shown that human polκ tolerates an abasic site much better when the next (5′) template base is dT, and the nucleotide preferentially incorporated opposite the lesion is dA. Furthermore, when primer/template slippage is possible, bypass often occurs through a stabilized misalignment mechanism leading to 1– or 2-base deletions (Boudsocq et al., 2001; Ling et al., 2004a). Similarly, T. lanuginosus polκ-catalyzed TLS of the abasic site was quite efficient when the 5′ template was dT and dA was preferentially incorporated opposite the lesion, although the other three nucleotides were also inserted at substantial levels (Figure 5B). The low fidelity of polκ during abasic site bypass is very similar to its highly error-prone nucleotide incorporation on undamaged DNA. The fact that the major product of T. lanuginosus polκ primer extension reactions in the presence of dT was generated by addition of four nucleotides is consistent with the aforementioned human polκ template-slippage mechanism (Mukherjee et al., 2013). Therefore, the resulting main product would contain two mismatches and total primer elongation by four bases because the DNA template used in the current study has two dA’s next to dT. When the DNA template was not susceptible to primer/template slippage (reactions with dC, dG, and dA) only one wrong nucleotide was incorporated opposite the abasic site.
Human polι has the capacity to insert deoxynucleotides opposite an abasic site, however further extension is limited (Zhang et al., 2000c; Vaisman et al., 2002; Nair et al., 2009; Choi et al., 2010; Sherrer et al., 2011). T. lanuginosus polι behaved in a similar manner, i.e., a single nucleotide was readily inserted opposite the abasic site with no indication of further extension (Figure 5C). Furthermore, akin to human polι, T. lanuginosus polι incorporates dG, dA, and dT with similar efficiency. Interestingly, when undamaged templates were used, T. lanuginosus polι was even more inaccurate than the human polymerase, i.e., not only dG, but also dT, was inserted opposite template dT more often than the correct dA (Figure 5C).
The most common ultraviolet light photoproduct is a cis-syn cyclobutane pyrimidine dimer (CPD). Unlike the ambiguity of TLS of an abasic site, there is no question as to which TLS polymerase bypasses a CPD most efficiently. Indeed, it is well established that polη can bypass a CPD with the same efficiency and accuracy as undamaged template dT’s (Johnson et al., 2000c; Masutani et al., 2000; McCulloch et al., 2004). Most other pols halt synthesis either immediately before the lesion, or opposite the first template dT of the CPD, as their active site is unable to accommodate the covalently joined dT’s of the CPD. Similar to human and S. cerevisiae polη, T. lanuginosus polη efficiently bypassed the CPD lesion (Figure 5A). Like polymerases purified from other species, T. lanuginosus polη was even more accurate while inserting nucleotides opposite the damaged bases than on undamaged DNA templates (Figure 5A).
The pols in the DinB branch of the Y-family (polκ) are unable to replicate past UV-induced cis-syn CPD dimers (Johnson et al., 2000a; Ohashi et al., 2000b; Zhang et al., 2000b) with the one reported exception of archaeal Sulfolobus solfataricus Dpo4, whose properties resemble eukaryotic polη (Boudsocq et al., 2001). Interestingly, the ability of T. lanuginosus polκ to copy a CPD-containing template resembles the behavior of its human orthologs rather than the thermophilic archaeal enzyme, i.e., T. lanuginosus polκ was virtually blocked by the CPD lesion in reactions with all four dNTPs although a very low level of the correct incorporation of two dAs opposite the damaged bases was detected in reactions where only dATP was present (Figure 5B).
It has been reported that human polι can bypass a CPD. Depending on the sequence context, it incorporates anywhere between 1–5 nucleotides, albeit with low efficiency (Tissier et al., 2000a; Vaisman et al., 2003). T. lanuginosus polι was much less efficient compared to the human enzyme. In fact, CPD bypass was barely detectible (Figure 5C). As with undamaged template dT, the preferred nucleotide inserted opposite the 3′-dT of the CPD was dG (Figure 5C).
Benzopyrene diol epoxides (BPDEs) are the highly carcinogenic metabolites of the environmental pollutant benzo[a]pyrene, found in tobacco smoke and automobile exhaust. In mammalian cells, various BPDE stereoisomers covalently bind to DNA forming adducts at the N2 and N6 position of guanine and adenine, respectively. Previous studies demonstrated that efficiency and fidelity of TLS past BPDE by different pols not only depends on the DNA base to which the adduct is linked, but is also often modulated by the stereochemistry of the adduct (Zhang et al., 2002a; Chiapperino et al., 2002; Frank et al., 2002; Rechkoblit et al., 2002; Suzuki et al., 2002; Jia et al., 2008). For example, in general, human polκ is almost completely stalled by BPDE-dA adducts. Under similar reaction conditions, it accurately and efficiently bypasses most of the BPDE-dG stereoisomers (Zhang et al., 2002a; Rechkoblit et al., 2002; Suzuki et al., 2002; Jia et al., 2008), although the cis-S-BPDE-dG represents a significant block for the polymerase (Suzuki et al., 2002). In contrast, polι is much more efficient and accurate while incorporating nucleotides opposite BPDE-dA than opposite BPDE-dG (Frank et al., 2002). Furthermore, independent of adduct stereochemistry, the correct dT is inserted by polι equally efficiently opposite various BPDE-dA isomers. On the other hand, the ability of human polη to replicate past the BPDE is strongly affected by the adduct conformation and damaged base, i.e., it readily traverses through the trans-S-BPDE-dA, but not through the isomeric trans-R- adduct, or through the BPDE-dG isomers (Chiapperino et al., 2002; Rechkoblit et al., 2002). In the current study with T. lanuginosus pols, we used DNA templates with a trans-S-BPDE-dA adduct. Reactions with polη and polκ contained Mg2+ or Mn2+, whereas polι was tested only in the presence of Mn2+.
