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RNA sequencing (RNAseq) is a recent technology that profiles gene expression by

measuring the relative frequency of the RNAseq reads. RNAseq read counts data is

increasingly used in oncologic care and while radiology features (radiomics) have also

been gaining utility in radiology practice such as disease diagnosis, monitoring, and

treatment planning. However, contemporary literature lacks appropriate RNA-radiomics

(henceforth, radiogenomics) joint modeling where RNAseq distribution is adaptive

and also preserves the nature of RNAseq read counts data for glioma grading

and prediction. The Negative Binomial (NB) distribution may be useful to model

RNAseq read counts data that addresses potential shortcomings. In this study, we

propose a novel radiogenomics-NB model for glioma grading and prediction. Our

radiogenomics-NB model is developed based on differentially expressed RNAseq

and selected radiomics/volumetric features which characterize tumor volume and

sub-regions. The NB distribution is fitted to RNAseq counts data, and a log-linear

regression model is assumed to link between the estimated NB mean and radiomics.

Three radiogenomics-NB molecular mutation models (e.g., IDH mutation, 1p/19q

codeletion, and ATRX mutation) are investigated. Additionally, we explore gender-specific

effects on the radiogenomics-NB models. Finally, we compare the performance

of the proposed three mutation prediction radiogenomics-NB models with different

well-known methods in the literature: Negative Binomial Linear Discriminant Analysis

(NBLDA), differentially expressed RNAseq with Random Forest (RF-genomics), radiomics

and differentially expressed RNAseq with Random Forest (RF-radiogenomics), and

Voom-based count transformation combined with the nearest shrinkage classifier

(VoomNSC). Our analysis shows that the proposed radiogenomics-NB model

significantly outperforms (ANOVA test, p < 0.05) for prediction of IDH and ATRX

mutations and offers similar performance for prediction of 1p/19q codeletion, when

compared to the competing models in the literature, respectively.

Keywords: RNA sequencing, radiomics, radiogenomics, negative binomial, molecular mutation

4

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.705071
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.705071&domain=pdf&date_stamp=2021-08-19
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kiftekha@odu.edu
https://doi.org/10.3389/fmed.2021.705071
https://www.frontiersin.org/articles/10.3389/fmed.2021.705071/full


Shboul et al. Modeling of Radiogenomics Glioma Prediction

INTRODUCTION

Radiomics is increasingly being applied to radiology practice in
disease diagnosis, grading, monitoring, and treatment planning
(1, 2). Radiomics is extracted from various radiological images

of a targeted area of the disease. Fusing the important radiomics
and genomics information in the proper computational machine
learning (ML) model may helpto achieve a more comprehensive
disease diagnosis, prognosis, and treatment planning scheme
(3–5). Different studies have evaluated the association between

glioma molecular subtypes and radiomics (e.g., tumor shape and
size) (6–8), or between different form of genomics (e.g., RNA

sequencing (RNAseq) gene expression, protein expression, copy
number, molecular mutations, or DNA methylation) and glioma
subtypes (9–11).

Conventional ML models do not adequately model the
count-based nature of the RNA-sequence data as these models
are usually designed to work with data that has a normal
distribution. In order to alleviate the lack of appropriate
ML models, researchers propose to transform the RNAseq
read-count data to approximate a normal distribution. The
transformation to normal distribution allows the use of existing
methods such as the nearest shrinkage method (12, 13) or
Random Forest for classification. However, such transformation
removes the count-based nature of the RNAseq read counts
data, and hence, lacks the ability to fully preserve the strong
mean-variance relationship that is otherwise useful for glioma
classification and prediction (14, 15). In order to appropriately
model RNAseq read-count data, Negative Binomial (NB) and
Poisson distributions are commonly used (16). The Poisson
distribution is a single parameter distribution with its mean
equals to its variance, which makes it rather restrictive. On
the other hand, NB is similar to a Poisson distribution
with an additional parameter called “dispersion” that allows
the NB distribution to modify its variance without affecting
the mean.

RNAseq uses high-throughput or next-generation sequencing
technology (NGS) and has emerged as a novel alternative to
microarray-based techniques for quantifying gene expression.
The microarray technique is known to suffer from background
noise. Gene expression level is measured as the relative frequency
of the RNAseq reads that are mapped to one gene (17). RNAseq
is a very sensitive technique that provides high resolution and a
thorough understanding of the transcriptome and has revealed
many novel gene structures.

