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Editorial on the Research Topic

Towards Precision Medicine for Immune-Mediated Disorders: Advances in Using Big Data and
Artificial Intelligence to Understand Heterogeneity in Inflammatory Responses

In this Research Topic, we have hosted 3 in-depth reviews and 15 original research articles
presenting how novel technological, methodological, and conceptual advancements can be
integrated to study the underlying mechanisms that drive the heterogeneity in inflammatory
responses among patients suffering from immune-mediated conditions.

The immune system plays a vital role in health and disease, and is regulated through a complex
interactive network of immune cells and mediators, thus multi-omics approach in immunological
research is advocated to provide a better understanding of the system. As biomedical research
transitioning into data-rich science, an era of “big data” emerged owing to these advancements. The
integration of such multi- layered datasets with longitudinal assessments of patient outcomes has the
capacity to shed important lights into different aspects of disease pathogenesis, progression and cell-
specific responses, with which to guide design of targeted therapies. Multi-source big data is thus
suggested to be the major driver of precision medicine. However, only data alone can be hardly to be
transformed into clinically actionable knowledge, if we don’t have proper analysis methods. Thanks to
the advances of computing science, artificial intelligence (AI) is developed for robust data analysis.

Chu et al. extensively introduced multi-omics approaches in immunological research, and Orrù
et al. reviewed that systematic multi-parametric flow cytometry coupled with high-resolution
genetics and transcriptomics can be used to reveal endophenotypes of autoimmune diseases for
therapeutic development. Through AI-based analysis of different disease parameters – including
clinical and para-clinical outcomes, and molecular profilesl from multi-omic data, a digital twin
paired to the patient’s characteristic can be created, enabling healthcare professionals to handle large
org June 2022 | Volume 13 | Article 94888515
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amounts of patient data, and Voigt et al. discussed the use of
digital twins for MS as a revolutionary tool to improve diagnosis,
monitoring and therapy refining. Digital twins will help make
precision medicine and patient-centered care a reality in
everyday life. At the level of genomics, through genome-wide
association study (GWAS), Connell et al. found a genome-wide
significant association between intergenic variant rs35569429
and response to ustekinumab for the treatment of moderate to
severe psoriasis. These work also discuss how AI and multi-
omics can be applied and integrated, to offer opportunities to
develop novel diagnostic and therapeutic means in immune
related diseases.

Using transcriptomic analysis on skin biopsies, Abernathy-Close
et al. observed that skin-associated B cell responses distinguish
discoid lupus erythematosus (DLE) from subacute cutaneous lupus
erythematosus (SCLE) and acute cutaneous lupus erythematosus
(ACLE). This data has important implications for trial design for
patients with isolated cutaneous lupus erythematosus (CLE).
Maruyama et al. conduced RNA-seq data analysis and identified
several lncRNAs such as MALAT1, CA3-AS1, GASAL1, PSMA3-
AS1, MIR4435-2HG, IL21-AS1, AC111000.4, and LINC01501, and
some of them are associated with active Visceral leishmaniasis
infection. By implementing the weighted gene co-expression
network analysis (WGCNA), Zhang et al. suggested that the
osteoarticular involvement in psoriasis and ankylosing spondylitis
(AS) could be mediated by the mRNA surveillance pathway. Also
based on RNA-Seq expression, Cao et al. observed that RIMKLB
expression is associated with survival outcomes and tumor-
infiltrating immune cells (TIICs) in patients with colorectal cancer
(CRC), indicating that it might be a potential novel prognostic
biomarker that reflects the immune infiltration status. There are also
different studies in our Research Topics that utilize single cell
genomics approaches. Xu et al. performed single-cell RNA
sequencing, demonstrating cell-specific transcriptional profiles in
the kidney, anti- phospholipase A2 receptor (PLA2R) positive
membranous nephropathy (MN) -associated novel genes,
Frontiers in Immunology | www.frontiersin.org 26
signaling pathways involved, and potential pathogenesis
concerning ligand-receptor interactions. Liu et al. took single-cell
RNA-sequencing of CD45+cells isolated from active lesions of
patients with psoriasis vulgaris, they found CXCL13 significantly
correlated with the severity of lesions and genes elevated in psoriatic
skin-resident memory T cells are enriched for programs
orchestrating chromatin and CDC42-dependent cytoskeleton
remodeling. Alber et al. used single cell CITE-Seq (Cellular
Indexing of Transcriptomes and Epitopes by sequencing)
technology to analyze peripheral blood mononuclear cells
(PBMCs) in ankylosing spondylitis (AS) and identified a number
of molecular features which were associated with AS were linked
with inflammation and other immune-mediated diseases. With the
increasing resources of single-cell sequencing data, issue of
heterogeneity and limited comprehension of chronic autoimmune
disease pathophysiology could be better addressed. Ma et al.
integrated several sets of single-cell RNA sequencing data and
bulk RNA-sequencing data from open access database deposited
in the Gene Expression Omnibus (GEO), and found that the
interactions among the peripheral blood mononuclear cells
(PBMCs) subpopulations of SLE patients may be weakened under
the inflammatory microenvironment. With transcriptomic datasets
in ulcerative colitis, Chen et al. applied artificial neural network
(ANN) and identified a predictive RNA model in which
combination of CDX2, CHP2, HSD11B2, RANK, NOX4, and
VDR was a good predictor of patients’ response to infliximab
(IFX) therapy. Liu et al. performed single cell profiling of
transcriptome and cell surface protein expression to compare the
peripheral blood immunocyte populations of individuals with
psoriatic arthritis (PSA), individuals with cutaneous psoriasis
(PSO) alone, and healthy individuals. They observed a higher
abundance of Tregs and dnT cells in PSA patients and a higher
abundance of hematopoietic stem precursor cells (HSPCs) in
healthy subjects.

O’Neil1 et al. sought to identify serum proteomic alterations
that dictate clinically important features of stable rheumatoid
FIGURE 1 | Future Integration of Artificial Intelligence And Multi-omics Will Benefit Precision Medicine for Immune-Mediated Disorders. EHRs, electronic health records.
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arthritis, and couple broad-based proteomics with machine
learning to predict future flare. They defined 4 proteomic clusters
reflecting biological mechanisms, and found an XGboost machine
learning algorithm could classify patients who relapsed with an
AUC of 0.80 using only baseline serum proteomics.We can also see
that some novel data or perspectives were discussed and shared
from different groups. For example, Cao et al. took two-sample
bidirectional Mendelian randomization analysis and cross-trait
meta-analysis between major depressive disorder (MDD) and
atopic diseases (AD: asthma, hay fever, and eczema). They found
a significant genetic correlation between MDD and ADs, and
detected a major causal effect of genetic liability to depression on
ADs. Jamerson et al. explored the heterogeneity of atopic dermatitis
and psoriasis between African American and European American
patients by summarizing epidemiological studies, addressing
potential molecular and environmental factors, with a focus on
psychosocial or psychological stress on immune pathways, and
highlighted the role of the hypothalamus-pituitary-adrenal (HPA)
axis and IL-18 in atopic dermatitis, corticotropin-releasing
hormone and brain derived neurotrophic factor in psoriasis, and
cortisol levels in both. It supports environmental components in
disease heterogeneity and their influence on disease pathogenesis.
Observational studies may also shed some light on precision
medicine. By retrospectively reviewing the Taiwan National
Health Insurance Research Database (NHIRD) within 13 years,
Li et al. observed that influenza vaccination was associated with
lower asthma risk in patients with AD.

The use of AI and multi-omics in human diseases are still in
their infancy, mostly for research. Although it is premature to try
and define the potential clinical utility of these newly found
molecule biomarkers or predictive models, they do provide an
Frontiers in Immunology | www.frontiersin.org 37
important impetus for further studies that aim to further define a
biological definition of sub-phenotypes in patients with immune
related diseases that can ultimately guide clinical decision
making (Figure 1).
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Digital Twins for Multiple Sclerosis
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An individualized innovative disease management is of great importance for people with
multiple sclerosis (pwMS) to cope with the complexity of this chronic, multidimensional
disease. However, an individual state of the art strategy, with precise adjustment to the
patient’s characteristics, is still far from being part of the everyday care of pwMS. The
development of digital twins could decisively advance the necessary implementation of an
individualized innovative management of MS. Through artificial intelligence-based analysis
of several disease parameters – including clinical and para-clinical outcomes, multi-omics,
biomarkers, patient-related data, information about the patient’s life circumstances and
plans, and medical procedures – a digital twin paired to the patient’s characteristic can be
created, enabling healthcare professionals to handle large amounts of patient data. This
can contribute to a more personalized and effective care by integrating data from multiple
sources in a standardized manner, implementing individualized clinical pathways,
supporting physician-patient communication and facilitating a shared decision-making.
With a clear display of pre-analyzed patient data on a dashboard, patient participation and
individualized clinical decisions as well as the prediction of disease progression and
treatment simulation could become possible. In this review, we focus on the advantages,
challenges and practical aspects of digital twins in the management of MS. We discuss
the use of digital twins for MS as a revolutionary tool to improve diagnosis, monitoring and
therapy refining patients’ well-being, saving economic costs, and enabling prevention of
disease progression. Digital twins will help make precision medicine and patient-centered
care a reality in everyday life.

Keywords: multiple sclerosis, precision medicine, personalized medicine, digital twin, decision analysis,
medical care
INTRODUCTION

The technology of digital twins (DTs) is a promising concept that has become the focus of interest in
industry and, in recent years, in healthcare sector as well. DTs are a revolutionary tool in
phenotyping patients, where analysis of large amounts of data (big data) through new
technologies like artificial intelligence (AI) enables visualization of a virtual copy (twin) of the
patient at different stages of the disease and supports further therapeutic decisions. However, the use
of DTs in medical care and especially in the management of patients is still in its infancy. DTs have
enormous potential, especially when it comes to precision medicine: they can be used to simulate
individual therapies in advance and visualize potential therapy results and disease progression. The
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concept of DTs seems to be particularly suitable for the treatment
of multiple sclerosis (MS), because this chronic autoimmune
“disease of a thousand faces” is characterized by heterogeneous
course, complexity and multidimensionality, an increasing
number of treatment options and a resulting wealth of data.
DTs can significantly improve precision medicine for people
with MS (pwMS) by enabling healthcare professionals (HCPs) to
handle big data and provide more personalized and effective care.
In this paper, we focus on our vision of how to design a DT for
the management of MS. The advantages of DTs for the
personalized treatment of individual pwMS are highlighted
without ignoring the challenges on its development. With our
review, we want to answer the question whether “Digital Twins
for Multiple Sclerosis” (DTMS) may serve as a game changer in
the management of MS.
MULTIPLE SCLEROSIS REQUIRES
PRECISION MEDICINE

Multiple Sclerosis as a Chronic
Multidimensional Disease
MS is a chronic autoimmune, degenerative and lifelong disease of
the central nervous system (CNS) and the most common cause
of neurological disability in young adults. At a pathological level,
the infiltration of immune cells into the CNS manifests as
localized demyelinating lesions in the white and gray matters
of the brain and spinal cord, observed in pathological specimens
as well as in magnetic resonance imaging (MRI) sequences (1). In
addition, the disease leads to a progressive destruction of myelin
layers (demyelination) and progressive axonal injury, loss and
neurodegeneration, impairing the function of the CNS in several
ways (2, 3).

MS has different clinical disease courses that have been
classically described. Around 85-90% of the patients are
diagnosed with a relapsing remitting form of the disease
(RRMS) at the beginning (4, 5). These patients are affected by
attacks of unpredictable clinical relapses caused by inflammatory
demyelinating lesions in the CNS, resulting in a complete or
partial recovery of the neurological symptoms. After several years,
the majority of these patients if untreated will develop secondary
progressive MS (SPMS), where the neurological function decreases
over time independent of relapse activity (6, 7). About 10-15% of
the patients do not have relapses during the course of the disease.
In these patients, the disease already begins with a gradual increase
in neurological symptoms. This is called primary progressive
progression (PPMS). Often a spastic gait disorder develops over
the years, more rarely a progressive cerebellar syndrome (8).
Beyond this raw classification of disease courses, each MS
patient presents with a very individual course of his MS.

Longitudinal course. As described, MS is characterized by a
chronic and/or episodic course. PwMS require long-term
phenotyping, monitoring and most often treatment with
disease-modifying therapies (DMTs) (9). In the early stages of
MS, the damage occurring in the brain can still be compensated
by the so-called neurological reserve. This compensatory
Frontiers in Immunology | www.frontiersin.org 29
mechanism explains why, on the one hand, early-stage MS is
often not diagnosed promptly and, on the other hand, is often
not taken seriously enough, especially with regard to negative
long-term consequences (10–12). As the disease progresses, the
neurological reserve decreases, especially if MS activity is not
adequately treated (12). Since therapy started early in the course
of the disease has an inhibitory effect on the progression of MS, it
should be diagnosed and treated without any delays (13, 14).

Heterogeneous course and different dimensions. MS is
popularly known as the “disease of a thousand faces” because
MS lesions and other abnormalities can occur in the whole CNS
usually leading to a variety of neurological deficits including
fatigue, visual and bladder problems, pain, spasticity, reduced
mobility and sexuality as well as psychological conditions such as
depression (15–17). Due to this heterogeneity and the intra-
individual unpredictable and inter-individually quite variable
course, the diagnosis, phenotyping and monitoring of MS is
very challenging (18, 19). The multidimensional disease
characteristics of each patient should be made quantifiable to
allow phenotyping of the individual disease characteristics and
long-term monitoring of these parameters (20). This leads to a
large amount of multidimensional data.

Multidimensional data. When quantifying MS, it is
necessary to distinguish between different dimensions and
perspectives. Starting from neurological-clinical parameters,
they range from quantitative assessment of individual
neurological functional systems (e.g. cognition, gait analysis),
through imaging (MRI, ocular coherence tomography (OCT)),
electrophysiological methods and the inclusion of patient-
reported outcomes (PRO), up to new molecular and digital
biomarkers (20). This data can be obtained in the setting of
clinical trials or in real world practice, which represents also
differences in its collection, volume, veracity and availability. To
do justice to the complexity of MS, these parameters must be
integrated into detailed individual patient charts as well as into
large databases in order to be able to analyze them meaningfully.

Increasing number of potential therapeutic interventions.
The number of treatment options that intervene in the immune
system on different levels can modify disease is increasing (19,
21–25). This growing availability of DMTs is broadening the
treatment options towards a more individualized therapy (24).
Different mechanisms of action and intervention strategies are
linked to individual treatments (26–29). On treatment, the
monitoring of MS disease activity is key to achieve optimal
outcomes in order to initiate a therapy change or escalation in
time in case of an insufficient response (10, 30).

Therefore, the chronic, heterogenic and multifocal “disease of
a thousand faces” requires a complex, ubiquitous and
differentiated as well as adaptive diagnosis, monitoring and
treatment strategy. This strategy should be personalized
and tailored to the individual needs and disease course of the
patient and be continuously adjusted (25).

Precision Medicine for People With
Multiple Sclerosis
An emerging approach towards personalized treatment is
precision medicine, or, as an older term, personalized medicine
May 2021 | Volume 12 | Article 669811
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(31–35), that takes into account individual variability in genes,
environment, and lifestyle for each person (32, 36–42). Precision
medicine covers diagnosis, treatment and management to achieve
better patient outcomes (43). Through precision medicine, it is
possible to break down the complexity of the disease. The patterns
and inter-individual variability can be better understood. Thereby,
precision medicine presents a framework for developing targeted
treatment for individual patients by combining the demographic
and clinical information, biomarkers and medical imaging data
(44–47). Existing developments in precision medicine (44, 48–50)
demonstrate that complex health-related big data of high quality
are necessary, including lifestyle, nutrition, genetics, and
environmental factors besides clinical, para-clinical, imaging and
immunological or neurobiological parameters, which have to be
analyzed and integrated in diagnosis, treatment and monitoring
processes. To obtain big data and capture the bigger picture of a
given individual on the way to precisionmedicine, Fagherazzi et al.
recommend the method of “deep digital phenotyping”, which is a
combination of deep phenotyping by collecting biomedical data in
the real world and digital phenotyping by collecting digital
biomarkers (42, 44, 51–53).

In the patient´s perspective, a more transparent disease
understanding can enable the patient to take a more active role
in decision-making, following the concept of patient
empowerment (54). Better understanding and involvement of
patients in therapeutic decision making leads to better treatment
adherence, which is associated with higher efficacy and lower
healthcare costs (55). Ultimately, all patients would have the
opportunity to query their own data interpreted in the context of
the world’s largest reference cohort and the latest data on
available therapeutic options (56).

In relation to MS, deciding which therapy to use in a
particular patient requires careful analysis of the patient’s
disease course for high-risk factors for early progression,
consideration of the efficacy and safety profile for a potential
therapy, and a patient’s lifestyle and expectations (57). This is the
only way to improve the precision of management for each
patient, to improve prognosis and to establish an evidence-based
framework for predicting response to treatment and
personalized monitoring of patients. Precision medicine for
pwMS involves the classification of disease subtypes based on
underlying biology, not just clinical phenotype, and the
development of predictive models that incorporate the
integration of clinical, biological and molecular as well as
current and emerging imaging markers with an understanding
of the impact of the disease on the lives of individual patients
(58–63). A complex data set could be the base of the DTMS as
part of a digital data cloud that tries to simulate the same or very
similar characteristics in terms of health status, risk factors and
disease development as the real-world MS patient (43, 45).
WHAT ARE DIGITAL TWINS?

Origin and Concept Of Digital Twins
The concept of a “twin strategy” was generated from NASA’s
Apollo program, which build two real identical space vehicles.
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One was launched onto the air space, the other stayed on Earth to
mirror the conditions of the launched one (64). The first mention
of the term “digital twin” can be traced back to the year 2003
when Grieves mentioned it in the context of manufacturing (64–
66). Initially, the space industry was primarily concerned with
the topic of DT. In 2012, the NASA and the U.S. Air Force jointly
published a paper about the DT, which stated the DT was the key
technology for future vehicles. After that, the number of research
studies on DT in aerospace has increased and the DT was
introduced into more fields such as automotive, oil and gas as
well as health care and medicine. Examples are online operation
monitoring of process plants, traffic and logistics management,
dynamic data assimilation enabled weather forecasting, real-time
monitoring systems to detect leakages in oil and water pipelines,
and remote control and maintenance of satellites or space-
stations. For instance, Singapore is developing a digital copy of
the entire city to monitor and improve utilities (67). In recent
years, the DT has been described more and more as a promising
technology and it is expected that DTs will develop very strongly
in the coming years and will bring a revolution in several
industry sectors with the desire for online monitoring,
increasing flexibility and personalized services (64). The
availability of cheap sensors and communication technologies
and the phenomenal success of technologies such as machine
learning (ML) and AI, new developments in computer hardware
as well as cloud and edge computing will rapidly drive the
development of the DT (66).

Grieves (65) originally defined the DT in three dimensions: a
physical entity, a digital counterpart and a connection that ties
the two parts together. In most definitions, the DT is considered
as a virtual representation that interacts with the physical object
throughout its lifecycle and provides intelligence for evaluation,
optimization, prediction, etc. (68–72). For instance, in the
industrial sector the DT is used as an in silico presentation of
technical applications in order to optimize them through
computer simulations (67, 73, 74). As these definitions focus
on three dimensions (physical, virtual, connection of them), Tao
et al. added the two further dimensions data and services. The
newly proposed definition can fuse data from both the physical
and virtual aspects using DT data for more comprehensive and
accurate information capture (64). Kritzinger et al. divide DT
into three subcategories, depending on the level of data
integration (75). Rasheed et al. present an example of a state-
of-the-art DT of an offshore oil platform. The DT is continuously
updated with sensor data almost in real time. The sensor data can
be supplemented with synthetic data from simulators that
provide physical realism at high spatio-temporal resolution.
The DT not only provides real-time information for more
informed decision-making, but can also make predictions
about how the plant will develop or behave in the future. In an
ideal environment, a DT is indistinguishable from a physical
object in both appearance and behavior, with the added benefit of
being able to make predictions about the future. In fact, the DT
also offers the possibility for people to physically interact with the
object using an avatar (66).

Overall, it must be noted that the topic of DTs is of such
variety and complicated that it is almost impossible to cover all
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aspects as it has been covered by several reviews (66, 76–88). Up
to now, there are currently no common methods, standards or
norms for the development of DTs. In order to exploit the
potential of DTs, there are still many challenges to be taken
(66, 67).

Digital Twins in Health Care
Focusing on the possibilities of DTs, medicine and healthcare are
the areas that are likely to benefit most from the concept of DTs
(66). There are several reasons for this. First, the number of
intelligent portable devices and the organized storage of big data
of individuals and cohorts is increasing. Second, human and thus
medical thinking will eventually reach the natural limits of speed,
complexity and performance. For HCPs, the massive and constant
increase of knowledge in healthcare (e.g., differentiated diagnostics,
more personalized therapies, interaction risks, active ingredients) is
almost impossible to cope within daily work. HCPs are limited by
everyday circumstances such as tiredness, time pressure and
emotions. Especially in hospitals HCPs are under cost and time
pressure and cannot always make decisions based solely on medical
factors. And third, there is an increasing need for personalized and
targeted treatment. As a result, various tools that enable precision
medicine and simulation of therapies as well as prognosis of disease
progression will inevitably find their way into the everyday life of
HCPs, as is the case for already established different (clinical)
decision support systems (CDSS) (89). The integration of
technology and medicine is thus the main driver for intelligent
and networked health. In this context, the statistical modeling of big
data poses a particular challenge. Classical methods that examine
associations between individual variables and a diagnosis or a course
of disease reach their limits with the large number of statistical tests
required and are also unable to uncover complex interactions
between several variables and modalities in real time. Statistical
significance, until now the primary measure of group-based,
mechanistic research, also loses significance when, due to large
samples, even the smallest effects exceed the significance threshold
and thus the connection between significance and (clinical)
relevance fades. ML is the key to creating direct clinical benefit.
ML involves algorithms that can learn to solve a specific task
autonomously based on data. These algorithms do not need to be
explicitly programmed and can thus generate novel solutions to
complex problems and tasks. Although classical statistical methods
are capable of both correlation discovery and prediction, ML
methods are better suited for identifying patterns, constructing
features, and making predictions from large, complex, and
heterogeneous data because they are usable and generalizable
across a variety of data types and allow analysis and
interpretation across complex variables. ML methods thus
complement and extend existing statistical methods and can be
used in highly innovative areas such as omics, radio-diagnostics,
drug discovery, and personalized treatment. Of course, MLmethods
also have their limitations. The success of a ML project depends on
the number of observations, the number of features, the selection
and parameterization of the features as well as the quality of the
underlying data and the chosen algorithm for the model (90, 91).
ML also represents a component of AI research and development.
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AI is a computer system that is able to integrate relevant
information and make a rational and logical decision that leads to
the best possible outcome.

ML is an important component of a modern DT in healthcare
(92), that can be defined as a “virtual mirror of ourselves that
allows us to simulate our personal medical history and state of
health using data-driven analytical algorithms and theory-driven
physical knowledge” (93) as well as to exploit the synergies
resulting from their combination. That is, a DT uses the
induction approach (statistical models that learn from data) and
the deduction approach (mechanistic models that integrate
multiscale knowledge and data) to provide accurate predictions
of pathways to maintain or restore health (45). A DT consists of
numerous dynamic and multidimensional parameters. Dynamic
data means that the data from which the digital image of the
patient is created are both historically available data and
continuously updating and accumulating data from that
person’s life, e.g., data on the medical condition, data on the
person’s living environment, data on how a drug is tolerated or a
therapy is accepted. The multidimensionality of the data arises
from the many different sources from which the data come, such
as monitoring data, data from the patient’s social milieu, data from
sensors, or clinical data. The dynamic and multidimensional
nature of the data collected also distinguishes DT from other
classical approaches such as clinical decision support systems
(CDSS). A CDSS is used to make recommendations for
appropriate tests and procedures from historical electronic
health record (EHR) data using diagnosis of a condition and
analysis of symptoms to help HCPs make informed decisions. The
recommendation is the main component of a CDSS, which can be
recorded in medical documents or coded in software as algorithms
and rules (94, 95). However, the DT is not just a pure data
collection approach for recommendations; it also correlates these
data with each other and uses algorithms to incorporate the data
meaningfully and purposefully into a simulation process with
defined clinical (and economic) goals (95). The ability to simulate
and model medical devices as well as pharmaceutical treatments
on the computer enables faster and more cost-effective
development than under real conditions (45, 48), without any
risk for patients: “Making mistakes on computer models instead of
people” (96).

The use of DTs in medical care is still in its infancy. So far,
only in a few areas of medicine, DTs were applied, such as
oncology (97–99), geriatrics (100, 101), cardiology (45, 102–
106), epidemic outbreaks (107), genomic medicine (48, 108),
internal medicine (109, 110), orthopedics (111) and vascular
medicine (112, 113). For example, Corral-Acero et al. present
early steps of a DT in the field of cardiovascular medicine by
describing the synergies between mechanistic and statistical
models, the pillars of the DT (45). Topol describes “high-
performance medicine” with the help of AI for HCPs in
different disciplines like radiology, pathology, dermatology,
ophthalmology, cardiology and gastroenterology (114) and gives
an overview over selected reports of machine- and deep-learning
algorithms to predict clinical outcomes and related parameters.
Laaki et al. developed the prototype of a DT for real-time remote
May 2021 | Volume 12 | Article 669811

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Voigt et al. Digital Twins for Multiple Sclerosis
control of remote operations over mobile networks (81).
Bruynseels et al. show how DTs are based on in-silico
representations of an individual that dynamically reflect
molecular status, physiological state and lifestyle over time (46).

Concrete implementations of digital twins can already be found
for organs such as the heart, for example, by the French software
company Dassault Systèmes (115) or by Siemens Healthineers in
Germany (116). Siemens Healthineers has used data collected in a
huge database of more than 250 million annotated images, reports
and operational data. The AI-based DT model was trained to
weave data about a heart’s electrical properties, physical
characteristics and structure into a 3D image. The technology
was tested on 100 digital heart twins from patients treated for heart
failure in a six-year study. Preliminary results of the comparison
between the actual outcome and the predictions the computer
made after analyzing DT status seemed promising. French startup
Sim&Cure developed a DT system that virtualizes a patient-based
aneurysm and surrounding blood vessels. After a patient with
aneurysm is prepared for surgery, a DT represented by a 3Dmodel
of the aneurysm and surrounding blood vessels is created by
processing a 3D rotational angiography image. The personalized
DT allows surgeons to perform simulations and helps them gain
an accurate understanding of the interactive relationship between
the implant and the aneurysm. In less than five minutes,
numerous implants can be assessed to optimize the procedure.
Preliminary studies have shown promising results (117).
CONCEPT OF DIGITAL TWINS IN THE
MANAGEMENT OF MULTIPLE SCLEROSIS

Our vision is generating and implementing DTs inmanagement of
MS in order to improve diagnosis, treatment and management
strategies as well as patient participation and compliance. DTs are
a revolutionary tool for an improved characterization and
prediction of disease course and for deep clinical phenotyping of
pwMS (118). In this regard, big data analysis via ML supports
visualization of the DTMS at different stages of MS and enables
further therapeutic decisions. There are no elaborated DTs yet, but
there are starting points and perspectives. For instance, Walsh
et al. use an unsupervised ML model to learn the relationships
between covariates commonly used to characterize subjects and
their disease progression in clinical trials in MS (118). Recently, a
research group from Sofia University in Bulgaria performed a first
exercise of simulation of DTs. Petrova-Antonova et al. developed a
web-based DT platform for MS diagnosis and rehabilitation that
consists of two components: a transactional application that
automates tests for MS diagnosis and rehabilitation, and an
analytic application that provides data aggregation, enrichment,
analysis, and visualization that can be used in any instance of the
transactional application to generate new knowledge and support
decision making. However, the analytical application is currently
undeveloped and subject to further research (119).

We consider that, due to the complexity and long-term nature
of MS, a particularly large and multidimensional amount of data
must be collected and organized for the construction of DTMS.
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These data must be of high quality, i.e. they must be collected
correctly and represent the patient as accurately as possible. In
addition to quality, a high quantity and frequency of data
collection must also be achieved in the long term. To create
DTMS and keep them updated with follow-up data, parameters
related to the patients physiological status data (structured clinical
data, para-clinical and multi-omics data, and patient-reported data)
and to procedures (diagnostic workup, treatment, monitoring as
integrated into personalized clinical pathways) should be collected,
analyzed, visualized and correlated (Figure 1). The evolving and
self-updating DTMS can be used simultaneously with ML
algorithms to make smarter predictions and decisions as a
learning health system (LHS) (120).

Patients Physiological Status Data
Patients’ physiological status data content of DTMS includes
structured clinical and para-clinical data, some of them as digital
data, as well as multi-omics and patient reported data.

Structured clinical data are key parameters of deep clinical
phenotyping and prerequisite for the data content of DTMS (30,
121). Taking the patient’s history is traditionally the first
important step in the evaluation of pwMS, which focuses on
relapses and/or disease progression in the different neurological
functional systems. Contextual parameters including lifestyle
factors, comorbidities (122), psychological factors, emotions
and sociodemographic factors (123–125) must also be
recorded, assessed through the medical record and the
conversation between physician and patient. There are
attempts to standardize and quantitate MS relevant
neurological history, such as e.g. the MSProDiscuss tool in the
assessment of secondary disease progression (126). Further
clinical evaluation e.g. by neurological examination is
indispensable in MS for the quantitative measurement of the
extent of the disorder, which is in turn required to find out how
the disease is evolving and the influence the different forms of
treatment are having on it. In recent years, the Expanded Disease
Disability Scale (EDSS) has been an essential, irreplaceable scale
in MS which has been improved in the past years by different
approaches (127–129). However, other additional clinical
instruments have been introduced to quantitate the different
multidimensional aspects of MS as fatigue, cognition or walking
function (130, 131). The Multiple Sclerosis Functional
Composite (MSFC) provides a functional assessment of
different key functions (upper and lower extremities,
cognition) that is used more and more frequently in MS and
has been proven to be highly sensitive in the evaluation of very
important clinical trials. These complex data could allow clinical
phenotyping of MS in terms of disease activity (132) or
symptom-specific phenotypes (133). Because DTs are data-
driven approaches, it is not advisable to assume that the same
monitoring procedures already used by the clinician in everyday
practice are sufficient to establish a model for comprehensive
digital representation of pwMS. Therefore, a combination of
different clinical outcome measures is highly recommended
(134). Initiatives to standardize the collection of clinical data
are on the way (135).
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Para-clinical data are of great importance for diagnosing,
phenotyping and monitoring MS. Lab data ranging from
standard laboratory to state of the art immunological or
neurobiological parameters (136–139). Implementing standard
lab data from clinical practice into a comprehensive approach of
DTMS can complete the fundamental quest of real world evidence
for individually improved treatment decisions and balanced
therapeutic risk assessment (140, 141). As the MS disease process
takes place in the CNS, analysis of cerebral spinal fluid is of high
importance (123, 124). In addition to emerging immunological and
neurobiological biomarkers, new technologies could be used for
data collection for the DTMS as it has been described by Meyer zu
Hörste (136) andwill be described amongmulti-omics approaches.
Neuronal destruction makers (e.g. neurofilament light chain) seem
to be an excellent tool to measure subclinical MS disease activity in
research and clinical studies (125, 142, 143), butfinal validation and
transfer in clinical practice would be optimal in the setting of the
multidimensional approach of DTMS.

The importance ofCNS imaging has steadily increased in recent
years and is expected to continue to grow in light of new sequencing
techniques and applications related to pathophysiology and
prediction (144, 145). As a biophysical technique for measuring
magnetic properties and generating weighted images of relative
tissue contrasts, MRI offers both volumetric and dynamic
quantitative means of detecting pathological tissue changes. These
represent a promising approach to optimizing MS management
through in vivo monitoring in the assessment of the course of
chronic diseases by recording their disease-related dynamics or
treatment-induced effects (146, 147).
Frontiers in Immunology | www.frontiersin.org 613
To implement imaging into DTMS, it is essential to standardize
MRI acquisition (148, 149). The aim of this approach is to increase
the sensitivity of MRI analysis to the smallest disease-related tissue
changes. The acquisition of 3D-resolved sequences is important, as
these, on the one hand, allow the free exploration of the image data
byreformatting and, on theotherhand, allowanoptimal adaptation
to the preliminary examination throughmodern 3Dregistration. In
addition, only these 3D-resolved sequences form the basis for
computer-assisted image data analysis and volumetric
measurements, which should further increase precision in the
future. Recent advances of CNS imaging could be probably
transferred more easily into clinical practice by their integration
intoDTMS.Using this platform toput imaging data in contextwith
othermultidimensional data offers unique possibilities of validation
and implementation.Thus, in future, quantitativeMRIwill enable a
detailed characterization of brain tissue by generating a large
number of numerical results (150). More than a thousand
parameters can be generated if a detailed segmentation of the
brain is considered, making group studies complex and inefficient
byparametric techniquesofdata analysis (150).The large volumeof
MRI data can only be approached by AI, an essential tool of the
DTMS (151). Finally, by measuring both volumetric and dynamic
quantitativemeans (lesionsandatrophy), differentMRIphenotypes
of individual patients can bedescribed byMRI-categorization (152)
which could be an important component of DTMS. In addition to
MRI,dataobtained throughother imagingbiomarkers suchasOCT
(153) or Positron emission tomography (154) can be used as well.

Digital phenotyping. Several clinical and para-clinical data
can be collected digitally (digital phenotyping with digital
FIGURE 1 | Concept of a digital twin for pwMS.
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biomarkers). Digital biomarkers are measures to collect objective
data on biological (e.g., blood glucose, serum sodium),
anatomical (e.g., mole size), or physiological (e.g., heart rate,
blood pressure) parameter with the use of a biosensor (portable
e.g. smartphones, wearable, and implantable devices), followed
by the use of algorithms to transform these data into
interpretable outcome measures (155–157). They are used for
assessing e.g. cognitive function (158) or fatigue (159).

Sensor-based, portable measurement systems can be used
both in the clinical setting and in the patients’ individual
everyday life (at home). In the clinical setting functional tests
and gait analysis can be performed digitally. The Multiple
Sclerosis Performance Test (MSPT) is a digital adaptation of
the MSFC with additional elements added (160, 161) and
measures health status via iPad with questionnaire on health
status, processing speed with Processing Speed Test (PST) (162),
manual skills with 9-Hole-Peg-Test (9-HPT) and walking speed
with Timed 25-Foot-Walk (T25-FW) (160). Multidimensional
gait analysis can be performed with measurement of walking
speed (T25-FW), measurement of endurance [2-Minute Walk
Test, 2MWT (163, 164)] and measurement of balance and gait
quality on a sensor-based walking mat (GAITRite®-System,
Mobility Lab-System) (131). For the digital measurement of
data in patient-specific everyday life (at home) there are
various patient apps such as Floodlight, diverse fitness tracker
and health apps available (165, 166). They make it possible to
collect realistic data relevant to everyday life via remote sensing
in addition to the regular medical consultations. Thus, a more
comprehensive insight into the patients’ daily life as well as a
more closely meshed progression monitoring is made possible.
Clinical and para-clinical data (including lab and imaging data)
are more and more collected in digital format and a standardized
way which is an important step for integration in DTMS. A key
role in the development of global standards of data related to
patients or health cases is played by various organizations such as
the Clinical Data Interchange Standards Consortium (CDISC),
the Critical Path Institute (C-Path), and the Health Level 7
organizations (167). In clinical care, the development of digital
neurological assessment tools such as Neurostatus-eEDSS and
tablet-based MSPT, as well as real-time 3D motion capture
systems for recording motor dysfunction in MS patients, play
the most important role. The MS Data Alliance has already
developed digital tools for aggregating, harmonizing, and sharing
real-world data from multiple sources by creating a common
data model. EHR also play a critical role in standardized and
accurate digital documentation of clinical data, and several of
these already exist, such as the MS BRIDGE, RC2NB, MSDS3D
and MSBase EHR systems (168).

Multi-omics as innovative approach will have to be a part of
the DTMS as well especially to increase knowledge about MS
(169–171). The complex and dynamic processes in the
neurobiological and immune networks are of significant
importance in MS as in other chronic diseases. Advances in
high-throughput “omics” technologies (e.g., genome,
transcriptome, proteome, epigenome, metabolome) are enabling
MS care to move from a “one-size-fits-all” toward a personalized
Frontiers in Immunology | www.frontiersin.org 714
approach analyzing the correlation of multi-omics with the clinical
and para-clinical phenotypes of the individual MS patient (Figure
2). Multi-omics approaches involving large populations of pwMS
and interrogating millions of markers with similar biochemical
properties can help to elucidate the molecular mechanisms
underlying MS and provide both potential biomarkers and
pharmacological targets for a more detailed patient stratification
and personalized treatments (172). Genomic and proteomic
studies have sought to understand the molecular basis of MS
and find biomarker candidates. Regarding genomic and proteomic
studies, advances in next-generation sequencing and mass-
spectrometry techniques have been of great importance to
generate an unprecedented amount of relevant data (173). In
order to study complex biological processes holistically, it is
imperative to adopt an integrative approach. Multi-omics data
should be combined to shed light on the interrelationships of the
biomolecules involved and their functions. With the rinsing of
high-throughput techniques and the availability of multi-omics
data from a large number of samples, promising tools and
methods for data integration and interpretation have been
developed (174). In the field of MS, this strategy was successful
for the development of novel data science techniques for exploring
these large datasets to identify biologically relevant relationships
and ultimately point towards useful biomarkers which have been
discovered in recent years (124, 173).

Patient-reported data like questionnaire data complement
the clinical data and complete the picture of the DTMS by
including the patients’ perspective of their disease. They are
divided into patient reported outcomes (PRO) and patient
reported experiences (PRE). PRO is an umbrella term for
health outcomes that are directly and subjectively reported by
patients without interpretation of the patients’ response by a
clinician or anyone else (175, 176). PRO are measured for
outcomes like quality of life by the Quality of Life in
Neurological Disorders (177, 178), and like walking and
mobility skills by the Twelve Item MS Walking Scale (164,
179) or the Early Mobility Impairment Questionnaire (180).
PRE measure “patient’s perception of their personal experience
of the healthcare they have received” (181). PRE measures assess
patients’ perception of their experience of the received healthcare
collected through questionnaires (182). Efforts to standardize
data are already underway. The PROMS (Patient Reported
Outcomes for MS) initiative aims to identify PROs, including
actively and passively delivered digital performance measures, to
standardize outcomes in both research and clinical decision
making (183).

Thus, model building for a DTMS already requires a
comprehensive set of monitoring tools to be tested on a
representative sample. To a certain extent, this also describes
the scope of the instruments, which must later be applied to
individual patients in practice in order to derive a
comparable trajectories.

Procedures
An optimal management of pwMS requires the performance of
certain procedures as e.g. assessments of clinical and para-
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clinical parameters at high quality and at defined time points. In
addition to the more general and non-concrete guidelines related
to standard clinical practice, the Brain Health Initiative has
provided for the first time specific “core,” “achievable,” and
“aspirational” time frames for individual treatment steps in
diagnosis, treatment, and monitoring (14). Achieving these
standards of MS management in the individual patient to
increase quality of care for pwMS will be facilitated by
integrating such procedural components of these clinical
pathways into the DTMS.

Diagnosis of MS is based on defined diagnostic criteria
[McDonald criteria (5)] and relies on various examination
methods (184), none of which alone is capable of making the
diagnosis of MS as the differential diagnosis is quite complex.
The procedural component of diagnostic workup in DTMS will
assist in collecting data in optimal time considering type and
stage of disease, pertinent symptoms and comorbidities, time
between the first referral to the neurologist and MRI, etc.

Treatment. The therapeutic management in MS includes
DMTs, treatment of acute relapses, and symptomatic therapies,
which are usually combined and individually adapted. In
particular, the history and the stage of the disease, degree of
disability, the primary symptomatology, form and dynamics of
the course of the disease, age, gender and desire to have children,
concomitant and previous diseases, concomitant and pre-
medication as well as the individual life situation of the patient
must be taken into account. The DTMS will assist in the selection
and monitoring of individual treatments. In order to assess
possible adverse events and reactions, individual treatments
need a defined treatment-related clinical pathway including
clinical and para-clinical assessments, which have to be
integrated into the DTMS.
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Monitoring. An optimal primary goal of MS therapy should
be the achievement of no evidence of disease activity (NEDA) (9,
185). Specifically, this means the absence of relapses, new or
enlarged lesions on MRI, clinical disability progression and loss
of brain volume (=NEDA-4). The NEDA status has to be
assessed by procedures of MS monitoring to detect disease
progression and relapse as well as the monitoring of disease
activity and symptoms. The importance of frequent high quality
monitoring in routine clinical management of MS is pointed out
by numerous authors with reference to various studies and the
comprehensive data on the significance of relapses, early EDSS
changes, and the role of MRI (186–188). As monitoring of MS is
a lifelong challenge for patients and HCPs, its integration into
DTMS will assist in keeping up this essential long
term assessment.

Personalized clinical pathways that integrate these
procedures are also included in the design of DTMS and
should be available for the HCP and patient together to ensure
the best possible outcome.

Construction of Digital Twins for Multiple
Sclerosis
Prediction models based on statistical models already exist. For
example, Stühler et al. and Kalincik et al. have investigated the
individual response of pwMS to disease-modifying therapies
using generalized linear models. However, in both studies, data
density and quality were insufficient because, among other
reasons, the cohorts were too small or there were data gaps in
MRI data or data could not be comprehensively included (189–
191). With the DTMS, all historically and currently available data
should be continuously included in the analysis, if possible, to
increase predictive power. In addition to the standardized and
FIGURE 2 | Multi-omics for precision medicine.
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digitized parameters on patients’ physiological status data and
procedures, the available prior knowledge in the field of MS
should also be included in the construction of the DTMS. In
addition to existing guidelines (14), this also includes further
expert knowledge from the practice of clinical care of pwMS as
well as possible knowledge about factors that can positively or
negatively influence the disease, e.g. comorbidities, nutrition,
physical activity and cessation of smoking.

Before the DTMS is implemented in practice, it is essential to
check which data are absolutely necessary to collect and how the
data collection can be done in such a way that it burdens the
patient and HCP as little as possible. This is also important from
an economic point of view, as the collection of all the above-
mentioned data types is associated with high costs. This
examination could be done by different tools. Basically, a
targeted literature review on parameters particularly frequently
used for prognostic purposes would be necessary, which could be
complemented by a survey among experts. Since the strength of
ML methods lies in discovering hidden patterns, test runs of the
DTMS with the integration of different parameters (classes)
would be conceivable, the results of which would be tested in a
representative sample. Some work already provides clues in this
regard. As Pinto et al. have pointed out in their work on
prediction of MS progression using ML methods, relevant
clinical information may include EDSS, functional systems and
CNS functions affected during relapses, as well as age and gender
(192). In any case, data acquisition should be done digitally and
in an automated manner, if at all possible, with a view to
minimizing patient disruption. There is a need for further
research in this area which data have been collected from
patient and HCP.
USE CASES IN CARE OF MULTIPLE
SCLEROSIS

DTMS perform a new kind of deep phenotyping by processing
all data and procedural content in its complexity with innovative
tools. Taking into account all previously defined medical and
contextual parameters, which are very closely interwoven with
the patient and his identity, the DTMS provides decision
templates based on calculated probabilities. HCPs, patients,
and all those involved in their care, have therefore an
individualized roadmap of which examinations, tests, and
therapies to pursue in the near future. In this process, the
DTMS controls and monitors the entire disease management
process and can correct any deviations. Thus, the DTMS is also a
tool for measuring the process quality of a treatment. This results
in a number of application scenarios that will fundamentally
improve management of MS (Figure 1).

Innovative Data Collection
For linking large amounts of data from different sources, suitable
interfaces and modular database systems should be available that
can integrate different external systems. The ability of different
systems to work together is called interoperability. To achieve
interoperability and also flexibility, the use of an interoperability
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standard, such as HL7 FHIR (193), and standard interfaces, e.g.
IHE XDS.b for Germany (194), should be ensured (195). This is
where a MS portal such as the Integrated Care Portal Multiple
Sclerosis (IBMS) (195) could be used, to which both patients and
HCPs can contribute different types of data. Patient data
collected via apps or questionnaires flow into the patient
portal, which is part of a management system for MS. The
HCP, in turn, can see this data in the system and enter content
related to the data and processes there. In the further course, data
enter the database continuously, which can be used for the DT.

Clinical Pathways
Clinical pathways are particularly suitable for the seamless care
of chronically ill patients across various health sectors. They
describe the entire path of patients during care (the “patient
journey”) and unite the multidisciplinary setting, the local
conditions and the current state of evidence research (195).
Clinical pathways define goals and milestones of care and
support shared decision making between HCPs and patients by
also providing patients with a picture of their stage of disease (30,
195–198).

As intelligent systems, DTs traverse the clinical pathway,
serving as a guide for HCPs and patients through treatment
with an individual roadmap. Integrated into clinical
management systems, clinical pathways can thus also serve as
quality assurance tools for HCPs and patients. In this way,
patients can actively participate in the quality improvement of
their treatment process. HCPs, in turn, have the opportunity to
optimize treatment steps based on specific quality indicators.
These quality indicators are derived from existing MS guidelines
and consensus standards [e.g., the International Brain Health
Initiative consensus standards (14)]. On the one hand, they
address temporal concerns for diagnosis, treatment, and
monitoring phases, e.g., the maximum time between initial
presentation and the acquisition of an MRI. On the other
hand, quality instruments are integrated to measure the
assurance of desired outcomes for pwMS, e.g., whether patients
who have mobility or fatigue issues are offered support (199) or
whether patients experience coordinated care with clear and
accurate information exchange (200). Defining and measuring
quality indicators is the goal of the currently running project
“Path-based Quality Management in MS Care” (QPATH4MS) at
the MS Center Dresden (Germany).

MS Dashboard for Visualization
Visualization helps to present complex data in an
understandable and clear way. The so-called MS dashboard
visualizes high-dimensional disease characteristics and
individual clinical pathways. The HCP can present the
possibilities played out by means of the DT to the patient to
discuss therapy options and clinical pathways with the patient.
Through an adaptive display, it is possible to present the
individual patient pathway, therapy options, treatment
alternatives and the associated risks and challenges in a
simplified form for the patient as a layperson and for the HCP
as an expert. Within this framework, HCPs and patients can
determine the ideal therapy and management of MS through
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shared decision-making. Thanks to the visualized simulation of
the DT, the HCP has time to address all patients’ questions and
concerns in detail. Examples of existing dashboards for
displaying individual patient data at a glance include the
walking assessment dashboard as part of the multidimensional
digital patient management system MSDS3D (201, 202), showing
the results of clinical multidimensional walking assessment and
daily smart monitoring longitudinally (131), and the MS
BioScreen, that integrates multiple dimensions of disease
information: clinical evolution, therapeutic interventions, brain,
eye, and spinal cord imaging, environmental exposures,
genomics, and biomarker data (56, 203).

Integration of Patients and Other
Healthcare Professionals
The visualization of the complex data involved in the medical and
therapeutic decisions may foster the communication between
HCPs and patients. This would support the involvement of
patients in healthcare decisions and management of their disease.
In this way, DTs also serve as a shared decision-making tool for
HCPs and patients, who will play a much more active role in their
own healthcare management in the future. For example, this could
empower the patient to become an active member of the MS
management team, from providing data (including data from
biosensors, for example) to recording/tracking notable events and
daily care to prognostic tools. As a result, a much more granular,
continuous perspective on MS and its progression is provided,
whichwouldbemore complete than traditional (brief and irregular)
clinical assessments.

Clinical Decision Support System
A DT also acts as clinical decision support system (CDSS) that
supports HCPs in clinical decision making by providing
evidence-based medical knowledge and patient-related
information (204, 205). The goal is to enable the HCP to make
the best possible clinical decision for the patient, with the best
possible chance of a positive outcome. CDSSs are often
supported by ML-based algorithms. The ambiguous patterns of
MS (e.g., in etiology, progression, clinical presentation, and
response to drug therapies) make ML algorithms optimal tools
to automate the detection of patterns and regularities in MS data.
CDSSs are very beneficial in the context of MS, but are not yet
well established. There is an increasing need for CDSSs in MS to
help HCPs make the right decision among multiple alternatives
in time (206).

Simulation and Prediction of Disease and
Treatment Outcomes
Modeling the course of MS, especially predicting progression, is
challenging due to the complexity of the outcomes and its varying
course. The DT offers the possibility of predicting several probable
disease courses and provides models for estimating possible
treatment effects for individual patients. Taking into
consideration all of a patient’s individual parameters, potential
side effects, costs incurred, and individual circumstances and
patient satisfaction, the DT can suggest the option with the
highest benefit for the patient. There are initial approaches to
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predicting disease progression using ML. For instance, Pinto et al.
used clinical information to develop a ML system to explore the
disease evolution in pwMS in terms of conversion from RRMS to
SPMS. EDSS score, majority of functional systems, affected
functions during relapses, and age at onset were described as the
most predictive features (192). Zhao et al. found that support vector
machines incorporating short-term clinical and brain MRI data
were better at predicting disease progression of MS and selecting
patients for more aggressive treatments than logistic regression
methods (207). Later, Zhao et al. compared common ML
algorithms and so-called ensemble learning approaches. The
latter were more effective and robust compared with single
algorithms and offered increased accuracy for predicting disease
progression of MS. Of the variables evaluated, EDSS, pyramidal
function, and ambulation index were the most common predictors
in predicting MS disease progression (208). Another study
suggested that the concentration of serum cytokines could be
used as prognostic marker for the prediction of MS (209). Data-
driven subtyping and staging ofMS could better predict subsequent
clinical course and response to treatment compared with clinical
classification or baseline EDSS. Data-driven subtyping has the
potential to prospectively improve patient outcomes.

DTshelp tounderstanddisease’sdynamics and thus, adviseHCPs
on medication intake. With regard to drugs, it is quite conceivable
that in the future clinical trials will also be conducted only with the
help of DTs and no longer with the patients themselves.

From all that is known so far, the DT is a Learning Health
System (LHS). LHS fuse healthcare delivery with research, data
science, and quality improvement processes. The LHS cycle
begins and ends with HCP-patient interactions and strives for
continuous improvement in healthcare quality, outcomes, and
efficiency (210). Based on the constantly new data collected
through continuous monitoring and provided by the patient
from the real world, the DT generates new knowledge, which in
turn flows into the patient’s further treatment, which is thus
continuously improved. The parameter data continuously flow
into the calculations of the DT – with each piece of information,
the phenotype can be described more precisely. The therapy can
thus be continuously adapted to the patient’s disease state and
life circumstances.
CHALLENGES OF DIGITAL TWINS IN
HEALTH CARE

The use of DTMS promises to improve clinical decision making
for individual patients, enhance patient communication, and
improve quality of care. However, no uniform methods,
standards, or norms yet exist for the development of DTs, and
many challenges remain to unleash the potential of DTs (49, 66).

Data Quality, Data Management and
Algorithm Design
Poor or missing data and information can lead to improper
models and incorrect recommendations (trash in, trash out). In
order for the DT to be statistically indistinguishable from its real-
world counterpart, the data on which the DT is based must be of
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high quality and represent the patient as completely as possible
(118, 120). Data quality in the broader sense also includes the
standardized collection or standardization of data to ensure their
reliability and to enable longitudinal and cross-sectional
comparisons of data. In this context, data should preferably be
carried out in digital form or at least recorded digitally instead of
in paper form in order to facilitate standardization and thus
comparability. There is currently no generally accepted,
standardized scheme for the collection, documentation, and
evaluation of data in MS, although recommendations and
guidelines from various expert groups exist, which have
already been described in the sections on patients physiological
status data and procedures (135). For the purpose of generating a
sufficiently large amount of data describing pwMS in a
standardized multidimensional manner, many years of
multicenter data acquisition are required. Only on this basis is
it possible to create the necessary “critical mass” of data in the
required density to enable long-term estimation of therapeutic
outcomes. In addition, multidimensional and unstructured large
data sets must first be structured and then integrated into
meaningful algorithms before meaningful models can be
created (45, 95, 114). It should also be noted that the results of
ML algorithms are usually based on a large number of
parameters and criteria that can no longer be reproduced or
fully understood by humans (135). Even if the models produce
solid predictions, it may be impossible to deduce why they make
good prediction.

Data Privacy and Data Security
Before DTs are created, it is essential to clarify who owns which
data at what point in time and for how long, who has access to it
under which conditions and for how long, who actually owns the
“end product” of the DT, and who can use it and under which
conditions. It is imperative that suitable governance structures be
created for this purpose. Furthermore, data security is very
important to avoid data gaps that could potentially be used for
hacker attacks to the detriment of patients. It is also necessary to
ensure the protection of privacy, which becomes more and more
difficult with the increasing functionality of techniques. Patients
must also be confident that their data is secure, transparent and
accessible to them. Otherwise, the collection of patient data could
increase mistrust rather than confidence in health systems.
Simply providing technological advances is not enough, it is
also necessary to ensure that it serves to improve well-being.
Therefore, data privacy and transparency of data use must be
respected with the full consent of patients. Informed consent
should explicitly state the purposes for which the data collected
from patients will be used (49, 93, 120, 211).

Ethical Concerns
DT models could exaggerate racial and other bias (46, 212) and
could lead to or reinforce inequalities in health care (46): if a
group is misrepresented in the data used to create models, this
group may receive suboptimal treatment (213). An example
shows that a computer model classifies patients with a history
of asthma who have pneumonia as patients with a lower risk of
mortality than those who have pneumonia only. However, the
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context was completely ignored, namely that this is an artifact of
clinicians admitting and treating such asthma patients earlier
and more aggressively (212). Another important ethical issue
related to predicting the course of disease is whether and in what
way the prognosis should be communicated to patients. How
does a patient deal with the knowledge that, according to the
prognosis, he or she will soon be in a wheelchair, for example?
Do patients have a right to “not know”? In addition, the extent to
which patients will be able to decide autonomously what is good
or bad for them, and to what extent this will be determined by the
algorithms that claim to propose the most optimal solution based
on the available data, needs to be reconsidered. In this context,
“dataism” could become a new form of medical paternalism.
Patients must therefore develop an appropriate relationship with
their personal DT and develop the ability to make informed
decisions in the face of strong data-driven personalized
models (46).

Individual Concerns and Trust in
Applications of AI
The role of humans or users of AI applications should not be
underestimated, and trust is a crucial factor in this context (120,
214). The fear of new not-yet-established technologies like AI is a
barrier to trust (120).HCPsmaynot trust the decisions ofmachines
if they do not understand the involved algorithms. Additionally,
HCPs could experience fear of being replaced by machines.
However, AI will not replace the HCP (114), but will support and
provide more time for consultation with the patient – one of the
crucial aspects ofmedical care (215).DecisionsbasedonAI canhelp
the HCPmake good decisions, if they “keep human intelligence up
to date and take into account the social, clinical and personal
context” (212). In the case that the DT’s recommendations
contradict his or her own, the HCP must dispose of an action
plan for further decision-taking. Otherwise, more data can
contribute to the uncertainty of the medical thinking.

In order to establish the concept of the DT despite all the
challenges mentioned, guidelines, gold standards, benchmark
tests and governmental legislation, as has been achieved in
Estonia, are therefore necessary (45, 114). Before using DTs in
patient care, it is imperative that targeted studies, publication of
results in peer-reviewed journals and clinical validation in a real-
world environment are carried out (114). Nevertheless, HCP
should proactively guide, supervise and monitor the introduction
of DTs as partners in patient care (212).
DISCUSSION

With the development of a DTMS, it is possible to improve
clinical decision-making for individual patients, patient
communication, shared decision-making, and thus quality of
care. Before DTs can be used in patient care, they must be
validated by studies and experts, as well as by real-world
investigations to show the effectiveness and safety of their
methods. In addition, there are still a number of challenges to
overcome on the road to using DTs, such as ensuring data
security and privacy and the accuracy of the data on which the
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DT is based (Figure 3). It should also not be underestimated that
the development of a DTMS is very complex and therefore
expensive and may also increase the complexity of monitoring
in clinical practice. Therefore, further research should be
included in the development to inform which data contribute
most to predictability, how this predictability can be assessed,
and how this approach can be feasibly and cost-effectively
integrated into health care. Further work will also be required
to see whether and how predictive models can be constructed.
However, a basic DTMS can serve as a starting point that will
grow and evolve over time. During this process, the HCP should
proactively guide, oversee, and monitor the introduction of
DTMS as partners in patient care. By analyzing all possible
factors of MS, DTMS will help make precision medicine and
patient-centered care a reality in everyday life. This will
ultimately refine diagnostics and monitoring, improve
Frontiers in Immunology | www.frontiersin.org 1219
therapies and patient well-being, save economic costs, enable
prevention, expand treatment options and empower patients.
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Idiopathic membranous nephropathy (IMN) is an organ-specific autoimmune disease of
the kidney glomerulus. It may gradually progress to end-stage renal disease (ESRD)
characterized by increased proteinuria, which leads to serious consequences. Although
substantial advances have been made in the understanding of the molecular bases of IMN
in the last 10 years, certain questions remain largely unanswered. To define the
transcriptomic landscape at single-cell resolution, we analyzed kidney samples from 6
patients with anti-PLA2R positive IMN and 2 healthy control subjects using single-cell
RNA sequencing. We then identified distinct cell clusters through unsupervised clustering
analysis of kidney specimens. Identification of the differentially expressed genes (DEGs)
and enrichment analysis as well as the interaction between cells were also performed.
Based on transcriptional expression patterns, we identified all previously described cell
types in the kidney. The DEGs in most kidney parenchymal cells were primarily enriched in
genes involved in the regulation of inflammation and immune response including IL-17
signaling, TNF signaling, NOD-like receptor signaling, andMAPK signaling. Moreover, cell-
cell crosstalk highlighted the extensive communication of mesangial cells, which infers
great importance in IMN. IMN with massive proteinuria displayed elevated expression of
genes participating in inflammatory signaling pathways that may be involved in the
pathogenesis of the progression of IMN. Overall, we applied single-cell RNA
sequencing to IMN to uncover intercellular interactions, elucidate key pathways
underlying the pathogenesis, and identify novel therapeutic targets of anti-PLA2R
positive IMN.
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INTRODUCTION

Idiopathic membranous nephropathy (IMN) is a common cause
of nephrotic syndrome (NS) in adults with a peak occurrence of
50-60 years old (1). It is characterized by subepithelial immune
deposits, complement-mediated proteinuria, and risk of kidney
failure. The prevalence of IMN is increasing worldwide,
particularly in elderly patients, and has been reported in 20.0–
36.8% of adult-onset NS cases (2–5). The clinical outcome of
patients is quite variable, with spontaneous remission reported in
up to one-third of cases and progression to end-stage renal
disease (ESRD) in a similar number (6–8).

IMN is a noninflammatory autoimmune disease of the kidney
glomerulus (9, 10). In the last 10 years, substantial advances have
been made in the understanding of the molecular bases of IMN,
with the identification of several antigens [neutral endopeptidase,
phospholipase A2 receptor (PLA2R), thrombospondin domain-
containing 7A (THSD7A)] and the characterization of antibody-
binding domains of these auto-antigens. 50% to 80% of the
patients will test positive for an anti-PLA2R antibody with any
of the available tests depending on the state of disease activity (11,
12). These ground-breaking findings already have a major impact
on diagnosis and therapy monitoring. Besides, several risk alleles,
such as HLA-DQ, HLA-DR, and PLA2R1 have been identified as
risk factors of IMN (13, 14). The pathogenesis of IMN induced by
podocyte in situ antibody and the following complement
activation pathways have been revealed to some extent (9, 15,
16). However, the reason for the heterogeneity of patients as well
as the variety of clinical outcomes remains elusive. Furthermore, a
comprehensive analysis of the cell types and molecular pathways
involved in IMN is lacking.

Single-cell RNA-sequencing (scRNA-seq) is a transcriptomic
technology that measures the expression of up to thousands of
genes in thousands of single cells simultaneously. It offers an
opportunity to comprehensively describe human kidney disease
at a cellular level and plays a crucial role in identifying cell
subtypes and illustrating molecular differences (17). This
technique has been applied to several complex kidney diseases
including kidney cell carcinoma, diabetic nephropathy, lupus
nephritis, and acute kidney injury (18–21). Here we applied
scRNA-seq to kidney biopsies of patients with IMN to identify
gene expression at the single-cell level, elucidate cells involved in
the progression of IMN, and uncover intercellular interactions.
MATERIALS AND METHODS

Ethical Approval and Consent
The Medical Ethics Committee of the Xiangya Hospital of
Central South University for Human Studies approved the
study (ID: 201711836). The implementations were in
concordance with the International Ethical Guidelines for
Research Involving Human Subjects as stated in the
Declaration of Helsinki. Informed written consent was
obtained from participants or their legal guardians.
Frontiers in Immunology | www.frontiersin.org 226
Tissue Procurement
Kidney specimens were obtained from the department of
nephrology in Xiangya Hospital, Central South University. We
conducted a kidney biopsy with 18-gauge core needles in the
nephrotic syndrome subjects paralleling with positive serum
anti-PLA2R antibody. Healthy adult kidney tissues were
collected by biopsy of living donor kidneys from two
transplant donors. Healthy kidney tissue was collected after
removal from the donor and before implantation into the
recipient. Kidney tissues were cleaned with sterile phosphate
buffered saline (PBS) after collection.

Kidney Sample Processing and
Single-Cell Dissociation
Fresh kidney tissue specimens were stored in GEXSCOPE Tissue
Preservation Solution (Singleron Biotechnologies) at 2-8°C
immediately. The specimens were washed with Hanks’
Balanced Salt Solution (HBSS) three times and then minced
into 1-2 mm pieces before dissociation. Single-cell suspensions
were obtained by digestion with 2ml GEXSCOPE Tissue
Dissociation Solution (Singleron Biotechnologies) with
continuous agitation at 37°C for 15min. The samples were
subsequently filtered through 40-mm sterile cell strainers
(Corning) to separate cells from cell debris and other
impurities, after which they were centrifuged at 300 x g for
5 minutes at 4°C and cell pellets were resuspended into 1ml PBS
(HyClone). Next, 2ml GEXSCOPE Red Blood Cell Lysis Buffer
(Singleron Biotechnologies) was added into the cell suspension
and incubated at 25°C for 10 minutes to remove red blood
cells. The cells were then centrifuged at 300 x g for 5 min
and resuspended in cold PBS for downstream analyses.
Quantification of cell yields was performed by TC20 automated
cell counter (Bio-Rad) with trypan blue exclusion, once the cell
viability exceeded 70%, subsequent sample processing could
be performed.

Library Preparation and Preprocessing of
scRNA-Seq Data
PBS was added to the single-cell suspension to adjust the
concentration to 1×105 cells/mL. A single-cell suspension was
then loaded onto the microfluidic chip. The single-cell RNA-seq
libraries were prepared according to the manufacturer’s protocol
using the Singleron GEXSCOPE Single Cell RNA-seq Library Kit
(Singleron Biotechnologies), which included cell lysis, mRNA
trapping, labeling cells (barcode) and mRNA (UMI), reverse
transcription mRNA into cDNA and amplification, and finally
fragment cDNA. Samples were then sequenced by Hiseq X10
(Illumina, San Diego, CA, USA) with 150bp paired-end reads.
Raw reads were processed to generate gene expression profiles
using an internal pipeline. Adapters and poly-A tails were
trimmed (fastp V1) before aligning read two to GRCh38 with
ensemble version 92 gene annotation (fastp 2.5.3a and
featureCounts 1.6.2). Reads with the same cell barcode, UMI,
and gene were grouped to calculate the number of UMIs per gene
per cell.
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Cell Type Classification and Marker
Genes Analysis
The Seurat program (http://satijalab.org/seurat/, R package,
v.3.0.1) was applied for the analysis of RNA-Sequencing data
including cell type identification and clustering analysis. By
default, we used the SNN (shared nearest neighbor) model of
the Seurat program package for clustering analyses and displayed
the distribution status of cells by dimension reduction operation
(PCA, tSNE, UMAP). Next, Wilcox (Wilcoxon rank-sum test)
was used to analyze the difference of each cluster and the result of
the marker gene obtained by “Wilcox” (Likelihood-ratio test)
using the FindAllMarkers function in Seurat combined the
differential gene list above identified the marker gene of each
cluster. The selected marker genes were expressed in over 10% of
the cells per cluster and the average log (Fold Change) was more
than 0.25. The heatmap was completed by the top20 marker
genes of each cell cluster. Sub-clustering analysis of endothelial
cells and myeloid immune cells was performed by the SubsetData
function of the Seurat.

Differentially Expressed Genes Identified
Between Groups
Differentially expressed genes (DEGs) of each kidney cell cluster
were identified by comparing the transcriptional profile of IMN
and healthy donors. We performed “Wilcox”(Likelihood-ratio
test)by the FindAllMarkers function in Seurat to determine the
DEGs of each cluster between the two groups. DEGs were
defined by a gene with an average log (Fold Change) exceeded
0.25 and P-value smaller than 0.05.

Enrichment and Cell Interaction Analysis
Gene Ontology (GO) function enrichment analysis was
performed on the gene set using the clusterProfiler software to
find biological processes or molecular functions that are
significantly associated with the genes specifically expressed.
Similarly, Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis was carried out to get significantly related
pathways by the clusterProfiler software. We also conducted a
ligand-receptor interaction analysis of cell-cell cross-talk
by CellphoneDB.
RESULTS

Extensive clinical, laboratory, and pathologic evaluation were
required to separate primary from secondary MN and help
determine the underlying etiology (22). All patients were
reviewed for potential secondary causes of MN such as
hepatitis serology, antinuclear antibodies, anti–double-stranded
DNA antibodies, anti−Smith antibodies, complements, chest
radiographs, age-appropriate cancer screening, medication
history, and monoclonal gammopathy evaluation. All biopsies
were reviewed for histologic features suggestive of secondary
MN, such as full house immunofluorescence, vascular or tubular
basement membrane deposits on immunofluorescence, and
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mesangial and endothelial proliferation, as well as for the
presence of endothelial tubuloreticular inclusions or mesangial
deposits on electron microscopy (23). Patients with potential
secondary causes were excluded from further analysis. Kidney
biopsy samples were obtained from 6 patients with IMN and 2
healthy controls. Patients with IMN were positive for serum anti-
PLA2R antibody and evidenced by the diffuse formation of
subepithelial “spikes”, or heterogeneous thickening of the
glomerular basement membrane by light microscopy, as well as
subepithelial electron-dense deposits and diffuse fusion of
podocyte foot processes by electron microscopy (Supplemental
Figure 1). Serum anti-PLA2R antibody levels ranged from 26.28
to 816.47 RU/ml and the pathologic stage varied from II-IV.
Also, patient ages ranged from 34 to 65 years and one of them
was female. The proteinuria of these six IMN patients varied
from 1.18 to 11.35 g per 24h. IMN patients were divided into
massive proteinuria group and non-massive proteinuria group
with the critical value of 3.5g urinary protein excretion per day.
Four of the six IMN patients had more than 3.5g proteinuria per
24h in our study. Albumin (ALB) and triglyceride (TG) were
22.22 ± 1.00 g/L and 1.96 ± 0.42 mmol/l respectively. The
estimated glomerular filtration rate (eGFR) of IMN patients
ranged from 61.91 to 107 mL/min/1.73m2, and the mean
serum creatinine (Scr) was 1.08 ± 0.11 mg/dL. Serum C3
concentration of all subjects was normal whereas serum IgG
levels in four IMN patients were below the lower limit of normal
(Supplemental Table 1). At the time of biopsy, all IMN patients
have not received medications other than RAAS inhibitors. As
for healthy control, one kidney donor was a 47-year-old male,
and his creatinine was 0.68 mg/dl, eGFR was 113.81 mL/min/
1.73m2. Another kidney donor was a 50-year-old male, and his
creatinine was 0.94 mg/dl, eGFR was 94.16 mL/min/1.73m2. The
two donors neither have diseases history including hypertension
and diabetes nor any medications prescribed before.

Cell Lineage in the Kidney Identified
by scRNA-Seq
We first catalogued kidney cell types of all eight subjects in an
unbiased manner using droplet-based single-cell RNA
sequencing. After data pre-processing and stringent quality
control, transcriptomic data were obtained from 30313 cells
(Figure 1A). The number of cells for each sample varied from
2047 to 8879 and cell viability ranged from 71% to 98%
(Supplemental Table 2). Eleven kidney subsets and six immune
subsets consisting of as few as 21 cells to as many as 13792 cells
per cluster, were isolated by a graph-based clustering approach
and labeled according to lineage-specific markers following batch
correction (Figure 1B). The cell distribution from eight different
kidney subjects was visualized by uniform manifold
approximation and projection (UMAP) (Figure 1C). To define
the character of each cell cluster, differential expression analysis
was carried out to identify mutually exclusive sets of genes and
therefore established markers of particular cell types. Enrichment
of different cell clusters was calculated for each subject respectively
(Figure 1D). The top 20 most differentially expressed markers in
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each cluster were shown in Figure 1E, and the selected cell
lineage-specific marker gene was displayed in Figure 1F. For
example, endothelial cells uniquely expressed CDH5 and KDR,
podocytes uniquely expressed NPHS2 and PODXL, whereas
mesangial cells expressed FN1 and FHL2. Pericyte was labeled
by RGS5 and ACTA2. In addition, proximal tubule cells distinctly
Frontiers in Immunology | www.frontiersin.org
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expressed CUBN, distal tubule cells distinctly expressed SLC12A3,
whereas the loop of Henle cells uniquely expressed CLDN16.
DMRT2 and SLC4A1 were defined as a cell-type specific marker
for intercalated cells while AQP3 were expressed specifically in
principal cells. Fibroblasts expressed many genes encoding
extracellular matrix proteins including COL1A1 and DCN.
A

B C

E F

D

FIGURE 1 | Cell lineage analysis by comprehensive single-cell RNA-sequencing in anti-PLA2R positive IMN and control subjects. (A) Schematic of the scRNA-seq
pipeline. Kidney samples from patients with IMN (n=6) or healthy control subjects (n=2) were collected at the time of clinically indicated renal biopsy or live kidney
donation, respectively. Kidney biopsies were enzymatically disaggregated into single-cell suspensions and loaded onto a microfluidic device for cell barcoding, cell
lysis, reverse RNA transcription, and then scRNA-seq as well as various other analyses. (B) Seventeen distinct cell clusters were visualized by UMAP plotting, with
each cell color-coded for its associated subtypes. The color of the cells represents group origin. (C) UMAP plot of cell clusters from different subjects of IMN patients
and control. The color of cells reflected the individual origin. (D) Bar plots of the percent contribution of cell clusters in kidneys from different subjects. Blocks
represented different subjects, and block height was in proportion to the number of cells. (E) Heatmap of the top 20 most differentially expressed genes in each
cluster to identify mutually exclusive gene sets, which were then used to determine the cell lineage of each cluster. Each column represented a cell cluster, and each
row corresponded to a marker gene for the individual cluster. Transcript abundance ranges from low (purple) to high (yellow). (F) Violin plot of selected marker genes
that identified the clusters generated by UMAP plotting. It was colored by different cell subtypes. PT, proximal tubule cells; LOH, loop of Henle cells; PC, principal
cells; IC, intercalated cells; DT, distal tubule cells; EC, endothelial cells; Pod, podocytes; MC, mesangial cell; DC, dendritic cells; Mac, macrophages; Mono,
monocytes; Fib, fibroblasts; Per, pericyte.
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The comprehensive and detailed cell-lineage-specific marker
genes of different kidney cells were displayed in Table 1.

Identification of DEGs and Enrichment
Analysis in the Kidney Cells of Anti-PLA2R
Positive IMN Subjects
To explore gene expression changes in kidney parenchymal cells,
we performed differential expression analysis of transcriptomes
between IMN patients and healthy donors. DEGs of kidney cells
from the glomerulus and tubules were provided in Datasets 1
and 2, respectively. We defined representative DEGs in
glomerular intrinsic cells (Figure 2A) as well as tubular
intrinsic cells (Figure 2B) by comparing the transcriptional
profile between IMN and control subjects.

Mesangial cells (MCs) of IMN highly expressed IFI6 and
ATF3. IFI6, a gene induced by interferon, which is associated
with the regulation of apoptosis and type I interferon signaling
pathway (24), was upregulated in MCs of IMN. Mesangial cells of
IMN highly expressed ATF3, which was demonstrated to
promote sublytic C5b-9-induced MCs apoptosis through up-
regulation of GADD45A and KLF6 gene expression (25). Besides,
KLF4, UBB, UBC, and DUSP1 were upregulated in endothelial
cells of IMN. Endothelial KLF4 mediated the protective effect of
statins through regulating the expression of cell adhesion
molecules and concomitant recruitment of inflammatory cells
(26), which was implied by GO analysis in our study. UBB and
UBC, both the important component of the ubiquitin pathway,
were elevated in endothelial cells of IMN. They may play an
essential role in the regulation of cell cycle, signal transduction as
well as programmed cell death (27). Endothelial cells expressed
DUSP1, a kind of two-way specific threonine/tyrosine
phosphatase that regulates the mitogen-activated protein
kinase (MAPK) signaling pathway by dephosphorylation of
threonine/serine and tyrosine residues on its target (28) and
regulates cell proliferation and cell growth cycle. Pericytes, a
multifunctional cell-type of the kidney, highly expressed FOS
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that might play a role in the proliferation of pericytes and
respond to PDGF-BB stimulation by phosphorylating both the
PDGF receptor and the MAP kinase ERK-1/2 (29). Pericytes
expressed CCL2 which might play a role in pericyte activation,
proliferation, and differentiation into myofibroblasts during
progressive kidney injury (30). GO enrichment analysis
showed that DEGs were enriched in the regulation of apoptosis
and type I interferon signaling pathway in mesangial cells, the
regulation of programmed cell death, and various cytokine-
mediated signaling pathways in endothelial cells and the
regulation of protein modification in pericytes (Figure 2D),
while KEGG enrichment analysis revealed that DEGs were
mainly associated with the IL-17 signaling, TNF signaling,
NOD-like receptor signaling and MAPK signaling pathway in
endothelial cells as well as pericytes (Figure 2E).

DEGs upregulated in proximal tubules cells (PT) such as
HSPA1A, TNFAIP3, KNG1, and TMSB4X, were enriched in the
regulation of cell proliferation, adhesion, programmed cell death,
and response to cytokines in GO enrichment analysis
(Figure 2D), whereas NFKBIA, CXCL2, JUN, BIRC3 DEGs
were enriched by KEGG enrichment analysis and participate in
IL-17 signaling, TNF signaling, NOD-like receptor signaling, and
NF-kappa B signaling (Figure 2E). Comparison of the DEGs in
the distal tubule cells (DT) displayed enrichment of genes
involved in oxidative phosphorylation, ATP metabolic process,
and cation transmembrane transport (Figure 2D). The loop of
Henle cells (LOH) of IMN had increased expression of PLAU,
KNG1, EEF2, and CAT, which contribute to neutrophil-mediated
immunity, exocytosis, and adherens junction (Figure 2D). A
total of 2160 and 2194 cells were present in the principal cells
(PC) and intercalated cells (IC), respectively. As illustrated in
Figures 2D, E, DEGs of PCs between IMN and control subjects
were enriched in IL-17 signaling, TNF signaling, NOD-like
receptor signaling, and pattern recognition receptor signaling,
of which NFKBIA, JUN, CCL2, UBC were involved. In addition
to the genes responsible for acid secretion, including SLC4A1,
CLCNKB, and ATP6V1F, DEGs of ICs were also enriched
involving in adherens junction, oxidative phosphorylation, and
organic compound catabolic process (Figures 2D, E).

Six clusters of leukocytes in the kidney of IMN were identified
according to cell-specific differential genes, which were
composed of dendritic cells (DC), macrophages, monocytes,
mast cells, plasma cells, and T cells. The DEGs dataset of these
leukocytes is displayed in Figure 2C and Dataset 3, except for
monocytes, which were unable to be analyzed due to insufficient
cell numbers. Also, the deficiency of meaningful differential
genes in plasma cells, T cells, and mast cells was probably
owing to the technical limits of isolating insufficient
corresponding cells, since previous studies have confirmed
their contributions in IMN (31–33). Macrophages highly
expressed genes responsible for the regulation of leukocyte
activation (ZFP36L2, AXL, and RPS3), inflammatory response
(KNG1, ELF3, CXCR4, and LY86), and the antigen processing
and presentation as well as immune response-regulating
signaling pathway (HLA-DPA1, HLA-DPB1, and HLA-DRB1)
(Figures 2D, E). Detailed information on the expression of the
genes discussed above was provided in Dataset 4.
TABLE 1 | Cell-lineage-specific marker genes of different kidney cells.

Cell Type Abbreviation Marker genes

Proximal tubule cells PT CUBN, SLC13A1, LRP2, ALDOB
Mesangial cells MC FHL2, FN1, MYL9, CTGF
Podocytes Pod NPHS2, PODXL, PTPRO
Loop of Henle cells LOH UMOD, SLC12A1, CLDN16
Distal tubule cells DT CALB1, SLC12A3
Intercalated cells IC SLC4A1, ATP6V0D2, FOXI1, DMRT2
Principal cells PC AQP2, AQP3, GATA3
Epithelial cells Epi EPCAM, KRT8, CLDN4
Endothelial cells EC CDH5, PECAM1, KDR, CLDN5
Fibroblasts Fib COL1A1, DCN, LUM
Pericytes Per RGS5, ACTA2, MCAM, PDGFRB
T cells T cell CD3D, TRBC1, CD3E
Plasma cells Plasma IGHG1, JCHAIN, MZB1
Mast cells Mast TPSAB1, TPSB2, CPA3
Macrophages Mac MRC1, CD68, CD163, C1QA, IL1B
Monocytes Mono LYZ, CD14, VCAN, FCN1
Dendritic cells DC CD1C, FCER1A, CLEC10A, IRF8
May 2021 | Volume 12 | Article 683330

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


C

esangial cells, endothelial cells, and pericytes comparing the IMN
cells, loop of Henle cells, principal cells, and intercalated cells between

ws the biological processes or signal pathways involved in different
or signaling pathways. The inner-circle represents gene numbers
ical processes and signaling pathways or the proportion of biological

Xu
et

al.
S
ingle-C

ellP
ro
filing

ofM
em

branous
N
ephropathy

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

M
ay

2021
|
Volum

e
12

|
A
rticle

683330
A B

D E

FIGURE 2 | DEGs and enrichment analysis in the kidney cells of anti-PLA2R positive IMN and control subjects. (A) Representative DEGs in m
patients to healthy donor control. pct.exp: percentage of cells expressing gene. (B) Representative DEGs in proximal tubule cells, distal tubule
IMN patients and control. (C) Representative DEGs in immune cells between IMN patients and control. (D, E) GO and KEGG enrichment sho
kidney cells, respectively. The left side of the circle represents different cell types, while the right side represents different biological processes
involved in cells or biological processes and signaling pathways, whereas the outer-circle represents the proportion of each cell type in biolog
processes and signaling pathways in kidney cells.

30

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Single-Cell Profiling of Membranous Nephropathy
Cell-Cell Crosstalk in Anti-PLA2R Positive
IMN Through Ligand-Receptor
Interactions
To explore the interactions and signaling network of different cell
subsets in IMN, we performed ligand-receptor analysis.
Figure 3A displayed the potential interactions of receptors and
ligands in different cell types of kidneys. CXCL1, CXCL8, or
CCL2 expressed by mesangial cells interacted with ACKR1 in
endothelial cells (Figure 3B), which may participate in
Frontiers in Immunology | www.frontiersin.org 731
neutrophil/macrophage infiltration and inflammation response
(34). FGF1 expressed by podocytes might ameliorate chronic
kidney disease via PI3K/AKT mediated suppression of oxidative
stress and inflammation (35) under the expression of FGFR1 in
mesangial cells (Figure 3C). Moreover, PT expressed PTPRK, an
important cell-cell adhesion regulator realized by reversible
phosphorylation of protein tyrosine residues (36). We found it
may interact with BMP7 from mesangial cells (Figure 3D). EGF,
expressed by the loop of Henle cells, interacts with EGFR or
A

B C D

E F G

FIGURE 3 | Possible ligand-receptor interactions between different cell types in the kidney of anti-PLA2R positive IMN patients. (A) Ligand-receptor signaling
pathways between cell clusters in the kidney. Cell-cell crosstalk frequency ranges from low (blue) to high (purple). (B) Representative ligand-receptor interactions
between mesangial cells and endothelial cells. (C) Representative ligand-receptor interactions between mesangial cells and podocytes. (D) Representative ligand-
receptor interactions between mesangial cells and proximal tubule cells. (E) Representative ligand-receptor interactions between mesangial cells and loop of Henle
cells. (F) Representative ligand-receptor interactions between mesangial cells and fibroblasts. (G) Representative ligand-receptor interactions between mesangial
cells and macrophages. Lines represented interrelations between the mesangial cells and other cells. Lines between the ligand and conjunct receptors were shown.
Only IMN patients (n=6) were analyzed.
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NGR1 in mesangial cells (Figure 3E), which probably plays a role
in cell proliferation (37). Mesangial cells highly expressed SPP1
and become interaction pairs with PTGER4 from fibroblasts
(Figure 3F), possibly involved in the activation of T cells. In
addition to PTGER4 in fibroblasts, we found SPP1 in mesangial
cells might interact with PTGER4 in macrophages (Figure 3G).
The remaining information of cell-cell crosstalk was all displayed
in Figure 4.