Similar to the human enzyme, T. lanuginosus polη was quite efficient, but rather inaccurate, while incorporating nucleotides opposite the trans-S-BPDE-dA (Figures 6A,C) especially when reactions were carried out in the presence of Mn2+ which significantly boosted TLS efficiency without noticeably reducing fidelity (Figure 6C). Nucleotide incorporation opposite the lesion by polι was at least as efficient as by polη (Figure 6E), but it was less accurate and further primer extension was inhibited (Figure 6E). We have previously found that fidelity of human polι was influenced by the local sequence context of the BPDE-dA lesion (Frank et al., 2002), and when the template bases 5′ to the lesion were GAC, uncharacteristically accurate insertion of dT opposite the BPDE-dA was observed. In contrast, it appears that on the same template, T. lanuginosus polι keeps its general unfaithful nature. Finally, T. lanuginosus polκ when activated by Mg2+ barely showed any activity on the BPDE-dA-adducted DNA (Figure 6B). However, when Mg2+ was substituted by an equimolar concentration of Mn2+ (Figure 6D), T. lanuginosus polκ was able to utilize this template adding 1–2 nucleotides to the primer. Incorporation of all four nucleotides in the presence of 4 mM Mn2+occurred with similar efficiency, making synthesis by polκ highly error-prone (Figure 6D).
[image: Figure 6]FIGURE 6 | TLS past trans-S-BPDE-dA by T. lanuginosus pols. The ability to bypass BPDE-dA was assayed for (A) polη in the presence of 4 mM Mg2+, (B) polκ in the presence of 4 mM Mg2+, (C) polη in the presence of 4 mM Mn2+, (D) polκ in the presence of 4 mM Mn2+, (E) polι in the presence of 4 mM Mn2+, and (F) individual, or a mixture of various pols in 4 mM Mn2+. The substrate used in these assays was made by annealing of the 32P labeled primer 5′-CAC​TGC​AGA​CTC​TAA​A-3′ and either an undamaged or BPDE-containing template 5′- GCT​CGT​CAG​CAGATTT​AGA​GTC​TGC​AGT​G-3′, where the underlined bold A stands for the undamaged, or BPDE-modified dA. Reactions contained 100 μM each of individual nucleotide (dC, dG, dA, dT) or mixture of all four dNTPs as indicated in the figure and were carried out at 37°C for 10 min. Concentrations of enzymes were 0.17 pM for polη, 0.32 pM for polκ, and 0.15 pM for polι. The sequence of the template immediately downstream of the primer (pr) is shown on the left-hand side of each gel pair. The star (*) indicates the position of the adduct.
While polκ itself was incapable of extending primers by more than one nucleotide after insertion opposite the BPDE-dA even in the presence of Mn2+, it was able to assist polι to bypass the lesion and elongate primers to the end of the template (Figure 6F). Nevertheless, TLS catalyzed by the combined action of polι and polκ was still less efficient than by polη alone (Figure 6F).
Characterization of T. lanuginosus Rev1
S. cerevisiae and human Rev1 function as a dCMP transferase, incorporating strictly dCMP opposite abasic sites and dG-lesions (Nelson et al., 1996; Lin et al., 1999; Masuda et al., 2001). dCMP transferase activity is instructed by Rev1’s conserved active site side chain arginine residue via a protein-templated mechanism (Nair et al., 2005; Weaver et al., 2020). We hypothesized that the conservation of the functional arginine and Rev1 consensus sequence (Figure 7A) would make T. lanuginosis Rev1 a bonafide dCMP transferase. Therefore, the DNA synthesis activity of T. lanuginosus Rev1 was characterized in vitro opposite damaged and undamaged DNA. We found that T. lanuginosus Rev1 could utilize both Mn2+ and Mg2+, but reasoned that Mg2+ was a more likely candidate for physiological utilization given its wider efficacy in comparison to Mn2+ (Figure 7B). Similar to the activities of S. cerevisiae and human Rev1, DNA synthesis by T. lanuginosus Rev1 was not processive, whereby it inserted only once opposite a templating dG and stalled at the following dT base (Figure 7C). As expected, T. lanuginosus Rev1 had a similar thermostability to the other T. lanuginosus Y-family pols (Figure 7D). The well-characterized dCMP transferase activity of Rev1 ortholog was evaluated opposite undamaged, as well as abasic site- and CPD-containing templates (Figure 7E). The ability for T. lanuginosus Rev1 to perform DNA synthesis was efficient only in the presence of dCMP opposite undamaged, or abasic site templates, akin to S. cerevisiae and human REV1 (Zhang et al., 2002b; Nair et al., 2011; Weerasooriya et al., 2014). In summary, we found that the DNA synthesis properties of T. lanuginosus Rev1 are comparable with its higher eukaryotic ortholog.