RNAseq distribution requires an appropriate model that
adapts and preserves the nature of RNAseq read counts data, and
such classification models that preserve the nature of RNAseq
are lacking in the traditional ML literature. The NB distribution
is an appropriate choice to model such discrete reads counts
data (16). Even though traditional ML tools that are developed
based on NB are lacking, the choice of using NB distribution
in differential gene expression and RNAseq analysis has been
adapted by different studies in the literature such as in EdgeR
(18–20), DESeq (21), and NBPSeq (22).

An example of a count-based classifier that fits a NB
distribution is the Negative Binomial Linear Discriminant

Analysis (NBLDA). NBLDA is a well-known classifier that is
developed by fitting NB to RNAseq and the mean and dispersion
parameter are estimated from the RNAseq data (23). A different
type of classifier, known as VoomNSC, is developed based on the
transformed count data. VoomNSC is a combination of Voom
(an acronym for mean-variance modeling at the observational
level) transformation (12) and the nearest shrunken centroids
classifier (NSC) (24).

Consequently, the aim of this work is to implement a
joint radiogenomics-NB model that predicts and classifies
glioma molecular mutations following the 2016 World Health
Organization’s (WHO) updated guidelines for classification of
tumors of the Central Nervous System (CNS) (including high
grade and diffuse low-grade gliomas) (25). This work is critical
especially when the RNAseq of some cases are unknown and
a careful assessment is needed to avoid mischaracterization of
lower grade gliomas. In this work, we utilize both volumetric
features (radiomics) and RNAseq to implement and learn a
radiogenomics-NB model. Then, the trained radiogenomics
model is used to predict and classify the unknown RNAseq data.
In the proposed model, a log-linear regression modeling is fitted
to the estimated mean of the NB distribution and is linked
with radiomics. We introduce this step to fuse the continuous
radiomics data with the RNAseq count-based data without the
need to transform RNAseq data into a normal distribution.
Finally, we compare our radiogenomics-NB model performance
with that of different genomics and radiogenomics state-of-the-
art methods in the literature.

The rest of the paper is organized as follows. A complete
step-by-step mathematical derivation of the radiogenomics-NB
model and parameters’ estimations are presented in section
Methodology. Section Experimental Results addresses the dataset
used in this study, the data preparation, and the effect of
using different numbers of differentially expressed genes in the
radiogenomics-NBmodel. Furthermore, in section Experimental
Results, a comparative analysis is discussed in which we compare
the proposed radiogenomics-NB model’s performance with
different well-known methods in the literature. Moreover, in
section Experimental Results, we investigate the effect of gender
by developing a gender-specific radiogenomics-NB model for
glioma molecular grading. Finally, the study’s discussion is
addressed in section Discussion.

METHODOLOGY

In this study, we propose a radiogenomics-NBmethod for glioma
molecular grading and prediction. Figure 1 illustrates an overall
flow diagram of the proposed radiogenomics-NB model. In
Figure 1A, we fit the NB distribution to RNAseq read counts of
the training dataset and estimate the model mean and dispersion
parameter. Then, we use the estimated mean along with the
predictor radiomics vector in a log-linear regression model
to estimate the model regression coefficients. The dispersion
parameter is estimated using the weighted likelihood empirical
Bayes method (19). In Figure 1B, the estimated parameters of
regression coefficients and the dispersion parameters along with
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FIGURE 1 | Overall Flow diagram of the proposed radiogenomics-NB prediction model. (A) radiogenomics-NB model utilizing the training data. (B) class prediction of

a test sample using the developed radiogenomics-NB model.

the sample radiomics and its RNAseq read counts are utilized
to predict the class label of a future test sample. A complete
mathematical derivation of the radiogenomics-NB model is
presented in the following subsection.

Prediction Using Negative Binomial
Regression Model
To fuse radiomics with RNAseq read counts data in anNBmodel,
the following parametrization is defined:

Let C be the total number of classes, and Ic ∈ (1, . . . , nc) be
the indices of samples in class c for c = 1, . . . , C. The examples
of different classes include:

IDH mutated vs. wildtype IDH (C = 2),
1p/19q codeletion: codeletion vs. non-codeletion (C = 2),
Mutated ATRX vs. wildtype (C = 2).