DEGs and Enrichment Analysis From Anti-
PLA2R Positive IMN Patients Between
Massive Proteinuria Group and Non-
Massive Proteinuria Group
We displayed cell distribution between the massive proteinuria
group and the non-massive proteinuria group from IMN
patients by a graph-based clustering approach (Figure 4A).
The grouping was based on whether proteinuria reached the
scope of nephrotic syndrome, which is 3.5g per 24h. We then
compared DEGs of proteinuria between the massive proteinuria
group and the non-massive proteinuria group from IMN
patients. The more specific information of DEGs from various
kidney cells in two groups of IMN was shown in Dataset 5. ECs,
MCs, PTs, LOHs, DTs, as well as ICs in IMN patients with
massive proteinuria had elevated expression of KLF6 that might
participate in the glomerular mesangial cell proliferation, ECM
accumulation, and proteinuria secretion (38). All the intrinsic
kidney cells except for podocytes, pericytes, fibroblasts, and
epithelial cells in IMN patients with massive proteinuria highly
expressed SOCS3, a cytokine-inducible protein that might
contribute to the regulation of receptor signaling in immune
Frontiers in Immunology | www.frontiersin.org 832
complex glomerulonephritis, in parallel with proteinuria and
kidney lesions (39). Besides, all tubular cells in IMN patients with
massive proteinuria had a significant expression of MMP7,
which was secreted as a soluble protein from the tubules to the
glomeruli and mediated the impairment of slit diaphragm
integrity, leading to podocyte dysfunction and increased
proteinuria (40). This suggests MMP-7 might be the key
mediator of tubular-to-glomerular crosstalk that promotes
proteinuria and CKD progression.

As exhibited in Figures 4B, C, DEGs between the massive
proteinuria group and the non-massive proteinuria group from
IMN patients were enriched in several common biological
processes. For example, the regulation of apoptosis was
enriched in MCs, LOHs, PTs, DTs, PCs, and ICs, whereas
adherens junctions were enriched in PTs, LOHs, and DTs.
Besides, the overexpressed genes in MCs, PTs, DTs, PCs, and
ICs were mainly enriched in the response to cytokines, while
most of the kidney parenchymal cells were enriched in the
regulation of inflammation and immune response including
TNF signaling, NOD-like receptor signaling, MAPK signaling
as well as IL-17 signaling pathways.
DISCUSSION

Our understanding of the pathogenesis of IMN is limited by an
incomplete molecular characterization of the cell types in the
kidney and interaction between the cells. Given the organ-
specific immunological characteristics of IMN, we performed
unbiased single-cell RNA sequencing for the first time and
A

C

B

FIGURE 4 | DEGs involved in biological process and intercellular signaling in the kidney from anti-PLA2R positive IMN patients with massive proteinuria compared to
non-massive proteinuria. (A) UMAP plot of cell clusters between massive proteinuria and non-massive proteinuria. The color of cells reflected different groups.
(B, C) KEGG and GO enrichment analysis showed that upregulated DEGs were mostly involved in apoptosis, cell adhesion, and regulation of inflammation and the
immune response in massive proteinuria patients, compared with non-massive proteinuria subjects.
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identified all previously described cell types in the kidney. The
DEGs in most kidney parenchymal cells were primarily enriched
in the regulation of inflammation and immune response
including IL-17 signaling, TNF signaling, NOD-like receptor
signaling as well as MAPK signaling. Besides, the cell-cell
crosstalk highlighted the extensive communication of
mesangial cells, which infers great importance in IMN.

We provided abundant information of cell-type-specific
gene expression and distinct signaling pathways by analysis of
DEGs as well as enrichment. Glomerular cells including MCs,
ECs, and pericytes, primarily participated in the regulation of
programmed cell death, inflammatory process, and immune
regulation, whereas tubular cells are mainly involved in
adherens junction, oxidative phosphorylation as well as
regulation of inflammation and immunity. HSPA1A, ATF3,
IFI6, and ITM2C, which were significantly expressed in all
glomerular cells and enriched in regulation of apoptosis, have
not yet been implicated in IMN pathogenesis. Also, DEGs of the
ECs, pericytes, PTs, and PCs, are related to the inflammatory
process and immunity. Particularly, Th17 cells are key players
in kidney autoimmunity by mediating fundamental
inflammatory cascades and thereby may be of vital
importance in IMN (41, 42). Previously, studies reported that
IL-17 has several direct effects on kidney parenchymal cells
facilitating leukocyte transmigration, promoting interaction
with T-cells, and impacting kidney integrity (43, 44). These
effects are inherent to the pathophysiological cascade in kidney
autoimmunity (45). For example, a study demonstrated that
tubular epithelial cells showed signs of disrupted cell-cell
junctional integrity and loss of E-cadherin expression after
exposure to IL-17 (44, 46), which is consistent with our
scRNA-seq findings in kidney interstitial cells. We also
observed extensive enrichment of NOD-like receptors (NLRs)
signaling in glomerular as well as tubular cells. NLRs are
recently identified intracellular PRRs that are essential to
innate immune responses and tissue homeostasis. Emerging
evidence suggested a potential role of NLRs in kidney disease
(47, 48). Expression of Nod1, Nod2, or RICK induces NF-kB
activation (49). In addition to NF-kB, Nod1 and Nod2 mediate
the activation of JNK and p38 in response to microbial ligands
(50, 51), which are expected to participate in the transcriptional
activation of proinflammatory genes. However, to the best of
our knowledge, none of the genes or pathways discussed above
were explored in IMN patients. Thus, further studies are needed
to validate our results and provide novel insights into the
pathogenesis of human IMN.

The cell-cell crosstalk through ligand-receptor interactions
was reported to show considerable importance in anti-PLA2R
positive IMN pathogenesis (52). We focused on the regulation of
inflammation and immunity between different cells, especially
mesangial cells for their extensive communication with other
c e l l s i n ou r s t udy . A s t udy demons t r a t e d th a t
lysophosphatidylcholine might stimulate EGF receptor
transactivation and downstream MAP kinase signaling
resulting in mesangial hypercellularity (53), while EGF
similarly stimulated MAPK (ERK1/2) in HK-2 cells and
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consequently mediate cell proliferation (37), which might
imply crosstalk between glomerular and tubular cells.
Macrophages highly expressed PTGER4, which has been
shown to drive the differentiation of Th1 cells and proliferation
of Th17 cells (54). While SPP1, also known as osteopontin
(OPN), was upregulated in mesangial cells. Coincidentally, a
study demonstrated that OPN functionally activates DCs and
induces their differentiation toward a Th1-polarizing phenotype
(55), which implies the possibility of communications between
macrophages and mesangial cells. Furthermore, there are some
hints that CXCL1, CXCL8, or CCL2 expressed by mesangial cells
interacted with ACKR1 in endothelial cells. ACKR1, better
known as Duffy antigen receptor for chemokines (DARC or
Duffy), is usually thought to regulate the innate and adaptive
immune response by acting as a chemokine reservoir or
scavenger, and it seems to be a negative regulator of
inflammation and immunological stimuli through combination
with chemokines including CXCL1, CXCL8 and CCL2 (56).
Chaudhuri et al. also demonstrated that vascular endothelial
cells may induce Duffy protein to regulate leukocytes and
chemokine trafficking (57). The communication of cells in the
kidney is highly dynamic but more efforts are essential to
elucidate the precisely controlled process.

As a crucial clinical indicator in various kidney diseases,
proteinuria drew our attention as a matter of course. The
enrichment analysis revealed that most of the intrinsic kidney
cells were involved in inflammatory pathways in IMN patients
with massive proteinuria, suggesting substantial functions in the
disease setting. MAPK signaling was associated with proteinuria.
A recent study reported that p38 MAPK mediated secretory
phospholipase A2 group IB-induced autophagy in podocytes
and promoted podocyte injury via activation of the mTOR/
ULK1ser757 signaling pathway, which consequently lead to
proteinuria (58). ERK and p38 pathways also mediated
activation of calcium-independent phospholipase A2g, which
plays an important role in complement C5b-9-induced
glomerular epithelial cell (GEC) injury and proteinuria (59).
TNF signaling was also involved in IMN progression with
proteinuria. Active membranous glomerulonephritis leads to not
only proteinuria but also increased urinary TNF excretion (60).
However, inhibition of TNF signaling might attenuate kidney
immune cell infiltration in experimental membranous
nephropathy (61). Also, circulating tumor necrosis factor
receptors (cTNFRs) were suggested to predict renal progression
in patients with IMN accompanied by nephrotic syndrome (62).

However, there were several limitations to our study. First, the
number of patients in this study was small, which may inevitably
lead to individual differences. To reduce this difference,
additional specimens are needed to verify the results of our
study. Second, as the podocytes are particularly important and
even the core for membranous nephropathy (63–65), podocytes
were rarely detected in this study is one major limitation.
Currently, it is still a major challenge for the capture of rare
cells, such as podocytes in the application of single-cell
transcriptomics technologies to kidney diseases. The podocytes
have not been successfully annotated in several previous single-
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cell sequencing studies focusing on kidney diseases because of
the very small proportion of podocytes after digestion of needle
kidney biopsy tissue (66–69). In our study, we clearly captured
and annotated the population of podocytes. There were 27 and
23 podocytes captured in 6 patients with IMN and 2 healthy
donors, respectively. However, we only found one differentially
expressed gene due to the small number of podocytes captured in
the disease group as well as healthy control group. A further
increase in throughput of the next generation of single-cell
sequencing techniques or extracting the glomerular from
kidney tissue before dissociation into single cells may prove
efficient to capture enough podocytes for subsequent analysis
(70). Third, as no other kidney disease control group was
included in this study, the changes of DEGs are not specific for
anti-PLA2R positive IMN and the changes may be generic to
being proteinuria or glomerular inflammation.

Overall, scRNA-seq served as a feasible and valuable
technique performed in IMN patients. We demonstrated cell-
specific transcriptional profiles in the kidney, anti-PLA2R
positive IMN-associated novel genes, signaling pathways
involved, and potential pathogenesis concerning ligand-
receptor interactions. A better understanding of the molecular
mechanism in IMN will provide yet unexplored opportunities to
develop new therapies for kidney diseases. The results discovered
in our study will be further validated using tissue staining,
functional studies in vitro using cell lines or primary human
cells, and animal models of IMN.
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The immune system plays a vital role in health and disease, and is regulated through a
complex interactive network of many different immune cells and mediators. To understand
the complexity of the immune system, we propose to apply a multi-omics approach in
immunological research. This review provides a complete overview of available
methodological approaches for the different omics data layers relevant for
immunological research, including genetics, epigenetics, transcriptomics, proteomics,
metabolomics, and cellomics. Thereafter, we describe the various methods for data
analysis as well as how to integrate different layers of omics data. Finally, we discuss the
possible applications of multi-omics studies and opportunities they provide for
understanding the complex regulatory networks as well as immune variation in various
immune-related diseases.

Keywords: multi-omics, systems immunology, integrative analysis, immune-related diseases, immune variation
INTRODUCTION

Infections cause millions of deaths each year, and the current COVID-19 pandemic underlines the
devastating effects of these communicable diseases. At the same time, the incidence of immune-
related diseases such as atherosclerosis (1) and autoimmune diseases such as type 1 diabetes mellitus
(2) have been increasing. All these diseases are related to or mediated by the immune system. Thus,
the immune system plays a vital role in health and disease, and it is our defense mechanism against
harmful substances, infectious diseases and cancer. Within a properly functioning immune system,
immune responses should be kept in a certain range, as both hypo-activation and hyper-activation
lead to disorders of the immune system. Understanding how the immune system works and what
causes the immune system disorders may help us to efficiently fight against immune-
related diseases.

However, getting a comprehensive understanding of the immune system is a challenging task.
First of all, the immune response is mediated through a complex interactive network of many
different immune cells and molecules, such as cytokines, immunoglobulins, and metabolites. At the
same time, this network is highly variable depending on the exact threat of the wide variety of
pathogens and other substances it’s responding to. To make things even more complex, the immune
org June 2021 | Volume 12 | Article 668045137
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response to a certain stimulus or infection is highly variable
between individuals, leading to population heterogeneity. This
heterogeneity is exemplified by differences in severity of patients
suffering from the same infectious disease (3), variability in
vaccine efficacy (4), and variation in responses to the same
medical treatment (5). Many factors contribute to the immune
network and the inter-individual variation of immune responses,
highlighting both the promise and the challenge of multi-
omics studies.

Until now, omics data have been used in many immunological
studies to identify the determinants of immune variation and
molecular bases of the immune process in different population
groups. Properly designed omics studies should make use of
appropriate measurements as well as reasonable analytic
approaches, which depend on their specific research question.
Taking omics studies on COVID-19 as an example, a genome-
wide association study revealed eight genetic regions to be
associated with critical illness in COVID-19. By integrating
both genome and transcriptome data, the authors prioritized
one gene, IFNAR2, that might play a causal role in COVID-19 (6).
Another study, focusing on transcriptome data of immune cells
from the lung and blood, identified several pro-inflammatory
immune pathways related to the pathogenesis of COVID-19 (7).
A proteomics and metabolomics study investigated the
changes in COVID-19 patient sera, and identified molecular
changes implicating dysregulation in macrophage pathways,
complement activation, and platelet degranulation, as well as
suppression of metabolic pathways (8). A cellomics and single-
cell transcriptome study also revealed dysregulation of the
monocyte compartment as well as two neutrophils clusters
specific to severe COVID-19 patients (9). Moreover, a study
integrating single-cell transcriptome, cellomics, epigenome and
proteome comprehensively characterized complex dynamic
changes in immune cells. Their results disclose an elevation of
Frontiers in Immunology | www.frontiersin.org 238
IFN-act ivated megakaryocytes and erythroid cel ls ,
hypomethylations around immune signaling genes, and co-
expression modules associated with clinical outcome (10).
Additionally, a study on fecal fungal microbiota of COVID-19
patients showed enrichment of Candia albicans and a highly
heterogeneous mycobiome configuration during hospitalization
(11). From different angles, these studies make use of omics data
to provide insights in the molecular pathology of COVID-19,
which can eventually lead to improved therapeutic strategies.

In this review, we present an introduction to multi-omics
studies to investigate immune function and variation. The review
is split into three parts. In the first section, we describe in brief
about the different layers of omics data relevant for
immunological research, including genome, epigenome,
transcriptome, proteome, metabolome, digestive system
microbiota and cellomics (12) [also called cytomics (13)]
(Figure 1), and the commonly used methodological
approaches to measure these different types of omics data. We
also discuss important considerations and recommendations for
an appropriate study design. In the second section, we discuss
how to analyze and integrate multiple omics platforms, including
system genetic approaches to identify genetic factors, integration
among multiple genetic profiles, as well as the integration and
association with other omics data layers. We demonstrate
how recent studies applied a multi-omics approach to the
immune system researches, and we discuss the interpretation
of results from different approaches and their importance in
immunological studies. In the third section, we discuss the
immunological subjects that need specific attention and may
see progress in the next few years. As for detailed information on
computational algorithms and models in multi-omics
integration (14, 15), imputation on missing omics data (16),
and strengths and limitations of system approaches in infectious
diseases research (17), we refer readers to other recent reviews.
FIGURE 1 | Overview of omics data.
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MEASUREMENTS OF OMICS DATA

We can identify potential immunological mediators and study
immune phenotypes with a wide range of omics comprising of
various molecular and cellular phenotypes including genome,
epigenome, transcriptome, proteome, metabolome, digestive
system microbiota and cellular phenotypes such as cell
composition (Table 1). A single omics data layer characterizes
a specific biological process from one aspect, for example,
transcriptome, but this can only provide insights on genes at a
transcriptional level. To achieve a holistic picture of the immune
system, a systematic collection of multi-omics data is often
required. The tissue (or source) to be measured is another
important aspect to be considered. For example, the genome is
usually regarded as a stable feature for each individual and
collected from an easily accessible tissue, such as blood. Only
in some specific contexts, somatic mutations acquired after birth
have to be considered and measured in specific tissues (18).
However, many other types of omics, such as transcriptome,
proteome and metabolome, vary between cell types and tissues.
Therefore, it is important to consider the tissue in your
experimental design and aim to get as close to the relevant
tissue as possible.

Given the complexity of the immune system, there is no
golden standard for what to collect in multi-omics studies. The
necessary data depends on the research question and subjects.
Understanding the different layers of omics data is helpful for
setting up an appropriate study design. Therefore, in this part, we
introduce features and categories of different omics, and describe
important considerations when generating these data.
GENOME VARIATION MEASUREMENT

Genotyping detects diversity in the genome. It describes small
variations, such as single-nucleotide polymorphisms (SNPs),
insertion/deletions (InDels) as well as large-scale mutations
such as insertions, deletions and amplifications. Genetic
diversity can lead to variation in individual immune
function (19).
Frontiers in Immunology | www.frontiersin.org 339
To date, many techniques can be used for detecting
genotypes, including DNA sequencing, DNA microarrays (also
known as genotyping chips) and PCR-based methods. These
approaches can be categorized based on their measurement
scales (high-throughput vs. low-throughput methods) or based
on whether they include unknown variants (discovery vs.
screening methods). Classical sequencing-based approaches
detect genetic variants in a nearly unbiased manner on the
genome (whole-genome sequencing) or within the exome
regions (whole-exome sequencing), including known or novel
SNPs as well as structural mutation such as short insertions,
deletions, and copy number variations.

Considering the cost and effectiveness of genotyping scales
and cohort sizes, most of the population-based association
studies choose genotyping screening methods, such as DNA
microarrays. These methods measure thousands to millions of
known SNPs in well-studied organisms, such as humans and
mice. The targeted polymorphisms depend on the chip designs.
For example, Immunochip contains 196,524 polymorphisms
(718 InDels and 195,806 SNPs) on most reported loci involved
in autoimmune and inflammatory diseases (20), whereas other
custom genotyping chips contain loci designed for specific
research areas, such as Metabochip (21) or cardiovascular
disease chip (22). The number of variants that can be detected
using genotyping chips has increased over the years, but even the
high-density 5 million SNPs chip (Illumina OMNI5) covers only
a small fraction of the 3.3 billion bases in the human genome.

In order to improve the power in discovering genetic
associations on the regions poorly covered by DNA
microarrays, genotype imputation approaches are often used to
expand the coverage. For example, a commonly used genetic
imputation server (https://imputationserver.sph.umich.edu/
index.html#)! takes the ~60,000 public available human
haplotypes, covering ~40,000,000 SNPs, as a reference to
impute millions of missing SNPs based on the measured
genotypes and linkage disequilibrium (LD) structures (23).

Before association analysis, genotype data should pass a
standard quality control (QC) at both individual level and SNP
levels. Individuals with discordant sex information, outlying
missing genotype or heterozygosity rate should be excluded
TABLE 1 | Typical approaches in omics measurements.

sequencing-based microarray-based others

genetics whole-genome-seq, whole-exome-seq Illumina OMNI5, Immunochip etc. –

epigenetics ATAC-seq, whole-genome bisulfite-seq, RRBS-seq, DNase-
seq, FAIRE-seq, ChIP-seq, etc.

MethylationEPIC BeadChip, ChIP-chip, etc. –

3D
chromosome

Hi-C, etc. – –

gene
expression

RNA-seq, scRNA-seq, SLAM-seq Affymetrix Genome U133 array, Illumina Whole-Genome
Gene Expression BeadChips, etc.

–

protein level – – Immunoassay, MS -based
approaches

metabolites – – NMR, MS-based
approaches

microbiome 16s rRNA-seq, metagenomics, etc. – –

cellomics single cell sequencing approaches – FCM, CyTOF
June 2021 | V
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(24). Duplicates and relatives could be identified by calculating
identity by descent (IBD), and a multi-dimensional scaling plot
merging with reference data such as the 1000 Genomes project
(25) could help with the identification of individuals of divergent
ancestry. SNPs failed in genotyping and/or imputation and SNPs
with low frequency and/or that deviate from the Hardy-
Weinberg equilibrium are commonly removed before
association analysis, especially in array-based studies, because
those signals usually relate to bad genotyping quality. However,
some SNPs with low frequency may also contribute to rare
diseases or phenotypes. With the increase in genotyping
quality, more and more recent studies focus on the function of
rare alleles (minor allele frequency [MAF] < 0.01) (26–29).
EPIGENOME AND 3D CHROMOSOME
MEASUREMENT

Epigenetics describes the study of chromatin traits (either in
DNA or histones) that do not involve changes in the nucleotide
sequence. Epigenetics measurements are mainly characterized by
the changes in histone modification (methylation and
acetylation), DNA methylation, chromatin modification,
chromatin accessibility, and chromosome structure.

DNA methylation is the process of adding methyl groups to
DNA molecules, almost exclusively in CpG dinucleotides with
the cytosines on both strands being methylated. This process
usually acts in promoter regions to repress gene transcription,
and abnormal hypermethylation, which results in transcriptional
silencing, is often associated with immune diseases or used as a
biomarker (30). Genome-wide techniques, such as whole-
genome bisulfi te sequencing (WGBS) (31) , reduce
representation bisulfite sequencing (RRBS-seq) (32) and other
non-targeted DNA methylation profiles, provide an opportunity
to discover novel biomarkers. Other techniques, such as bisulfite-
amplicon sequencing (BSAS) (33) and methylation arrays (34),
detect the methylation status of CpG dinucleotides. Similar to
genotyping arrays, the targeted regions from methylation arrays
are based on the chip design. For the study of the human
immune system, some well-established arrays can provide
comprehensive coverage. For example, MethylationEPIC
BeadChip covers over 850,000 methylation sites, making it
ideal for an epigenome association study within big cohorts (35).

As the essential proteins that pack and order the DNA into
structural units, histones play a role in gene regulation (36).
Histone modification describes the post-translational
modifications of histones, including methylation, acetylation
and others. Histone methylation often occurs as arginine (R),
lysine (K), or histidine (H) residues of histone H3 or H4 being
monomethylated (me1), demethylated (me2), or trimethylated
(me3). Array-based and sequencing-based approaches, such as
ChIP-chip and ChIP-seq (37), are used to identify specific
histone modifications that bind to DNA regions or domains.

Chromatin modifications and accessibility is another
important aspect of epigenetic changes. One of the most
widely-used techniques to capture chromatin accessibility is
Frontiers in Immunology | www.frontiersin.org 440
called Assay for Transposase-Accessible Chromatin using
sequencing (ATAC-seq). A standard “bulk” ATAC-seq
measurement detects genome-wide open chromatin within a
pooled sample or tissue, while in order to capture cellular
heterogeneity, single-cell ATAC-seq measures chromatin
accessibility in thousands of individual cells, which can
generate genome-wide profiles from 10k to 100k cells per
experiment (38). Alternative techniques are also used to
investigate chromatin phenomena, such as DNase-seq and
FAIRE-seq, which measure open chromatin in regulatory
regions, MNase, which identifies well-positioned nucleosomes,
and ChIP-seq, which is used to detect binding sites of specific
transcription factors (39).

Most epigenetic measurements also come with technical
errors and biases. Biological replicates and technical replicates
can help to characterize variability between samples and
sequencing runs. Putting replicates of different conditions in
the same batch is also important to avoid batch effects
confounding treatment effects. Large projects, such as the
Encyclopedia of DNA Elements (ENCODE), have provided
standard pipelines for processing many types of epigenetic
data, such as ChIP-seq and ATAC-seq. However, this is not
applicable in all cases. Applying appropriate QC strategies and
software that accounts for bias effects according to the
experiment design is essential to obtain robust results. To
increase the coverage of epigenetic measurements, several
methods, such as ChromImpute (40), Melissa (41), Avocado
(42), and SCALE (43), provide imputation approaches for
different epigenetic markers. However, the existing imputation
approaches have several limitations (16), and are not as widely
applied as genotype imputation methods.

3D chromosome structure describes how chromosomes are
folded, packaged, and organized into functional compartments,
and how different compartments are interconnected. Orthogonal
ligation-based approaches include DNA-FISH, which can help
with nuclear architecture visualization, and chromosome
conformation capture (3C) techniques. One of the 3C
techniques, Hi-C, is the most widely used approach to detect
interactions between different genome regions (in gigabase-
scales) (39, 44). Single-cell adaptation of Hi-C methods are
also used to investigate the interactions in individual cells (45).

Ligation-based approaches have the limitation of detecting
DNA fragments connected with multiple genomic regions. To
overcome this limitation, orthogonal ligation-free methods
including genome architecture mapping (GAM) (46), split pool
recognition of interactions by tag extension (SPRITE) (47) and
chromatin-interaction analysis via droplet-based and barcode-
linked sequencing (ChIA-Drop) (48) were developed.
TRANSCRIPTOME MEASUREMENT

The transcriptome comprises all RNA molecules, both coding
and non-coding transcripts, in a single or population of cells.
Traditional qPCR techniques can only quantify a limited number
of genes at the same time. The most commonly used high-
June 2021 | Volume 12 | Article 668045
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throughput techniques are RNA sequencing (RNA-seq) and
microarray, and they can detect a large number of genes.
Similar to genotyping methods, a sequencing-based approach
(RNA-seq) can quantify the entire transcriptome, while
microarray-based approaches (e.g., Affymetrix Genome U133
array and Illumina Whole-Genome Gene Expression
BeadChips) are designed to target most known genes. In
addition, a typical RNA-seq can detect alternative splicing and
rare isoforms, which microarray-based techniques cannot.

Certain coverage is required for sequencing data, which
depends on the aim of the study. For instance, a bulk RNA-seq
study for human differential expression profiling requires 10-25
million reads per sample, while alternative splicing or allele-
specific expression analysis need 50-100 million, and identifying
novel transcripts requires >100 million reads per sample.

However, a “bulk” like measurement of transcriptome cannot
deal with the cell heterogeneity and can be influenced by cell
composition changes. Single-cell RNA sequencing (scRNA-seq)
was designed to uncover the transcriptome diversity in
heterogeneous samples, characterizing the transcriptome in cell
resolution. There are several approaches of scRNA-seq, among
them are plate-based (Smart-seq2) (49) and droplet-based (10x
Genomics) the most commonly used ones. Usually, as few as
10,000 to 50,000 reads per cell are enough to detect cell types, and
500,000 reads can cover most of the genes (50).

In order to increase exonic coverage and accuracy of gene
quantification, polyA selection library preparation is commonly
applied in scRNA-seq approaches such as 10x scRNA-seq (51).
This will, however, miss the important immune repertoire
profiling, such as B-cell and T-cell receptors, which is mainly
distinguished by their 5’ mRNA sequences. Thus, sequencing
facilities, such as 10x genomics, provide full length paired B-cell
and T-cell repertoire sequencing, simultaneously, when
examining cellular gene expression level. Combined with
transcription measurement, this information can improve our
understanding of clonal expansion and better characterize
immune cell heterogeneity and functions (52).

SLAM-seq detects the newly synthesized RNAs using a
metabolic RNA labeling approach. Compared to the other
scRNA-seq techniques , this method can track the
transcriptome dynamics (53). For example, scSLAM-seq was
applied to characterize the onset of infection with lytic
cytomegalovirus in single mouse fibroblasts (54).

The transcriptome reflects the dynamic changes in biological
processes, which is much more unstable. So, an appropriate
sampling strategy on transcriptome data is crucial. In addition to
the quality control, normalization is usually performed within a
sample and between samples. When considering comparison
analysis, it is also necessary to have biological replicates and
check for batch effects using clustering-based approaches. There
are many computational tools handling batch effects. Of note,
integration approaches (55), as included in Seurat (56) and
Harmony (57) packages, are commonly used in scRNA-seq
analysis which detect the consistent cell type signals from
different batches or measurements. However, when the batch
difference is confounded with other group information, it will be
Frontiers in Immunology | www.frontiersin.org 541
tough to filter out the batch effects. In addition to batches, it is
also important to consider other potential confounders in
experiment design. For example, transcriptional differences
were observed between males and females in COVID-19
patients (58), thus a gender-balanced design in a case-control
study will lead to an unbiased conclusion for COVID-19.
Moreover, when considering sampling tissues for immune
responses, circulating leukocytes are often measured for
systemic inflammatory responses, while inflamed tissues are
measured for local inflammatory responses. In order to expand
the capacity, deconvolution approaches have been applied to
bulk RNA-seq data to characterize cell type compositions (59,
60), while expression recovery methods have been applied to
single-cell RNA-seq data to reduce the dropout noise (61, 62).
Like imputation approaches in genome and epigenome studies,
one should be aware and careful with the potential false signals in
these recovery or deconvolution approaches.
PROTEOME AND METABOLOME
MEASUREMENT

Proteins are the major transcriptional products and functional
units in the immune system. Immune molecules like
immunoglobulins and cytokines are usually detected and/or
quantified by immunoassays such as immunofluorescent
staining, enzyme-linked immunosorbent assay (ELISA),
enzyme multiplied immunoassay technique (EMIT), or mass
spectrometry (MS)-based approaches.

In addition to independent measurement, proteins can be also
measured together with RNA transcripts. CITE-seq provides an
opportunity of identifying surface proteins along with RNA-seq.
This approach is often used for cell labeling in scRNA-seq (63).
Cells in different research groups (e.g., under different
treatments, from different tissues) could be labeled with
different antibodies as hashtags, then sequenced together as
one pool. This process has two advantages: decreasing cost and
excluding potential batch effects. In addition, as we also know
that some immune cell types have specific cell markers, this
approach can also be used to identify cell types. For example, the
detection of CD3e, CD4 and CD8a proteins on the cell surface
could help to distinguish CD4 T cells from CD8 T cells (64).
Moreover, there is a new technique called INs-seq, which can
measure intracellular protein activity along with scRNA-seq.
This new technique shows a large potential of applications in
immune-related studies (65).

The study of metabolic processes that regulate immune cell
responses, which is referred to as immunometabolism, has
become an exciting area in translational research, and is paving
the way for novel therapies in immune-related diseases. The
intermediate or end products of cellular metabolism are
metabolites, which include, but are not limited to, lipids, fatty
acids, amino acids, bile acids, and cholesterols. Considering the
regulatory effects of metabolites on the immune response (12, 66,
67), the metabolome has become an important subject to study
in immunological research.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chu et al. A Review of Multi-Omics Approaches
Approaches to study the metabolome can be classified into
targeted and non-targeted techniques. Nuclear magnetic
resonance (NMR) spectroscopy is one of the most commonly
used techniques, detecting specific nuclei in the target molecule
(68). Compared to NMR, mass spectrometry (MS)-based
approaches are more high-throughput and quantify
metabolites in a non-targeted way, which detect mass-to-
charge ratio (69). However, MS-based approaches have a
limitation in annotating metabolites, which is the major
drawback of this method in contrast to NMR. Metabolites data
could be acquired from different sources of samples. Among
them, circulating metabolites are the most commonly measured.
There are also many studies about fecal and urine metabolites.

Similar to transcriptome analysis, a proper normalization
(usually a log transformation) is required in both the proteome
and metabolome data process. Secondly, biological replicates and
batch effects have to be taken into consideration as well. In
addition to linear regression, more advanced computational
tools, such as ROIMCR (70), can also be used to reduce the
batch effects and to identify metabolites that associate with
immune responses. In terms of sampling tissues, in addition to
blood cells and inflamed tissues, proteome and metabolome can
also be measured in urine, which is thought to be a rich source
but underestimated in recent studies (71–73). In addition, fecal
metabolites are usually studied together with microbiota, which
affects immune homeostasis and susceptibility of the host to
immune-mediated diseases. Of note, there is a recent study
reporting a reference map for serum metabolites (74), which
can serve as a guide to control for irrelevant confounders in
serum metabolite studies.
DIGESTIVE SYSTEM MICROBIOTA
MEASUREMENT

Microbiota refer to all micro-organisms in a certain
environment, for example the human digestive system. It has
been reported to vary among individuals, to influence host
immune functionality and to be involved in immune-mediated
disease pathology (75–77). The commonly used approaches to
study microbiota include 16s rRNA sequencing and
metagenomics sequencing. After excluding host (human)
reads, microbiota reads are aligned to the known microbiome
genomes to identify the taxonomies and abundance. While there
are also other omics approaches including metatranscriptomics,
metaproteomics, and metabolomics, which target transcripts,
proteins, or metabolites from microbiota (78).

Of note, studies on human microbiota usually have relatively
low concordance compared to other omics data studies. A recent
study has reported a number of host variables that could
confound human gut microbiota researches. To be exact, body
mass index (BMI), sex, age, geographical location, alcohol
consumption, bowel movement quality (BMQ), and diet
should be balanced in cases and controls when comparing gut
microbiota compositions (79). In the context of sample
collection, most of the microbiota samples are acquired from
Frontiers in Immunology | www.frontiersin.org 642
the stool, while urine and exhaled gas could be another
important resource for microbiome detection (80, 81).
CELLOMICS MEASUREMENTS

Cellomics measurements often reveal the systemic responses at
the level of cells and tissues, typically including cell composition,
cellular localization and trafficking analyses. Cell composition is
measured as cell type abundance or proportion, which is
commonly quantified by flow and mass cytometry (82) (FCM
and CyTOF) or single-cell sequencing techniques. With the help
of cell surface markers or cellular-specific expression markers,
both techniques can characterize hundreds of circulating cell
subpopulations covering major immune cells involved in innate
and adaptive immune responses (i.e., neutrophils, monocytes,
lymphocytes, and their subtypes). Additionally, high-content
screening (HCS) is commonly used to track cellular changes,
including their localization, trafficking and morphologic
phenotypes (83, 84).
SYSTEMS ANALYSIS ON OMICS DATA

After data collection and pre-processing with appropriate
strategies, the next big challenge lies in linking different omics
datasets and clinical phenotypes. For a certain trait or disease, a
systems model can be built to specify the role and effect of
different data layers. In this model, the qualitative or quantitative
characteristics are linked by their relationships, which need to be
estimated via comparison, association and other systems
approaches. These links can simply be a correlation, or a
regulatory or causal effect. In this section, we introduce general
system approaches among different omics data and provide
representative examples of how they can be applied in
immunological studies.
GENOME-WIDE ASSOCIATION ANALYSIS
AND QUANTITATIVE TRAIT
LOCUS MAPPING

Genome-wide association studies (GWAS) aim to scan the whole
genome to find genetic determinants of certain traits. When
considering a binary trait (e.g., case-control), we compare allele
frequency in two groups of individuals, for example one disease
group and one healthy group. A chi-squared test is often applied
to test for statistical significance. It is usually considered that
there are ~1,000,000 independent loci in the human genome, so a
p-value less than the Bonferroni corrected threshold of 0.05/
1,000,000 (5 × 10-8) is regarded to be genome-wide
significant (85).

To date, GWAS have identified ~5000 genetic risk loci of
immune-related diseases in ~400 studies (86). Those findings
improved our understanding of genetic factors influencing
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immune-mediated diseases, further pointing to the genetic basis
of pathology as well as treatment targets.

Generally, GWAS identify pathogenetic genetic factors
contributing to phenotypes (diseases), though those variants
will not cause disease directly but affect intermediate
molecules. Quantitative trait locus (QTL) analysis is a
statistical method to discover the genetic basis of the
intermediated phenotypes, such as gene expression (eQTL)
(87), splicing (sQTL) (88), metabolites (mQTL) (29),
methylation (meQTL) (89, 90), and immune traits (91, 92).

After data normalization, a linear regression between each
genetic variant and each quantitative trait is applied. Covariates
are crucial aspects of the regression model of QTL analysis. Based
on the type of omics, different covariates should be included in
the model to correct the detected phenotypes. In general, basic
host features such as age and sex are considered, and a
population structure has to be additionally taken into account,
especially in large cohorts with samples from admixed ancestry
(93, 94).

eQTLs are the associations between SNPs and expression of
genes, which provide insights of the function of genetic variants.
eQTLs can explain 10% - 50% heritability of a phenotype/disease
(95), which means that gene expression variation is one of the
major consequences of genetic variants. It is very useful for
prioritizing pathogenic genes when there is an association
between a gene expression and a pathogenic genetic variant.
Based on the position, eQTLs are classified into cis-eQTL (eQTL
within 1Mb of the gene) and trans-eQTL (eQTL located outside
1Mb of the gene). Among them, trans-eQTLs are more tissue-
specific than cis-eQTLs (88). Of note, tissue-specific eQTLs
provide a way for prioritizing pathogenic tissues (96).

QTL analysis on epigenome identifies the associations
between genetic variants and epigenetic modification. Most
genome-wide significant disease-associated loci (~93%) are
located in non-coding regions (97), particularly, regulatory
elements identified by ENCODE (98) and Roadmap projects
(99). These observations highlight the importance of epigenome
in the genetic regulation of diseases and immune functionality.
Similar to eQTL analysis, this analysis could help us find the
potential epigenetic mechanism responsible for the association
between genetic variants and immune traits/diseases. For
example, a study investigated genetic variants that affect the
activity of cis-regulatory domains (aCRD-QTLs) or correlation
structure within cis-regulatory domains (sCRD-QTLs) in 317
lymphoblastoid and 78 fibroblast cell lines, and their
consequence on gene expression (100). At the same time,
genetic variants can also affect methylation (meQTL) by
influencing the binding of DNA methyltransferase (DNA
MTase). Large meQTL studies in blood samples showed
significant enrichment in autoimmune diseases such as
ulcerative colitis and Crohn’s disease (101).

pQTL mirrors the associations between genetic variants and
protein level. About 40% of cis-protein quantitative trait loci
(pQTLs) are also eQTLs, as expected, indicating a sequential
genetic regulation between gene expression level and protein
levels. By applying pQTL analysis, we could identify the potential
Frontiers in Immunology | www.frontiersin.org 743
mechanism, at the protein expression level, behind the
association from genetic variants to immune-related
phenotypes. Same as with cis-eQTLs, cis-pQTLs are also
located around transcription start sites (TSS). Notably, pQTL
showed a significant enrichment on missense, 3UTR and splice
region (102). pQTLs could also help with prioritizing causal
proteins/genes of immune traits/diseases. For example, a pQTL
of serum IL18R1 and IL1RL1 also associates with atopic
dermatitis. This association between genetic locus and protein
level indicates a possible involvement of IL18R1 and IL1RL1 in
atopic dermatitis pathology (102).

Metabolites that mediate the association between genetic
variants to immune functionality and immune diseases could
be discovered in an mQTL analysis. More than 140 genomic loci
are associated with circulating metabolite features explaining a
median 6.9% heritability (103). Overlaps between mQTLs and
immune traits QTLs suggest the role of metabolic processes in
the genetic regulation of immune functionality. For instance, a
mQTL study indicates that mQTL loci ARHGEF3 (rs1354034)
and LRRC8A (rs13297295) also affect platelet function and
neutrophil function, respectively (104).

Immune phenotypes such as circulating immune cell
proportion and cytokine production capacity in response to
stimulations are crucial parameters when characterizing
immune activities. Understanding the genetic determinants of
immune phenotypes can provide insights into immune function
and immune-mediated diseases. A human functional genomics
project has identified >20 genetic factors determining immune
cell proportions and cytokine production upon stimulations,
which provided a link between genetic control and inter-
individual variation (92, 105).
INTEGRATION OF MULTIPLE GENETIC
ASSOCIATION PROFILES

In the context of immunological research, multiple diseases, and
molecular and cellular phenotypes can be regulated by the same
genetic factors, indicating an internal association between them.
Integration with multiple genetic profiles can provide insights
and build connections between associated phenotypes. Ideally,
such genetic profiles can be directly built from GWAS and QTL
analysis of different layers from the same individuals. Otherwise,
they can be also collected from different population-based
cohorts. A number of computational approaches have been
developed to discover the link. In particular, approaches like
colocalization (106), genetic correlation (107) and Mendelian
randomization (MR) (108) take genetic variants as the
instrumental variables to infer the association or causality
when multiple traits are associated with the same locus.

Colocalization analysis evaluates the association from each of
the single locus, and it helps to identify the phenotypes that share
the same genetic regulation. Examples of colocalization analysis
include a study integrating genetics, epigenetics and
transcription to identify colocalization of molecular traits from
CD14+ monocytes, CD16+ neutrophils and naïve CD4+ T cells
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(109). Results from this analysis illustrate molecular mechanism
at autoimmune diseases-associated variants, including an
alternative splicing signal around SP140 in T cells which might
be involved in Crohn’s disease pathology.

Genetic correlation considers the full summary statistics to
describe to which extent the genetic background is shared
between two phenotypes. An example from a LD regression-
based genetic correlation approach showed a shared genetic basis
of autoimmune diseases such as Celiac disease and type 1
diabetes (107). This indicates a similar pathological mechanism
between these two diseases.

MR is a statistical method working on the step from
association to causality. If one trait (exposure) is causal to
another trait (outcome), then the genetic factors contributing
to the exposure should also contribute to the outcome. This
would be reflected in the correlation between effect sizes of
the same genetic variant on exposure and outcome. There are
many examples of immune-related studies that applied MR,
which led to the identification of causal relationships between
IL-6 signaling and rheumatoid arthritis (110), IL-18 and
inflammatory bowel disease (111) and between eosinophilic
indices and asthma (26).
COMPARISON AND ASSOCIATION OF
EPIGENOME AND 3D
CHROMOSOME STRUCTURES

Systems analysis of epigenetic changes can investigate their
influence on and changes induced by immune functionality
or variation as well as disease susceptibility and development
(112, 113). As an example, the impact of cytokines was studied
on the epigenome of insulin releasing cells (b cells) from type 1
diabetes pancreases. By measuring ATAC-seq, Chip-seq and
RNA-seq, the authors identified proinflammatory cytokines
induced neo/primed epigenetic events in human b cells (114).
Moreover, in immune systems, the effects of epigenetic changes
lead to long-term alterations in the metabolic and transcriptional
pathways, and further induce immune memory (115) or
immunological diseases (116). Thus, epigenomics is another
vital area for better understanding of the personalized
immune system.

While genetics is stable, the epigenome is subject to dynamic
changes, which can be induced or affected by host and
environmental factors, such as smoking, drug usage, diet,
aging, inflammation, disease, and exposure to pets.
Considering that epigenetic changes affect gene transcription
levels, the epigenome is a pivotal part to study when trying to
understand immunological networks.

In a case-control study, differential accessible regions (DARs)
could be identified in an ATAC-seq data, as well as differential
methylation positions/regions (DMP/DMRs) in bisulfite
sequencing and methylation array. Instead of comparison
analysis, association analysis is applied to continuous
phenotypes to get associated regions. Upon the position of
acquired regions, we could further map them to the
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corresponding genes. More specifically, by checking which
gene TSS regions are overlapped with the peaks/regions, the
peaks/regions could be matched to genes, and then for pathway
analysis to get more biological meanings. For example, in a
multi-omics study on mixed-phenotype acute leukemia,
researchers associated scATAC-seq with transcription
responses from scRNA-seq and antibody captured from CITE-
seq. Despite widespread epigenetic heterogeneity of chromatin
accessibility within patients, they reported common malignant
signatures across patients, and thus revealed both distinct and
shared molecular mechanisms of mixed-phenotype acute
leukemia (117).

Another application of epigenetic analysis is to annotate the
function of the identified regions, based on the signals from
epigenetic markers. A tool (118) used a multivariate hidden
Markov model applied to annotate regulatory elements (e.g.,
Transcription starting sites, enhancers, promoters) with histone
markers (e.g. H3K4me1, H3K4me3, H3K27me3, H3K9me3,
H3K36me3) binds to the chromosomes. Applying this method,
an example learnt the chromatin states in mice and humans, and
reported the up-regulation of immune regulatory regions in
Alzheimer’s disease (119).

The analyses on 3D chromosomes are generally similar. In a
case-control study with Hi-C data, we could get the
compartment switches in a comparative analysis. We could
further predict the interactions between those segments (120).
Referring public epigenetic databases or genome annotations, we
could check the overlap between switched compartments or
interactions and known epigenetic markers or elements. Based
on this information, we could again associate the changes with
other immune profiles or annotate the involved regulatory
elements. For example, in a study of lineage commitment of
early T cells with Hi-C data, authors found wide compartment
re-organizations across chromosomes from a transition between
T cell double-negative-2 stage to double-negative-3 stage, and
later double-negative-4 stage to double-positive stage. They
annotated the changes with domain scores, and more
interestingly, they found the changes in the domain scores
between the two transitions are positively correlated, which
suggests the re-organization at the former transition is actually
reinforced at the later transition (121). Another example includes
a study on activated T cells, that identified activation-sensitive
interactions related to autoimmune diseases captured by Hi-C
data (122).

To capture the changes that occur in cellular activation and
differentiation, time-series study is another hot topic in
associating epigenome and 3D chromosome structures to
immune responses. For example, a recent study elucidates
the chromosome conformational changes in B lymphocytes
as they differentiate and expand from a naive, quiescent state
into antibody secreting plasma cells (123). The authors reveal
that the changes to 3D chromatin structure occur in two discrete
windows, associated with prolonged time in the G1 phase of the
cell cycle. Their results also suggest chromosome reconfiguration
is linked to a gene expression program that controls
the differentiation process required for the generation
of immunity.
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COMPARISON AND ASSOCIATION OF
TRANSCRIPTOME AND PROTEOME

As the downstream products of genetic and epigenetic
regulation, transcriptome and proteome changes directly reflect
the influence of genetic and epigenetic variants. Comparison and
association studies of transcriptome and proteome have allowed
researchers to estimate functional units and validate hypotheses
in immune regulation.

As for a case-control study, the first and direct analysis is
identifying differentially expressed genes/proteins (DEGs/DEPs),
followed by pathway analysis. If the corresponding phenotypes
are continuous, then associated genes/proteins will be identified
before pathway analysis. Examples include many transcriptome/
proteome studies upon the severe infectious disease COVID-19.
Transcriptome measurement across samples from healthy,
moderate patients and severe patients suggests an overall acute
inflammatory response in COVID-19 patients, whereas
transcriptional responses of high cytotoxic effector T cells are
associated with moderate patients, and deranged interferon
responses are associated with severe patients (124). Moreover,
a urine proteome study identified 1986 urine proteins showing
significant level changes in COVID-19 patients than in healthy
controls (125).

Different from bulk RNA-seq, the adding information in
scRNA-seq: cell composition, provides more analysis
potentials. In a case-control study, in addition to DEGs and
enriched pathways identification within each cell cluster/type,
cell proportion could be compared between groups while novel
cell subpopulation could also be identified in particular cases. For
example, a scRNA-seq on two COVID-19 cohorts reported
identical dysfunctional neutrophil clusters in severe patients’
blood (9). When considering the TCR/BCR analysis, it would
be interesting to explore the clonotype expansion and diversity
under different conditions (126, 127), immune development
stages (52), or antigen specificity (128). Usually, a clonal
expansion means an adaptive immune response targeting
certain stimulation, since a certain receptor is the mediator of
specific antigen recognition.

Since transcriptome/proteome data is rapidly responding to
environmental changes, with the transcriptome/proteome
analysis in a time-series study, we could associate the dynamics
with infection or stimulation to comprehensively understand the
host immune responses. A nice example is demonstrated in a
study of influenza vaccination efficiency, where authors
measured the hemagglutination-inhibition (HAI) antibody
titers and transcriptional responses at baseline and multiple
time points post-vaccination. By comparing the profiles
between day 28 and day 180, the authors describe individual
categories as temporary and persistent responders and illustrate
the underneath molecular mechanism (129). Many approaches
have been developed for time-series studies, such as regression-
based method like maSigPro (130) and a fusion method like O2-
PLS (131). Of note, the dynamic study can also be achieved by
applying a trajectory analysis such as pseudotime analysis (132,
133) and RNA velocity analysis (134) in scRNA-seq analyses. In
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a recent study on COVID-19, researchers longitudinally
measured samples at several time-point after symptoms, and
applied pseudo-time trajectory inference on scRNA-seq data of
epithelial cells from the upper respiratory tract. Based on the
trajectory, they predicted a new, alternative differentiation
pathway that is dependent on the interferon response and
marked by interferon-stimulated genes, such as ISG15, IFIT1,
and CXCL10 (135).

Co-expression analysis among transcriptome or proteome
provided information about gene co-regulation and
interactions. These co-expression relationships are inferred by
different association methods, such as a weighted gene co-
expression network analysis (WGCNA) (136) applied on
transcriptome to identify consistent expression patterns among
genes. The identified associations among gene expression could
be applied to predict gene co-regulatory networks, further to
prioritize genes involved in the same pathways (137). At protein
level, parts of these co-expression relationships could further be
explained by protein-protein interactions, which are also
collected by several protein-protein interaction databases,
including the innateDB (138) who particularly focus on
immune interactions. In application, similar to gene co-
expression networks, protein-protein interaction relationships
could help with functional/pathway enrichment analysis (139).

In the recent single-cell experiments, the co-expression
relationships are further applied to predict the cell-cell
interactions. By detecting the correlation between known
ligand and receptor genes among different cell sub clusters, we
could infer the potential communications between cell
populations (140). This analysis fits well with immune network
analysis. For example, by detecting ligand and receptor genes
signals, a recent study identified cross-talks between CD8+ T
cells and epithelial cells altered in the colon of ulcerative colitis
patients compared to healthy controls (141). Additional
methods, such as NicheNet (142), also take knowledge of gene
regulatory networks or protein-protein interaction networks
from public databases and literatures, then build a model to
further predict the activated targets of the cell-cell interactions by
correlating the ligands expression level with its potential
downstream gene or protein level interactions. In an example
study of cell-cell interaction underlying the tissue-specific
imprinting of macrophages, the authors deciphered the
interaction signals driving monocyte recruitment, engraftment,
and acquisition of the Kupffer cells associated transcription
factors, and they identified the contributions of different cells
to Kupffer cell niche (143).
COMPARISON AND ASSOCIATION ON
METABOLOME/MICROBIOME

Metabolome or microbiome are additional factors that reflect, or
affect, a person’s state of health (144, 145). Similar to
transcriptome or proteome, comparison and association
analysis could be applied on metabolome and microbiome
data. However, metabolome can be hardly linked to genes,
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which leads to different strategies of interpretation. Taking
KEGG (146) and HMDB (147) as references, an online tool
MetaboAnalyst performed metabolic pathway enrichment and
network analysis on the identified metabolites (148). An example
serum study on COVID-19 detected accumulation of 11 steroid
hormones and suppression of amino acid metabolism in
patients (8)

As for the gut microbiome, a diversity analysis could be
applied to taxonomy data. There are different strategies
available for functional profiling on the gut microbiome data.
F o r e x amp l e , HUMAnN ta k e s me t a g enom i c o r
metatranscriptomic sequencing data as input to identify gene
families and abundances (149). Gene families could be further
matched to broader functional categories, such as MetaCyc
metabolic pathways and GO categories for functional
interpretation. For example, a study associated gut microbiome
features to cytokine production capacity, and found microbial
metabolic pathways: palmitoleic acid metabolism and
tryptophan degradation to tryptophol showed associations with
TNFa and IFNg production (150).

As in transcriptome and proteome analyses, time-series
studies could provide valuable information in metabolome and
microbiome data. For example, in a study of metabolic functions
of gut microbes from patients with Inflammatory Bowel
Diseases, fecal samples were collected at baseline and 2, 6, and
14/30 weeks after induction of therapy to collect metabolic and
microbiota profiles. The observed association in dynamics of
metabolites and diversity shifts of microbiota reveals the
heterogeneity of the disease, and helps the authors to build a
silico model that might be used to identify patients likely to
achieve clinical remission from the therapy (151).
INTEGRATION OF EPIGENOME,
TRANSCRIPTOME, PROTEOME,
METABOLOME, MICROBIOTA
AND CELLOMICS

Besides associations between omics data and genetics, a simple
association analysis between two different non-genetic omics
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data could be applied to the data measured in the same cohort
with a large sample size to find the co-regulations behind
(Table 2). For instance, eQTMs (associations between
methylation and gene expression) provide a resource to
integrate methylation and gene expression. Highly methylation
can block the binding of transcription factors on promoters and
enhancers. In line with expectation, most eQTMs showed
negative correlations between methylation and gene
expression, and negatively correlated eQTMs are enriched in
active TSS regions (152). For another example, a study carefully
characterizes the changes in the gut microbiota of patients
suffering inflammatory bowel diseases and the interplay
between microbiome composition and gut metabolites (153).

In the situation of a more complex multi-omics integration,
more advanced technique like building multivariable regression
model could take features from different omics to evaluate the
accumulative effects/prediction power on a certain phenotype.
An example study integrates genomic, metagenomic,
metabolomic, immune cell composition, hormone levels and
platelet activation profiles with cytokine response profiles in a
population-based cohort. Results from multivariable linear
regression and machine learning approaches such as elastic net
show the accumulative contribution and predict power of genetic
and non-genetic factors on cytokine response (154).

On the other hand, if the sample size is not allowed for
association analysis, it might be applicable to check the
intersections between the findings from different omics. For
example, we could easily compare the regions identified in
ATAC-seq, methylation array and Hi-C data. In addition, by
matching a DAR to genes, and intersecting with DEGs, we could
further check whether an epigenetic change has the potential in
regulating gene expression.
DISCUSSION AND PERSPECTIVES

In this review, we have discussed the multi-omics application for
immunological studies, from measurements and analysis to
comparison or association of several typical layers (Figure 2).
For system studies – in particular newly discovered infectious
diseases or rare diseases with fewer prior knowledge – the choice
TABLE 2 | System analysis between omics.

binary traits epigenetics gene expresion protein level metabolites microbiome cellomics

genetics GWAS meQTL,
CRDQTLs

eQTL, sQTL pQTL mQTL mbQTL cell
proportion
QTLs

epigenetics DMRs/DARs/Compartment Switches/
Gained or lost Interactions

position-based
overlap

gene-based overlap/
association

gene-based overlap/
association

association association association

gene
expresion

DEGs – co-expression gene-based overlap/
association

association association association

protein
level

DEPs – – coexpression/
interaction

– association association

metabolites different abundance – – – association association association
microbiome different composition – – – – association –

cellomics Different cell composition, etc. – – – – – association
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of data layers to collect and the selection of measuring
approaches, target or non-target technique, bulk or single-cell
level, can be as important as the analysis models and algorithms.
Here, we discuss a few points that need specific attention in study
design and interpretation, and subjects may see progress in the
next few years.

There are some commonly used strategies of interpreting
genetic associations. As the starting point of the central dogma of
molecular biology (Figure 2), genetics has so far received a lot of
attention and was associated with many types of data or
phenotypes. In the interpretation of genome-wide associated
loci, genes around them have also been regarded as the
necessary and most essential compartments. The strategy to
properly link loci with affected genes so far has been addressed
on the position and associations between gene expression and
genetic variants (i.e., eQTLs). In addition, functional annotation
on identified loci, such as whether the variants are located on the
regulatory elements or affected protein structure, may provide
additional clues for loci interpretation in particular cases.
Nevertheless, there are existing debates upon several aspects,
for example, whether the host genome could influence the gut
microbiome. It will never be nitpicking to be very careful with
interpreting your microbiome QTLs.

Epigenetic could be used as a window to study environmental
influence. In contrast to genetics, epigenetics often links the
external factors to immune phenotypes. This is particularly true
when considering the external effects as a risk to immune
diseases, for example, smoking to asthma, because epigenetic
modifications, such as methylation, are usually related to
environmental exposures. Considering the various kinds of
epigenetic changes, multiple types of epigenetic data are
commonly used in one study and they often validate and
complement each other. For example, an active TSS region
could be identified by low methylation as well as high DNA
accessibility (155), and the enhancer involved in a neo chromatin
Frontiers in Immunology | www.frontiersin.org 1147
interaction identified in Hi-C data could be characterized as a
neo opening region in ATAC data (156). Considering the
functional relationships, epigenetic data is commonly
integrated with gene expression measurements. As the direct
consequence of epigenetic modification, alteration in
corresponding gene expression could be the best validation of
the importance of your epigenetic studies.

scRNA-seq is usually applied together with Cellomics
measurements. A cell composition discovered in scRNA-seq
data could be validated with FCM-based approaches. FACS is
also commonly used as a pre-filtering step to help with
concentrating target cell types for scRNA-seq analysis.
Especially, for the rare cell types (e.g., T regs in PBMCs), a
pre-sorting process is necessary for concentrating on cells
of interest.

Proteome, metabolome showing downstream immune
functions require more attentions. As the downstream products
of gene expression, protein or metabolites level measurements are
not as popular as transcriptome measurements in current studies.
This might because gene expression analysis takes advantage of
the efficiency of next-generation sequencing and well-established
microarray chips. Thus, there appears to be much room for
further studies on proteome and metabolome in immune studies.

Proper measurement techniques and sampling tissues are
crucial in an omics study. When considering the purpose of
measurements, it is often appropriate to apply high-throughput
and/or non-target approaches at the discovery stage, while single
and/or target approaches are more commonly used for validation.
Besides, except genome, all the other omics have tissue specificity.
Data from the same tissue are more commonly associated. For
example, associations between omics from blood samples could
be easily interpreted, but it would be tricky and needs more
biological basis to associate blood features with gut features.

A straight-forward joint visualization of multi-omics data is
another challenge to better present and understand the
FIGURE 2 | Central dogma and regulations of different omics layers.
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interconnections across molecular layers as well as to fully
utilizing the increasingly available omics data. Integrated tools
or platforms that combined a comprehensive analysis workflow
and interactive visualizations were often more preferable to
researchers. Some examples are: PaintOmics3 (157) and
Metascape (158), which provide powerful online frameworks
for the multi-omics pathway analysis and visualization; Seurat
(56), which focuses on analysis and visualization of single-cell
omics data and supports easy connections to other popular
analysis tools; and Omics Playground (159), who provides a
user-friendly and interactive self-service bioinformatics platform
for analysis, visualization and interpretation of transcriptomics
and proteomics data. Moreover, trials of combing data sharing
and interactive visualization along with research publication
have also been made to improve the data dissemination. For
example, by accessing to Immgen (160), FastGenomics (161) or
DeCovid (58), researchers can explore and visualize their
interested immune signatures on the COVID-19 datasets,
which significantly increases impact of the studies.

To fully elucidate the biological processes involved in the
immune system, several aspects remain unknown in omics
studies. Firstly, due to sample accessibility, fewer studies have
been performed on tissues other than blood. Taking meQTLs as
an example, several big studies have been carried out blood
samples (101, 162, 163). However, there are very limited sample
size and/or studies about meQTLs in other tissues (164).
Secondly, considering the high dynamics, rapid response and
spatial specificity of the immune system, temporal and spatial
studies can provide more insights into the dynamic process and
spatial heterogeneity in immune activities and/or immune-
related diseases etiology. For example, the process that
immune cells are activated by interacting physically and
chemically with synapses is highly dynamic and depends on
the spatial position of immune cells, neurons and glial cells.
Despite its importance in immune functionality and immune-
mediated diseases, our current knowledge is not sufficiently
advanced, which calls for more comprehensive studies (165–
167). Thirdly, as for population-based studies, there are much
more of them in healthy individuals of European ancestry, while
the studies in under-represented populations as well as in
patients appeal for greater attention.
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Considering the complexity of our immune system and
patient heterogeneity, in terms of severity or treatment
responses, for many immune-related diseases, the generation of
personalized medicine is one of the most significant goals we can
achieve through multi-omics studies (168). Personalized
medicine stratifies a heterogeneous group of patients based on
certain characteristics and provides treatment based on this
stratification. In the case of infectious diseases, one of the
personalized medicine trials is now being conducted for the
treatment of sepsis using immunomodulatory interventions after
stratification based on biomarkers identifying immunosuppression
or hyper inflammation (169). In the field of tuberculosis, advances
are being made too, as a clinical trial is now ongoing where
tuberculous meningitis patients are being stratified based on
genotype prior to treatment (170).

In conclusion, we systematically review measurements and
analyses can be applied in immunological studies, which provide
insights for personalized medicine. Through the development of
high throughput techniques, e.g. single-cell RNA sequencing and
mass cytometry, we now possess the tools to unravel the many
complexities of the immune system in health and immune-
related diseases, including infectious diseases, allergies and
auto-immune diseases. With unbiased measurements and
effective integration, multi-omics studies can help us
understand the immune system and could lead to the
development of personalized medicine.
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In recent years, systematic genome-wide association studies of quantitative immune cell
traits, represented by circulating levels of cell subtypes established by flow cytometry,
have revealed numerous association signals, a large fraction of which overlap perfectly
with genetic signals associated with autoimmune diseases. By identifying further overlaps
with association signals influencing gene expression and cell surface protein levels, it has
also been possible, in several cases, to identify causal genes and infer candidate proteins
affecting immune cell traits linked to autoimmune disease risk. Overall, these results
provide a more detailed picture of how genetic variation affects the human immune system
and autoimmune disease risk. They also highlight druggable proteins in the pathogenesis
of autoimmune diseases; predict the efficacy and side effects of existing therapies; provide
new indications for use for some of them; and optimize the research and development of
new, more effective and safer treatments for autoimmune diseases. Here we review the
genetic-driven approach that couples systematic multi-parametric flow cytometry with
high-resolution genetics and transcriptomics to identify endophenotypes of autoimmune
diseases for the development of new therapies.

Keywords: drug development, immune profiling, autoimmune diseases, GWAS, flow cytometry
INTRODUCTION

The human immune system is a magnificent biological network of specialized cells and their
soluble products that can recognize and tolerate “self” and harmless symbionts while mounting
responses to “non-self”, including the panoply of harmful pathogens. Immune cell subtypes
are the pivotal determinant to maintain immunity and minimize the loss of tolerance that can
result in autoimmunity. Because immune cells must orchestrate and mount responses to a variety
of insults, their circulating levels are extensively regulated by exposure to environmental factors,
and in particular by pathogen infection. Nevertheless, in the last 10 years the assessment of
genetic effects on circulating levels of immune cells and their surface proteins (collectively referred
as immune cell traits) has revealed that they are on average ~40% heritable (1, 2), meaning
that a high percentage of variability in their levels is regulated by genetic differences among
individuals. The high heritability of immune cell traits has prompted us and others (1–6) to
assess the genetic contribution to their variability through systematic genome wide association
org August 2021 | Volume 12 | Article 714461153
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studies (GWAS) in general populations. Overall, hundreds of
associated variants have been identified.

More recently, a GWAS-based approach on cytometric data has
also been applied, albeit in a small sample size, to assess the genetic
control of changes in immune cell levels after exposures such as
influenza vaccination (7). This type of analysis is likely to become
increasingly common and performed in much larger sample sets,
for example to assess cellular response to the Sars-Cov-2 vaccine.
There are three key requirements to use the powerful and unbiased
tool of GWAS to understand how the immune cells are genetically
regulated and to identify overlaps with autoimmune disease risk.
The first is a very detailed measurement of a broad spectrum of cell
types, encompassing innate and adaptive immunity, by assessing
their activated, regulatory, inflammatory andmaturation states. The
second is high-resolution characterization of genetic variability in
the same individuals. The third requirement is generating or
obtaining summary statistic data of autoimmune disease GWAS
to establish overlap with immune cell GWAS. The sample size of
immune cell GWAS is pivotal to infer a full range of genetic
associations. Indeed, while a few thousand individuals, like those
assessed in the immune cell trait GWAS performed thus far,
identify genetic associations of common variants with relatively
large effect size, tens of thousands of individuals must be analyzed to
discover genetic associations with rare variants, and those with
smaller effect size (8). Further broadening the spectrum of
associated variants through substantial increases in the sample
size evaluated in immune cell trait GWAS will thus be important
to identify many more overlapping associations with disease.
Frontiers in Immunology | www.frontiersin.org 254
Of particular interest are multiple overlaps with the same immune
trait and disease, strengthening the evidence for a causal relationship
and thereby increasing the power to identify therapeutic targets.

Focusing on immune cell traits, the most common technique to
systematically measure cell subpopulations as well as surface or
intracellular proteins, is flow cytometry. Routinely used for
functional studies, flow cytometry is now becoming the starting
point to identify DNA variants associated with immune traits and,
in turn, those variants that are also associated with risk of disease
(hereafter referred to as “overlapping genetic associations”). This
approach can identify cell types, molecules and pathways
implicated in disease pathogenesis and provide prime candidates
for more specific and efficacious therapeutic intervention
(Figure 1). The potential of the genetic-driven approach in the
research and development of new drugs is supported by the
observation that 73% of studies supported by genetic evidence
targeting the disease pathway were successful in Phase II clinical
trials compared with 43% of studies without such genetic link (9).
Nevertheless, genetic studies provide only a powerful substrate for
experimental elucidation of disease mechanisms. Thus, causality
must be confirmed by functional experiments in vitro and in vivo,
which, in the context discussed here, are essential to clarify the
biological mechanisms underlying the overlapping associations
with specific immune cell traits and disease risk and formulate
robust therapeutic hypotheses that are critical to the success of
new drug research and development programs.

In particular, genetic associations of quantitative cellular traits
and autoimmune diseases are more likely to give rise to biological
FIGURE 1 | Overview of the study approach. The picture summarizes the research of overlapping genetic associations that initially consists in the identification of
genetic signals regulating immune cells in the general population. These signals are then compared with those associated with diseases with the aim to identify the
genetic variants both affecting immune cells and disease risk. The identified immune cells can be considered as potential drug target on which to act
pharmacologically. Being more frequently detectable by more than one antigen expressed simultaneously on their surface, these cells can be targeted by multi-
specific drugs (binding two or more specific antigens).
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investigations that are truly related to the causal biology of diseases
than epidemiological surveys of environmental factors and
observational studies of phenotypic variables that can often
highlight second-order phenomena that are a consequence, and
not a cause, of the disease. In this sense, although epidemiological
evidence clearly indicates that environmental factors should play a
very important role in the regulation of the immune system and
contribute to the risk of autoimmune diseases, their precise
identification is complicated by numerous factors and remains
largely elusive. In contrast, genetics represents a more direct,
powerful, and unbiased tool to generate robust hypotheses about
disease-causing mechanisms that need to be further investigated
with functional studies to identify and validate therapeutic
targets (10).

We turn to an outline of the evolution of flow cytometry; the
proper generation of flow cytometry data; and the application of
GWAS to flow cytometry-based immune profiling to identify
new drug targets.

FLOW CYTOMETRY

The role of flow cytometry (Figure 2) in scientific research and
clinical practice is increasing dramatically and only a marginal
part of its potential is currently being used. However, while this
Frontiers in Immunology | www.frontiersin.org 355
technique is very useful if applied correctly and with appropriate
checks, it can lead to incorrect conclusions if not. We will
dedicate the next two sub-sections to describe this technology
and some tips for using it properly.

Flow Cytometry From Its
Inception to Today
Flow cytometry development (11) was accompanied by
important evolution of its applications in several scientific
fields, including not only immunology but also hematology,
cancer, microbiology, and physics. For instance, flow
cytometric oncology panels are widely used to diagnose
hematologic malignancy, especially B cell lymphoproliferative
disorders, based on disproportion of kappa and lambda
immunoglobulin light chains that are expressed on membrane
surface of B cells. Indeed, a kappa-lambda ratio higher than 3:1
or lower than 1:3 is respectively considered evidence of
monoclonality and diagnostic for B cell lymphoproliferative
disorders (12).

In microbiology, flow cytometry allows the detection of
microbes, their viability and distribution within cells that can
have profound impact in infection diagnosis (13). Furthermore,
in some countries, application of flow cytometry to microbiology
has been routinely applied to water quality analysis (14).
FIGURE 2 | Schematic representation of flow cytometry system. Cells stained with fluorescent-conjugated antibodies are aligned in the fluidic system where they
encounter one or more laser beams which excite the fluorescent dyes bound to the cells. The fluorescent antibodies emit at a specific wavelength and the emission is
proportional to the amount of antigen-antibody complex. The emission arrives to the optical system, consisting of filters, mirrors, and photomultiplier tubes (PMTs), which
enhance and improve the signal. Finally, the electronic system converts the fluorescent emission in electronic signals visualized by histograms or bi-dimensional plots.
August 2021 | Volume 12 | Article 714461
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Improving performance and processivity and increasing the
number of parameters measured simultaneously by flow
cytometers is the major challenge for flow cytometry
companies. For instance, to reduce the time of sample
processing and the variability of data acquisition, an acoustic
focusing chamber characterized by high frequency sound
produced by a piezoelectric device were applied to a flow
cytometer (15). This system generates a standing wave in the
sample capillary, which can align cells in the center of the flux
even when the original cell concentration is high.

To increase the number of antibodies assessed simultaneously,
an alternative cytometry-based technique, namely “CyTOF”
(cytometry by time-of-flight), was developed about ten years
ago. Similarly, to flow cytometry, antigens are recognized by
antibodies labeled with heavy metal isotopes (instead of
fluorochromes) which, as in mass spectrometry, are detected
based of on their time-of-flight (16). CyTOF is more expensive
than classical flow-cytometry, require longer period of time to
process each sample, making this method unsuitable for
processing large amounts of samples in a short time, but it can
detect more than 100 parameters per cell simultaneously.

Flow cytometry has also become the starting point for big
data projects such as genetic studies of thousands of immune cell
traits, and single cell transcriptomic and proteomic
measurements. Moreover, the simultaneous assessment of
several fluorochrome-conjugated antibodies (17) (destined to
increase soon) in thousands of individuals allows the
Frontiers in Immunology | www.frontiersin.org 456
identification of very rare cell subsets and of new cell types
never previously described, but at the same time, it increases the
difficulty of analysis of the enormous amount of data generated.
Indeed, to visualize an n-dimensional flow data, 1

2= � n� (n −
1) bi-dimensional plots would be needed, so that, for instance, an
experiment assessing 20 antibodies would require 1

2= � 20�
(20 − 1) = 190 bi-dimensional plots to display all marker
combinations. Thus, data produced by the latest generation
flow cytometry and CyTOF need to be visualized in alternative
ways, departing from the classical bi-dimensional plots and
histograms (Figures 3A, B).

Two of themost popular algorithms to reduce the complexity of
this big amount of data and to identify populations of interest are
SPADE (spanning-tree progression analysis of density-normalized
events) (18) and t-SNE (t-stochastic neighbor embedding) (19).
Both resolve high-dimensional data into a single bi-dimensional
plot, the former visualizing cell clusters through dendrograms and
the latter by scatter plots, so that the closer the cell clusters are, the
more similar they are (Figures 4A, B).

SPADE and t-SNE do not allocate every cell to a specific
cluster, nevertheless, automated clustering algorithms such as
ACCENSE (20), DensVM (21), viSNE (22), to mention only a
few of them, can help to solve this issue. However, these
algorithms do not consider the entire dimension of the dataset;
to address this, PhenoGraph was developed (Figure 4C) (23).

Another algorithms, named Wanderlust (24) is particularly
useful to study temporal developmental cell relationships by
A B

D

E F

C

FIGURE 3 | Representation of flow cytometry data. (A) Bi-dimensional visualization of data (dot plot) where each axis represents an antigen; (B) histograms
representing the expression level of CD8 on T cells; starting from left to right, the first peak corresponds to CD8 negative T cells, the second peak represents
cells expressing intermediate level of CD8, whereas the third peaks indicates highly positive cells for CD8 expression; (C) normal distribution of CD4 expression
on CD4 positive cells; (D) bimodal distribution of CD4 expression on T cells where the peak on the left corresponds to CD4 negative T cells, while the peak on
the right represents CD4 positive T cells; expression levels of CD3 on (E) a poorly represented cell population (CD4+CD8+ T cells) and (F) a well-represented
cell population (T cells).
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generating a trajectory, for example ranging from hematopoietic
stem cell through the mature status of the assessed cells (Figure 4D).
Both PhenoGraph andWanderlust represent each cell by a node that
is linked to its neighbors by edges; thus, phenotypically similar cell
clusters are visualized by interconnected nodes, namely
“neighborhoods” or “communities” of cells (25).

In case of comparisons among two or more groups (such as
patients and controls), Citrus is another useful tool to identify
differential cell clusters and response features among the assessed
groups that could be predictive of different experimental or
clinical endpoints of interest (26). For instance, comparing
unstimulated vs stimulated peripheral blood mononuclear cells,
Citrus was able to identify 117 cluster features (out of 465) which
differed between the two conditions.

Guides to Correct Flow
Cytometry Analysis
Before starting data collection and analysis, a strict process of
quality checks and controls is pivotal to obtain reproducible and
robust results. The most important steps can be summarized
as follows.

1) Panel set-up. Increasingly, a number of common antigens are
found to be expressed in cells whose biological role is supposed
to be radically different. For instance, Schuh and colleagues
described the uncommon co-expression of CD3 (receptor
complex characterizing T cells) and CD20 (characterizing B
cells) in a small subset of circulating lymphocytes that are
especially frequent in the cerebrospinal fluid of multiple
sclerosis patients (27). This underlines the need for several cell
antigens simultaneously assessed as mandatory for a
comprehensive immune cell analysis and for the discovery of
rare cell populations that may nevertheless be potentially
relevant in disease predisposition. However, the simultaneous
assessment of many antigens requires a complex panel set-up
that implies careful selection of antigen-fluorochrome
Frontiers in Immunology | www.frontiersin.org 557
combinations. A general role for fluorochrome-antigen
selection is to use weak fluorochromes for highly expressed
antigens and, vice-versa, bright fluorochromes for weakly
expressed antigens. This allows detection of weak signals while
keeping on scale brighter ones and minimizing the spillover of
one fluorochrome into those having close emission wavelength.
The mathematical correction of this spillover is called
compensation and is an extremely important step that must be
done before analyzing data to avoid misleading interpretations
(28).

2) Processing of samples. The protocol to be followed and the
time between sample collection and processing are pivotal to
ensure reproducibility of flow data, especially for specific cells
and antigens. For instance, monocytes are prone to modify
their morphology and the expression of some antigens on
their surface, including the costimulatory molecules CD80
and CD86 (29), while platelets are subject to very fast
modifications and activation. Thus, this blood component
should be processed within minutes after blood collection
(30, 31). Similarly, the stability of antibodies is important: the
Lyotube™ technology, employing lyophilized predefined
cocktails of antibodies, is more stable than corresponding
liquid formats, thus minimizing fluorochrome decay and
allowing reduction of potential operator-dependent
variations (1, 32).

3) Sample freezing. Freezing is known todamage some antigens and
cell types, such as myeloid derived suppressor cells (defined as
CD66b+ and CD15+, HLA-DRdim and CD14−) that are not
detectable in previously frozen peripheral blood mononuclear
cells (33). Special care should be taken to compare fresh with
frozen samples, and as goodpractice it is strongly recommended
to perform preliminary experiments to verify the quality/status
of each antigen of interest before and after freezing.

4) Systematic controls to monitor analyzer performance. Flow
cytometers are subject to laserwear andfluidic instability over time.
A B DC

FIGURE 4 | Main approaches to resolve flow cytometry data complexity. (A) SPADE connects clusters of multidimensional data in a progressive dendrogram.
Cluster sizes correlate with the number of cells within the cluster. The heat map indicates the intensity of each cluster based on the median intensities of a protein
marker in each cell node; (B) t-SNE detects cluster corresponding to cell population, similar cell are placed close together reflecting their proximity in high-
dimensional space; (C) vi-SNE, ACCENSE, DensVM and Phenograph are evolution of t-SNE and similarly visualized; in particular, Phenograph is able to assign each
cell into a specific cluster; (D) Wanderlust orders cells into a trajectory corresponding to their developmental stages.
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To compare samples acquired in different days, several
controls should be used to ensure the correct and constant
performance of flow cytometer and the consistency of data
collection. Indeed, some analyzers are equipped with a system
that performs daily electronic checks and automatically adjusts
internal parameters.

Furthermore, reference stabilized blood samples with defined
ranges of the main lymphocyte subsets are available to be used as
controls, helping to avoid batch effects.

Once the samples have been acquired and processed in the
proper way, the next step is gating. There are several ways to
gate samples:

-Manual

-Semi-automatic

-Automatic

Each method has advantages and disadvantages; for instance, if, on
the one hand manual gating is time-consuming and operator-
dependent, on the other it allows the analysis of very rare cell
populations that are difficult to identify using automatic strategies.
Automatic methods (briefly described in the previous section) use
algorithms to systematically identify cell populations, thus avoiding
operator-dependent inaccuracies. They can be further divided into
“hypothesis dependent”, if the scientist sets specific cell subtypes tobe
measured, and “agnostic”, which are not based on specific
hypotheses, allowing the identification of previously unknown cell
cluster which could be missed by using manual gating approaches.

Following gate positioning, each cell population (both newly
identified and already known) can undergo three types
of measurements:

a) Relative count

b) Absolute count

c) Fluorescence intensity

a) The relative count corresponds to the ratio between cell types
that could be hierarchically dependent (e.g., percentage with
respect to parental and grand parental cell population, such as
percentage of CD4 with respect to T cells) or independent
(e.g., ratio between T and B cells).

b) The absolute or actual count corresponds to the number of
cells per volume (generally expressed as cells/ul or cell/mm3).
In human blood, the necessary condition to obtain absolute
counts is to process fresh non-washed samples and use either
analyzers able to calculate the absolute number of cells based
on sample volume or a fixed number of counting beads to be
added to each sample. In the latter case, it is necessary to
apply a simple proportion between number of beads and cells
acquired to obtain actual counts. Alternatively, it is also
possible to obtained actual counts from frozen samples if
the leukocyte (or lymphocyte) count measured on the day of
the withdrawal is combined with the relative counts obtained
by flow cytometry from frozen material.

c) Generally defined as mean or median fluorescence intensity
(MFI), it represents the expression level of an antigen (such as
Frontiers in Immunology | www.frontiersin.org 658
CD4, CD8, CD40, CD28) on a cell type (Figure 3C). A
necessary condition to properly analyze MFIs is that the
marker measurement in the specific cells follows a normal
(Gaussian) distribution. For instance, CD4 expression
measured in total T cells (which include an important
amount of CD4 negative cells) is inaccurate because a
bimodal distribution would be observed: one peak
corresponding to CD4 negative cells and a second peak
corresponding to positive cells (Figure 3D). In this case, the
bimodal distribution does not mirror the expression level of
CD4 positive cells; rather, it correlates the number of cells
present in the first (negative) peak with respect to the second
(positive) one (Figure 3D). Thus, CD4 MFI should be
assessed only in the CD4 positive cells, where its
distribution is normal. In additional cases, such as CD8
expression in T cells, the presence of three peaks is
frequently observed, corresponding to negative, intermediate
(dim), and high (bright) antigen expression. The negative
peak should be excluded, while the expression of CD8 in the
two positive peaks should be measured separately, especially if
the number of CD8 dim T cells is consistently represented
(Figure 3B). Also, the number of events in which the MFI is
measured is very important to obtain reliable data, as the MFI
of a few events is not very robust. Thus, also in this case, the
general rule is that the more events acquired, the more robust
the MFI data are (Figures 3E, F).
UNDERSTANDING CAUSAL EFFECTS OF
IMMUNE CELL LEVELS IN HUMAN
DISEASE: THE HYPOTHESIS-
GENERATING VS HYPOTHESIS-
DRIVEN APPROACH

The comparison of specific immune cell levels between cases and
controls has been a widely used approach to identify those cells
or derived parameters that are more frequent in cases, and thus
putatively predisposing to the disease, compared to controls. By
contrast, those that are higher in controls are putatively
protective for the disease. However, this case-control,
hypothesis-driven comparison of immune phenotypes is
limited by a priori knowledge and is also affected by second
order effects due to the disease process and the administered
therapy. That can lead to mistaken inference of a consequence of
a disease for a cause (so-called reverse causation).

A more robust and systematic approach to identify immune
cell traits implicated in the disease process relies on correlations
between genetic association signals detected in different sample
sets. This hypothesis-generating approach first establishes, via
quantitative trait locus (QTL) GWAS, the genetic control of as
many immune cell traits as possible in as many general
population individuals as possible. The resulting association
signals for immune cell traits are then evaluated for any
significant overlap with association signals from GWAS on
August 2021 | Volume 12 | Article 714461
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autoimmune disease risk, typically performed with a case-control
design. The increasing availability of autoimmune disease GWAS
summary statistics offers valuable resource data to search for
such overlaps, which can then be formally demonstrated using
specific statistical approaches like co-localizationmethods. These
allow to formally test whether two association signals at the same
locus for two different traits or diseases share the same causal
variant (34). In principle, if a gene variant X is causally related to
both a quantitative immunophenotype Y and an autoimmune
disease Z, it is possible that the immunophenotype Y is involved
in the process leading to the autoimmune disease Z and
represents an endophenotype for that disease.

The route toward unequivocally linking a given immune cell
variable with one or more immune mediated disease is rather
complex and hindered by several factors including pleiotropic
effects, low statistical power and incomplete characterization of
immune cell variation, as follows (Figure 5).

Pleiotropy (Figure 5A), a phenomenon in which one genetic
locus influences two ormore phenotypic traits (35), is an emerging
feature of current GWAS results that can complicate the resolution
of the causal-relationships to a true disease-related intermediate
immune phenotype (3). It is classically divided into biological or
mediated, with the former referring to a genetic variant that has a
direct influence on the regulation of more than one trait and the
latter occurring when a variant directly influences one trait, which
in turn influences another trait. Pleiotropy can also be spurious,
which is due tovariousdesign artifacts that cause a genetic variant to
appear fallaciously associated with multiple traits.
Frontiers in Immunology | www.frontiersin.org 759
During the last decade, 93 loci associated with immune cells
traits have been identified by genomewide association studies (4, 5,
36–38), and abouthalf of these loci overlapwithpreviously reported
disease-associations predominantly for autoimmune disorders.
Most of the detected genetic signals were characterized by
pleiotropy; 61% of these signals regulate protein levels on the cell
membrane (MFIs), whereas only 25% and 14%of themwere found
associated with relative and absolute counts, respectively (3). This
can likely occur either because of the common origin and shared
mechanisms of genetic regulation of different immune cells or
because of the interrelated functions of many immune cell types,
with some cells controlling the level of other cells. And the
complexity of genetic associations detected so far with the genetic
regulationof immune traits goesbeyond thedetectionofpleiotropic
effects and includes several instances of multiple independent
signals in a given gene region affecting the same cell or protein
expression, and in other cases unrelated traits (Figure 5B, also see
the CD25 example in the next section).