[image: Figure 7]FIGURE 7 | Characterization of DNA synthesis by T. lanuginosis Rev1. (A) Sequence alignment between REV1 orthologs (Thermomyces lanuginosus, Saccharomyces cerevisiae, and Homo sapiens), illustrating the conserved arginine residue (indicated with an arrow) required for protein-templated DNA synthesis (B) Serial 1:1 dilutions of Mg2+ and Mn2+ metal ions present within 6-FAM primer extension reactions, starting at 8 mM Me2+. (C) Processivity was qualitatively assessed by varying the duration (minutes) of 6-FAM primer extension reactions. (D) Thermostability was evaluated by monitoring DNA synthesis activity at varied temperature (25–75°C). (E) Lesion bypass activity for undamaged (dG), abasic site, and CPD template base/lesion identities was examined in the presence of either none (–), 100 µM dNTPs (4), 100 µM dCTP (C), 100 µM dGTP (G), 100 µM dATP (A), 100 µM dTTP (T).
CONCLUDING REMARKS
In this paper, we describe the cloning, purification, and biochemical characterization of Y-family pols from the thermophilic fungus T. lanuginosus. T. lanuginosis contains all four eukaryotic Y-family orthologs that each generally demonstrate biochemical properties similar to the properties of higher eukaryotic orthologs with the exception of the expected thermostability of the T. lanuginosis Y-family polymerases. Interestingly, while T. lanuginosis polι exhibited biochemical properties akin to the human enzyme, its metal ion requirement was significantly different. Whereas human polι is activated by very low levels of Mn2+ (250 μM) and inhibited by high levels of Mg2+ (>1 mM) (Frank and Woodgate, 2007), T. lanuginosis polι required 4–8 mM Mn2+ or Mg2+ respectively, for maximal activity in vitro.
The conservation of Y-family polymerase activities between lower and higher eukaryotic organisms suggests that TLS activity may be more essential to cellular viability than previously appreciated. Further structure-function studies of these polymerases, as well as identification and characterization of other Y-family orthologs from yet unsequenced species would help clarify the seemingly random ortholog dispersion among eukaryotes and how their presence/absence might provide evolutionary advantages in the face of different environmental stressors.
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[image: Figure 6]FIGURE 6 | TLS past trans-S-BPDE-dA by T. lanuginosus pols. The ability to bypass BPDE-dA was assayed for (A) polη in thepresence of 4 mM Mg2+, (B) polκ in the presence of 4 mM Mg2+, (C) polη in the presence of 4 mM Mn2+, (D) polκ in the presence of 4 mM Mn2+, (E) polι in the presence of 4 mM Mn2+, and (F) individual, or a mixture of various pols in 4 mM Mn2+. The substrate used in these assays was made by annealing of the 32P labeled primer 5′-CAC​TGC​AGA​CTC​TAA​A-3′ and either an undamaged or BPDE-containing template 5′- GCT​CGT​CAG​CAG​ATT​TAG​AGT​CTG​CAG​TG-3′, where the underlined bold A stands for the undamaged, or BPDE modified dA. Reactions contained 100 μM each of individual nucleotide (dC, dG, dA, and dT) or a mixture of all four dNTPs as indicated in the figure and were carried out at 37°C for 10 min. Concentrations of enzymes were 0.17 pM for polη, 0.32 pM for polκ, and 0.15 pM for polι. The sequence of the template immediately downstream of the primer (pr) is shown on the left-hand side of each gel pair. The star (*) indicates the position of the adduct.
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DNA polymerase plays a critical role in passing the genetic information of any living organism to its offspring. DNA polymerase from enterobacteria phage RB69 (RB69pol) has both polymerization and exonuclease activities and has been extensively studied as a model system for B-family DNA polymerases. Many binary and ternary complex structures of RB69pol are known, and they all contain a single polymerase-primer/template (P/T) DNA complex. Here, we report a crystal structure of the exonuclease-deficient RB69pol with the P/T duplex in a dimeric form at a resolution of 2.2 Å. The structure includes one new closed ternary complex with a single divalent metal ion bound and one new open binary complex in the pre-insertion state with a vacant dNTP-binding pocket. These complexes suggest that initial binding of the correct dNTP in the open state is much weaker than expected and that initial binding of the second divalent metal ion in the closed state is also much weaker than measured. Additional conformational changes are required to convert these complexes to high-affinity states. Thus, the measured affinities for the correct incoming dNTP and divalent metal ions are average values from many conformationally distinctive states. Our structure provides new insights into the order of the complex assembly involving two divalent metal ions. The biological relevance of specific interactions observed between one RB69pol and the P/T duplex bound to the second RB69pol observed within this dimeric complex is discussed.
Keywords: RB69 DNA polymerase, crystal structure, open binary complex, closed ternary complex, single-divalent metal ion–containing complex, replisomal complex
INTRODUCTION
DNA replication at the replication fork is the semi-discontinuous process; one strand is the leading strand, and the other strand is the lagging strand (Hamdan et al., 2009; Yao and O'Donnell, 2008). In the presence of externally supplied primers, a minimal T4 replication model containing only two polymerases (pols), a lagging strand polymerase and a leading polymerase, is capable of forming trombone loops mimicking these in the holo-assembly at the replication fork (Alberts et al., 1983; Noble et al., 2015; Benkovic and Spiering, 2017). However, direct pol–pol interactions are relatively weak (Salinas and Benkovic, 2000), suggesting that coordination of DNA synthesis of both strands may be mediated by other replisomal proteins or/and by a DNA duplex. This study provides evidence for such coordination via a primer/template (P/T) DNA duplex.