Let Yi =
(

yi1, yi2, . . . , yiG
)

be the RNAseq read counts training
sample in the class label c and G is the total number of RNAseq.
The purpose of this study is to predict the class label c of a future
observation Yt using training samples associated with known
class labels: p ( c|Yt) ∝ p (Yt|c) pc, where pc is the probability of
class c.

Using Bayes’ rule, we have,

p (c|Yi) ∝ p (Yi|c) pc; (1)

where, p(Yi| c) is the pdf of the sample Yi in class c, and pc is
the prior probability that one sample comes from class c. The
pdf of class-specific c of RNAseq read counts of sample Yi and
of RNAseq g is,

P
(

Yig = yig
∣

∣c
)

=
Ŵ

(

φ−1
g + yig

)

Ŵ
(

φ−1
g

)

yig !

(

φgµigc

1+ φgµigc

)yig

(

1

1+ φgµigc

)φ−1
g

. (2)

In this parameterization, Yig represents a count response of
RNAseq, where µigc represents the mean, φg represents the
dispersion parameter, E

(

Yig

)

= µigc, and Var
(

Yig

)

= µigc +

µigcφ
2
g . Note we assume that all RNAseq are independent of each

other, so we have,

p (Yi|c) =

G
∏

g=1

P
(

Yig = yig
)

. (3)
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Evaluating Equation (1) requires an estimation of p (Yi|c) and pc.
The model in Equation (2) states that Yig ∼ NB

(

µigc,φg

)

. We
first estimate φ1, φ2, . . . ,φG, and µi1c, µi2c, . . . , µiGc of all the
training samples nc, and all RNAseq G. The mean is estimated as
µigc = sicλgc, where sic is the size factor (26, 27) which is used to
scale RNAseq counts for the ith sample (in class c), λgc is the total
number of reads of RNAseq g across all samples in class c. For
prior pc, we assume all classes are equally likely, pc = 1/C. Note
that µigc, sic, and λgc are estimated for each class c.

Next, plugging these estimates into Equation (2) and using the
assumption of independent RNAseq, Equation (1) yields,

log(p(c|Yi)) = log(p(Yi|c) + log(pc). (4)

The log-likelihood log
(

p (Yi|c)
)

is written as,

log
(

p (Yi|c)
)

= log
(

∏

G
g=1P

(

Yig = yig
∣

∣c
)

)

= log





∏

G
g=1

Ŵ

(

φ−1
g + yig

)

Ŵ
(

φ−1
g

)

yig !
×

(

φgµigc

1+ φgµigc

)yig

×

(

1

1+ φgµigc

)φ−1
g



 .

(5)

Equation (5) can be written as,

log
(

p (Yi|c)
)

=
∑

G
g=1log

(

φgµigc

1+ φgµigc

)yig

+
∑

G
g=1log

(

1

1+ φgµigc

)φ−1
g

+
∑

G
g=1log





Ŵ

(

φ−1
g + yig

)

Ŵ
(

φ−1
g

)

yig !



. (6)

Rewriting Equation (6) yields,

log
(

p (Yi|c)
)

=

G
∑

g=1

yig log
(

φgµigc

)

−

G
∑

g=1

yig log
(

1+ φgµigc

)

−

G
∑

g=1

1

φg
log

(

1+ φgµigc

)

+

G
∑

g=1

log





Ŵ

(

φ−1
g + yig

)

Ŵ
(

φ−1
g

)

yig !



. (7)

The proposed NB model of genomics relates to the radiomics
(imaging features) X through the mean parameters µigc

(estimated mean of an ith sample and RNAseq g in class c).
We assume a log-linear regression model for estimating the
mean µigc in terms of the radiomics (imaging features) is given
as follows:

log
(

µigc

)

= Xiβgc; (8.a)

log
(

sicλgc
)

= Xiβgc; (8.b)

where Xi is a p-dimensional of radiomics, βgc is a p-
dimensional vector of unknown regression coefficients (translate

the relationship between X and Y through µigc). The estimation
of βgc depends on class c and gene g of the ith sample. Hence, if
there are two classes, we will need to estimate βg1and βg2 (one
from each class).

Plugging Equations (8.a) into Equation (7), yields,

log
(

p (Yi|c)
)

=
∑

G
g=1yig log

(

φg exp
(

Xiβgc

))

−
∑

G
g=1yig log

(

1+ φg exp
(

Xiβgc

))

−
∑

G
g=1

1

φg
log

(

1+ φg exp
(

Xiβgc

))

+
∑

G
g=1log





Γ

(

φ−1
g + yig

)

Γ
(

φ−1
g

)

yig !