In the presence of strong pleiotropy, approaches that exploit
Mendel’s second law of inheritance to search for multiple
independent genetic associations associated with both the same
intermediate immune phenotype and autoimmune disease
outcome provide a route to somewhat restrict the number of
coincident associations to those most likely involved in disease
pathogenesis. Indeed, if twoormore independent genetic signals are
simultaneously associatedwith the same disease predisposition and
a specific quantitative trait, with a coherent reduction or increase in
the trait levels, it ismoreprobable that the trait is causally implicated
A B

DC

FIGURE 5 | Complexity in identifying overlapping association between immune trait and diseases. The four quadrants summarize the layer of difficulties that must be
considered when the overlapping association approach is applied. (A) Pleiotropy: a specific variant can regulate several traits; (B) the identification of the causal
variant is often not immediate due to the high LD among variants. Each dot represents a genetic variant, LD among variants (expressed as r2) is color coded and
specified in the legend, the significance of the association, expressed as −log10[P value], is indicated in the left y axis, and the genomic positions in the x axis;
(C) the identification of several independent genetic variants associated with the same immune cell X and the same disease Y (multiple overlapping genetic
association) requires thousands of deeply immune profiled individuals, both from general populations to dissect immune cell genetic regulation, and from case-
control studies to identify genetic regulation of diseases; (D) the genomic information of each individual is very deep being at single-base resolution, whereas the
knowledge of all the proteins expressed on cell surface is far from being complete.
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in the disease predisposition (Figure 5C) (1, 3). This approach can
help identify the most promising association signals to follow up
with downstream functional studies; however, it does not reveal the
presence of confounding factors regulating both trait and disease,
because it is based on a simple comparison among a few association
statistics. For these reasons,Mendelian randomization (MR) is now
the approach most frequently applied to infer a causal relationship
between a quantitative trait (defined as exposure) and a disease
(outcome). The genetic variants associated with a quantitative trait
are used as instrumental variables (Ivs) to test the causal
relationship between exposure and outcome. Critically, because
they are constant, they are not affected by reverse causation and/or
confounders. Like the methods previously described, this approach
is essentially based on the summary statistics for a set of Ivs chosen
tosatisfy specifichypotheses, suchas theassociationwithexposures,
to which appropriate statistical regression methods are applied
(39–41). The increasing availability of large datasets and the
consequent increasing number of variants that can be tested are
facilitating the application of the MR approach.

Another limiting factor in making causal inferences about the
involvement of a given immune cell in a particular autoimmune
disease is the relatively small sample size of the immune cell
GWAS performed to date, which constrains the generation of
robust instrumental variables for Mendelian randomization
approaches. Furthermore, the true disease-related cell type may
not even have been assessed in immune cell trait GWAS! The
latter limitations can be overcome thanks to the development of
more advanced cytofluorimeters and the implementation of
automation methods to permit considerable enlargement of the
immune-phenotypic space (Figure 5D) examined in an
increasingly larger number of individuals.
THERAPEUTIC TARGETS, MULTI-
SPECIFICITY, AND PERSONALIZED
MEDICINE

After establishing co-localized association signals between
immune cell traits and autoimmune disease risk that are likely
to share a causal variant pointed by Mendelian randomization
approaches, a critical step toward the identification of the right
therapeutic targets is to identify the DNA variant, and establish/
infer the protein product, underpinning such overlapping
associations that could be modulated therapeutically.

In short, an initial strategy commonly applied to statistically
exclude all but ideally one or a few polymorphisms as causal
variants in GWAS-associated regions encompasses several
methods known collectively as “fine mapping” (42). This
strategy requires an unbiased, and as comprehensive as
possible, ascertainment of genetic variation -through large-
scale DNA sequencing and the use of informative imputation
panels- to split the genetic contributions of individual variants in
an associated region, allowing prioritization of those with the
highest probability of being causal. The most plausible causal
polymorphisms present in the so-called “credible set” are then
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ranked using several metrics, including sequence conservation
across species and functional genomic data (such as transcription
factor binding), which produce a score predicting functional
relevance. Unfortunately, even after these methods have been
applied, the genetic resolution of association signals to a single-
variant, single-gene may still be limited by several factors. These
include the strong linkage disequilibrium (non-random
association of alleles at different loci in a given population)
(43) between several candidate variants that in extreme cases
may be so closely related as to be genetically indistinguishable
(because they always co-occur in the same individuals). An
additional difficulty which hampers variant functional
annotation, arises from the fact that the vast majority (~80%)
of lead variants of association signals with immune traits are
localized in “non-coding regions” of the genome with only a
fraction of them altering known sequence motifs of transcription
factors (3, 10, 44), thus not easy to interpret, even though they
must play a very relevant role in gene expression regulation.
Most importantly, even statistical refinement of the association
signal to a single putative causative DNA variant does not in
itself indicate that the gene harboring is causative. In fact, there
are multiple examples of long-range control of gene expression
by variants located in neighboring genes detected through
technologies such as promoter capture with “Hi-C” (45).

Still, despite these difficulties, the identification of the causal
genes highlighting their products as therapeutic targets can be
often achieved through expression quantitative trait loci (eQTLs,
based on the analysis of the influence of genetic variation on
RNA levels) and/or protein QTLs (pQTLs, based on the analysis
of the influence of genetic variation on protein levels), which in
the cytofluorimetric studies are represented by the expression
level of immune cell protein levels (MFIs). In addition to cis
effects, these analyses can reveal trans effects, i.e., trans pQTL and
eQTL associations that highlight protein targets for therapeutic
intervention encoded by genes located far away, and even on
different chromosomes, from the variant/gene underlying the
primary association signal but whose expression is affected by it
or its protein product or a nearby genetically related variant.

The utility of pQTL and eQTL analyses extends to the
determination of the effective direction of the association. This
is inferred from the direction of change in levels of gene products
associated with disease risk – for example, evaluating whether a
disease-protective allele (whose effect we want to therapeutically
reproduce) decreases or increases transcript levels of a gene or
corresponding protein. This is thus a critical step because it
informs the direction (inhibition/stimulation) of therapeutic
modulation of the target.

Such analyses are facilitated by the rapidly growing number of
large datasets annotating information that can systematically help
to bridge GWAS associations to expression levels. One key
resource is the Genotype-Tissue Expression (GTEx) catalogue,
providing eQTL analysis for 49 human tissues in 838 individuals
(46). Additional sources to help assess the impact of regulatory
variants include databases, such as the Human Induced
Pluripotent Stem Cell Initiative (HipSci) (47) reporting
mutations in reprogrammed induced pluripotent stem cell and
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LINkage Disequilibrium-based Annotation, LinDA brower
(http://linda.irgb.cnr.it) that provides annotations and statistics
for the query variant and for variants in linkage disequilibrium
with the query. While these comprehensive public resources to
study tissue-specific transcription and expression are essential to
identify target genes and direction of effects of associations signals
with immune cells and other trait types, GWAS results may in
turn give rise to more targeted studies of transcription and
regulation to elucidate the fine mechanisms of gene expression
at specific loci. As an example, in a GWAS analysis it was
uncovered the association of multiple sclerosis and systemic
lupus erythematosus with a genetic variant in the 3’UTR of the
TNFSF13B gene, which encodes the cytokine B-cell-activating-
factor (BAFF) (10). The same signal also correlated with increased
circulating B cell and immunoglobulin levels, giving a potential
mechanistic explanation for the disease association. The causal
variant underlying these associations was found to be an insertion-
deletion (GCTGT > A, [GCTG/-] where the minor risk-associated
alleleA (referredas ‘BAFF-var’)waspredicted tocreate anupstream
alternative polyadenylation site (APA). This APA was
experimentally demonstrated and the resulting shorter transcript,
BAFF-var mRNA, was more actively translated than the long wild-
typemRNA(BAFF-WT)partly because it lacked a site of repression
by microRNA miR-15a (10). Subsequent analyses showed that the
short 3’UTR lacked also a binding site of repression by the RNA
Binding Protein (RBP) NF90 and revealed that, in the BAFF-WT
mRNA, NF90 suppresses BAFF production by promoting the
interaction of miR-15a with BAFF-WT mRNA. As a consequence
of this lack of repression of BAFF expression due to BAFF-var,
soluble BAFF is produced at higher levels determining a cascade of
immune events leading to increased risk for systemic lupus
erythematosus and multiple sclerosis (48). It is expected that this
type of fine analysis of the regulation of gene expression will
increasingly contribute to a detailed understanding of the
molecular mechanisms of genetic associations with immune traits.

The obvious next critical step toward the therapeutic
modulation of a protein target identified with genetic approaches
is the assessment of its druggability – that is, its susceptibility to be
potentially modulated in its effects by drug-like small molecules
(typically targeting hydrophobic pockets) or by so called
“biologicals” (more commonly targeting extracellular domains
such as those of receptor proteins or soluble molecules) or by new
molecular approaches, such as those based on small interfering
RNA, antisense oligonucleotides,mRNAdelivery, gene editingwith
CRISPR–Cas9, andPROteolysis-TArgetingChimaeras (PROTAC)
(49–51).

In particular, the protein target identification approach
presented here, built on the results of flow cytometry coupled
with genetic data, offers an obvious opportunity for therapeutic
intervention through the generation of biological products,
specifically, as we detailed below, through a new class of poly-
specific antibodies. In contrast, many current monospecific
antibody-based therapies aimed to block, or in few cases
enhance, the activity of a single antigen generally expressed on
the cell surface membrane, such as anti-CD28, CD40, and CD25.
Nevertheless, these mono-specific drugs are affected by poor cell
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specificity causing reduced efficacy and predisposition to side
effects like increased risk of other autoimmune diseases. Indeed,
targeting broadly expressed markers such as CD25 or CD27,
which are expressed in both T and B cells, or CD28, expressed in
both CD4 and CD8 T cells, could cause unspecific blocking of
this marker in cells that are not involved in a specific disease (3).

For instance, IL2RA, also known as CD25, encodes the alpha
chain of IL-2 receptor and is expressed in regulatory T cells
(Tregs), activated effector T cells, but also in B cells. In 2013,
measuring CD25 in T cells only and using about 8.2 million
variants, an overlapping association between CD25hi effector T
cells and type 1 diabetes was found in the IL2RA region (1). More
recently, by increasing both the cell types where CD25 has been
assessed and the number of interrogated variants, seven
independent signals in the IL2RA locus (all regulating CD25
expression) were identified (3) (Figure 6). Some signals were T
cell specific; others were B cell specific, still, others involved both
T and B cells. Four out of the seven independent signals detected
in this region were associated with immune-diseases and pointed
to different traits, in some cases with opposite direction of effect,
potentially leading to adverse therapeutic complications
(Table 1). In more details, the inhibition of T cells expressing
high levels of CD25 may be efficacious in Crohn’s disease, but
harmful in type 1 diabetes and juvenile rheumatoid arthritis for
which a stimulation of the same cells is likely to be effective. These
data also suggest that reduction of CD25 on naive effector helper
T cells could be an effective therapy in multiple sclerosis and
alopecia areata. But inhibition of CD25 on a specific subset of
memory B cells called late memory B cells (identified as positive
for CD19, but negative for IgD and CD38) could be useful in
vitiligo and autoimmune thyroiditis therapies (Figure 6).

Overall, the genetic associations observed in the IL2RA region
can predict the efficacy and potential adverse effect of the broad
blocking of CD25 that causes a reduction of CD25 activity in cells
not implicated in disease predisposition (e.g., Tregs).

A similar scenario was observed for several antigens, such as
CD32, CD28, and CD40, whose increase is associated with
predisposition to some diseases, but also with protection from
others (Table 1). But if the targeted antigen can be addressed in
specific cells (for instance either B or T cells in the case of CD25),
the adverse effects should be minimized. Thus, the generation of
multi-specific drugs, able to recognize more than one antigen
simultaneously, can provide an optimal way to ensure specificity
and reduce adverse effects.

Multi-specific drugs are in clinical trials especially for cancer
treatment, where an antibody binds immune cells such as CD3-
positive, while another antibody binds cancer cells, thereby
redirecting T-cell cytotoxicity to malignant cells (52, 53).
However, the same approach can be useful to engage two
molecules on the membrane of one cell (in-cis binding). For
instance, MGD010 is a dual-affinity retargeting (DART) protein
which simultaneously binds the B cell surface proteins CD32B
and CD79B to deliver a co-inhibitory signal that dampens B cell
activation (54). The intended mechanism of MGD010 is to
modulate the function of human B cells while avoiding their
depletion and could be useful for treatment of rheumatoid arthritis
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and other autoimmune and inflammatory diseases .
Notwithstanding, only few bispecific antibodies have been
approved and marketed, namely blinatumomab (55),
simultaneously targeting B cell CD19 antigen and T cell CD3
antigen against B cell malignancies, and emicizumab (56, 57),
targeting coagulation factors IXa and X against hemophilia A.
Finally, catumaxomab, approved in Europe for the intraperitoneal
treatment of malignant ascites, binds to the epithelial cell adhesion
molecule (EpCAM), T cells (via CD3), and to accessory cells,
including dendritic cells, macrophages, and natural killer cells
through its Fc-fragment (58). Approved in 2009, catumaxomab
was however withdrawn from the US market in 2013 and from
European market in 2017 when the company became insolvent.

More recently, tri-specific drugs have been developed. Among
them, a single molecule designed by Xu and colleagues is able to
bind three HIV-1 envelope determinants: the CD4 binding site,
the membrane proximal external region, and the V1V2 glycan
site, showing higher potency and breadth compared to
previously used antibodies and complete immunity against a
mixture of simian-human immunodeficiency viruses (SHIVs) in
nonhuman primates (59).

The reason why few multi-specific drugs have been created
and approved is that they are not easy to generate due to their
instability, low solubility, unwanted inter-subunit associations,
and enhanced immunogenicity (60). The evaluation of these
therapeutic properties as well as manufacturability and safety
profile is called developability.

Another relevant consideration is the choice of the most
appropriate dose. Several studies demonstrated that even when a
drug is able to ameliorate a disease condition, its administration at a
wrong concentration can cause potentially deadly side-effects. This
happened in 2006 when six healthy young males were enrolled in
the first phase 1 clinical trial of the CD28 super-agonist TGN1412,
which can activate T cells, particularly regulatory T cells, thus
potentially efficacious against autoimmunity where a reduced
function of Tregs is expected. All volunteers had an unpredicted
multiple cytokines release syndrome and underwent intensive
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cardiopulmonary support, dialysis, and administration of both a
high-dose of anti-inflammatory drugs such as methylprednisolone
and an anti–interleukin-2 receptor antagonist antibody.
Fortunately, all six volunteers survived (61). It was clear that the
drug activated effector T cells instead of Tregs. Some years later, the
reasons for the preclinical study failure of TGN1412 were found
(62). Firstly, only about 2% of T cells circulate in the peripheral
blood (63), thus human T cells used for in vitro studies (which
derive from that 2%) respond differently compared to those in vivo,
which include also the remaining 98%ofT cells. Secondly, inmouse
models living inagerm-free animalhouseused to test thedrug,CD4
effector memory cells are much lower in numbers and easily
controllable by TGN1412-activated Tregs compared to humans.
Thirdly, in cynomolgus macaques, also used to test the drug, CD4
effectormemory cells down-regulate CD28, and thus it cannot bind
TGN1412; this does not occur in humans. In 2014, Tabares and
colleagues (64) demonstrated that a strong reduction of TGN1412,
now renamed TAB08, accompanied by the administration of
corticosteroid drug (such as methylprednisolone), activates Tregs
without a cytokine storm, thus making it useful in rheumatoid
arthritis and other autoimmune therapies.

The TGN1412 results exemplify the need to identify the
correct dose for the correct target. Notably, the proper dose
could also depend on our genome, indeed, differences in our
DNA sequence that affect the levels of the drug target (such as
specific cell type or protein) could modify the efficacy of the
pharmacological treatments, thus an individual could need a
different drug concentration compared to another individual - a
type of personalized medicine.
CONCLUDING REMARKS

Flow cytometry combined with systematic GWAS of immune
traits in general population cohorts and case-control GWAS data
on autoimmune disease risk is a powerful strategy to identify
specific proteins, cells, and pathways involved in the
FIGURE 6 | Association signals at IL2RA region. Representation of IL2RA gene (green) and about 100 kb upstream to the gene (grey line). The association signals
with immune cell traits are depicted by «hills» which are colored in orange or light blue if overlapping or not overlapping with disease-association signals, respectively.
Disease is in red if the predisposing allele is associated with increase of immune cell traits, whereas it is in blue if the predisposing allele is associated with decrease
of immune cell traits. Disease acronyms: T1D, type one diabetes; RA, rheumatoid arthritis; PSC, primary sclerosis cholangitis; ALL, allergy; CRO, Crohn’s disease;
SLE, systemic lupus erythematosus; VIT, vitiligo; AT, autoimmune thyroiditis; AA, alopecia areata; PSO, psoriasis; MS, multiple sclerosis.
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TABLE 1 | Immune traits associated with diseases via overlapping genetic association and having opposite direction of effect in different diseases. Extracted from Orrù et al., 2020 (3).

y
Expected increased risk for other autoimmune
disease (side effect)

SLE
CRO, IBD, KD, AS, UC
MS
UC, CEL
MS
CEL, UC
SLE
CEL, BD
VIT, AA
CEL, Allergy, MS, Cutaneous squamous cell carcinoma
CRO, IBD, Allergy
CEL
RA
MS, Allergy
Allergy, CRO

T1D, PSC, JIA

Allergy, CRO
T1D, PSC, JIA
Allergy, CRO
T1D, PSC, JIA
Allergy, CRO
T1D, PSC, JIA
SLE
IgAN
T1D
CRO, IBD, Ob
CC, CRO, PBC, RA, T1D, UC, Bronchial
hyperresponsiveness in asthma, Selective IgA deficiency,
Liver biliary cirrhosis
Allergy, Asthma, ALL, AM

RA, Depression, KD

HBVI, CRO, IBD, MS, SLE

RA, KD
HBVI, CRO, IBD, MS, SLE
RA, KD
HBVI, CRO, IBD, MS, SLE
RA, KD
HBVI, CRO, IBD, MS, SLE
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Cell trait name Primary drug
targets

Disease Proposed therapeutic
modulation of primar
drug targets

CD32 on monocyte CD32 CRO, IBD, KD, AS, UC inhibition
CD32 on monocyte CD32 SLE activation
CD28 on CD39+ CD4+ CD28 UC, CEL activation
CD28 on CD39+ CD4+ CD28 MS inhibition
CD28 on CD4+ CD28 UC, CEL activation
CD28 on CD4+ CD28 MS inhibition
CCR2 on monocyte CCR2 BD, CEL activation
CCR2 on monocyte CCR2 SLE inhibition
HLA DR on CD14- CD16+ monocyte HLA DR CEL, Allergy, MS, Cutaneous squamous cell carcinoma inhibition
HLA DR on CD14- CD16+ monocyte HLA DR VIT, AA activation
CD80 on myeloid DC (especially CD62L+) CD80 CEL inhibition
CD80 on myeloid DC (especially CD62L+) CD80 CRO, IBD, Allergy activation
CD45RA on naive CD4+ CD45RA Allergy, MS inhibition
CD45RA on naive CD4+ CD45RA RA activation
CD25hi%CD4+ (especially CD25hi CD45RA- CD4
not Treg %CD4+)

CD25, CD4,
CD3

T1D, PSC, JIA activation

CD25hi%CD4+ (especially CD25hi CD45RA- CD4
not Treg %CD4+)

CD25, CD4,
CD3

Allergy, CRO inhibition

CD25 on CD45RA- CD4 not Treg CD25 T1D, PSC, JIA activation
CD25 on CD45RA- CD4 not Treg CD25 Allergy, CRO inhibition
CD25 on CD4+ CD25 T1D, PSC, JIA activation
CD25 on CD4+ CD25 Allergy,CRO inhibition
CD25++ CD8br%Tcells CD25, CD8 T1D, PSC, JIA activation
CD25++ CD8br%Tcells CD25, CD8 Allergy, CRO inhibition
CD11c on myeloid DC CD11c IgAN activation
CD11c on myeloid DC CD11c SLE inhibition
CD19 on B cell (especially sw mem IgD-CD27+) CD19 IBD, CRO, Ob activation
CD19 on B cell (especially sw mem IgD-CD27+) CD19 T1D inhibition
IgD+ AC IgD, CD19/

CD20
Allergy, Asthma, ALL, AM inhibition

IgD+ AC IgD, CD19/
CD20

CC, CRO, PBC, RA, T1D, UC, Bronchial
hyperresponsiveness in asthma, Selective IgA deficiency,
Liver biliary cirrhosis

activation

Unsw Mem (IgD+CD27+) %lymphocyte IgD, CD27,
CD19/CD20

HBVI, CRO, IBD, MS, SLE inhibition

Unsw Mem (IgD+CD27+) %lymphocyte IgD, CD27,
CD19/CD20

RA, Depression, KD activation

CD27 on memory B cell (especially IgD-CD38dim) CD27 HBVI, CRO, IBD, MS, SLE inhibition
CD27 on memory B cell (especially IgD-CD38dim) CD27 RA, KD activation
CD40 on B cell (especially IgD-CD27-) CD40 HBVI, CRO, IBD, MS, SLE activation
CD40 on B cell (especially IgD-CD27-) CD40 RA, KD inhibition
IgD- CD27- %B cell CD19/CD20 HBVI, CRO, IBD, MS, SLE activation
IgD- CD27- %B cell CD19/CD20 RA, KD inhibition
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etiopathogenesis of immune related diseases. After appropriate
validation with functional studies, this strategy will be
increasingly relevant to identify therapeutic targets and
reinforce causal relationships as the technology will evolve to
permit a considerable expansion of the number of markers
assessed simultaneously by flow cytometry and of the sample
size of the studies. Corresponding advances in the generation of a
new class of in-cis, multi-specific antibodies to engage these
targets will progressively increase efficacy and minimize the
potential side effects in the treatment of autoimmune diseases.

In summary, from flow cytometry data collection to drug
therapy development, four main steps are relevant:

• coupling flow cytometry data to genetics in the general
population sample set to identify the genetic component
driving the interindividual immune variability;

• systematically searching for overlapping association between
immune trait-associated variants (from population-based
datasets) and disease-associate variants (from case-control
datasets);

• causality confirmation of identified disease risk variants
through functional studies;

• drug development in a cell-specific context.
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Objectives: Deciphering the genetic relationships between major depressive disorder
(MDD) and atopic diseases (asthma, hay fever, and eczema) may facilitate understanding
of their biological mechanisms as well as the development of novel treatment regimens.
Here we tested the genetic correlation between MDD and atopic diseases by linkage
disequilibrium score regression.

Methods: A polygenic overlap analysis was performed to estimate shared genetic
variations between the two diseases. Causal relationships between MDD and atopic
diseases were investigated using two-sample bidirectional Mendelian randomization
analysis. Genomic loci shared between MDD and atopic diseases were identified using
cross-trait meta-analysis. Putative functional genes were evaluated by fine-mapping of
transcriptome-wide associations.

Results: The polygenic analysis revealed approximately 15.8 thousand variants causally
influencing MDD and 0.9 thousand variants influencing atopic diseases. Among these
variants, approximately 0.8 thousand were shared between the two diseases. Mendelian
randomization analysis indicates that genetic liability to MDD has a causal effect on atopic
diseases (b = 0.22, p = 1.76 × 10-6), while genetic liability to atopic diseases confers a
weak causal effect on MDD (b = 0.05, p = 7.57 × 10-3). Cross-trait meta-analyses of MDD
and atopic diseases identified 18 shared genomic loci. Both fine-mapping of
transcriptome-wide associations and analysis of existing literature suggest the estrogen
receptor b-encoding gene ESR2 as one of the potential risk factors for both MDD and
atopic diseases.

Conclusion: Our findings reveal shared genetic liability and causal links between MDD
and atopic diseases, which shed light on the phenotypic relationship between MDD and
atopic diseases.

Keywords: major depressive disorder, Mendelian randomization, meta-analyses, asthma, atopic diseases
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INTRODUCTION

Mental disorders confer a heavy burden on society (1). Major
depressive disorder (MDD), the most prevalent mental disorder
accompanied by considerable morbidity, mortality, and risk of
suicide, is characterized by persistent low mood (2). MDD and
depressive symptoms have close associations with certain
physical conditions. Generally speaking, long-term depression
adds to the risk for somatic illness, and, vice versa, chronic
somatic diseases are frequently accompanied by depression (3).
When comorbid with other ailments, for example, atopic
diseases (ADs), MDD produces worse clinical outcomes and
incurs higher healthcare costs.

ADs are driven by the dysfunction of the immune system.
Three kinds of common ADs, namely, asthma, hay fever (allergic
rhinitis), and eczema (atopic dermatitis), may coexist in the same
individuals (4). Asthma, a chronic airway disease that is common
worldwide, is characterized by coughing, wheezing, shortness of
breath, and/or chest tightness due to increased airway reactivity,
inflammation, and/or mucus production. In 2015, asthma affected
358 million people globally and caused about 400,000 deaths (5).
Allergic rhinitis is an inflammatory disease characterized by nasal
congestion, rhinorrhea, sneezing, and/or nasal itching. Allergic
rhinitis is one of the most common diseases in adults (20%~30%),
and the most common chronic disease in children (up to 40%)
in the United States (6). Eczema is an inflammatory skin disease
that is caused by a dysfunction of a skin barrier followed by
aberrant inflammation/immune responses; this disease is affecting
5% of the population worldwide (7). Together, symptoms of
ADs significantly impair quality of life and impose a heavy cost
on society. Common comorbidities of MDD with ADs have been
documented previously (8–12). Specifically, allergic rhinitis has
been shown to have a positive association with MDD (odds ratio:
1.24) (8). In patients with asthma, the hazard ratio of MDD
increases by 35%, and MDD patients show about 25% increased
hazard ratio for being affected by asthma (9). Atopic eczema is
also associated with an increased incidence of new depression
(hazard ratio: 1.14) (10).

Although previous studies have detected associations
between MDD and ADs, several key questions remain pending:
1) to what extent may the two conditions share genetic
components? 2) Are the phenotypic associations mediated by
genetic variations? 3) What molecular and cellular mechanisms
underline these associations?

Genetic relationships between two traits are commonly
quantified by genetic correlation coefficients. The sign of the
correlation coefficient indicates directions of the shared genetic
effects. When dealing with mixtures of effect directions across
shared genetic variants, genetic correlation analyses may be
underpowered (13). A polygenic overlap was recently proposed
to measure the fraction of genetic variants causally associated
with both traits over the total number of causal variants across a
pair of traits involved (13).

Mendelian randomization (MR) is an analytic framework that
utilizes genetic variants as instrumental variables to test for
causative association between an exposure and an outcome (14).
Recently, a general type of SMR (GSMR) had been developed by
Frontiers in Immunology | www.frontiersin.org 268
leveraging power from multiple genetic variants to account for
linkage disequilibrium (LD) between the variants (15).

Recently, Zhu et al. reported a causal effect of MDD on
asthma and identified 10 loci shared by asthma and MDD by
cross-trait meta-analysis (16). The GWAS dataset for MDD,
however, did not include the 23andMe samples. We set on taking
this line of investigation further, by both utilizing a larger MDD
dataset and including two other ADs related to asthma, namely,
allergic rhinitis and atopic dermatitis. Asthma, allergic rhinitis,
and atopic dermatitis genetically correlate with each other and
are often comorbid (17). The genetic liability to MDD may
confer a causal effect on all of these ADs. Dissection of this
shared genetic liability may deliver novel insights into the
pathophysiology of both MDD and ADs.
METHODS

GWAS Summary Datasets and
Quality Control
This study relied on both de-identified publicly available
summary-level GWAS data and the pre-approval 23andMe
dataset. The resultant MDD dataset included 135,458 cases and
344,901 healthy controls (18), and the AD dataset included
96,794 cases and 145,775 healthy controls (19). For the
inclusion of each dataset, both bi-allelic SNPs and imputation
INFO above 0.80 were required. Each SNP was compared
between the two datasets, and SNPs with conflicting alleles
were excluded. If an SNP was mapped to opposite strands in
the two datasets, alleles of this SNP in the second dataset were
flipped, and the effect direction was reversed.

Genetic Correlation and Polygenic
Overlap Analysis
GWAS summary results were utilized to analyze the genetic
correlation of MDD with ADs by LD score regression software
(LDSC, v1.0.1) (20, 21). A polygenic overlap was analyzed by
MiXeR v1.2 using default parameters (13). Using GWAS
summary statistics, MiXeR quantifies the polygenic overlap
irrespective of the genetic correlation between traits. Based on
the univariate causal mixture model (22), MiXeR builds four
bivariate normal distributions, with two causal components for
variants specific to each trait, one causal component for variants
affecting both traits, and a null component for variants with no
effect on either trait. The likelihood function of the observed
signed test statistics (GWAS Z-scores) is produced from the prior
distribution of genetic effects, incorporating effects of the LD
structure, sample size, minor allele frequency (MAF), cryptic
relationships, and sample overlap. The summary statistics are
used to estimate the parameters of the mixture model by
optimization of the likelihood function. The number of causal
variants reported by the software is 22.6% of the total estimated
variants, which account for 90% of SNP heritability for each trait.

MR Analysis
Bidirectional causal associations between MDD and ADs were
inferred using GSMR v1.0.9 (15). Instrumental variants were
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selected based on default p ≤ 5×10-8. It is well accepted that
pleiotropy is a potential source of bias and an inflated estimation
in an MR analysis (23). In GSMR, the HEIDI-outlier statistical
approach allows the detection and elimination of genetic
instruments with apparent pleiotropic effects on both risk
factors and disease (15, 24). It was suggested that genetic
correlation may confound Mendelian randomization estimates
(25). To examine this possibility, we performed a latent causal
variable model (LCV) analysis between MDD and ADs (26). The
LCV framework utilizes the genetic causality proportion (GCP)
to quantify the partial causality of trait 1 on trait 2. The GCP
ranges from 0 (no partial genetic causality) to 1 (full genetic
causality). A high value of GCP indicates a causal effect of
interventions targeting trait 1 on trait 2.

Cross-Trait Meta-Analysis
A cross-trait meta-analysis of the MDD and the ADs was
executed by the subset-based fixed-effect method ASSET v2.4.0,
which permits the characterization of each SNP with respect to
its pattern of effects on multiple phenotypes (27). For each
assessed variant, this type of analysis returns a p-value for the
best subset containing the studies contributing to the overall
association signal. The meta-analysis pools the effect of a given
SNP across K studies, weighting the effects by the size of the
respective study. After subset-based meta-analysis, SNP-related
findings were considered statistically significant, if two-tailed p
values were lower than 5 × 10-8. In the meta-analysis results,
functional annotation and gene-mapping of variants and
identifying LD-independent genomic regions were performed
on a FUMA platform (28). Firstly, independent significant SNPs
(IndSigSNPs) were identified based on their p-value being
genome-wide significant (p ≤ 5.0 × 10−8) and independent of
each other (r2 < 0.6). Secondly, lead SNPs were identified as a
subset of the independent significant SNPs that were in LD with
each other at r2 < 0.1 within a 250-kb window. The gene-based
association for the meta-analysis of MDD and ADs was
conducted using MAGMA (29).

To ensure that sample overlap did inflate estimates of genetic
overlap between MDD and ADs, lmeta statistics, which use
effect size concordance to detect sample overlap or heterogeneity,
were calculated (30). Under the null hypothesis, lmeta equals 1
when the pair of cohorts are completely independent. When
there are overlapping samples, lmeta is less than 1.

Fine-Mapping of TWAS Associations
To prioritize putatively causal genes, fine-mapping of causal gene
sets (FOCUS v0.6.10) (31) to the meta-analysis result of MDD and
ADs was performed in four relevant tissues, including the brain,
whole blood, lung, and skin. Using FOCUS, predicted expression
correlations were modeled and posterior inclusion probabilities
(PIP) are assigned to genes within each transcriptome-wide
association study (TWAS) region in the relevant tissue types. A
multi-tissue eQTL reference weight database from the software
was used as eQTL weights, while LD information from LDSC was
used as a reference. Multiple-testing correction was used to
account for all gene–tissue pairs based on Benjamini–Hochberg
adjusted TWAS p-values (FDR < 0.05).
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Knowledge-Based Analysis
GWAS results, including meta-analysis, were obtained for
depression (major depressive disorder and depressive
symptoms) and for ADs from the GWAS Catalog database
(access date: April 17, 2020) (32). We explore whether the
genes shared by MDD and ADs have been identified in
previous genome-wide association studies. Protein–protein
interaction analysis was conducted using STRING v11 (33).
Enrichment of the 27 genes in the GWAS catalog reported
genes was analyzed using FUMA (28).

All the statistical analyses were conducted in R 3.6.1 or
Python 3.7 environment. A detailed description of the methods
is provided in the Supplementary File.
RESULTS

Genetic Correlation and Polygenic
Overlap Analysis
MDD displayed a significant genetic correlation with ADs (r =
0.18, s.e. = 0.03, p = 1.04 × 10-9). The LD score intercept did not
deviate from zero (0.017). The polygenic analysis highlighted
approximately 15.8 thousand variants causally influencing MDD
and 0.9 thousand variants influencing ADs. Among these
variants, approximately 0.8 thousand variants were shared
between the two diseases (Figure 1A). MDD has much larger
numbers of causal variants than ADs, indicating a higher
polygenic property of MDD.

MR Analysis
Mendelian randomization analysis indicated that genetic liability
to MDD has a causal effect on ADs (b = 0.22, s.e. = 0.05, OR =
1.25, 95%CI: 1.13–1.37, p = 1.76 × 10-6), with 45 independent
instrumental variants being involved. The genetic liability of ADs
conferred a causal effect on MDD (b = 0.05, s.e. = 0.02, OR =
1.05, 95%CI: 1.01–1.09, p = 7.57 × 10-3), with 115 independent
instrumental variants being involved (Figure 1B). The LCV
analysis showed that GCP was 0.49 (0.32), supporting a causal
effect of genetic liability to MDD on ADs.

Cross-Trait Meta-Analysis
The cross-trait meta-analysis of MDD and ADs revealed the
involvement of 103 loci, 470 significant independent SNPs
(IndSigSNPs), and 141 lead SNPs, including 44 pleiotropic
IndSigSNPs located in 18 loci (associated with both traits)
(Figure 2A, Table 1 and Supplementary Tables 1, 2). The
14q23 locus is shown in Figure 2B. A total of 82 pleiotropic
protein-coding genes were identified, including 27 protein-
coding genes implicated by the pleiotropic IndSigSNPs and
another 55 protein-coding genes implicated by SNPs tagged by
IndSigSNPs (Supplementary Table 3). The gene-based
association for the meta-analysis of MDD and ADs identified a
total of 273 significant genes at the threshold of 2.70 × 10-6

(Bonferroni correction, 0.05/18,545) (Supplementary Table 4).
Compared with SNP-based analysis, an additional 63 genes
were identified by the gene-based analysis, including DRD2.
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A B

FIGURE 1 | Shared causal variants and causal associations between MDD and ADs. (A) Venn diagrams of unique and shared polygenic components at the causal
level, showing a polygenic overlap between MDD and ADs. The numbers indicate the estimated quantity of causal variants (in thousands) per component, explaining
90% of SNP heritability in each phenotype. The size of the circles reflects the degree of polygenicity. (B) Causal associations between MDD and ADs. The lines
denote effect sizes (B). The left panel denotes the causal effect of MDD on ADs. The left panel denotes the causal effect of ADs on MDD.
A

B

C

FIGURE 2 | Cross-trait meta-analysis of MDD and ADs. (A) Manhattan plot of meta-analysis of MDD with ADs. The x-axis is the chromosomal position of SNPs,
and the y-axis is the significance of the SNPs (-log10P). Protein-coding genes containing or adjacent to independent significant SNPs shared by two traits were
annotated. PCDHA1_6: PCDHA1, PCDHA2, PCDHA3, PCDHA4, PCDHA5, and PCDHA6. (B) The 14q23 locus containing the ESR2 gene. Each SNP is colored
based on the highest r2 to one of the independent significant SNPs. (C) Enrichment of the 27 protein-coding genes in GWAS catalog gene sets.
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The lmeta value was at 1.18 for datasets betweenMDD and ADs,
indicating no significant overlap between MDD and AD GWAS
samples. Quantile–quantile (QQ) plots to display the observed
meta-analysis statistics versus the expected statistics under the
null model of no associations in the -log10(p) scale are shown in
Supplementary Figure 1.

Fine-Mapping of TWAS Associations
To prioritize putatively causal genes, we used the fine-mapping
of TWAS associations. A total of 126 gene–tissue pairs were
identified between the 82 genes and the four tissues, with 36
genes being associated with two or more tissues (Supplementary
Table 5). A total of 31 gene–tissue pairs were in the credible sets.
Fifteen genes associated with three or more tissues are listed in
Table 2. However, most genes in Table 2 had low PIP. Of note,
the ESR2 gene was associated with three tissues (skin, lung, and
blood) with relatively high posterior probability (Figure 3).
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Knowledge-Based Analysis
A total of 23 out of the 27 pleiotropic protein-coding genes
have been identified in previous GWASs on depression or ADs
(Supplementary Table 6). Among these 23 genes were 16
genome-wide risk genes for depression, including BEND4,
DENND1A, ESR2, L3MBTL2, NEGR1, PCDHA1, PCDHA2,
PCDHA3, PCDHA4, PCDHA5, PCDHA6, RBX1, SLC30A9,
SORCS3, SYNE2, and TMEM161B, and 8 genome-wide risk
genes for ADs, including BOLL, DIAPH1, GLB1, MOB4, NEK6,
OVOL1, RANGAP1, and RBX1. Enrichment of the 27 genes in
the GWAS catalog-reported genes revealed that these genes were
enriched in several mental disorders and basophil neutrophil
counts, as well as neutrophil counts, supporting the involvement
of these genes in neurodevelopmental conditions and atopic
diseases (Figure 2C and Supplementary Table 7).

PPI analysis showed that a majority of the 82 genes are
interconnected, forming one large network and several small
TABLE 1 | Genomic loci shared between MDD and ADs.

SNP Chr : BP P Start : End Genes

rs10789340 1:72940273 4.85×10-17 72512988:72958905 NEGR1; RPL31P12
rs700646 2:198608511 3.80×10-11 198148191:198954774 MOB4; BOLL; AC011997.1
rs11927929 3:33087057 5.46×10-9 33068268:33126972 GLB1
rs34215985 4:42047778 2.07×10-12 41882601:42187640 RP11-457P14.5; RP11-457P14.6; SLC30A9; BEND4
rs71600495 4:121628028 1.57×10-8 121625080:121655414 PRDM5
rs247910 5:87630769 1.41×10-12 87437079:88065637 TMEM161B; TMEM161B-AS1; LINC00461; CTC-467M3.1
rs1363105 5:103917790 1.80×10-10 103671867:104082179 RP11-6N13.1
rs10060640 5:140211226 7.62×10-9 140024042:140222641 PCDHA1; PCDHA2; PCDHA3; PCDHA4; PCDHA6; PCDHA5
rs3844598 5:140992235 3.14×10-10 140893490:141032603 DIAPH1
rs11135349 5:164523472 2.71×10-9 164465319:164678946 CTC-340A15.2
rs2064219 6:27376001 3.07×10-10 25684606:29607101 MCFD2P1
rs144829310 9:6208030 7.58×10-26 5609742:6621027 AK4P4; KIAA2026
rs549779 9:126613028 2.62×10-8 126452936:126714710 DENND1A
rs10818936 9:127006346 3.82×10-8 126999153:127144622 NEK6
rs61867293 10:106563924 2.60×10-9 106529451:106830537 SORCS3
rs479844 11:65551957 3.64×10-12 65401336:65641033 OVOL1
rs915057 14:64686207 1.42×10-9 64649894:64877135 SYNE2; ESR2
rs136402 22:41598933 1.51×10-14 41085969:42216326 SLC25A17; RBX1; Y_RNA; RP11-12M9.4; RP1-85F18.5; L3MBTL2; RANGAP1; ZC3H7B
Chr, chromosome; BP, base position. Protein-coding genes are shown in bold.
TABLE 2 | TWAS analysis in the four tissues.

Gene GWAS P Chr : Start-End Tissue Brain Z (PIP) Blood Z (PIP) Lung Z (PIP) Skin Z (PIP)

SLC30A9 2.07×10-12 4:41992489-42092474 Brain, blood, lung -6.08 (0.313) -1.83 (<0.01) 3.72 (<0.01)
NDUFA2 2.25×10-6 5:140018325-140027370 Brain, blood, skin 6.27 (0.941) 4.28 (0.011) -2.87 (<0.01)
FCHSD1 5.99×10-8 5:141018869-141030986 Brain, lung, blood 5.64 (0.807) 1.86 (<0.01) 2.42 (<0.01)
PCDHA7 7.62×10-9 5:140213969-140391929 Lung, brain, skin -5.02 (0.150) -5.18 (0.317) -3.65 (0.013)
WDR55 2.24×10-6 5:140044261-140053709 Skin, blood, lung, brain -1.56 (<0.01) -4.65 (0.026) -1.86 (<0.01) -4.69 (0.059)
IK 2.25×10-6 5:140026643-140042064 Blood, skin, lung, brain -3.67 (<0.01) 4.52 (0.034) -3.7 (<0.01) -3.37 (<0.01)
TMCO6 2.25×10-6 5:140019012-140024993 Blood, skin, lung, brain -1.61 (<0.01) -4.27 (<0.01) -3.41 (<0.01) -2.98 (<0.01)
ZMAT2 2.51×10-6 5:140078265-140086248 Lung, blood, skin, brain -3.5 (<0.01) 2.73 (<0.01) -2.2 (<0.01) -2.98 (<0.01)
ZNF391 3.07×10-10 6:27342394-27371683 Brain, skin, blood, lung 2.54 (0.268) 3.83 (<0.01) -3.86 (<0.01) 3.13 (<0.01)
ESR2 1.42×10-9 14:64550950-64804830 Lung, skin, blood -5.09 (0.256) -3.96 (0.243) -5.58 (0.998)
MTHFD1 5.20×10-9 14:64854749-64926722 Lung, blood, skin -3.05 (<0.01) -3.18 (0.018) -3.32 (<0.01)
MEI1 9.03×10-10 22:42095503-42195460 Brain, skin, lung, blood 6.52 (0.424) 5.88 (<0.01) 5.95 (<0.01) 6.37 (0.042)
XPNPEP3 2.65×10-8 22:41253081-41363838 Blood, skin, lung, brain 3.97 (<0.01) 4.87 (0.045) 5.11 (0.017) 5.42 (0.035)
CCDC134 2.14×10-9 22:42196683-42222303 Brain, lung, blood, skin 3.91 (<0.01) 1.63 (<0.01) 2.49 (<0.01) -1.82 (<0.01)
DESI1 1.10×10-9 22:41994032-42017100 Lung, skin, brain, blood 2.35 (<0.01) 1.51 (<0.01) 2.34 (<0.01) 2.91 (<0.01)
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networks (Supplementary Figure 2). Schematics of ESR2 gene
interactions with depression and ADs are shown in Figure 4.
DISCUSSION

In this study, we detected a significant genetic correlation
between MDD and ADs (r = 0.18), at a level comparable to
that for a previously reported correlation of MDD and autism
Frontiers in Immunology | www.frontiersin.org 672
spectrum disorder (r = 0.16) (34). Our results indicate a much
higher polygenicity of MDD when compared to ADs, with
substantial polygenic overlap between these conditions
identified. Nearly 90% of causal variants influencing the risk of
ADs may also affect MDD. Cumulative evidence supports a close
relationship between these two conditions in the context of
underlining genetics.

More importantly, causal relationships between MDD and
ADs were discovered. In particular, a major causal effect of
A B

DC

FIGURE 3 | Transcriptome-wide association study of the meta-analysis of MDD and ADs. (A) skin; (B) blood; (C) lung; (D) brain. Within each panel, the top part is
the transcriptome-wide association signal indicating strength of the predicted expression association with trait, and the bottom part is the induced correlation of the
predicted expression.
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genetic liability to depression on ADs was detected. Although
liability to ADs also exerts a statistically significant causal effect
on MDD, the size of this effect is relatively small (b = 0.05).
Previous studies already showed the possible influence exerted by
MDD on ADs. For instance, patients with MDD show elevated
levels of non-esterified fatty acids in plasma (35); other studies
showed that fatty acids may contribute to the development of
atopic diseases such as hay fever and asthma (36). Elevated
serum interferon levels may contribute to eczema and also are
commonly detected in MDD (37). Moreover, MDD has been
shown to stimulate the production of cytokines (38), including
IL-13 and IL-6, both of which are also strongly involved in
asthma pathogenesis (39). Our findings are consistent with these
previous studies and partially explain the previously reported
comorbidity of MDD and ADs (8–12), while adding novel
insights into underlying pathogenetic mechanisms. Notably,
one previous study reported that depression may lead to
asthma rather than the opposite (40). The causal effect of ADs
on MDD should be further evaluated in additional datasets.

Shared genetic liability between MDD and ADs offers the
possibility of employing polygenic risk scores (PRS) for
evaluating allergic risks in MDD patients and the risk of
developing depression in AD patients. This strategy may lead
to an improvement in the clinical management of these
conditions. Shared biological markers of MDD and ADs are
far from being well studied. The cross-trait analysis revealed that
MDD and ADs share 18 loci and a panel of protein-coding genes.
The majority of these pleiotropic protein-coding genes have been
previously implicated either in depression or in ADs, with a
genome-wide significance level. For example, the RBX1 gene was
reported as a significant contributor to both depression (41) and
ADs (42). To shed new light on the genetic susceptibility of ADs
and MDD, we have concentrated on the estrogen receptor b
encoding gene ESR2 for further discussion.

Estrogen is capable of modulating neurotransmitter turnover to
enhance the levels of serotonin and noradrenaline and participates
in the regulation of serotonin receptor amounts and function (43).
Accumulating evidence indicates the involvement of estrogen
signaling in depression (44). In females, estrogen fluctuations are
associated with depressed mood (45), and the beneficial effects of
estrogen-containing hormone treatments were reported (46, 47).
The gene for estrogen receptor b, ESR2, has been previously
identified as a genome-wide significant gene contributing to
Frontiers in Immunology | www.frontiersin.org 773
MDD (18, 48). As the levels of estrogen are easily modulated by
pharmacological means, the association between ESR2 and MDD
may inform the development of personalized treatment modalities
for this condition. Notably, model studies in neonatal rats treated
with antidepressant clomipramine uncovered both the changes in
the levels of estrogen receptors on the surface of brain cells and the
neurochemical changes that resemble human depression (49). The
role of estrogens in the development of ADs is noticeable as well.
Women have a higher prevalence of asthma and display its greater
severity than men (50). Estrogen receptors are found on numerous
immune-regulatory cells, with estrogen-dependent responses
favoring the shift toward allergy. In particular, estrogens
promote allergic response by stimulating Th2 polarization,
boosting class switching of B cells to IgE production, and
prompting mast cell and basophil degranulation (51). ESR2 and
its product, estrogen receptor b, have been suggested as potential
targets for asthma treatment (52). There is also accumulating
evidence supporting estrogens’ role in hay fever and eczema (53,
54). In particular, there is a correlation between the mean number
of ER-b-positive cells in the nasal mucosa and seasonal allergy
symptoms (55).

This study identified ESR2 as a novel genome-wide significant
contributor to ADs, providing strong support for the involvement
of the estrogen pathway in ADs. Fine-mapping of TWAS had
assigned the posterior probability for causality for ESR2 in the
skin, blood PBMCs, and lung tissue at 0.998, 0.256, and 0.243,
respectively. Although the fine-mapping of TWAS hits did not
support the involvement of ESR2 in the brain, analysis of existing
literature points at its role in neurodevelopment and mental
disorders. Together, our findings highlight ESR2 as a critical
gene for both MDD and ADs and point to its relevance at the
therapy target.

The presented study has several strengths. First, we utilized
the largest combination of available datasets as a study backbone.
Furthermore, to avoid potential population heterogeneity across
the studies, we limited our analysis to individuals of European
ancestry. Lastly, the genetic relationship between MDD and
ADs was explored systemically by employing multiple
analytic frameworks.

However, several limitations should also be noted. The
datasets employed in this study only contained data of three
subtypes of ADs. Further studies using more datasets covering
other subtypes of ADs are warranted to evaluate the associations
FIGURE 4 | Schematic relationships of ESR2 with depression and ADs.
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betweenMDD and ADs. In TWAS, the gene expression levels are
imputed from weighted linear combinations of SNPs and,
therefore, may report noise. As our analysis was limited to a
genetic component of each trait, hence, the presented results
should be interpreted cautiously, with the understanding that
human traits arise from a complex web of interactions of various
psycho-social-environmental factors.

In summary, our findings reveal shared genetic liability and
causal links between MDD and atopic diseases, which may
underline the phenotypic relationship between MDD and ADs.
Presented results may have implications both for the therapy and
for the management of MDD and ADs.
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Background: Atopic march refers to the natural history of atopic dermatitis (AD) in infancy
followed by subsequent allergic rhinitis and asthma in later life. Respiratory viruses interact
with allergic sensitization to promote recurrent wheezing and the development of asthma.
We aimed to evaluate whether influenza vaccination reduces asthma risk in people with AD.

Methods: This cohort study was conducted retrospectively from 2000 to 2013 by the
National Health Insurance Research Database (NHIRD). Patients with newly diagnosed
AD (International Classification of Diseases, Ninth Revision, Clinical Modification code 691)
were enrolled as the AD cohort. We matched each vaccinated patient with one non-
vaccinated patient according to age and sex. We observed each participant until their first
asthma event, or the end of the study on December 31, 2013, whichever came first.

Results:Our analyses included 4,414 people with a mean age of 53 years. Of these, 43.8
were male. The incidence density of asthma was 12.6 per 1,000 person-years for
vaccinated patients, and 15.1 per 1000 person-years for non-vaccinated patients. The
adjusted hazard ratio (aHR) of asthma in the vaccinated cohort relative to the non-
vaccinated cohort was 0.69 (95% CI = 0.55–0.87). Vaccinated patients had a lower
cumulative incidence of asthma than unvaccinated patients. Vaccinated participants in all
age and sex groups trended toward a lower risk of asthma. People will reduce more
asthma risk when taking shots every year.

Conclusion: Influenza vaccination was associated with lower asthma risk in patients with AD.

Keywords: asthma, atopic dermatitis, big data analysis, influenza vaccination, Taiwan national health insurance
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INTRODUCTION

Upto80%of childrenwith atopic dermatitis (AD)develop asthmaor
allergic rhinitis later in life (1). Teenagers with asthma have higher
ADrates than thosewithout asthma (risk ratio 4.5, 95%CI=3.1–6.5)
(2). The most common mechanisms for this occurrence are barrier
defects, skin inflammation, and microbiome alterations that trigger
theT‐helper type 2 (Th2) cell response and lead tohypersensitization
for later disorders. AD and asthma share similar genetic loci, and
people afflicted by these conditions often share similar food allergies
and early environmental exposures. Vitamin D, probiotics, allergen
avoidance, allergen immunotherapy, IgEantagonists, and respiratory
infection prevention are all considered strategies for asthma
prevention (3). Viral respiratory tract infections in infancy,
particularly influenza virus (4–6), respiratory syncytial virus, and
human rhinovirus may predict asthma development from late
childhood through early adulthood (7). Respiratory viruses interact
with allergic sensitization and other microbes to promote recurrent
virus- induced wheezing and asthma development via a number of
mechanisms, including increased inflammatory cell recruitment,
promotion of cytokine production, enhanced allergic
inflammation, and augmented airway hyperresponsiveness (8).

Children and adults with asthma have increased risks of
hospitalization and respiratory morbidity due to acute influenza
respiratory infections (9). Children with asthma were particularly
prone to increased intensive care unit (ICU) stays and pneumonia
during the 2009 H1N1 influenza pandemic. Influenza is also
associated with a higher risk of emergency department (ED)
treatment failure for acute respiratory illness (10).

To protect asthmatic patients, annual influenza vaccination is
recommended by the Advisory Committee for Immunization
Practices (ACIP), the American Academy of Pediatrics (AAP),
and the Expert Panel for the Diagnosis and Management of
Asthma. A recent systemic review and meta- analysis including
observational studies suggested that influenza vaccination
reduced the risk of asthma’s exacerbation (11).

However, the association between influenza vaccination and
further asthma risk has not yet been explored, particularly in
patients with AD. We conducted an original longitudinal
nationwide cohort study to determine whether influenza
vaccination in AD patients decreases the risk of asthma.
MATERIALS AND METHODS

Data Source
We analyzed anonymous data from the Taiwan National Health
Insurance Research Database (NHIRD). The Taiwan National
Health Insurance (NHI) program launched in 1995 and covered
99% of Taiwanese residents. The comprehensive claims data
from the NHI program were collected into NHIRD. We utilized
the outpatient and inpatient records of one million randomly
sampled people in the Longitudinal Health Insurance Database.
There were no statistically significant differences in sex, age, or
healthcare costs between the sample group and all enrollees. The
database used the International Classification of Diseases, Ninth
Frontiers in Immunology | www.frontiersin.org 277
Revision, Clinical Modification (ICD-9-CM) codes to define the
patients’ corresponding diseases. Due to safety and privacy
concerns, all patient identification information was encrypted.

Study Population
This cohort study was conducted retrospectively from 2000 to
2013. Newly diagnosed AD patients (ICD-9-CM = 691) with at
least three outpatient visits or one inpatient admission record
were enrolled as the AD cohort. The inclusion criteria were
defined as people who received an influenza vaccine after AD
diagnosis and before January 1, 2013. The earliest influenza
vaccination date was used as the index date for the vaccinated
group. We excluded people with a history of asthma (ICD-9-CM =
493) prior to the index date. Patients who never received an
influenza vaccination after AD diagnosis were enrolled as the
non-vaccinated cohort. The index date of the unvaccinated group
was assigned by 1:1 age and sex matching. We observed each
participant until the first asthma event or the end of the study on
December 31, 2013, whichever came first. This study was
approved by the NHIRD research committee and the Joint
Institutional Review Board of Chung Shan Medical University
(IRB permit number: CS19009).

Main Explanatory Variable
The main explanatory variable in this study was influenza
vaccination, which was identified using the therapeutic treatment
code A2001C, the ICD-9-CM codes V04.7 or V04.8, or the
medication codes for influenza vaccination. The flu usually strikes
between November and the followingMarch. In Taiwan, influenza
vaccination has been free for people with high-risk comorbidities
since 2001, and for all adults over 65 since 1998. This was extended
to infants and children between the ages of 6months and 2 years in
2004, with gradual extension to fifth- and sixth-grade–aged
elementary school students in 2012. The vaccines in the influenza
immunization program were Adimflu-S (ADIMMUNE
Corporation, Taiwan); Fluvirin (Novartis Vaccines, Switzerland);
AGRIPPAL S1 (Novartis Vaccines, Switzerland); Begrivac
(Novartis Vaccines, Switzerland); Vaxigrip (Pasteur Merieux
Connaught, France); and Fluarix (GlaxoSmithKline, USA). Each
influenza vaccination program recorded the influenza vaccination
status of all vaccinated participants.

Main Outcome and Comorbidities
Asthma was the primary endpoint in this study. We defined
asthma patients as patients with three or more outpatient visits
or one inpatient record of ICD-9-CM code 493. The following
comorbidities developed before the index date were considered
as confounders (ICD-9-CM codes indicated in parentheses):
hypertension (401–405); hyperlipidemia (272.0–272.4); chronic
liver disease (571); chronic kidney disease (585); diabetes (250);
gastroesophageal reflux disease (530.11, 530.81, 530.85); allergic
rhinitis (472, 473, 477); urticaria (708); chronic obstructive
pulmonary disease (COPD; 491, 492, 496); obstructive sleep
apnea (327.23, 780.51, 780.52, 780.53, 780.57); cellulitis (682);
attention deficit hyperactivity disorder (314.0); anxiety (300.0);
and depression (296.2, 296.3, 300.4, 309.0, 309.1, 309.28, 311).
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Statistical Analysis
The data were computed as percentages for categorical variables,
and as means for continuous variables. We examined the
baseline variables of the vaccinated and non-vaccinated cohorts
using chi-square, Fisher’s exact, and Student’s t-tests. A Kaplan–
Meier analysis was used to acquire the cumulative incidence
curve of each cohort.

We applied the Cox proportional hazards model to estimate
asthma’s hazard ratio. We also performed a subgroup analysis of
the association between influenza vaccination and asthma
development. Finally, we performed a sensitivity test to explore
the effect of time on this study. All statistical analyses were
conducted with SPSS version 18.0 (SPSS Inc., Chicago, IL, USA).
P-values of less than 0.05 were considered significant.
RESULTS

This study identified 31,134 people in Taiwan who had newly
diagnosed AD (Figure 1). During the follow-up period, 20.6%
(6,416 people) received an influenza vaccination. After excluding
1,887 people with antecedent asthma, we included the remaining
2,207 people with and without vaccination in each group after
sex and age matching in our analyses (Table 1).

The majority (74%) of our study’s participants were over 40 years
old.Themeanagewas53yearsold.Of the totalnumberofparticipants,
43.8%weremaleand56.2%were female.Vaccinatedparticipantshada
slightly higher proportion of concurrent conditions than did
unvaccinated participants, including hypertension, chronic kidney
disease, diabetes, COPD, and depression.
FIGURE 1 | Flowchart of subject's enrollment with and without influenza vaccination

Frontiers in Immunology | www.frontiersin.org 378
The asthma incidence density of vaccinated participants was
12.6 per 1,000 person-years, whereas that of non-vaccinated
participants was 15.1 per 1,000 person-years (Table 2). The
adjusted hazard ratio (aHR) of asthma for the vaccinated cohort
relative to the non-vaccinated cohort was 0.69 (95% CI =
0.55–0.87). Allergic rhinitis and COPD increased the risk of
asthma in participants by 2.37-fold (95% CI = 1.70–3.31) and
2.53-fold (95% CI = 1.62–3.94), respectively.

The cumulative incidence of asthma was lower in vaccinated
participants than in non-vaccinated participants (Figure 2).
However, this difference was not statistically significant
(log-rank test p = 0.072).

Table 3 presents the stratification analysis of the association
between influenza vaccination and asthma by age and sex.
Vaccinated participants in all age groups trended toward a
lower risk of asthma (hazard ratio (HR) = 0.54–0.94), though
this trend was not statistically significant. Influenza vaccination
did not significantly reduce the risk of asthma in men or women;
this was attributed to the small sample size. However, a
decreasing trend was identified clinically in both men and
women, with HR of 0.76 and 0.90, respectively.

We conducted sensitivity analyses to see if the associations of
influenza vaccination and incident asthma affected by different
follow up duration (Table 4). Influenza vaccination significantly
and consistently reduced the risk of incident asthma in the last
three to seven years of the study.

Table 5 presented the asthma risk reduction is dose
dependent. Compared with non-vaccinated group, people who
received once flu vaccination didn’t have great effect on asthma
reduction. But, for those more than 2 times, the HR was 0.59
.
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TABLE 2 | Cox proportional hazard model analysis for risk of asthma.

No. of asthma PY ID Univariate Multivariate

HR (95% C.I.) p value HR (95% C.I.) p value

Group
Non-influenza vaccination 172 11406 15.1 1 1
Influenza vaccination 134 10639 12.6 0.81 (0.65-1.02) 0.073 0.69 (0.55-0.87) 0.002

Age
<20 20 1463 13.7 1 1
20-39 40 3645 11.0 0.76 (0.45-1.30) 0.323 0.77 (0.45-1.33) 0.351
40-64 92 8259 11.1 0.80 (0.49-1.30) 0.371 0.75 (0.46-1.24) 0.263
≥65 154 8677 17.7 1.34 (0.84-2.14) 0.222 1.26 (0.77-2.06) 0.360

Gender
Female 190 12221 15.5 1 1
Male 116 9824 11.8 0.77 (0.61-0.97) 0.024 0.75 (0.59-0.95) 0.015

Hypertension 101 5606 18.0 1.42 (1.12-1.81) 0.004 1.15 (0.87-1.51) 0.321
Hyperlipidemia 29 1903 15.2 1.06 (0.72-1.56) 0.759 0.87 (0.58-1.30) 0.495
Chronic liver disease 11 967 11.4 0.80 (0.44-1.45) 0.458 0.72 (0.39-1.32) 0.283
Chronic kidney disease 2 214 9.3 0.60 (0.15-2.43) 0.477 0.61 (0.15-2.48) 0.490
Diabetes 51 3012 16.9 1.25 (0.92-1.69) 0.148 1.12 (0.81-1.56) 0.494
GERD 9 269 33.4 2.13 (1.09-4.13) 0.026 1.78 (0.91-3.50) 0.095
Allergic rhinitis 45 1323 34.0 2.59 (1.89-3.56) <0.001 2.37 (1.70-3.31) <0.001
Urticaria 25 1082 23.1 1.68 (1.12-2.53) 0.013 1.51 (1.00-2.29) 0.052
COPD 24 480 50.0 3.64 (2.40-5.52) <0.001 2.53 (1.62-3.94) <0.001
OSA 21 801 26.2 1.87 (1.20-2.92) 0.006 1.34 (0.83-2.18) 0.233
Cellulitis 8 557 14.4 1.02 (0.51-2.07) 0.947 0.86 (0.42-1.74) 0.676
Anxiety 27 989 27.3 2.03 (1.36-3.01) <0.001 1.46 (0.94-2.26) 0.096
Depression 17 624 27.3 1.92 (1.18-3.13) 0.009 1.36 (0.78-2.36) 0.273
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ID, Incidence density (per 1000 person-years).
PY, person-years.
COPD, Chronic obstructive pulmonary disease.
OSA, Obstructive sleep apnea.
Multivariate, adjusted for age, gender, hypertension, hyperlipidemia, chronic liver disease, chronic kidney disease, diabetes, GERD, allergic rhinitis, urticaria, COPD, OSA, cellulitis, anxiety,
and depression.
TABLE 1 | Demographic characteristics of influenza vaccination group and non-influenza vaccination.

Influenza vaccination (N = 2207) Non-influenza vaccination (N = 2207) p value

Age <0.001
<20 146 (6.6) 151 (6.8)
20-39 411 (18.6) 418 (18.9)
40-64 752 (34.1) 948 (43.0)
≥65 898 (40.7) 690 (31.3)
Mean ± SD 53.5 ± 19.1 53.1 ± 18.8 0.404

Gender 1.000
Female 1240 (56.2) 1240 (56.2)
Male 967 (43.8) 967 (43.8)

Hypertension 647 (29.3) 515 (23.3) <0.001
Hyperlipidemia 235 (10.6) 194 (8.8) 0.037
Chronic liver disease 118 (5.3) 84 (3.8) 0.014
Chronic kidney disease 45 (2.0) 12 (0.5) <0.001
Diabetes 364 (16.5) 263 (11.9) <0.001
GERD 49 (2.2) 34 (1.5) 0.096
Allergic rhinitis 166 (7.5) 144 (6.5) 0.195
Urticaria 139 (6.3) 97 (4.4) 0.005
COPD 80 (3.6) 40 (1.8) <0.001
OSA 100 (4.5) 79 (3.6) 0.109
Cellulitis 68 (3.1) 44 (2.0) 0.022
ADHD 0 (0.0) 2 (0.1) 0.500†

Anxiety 107 (4.8) 105 (4.8) 0.888
Depression 96 (4.3) 54 (2.4) <0.001
†Fisher’s exact test
COPD, Chronic obstructive pulmonary disease.
OSA, Obstructive sleep apnea.
ADHD, attention-deficit hyperactivity disorder.
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(0.44-0.79). We inferred that people will reduce more asthma
risk when taking shots every year.

DISCUSSION

Principal Findings
Our 13-year retrospective cohort study revealed a decreased risk of
asthma in vaccinated AD patients with an aHR of 0.69 (95% CI =
0.55–0.87) after adjusting for the age, sex, and confounders listed in
Table 2. Although our subgroup analysis did not yield significant
results, we found that influenza vaccination reduced asthma
development in all age and sex groups.

Theoretical Mechanism
Atopic march, sometimes called allergic march, refers to AD’s
natural history and typical progression in infancy, followed by
subsequent allergic rhinitis and asthma in later childhood. We
have analyzed Influenza infection times between vaccinated
and non-vaccinated group. There are no significant infection
times differences with and without Influenza vaccination
throughout the study period. The mechanism may not be that
influenza vaccination directly prevents and/or mitigates the
severity of influenza infection, but immune modulation is favor.
Allergic sensitization and bacterial colonization due to a
dysfunctional skin barrier promote Th2 immunity, which
induces systemic responses in the respiratory tract (12). On the
other hand, the acute stage of influenza not only causes
inflammation and tissue damage to the respiratory tract, but
also enhances unrelated local allergic responses via the Th2
response (13). Accordingly, the Th2 subset may not play a
Frontiers in Immunology | www.frontiersin.org 580
primary role in virus clearance and recovery, and may lead to
immune-mediated injury potentiation (14–16). One way to
prevent subsequent asthma and atopic disorders is by using
vaccination to restore the Th1/Th2 balance in favor of Th1. An
animal study by Skevaki found that influenza-infected animals
showed heterologous immunity toward allergens. Immunization
via vaccination with influenza-derived peptides provided asthma
protection through the interferon-gamma response (17). Another
study showed influenza vaccination to activate CD4+ and Th1–
type cells, which induced the secretion of Th1-type cytokines and
promoted T cell immunity (18).

Clinical Implications
An estimated 65%–80% of children with AD develop symptoms in
their first year of life. Asthma has a later onset, occurring in only
42% of children in their first year. However, 92% of affected
individuals develop symptoms by age 8 (19). Furthermore,
patients who experienced asthma onset prior to 1 year of age were
reported to have more severe symptoms and greater medical
expenses than patients who developed asthma symptoms between
5 and 9 years of age (20). Therefore, efforts to delay early asthma
onset will be essential to prevent atopic march and the subsequent
outcome of asthma. As shown in the illustration in Figure 2 and
Table 4, influenza vaccination can delay the onset of asthma by at
least seven years. According to the 2006 report by the International
Study of Asthma and Allergies in Childhood (21), AD has a
prevalence of 6.7% in 6-to-7-year-old Taiwanese children, but
only 4.1% in 13-to-14-year-old Taiwanese children. Such findings
indicate that age-related physiological changes may lessen the
symptoms of AD or cause them to disappear spontaneously.
FIGURE 2 | Cumulative incidence of asthma in patients with vaccination vs without vaccination. The x-axis represents years after flu vaccination. The index date of
the unvaccinated group was assigned by 1:1 age and sex matching. Y-axis represents cumulative incidence of asthma.
October 2021 | Volume 12 | Article 729501
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This study evaluated patients who received free influenza
vaccinations that were provided in Taiwan to children, the elderly,
and people with comorbidities. We found that the vaccinated group
had an increased percentage of underlying chronic disease than did
the non-vaccinated group. Because asthma is associated with
hypertension, diabetes mellitus, dyslipidemia, and cardiovascular
disease (22), this difference underestimates the protective effect of
influenza vaccination on asthma development. Furthermore, in our
stratification study investigating the association of asthma with other
comorbidities, we found that asthma increased the risk of developing
allergic rhinitis and COPD by 2.37-fold and 2.53-fold, respectively.
Therefore, we conclude that people with allergic diseases may benefit
from influenza vaccination.
Frontiers in Immunology | www.frontiersin.org 681
Strengths and Limitations
The primary strength of this study is that it included a long-term
comprehensive follow-up from 2000–2013, with universal
coverage for all age groups. Secondly, we found an excellent
positive predictive value (90%–100%) in the inpatient setting,
validating the ICD-9-CM code 691 for AD (23). We also
qualified the definitions of asthma and AD in our study to
include a minimum of three outpatient records or one inpatient
record. Our database size ensured similar distributions in each
group due to well-balanced matching, which reduced the study’s
heterogeneity and selection bias. To further reduce bias, we
performed a sensitivity analysis for unmeasured confounders.
Importantly, this is the first population-based cohort study to
TABLE 5 | influenza vaccination dose response on asthma risk reduction.

Number No. of asthma HR† (95% C.I.) p value

Group
Non-influenza vaccination 2207 172 1
Influenza vaccination =1 time 1151 63 0.91 (0.67-1.23) 0.535
Influenza vaccination ≥2 times 1056 71 0.59 (0.44-0.79) <0.001
October 2021 | Volume 12 | Article
†Adjusted for age, gender, hypertension, hyperlipidemia, chronic liver disease, chronic kidney disease, diabetes, GERD, allergic rhinitis, urticaria, COPD, OSA, cellulitis, anxiety,
and depression.
TABLE 3 | Subgroup analysis of the association between influenza vaccination and asthma development.

Influenza vaccination Non-influenza vaccination HR (95% C.I.) p value

N No. of asthma N No. of asthma

Age
<20 146 7 151 13 0.54 (0.22-1.36) 0.190
20-39 411 15 418 25 0.60 (0.32-1.14) 0.117
40-64 752 32 948 60 0.69 (0.45-1.06) 0.092
≥65 898 80 690 74 0.94 (0.68-1.29) 0.685

p for interaction = 0.434
Gender
Female 1240 81 1240 109 0.76 (0.57-1.01) 0.057
Male 967 53 967 63 0.90 (0.63-1.30) 0.588
p for interaction = 0.433
TABLE 4 | Sensitivity analysis of the association between influenza vaccination and asthma development.

N No. of asthma Univariate Multivariate

HR (95% C.I.) p value HR (95% C.I.) p value

Follow-up duration ≤3 years
Group
Non-influenza vaccination 2207 129 1 1
Influenza vaccination 2207 92 0.71 (0.55-0.93) 0.013 0.61 (0.47-0.81) <0.001

Follow-up duration ≤5 years
Group
Non-influenza vaccination 2207 149 1 1
Influenza vaccination 2207 109 0.74 (0.58-0.95) 0.016 0.63 (0.49-0.81) <0.001

Follow-up duration ≤7 years
Group
Non-influenza vaccination 2207 160 1 1
Influenza vaccination 2207 122 0.78 (0.62-0.99) 0.040 0.66 (0.52-0.84) <0.001
Multivariate: adjusted for age, gender, hypertension, hyperlipidemia, chronic liver disease, chronic kidney disease, diabetes, GERD, allergic rhinitis, urticaria, COPD, OSA, cellulitis, anxiety,
and depression.
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show that influenza vaccination could reduce the incidence of
asthma in AD patients.

There are some limitations to this study, particularly since there
is no consensus on asthma’s diagnosis, especially in children. The
ICD-9-CM code 493–based algorithm for ascertaining asthma had
a sensitivity of 82% and specificity of 98% (24), and a positive
predictive value of 75.0% when compared to the criteria-based
medical record review (25). The ICD-9-CM code 493 is widely
accepted for etiologic research in asthma, but may underestimate its
prevalence. Further efforts are needed to check the consistency of
diagnosis by medical chart review. In order to reduce confounding
by indication, an active comparator (i.e., other vaccines) is needed
to serve as a control group. Finally, the clinical relevance of this
study must be further validated by larger-scale prospective
randomized trials.
CONCLUSION

This long-term nationwide cohort study revealed that influenza
vaccination was associated with lower incidental asthma risk in
people with AD after adjusting for age, gender, and comorbidities.
Nevertheless, more comprehensive studies are needed to confirm
our findings.
Frontiers in Immunology | www.frontiersin.org 782
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding author.
AUTHOR CONTRIBUTIONS

All authors contributed to the article and approved the submitted
version. Conception and design: KHL and JC-CW. Acquisition
of data: YHW. Analysis and interpretation of data: KHL, YHW,
and JC-CW. Writing (original draft preparation): KHL. Writing
(review and editing): P-YL, C-FT, and JC-CW.
FUNDING

This study was supported by Chung Shan Medical University
Hospital (CSH-2019-C-004). The funders had no role in the
design and conduct of the study; the collection, management,
analysis, and interpretation of the data; or the preparation,
review, or approval of the manuscript.
REFERENCES
1. Eichenfield LF, Hanifin JM, Beck LA, Lemanske RF, Sampson HA, Weiss ST,

et al. Atopic Dermatitis and Asthma: Parallels in the Evolution of Treatment.
Pediatrics (2003) 111(3):608–16. doi: 10.1542/peds.111.3.608

2. Naldi L, Parazzini F, Gallus S. Prevalence of Atopic Dermatitis in Italian
Schoolchildren: Factors Affecting Its Variation. Acta Derm Venereol (2009) 89
(2):122–5. doi: 10.2340/00015555-0591

3. Belgrave DC, Granell R, Turner SW, Curtin JA, Buchan IE, Le Souëf PN, et al.
Lung Function Trajectories From Pre-School Age to Adulthood and Their
Associations With Early Life Factors: A Retrospective Analysis of Three
Population-Based Birth Cohort Studies. Lancet Respir Med (2018) 6(7):526–
34. doi: 10.1016/S2213-2600(18)30099-7

4. Cho Y, Kim TB, Lee TH, Moon KA, Lee J, Kim YK, et al. Chlamydia
Pneumoniae Infection Enhances Cellular Proliferation and Reduces Steroid
Responsiveness of Human Peripheral Blood Mononuclear Cells via a Tumor
Necrosis Factor-a-Dependent Pathway. Clin Exp Allergy (2005) 35(12):1625–
31. doi: 10.1111/j.1365-2222.2005.02391.x

5. Wood LG, Simpson JL, Hansbro PM, Gibson PG. Potentially Pathogenic
Bacteria Cultured From the Sputum of Stable Asthmatics are Associated With
Increased 8-Isoprostane and Airway Neutrophilia. Free Radical Res (2010) 44
(2):146–54. doi: 10.3109/10715760903362576

6. Hansbro NG, Horvat JC, Wark PA, Hansbro PM. Understanding the
Mechanisms of Viral Induced Asthma: New Therapeutic Directions.
Pharmacol Ther (2008) 117(3):313–53. doi: 10.1016/j.pharmthera.
2007.11.002

7. Busse WW, Lemanske RFJr., Gern JE. Role of Viral Respiratory Infections in
Asthma and Asthma Exacerbations. Lancet (2010) 376(9743):826–34. doi:
10.1016/S0140-6736(10)61380-3

8. Fuchs O, von Mutius E. Prenatal and Childhood Infections: Implications for
the Development and Treatment of Childhood Asthma. Lancet Respir Med
(2013) 1(9):743–54. doi: 10.1016/S2213-2600(13)70145-0

9. Dawood FS, Kamimoto L, D'Mello TA, Reingold A, Gershman K, Meek J, et al.
Children With Asthma Hospitalized With Seasonal or Pandemic Influenza,
2003–2009. Pediatrics (2011) 128(1):e27–32. doi: 10.1542/peds.2010-3343

10. Merckx J, Ducharme FM, Martineau C, Zemek R, Gravel J, Chalut D,
et al. Respiratory Viruses and Treatment Failure in Children With
Asthma Exacerbation. Pediatrics (2018) 142(1):e20174105. doi: 10.1542/
peds.2017-4105

11. Vasileiou E, Sheikh A, Butler C, El Ferkh K, VonWissmann B, McMenamin J,
et al. Effectiveness of Influenza Vaccines in Asthma: A Systematic Review and
Meta-Analysis. Clin Infect Dis (2017) 65(8):1388–95. doi: 10.1093/cid/cix524

12. Kim BE, Leung DY, Boguniewicz M, Howell MD. Loricrin and Involucrin
Expression Is Down-Regulated by Th2 Cytokines Through STAT-6. Clin
Immunol (2008) 126(3):332–7. doi: 10.1016/j.clim.2007.11.006

13. Marsland B, Scanga C, Kopf M, Le Gros G. Allergic Airway Inflammation is
Exacerbated During Acute Influenza Infection and Correlates With Increased
Allergen Presentation and Recruitment of Allergen-Specific T-Helper Type 2
Cells. Clin Exp Allergy (2004) 34(8):1299–306. doi: 10.1111/j.1365-
2222.2004.02021.x

14. Scherle P, Palladino G, Gerhard W. Mice can Recover From Pulmonary
Influenza Virus Infection in the Absence of Class I-Restricted Cytotoxic T
Cells. J Immunol (1992) 148(1):212–7.

15. Graham MB, Braciale VL, Braciale TJ. Influenza Virus-Specific CD4+ T
Helper Type 2 T Lymphocytes do Not Promote Recovery From
Experimental Virus Infection. J Exp Med (1994) 180(4):1273–82. doi:
10.1084/jem.180.4.1273

16. Maloy KJ, Burkhart C, Junt TM, Odermatt B, Oxenius A, Piali L, et al. CD4+ T
Cell Subsets During Virus Infection: Protective Capacity Depends on Effector
Cytokine Secretion and on Migratory Capability. J Exp Med (2000) 191
(12):2159–70. doi: 10.1084/jem.191.12.2159

17. Skevaki C, Hudemann C, Matrosovich M, Möbs C, Paul S, Wachtendorf A,
et al. Influenza-Derived Peptides Cross-React With Allergens and Provide
Asthma Protection. J Allergy Clin Immunol (2018) 142(3):804–14. doi:
10.1016/j.jaci.2017.07.056

18. McElhaney JE. Influenza Vaccine Responses in Older Adults. Ageing Res Rev
(2011) 10(3):379–88. doi: 10.1016/j.arr.2010.10.008

19. Barnetson RSC, Rogers M. Childhood Atopic Eczema. Bmj (2002) 324
(7350):1376–9. doi: 10.1136/bmj.324.7350.1376

20. Mirabelli MC, Beavers SF, Chatterjee AB, Moorman JE. Age at Asthma Onset
and Subsequent Asthma Outcomes Among Adults With Active Asthma.
Respir Med (2013) 107(12):1829–36. doi: 10.1016/j.rmed.2013.09.022

21. Asher MI, Montefort S, Björkstén B, Lai CK, Strachan DP, Weiland SK, et al.
Worldwide Time Trends in the Prevalence of Symptoms of Asthma, Allergic
October 2021 | Volume 12 | Article 729501

https://doi.org/10.1542/peds.111.3.608
https://doi.org/10.2340/00015555-0591
https://doi.org/10.1016/S2213-2600(18)30099-7
https://doi.org/10.1111/j.1365-2222.2005.02391.x
https://doi.org/10.3109/10715760903362576
https://doi.org/10.1016/j.pharmthera.2007.11.002
https://doi.org/10.1016/j.pharmthera.2007.11.002
https://doi.org/10.1016/S0140-6736(10)61380-3
https://doi.org/10.1016/S2213-2600(13)70145-0
https://doi.org/10.1542/peds.2010-3343
https://doi.org/10.1542/peds.2017-4105
https://doi.org/10.1542/peds.2017-4105
https://doi.org/10.1093/cid/cix524
https://doi.org/10.1016/j.clim.2007.11.006
https://doi.org/10.1111/j.1365-2222.2004.02021.x
https://doi.org/10.1111/j.1365-2222.2004.02021.x
https://doi.org/10.1084/jem.180.4.1273
https://doi.org/10.1084/jem.191.12.2159
https://doi.org/10.1016/j.jaci.2017.07.056
https://doi.org/10.1016/j.arr.2010.10.008
https://doi.org/10.1136/bmj.324.7350.1376
https://doi.org/10.1016/j.rmed.2013.09.022
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Influenza Vaccinations Reduce Asthma Risk
Rhinoconjunctivitis, and Eczema in Childhood: ISAAC Phases One and Three
Repeat Multicountry Cross-Sectional Surveys. Lancet (2006) 368(9537):733–
43. doi: 10.1016/S0140-6736(06)69283-0

22. Cazzola M, Calzetta L, Bettoncelli G, Novelli L, Cricelli C, Rogliani P. Asthma
and Comorbid Medical Illness. Eur Respir J (2011) 38(1):42–9. doi: 10.1183/
09031936.00140310

23. Hsu DY, Dalal P, Sable KA, Voruganti N, Nardone B, West D, et al. Validation
of International Classification of Disease Ninth Revision Codes for Atopic
Dermatitis. Allergy (2017) 72(7):1091–5. doi: 10.1111/all.13113

24. Seol HY, Wi C-I, Ryu E, King KS, Divekar RD, Juhn YJ. A Diagnostic
Codes-Based Algorithm Improves Accuracy for Identification of Childhood
Asthma in Archival Data Sets. J Asthma (2020) 1–10. doi: 10.1080/
02770903.2020.1759624

25. Juhn Y, Kung A, Voigt R, Johnson S. Characterisation of Children's Asthma
Status by ICD-9 Code and Criteria-Based Medical Record Review. Primary
Care Respir J (2011) 20(1):79–83. doi: 10.4104/pcrj.2010.00076
Frontiers in Immunology | www.frontiersin.org 883
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Li, Leong, Tseng, Wang and Wei. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
October 2021 | Volume 12 | Article 729501

https://doi.org/10.1016/S0140-6736(06)69283-0
https://doi.org/10.1183/09031936.00140310
https://doi.org/10.1183/09031936.00140310
https://doi.org/10.1111/all.13113
https://doi.org/10.1080/02770903.2020.1759624
https://doi.org/10.1080/02770903.2020.1759624
https://doi.org/10.4104/pcrj.2010.00076
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Xu-jie Zhou,

Peking University First Hospital, China

Reviewed by:
Loredana Frasca,

National Institute of Health (ISS), Italy
Gillian Inara Rice,

The University of Manchester,
United Kingdom

Feiyang Ma,
University of California, Los Angeles,

United States

*Correspondence:
Liam J. O’Neil

liam.oneil@umanitoba.ca

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Autoimmune and Autoinflammatory
Disorders,

a section of the journal
Frontiers in Immunology

Received: 23 June 2021
Accepted: 20 October 2021

Published: 18 November 2021

Citation:
O’Neil LJ, Hu P, Liu Q, Islam MM,

Spicer V, Rech J, Hueber A,
Anaparti V, Smolik I, El-Gabalawy HS,

Schett G and Wilkins JA (2021)
Proteomic Approaches to Defining

Remission and the Risk of
Relapse in Rheumatoid Arthritis.