DNA polymerases are very dynamic, undergo many conformational changes with correct incoming dNTPs, and transverse various distinctive functional states such as pre-insertion or post-insertion (which can be in pre-translocation or post-translocation) according to their interactions with both dNTPs and the P/T duplex (Franklin et al., 2001; Berman et al., 2007). The DNA polymerase from RB69 phage (RB69pol) belongs to the B-family pols and shares a high degree of similarity with human pols (Wang et al., 1997). It contains two activities (polymerase and exonuclease) and is a classic model for studying DNA replication (Wang et al., 1997; Alberts, 2003). RB69pol has been extensively studied both structurally and biochemically with respect to its domain architecture, substrate binding, nucleotide incorporation, and metal coordination in both polymerizing and editing modes (Wang et al., 1997; Shamoo and Steitz, 1999; Franklin et al., 2001; Hogg et al., 2004; Aller et al., 2007; Hogg et al., 2007; Zahn et al., 2007; Hogg et al., 2010; Aller et al., 2011; Xia et al., 2011a; Zahn et al., 2011a; Xia et al., 2011b; Zahn et al., 2011b; Xia et al., 2012b; Xia et al., 2013b). RB69pol has the following distinct domains: the N-terminal, Exonuclease, Palm, Fingers, and Thumb domains, and a functionally important tail for the assembly of the holo-enzyme at the replication fork.
DNA synthesis by DNA pols is catalyzed by two divalent metal ions, A and B (Steitz, 1999). Metal ion A generates the attacking hydroxyl anion of the 3′-nucleotide of the primer strand (ptO3′) as a general base, and metal ion B stabilizes the leaving pyrophosphate as an acid in the transition state (TS). Upon binding of correct incoming dNTPs, a large conformational change occurs to close down the fingers domain and to bury the reactants inside the pol for catalysis (Franklin et al., 2001). The apparent binding affinities for both Watson–Crick base-paired dNTPs and divalent metal ions are very high (apparent Kd ∼50 µM) (Xia et al., 2013a). These apparent values are averaged from many conformational steps. Within the closed ternary complex, many additional hydrogen bonds (with residues of Arg482, Lys660, and Asn564) are formed that are not present in the initial binding of the dNTP in the open complex. Therefore, initial binding would be expected to be much weaker than the final binding step immediately before chemistry, implying that the actual binding affinity of the final substrate complex near the TS could be much higher than the measured average values. The assembly of the replication complex clearly involves many steps, not all of which have been fully characterized structurally, including the initial binding of the first divalent metal ion followed by the second metal ion which is dehydrated inside the closed complex because metal ion B has no water ligand in the final substrate complex. In this study, we capture two new intermediates in a single dimeric structure, one corresponding to an open complex with a vacant dNTP-binding site where the apparent binding affinity of the dNTP in this specific conformational state is likely to be very low, and the second corresponding to a one-metal ion bound closed ternary complex where the binding affinity of the second divalent metal ion should also be very low. Additional conformational changes are required to convert these low-affinity complexes to high-affinity states. Intermediate structures between the classic open binary complex and the fully closed ternary complex have already been reported for other DNA pols, for example, an “ajar” intermediate (Wu and Beese, 2011). Nevertheless, how these intermediates are correlated with the base selectivity of nucleotide incorporation by DNA pols remains poorly understood.
MATERIALS AND METHODS
Protein Overexpression and Purification
The exonuclease-deficient (exo− with the mutations of D222A and D327A) RB69pol variant gene was a gift from Professor William H. Konigsberg (Yale University, New Haven, CT, United States ) and amplified by PCR using a 2,720 thermal cycler (Applied Biosystems). PCR was run in ThermoPol buffer (New England Biolabs) using Pfu DNA polymerase (New England Biolabs). The forward and reverse primers of RB69pol RB69pol (5′-CGC GGA TCC ATG AAA GAA TTT TAC TTA AC-3′ and 5′-CCG CTC GAG TCA AAA ATC GAA CAT ATC G-3′) were designed from the nucleotide sequences in GenBank, accession numbers AAP75958.1. The amplified genes and the modified pET28b expression vector were digested using BamHI and XhoI and then ligated into the expression vector, which was used to transform Escherichia coli strain BL21 (DE3). The transformed BL21 (DE3) cells were grown overnight at 37°C in 50 ml Luria-Bertani broth containing 50 μg/ml kanamycin (Duchefa Biochemie). Cells were resuspended in 4 L of the same media and grown at 37°C to an OD600 of 0.4–0.6. His6-tagged recombinant protein was then induced using 0.5 mM isopropyl-β-D-thiogalactoside (Pharmacia) and incubated for 16 h at 20°C. After incubation, cells of 11.7 g were obtained, which contained the overexpressed RB69pol exo−. Cells were resuspended in lysis buffer [50 mM sodium phosphate (pH 8.0), 300 mM NaCl, 5 mM imidazole, and 10% (v/v) glycerol]. The lysate was then produced using an ultrasonic processor (Sonics) and cleared by centrifugation at 1,593 g for 1 h. The His6-tagged recombinant protein was purified with Ni-NTA chelating agarose resin (Peptron, Korea) by washing with lysis buffer and eluting with 50 mM sodium phosphate (pH 8.0), 300 mM NaCl, and 150 mM imidazole. Tobacco etch virus protease was added into the eluted protein and incubated for 12 h at 4°C to remove the N-terminal His6-tag. The protein was further loaded onto a Superdex 200 16/60 column (GE Healthcare) that was pre-equilibrated in 10 mM Tris-HCl (pH 8.0), 50 mM NaCl, 5 mM dithiothreitol (DTT), and 5% glycerol. Fractions containing the RB69pol were pooled and concentrated to 25.8 mg/ml.