 . (9)

Using the estimated β̂gc, and φ̂g from the training data, we classify
a test observation Yt as follows,

log(p(c|Yt)) = log(p (Yt|c) + log
(

pc
)

; (10)

and,

log
(

p (c|Yt)
)

=
∑

G
g=1ytg log

(

φ̂g exp
(

Xtβ̂gc

))

−
∑

G
g=1ytg log

(

1+ φ̂g exp
(

Xtβ̂gc

))

−
∑

G
g=1

1

φg
log
(

1+ φ̂g exp
(

Xtβ̂gc

))

+
∑

G
g=1log





Γ

(

φ̂−1
g + ytg

)

Γ

(

φ̂−1
g

)

ytg !



+ log
(

pc
)

.

(11)

Radiogenomics-NB Model Parameter
Estimation
Estimating Dispersion φg Using Weighted Likelihood

Empirical Bayes
Various methods for estimating the dispersion parameter are
proposed in the literature. The EdgeR method applies a weighted
conditional log-likelihood method to estimate the dispersion
parameter (19). The weighted conditional log-likelihood (WL)
for φg is defined as a weighted combination of the individual
(per-gene) likelihood lg

(

φg

)

and common lC
(

φg

)

likelihood:

WL
(

φ̂g

)

= lg
(

φg

)

+ αlC
(

φg

)

; (12)

where α is the weight of lC
(

φg

)

.

In EdgeR, φ̂g is assumed to be normally distributed with
means φg and known variance τ 2, and has the following
hierarchical model:

φ̂g |φg ∼ N(φg , τ
2), and φg ∼ N(φ0, τ

2
0 ). (13)

Under this hierarchical normal model, the maximum weighted
conditional log-likelihood estimator is given as:

φ̂WL
g =

φ̂g/τ
2 + α

∑

G
i=1φ̂i/τ

2
i

1/τ 2 + α
∑

G
i=11/τ

2
i

; (14)
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FIGURE 2 | Algorithm of prediction using radiogenomics Negative Binomial classification model.

where,

1/α =

G
∑

i=1

τ 20 /τ 2i (15)

and,

φ0 = φ̂0 =

∑G
i=1 φ̂i/τ

2
i

∑G
i=1 1/τ

2
i

. (16)

Computation of the Mean of RNAseq µigc

The size factor sic of sample i and class c is the total number of
RNAseq read counts of that sample divided by the total number
of all RNAseq read counts across all training samples (in class
c). The size factor estimation is vital to account for the different
sequencing depth (library size) that may be used to sequence
different samples and is computed as follows:

sic =

∑G
g=1 yigc

∑nc
i=1

∑G
g=1 yigc

; (17)

where, yigc is the RNAseq read count of sample i and RNAseq g in
class c, and nc is the total number of samples in class c.

The mean µigc of sample i and RNAseq g in class c is then
estimated as µigc = sicλgc, where λgc is the total number of reads
per RNAseq in class c, and is computed as follows:

λgc =

Nc
∑

i=1

yigc. (18)

Using the estimated value of µigc, the values of βgc are computed
using equation 8.a as follows:

βgc = Xi log

(
∑G

g=1 yigc
∑nc

i=1

∑G
g=1 yigc

∑

Nc
i=1yigc

)

. (19)

The algorithm in Figure 2 illustrates the steps of estimating
the different parameters in the radiogenomics-NB
classification model.

EXPERIMENTAL RESULTS

Dataset
The dataset in this study consists of 108 pre-operative lower grade
glioma (LGG) patients that are described in Menze et al. (28),
Bakas et al. (29), and Bakas et al. (30). Four sequences of the MRI
are provided with the dataset: pre-contrast T1-weighted (T1),
post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2
Fluid Attenuated Inversion Recovery (FLAIR). These scans are
skull-stripped, re-sampled to 1mm3 resolution, and co-registered
to the T1 template. The dataset provides the segmented sub-
regions of the LGG: Gadolinium enhancing tumor (ET), the
peritumoral edema (ED), and necrosis along with non-enhancing
tumor (NCR/NET).