Front. Immunol. 12:729681.
doi: 10.3389/fimmu.2021.729681

ORIGINAL RESEARCH
published: 18 November 2021

doi: 10.3389/fimmu.2021.729681
Proteomic Approaches to Defining
Remission and the Risk of Relapse
in Rheumatoid Arthritis
Liam J. O’Neil1,2*, Pingzhao Hu3,4, Qian Liu3,4, Md. Mohaiminul Islam3,4, Victor Spicer2,
Juergen Rech5, Axel Hueber5, Vidyanand Anaparti2, Irene Smolik1, Hani S. El-Gabalawy1,2,
Georg Schett5† and John A. Wilkins1,2†

1 Section of Rheumatology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada, 2 Manitoba
Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Winnipeg, MB, Canada,
3 Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada, 4 Department of
Computer Science, University of Manitoba, Winnipeg, MB, Canada, 5 Department of Medicine, Friedrich-Alexander University
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Objectives: Patients with Rheumatoid Arthritis (RA) are increasingly achieving stable
disease remission, yet the mechanisms that govern ongoing clinical disease and
subsequent risk of future flare are not well understood. We sought to identify serum
proteomic alterations that dictate clinically important features of stable RA, and couple
broad-based proteomics with machine learning to predict future flare.

Methods: We studied baseline serum samples from a cohort of stable RA patients
(RETRO, n = 130) in clinical remission (DAS28<2.6) and quantified 1307 serum proteins
using the SOMAscan platform. Unsupervised hierarchical clustering and supervised
classification were applied to identify proteomic-driven clusters and model biomarkers
that were associated with future disease flare after 12 months of follow-up and RA
medication withdrawal. Network analysis was used to define pathways that were enriched
in proteomic datasets.

Results: We defined 4 proteomic clusters, with one cluster (Cluster 4) displaying a lower
mean DAS28 score (p = 0.03), with DAS28 associating with humoral immune responses
and complement activation. Clustering did not clearly predict future risk of flare, however
an XGboost machine learning algorithm classified patients who relapsed with an AUC
(area under the receiver operating characteristic curve) of 0.80 using only baseline serum
proteomics.

Conclusions: The serum proteome provides a rich dataset to understand stable RA and
its clinical heterogeneity. Combining proteomics and machine learning may enable
prediction of future RA disease flare in patients with RA who aim to withdrawal therapy.
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HIGHLIGHTS

• Serum proteomics defines clinically relevant clusters within a
cohort of stable RA patients

• Machine learning and proteomics may identify individuals at
highest risk for future disease flare

• Despite meeting criteria for remission, clinically detectable
disease is associated with a serum proteomic signature in
stable RA
INTRODUCTION

Rheumatoid Arthritis (RA) is a systemic autoimmune disease
that is characterized by inflammation of synovial joints (1).
Modern RA therapy is initiated early and escalated aggressively
using a treat-to-target approach to try an obtain disease
remission (2). The development of both targeted treatments
and combination regimens continues to improve expected
outcomes for patients. Encouragingly, clinical remission,
defined by multiple measures of disease activity (3), has
become a realistic expectation for most patients with RA.
Recent registry data of RA cohorts consistently show that
DAS28 (Disease Activity Score) remission is achieved in about
50% of patients (4), a number that may be increasing over
time (5).

Patients with RA who are able to achieve disease remission
using standard therapy are not well studied, given their lack of
disease activity and need for treatment changes. The main issue
facing these patients is whether or not to remain on their
treatment, or risk withdrawal and the potential for disease flare.
There are many prospective studies that have demonstrated
successful Disease Modifying Anti-Rheumatic Drugs (DMARD)
withdrawal in patients in clinical remission (6–9) but the
determinants of maintaining remission status after medication
withdrawal are poorly defined (10). Unfortunately, given the
limited understanding of the pathological mechanisms that drive
subclinical disease, clinicians are left to guess which of their
patients might sustain remission using less aggressive therapy.

Technological advances in high-throughput proteomics have
allowed for an improved understanding of disease processes and
biomarker discovery (11). Although mass spectrometry tends to
dominate this evolving field, broad-based targeted proteomics
has its own advantages, including simplified sample preparation
and user-friendly output data (12). Our group has previously
defined protein sets that are associated with future disease flare
from pre-clinical RA by coupling machine learning with
proteomic approaches (13). Indeed, leveraging omics
approaches to resolve heterogeneity in common diseases
remains a distinct challenge in clinical medicine (14), though
this has not been systematically undertaken in a stable
RA cohort.

The RETRO (15) (Reducing therapy in rheumatoid arthritis
patients in ongoing remission) study is a prospective randomized
trial which enrolled patients who had achieved disease remission
Frontiers in Immunology | www.frontiersin.org 285
with conventional RA therapy. One of the aims of this study is to
define disease recurrence in patients with RA when either
continuing or reducing their medications. It was previously
shown in this trial that positive anti-citrullinated antibody
(ACPA), and other biomarkers (16, 17) are associated with an
increased likelihood of disease relapse. In spite of these studies,
there is little understanding of the underlying biological
mechanisms that are active in stable RA. If differences within
RA patients in remission can be more clearly defined, there may
be an enhanced understanding of the spectrum of RA
pathogenesis, along with improved personalized clinical
approaches surrounding the withdrawal of therapy. We
hypothesized that high-throughput proteomics (18) would help
identify underlying biological heterogeneity that might provide
insights into mechanisms underpinning future disease flare. Our
aim was to explore how the serum proteome shapes the
underlying clinical experiences of stable RA patients.
METHODS

Patients and Inclusion Criteria
RETRO is a multicentre, randomized, open, prospective,
controlled parallel-group study. Details of the study are
described in the original publication (15). The objective of the
study is to evaluate tapering or discontinuation of DMARDs in
patients with RA. All enrolled patients fulfilled the 2010
American College of Rheumatology (ACR) criteria for RA
(19). Patients had to have sustained clinical remission defined
by the Disease Activity score (DAS28 < 2.6) criteria for at least 6
months (20). Ethics committee of the Friedrich-Alexander-
University of Erlangen-Nuremberg approval was granted.

Treatment and Follow-up
Patients were randomized to one of three arms: Arm 1 continued
with existing DMARD regimen at full dose for 12 months, arm 2
reduced the dose of all DMARDs by 50%, while arm 3 reduced
the dose of all DMARDs by 50% in the first 6 months, then
discontinued all medications. Relapse of disease was defined as a
DAS28-ESR score greater than 2.6. Participants were assessed for
clinical disease activity every 3 months until month 12.

Assessment of Demographic and Disease-
Specific Parameters
Age and sex were recorded in all patients. Disease duration,
tender joint count (68), swollen joint count (66), patient visual
analogue scale (VAS) for pain and patient global were assessed
and recorded. C-reactive protein (CRP), ESR, Rheumatoid
Factor (RF), ACPA, DAS28-ESR and Health Assessment
Questionnaire (HAQ-DI) were recorded.

SOMAscan
SOMAscan is a proteomics assay that measures 1307 proteins
using an aptamer library. This high-throughput proteomics assay
has been used in recent publications to study the aging proteome
(21, 22) along with other human diseases (23). 130 baseline
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serum samples were available from the RETRO study. Briefly, a
library of aptamers were incubated with serum, and those that
bind are isolated and hybridized to DNA microarray for
detection. The identity and relative concentration of the
detected proteins are revealed by localization and fluorescence
intensity. Protein quantification is reported as relative
fluorescence units (RFU), an arbitrary value. In general,
agreement between aptamer and antibody-based assays is high
(24). Further details regarding the SOMAscan assay are
available (18).

Statistical Analysis
Descriptive results (Table 1) are stated in means and standard
deviation. SOMAmer protein expression RFU values for the
study patients were transformed into a log2 scale for
differential analysis (Supplemental File 2). Batch effect was
removed in our SOMAmer data using internal controls within
each plate to adjust proteomic intensity as per standard
SOMAscan protocols. Batch effect was assessed between plates
and determined to require no further correction. Data was
loaded and analyzed in the R (v3.5.3) environment unless
otherwise stated. Missing clinical data was imputed using
multiple imputation by chained equations (MICE) (25).
Differential analysis between groups was undertaken using
linear modeling with the package LIMMA (26). GO pathways
analysis was performed using clusterprofiler (27). Graphs were
generated using the ggplot2 package. Correlation analyses were
performed for select proteins using Pearson correlation. Multi-
dimensional scaling (MDS) was used for dimension reduction on
all SOMAscan proteins.

The 200 most variable proteins measured by coefficient of
variation were used to determine optimal number of clusters
ranging from k = 2 to 10 and identify sample clusters using the
R package Consensusclusterplus. We used 80% protein resampling
and 80% patient resampling and selected Pearson as our distance
function. Multinomial logistic regression implemented in
R package glmnet was used to identify clinical variables that are
independently associated with cluster assignment. Sliding
window analysis of DAS28 scores and protein expression was
Frontiers in Immunology | www.frontiersin.org 386
performed using a previously published algorithm, DE-SWAN
(28). Briefly, this algorithm analyzed serum protein expression
across quintiles of DAS28 scores using linear modeling, while
adjusting for baseline demographic factors, in this case age and
sex. A protein expression score was developed on proteins that
correlated with DAS28 which were identified by DE-SWAN. We
filtered the proteomic data on the 34 score members, scaled the
data by the mean and standard deviation, and multiplied by 1
(positively associated with DAS28) or -1 (negatively associated
with DAS28) for each protein. The final score was the mean
expression of all 34 proteins for each patient. We randomly
generated 5000 data sets with 34 randomly selected proteins in
each set to evaluate the significance of the association score.

Machine Learning Classification Algorithm
We applied two supervised machine learning (ML) techniques to
develop algorithms to classify flare or remission based on serum
proteomics. The first approach we used is XGBoost (Extreme
Gradient Boosting), which employs a regularization term to
overcome the overfitting (29). The second approach is the
LASSO model (30), which was used as a baseline to compare
its performance with that of XGBoost. Data was loaded into
Python, and samples were randomly split into a training (n =
104, 80% of the samples) and test (n = 26) set. The training set
was used to train and tune the parameters in the two models and
the test set was used evaluate the models’ performance, which
were measured by the area under of the curve (AUC) of receiver
operating characteristic (ROC), accuracy, sensitivity and
specificity. To increase the interpretability of the XGBoost
model to predict the flare status of a given sample, we used
SHAP values (Shapley Additive Explanation) (31). A higher
SHAP value of a given feature in the model represents its
strong influence on the model output. The final model
parameters we used in the XGBoost are as follows:
learning_rate = 0.01, max_depth = 3, subsample = 0.6,
colsample_bytree = 0.7, n_estimators = 100, gamma = 0.0,
reg_alpha = 0.5, the parameters used in the LASSO model is as
follow: cost=1.17 and max_iterations = 5000. We used 5-fold
cross-validation to get the optimal hyperparameters.
TABLE 1 | Baseline characteristics of the patients, split by proteomic cluster.

Characteristics Total (n = 130) Cluster 1 (n = 34) Cluster 2 (n = 12) Cluster 3 (n = 46) Cluster 4 (n = 38)

Age 55.2 (13.1) 52.7 (14.6) 54.1 (13.7) 54.7 (11.7) 58.6 (13.1)
Females, % 56.2% 67.6% 66.7% 56.5% 42.1%
Disease Duration (years) 6.8 (7.0) 7.9 (6.5) 8.6 (9.3) 6.9 (6.3) 4.9 (7.3)
DAS-28 (ESR) 1.7 (0.68) 1.93 (0.60) 1.73 (0.74) 1.71 (0.65) 1.51 (0.71)
ACR/EULAR remission, % 76.6% 67.7% 66.6% 88.9% 72.9%
HAQ, units 0.12 (0.32) 0.11 (0.17) 0.08 (0.12) 0.16 (0.46) 0.09 (0.26)
Positive RF, % 56.2% 73.5% 50.0% 52.2% 47.3%
Positive ACPA, % 57.7% 67.6% 66.7% 55.6% 50.0%
*Biological DMARD use, % (N) 40.0% 38.2% 25.0% 47.8% 36.8%
Flare, % 37.7% 38.2% 16.7% 43.5% 36.8%
November 2021 | Volume 1
ACPA, anticitrullinated protein antibody; ACR, American College of Rheumatology; CRP, C-Reactive protein; DAS-28, disease activity score-28 (based on ESR); DMARDs, disease
modifying antirheumatic drugs; ESR, erythrocyte sedimentation rate; EULAR, European League Against Rheumatism; HAQ, Health Assessment Questionnaire; RF, Rheumatoid Factor;
VAS, Visual analogue scale.
*Tumor necrosis factor inhibitors and tocilizumab.
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Study Cohort
Baseline characteristics for 130 patients enrolled in the RETRO
study are found in Table 1. Overall, the group had maintained
clinical remission for 16.6 (16.2) months and mean disease
duration of over 6 years. 57.7% of the patients were ACPA
positive, while 40.0% required biologics to achieve remission.
76.6% of patients had achieved the most stringent definition of
remission [ACR/EULAR remission (32)]. After 12 months of
follow-up, 62.3% of the overall population remained in clinical
remission (50% in those undergoing withdrawal).
RESULTS

Hierarchical Clustering on Serum Proteins
Identifies Heterogeneity Amongst Stable
RA Patients
Given the paucity of data aimed at understanding subclinical
disease activity in RA patients who achieve remission, we sought
to explore underlying heterogeneity using serum proteomics in
this established cohort. We quantified over 1300 serum proteins
from 130 RETRO patients at their baseline visit, all of whom
were in stable clinical remission (DAS28 < 2.6). We hypothesized
that despite the clinical similarities amongst individuals within
this cohort, proteomic differences may provide important
insights by identifying sub-clusters of patients. We applied
consensus clustering to assign individuals to one of the
Frontiers in Immunology | www.frontiersin.org 487
4 clusters (Figure S1) and clustered scaled protein expression
by hierarchical clustering, which can be seen in Figure 1. MDS
analysis revealed separation of the hierarchical clusters
(Figure S2).

Baseline characteristics split by cluster are listed in Table 1. We
found no differences in sex, age, biologic use, or serological status
across our 4 proteomic clusters. Cluster 4 had significantly lower
DAS28 scores compared to the remaining clusters. With respects
to future flare, Cluster 2 trended toward lower rates relative to the
remaining clusters, however this did not reach statistical
significance (16.7% vs 39.8%, p = 0.21). To assess this
association by multinomial regression, we assigned Cluster 2 as
the reference cluster and found that that Cluster 3 had higher odds
of flare (OR 5.6, 0.97 to 33.06, p = 0.05), relative to Cluster 2 with
similar trends observed for Cluster 1 and Cluster 4 (Table S1).
Indeed, no clear distinction between individuals who developed
future flare was observed in the MDS plot (Figure S2). Overall,
these results suggest that global proteomic clusters within a
clinically homogenous cohort can be identified but are
associated with current clinical status rather than future outcomes.

Machine Learning Classifies Future Flare
Using Baseline Serum Proteomics
We next aimed to use the serum proteome to identify biomarkers
associated with future disease flare in stable RA, given that
clustering did not clearly associate with risk of flare. We
identified DEP’s between these groups (Table S2) and observed
FIGURE 1 | Heatmap and hierarchical clustering of 200 serum proteins in stable RA. Protein expression is scaled and colored by relative expression. Each column is
a protein and each row is a patient. Clustering is shown in both dimensions. Flare or remission is annotated in purple or grey to the left of the graph.
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upregulation in Ectodysplasin A receptor (EDAR, FC = 1.20) and
Serine peptidase inhibitor (SPINT2, FC 1.1), and downregulation
of Fractalkine (CX3CL1, FC 0.95) and Ephrin type-B receptor 2
(EPHB2, FC 0.95) in individuals who eventually went on to flare
(Figure 2A). However, after adjustment for multiple comparisons,
none of the differentially expressed proteins reached statistical
significance. This suggests that although subtle differences exist in
Frontiers in Immunology | www.frontiersin.org 588
the serum proteome between individuals who experience future
flare, it’s unlikely that singular biomarkers accurately predict this
outcome in this population.

To test this hypothesis, we explored the use of two machine
learning algorithms, LASSO and XGBoost, to build predictive
models that classify future flare using baseline serum proteomics.
We generated two models, both of which were validated on a test
A B

C

D

FIGURE 2 | XGboost machine learning to identify flare or remission in stable RA patients. (A) Box plots of EDAR, SPINT2, CX3CL1 and EPHB2 split by individuals
who remained in Remission or Flare. (B) Receiver operator curves (ROC) of 2 machine learning models, XGboost and LASSO, trained on serum proteome to classify
flare or remission. AUC is representative of test set cohort parameters. (C) Bar plot of model features that impact risk of flare or remission in the XGboost model with
log2 expression and Uniprot ID annotated for each protein member. Feature importance is represented by relative size of bar. Values for different proteins represent
their original values in the dataset for that particular sample. The base value means the average of the prediction scores, and 0.5 is the cutoff threshold to select a
Flare status. (D) Gene concept plots derived from XGboost protein features. Each node represents a GO pathway with proteins connected by edges. EDAR,
Ectodysplasin A receptor; SPINT2, Serine peptidase inhibitor; CX3CL1, Fractalkine; EPHB2, Ephrin type-B receptor 2. SNCA, Synuclein alpha; PLAUR, Plasminogen
Activator; VEGFA, vascular endothelial growth factor A; MYC, Myc proto-oncogene protein; IL17F, Interleukin 17F; ROBO3, Roundabout homolog 3; CFB,
complement factor B.
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cohort (20% of total cohort). The LASSO model achieved 69.2%
accuracy, with an AUC of 0.58, along with sensitivity of 0.5 and
specificity of 0.78 based on the test cohort (Features in Table S3).
XGboost delivered a model with higher specificity (0.78) than
sensitivity (0.63) and an overall accuracy of 73.1% with an AUC
0.80. Therefore, we found that the XGboost model outperformed
the LASSO model by the metric area under the curve (Figure 2B,
AUC, 0.80 vs 0.58), accuracy (73.1% vs 69.2%) and sensitivity
(0.63 vs. 0.5).

To interpret this XGBoost model, we explored the impact of
essential features in terms of SHAP values on the classifier’s
output for a single prediction which are shown in Figure 2C. We
identified Interleukin 17F (IL17F) and Myc proto-oncogene
protein (MYC) expression as indicators of future flare, while
Roundabout homolog 3 (ROBO3), Synuclein alpha (SNCA),
complement factor B (CFB) and vascular endothelial growth
factor A (VEGF-A) expression were indicators of sustained
remission (Figure 2C and Figure S3). Given the small number
of proteins that derived our boosted model, we next explored
whether there were any functional links between these proteins.
We developed gene concept plots to identify potential protein
interactions and found that SNCA, MYC, VEGFA and PLAUR
were connected by a single pathway, endopeptidase mediated
apoptosis. We then analyzed IL17F restricted networks, given its
conflicting role in RA (33–36), and that its expression was
associated with future flare in our model. We found that IL17F
interacted with VEGFA though growth factor function, and with
SNCA through common effects on the inflammatory response
(Figure 2D). IL17F independently regulated GM-CSF production,
a key driver of RA disease activity through the recruitment of
neutrophils (37). Overall, this network analysis suggests that
cellular apoptosis and GM-CSF production may be associated
with future disease flares in RA patients who are otherwise stable.
Frontiers in Immunology | www.frontiersin.org 689
Disease Activity in Stable RA Is Reflected
in the Serum Proteome
In our hierarchical clustering, we observed a lower mean DAS28
score in Cluster 4 compared to the remaining 3 clusters
(Figure 3A). RA patients who achieve DAS28 defined
remission often have residual disease activity, however, since
this population is not typically the focus of translational studies,
little is known regarding biomarkers that are reflective of
ongoing disease activity. Indeed, we found that several protein
members correlated with DAS28 score (Figure S4), including
Integrin alpha 2B (ITGA2B), Bactericidal permeability-
increasing protein (BPI) and chemokine ligand 2 (CXCL2,
Pearson R, all p value < 0.01). Further, complement proteins
(C3, C4A, C1S) were all negatively associated with DAS28 score,
suggesting activation and consumption of complement proteins
(Figure 3B) were indicators of disease. There was no indication
that these parameters varied based on ACPA status (Figure S5).

To further explore the relationship between disease activity
and serum biomarkers, we developed a sliding window model
(SWAN) which examined protein variability across DAS28
quintiles, after controlling for Age and Sex. Across DAS28 a
total of 34 proteins varied significantly with disease activity
(Figure 4A). We used these 34 protein members to annotate a
meta-protein expression score (the mean expression profiles of
the 34 proteins), which correlated with DAS28 (R = 0.45, p <
0.001, Figure S6). To test the robustness of this finding, we
sampled 5000 random sets with 34 proteins in each set and
correlated their mean expression with DAS28 scores. We found a
range of -0.37 – 0.27, associated with a low probability (0) that
the correlation of 0.45 would occur by chance (Figure S7). This
protein disease activity score was significantly lower in Cluster 4
compared to the remaining 3 clusters (Figure 4B), concordant
with their lower DAS28 scores. Gene concept plots revealed that
A B

FIGURE 3 | Serum proteins are associated with DAS28 in stable RA. (A) Box plots of DAS28 disease scores in patients, split by cluster assignment (p = 0.03).
(B) Correlation plots of DAS28 and serum protein expression of ITGA2B, BPI, CXCL2, C3, C4A, C1S. *p < 0.05.
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these 34 proteins interacted through nodes that included
humoral immunity, apoptosis, and complement activation
(Figure 4C). Overall, these data suggest that stable RA disease
activity is marked by complement consumption and humoral
immune responses, which is reflected in a serum protein
signature that is detectable in patients with stable RA.
DISCUSSION

With the advent of multiple targeted therapies, alone and in
combination, most RA patients should reasonably expect to
achieve low disease activity or clinical remission status. To
date, few studies have sought to understand the heterogeneity
of the biological pathways underpinning clinical remission in
this rapidly expanding population of RA patients. When, and in
whom to attempt withdrawal of therapy has become a
compelling clinical question. On the one hand, there is
justifiable concern regarding reactivation of systemic and
articular inflammation. On the other hand, ongoing use of
DMARDs and/or biologics is associated with increased risk of
infectious complications (38), malignancy (39) and cost (40).
Strategies for successful taper however remain ill-defined and,
importantly, lack precision (6, 41, 42). The RETRO clinical trial
has previously generated predictive models that were based on
clinical parameters and serum studies (16, 17). ACPA
seropositivity appears to be an important indicator for
Frontiers in Immunology | www.frontiersin.org 790
increased risk of future relapse (17), while clinical parameters
have modest predictive value even when combined with
advanced machine learning techniques (43). It remains unclear
if these indicators are clinically applicable and generalizable to a
wide range of RA patient populations. The focus of this study was
to use a broad-based serum proteomic approach to better
understand the underlying heterogeneity amongst RA patients
who are in sustained clinical remission, prior to their
participation in a clinical trial of therapy withdrawal. Our
results identify proteomic signatures reflecting biological
mechanisms that are associated with ongoing disease stability
off therapy, or alternatively, the risk of future disease relapse.

Our XGboost model suggested that individual circulating
serum biomarkers are unlikely, on their own, to be predictive
of future stability or relapse after therapy withdrawal. In spite of
this, combinations of proteomic biomarkers identified by the
machine learning achieved relatively high AUC and accuracy in
predicting outcomes. Indeed, this is a testament to the power of
rapidly evolving machine learning algorithms that are being
developed for many clinical problems (44). Network analysis of
proteins derived from machine learning suggested that
inflammatory forms of cellular death was an indicator for risk
future disease flare. Indeed, apoptosis is escaped by pathogenic
fibroblast-like synoviocytes and likely contributes to their
aggressive and hyperplastic phenotype in RA (45) and this
may point to systemic FLS as a potential source of these
proteins (46). Hierarchical clustering identified proteomic
A B C

FIGURE 4 | A serum proteomic signature is associated with DAS28 in stable RA. (A) Sliding window analysis of disease activity (Quintiles x-axis) and 34 proteins
that vary with DAS score after controlling for Age and Sex. Heatmap is colored on coefficient relationship to DAS score (B) Box plots of disease activity protein score
split by cluster assignment. (C) Gene concept plots derived from disease activity protein score. Each node represents a GO pathway with proteins connected by
edges. ITGA2B, Integrin alpha 2B; BPI, Bactericidal permeability-increasing protein; CXCL2, Chemokine ligand 2; C3, Complement C3; C4A, Complement 4A; C1S,
Complement 1S. ****p < 0.00001.
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clusters which were defined, in part, by clinical characteristics.
Cluster 4 represented a patient group with lower DAS28 scores
amongst the remaining patient cohort. Our disease activity
signature, found to be lower in Cluster 4, suggested that
elements of humoral immunity and complement activation
might facilitate disease activity in otherwise stable RA patients.
This suggests that activating pathways differentially regulate
disease activity in this subset of RA patients, as many of the
well-known disease activity markers in RA suggest that innate
immune responses associate with DAS28 scores (47–49).

The analyses we undertook utilized the SOMAscan aptamer-
based technology to interrogate 1307 distinct serum proteins.
Although this provided us with a robust array of biomarkers, it
is well recognized that these represent only a fraction of the human
proteome, and that larger arrays that span a larger proportion of
the circulating proteome may help generate even more accurate
predictive algorithms. Moreover, there remains an incomplete
understanding of how aptamer-based detection of each
individual analyte correlates with other detection methodologies
such as those that are antibody based (24). Due to our modest
sample size, we observed strongly statistically significant
association although R values related to DAS28 scores were all
below 0.3. However, we expect the R values may increase using a
larger sample size while the significant association will be still held.
Finally, SOMA proteins may bias over-representation analysis
based on the selected proteins which are included in the set.
Notably, network analysis was used in this study to connect
proteins of interest through biological nodes. These results
would not be impacted by inherent bias in the SOMA protein set.

In conclusion, we applied an unsupervised, high-throughput
proteomics assay to delineate biomarkers and pathways that
reflect the biological heterogeneity present in RA patients who
are collectively deemed to be in stable clinical remission. Based
on this, we used supervised machine learning to develop robust
models that predicted ongoing disease stability after therapy
withdrawal as opposed to future disease flare. Although it is
premature to try and define the potential clinical utility of these
models, they do provide an important impetus for further studies
that aim to further define a biological definition of remission in
RA patients that can ultimately guide clinical decision making.
Frontiers in Immunology | www.frontiersin.org 891
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Cutaneous lupus erythematosus (CLE) is a chronic inflammatory skin disease
characterized by a diverse cadre of clinical presentations. CLE commonly occurs in
patients with systemic lupus erythematosus (SLE), and CLE can also develop in the
absence of systemic disease. Although CLE is a complex and heterogeneous disease,
several studies have identified common signaling pathways, including those of type I
interferons (IFNs), that play a key role in driving cutaneous inflammation across all CLE
subsets. However, discriminating factors that drive different phenotypes of skin lesions
remain to be determined. Thus, we sought to understand the skin-associated cellular and
transcriptional differences in CLE subsets and how the different types of cutaneous
inflammation relate to the presence of systemic lupus disease. In this study, we utilized
two distinct cohorts comprising a total of 150 CLE lesional biopsies to compare discoid
lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE), and acute
cutaneous lupus erythematosus (ACLE) in patients with and without associated SLE.
Using an unbiased approach, we demonstrated a CLE subtype-dependent gradient of B
cell enrichment in the skin, with DLE lesions harboring a more dominant skin B cell
transcriptional signature and enrichment of B cells on immunostaining compared to ACLE
and SCLE. Additionally, we observed a significant increase in B cell signatures in the
lesional skin from patients with isolated CLE compared with similar lesions from patients
with systemic lupus. This trend was driven primarily by differences in the DLE subgroup.
Our work thus shows that skin-associated B cell responses distinguish CLE subtypes in
patients with and without associated SLE, suggesting that B cell function in skin may be
an important link between cutaneous lupus and systemic disease activity.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is complex, chronic,
autoimmune disease characterized by hyperreactive B cells and
the production of pathogenic autoantibodies (1). SLE involves
multiple organ systems, including the skin, where the distinct
type of inflammation is termed cutaneous lupus erythematosus
(CLE). CLE can occur in isolation or as a skin manifestation
associated with underlying systemic lupus erythematosus (SLE)
(2). CLE is relatively understudied compared to SLE, which
contributes to a lack of understanding of disease heterogeneity
in CLE pathogenesis. CLE is a rubric which encompasses
clinically and histologically distinct subtypes of CLE: acute
cutaneous lupus erythematosus (ACLE), subacute cutaneous
lupus erythematosus (SCLE), or chronic lupus erythematosus
(CCLE), with discoid lupus erythematosus (DLE) being the most
common subtype (3–5). While there are consistently observed
cellular and molecular features in patients with CLE and/or SLE,
such as a type I interferon (IFN) gene signature in the blood and
skin (6–10) and peripheral B cell dysfunction (11, 12), the shared
and unique molecular and cellular features of ACLE, SCLE, and
CCLE remain poorly understood. Indeed, basic transcriptional
comparisons have not identified robust distinguishing molecular
signatures between subtypes (13, 14). Further, DLE is more likely
to occur without underlying SLE compared to ACLE or SCLE (2,
15), yet it is not clear if the presence or absence of systemic
disease is related to the differences observed in cutaneous
manifestations of lupus (16).

In this study, we sought to investigate cellular and
transcriptional differences in lesional skin biopsies across CLE
subtypes, including DLE, ACLE, and SCLE, and explore how
cutaneous lesional immunophenotypes relates to systemic lupus
disease. Using novel analyses, we found that DLE lesions harbor
a unique immunoglobulin signature and an enrichment of skin B
cells compared to ACLE or SCLE lesions. Intriguingly, this B cell
signature was highest in patients with CLE without concomitant
SLE, including within the entire cohort of DLE patients (2). Our
results demonstrate that a B cell gene signature in the skin
distinguishes DLE from ACLE and SCLE and that increased B
cells in the skin of DLE patients is indicative of a lower rate of
accompanying systemic disease. These data suggest that B cell
transcriptional programs are more activated in DLE lesions
relative to ACLE or SCLE lesions and may play a role in
immunopathogenesis divergence across CLE subtypes. This
work supports future exploration of utilizing a skin B cell score
as a clinical marker of SLE risk, especially in DLE patients.
MATERIALS AND METHODS

Study Design
We applied a tissue transcriptome-driven sequential analysis
strategy. Gene expression profiles from 90 cases of CLE that
include DLE (n=47) and SCLE (n=43), as well as 13 healthy
control skin biopsies were used as a discovery cohort (13).
Frontiers in Immunology | www.frontiersin.org 295
Subsequent profiles of 60 skin biopsies that include DLE
(n=20), SCLE (n=20) and ACLE (n=20) served as a validation
cohort along with 4 additional healthy control skin biopsies. The
details of the discovery cohort and sample collection protocol are
previously described (13). In brief, skin biopsies were identified
via a SNOMED search of the University of Michigan Pathology
Database using the search terms “lupus” and “cutaneous lupus”.
Patients who met both clinical and histologic criteria for DLE or
SCLE or ACLE were included in the study. Patients with drug-
induced CLE were excluded from this study. The average time
from diagnosis to skin biopsy ranged from two to four years for
patients in the discovery cohort. Gender-, age- and race-matched
healthy controls were identified and utilized for studies that
compared CLE to normal healthy control skin (n=13 in the
discovery cohort, n=4 in the validation cohort). Clinical data
information can be found in Supplementary Table 1. Systemic
disease was defined by ACR criteria ≥4 (17).

Gene Expression Analysis
For both discovery and validation cohorts, transcriptome
analysis was performed on skin biopsies using Affymetrix
ST2.1 GeneChips as previously published (13). Data processing
details for the discovery cohort can be found in Berthier et al.
(13). In brief, normalized expression data were log2-transformed
and batch-corrected. FDR was applied to account for multiple
testing. The CEL-files and processed data are available at Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under
the reference number GSE81071 (discovery cohort) and
GSE184989 (validation cohort).

For the validation cohort, samples were processed and
normalized using the RMA approach (18), and average
expression was taken if more than one probesets mapping to a
gene. We then estimated and controlled the latent confounding
variables (19) for the limma-based differential expression analysis
(20, 21).

IFN Score Calculation
For both discovery and validation cohorts, IFN score was
calculated from the gene expression data as previously
described (13).

Weighted Gene Co-Expression
Network Analysis
Weighted gene co-expression network analysis (WGCNA) (22)
was performed on the 20,410 genes of the discovery cohort.
Briefly, WGCNA was used to aggregate genes into co-expression
modules representing gene expression patterns across all patient
samples. Co-expression modules were named and represented by
a unique color. A module eigenene value (the first principal
component of each module gene set) was generated in each
sample used as representation of the module. Each module
eigengene value was associated with available clinical variables:
Cutaneous Lupus Erythematosus Disease Area and Severity
Index (CLASI), Systemic Lupus Erythematosus Disease
Activity Index (SLEDAI), systemic versus non-systemic disease
status, DLE versus SCLE status, and IFN score.
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Heatmap Generation, Cell Type
Enrichment and Literature-Based
Pathway Analyses
Heatmaps of gene expression datasets were generated using the
Morpheus software (https://software.broadinstitute.org/
morpheus). Cell type enrichment analysis was performed as
previously reported (13) on the normalized datasets of 20,410
genes (discovery cohort) and of 29,405 genes (validation cohort)
using the xCell webtool (http://xcell.ucsf.edu/) (23). Canonical
pathways were identified using Ingenuity Pathway Analysis
software (IPA) (www.ingenuity.com).

Tissue CyTOF
Formalin-fixed, paraffin-embedded (FFPE) skin biopsy tissue
sections from lesional skin of patients with ACLE, SCLE, or
DLE were analyzed using the Hyperion imaging CyTOF system
(Fluidigm) as previously described (24) with modifications of the
antibody panel. Specifically, metal-tagged antibodies including
pan-keratin (C11, Biolegend), BDCA2 (Polyclonal, R&D
Systems), CD56 (123C3, ThermoFisher Scientific), HLA-DR
(LN3, Biolegend), CD11c (EP1347Y, Abcam), and CD4
(EPR6855, Fluidigm) were added in this study.

Immunohistochemistry
CLE skin biopsies from lesions of patients with ACLE, SCLE, or
DLE as well as healthy controls were collected and fixed in
formalin. Formalin-fixed, paraffin-embedded skin biopsy
sections were assayed by chromogenic immunostaining for
pan-leukocytes (anti-CD45, HI30, eBioscience), B cells (anti-
CD20, L26, Abcam) and memory B cells (anti-CD27, polyclonal,
R&D Systems). Antigen retrieval was achieved by heating
sections in sodium citrate buffer (pH 6.0) prior to antibody
incubation. A minimum of 3 patients per disease status group
were assayed and representative images are shown.

Statistical Analyses
Statistical analysis of clinical data and gene score comparisons
were generated using an unpaired parametric t-test with
GraphPad Prism software version 8.0.0; p-values<0.05 were
considered statistically significant and reported in all Figures.
All comparisons across all groups were performed; for clarity,
only the most relevant were reported if statistically significant.
RESULTS

DLE Lesions Harbor a Unique Skin
Immunoglobulin Gene Signature
Compared to SCLE Lesions
To identify unique features amongst CLE subtypes, weighted gene
correlation network analysis (WGCNA) was performed on an
initial discovery skin cohort to identify modules of genes
correlating with available patient clinical variables: CLASI,
SLEDAI, systemic versus non-systemic disease status, DLE
versus SCLE status, and IFN score. The resulting modules were
categorized by color and correlations of each module eigengene
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with clinical variables depicted in the module-trait relationship
heatmap (Figure 1A). This analysis identified that the cyan
module was one of the modules with the strongest correlation
with clinical variables and was significantly higher in DLE
compared to SCLE status (Figure 1B). This cyan module
was775353 composed of 32 genes, 26 of which were
immunoglobulin genes (Figure 1B). This result was confirmed
in a separate validation cohort that also included patients with
ACLE (Supplementary Figure 1A). Further probing by Ingenuity
pathway analysis also revealed significant enrichment for several
B cell-related pathways (Supplementary Table 2) including B cell
receptor signaling (p=6.31x10-33), B cell signaling pathway
(p=1.58x10-31), B cell activating factor signaling (p=4.79x10-02),
and B cell development (p=4.79x10-02). The yellow module from
the WGCNA analysis, represented by 746 genes (Supplementary
Table 3),was significantly correlated with the increased IFN score
in both the CLE discovery cohort (Figure 1C, r2 = 0.722, p=3x10-
28) and validation cohort (Supplementary Figure 1B, r2 = 0.832,
p<0.0001). These data demonstrate that a stronger
immunoglobulin gene signature was observed in lesional skin
from patients with DLE when compared to lesions from those
with SCLE, and that a high skin IFN score was correlated with
active CLE lesions, regardless of cutaneous disease subtype.

DLE Lesions Are Associated With a Higher
Skin B Cell Signature Compared to ACLE
or SCLE
To explore whether the skewed cutaneous immunoglobulin gene
signature detected in DLE lesions coincided with an increase in
skin B cell subsets compared to other CLE subtypes, we utilized the
xCell algorithm which performs cell type enrichment analysis
from tissue gene expression profiles (23). The heterogeneous
cellular landscape of tissue expression profiles can be evaluated
with the xCell enrichment scores generated for each cell type. We
performed this analysis on both the discovery and the validation
cohorts which included normalized gene expression from the skin
of healthy controls or lesions from patients with DLE, SCLE, or
ACLE. (Supplementary Figure 2 and Supplementary Table 4).

The cell type enrichment analysis showed enrichment for B cell
subsets in patients with DLE compared to SCLE or ACLE skin
lesions (Figure 2A). Specifically, cell type enrichment analysis
from both the discovery and validation cohorts revealed
significantly higher gene expression signatures for B cells
(p=0.0001 and p<0.0001, respectively), naïve B cells (p=0.0011
and p<0.0001, respectively) and memory B cells (p<0.0001 and
p=0.0001, respectively) in skin lesions from patients with DLE
compared to SCLE (Figure 2B). Furthermore, B cell enrichment
scores of B cells, naïve B cells, and memory B cells were all
significantly lower in ACLE lesions compared to DLE (Figure 2B,
p=0.0025, p=0.0007, p=0.0070, respectively). No significant
difference in the enrichment of B cell subsets between lesions
from patients with SCLE and ACLE was detected by cell type
enrichment analysis (Figure 2B). These results show that when
CLE is examined according to cutaneous disease subtype, a
significant enrichment in overall and subsets of skin B cell gene
expression programs is detected in DLE lesions compared to SCLE
or ACLE lesions.
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Skin B Cell Enrichment in CLE Is
Associated With Non-Systemic Lupus
and Discoid Lesions
We then sought to determine if the B cell signature detected in
CLE lesions was associated with systemic disease status,
including within a particular CLE subtype. For this, we first
grouped all CLE lesions together and analyzed them based on
whether the patient had systemic SLE or CLE without systemic
disease. Intriguingly, we identified a significant difference in
lesional B cell subsets vs. healthy control only in patients with
Frontiers in Immunology | www.frontiersin.org 497
CLE without associated SLE (p=0.0003). No increase in B cell
subsets were noted when lesions from SLE patients were
compared with healthy controls (Figure 3A). This trend was
less when B cells were subsetted into naïve and memory, but in
all instances, CLE lesions taken from patients without SLE
exhibited significantly more B cell-associated gene expression.
(Figure 3A). Because we observed differences in the lesional skin
B cell enrichment score in patients with CLE based on SLE status,
we further explored the impact of CLE subtype on this finding.
There were significantly higher total B cell enrichment scores in
A

B C

FIGURE 1 | Weighted gene correlation network analysis identifies an immunoglobulin signature associated with DLE skin lesion status, independent of IFN score.
(A) Module-trait relationship heatmap. Each module eigengene was correlated with the indicated clinical parameter. For categorical parameters, non-systemic/
systemic disease and DLE/SCLE, numerical values were assigned to each categorical group. The scale bar on the right represents the correlation coefficient with
green for negative correlation and red for positive correlation, p-values for each correlation are presented on the heatmap. The yellow module was the module with
the strongest positive correlation with IFN score and the cyan module was the module that had the strongest negative correlation with the DLE versus SCLE lesion
status. (B) The cyan module eigengene from the SCLE and DLE lesions encompasses a 32-gene, primarily immunoglobulin signature. (C) The yellow module
eigengene was significantly correlated with IFN score (r = 0.85, p = 3E-28). The data in each panel represent 47 DLE patients and 43 SCLE patients.
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lesions from patients with isolated DLE compared to DLE with
underlying SLE (p=0.0008). A similar trend was seen for SCLE
but this did not reach significance (p=0.077) (Figure 3B). This B
cell enrichment was also specific to non-systemic DLE versus
non-systemic SCLE when total B cells (p=0.0001), naïve B cells
(p=0.0489), and memory B cells (p=0.0183) were compared
(Figure 3). Thus, lack of associated SLE is associated with
increased B cell signatures in CLE lesions, and this holds true
even within the DLE subtype when patients with and without
associated SLE are compared.

Peripheral Autoantibody Status Is Related
to the Degree of B Cell Enrichment in
Cutaneous Lupus Lesions
Given that our data show that a prominent skin B cell gene
signature is most pronounced in DLE lesions with a lack of
underlying SLE, we sought to explore whether there is a
relationship between skin B cell enrichment in lesional skin
and the presence of peripheral lupus autoantibodies. We thus
examined the lesional skin xCell B cell enrichment scores of DLE
or SCLE patients subsetted by the presence of absence of key
diagnostic lupus autoantibodies at the time of skin biopsy
(Figure 4). As expected, DLE or SCLE patients with systemic
disease were overall more likely to test positive for lupus
antibodies than patients without systemic disease (Figure 4).
Surprisingly, however, anti-nuclear antibody (ANA) negative
DLE patients still demonstrated elevations in their cutaneous B
cell signatures when compared to ANA+ DLE patients
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(Figure 4A). This was also true when the comparisons were
made between anti-dsDNA- versus anti-dsDNA+ patients
(Figure 4A). No differences were noted between ANA or anti-
dsDNA positivity and B cell signatures in SCLE biopsies
(Figure 4A). Interestingly, there was no difference between B
cell enrichment score in DLE lesional skin for anti-Smith, anti-
Ro, and anti-phospholipid antibodies (Figures 4B, C). In SCLE
patients, only those positive for anti-Smith antibodies had
significantly lower lesional skin B cell enrichment scores
(Figure 4B, p=0.0235). Furthermore, we observed that skin B
cell enrichment scores remained significantly higher in DLE
lesions compared to SCLE lesions among patients who tested
negative for ANA (p=0.0010) or anti-dsDNA (p=0.0009)
(Figure 4A), anti-Smith (p=0.0059) or anti-Ro (p=0.0131)
(Figure 4B), or anti-phospholipid antibodies (p=0.0066)
(Figure 4C). Taken together, these data show that patients
with DLE have elevated cutaneous B cell signatures without a
concurrent subsequent rise in peripheral autoantibodies. This
suggests that the function of B cells in CLE lesions may go
beyond generation of antibody secreting cells or that
cutaneously-produced antibodies either do not reach
circulation or are against antigens that are not tested for on
routine clinical testing.

DLE Lesions Exhibit Higher Skin B Cell
Numbers Compared to SCLE or ACLE
To validate the transcriptional data and to expand our
investigation to ACLE, immune cell populations were
A

B

FIGURE 2 | Cell type enrichment analysis using xCell tool reveals a B cell signature higher in DLE lesional skin compared to SCLE and ACLE lesions. (A) Heatmap
of the B cell subtypes representing average xCell score for each skin lesion type compared to normal healthy controls (N). *p-value < 0.05 in SCLE versus DLE.
(B) xCell enrichment score for B cells, naïve B cells and memory B cells in lesional skin from patients with DLE, ACLE, SCLE as well as normal healthy controls (N) in
both the discovery and the validation cohort. Comparisons were made via unpaired Students’ t-test.
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enumerated in lesional skin biopsies from patients with DLE,
SCLE, or ACLE lesions by tissue CyTOF using a 16-antibody
panel. While most immune cell populations, except for natural
killer (NK) cells, neutrophils, and plasmablasts, were detectible
in CLE lesions (Supplementary Figure 3), increased B cell
numbers were only seen in DLE and ACLE lesions but not in
SCLE (Figure 5A). This coincides with the skewing of certain B
cell related genes in DLE>ACLE>SCLE lesions (Figures 5B, C).

We then sought to confirm the distinct differences of a skin B
cell signature across CLE subtypes via immunohistochemistry.
Skin sections from ACLE, SCLE, and DLE lesions were probed
with a pan-leukocyte marker (CD45), a broad B cell marker
(CD20), and a marker for mature B cells (CD27) by
immunohistochemistry (Figure 6). While an increase in
CD45+ immune cells was observed in the skin of patents with
CLE, we observed the highest infiltration of CD20+ B cells and
CD27+ mature B cells in DLE lesional skin, followed by ACLE
lesions, and SCLE lesional skin harbored the lowest infiltration of
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these immune cells among these CLE subtypes (Figure 6 and
Supplementary Figure 4). Taken together, these data reveal a
gradient of B cell numbers and associated B cell marker gene
expression with the highest in DLE and the lowest in SCLE.
DISCUSSION

The cellular and molecular basis of disease heterogeneity in CLE
and the variability in which systemic lupus erythematosus (SLE)
occurs in patients with different CLE subtypes remain important
research objectives to understand lupus pathogenesis and
develop precision therapies. To that end, we explored the
transcriptional and cellular phenotypes of skin biopsies from
patients with ACLE, SCLE, and DLE. As expected, we observed
that interferon (IFN) genes were globally upregulated in both
DLE and SCLE and therefore did not discriminate between these
subtypes of disease. However, we subsequently identified a B cell
A

B

C

FIGURE 3 | B cell subset enrichment score in lesional skin from CLE patients with and without systemic lupus. (A) Heatmap of the B cell subtypes representing the
xCell enrichment score for each patient from the discovery cohort. (B) xCell enrichment score for B cell subtypes in normal healthy controls (N) (n = 13) and all CLE
patients with and without systemic lupus (n = 46 and n = 44, respectively). (C) xCell enrichment score for B cell subtypes in DLE patients with and without systemic
lupus (n = 22 and n = 25, respectively) and SCLE patients with and without systemic lupus (n = 24 and n = 19, respectively). Comparisons were made via unpaired
Students’ t-test.
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gene signature in CLE skin that did indeed distinguish DLE from
ACLE and SCLE, and this CLE-associated gene signature was
highest in DLE lesions without associated systemic disease. These
data indicate that while type I IFNs are known to contribute to
the recruitment and activation of B cells in autoimmune disease
(25–27), they may not be critical drivers in the differential
recruitment of B cells observed in DLE skin.
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Autoimmune responses and the contribution of B cells in SLE
pathogenesis are well described, yet a role for skin-associated B
cells in CLE is less apparent. There is considerable interest in the
development of murine models to explore the contribution of B
cells and other immune cell populations in the skin to cutaneous
lupus pathogenesis (28, 29) and studies in the role of B cells in
CLE patients are emerging. Indeed, our data suggest that while
A

B

C

FIGURE 4 | The relationship between skin B cell enrichment and the presence of circulating SLE autoantibodies in patients with DLE or SCLE. Patients with active
DLE or SCLE skin lesions were stratified by the presence (positive) or absence (negative) of SLE autoantibodies at the time of biopsy. The patients in which the
status of a particular autoantibody was not known at the time of biopsy were classified as “unknown”. (A) ANA and anti-dsDNA. (B) Anti-Smith and anti-Ro. (C) Anti-
phospholipid. Comparisons were made via unpaired Students’ t-test.
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DLE is more likely to occur without underlying SLE compared to
ACLE or SCLE (2, 5, 15), we detected a higher B cell signature in
DLE lesions in patients without SLE that does not reflect
peripheral autoantibody status. Our data mirror a previous
study by Magro et al. that reported robust CD20 staining in
14/18 DLE lesions and only moderate CD20 staining in 9 SLE
lesional biopsies (classification of biopsy subtype was not
provided for SLE patients) (30). A more recent study that
explored peripheral B cells in CCLE patients found that
patients that lack systemic disease share peripheral B cell
abnormalities with SLE patients (11). However, tissue-specific
B cell responses in the skin of patients were not examined.

Thus, our data suggest that understanding tissue-specific B
cell responses may be important for disease phenotype and
possibly for predicting medication responses. Indeed, some
small studies have suggested that SLE patients with refractory
DLE respond better than SLE patients with SCLE to B cell
depleting therapy (31). Another large study reported on 82
patients with SLE all of whom were treated with Rituximab
(32). Importantly, no CLE without SLE patients were in this
study. In this analysis, no DLE+SLE patients responded to
Rituximab, yet of the ACLE patients that responded, negative
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anti-RNP and negative anti-Ro antibodies were associated with
better response (32). Thus, we would propose that based on our
data, DLE patients without SLE, especially those without a
positive ANA, may be an important patient group to study for
the effects of B cell depletion. Further clinical studies should
address the benefit of B cell targeted therapy in isolated,
refractory DLE.

Our study has several limitations. First, our study was
performed retrospectively on archived patient samples. While
this allows us to analyze a larger number of samples, we are
limited in the clinical data and long-term follow-up that we were
able to collect. Secondly, our discovery cohort did not include
ACLE patients secondary to the design of that initial work.
Future work should explore changes in skin B cell signatures
over time in longitudinally collected patient samples and should
include additional phenotyping studies to understand the role of
B cells in the skin, whether they are contributing to antibody
secretion, and whether their depletion can be a viable therapy in
the right subset of patients.

In summary, we have identified a transcriptional B cell
signature that is highest in DLE>ACLE>SCLE patients and
that is most prominent when the CLE lesions occur without
A

B C

FIGURE 5 | B cell quantification by tissue CyTOF and gene expression in lesional skin from ACLE, SCLE, and DLE patients. (A) The number of B cells numbers
per millimeter of skin were quantified in SCLE (n = 8), ACLE (n = 8), and DLE (n = 8) lesions. Normalized gene expression of (B) CD20, and (C) Bank1 from SCLE
(n = 20), ACLE (n = 20), and DLE (n = 20) lesional skin and normal healthy control skin (N) (n = 4).
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associated SLE. This was validated by immunostaining for both
naïve and memory B cell populations in lesional skin.
Interestingly, patients with skin lesions and positive
autoantibodies tend to have a lower B cell enrichment score in
the skin. This data has important implications for trial design for
patients with isolated CLE, as treatment options for refractory
CLE without SLE are limited. Further study into the role of B
cells, the recruitment and differentiation in lesional skin, and the
types of antibody secreting cells present will further enhance our
ability to diagnose and treat CLE.
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Supplementary Figure 1 | Weighted correlation network analysis of DLE versus
SCLE status and associated cyan and the IFN-score associated yellow modules in
the validation cohort. (A) A total of 27 of the 32 Cyan module associated genes from
the discovery cohort were also significantly higher in DLE compared to SCLE and
ACLE, confirming the association of the cyan module with the DLE versus SCLE
status (n = 20 per CLE subtype). (B) A total of 559 from the 746 yellow module
associated genes from the discovery cohort also significantly correlated with the IFN
score in the validation cohort (p-value < 0.0001).
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Supplementary Figure 2 | Cell type enrichment analysis using xCell tool, on both
the discovery and the validation cohorts. Heatmap of relevant cell types
representing average xCell score for each CLE disease compared to controls.
Comparisons were made via unpaired Students’ t-test. Detailed summary statistics
are presented in Supplementary Table 4. The asterisks represent the statistically
significant changes in DLE compared to SCLE or ACLE compared to SCLE (p-value
< 0.05).

Supplementary Figure 3 | Immune cell quantification by tissue CyTOF and gene
expression in lesional skin from ACLE, SCLE, and DLE patients. Immune cell
populations in the skin were quantified in SCLE, ACLE, and DLE lesions.

Supplementary Figure 4 | Immunohistochemistry staining for B cell subsets in
lesional skin from additional patients with DLE, ACLE, or SCLE. Formalin-fixed
paraffin embedded tissue sections from skin were stained for CD20+ B cells and
CD27+ mature B cells (n = 3 patients per CLE subtype). Representative images are
shown at 100X magnification with a scale bar of 200 mm.

Supplementary Table 2 | Ingenuity pathway analysis from the 32 WGCNA cyan
module genes: regulated canonical pathways. B cell-related pathways are
highlighted in bold.
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Infliximab (IFX) is an effective medication for ulcerative colitis (UC) patients. However, one-
third of UC patients show primary non-response (PNR) to IFX. Our study analyzed three
Gene Expression Omnibus (GEO) datasets and used the RobustRankAggreg (RRA)
algorithm to assist in identifying differentially expressed genes (DEGs) between IFX
responders and non-responders. Then, an artificial intelligence (AI) technology, artificial
neural network (ANN) analysis, was applied to validate the predictive value of the selected
genes. The results showed that the combination of CDX2, CHP2, HSD11B2, RANK,
NOX4, and VDR is a good predictor of patients’ response to IFX therapy. The range of
repeated overall area under the receiver-operating characteristic curve (AUC) was 0.850 ±
0.103. Moreover, we used an independent GEO dataset to further verify the value of the
six DEGs in predicting PNR to IFX, which has a range of overall AUC of 0.759 ± 0.065.
Since protein detection did not require fresh tissue and can avoid multiple biopsies, our
study tried to discover whether the key information, analyzed by RNA levels, is suitable for
protein detection. Therefore, immunohistochemistry (IHC) staining of colonic biopsy
tissues from UC patients treated with IFX and a receiver-operating characteristic (ROC)
analysis were used to further explore the clinical application value of the six DEGs at the
protein level. The IHC staining of colon tissues from UC patients confirmed that VDR and
RANK are significantly associated with IFX efficacy. Total IHC scores lower than 5 for VDR
and lower than 7 for RANK had an AUC of 0.828 (95% CI: 0.665–0.991, p = 0.013) in
predicting PNR to IFX. Collectively, we identified a predictive RNA model for PNR to IFX
and explored an immune-related protein model based on the RNA model, including VDR
and RANK, as a predictor of IFX non-response, and determined the cutoff value. The result
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showed a connection between the RNA and protein model, and both two models were
available. However, the composite signature of VDR and RANK is more conducive to
clinical application, which could be used to guide the preselection of patients who might
benefit from pharmacological treatment in the future.
Keywords: infliximab, ulcerative colitis, artificial neural network analysis, prediction, primary non-response
INTRODUCTION

Ulcerative colitis (UC) is a chronic relapsing inflammatory disease
of the colonicmucosa.UC is a relapsingdisease requiring long-term
management throughout life. The mainstay therapies for UC
include 5-aminosalicylates, glucocorticoids, immunosuppressants,
and biologic agents (1, 2). Biologic drugs, including antitumor
necrosis factor (TNF)-a agents, anti-integrin drugs (vedolizumab),
Janus kinase inhibitors (tofacitinib), and interleukin-12/23
antibodies (ustekinumab) (3), have driven UC therapy to a new
era. The anti-TNF-a agent infliximab (IFX) is the oldest and most
widely used biologic agent.

A meta-analysis showed that IFX was the highest-ranking
biologic agent for the induction of clinical remission (OR 4.10,
95% CI: 2.58–6.52) and mucosal healing in moderate to severe
UC (4, 5). However, according to previous studies, nearly one-
third of UC patients show primary non-response (PNR).
Moreover, studies have shown that other biologic agents have
a higher failure rate in patients who previously failed to respond
to IFX treatment than in those who are naïve to anti-TNF
treatment (6, 7). Furthermore, the time PNR patients spend on
IFX therapy can delay treatment, increase the risk of disease
aggravation, and increase the economic burden of UC.
Therefore, it is crucial to distinguish between PNR and
effective responses to IFX treatment. Predictions of non-
responses to IFX can assist the accurate selection of patients
who could experience a clinical benefit and avoid potential
adverse effects and unnecessary financial investment. Thus, an
approach to identify markers from common, accessible samples,
such as tissue biopsies or blood samples, is needed.

Previous studies have demonstrated that the therapeutic
response depends on clinical factors, serum markers, and host
genetics. Brandse et al. found that a high baseline serum level of
C-reactive protein (CRP) was associated with lower serum
concentrations of IFX, leading to non-response (8). Arias et al.
identified a panel of serum markers (pANCA, CRP, and
albumin) as independent predictors of the long-term outcome
following IFX therapy in UC patients (9). Nevertheless, these
indexes mainly related to disease activity and imperfectly
predicted the primary therapeutic response to IFX (10). Burke
et al. showed that genetic polymorphisms have predictive value
for PNR to anti-TNF therapy in UC patients (11). Moreover, a
high pretreatment expression of oncostatin M (OSM) was
associated with anti-TNF resistance (12). However, the
signatures of anti-TNF non-response mentioned above need
further external clinical validation.

In the present study, we aimed to identify the specific markers
underlying the PNR to IFX using combined datasets. Due to the
org 2106
expense of RNA sequencing, the RNA-seq dataset was small, and
we used the bootstrapping method to randomly resample (13, 14).
The first step to developing a predictor for clinical application is
to find a repeatable result. We used an artificial intelligence (AI)
technology, artificial neural network (ANN) analysis, to validate
whether these data might be useful in estimating PNR. We
repeated this process multiple times to validate the results.
Moreover, we used another independent RNA dataset to
confirm the result. Furthermore, an immunohistochemistry
staining of colon tissue from UC patients who underwent IFX
therapy was performed to explore the clinical application at the
protein level. Ultimately, the findings of this work provide a
greater understanding of which patients might receive therapeutic
benefit from IFX therapy.
METHODS

Data Collection From the Gene Expression
Omnibus Database
This study acquired clinical data and mRNA expression profiles
of colon tissue from adult patients with UC from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). By using the keywords “ulcerative colitis” or
“UC” and “IFX” or “infliximab,” a total of eight series
associated with UC treated by IFX were identified. After
review, we selected three datasets (GSE12251, GSE16879, and
GSE23597) containing the therapeutic efficacy of different
dosages of IFX (15–18) as a discovery cohort. The platform
used for the three datasets was the GPL570 [HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0 Array. The selected
patients all underwent colonoscopy, and biopsies of the diseased
colon were performed before IFX therapy. Since the most
commonly used dose of IFX in the clinic is 5 mg/kg and to
maintain consistency among the three datasets, we selected
patients who received a 5-mg/kg dose of IFX from the three
datasets. Finally, 25 UC patients who responded to the first IFX
treatment and 25 UC patients who exhibited PNR were included.
The response was assessed in week 8 in the GSE12251 and
GSE23597 datasets after the first infliximab treatment, and in
weeks 4–6 in the GSE16879 dataset. The response definition was
complete mucosal healing with a Mayo endoscopic subscore of 0
or 1 and a histological score of 0 or 1. An independent cohort
from GEO (GSE73661) was used for further validation, which
contained eight primary IFX responders and 15 non-responders.
The response was assessed in weeks 4–6 in the GSE73661 dataset.
The platform of the GSE73661 dataset was the GPL6244
[HuGene-1_0-st].
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Data Extraction, Screening, and
Aggregation of Differentially Expressed
Genes
The pre-IFX-therapy-sequencing data of the obtained patients
were extracted from the GSE12251, GSE16879, and GSE23597
datasets. UC patients who responded or did not respond to a 5-
mg/kg dose of IFX at the first follow-up were selected and
divided into the response group and PNR group. The limma R
package (http://www.bioconductor.org/) was used to filter the
Differentially Expressed Genes (DEGs) in each dataset. The same
analysis was done in the validation cohort, the GSE73661 dataset.
DEGs were defined as both an adjusted p-value < 0.05 and |log
fold change (logFC)| > 0.5. The TXT files of all DEGs of the
discovery datasets were sorted by logFC and saved for the
subsequent integration analysis.

The three TXT files of all DEGs sorted by logFC were
aggregated using the RobustRankAggreg (RRA) R package
(https://CRAN.R-project.org/package=RobustRa-nkAggreg).
The aggregated DEGs from all datasets, including upregulated
and downregulated DEGs, were saved for subsequent analysis.

We selected aggregated upregulated and downregulated genes
with a p-value lower than 0.05. Then, we ranked the genes by the
logFC in order from the largest to the smallest. We reviewed the
significant protein-coding DEGs and sorted out the genes
expression in the alimentary tract through NCBI (https://www.
ncbi.nlm.nih.gov/). We then reviewed published papers to
determine genes which associate with immune activities to
construct a list of proteins linked to the efficacy of IFX.
Subsequently, we used the GSE16879 dataset, which contained
sequencing data before and after IFX therapy, to determine the
relationship between the selected protein-coding genes and IFX.
Since the fewer indicators included, the higher the economic
benefits obtained, we tried to find a better combination of DEGs.

Resampling Method and Artificial Neural
Network Analysis
The subjects in the response group and PNR group were
resampled by the “bootstrap” method. The dataset was
randomly resampled to 250 by the proportion of the two
groups (with replacement, i.e., when an item is sampled, it is
immediately returned) (13). The samples from the resampling
were analyzed by an ANN to show the efficiency of the model. To
confirm the stability of the model, we repeated the resampling
and ANN analysis 500 times. The process was also performed by
shielding one input randomly. The range of area under the
receiver-operating characteristic curve (AUC) was calculated.
The same analysis parameters of ANN were used to verify the
prediction ability of the selected DEGs in the validation dataset.

Exploring the Expression of the Selected
DEGs at the Protein Level
Patients with UC receiving IFX monotherapy were enrolled from
2017 to 2020 at the Peking Union Medical College Hospital
(PUMCH). Twenty-four UC patients were selected. The
diagnostic criteria were based on the third European Crohn’s
and Colitis Organization (ECCO) consensus guideline for UC
Frontiers in Immunology | www.frontiersin.org 3107
and the 2018 Chinese consensus for inflammatory bowel disease
(19, 20). We evaluated their clinical data at baseline, week 6, and
week 14 after therapy. The response to IFX in week 6 was defined
as a decrease in the partial Mayo score (Mayo score without
endoscopy) of at least three points and at least 30% compared
with the baseline data (21). A response in week 14 was defined as
a decrease in the Mayo score of at least three points and at least
30% less than the baseline value, and the rectal bleeding score
should decrease by more than 1 point or be equal to 0 or 1 point.
The colonoscopic biopsies before the first IFX treatment of these
patients were used for the immunohistochemistry (IHC) staining
to verify the effectiveness of the obtained genes at the protein
level. All colonic biopsy samples and clinical data of the patients
used in this study were carried out with the approval of the
Peking Union Medical College Hospital and the Chinese
Academy Medical Science Ethics Committee (S-K1142).

Staining Off Target Proteins by
Immunohistochemistry
We performed IHC staining off of the target proteins in
formalin-fixed, paraffin-embedded colon tissues. The antigens
were retrieved by boiling the samples for 10 min in 10 mM citrate
(pH 6.0) or EDTA antigen repair solution (pH 9.0) (ZSGB-BIO).
The slides were stained with rabbit monoclonal antibodies (Cell
Signaling) and then incubated with a peroxidase-conjugated
secondary antibody. Finally, the signals were visualized with
diaminobenzidine (DAB) peroxidase substrate kit (Servicebio).

IHC Scoring
A flowchart of the IHC scoring and analysis is shown in Figure 1.
The IHC staining was semiquantitatively evaluated by rating
both the extent and intensity. First, we randomly selected 10
visual fields (×40) under a light microscope and counted 100 cells
in each visual field. Then, we rated the extent as the proportion of
positive cells on a scale from 0 to 4 as follows: 0, <1%; 1, 1% to
25%; 2, 26% to 50%; 3, 51% to 75%; and 4, ≥76%. Moreover, the
intensity of the immunoreactivity (IR) was rated on a scale from
0 to 3 as follows: 0, no IR; 1, weak IR; 2, moderate IR; and 3,
strong IR (Table 1) (22). We defined the IHC score of each
protein as the mean value of the extent or intensity score in each
visual field. The IHC scoring was analyzed independently by two
gastroenterologists who were blinded to the patients’ response
to IFX.

Additionally, we used a two-tailed exact Mann–Whitney U
test (non-parametric) to compare the IHC score between the
responders and non-responders. Any variable with a p-values
lower than 0.05 in its extent or intensity scores was included in
the multivariate analysis. Then, we defined the total score of each
subject as the product of the mean extent and intensity score of
each protein as follows:

Total IHC score of  each protein in each sample 

=  mean extent score�mean intensity score

Moreover, we used the bootstrap method and an ANN
analysis to show the efficiency of the combination of the
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selected proteins in predicting IFX efficacy. The resampling and
ANN analysis process were repeated 500 times. The range of
AUCs was calculated to measure the results of ANN analysis of
the proteins in predicting the therapeutic effect of IFX in week 6
and week 14.

To achieve the threshold of distinction between a response
and PNR, we divided the cutoff value of the total IHC score of
each included protein by an ROC analysis. Moreover, the protein
score was defined as 1 when the total IHC score was greater than
or equal to the cutoff value and 0 when the total IHC score was
lower than the cutoff value. Then, we used a logistic regression to
calculate the relative coefficient of the IHC score of the proteins.
We divided the regression coefficient of the other variables by the
minimum regression coefficient and rounded the result to obtain
the score of each variable. The product of the relative coefficient
and protein score was obtained, and the sum of the products was
defined as the final predictive score. An ROC curve was plotted
to estimate the value of the selected proteins in predicting the
therapeutic effect of IFX.

Final score  =  protein score 1 �  relative coefficient 1 

+  protein score 2 �  relative coefficient 2

+… +protein score n �  relative coefficient n
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Statistical Analysis
Non-parametric analyses were used to estimate the differences
between the IFX response and non-response groups. The
statistical tests were two-tailed and described in the figure
legends. ROC curves were used to test the prediction value. All
p-values less than 0.05 were considered significant. All analyses
and the graph creation were performed in SPSS (version 25.0,
IBM Corporation, Chicago, USA), R software (version 3.5.2, R
Foundation for Statistical Computing, Vienna, Austria), and
MATLAB (R2019a, MathWorks, USA).
RESULTS

Identification of DEGs Between
Responders and Primary Non-Responders
According to the inclusion criteria for the sequencing data before
5 mg/kg IFX therapy, we extracted UC patients who were primary
IFX responders or non-responders from the GSE12251,
GSE16879, and GSE23597 datasets. The GSE12251 dataset
included four responders and seven non-responders, the
GSE16879 dataset contained eight responders and 16 non-
responders, and the GSE23597 dataset included 13 responders
and two non-responders (Table 2). The DEGs were screened using
the limma R package (adjusted p-value < 0.05 and |logFC| > 0.5).
The GSE12251 dataset contained 2,335 DEGs, including 1,346
upregulated genes and 989 downregulated genes. Furthermore,
934 upregulated genes and 852 downregulated genes were
included in the GSE16879 dataset, resulting in a total of 1,786
DEGs in this dataset. Finally, the GSE23597 dataset contained
3,497 DEGs, including 1,390 upregulated genes and 2,107
downregulated genes. The DEGs in the three datasets are
shown in Table 3 and Figure 2.
FIGURE 1 | Flowchart of the IHC scoring and analysis. IHC, immunohistochemistry; PNR, primary non-response; ANN analysis, artificial neural network analysis;
ROC, receiver-operating characteristic.
TABLE 1 | Grading scale for the semiquantitative IHC scoring.

Score Staining extent Staining intensity

0 <1% None
1 1%–25% Weak immunoreactivity
2 26%–50% Moderate immunoreactivity
3 51%–75% Strong immunoreactivity
4 ≥76% –
December 2021 | Volume 12 | Article 742080
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Integrated DEGs Between Responders
and Primary Non-Responders
The aggregated DEGs were screened by the RRA package (p-value
< 0.05, |logFC| > 0.5). This method was based on the
RRA algorithm in which each gene in each dataset was
randomly arranged. If a gene ranked higher in all datasets, the
associated p-value was lower, indicating that the possibility of this
gene being a DEG was greater in all datasets. Using the RRA
method, 624 integrated DEGs were identified, consisting of 18
upregulated genes and 606 downregulated genes. We selected the
aggregated upregulated and downregulated DEGs by an associated
p-value lower than 0.05, ranked the logFC in order from the largest
to the smallest, identified the protein-coding genes, and
determined the gene expression in the gastrointestinal tract by
NCBI. Among the upregulated genes, those with low expression in
the normal gastrointestinal tract were selected, while among the
downregulated genes, those with high expression in the normal
gastrointestinal tract were selected. We then reviewed published
papers to consider proteins linked to immune or inflammatory
processes. Ultimately, five downregulated proteins associated with
PNR, including CDX2, CHP2, HSD11B2, RANK, and VDR, were
selected; one upregulated protein, NOX4, was chosen.
Furthermore, we used the GSE16879 dataset, which contained
RNA sequencing data both before and after IFX treatment, to
determine the relationship between the selected DEGs and IFX
therapy. We found that 1) the non-responders to IFX tended to
have a lower pretreatment expression of the downregulated DEGs
compared with the responders; 2) the posttreatment expression of
the downregulated DEGs displayed a trend of increases in the
responders; and 3) the expression of the downregulated DEGs
after treatment in those who responded to IFX was higher than
that in those who did not respond to IFX. This phenomenon was
the opposite in the upregulated DEG NOX4 (Figure 3). Thus, the
following six proteins were ultimately selected for the construction
of the predictive model of IFX efficacy: CDX2, CHP2, HSD11B2,
RANK, NOX4, and VDR (Figure 4). CDX2, CHP2, HSD11B2,
RANK, and VDR showed decreased expression in the non-
responders, while NOX4 showed increased expression.
Frontiers in Immunology | www.frontiersin.org 5109
Resampling and ANN Analysis Results
of the DEGs in the Discovery and
Validation Cohort
We used the bootstrap method to randomly resample the
response group (n = 25) and PNR group (n = 25) and enlarge
the sample size to 250 in proportion of the two groups.
Bootstrapping can reduce heterogeneity in different sample
populations and avoid the problem of sample reduction caused
by cross validation. Then, we used the resampled dataset to
perform an ANN analysis (23, 24). The ANN analysis weighed
the importance of the selected proteins, thus predicting the effect
on achieving response to IFX therapy. Based on the collection of
connected units, ANN loosely mimics neurons in the real brain.
Each connection works as synapses in a biological brain. ANN
can convey signals from one artificial neuron to another. Then,
artificial neurons that receive signals can transmit these signals
and signal additional artificial neurons connected to them. In
typical ANN applications, the signals at a connection between
artificial neurons are actual numbers and the outputs of each
artificial neuron are calculated by a non-linear function of the
sum of its inputs. Artificial neurons and their connections have a
weight that adjusts as learning proceeds. The weight enhances or
reduces the power of the signals at a connection in the ANN.
ANN incorporates a system of interconnections based on simple
mathematical models associated with learning algorithms. ANN
consists of a four-layer (one input layer, two hidden layers, and
one output layer) feedforward analysis. To develop the ANN,
cases were randomly assigned to a training set (70%), test set
(15%), and verification set (15%) through a generator of random
numbers in our study. Backpropagation of error was applied as a
learning rule by the online training method. The synaptic
weights were calculated after each training data record.

As the more included the indicators, the higher economic
burden for application, we tried different combinations of DEGs
to find a better small protein combination. We performed the
resampling and ANN analysis 500 times by selecting all
integrated DEGs, top 300, top 100, top 50, and the six selected
DEGs. The process was also performed by shielding one input
randomly based on the six selected DEGs. The range of the
repeated overall AUC of the six selected DEGs was 0.850 ± 0.103,
which was similar to the different combination of the top DEGs
(Figure 5A and Supplementary Table 1) and was slightly higher
than that of the shielding-one-DEG model based on the six
selected DEGs (Figure 5B and Table 4). The results showed that
the six-DEG model had good economic benefits and performed
better in predicting the IFX response. The repeated results
demonstrated that the model was stable. We also performed
an ANN analysis in the independent GEO dataset (GSE73661).
TABLE 2 | Details of the UC patients receiving IFX therapy in the GEO database.

GEO dataset Platform PubMed ID Sample Time of biopsy Time of assessment Response PNR

GSE12251 GPL570 19700435 Colonic tissue Within 2 weeks before treatment Week 8 4 7
GSE16879 GPL570 19956723 Colonic tissue Within 1 week before treatment Weeks 4–6 8 16
GSE23597 GPL570 21448149, 31039157 Colonic tissue Within 2 weeks before treatment Week 8 13 2
December 2021 | Volum
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PNR, primary non-response.
TABLE 3 | DEGs between the responders and non-responders in each dataset.

Upregulated genes
(p-value < 0.05 and

logFC > 0.5)

Downregulated genes
(p-value < 0.05 and

logFC < -0.5)

GSE12251 1346 989
GSE16879 934 852
GSE23597 1390 2107
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The results showed that the range of repeated overall AUC was
0.759 ± 0.065, indicating that the model was feasible.

Exploring Results of IHC in UC Patients
Undergoing IFX Therapy
Biopsies are usually taken for pathological examination when UC
patients undergo colonoscopy in the clinic. IHC analysis of
clinical residual paraffin sections can avoid multiple biopsies
and reduce the examination cost and time of patients. Thus, we
tried to discover whether the key information, analyzed by RNA
Frontiers in Immunology | www.frontiersin.org 6110
levels, is suitable for protein level detection. We used IHC
analysis to explore the protein expression based on the selected
DEGs and find clinical application predictors. Twenty-four UC
patients were recruited from 2017 to 2020 at the Peking Union
Medical College Hospital. Among these patients, 70.8% (n = 17)
clinically responded to IFX treatment by week 6, and 29.2% (n =
7) did not. In addition, 54.17% (n = 13) of the patients achieved
therapeutic benefits by week 14, while 45.83% (n = 11) did not.
The proteins predicting IFX efficacy were evaluated by IHC
scoring (Figure 6) without knowledge of the clinical data.
A

B

C

FIGURE 3 | DEG expression in different stages of IFX treatment. (A) The non-responders of IFX tended to have a lower pretreatment expression of the
downregulated DEGs compared with the responders, and NOX4 displayed the opposite results; (B) the posttreatment expression of the downregulated DEGs
exhibited a trend of increases in the responders, and NOX4 exhibited the opposite results; (C) the expression of the downregulated DEGs after treatment in those
who responded to IFX was higher than that those who did not respond to IFX, and NOX4 exhibited the opposite results. DEGs, differentially expressed genes; IFX,
infliximab; RB, sequencing data of responders before IFX therapy; NRB, sequencing data of non-responders before IFX therapy; RA, sequencing data of responders
after IFX therapy; NRA, sequencing data of non-responders after IFX therapy.
A B C

FIGURE 2 | DEGs between responders and non-responders in each dataset shown in volcano plots. (A) Volcano plot of the GSE12251 dataset; (B) volcano plot of
the GSE16879 dataset; and (C) volcano plot of the GSE23597 dataset. The red dots represented upregulated genes based on a p-value < 0.05 and logFC > 0.5;
the green dots represented downregulated genes based on a p-value < 0.05 and logFC<-0.5; the black spots represented genes with no significant difference in
expression. DEGs, differentially expressed genes; logFC, log-fold change.
December 2021 | Volume 12 | Article 742080
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After the analysis, CHP2, HSD11B2, RANK, and VDR were
found to have reduced mean IHC extent and intensity scores in
the non-response group, and NOX4 had increased scores, which
is consistent with the results of the analysis of the GEO datasets,
while CDX2 had a limited difference between the groups. VDR
and RANK statistically significantly differed between the two
groups in terms of the intensity scores (p-value <0.05), and VDR
Frontiers in Immunology | www.frontiersin.org 7111
showed a trend-level difference in terms of the extent scores (p-
value = 0.065) (Tables 5, 6). These two proteins were selected for
further analysis.

We used the bootstrap method and an ANN analysis of VDR
and RANK and repeated the analysis process 500 times. The
AUC performed well in predicting the effect of IFX therapy. The
range of repeated overall AUC was 0.837 ± 0.152 in predicting
IFX efficacy in week 6 and was 0.776 ± 0.162 in predicting IFX
efficacy in week 14 (Figure 7 and Supplementary Table 2).

To determine the cutoff values for VDR and RANK, we used
an ROC analysis. Ultimately, the cutoff value of the total IHC
score was 5 for VDR and 7 for RANK. In addition, the logistic
regression analysis showed that the regressive equation was as
follows:

logit  Pð Þ =   − 0:799  total IHC score of  VDRð Þ 
−  0:44  total IHC score of  RANKð Þ  +  5:024

Therefore, the relative coefficient of VDR was 2, and that of
RANK was 1. The final score of each sample was two times the
protein score of VDR plus the protein score of RANK. The ROC
curve was plotted to estimate the predictive value of the final
score for IFX efficacy. The results showed that the final score had
an IFX effective prediction value of 0.828 (95% CI: 0.665–0.991,
p-value = 0.013) in week 6 (Figure 8A), with a sensitivity of
82.4% and a specificity of 71.4%. This finding indicates that total
IHC scores less than 5 for VDR and less than 7 for RANK have
good predictive value for primary non-response to IFX in
patients with UC. The AUC was 0.759 (95% CI: 0.565–0.953,
p-value = 0.032) in week 14 (Figure 8B), with a sensitivity of
69.2% and a specificity of 72.7%.
DISCUSSION

Precision medicine is becoming a hot topic in the medical
literature in general, with oncology studies leading the way (25,
26). The most common strategy underlying all precision medicine
A B

FIGURE 5 | Bootstrapping and ANN analysis results of the top DEGs, the six selected DEGs, and shielding of one DEG randomly based on the latter. (A) Analysis
results of all integrated DEGs, top 300, top 100, top 50, and the six selected DEGs; (B) analysis results of shielding of one input randomly based on the six selected
DEGs. ANN analysis, artificial neural network analysis; DEGs, differentially expressed genes.
FIGURE 4 | Heatmap of the selected proteins. CDX2, CHP2, HSD11B2,
RANK, and VDR displayed decreased expression, while NOX4 displayed
increased expression; the red color represented logFC > 0, the green color
represented logFC < 0 and the value in the box represented the logFC value.
logFC, log fold change.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Infliximab Efficacy Prediction Signatures
is that distinct patient characteristics are used to tailor the
therapeutic tactics, with the help of biomarker profiles (27). Our
study extracted DEGs from a publicly available database and
identified several gene signatures of patients diagnosed with UC
with primary non-response to IFX based on the RRA algorithm,
gastrointestinal expression, and previous studies, including CDX2,
CHP2,HSD11B2, RANK,NOX4, and VDR. We used the bootstrap
method and an ANN analysis to confirm that the markers were
repeatable for clinical application. Moreover, an independent
GEO cohort was used to verify the result. We also used samples
from UC patients to explore the protein expression based on the
selected DEGs. The result showed a connection between the RNA
and protein model, and both two models were available, but the
protein model is more reliable and more conducive to clinical
application. Finally, total IHC scores less than 5 for VDR and less
than 7 for RANK jointly achieved an AUC of 0.828 (95%
CI: 0.665–0.991, p-value = 0.013) in predicting PNR to IFX. The
ANN analysis further confirmed these results.

UC is a chronic inflammatory disease with an increasing
incidence worldwide, affecting more than 1 million individuals in
Western countries and many more globally (1, 28). UC carries a
Frontiers in Immunology | www.frontiersin.org 8112
life-long risk of morbidity, especially in the moderate-to-severe
disease stage. Thus far, an increasing number of biologics agents
have been used for UC treatment in the clinic, including IFX,
vedolizumab, adalimumab, and ustekinumab. The application of
biological agents benefits patients in many aspects (3, 29).
Previous studies have shown that biological agents are more
effective than traditional medications in terms of short-term
response (OR = 4.01, 95% CI 3.08–5.23), long-term remission
(OR = 2.80, 95% CI = 1.89–4.14), severe UC rescue, and
colectomy rate reduction (29.2% versus 58.3%; p = 0.017) (21,
30–32). A meta-analysis showed that IFX was the most effective
agent at inducing remission in biologic-naive patients with
moderate to severe UC (33).

Nevertheless, treatment resistance remains a tremendous
clinical challenge for UC patients. As the most cost-effective
biologic (34), IFX shows significant curative efficacy, but close to
one-third of UC patients are primary non-responders to this
drug. Moreover, prior exposure to IFX may decrease the efficacy
of other biologics (6, 7, 35). As IFX is most widely used in
patients with moderate to severe UC, the failure of this drug as a
first-line therapy could delay the onset of effective treatment.
Therefore, personalized therapy for UC and predictive methods
of individual response to IFX therapy are urgently needed (10).
Our research responds to this pressing need and is expected to
yield practical benefits in precision medicine for UC.

Six protein-coding genes predicting IFX efficacy were initially
included in our study. Mostly those in the previous studies are
clinical indicators, which predict IFX efficacy by responding to
disease activity of UC (8, 9). Our study focuses more on
predicting primary unresponsiveness than other clinical
indicators and might reveal the mechanism of IFX therapeutic
effects from the molecular level or pathway. Since protein
expression is not always correlated with mRNA expression and
protein level detection does not require fresh tissue and can avoid
multiple biopsies, we used IHC to further explore the protein
expression results in another dataset.