Crystallization
To form a 15-base paired P/T duplex, the primer (5′-GGA​GCG​GAC​TGC​TTA​C-3′) and the template (5′-TCA​AGT​AAG​CAG​TCC​GCT​C-3′) were purchased (Cosmogenetech, Korea) and annealed after mixing in a 1:1 ratio. This P/T duplex was two base pairs longer than one used in an initial study of a single-pol replicating complex of RB69pol (Franklin et al., 2001). RB69pol was then mixed with the P/T duplex at a 1:1.2 stoichiometry to form the RB69pol-P/T complex in 10 mM Tris-HCl (pH 8.0), 50 mM NaCl, 10 mM CaCl2, 5 mM dithiothreitol (DTT), and 5% glycerol, followed by the addition of 1 mM 2′-deoxyuridine-5'-(α,β-imido) triphosphate (dUpNpp, Jena Bioscience), which was a non-hydrolyzable analog of dTTP, for incubation for 12 h at 4°C. The formed complex was initially screened for crystallization using the sitting-drop vapor-diffusion method in a 96-well INTELLI-PLATE (Art Robbins, Inc.). The final crystallization conditions were obtained via optimization from the initial crystallization setup performed using Natrix HT (Hampton Research). Crystals were grown at 21°C in 2 μl of the drop containing equal volumes of the protein/DNA solution and the reservoir solution, which was composed of 50 mM sodium cacodylate (pH 5.0), 2–7% (v/v) isopropanol, 5 mM MgCl2, 2 mM NaCl, and 12 mM spermine. The crystals were cryo-protected by transferring them to the reservoir solution supplemented with 30% (v/v) polyethylene glycol 400 (PEG 400) and flash-frozen in liquid nitrogen for data collection.
Structure Determination
A complete data set was collected at a resolution of 2.2 Å at 100 K at BL-NW12A of the Photon Factory, Japan. Data were indexed and initially processed using the HKL-2000 package (Otwinowski and Minor, 1997) and then reprocessed using iMOSFLM (Battye et al., 2011) and merged using AIMLIESS in the CCP4i package (Battye et al., 2011). The crystals of the RB69pol-P/T complexes belonged to the P3221 space group and had the unit-cell dimensions of a = b = 164.44 Å, c = 165.60 Å, α = β = 90°, γ = 120°. Assuming one dimeric RB69pol-P/T DNA complex molecule was in an asymmetric unit, the Matthews coefficient was 2.23 Å3/Da, which corresponded to a solvent content of 45% (Matthews, 1968). Initial molecular replacement calculations were performed using Phaser in the CCP4 suite (McCoy et al., 2007) using search models derived from the previously reported structure (PDB ID 3nci) after the P/T duplex, the C-terminal tail, and the Fingers domain were removed (Franklin et al., 2001). Afterward, the P/T duplex, the Fingers, the C-terminal tail, dUpNpp, and Ca2+ were manually built using Coot (Emsley et al., 2010), followed by automated water picking with ARP/wARP (Langer et al., 2008). Several steps of manual rebuilding and refinement of this structure were performed using Coot and Refmac5 (Murshudov et al., 2011); the final crystallographic R value was 19.3% (Rfree = 24.5%). The statistics for data collection and refinement are summarized in Table 1.
TABLE 1 | Data processing and model refinement statistics (PDB ID 7f4y).
[image: Table 1]Structural Analysis
All structural figures were generated using PyMOL version 2.4.0 (Schrödinger LLC). Multiple sequence alignment (see Supporting Materials) was performed using Clustal X and visualized using JalView (Jeanmougin et al., 1998; Waterhouse et al., 2009). The σA-weighed 2Fo-Fc map was calculated using phenix.maps and phenix.mtz2map in the CCP4 format (Liebschner et al., 2019). The PDBePISA web server was used for the interface analysis (Krissinel and Henrick, 2004).
RESULTS AND DISCUSSION
The Crystal Structure of the Two Polymerase Complexes From Bacteriophage RB69
We crystallized the exonuclease-deficient RB69pol complex with the P/T duplex and determined its structure at a resolution of 2.2 Å with a free R-factor of about 24.5% (PDB ID 7f4y) (Table 1). Two RB69pol-P/T complexes are present in one asymmetric unit (Figure 1A). The N-terminal domain (NTD) of RB69pol and the part of the P/T duplex away from the active site participate in the dimerization of the two complexes. One RB69pol-P/T complex (MolA) is identified as a new closed ternary complex with dUpNpp, which was similar to many other known ternary complexes of this enzyme. However, this complex contained only one divalent metal ion. The other complex (MolB) is identified as a new open binary RB69pol-P/T complex in the pre-insertion state but without dUpNpp bound and with a vacant dNTP-binding pocket. The major differences of the two complexes are rotations (approximately 33.2°) of the Fingers domain, as previously reported (Figure 1B) (Franklin et al., 2001).