RNAseq read counts data (with a total number of 56830
RNAseq), molecular alterations (IDH mutation, 1p/19q
codeletion, and ATRX), grade (II and III), and the clinical dataset
can be found and downloaded from The Cancer Genome Atlas
(TCGA) dataset in the Genomic Data Commons (GDC) Data
Portal (https://portal.gdc.cancer.gov/). RNAseq are primarily
obtained from solid portions of tumor. The clinical dataset is de-
identified in compliance with the Health Insurance Portability
and Accountability Act of 1996 (HIPAA). The distribution of the
data is as follows: (i) IDH mutation: 85 Mutant and 23 wildtype
(WT), (ii) 1p/19q codeletion: 27 codeletion and 81 non-codeletion,
and (iii) ATRX status: 43 Mutant and 65 WT. The range of the
patients’ age at diagnosis is 20–75 years, and the median age is
46.5 years.

Data Preparation
In this studywe first filter RNAseq read counts to remove RNAseq
with very low value of read counts before performing any
statistical analysis. RNAseq with very low read counts hold very
little information because an RNAseq of biological importance
needs to be expressed at someminimal level. We utilize a quantile
filter (31) with a quantile threshold of 0.25. This step returns
each RNAseq that has a mean across all samples higher than the
defined quantile threshold of 0.25. Then, we reduce the number
of RNAseq that are used in the radiogenomics-NB models, by
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TABLE 1 | Radiomics features description and their ANOVA p-value association with IDH mutations, 1p/19q codeletion, and ATRX mutations.

Feature number Feature description p-value of

IDH mutation

p-value of

1p/19q codeletion

p-value of

ATRX mutation

1 the size of the enhancing tumor to the necrosis size <0.005 0. 393 0.178

2 the size of the enhancing tumor to the size of enhancing tumor and necrosis 0.8630 0.070 0.239

3 the size of the enhancing tumor to the edema size <0.005 0.600 <0.005

4 the size of the enhancing tumor to the whole tumor size <0.005 0.707 0.027

5 the size of the edema to the necrosis size 0.188 0.996 0.114

6 the size of the edema to the size of enhancing tumor and necrosis 0.138 0.789 0.0237

7 the size of the edema to the whole tumor size <0.005 0.131 <0.005

8 and the size of the necrosis to the whole tumor size <0.005 0.221 <0.005

utilizing EdgeR (18–20) to extract the differentially expressed
RNAseq (DERs). DERs reflect the significance of a gene in a
certain biological condition. In this study, we select the top 10,
20, 30, 50, 100, and 150 DERs (see Supplementary Table 1).

Furthermore, we use eight volumetric radiomics features as
illustrated in Table 1. ANOVA analysis for radiomics in Table 1

shows that feature numbers 1, 3, 4, 7, and 8 are significantly
associated (ANOVA test, p < 0.05) with IDH mutations as
illustrated in Figure 3A. Our analysis also indicates that feature
number 2 is marginally associated (ANOVA test, p = 0.07)
with 1p/19q codeletion. Furthermore, our analysis indicates that
feature numbers 3, 4, 6, 7, and 8 are significantly associated
(ANOVA test, p < 0.05) with ATRX mutations as illustrated in
Figure 3B. Additionally, our analysis reveals that thresholding
feature number 6 around the mean creates an ordinal feature
that is significantly associated (ANOVA test, p < 0.05) with IDH
mutations, 1p/19q codeletion, and ATRX mutations. Likewise,
thresholding feature numbers 1, 3, 5, 7, and 8 around their
means converts these features into ordinal features that are
significantly associated (ANOVA test, p < 0.05) with IDH and
ATRX mutations. Moreover, thresholding feature numbers 5, 6,
7, and 8 around their median converts these features into ordinal
features that are significantly associated (ANOVA test, p < 0.05)
with IDH and ATRX mutations.

Few other studies suggest that these volumetric imaging
features and their ratios are associated with and predictive of
several mutations in gliomas (32–35).

The 108 LGG cases are randomly split into 80% training
and 20% testing sets, and a balanced distribution of the target
molecular alteration is ensured in the training and testing sets
in each molecular classifier. The trained model classifier is
developed using the training set. Model performance prediction
is estimated and reported using the testing sets in terms of
accuracy, balanced accuracy, F1 score, sensitivity, specificity,
negative predictive value, and positive predictive value. The
training set is utilized to build our radiogenomics-NB classifier as
shown in steps 1-4 in Figure 2. The testing set is used to estimate
the performance of the classifier as shown in steps a and b in
Figure 2. Authors In Dong et al. (23), Maufroy et al. (36), Pan
et al. (37), and Vabalas et al. (38) repeat training and testing
analysis for a specific number of times to ensure the robustness
of the model performance. Consequently, in this work, we repeat
the whole procedure 100 times independently for the 3 molecular

alterations and then report the mean and standard deviation of
the classifiers’ performance using the testing sets.