The protein-coding genes involved are strongly correlated with
changes in the immune-based response and different immune cell
types, including macrophages, dendritic cells (DCs), and T cells.
CDX2, a transcription factor, has been shown to have a decreased
expression in UC (36), play an essential role in intestinal
homeostasis, and act as a context-dependent tumor suppressor
in colorectal cancer. The deletion of CDX2 from the intestinal
epithelium in mice leads to macrophage infiltration, causing
chronic inflammatory responses (37). However, CDX2 did not
revert to normal in CD patients treated with anti-TNF-a biologics
(38). In our study, CDX2 did not differ between the groups by
IHC. The biological function of CHP2 remains largely unknown.
Guo-Dong Li et al. found that CHP2 can increase the nuclear
presence of nuclear factor of activated T cells (NFATc3) and
enhance activated T cell activity (39). In particular, T helper (Th)
2-mediated inflammation plays a role in UC (40). NFATs can
cooperate with various transcription factors to form
transcriptional complexes and integrate signaling pathways to
change transcriptional patterns (41, 42). HSD11B2 and NOX4
are enriched in the hypoxia response. Tissue hypoxia, which
decreases HSD11B2 and increases NOX4 expression, occurs in
FIGURE 6 | IHC staining of selected proteins. (A1, PNR; A2, response)
CDX2 did not differ between the primary IFX non-responders and responders;
(B1, PNR; B2, response) CHP2 (C1, PNR; C2, response), HSD11B2 (D1,
PNR; D2, response), RANK (E1, PNR; E2, response), and VDR staining was
decreased in the primary non-responders, while NOX4 (F1, PNR; F2,
response) was increased in the non-responders. PNR, primary non-response.
TABLE 4 | AUC of different combinations of the six selected DEGs.

DEGs combination AUC (mean ± SD)

Six selected DEGs 0.850 ± 0.103
CDX2_out 0.837 ± 0.106
CHP2_out 0.823 ± 0.115
HSD11B2_out 0.833 ± 0.100
NOX4_out 0.829 ± 0.105
RANK_out 0.836 ± 0.100
VDR_out 0.838 ± 0.103
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chronic inflammatory conditions, such as IBD. Van Welden et al.
suggested that hypoxia of the colonic mucosa activates hypoxia
inducible factors (HIFs) and the regulation of nuclear factor kB
(NF-kB) (43). Yu et al. found that HIF-1a was upregulated in UC
patients and positively related to disease progression (44).
Therefore, colonic tissue hypoxia and hypoxia-induced signaling
may be detection and therapeutic targets in UC (43). The
reduction in HSD11B2 and the increase in NOX4 suggest a
higher hypoxia response, which regulates inflammatory and
immune processes and results in a complex hypoxia-immune-
based microenvironment. Despite the expression of CDX2, CHP2,
HSD11B2, and NOX4 related to IFX therapy and coping with
Frontiers in Immunology | www.frontiersin.org 9113
inflammatory activity, their protein expression did not show a
difference in the validation cohort. This finding might account for
the different disease complexities and activities of UC patients
between the public datasets and our enrolled subjects. We did not
include these proteins in the protein prediction model.

Regarding the ultimately involved proteins, several reports
from our group and others have highlighted the importance of
VDR, a receptor of vitamin D, in UC. The colonic expression of
VDR was inversely associated with disease activity in UC (45).
Moreover, in our previous research, 25[OH]D3 levels were
negatively correlated with the disease severity of UC (r = -0.371,
p < 0.001) (46). A study by Shirwaikar Thomas et al. showed that
TABLE 6 | The intensity of the staining of IFX efficacy-predicting proteins in colonic biopsies from UC patients.

Variable Staining intensity score Mean score p-valuea

0 (n, %) 1 (n, %) 2 (n, %) 3 (n, %)

CDX2 0.757
Responders 13 (76.5%) 4 (23.5%) 0 0 0.24
Non-responders 5 (71.4%) 1 (14.3%) 1 (14.3%) 0 0.43
HSD11B2 0.166
Responders 1 (5.9%) 5 (29.4%) 8 (47.1%) 3 (17.6%) 1.76
Non-responders 0 5 (71.4%) 2 (28.6%) 0 1.29
CHP2 0.455
Responders 0 0 10 (58.8%) 7 (41.2%) 2.41
Non-responders 0 1 (14.3%) 4 (57.1%) 2 (28.6%) 2.14
RANK 0.034
Responders 0 0 7 (41.2%) 10 (58.8%) 2.59
Non-responders 0 2 (28.6%) 4 (57.1%) 1 (14.3%) 1.86
NOX4 0.349
Responders 0 1 (5.9%) 8 (47.1%) 8 (47.1%) 2.41
Non-responders 0 0 2 (28.6%) 5 (71.4%) 2.71
VDR 0.024
Responders 0 0 2 (11.8%) 15 (88.2%) 2.88
Non-responders 0 0 5 (71.4%) 2 (28.6%) 2.29
Decembe
r 2021 | Volume 12 | Articl
aA Mann–Whitney U test was used for the analysis.
TABLE 5 | The extent of the staining of IFX efficacy-predicting proteins in colonic biopsies from UC patients.

Variable Staining extent score Mean score p-valuea

0 (n, %) 1 (n, %) 2 (n, %) 3 (n, %) 4 (n, %)

CDX2 0.757
Responders 13 (76.5%) 4 (23.5%) 0 0 0 0.24
Non-responders 5 (71.4%) 1 (14.3%) 1 (14.3%) 0 0 0.34
HSD11B2 0.534
Responders 1 (5.9%) 6 (35.3%) 5 (29.4%) 4 (23.5%) 1 (5.9%) 1.88
Non-responders 0 4 (57.1%) 2 (28.6%) 1 (14.3%) 0 1.57
CHP2 0.209
Responders 0 3 (17.6%) 4 (23.5%) 5 (29.4%) 5 (29.4%) 2.71
Non-responders 0 0 6 (85.7%) 1 (14.3%) 0 2.14
RANK 0.114
Responders 0 0 6 (35.3%) 5 (29.4%) 6 (35.3%) 3.00
Non-responders 0 1 (14.3%) 3 (42.9%) 3 (42.9%) 0 2.29
NOX4 0.234
Responders 0 0 12 (70.6%) 5 (29.4%) 0 2.29
Non-responders 0 0 3 (42.9%) 3 (42.9%) 1 (14.3%) 2.71
VDR 0.065
Responders 0 5 (29.4%) 8 (47.1%) 3 (17.6%) 1 (5.9%) 2.00
Non-responders 0 5 (71.4%) 2 (28.6%) 0 0 1.29
aA Mann–Whitney U test was used for the analysis.
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in IBD patients, those with active endoscopic inflammation have a
lower vitamin D level than those in remission (47). Furthermore,
low pretreatment serum 25[OH]D predicted vedolizumab failure
in patients with IBD (48).

UC results from T helper (Th) 2-mediated inflammation,
leading to the possibility that inhibitors of Th2 cytokines might
be helpful in the treatment of UC (49, 50). Vitamin D has been
shown to inhibit the proliferation of T cells from patients with
active UC (51), which might reduce Th2 cell-induced
inflammation. Furthermore, the levels of Th2 cells were higher
in anti-TNF-non-responders in UC (52). A study by Song et al.
demonstrated that VDR restricts Th2-biased inflammation in the
heart (53). Therefore, the reduction in VDR in colonic tissue
might correlate with a strengthening of Th2-mediated
Frontiers in Immunology | www.frontiersin.org 10114
inflammation and anti-TNF non-response. Bingning et al.
showed that VDR activation performs a solid anti-
inflammatory function in macrophages and ameliorates insulin
resistance (54). VDR signaling in macrophages suppresses NF-
kB activity and reduces inflammatory factor interactions (55).
VDR also regulates the function of Paneth cells in releasing
antimicrobial peptides to modulate the innate immune process.
Thus, the regulation of VDR on immune cells might improve
intestinal inflammation, leading to disease activity.

Receptor activator of nuclear factor kB (RANK), also known
as TNFRSF11A, is a member of the TNF receptor superfamily.
The interactions between RANK and its ligand (RANKL)
regulate T cell/DC communications, DC survival, and naive T
cell proliferation (56, 57). Previous studies have shown that UC is
characterized by an increase in activated T cells and T-regulatory
cells and a decrease in naive T-cells (58, 59). DCs monitor the
surrounding microenvironment, sample antigens, and induce
tolerance or incite a host defense proinflammatory response in
UC (60). Therefore, a reduction in RANK might lead to an
imbalance in the immune microenvironment by affecting DCs
and T cells, thereby inducing UC activity.

Collectively, our study demonstrates that total IHC scores less
than 5 for VDR and less than 7 for RANK were associated with
non-response to IFX. The diminished expression of VDR and
RANK may account for the immune-related changes in the
intestinal microenvironment and reduce anti-inflammatory
factors, leading to an increase in disease activity. Meanwhile,
the modulation of different immune cell populations and
inflammatory processes may lower anti-inflammatory cell types
and weaken the immune response. Therefore, IFX may not be
sufficiently robust to address this complicated inflammatory
status, resulting in an inadequate therapeutic effect.

Our study has several strengths. First, we obtained
transcriptome data from public datasets for the integration
analysis, which is the premise of precision medicine. Second, the
resamplingmethodwas used to expand the data, and then anANN
analysis was used for internal verification and prediction. We
A B

FIGURE 8 | ROC curve of VDR and RANK in predicting IFX efficacy in week 6 and week 14. (A) The AUC of the estimation 6 weeks after IFX treatment was 0.828.
(B) The AUC of the estimation 14 weeks after IFX treatment was 0.759. ROC, receiver-operating characteristic; AUC, area under the receiver-operating characteristic
curve; IFX, infliximab.
FIGURE 7 | Bootstrapping and ANN analysis results of VDR and RANK in
predicting IFX efficacy in week 6 and week 14. ANN analysis, artificial neural
network analysis; IFX, infliximab.
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repeated the analysis processmany times to show the stability of the
model, forming a foundation for clinical application in the
prediction of PNR. The significant proteins are readily tested in
practice and are convenient for clinical application. In addition, we
verified the validityof the protein profiles by IHCstainingof colonic
tissues from UC patients treated with IFX in our hospital. In
previous studies, clinical factors, serum markers, and host
genetics were demonstrated to play a role in the therapeutic
response but did not accurately predict PNR. The secondary
validation process in our study demonstrated that the clinical
application of the immune-related signatures of primary IFX
non-response in UC patients is repeatable. Furthermore, the time
point of the response assessment was 6 to 8 weeks after the first IFX
treatment in theGEOdatasets andour enrolled subjects.Aprevious
study showed that early measurement could better predict future
remission and, thus, possibly benefit decision making (61).

Our research isnotwithout limitations.Tomaintain consistency
with theGEOdatabases, the clinicalMayoscore 6–8weeks after IFX
treatment was used as the assessment when the recruited UC
patients did not have endoscopy data. Thus, our study showed
evidence of consistency and presented early predictive value even
when an endoscopic evaluation was unavailable. However, our
method may miss some patients whose endoscopic response is
betterorworse than their clinical response,whichcould increase the
false-positive rate or the false-negative rate of the external
verification. To reduce this bias, we also estimated the therapeutic
efficacy in week 14 (Figure 5B), which included an endoscopic
score. The signatures also showed good predictive value, with an
AUC of 0.759. Although we identified the thresholds for VDR and
RANK in predicting IFX efficacy, the results showed minor
differences and overlap to some extent to distinguish responders
andnon-responders.However, our studyprovidespreliminary data
for using proteins to predict IFX efficacy. In the future, other more
sensitive protein identificationmethods, such as electrical detection
methodologies, might be developed for the precision treatment in
the clinical practice (62). Furthermore, the percentage of non-
responding patients in week 14 was higher than that in week 6,
indicating that early assessment is preferable as an aid for decision
making. Nevertheless, large-scale prospective studies are needed to
correct this limitation.

In conclusion, this study found that total IHC scores less than
5 for VDR and less than 7 for RANK were good immune-based
protein signatures of PNR to anti-TNF treatment in UC patients.
Applying this panel in clinical practice could help clinicians
identify likely IFX non-responders before initiating therapy.
Nevertheless, the practical advantage of such a tailored
approach needs to be confirmed in the future.
Frontiers in Immunology | www.frontiersin.org 11115
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Subsets Can Predict the Efficacy of Anti-TNF Treatment in Inflammatory
Bowel Diseases. Arch Immunol Ther Exp (Warsz) (2020) 68(2):12.
doi: 10.1007/s00005-020-00575-5

53. Song J, Chen X, Cheng L, Rao M, Chen K, Zhang N, et al. D Receptor Restricts
T Helper 2-Biased Inflammation in the Heart. Cardiovasc Res (2018) 114
(6):870–9. doi: 10.1093/cvr/cvy034

54. Dong B, Zhou Y, Wang W, Scott J, Kim K, Sun Z, et al. Vitamin D Receptor
Activation in Liver Macrophages Ameliorates Hepatic Inflammation,
Steatosis, and Insulin Resistance in Mice. Hepatology (2020) 71(5):1559–74.
doi: 10.1002/hep.30937

55. Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in Intestinal
Inflammation and Resolution: A Potential Therapeutic Target in IBD. Nat
Rev Gastroenterol Hepatol (2019) 16(9):531–43. doi: 10.1038/s41575-019-
0172-4
Frontiers in Immunology | www.frontiersin.org 13117
56. Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T Cells, Bone Loss,
and Mammalian Evolution. Annu Rev Immunol (2002) 20:795–823.
doi: 10.1146/annurev.immunol.20.100301.064753

57. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME,
Roux ER, et al. A Homologue of the TNF Receptor and its Ligand Enhance T-
Cell Growth and Dendritic-Cell Function. Nature (1997) 390(6656):175–9.
doi: 10.1038/36593

58. Rabe H, Malmquist M, Barkman C, Östman S, Gjertsson I, Saalman R, et al.
Distinct Patterns of Naive, Activated and Memory T and B Cells in Blood of
Patients With Ulcerative Colitis or Crohn's Disease. Clin Exp Immunol (2019)
197(1):111–29. doi: 10.1111/cei.13294

59. Mitsialis V, Wall S, Liu P, Ordovas-Montanes J, Parmet T, Vukovic M, et al.
Single-Cell Analyses of Colon and Blood Reveal Distinct Immune Cell
Signatures of Ulcerative Colitis and Crohn's Disease. Gastroenterology
(2020) 159(2):591–608.e10. doi: 10.1053/j.gastro.2020.04.074

60. de Souza HS, Fiocchi C. Immunopathogenesis of IBD: Current State of the
Art. Nat Rev Gastroenterol Hepatol (2016) 13(1):13–27. doi: 10.1038/
nrgastro.2015.186

61. Beswick L, Rosella O, Rosella G, Headon B, Sparrow MP, Gibson PR, et al.
Exploration of Predictive Biomarkers of Early Infliximab Response in Acute
Severe Colitis: A Prospective Pilot Study. J Crohns Colitis (2018) 12(3):289–97.
doi: 10.1093/ecco-jcc/jjx146

62. Luo X, Davis JJ. Electrical Biosensors and the Label Free Detection of Protein
Disease Biomarkers. Chem Soc Rev (2013) 42(13):5944–62. doi: 10.1039/
c3cs60077g

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Chen, Jiang, Han, Bai, Ruan, Guo, Zhou, Liang, Yang and Qian.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
December 2021 | Volume 12 | Article 742080

https://doi.org/10.3748/wjg.v26.i46.7352
https://doi.org/10.1111/1751-2980.12118
https://doi.org/10.1093/ibd/izaa292
https://doi.org/10.1093/ecco-jcc/jjab114
https://doi.org/10.1038/s41572-020-0205-x
https://doi.org/10.1038/s41572-020-0205-x
https://doi.org/10.1038/nri1132
https://doi.org/10.1016/s0006-2952(00)00564-5
https://doi.org/10.1007/s00005-020-00575-5
https://doi.org/10.1093/cvr/cvy034
https://doi.org/10.1002/hep.30937
https://doi.org/10.1038/s41575-019-0172-4
https://doi.org/10.1038/s41575-019-0172-4
https://doi.org/10.1146/annurev.immunol.20.100301.064753
https://doi.org/10.1038/36593
https://doi.org/10.1111/cei.13294
https://doi.org/10.1053/j.gastro.2020.04.074
https://doi.org/10.1038/nrgastro.2015.186
https://doi.org/10.1038/nrgastro.2015.186
https://doi.org/10.1093/ecco-jcc/jjx146
https://doi.org/10.1039/c3cs60077g
https://doi.org/10.1039/c3cs60077g
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Xu-jie Zhou,

Peking University First Hospital, China

Reviewed by:
Then Fang Tsai,

National Taiwan University Hospital,
Taiwan

Vinod Chandran,
University of Toronto, Canada

*Correspondence:
Wilson Liao

wilson.liao@ucsf.edu

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 15 November 2021
Accepted: 27 December 2021
Published: 27 January 2022

Citation:
Connell WT, Hong J and LiaoW (2022)
Genome-Wide Association Study of
Ustekinumab Response in Psoriasis.

Front. Immunol. 12:815121.
doi: 10.3389/fimmu.2021.815121

ORIGINAL RESEARCH
published: 27 January 2022

doi: 10.3389/fimmu.2021.815121
Genome-Wide Association Study of
Ustekinumab Response in Psoriasis
William T. Connell 1,2, Julie Hong3 and Wilson Liao3*

1 Deparment of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States,
2 Insitute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, United States,
3 Department of Dermatology, University of California San Francisco, San Francisco, CA, United States

Heterogeneous genetic and environmental factors contribute to the psoriasis phenotype,
resulting in a wide range of patient response to targeted therapies. Here, we investigate
genetic factors associated with response to the IL-12/23 inhibitor ustekinumab in
psoriasis. To date, only HLA-C*06:02 has been consistently reported to associate with
ustekinumab response in psoriasis. Genome-wide association testing was performed on
the continuous outcome of percent change in Psoriasis Area Severity Index (PASI) at 12
weeks of ustekinumab therapy relative to baseline. A total of 439 European ancestry
individuals with psoriasis were included [mean age, 46.6 years; 277 men (63.1%)]. 310
(70.6%) of the participants comprised the discovery cohort and the remaining 129 (29.4%)
individuals comprised the validation cohort. Chromosome 4 variant rs35569429 was
significantly associated with ustekinumab response at 12 weeks at a genome-wide
significant level in the discovery cohort and replicated in the validation cohort. Of
psoriasis subjects with at least one copy of the deletion allele of rs35569429, 44%
achieved PASI75 (75% improvement in PASI from baseline) at week 12 of ustekinumab
treatment, while for subjects without the deletion allele, 75% achieved PASI75 at week 12.
We found that differences in treatment response increased when rs35569429 was
considered alongside HLA-C*06:02. Psoriasis patients with the deletion allele of
rs35569429 who were HLA-C*06:02 negative had a PASI75 response rate of 35% at
week 12, while those without the deletion allele who were HLA-C*06:02 positive had a
PASI75 response rate of 82% at week 12. Through GWAS, we identified a novel SNP that
is potentially associated with response to ustekinumab in psoriasis.

Keywords: GWAS, psoriasis, ustekinumab, pharmacogenetics, precision medicine, pharmacogenomics
INTRODUCTION

Psoriasis is a common, chronic immune-mediated skin disease that affects at least 2% of the
population worldwide (1). Psoriasis is associated with psoriatic arthritis, cardiovascular disease,
metabolic syndrome, and other comorbidities, which makes effective management of psoriasis
critical. Moderate-to-severe psoriasis is treated with phototherapy and systemic agents, including
targeted biologic inhibitors of TNF-a, IL-12/23, IL-17, and IL-23. Patient responses to biologic
therapy can vary widely, from poor overall response to gradual loss of therapeutic sensitivity (2).
Response differences are largely influenced by patient weight and adherence, drug dose and
org January 2022 | Volume 12 | Article 8151211118
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bioavailability, and pharmacokinetic covariates, such as drug
immunogenicity (3). The molecular heterogeneity of psoriasis
may also contribute to differential therapeutic responses.
However, there are no molecular biomarkers routinely used in
clinical practice to facilitate selection of the therapies tailored to
individual patients.

Ustekinumab is a fully humanized immunoglobulin
monoclonal antibody targeting the p40 subunit shared by IL-
12 and IL-23. Phase 3 clinical trials showed that treatment with
ustekinumab results in 75% improvement in the Psoriasis Area
and Severity Index (PASI75) in ~66% of patients after 12 weeks
of therapy (4–6). Candidate gene studies have identified the
HLA-C*06:02 allele as being associated with better ustekinumab
responses in both European (7–9) and Chinese (10) patients with
psoriasis. A meta-analysis of eight studies including 1048
psoriasis patients showed that HLA-C*06:02 positive patients
had a median PASI75 response rate of 92% after 6 months of
ustekinumab therapy compared to a median PASI75 response
rate of 67% in the HLA-C*06:02 negative patients (11).

Here, we performed an unbiased genome-wide association
study (GWAS) to evaluate if additional genetic factors were
associated with ustekinumab response. We evaluated our
findings across multiple response timepoints and in
conjunction with HLA-C*06:02. Our findings highlight a
potentially novel variant associated with ustekinumab response
in psoriasis, which may further facilitate the development of
precision medicine approaches.
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MATERIALS AND METHODS

Study Population
This study involved analysis of individuals with moderate to
severe psoriasis who participated in at least one of three placebo-
controlled randomized clinical trials: PHOENIX I, PHOENIX II,
and ACCEPT (4, 5, 12). Participants were originally approached
for retrospective collection of DNA samples by investigators
analyzing the association between the HLA-C*06:02 allele and
response to IL-12/23 inhibition (7). In total, 439 patients of
European descent were used to assess genetic associations
between ustekinumab treatment and response.

The GWAS discovery cohort consisted of 310 individuals who
were treated with 45mg (n=146) or 90mg (n=164) of ustekinumab
for 40 weeks, with the lower or higher dose given according to
body weight less than or greater than 100 kg, respectively. The
validation cohort consisted of 129 trial participants who crossed-
over from placebo to ustekinumab treatment at week 12 and
continued ustekinumab for 16 weeks, again dose-stratified by
body weight (45 mg: n=64; 90 mg: n=65). In both cohorts,
ustekinumab was given with two loading doses 4 weeks apart
and every 12 weeks thereafter (Figure 1A).

Response Variables
In the ustekinumab phase 3 clinical trials, the primary endpoint
was achievement of PASI75 at week 12. PASI75 is a binary
outcome converted from percent PASI improvement from
January 2022 | Volume 12 | Article 815121
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FIGURE 1 | Association analysis design and primary outcome. Phase 3 clinical trial comprise discovery and validation cohorts (A). Histogram of cohort 1 percent
PASI improvement at week 12; dashed line marks 75% improvement threshold (B).
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baseline. To maximize power for the GWAS, we focused on the
continuous outcome measure of percent PASI improvement
from baseline to 12 weeks after ustekinumab therapy.
Phenotypic response to ustekinumab was recorded at weeks 2,
4, 12, 28, and 40 for the majority of patients in the discovery
cohort (cohort 1). In order to validate findings, the placebo to
ustekinumab cross-over patients acted as a validation cohort
(cohort 2). PASI responses for cohort 2 were measured after 12
weeks of ustekinumab therapy compared to trial start.

Genome Wide Association Study
Genotyping was performed using Illumina HumanOmni2.5-8
v1.2 BeadChips. Imputation was performed using the Michigan
Imputation Server (https://imputationserver.sph.umich.edu/
index.html) (13). The 1000 Genomes Phase 3 data was used as
a reference panel for imputation (14). Files were converted to
PLINK (v1.9) format, which along with R (v3.5.1) and python
(v3.7.4), was used for data manipulation, visualization, and
association analysis. Quality control and population
stratification was performed following methods outlined by
Marees et al. (15). Single nucleotide polymorphisms (SNPs)
and individuals with missingness greater than 2% were
removed. Duplicate, non-biallelic, and poor imputation quality
(R2<0.7) SNPs were filtered. Non-autosomal SNPs with a low
minor allele frequency (MAF<0.05) and significant deviation
from Hardy-Weinberg equilibrium (P<1×10-6) were removed. In
total 6,799,417 SNPs passed quality control, of which 1,696,820
were directly genotyped. Individuals with a heterozygosity
rate +/-3 standard deviation from the mean were filtered, as
well as the individual with the lowest call rate within a pair of
cryptically related individuals (p̂ > 0:2). In total, 310 individuals
(181 males, 129 females) passed quality control. The previously
described quality control steps were applied to the 1000
Genomes Phase 3 data prior to merging with cohort data for
population stratification. Multidimensional scaling (MDS) was
applied to the merged genotype information. The presence of
ethnic outliers was evaluated by qualitative alignment with the
European superpopulation cluster along the top 2 MDS
components. We included the top 10 MDS components as
covariates in linear regression models for association testing.

Statistical Analysis
A threshold of P<5×10-8 was established in the discovery cohort
to determine the associated markers for further replication. We
took linkage-disequilibrium into account when interpreting
multiple significant association results from the same region.
Clumping was employed to greedily assign groups around index
variants with P<5×10-6. Variants with an R2>0.5 and less than
1MB away were assigned representation by the index variant. We
modeled the additive effect of allele dosage with the quantitative
phenotype of interest using linear regression. When considering
cohort 1 index variants in replication analyses, a 2-sided t-test
with P<0.05 was considered statistically significant. A two-sided
normal test for proportions (P<0.05) was applied to assess PASI
threshold achievement differences based on genotype. The
combined cohort association study followed the same
procedures outlined for analysis of discovery cohort results.
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Power Analysis
We performed power calculations for the discovery and
replication cohorts assuming an additive linear model for our
quantitative trait of interest. Each power calculation was
performed under consideration of the established type 1 error
rates for the respective cohort (cohort 1 a, 5×10-8; cohort 2 a,
5×10-2). We examined power across a range of MAF (0.05-0.25)
and effect sizes (ES) (1–9). The genpwr (v1.0.4) R package was
used for all calculations.
RESULTS

In this study, we analyzed genetic data from two cohorts of
psoriasis patients receiving ustekinumab. Following
preprocessing and filtering for individuals of European genetic
ancestry, the discovery cohort (cohort 1) totaled 310 individuals
(181 males, 171 females) and the validation cohort (cohort 2)
totaled 129 individuals (82 males, 47 females). The average PASI
score at baseline was 18.6 for cohort 1 and 18.8 for cohort 2
(Supplementary Table 1). Power analysis revealed the discovery
cohort had 1-b>0.75 for MAF>0.05 and ES>7. The replication
cohort had 1-b>0.75 for MAF>0.05 and ES>5 (Supplementary
Figures 2A, B). We used linear regression to perform genome-
wide association testing on the percent improvement in PASI
response at week 12 of ustekinumab therapy compared to
baseline (Figure 1B). There was no correlation between age,
BMI, and duration of the disease with the primary outcome of
percent PASI improvement, and so these clinical variables were
not included as covariates in the linear regression model
(Supplementary Figure 1).

Genome-wide association testing of subjects in cohort 1
identified a single peak on chromosome 4 exceeding a genome-
wide significance threshold of P<5×10-8 lead by rs35569429 (b, -
19.84; 95% CI, -26.58 to -13.1; P=1.98×10-8) (Figure 2A and
Table 1). Directly genotyped SNP rs11722643 was in high
linkage disequilibrium with imputed SNP rs35569429 and
achieved a similar level of significance (R2, 0.9; b, -19.31; 95%
CI, -26.33 to -12.29; P=1.44×10-7). To determine whether
multiple SNPs contributed to the peak on chromosome 4, we
performed conditional analysis on rs35569429. The conditional
analysis completely attenuated the GWAS peak, indicating a
single independent signal at this locus (Figures 2B, C). The
major allele of rs35569429 is “G” while the minor allele is a single
nucleotide deletion of G, denoted as “Del”. Subjects with at least
one minor allele were labeled as the deletion positive group
(Del+, N=55), and subjects with zero minor alleles were labeled
the deletion negative group (Del-, N=255). Only one subject was
homozygous for the minor allele. To understand the impact of
this SNP at various discrete levels of PASI response, we examined
the proportions of Del- and Del+ individuals who achieved
PASI50, PASI75, PASI90, and PASI100 at Week 12. We found
that in the Del- group, 235/255 (92.2%) achieved PASI50, 191/
255 (74.9%) achieved PASI75, 121/255 (47.5%) achieved PASI90,
and 48/255 (18.8%) achieved PASI100 at Week 12. In the Del+
group, 39/55 (80.9%) achieved PASI50, 24/55 (43.6%) achieved
January 2022 | Volume 12 | Article 815121
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PASI75, 12/55 (21.8%) achieved PASI90, 5/55 (9.1%) achieved
PASI100 at Week 12.

To further investigate the validity of rs35569429, we analyzed
its association with PASI outcomes in cohort 1 at timepoints that
were not part of the original GWAS analysis (i.e. timepoints
other than week 12). We found that a greater proportion of
individuals in the Del- group achieved PASI75 compared to the
Del+ group at Week 2 (1.57% vs 0%), Week 4 (17.6% vs 10.9%),
Week 24 (76.5% vs 61.8%), and Week 28 (73.3% vs 52.7%)
(Figure 3A). Similarly, the Del- group had a higher proportion of
individuals achieving PASI50, PASI90, and PASI100 than the
Del+ group at weeks 2, 4, 24, and 28. The difference in PASI
responses between Del- and Del+ groups were generally
Frontiers in Immunology | www.frontiersin.org 4121
comparable if not greater than the difference in PASI responses
between HLA-C*06:02 positive and HLA-C*06:02 negative
individuals (Figure 3B), where HLA-C*06:02 represents a
previously well-validated locus associated with ustekinumab
response (11). For comparison, in cohort 1, a linear regression
of PASI response at week 12 for HLA-C*06:02, using 10 MDS
components as co-variates, yielded b=0.7418 and P=0.0093.

We next investigated the association of rs35569429 with
response to ustekinumab in an independent cohort 2. We
found the same direction of effect at week 12 for rs35569429
(b, -6.71; 95% CI, -13.13 to -0.30; P=0.042) (Table 1). In the Del-
group, 102/106 (94.5%) subjects achieved PASI50, 81/106
(76.4%) subjects achieved PASI75, 45/106 (42.5%) achieved
A

B

C

FIGURE 2 | Cohort 1 association analysis results. Genome-wide (A), regional (B), and conditional association (C) Manhattan plots. Blue indicates variants in high
linkage disequilibrium (R2>0.95) with rs35569429.
TABLE 1 | Cohort 1, 2 and combined association analysis results.

SNP MAF b P value

Cohort 1 rs35569429 0.090 -19.84 1.98E-08
Cohort 2 rs35569429 0.097 -6.71 0.042
Cohort 1 + 2 Combined Analysis rs35569429 0.092 -15.83 2.42E-09
Jan
uary 2022 | Volume 12 | Artic
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PASI90, and 26/106 (24.5%) achieved PASI100 at Week 12. In
the Del+ group, 20/23 (87.0%) subjects achieved PASI50, 13/23
(56.5%) achieved PASI75, 9/23 (39.1%) achieved PASI90, and 2/
23 (8.7%) achieved PASI100 at Week 12. Association testing for
rs35569429 in cohort 1 and cohort 2 combined at week 12
yielded a genome-wide significant result (b, -15.83; 95% CI, -
20.72 to -10.74; P=2.42×10-9). We ran a sensitivity analysis on
the full sample of cohorts 1 and 2 combined at week 12. We
observed the expected genome-wide significant peak at
rs35569429, with the most significant SNP being rs11722643,
which is in high linkage disequilibrium with rs35569429 (R2,
0.88; b, -16.64; 95% CI, -22.04 to -11.25; P=3.25×10-9). We also
observed a single additional genome-wide significant loci on
chromosome 14, which could not be further confirmed
(rs994384156; b, -14.94; 95% CI, -20.02 to -9.86; P=1.58×10-8).
We also conducted a separate GWAS on ustekinumab
response at week 24 and did not identify any genome-wide
significant SNPs.

Finally, we explored how the combination of rs35569429 and
HLA-C*06:02 affects PASI75 response in cohort 1 and 2 at week
12, since HLA-C*06:02 is an allele previously established to be
associated with a more favorable responses to ustekinumab in
psoriasis (11). In cohort 1 at week 12, 82.4% Del-/HLA-C*06:02+
Frontiers in Immunology | www.frontiersin.org 5122
individuals achieved PASI75 compared to 68.8% in Del-/HLA-
C*06:02-, 61.1% in Del+/HLA-C*06:02+, and 35.1% in Del+/
HLA-C*06:02- (Figure 4). In cohort 2 at week 12, 88.6% Del-/
HLA-C*06:02+ individuals achieved PASI75 compared to 79.2%
in Del-/HLA-C*06:02-, 72.7% in Del+/HLA-C*06:02+, and
50.0% in Del+/HLA-C*06:02-. In cohort 1 and cohort 2
combined at week 12, 84.4% Del-/HLA-C*06:02+ individuals
achieved PASI75 compared to 71.6% in Del-/HLA-C*06:02-,
65.5% in Del+/HLA-C*06:02+, and 38.8% in Del+/HLA-
C*06:02. The effects of rs35569429 and HLA-C*06:02 were
independent from each other, as an interaction analysis that
included an interaction term between rs35569429 and HLA-
C*06:02 was not significant (P=0.729).
DISCUSSION

This genetic association study found a genome-wide significant
association between intergenic variant rs35569429 and response
to ustekinumab for the treatment of moderate to severe psoriasis.
In our primary association analysis, absence of the minor allele
(Del-) was significantly associated with a larger PASI
improvement at 12 weeks from baseline. More favorable PASI
A

B

FIGURE 3 | Proportion of psoriasis patients achieving PASI thresholds according to genotype in cohort 1. PASI 50, 75, 90 and 100 achievement across weeks 2, 4,
12, 24 and 28 for rs35569429 (A) and HLA-C*06:02 (B) genotypes.
FIGURE 4 | Proportion of psoriasis patients achieving PASI75 at week 12. *P<=5×10-2; **P<=1×10-2; ***P<=1×10-3; ****P<=1×10-4.
January 2022 | Volume 12 | Article 815121
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responses in Del- individuals compared to Del+ individuals were
also observed at weeks 2, 4, 24, and 28. The association of
rs35569429 with ustekinumab response was validated in an
independent cohort of psoriasis patients. Conditional analysis
revealed a single independent signal at the locus of interest.

rs35569429 is characterized by a G deletion minor allele. This
variant is located in an intergenic region 9 kB upstream ofWDR1.
Functional analysis by GeneHancer Regulatory Elements strongly
associates a 10.6 kB region (GH04J010114) 1.2 kB downstream
of this variant with promoter/enhancer activity influencing
proximal protein coding genes WDR1 and SLC2A9 (16). The
WDR1 protein is involved in actin filament disassembly, a critical
process of cytoskeleton dynamics, especially in highly motile and
interacting immune cells (17). Impaired actin dynamics as a result
of WDR1 deficiency have been causally linked to primary
immunodeficiencies and autoinflammatory phenotypes (18, 19).
SLC2A9 is a transporter mainly expressed in the kidneys and
primarily involved in urate reabsorption. Mutations of SLC2A9
lead to poor reabsorption and Renal Hypouricemia type-2, as
caused by increased urate excretion (20). Future studies are
needed to fine-map the causal and functional SNPs in linkage
disequilibrium with rs35569429.

Stratification of ustekinumab responses was greatest when
rs35569429 was considered in combination with HLA-C*06:02.
Individuals who were Del-/HLA-C*06:02+ achieved PASI75 84.4%
of the time, while those were Del+/HLA-C*06:02- achieved PASI75
38.8% of the time, a more than two-fold difference.

Pharmacogenomics continues to play an increasingly important
role in precision medicine for dermatology. In 2018, five
dermatologic drugs had clinically actionable pharmacogenomic
tags that either require or advise testing of genomic biomarkers
before treatment (21). Single FDA-approved biomarkers currently
dominate this list; however, multi-genemarker panels will continue
to gain importance for informing clinical decisions. Understanding
the role of multiple SNPs in disease pathogenesis is important in
advancing precision medicine.

Conclusions from this study are limited due to the moderate
sample size of the discovery and replication cohorts; our study was
not powered for detection of small to moderate effects. Given the
polygenicity of complex autoimmune diseases such as psoriasis, in
the future, prospective design of large study cohorts is essential for
thorough investigation of the biology contributing to therapeutic
response. In general, validation in additional, independent cohorts
will provide evidence with respect to the genomic signals discovered
herein. Furthermore, the index SNP rs35569429 requires further
investigation to identify the causal variant(s) associated with this
locus and further characterization of functional effects on psoriatic
response to ustekinumab.
Frontiers in Immunology | www.frontiersin.org 6123
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Combined Single Cell Transcriptome
and Surface Epitope Profiling
Identifies Potential Biomarkers of
Psoriatic Arthritis and Facilitates
Diagnosis via Machine Learning
Jared Liu1, Sugandh Kumar1, Julie Hong1, Zhi-Ming Huang1, Diana Paez2,
Maria Castillo2, Maria Calvo2, Hsin-Wen Chang1, Daniel D. Cummins1, Mimi Chung1,
Samuel Yeroushalmi1, Erin Bartholomew1, Marwa Hakimi1, Chun Jimmie Ye2,3,4,5,6,7,
Tina Bhutani1, Mehrdad Matloubian2,8, Lianne S. Gensler2 and Wilson Liao1,3*

1 Department of Dermatology, University of California at San Francisco, San Francisco, CA, United States, 2 Division of
Rheumatology, Department of Medicine, University of California at San Francisco, San Francisco, CA, United States,
3 Institute for Human Genetics, University of California at San Francisco, San Francisco, CA, United States, 4 Department of
Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, United States, 5 Institute of
Computational Health Sciences, University of California at San Francisco, San Francisco, CA, United States, 6 Parker Institute
for Cancer Immunotherapy, San Francisco, CA, United States, 7 Chan Zuckerberg Biohub, San Francisco, CA, United States,
8 Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, University of California at San Francisco,
San Francisco, CA, United States

Early diagnosis of psoriatic arthritis (PSA) is important for successful therapeutic
intervention but currently remains challenging due, in part, to the scarcity of non-
invasive biomarkers. In this study, we performed single cell profiling of transcriptome
and cell surface protein expression to compare the peripheral blood immunocyte
populations of individuals with PSA, individuals with cutaneous psoriasis (PSO) alone,
and healthy individuals. We identified genes and proteins differentially expressed between
PSA, PSO, and healthy subjects across 30 immune cell types and observed that some cell
types, as well as specific phenotypic subsets of cells, differed in abundance between
these cohorts. Cell type-specific gene and protein expression differences between PSA,
PSO, and healthy groups, along with 200 previously published genetic risk factors for
PSA, were further used to perform machine learning classification, with the best models
achieving AUROC ≥ 0.87 when either classifying subjects among the three groups or
specifically distinguishing PSA from PSO. Our findings thus expand the repertoire of gene,
protein, and cellular biomarkers relevant to PSA and demonstrate the utility of machine
learning-based diagnostics for this disease.

Keywords: psoriatic arthritis, psoriasis, CITE-seq, machine learning, diagnostic test, single cell
org March 2022 | Volume 13 | Article 8357601125

https://www.frontiersin.org/articles/10.3389/fimmu.2022.835760/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.835760/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.835760/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.835760/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.835760/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:wilson.liao@ucsf.edu
https://doi.org/10.3389/fimmu.2022.835760
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.835760
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.835760&domain=pdf&date_stamp=2022-03-02


Liu et al. CITE-Seq of Psoriatic Arthritis
INTRODUCTION

Psoriatic arthritis (PSA) is an inflammatory rheumatic disease
that can affect the peripheral joints, axial joints, and entheses.
PSA largely occurs in association with the skin disease psoriasis
(PSO), with roughly a third of individuals with PSO developing
PSA (1). Early detection of PSA in PSO patients is an important
determinant of clinical outcome and patient long-term quality of
life (2) but can be challenging due to the heterogeneous
presentation of PSA, with only subclinical manifestations at
early stages of disease (3).

The ongoing effort to develop better molecular diagnostics for
PSA has identified genetic polymorphisms, primarily in major
histocompatibility complex and IL-17/IL-23 signaling loci that
contribute to PSA risk in PSO patients (4, 5), as well as disease-
relevant immune cells within the inflamed synovium of affected
joints. These include both adaptive and innate cell types that
have a common inflammatory and IL-17-secreting role in
pathogenesis and are significantly expanded in the synovium
(6). Within peripheral blood, some cell types have also been
reported to be perturbed in PSA patients, and while some studies
have reported serum biomarkers for distinguishing PSA from
PSO (7, 8), a more recent study found similar serum proteomes
among PSO patients with and without PSA (9).

In this study, we searched for biomarkers of PSA within the
circulating immune cell population by jointly measuring
transcriptomic and cell surface protein expression of peripheral
blood immune cells at the single cell level. Our data reveal PSA-
associated differences in the abundance of phenotypic cell
clusters within specific adaptive and innate immune subsets.
We further examine disease-associated RNA and protein
markers found in this analysis, along with genotype data from
PSA-associated polymorphisms, developing a machine-learning-
based diagnostic for distinguishing between PSA and PSO.
MATERIALS AND METHODS

Patient Recruitment and Sampling
Patients with PSO were enrolled from the dermatology clinics at
the University of California San Francisco (UCSF), with a board-
certified dermatologist confirming the clinical diagnosis of
plaque psoriasis. Patients with PSA were assessed by a board-
certified rheumatologist and diagnosed with PSA according to
CASPAR criteria. Patients with psoriasis who reported
symptoms of joint pain, but who did not meet CASPAR
criteria, were assigned the label of PSX. Healthy controls, who
did not have any inflammatory skin disease or autoimmune
disease, were enrolled from the San Francisco Bay Area. All
subjects gave written, informed consent under IRB approval 10-
02830 from the University of California San Francisco. Detailed
patient information is provided in Supplementary Table 1.
Peripheral blood was collected from each subject in Vacutainer
ACD tubes. PBMCs were isolated using a standard Ficoll method
and stored in liquid nitrogen.
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Sample and Library Preparation
Single Cell Libraries
500 µL thawed PBMCs from each subject were added to 10 mL
EasySep (StemCell Technologies, Cat. 20144) and centrifuged
(300G, 5 min, room temperature). Extracellular nucleic acids
were digested by resuspending cell pellets in 1 mL of buffer made
from 18 mL EasySep and 21 µL Benzonase Nuclease
(MilliporeSigma, Cat. 70664) and incubating (15 min, room
temperature). Nuclease-treated cell-suspensions were then
filtered through a 40 µm Flowmi Cell Strainer (Bel-Art, Cat.
H13680-0040), centrifuged (300G, 5 min, room temperature),
and finally resuspended in 100 µL EasySep buffer. Cell counting
was performed using a Countess I FL Automated Cell Counter
(Thermo Fisher Scientific) on 1:100 dilutions of final cell
suspensions stained with 0.4% trypan blue.

Cell Surface Staining
Antibody staining of cell surface proteins was performed
according to the Totalseq-A protocol (https://www.biolegend.
com/en-us/protocols/totalseq-a-antibodies-and-cell-hashing-
with-10x-single-cell-3-reagent-kit-v3-3-1-protocol) with
modifications as follows.

A pooled suspension containing 2×106 cells from 20 subjects
at a time (~100,000 per subject) was centrifuged (300G, 5 min, 4°
C) and resuspended in 100 µL Cell Staining Buffer (BioLegend,
Cat. 420201) and incubated (10 min, 4°C) with 10 µL Human
TruStain FcX™ Fc Blocking Solution (BioLegend, Cat. 422301).
Cells suspensions were then stained (30 min, 4°C) with 100 µL
TotalSeq antibody cocktail for feature barcoding of cell surface
proteins (Supplementary Table 2) and divided into two 105 µL
aliquots. Each aliquot was washed 3 times by resuspending in 15
mL Cell Staining Buffer and centrifuging (300G, 5 min, 4°C).
Aliquots of washed cells were then resuspended in 150 µL 10%
FBS in PBS to obtain a concentration of 1×106 cells/mL,
recombined, and filtered again with a 40 µm Flowmi Cell
Strainer. Cell viability was measured with 10 µL of filtered cells
by adding 10 µL 0.4% Trypan Blue and manually counting with
a hemocytometer.

Cell density was adjusted to 2,500 cells/µL and run on the
Chromium Controller (10X Genomics) using the Single Cell 3’
v3.1 Assay (10X Genomics) with a target of 50,000 cells
per reaction.

Library Preparation
Gene expression cDNA libraries were prepared according to the
manufacturer’s instructions (https://assets.ctfassets.net/an68im
79xiti/1eX2FPdpeCgnCJtw4fj9Hx/7cb84edaa9eca04b607f
9193162994de/CG000204_ChromiumNextGEMSingleCell3_v3.
1_Rev_D.pdf), with 12 cycles of PCR amplification.

Libraries for antibody-derived tags (ADT) from feature
barcoding antibodies were prepared by repeating size
purification on the supernatant obtained from the prior size
purification of gene expression cDNA libraries (Step 2.3.d in the
manufacturer’s instructions above), using a 7:8 volumetric ratio
of 2.0X SPRIselect reagent (Beckman Coulter, Cat# B23317) to
sample. Indexing amplification was performed using Kapa Hifi
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HotStart ReadyMix (Kapa Biosystems, Cat# KK2601) and
TruSeq Small RNA RPI primers (Illumina) with the following
thermocycling conditions (1): 98°C, 2 min (2); 15 × (98°C, 20 sec;
60°C, 30 sec; 72°C, 20 sec) (3); 72°C, 5 min. Size purification was
then repeated on amplified libraries using a 5:6 volumetric ratio
of 1.2X SPRIselect reagent to sample.

Libraries were quantified using a Bioanalyzer 2100 (Agilent)
and sequenced on a Novaseq 6000 (Illumina).

Genotyping
DNA for genotyping was extracted from whole blood using the
DNeasy blood and tissue kit (Qiagen, Cat. 69504). Extracted
DNA was genotyped on the Affymetrix UK Biobank Axiom
Array (ThermoFisher) using a GeneTitan Multi-Channel
Instrument (Applied Biosystems).

Genotype Data Processing
SNPs were called using Analysis Power Tools 2.10.2.2
(Affymetrix, https://www.affymetrix.com/support/developer/
powertools/changelog/index.html). The resulting genotype.vcfs
were scanned with ‘snpflip’ (https://github.com/biocore-ntnu/
snpflip) using the GRCh37 build of the human genome reference
sequence maintained by the University of California, Santa Cruz
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
hg19.fa.gz) to identify reversed and ambiguous-stranded SNPs,
which were flipped and removed (respectively) using Plink 1.90
(http://pngu.mgh.harvard.edu/purcell/plink/) (10), and the
remaining sites were sorted using Plink 2.00a3LM (www.cog-
genomics.org/plink/2.0/) (11). This SNP data was then
augmented with additional sites imputed by the Michigan
Imputation Server (https://imputationserver.sph.umich.edu)
(1000G Phase 3 v5 GRCh37 reference panel, rsqFilter off, Eagle
v2.4 phasing, EUR population). SNP positions were translated to
GRCh38 coordinates using the ‘LiftoverVcf’ command of Picard
2.23.3 (http://broadinstitute.github.io/picard/). Finally, Vcftools
0.1.13 (12) was used to exclude non-exonic SNPs and SNPs with
minor allele frequency < 0.05.

Single Cell Data Processing
Raw RNA and ADT fastqs for each Chromium library were
respectively aligned to the GRCh38 human genome reference
and the antibody-tag reference (Supplementary Table 2) using
Cell Ranger 3.1.0 (10X Genomics) with default settings to obtain
RNA and matched ADT (if available) count matrices for all
barcodes representing non-empty droplets.

Cell Demultiplexing, Doublet Removal,
and Annotation
Within each RNA count matrix, the subject of origin for all
droplet barcodes was determined by using ‘demuxlet’ (13), as
implemented in the ‘popscle’ suite (https://github.com/statgen/
popscle), with imputation-augmented exonic SNP genotypes
described above, and doublets detected between different
individuals were excluded. The count matrices for each
Chromium library were then loaded into R for analysis using
the ‘Seurat’ 4.0.3 (14) R package, and the ‘DoubletDecon’ 1.1.6 R
Frontiers in Immunology | www.frontiersin.org 3127
package (15) was used to further remove doublets formed by
different cells within the same individual.

QC and Cell Annotation
Cell type annotation was performed by integrative mapping of
annotations from a previously published dataset of 161,764
healthy PBMCs (14) onto our dataset. Specifically, we used the
‘TransferData’ Seurat function according to the Seurat
protocol (https://satijalab.org/seurat/reference/transferdata) to
transfer annotations for 30 distinct cell types from the
‘predicted.celltype.l2’ metadata variable.

We performed filtering of cells based on both RNA and ADT
data by retaining cells with total RNA unique molecular identifiers
(UMIs) between 500 and 10,000, total RNA features ≥ 200, percent
mitochondrial and ribosomal protein reads in RNA ≤ 15% and
60% (respectively), total ADT features ≤ 260, and percent ADT
reads mapping to 9 isotype control antibodies < 2%. In the RNA
matrices of the resulting data, we further removed features (genes)
with no detectable UMIs across the cells of all matrices. These
matrices were finally merged into a combined matrix of RNA data
for all cells. In the ADT matrices, we further removed features
corresponding to the 9 isotype controls and 15 features observed
to have expression inconsistent with annotated cell types
(Supplementary Table 2). Lastly, we observed that a single
healthy subject was represented by only 4 cells after filtering.
These cells were excluded from later analysis.

ADT Imputation and UMAP Generation
ADT expression was estimated for cells with measured RNA but
not ADT according to the Seurat reference mapping protocol
(https://satijalab.org/seurat/articles/multimodal_reference_
mapping.html), and unless otherwise noted, all function names
described here belong to the Seurat package. Briefly, the
integrated dataset above was split into the subset of cells with
ADT measurements (reference subset) and the subset of cells
without ADT measurements (query subset). RNA expression
normalization and scaling were performed using ‘SCTransform’
on both subsets, adjusting for the number of features and total
counts in each cell via the ‘vars.to.regress’ parameter. ADT
expression normalization for the reference subset was
performed using the centered log ratio (CLR), followed by
mean centering and scaling. For the reference subset, PCA was
then run for both the SCTransformed RNA (SCT) expression
and the ADT expression, and a weighted nearest-neighbor
network for the reference subset was calculated from the first
30 and 18 PCs for SCT and ADT, respectively, using the
‘FindMultiModalNeighbors’ function. Next, SCT from the
reference subset was transformed again using supervised PCA
(via the ‘RunSPCA’ function) to identify the principal
components that best capture the combined RNA and ADT
expression variation represented by the weighted nearest-
neighbor network.

The first 50 components of this transformation were then
used to identify anchors between the reference subset and the
SCT of the query subset using the ‘FindTransferAnchors’
function. Finally, imputed ADT (ADTimp) data for the query
March 2022 | Volume 13 | Article 835760
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subset was calculated using the ‘TransferData’ function. A
weighted nearest-neighbor network was calculated using both
SCT and ADTimp according to the Seurat protocol (https://
satijalab.org/seurat/articles/weighted_nearest_neighbor_
analysis.html).

Intra-Cell Type Differential Feature Analysis
To identify differentially expressed genes (DEGs) and proteins
(DEPs), the Seurat object containing ADT and RNA expression
from the QC’d dataset (see section QC and Annotation above)
was subsetted by annotated cell type using ‘SplitObject’. For each
resulting Seurat object containing cells of a particular type, we
performed normalization on RNA expression using
SCTransform, again adjusting for processing batch (‘Run’
metadata variable) within each cell type (using the
‘vars.to.regress’ parameter of SCTransform). Differential gene
expression between disease statuses as well as between clusters
(see section ‘Intra-cell type clustering’) was then calculated on
SCTransform-normalized counts using the negative binomial
test (test.use = “negbinom” in Seurat). Genes with both
Bonferroni-corrected p-value < 0.05 and absolute log fold
change > 0.25 were considered significant. Differential protein
analysis was performed similarly, except with the Wilcoxon test
(test.use = “wilcox” in Seurat) on CLR-normalized, mean-
centered and scaled ADT data (within the ‘scale.data’ slot of
the Seurat object) only for cells with measured (i.e. non-imputed)
ADT data.

Cell Type Proportion Comparison
To detect statistical differences in the frequencies of each
annotated cell type between cohorts, we calculated, for each
cell type, the proportion of cells of that cell type in each subject
out of the total number of cells in the subject, and the Kruskall-
Wallis test (‘kruskal.test’ in R) was used to determine whether
significant cell proportion differences existed between any cohort
of subjects. For cell types with FDR-adjusted Kruskall-Wallis p-
values < 0.05, we then performed Wilcoxon tests (‘wilcox.test’ in
R) to identify significant (unadjusted p-value < 0.05) differences
in cell proportions between cohorts. The same method was used
to test for differences in the proportions of subclusters within
cell types.

Intra-Cell Type Clustering
To identify phenotypic clusters within cell types, the RNA
expression data for a cell type was first corrected for batch
effects by first subsetting the raw count matrix by the cells
within each sequencing batch. SCTransform was run
individually for each count matrix, and the resulting SCT
expression matrices were reintegrated into a single matrix
(see section ‘Data integration’). PCA was performed on the
integrated SCT matrix, and the first 30 PCs were used to
construct a shared nearest-neighbor network using the
‘FindNeighbors’ function. The network was then used to
identify clusters with the ‘FindClusters’ function, using a
resolution of 0.6. UMAPs were also generated from the first
30 PCs using the ‘RunUMAP’ function.
Frontiers in Immunology | www.frontiersin.org 4128
Data Integration
Integration of SCT expression data from two or more single-cell
datasets was performed according to the Seurat data
integration protocol (https://satijalab.org/seurat/articles/
integration_introduction.html#performing-integration-on-
datasets-normalized-with-sctransform-1). Briefly, ‘SelectIntegration
Features’ was used to select a common set of 3,000 genes most
consistently variable among the individual SCT matrices, and ‘Prep
SCTIntegration’ was then used to prepare reduced SCT expression
matrices for just these genes. PCA was calculated for each reduced
SCTmatrixusing ‘RunPCA’, and thefirst 50principal componentsof
this transformation were used to identify transcriptionally similar
cells between each pair of reduced SCT matrices using
‘FindIntegrationAnchors’, with ‘reduction’ set to ‘rpca’. Finally, an
integrated SCTmatrix was calculated using ‘IntegrateData’.

Machine Learning Model Development
Input data for classifying each subject in PSA, PSO, healthy, and
PSX cohorts was prepared by calculating the mean of the
normalized, centered, and scaled expression of each feature in
the set of cell type-specific differentially-expressed genes and
proteins (found between PSA and healthy, PSO and healthy, and
PSA and PSO groups; see section ‘Intra-cell type differential
feature analysis’) for all cells of the corresponding cell type in a
given subject. The feature expression data for healthy, PSA, and
PSO subjects (N=81) were then divided into a training set, n=58
(healthy=21, PSA=20, PSO=17) and a test set, n=23 (healthy=8,
PSA=8, and PSO=7) to achieve a training:test ratio of 70:30.

We first performed ensemble-based feature selection using
the EFS-MI method (16) where subsets of the starting feature set
predicted to be informative by four different ML algorithms
(Feed Forward and Backward selection, Recursive RF,
SVMRadial, and NNET) were combined and sorted by
prediction potential classification rank. We selected the top
twenty features to train eleven ML algorithms such as linear,
non-linear, and ensemble provided by the ‘caret’ R package,
assessing classification performance using accuracy and kappa.
To avoid overfitting and reduce the noise of random fitting
models, we employed 10-fold cross-validation with 1,000
iterations. We selected Random Forest (RF), Support Vector
Machine Radial Kernel (SVMRadial), and Neural Network
(NNET) algorithms for test set validation, based on the
suitability of our data set, popularity, and reliability. For the
RF model, tuning parameters were optimized with bootstrap =
TRUE, which resembles random sampling during model
building. The maximum number of tree splits in each step was
a max_depth = (50, 80, 100, 150, 300), maximum features were
selected as auto (max_features = ‘auto’), and for error
minimization through impurity value (min_impurity_decrease = c
(0.0, 0.02, 0.1, 0.5). Next, a minimum tree split as a leaf in each step
(min_samples_leaf = (1 to 10), maximum generation of trees
(n_estimator = 20), and other parameters as a default. The best
fit optimized parameters were considered the final model for
further evaluation. For Support Vector Machine (SVM), we
tuned two major parameters: 1) cost function, which ensures
the decision boundary for data classes, and 2) the sigma value,
March 2022 | Volume 13 | Article 835760
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which defines howmuch influence a single training set has on the
model, with lower sigma and cost resulting in better prediction
accuracy. For neural network algorithms, we used hidden
layers (size = 1,2,4,6,10,15) and learning rate (decay = 0, 0.05,
0.1, 1, 2) as tuning parameters (17). The prediction statistics and
accuracy of RF, SVMRadial and NNET were examined through
several statistics such as Area Under the Receiver Operating
Characteristic (AUROC), balanced accuracy (kappa), sensitivity,
and specificity, which are compiled in Supplementary Table 3.

The genotypes of each subject at each of the 200 PSA-
associated SNPs identified by Patrick et al. (18) were compiled
from imputed subject genotyping data (see section ‘Genotype
data processing’). We coded genotypes homozygous for the non-
risk allele as zero, heterozygous as one, and homozygous for the
risk allele as two. As above, eleven ML algorithms were trained
on this data and evaluated based on classification accuracy and
kappa, and the performance of three models (RF, SVMRadial,
and NNET) were examined through test set data and optimized
using the same tuning parameters. The ML algorithms were run
with set.seed=862 for reproducibility of models.
RESULTS

Cell Types Enriched and Depleted Among
PSA, PSO, and Healthy PBMCs
We characterized the differences in cellular composition as well as
transcriptional and cell surface protein expression between 28 PSA,
24 PSO, and 29 healthy subjects, along with 14 psoriasis patients
with unclear PSA diagnosis (PSX) by performing single cell RNA-
seq on PBMCs, obtaining transcriptomes of 392 – 7003 (median of
2,392) cells per subject (total 246,762 cells). For a subset of these
cells (133,665, 54%), we additionally performed antibody-derived
tag labeling of 258 cell surface proteins (Supplementary Table 2).

We performed integrative mapping of transcriptomic data
from our cell population to categorize all cells into 30 phenotypic
subsets defined in a previously described multimodal reference
dataset of healthy PBMCs (Figure 1A) (14). All 30 cell types were
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comparably represented among PSA, PSO, PSX and healthy
subjects (Figure 1B), with the exception of Tregs and dnT
cells, which were relatively increased in PSA patients compared
to both PSO and healthy subjects (p < 0.03, Figure 1B), and
hematopoietic stem precursor cells (HSPCs), which were
relatively increased in healthy subjects (p < 0.007).

Gene and Protein Biomarkers of PSA
Include Activational and Metabolic
Transcriptomic Differences That
Distinguish PSA From PSO
We next surveyed the phenotypic differences between PSA, PSO,
and healthy cells of each cell type by calculating differentially
expressed genes (DEGs) and proteins (DEPs). Within each cell
subset, we found 1 – 135 DEGs (median 23) and 1 – 18 DEPs
(median 4) with significant differences between PSA and PSO,
PSA and healthy, or PSO and healthy cells (Figures 2A, B), with
the most differentially expressed features detected in CD14
monocytes, the most abundant cell type in our dataset.

The DEGs and DEPs represented both broad as well as cell
type-specific disease-associated expression differences. Among 30
DEGs with the highest absolute fold change (Figure 2C), we
observed a general upregulation of mitochondrial genes (MT-CO3,
MT-ND1, MT-ND3) paired with a downregulation of ribosomal
protein gene RPS26 across most cell types in PSA patients relative
to PSO patients or healthy subjects. Among PSA T and NK cells,
we also observed a downregulation of AP-1 transcription factors
(JUN, JUNB, JUND, FOS) and regulators of activation (TNFAIP3,
DUSP1) along with the upregulation of S100A11, a calcium-
binding protein associated with rheumatoid arthritis (19). Lastly,
we observed PSA-associated differences in chemokine receptor
expression, specifically a downregulation of CXCR4 in T and NK
cells and an upregulation of CX3CR1 in monocytes, NK cells, and
specific T cell subsets. Disease-associated differences in cell surface
protein expression, in contrast, were more sparsely observed
within specific cell types (Figure 2D). Among the top 30 DEPs,
HLA-A2 was broadly upregulated among B and T cell subsets as
well as CD14 monocytes in PSA patients, while CD205 was
A B

FIGURE 1 | Cell types and subsets among PSA, PSO, and healthy individuals. (A) UMAP of SCTransform-normalized RNA expression integrated with ADT
expression, colored by cell subset. (B) Mean percentages of each cell type within the total PBMCs of each subject. Error bars indicate standard error of the mean;
* indicates both Wilcoxon and FDR-adjusted Kruskall-Wallis p-values < 0.05.
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broadly downregulated in many of the same cell types along with
cDC2 and pDC subsets.

Phenotypic Subsets of Specific Cell Types
Enriched and Depleted in PSA
Besides differences in cellular composition and gene or protein
expression, we also searched for additional disease signatures of
PSA among the phenotypic subsets of each cell type. By
performing integrative, transcriptome-based de novo clustering
of each cell type with at least 1,000 cells, we identified phenotypic
clusters within six cell types that were enriched in different
disease conditions (Figure 3A).

Some of these phenotypic subsets were uniquely associated with
PSA. Within CD16 monocytes, a small cluster (cluster 7) was more
abundant among PSA subjects (Figure 3B). Compared to other
CD16monocytes, the 108 cells of this cluster showed generally lower
expression of several mitochondrial genes (Figure 3C and
Supplementary Table 5) and higher expression of S100 genes
(S100A4, S100A6, S100A10, S100A11), as well as genes involved in
antigen presentation (HLA-DRB5, HLA-DQB1, FCER1G) and
Frontiers in Immunology | www.frontiersin.org 6130
regulation of innate activation [DUSP1 (20)]. We also observed a
cluster of PSA-abundant MAIT cells (cluster 2), however, these cells
may potentially represent a clustering artifact, as no significantly
over- or under-expressed genes were found to distinguish this cluster
from other cells. Analysis of differentially expressed proteins in these
two clusters yielded a single protein, Tetraspanin 33, which was
under-expressed in CD16 monocyte cluster 7.

On the other hand, we also found clusters uniquely reduced in
PSA within B memory (cluster 1) and a CD4 TEM (cluster 2) cells
(Figure 3B). The B memory cluster was characterized by a small
number of gene expression differences including reduced
expression of IGLC2 and IGLC3 that was consistent with
downregulated cell surface expression of immunoglobin light
chain protein (Figure 3C and Supplementary Table 5).
Additionally, we observed increased expression of JUNB, a
negative regulator of growth and proliferation (21) and
downregulated expression of transferrin receptor [CD71, a
marker of activated or proliferating B cells (22)] and several
other receptors found to promote apoptosis and proliferation
[CD95 (23), CD164 (24)] or response to chemokines (CD99 (25)].
A B

C D

FIGURE 2 | Differentially expressed features between PSA, PSO, and healthy subjects within cell types. Counts of differentially expressed (A) genes and (B) cell
surface proteins are shown for each comparison within each cell type. Top 30 differentially expressed (C) genes and (D) cell surface proteins in each cell type are
ranked by highest absolute log2 fold change (for genes) or absolute mean difference (for proteins) between PSA cells vs. PSO (circles) or healthy (triangles) cells.
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The CD4 TEM cluster showed a downregulation of DUSP2, a
negative regulator of Th17 differentiation (26), as well as Jun/Fos
genes (JUN, JUNB, FOS, FOSB) and, unexpectedly, several genes
associated with cytotoxic function (GZMA, GZMK, NKG7,
SRGN) (Supplementary Table 5). Differential protein analysis
revealed an upregulation of gut-homing integrin b7 and receptors
that promote cell proliferation [CD55 (27)] and maintain T cell
survival [CD127 (28)].

Other clusters were associated specifically with PSO or
healthy subjects. Cells within a single CD8 TEM cluster
enriched among PSO subjects (cluster 11, Figure 3B) showed a
strong upregulation of CCL4, a CD8+ T cell recruiting (29)
chemokine associated with psoriasis (30), along with other
inflammatory cytokines and chemokines (TNF, IFNG, CCL3,
CCL4L2) (Figure 3C and Supplementary Table 5). Differential
expression analysis of cell surface proteins on this cluster
revealed an upregulation of GPR56, a marker of cytotoxic cells
(31) as well as reduced expression of chemokine receptor
CXCR3. We also found a MAIT cluster (cluster 3) enriched
among healthy subjects, though, similar to MAIT cluster 2 above,
these cells are distinguished by relatively few markers that
included ribosomal proteins and long non-coding RNAs
NEAT1 and MALAT1 (Figure 3C and Supplementary Table 5).

Lastly, clustering analysis among Tregs revealed an imbalance
of resting and activated Tregs between healthy and psoriatic (PSO
and PSA) subjects. Differentially expressed genes in a Treg cluster
enriched in PSA (cluster 6, Figure 3B) consisted of an upregulation
of 52 genes that mostly encoded ribosomal proteins and a
Frontiers in Immunology | www.frontiersin.org 7131
downregulation of 115 genes, including some involved in class I
and class II antigen presentation (HLA-A, HLA-B, HLA-C, HLA-E,
HLA-DPA1, HLA-DPB1, HLA-DRA, HLA-DRB1) and CD52
(Supplementary Table 5), which encodes a costimulatory
receptor found to promote Treg suppression of CD4 and CD8 T
cells (32). Differential expression of cell surface proteins also
revealed a lower expression of memory marker CD45RO, which,
combined with higher expression of CD45RA and CCR7 in this
cluster (Figure 3C and Supplementary Table 5), suggests a naïve,
or antigen-inexperienced state. We additionally observed an
upregulation of GP130 (Figure 3B), a subunit of multiple
cytokine receptors such as IL-6R that has been found to define a
Treg subset with reduced suppression function (33). These protein
expression differences were reversed in the relatively healthy-
enriched cluster 1, in which GP130 and CD45RA were reduced
in expression while CD45RO, along with costimulatory markers
such as TIGIT and PD-1, were increased in expression. DEGs from
this cluster, including an upregulation of DUSP1, CXCR4 and Jun
and Fos family genes (Figure 3C and Supplementary Table 5)
further suggested an activated, functionally suppressive phenotype,
and FOXP3 expression was higher (though not significantly) in this
cluster than cluster 6 (Supplementary Table 5).

Machine Learning Classifiers Distinguish
Between PSA, PSO, and Healthy Subjects
Using Cell Type-Specific DEGs and DEPs
We evaluated the diagnostic potential of the PSA-associated
DEGs and DEPs by using them to perform ML classification of
A

B

C

FIGURE 3 | Immune cell subsets differentially abundant in psoriatic and healthy individuals. (A) UMAP of de novo clusters identified within select cell types
containing clusters with significant abundance differences. (B) Average percentage of cells from each PSA, PSO, or healthy subject in a given cluster out of total cells
from that subject in the given cell type. (C) Volcano plots of genes and cell surface proteins upregulated and downregulated in each cluster relative to other cells of
the same cell type. * indicates Wilcoxon p-value < 0.05.
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subjects in our study cohort. Based on the cell-type specific mean
expression of 257 DEGs and 258 DEPs (Supplementary Table 4)
averaged within each subject’s cells in the corresponding cell
types, we performed ensemble feature selection (16) using four
ML algorithms to identify the top twenty DEGs and DEPs based
on their classification rate (Importance).

The top twenty DEGs span a variety of immune cell types,
and many encode proteins involved in metabolism, translation,
and transcriptional regulation (Figure 4A). 10-fold cross
validation of eleven ML algorithms trained on these features
classified PSA, PSO, and healthy subjects with average accuracies
of 0.65 – 0.89 (Figure 4B) across 1,000 iterations. Kappa, a
measure of the agreement between observed and expected
accuracy ranged from 0.41- 0.72 across the eleven algorithms.
Further evaluation of the sensitivity and specificity of the RF
model demonstrated an AUROC of 0.89, 0.99, and 0.87 for
Frontiers in Immunology | www.frontiersin.org 8132
healthy, PSA, and PSO subjects (Figure 4C) with similar results
for SVMRadial and NNET models (Supplementary Figure 4).

Similar to the top twenty DEGs, the top twenty DEPs spanned
several cell types but showed generally lower classification
Importance (Figure 4D). Accordingly, the average accuracy of
the eleven ML algorithms on the top twenty DEPs (0.58 - 0.86,
Figure 4E) and kappa (0.21 - 0.65) were relatively lower than for
DEGs, with similarly reduced AUROC for RF (Healthy = 0.80,
PSA = 0.93, PSO = 0.88, Figure 4F), SVMRadial, and NNET
(Supplementary Figure 4).

To test whether classifier performance could be improved by
considering both gene and cell surface protein expression
together, we also performed ensemble feature selection on the
combined expression data of DEPs and DEGs from the above
analyses. The resulting set of twenty features consisted of 10
DEGs and 10 DEPs spanning several cell types, with similar
A B C

D E F 

G H I

FIGURE 4 | Machine learning classification of healthy, PSA and PSO subjects. (A) Classification rate (Importance) of top 20 DEGs, along with corresponding (B)
accuracy and kappa of eleven different ML classifiers trained on these features. (C) ROC curve of RF model for healthy, PSA, and PSO classification. Analogous
plots shown for (D–F) DEPs and (G–I) DEGs combined with DEPs. Error bars indicate 95% confidence interval.
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classification Importance measures as the set of DEPs only
(Figure 4G). Classification accuracies of the eleven ML
algorithms based on this feature set were more comparable to
those of DEGs alone (accuracy 0.68 - 0.89, kappa 0.54 – 0.76,
Figure 4H), except for rpart which performed worse on this
feature set than on DEGs and DEPs separately (average accuracy
0.52, kappa 0.26). AUROC for RF was relatively lower than DEP-
and DEG-only models for healthy (0.80) and PSA (0.93) groups
but similar to those models for PSO (0.88) subjects (Figure 4I),
with comparable results for SVMRadial and NNET models
(Supplementary Figure 4).

We performed further validation of the RF model by using it
to classify a cohort of 14 subjects (PSX) presenting with
cutaneous psoriasis and joint pain that did not confidently
meet current PSA diagnosis criteria. RF classification based on
DEGs, DEPs, or both consistently categorized 10 of these
patients as PSA and one patient as healthy (Supplementary
Figure 5 and Supplementary Table 6), with the remaining three
subjects discordantly classified as healthy or PSO.

ML Classifiers Detect PSA in
Psoriatic Individuals Using DEGs,
DEPs, or Genetic Risk Factors
We also evaluated the diagnostic potential of DEGs and DEPs,
separately or in combination, for detecting PSA among
individuals presenting with cutaneous psoriasis by performing
a two-way classification of PSA and PSO groups. As before, the
top twenty DEGs and DEPs were associated with several immune
cell types, with the DEG set including many genes with roles in
metabolism and in the regulation of activation and inflammation
(Figure 5A). Among PSA and PSO subjects, we noted higher
Importance measures among the top twenty DEPs compared
with the top twenty DEGs (Figures 5A, D), however
performance metrics of the eleven ML models were generally
higher in DEGs (accuracy 0.81 – 0.94, kappa 0.41 – 0.83) than
DEPs (accuracy 0.73 – 0.92, kappa 0.42 – 0.72, Figures 5B, E). In
addition, RF, SVMRadial, and NNET all achieved perfect
classification of PSA and PSO subjects using DEGs (AUROC
of 1, Figure 5C and Supplementary Figures 6A, B) compared to
the slightly lower classification performance for DEPs (Figure 5F
and Supplementary Figures 6C, D). Feature selection on
combined DEPs and DEGs yielded a top twenty feature set
with Importance measures that were intermediate between the
sets of DEPs and DEGs alone (Figure 5G), and while ML
classifier performance was lower for the combined feature set
(accuracy 0.52 – 0.81, kappa 0.26 – 0.67, Figure 5H), AUROC
for the RF and SVMRadial models (1.00 and 0.96, respectively,
Figure 5I and Supplementary Figure 6E) was comparable to those
of DEG- and DEP-only feature sets, with NNET underperforming
substantially (AUROC 0.7, Supplementary Figure 6F).

Lastly, we evaluated whether our ML framework for detecting
PSA in a background of cutaneous psoriasis could also be applied
to genetic biomarkers of PSA risk. ML classifiers trained on
patient genotypes at 200 SNP sites previously found to be
associated with PSA (18) achieved average classification
accuracies between 0.6 and 0.87 and kappa between 0.51 and
Frontiers in Immunology | www.frontiersin.org 9133
0.73 (Figure 6A). AUROC of RF, SVM-Radial, and NNET was
0.92 (Figure 6B), 0.88, and 0.81, similar to metrics reported in
the previous study (18).
DISCUSSION

Our study sheds light on the phenotypic differences between the
circulating immune cells of PSA and PSO patients at multiple
levels of resolution. At the cellular level, we observed a higher
abundance of Tregs and dnT cells in PSA patients and a higher
abundance of HSPCs in healthy subjects. While, to our
knowledge, the role of dnTs and HSPCs in PSA has not been
extensively investigated, dnT cells have been reported to infiltrate
psoriatic skin as well as participate in IL-23/IL-17 signaling in
mouse models of psoriasis (34) and spondyloarthritis (35), and
the proliferation and differentiation of HSPCs is currently known
to respond to systemic interferon and TNF signaling (36). While
we observed increased peripheral Tregs in PSA patients, whether
this subset is generally increased or decreased in PSA is still
unclear in light of conflicting results found in other studies
(37, 38).

Within each cell type, our de novo clustering analyses
identified disease-associated subsets and potential biological
processes affecting them. First, the skewing of peripheral Tregs
toward more naïve, resting cells and fewer activated effector cells
in PSA and PSO parallels what has been observed in systemic
lupus erythematosus (39) and could reflect either a migration of
effector Tregs from circulation into sites of inflammation or a
general expansion of the naïve Treg pool. Second, our study also
identified a cluster of CD8 TEM cells specific to PSO but not
PSA. The strong upregulation of CCL4 coupled with the
downregulation of CXCR3 in this cluster raise the possibility
that differences in chemokine-mediated immune cell homing
(e.g. to skin compared with synovium) could emerge as a key
characteristic for predicting PSA progression or risk in PSO
patients, especially in light of evidence suggesting that CXCR3
may be involved in T cell recruitment in PSA, based on higher
protein expression of its ligands, CXCL9 and CXCL10, in
synovial compared with peripheral compartments (40, 41),
whereas no such difference was found for MIP1b, the
chemokine encoded by CCL4 (41). Besides the overall PSA-
associated downregulation of CXCR4 and upregulation of
CX3CR1 observed in our data, other studies have identified
PSO- and PSA-associated T cell subsets expressing CCR5 (42),
CCR4 (43), and CCR10 (37), and the questions of whether and
how signaling through these chemokine receptors mediates
trafficking of pathological T cells between the skin, blood, and
joint remain active areas of investigation. Lastly, the enrichment
of a CD16 monocyte subset that we observed in PSA subjects is
consistent with previous findings of increased circulating CD16+
monocyte population in PSA subjects that can give rise to
osteoclasts (44). Other studies in mice have found that subsets
of other myeloid cell types, such as neutrophils, may also
contribute to psoriatic disease through T-cell independent
responses to IL-17A signaling (45, 46).
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At the molecular level, we found disease-associated protein
and gene expression signatures within diverse innate and
adaptive immune cell types, consistent with the current
understanding that multiple cell types contribute to
inflammation in PSA (6). While these contributions have
mainly been investigated in the context of IL-17 and IL-23
signaling, our data sheds light on other characteristics that
distinguish circulating immunocytes in PSA patients, such as
generally increased mitochondrial gene expression and decreased
expression of cell activational regulators. Although disease
conditions may generally alter protein and gene expression
divergently among different cell types, we note that, in our
data, gene and protein expression in different cell types are
largely perturbed in the same direction by PSA (i.e. a feature
upregulated in PSA cells of one type is generally upregulated in
PSA cells of other types).
Frontiers in Immunology | www.frontiersin.org 10134
Importantly, our study demonstrates the utility of cell-specific
gene and cell surface protein expression differences when
incorporated into a ML framework for detecting PSA, with
most of the ML algorithms considered in this study classifying
PSA, PSO, and healthy subjects or distinguishing just between
PSA and PSO subjects with >70% average accuracy on either
gene or protein features. Combining both types of features
reduced overall model performance, possibly due to differences
in the magnitude of interindividual or technical variation in the
detected expression of these feature types, which may not be
accurately accounted for by the subject-averaged expression data
we used for model training and testing. Nevertheless, our study
expands the number of potential biomarkers and cell types
relevant to diagnosing PSA and understanding its biology.

We note that our data, being derived solely from peripheral
blood immune populations, cannot address whether these cell
A B C
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FIGURE 5 | Machine learning classification of PSA vs. PSO subjects. (A) Classification rate (Importance) of top 20 DEGs, along with corresponding (B) accuracy and
kappa of eleven different ML classifiers trained on these features. (C) ROC curve of RF model. Analogous plots shown for (D–F) DEPs and (G–I) DEGs combined with
DEPs. Error bars indicate 95% confidence interval.
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types are also present in the synovium, whether they may instead
represent systemic responses to cutaneous inflammation in PSA
subjects, or the extent that they arise from either a migration of
cells between blood and tissue compartments or an overall
expansion or reduction in specific cell subsets. Also, since PSA
patients in our study already have established arthritic disease,
our data may not capture early or ephemeral biomarkers of
disease that may appear in PSO patients who eventually develop
PSA. Future investigations combining single cell multiomics on
blood, skin, and joint immune populations with a longitudinal
follow-up of PSO patients [as employed by Abji et al. (47)] may
help overcome these limitations.
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Visceral leishmaniasis (VL) is a vector-borne infectious disease that can be potentially fatal
if left untreated. In Brazil, it is caused by Leishmania infantum parasites. Blood
transcriptomics allows us to assess the molecular mechanisms involved in the
immunopathological processes of several clinical conditions, namely, parasitic diseases.
Here, we performed mRNA sequencing of peripheral blood from patients with visceral
leishmaniasis during the active phase of the disease and six months after successful
treatment, when the patients were considered clinically cured. To strengthen the study,
the RNA-seq data analysis included two other non-diseased groups composed of healthy
uninfected volunteers and asymptomatic individuals. We identified thousands of
differentially expressed genes between VL patients and non-diseased groups. Overall,
pathway analysis corroborated the importance of signaling involving interferons,
chemokines, Toll-like receptors and the neutrophil response. Cellular deconvolution of
gene expression profiles was able to discriminate cellular subtypes, highlighting the
contribution of plasma cells and NK cells in the course of the disease. Beyond the
biological processes involved in the immunopathology of VL revealed by the expression of
protein coding genes (PCGs), we observed a significant participation of long noncoding
RNAs (lncRNAs) in our blood transcriptome dataset. Genome-wide analysis of lncRNAs
expression in VL has never been performed. lncRNAs have been considered key
regulators of disease progression, mainly in cancers; however, their pattern regulation
may also help to understand the complexity and heterogeneity of host immune responses
elicited by L. infantum infections in humans. Among our findings, we identified lncRNAs
such as IL21-AS1, MIR4435-2HG and LINC01501 and coexpressed lncRNA/mRNA
org March 2022 | Volume 13 | Article 7844631138
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pairs such as CA3-AS1/CA1, GASAL1/IFNG and LINC01127/IL1R1-IL1R2. Thus, for the
first time, we present an integrated analysis of PCGs and lncRNAs by exploring the
lncRNA–mRNA coexpression profile of VL to provide insights into the regulatory gene
network involved in the development of this inflammatory and infectious disease.
Keywords: blood transcriptomics, human visceral leishmaniasis, Leishmania infantum (syn. Leishmania chagasi),
mRNA sequencing (mRNA-seq), long noncoding RNA–mRNA coexpression
INTRODUCTION

Leishmania protozoans cause a group of diseases known as
leishmaniases. The diseases are characterized by a wide range
of clinical manifestations depending on the infecting Leishmania
species, which are classified as cutaneous, mucocutaneous or
visceral forms. This dixenous and dimorphic parasite is
transmitted to humans through bites from infected sand flies
(1). Infections by Leishmania infantum can lead to the most
severe form of disease, visceral leishmaniasis (VL), which can be
lethal if untreated or misdiagnosed (2). Human cases in Brazil
account for approximately 95% of reported VL cases in the
Americas, with a mortality rate of 7.2% (3). It is also classified as
a zoonotic disease with dogs and wild animals as reservoirs.
Antileishmanial treatment is administered only parenterally and
triggers many toxicity effects, and currently, there is no vaccine
against VL. The control of the vector and the surveillance of
reservoirs of L. infantum have been the measures adopted by the
Brazilian public health policies to control and prevent the disease
(4). Patients susceptible to VL go through a minimum period of
remission of six months, and recidivism has been more
frequently observed in recent years. Primarily, children are
more often affected, but the incidence in adults has
significantly increased (5). However, as observed for other
infectious diseases, most infected people do not become sick or
even develop any symptoms, likely due to the diverse factors
influencing the complexity of the host/parasite interface.