[image: Figure 1]FIGURE 1 | Overall structure of RB69pol-DNA complexes. (A) Structures of the ternary complex (MolA, green) and the binary complex (MolB, yellow). Nucleotide molecules are shown as cartoons and spheres. (B) Superimposition of ternary and binary complexes and the conformational change of the Fingers domain is shown as the two-sided dashed line. (C) Same conformation of the Fingers domains of MolA (green) and a closed ternary complex reported previously (magenta, PDB ID 1ig9). (D) Different topologies of the P/T duplex and hairpins of MolB (yellow) and other binary complexes (PDB ID 3l8b, 1clq).
A New Closed Ternary Complex With Single Divalent Metal Ion Bound
In the MolA structure, the nascent Watson–Crick base pair dA/dUpNpp was well defined in electron density maps, as were all the 5’ overhanging nucleotide residues of the template strand (Figure 2A). The conformation of the Fingers domain in this structure was essentially the same as the one in the closed ternary complex reported previously with a root mean square deviation of 0.34 Å for all Cα coordinates (Figure 1C) (Franklin et al., 2001), representing a closed ternary complex before chemistry. Although the crystals were grown in the presence of 10 mM CaCl2, the standard cryoprotectant solution commonly used for the RB69pol-P/T complex crystals replaced 10 mM Ca2+ ions with 5 mM Mg2+ ions, which could eliminate any weakly bound divalent metal ion. Indeed, we observed that it had only a single Ca2+ ion bound at the B site but no Ca2+ ion at the A site. Thus, there was a significant difference between this complex and the previously reported structures that often contained two catalytic divalent metal ions at both the B and A sites (Franklin et al., 2001; Xia et al., 2012a; Xia et al., 2013a). This observation suggests that the binding affinity of the divalent metal ion at the A site should be much weaker in this specific conformation than the affinity observed in the previous monomeric RB69pol-P/T complex and the measured average value in steady-state kinetics (Xia et al., 2013a).
[image: Figure 2]FIGURE 2 | Metal coordination in the closed ternary complexes. (A) Closed ternary complex (MolA) containing one divalent metal ion bound to the triphosphate moiety instead of the two observed previously. Incoming dNTP (dUpNpp), primer, and template are in magenta, orange, and cyan, respectively. The σA-weighted 2Fobs-Fcalc electron density maps are contoured at 1.5 σ. (B) Stereodiagram of tridentate Ca2+ coordination in the one–metal ion replication complex (MolA) with octahedral geometry. The Ca2+ ion is in green, and Ca2+ coordination is marked with dashed lines. (C) Stereodiagram of bidentate Mg2+ coordination in the one–metal ion replication complex (PDB ID 3si6) with octahedral geometry. The Mg2+ ion is in yellow, and Mg2+ coordination is marked with dashed lines. (D) Superimposed representation of Ca2+ or Mg2+ coordination complexes of the one–metal ion with tridentate coordination (MolA, green) and with bidentate coordination (yellow). The metal coordination is in green or yellow in tridentate or bidentate coordination complexes, respectively. (E) Stereodiagram of bidentate Ca2+ coordination in the two–metal ion replication complex (PDB ID 3uiq) with pentagonal bipyramidal geometries for sites A (CaA) and B (CaB), and CaA does not bind to pt O 3’. Ca2+ ions and water molecules are in gray and red, respectively. (F) Superimposed representation of Ca2+ coordination complexes of the one–metal ion with tridentate coordination (MolA, green) and two–metal ion with bidentate coordination (gray). The Ca2+ coordination is in green or gray in one–metal ion or two–metal ion replication complexes, respectively. (G) Stereodiagram of tridentate Mg2+ coordination in the two–metal ion replication complex (PDB ID 3spy) with octahedral geometries for sites A (MgA) and B (MgB), and the MgA interacts with pt O 3’. Mg2+ ions and water molecules are in magenta and red, respectively. (H) Superimposed representation of metal coordination complexes of a Ca2+-bound one–metal ion with tridentate coordination (MolA, green) and Mg2+ bound two–metal ion with bidentate coordination (magenta). The metal coordination is in green or magenta in Ca2+-bound one–metal ion or Mg2+-bound two–metal ion replication complexes, respectively.
This structure adds to a new variation on the closed ternary complexes of RB69pol with respect to both the number of divalent metal ions and the conformations of the triphosphate moiety of incoming dNTP. Similar to the classic ternary complex, the B site in MolA of this structure was coordinated by the catalytic carboxylates Asp411 and Asp623 and by the backbone carbonyl of Leu412; in turn, it binds the triphosphate moiety of incoming dNTP with α,β,γ-tridentate coordination (Figure 2B). Previously, a single Mg2+ ion bound in the closed ternary complex at the B site was reported, which forms a β,γ-bidentate coordination (Figure 2C) (PDB ID 3si6) (Xia et al., 2011a). Comparison of these two structures suggests that a conversion of the bidentate to tridentate coordination is likely to be a necessary step because Mg2+ ions can typically neutralize only two negative charges of two phosphate groups by forming only the bidentate coordination of the triphosphate moiety of a free dNTP in solution, but not with three phosphates simultaneously (Figure 2D). This conversion requires complete dehydration of the B metal ion so that it can be fully buried inside the complex. When the non-exchangeable Rh3+/dNTP complex was used in kinetical studies, this step would be kinetically invisible because these studies revealed only the kinetic properties of the binding of the A metal ion (Bakhtina et al., 2005; Lee et al., 2009; Wang et al., 2009).