Model performance parameters are computed based on the
confusion matrix in Figure 4 as follows:

Accuracy = TP +
TN

TP
+ TN + FP + TN;

(20)

Sensitivity =
TP

TP
+ FN; (21)

Specificity =
TN

FP
+ TN; (22)

Positive predictive value =
TP

TP
+ FP; (23)

Negative predictive value =
TN

FN
+ TN; (24)

Balanced Accuracy =
Sensitivity + Specificity

2
, and (25)

F1 score = TP

(

TP +
FP + FN

2

)

; (26)

where TP is the true positive, TN is the true negative, FP is the
false positive, and TN is the true negative.

Radiogenomics-NB Models Using Different
Number of Differentially Expressed RNAs
In this section, we investigate the importance of using
different numbers of DERs on the performance of the
radiogenomics-NB model. LGG radiogenomics-NB mutation
prediction models are developed based on the top 10,
20, 30, 50, 100, and 150 DERs. The performance of the
radiogenomics-NB IDH model using the top 10 DERs achieves
slightly higher performance. However, such improvement is
not statistically significant (ANOVA test, p > 0.05) when
compared to the performance of the IDH models with
the other number of DERs (Figure 5A) except for negative
predictive value (NPV) performance when using the top
20 DERs. Using the top 20 DERs in the IDH model
achieves significantly worse NPV when compared to the NPV
achieved using the top 10 DERs (ANOVA test, p < 0.05).
Radiogenomics-NB IDH model with the top 10 DERs (red
line in Figure 5A) achieves an overall accuracy (Acc) of 0.92
± 0.06, sensitivity (Sens) of 0.94 ± 0.07, specificity (Spec)
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FIGURE 3 | Feature distribution plot of the significant volumetric radiomic associated with (A) IDH mutations, and (B) ATRX mutations.

of 0.83 ± 0.18, positive predictive value (PPV) of 0.96 ±

0.04, negative predictive value (NPV) of 0.82 ± 0.17, F1
score of 0.95 ± 0.04, and balanced accuracy (B. Acc) of
0.88± 0.09, respectively.

Radiogenomics-NB codeletion models achieve similar
performance (ANOVA test, p > 0.05) using the top 10, 20, 30,
and 50 DERs as shown in Figure 5B. Furthermore, using the top
100 and 150 DERs in the codeletion model achieves significantly
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FIGURE 4 | Confusion matrix of binary classification.

worse performance when compared to the performance of using
the top 10 DERs (ANOVA test, p < 0.05). Using the top 10 DERs,
the radiogenomics-NB codeletion model achieves an accuracy of
0.93 ± 0.06, a balanced accuracy of 0.90 ± 0.10, F1 score of 0.86
± 0.14, a sensitivity of 0.84± 0.19, a specificity of 0.96± 0.04, an
NPV of 0.95± 0.06, and a PPV of 0.90± 0.12, respectively.

Radiogenomics-NB ATRX model also achieves similar
performance (ANOVA test, p > 0.05) using the top 10, 20, and
30 DERs, even though the performance when using the top 10
DERs is slightly better as illustrated in Figure 5C. Using the top
10 DERs, the ATRX model achieves an accuracy of 0.85 ± 0.07,
a balanced accuracy of 0.85 ± 0.07, an F1 score of 0.82 ± 0.08, a
sensitivity of 0.86 ± 0.13, a specificity of 0.85 ± 0.09, an NPV of
0.91± 0.08, and a PPV of 0.80± 0.10, respectively.

Comparative Analysis
Figure 6 illustrates a graphical performance comparison between
our radiogenomics-NB model with that of four different
classifiers in the literature: NBLDA (23), VoomNSC (12, 13),
RF-genomics where we first log-transformed (20) the RNAseq
into a normal distribution, and RF-radiogenomics. Note that the
number of DERs that we apply to develop these classifiers is
10 DERs. Moreover, when developing these classifiers, the 108
LGG cases are randomly split into 80% training and 20% testing
sets, and balanced distribution is ensured when developing the
different classifiers. The trained model classifier is developed
using the training set, and 10-fold cross-validation is performed
to identify the tuning parameters in the different classifiers.
Model performance prediction is estimated and reported using
the testing sets. Additionally, to ensure the robustness of
the different classifiers’ performance, we repeat the whole
procedure 100 times independently and every training/testing
set is utilized to develop and estimate the performance of
each classifier.