Most mechanistic knowledge about Leishmania infections
arises from experimental animal models and eventually from
human infections. Leishmania parasites are able to infect
multiple cell types, of which mononuclear phagocytes are the
main cells for intracellular replication. By establishing a long-
term infection, the parasites are capable of escape from
microbicidal and immune mechanisms. CD4+ Th1 cells and
IFN-g production are crucial to control Leishmania infections,
but other CD4+ T cell subtypes and CD8+ T cells have been
shown to be important in the adaptive immune response (6, 7).
Displaying a variety of Leishmania species, hosts and infection
scenarios, the combinations of host/pathogen interactions reach
a diversity of host responses to be investigated. In this context,
studies aiming to uncover the molecular mechanisms underlying
the different outcomes of L. infantum human infections are
still scarce.

Blood transcriptomics represents an accessible and powerful
approach to address the molecular immune mechanisms elicited
by inflammatory conditions (8) and to foster the understanding
of the heterogeneity of many human infectious diseases. In this
org 2139
regard, blood transcriptomes of human VL caused by L.
donovani have been explored by others in India (9), with a
focus on amphotericin B treatment. Another blood
transcriptomics study using patients from Africa also focused
on treatment efficacy assessment, but in VL patients coinfected
with HIV (10). Of interest for VL occurrence in Brazil, a
pioneering study performed by Gardinassi et al. with VL
patients infected with L. infantum revealed molecular
immunological signatures according to the outcome of
infection and disease state, such as asymptomatic infection,
active infection and during VL remission between two to five
months after treatment with pentavalent antimonial (11). These
studies found that the IFN-g response circuit was enriched in
active VL (as expected), pathways related to the activation of T
lymphocytes via MHC class I, type I interferon signaling and B
cells (11). Adriaensen et al. showed that IL-10 integrated a 4-gene
pre-post transcriptional signature to discriminate treatment
outcomes (10).

All these blood transcriptomics studies were dedicated to
defining transcriptional signatures of protein-coding genes
(PCGs). Another type of gene, as important as PCGs, is those
classified as long noncoding RNAs (lncRNAs) owing to their key
roles in several molecular processes, such as gene regulation
(namely, posttranscriptional and posttranslational mechanisms),
genome integrity, cellular structural functions and interference
in signaling pathways (12). None of these previous transcriptome
studies in VL have focused on lncRNAs. Long noncoding RNAs
are broadly expressed in health and disease states, and their
specific or altered expression profiles indicate their potential as
biomarkers and targets for novel therapies. Most lncRNA
functions and relevance came from studies with tumors, but
their central role in hematopoiesis and immunity is quite
prominent (13, 14).

This type of transcript is larger than 200 nucleotides, and like
mRNA, it is spliced, capped at the 5’ end and polyadenylated at
the 3’ end (15), i.e., it can be captured not only by total RNA
sequencing but also by mRNA sequencing. From this
perspective, we performed an integrated analysis of lncRNAs
and mRNAs (PCGs) in the blood transcriptomes of human VL
caused by L. infantum obtained by mRNA sequencing. To
produce robust findings and overcome potential host genetics
factors, we compared transcriptional data of the same patients in
two defined states, during active VL and after six months of being
treated, when they were considered clinically cured. In addition,
we compared the gene expression profiles of active VL to two
other non-diseased profiles, asymptomatic individuals and
healthy uninfected volunteers. First, we provided an overview
March 2022 | Volume 13 | Article 784463
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of this new blood transcriptome in VL depicting the most
enriched biological pathways and the featured landscape of
expressed lncRNAs. Then, we proceeded to the differential
expression analysis to define gene subsets to be further focused
on in lncRNA–mRNA coexpression analysis. We provided an
expression profile of lncRNAs induced in VL during L. infantum
infection associated with coexpressed protein coding genes,
uncovering important insights into the transcriptional response
of this parasitic infectious disease. Several lncRNAs were
identified as key players in human L. infantum infections, and
their potential as blood biomarkers for VL is discussed.
MATERIAL AND METHODS

Patients and Healthy Uninfected Subjects
Twenty-nine individuals were enrolled in the study and
categorized into four groups: visceral leishmaniasis patients with
active disease (PD0), cured VL patients (PD180; VL patients from
the PD0 group 180 days after treatment), asymptomatic
individuals (A) and healthy uninfected controls (C),
Frontiers in Immunology | www.frontiersin.org 3140
as summarized in Figure 1 and Table 1. The individuals
enrolled in this study are from Sergipe state, located at the
Northeast region of Brazil, that is not endemic for Malaria. All
procedures were performed in accordance with the guidelines of
the Brazilian Human Research Ethics Evaluation System (CEP/
CONEP) and were approved by the Ethics Committee of the
Federal University of Sergipe (CAAE: 04587312.2.0000.0058). All
subjects or their legal guardians signed an informed consent form
prior to the study.

Diseased patients (PD0 samples) were characterized by the
presence of fever, weight loss, hepatosplenomegaly, and low
leukocyte and platelet counts. VL diagnosis in the PD0 group was
confirmed by direct observation of Leishmania in bone marrow
aspirate or positive culture in Novy–MacNeal–Nicolle (NNN)
medium plus a positive rK39 serological test (Kalazar Detect
Rapid Test, InBios International Inc., Seattle, WA). All VL
patients were negative for hepatitis B and C viruses and HIV, and
also for bacterial infections or other parasites. The patients were
treated with conventional drug therapies used for visceral
leishmaniasis, according to the national guidelines of the Brazilian
Ministry of Health: meglumine antimonate (Glucantime®) and/or
FIGURE 1 | Diagram depicting the groups used in this work to perform RNA-seq data analyses of blood transcriptomes from VL patients (PD0, in red) compared to
nondiseased groups, treated (PD180 in green, cured patients), asymptomatic subjects IgG+ for Leishmania infantum (A, in yellow) and healthy/control subjects (C, in
blue). Image diagrammed in Inkscape (https://inkscape.org/).
TABLE 1 | General information of the groups analyzed in this study.

Group N° Women Men

N° Ageb,c Drug therapyd N° Ageb,c Drug therapy

PD0a (VL) 11 6 14.5 (01/51) Glucantime + AmBisome (n = 2);
AmBisome (n = 3)

5 24 (10/44) Glucantime + AmBisome (n = 2);
AmBisome (n = 2); Glucantime (n = 1)PD180a (cured VL) 11 6 14.5 (01/51) 5 24 (10/44)

Asymptomatic 9 3 12 (03/30) – 6 21 (06/42) –

Healthy Control 9 4 25.5 (24/27) – 5 23 (11/29) –
Marc
aSame patients before (diseased) and after treatment (cured).
bAges are expressed as the mean values (in years) and minimum and maximum values in parentheses (min/max).
cAge variance among groups was not statistically significant (Kruskal–Wallis test, p-value = 0.5157).
dNot available for one patient.
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liposomal amphotericin B (AmBisome®). In the follow-up
appointment, after 180 days of VL treatment, the patients were
considered clinically cured, comprising the PD180 group (totaling
22 paired samples, n = 11 in each time point). Healthy individuals
who presented normal hematologic indices and neither clinical
signs nor symptoms of VL but positive reactions to leishmanial
antigens (Montenegro Skin test and rK39 serological test) were
considered asymptomatic (n = 9), i.e., they were infected by L.
infantum but without development of the disease. Parasite
visualization tests were not performed in the PD180 group or
asymptomatic individuals. Healthy individuals with negative tests
for leishmanial antigens comprised the control group (n = 9).

Blood Sample Collection and
RNA Isolation
Peripheral blood samples were collected using BD Vacutainer®

tubes for hematologic tests and PAXgene Blood RNA tubes for
RNA isolation. Total RNA was extracted from whole blood with
the PAXgene Blood RNA Kit followed by globin mRNA
depletion using the GLOBINclear™ Human Kit to enrich the
samples for RNA from leukocytes. RNA samples were checked
for purity by absorbance measurements (nm) of the 260/280 and
260/230 ratios using a NanoDrop™ 1000 Spectrophotometer
and quantified using a Qubit™ 3.0 Fluorometer with a Qubit™

RNA HS Assay Kit. Assessment of RNA quality was obtained
with RIN values >7.0 (RNA Integrity Number) with an Agilent
2100 Bioanalyzer using a Bioanalyzer RNA 6000 Nano assay.

mRNA Sequencing (mRNA-seq)
mRNA-seq data were generated in Illumina sequencing
technology at the Genomics Center of the Laboratory of
Animal Biotechnology, ESALQ, University of São Paulo,
Piracicaba, Brazil, following the workflow recommended by the
instructions of the manufacturer. Polyadenylated cDNA libraries
were prepared with 300 mg of RNA depleted from globin mRNAs
using the TruSeq® Stranded RNA Sample Preparation Kit.
Paired-end sequencing was performed using a HiSeq SBS V4
kit (2 × 100 and 2 × 125 reads) in a HiSeq 2500 sequencer,
yielding approximately 71 million reads for each mRNA-
seq library.

RNA-seq Data Analysis
Raw fastq files were checked for quality control using FastQC
(16). Illumina sequencing adaptors were trimmed, and low-
quality reads (Phred score lower than 20, Q20) were filtered
out using Trimmomatic (17). Read mapping was performed with
STAR aligner (18) using the human genome reference assembly
GRCh38.p38 (provided by The Genome Reference Consortium)
annotated by the Ensembl database (19). Concordant
uniquely mapped reads were used for downstream analyses.
Quantification of reads to gene features used the –quantMode
GeneCounts function from STAR. Read counts were used for
differential expression analyses with the edgeR package in R (20),
applying a quasi-likelihood F test (glmQLFTest function) with
batch effect correction. A threshold false discovery rate lower
than 0.05 (FDR <0.05) and a cutoff of 2-fold regulation (−1<
log2-fold-change >+1) were used to fill the differentially
Frontiers in Immunology | www.frontiersin.org 4141
expressed gene (DEG) list for each possible comparison
between groups. TPM (transcripts per kilobase million) values
were obtained by dividing read counts by the mean length of
each gene in kilobases achieved by GTFtools to obtain the reads
per kilobase (RPK) (21) and then dividing the RPK values by the
sum of all RPK values in millions in a sample. Gene annotations
were retrieved from Ensembl using the biomaRt R package (22).

Modular gene coexpression analyses were performed with the
CEMiTool R package (23) using embedded functions for gene set
enrichment analysis (GSEA) and overrepresentation analysis
(ORA) with pathways from the Reactome database (24). The
sample heterogeneity of gene expression profiles was assessed by
the Molecular Degree of Perturbation (MDP) R package (25). Cell
type composition based on blood RNA-seq data was predicted by
CIBERSORT (26), a cellular deconvolution method. Long
noncoding RNA (lncRNA) gene annotation was performed
using the Ensembl BioMart (https://www.ensembl.org/biomart/
martview/) (27) and the LNCipedia database (https://lncipedia.
org/) (28). The functional genomics public repositories
GEO/NCBI (29) and ArrayExpress/EMBL-EBI (30) were used to
search other Leishmania-related transcriptomes, and three blood
transcriptomics studies published elsewhere were selected for
comparative analyses of detected differentially expressed long
noncoding RNAs (DE lncRNAs): GSE77528 (11), GSE125993
(9) and PRJNA595895 (10).

Prioritized DEGs for lncRNA-mRNA coexpression analysis
were obtained by overlapping the DEG lists using a Venn
diagram (http://bioinformatics.psb.ugent.be/webtools/Venn/).
The proportions of lncRNAs and mRNAs in the DEG results
were calculated by the chi-square test using the chisq.test
function in R and plotted with the corrplot R package (31).
Pearson’s correlation implemented in R base functions was used
to find coexpressed pairs of DE lncRNA-mRNA based on
prioritized DEG lists encompassed by 147 lncRNAs and 1,263
protein coding genes (PCG, mRNA molecules) that were
differentially expressed; only coexpressed pairs with resulting
correlation coefficients of −0.8< r >0.8 were used for downstream
analysis regarding lncRNAs. Network analysis of lncRNA–
mRNA pairs was performed using igraph (32) and ggnetwork
R packages (33). Hub genes were identified by betweenness and
centrality measures. Subcellular localization of lncRNAs was
retrieved from the LncSLdb database (34) and/or predicted
using the LncLocator webtool (35). Interactions of lncRNAs
with other molecules were searched or predicted with
RNAInter (36). In the case of interaction with miRNAs,
mRNAs targeted by miRNAs were searched using the miRDB
database (37).

Statistical Analysis for the Demographic
and Clinical Parameters
Statistical analysis of demographic (Table 1) and hematological
(Table 2) data of the twenty-nine individuals was performed
using GraphPad Prism v5.02 software. Each measured parameter
was preliminarily assessed for normality using D’Agostino &
Pearson and Shapiro–Wilk tests. Student T test was used to
compare two groups, if the data follow normal distribution.
Mann–Whitney U test was used to compare two groups, if the
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data followed non-Gaussian distribution. To compare the paired
groups, PD0 and PD180, paired T-test andWilcoxon signed rank
test were used for data with normal and non-Gaussian
distribution, respectively. Age variance in multiple groups was
tested using Kruskall–Wallis followed by Dunn’s post-test for
non-Gaussian distribution. P-values lower than 0.05 were
considered for statistical significance.
RESULTS AND DISCUSSION

Features of the Polyadenylated
Transcriptome of Blood From Visceral
Leishmaniasis Patients
We generated and analyzed bulk RNA-seq data of whole blood
samples collected from 11 patients with active VL (“P–D0”
abbreviations) and six months after the treatment, when these
individuals were considered clinically cured (“P–D180”
abbreviations). To gather insights into not only the
immunopathophysiology of the disease but also the molecular
mechanisms involved in L. infantum infection, we enrolled nine
asymptomatic individuals (positive for anti-L. infantum, “A”
abbreviations) and nine healthy subjects as control individuals
(“C” abbreviations). Our analyses consisted of a total of 40 RNA-
seq libraries depleted from globin and poly(A)+ selected mRNA,
yielding an average of 4 Gb and 24 million paired-end mapped
reads per library. The main characteristics of the analyzed groups
and the clinical laboratory data for VL patients are displayed in
Tables 1 and 2, respectively.

After filtering out genes with low expression (cpm <2; N <3)
from the dataset, a total of 14,247 genes remained to be further
analyzed. A multidimensional scaling (MDS) plot of the gene
dataset was built to visualize the similarity across the 29
individuals represented by 40 samples. As shown in Figure 2A,
there was clear segregation between active VL (PD0 group) and
VL-free (PD180, A and C groups) individuals. Apart from P27
patient, all VL patients presented noticeably distinct gene
expression patterns when considered clinically cured of the
disease (PD180 group), which clustered together with other
VL-free groups, asymptomatic (A) and healthy uninfected
Frontiers in Immunology | www.frontiersin.org 5142
controls (C). Despite being within the same cluster, patients
with active VL presented dissimilarities among them, reflecting
the multifaceted nature of the disease. The heterogeneity of these
blood transcriptomes was also assessed by molecular degree of
perturbation (MDP) scores (25), in which PD0 samples
presented the highest scores as expected, but it is also
interesting to note that among VL-free groups, asymptomatic
and cured patients presented distinct scores from healthy
uninfected people (Figure 2B).

For an overview of the system-level functionality of all genes
expressed in blood during the development of visceral
leishmaniasis, we performed modular gene coexpression
analysis using CEMiTool (23). Eleven different coexpressed
modules were identified in the Gene Set Enrichment Analysis
(GSEA), out of which 10 presented at least four significantly
enriched pathways in the Over Representation Analysis (ORA).
In the GSEA plot (Figure 2C, right panel), the activity of
each module is displayed for all studied groups. Among the
modules enriched across all groups, we depicted the modules
M2, M5 andM6 with high Normalized Enrichment Scores (NES)
that were only active in the VL group (PD0), which presented
enriched pathways related mainly to “O2/CO2 exchange
in erythrocytes”, “Interferon Signaling” and “Cell Cycle
Checkpoints”, respectively. The crucial role of IFN- g signaling
in leishmaniasis (38) and the key roles of type I interferons
in protozoan infections, including Leishmania, have been
increasingly established in recent years (39). Modules M1 and
M8 were related mainly to the pathways “neutrophil
degranulation” and “Toll-like receptor cascades”, respectively,
and presented a low NES (activity) in active VL (Figure 2C, right
panel). Neutrophils are massively recruited upon Leishmania
infections, but the parasite efficiently evades neutrophil killing
(40). They also influence the different forms of leishmaniasis, but
they have been reported to play either protective or harmful roles
during infection, depending on Leishmania-infecting species
(41). The neutrophil response to infection outcomes seems to
depend on their recruitment phase and tissue environment (42).
Toll-like receptors (TLRs) are another innate immune branch
acting in Leishmania infections, with multiple TLRs being
activated simultaneously, and the interplay among them may
TABLE 2 | Hematological data of the groups analyzed in this study.

Parameter PD0—VL diseased
(mean ± SD)

PD180—VL cured
(mean ± SD)

Asymptomatic
(mean ± SD)

Control
(mean ± SD)

p-value for comparisons*

RBC (106/mm3) 3.47 ± 0.35 5.11 ± 0.68 5.16 ± 0.537 4.61 ± 0.37 <0.001b (1, 2 and 3)
Hemoglobin (g/dl) 7.98 ± 1.01 12.2 ± 3.6 13.95 ± 2.128 13.23 ± 0.25 <0.01a (1, 2 and 3)
Hematocrit (%) 26.55 ± 5.58 40.6 ± 5.4 42.511 ± 4.9 39.85 ± 1.59 <0.01b (1, 2 and 3)

Platelets (103/mm3) 148.18 ± 81.63 239.9 ± 57.1 277.44 ± 144.53 253.75 ± 73.67 <0.05a (1 and 2)
WBC (103/mm3) 3,500.1 ± 1,948.8 7,114.5 ± 1,051.2 6,421.1 ± 1,423.7 6,260 ± 1161.2 <0.05a (1, 2 and 3)
Neutrophils (103/mm3) 1,329.5 ± 1,318.7 3,224.9 ± 753.3 3,286.7 ± 423.5 3,422.5 ± 258.505 <0.01b (1, 2 and 3)
Eosinophils (103/mm3) 51.00 ± 123.84 676.9 ± 531.2 332.8 ± 175.98 213.2 ± 144 <0.01b (1 and 2)
Basophils (103/mm3) 10.10 ± 21.76 98.8 ± 100.2 84.8 ± 43.4 87 ± 40.4 <0.001b (1, 2 and 3)
Lymphocytes (103/mm3) 1,644.70 ± 861.50 2,643.4 ± 956.2 2,273.9 ± 1,256.8 2,065 ± 626.5 <0.01a (1)
Monocytes (103/mm3) 360.20 ± 186.72 470.5 ± 186.6 445.2 ± 215.09 473.5 ± 141.7 NSa
March 2022 |
*Comparisons: 1 = PD180 vs PD0; 2 = Asymptomatic (A) vs PD0; 3 = Control (C) vs PD0; 4 = A vs PD180; 5 = A vs C; 6 = C vs PD180.
ap-value calculated by t-Test (paired t-test for PD180 vs PD0).
bp-value calculated by Mann–Whitney test (Wilcoxon signed rank test for PD180 vs PD0).
NS, non-significant.
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influence the final outcome of infection (43). In an experimental
model of L. infantum infection, TLR2 was shown to be important
in promoting a protective immune response and effector
mechanism of neutrophils (44). In addition, the TLR4 and
IFN-I pathways play significant roles in preventing chronic
inflammatory processes and immunopathology during L.
infantum infection (45). All significantly enriched pathways
elicited in VL are visualized in Presentation 1 within
each module.

Next, we proceeded to differential expression analysis to
identify genes (DEGs) that were significantly regulated. The
lists of DEGs (cutoff: FDR <0.05 and log2-fold-change ± 1) for
pairwise comparisons can be found in Supplementary Table 1.
As observed by others (9, 11), no DEG was found between
asymptomatic and healthy control individuals considering the
post hoc test at FDR<0.05. Considering that both groups basically
include healthy and VL-free individuals, it is coherent do not
finding difference statically significant between them. We
focused on comparisons of the three non-diseased groups, A,
C and PD180, against the active VL group, PD0. The
comparisons presented an average of 1,680 DEGs each, with
many hundreds of up- or downregulated genes (Figures 3A–C).
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All three comparisons presented some dozens of highly regulated
genes (−3< log2-fold-change >3) with very statistically significant
FDR values (FDR <0.0001), as can be observed at the superior
corners of the volcano plots. Among many DEGs, we highlighted
PRSS33 (serine protease 33), which was upregulated in the
nondiseased groups (i.e., downregulated during active VL) at
least 32-fold. PRSS33, also known as EOS, was primarily
identified as expressed predominantly by macrophages, and
also in peripheral leukocytes, and was detected in many
organs, such as spleen, intestine, lung and brain (46). More
recently, it was found that the production of PRSS33 by
leukocytes is attributed specifically to eosinophils, which
present constitutive expression at the mRNA level and cell
surface expression at the protein level rather than being
secreted (47). Interestingly, the gene expression pattern of
PRSS33 along with IL10, SLFN14, and HRH4 was identified as
a transcriptional signature to assess the treatment efficacy of
visceral leishmaniasis in HIV patients (10). Here, the eosinophil
count in VL patients was significantly decreased during
L. infantum infection (Table 2); interestingly, the eosinophil
gene signature was only detected in asymptomatic individuals
(Figure 4B). The important role of eosinophils during
A B

C

FIGURE 2 | Overview of the blood transcriptomes of this study. A total of 14,247 genes were expressed across the four groups, which encompassed 40 samples
from 29 subjects. (A) Multidimensional scaling (MDS) plot and (B) molecular degree of perturbation (MDP) plot of all expressed genes in the four groups; (C) most
significantly enriched pathways retrieved from the Reactome database for each module. The gene ratio for each pathway is displayed in parentheses. Colors in the
Reactome enrichment graph refer to module activity in VL patients (PD0 group) as represented by the GSEA plot (heatmap in the right panel) displaying the module
activity for each group. Color intensity is proportional to NES (normalized enrichment score). The graded scale side bar (NES) from red to blue indicates higher and
lower activity, respectively, based on the ranked expression level.
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A B
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FIGURE 3 | Differential expression analysis comparing VL patients to nondiseased patients identified hundreds of differentially expressed genes (DEGs). Volcano
plots highlighting genes significantly regulated (FDR <0.05, horizontal threshold line set on y-axis) in the comparisons C vs. PD0 (A), A vs. PD0 (B) and PD0 vs.
PD180 (C). Vertical lines at -1 and +1 on the x-axis indicate the expression level criteria of fold decrease or increase, respectively, applied to DEGs that were further
analyzed (all genes colored in blue or red); (D) Venn diagram displaying the number of exclusive DEGs for each comparison, as well as the number of shared DEGs
among them. Dashed squares indicate the DEG lists used as subsets of prioritized genes in the mRNA-lncRNA coexpression profile analysis; (E) Heatmap of 1,045
DEGs shared among the three comparisons (suggested to be the gene signature of VL disease status), depicting the clustering of samples in two major groups: VL
patients (PD0 labels, in red), the very consistent cluster on the right side and a heterogeneous cluster encompassing the nondiseased groups (C, A and PD180
labels, in blue, yellow and green, respectively) split into minor clusters. Z scores of cpm read counts were used, and a graded color scale from red to blue indicates
whether the level of gene expression was above or below the mean (i.e., up- or downregulation).
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Leishmania infection has become increasingly evident since
many studies have demonstrated that eosinophils are able to
control parasite load and interact with innate and adaptive
immune responses, mainly by shaping macrophage responses
(48–50). Another interesting DEG is interferon alpha inducible
protein 27 (IFI27), which was highly downregulated in the non-
diseased groups (i.e., upregulated during active VL) by an
average of 64-fold. IFI27 (also known as ISG12) is a gene
highly induced by type 1 interferon with pro-apoptotic effects
(51) and antiviral activity (52, 53) and a potential biomarker
identified through transcriptomics in some cancers, such as
pancreatic adenocarcinoma (54).

A Venn diagram of these three comparisons (Figure 3D)
displayed the number of shared or exclusive DEGs. Considering
all intersections, when the redundancy was filtered out, we
identified 2,427 unique DEGs. The central overlap presented 461
upregulated and 584 downregulated genes, which represents the
“disease” gene set, because regardless of the non-disease group,
these genes were significantly regulated in the disease group. An
unsupervised clustering of this disease status gene signature (1,045
DEGs) showed the substantial grouping of PD0 patient samples
(Figure 3E). In addition, we depicted the exclusive gene sets of
PD180 vs. PD0 and A vs. PD0 comparisons, and the intersection
between them, which accounted for 40 up- and 44 downregulated
genes andmay reveal genes related to a “molecular footprint”of the
L. infantum infection because both cured patients and
asymptomatic individuals had already been infected (unrelated
to whether they became sick or not). The exclusive gene set of
PD180 vs. PD0 may indicate genes associated with “molecular
scarring” triggered by immunopathological mechanisms of the
Frontiers in Immunology | www.frontiersin.org 8145
disease. Last, the exclusive gene set of A vs. PD0 comparison (73
up- and 120 downregulated genes) might uncover genes related to
infection control and resistance mechanisms, which abrogate the
development of visceral leishmaniasis. To assign these signatures
regarding “molecular footprint”, “molecular scarring” and
“controlling of infection” is difficult due to the individual sample
heterogeneity in non-diseased groups (as observed in Figure 2B
and Supplementary Figure 1 for individual samples) but is still a
valid assumption since the groups PD180 (cured) and
Asymptomatic (A) groups presented higher molecular
perturbation scores than the healthy control group, as assessed
by the MDP tool (Supplementary Figure 1).

Furthermore, to assess the composition of cellular subtypes of
leukocytes in VL, we applied the CIBERSORT method for
deconvolution analysis of blood transcriptomes (Figure 4). In
addition to standard subtypes observed in blood count data
(Table 2), the leukocyte gene signature matrix was able to
discriminate natural killer (NK) cells, and subsets of T and B
cells. Through data reuse, we also compared our cellular profile
with the composition of another study in VL with the blood
transcriptome obtained by microarray (11) (Supplementary
Figure 2). The cell proportions in whole blood RNA-seq data
of VL patients (PD0) showed variations mainly in neutrophils,
macrophages, monocytes, NK cells, T lymphocytes and plasma
cells (Figure 4A). When compared to the study of Gardinassi
et al. (Supplementary Figure 2), in general, similarities in
alteration tendency between both transcriptomes regarding
cellular composition but also unmatched alterations for some
cell subtypes were observed. In addition to the composition, the
proportions of most cell types (irrespective of which group) were
A B D

E F G IH

C

FIGURE 4 | Cellular deconvolution of blood transcriptomes in human visceral leishmaniasis using the CIBERSORT method: (A) Leukocyte proportions inferred from
gene expression profiles of blood samples. Plots by cell type displaying the relative cell proportions for eosinophils (B), neutrophils (C), plasma cells (D), activated
memory CD4 cells (E), CD8 T cells (F), monocytes (G), activated NK (H) cells and resting NK cells (I). Groups were classified as active VL (PD0) and VL-free (PD180,
A and C groups), in which the PD180 subjects were treated and considered clinically cured after 180 days of disease follow-up (PD0 and PD180 are paired groups,
n = 11); A: asymptomatic (n = 9); C: healthy uninfected controls (n = 9). The differences between cell proportions were evaluated by Wilcoxon with Holm’s correction.
*P < 0.05, **P < 0.01, and ***P < 0.001.
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different between the two datasets, such as neutrophils, plasma
cells (both higher in this study) and monocytes (lower in this
study). The profiles for neutrophils, plasma cells, activated
memory CD4 T cells and CD8 T cells presented similar
tendencies in both studies (Figures 4C–F), whereas the profile
for monocytes presented the opposite behavior; here, it was
increased in VL, but in Gardinassi et al., diseased patients
presented a reduction in monocytes (Figure 4G). However, the
variation in the number of monocytes before (PD0) and after
treatment (PD180) was not significant, as shown in Table 2. This
increase checked through CIBERSORT is related to the gene
expression profile signed by monocytes. For NK cells, the profile
presented complementary findings for activated (Figure 4H) and
resting (Figure 4I) states between both studies, but both studies
presented higher proportions of NK cells in active VL than in
posttreatment, asymptomatic and control groups (Figure 4A).
NK cells are able to recognize and are activated by Leishmania
lipophosphoglycan (LPG), which is a dominant promastigote-
specific surface glycoconjugate (55), via TLR-2 (56), but recently,
it has been reported that human NK cells cannot be
straightforwardly activated by Leishmania promastigotes and
require monocyte-derived signals, such as transpresentation of
IL-18, for their activation (57).

Long Noncoding RNA (lncRNA) Expression
in Blood Upon L. infantum Infection
Several processed lncRNAs are capped and polyadenylated (15).
Due to this feature, poly-A selection as a strategy of enrichment
used in our RNA-seq was able to reveal the set of lncRNAs
expressed in the blood of visceral leishmaniasis patients.
Therefore, we also addressed the analysis of long noncoding
RNAs, which is completely new in the VL transcriptomics field.
From the total of 14,247 expressed genes, we identified 1,147
transcripts annotated as lncRNAs, according to gene biotype
annotations in BioMart Ensembl. They were widely distributed
across human chromosomes, from 1 to 22 and X, in which
chromosomes 17 and 1 accounted for the largest numbers of
lncRNAs, 95 (~8.3%) and 94 (~8.2%), respectively (Figure 5A
and Supplementary Table 2). No lncRNA from the Y
chromosome was detected in our RNA-seq dataset. The
average gene length of the identified lncRNAs was 311,117 bp,
with 9.3% being shorter than 1,000 bp and 41% being higher than
10,000 bp (Figure 5B and Supplementary Table 2). According
to our analyses, 504 (~44%) lncRNAs were found to be expressed
as unique transcripts (one transcript count in annotated genome
version). Approximately 28% of lncRNAs had a transcript
count from 2 to 5 (28%), and one expressed lncRNA
(ENSG00000179818) presented 239 transcripts (Figure 5C and
Supplementary Table 2). We identified the class of sequence
ontology terms of 1,140 from 1,147 lncRNAs, namely, 484
(~42%) antisense, 482 (~42%) intergenic, 116 (~10%) sense
intronic, 51 (~4.5%) bidirectional, and 7 (~0.6%) sense-
overlapping lncRNAs (Figure 5D and Supplementary Table 2).

Based on the 2,427 unique DEGs found in the comparisons of
nondiseased groups (A, C, and PD180) versus active VL, we
searched for lncRNA gene biotype annotations in specific gene
sets presented earlier (1,512 DEGs), focused on the central
Frontiers in Immunology | www.frontiersin.org 9146
intersection (1,045 common DEGs) and the intersections
between PD180 vs. PD0 and A vs. PD0 comparisons (88 DEGs),
and their exclusive gene sets, which account for 186 and 193DEGs,
respectively (Figure 3B). A total of 147 lncRNAs (9.7%) out
of 1,512 DEGs were found to be differentially expressed in this
dataset (Supplementary Table 3), in which 89 (60.5%) and 58
lncRNAs were up- and downregulated, respectively, in the
non-diseased groups compared to PD0 patients with active VL.
Of note, the PD180 vs. PD0 exclusive gene set, with 186 DEGs,
included 35 lncRNAs (19%), among which the expression of
30 genes significantly increased upon the clinical cure of VL,
which might suggest that the suppression of these lncRNAs is
related to the transcriptional regulation of protein-coding genes
(PCGs) involved in the immunopathology of disease.

Notably, we highlighted MALAT1 (metastasis-associated lung
adenocarcinoma transcript 1), which presented a statistically
significant 2-fold increase in cured VL patients (PD180 group,
Supplementary Table 1). MALAT1 is one of the most studied
lncRNAs, exhibiting a variety of molecular regulatory functions in
transcription and alternative splicing by binding in chromatin
regions and binding in a plethora of protein, miRNA and mRNA
molecules (58). MALAT1 has been extensively studied not only in
oncology but also in many inflammatory diseases, where it plays a
controversial role due to its action as either an oncogene or a tumor
suppressor gene depending on the type of cancer (59).
Interestingly, this controversial role of MALAT1 was also
observed in parasitic protozoan infections, where deficiency of
this lncRNAwas important to enhance immunity and for clearance
of L. donovani in a VLmouse model; however, in an experimental
malariamodel,Malat1−/−mice presentedmore severe disease (60).
In this latter cited work, the authors suggest that MALAT1 is a
nonredundant regulator of immunity by promoting the expression
of the Maf/IL-10 axis in effector CD4+ T cells. This immune
regulator function of MALAT1 was also found in tolerized mice
with cardiac allografts by inducing tolerogenic dendritic cells and
regulatory T cells through the miRNA-155/DC-SIGN/IL10
axis (61).

Although lncRNAs have portrayed less than a tenth of the
polyadenylated transcriptome, the proportion of lncRNAs in the
DEG gene set and their regulation pattern (up- or
downregulation) were significantly associated and enriched in
the differential expression data as calculated by the chi-square
test (p-value = 0.0004, Figure 5E). The clustering of expression
data of the 147 differentially expressed lncRNAs highlights the
distinct expression pattern of selected lncRNAs in the active VL
group (PD0, Figure 6). Generally, lncRNAs are expressed at low
levels (62). Notably, some lncRNAs presented relatively high
levels of expression, such as LINC01871 and AC012368.1
(Figure 6, green heatmap), as indicated by their TPM values.
Other lncRNAs presented marked fold change regulation, such
as IL21-AS1 and AC111000.4, which presented an average 16-
fold increase (log2FC = 4) and an average 32-fold decrease
(log2FC = −5), respectively, in the PD0 active VL group
compared to the non-diseased groups (Supplementary Table 3).
The most upregulated DE lncRNA in VL patients was the
completely unknown lncRNA LINC01501 (long intergenic
nonprotein coding RNA 1501), which presented an average fold
March 2022 | Volume 13 | Article 784463
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increase of 64× (log2FC = 6) in the PD0 group (Supplementary
Table 4).

lncRNA–mRNA Coexpression Analysis
Subsequently, we integrated the profiles of protein-coding genes
(i.e., mRNAs) and long noncoding RNAs by performing
lncRNA–mRNA coexpression analysis. Pearson correlations
for the lncRNA–mRNA coexpression profile encompassing
the 147 lncRNAs (89 up- and 58 downregulated) and the
1,263 (567 up- and 696 downregulated) mRNAs differentially
expressed (as numbered in Figure 5D) identified 4,901 positive
and 1,223 negative highly correlated pairs of lncRNA–mRNA
associations (Supplementary Table 5). Networks were built
using these coexpression correlations (Figure 7) to identify
Frontiers in Immunology | www.frontiersin.org 10147
hubs of lncRNAs (e.g., KDM7A-DT, USP30-AS1 and
LINC01501) and mRNAs (e.g., NPRL3, LAG3 and E2F2). The
top 20 hubs within these networks for lncRNAs and mRNAs
were identified by flagging them with their respective gene
symbols. The top pairs of coexpressed lncRNA–mRNA
positively (e.g., AC111000.4-CCR3; AC111000.4-IL5RA) and
negatively correlated profiles (e.g., USP30-AS1-CCN3;
LINC01501-IL1RAP) were identified by ranking Pearson’s
correlation results (Supplementary Table 5). The main
pathways enriched by this highly correlated lncRNA–mRNA
expression profile corroborated the results found when the
whole expression profiling was analyzed (Figures 2C, D and
Presentation 1), with common Reactome enrichment results
(Supplementary Table 5).
A

B

D E

C

FIGURE 5 | Features of lncRNAs detected in polyadenylated RNA-seq of human visceral leishmaniasis. (A) Chromosomal distribution of lncRNAs across the 22
autosomes and the X chromosome; (B) Gene length distribution of lncRNAs; (C) Number of transcripts presented by each lncRNA; (D) Classification of lncRNAs
according to sequence ontology terms; (E) Pearson’s chi-square test using the number of lncRNAs and protein-coding genes (PCGs) and regulation patterns (up- or
downregulated transcripts) in DEG datasets (comparisons of non-diseased groups, A, C and PD180 to PD0 active VL). The size and color intensity of circles are
proportional to the contribution of the cell to the significance of the chi-square test. The standardized residuals are scaled at the sidebar, where positive and negative
values indicate positive and negative associations, respectively. Ob, observed value; Ex, expected value, c2 = 12.343, df = 1, p-value = 0.0004.
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Regulatory networks of lncRNAs act in cis- and trans-
regulation. Human genome annotation has revealed that the
vicinity of PCGs is surrounded by lncRNAs, and as we verified
by sequence ontology of expressed lncRNAs, most of them were
classified as antisense or intergenic (Figure 5D). Cis-acting
lncRNAs play gene regulation functions from their own
transcription sites, operating in PCGs at proximal distances
within the same chromosome (63). Many intergenic (lincRNA)
long noncoding RNAs are placed in topologically associated
domains (TADs), an approximately 1 Mb genomic segment
featuring chromatin interactions; cis-acting lincRNAs have been
associated with modeling the chromosomal architecture (64). To
infer potential cis-regulation, the highly correlated lncRNA–
mRNA pairs were tracked into their genomic coordinates.
lncRNAs within a 300-kb window size from the transcription
start site (TSS) of the correlated PCG were retrieved, resulting in
22 potential cis-acting lncRNAs all positively associated with their
respective mRNAs (Figure 8). The majority are located
downstream of the TSS of the PCG pair, and the five sites
upstream of the PCG pair are lincRNAs. Out of six potential
cis-acting lncRNAs upregulated in VL patients, CA3-AS1 (CA3
antisense RNA 1) presented higher fold regulation than the non-
diseased group (log2FC = 3.035, approximately 9-fold increase).
CA3-AS1 has been identified as a key lncRNA in gastrointestinal
cancers (65–67). Even more differentially expressed, its correlated
PCG pair, CA1 (carbonic anhydrase 1), presented a 24-fold
increase during active L. infantum infection. GO (Gene
Ontology) biological process classification for CA1 revealed that
this protein participates in the interleukin-12-mediated signaling
pathway (GO:0035722) and is involved in gene and protein
expression by JAK-STAT signaling after IL-12 stimulation
according to the Reactome database (R-has-8950505).

As shown by genomic localization mapping, most coexpressed
lncRNA–mRNA pairs were located in different chromosomes
or distally in the same chromosome, making the majority of
lncRNA networks hypothetically play a role in transcription as a
trans-acting regulation. In fact, lncRNAs that may act near their
transcription sites may also undertake regulatory functions far
from the TSS or even outside the nucleus (12, 63). Mechanisms
for the transregulation of transcription depend on interactions
of lncRNAs with proteins, DNA and other RNA molecules.
Additionally, depending on their subcellular localization,
lncRNAs may interfere with posttranscriptional and intracellular
signaling (15). Based on this framework, we proceeded to mine
data for lncRNA subcellular localization and lncRNA interactions
using the LncSLdb database (34) and the LncLocator webtool (35)
for subcellular localization and the RNAInter database (36) for an
interaction overview of hub lncRNAs selected from coexpression
network analyses (Figure 7 and Supplementary Table 5),
and inferred cis-acting lncRNAs (Figure 8). The analysis of this
subset comprises 51 lncRNAs from the 147 DE lncRNA list
(Supplementary Table 4) detailed in our work. A piece of this
interactome is summarized in Table 3, and interactions related
to the 51 lncRNAs are available as additional material
(Supplementary Table 6).

Most of the interactors found in RNAInter is a database
belong to microRNA (miRNA) and transcription factor
FIGURE 6 | Heatmap of the expression profiles of the top 20 lncRNAs
expressed in VL patients (PD0). The top selection retrieved those genes within
the dataset of 147 primarily selected DE lncRNAs (Supplementary Table 2)
based on ranking of statistical significance (FDR values) followed by fold
regulation (log2FC values). Gene expression regulation by group is represented
by the z score of the cpm read count, and the transition color scale from red
to blue indicates up- and downregulation, respectively. Gene expression level
is represented by mean FPKM values at the side (green heatmap column),
where color intensity toward dark green indicates increasing levels (highly
expressed lncRNAs).
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categories. Of note, 8 out of 51 lncRNAs did not present any
annotation in noncoding RNA databases (Supplementary Table
6) but reached high scores for cytoplasm/cytosol subcellular
localization prediction. Three lncRNAs of these 8 (AL157756.1,
AC100810.1, and AC007922.1) presented exclusively at least 40
highly positively coexpressed PCGs (i.e., same pattern
regulation) and three other lncRNAs presented mixed
correlations of PCG pairs, including AC111000.4, the most
downregulated lncRNA in VL patients. For those interactions
with miRNA, we searched for miRNA targets using miRDB (37)
Frontiers in Immunology | www.frontiersin.org 12149
to provide the PCGs coexpressed with the respective lncRNAs,
which in turn were retrieved from coexpression network analysis
(last column of Table 3). lncRNAs that present miRNA binding
sites can interact with miRNAs by acting as competing
endogenous RNAs (ceRNAs) or natural miRNA sponges,
building another complex layer of the transcriptional
regulatory network (68). As shown in Table 3, CA3-AS1
interacts with hsa-miR-93-5p, which in turn targets the
NEDD4L (E3 ubiquitin-protein ligase NEDD4-like) protein
and the transcriptional repressor MXI1 (Max-interacting
A

B

FIGURE 7 | lncRNA–mRNA coexpression network analysis. (A) A network was built with all highly correlated lncRNA–mRNA pairs (1,870 pairs; Supplementary
Table 6) obtained for 58 lncRNAs downregulated in non-diseased groups (i.e., upregulated in VL patients—PD0); (B) A network was built with all highly correlated
lncRNA–mRNA pairs (4,256 pairs; Supplementary Table 6) obtained for 89 lncRNAs upregulated in nondiseased groups (i.e., downregulated in VL patients—PD0).
The top 20 hubs for lncRNAs and mRNAs are flagged with gene symbols in yellow and green, respectively.
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protein 1); CA3-AS1, NEDD4L and MXI1 were upregulated
during L. infantum infection. The ceRNA regulator function of
CA3-AS1 was described elsewhere (66), where it was found to be
an anti-oncogene in gastric cancer by sponging hsa-miR-93-5p.
Interactions with miRNAs were found for the other 6 lncRNAs,
of which 5 interacted with multiple miRNAs. The upregulated
hub GASAL1 (growth arrest-associated lncRNA 1) presented the
highest number of miRNA interactions and was the only
lncRNA correlated with IFNG expression. GASAL1 has been
shown to be involved in the inhibition of tumor growth in lung
cancer and may improve chronic heart failure by downregulating
the TGF-b signaling pathway (69, 70).

The upregulated lncRNAs, AL139220.2 (novel transcript) and
KDM7A-DT (KDM7A divergent transcript), were predicted to
interact with the same five transcriptional regulators that were
coexpressed with LYL1 (Protein lyl-1), KLF1 (Kruppel-like factor
1), PBX1 (Pre-B-cell leukemia transcription factor 1), TAL1 (T-cell
Frontiers in Immunology | www.frontiersin.org 13150
acute lymphocytic leukemiaprotein1) andMXI1 (Max-interacting
protein 1), with the latter being a repressor of target genes. PBX1 is
involved in natural killer cell differentiation (GO:0001779),
whereas LYL1 plays a role in B cell differentiation (GO:0030183).
KLF1 and TAL1 are transcription regulators of hemopoietic
differentiation. KDM7A-DT, also known as JHDM1D-AS1, has
been suggested to play a protective role during ROS-induced
apoptosis in periodontal ligament stem cells (71). Experimental
validation data for AL139220.2 were not found.

LYL1 and PBX1 were also interactors of the downregulated
PSMA3-AS1 (PSMA3 antisense RNA 1), a lncRNA that
presented predicted interactions with 4 miRNAs, including
hsa-miR-105-5p, which targets TLR10 (downregulated in VL
patients). PSMA3-AS1 was a DE lncRNA only in the comparison
of PD180 vs. PD0 (Supplementary Table 3). Recently, PSMA3-
AS1 has been validated as a ceRNA involved in the malignant
phenotypes of esophageal cancer by modulating the miR-101/
FIGURE 8 | Potential cis-acting lncRNAs inferred from highly correlated lncRNA-mRNA pairs in the genomic vicinity. A window size of 300 kb was set to consider
cis-regulation. Gene IDs on the left refer to lncRNAs, whereas gene IDs on the right refer to PCGs (mRNAs). The central column of squares indicates the position of
PCGs related to lncRNAs, and the graded color indicates the pattern regulation in PD0 (logFC). Bubbles indicate the position of lncRNAs upstream (left panel) or
downstream (right panel) of the PCG. The size and color intensity of bubbles indicate the pattern regulation of lncRNAs in PD0. The blue scale indicates
downregulation, whereas the red scale indicates upregulation in VL patients (PD0).
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TABLE 3 | Potential lncRNA subcellular localization and interactors based on highly correlated lncRNA–mRNA pairs differentially expressed during L. infantum infection.

ctiond,e Coexpressed PCG pairsf

a-let-7c-5p, hsa-let- miRNA targets: CARM1, ANK1, IFIT1B, TRIM10, PSMF1, FRMD4A,
TAL1, TSPAN5, SERF2, XK, CDC34, RBM38, BCL2L1, PBX1,
IGF2BP2
LYL1, KLF1, PBX1, MXI1, TAL1
miRNA targets: NEDD4 L, MXI1
MXI1
LYL1, TAL1
↓ MXD1, ↓ BACH1, ↑ E2F2, ↑ FOXM1, ↑ EZH2
↓ MXD1, ↓ FOS, ↑ E2F8, ↑ E2F7, ↑ EZH2, ↑ CENPA (histone)
↓ MXD1, ↓ FOS, ↑ E2F7, ↑ EZH2
↑ NUF2
↓ MXD1, ↓ FOS, ↑ E2F8, ↑ E2F7, ↑ EZH2, ↑ CENPA (histone)

Coexpressed PCG pairsf

miRNA target: UBE2L6

↑ LYL1, ↑ KLF1, ↑ PBX1, ↑ MXI1, ↑ TAL1

↓ TLE3, ↑ EZH2

↑ E2F2, ↑ FOXM1, ↑ MYBL2, ↑ EZH2, CENPA (histone)

p, hsa-miR-1185-5p,
p,

miRNA targets: ↓ ZFP28, ↓ PDE3B, ↓ ATP2B1, ↓ HDAC9, ↓ EPHA4,
↓ MOB3B, ↓ ZNF677, ↓ TCTN1, ↓ MAP3K1, ↑ POMP, ↑ E2F2, ↑
EMC3
↑ BATF

, hsa-miR-20b-5p,
6b-5p, hsa-miR-

miRNA targets: ↓ TMCC3, ↓ SORL1 e ↓ OLIG1

miRNA targets: ↓ BAZ2B, ↑ NEDD4 L, ↑ ARHGEF12
↓ MXD1

5p, hsa-miR-101-3p, miRNA targets: ↓ ZBTB18, ↓ ZFP28, ↓ PKN2, ↓ TP53INP1, ↓
ZFYVE16, ↓ VCPKMT, ↓ TMEM65, ↓ ZNF677, ↓ TLR10, ↑ TGFB1I1,
↑ PBX1
↑ LYL1, ↑ PBX1

(ranging from 0 to 1) were considered.
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Potential cis-acting

lncRNA PCG (mRNA) pair in
chromosome

vicinity

Number of PCGs
coexpressed (total;
positive; negative)b

Subcellular
localizationc

Number and type of intera

↑ AL139220.2a ↑ SLC6A9 128; 128; 0 Cytosolc2 4 miRNA: hsa-miR-107, hsa-miR-103a-3p, h
7b-5p

5 TF
↑ CA3-AS1 ↑ CA1 22; 22; 0 – 1 miRNA: hsa-miR-93-5p

1 TF
↑ AC130456.3 ↑ TMC5 38; 38; 0 – 2 TF
↓ UBR5-AS1 ↓ RRM2B 166; 100; 66 – 5 TF
↓ AC012368.1 ↓ PELI1 269; 172; 97 – 5 TF and 1 histone
↓ LINC01127 ↓ IL1R1 214; 171; 43 – 4 TF

↓ IL1R2 1 DNA
↓ AC107959.3 ↓ TNFRSF10C 214; 160; 54 – 5 TF and 1 histone

Potential trans-acting
lncRNA Top coexpressed PCG

pairsg
Number of PCGs coexpressed
(total; positive; negative)b

Subcellular
localizationc

Number and type of interactiond,e

↑ FAM225A ↑ C2 16; 16; 0 Nucleus/Cytoplasmc1

Cytosolc2
1 miRNA: hsa-miR-1-3p

↑ FBXO6
↑ PSME2

↑ KDM7A-DT ↑ UBB 154; 152; 2 – 5 TF
↑ STMP1
↑ RBM38

↑ IL21-AS1 ↑ FABP5 117; 47; 70 Cytoplasmc2 2 TF
↑ CDKN2A
↑ CTLA4

↑ AC092718.4 ↑ CDCA3 87; 78; 9 – 4 TF and 1 histone
↑ NCAPH
↓ IRS2

↑ MIR4435-2HG ↑ H2AJ, 49; 33; 16 – 6 miRNAs: hsa-miR-6754-5p, hsa-miR-128-3
hsa-miR-105-5p, hsa-miR-103b, hsa-miR-1-↑ PTMS,

↓ HDAC9
1 TF

↑ GASAL1 ↓ EEPD1, 38; 5; 33 Cytosolc2 7 miRNAs: hsa-miR-93-5p, hsa-miR-519d-3p
hsa-miR-20a-5p, hsa-miR-17-5p, hsa-miR-1
106a-5p

↓ ADGRE3,
↑ IFNG

↓ AC004069.1 ↑ DNAJA4, 65; 53; 12 Cytosolc1, Ribosome
c1, Nucleusc1

Cytoplasmc2

2 miRNAs: hsa-miR-10b-5p, hsa-miR-10a-5p
↓ ST3GAL6 1 TF

↓ PSMA3-AS1 ↓ ZNF439 44; 19; 25 – 4 miRNAs: hsa-miR-106b-5p, hsa-miR-106a
hsa-miR-105-5p↑ PSMF1

2 TF

alncRNA hub in network analysis (Figure 7).
bNumbers were extracted from the expression correlation results available in Supplementary Table 4.
cHighlighted results from data mining in the LncSLdb Database (c1) or prediction by the LncLocator tool (c2). For in silico prediction, only scores higher than 0.7
dHighlighted results from data mining in RNAInter Database. Interactions of lncRNAs with microRNAs (miRNAs), transcription factors (TFs), RNA binding proteins (RB
PCGs were listed.
eAll lncRNAs displayed here present at least 35 histone modification results.
fPCGs were extracted from the expression correlation results available in Supplementary Table 4.
gPCGs with the highest correlation coefficients according to the results available in Supplementary Table 4.

Up or down arrows indicate the expression regulation pattern in VL patients (PD0 group).
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EZH2 axis (72). EZH2 (enhancer of zeste 2 polycomb repressive
complex 2 subunit) is a histone methyltransferase and is another
transcriptional repressor found as an interactor of our lncRNA
network. In addition, PSMA3-AS1 has been discovered to
sponge miR-409-3p and is considered an oncogenic lncRNA
involved in the aggressive phenotype of non−small cell lung
carcinoma (73).

Other coexpressed transcription factors commonly found as
interactors of lncRNAs were the downregulated transcriptional
repressor MXD1 (Max dimerization protein 1) and the E2F
family of activators and repressors, whose coexpressed genes
(E2F2, E2F7 and E2F8) were all upregulated in VL patients. The
activity of E2F members is critical for transcriptional machinery
throughout the cell cycle and cytokinesis (74). E2F2 is one of the
transcription activators signed as a gene signature of the Th1
immune response (75). Finally, we highlight the upregulated
lncRNA MIR4435-2HG, which was predicted to interact with 6
miRNAs, and BATF (basic leucine zipper ATF-like transcription
factor), a transcription regulator that controls the differentiation
of lymphocytes, specifically on switch isotypes in B cells and
Th17 cells, follicular T-helper (TfH) cells, and CD8+ dendritic
cells by interacting with members of the interferon-regulatory
factor (IRF) family (76). Moreover, BATF plays an essential role
during hematopoiesis and the homeostasis of effector functions
of innate lymphoid cells (ILCs) (77), which are innate
counterparts of T cells and are predominantly situated at the
mucosal barriers (78). To the best of our knowledge, this study is
the first to infer a lncRNA–TF interaction between BATF and
MIR4435-2HG within a transcriptional network regulation of a
human infectious disease. Furthermore, MIR4435-2HG bound
to EZH2 and promoted hepatocellular carcinoma progression
via EZH2-mediated epigenetic silencing of p21 and E-cadherin
expression (79). MIR4435-2HG lncRNA has been extensively
studied in recent years, with 41 related articles in PubMed
(https://www.ncbi.nlm.nih.gov/gene/541471), in which 34 of
them have shown experimental validation of its role in tumor
progression and as a prognostic biomarker in different types of
cancer. It is also known as AGD2, LINC00978, MIR4435-1HG,
MORRBID and lncRNA-AWPPH and acts as a ceRNA by
sponging many other miRNAs (not listed in Table 3), such as
miR-296-5p, which was identified to be part of the Akt2/SNAI1
signaling pathway involved in the development of oral squamous
cell carcinoma triggered by Fusobacterium nucleatum
infection (80).

Among the hub lncRNAs featured in our work, some of them
have been shown to be stable and detectable in blood plasma
samples and circulating exosomes elsewhere, such as MALAT1,
MIR4435-2HG, and PSMA3-AS1 (81–83), which may promptly
favor their potential as blood biomarkers. For other lncRNAs,
such as IL21-AS1, AC111000.4, CA3-AS1, GASAL1, and
LINC01501, no literature associated with plasma or circulating
exosomes was found. However, since this study was not designed
for diagnosis purpose, future studies should be performed to
evaluate these lncRNAs as new avenue to be explored in VL. The
significance of lncRNAs as master regulators of many biological
processes in health and diseases is well established, and their
application as biomarkers for disease progression has been
Frontiers in Immunology | www.frontiersin.org 15152
rapidly increased in cancer biology but is still incipient in
parasitic diseases. Furthermore, lncRNAs have been found in
body fluids, freely or inside exosomes (84). Detecting eligible
lncRNAs in plasma and/or serum is a promising noninvasive and
affordable method for prognosis, and many studies with tumors
have shown its value in either complementary diagnosis or
aggressiveness prediction (84, 85).
CONCLUDING REMARKS

For the first time, an integrated analysis of lncRNAs and protein-
coding genes (mRNAs) was performed in human visceral
l e i shmanias i s us ing b lood transcr ip tomics . B lood
transcriptomes obtained by mRNA-seq allowed us to surpass
the typical analyses comprising gene pathways and protein
networks, adding an extra and important layer to this big
picture captured by transcriptomics, the long noncoding RNA
profile. From a comprehensive analysis, we highlighted lncRNAs
such as MALAT1, CA3-AS1, GASAL1, PSMA3-AS1, MIR4435-
2HG, IL21-AS1, AC111000.4, and LINC01501, with these last
three being the most regulated lncRNAs compared active VL to
the VL-free groups. Moreover, by comparing VL patients before
and after a six-month follow-up, this study suggests there is a
potential for use lncRNAs in plasma and/or serum as marker for
monitoring disease remission. Focusing on a set of differentially
expressed genes, the lncRNA–mRNA coexpression profile
presented here was able to provide valuable and insightful data
to help unravel the complexity of host/parasite interactions in
human visceral leishmaniasis caused by L. infantum infection.
We believe that our study will be useful to guide future studies for
searching lncRNAs as biomarkers, new targets for drugs or drug
repurposing and new therapies to control this neglected disease.
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Presentation 1 | CEMiTool html report with results for coexpression modules of
RNA-seq analysis of blood in human visceral leishmaniasis caused by L. infantum
infection.
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Supplementary Figure 1 | Heterogeneity of samples analyzed using the
Molecular Degree of Perturbation (MDP) tool. (A) Molecular perturbation scores
plotted for each sample based on 14,247 genes expressed across the four groups.
DEGs shared among all comparisons of VL patients to nondiseased groups (as
numbers in (Figure 3), central overlap); (B–D) Boxplots representing MDP scores
by group quantified based on three subsets of DEGs, where the first was
composed of 84 DEGs shared between A vs. PD0 and PD180 vs. PD0
comparisons (b), the second was composed of 186 DEGs exclusive for PD180 vs.
PD0 comparison (c) and the third was composed of 193 DEGs exclusive for A vs.
PD0 comparison.

Supplementary Figure 2 | Cellular deconvolution of blood transcriptomes in
human visceral leishmaniasis using the CIBERSORT method. (A) Leukocyte
proportions inferred from gene expression profiles of blood samples from
Gardinassi et al., 2016 (microarray). (B) Plots by cell type displaying the relative cell
proportions for neutrophils, eosinophils, plasma cells, memory CD4 cell plasma
cells, CD8 T cells, monocytes, activated NK cells and resting NK cells. In the study
of Gardinassi et al., groups were classified as CTRL (healthy uninfected controls, n=
15), DTH (asymptomatic patients, n= 14), TRT (patients at 2-5 months after
treatment, considered under remission of the disease; n= 8) and VL (diseased
patients, n= 8).

Supplementary Table 1 | Excel spreadsheets with results for differential
expression analysis for pairwise comparisons between nondiseased groups PD180
(cured VL patients, 180 days after treatment), A (asymptomatic subjects) and C
(healthy controls) against PD0 (active VL patients). Only differentially expressed
genes (DEGs) at FDR <0.05 with -1< log2-fold-change > +1 (twofold decrease or
increase) were included for further analysis.

Supplementary Table 2 | Annotation of 1,147 lncRNAs expressed in RNA-seq in
this work. The main features were retrieved from the GRCh38.p13 human genome
version using the BioMart Ensembl LNCipedia database.

Supplementary Table 3 | Annotation of 147 selected differentially expressed
(DE) lncRNAs in RNA-seq in this work. The main features were retrieved from the
GRCh38.p13 human genome version using the BioMart Ensembl, LNCipedia and
Expression Atlas databases.

Supplementary Table 4 | Top50 lncRNAs selected from 147 DE lncRNAs
(Supplementary Table 3 spreadsheet) ranked by statistical significance (FDR
values) followed by fold regulation (log2FC values) in VL patients compared to
nondiseased groups.

Supplementary Table 5 | Highly correlated pairs of lncRNA-mRNA retrieved by
Pearson’s correlation using log(cpm) read count for 147 DE lncRNAs and 1,263 DE
mRNAs from all samples. The cutoff for the correlation coefficient was -0.8 < r > 0.8;
all results presented a p value < 6e-10. Hubs from networks and Reactome
pathways are also tabulated herein.

Supplementary Table 6 | Catalog of lncRNA subcellular location and interaction
partners searched for lncRNAs featuring hubs in network analysis (Figure 7) and
predicted as cis-acting lncRNAs (Figure 8). Data mining was performed using the
LncSLdb and RNA Inter databases and the LncLocator prediction tool.
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Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China

Psoriatic arthritis (PsA) is a unique immune-mediated disease with cutaneous and
osteoarticular involvement. However, only a few studies have explored the susceptibility
of osteoarticular involvement in psoriasis (Ps) at the genetic level. This study investigated
the biomarkers associated with osteoarticular participation and potential shared molecular
mechanisms for PsA and ankylosing spondylitis (AS).

Methods: The RNA-seq data of Ps, PsA, and AS in the Gene Expression Omnibus (GEO)
database were obtained. First, we used the limma package and the weighted gene co-
expression network analysis (WGCNA) to identify the potential genes related to PsA and
AS. Then, the shared genes in PsA and AS were performed using the GO, KEGG, and
GSEA analyses. We also used machine learning to screen hub genes. The results were
validated using external datasets and native cohorts. Finally, we used the CIBERSORT
algorithm to estimate the correlation between hub genes and the abundance of immune
cells in tissues.

Results: An overlap was observed between the PsA and AS-related modules as 9 genes.
For differentially expressed genes in AS and PsA, only one overlapping gene was found
(COX7B). Gene enrichment analysis showed that the above 9 genes might be related to
the mRNA surveillance pathway. The GSEA analyses showed that COX7B was involved in
adaptive immune response, cell activation, etc. The PUM1 and ZFP91, identified from the
support vector machine, had preferable values as diagnostic markers for osteoarticular
involvement in Ps and AS (AUC > 0.7). Finally, CIBERSORT results showed PUM1 and
ZFP91 involvement in changes of the immune microenvironment.

Conclusion: For the first time, this study showed that the osteoarticular involvement in
psoriasis and AS could be mediated by the mRNA surveillance pathway-mediated
abnormal immunologic process. The biological processes may represent the cross talk
between PsA and AS. Therefore, PUM1 and ZFP91 could be used as potential
biomarkers or therapeutic targets for AS and Ps patients.

Keywords: psoriasis, psoriatic arthritis, ankylosing spondylitis, WGCNA, differential gene analysis
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INTRODUCTION

Psoriasis (Ps) is a chronic inflammatory skin disease with an
incidence rate of 1% to 3%. Arthritis occurring in 10%–40% of
psoriasis patients is called psoriatic arthritis (PsA) (1). In most
patients with PsA, skin manifestations appear first, preceding
arthritis over several years (2). Terminal stages of PsA are
generally characterized by joint deformity and/or spinal
ankylosis. Osteoarticular involvement represents any
symptoms and signs of osteoarticular system, including
spondylitis, enthesitis, peripheral arthritis, and dactylitis which
affects the patient’s overall quality of life. Previous studies have
compared the differences in the genetic background between
psoriasis and PsA (3–5). However, as genomically similar but
phenotypically distinct diseases, more insight is required at the
transcriptomic level to understand the biomarkers or biological
pathways associated with the development of osteoarticular
involvement in Ps and AS (6).

PsA is a member of the spondyloarthropathy (SpA) family.
The SpA diseases, including psoriatic arthritis, ankylosing
spondylitis (AS), arthritis associated with inflammatory bowel
disease (IBD), reactive arthritis, and undifferentiated
spondyloarthropathy, share common genetic backgrounds and
present overlapping clinical signs. The ankylosing spondylitis is
the prototype of the SpA group. In addition, the bioinformatics
background of AS can be a potential representative of
osteoarticular involvement, especially axial involvement in
spondyloarthropathy (7).

Therefore, this study was carried out to explore osteoarticular
involvement-associated biomarkers and pathways in psoriasis
patients. We used the limma package and the weighted gene co-
expression network analysis (WGCNA) to identify the potential
common genes related to PsA and AS. Additionally, we analyzed
the published gene expression data at the Gene Expression
Omnibus (GEO). We showed that the osteoarticular
involvement in psoriasis and AS could be associated with
mRNA surveillance pathway-mediated abnormal processes.
Moreover, the identified PUM1 and ZFP91 genes were
preferable as diagnostic markers for osteoarticular involvement
in Ps and AS. To the best of our knowledge, this is the first study
to use a systemic bioinformatic analysis approach to explore the
gene signatures of osteoarticular involvement in Ps and AS.
MATERIALS AND METHODS

Datasets and Data Preprocessing
We obtained the GEO database’s original gene expression profile
data and clinical information (8). We used the keywords
“psoriatic arthritis” and “psoriasis” or “ankylosing spondylitis”
to search RNA-seq profiles in the GEO database. The following
filter criteria were used: the organization used for sequencing
should be peripheral blood mononuclear cells (PBMC), and the
number of samples of each group should not be less than 10 to
ensure the accuracy of the WGCNA. Finally, the GEO datasets
numbered GSE61281, GSE25101, and GSE73754 were obtained.
Frontiers in Immunology | www.frontiersin.org 2157
The GSE61281 dataset was used on the GPL6480 platform.
The dataset contained 40 samples, including peripheral blood
samples from cutaneous psoriasis without inflammatory arthritis
(n = 20) and 20 peripheral blood samples from PsA (n = 20). The
GSE25101 dataset was used on the GLP6947 platform. This
dataset contained 32 samples, including 16 peripheral blood
samples from AS patients and 16 peripheral blood samples
from healthy controls. Besides, the GSE73754 dataset based on
GPL10558 was regarded as an external validation set from the
GEO database with 51 cases of AS patients as the experimental
group and 20 cases of normal samples as the control group.
Moreover, to estimate the diagnostic efficiency of skin lesions
other than blood biomarkers, the GSE13355 dataset based on
GPL570 was downloaded, including 58 psoriatic lesional samples
and 64 non-psoriasis skin samples. The detailed clinical
characteristics are shown in Supplementary Files 1.

Screening and Validation of
Hub Biomarkers
Firstly, we utilized the limma R package to screen the differential
genes (DEGs) from GSE61281 and GSE25101 datasets (9). The
screening conditions for the DEGs were the absolute value of |
log2 fold change FC|<0.5, and adj. p-value <0.05 was considered
as the standard. Next, WGCNA was performed on the obtained
DEGs from two datasets. Based on the scale-free topology
criterion, the soft-power parameters ranging from 1 to 20
using the “pickSoftThreshold” (package WGCNA) function
were screened out. The extracted values were chosen to build
an adjacency matrix (10). The most appropriate b value was
selected to convert the matrix of correlations to the adjacency
matrix and then into a topological overlap matrix. Next, we used
the average-linkage hierarchical clustering method to cluster
genes based on TOM, where the minimum module size was set
at 50. After that, modules with similarities were merged. Finally,
Pearson correlation analysis was performed to assess the
correlation of the integrated modules with the osteoarticular
involvement in Ps and AS.

The support vector machine-recursive feature elimination
(SVM-RFE) (11) is a sequential backward feature elimination
method based on SVM, which is used to find the optimal hub
gene by deleting feature vectors dependent on the e1071 and
msvmRFE package (12)) for SVM modeling. We screened core
biomarkers using SVM analysis in the above DEGs and
intersection of WCGNA. The area under the ROC curve
(AUC) was evaluated to assess the diagnostic performance of
the core biomarker on the datasets (GSE73754 and GSE13355)
and the sequencing data of samples from our hospital.

Enrichment Analysis
Gene Ontology (GO) category analysis is commonly used
for the bioinformatics analysis of large datasets (13). Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a database
resource for understanding the high-level functions and
utilities of the biological system. The results from the GO and
KEGG analyses were visualized using the “GOplot” package in R
software. Finally, the cluster profile and GSVA packages were
March 2022 | Volume 13 | Article 836533
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used to explore the COX7B gene correlation with specific
signaling pathways (14, 15). The gene sets were downloaded
from MSigDB (c5.go.bp.v7.4.symbols.gmt) (16). The potential
pathways of gene sets and gene expression matrix were detected
using gene set enrichment analysis (GSEA).

Construction of Hub Gene
Regulatory Network
The TF–gene interaction pairs with p-values <0.05 were retrieved
from TRRUST (17). Finally, the visualization of core gene regulatory
network was implemented by using NetworkAnalyst (18).

Immune Analysis Algorithm
CIBERSORT is a deconvolution algorithm that combines the
labeled genomes of different immune cell subpopulations to
calculate the proportion of 22 immune cells in tissues (19). Non-
parametric correlations (Spearman) were used to determine the
correlation between core biomarkers and immune-infiltrated cells.
Frontiers in Immunology | www.frontiersin.org 3158
RESULTS

Differential Gene Screening
Based on the GSE61281 dataset, a total of 37 differential genes
(DEGs) were identified. The heatmap demonstrates the top 10DEGs
(Figure 1A), obtained using the logFC value. The volcano plot shows
the identifiedDEGs, including 25 upregulated and 12 downregulated
(Figure 1C). Besides, a total of 62 DEGs were obtained from the
GSE25101 dataset, among which 42 genes were upregulated and 20
were found to be downregulated (Figure 1D). Heatmaps of the top
10 upregulated and downregulated DEGs are shown in Figure 1B.

Weighted Gene Co-Expression
Network Analysis
We performed WGCNA to investigate the correlation between the
clinical information and key genes. The genes with significant
differential expression (p < 0.05) were selected as inputs of
WGCNA. All samples were clustered in the GSE61281 and
A B

DC

FIGURE 1 | (A) Heatmap of DEGs in GSE61281 (n = 37, adj. p < 0.05, |log2 fold change FC| < 0.5). (B) Heatmap of DEGs in GSE25101 (n = 62, adj. p < 0.05, |log2
fold change FC| > 0.5). (C) Volcano plot of DEGs in GSE61281. (D) Volcano plot of DEGs in GSE25101.
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GSE25101 datasets, and none of the samples was eliminated
(Figures 2A, B). In the WGCNA methodology, b = 6 was the
optimal soft-power value for GSE61281 (Figure 2C), and b = 11
was the optimal soft-power value for GSE25101 (Figure 2D). A
total of 13 modules were identified in GSE61281, and 6 were
identified in GSE25101. Afterward, the correlations between the
module and clinical traits were calculated. The gray module had the
strongest positive relation with PsA (r = 0.6), while the pink module
had the strongest negative relation (r = 0.64) in the GSE61281
database (Figure 2E). For AS, the graymodule showed the strongest
positive correlation (r = 0.9), and cyan had the strongest negative
correlation (r = -0.68) in the GSE25101 database (Figure 2F).
Frontiers in Immunology | www.frontiersin.org 4159
Identification of the Shared Genes and
TF-mRNA Regulatory Network
An overlap was observed between the PsA and AS modules as a
total of 9 genes (TTC3, ZFP91, MACF1, BDP1, PUM1, SRRM1,
SUPT16H, PABPC3, ZNF135) (Figure 3A). For DEGs, only
one overlapping gene was found (COX7B) (Figure 3B). These
genes might be involved in the pathogenesis of osteoarticular
involvement in psoriasis and AS, and have a sharing relationship.
Therefore, we searched for an upstream transcriptional regulator
that possibly regulated the above 10 genes by the JASPAR
database based on the above results. There were 46 nodes and
67 edges found in total (Figure 3C).
A B

D

E F

C

FIGURE 2 | (A) Correlation between modules and genes in GSE61281. (B) Correlation between modules and genes in GSE25101. (C) Determination of soft-
thresholding power for GSE61281. (D) Determination of soft-thresholding power for GSE25101. (E) Heatmap of the correlation between module eigengenes and the
occurrence of PsA. (F) Heatmap of the correlation between module eigengenes and the occurrence of AS.
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Identification of the Shared Pathways
We further explored the common regulatory pathway that 9 genes
were screened byWGCNA and 1 gene was selected as overlapping
DEGs. The GO and KEGG enrichment analyses were performed
in the above 9 genes. The GO analysis showed that the above 9
genes might be related to the cytoplasmic stress granule,
cytoplasmic ribonucleoprotein granule, ribonucleoprotein
granule, and RNA polymerase III transcription factor complex
(Figure 4A). The KEGG analysis showed that these genes might
be correlated with the mRNA surveillance pathway (Figure 4B).
Finally, we performed a single-gene GSEA analysis. The only
shared differential gene of AS and PsA samples (COX7B) might
participate in several biological processes, including adaptive
immune response and cell activation (Figures 4C, D). Hence,
we made a conjecture that the occurrence of osteoarticular
involvement in psoriasis and AS was likely mediated by mRNA
surveillance pathway-mediated abnormal immunologic processes.

Identification of Potential Shared
Diagnostic Gene Targets Based on
the Machine Learning Algorithm
SVM-RFE is a machine learning method based on the support
vector machines used to find the best core gene by deleting feature
Frontiers in Immunology | www.frontiersin.org 5160
vectors produced by SVM. Based on the 10 shared genes, a total of 8
genes were identified as the biomarkers in GSE25101 (Figure 5A),
and 2 genes in the GSE61281 dataset (Figure 5B). These biomarkers
might have diagnostic value. Finally, we identified PUM1 and
ZFP91 as the optimal diagnostic biomarkers for osteoarticular
involvement in psoriasis and AS (Figure 5C).

Validation of Diagnostic
Shared Biomarkers
Furthermore, we identified the diagnostic efficacy of the shared
biomarkers. In the GSE25101 dataset, these two biomarkers had
preferable values as diagnostic markers: PUM1 (AUC = 0.733) and
ZFP91 (AUC = 0.836) (Figure 6A). The same ROC analysis was
performed again for the above biomarkers in the GSE61281 dataset.
Each biomarker showed the robust capacity of predictive
performance: PUM1 (AUC = 0.970) and ZFP91 (AUC = 0.872)
(Figure 6B). We then performed external validation for the
diagnostic efficacy of PUM1 and ZFP91 in GSE73754, similar to
blood RNA-sequencing in AS. The results showed that they show
significant differences in expression (Figure 6C) and good
diagnostic accuracy for detection of AS: PUM1 (AUC = 0.638)
and ZFP91 (AUC = 0.642) (Figure 6E). In data of samples from our
hospital, only PUM1 (AUC = 0.0.889) showed good prediction
A B

C

FIGURE 3 | (A) Venn diagram shows an overlap of 9 genes in modules between PsA and AS. (B) Venn diagram shows an overlap of one DEGs between PsA and
AS. (C) TF-miRNA regulatory networks. Blue nodes represent transcription factors (TFs), and red nodes represent biomarkers. Black edges represent regulatory
relationships between TFs and biomarkers.
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A B

DC

FIGURE 4 | (A) GO enrichment analysis results for 9 genes screened by WGCNA. (B) KEGG enrichment analysis results for 9 genes screened by WGCNA.
(C) Single-gene GSEA analyses results for DEGs of AS. (D) Single-gene GSEA analyses results for DEGs of PsA.
A

B

C

FIGURE 5 | (A) SVM-RFE algorithm to screen diagnostic markers in the GSE25101 database. (B) SVM-RFE algorithm to screen diagnostic markers in the
GSE61281 database. (C) Venn diagram shows the optimal diagnostic biomarkers.
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efficacy, while ZFP91 showed weak prediction efficacy (Figure 6D).
Meanwhile, we analyzed RNA-seq datasets of skin samples of
psoriasis (GSE13355). Both PUM1 and ZFP91 showed significant
differences between groups (Figure 6F). Each biomarker had potent
predictive performance: PUMI (AUC = 0.965) and ZFP91 (AUC =
0.687) (Figure 6G).

Immune Infiltration Analysis of
Shared Biomarkers
The enrichment analysis results showed that immunity plays an
important role in developing osteoarticular involvement in
psoriasis and AS. The CIBERSORT algorithm was used to
analyze the abundances of immune cells in different samples. Bar
graphs show the significant differences in the percentage of B cell
and macrophage populations between AS and psoriasis samples
(Figures 7A, 8A). Compared with the normal sample, CD4-naive
T cells and regulatory T cells (Tregs) were decreased in the AS
sample, while monocytes were increased (Figure 7B). However,
compared with psoriasis without arthritis, T cells CD4 memory
activated were increased in the psoriasis with osteoarticular
involvement, while T cells CD4 memory resting decreased
(Figure 8B). Moreover, the correlation of the biomarkers and
content of different immune cells was explored. In AS samples,
Frontiers in Immunology | www.frontiersin.org 7162
PUM1 had a significant positive correlation with naive B cells and
CD4-naive T cell content. In contrast, there was a significant
negative correlation between PUM1 and both monocytes and
activated dendritic cell content (Figure 7C). ZFP91 had a
significant positive correlation with both CD8 T cells and Tregs
and a significant negative correlation with monocytes, activated
dendritic cells, and neutrophils (Figure 7D). In PsA samples, only
PUM1 had a significant positive correlation with memory resting
CD4T cells (Figure 8C). The statistical analysis showed no
significant differences between ZFP91 and other immune cell
content (Figure 8D).
DISCUSSION

The characteristics and phenotype of osteoarticular involvement
of PsA is consistent with the phenotype of spondyloarthritis
(20–22). Meanwhile, ankylosing spondylitis is the prototype of
spondyloarthritis, with the typical characteristics of osteoarticular
involvement of SpA, including spondylitis, enthesitis, peripheral
arthritis, and dactylitis. Osteoarticular involvement of SpA may
have a variety of manifestations, but the pathological mechanism
seems to be similar, such as pathologic new bone formation,
A B

D E

F

G

C

FIGURE 6 | Validation of diagnostic shared biomarkers. (A) The ROC curve of the diagnostic efficacy verification in GSE25101. (B) The ROC curve of the diagnostic
efficacy verification in GSE61281. (C) The shared biomarkers in GSE73754 showed significant differences, with p value < 0.05. (D) The ROC curve of the diagnostic
efficacy verification in data of samples from our hospital. (E) The ROC curve of the diagnostic efficacy verification in GSE73754. (F) The shared biomarkers in
GSE13355 showed significant differences, with p value < 0.05. (G) The ROC curve of the diagnostic efficacy verification in GSE13355.
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typically occurring at sites of soft tissue surrounding the entheses,
and synovitis with more vascularity, a greater infiltration of
neutrophils than rheumatic arthritis (22). Therefore, considering
the phenotypic disturbances in the PsA group, we studied
osteoarticular involvement as a clinical feature that differentiated
PsA from Ps. The WGCNA approach was successfully applied in
various diseases to identify common risk biomarkers and pathways
associated with the different disease phenotypes (23–25). In the
present study, the shared gene co-expression module of AS and
PsA revealed that the osteoarticular involvement in Ps and AS
could be associated with the mRNA surveillance pathway-mediated
abnormal immunologic process and identified PUM1 and ZFP91
had preferable value as diagnostic markers for osteoarticular
involvement, especially axial involvement in Ps and AS.

The mRNA surveillance pathway is a quality-control
physiological mechanism that degrades and detects abnormal
mRNAs, including non-stop mRNA decay (NSD), nonsense-
mediated mRNA decay (NMD), and no-go decay (NGD)
(Supplementary Figure S1). The present study results show that
the overlapping genes between the PsA and AS modules in
WGCNA were correlated with the mRNA surveillance pathway.
This observation was suggestive of the pathophysiologic
mechanism of osteoarticular involvement in Ps association with
the mRNA surveillance pathway. PsA is a chronic immune-
mediated rheumatic disease. Studies have reported that the
Frontiers in Immunology | www.frontiersin.org 8163
posttranscriptional regulation of gene expression plays a vital
role in rheumatic disease (26, 27). However, most studies have
focused on microRNA and related pathways, while only a few
focused on the mRNA surveillance pathway (28, 29). Notably, no
studies have been conducted for assessing the relationship of
osteoarticular involvement in Ps and mRNA surveillance
pathway; thus, the specific mechanism needs to be further
studied and confirmed. Moreover, multiple factors are involved
in the immunologic process and mRNA surveillance pathway; the
results of this study represent the preliminary exploration.

This pathway was not reported for Ps or PsA, but it was
confirmed to be involved in the mechanism of other immune-
mediated disease. The abnormal mRNA surveillance machinery
causes abnormal activation of immunologic defense programs,
resulting in autoimmune diseases (30). As an immune-mediated
disease, the process of osteoarticular involvement on psoriasis is
probably associated with this mechanism. However, considering
the complexity of the mRNA surveillance pathway, the specific
mechanism still needs to be confirmed by further studies.

Meanwhile, the COX7B gene is shared between the DEGs
of PsA and AS. Single-gene GSEA analyses suggested that it
might be associated with several immunologic processes,
including adaptive immune response and cell activation.
Moreover, the immunologic process and inflammatory response
of SpA including PsA are different from other inflammatory
A B

DC

FIGURE 7 | Immune infiltration analysis of shared biomarkers in AS. (A) The barplot of immune cell infiltration. (B) Correlation between PUM1 and infiltrating immune
cells. (C) Violin diagram of the proportion of 22 types of immune cells. The red marks represent the difference in infiltration between the two groups of samples.
(D) Correlation between ZFP91 and infiltrating immune cells.
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arthritis (31). However, concerning immune response and
epigenetics, Ps and PsA were usually considered as a group of
diseases in most studies; therefore, we barely knew the difference
of immunologic processes between psoriasis and PsA (32). The
main reason probably lies in the challenge to obtain samples of
involved joints. In this case, the analysis of the RNA-seq profiles
of PBMCs is an alternative. Our study showed differences in the
Ps- and PsA-immune microenvironment, correlating with the
biomarkers of osteoarticular involvement.

Immune infiltration analysis revealed the involvement of several
specialized immune cell populations, suggesting differences in the
immune response between PsA and Ps. Compared with psoriasis
without arthritis, T cells CD4 memory activated were increased in
psoriasis with osteoarticular involvement, while T cells CD4
memory resting were decreased. Similarly, recent studies have
demonstrated that tissue-resident memory CD8+ T cells from the
skin helped differentiate psoriatic arthritis from psoriasis (33). Of
note, CD4+T cells play an important role in PsA (34).

Furthermore, our studies have shown that PUM1 and ZFP91
might be useful biomarkers or potential therapeutic targets for
osteoarticular involvement in Ps and AS due to their involvement in
the pathophysiology of osteoarticular involvement of PsA.
Previously few studies directly focused on the relationship
between these two markers and SpA. In terms of the
inflammatory process, ZFP91 plays a role in the non-canonical
Frontiers in Immunology | www.frontiersin.org 9164
NF-kB pathway (35) and is required to maintain regulatory T cell
homeostasis (36). With respect to the pathological bone formation,
the PUM1 gene was differentially expressed in osteoporosis-related
cells (37). Therefore, we speculated that PUM1 and ZFP91 might
participate in the process of osteoarticular involvement by activated
inflammation or pathological bone formation. Further, we found a
significant positive correlation between PUM1 and T-cells CD4
memory resting in psoriatic samples. T-cells CD4 memory resting
had a negative correlation with osteoarticular involvement in Ps.We
speculate that PUM1maymediate bone and joint involvement in Ps
by inhibiting T-cells CD4 memory resting.

Our study had few limitations. Transcriptome analysis of
peripheral blood is a useful approach to compare genotype-
similar but phenotype-distinct diseases, or even diseases with
different-organ involvement. However, the expression profiling
of peripheral blood mononuclear cells should be confirmed by
the expression profiling of the target organ. Considering the
phenotypic disturbances of the PsA group, the current study is
the preliminary exploration of genetic factors related to
osteoarthritis involvement in Ps, hoping to provide some
meaningful directions for follow-up research.