Another conformation of β,γ,-bidentate Ca2+ coordination was observed previously in an RB69pol ternary complex (Figure 2E) (PDB ID 3uiq) (Xia et al., 2012b). However, that complex had two Ca2+ ions bound, one at each of the B and A metal ions (Figures 2E,F). Therefore, the order of the bidentate-to-tridentate conversion and the binding of metal ion A (the second site) may be stochastically independent processes, providing a mechanism of allostery and regulation of binding affinities on the kinetic pathway of dNMP incorporation. Both processes should be essential for catalysis because with β,γ,-bidentate coordination to metal ion B (the first site), the α-phosphate of the triphosphate moiety of the incoming dNTP would be free to move in an arc, and because without the binding of metal ion A, the 3′-hydroxyl of the terminal nucleotide of the primer strand (ptO3′) could not be brought close enough to the freely moving α-phosphate of the dNTP. In the catalytically competent complex of RB69pol (Xia et al., 2011a), metal ion A binds both the α-phosphate of dNTP and the ptO3’, bringing them closer together for chemistry (Figure 2G) (PDB ID 3spy) (Xia et al., 2011a).
Without considering the stochastic kinetic schemes discussed above, kinetic studies may not be sufficient to explain the kinetic behaviors of nucleotide selectivity for dNMP incorporation by DNA pols. In fact, allosteric regulation of binding affinities of metal ions in the two metal-ion sites and the conformational changes associated may play important roles in base selectivity. With the correct incoming dNTP, these two processes are likely to be highly cooperative, that is, the binding of the second divalent metal ion could accelerate the bidentate-to-tridentate conversion of the triphosphate moiety of the incoming dNTP. Simultaneously, this conversion could also stabilize the binding of the second divalent metal ion. However, with an incorrect incoming dNTP, these two processes may not be cooperative, that is, the binding of the second divalent metal ion may prevent the bidentate-to-tridentate conversion by transiently stabilizing the bidentate conformation of the incorrect dNTP, which would eventually be rejected. Simultaneously, the bidentate-to-tridentate conversion may destabilize the binding of the second divalent metal ion because distorted Watson–Crick base-pairing geometry could prevent the tridentate moiety from properly fitting into its putative binding pocket when both metal ions are present. Without both metal ions, chemistry cannot occur, and the incorrect dNTP would eventually be rejected. Based on this analysis, we conclude that our new closed ternary complex of MolA is not the catalytically competent complex but rather a complex on its way to formation of the pre-chemistry ternary complex immediately before catalysis (Figure 2H).
New Open Binary Complex
In the open binary complex of MolB, the penultimate base pair was also well defined in electron density maps alongside all the 5’ overhanging nucleotide residues of the template strand (Figure 3A). In this binary complex, the P/T duplex was completely superimposable with the closed ternary complex, representing a pre-insertion complex where the nascent base pair–binding pocket was partially formed and ready for binding of the next incoming dNTP. However, the next templating base was well ordered but remained in a non-stacking geometry with the proceeding base pair. The base of this nucleotide formed hydrogen bond interactions with the enzyme through ordered water molecules and remained highly hydrated, as seen in Supplementary Figure S1.
[image: Figure 3]FIGURE 3 | Active site of the open binary complex (MolB) and overall structure comparison with apo structure reported previously. (A) Open binary complex (MolB) containing a vacant dNTP-binding site with one ordered water molecule (W) inserted into the backbone of the kinked helix p instead of the two observed in the apo structure. Asn564 and Tyr567 are in green and magenta, respectively. The 2Fobs-Fcalc electron density maps are contoured at 1.5 σ. (B) Exo (cyan), Thumb (yellow), Fingers (magenta), and NT (red) domains rotate relative to the Palm (blue) domain from this binary complex compared to the apo (green) structure by 11.6°, 10.7°, 8.2°, and 5.8°, respectively.
This open complex differed from all the previously reported binary complexes that had non–Watson–Crick geometry for the nascent base pair or non-stackable templating nucleotide residues (Figure 1D) (Shamoo and Steitz, 1999; Aller et al., 2010). It also differed from the conformation of the apo structure (PDB ID 1ih7) (Franklin et al., 2001). In this binary complex, there was only one ordered water molecule placed between the Asn564 and the Tyr567 backbone in the kinked helix p, whereas there were two ordered water molecules observed in the open conformation of the apo form. The Exo, Thumb, Fingers, and N-terminal domains (NTD) rotated relative to the Palm domain from this binary complex compared to the apo structure by 11.6°, 10.7°, 8.2°, and 5.8°, respectively (Figure 3B). Collectively, the open binary complex showed not only a difference in the rotation of the Fingers domain but also in the rotation of the template base opposite the incoming dNTP compared to the closed ternary complex. This new open complex adopted a pre-insertion form, which was not observed previously.
Unique Nucleotide Binding Pocket and Conformational Change by GMP at the N-Terminal Domains
There was a conserved small cavity in the NTDs of each RB69pol that tightly bound GMP (Figure 4). The surface area buried between the bound GMP and RB69pol was ∼331 Å2. This binding involved eight hydrogen bonds with the Tyr49/Asp95 side chains and the backbones of Met85/Lys378/Ile380 and one salt-bridge interaction with the Lys48 side chains. This nucleotide most likely came from copurification because it was never added during purification.
[image: Figure 4]FIGURE 4 | Nucleotide binding site in the N-terminal domains of MolA (A) and MolB (B). The σA-weighted 2Fobs-Fcalc electron density maps are contoured at 1.5 σ. Hydrogen bonds are displayed as dashed lines.
The binding of GMP at this location was also observed previously in the apo structure of RB69pol and the key interaction pattern was conserved with those of our new structure, but it was not present in the isolated NTD/Exo domain structure of T4 DNA polymerase (T4pol) (Wang et al., 1997; Wang et al., 1996). In all previous P/T ternary complexes of RB69pol, this pocket was occupied by the overhanging 5′-dG template nucleotide of a neighboring molecule (Supplementary Figure S2) (Franklin et al., 2001; Aller et al., 2007). Comparison of the RB69pol/T4pol structures with and without GMP (namely, in the truncated T4 exonuclease domain) revealed a large GMP-dependent NTD conformational change, including the re-orientation of helix αA by 90° (Supplementary Figure S3).
GMP-Dependent Conformations of N-Terminal Domains for Formation of the Two-P/T Two-Pol Complex
Each NTD of two RB69pol molecules interacted with the part of the P/T duplex away from the pol active site (Figure 5). This interaction included the Asp13, Arg66, Lys73, and Lys247 side chains. Among them, Arg66 was highly conserved and protruded into the minor groove of the P/T duplex bound in the second opposing RB69pol complex within the dimer (Supplementary Figure S4). As the two complexes were in two different conformations, inter-complex interactions were also slightly different in interface areas buried between the NTD of MolA and the P/T duplex of MolB (385.5 Å2) and between the NTD of MolB and the P/T duplex of MolA (291.6 Å2). It appears that the interactions of the closed RB69pol with the P/T duplex of the open complex were stronger than those of the open RB69pol with the P/T duplex of the closed RB69pol complex (Figures 5A,B).
[image: Figure 5]FIGURE 5 | Inter-complex interaction between ternary (MolA, green) and binary (MolB, yellow) complexes. Detailed views of interactions for the NTD (MolA) with the P/T duplex (MolB) (A) and the NTD (MolB) with the P/T duplex (MolA) (B) complexes. Nucleotides (rGMP) bound to the N-terminal domain and DNA helices are shown as spheres and sticks, respectively. Hydrogen bonds between the N-terminal domain in one subunit and the DNA strand in the other subunit are displayed as dashed lines.
Given the observation that the conformation of the NTD was GMP-dependent, we investigated how this might affect the formation of the dimeric complex. Using computer modeling, we observed that only the GMP-bound conformation could form this dimer and that the conformation of the NTD without GMP could result in severe stereochemical clashes in this dimer (Supplementary Figure S3). Interestingly, the RB69pol NTD had the common βαββαβ topology found in many oligonucleotide-binding and RNA-binding proteins (Burd and Dreyfuss, 1994; Liu et al., 2006). Assembly and disassembly of a minimal replication complex containing both leading and lagging replication complexes were extensively studied in the T4 system, including the use of the two-hybrid system (Salinas and Benkovic, 2000; Benkovic and Spiering, 2017). Given the sequence identity of 61% between RB69pol and T4pol, it is likely that the dimerization observed here is relevant in both systems, but how it is controlled by the binding and release of GMP in this pocket requires additional studies.
Implications of New Conformations on the Dynamics of DNA Pols and on Base Selectivity
It was unexpected that a partially open P/T complex of RB69pol was captured under the conditions favorable for formation of the closed replication complex. On the other hand, the lengths of the P/T duplex used in earlier studies were too short, so they may have precluded the formation of this dimeric complex. In fact, the optimized length of the P/T duplex used in kinetic studies and then in earlier crystallization attempts consisted of 13 base pairs because longer P/T duplexes gave complex kinetic results, likely involving two DNA pol complexes binding at both ends of the same DNA duplex (Franklin et al., 2001). Therefore, the dimeric complex with the longer 16-base pair P/T duplex reported here might be more biologically relevant. The structures of both conformations simultaneously captured in our dimeric complex represent the new stable intermediates that were not previously known, and they are clearly involved in forming the catalytically competent complex (Supplementary Figure S5). Our observation also indicated that the fractions of these two conformations of P/T complexes in the population in solution were significant and that they should have similar free energies. Our findings remind us of the fact that other stable intermediates may also exist but remain hidden from us but may be kinetically important for base selectivity.
Our new partially open complex provides new insights into the initial steps in the assembly of the replication complex (Supplementary Figure S5). An initial Watson–Crick base pair is formed between the templating base and the incoming dNTP while the templating nucleobase remains partially hydrated and the Fingers domain remains open and is gradually converted to the partially closed state. Continuous closing of the Fingers domain requires cooperation of binding of two divalent metal ions as discussed above. Simultaneously, dehydration of the nascent base pair occurred alongside closing motions of RB69pol and stacking interactions of base pairs. With the correct incoming dNTP, this process can be cooperatively completed. However, with an incorrect incoming dNTP, full dehydration of the incorrect base pair would be blocked and the binding of two divalent metal ions cannot be accomplished. As a result, an incorrect dNTP would be rejected.
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