To conclude, this study is the first to explore the pathways and
biomarkers of osteoarticular involvement in psoriasis and AS
using the bioinformatics tool. Besides, our study revealed the
mRNA surveillance pathway and two diagnostic gene biomarkers
A B

DC

FIGURE 8 | Immune infiltration analysis of shared biomarkers in PsA. (A) The barplot of immune cell infiltration. (B) Correlation between PUM1 and infiltrating
immune cells. (C) Violin diagram of the proportion of 22 types of immune cells. The red marks represent the difference in infiltration between the two groups of
samples. (D) Correlation between ZFP91 and infiltrating immune cells.
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(PUM1 and ZFP91) for the osteoarticular involvement in
psoriasis and AS. In addition, by exploration of the two typical
diseases AS and PsA, this study may also provide a new
perspective to the pathogenesis of SpA.
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RimK-like family member B (RIMKLB) is an enzyme that post-translationally modulates
ribosomal protein S6, which can affect the development of immune cells. Some studies
have suggested its role in tumor progression. However, the relationships among RIMKLB
expression, survival outcomes, and tumor-infiltrating immune cells (TIICs) in colorectal
cancer (CRC) are still unknown. Therefore, we analyzed RIMKLB expression levels in CRC
and normal tissues and investigated the correlations between RIMKLB and TIICs as well as
the impact of RIMKLB expression on clinical prognosis in CRC using multiple databases,
including the Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling
Interactive Analysis (GEPIA), PrognoScan, and UALCAN databases. Enrichment analysis
was conducted with the cluster Profiler package in R software to explore the RIMKLB-
related biological processes involved in CRC. The RIMKLB expression was significantly
decreased in CRC compared to normal tissues, and correlated with histology, stage,
lymphatic metastasis, and tumor status (p < 0.05). Patients with CRC with high expression
of RIMKLB showed poorer overall survival (OS) (HR = 2.5,p = 0.00,042), and inferior
disease-free survival (DFS) (HR = 1.9,p = 0.19) than those with low expression of RIMKLB.
TIMER analysis indicated that RIMKLB transcription was closely related with several TIICs,
including CD4+ and CD8+ T cells, B cells, tumor-associated macrophages (TAMs),
monocytes, neutrophils, natural killer cells, dendritic cells, and subsets of T cells.
Moreover, the expression of RIMKLB showed significant positive correlations with
infiltrating levels of PD1 (r = 0.223, p = 1.31e-06; r = 0.249, p = 1.25e-03), PDL1 (r =
0.223, p = 6.03e-07; r = 0.41, p = 5.45e-08), and CTLA4 (r = 0.325, p = 9.68e-13; r = 0.41,
p = 5.45e-08) in colon and rectum cancer, respectively. Enrichment analysis showed that
the RIMKLB expression was positively related to extracellular matrix and immune
inflammation-related pathways. In conclusion, RIMKLB expression is associated with
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survival outcomes and TIICs levels in patients with CRC, and therefore, might be a potential
novel prognostic biomarker that reflects the immune infiltration status.

Keywords: colorectal cancer, RIMKLB, tumor-infiltrating immune cells, prognosis, biomarker

INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer and
the second leading cause of cancer-related death (Siegel et al.,
2021). The global incidence of CRC is expected to increase to 2.5
million new cases by 2035, with a steady and declining trend only
in highly developed countries (Bray et al., 2018). Furthermore,
studies show that CRC is now beginning to develop at a younger
age (Dekker et al., 2019; Mauri et al., 2019). In CRCmanagement,
metastasis is an important biological feature leading to poor
prognosis. Immune-related mechanisms play an important
role in digestive tract cancer, especially in CRC (Ganesh et al.,
2019; Siegel et al., 2019). In the past decade, a high tumor
mutation burden has become a hallmark of
immunotherapeutic response in some tumor types due to the
success of immunotherapy in achieving long-lasting responses in
previously difficult-to-treat solid tumors (Samstein et al., 2019).
However, the clinical efficacy of CRC immunotherapy in
metastatic CRC is poor, and the popularly used anti-PD-1 and
anti-PD-L1 show partial reactions in metastatic CRC and gastric
cancer (Galon et al., 2007; Rahma and Hodi, 2019). In these
tumors, low tumor mutation load and lack of immune cell
infiltration are thought to be mechanisms of immune
resistance (Galon et al., 2007). In addition, increasingly more
and more studies have found that tumor immune cell infiltration
is closely related to the prognosis and efficacy of CRC
chemotherapy and immunotherapy (Rahma and Hodi, 2019).
Therefore, it is of great significance to elucidate the
immunophenotype of CRC-immune interaction, the
mechanism of immunotherapeutic resistance, and the
identification of new immune-related therapeutic targets.

RIMK is a unique protein that in Escherichia coli that acts as an
ATP-dependent enzyme that induces oligo-glutamylation of
ribosomal protein S6 (S6) after transcription, and bacterial S6 is
the target of oligo-glutamylation of ATP-dependent glutamate ligase
RIMK (Kino et al., 2011; Pletnev et al., 2019). In Pseudomonas
aeruginosa, the lack of RIMK can shorten its survival time owing to
the functional effect of RIMK on ribosome properties (Grenga et al.,
2017). RIMKLB is a mammalian homologous gene of RIMK, it has
been cloned in mammals, resulting in β-citrylglutamate (β-CG) or
N-acetylaspartylglutamate synthase activity (Collard et al., 2010).
Some studies have found that RIMKLB can affect reproductive
function of mammals, and in tumor research, RIMKLB may
coordinate with DDIT4 function to mediate mTOR inhibition
and growth inhibition of tumor cells (Wang et al., 2015;
Maekura et al., 2021). Some studies have found that RIMKL
modeling can accurately predict the 5-years survival rate of
patient with colon cancer patients, suggesting that RIMKL may
play a role in tumor progression (Huang et al., 2021). However, the
specific role of RIMKLB in CRC is unknown and needs
further study.

The tumor microenvironment and tumor-infiltrating immune
cells play an important role in CRC tumor progression. The immune
components of the tumor microenvironment can regulate tumor
progression and are attractive therapeutic targets. A large number of
studies have shown that high a infiltration rate of CD8+ and CD4+

T cells is associated with better prognosis in patients with CRC
patients (Tada et al., 2016). Furthermore, high infiltration of
dendritic cells (DCs) in tumors has been reported to be
associated with more favorable clinical outcomes (Gulubova et al.,
2012). Some studies have also shown that extensive infiltration of
NK cells in tumors has a good prognostic effect on CRC (Bindea
et al., 2013). However, there are no studies have been reported on
RIMKLB and the immune microenvironment in CRC, and it
remains unknown whether RIMKLB can affect immune cells and
tumor microenvironment and promote tumor progression.

Therefore, based on a list of public databases, our study aimed to
determine the correlation between RIMKLB expression and tumor-
infiltrating immune cells (TIICs) inCRC.Moreover,we also performed
subgroup analysis via tumor site to determine whether the role of
RIMKLB in colon cancer is different from that in rectum cancer.

MATERIALS AND METHODS

UALCAN and Tumor Immune Estimation
Resource Database Analysis
The expression level of the RIMKLB gene in various types of cancers
was identified in the UALCAN (http://ualcan.path.uab.edu/cgi-bin/
ualcan-res-prot.pl) (Chandrashekar et al., 2017) and TIMER database
(https://cistrome.shinyapps.io/timer/) (Li et al., 2017). In addition, we
focused on an easy-to-use webtool, GEPIA, which is available at http://
gepia.cancer-pku.cn/index.html, to study the differential expression of
RIMKLBmRNA inCRC tissues and normal tissues (Tang et al., 2017).

GEPIA and PrognoScan Database Analysis
Using logarithmic rank test, GEPIA was used to generate survival
curves, including overall survival (OS) and disease-free survival
(DFS), based on gene expression in colon and rectal cancer. The
association between RIMKLB expression and OS in CRC was
analyzed via PrognoScan database (http://www.abren.net/
PrognoScan/) (Mizuno et al., 2009), whose data are different
from that of The Cancer Genome Atlas (TCGA) database. The
threshold was adjusted to a Cox p-value < 0.05.

Tumor Immune Estimation Resource
Database
The TIMER database includes 10,897 samples across 32 cancer
types based on RNA-Seq expression profiling data from TCGA
database. It can test the differential gene expression in tumor
tissues, the abundance of TIICs from gene expression profiles,
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and the statistical correlation between the two genes by the
statistical method through gene expression data (Li et al.,
2016). Therefore, we analyzed the relationship between
RIMKLB expression and TIICs, including CD4+ and CD8+

T cells, B cells, neutrophils, DCs, and macrophages.
Additionally, the correlation between RIMKLB expression

and gene markers of TIICs, including CD8+ T cells, T cells
(general), B cells, monocytes, tumor-associated macrophages
(TAMs), M1 macrophages, M2 macrophages, neutrophils,
natural killer (NK) cells, DCs, T-helper 1 (Th1) cells,
T-helper 2 (Th2) cells, follicular helper T (Tfh) cells,
T-helper 17 (Th17) cells, Tregs, and exhausted T cells, was
explored through related modules, which were reported in a
previous study (Wu et al., 2020).

Gene Correlation Identification in GEPIA
The GEPIA database contains the gene expression data from 8,587
normal and 9,736 tumor tissue samples of TCGA and the
Genotype-Tissue Expression (GTEx) projects, and can be used
to further identify the significantly correlated genes in TIMER
(Tang et al., 2017). GEPIAwas also used to generate survival curves
and determine OS and DFS rates, differential gene expression, and
the relationship between two genes. The spearman method was
used to determine the correlation coefficient, and amedian value of
the RIMKLB expression was used as a cutoff to distinguish high
expression from low expression.

Oncogenomics and Mutational Study
We use cBioPortal6 to analyze the impact of the RIMKLB gene
in the Colorectal Adenocarcinoma TCGA PanCancer dataset
containing 594 samples. Further using the mRNA expression
data of the top 25 positively correlated genes to indicate the
correlated gene with RIMKLB in CRC. The cancer type
summary tab provides a detailed overview of the RIMKLB
gene in different subtypes of CRC, i.e., mucinous
adenocarcinoma of colon and rectum, colon adenocarcinoma,
and rectal adenocarcinoma. It also showed mutations in CRC’s
RIMKLB gene and mutations within the associated genome.
Different types of mutations associated with the RIMKLB gene
in CRC were analyzed using COSMIC-“Catalogue of Somatic
Mutations in Cancer.”

Enrichment Analysis
Patients with CRC were initially divided into high RIMKLB
expression and low expression groups. Genes that were
differentially expressed between the two groups were screenedto
explore the functional role of RIMKLB in CRC with the false
discovery rate less than 0.05, and |logFC| ≥ 1 combined with p value
less than 0.05 were regarded as significant.

Statistical Analysis
The data were analyzed using the GraphPad Prism (version 6.0)
and SPSS (version 21.0). Low and high RIMKLB groups were
established based on the median expression of RIMKLB
transcription in the separate datasets. Survival curves were
generated from the PrognoScan, Kaplan-Meier plots and
GEPIA database. The relation of RIMKLB expression and

TICSs was evaluated by Spearman’s correlation, and the
strength of the correlation was determined using the
following guide for the absolute value: 0.00–0.29 (weak),
0.30–0.59 (moderate), 0.60–0.79 (strong), 0.80–1.00 (very
strong) (Gao et al., 2017). p-values <0.05 were considered
statistically significant.

RESULT

The Expression Levels Analysis of
RimK-Like Family Member B in Different
Types of Human Cancers and Normal
Tissues
To determine the difference expression of RIMKLB between
tumor and normal tissue, we used the UALCAN database to
analyze the expression levels of RIMKLB in normal tissues of
different tumors and multiple cancer types. The result showed
that RIMKLB expression was lower in bladder, breast, cervical,
cloln, rectum, glioblastoma, lung, pancreatic, prostate, thyroid,
thymoma, stomach, uterine corpus endometrial carcinoma,
and it was higher in cholangio, esophageal, head and neck,
kidney, pheochromocytoma and paraganglioma, sarcomav
(Figure 1A). TIMER database was utilized to validate the
expression profiles of RIMKLB in pancancer, and RIMKLB
mRNA was also lowly expressed in CRC tissues (Figure 1B).
The GEPIA database was used to analyze the expression of
RIMKLB TPM in colon cancer (Figure 1C) and rectum cancer
(Figure 1D). Red represents colon cancer tissue; purple
represents normal colon tissue, which is statistically
significant (p < 0.05).

Relationship Between RimK-Like Family
Member B Expression and
Clinicopathological Characteristics of
Patients With Colorectal Cancer
To investigate the relationship between mRNA expression of
RIMKLB and clinicopathological features of CRC patients, we
analyzed clinical information from CRC samples from the TCGA
project. The results (Figure 2) revealed that the mRNA
expression of RIMKLB was significantly increased in the
mucinous adenocarcinoma (p < 0.001), rectum (p < 0.001),
lymph node stage (N0) (p = 0.0485), advanced stages (III/IV)
(p < 0.001), and with tumor (p < 0.001). However, there was no
significant correlation between RIMKLB mRNA expression and
gender (p = 0.5223), age (p = 0.6097), advanced tumor (p = 0.909)
and metastasis status (p = 0.921).

Prognostic Significance of RimK-Like
Family Member B Expression in Colorectal
CanceC
The prognostic significance of RIMKLB expression in CRC was
analyzed using the TCGA RNA sequencing data from the GEPIA
database. High RIMKLB expression levels were associated with poorer

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8189943

Cao et al. Prognostic Significance of RIMKLB

169

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


OS (HR = 2.3, p = 0.0003, Figure 3A), and DFS in CRC (HR = 2, p =
0.0012, Figure 3B). When subgrouped by tumor site, this association
only existed in colon cancer (OS: HR = 2.5, P = 0.00042, Figure 3C;
DFS: HR = 2.5, P = 0.00028, Figure 3D) and disappeared in rectal
cancer (OS: HR = 1.5, P = 0.39, Figure 3E; DFS: HR = 1.9, P = 0.19,
Figure 3F).

We also verified the prognostic value of RIMKLB expression in
CRC cancers using the Prognoscan website, whose data were from
GEO database. High RIMKLB expression was associated with worse
OS (HR = 2.63, 95% CI = 1.38–5.02, p = 0.0034, Figure 4A) among
CRC patients in GSE17536, this survival significance (HR = 5.6, 95%
CI = 1.24–25.36, p = 0.0255, Figure 4B) was also observed in
GSE17537. In brief, high expression of RIMKLB is a potent risk
factor among CRC patients.

RimK-Like Family Member B Expression
Levels Correlate With the Infiltration Levels
of Immune Cells in Colorectal Cance
Previous studies have reported that survival time for colorectal
cancers depends on the number and activity of tumor-infiltrating
lymphocytes (Ohtani, 2007; Japanese Gastric Cancer Association,
2017). Therefore, we explored the relationship between RIMKLB

expression with prognosis and the infiltrating immune cells in
CRC using the TIMER and GEPIA database.

The level of IMKLB expression positively correlated with the
infiltration levels of CD8+ T cells (r = 0.131, p = 8.04e-03), CD4+

T (r= 0.428, p= 2.27e-19) cells, macrophages (r= 0.463, p= 7.54e-23),
neutrophils (r = 0.315, p = 1.03e-10), and dendritic cells (r = 0.355, p =
2.03e-13), but negatively related to tumor purity (r=−0.266, p=5.16e-
08) and B cells (r = −0.044, p = 3.57e-01) in Colon adenocarcinoma
(COAD) tissues (Figure 5A); The level of RIMKLB expression is
significantly negatively related to tumor purity (r = −0.298, p = 3.47e-
04) and has significant positive correlations with infiltrating levels of
B cells (r = 0.151, p = 7.56e-02), CD8+ T cells (r = 0.229, p = 6.68e-03),
CD4+ T cells (r = 0.347, p = 2.90e-05), macrophages (r = 0.307, p =
2.37e-04), neutrophils (r = 0.227, p = 7.31e-03), and dendritic cells (r =
0.322, p = 1.11e-04) in Rectum adenocarcinoma (READ) tissues
(Figure 5B).

Correlation of RimK-Like Family Member B
Expression With Immune Checkpoint in
COAD and READ.
Research on the role of targeted immune therapy in the
treatment of advanced colorectal cancer and its relationship

FIGURE 1 | RIMKLB expression levels in different types of human cancers. (A) Increased or decreased RIMKLB in data sets of different cancers compared with
normal tissues in the UALCAN database; (B)Human RIMKLB expression levels in different tumor types from TCGA database were determined by TIMER (*p < 0.05, **p <
0.01, ***p < 0.001); (C) Decreased RIMKLB in colon cancer compared with normal tissues; (D) Decreased RIMKLB in rectum cancer compared with normal tissues.
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with tumor gene mutations has received more and more
attention (Galon et al., 2007). Therefore, we used TIMER
database to investigate the relationship between RIMKLB
expression and immunotherapeutic targets in colorectal
cancer. The results showed that the expression of RIMKLB
was significantly correlated with it. We find that RIMKLB
expression has significant positive correlations with
infiltrating levels of PD1 (A, r = 0.223, p = 1.31e-06; B, r =
0.16, p = 1.20e-03), PDL1 (C, r = 0.223, p = 6.03e-07; D, r =
0.187, p = 1.47e-04) and CTLA4 (E, r = 0.325, p = 9.68e-13; F,
r = 0.265, p = 6.07e-08) before and after purity adjustment in
COAD; In addition, RIMKLB expression also has significant
positive correlations with infiltrating levels of PD1 (G, r =
0.249, p = 1.25e-03; H, r = 0.121, p = 0.156e-01), PDL1 (I, r =
0.372, p = 9.52e-07; J, r = 2.94, p = 4.50e-04) and CTLA4 (K, r =
0.41, p = 5.45e-08; L, r = 0.284, p = 7.19e-04) before and after
purity adjustment in READ (Figure 6A–L).

Correlation Between RimK-Like Family
Member B mRNA Levels and Different
Subsets of Immune Cells
We used TIMER and GEPIA databases to investigate the
relationship between RIMKLB and various immune-infiltrating
cells based on the expression levels of immune marker genes in
colon and rectum tissues. The immune cells analyzed in CRC
tissues included CD8+ T cells, CD4+ T cells, B cells, tumor-
associated macrophages (TAMs), monocytes, M1 and M2
macrophages, neutrophils, and natural killer (NK) cells,
dendritic cells (DCs), subsets of T cells [T helper 1 (Th1),
Th2, follicular helper T (Tfh), Th17]. The results showed that
RIMKLB expression level was significantly correlated with most
immune marker groups of various immune cells and different
T cells in colon and rectum cancer (Table 1). Interestingly, we
found that the expression levels of marker sets of Neutrophils,
Th1, M2 macrophages, TAMs, Dendritic cell, monocytes, and

FIGURE 2 | Correlation between RIMKLB mRNA expression and clinical indexes of CRC patients from TCGA database. RIMKLB mRNA expression is stratified
with scatter plots using the TCGA dataset by gender (A), gender (B), histological type (C), Tumor site (D), T stage (E), M stage (F), N stage (G), TNM stage (H), and
Tumor status (I).

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8189945

Cao et al. Prognostic Significance of RIMKLB

171

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Th2 have strong correlations with RIMKLB expression in colon
and rectum. The correlation analysis was adjusted for purity
because tumor purity of clinical samples affected the analysis of
immune infiltration (Table 2). To be specific, we showed that
ITGAM, and CCR7 of Neutrophils; TBX21, STAT1, STAT4, and
TNF of Th1; CD86 and CSF1R of monocytes; CD163, and VSIG4

of M2 macrophages; CCL2, CD68, and IL10 of TAMs (tumor-
associated macrophages); HLA-DPB1, HLA-DRA, HLA-DPA1,
CD1C, NRP, and ITGAX of Dendritic cell; GATA3, GATA6, and
GATA5A of Th2 were significant correlated with RIMKLB
expression in COAD (p < 0.0001; Figures 7A–G) and READ
(p < 0.0001; Figures 8A–G).

FIGURE 3 | Survival curves and subgroup analysis of patients with colorectal cancer from TCGA cohort. Overall survival (OS) and disease free (DFS) curves
comparing the high and low expression of RIMKLB in CRC (A,B); OS and DFS curves comparing the high and low expression of RIMKLB in colon cancer (C,D) and
rectum cancer (E,F).

FIGURE 4 | Kaplan-Meier survival curves comparing the high and low expression of RIMKLB in colorectal cancer in the PrognoScan. (A) Survival curves of OS
colorectal cancer cohorts of GSE17536 (n = 177); (B) Survival curves of OS colorectal cancer cohorts of GSE17537 (n = 55).
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FIGURE 5 | Correlation of RIMKLB expression with immune infiltration level in COAD (colon adenocarcinoma), and READ (recutm adenocarcinoma) in the TIMER
database. (A) RIMKLB expression is significantly negatively related to tumor purity and has significant positive correlations with infiltrating levels of CD8+ T cells, CD4+

T cells, macrophages, neutrophils, and dendritic cells in COAD, other than B cells. (B) RIMKLB expression is significantly negatively related to tumor purity and has
significant positive correlations with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in READ.

FIGURE 6 | Correlation of RIMKLB expression with PD1, PDL1, and CTLA4 in COAD, and READ. RIMKLB expression has significant positive correlations with
infiltrating levels of PD1 (A,B), PDL1 (C,D) and CTLA4 (E,F) before and after purity adjustment in COAD; As well as in READ [PD1 (G,H), PDL1 (I,J) and CTLA4 (K,L)].
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Co-Expression and Correlation Amongst
the Other Genes Associated With
RimK-Like Family Member B in Colorectal
Cancer
The top 25 positively co-expressed genes were analyzed via
cBioPortal, containing the Spearman’s correlation coefficient,
p-value from two-sided t-test, and also q-value derived from
the Benjamini–Hochberg FDR correction procedure (Table 3).

The correlation graph was obtained using the Pearson’s
correlation coefficient amongst RIMKLB gene with AKT3
(r-value- 0.68), MPDZ (r-value-0.66), PKD2 (r-value- 0.67)
and MAP1B (R-value- 0.69) (Supplementary Figures
S1A–S1D). Collectively all these results reveal that the
RIMKLB gene has a positive association and correlation with
AKT3, MPDZ, PKD2, and MAP1B to upregulate the gene
expression to induce the development of colorectal cancer.

TABLE 1 | Correlation analysis between RIMKLB and related gene markers of immune cells in COAD and READ.

Cell Type Marker COAD READ

None Purity None Purity

Cor* p Value Cor p Value Cor* p Value Cor p Value

CD8+ T cell CD8A 0.203 1.22E-05 0.129 9.43E-03 0.342 7.64E-06 0.237 5.00E-03
CD8B 0.178 1.34E-04 0.157 1.51E-03 0.204 8.49E-03 0.112 1.90E-01

T cell (general) CD3D 0.202 1.34E-05 0.131 8.16E-03 0.191 1.39E-02 0.048 5.71E-01
CD3E 0.28 1.29E-09 0.218 9.24E-06 0.285 2.10E-04 0.159 6.18E-02
CD2 0.259 2.12E-08 0.185 1.73E-04 0.321 2.85E-05 0.206 1.51E-02

B cell CD19 0.233 4.42E-07 0.15 2.43E-03 0.087 2.632–01 0.01 9.11E-01
CD79A 0.278 1.62E-09 0.186 1.59E-04 0.194 1.22E-02 0.054 5.28E-01

Monocyte CD86 0.404 0.00E + 00 0.357 1.11E-13 0.478 9.65E-11 0.395 1.52E-06
CD115 0.491 0.00E + 00 0.474 4.09E-24 0.423 1.95E-08 0.332 6.68E-05

TAM CCL2 0.463 0.00E + 00 0.422 5.31E-19 0.515 0.00E + 00 0.438 6.71E-08
CD68 0.32 2.16E-12 0.289 3.15E-09 0.357 2.80E-06 0.277 9.52E-04
IL10 0.324 1.20E-12 0.29 2.47E-09 0.233 2.57E-03 0.151 7.60E-02

M1 macrophage INOS −0.194 3.09E-05 −0.23 2.26E-06 −0.085 2.78E-01 −0.044 6.05E-01
IRF5 0.336 1.92E-13 0.354 1.91E-13 0.237 2.16E-03 0.203 1.66E-02
COX2 0.187 5.59E-05 0.12 1.54E-02 0.256 9.20E-04 0.159 6.11E-02

M2 macrophage CD163 0.474 0.00E + 00 0.451 9.60E-22 0.529 0.00E + 00 0.452 2.34E-08
VSIG4 0.443 0.00E + 00 0.414 2.75E-18 0.314 4.20E-05 0.22 9.12E-03
MS4A4A 0.403 0.00E + 00 0.365 3.06E-14 0.455 1.11E + 09 0.093 4.33E-01

Neutrophils CD66b −0.111 1.73E-02 −0.12 1.67E-02 −0.379 4.84E-07 −0.3 3.47E-04
CD11b 0.468 0.00E + 00 0.445 3.50E-21 0.526 0.00E + 00 0.434 9.43E-08
CCR7 0.338 1.34E-13 0.271 2.78E-08 0.187 1.61E-02 0.121 1.56E-01

Natural killer cell KIR2DL1 0.08 8.72E-02 0.034 4.95E-01 0.186 1.66E-02 0.166 5.02E-02
KIR2DL3 0.085 6.85E-02 0.075 1.31E-01 0.182 1.88E-02 0.174 4.07E-02
KIR2DL4 −0.023 6.23E-01 −0.1 4.33E-02 0.1 2.01E-01 −0.032 7.12E-01
KIR3DL1 0.104 2.60E-02 0.051 3.04E-01 0.08 3.08E-01 0.041 6.34E-01
KIR3DL2 0.136 3.63E-03 0.076 1.28E-01 0.199 1.01E-02 0.114 1.83E-01
KIR3DL3 −0.061 1.89E-01 −0.06 2.38E-01 −0.051 5.11E-01 −0.099 2.48E-01
KIR2DS4 0.033 4.86E-01 0.016 7.47E-01 0.065 4.07E-01 −0.027 7.48E-01

Dendritic cell HLA-DPB1 0.37 2.33E-16 0.317 6.40E-11 0.331 1.52E-05 0.211 1.27E-02
HLA-DQB1 0.218 2.61E-06 0.158 1.40E-03 0.097 2.12E-01 0.041 6.35E-01
HLA-DRA 0.271 4.33E-09 0.21 1.96E-05 0.325 2.11E-05 0.211 1.25E-02
HLA-DPA1 0.32 2.29E-12 0.263 7.80E-08 0.355 3.07–06 0.228 6.97E-03
BDCA-1 0.339 9.49E-14 0.296 1.17E-09 0.195 1.16E-02 0.069 4.17E-01
BDCA-4 0.546 0.00E + 00 0.514 1.05E-28 0.672 0.00E + 00 0.619 4.48E-16
CD11c 0.484 0.00E + 00 0.454 4.51E-22 0.496 5.97E-12 0.432 1.12E-07

Th1 T-bet 0.267 6.68E-09 0.226 4.43E-06 0.367 1.18E-06 0.281 8.06E-04
STAT4 0.308 2.00E-11 0.267 4.70E-08 0.332 1.37E-05 0.272 1.21E-03
STAT1 0.258 2.02E-08 0.224 5.36E-06 0.445 2.84E-09 0.363 1.12E-05
IFN-γ 0.077 9.99E-02 0.041 4.11E-01 0.301 7.96E-05 0.209 1.34E-02
TNF-α 0.21 5.90E-06 0.17 5.77E-04 0.226 3.41E-03 0.131 1.23E-01

Th2 GATA3 0.486 1.52E-28 0.439 1.61E-20 0.422 1.99E-08 0.337 4.90E-05
STAT6 0.247 8.08E-08 0.253 2.36E-07 0.181 2.01E-02 0.206 1.49E-02
STAT5A 0.271 4.36E-09 0.273 2.17E-08 0.137 7.94E-02 0.122 1.53E-01
IL13 0.161 5.62E-04 0.104 3.59E-02 0.127 1.02E-01 −0.008 9.22E-01

Tfh BCL6 0.459 0.00E + 00 0.425 3.27E-19 0.597 0.00E + 00 0.595 1.18E-14
IL21 0.102 2.85E-02 0.066 1.81E-01 0.061 4.43E-01 0.036 6.73E-01

Th17 STAT3 0.246 1.02E-07 −0.27 5.16E-08 0.403 9.86E-08 0.339 3.47E-04
IL17A −0.157 7.46E-04 −0.16 1.35E-03 −0.21 6.60E-03 −0.186 2.82E-02

Cor*: Correlation.
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The Mutational Analysis of RimK-Like
Family Member B in Colorectal Cancer
The RIMKLB gene mutation was analyzed on COSMIC
database comprising more than 2,406 samples of colorectal
cancer out of which 77 were recorded for mutations, among
them the missense substitution is highest with 53.25% followed
by synonymous substitution (23.38%), nonsense substitution
(1.30%) and other types (6.49%) (Supplementary
Figure S2A).

The breakdown of various substitution mutation is
shown in Supplementary Figure S2B, representing the
highest type of G > A (39.66%) and lowest showing T >
A (3.45%).

To determine and analyze the frequency and type of
mutation, cBioPortal server was used where the cancer type
summary indicates the mutation along with the various
subtypes of colorectal cancer showing mucinous
adenocarcinoma of colon and rectum (>6%), colon
adenocarcinoma (<6%), and rectal adenocarcinoma (~2%)
(Supplementary Figure S2C). The Oncoprint and Mutation
tab shows that the RIMKLB gene is altered in 2.5% of the total
patients in TCGA colorectal cancer dataset along with the
heatmap for the associated genes (Supplementary Figure
S2D). Additionally, a mutational study for the correlation
among the RIMKLB gene with AKT3, MPDZ, PKD2, and
MAP1B (Supplementary Figures S3A–S3D) showing a
significant coefficient value for both Spearman and Pearson
Correlation test and the regression line. It is observed that the
mutation of RIMKLB is much more expressive for AKT3 >
MPDZ > PKD2 > MAP1B.

RimK-Like Family Member B-Related
Biological Pathways in Patients With
Colorectal Cancer
We carried out the biological process and KEGG pathway to further
investigate the potential pathways of RIMKLB in CRC. RIMKLB was
mainly involved in cell-cell adhesion via plasma-membrane adhesion
molecules, humoral immune response mediated by circulating
immunoglobulin, cytolysis, killing by host of symbiont cells,
triglyceride-rich lipoprotein particle remodeling, regulation of
intestinal absorption, chylomicron assembly (Supplementary
Figure S6A). Moreover, KEGG analysis revealed that RIMKLB is
involved in pathways of ECM-receptor interaction, Cell adhesion
molecules, Platelet activation, Chemical carcinogenesis-DNA adducts,
cAMP signaling pathway, PI3K-Akt signaling pathway, andCytokine-
cytokine receptor interaction. RIMKLB is associated with local
immunity in colorectal cancer, and its abnormal expression may
lead to the occurrence and development of CRC (Supplementary
Figure S5B).

DISSCUSSION

This study was the first to reveal the expression and prognostic efficacy
of RIMKLB in CRC. We found that the expression of this gene was
significantly different in a variety of tumors.Notably, it was significantly
decreased in CRC tumors compared to normal tissues, and this was
correlated with histology, stage, lymph node metastasis, and tumor
status. Moreover, multiple databases confirmed that a high expression
of RIMKLBwas associatedwithworseOS andDFS, indicating that this
gene may play an important role in tumor development. The

TABLE 2 | Correlation analysis between RIMKLB and significant gene markers of immune cells in GEPIA.

Description Gene Markers COAD READ

Correlation p Value Correlation p Value

Monocyte CD86 0.42 2.20E-13 0.27 0.01
CD115 (CSF1R) 0.51 0 0.29 0.0046

TAM CCL2 0.53 0 0.25 0.015
CD68 0.27 5.30E-06 0.19 0.076
IL10 0.38 7.40E-11 0.2 0.056

M2 Macrophage CD163 0.43 1.70E-13 0.3 0.0036
VSIG4 0.44 3.20E-14 0.23 0.03
MS4A4A 0.47 0 0.26 0.013

Neutrophils CD11b (ITGAM) 0.47 4.40E-16 0.25 0.018
CCR7 0.47 0 0.078 0.46

Dendritic cell HLA-DPB1 0.31 2.00E-07 0.24 0.023
HLA-DRA 0.25 1.90E-05 0.19 0.075
HLA-DPA1 0.29 1.10E-06 0.2 0.057
BDCA-1(CD1C) 0.41 1.60E-12 0.055 0.6
BDCA-4(NRP1) 0.58 0 0.3 0.0041
CD11c (ITGAX) 0.42 6.70E-13 0.21 0.044

Th1 T-bet (TBX21) 0.31 1.40E-07 0.18 0.089
STAT4 0.45 7.30E-15 0.2 0.06
STAT1 0.22 0.00027 0.19 0.072
TNF-α (TNF) 0.23 0.00013 0.14 0.18

Th2 GATA3 0.58 0 0.18 0.085
STAT6 0.15 0.01 0.26 0.013
STAT5A 0.35 1.70E-09 0.085 0.42
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Schematic representation for functional relevance of RIMKLB gene in
the oncogenesis of colorectal cancer and its candidature as a correlation
with immune cells and biological pathways is in Figure 9.

As far as we know, there are very few studies on RIMKLB and
Immune infiltration at present. This is the first study to find a close
correlation between RIMKLB and immune infiltration in CRC.
TIMER analysis showed that the mRNA level of RIMKLB was
closely related to TIICs, including CD4+ and CD8+ T cells, B cells,
TAMs M1 and M2 macrophages, neutrophils, monocytes, natural
killer cells, dendritic cells, Th1, Th2, Tfh, and Th17. In addition, the
expression of RIMKLB expression was significantly correlated with
the infiltration level of immune checkpoint inhibitors (ICIs), and
enrichment analysis showed that RIMKLB was positively correlated
with immunoinflammatory pathways. This study explored the

correlation between RIMKLB and the immune microenvironment,
providing new ideas and targets for CRC immunotherapy.

Our study found that there were differences in the expression of
RIMKLB between COAD andREAD.High expression of RIMKLB in
rectal cancer indicated poor OS and DFS, while there was no
significant statistical correlation in the case of colon cancer. In
COAD and READ, the expression of RIMKLB maintained a high
degree of consistency with tumor immune cell infiltration and the
expression of immune examination, except for B cell infiltration and
PD1 expression. For this reason, we first examined the differences in
sample size between COAD and READ groups, and secondly, the
possible differences in the pathogenesis of the two cancer types. A
retrospective analysis comparing right-sided colon cancer (RCC), left-
sided colon cancer (LCC), and colorectal cancer with regards to tumor

FIGURE 7 | The expression of RIMKLB and the correlation with immune infiltration in COAD (colon adenocarcinoma). Markers include ITGAM, and CCR7 of
Neutrophils; TBX21, STAT1, STAT4, and TNF of Th1; CD86 and CSF1R of monocytes; CD163, and VSIG4 of M2macrophages; CCL2, CD68, and IL10 of TAMs (tumor-
associated macrophages); HLA-DPB1, HLA-DRA, HLA-DPA1, CD1C, NRP, and ITGAX of Dendritic cell; GATA3, GATA6, and GATA5A of Th2. (A–G) Scatterplots of
correlations between RIMKLB expression and genemarkers of Neutrophils (A), Th1 (B), andM2macrophages (C), TAMs (D), Dendritic cell (E), monocytes (F), and
Th2 in COAD (G).
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status, differentiation degree, infiltration depth and diameter showed
that TNM staging and PFS of RCC was lower than that of the LCC
and rectal cancer; hence, survival may be associated with inherent
position characteristics (Gao et al., 2017). Studies have found that in
addition to anatomical differences, RCC and LCC are also different in
embryo origin and metastasis patterns and drug target composition
(Tamas et al., 2015). Human colon and rectal cancers were
comprehensively analyzed by the Cancer Genome Map Network
to identify possible genetic differences between them. Research data
show that non-high-mutation tumors correspond to CIN phenotype,
while high-mutation tumors correspond to microsatellite instability
(MSI) phenotype (Network, 2012). Studies have identified common
tumor-initiating events involving APC, KRAS, and TP53 genes in
RCC, LCC, and rectal cancer through comparative somatic and
proteomic analyses of the three cancer types. However, The

sequence of each event in tumor development and selection of
downstream somatic changes is different at all three anatomic sites,
which may have therapeutic relevance in these highly complex and
heterogeneous tumors (Imperial et al., 2018). Therefore, in our study,
the slight differences between the two may be closely related to the
above reasons, which need further research and verification.

Immunotherapy is a new type of cancer treatment. The
strategy is to use the patient’s own immune system to fight
cancer cells. Tumor immunotherapy overcomes the major
problem of specificity in chemotherapy and radiotherapy.
Although immunotherapy has dramatically changed the
treatment outlook for many advanced cancers, the benefits of
CRC to date have been limited to patients with high microsatellite
instability (MSI-H) DNA mismatched repair defect (dMMR)
tumors, and several randomized controlled trials are under

FIGURE 8 | The expression of RIMKLB and the correlation with immune infiltration in READ (recutm adenocarcinoma). Markers include ITGAM, and CCR7 of
Neutrophils; TBX21, STAT1, STAT4, and TNF of Th1; CD86 and CSF1R of monocytes; CD163, and VSIG4 of M2macrophages; CCL2, CD68, and IL10 of TAMs (tumor-
associated macrophages); HLA-DPB1, HLA-DRA, HLA-DPA1, CD1C, NRP, and ITGAX of Dendritic cell; GATA3, GATA6, and GATA5A of Th2. (A–G) Scatterplots of
correlations between RIMKLB expression and genemarkers of Neutrophils (A), Th1 (B), andM2macrophages (C), TAMs (D), Dendritic cell (E), monocytes (F), and
Th2 in COAD.
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TABLE 3 | TOP genes positively correlated with RIMKLB in CRC.

Correlated gene Cytoband Spearman’s correlation p-Value q-Value

AKT3 1q43-q44 0.706 2.12E-80 4.21E-76
MPDZ 9p23 0.689 4.35E-75 4.32E-71
PKD2 4q22.1 0.681 1.05E-72 6.96E-69
MAP1B 5q13.2 0.679 5.94E-72 2.95E-68
LHFPL6 13q13.3-q14.11 0.674 1.09E-70 4.35E-67
MEIS1 2p14 0.673 1.86E-70 5.52E-67
DNAAF9 20p13 0.673 1.95E-70 5.52E-67
BNC2 9p22.3-p22.2 0.669 2.57E-69 6.39E-66
TNS1 2q35 0.665 4.52E-68 9.97E-65
SLIT2 4p15.31 0.664 5.52E-68 1.10E-64
FBXL7 5p15.1 0.664 6.19E-68 1.12E-64
AMOTL1 11q21 0.663 1.28E-67 2.12E-64
DZIP1 13q32.1 0.662 2.38E-67 3.64E-64
HEG1 3q21.2 0.661 3.57E-67 5.07E-64
ARHGEF25 12q13.3 0.661 5.62E-67 7.44E-64
PTPRM 18p11.23 0.659 1.81E-66 2.25E-63
ZEB1 10p11.22 0.655 1.47E-65 1.72E-62
FILIP1 6q14.1 0.653 6.50E-65 7.17E-62
MCC 5q22.2 0.652 1.24E-64 1.30E-61
JAM3 11q25 0.651 1.69E-64 1.68E-61
TUB 11p15.4 0.648 9.10E-64 8.61E-61
STON1 2p16.3 0.647 1.75E-63 1.58E-60
WHAMMP2 15q13.1 0.646 2.66E-63 2.30E-60
JCAD 10p11.23 0.646 2.85E-63 2.36E-60
SALL2 14q11.2 0.646 3.71E-63 2.95E-60

FIGURE 9 | Schematic representation for functional relevance of RIMKLB gene in the oncogenesis of colorectal cancer and its candidature as a correlation with
immune cells and biological pathways.
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way to move immunotherapy to first-line and adjuvant therapy
for metastatic cancers (Franke et al., 2019). In recent years, a lot of
work has been done to evaluate the prognostic value of various
immune cell subsets. In general, cytotoxic T cells, memory T cells,
Th1 cells, Tfh cells and B cells are associated with prolonged
survival, while increased density of Treg cells, myeloid-derived
suppressor cells and neutrophils is associated with poor prognosis
(Bruni et al., 2020). Similar results were found in our study. In our
study, we found that in colon and rectal cancer, the expression
level of RIMKLB was significantly correlated with most immune
marker groups of various immune cells and different T cells.
Interestingly, we found that neutrophils, Th1, M2 macrophages,
TAM, DCs, monocytes, and Th2 were strongly correlated with
the expression of RIMKLB expression in the colon and rectum.
ICIs is used to target and/or block immune checkpoint protein
ligands on the surface of T cells or other immune cell subsets in
order to restore immune function. However, the high activation
and overexpression of immune checkpoints in cancer lead to the
suppression of anti-tumor immune response, which is conducive
to the proliferation and diffusion of malignant cells (Pardoll,
2015; Gonzalez et al., 2018). ICIs, specifically PD-1, PDL-1 and
CTLA-4 inhibitors, have been approved for the treatment of a
variety of solid tumors. Pd-1 and CTLA-4 are both negative
costimulatory molecules, and when inhibited, they enhance the
activation of T cells and eventually kill tumor cells (Wei et al.,
2018). ICIs can be used for tumors with MSI-H and high tumor
mutational burden (TMB) in chemo-resistant environments. The
most important biomarkers that should be routinely examined in
clinical practice include PDL-1, MSI and TMB (Spencer et al.,
2016; Mazloom et al., 2020). Our study found that the expression
of RIMKLB was significantly correlated with ICIs, specifically
with the infiltration levels of PD1, PD-L1, and CTLA4. At the
same time, the enrichment analysis of GO pathway suggested that
this gene was also involved in immune function. Taken together,
these findings suggest that RIMKLB may be closely related to
CRC immunotherapy, although further verification is needed.

The role of PI3K-Akt signaling pathway in the occurrence and
progression of CRC and its important role in drug resistance have
been reported earlier (Narayanankutty, 2019). Studies have
confirmed that overexpression of IMPDH2 can promote cell G1/
S phase cycle transition by activating the PI3K/AKT/mTOR and
PI3K/AKT/FOXO1 pathways, and promote cell invasion, migration
and EMT by regulating the PI3K/AKT/mTOR pathway
(Narayanankutty, 2019). Han et al. (2020) found that loss of
MLH1 reduced CTX sensitivity through HER-2/PI3K/AKT signal
transduction and anti-apoptosis and induced activation of HER-2/
PI3K/AKT signaling pathway, leading to cetuximab resistance in
colon cancer. FAT4 can partially regulate PI3K activity to promote
autophagy and inhibit EMT through PI3K/AKT/mTOR and PI3K/
AKT/GSK-3β signaling pathways (Wei et al., 2019). Patra et al.
(2021) found that COL11A1 plays an important role in regulating
cell division, differentiation, proliferation, migration, growth and
apoptosis of intestinal and colon cells, and it can disrupt a variety of
signaling pathways that affect tumor development, such as RTK-
RAS-PI3K, Wnt, TGF-β2 and TP53 pathways. At present, most
studies have confirmed that the PI3K-Akt signaling pathway is
regulated by multiple factors and plays a role in the occurrence,

development and treatment of tumors. In our study, we found that
RIMKLB is enriched in the PI3K-Akt pathway, suggesting that this
molecule plays a role in CRC progression or treatment, but the
specific mechanism needs further experimental verification.

Our research has its limitations. First of all, our study lacks
cytological and animal experiments, and the specific mechanism is
not clear. Further molecular cytological studies are needed in the
future. Second, our retrospective study and small sample size failed
to obtain immunotherapy data for these patients; Finally, there is a
lack of data onmolecular indicators (such asMSI, TP53, and TMB,
etc) associated with colorectal cancer prognosis and
immunotherapy, so further improvement is needed.

CONCLUSION

Our study revealed the relationship between RIMKLB and the
prognosis of CRC for the first time, and also found that this
molecule was closely related to the invasion of CRC immune cells
and ICIs. Thus, our study provides an important basis for the
immunotherapy of CRC, the mechanism of immune resistance,
and the identification of new immune-related therapeutic targets.
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Heterogeneity and limited comprehension of chronic autoimmune disease pathophysiology
cause accurate diagnosis a challenging process. With the increasing resources of single-cell
sequencing data, a reasonable way could be found to address this issue. In our study, with
the use of large-scale public single-cell RNA sequencing (scRNA-seq) data, analysis of
dataset integration (3.1 × 105 PBMCs from fifteen SLE patients and eight healthy donors) and
cellular cross talking (3.8 × 105 PBMCs from twenty-eight SLE patients and eight healthy
donors) were performed to identify the most crucial information characterizing SLE. Our
findings revealed that the interactions among the PBMC subpopulations of SLE patients may
be weakened under the inflammatory microenvironment, which could result in abnormal
emergences or variations in signaling patterns within PBMCs. In particular, the alterations of B
cells and monocytes may be the most significant findings. Utilizing this powerful information,
an efficient mathematical model of unbiased random forest machine learning was established
to distinguish SLE patients from healthy donors via not only scRNA-seq data but also bulk
RNA-seq data. Surprisingly, our mathematical model could also accurately identify patients
with rheumatoid arthritis and multiple sclerosis, not just SLE, via bulk RNA-seq data (derived
from 688 samples). Since the variations in PBMCs should predate the clinical manifestations
of these diseases, our machine learning model may be feasible to develop into an efficient tool
for accurate diagnosis of chronic autoimmune diseases.

Keywords: chronic autoimmune disease, accurate diagnosis, machine learning (ML), scRNA-seq, cellular
cross talking
INTRODUCTION

Systemic lupus erythematosus (SLE), multiple sclerosis (MS), and rheumatoid arthritis (RA) are all
chronic autoimmune diseases associated with progressive widespread organ damage (1–3). The course of
these three diseases is typically progressive with intermittent remission (4, 5). It is generally accepted that
early treatment could increase the remission probability of these diseases and improve their prognosis (6,
7). If appropriate treatment is not given in a timely manner, these diseases may progress, causing work
disability and life quality reduction for patients. Furthermore, such progression would lead to enormous
org April 2022 | Volume 13 | Article 8705311182
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financial burdens to the patients, their families, and society (8–10).
Hence, it is crucial to develop an efficient method of accurate
diagnosis to enable early intervention for these diseases.

Unfortunately, it seems that diagnosing SLE, MS, and RA may
still be a challenging process that relies on a set of criteria (11–13),
including clinical manifestations, functional outcomes, and
serological and radiological evidence, that have to be met to make
an accurate diagnosis (14, 15). Under non-specific and insensitive
criteria, the misdiagnosis and underdiagnosis of these diseases are
relatively common (16). The average time from symptom onset to
diagnosis confirmation was approximately two years (17). This may
cause patients to miss the optimal time for treatment. To break the
bottleneck of early diagnosis, many studies have focused on
biomarker detection to develop an accurate diagnostic criterion
(18–21). However, the results were unsatisfying, owing to the
tremendous heterogeneity of these diseases and limited
comprehension of the disease pathophysiology (22).

In detail, although it is well known that the loss of immune
tolerance and persistent release of autoantibodies are the two
important bases for the pathophysiology of chronic autoimmune
disease (23, 24), most studies have focused on investigating the
contribution of certain cellular or molecular mechanisms rather
than comprehensively and systematically illustrating the
pathogenesis. This might be due to the limitation of methods or
means. With the development of single-cell sequencing technology,
the increased resources of data, and the improvement of
bioinformatic tools (e.g., Seurat, SHARP, CellChat, etc.) (25–27),
these would together help us to comprehend the pathophysiology of
these diseases, thus their crucial features would be efficient for being
mined. For example, Nehar-Belaid et al. thoroughly analyzed the
major cell types among peripheral blood mononuclear cells and
revealed an expanded subpopulation that has a specific interferon-
stimulated gene (ISG) expression pattern in SLE patients (28).
Meena Subramaniam et al. also found that monocytes from SLE
patients highly expressed ISGs (29). Both of these studies
comprehensively illuminated the cytological changes of SLEs.

According to these public single-cell RNA sequencing
(scRNA-seq) data of SLE, we seek for a feasible way for SLE
accurate diagnosis. Firstly, integration and cellular cross-talking
analysis were performed to obtain the powerful information
labeling the disease. This information was then combined with
an unbiased random forestry machine learning algorithm which
rendered an efficient mathematical model for SLE diagnosis. The
accuracy of the mathematical model to identify patients with RA
andMS was also validated. Furthermore, the diagnostic precision
of our model was evaluated using an independent SLE
cohort (Figure 1).
MATERIAL AND METHODS

Data Availability
The single-cell RNA sequencing data were deposited in the Gene
Expression Omnibus (GEO), and the accession numbers were
GSE137029 and GSE135779 for SLE patients and GSE164378 for
healthy donors. Bulk RNA-sequencing data were deposited to
Frontiers in Immunology | www.frontiersin.org 2183
GSE72509 and GSE164457 for peripheral blood mononuclear
cells (PBMCs) of SLE patients, GSE90081 for PBMCs of RA
patients, GSE89408 for synovial tissues of RA patients,
GSE159225 for PBMCs of MS patients, and GSE89408 for
CD14-positive cells of MS patients, and GSE183204 and
GSE169687 for PBMCs of healthy donors.

Integration of Single-Cell RNA Sequencing
Data
Reciprocal principal component analysis (RPCA)-based
integration could effectively detect a state-specific cell cluster
and run significantly faster on large datasets. Compared with
other integration tools (e.g., BBKNN and LIGER), RPCA could
conserve more distinct cell identities when removing batch effect,
particularly for the data of immune cells (30). Considering its
balancing capability on batch effect removal and biological
variance preserving, RPCA would be used for our dataset
integration. Before the integration, two lists were created: one
containing merged SLE data and the other containing merged
healthy data. These two lists were then combined and integrated
through Seurat (version 4.0.5) following the guidelines at https://
satijalab.org/seurat/articles/integration_rpca.html.

PBMCs and Their Subpopulation
Clustering
To discover SLE-dominant cell clusters, PBMCs and their
subpopulations were clustered through Seurat (version 4.0.5),
respectively. Cell proportions of each cluster were calculated
subsequently. For PBMC cell clustering, each cell subcluster was
annotated based on a canonical marker. Any cluster that has SLE
cells containing more than 75% would be considered as
SLE dominant.

Differential Expression Gene Analysis on
SLE-Dominant Cell Clusters
Within those PBMC subpopulations (e.g., B cells and
monocytes) which contain the SLE-dominated cluster,
differential expression gene (DEG) analysis would be applied
on all of their cell clusters with Function FindAllMarkers
embedded in Seurat (version 4.0.5) to find out useful
information that mark the SLE state. Top five genes based on
their log2 fold change value were selected as the first part of
feature input for machine learning. Meanwhile, these DEG
functions were annotated through literature search.

Cellular Cross-Talking Analysis
The machine learning model can be optimized with powerful
sources of information. Thus, CellChat (version 1.1.3) analysis
was performed following the guidelines at https://github.com/
sqjin/CellChat. In details, overall interaction, overall signaling
pattern, outgoing/incoming signaling pattern, and ligand–
receptor pair were checked step by step. Samples were
analyzed independently. Datasets of patients and health donors
were analyzed separately and merged to make a comparison
analysis. Ligand–receptor pairs which disappeared at SLE were
selected as a second part of feature input for machine learning.
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FIGURE 1 | Workflow for establishment of an accurate machine learning model to diagnose chronic autoimmune diseases. STEP I, to figure out the most crucial
information that characterizes diseases using public scRNA-seq datasets. From analysis of integration and clustering, 67 top five cluster-specific genes basing on the
differential expression gene identification within SLE dominant PBMC subpopulations were derived. From cellular cross-talking analysis, 21 genes constituting ligand–
receptor pairs disappeared in SLE patients and showed that more than two kinds of PBMC subpopulation were derived. A union of these two gene sets would be
used in the next step. STEP II, to establish the machine learning model diagnosing diseases. A random forest machine learning model was implemented, and genes
derived from step I were combined as feature input. 56 and 527 samples were used as sample input for scRNA-seq and bulk RNA-seq data, respectively. STEP III,
to validate the accuracy of our machine learning model. Receiver operating characteristic (ROC) analysis was used to test the accuracy, and multiple times of ten-fold
cross-validation tests were adopted to avoid bias. The diagnostic accuracy of our model was also validated using an independent bulk RNA-seq cohort containing
120 SLE patients and 41 health donors.
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Machine Learning With the Random
Forest Model
The random forest machine learning model was implemented with
sklearn (version 0.23.2). The gene set which derived from
integration and CellChat analysis were combined as feature input,
aiming at selecting information within the sequencing datasets, thus
improving the performance of the machine learning model. 56 and
527 samples were used as sample input for scRNA-seq and bulk
RNA-seq data, respectively. Samples from patients and healthy
donors were labeled with 1 and 0, respectively. With the function
train_test_split within sklearn.model_selection, the data were split
into two parts, 70% for training and 30% for testing, according to
previous study (31). Data balancing was performed when the cell/
sample ratio between patients and healthy donors was above 1:2, at
random forest model initialization. Receiver operating characteristic
(ROC) analysis was used to test models’ accuracy. The models for
each disease were independent.

To avoid bias of data composition, the sklearn module
StratifiedKFold was used to split data into ten parts preserving
the ratio of samples and perform a ten-fold cross-validation with
a loop of one hundred. The average and standard deviation of
area under curve (AUC) were documented.

Diagnostic Accuracy Validation of the
Machine Learning Model
An independent bulk RNA-seq cohort containing 120 SLE
patients and 41 health donors was enrolled into the diagnostic
accuracy validation of our machine learning model. Basic
information of this cohort including SLE severity, age, and
gender was documented. Genes which were used as feature
input for the machine learning model were confirmed to be
expressed in each sample. The diagnostic accuracy of our
machine learning model for SLE and healthy donors was
tested separately.

Statistical Analysis
The statistical significance of differential gene expression was
analyzed with the Wilcoxon test, a default parameter in function
FindAllMarkers of Seurat packages.

Software Version
All the software mentioned above were based on R (version 4.1.1)
and Python (3.7). Integration analysis and cell clustering were
based on Seurat (version 4.0.5), and cellular cross-talking
analysis was based on CellChat (1.1.3). Machine learning was
based on sklearn (version 0.23.2).
RESULTS

The Limited Alterations of Cell
Composition in SLE Patients From the
Overall PBMC Perspective
To discover the SLE-dominated alterations of PBMC
composition in SLE patients, two single-cell transcriptomic
datasets with more than 3.15 × 105 cells from 15 SLE patient
Frontiers in Immunology | www.frontiersin.org 4185
(GSE137029) and 8 healthy donor (GSE164378) samples were
enrolled in our study. The uniform manifold approximation and
projection (UMAP) and Louvain algorithm were applied for
unsupervised dimension reduction and clustering, respectively
(32, 33). As shown in Figures 2A, B, the PBMCs of these two
datasets could be grouped into sixteen molecularly distinct
clusters. The clusters were annotated based on the gene
expression values compared to all other cells. The results
illustrated two clusters of T cells, B cells, natural killer cells,
and erythroid cells, three clusters of monocytes and dendritic
cells, and one platelet cluster (Figures 2A, D). Unfortunately,
SLE-dominated (clusters 13 and 15) clusters were tiny and might
come from erythrocytes (HBB specifically expressed). The rest of
the cell cluster proportions of SLE patients and healthy donors
were evenly balanced or healthy donor dominant (Figure 2C).
This is partly because the difference between SLE patients and
healthy donors might be attenuated under the overall PBMC
perspective. Hence, to strengthen the power of detecting
SLE-dominant information, further analyses were performed in
the subpopulations of PBMCs according to the cluster
annotation above.

Identification of SLE-Dominated Clusters
in B Cells and Monocytes
Increasing evidence indicates that specialized immune cell subsets
are involved in the pathophysiological process of autoimmune
diseases through multiplex pathways and signals (34–36). Thus,
we re-clustered the subpopulations of PBMCs to identify the SLE-
dominated clusters in which the cell proportion of SLE exceeds
75%. Interestingly, the SLE-dominated clusters were identified
only in B cells (clusters 2, 6, and 7, Figures 3A, B) and monocytes
(clusters 1 and 7, Figures 3E, F); the rest of the PBMC
subpopulation is shown in Figure S2. With differential
expression gene (DEG) analysis on B cells and monocytes, the
top five cluster-specific genes based on their log2 fold change
values are shown in Figures 3C, G, respectively. All DEG analysis
results are shown in Table S1. Interferon inflammatory signatures
are closely related to the SLE (37). Consistently, we found that
cluster 7 of B cells has interferon-stimulated gene (ISG) expression
patterns (IFI27, MX1, ISG15, and IFI44L). Moreover, we identified
that this cluster simultaneously possess the typical expression
patterns of naïve and autoactive B lymphocytes (naïve: IgD+,
CD27-, CD38 low, CD24 low; autoactive: TBX21, ITGAX,
CXCR5, TRAF5, CR2, Figure 3D) (38, 39). In addition, we also
found that cluster 1 of monocyte highly expressed ISGs (IFI27,
MX1, ISG15, IFI44L), and cluster 7 of monocyte had a
proinflammatory character (FKBP5, Figure 3H) (40).

Taken together, these findings revealed that there were
enhanced signals of an autoreactive/inflammatory state in B
cells and monocytes of SLE patients, which suggested the
essential roles in the pathophysiological process of SLE.

Weakened Interactions Among the PBMC
Subpopulations of SLE Patients
To systematically explore the alterations of PBMCs in SLE
patients and obtain a powerful source of information for the
training of the machine learning model, we employed CellChat
April 2022 | Volume 13 | Article 870531
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to analyze cellular cross talking from scRNA-seq data. Three
scRNA-seq datasets (GSE137029, 15 adult patients with SLE;
GSE135779, 13 child patients with SLE; GSE164378, 8 healthy
donors) with more than 3.80 × 105 cells were included in
this analysis.

The total number and strength of ligand–receptor pairs were
significantly reduced in both adult and child SLE patients
compared with healthy donors (Figure 4A). Remarkably, the
interactions of PBMC subpopulations in SLE patients were
weakened (Figure 4B). Comparing overall and detailed
Frontiers in Immunology | www.frontiersin.org 5186
outgoing/incoming signaling pattern variations among SLE and
healthy donors, we identified that abundant signal patterns could
be observed for the healthy donors, but in the SLE groups, the
number of involved pathways was reduced (Figures 4C, D). In
detail, there were several signal patterns that specifically
disappeared under the disease state. Among them, FLT3,
CD48, and TGF-beta signal patterns have been reported to
have a negative correlation with SLE development (41–44).
Taken together, the disappearance of multiple signal patterns
might be a potential feature during SLE development.
C

D

BA

FIGURE 2 | Integration analysis of single-cell RNA sequencing datasets from SLE patients and healthy donors. (A) UMAP plot of categorized cell clusters. (B) UMAP plot of
single-cell PBMCs from fifteen SLE flare patients and eight healthy donors. (C) Bar plot of cell proportion in each cell cluster. The dashed line represents the 75% threshold.
(D) Dot plot of canonical markers for B cells, monocytes, T cells, natural killer cells, dendritic cells, and platelets. The dot size represents the gene (x-axis) percent expression
on its corresponding cluster (y-axis). The color represents the average expression of the genes (gray: low, red: high).
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Detailed Ligand-Receptor Pair Alterations
in SLE Patients
As the above results indicated that numerous signal patterns
disappeared in SLE compared with healthy states, to find detailed
information, we further explore the discrepancy of ligand–
Frontiers in Immunology | www.frontiersin.org 6187
receptor pairs from all PBMC subpopulations (B cells,
monocytes, T cells, natural killer cells, and dendritic cells)
among healthy donor, adult SLE (aSLE), and child SLE (cSLE)
groups (Figures 5A–E). We identified that eighty-seven ligand–
receptor pairs disappeared in SLE patients, which were
BA

DC

FE

HG

FIGURE 3 | Cell proportion analysis of re-clustered B cells and monocytes. (A, E) UMAP plot of re-clustered B cells and monocytes from SLE patients and healthy
donors, respectively. Left panel cells were categorized with Louvain clusters; the right panel cells were categorized by their source (SLE patient/healthy donors).
(B, F) Bar plot of cell proportion in each B cell and monocyte subcluster, respectively. The dashed line represents the 75% cell proportion threshold. Both B cells
(clusters 2, 6, 7) and monocytes (clusters 1, 7) have a unique cell subpopulation where SLE is predominant. (C, G) Heatmap of top five cluster-specific genes of
each subclusters within B cells and monocytes, respectively. The color represents the expression level (blue: low, red: high). (D, H) UMAP plot of selected gene
expression in re-clustered B cells and monocytes, respectively.
April 2022 | Volume 13 | Article 870531

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ma et al. Accurate Diagnosis of Autoimmune Disease
BA

D

C

FIGURE 4 | CellChat analysis of whole PBMCs from SLE patients and healthy donors. (A) Bar plot of the overall difference among healthy donors (HD), adult SLE
patients (aSLE), and child SLE patients (cSLE). The left panel shows the total number of interactions, and the right panel shows the interaction strength. (B) Circle
plot of PBMC subpopulation among HD, aSLE, and cSLE. The line width: the connection strength; dark blue: monocytes, green: B cells, red: T cells, purple: natural
killer cells, orange: dendritic cells and pink: other cells. These together revealed a weakened PBMC subpopulation cross talking and distinct signal pattern under
SLE. (C) Heatmap reveals the overall signal pattern changes in the HD, aSLE, and cSLE groups, and the signal strength is scaled from white (no signal detected) to
dark red (strong). (D) Dot plot for the emergence probability of signal outgoing (left panel) and incoming (right panel) patterns within each PBMC subpopulations
among HD, aSLE, and cSLE. The dot size represents the p value. Patterns which specifically disappeared under disease state were marked with red. The total
number of outgoing and incoming signal reduced significantly in SLE.
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FIGURE 5 | Ligand–receptor pair alternation of SLE patients compared with healthy donors. Dot plot for the emergence probability of ligand–receptor pairs within
each PBMC subpopulations (A) B cells, (B)monocytes, (C) T cells, (D) natural killer cells, (E) dendritic cells) among HD, aSLE, and cSLE. The dot color represents
the probability. Pairs which specifically disappeared under disease state are marked with red.
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composed of sixty-one genes. The frequency of each gene
appeared at each PBMC subpopulation, as listed in Table S2.
The genes which showed more than two kinds of PBMC
subpopulation were recognized as significant ones to be
selected as a second part of feature input for machine learning.

Among them, TGFBR1, TGFBR2, CCL5, CD48, CD244A,
and CD72 have been reported to be closely related to the
pathophysiologic processes of autoimmune diseases (41, 43,
45–47). For example, TGFBR1, TGFBR2, and CCL5 levels are
negatively correlated with SLE development (43, 45). CD48, also
known as SLAMF2, which could regulate both natural killer cells
and cytotoxic CD8+ T cells (48), could protect mice from
autoimmune nephritis (41), CD244A and CD72 were
specifically decreased in monocytes and B cells during SLE
development (47, 49). Interestingly, all these selected pairs are
all in B cells or monocytes, suggesting the key roles of monocytes
and B cells on the pathophysiologic processes of autoimmune
diseases. All these findings were consistent with our results of
integration analysis.

Efficient Machine Learning Models for
Chronic Autoimmune Disease Diagnosis
To establish a mathematical model of unbiased random forest
machine learning for SLE accurate diagnosis, sixty-seven top five
cluster-specific genes derived from integration analysis and
twenty-one significant genes identified via cellular cross-talking
analysis were combined as feature input. The dataset GSE135779,
containing 3.60 × 105 PBMCs (derived from 33 cSLE, 7 aSLE,
and 11 healthy children, 5 healthy adults), was included to
evaluate the diagnosis efficiency of our mathematical model.

The results indicated that our machine learning model could
separate SLE and healthy status with acceptable accuracy (AUC =
0.776 ± 0.097, Figure 6A). The feature importance of our gene set
for SLE is shown in Figure 6C. Considering the signal intensity of
our gene sets and the denoising ability of machine learning, a further
investigation was conducted to evaluate the disease distinguishing
the efficiency of our mathematical model using bulk RNA-seq data.
The bulk RNA-seq datasets (GSE72509, GSE183204), which include
99 SLE patients and 30 healthy donors were used in this
investigation. The results indicated that our mathematical model
has great adaptability (AUC = 0.998 ± 0.004, Figure 6B). The
corresponding feature importance was also calculated (Figure 6D).
This revealed that combined with the unbiased random forestry
machine learning model, our gene sets rendered a powerful
mathematical tool for distinguishing SLE.

It is reported that chronic autoimmune diseases including
SLE and RA might share some similar cellular pathogeneses with
MS (50). Thus, we investigated whether our machine learning
model could efficiently distinguish RA and MS based on bulk
RNA-seq data. Three datasets were included in this study,
including a set of PBMC datasets (GSE90081, GSE183204)
with 12 RA patients and 24 healthy donors, a synovial tissue
dataset (GSE89408) with 152 RA patients and 28 healthy donors,
and a PBMC dataset (GSE159225) with 20 relapse-and-
remission MS patients, 10 secondary progressive MS patients,
and 20 healthy donors.
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Surprisingly, our machine learning model could separate
patients with RA/MS and healthy donors with excellent
accuracy in RA patients (AUC = 0.967 ± 0.099 in RA PBMC
datasets, Figure 7A; AUC = 0.997 ± 0.006 in the RA synovial
dataset, Figure 7C). For MS patients, our figure rendered an
acceptable accuracy (AUC = 0.775 ± 0.236 in MS PBMC datasets,
Figure 7E). The corresponding feature importance shown in
Figures 7B, D, F illustrated that although our gene sets have
extensive applicability and great accuracy for these diseases, each
gene has different importance across each of these diseases. It
suggested that our machine learning model requires a fine
adjustment when applied to these diseases.

To determine the contribution of positive signals to the accuracy
of our machine learning model, we obtain a public bulk RNA-seq
dataset (GSE137143, 122 MS patients and 22 healthy donors),
which consists of only CD14-positive monocytes. Unfortunately,
the AUC value dropped to 0.673 ± 0.136, indicating that the
accuracy sharply decreased (Figure S4). This result suggested that
the distinguishing power of our model was reduced on account of a
loss of positive signals, for example, the signals from B cells.

Diagnostic Accuracy Validation of the
Machine Learning Model
To evaluate the diagnosis accuracy of our machine learning model,
an independent cohort containing 120 SLE patients (GSE164457)
and 41 healthy donors (derived from GSE169687) were enrolled
into the study. The basic information and the gene expression
pattern of objects within this cohort are shown in Figures 8A, C.
Notably, the precision rate of our machine learning model diagnosis
was 100% (120/120) and 92.7% (38/41) for SLE patients and healthy
donors, respectively (Figure 8B). This result confirmed the
diagnostic accuracy of our machine learning model, which
suggested that it may be feasible to develop into an efficient tool
for accurate disease diagnosis in the future.
DISCUSSION

We aimed to develop a feasible strategy for distinguishing patients
with SLE and other major chronic autoimmune diseases in the early
stage from healthy people. To achieve our purpose, the most crucial
information that characterizes diseases should be filtered out first.
From public single-cell RNA sequencing datasets, we found that B
cells and monocytes were the only two subpopulations containing
SLE-dominated clusters in the PBMCs of patients, which suggested
that they might carry much stronger signals that indicate SLE than
other PBMC subpopulations. To date, conclusions about the
contribution of PBMC subpopulations to the development of SLE
and other autoimmune diseases are not consistent, even when based
on single-cell RNA sequencing data (51–55). Most studies mainly
focus on specific disease aspects, which might result in imbalanced
data selection, background noise interference, and biased
conclusions. Hence, we selected the single-cell RNA sequencing
data from over 1.50 × 105 cells for each category with a balanced
ratio between patients and controls (approximately 1:1) to avoid
rushing into any prejudicial conclusions.
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Further investigation of differentially expressed genes
revealed the details of the most significant information that
marks a disease within B cells and monocytes. A few
interferon-stimulated genes were active in the SLE-dominated
B cells and monocytes, indicating that these cells might be a
consequence of the inflammatory microenvironment. It is well
known that the inflammatory microenvironment may be crucial
Frontiers in Immunology | www.frontiersin.org 10191
to the progression of SLE and other chronic autoimmune
diseases. Tsokos et al. reported that the production of
autoantibodies triggered by both the innate and adaptive
immune responses against self-antigens in SLE patients
resulted in the accumulation of monocytes and activation of
lymphocytes (56). Our results confirmed this suggestion.
Interestingly, we found an activated naïve cluster of B cells in
BA

D

C

FIGURE 6 | Machine learning model accurately distinguish SLE. (A) The performance of distinguish SLE using scRNA-seq data of PBMCs (AUC = 0.776 ± 0.097).
(B) The performance of distinguish SLE using bulk RNA-seq data of PBMCs (AUC = 0.998 ± 0.004). (C, D) Bar plot for the corresponding feature importance within
the correlated model using scRNA-seq and bulk RNA-seq data, respectively. The bar length: feature importance.
April 2022 | Volume 13 | Article 870531

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ma et al. Accurate Diagnosis of Autoimmune Disease
the SLE-dominated clusters. Recently, Jenks et al. reported a
distinctive differentiation fate of autoreactive naïve B cells (39).
This was similar to our finding and suggested that B cells should
play an important role in the development of SLE.

All of the PBMC subpopulations were influenced mutually in
the progression of chronic autoimmune diseases, and analyses
based on individual subpopulations may lose important
information of reciprocities that accounts for disease
progression. Most current scRNA-seq data analysis tools focus
on detailed categorizations and trajectories of cells (28, 57–59).
Recently, bioinformatic tools (e.g., CellChat, CellPhoneDB,
iTALK) were developed to infer cellular cross talking from
Frontiers in Immunology | www.frontiersin.org 11192
scRNA-seq data, which make it possible to decipher reciprocities
among cells under a single-cell level (57, 60–62). Therefore, we
carried out cellular cross-talking analyses to reveal dynamic
interactions across PBMC subpopulations and systematically
decipher the etiology of diseases. Surprisingly, we found that the
interactions among the PBMC subpopulations of SLE patients
were weakened. It was reported that monocytes might contribute
to the hyperactivity of B cells in SLE patients (63). A study also
revealed that monocytes may function as a bridge during RA
pathogenesis, and colocalization of CD14+ cells with CD4+ T
effectors was found at sites of the inflamed rheumatoid synovium
(64). Together, these reports illustrate that immune cells weave a
A B

D

E F

C

FIGURE 7 | Machine learning model accurately distinguish RA and MS. (A) The performance of distinguish RA (rheumatoid arthritis) using bulk RNA-seq data of
PBMCs (AUC = 0.967 ± 0.099). (B) Bar plot for the feature importance with the correlated model. (C) The performance of distinguish RA using bulk RNA-seq data
of synovial tissue (AUC = 0.997 ± 0.006). (D) Bar plot for the feature importance with the correlated model. (E) The performance of distinguish MS (multiple sclerosis)
using bulk RNA-seq data of PBMCs (AUC = 0.775 ± 0.236). (F) Bar plot for the feature importance with the correlated model. The bar length: feature importance.
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network and that their interaction would provide significant
information for autoimmune disease pathogenesis. Further
detailed analysis revealed that the major changes occurred in B
cells or monocytes, including FLT3, CD48, TNF, and TGF-beta
signal patterns that have been reported to have a negative
correlation with SLE development (41–44). Our results were
consistent with previous studies on the variations in B cells (65–
67) and monocytes (68–70) in SLE. Considering the repeatable
results gained from our study, it should be convincing that the
interactions among the PBMC subpopulations of SLE patients
may be weakened, which could result in abnormal emergences or
variations in signaling patterns within PBMCs.

Based on our finding of powerful information that
characterizes diseases, we tried to establish a machine learning
Frontiers in Immunology | www.frontiersin.org 12193
model to distinguish chronic autoimmune diseases. Several
reports have proven that the random forest (RF) machine
learning method would give a high accuracy in disease
classification when abundant features were included (71, 72),
and another reason for the random forest model was its
interpretability—each gene contribution in the RF machine
learning model was visible. Our area under curve (AUC) score
for SLE indicates that our machine learning model has the
potential to become an efficient tool for accurate diagnosis of
SLE at the single-cell RNA level. Considering that the
information we identified was not specific to the early stage of
the disease, further optimization should be performed to identify
the sensitive information in the early stage of the disease to
strengthen the diagnostic power of our machine learning model.
B

C

A

FIGURE 8 | Diagnostic accuracy validation of the machine learning model. (A) Table of cohort basic information. (B) Bar plot of the amount of SLE patients and
healthy donors being distinguished accurately by the model (blue: SLE patients, red: HD); the bar with black stripe represents the model-predicted number, while the
other represents the real number. (C) Heatmap of genes used for machine learning setup within the validation cohort (the upper panel: genes derived from the
differential expression gene identification within integration analysis, the lower panel: genes derived from CellChat analysis).
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Further investigation is also needed to evaluate the efficiency
of our machine learning model using bulk RNA-sequencing
data. Our AUC score illustrates that although other immune
cell background noise might be introduced into RNA-seq data,
the gene set still has high accuracy in distinguishing patients
with the disease from healthy donors. This might be attributed
to the low correlation between each gene since they were
derived from the two different analysis frameworks, and this
low gene correlation in turn increased the random forest model
accuracy (73). Given the cost and convenience of bulk RNA
sequencing, our results suggested that this machine learning
model should be highly applicable going forward. In addition,
our classification results for bulk RNA sequencing data of
PBMCs and synovial tissues derived from RA and MS
patients indicated that this machine learning model also
showed high accuracy in distinguishing these diseases.
Numerous studies have reported that chronic autoimmune
diseases, such as SLE, RA, and MS, might share some similar
cellular pathogeneses (46, 50, 74). Our findings further
confirmed this viewpoint and suggested that this machine
learning model with the information we filtered out might be
powerful enough to discriminate patients with common
chronic autoimmune diseases from healthy donors, not just
SLE patients.
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1 Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States, 2 Department of
Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States, 3 Department of Dermatology,
Northwestern Medicine, Northwestern University, Chicago, IL, United States, 4 Department of Urology, Northwestern
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Michigan Medicine, University of Michigan, Ann Arbor, MI, United States

Immune-mediated skin conditions (IMSCs) are a diverse group of autoimmune diseases
associated with significant disease burden. Atopic dermatitis and psoriasis are among the
most common IMSCs in the United States and have disproportionate impact on racial and
ethnic minorities. African American patients are more likely to develop atopic dermatitis
compared to their European American counterparts; and despite lower prevalence of
psoriasis among this group, African American patients can suffer from more extensive
disease involvement, significant post-inflammatory changes, and a decreased quality of
life. While recent studies have been focused on understanding the heterogeneity
underlying disease mechanisms and genetic factors at play, little emphasis has been
put on the effect of psychosocial or psychological stress on immune pathways, and how
these factors contribute to differences in clinical severity, prevalence, and treatment
response across ethnic groups. In this review, we explore the heterogeneity of atopic
dermatitis and psoriasis between African American and European American patients by
summarizing epidemiological studies, addressing potential molecular and environmental
factors, with a focus on the intersection between stress and inflammatory pathways.

Keywords: African America, psoriasis, atopic dermatitis, stress, minority
INTRODUCTION

Over 84 million Americans are impacted by at least one skin disease (1), posing significant health
and economic burden. Atopic dermatitis (AD) and psoriasis are among the most common and
widely studied immune-mediated skin conditions (IMSCs). With recent advances in genomic
technology, studies over the past decade (2–8) have focused on elucidating the underlying
mechanisms of disease pathogenesis for AD and psoriasis. More specifically, these studies have
explored the genetic and molecular factors associated with the disease pathophysiology. However,
the primary racial makeup of these studies has been predominantly European American (EA).
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While AD and psoriasis affect populations of different origins,
their burden is exacerbated in some ethnic minority groups
(9–11). Yet, there is a paucity of molecular studies describing
the driving factors behind ethnic heterogeneity in the severity,
presentation, and predominance of IMSCs.

Environmental factors, such as stress, are known to play roles
in shaping the onset and clinical severity of IMSCs (12–14).
While chronic stressors may impact any individual, unique
psychosocial factors such as racism, discrimination, and
acculturative stress (anxiety or tension related to efforts to
adapt to the values of dominant culture within a society) are
unique among ethnic minorities (15). Studies from the US
Department of Health and Human Services Office of Minority
Health show that African American (AA) adults living below the
poverty line are twice as likely to experience psychological
distress (16) and the downstream effects of these stressors can
result in decreased likelihood of receiving medical care (17, 18).
It is therefore important to understand the influence of stressors,
including psychosocial stress, on the pathogenesis of IMSCs,
especially as this may play role in the ethnic differences seen
across common IMSCs.

In this review, we explore the heterogeneity in AD and
psoriasis across AA and EA patients by summarizing
epidemiological studies, as well as the potential molecular and
environmental factors involved in disease pathogenesis. We also
place particular focus on the intersections between known stress
pathways and IMSC inflammatory pathways in the literature.
ATOPIC DERMATITIS

Epidemiology
Atopic dermatitis (AD) is an inflammatory skin condition
affecting more than 18 million adults in the United States (19,
20). This condition classically presents with pruritic,
erythematous plaques involving the flexor surfaces, particularly
in the antecubital and popliteal fossae. In Fitzpatrick skin types
IV through VI however, eczematous patches often appear brown,
purple, or ashen grey in color (11). Clinically, AD often presents
with greater involvement of the flexural surfaces in adults,
however patients of African descent are more likely to present
with more prominent involvement of the extensor surfaces (21).
Previous epidemiological studies using self-reported ethnic
information highlight a slightly higher prevalence of AD in AA
patients when compared with EAs (19.3% versus 16.1%) (22).
This predominance is also seen at young age, with AA children
found to be 1.7 times more likely to develop AD compared to
their EA counterparts, even after adjusting for health insurance
and socioeconomic status (11). In addition to reported racial
differences in AD prevalence, AA children as a group has been
reported to have more severe disease than EA children (23); the
study also suggested structural racism or the increased
proportion of AA children living in lower income, segregated
communities with exposure to greater environmental stressors,
are associated with disease severity. To further validate and
understand the epidemiological factors involved, we studied
the demographical variables from an insurance-claim database,
Frontiers in Immunology | www.frontiersin.org 2198
Optum Clinformatics Data Mart (CDM), consisting of 1,458,417
AD patient records across 2014 to 2018 (Table 1). As expected,
the association of AD-related clinical visits was significantly
stronger at younger age (<18 years) for all ethnic groups
compared with our reference age group (18-65 years) (OR:1.60,
1.95, 2.38, 1.92 for EA, Hispanic, Asian and AA populations,
respectively). The older patient population group (>65 years)
also had significantly stronger association with AD clinical visits
(OR=2.18, 1.76, 1.52, 1.75 for the same four ethnic groups,
respectively). The data importantly highlights that gender
factors had the largest effect sizes in AA (e.g. OR=1.43 for
female) compared to the other ethnic groups (OR between
1.23-1.35 for female). Patients with higher income are also
associated with higher prevalance of clinical visit for AD.

Genetics
While the cause of AD is complex, studies over the last decade
have provided insights into genetic and environmental factors
associated with disease pathogenesis and severity. Filaggrin
(FLG), a protein encoding gene from the epidermal
differentiation complex (EDC) and expressed in the keratinized
layer of the epidermis, plays an important role in skin barrier
function, for example by promoting keratinocyte differentiation
and rapid cell death (24). FLG expression is immune-modulated
by both aryl hydrocarbon receptor signaling and cytokines,
resulting in dysregulation within the lesional skin (25). The
locus harboring FLG has been identified as one of the strongest
genetic signals associated with AD (26). Carriers of the FLG loss-
of-function (LOF) variants have increased odds (3-fold) of
having AD. While LOF FLG mutations are risk factors for the
development of AD in patients of European and Asian descent,
this association has not been reported among individuals of
African descent. In fact, loss of function FLG mutations are
thought to be less common in AA patients with AD when
compared to EAs (27), and a recent study suggests that the
common FLG mutation found in AA patients are distinct from
those in EA and Asians (28). Nevertheless, decreased expression
and mutations of filaggrin-2 (FLG2), also from EDC, have been
associated with persistent symptoms of AD in AA, while such
variations are absent or infrequently found in AD patients of
European ancestry (29). The first genome-wide significant
association at rs3811419 for AD in AA patients was found to
be an expression quantitative trait loci (eQTL) for THEM4 (a
gene associated with allergy), and FLG-AS1 (a non-coding RNA
that overlaps the filaggrin gene) in blood. The association
between the risk allele of this eQTL locus and increased
expression of FLG-AS1 can potentially offer an alternative
mechanism explaining skin barrier deficiency in AA, although
further research is required (30).

While AA patients are more likely to present with more
severe AD than EAs patients (22), a recent study challenged the
perception that racial heterogeneity in the severity of AD is
genetically driven (31). This study found that observed
differences of AD in AA patients, including disease severity,
were not associated with a continuous measure of African genetic
ancestry. This finding supports epidemiologic, rather than
genetic, associations with disease severity and suggests the
April 2022 | Volume 13 | Article 845655
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potential roles of other factors such as environmental
components (e.g., stress, pollution, social determinants of
health) in disease heterogeneity and their influence on
disease pathogenesis.

Stress and Immunologic Parameters
Though most studies describing the molecular signature of AD
have been conducted in patients of European ancestry, a recent
study by Wongvibulsin et al. confirmed previously reported Th2/
Th22 skewing in AA patients with AD, along with upregulated
Th1 cytokines in lesional skin of AD, contribute to the increased
disease severity in AA patients (32). The authors also reported
elevated serum C-reactive protein (CRP), ferritin, and blood
Frontiers in Immunology | www.frontiersin.org 3199
eosinophils in AA patients when compared to EA patients with
AD. In addition, Schmeer et al. measured serum CRP levels
across ethnic groups in children aged 2 to 10 years and found
significantly higher serum measurements in AA and Hispanic
children when compared to EA children (33). In adults, increased
activity of two essential pro-inflammatory transcription control
pathways, NFĸB and AP-1, was found in AA subjects who also
independently reported experiencing greater perceived racial
discrimination as assessed through a 17-item Perceived Ethnic
Discrimination Questionnaire—Community Version (34) when
compared to EA subjects. These findings suggest that
psychosocial stressors may play a role in the increased activation
of pro-inflammatory pathways.
TABLE 1 | Risk factors for atopic dermatitis and psoriasis stratified by different ethnic groups.

Atopic Dermatitis Psoriasis

Odds
Ratio

95% CI Lower
bound

95% CI Upper
bound

Significance Odds
Ratio

95% CI Lower
bound

95% CI Upper
bound

Significance

Obesity EA 1.49 1.48 1.51 *** 1.89 1.86 1.91 ***
Hispanic 1.47 1.44 1.51 *** 1.91 1.84 1.97 ***
Asian 1.32 1.25 1.40 *** 1.98 1.83 2.14 ***
AA 1.55 1.51 1.59 *** 1.75 1.68 1.81 ***

Age (18-65 as
ref)

EA (y) 1.60 1.58 1.62 *** 0.18 0.17 0.18 ***
EA (o) 2.18 2.16 2.21 *** 1.80 1.77 1.82 ***
Hispanic (y) 1.95 1.88 2.03 *** 0.20 0.18 0.22 ***
Hispanic (o) 1.76 1.69 1.84 *** 1.45 1.37 1.54 ***
Asian (y) 2.38 2.31 2.46 *** 0.22 0.19 0.24 ***
Asian (o) 1.52 1.48 1.56 *** 2.17 2.10 2.26 ***
AA (y) 1.92 1.87 1.97 *** 0.21 0.20 0.23 ***
AA (o) 1.75 1.70 1.79 *** 1.57 1.52 1.63 ***

Gender (M as
ref)

EA 1.35 1.34 1.36 *** 1.10 1.09 1.11 ***
Hispanic 1.34 1.31 1.36 *** 0.97 0.95 1.00 .
Asian 1.23 1.19 1.27 *** 0.84 0.80 0.89 ***
AA 1.43 1.40 1.46 *** 1.14 1.10 1.18 ***

$40K-$49K EA 1.08 1.06 1.10 *** 1.02 0.99 1.05 .
Hispanic 1.05 1.01 1.09 ** 1.00 0.94 1.06 .
Asian 1.03 0.95 1.12 . 1.11 0.97 1.27 .
AA 1.11 1.07 1.15 *** 0.98 0.92 1.04 .

$50K-$59K EA 1.13 1.11 1.15 *** 1.07 1.05 1.10 ***
Hispanic 1.11 1.07 1.15 *** 1.07 1.01 1.14 *
Asian 1.09 1.01 1.18 * 1.14 1.01 1.30 *
AA 1.22 1.18 1.27 *** 1.00 0.94 1.06

$60K-$74K EA 1.21 1.19 1.23 *** 1.14 1.11 1.16 ***
Hispanic 1.18 1.14 1.22 *** 1.15 1.09 1.21 ***
Asian 1.09 1.02 1.17 ** 1.13 1.01 1.25 *
AA 1.32 1.27 1.37 *** 1.11 1.05 1.18 ***

$75K-$99K EA 1.31 1.29 1.33 *** 1.23 1.20 1.25 ***
Hispanic 1.31 1.27 1.35 *** 1.25 1.19 1.31 ***
Asian 1.13 1.06 1.20 *** 1.24 1.13 1.37 ***
AA 1.37 1.32 1.42 *** 1.26 1.19 1.33 ***

$100K+ EA 1.71 1.69 1.73 *** 1.52 1.49 1.55 ***
Hispanic 1.61 1.57 1.65 *** 1.62 1.55 1.69 ***
Asian 1.25 1.19 1.32 *** 1.37 1.26 1.49 ***
AA 1.63 1.58 1.68 *** 1.56 1.48 1.65 ***
April 20
22 | Volume 13 |
The demographical variables from an insurance-claim database (CDM) of 1,458,417 atopic dermatitis and 272,913 psoriatic patient records were analyzed across 2014 to 2018. For age,
individuals of 18-65 years were used as reference for <18 years age (y) and >65 years age (o) groups; for socio-economic status, individuals with household income <$40,000 were used
as reference. For significance level: *0.01<p ≤ 0.05, **0.001<p ≤ 0.01, ***p ≤ 0.001. Income is reported in the United States dollar (USD).
Optum Clinformatics Data Mart (CDM) is a claim-based Electronic Health Record (EHR) database containing demographic, diagnosis, pharmacy, and lab analyte records for > 63 million
de-identified patients from 2001 to 2018 in US (https://www.optum.com/business/solutions/life-sciences/real-world-data/claims-data.html). We restricted our study to only consider
recent patient visit between 2014-2018, and implemented a case-control study framework to further decrease the size of patients without the target disease. In the analysis, we used all the
AD or psoriasis patients as our case sample, and randomly drew 3 million patients from the rest of the data and included only the patients that visited and filed claims between 2014-2018.
We then fitted logistic regressions on the AD or psoriasis indicator adjusting for obesity, age, gender, household income and race. Obesity, age, gender, household income covariates are
coded by the reference cell coding scheme, with reference levels to be non-obesity, 18-65, male and below $40,000 respectively.
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Existing studies have proposed several mechanisms in the
intersection of psychological stress and AD. The first involves an
association between the hypothalamus-pituitary-adrenal (HPA)
axis and AD (35). AD has been linked to HPA axis alterations,
which contribute to several downstreampathological changes in the
skin. Adrenocorticotropic hormone (ACTH), which promotes
glucocorticoid secretion, can create a negative feedback loop in
the HPA axis in response to stress, and early life adversity can
modulate the regulation of HPA axis through epigenetic
modification of the glucocorticoid receptors in the skin (36). An
important modulator in the HPA axis and AD pathogenesis is IL-
18, a member of the IL-1 cytokine family implicated in various
immune-mediated skin disease including AD, psoriasis, alopecia
areata, dermatomyositis, and cutaneous lupus erythematous (37–
41). ACTH can also activates caspase-1 and keratin 1, leading to
keratinocyteproductionof IL-18 (42). In the absenceof IL-12, IL-18
has been shown tomodulate the Th2 pathway, inducing expression
of IL-4, IL-13, and IgE by basophils (43) The downstream effect of
these expressed factors has been linked toADpathogenesis. IL-13 is
a prominent Th2 cytokine (6, 44); and serum IgE levels are elevated
among AA patients with AD when compared to all other racial/
ethnic groups (22). Lastly, IL-18 is thought to directly activatemast
cells, leading to release of the enzyme chymase which cleaves pro-
IL-18 and potentially accelerates the inflammatory response in AD
lesions (45). Existing evidence shows higher clinical AD severity
index score (SCORing Atopic Dermatitis or SCORAD) correlate
with increased serum IL-18 concentration in AD patients (46).
However, as far as the authors are aware, no studies have compared
HPA modulation and IL-18 expression across different ethnic
groups in AD patients.

Another possible mechanism for the intersection of stress with
ADpathogenesis involves chronicpsychological stressors that induce
serum epinephrine, norepinephrine, and cortisol levels, triggering a
shift to a Th2 cytokine profile (47). Though this has not been
substantiated in AD through measurement of serum levels, salivary
cortisol level has been correlated with SCORAD index scores among
patientswithelevated stress levels (48). Inaddition, genetic variantsof
interferon regulatory factor 2 (IRF2), a protein with crucial roles in
immune response, including the regulation of IFNg and basophil
expansion, as well as the transcription of gasderminD, are associated
with AD risk in both AA and EAs (49). Gasdermin D is a critical
mediator of inflammatory pathologies, with its non-canonical
inflammasome signaling pathway leading to proteolytic activation
of IL-1B and IL-18. The pro-inflammatory cytokine, IL-1B, along
with TNF-alpha induce expression of 11 beta-hydroxysteriod
dehydrogenase, are critical enzymes involved in cortisol synthesis
and hypothesized to modulate pro-inflammatory cytokine
expression in keratinocytes (50). Our recent work using skin and
3D human skin equivalents (HSE) also demonstrates that skin from
AA patients exhibits stronger inflammatory response when
compared with that from EA patients. The differentially expressed
genes (DEG) inAA skin include those that encode immunoglobulins
and their receptors such as FCER1G; proinflammatory genes such as
TNF, IL-32; anddifferent EDCandkeratin genes. By investigating the
effect of TNF signaling on HSE, we further demonstrated enhanced
TNF pro-inflammatory effects in AA HSE (51).
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PSORIASIS

Epidemiology
Psoriasis is a chronic IMSC with variable prevalence across
populations. It has a lower prevalence among AA patients when
compared with EAs (0.22% to 1.9% in AA vs 1.28% to 3.6% in EA)
in theUnitedStates (52).Nevertheless,AApatients havebeen found to
have more extensive disease involvement and higher rate of
comorbidities including diabetes, hypertension, and hyperlipidemia,
after controlling for age and body mass index, when directly
compared to EAs (53, 54). While erythematous plaques with
thick overlying scale is characteristic of plaque psoriasis, AA
patients often present with less conspicuous erythema and a
higher degree of dyspigmentation (55), which can often take
months to years to resolve. These pigmentary changes can often
beof equal orgreater concern topatients than thepsoriasis itself and
contributes to the report of increased disease severity, greater
psychological impact, treatment dissatisfaction, and decreased
quality of life among AA patients (9, 54). There is currently little
consensus regarding gender differences in psoriasis (56),
particularly for underrepresented ethnic groups.

We used the CDM insurance-claim database to review the
associated demographic factors with 272,913 psoriatic patients
with diagnosis between 2014 and 2018 (Table 1). Specifically, the
impact of gender on psoriasis was found to be significantly
different across ethnic groups, with EA and AA women having
higher psoriasis diagnosis rates compared to men (OR=1.10, 1.14);
in contrast, the gender effect was not significant in Hispanic
patients (p=0.098), and within the Asian population, females
had significantly lower rate (OR=0.84). Previous studies showed
ambiguous results when estimating the prevalence of psoriasis in
each gender, but overall the differences are very minimal (57). We
also observed that psoriasis risk was significantly higher for people
with obesity across different ethnic groups, and the association
between clinical visits for psoriasis was significantly lower among
patients with lower income.
Genetics
Like AD, psoriasis has a complex genetic architecture with >80
different disease susceptibility loci identified, the majority of
which only contribute to a modest effect of disease association.
The HLA-Cw6 is the most prominent disease-associated signal,
with >4 OR being revealed (58), and multiple different work have
also highlighted other independent signals in the MHC region
(59, 60). Despite >10 years since the first GWAS for psoriasis was
conducted, large-scale genetic studies for psoriasis have been
exclusively been based on EA, Chinese, and Japanese populations
(4, 7, 61–64). Up to now, only very limited small GWAS study on
psoriasis is based on African ancestry (65). While this can be
attributed by the lower incidence rate of psoriasis and the more
complex design for GWAS in individuals of African ancestry, the
lack of diversity in genetic research for psoriasis needs to be
addressed in order to understand the disease heterogeneity and
to facilitate the fine-mapping of ethnic-shared/unique
causal variations.
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Stress and Immunologic Parameters
Increased corticotropin-releasing hormone (CRH) from stress leads
to increased serum cortisol levels and decreased brain derived
neurotrophic factor (BDNF) (66). CRH, encoded by the CRHR-1
gene, is a peptide hormone that is essential in the physiologic
response to stress. Elevation in serum CRH levels is associated with
exposure to stress in psoriatic and AD patients, providing a link
between stress and the HPA in both conditions (67). In psoriatic
patients, increased serum CRH and decreased skin CRHR-1
expression have also been linked to the induction of vascular
endothelial growth factor (VEGF) release from mast cells (67).
VEGF is a known growth factor involved in the pathogenesis of
psoriatic lesions and it is therefore hypothesized that these pathways
are linked through increased levels of CRH playing a role in the
activation of mast cells that release VEGF (68). CRH has also been
implicated in stimulating the production of IL-6 and IL-11, and the
downregulation of IL-1B, IL-2, and IL-18 in keratinocytes (69, 70);
and a previous work has found elevated serum cortisol level in
psoriatic patients when compared to healthy controls under
increased psychosocial stress (71). These authors proposed that
psoriatic patients have a robust neuroendocrine response in the
presence of acute stressors, increasing vulnerability to psoriatic
activity. On the other hand, localized glucocorticoid deficiency in
psoriatic skin is associated with epidermal differentiation and
inflammatory response, and restoring glucocorticoid biosynthesis
can normalize these processes (72). Topical glucocorticoid has been
shown to be responded by AA skin in a stronger degree, with the
response of AA skin associating with inflammation and metabolic
disruptions while the genes responding to glucocorticoid in EA are
associated with cell barrier modifications (73). Animal studies have
demonstrated the reduction of brain-derived neurotrophic factor
(BDNF), a protein with skin related functions in humans including
the induction of apoptosis in basal keratinocytes, in response to
acute stress (66, 74, 75). These findings suggest that psychosocial
stress as a potential factor linking decreased BDNF levels in psoriatic
patients. Nevertheless, there is still very limited study that describes
the differential impact of stress on chemokine or cytokine
expression among AA and EA patients with psoriasis, which
requires attention and future investigations.
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CONCLUSION

AD and psoriasis are two of the most common IMSCs that can have
significant impact on the quality of life in patients, especially in
racial/ethnic minorities. Individuals of African ancestry are more
likely to develop AD in childhood, experience more severe disease,
and can have atypical presentation in adulthood with greater
involvement of the extensor surfaces. Though the prevalence of
psoriasis is lower among AA patients, they can suffer from more
extensive disease involvement, experience significant post-
inflammatory changes, and report decreased quality of life.
Previous studies have attempted to account for the differences in
AD or psoriasis disease severity and prevalence through variable
demographic and genetic components; however, as highlighted in a
recent review, the differential severity of AD between AA and EA
patients cannot solely be explained by association with genetic
ancestry (31). Research on the ethnic heterogeneity of IMSCs
should place more focus on the role of psychosocial stressors on
inflammatory cytokine and chemokine expression and overall
disease pathogenesis of these conditions. We review existing
studies examining the role of psychological or psychosocial stress
at the molecular level in AD and psoriasis, highlighting the role of
the HPA axis and IL-18 in AD, CRH and BDNF in psoriasis, and
cortisol levels in both.
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Ankylosing spondylitis (AS) is an immune-mediated inflammatory disorder that primarily
affects the axial skeleton, especially the sacroiliac joints and spine. This results in chronic
back pain and, in extreme cases, ankylosis of the spine. Despite its debilitating effects, the
pathogenesis of AS remains to be further elucidated. This study used single cell CITE-seq
technology to analyze peripheral blood mononuclear cells (PBMCs) in AS and in healthy
controls. We identified a number of molecular features associated with AS. CD52 was
found to be overexpressed in both RNA and surface protein expression across several cell
types in patients with AS. CD16+ monocytes overexpressed TNFSF10 and IL-18Ra in AS,
while CD8+ TEM cells and natural killer cells overexpressed genes linked with cytotoxicity,
including GZMH, GZMB, and NKG7. Tregs underexpressed CD39 in AS, suggesting
reduced functionality. We identified an overrepresented NK cell subset in AS that
overexpressed CD16, CD161, and CD38, as well as cytotoxic genes and pathways.
Finally, we developed machine learning models derived from CITE-seq data for the
classification of AS and achieved an Area Under the Receiver Operating Characteristic
(AUROC) curve of > 0.95. In summary, CITE-seq identification of AS-associated genes
and surface proteins in specific cell subsets informs our understanding of pathogenesis
and potential new therapeutic targets, while providing new approaches for diagnosis via
machine learning.

Keywords: ankylosing spondylitis, spondyloarthritis, single cell sequencing, CITE-seq, genomics, machine learning
INTRODUCTION

Affecting approximately 0.52-0.55% of the US population, ankylosing spondylitis (AS) is a chronic
inflammatory disease that targets sacroiliac joints, spine, peripheral joints and entheseal attachment
sites (1). In more severe cases, AS can cause fibrosis and calcification, resulting in ankylosis of the
sacroiliac joints and spine (2). AS is part of a broader group of rheumatologic diseases commonly
org May 2022 | Volume 13 | Article 8386361204
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characterized by inflammatory back pain, enthesitis, and
dactylitis known as spondyloarthritis (3). Extra-musculoskeletal
manifestations of AS include acute anterior uveitis and psoriasis,
and comorbidities include cardiovascular disease and
osteoporosis (4–6). Additionally, it has been demonstrated that
non-rheumatologists do not consider the diagnosis of AS in
patients presenting with back pain, creating a delay in diagnosis
and treatment (7). The most common method of ankylosing
spondylitis diagnosis and classification is the modified New York
Classification Criteria, which involves both radiological criterion,
such as biliteral sacroiliitis grade ≥ II, and clinical criteria, such as
limitation of chest expansion relative to values normal for age
and sex (8).

Previous studies have pointed to the significance of genetic
and immunological factors in AS. In particular, the major
histocompatibility complex class I allele HLA-B*27 was shown
to be present in the majority of patients with AS, serving as a key
biomarker for AS and determining a patient’s susceptibility to
the disease (9). Nevertheless, although the heritability of the
susceptibility of AS is estimated to be around 90%, the
contribution of HLA-B*27 to this heritability is only roughly
20%, pointing to the presence of other genetic factors (10, 11).
Other known genes contributing to AS include ERAP1 and
ERAP2. The IL-23/IL-17 axis has been shown to play a vital
role in driving the inflammation behind AS.

Several cell types in the peripheral blood of patients with AS
are thought to be involved in the pathogenesis of AS. Natural
killer (NK) cells, while not expanded in AS (12), have been
shown to respond to HLA-B27 via the KIR3DL1 receptor (13).
CD4+ T cells increase production of IP-10/CXCL10, which
recruits Th1 cells that then amplify the inflammatory response
via secretion of IFN-g and TNF-a (14). Th17 cells have also been
observed to play a key role in the pathogenesis of AS through the
production of several inflammatory cytokines, such as IL-17 (15).

In this study, we used single-cell technology to help identify
cellular composition differences as well as differentially expressed
genes, proteins, and pathways in the peripheral blood
mononuclear cells (PBMCs) of patients with AS. We utilized a
multi-omic approach, surveying both transcriptome and cell
surface proteins involved in this disease, and evaluated the
diagnostic potential of these biomarkers using machine
learning models to identify AS patients. To our knowledge, this
is the first attempt to use machine learning and single cell
transcriptome data to classify AS.
METHODS

Patient Recruitment and Sampling
Patients with ankylosing spondylitis (n=10; 6 male, 4 female)
were enrolled from the rheumatology clinics at the University of
California San Francisco (UCSF), with a board-certified
rheumatologist confirming the clinical diagnosis of AS using
the modified New York classification criteria. Nine of the ten AS
subjects were not on any biologic therapy, while one AS subject
was on ustekinumab for his concomitant Crohn’s disease.
Healthy controls (n=29), who did not have any inflammatory
Frontiers in Immunology | www.frontiersin.org 2205
skin disease or autoimmune disease, were enrolled from the San
Francisco Bay Area. All subjects gave written, informed consent
under IRB approval 10-02830 from the University of California
San Francisco. Detailed patient information is provided in
Supplementary Table 1. Peripheral blood was collected from
each subject in Vacutainer ACD tubes. PBMCs were isolated
using a standard Ficoll method and stored in liquid nitrogen.

Sample and Library Preparation
Single Cell Libraries
500 μL thawed PBMCs from each subject were added to 10 mL
EasySep (StemCell Technologies, Cat. 20144) and centrifuged
(300G, 5 min, room temperature). Extracellular nucleic acids
were digested by resuspending cell pellets in 1 mL of buffer made
from 18 mL EasySep and 21 μL Benzonase Nuclease
(MilliporeSigma, Cat. 70664) and incubating (15 min, room
temperature). Nuclease-treated cell-suspensions were then
filtered through a 40 μm Flowmi Cell Strainer (Bel-Art, Cat.
H13680-0040), centrifuged (300G, 5 min, room temperature),
and finally resuspended in 100 μL EasySep buffer. Cell counting
was performed on 1:100 dilutions offinal cell suspensions stained
with 0.4% trypan blue using a Countess I FL Automated Cell
Counter (Thermo Fisher Scientific).

Cell Surface Staining
Antibody staining of cell surface proteins was performed
according to the Totalseq-A protocol (https://www.biolegend.
com/en-us/protocols/totalseq-a-antibodies-and-cell-hashing-
with-10x-single-cell-3-reagent-kit-v3-3-1-protocol) with
modifications as follows. A pooled suspension containing
100,000 cells from at most 20 subjects at a time was
centrifuged (300G, 5 min, 4°C) and resuspended in 100 μL
Cell Staining Buffer (BioLegend, Cat. 420201) and incubated
(10 min, 4°C) with 10 μL Human TruStain FcX™ Fc Blocking
Solution (BioLegend, Cat. 422301). Cells suspensions were then
stained (30 min, 4°C) with 100 μL TotalSeq antibody cocktail
(Supplementary Table 2) and divided into two 105 μL aliquots.
Each aliquot was washed 3 times by resuspending in 15 mL Cell
Staining Buffer and centrifuging (300G, 5 min, 4°C). Washed
cells were then resuspended in 150 μL 10% FBS in PBS,
recombined, and filtered again with a 40 μm Flowmi Cell
Strainer. Cell viability was measured with 10 μL of filtered cells
by adding 10 μL 0.4% Trypan Blue and manual counting with a
hemocytometer. Cell density was adjusted to 2,500 cells/μL and
run on the Chromium Controller (10X Genomics) using the
Single Cell 3’ v3.1 Assay (10X Genomics) with a target of 50,000
cells per reaction.

Library Preparation
Gene expression cDNA libraries were prepared using according
to the manufacturer’s instructions (https://assets.ctfassets.net/an
68im79xiti/1eX2FPdpeCgnCJtw4fj9Hx/7cb84edaa9eca04b607
f9193162994de/CG000204_ChromiumNextGEMSingleCell3_
v3.1_Rev_D.pdf), with 12 cycles of PCR amplification. Libraries
for antibody-derived tags (ADT) from feature barcoding
antibodies were prepared by repeating size purification on the
supernatant obtained from the prior size purification of gene
May 2022 | Volume 13 | Article 838636
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expression cDNA libraries (Step 2.3.d in the manufacturer’s
instructions above), using 7:8 volumetric ratio of 2.0X
SPRIselect reagent (Beckman Coulter, Cat# B23317) to sample.
Indexing amplification was performed using Kapa Hifi HotStart
ReadyMix (Kapa Biosystems, Cat# KK2601) and TruSeq Small
RNA RPI primers (Illumina) with the following thermocycling
conditions: (I) 98°C, 2 min; (II) 15 × (98°C, 20 sec; 60°C, 30 sec;
72°C, 20 sec); (III) 72°C, 5 min. Size purification was then
repeated on amplified libraries using a 5:6 volumetric ratio of
1.2X SPRIselect reagent to sample. Libraries were quantified
using a Bioanalyzer 2100 (Agilent) and sequenced on a
Novaseq 6000 (Illumina).

Genotyping
DNA for genotyping was extracted from whole blood using the
DNeasy blood and tissue kit (Qiagen, Cat. 69504). Extracted
DNA was genotyped on the Affymetrix UK Biobank Axiom
Array (ThermoFisher) using a GeneTitan Multi-Channel
Instrument (Applied Biosystems).

Genotype Data Processing
SNPs were called using Analysis Power Tools 2.10.2.2
(Affymetrix, https://www.affymetrix.com/support/developer/)
The resulting genotype vcfs were scanned with snpflip (https://
github.com/biocore-ntnu/snpflip) using the GRCh37 build of the
human genome reference sequence maintained by the University
of California, Santa Cruz (http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/bigZips/hg19.fa.gz) to identify reversed and
ambiguous-stranded SNPs, which were flipped and removed
(respectively) using Plink 1.90 (http://pngu.mgh.harvard.edu/
purcell/plink/) (16), and the remaining sites were sorted using
Plink 2.00a3LM (www.cog-genomics.org/plink/2.0/) (17). This
SNP data was then augmented with additional sites imputed by
the Michigan Imputation Server (https://imputationserver.sph.
umich.edu) (1000G Phase 3 v5 GRCh37 reference panel,
rsqFilter off, Eagle v2.4 phasing, EUR population). SNP
positions were translated to GRCh38 coordinates using the
‘LiftoverVcf’ command of Picard 2.23.3 (http://broadinstitute.
github.io/picard/). Finally, Vcftools 0.1.13 (18) was used to
exclude non-exonic SNPs and SNPs with minor allele
frequency < 0.05.

Single Cell Data Processing
Raw RNA and ADT fastqs for each Chromium library were
respectively aligned to the GRCh38 human genome reference
and the antibody-tag reference (Supplementary Table 2) using
Cell Ranger 3.1.0 (10X Genomics) using default settings to obtain
RNA and matched ADT (if available) count matrices for all
barcodes representing non-empty droplets.

Cell Demultiplexing, Doublet Removal,
and Annotation
Within each RNA count matrix, the subject of origin for all
droplet barcodes was determined by using ‘demuxlet’ (19), as
implemented in the ‘popscle’ suite (https://github.com/statgen/
popscle) to imputation-augmented exonic SNP genotypes
described above, and doublets detected between different
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individuals were excluded. The count matrices for each
Chromium library were then loaded into R for analysis using
the ‘Seurat’ 4.0.3 (20) R package, and the ‘DoubletDecon’ 1.1.6 R
package (21) was used to further remove doublets formed by
different cells within the same individual.

Annotations for each droplet barcode were determined by
submitting raw RNA count matrices to Azimuth (https://
azimuth.hubmapconsortium.org/) (20) for annotation with
“celltype.l2” labels from the Human PBMC reference from
Hao et al. (20).

Cell and Feature QC
We performed filtering of cells based on both RNA and ADT data
by retaining cells with total RNA unique molecular identifiers
(UMIs) between 500 and 10,000, total RNA features ≥ 200,
percent mitochondrial and ribosomal protein reads in RNA ≤
15% and 60% (respectively), total ADT features ≤ 260, and
percent ADT reads mapping to 9 isotype control antibodies < 2%.
In the RNA matrices of the resulting data, we further removed
features (genes) with no detectable UMIs across the cells of all
matrices. These matrices were finally merged together into a
combined matrix of RNA data for all cells. In the ADT matrices,
we further removed features corresponding to the 9 isotype controls
and 15 features observed to have expression inconsistent with
annotated cell types (Supplementary Table 2).
Intra-Cell Type Differential Feature Analysis
and Clustering
To identify differentially expressed genes (DEGs) and proteins
(DEPs), the Seurat object containing ADT and RNA expression
from the QC’d dataset (see section ‘Cell and feature QC’ above)
was subsetted by Azimuth-annotated cell type using
‘SplitObject’. For each resulting Seurat object containing cells
of a particular type, we performed normalization on RNA and
ADT expression using SCTransform and CLR, again adjusting
for total counts and total features in each cell (using the
‘vars.to.regress’ parameter). Differential gene expression
between disease statuses as well as between clusters (see section
‘Intra-cell type clustering’) was then calculated on SCTransform-
normalized counts using the negative binomial test (test.use =
“negbinom” in Seurat). Genes with both Bonferroni-corrected p-
value < 0.05 and absolute log fold change > 0.20 were considered
significant. Differential protein analysis was performed similarly,
except with the Wilcoxon test (test.use = “wilcox” in Seurat) on
CLR-normalized, mean-centered and scaled ADT data (within
the ‘scale.data’ slot of the Seurat object) only for cells with
measured ADT data. The expression of DEGs and DEPs was
compared between batches; DEGs and DEPs that had a clear
overexpression in a small subset of the batches, such as
MTRNR2L12, were filtered out. Pathway analysis was
performed on differentially expressed genes via the ‘gprofiler2’
R package (22) against the Gene Ontology (GO), KEGG, and
Reactome databases. For identification of transcription factors,
gprofiler2 was also run against the TRANSFAC database.
Afterwards, the p values returned by gprofiler2 were adjusted
to FDR values for each database.
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To identify phenotypic clusters within cell types, the RNA
expression data for a cell type was first corrected for batch effects
by first subsetting the raw count matrix by the cells within each
sequencing batch. SCTransform was run individually for each
count matrix, and the resulting SCT expression matrices were
reintegrated into a single matrix (see section ‘Data integration’).
PCA was performed on the integrated SCT matrix, and the first
30 PCs were used to construct a shared nearest-neighbor
network using the ‘FindNeighbors’ function. The network was
then used to identify clusters with the ‘FindClusters’ function,
using a resolution of 0.6. UMAPs were also generated from the
first 30 PCs using the ‘RunUMAP’ function.

Data Integration
Integration of SCT expression data from two or more single-cell
datasets was performed according to the Seurat data integration
protocol (https://satijalab.org/seurat/articles/integration_
introduction.html#performing-integration-on-datasets-
normalized-with-sctransform-1). Briefly, ‘SelectIntegrationFeatures’
was used to select a common set of 3,000 genes most consistently
var iable among the individual SCT matr ices , and
‘PrepSCTIntegration’ was then used to prepare reduced SCT
expression matrices for just these genes. PCA was calculated for
each reduced SCTmatrix using ‘RunPCA’, and the first 50 principal
components of this transformation were used to identify
transcriptomically similar cells between each pair of reduced SCT
matrices using ‘FindIntegrationAnchors’, with ‘reduction’ set to
‘rpca’. Finally, an integrated SCT matrix was calculated
using ‘IntegrateData’.

Machine Learning Model Development
The input dataset for machine learning classification of AS and
healthy subjects consisted of, for each subject, the means of
sctransform-normalized, centered, and scaled expression of each
feature in the set of cell-type-specific differentially expressed
genes and proteins, calculated across that subject’s cells within
the corresponding cell types. These mean expression data for 39
subjects (29 healthy and 10 AS) were randomly assigned by a
50:50 ratio into training (healthy = 15 and AS = 5) and test
(healthy = 14 and AS = 5) sets for ML model building
and evaluation.

We first performed ensemble-based feature selection using the
EFS-MI method (23) where subsets of the starting feature set
predicted to be informative by four different ML algorithms (Feed
Forward and Backward selection, Recursive RF, SVMRadial, and
NNET) were combined and sorted by prediction potential
classification rank. We selected the top twenty features to train
nine ML algorithms based on linear, non-linear, and ensemble
models provided by the ‘caret’ R package. Five-fold cross validation,
repeated twice, was performed on the training set using each ML
algorithm, and resulting models were evaluated on the test set. All
essential tuning parameter were optimized with bootstrap = TRUE.
For random forest (RF) models, the maximum number of tree splits
in each step fixed a max_depth = (50, 80, 100, 150, 300), the
maximum feature selected as auto (max_features = ‘auto’), and
error was minimized through impurity value (min_impurity_
decrease = c(0.0, 0.02, 0.1, 0.5). Further, a minimum tree split per
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leaf in each step (min_samples_leaf = (1 to 10) while maximum
generation of trees (n_estimator = 20) was considered, other
parameters kept as a default for RF. For SVMRadial, we tuned
cost and sigma factor for correct classification. In avNNet and Naïve
Bayes, we used TRUE kernel, decays, and their size as a tuning
parameter. Model performance and robustness were evaluated
based on classification statistics that include accuracy, area under
receiver operating characteristic curve (AUROC), specificity,
sensitivity, F1 score (harmonic mean of precision and recall), and
balanced accuracy (kappa).

To check for model bias due to potentially shared information
between test and training subsets (which are derived from data
normalized by ‘sctransform’ over cells from all subjects), we
regenerated the input dataset using an alternative normalization
approach that aggregates single-cell data only within the cells of
each subject into a representative expression profile for each
subject. Specifically, the expression value for a gene [or protein]
feature for a given subject was calculated as

ln
feature counts across all cells in subject
total counts across all cells in subject

 �   scaling factor

� �

where the scaling factor was chosen to be near the maximum
number of counts across all subjects (107 for RNA, 5 × 105 for
ADT). Training and testing of models was performed as above to
evaluate accuracy and kappa. AUROC was also calculated for
select models trained using 10-fold cross validation with
10 repeats.
RESULTS

Identifying Significant Peripheral Blood
Mononuclear Cell Types in AS
Single-cell sequencing of PBMCs from 10 patients with AS and
29 healthy controls yielded transcriptome profiles of 98,884 cells
(19,348 cells from patients with AS, 79,536 from the healthy
controls). Single-cell RNA and ADT analysis was conducted on
59,585 of these cells and just single-cell RNA analysis was
conducted on the other 39,299 cells (Supplementary
Figure 1). Reference-based categorization of AS and healthy
PBMCs into 30 unique cell types (Figure 1A) revealed a
significantly lower abundance of CD4+ cytotoxic T cells and
hematopoietic stem and progenitor cells (HSPCs) in AS
subjects (Figure 1B).

Differentially Expressed Genes and
Pathways Associated With AS in
Circulating Immune Populations
Differentially expressed genes (DEGs) identified for each of the
30 identified cell types varied from 0 for several cell types to 88
for CD4+ naïve T cells, resulting in 898 total DEGs across all cell
types (Supplementary Figure 2A). Of these, 9 cell types with a
high number of biologically significant DEGs are shown in
Figure 2, with the rest found in Supplementary Table 3.

Biologically relevant genes were identified across several cell
types (Figure 2). CD52 was overexpressed in AS CD14+
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monocytes, natural killer cells, and CD4+ effector memory T
(TEM) cells. CD8

+ TEM cells and natural killer cells overexpressed
genes linked with cytotoxicity, including GZMH, GZMB, and
NKG7. HLA-DRB5 was overexpressed in the CD14+ monocytes,
naïve B cells, memory B cells, and CD16+ monocytes of AS
patients. CD8+ TEM cells also overexpressed CMC1, CCL4, and
CCL4L2 while natural killer cells overexpressed S100A11. We
observed an upregulation of CXCL8 in AS CD14+ monocytes and
an upregulation of TNFSF10 in CD16+ monocytes. CD4+ TCM

cells in patients with AS overexpressed KLRB1. Naïve B cells
overexpressed TCL1A and CXCR4.

Comparison of inflammatory cytokines involved in AS,
including TNF, IL1B, IL17A, IFNG, IL23A, IL7R, and IL17F,
revealed comparable expression between AS and healthy subjects
for each annotated cell type except for mucosal-associated invariant
T (MAIT) cells, in which we observed a statistically significant
decrease in IL7R expression in AS cells (Supplementary Table 3)
that was also reflected in cell surface expression of IL-7Ra protein in
the ADT data (Supplementary Table 4).

Proteomic Analysis Reveals Inflammatory
Cell Surface Proteins in AS
Differentially expressed cell surface proteins (DEPs) were
calculated for each cell type (0 – 24 features, Supplementary
Figure 2B) between AS and healthy cells with ADT data
measuring 258 cell surface proteins (Figure 3). Tregs in AS
underexpressed CD39. CD14+ monocytes and CD16+ monocytes
in AS overexpressed CD52. CD8+ TEM cells overexpressed PD-1,
KIR2DL2/L3 and KIR2DL1/S1/S3/S5. Natural killer cells in AS
overexpressed CD16 but underexpressed CD94 and NKG2D.
Memory B cells and CD16+ monocytes overexpressed IL-18Ra.
Frontiers in Immunology | www.frontiersin.org 5208
Memory B cells in AS also overexpressed CCR6 while naïve B
cells overexpressed CD5 and CD74. Both CD4+ TEM and MAIT
cells in AS underexpressed IL7Ra. CD16+ monocytes in AS
overexpressed folate receptor b (FR-b).

De Novo Clustering Reveals an NK Subset
Associated With AS
Due to the overexpression of CD16 in AS NK cells, the proportion
of CD16+ CD56dim NK cells was compared between patients with
AS and control patients via the Wilcoxon test, where it was found
that CD16+ CD56dim NK cells were significantly overrepresented in
patients with AS (p = 0.006; Supplementary Figure 3A). To
investigate whether there was a subset in NK cells driving this
overexpression of CD16, we performed de novo clustering on NK
cells (Supplementary Figure 3B). A cluster was identified in NK
cells that was statistically overrepresented in patients with AS
(Supplementary Figure 3C). This subset overexpressed
CD16, CD38, and CD161 on the ADT level and SPON2, NKG7,
FGFBP2, KLRB1, and MYOM2 on the RNA level (Supplementary
Table 5 and Supplementary Figure 3D). De novo clustering was
also performed on CD8+ TEM cells, naïve CD8+ T cells, and CD14+

monocytes, however no subsets in any of these cell types were
statistically overrepresented in AS.

Gene Set Enrichment Analysis
To capture the relationships and shared pathways between
differentially expressed genes in AS, we conducted functional
enrichment analysis using gprofiler2 (Supplementary Table 6).
Several pathways were significant at a nominal level (p < 0.05)
but did not remain significant after FDR correction. CD14+

monocytes were observed to upregulate pathways related to IL-4
A B

FIGURE 1 | Cell types among AS and healthy PBMCs. (A) UMAP of 30 cell types in AS and healthy PBMCs based on RNA expression. (B) Mean percentage of each cell
type within the total PBMCs from each subject, averaged across AS and healthy cohorts. Error bars represent standard error of the mean. When tested for statistical
significance using the Wilcoxon rank-sum test, CD4+ cytotoxic T cells and hematopoietic stem and progenitor cells were significantly underexpressed in AS.
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and IL-13 signaling, which were primarily constituted by CXCL8,
FOS, and JUNB. Memory B cells upregulated pathways for Th17
cell differentiation, Th1/Th2 cell differentiation, and interferon-
gamma-mediated signaling pathways.

To identify important transcription factors in our dataset, we
conducted a separate gene set enrichment analysis using
gprofiler2 and the TRANSFAC database. We found a set of
transcription factors that were significant at the nominal level
but did not remain significant after FDR correction. To help
provide evidence for our results, we compared our identified
transcription factors with a past study that used ATAC-seq on
AS PBMCs (24). There, both our dataset and the ATAC-seq
dataset found a statistically significant enrichment of GCM1,
ETS1, ETV4, and ELF1 in CD4+ T cells. The NK cell subset that
was found to be overrepresented in AS during de novo clustering
upregulated NK cell mediated cytotoxicity (p = 0.003); however,
Frontiers in Immunology | www.frontiersin.org 6209
this pathway was no longer statistically significant after
correction (FDR = 0.2).

Machine Learning Classification of AS
We next investigated the diagnostic potential of the cell type
specific gene and protein expression differences we observed
above by using these biomarkers to perform machine learning
classification of AS and healthy subjects. Taking the mean
normalized expression of each DE gene (Supplementary
Table 3) or protein (Supplementary Table 4) across each
subject’s cells in the corresponding cell types, we performed
ensemble feature selection (23) using four ML algorithms to
identify an optimal subset of 18 features among the DE genes and
18 features among the DE proteins with the highest classification
rate. Feature importance was generally higher among DE genes
than proteins (Figures 4A, B), and applying this approach to the
FIGURE 2 | Cell type-specific DE genes between AS and healthy subjects. Volcano plots showing the DEGs for 9 cell types based on a Bonferroni-adjusted p-value < 0.05
and absolute average log 2 fold change ≥ 0.20. Blue points represent statistically significant genes and genes mentioned in the paper are highlighted in red.
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combined DE gene and DE protein sets yielded a set of 20
optimal features (5 DE proteins, 15 DE genes) with classification
rates similar to that of DE proteins (Figure 4C). Nine ML
classifiers trained on each of these optimized feature sets
yielded an average accuracy of 0.63 – 0.90 for DE genes, 0.76 –
0.93 for DE proteins and 0.80 – 0.96 for the set of combined
features (Figures 4D–F), and kappa ranged between 0.61 – 0.88
for all models. For DE genes, the three best-performing models,
SVMRadial, RF, and Naïve Bayes, achieved AUROCs of 0.87,
0.97, and 1.00 (Figure 4G), respectively, while the corresponding
best three for DE proteins, Naïve Bayes, RF, and avNNet,
achieved AUROCs of 0.96, 1.00, and 1.00 (Figure 4H). Finally,
the best three models for the combined DE gene and DE protein
set, RF, Naïve Bayes, and avNNet, classified all test set subjects
Frontiers in Immunology | www.frontiersin.org 7210
perfectly, achieving an AUROC of 1.00 (Figure 4I). Similar
classification accuracy was achieved by models built using scaled,
within-subject counts of each DEG or DEP (Supplementary
Figure 4), indicating that model performance is not substantially
explained by our normalization approach.
DISCUSSION

In this study, we performed a multi-omic analysis of ankylosing
spondylitis, identifying transcriptomic and surface epitope
changes associated with disease. Our single-cell approach also
identified cell subsets that may contribute to pathogenesis,
allowing for the further elucidation of key AS pathways.
FIGURE 3 | Cell type-specific DE proteins between AS and healthy subjects. Volcano plots showing the DEPs for 9 cell types based on cells with measured ADT
data; blue points represent statistically significant proteins and proteins mentioned in the paper are highlighted in red. DEPs were identified based on a Bonferroni-
adjusted p-value < 0.05 and absolute average difference ≥ 0.20.
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AS PBMCs Overexpressed Genes and
Proteins Linked With Inflammation
CD14+ monocytes in patients with AS overexpressed CXCL8,
which encodes IL-8. The increased production of IL-8 is
correlated with AS (25). CXCL8 is also known to induce
S100A11 expression (24), which is overexpressed in the AS
Frontiers in Immunology | www.frontiersin.org 8211
NK cells in our dataset. Consequently, CXCL8 in CD14+

monocytes could be driving the observed increased production
of IL-8 and other disease-related genes like S100A11. CD4+ TCM

cells in patients with AS overexpressed KLRB1, which is
correlated with high tumor necrosis factor and interferon-g
co-expression potential in CD4+ memory T cells. KLRB1+
A

B

C

D

E

F

G

H

I

FIGURE 4 | ML classification of AS and healthy subjects. Classification rate of (A) top 18 DEGs, (B) top 18 DEPs, and (C) top 20 features from the set of combined
DEGs and DEPs from ensemble feature selection, along with their respective (D–F) prediction accuracy and kappa using 9 ML models and (G–I) ROC curves based
on test set classification. Error bars indicate 95% confidence interval.
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CD4+ TCM cells also have increased IL-17A production (26). As
a result, increased KLRB1 expression in CD4+ TCM may
upregulate inflammatory pathways and cytokines related to
AS pathogenesis. CD39, an ecto-enzyme which converts
extracellular ATP to extracellular adenosine, was significantly
underexpressed in the Tregs of patients with AS. Tregs with
low CD39 expression produce IL-17, contrary to their
CD39+ counterparts that suppress IL-17 production (27).
Consequently, low CD39 expression on AS Tregs could be
associated with limited functionality and the production of
inflammatory IL-17.

Both memory B cells and CD16+ monocytes in AS
overexpressed IL-18Ra. IL-18 is a pro-inflammatory cytokine
whose role in AS remains to be further elucidated with previous
studies finding comparable IL-18 levels between healthy controls
and AS patients (28). IL-18Ra also interacts with IL-37, which is
significantly overexpressed in AS and may inhibit pro-
inflammatory cytokine expression in AS PBMCs (29, 30).
Consequently, increased IL-18Ra expression suggests the
importance of cytokine signaling pathways in AS outside of the
standard IL-23/IL-17 axis. On the other hand, both CD4+ TEM

and MAIT cells in patients with AS underexpressed IL-7Ra
relative to control patients, with MAIT cells also underexpressing
IL7R. Our result contrasts with a MAIT-specific increase in IL-
7R expression previously observed in AS patients that was
associated with increased IL-17 expression (31), though further
studies are needed to clarify the role of IL-7 signaling in AS.

Several inflammatory pathways were observed to be
significant in AS at a nominal level, including the signaling of
inflammatory pathways such as IL-4/IL-13 signaling
(Supplementary Table 5). Many of these pathways involved
the upregulation of FOS and JUNB, which are also linked to the
abnormal expression of NFKB in AS CD8+ T cells (32). Future
studies are needed to follow up on these important
inflammatory pathways.

Overall, our results suggest that a diverse set of cell types in
the peripheral blood help drive the production of inflammatory
cytokines. The identified surface proteins and genes could serve
as potential therapeutic targets in AS.

Differential Genes and Proteins in
AS Are Linked With Other Immune-
Mediated Diseases
A subset of differentially expressed genes and proteins identified
in our AS dataset are important in other known immune-
mediated diseases. CD8+ TEM cells in AS overexpressed PD-1,
which is a regulatory checkpoint inhibitor receptor for the
immune system that has been proposed to play an important
role in rheumatic disorders (33). Naïve B cells in AS
overexpressed CD5. A similar result was found in a study on
rheumatoid arthritis, which found that CD5+ B cells may be
involved in autoimmunity (34). CD16+ monocytes in AS were
seen to overexpress FR-b, which is part of a family of folate
binding receptors. FR-b was upregulated in activated
macrophages in the synovial tissue of patients with rheumatoid
arthritis (35). Memory B cells overexpressed CCR6, which is a
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chemokine receptor with the ligand CCL20. CCR6 was seen to be
overexpressed in the B cells of patients with systemic lupus
erythematosus (SLE) (36). Naïve AS B cells also overexpressed
CD74, which was similarly overexpressed in mice with an SLE
phenotype (37). Naïve B cells in AS overexpressed TCL1A. A
previous study has found that B cells in patients with Primary
Sjögren’s syndrome upregulated TCL1A (38). These genes and
surface proteins could play a similar role in AS and suggest
common treatment strategies across several types of immune-
mediated diseases.

CD14+ monocytes in patients with AS overexpressed CD52, a
glycoprotein whose ligation results in T-cell activation and
proliferation (39). Notably, CD52 is the therapeutic target of
alemtuzumab, which is approved for the treatment of multiple
sclerosis (40). Additionally, CD52 was overexpressed across
several AS cell types in our transcriptomic dataset, affirming
the importance of CD52 at the transcriptome level and
suggesting that CD52 expression is upregulated in several cell
types in the peripheral blood.

These results indicate that AS may share several differentially
expressed genes and proteins with other immune-mediated
diseases, indicating potential shared pathogenetic mechanisms
and treatment strategies.

Cell Subsets, Genes, and Proteins
Examined in Past AS Studies
In our study, there was a statistically significant overrepresentation
of CD16+CD56dim NK cells in patients with AS (Supplementary
Figure 2B). Prior studies have shown that CD16+CD56dim NK cells
exhibit increased cytotoxic activity and are overexpressed in AS (41,
42). Although previous studies report conflicting observations on
whether circulating NK cell abundance is altered in AS (12), by
conducting de novo clustering on NK cells, we identified a
subcluster that was overrepresented in AS (Supplementary
Figures 2D–F). This subset had an overexpression of CD16,
along with CD161 and CD38, which have been linked to
cytotoxicity and pro-inflammatory NK cell subsets respectively
(43, 44). Furthermore, a gene set enrichment analysis of this
cluster revealed an upregulation of natural killer cell mediated
cytotoxicity (p = 0.03). As a result, this cluster could be driving
inflammation in AS and could consequently be a NK subset of
interest for investigating NK cell activity in AS.

CD8+ TEM cells and NK cells in AS overexpressed genes
related to cytotoxicity, including GZMH, GZMB, and NKG7.
This result agrees with our finding that CD16 expression is
increased in NK cells since high CD16 expression is linked with
NK cell cytotoxicity (41). CD8+ TEM cells also overexpressed
both CCL4 and CCL4L2, which are inflammatory chemokines.
These results provide further evidence for the increased cytotoxic
activity of NK cells and CD8+ TEM cells in AS.

We compared transcription factors with p values below 0.05
against the data of a previous paper that used ATAC-seq on AS
PBMCs to examine the role of transcription factors in AS (24).
Our observed overexpression of GCM1, YY1, ETS1, ETV4, and
ELF1 in CD4+ T cells was confirmed in the ATAC-seq data,
where all these transcription factors were also statistically
May 2022 | Volume 13 | Article 838636

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Alber et al. CITE-Seq of Ankylosing Spondylitis
significant. GCM1 had a particularly high log fold change in the
ATAC-seq dataset, suggesting that this transcription factor may
be particularly important.

CD8+ TEM cells in AS overexpressed CMC1, variants of which
are associated with AS (45). We also observed an overexpression
of TNFSF10 in the CD16+ monocytes of AS patients relative to
control patients. TNFSF10 is part of the TNF superfamily and
has been shown to be associated with AS pathogenesis (46).
Naïve B cells in AS were observed to increase the expression of
CXCR4. This gene has also been found to be upregulated in the
hip synovial tissue of patients with AS (47).

CD14+ monocytes, naïve B cells, and CD16+ monocytes in AS
displayed increased expression of HLA-DRB5. A previous study
in the Chinese Han population found that increased DNA copy
number of HLA-DQA1 but not HLA-DRB5 was associated with
AS, though they did not measure transcription levels of these
genes (48).

ML Classification of AS and
Healthy Subjects
We found that AS-associated differences in cell-specific gene and
surface protein expression could distinguish AS from healthy
subjects, based on >0.95 AUROC achieved by several machine
learning algorithms (Supplementary Table 7), though the
general performance of these models may be limited by sample
size (particularly for AS subjects). We nevertheless note that
transcriptomic or cell surface protein expression of CD52 was
consistently identified as an important feature in DEG, DEP, or
DEG and DEP feature sets used for model training, which, given
its biological significance as discussed above, may warrant
further investigation as a diagnostic and therapeutic target.

Besides modest cohort size, other limitations of this study
include the sampling of patients from a single center and the use
of only molecular biomarkers for subject classification. Future
multi-center studies can address these limitations by recruiting
patients with AS and with back or joint pain from similar and
unrelated diseases as well as by incorporating clinical and
demographic data into the classification model.

Summary
This study has applied CITE-seq technology for the analysis of
ankylosing spondylitis (AS), allowing for the important
characterization of gene and cell surface proteins in AS.
Numerous cell types overexpressed CD52 on the transcriptomic
and surface epitope level, which is involved in T-cell activation and
is an important therapeutic target in other types of immune-
mediated diseases. A pro-inflammatory NK cell subset was
significantly overrepresented in AS that was characterized by high
expression of CD16, CD161, and cytotoxic genes. This subset could
be driving the overrepresentation of CD16+ CD56dim NK cells, a
subset of NK cells with high cytotoxic activity, that was observed in
our dataset and previous studies. CD39 was underexpressed in
Tregs, whose underexpression has been linked to IL-17 production
and loss of functionality. CD14+ monocytes in AS overexpressed
CXCL8, which has been associated with increased inflammatory
IL-8 expression.
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Natural killer cells overexpressed cytotoxic genes along with
S100A11, whose expression is induced by CXCL8. CD4+ TCM cells
in AS have a high expression ofKLRB1, which is related to TNF and
IFN-g co-expression potential as well as IL-17A production.
Memory B cells and CD16+ monocytes overexpressed IL-18Ra,
which interacts with the cytokines IL-18 and IL-37. CD5 was
overexpressed in AS naïve B cells with CD5+ B cells being known
to be involved in autoimmunity.

Together, these results suggest cell type-specific changes both on
the RNA level and on the surface protein level that may elucidate
the pathogenesis of AS. The high classification rate of machine
learning classifiers based on these gene and protein differences
further indicates their potential as diagnostic biomarkers.
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Defining Patient-Level Molecular
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Based on Single-Cell
Transcriptomics
Yale Liu1,2,3, Hao Wang4, Christopher Cook2,3, Mark A. Taylor3,5, Jeffrey P. North3,
Ashley Hailer2,3, Yanhong Shou6, Arsil Sadik2, Esther Kim7, Elizabeth Purdom4,
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1 Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 2 Department of
Dermatology, Veterans Affairs Medical Center, San Francisco, CA, United States, 3 Department of Dermatology, University of
California, San Francisco, San Francisco, CA, United States, 4 Department of Statistics, University of California, Berkeley,
Berkeley, CA, United States, 5 Clinical Research Centre, Medical University of Białystok, Białystok, Poland, 6 Department of
Dermatology, Huashan Hospital, Fudan University, Shanghai, China, 7 Department of Plastic Surgery, University of California,
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Identifying genetic variation underlying human diseases establishes targets for therapeutic
development and helps tailor treatments to individual patients. Large-scale transcriptomic
profiling has extended the study of such molecular heterogeneity between patients to
somatic tissues. However, the lower resolution of bulk RNA profiling, especially in a
complex, composite tissue such as the skin, has limited its success. Here we demonstrate
approaches to interrogate patient-level molecular variance in a chronic skin inflammatory
disease, psoriasis vulgaris, leveraging single-cell RNA-sequencing of CD45+ cells isolated
from active lesions. Highly psoriasis-specific transcriptional abnormalities display greater
than average inter-individual variance, nominating them as potential sources of clinical
heterogeneity. We find that one of these chemokines, CXCL13, demonstrates significant
correlation with severity of lesions within our patient series. Our analyses also establish
that genes elevated in psoriatic skin-resident memory T cells are enriched for programs
orchestrating chromatin and CDC42-dependent cytoskeleton remodeling, specific
components of which are distinctly correlated with and against Th17 identity on a
single-cell level. Collectively, these analyses describe systematic means to dissect cell
type- and patient-level differences in cutaneous psoriasis using high-resolution
transcriptional profiles of human inflammatory disease.

Keywords: single-cell RNA-sequencing, psoriasis vulgaris, heterogeneity, cytoskeleton, chromatin
INTRODUCTION

Individuals with psoriasis vulgaris broadly share cutaneous features such as erythema, micaceous
scale, and induction at skin sites affected by friction. While the role of Th17 cell-produced cytokines
such as IL17F and IL26 in generating these phenotypes is well-established (1, 2), the distinctive
morphology of these lesions suggests that a broad array of yet uncharacterized downstream effector
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genes are also specific to and shared by psoriatic lesions.
Conversely, individual cases of psoriasis can markedly differ in
presentation. Each patient develops lesions in distinct anatomic
patterns, for example whether the scalp or intertriginous skin is
involved, and lesional itch is also highly variable. These patterns
of difference must reflect underlying molecular heterogeneity,
potentially related to other clinical features such as involvement
of other organ systems (e.g. psoriatic arthritis) or response to the
many pathway-targeting agents now available for treatment. One
well-established example is the involvement of germline
CARD14 variants in psoriasis patients with presentations
overlapping with or including the disease state pityriasis rubra
pilaris (3). However, many more yet undiscovered gene-based
variances on the genetic and epigenetic level are likely to
determine an individual patient’s clinical state.

In the past, bulk RNA-sequencing of tissue obtained from
lesional skin has been used to detect and define such
commonalities and differences, enabling rough estimates of
genetic variance in both psoriasis vulgaris and atopic dermatitis
(4–6). Such approaches, however, conflate gene expression values
from many different immune and stromal cell types, providing
relatively crude estimates of genetic similarity and variance. The
recent emergence of single-cell profiling technologies, such as single
cell RNA sequencing (scRNA-seq) and Cellular Indexing of
Transcriptomes and Epitopes (CITE-seq) (7), offers the ability to
compare instances of chronic skin inflammatory disease with far
greater resolution. We can now ask, for example, what molecular
abnormalities are shared by effector immune cells in most psoriasis
patients, regardless of clinical presentation? Such recurrent
derangements might suggest treatment of psoriasis with existing
drugs affecting those targets. Alternatively, certain molecular
abnormalities are likely to be found in only a subset of individual
cases, nominating them as candidates for specific targeted therapies.

To formally deconstruct discrete levels of molecular
heterogeneity underlying cutaneous psoriatic inflammation,
we analyzed data from a recent study profiling 8 psoriasis
samples and 7 normal controls using single-cell RNAseq (scRNA-
seq) and CITE-seq based on the 10X Genomics Chromium
platform (8). We intended to develop and test approaches to
scRNA-seq datasets profiling chronic inflammatory disease that
could be practically and widely applied as similar datasets
become published.
MATERIALS AND METHODS

Clinical Sample Acquisition
Patient recruitment and methods are detailed in our companion
publication (8). Briefly, written informed consent was procured
from donors providing both normal and psoriatic lesional skin
under protocols approved by the University of California, San
Francisco Institutional Review Board. Full thickness punch
biopsies (6 mm) were obtained from psoriasis lesions; discards
from abdominoplasties and mammoplasties were used as normal
controls. All patients had not used topical immunosuppressives
for at least 2 weeks before biopsy. All patients were naïve to
Frontiers in Immunology | www.frontiersin.org 2217
targeted biologic medications or disease-modifying non-steroidal
agents except for Patient 5, who was under systemic
immunosuppression following a liver transplant. Clinical
details of psoriasis samples in our series are described in
Supplementary Table 1.
CD45+ Immune Cell Isolation, Single-Cell
RNA-seq and CITE-Seq Profiling, and Data
Processing
Details of skin biopsy sample processing, CD45+ immune cell
isolation, 10X Genomics 3’ scRNA-seq and CITE-seq library
preparation, and data analysis are further described in a recent
prior publication (8). Briefly, we initially performed high-
resolution clustering and eliminated populations corresponding
to non-immune and low quality cells (mitochondrial genes
percentage <20%, 100 < nFeatures < 6000). With the
remaining cells, we performed unsupervised clustering with the
following in Seurat (15 harmonies to run UMAP() and 1.0
resolution for FindClusters()to obtain the final 20 clusters used
in this analysis. Marker transcripts for each cluster were
identified using the FindAllMarkers function in Seurat (results
are in Supplementary Table 2). Cluster identities were then
manually annotated based on canonical immune cell
population markers.

Sample-Specific Differential Gene
Expression Identification, Dispersion
Score Calculation, and Metascape
Analysis
We created pseudo-bulk counts for each patient for the cells that
were mapped to CD45+ cell subpopulations using the package
muscat (9) in Bioconductor. The muscat method aggregates the
single-cell data at the cluster-sample level to create pseudo-bulk
data and then applies the methods of edgeR (10) to pseudo-bulk
calculations to identify DEGs between normal and psoriasis
samples (volcano plot, Figure 2A). To calculate dispersion
values of the psoriasis samples, we applied the function
estimateTagwiseDisp from the edgeR package in Bioconductor
to the pseudo-bulk counts from the psoriasis samples. To
identify abnormally elevated, functionally related gene sets (e.g.
Gene Ontology (GO), Reactome) in Trm2, we applied the
Metascape package (11, 12) to significant DEGs identified by
FindMarkers() in comparison to grouped healthy controls
(p < 0.05).

Normalization of T Cell Number
Expressing Specific Immune Cell DEGs for
Each Psoriasis Biopsy
Although all psoriasis biopsies were 0.6 cm in diameter, different
proportions of isolated cells were scRNA-seq processed for each
sample. To determine the number of T cells expressing each
DEG in each biopsy, we took the assessed number of expressing
T cells for a given DEG and adjusted by total number of CD45+

cells obtained from each biopsy/total cell number processed
in Seurat.
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Statistical Correlation Analysis
Gene values were batch-corrected at the sample level using the
CPCA method in the R package iCellR; missing gene values were
independently imputed within inflamed and unflamed states of
sample-aligned matrices using the PCA method in iCellR/
run.impute. Resulting matrices were then used for the
correlation matrix. Rstudio v.1.4.1717 and GraphPad Prism
(version 8.0; GraphPad Software, La Jolla, California) were
used for statistical analysis and heatmap generation. Pearson
correlation coefficients were calculated for gene-gene
comparisons using the R function cor(). Adjusted p < 0.05 was
considered significant for Seurat-based analyses, while p < 0.05
was used for other analyses.
RESULTS

scRNA-Seq-Based Classification of Major
T and Antigen-Presenting Cell Types
Isolated From Psoriatic and Normal,
Uninflamed Skin
We focused on 7 normal and 8 psoriasis samples from the Liu et al.
study (8) (Supplementary Table 1). Diagnoses were based on
clinical evaluation by a board-certified dermatologist and
confirmed by formal histopathological reading. Six of eight
patients were judged to have moderate to severe disease based on
Psoriasis Area and Severity Index (PASI) scores and two (Patients 2
and 5) were in the mild range (Supplementary Table 1). The only
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patient known to be taking systemic immunosuppressive
treatments within 4 weeks of biopsy was Patient 5, who was
maintained daily on 4 mg of tacrolimus and 1250 mg of
mycophenolate mofetil following a liver transplant. Normal
controls were taken from discarded tissue obtained from
mammoplasties and abdominoplasties.

Briefly, skin biopsies were enzymatically digested and flow
sorted for live CD45+ cells, which were then subjected to
Chromium 3’ single cell RNA-seq and CITE-seq protein
epitope sequencing. Single-cell transcriptomic data was
obtained from an average of ~5,200 single cells per sample
after eliminating doublets, poor-quality, as well as non-
immune cells. To classify cells, a graph-based clustering
approach using Louvain community detection-based
modularity optimization, available in the Seurat package,
was utilized.

We obtained 20 cell types based on previously described
unsupervised clustering approaches (8). Robust representation
of each sample was observed (Supplementary Data 1). As shown
in Figure 1, the most upregulated transcripts in each cluster (so-
called marker genes) define a central memory cell population
(CD3D+/CCR7+/SELL+/KLF2+) we call Tcm, as well as a
migratory memory class Tmm (CD3D+/CCR7+/SELL-). Based
on expression of ITGAE (CD103), CXCR6, and CD69, we
identified three resident memory populations (Trm1, Trm2,
and Trm3). A CD4+ regulatory T cell (Treg) population was
noted based on the expression of FOXP3, TIGIT, CTLA4, IL2RA
(CD25), and IKZF2 (Helios).
A

C

B

FIGURE 1 | CD45+ immune cell types identified from 8 psoriasis vulgaris lesions and 7 normal skin samples. (A) UMAP representation of 11 T cell and 9 APC
classes based on scRNA-seq transcriptional data, in which each point represents a single cell. (B) Expression of critical marker transcripts distinguishing immune cell
classes. (C) Proportion of each immune class in total CD45+ cell populations.
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Two cytotoxic (CD8A+CD8B+) T cell clusters expressing
CCL5, GZMB, and NKG7 were identified. One we annotated as
cytotoxic effector memory cells (CTLem) due to expression of
effector molecules including TNFRSF18 and CD96, as well as
resident markers CD69 and ITGAE. Interestingly, the second
cytotoxic T cell population was quantitatively enriched in the
psoriasis vs. normal samples and contained elevated canonical
exhaustion markers such as PDCD1 and LAG3. Accordingly, this
population was classified as exhausted T cells (CTLex). There
were also two populations with high KLRD1+, GNLY+, PRF1+,
and GZMB+ expression, one with high levels of the CD56 epitope
by CITE-seq (NK cells) and the other defined as ILC/NK cells.

Antigen-presenting cell types (APCs) were also classified
based on canonical markers. A macrophage population was
enriched for CD68 , CEBPB , and FCER1G, as well as
complement transcripts C1QB and C1QC and the scavenger
receptor CD163 (Mac). We also examined four monocyte or
monocyte-derived cell populations with elevated MS4A7, LYZ,
and SERPINA1. There was an inflammatory monocyte
(InfMono) population characterized by increased IL1B and
IL23A and another cluster of classical monocytes (Mono)
which expressed higher S100A9 and CD14. Two of these
clusters also expressed very high MHCII molecule levels (HLA-
DRA, HLA-DRB1) and were identified as monocyte-derived DC
(moDC1 and moDC2). A dendritic cell (DC) class (HLA-DRA+)
was enriched in CLEC10A. A population with EPCAM, and
CD207 was defined as Langerhans cells (LC). A small population
comported with the B cell lineage, with high expression of IGHG,
IGHA, IGKC, JCHAIN, CD19, and MA4A2). Two clusters of
Mast cells (Mast) were distinguished by expression of TPSB2 and
TPSAB1 (Mast1 and Mast2).
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Psoriasis-Specific Transcriptional
Abnormalities in Skin-Resident Memory
T Cells Show High Patient-Level Variance
We next applied a pseudo-bulk method to identify differentially
related genes (DEGs) that distinguished immune cell
populations in our 8 psoriasis samples from 7 grouped healthy
control biopsies. This approach aggregates scRNA-seq-derived
gene counts for each cell subpopulation in each individual
sample. Standard bulk mRNA-Seq computational approaches
for differential expression were then applied, thereby allowing for
patient-level variance to influence the significance of individual
DEGs (9). One notable feature of our recent comparisons of
psoriasis and other rash types such as atopic dermatitis is that the
large majority of psoriasis-specific transcriptional changes are
detected in Trm (8). For example, in the Tcm compartment,
excluding mitochondrial and ribosomal transcripts, only KLRB1,
IL17R, and JUN were expressed at greater than 0.5 logFC in
psoriasis compared to normal samples. In Tregs, only CPM,
TNFRSF, CD7, FTH1, IL7R,MAGEH1,MAL, TBC1D4, met these
criteria. For APC classes, the far smaller number of cells captured
in our CD45+ cell-centric approach led to detection of even fewer
highly specific DEGs.

Consistent with these recent findings, our pseudo-bulk
analysis primarily detected upregulation of Th17 cytokines
such as IL17F and IL26, as well as established psoriasis
inflammatory markers such as IFNG and CXCL13 (13), in a
skin-resident memory T cell compartment (Trm2). Therefore,
we mainly focused on this T cell class for further analysis.
Overall, in Trm2 we identified 1,425 transcripts that
distinguished psoriasis from healthy controls at a p value of <
0.05 (Supplementary Table 3).
A B

FIGURE 2 | Elevated patient level variance in psoriasis-specific skin-resident memory T cell (Trm2) DEGs. (A) Volcano plot showing psoriasis DEGs identified using a
pseudo-bulk approach charted as a function of logFC difference from normal, uninflamed cells (x-axis) and the log of the dispersion score (a proxy for patient-level
variation, y-axis). Significant DEGs are shown in red, non-significant DEGs in grey. Labelled in blue are immune activation genes with relatively high dispersion scores,
which may have prevented them from reaching statistical significance. (B) LogFC (x-axis) and dispersion score (y-axis) shown for established pathogenic psoriatic
cytokines (red), mitotic cell division transcripts (green), psoriasis-specific abnormalities not elevated in atopic dermatitis (orange), and as in (A), immunologically
activating DEGs with high end dispersion scores (blue).
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Understanding patient-level variance, alongside fold-change
magnitudes, is foundational to the conceptualization and use of
disease biomarkers. Transcripts that distinguish psoriatic from
normal tissue at higher log-fold change and relatively low patient-
specific variance may perform well in broad screening efforts.
Conversely, DEGs with high patient-level variance should be
investigated as possible sources of phenotypic variance between
affected individuals. To assess the contribution of patient-level
variation to DEG identification in the skin-resident memory T
cell population Trm2, we calculated dispersion values using edgeR
(14) across our dataset. Lowerdispersion scores correlatewith lesser
patient-level variation,which increases the significance of a pseudo-
bulk-identified DEGs at a given logFC. Figure 2A plots logFC (x-
axis) and dispersion score (y-axis), with transcripts with p < 0.05
adjusted value shown in red. In addition to the Th17 cytokines
noted above, this representation shows significant elevation of
immune activation markers such as CTLA4, CCR5, CD109, and
ZEB2. We also saw clear suppression of other inflammatory
pathways, including the interferon signaling genes IFITM1,
IFITM3, and IFI6 and the chemokines CXCL3 and CXCL8. This
representationalso illustrateshowgreater patient-level variation for
a givenDEG (higher dispersion score along the y-axis) decreases its
significance. For example, IL1R1, implicated in licensing Th17
cytokine production (15), ADA2, an adenosine deaminase central
to T cell maturation (16), and the psoriasis-associated CD161
receptor gene KLRB1 (17) show psoriasis-specific elevation in the
logFC0.5 range, but Log10dispersion scoresof greater than -1, likely
contributing to their failure to reach statistical significance in
comparison to healthy control skin-residency T cells (annotated
in blue in Figure 2A, data in Supplementary Table 3).

We more closely examined inter-individual variance in
psoriasis DEGs that were identified in the prior analysis as
elevated not only relative to normal controls, but also to atopic
dermatitis samples, indicating greater disease-specificity (8).
Notably, many of these genes showed dispersion scores greater
than the median of 0.086 (Figure 2B). In fact, for the six psoriasis
DEGs with a logFC > 3 and significantly elevated compared to
atopic dermatitis, the average dispersion score was 0.484 with a
standard deviation of 0.273. In addition to the cytokines noted
above such as IL17F (0.967), and CXCL13 (0.325), this set
contained identified psoriasis-specific genes with less
established functional roles, such as ARHGEF12 (0.303),
ENTPD1 (0.628), LAYN (0.122) and HAVCR2 (0.560).

Cell cycle transcripts, which are elevated in both psoriasis and
atopic dermatitis Trm2 compared to healthy controls, also show
higher than median dispersion scores, including MKI67 (0.358),
TOP2A (0.276), and CENPF (0.356). Similar to Figure 2A,
Figure 2B displays examples of psoriasis-implicated genes
whose expression is elevated in Trm2, but whose high inter-
individual variance reduces their overall significance level (i.e.
KIT, CCL5, TTN, and GNLY, blue, open circles).

CXCL13 and CD84 Expression in
Cutaneous T Cells Corresponds With
Lesional Psoriasis Severity
We were next curious to understand if expression of psoriasis-
specific immune DEGs correlated with clinical features such as
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PASI score. Such relationships might further narrow the search for
genetic factors influencing clinical heterogeneity in psoriasis. We
chose 16 established immune activation genes from our Trm2
DEGs including IL17F, CXCL13, IL26, CCR5, and CD82
(Supplementary Table 4) and quantified the T cells in each
sample that detectably expressed each. We normalized these
cell numbers between patients by bioinformatically deducing the
total number of such cells existing in each sample, based on the total
number of CD45+ cells obtained from each biopsy, as well as the
total number of scRNA-seq profiled cells processed in Seurat
(Materials and Methods, Supplementary Table 4). To generate
accompanying measures of clinical severity, we reasoned that the
phenotype of a biopsied and molecularly profiled lesion would be
best represented by summing its individual Erythema, Induration,
and Desquamation PASI descriptors, rather than the overall patient
score, and derived such a lesion-specific severity score for each
sample (Supplementary Table 1).

We then assessed Spearman correlation of T cell expression of all
16 immune cell DEGs with lesion-specific severity score. Three of
these genes correlated strongly with lesion-specific scores: a single
gene coefficient of 0.851 for CXCL13, and IKZF4 (p = 7.3 x 10-3) and
0.801 for CD84 (p = 1.7 x 10-2) (Bonferroni unadjusted, eight
selected genes displayed in Figure 3; Supplementary Table 5).
When the patient-level PASI score was used as an alternative
comparator, none of the 16 immune genes showed significant
correlations at unadjusted p values.

Psoriatic CD45+ Cells Show Programmatic
Activation of Mitotic Cell Division,
Chromatin Remodeling, CDC42 Signaling,
and Leukocyte Activation
We next asked how functionally related groups of genes activated
during psoriatic inflammation might vary in expression from
patient to patient. We first applied the Metascape analysis
package to detect overrepresentation of Gene Ontology and
Reactome functional categories in the 662 genes significantly
elevated (logFC > 0.4) in psoriatic skin-resident memory cells
(Trm2), compared to healthy, controls, identifying 316 functional
categories with a log (q value) < -2 (Supplementary Table 6;
Supplementary Data 2). Statistically significant functional classes,
included expected categories such as mitotic cell division and
leukocyte activation (21 members, log (q value) < -9.97), but also
highlighted the role of cytoskeletal reorganization (CDC42
signaling) and chromatin remodeling (Figure 4A). For example,
ARHGEF12 selectively regulates RhoA subfamily GTPases to
coordinate cell migration and invasion (19), while PAK2
influences actin cytoskeleton reorganization (20). DOCK8
deficiencies impair immune cell migration in both the innate and
adaptive immune system (21). Changes in psoriatic Trm also
include elevated transcripts levels of the linker histone H1FX (22),
histone chaperone NAP1L4 (23), and the chromatin-modifying
enzyme SMARCA5 (24). Figure 4B globally displays psoriasis
Trm2 abnormalities in these four programs on a per-patient level.

Considerable patient-specific fluctuations in these
functionally related gene sets were easily appreciable. Most
obviously, patient 5, the lone patient with psoriasis who was
under systemic immunosuppression (mycophenolate and
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cyclosporine for a liver transplant) showed substantial
attenuation of all these programs, corresponding to the lowest
lesional psoriasis severity score (Supplementary Table 1). We
sought to systematically assess these correlations between
expression and phenotype, first averaging transcriptional
log2FC for all genes in each of the four individual functional
Frontiers in Immunology | www.frontiersin.org 6221
programs. Average scores for all four programs showed positive
correlation with lesional severity score: CDC42 cytoskeletal
reorganization at a Spearman rho value of 0.57, cell division
at 0.55, chromatin reorganization at 0.48, and leukocyte
activation at 0.36. None of these associations reached statistical
significance, likely a factor of our limited sample size. However,
A B

FIGURE 4 | Significant functional associations for the 662 genes significantly elevated in psoriasis samples compared to grouped healthy controls in Trm2. (A) Ten
example classifications are shown, with functions such as immune cell activation, mitotic cell division, and cytoskeletal reorganization. (B) Heatmaps visually represent
average log2FC between individual psoriasis samples and normal controls using ComplexHeatmap (18). Heterogeneity is detected between patients, most prominently
the dampened amplitude of transcript abnormalities in Patient 5, who was on systemic tacrolimus and mycophenolate at time of biopsy.
FIGURE 3 | Inter-individual variation in lesional psoriasis severity score parallels that of CXCL13 and CD84. Leftmost graph shows severity scores for biopsied lesion
for each patient. Subsequent graphs display deduced number of cells with positive expression for each gene, as a percentage of the maximum number of positive
cells in any sample, multiplied by 1 x 103 (i.e. normalized to 10). Significant correlations for CXCL13 and CD84 are denoted by asterisks.
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in each pathway, activation parallels severity of individual
lesions, revealing a potential source of some proportion of
clinical heterogeneity.

Psoriasis Single Cells Expressing High
Levels of Pathogenic Cytokines Display
Elevated T Cell Activation and
Cytoskeletal Reorganization Genes
While pervasive elevation of transcripts regulating mitosis or
CDC42-centric functional reorganization coincided with
induction of pathogenic cytokines in the Trm compartment,
we were uncertain whether these programs were related on the
single-cell level. In one model, members of these programs might
simply be stochastically elevated in any given, pathogenically
IL23-polarized single T cell. Alternatively, we hypothesized that
some of these transcriptional programs could be shared on the
single-cell level, a pattern that could impact approaches to
therapeutic targeting. For example, if the single T cells most
likely to express Th17 cytokines also showed robust
reprogramming of cytoskeleton genes, strategies restraining
actin reorganization might impede the mobility and infiltration
of the most pathogenic skin-resident T cells.

We therefore calculated the Pearson correlation coefficients
for expression of pathogenic cytokines in single Trm2 cells
against those of genes in our cytoskeletal and secretory classes,
finding striking instances of both positive and negative
correlation (Figure 5). For example, Figure 5A shows positive
correlation of the RORA transcription factor with IL17F
Frontiers in Immunology | www.frontiersin.org 7222
expression, as would be expected given its role in Th17
programming (R = 0.3, p = 2.2 x 10-16) (25), as well as for the
TCR component CD3G (R = 0.29, p = 2.2 x 10-16). Similarly, in
Figure 5B, the cytoskeletal re-organization genes PAK2 and
APBB1IP robustly positively correlate with IL17F expression in
single skin-resident memory T cells, supporting a model in
which more highly pathogenically activated cells are also more
motile and capable of tissue infiltration. In sharp contrast, the
single cells expressing maximum IL17F and those expressing
elevated levels of a number of chromatin-modifying transcripts
are negatively correlated, for example, a R of -0.30 forHIST1H1E
(Figure 5C). Such instances of mutual exclusivity suggest the
presence of a second, abnormal, non-Th17 population within
psoriatic Trm, whose influence on disease state is yet
undetermined. A comprehensive single-cell correlation table in
Trm2 for IL17F , CXCL13 , and IL26 is available in
Supplementary Table 7.
DISCUSSION

While a vast landscape of transcriptional abnormalities in
immune and stromal cell types characterizes chronic
inflammatory skin disease (26, 27), clinical improvement
following inhibition of the IL12/23 pathway or blockade of
IL17 isoforms validates the central role of psoriatic T cells. Our
single-cell profiles of 8 psoriasis samples, along with normal
controls, begin to illuminate patient-specific variation of
A B C

FIGURE 5 | Single-cell correlations and anti-correlations between functional class transcripts and IL17F expression. (A) T cell activation markers like RORA and
CD3G are elevated in the highest IL17F expressing cells, (B) Key cytoskeletal reorganization transcripts (PAK2, APBB1IB) are most elevated in the single skin-
resident T cells expressing maximal psoriatic inflammatory mediators. (C) Chromatin remodeling transcripts (EZH2, HIST1H1E), are elevated in the lowest IL17F
expression cells, suggesting a distinct, pathologic cell population in psoriatic Trm. Density plots show imputed single cell expression of T cell activation, chromatin
remodeling, or cytoskeletal transcripts (y-axis) vs. IL17F (x-axis). Dots represent single Trm2 cells (psoriasis samples).
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transcriptional abnormalities in psoriatic Trm (Figure 2).
Psoriasis DEGs with greater than average patient-level
variance, reflected in higher dispersion scores, include the most
recognizable Th17 cytokines such as IL17F and IL26, recently
implicated inflammatory psoriatic mediators such as CXCL13
(13), and genes orchestrating cell division in mitotically active T
cells. Such psoriasis DEGs with higher dispersion scores may
represent sources of patient-specific phenotypic and clinical
variability, such as lesion intensity or anatomic distribution.

Expression of CXCL13 and CD84 correlated significantly with
lesional severity score in our study, a predicate for further
investigation as sources or important associations of disease
state. Our data adds to increasing evidence that CXCL13
represents a particularly Th17-specific abnormality (8) and
positively associates with psoriasis severity (13, 28),
nominating it as a clinically useful biomarker for cutaneous
disease. CD84 is a known T cell activation marker, genetic
variants of which have been associated with response in
psoriasis to TNF blockade (29). Interestingly, IL17F expression
in our series correlated poorly with lesional severity score but was
highly elevated in scalp psoriasis, suggesting it might show
anatomic specificity in more highly powered studies. This
finding comports with an earlier scRNA-seq report that Th17
cytokine expression and overall inflammatory state is
surprisingly prominent in healthy scalp cells (27). The key
constraint of our study is patient number, limited by the
current costs of scRNA-seq. It is very likely additional such
correlations will reach significance as these approaches are
extended to larger data sets.

Conversely, psoriasis-specific DEGs harboring lower dispersion
scores may be more suitable for broader screening to identify
psoriasis-like molecular profiles, a feature that may help direct
biological treatment for the subset of rashes demonstrating both
psoriasiform and spongiotic histopathology (30). Within the set of
psoriasis-specific skin-resident DEGs that are overexpressed
relative to analogous T cells in atopic dermatitis, examples of such
lower variance Th17 biomarkers include the GTPase-activator
CHN1 (0.069) and PTMS (0.077).

We also undertook a systematic search of coordinated
functional derangements in skin-resident T cells, based on the
increased resolution afforded by single-cell transcriptomics. Such
groups of pathologic transcriptional alternations may function as
quantitative traits, collectively modifying disease phenotype
beyond the impact of dysregulated single genes. Applying this
method, we detected not only expected elevations in
inflammatory signalling and cell division, but also global
increases in pathways coordinating CDC42-centric cytoskeletal
reorganization and chromatin remodeling. In one sense, broad
alterations in these programs are not surprising, given the
profound changes in cell polarity and motility that accompany
T cell activation. However, this is the first report describing
recurrent upregulation of dozens of these transcripts in
pathologically inflamed T cells. All 8 patients in our series
show abnormalities in these programs (Figure 4), whose
elevation trends with lesional psoriasis severity scores,
supporting a role in the pathogenicity of skin inflammation.
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We also show that single T cells expressing the highest levels
of psoriatic inflammatory mediators such as IL17F are markedly
enriched for cytoskeletal remodeling transcripts, suggesting such
programs may facilitate tissue infiltration and cytokine secretion.
Combination therapeutic approaches targeting both Th17
polarization and cytoskeletal activity may thus synergistically
target a common population of particularly pathogenic skin T
cells. We also find that certain chromatin remodeling DEGs peak
in single T cells distinct from those maximally expressing IL17F,
indicating these data can also identify additional, abnormally
reprogrammed subpopulations within the Trm compartment.

In summary, the analyses presented here describe a suite of
quantitative approaches to evaluate high-resolution transcriptional
variation between psoriasis patients. The most distinguishing
abnormalities are identified in skin-resident T cells, and even our
limited test set identifies credible associations between specific
genes and lesion phenotype. Greater numbers of scRNA-seq
datasets are now becoming publicly accessible. Systematic
identification of such instances of inter-individual molecular
heterogeneity will make it possible to test clinically predictive
associations for both single genes and aggregate molecular
disease signatures.
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