TheNBLDA (23) classifier is developed by fittingNB to the top
10 DERs; then the mean and dispersion parameter are estimated
from these DERs. In RF-genomics, the top 10 DERs of the
training sets are first log-transformed into normal distribution
and then fed into RF to build the RF-genomics classifier. In RF-
radiogenomics, radiomics (eight volumetric features described
previously in section Data Preparation) are utilized with the

FIGURE 5 | Performance of the proposed radiogenomics-NB model using a

different number of DERs. (A) Radiogenomics-NB IDH, (B)

Radiogenomics-NB Codeletion, and (C) Radiogenomics-NB ATRX models.

The average performance (of the Acc, B. Acc, F1, NPV, PPV, Sens, and Spec)

is computed across 100 testing sets/splits. Y-axis represents the average

performance of the different statistics on the X-axis. Different colors represent

the radiogenomics-NB model with different numbers of DERs. The error bar

represents one standard deviation. Asterisk “*” represents a statically

significant difference between the performance achieved when using the top

10 DERs (in red) and using the number of DER where the star is located.

log-transformed DERs and then fed into RF to build the RF-
radiogenomics classifier. VoomNSC (12, 24) is developed by first
applying the Voom-based transformation on the 10 DERs and
then applying the NSC classifier as illustrated in Zararsiz et al.
(12) and Tibshirani et al. (24).

Comparing the performance of our radiogenomics-NB IDH
model with that of NBLDA, RF-genomics, and VoomNSC, the
radiogenomics-NB IDH significantly outperforms (ANOVA test,
p < 0.05) these methods as shown in Figure 6A and Table 2.
Additionally, our radiogenomics-NB IDH model significantly
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FIGURE 6 | Comparison of performance between our radiogenomics-NB

model and different classifiers. The comparison is performed using the (A) IDH

mutations, (B) 1p/19q codeletion, and (C) ATRX mutations dataset. The

average performance (of the Acc, B. Acc, F1, NPV, PPV, Sens, and Spec) is

computed across 100 test sets. The error bar represents one standard

deviation. RNAseq that are used in developing all classifiers represent the top

10 DERs in the training sets between mutated and WT IDH group, codeleted

and non-codeleted groups, and mutated and WT ATRX mutation, respectively.

Y-axis represents the average performance of the different statistics on the

X-axis. Different colors represent different classifiers.

outperforms (ANOVA test, p < 0.05) the F1 score, balanced
accuracy, and PPV performance of the RF-radiogenomics
method whereas it achieves a similar (ANOVA test, p > 0.05)
accuracy, sensitivity, and specificity. Our radiogenomics-NB IDH
model archives an accuracy of 0.92 ± 0.06, a sensitivity of 0.94
± 0.07, a specificity of 0.93 ± 0.18, an F1 score of 0.95 ±

0.04, and a balanced accuracy of 0.88 ± 0.09, respectively. The
RF-radiogenomics-IDH model achieves an accuracy of 0.88 ±

0.17, a sensitivity of 0.93 ± 0.07, a specificity of 0.78 ± 0.16,
an F1 score of 0.92 ± 0.06, and a balanced accuracy of 0.85 ±

0.08, respectively.

Our radiogenomics-NB codeletion model (Figure 6B and
Table 3) performance is similar to NBLDA, RF-genomics,
VoomNSC, and RF-radiogenomics models, except for the
specificity and NPV performance when using RF-genomics
and VoomNSC. The specificity and NPV of our model are
significantly higher than those achieved by RF-genomics and
VoomNSC. Our radiogenomics-NB codeletionmodel achieves an
accuracy of 0.93 ± 0.06, a sensitivity of 0.84 ± 0.20, a specificity
of 0.96± 0.5, an F1 score of 0.86± 0.14, and a balanced accuracy
of 0.90± 0.10, respectively.

The performance of our radiogenomics-NB ATRX model
as shown in Figure 6C and Table 4 outperforms both NBLDA
and VoomNSC significantly (ANOVA test, p < 0.05). However,
comparing ourATRXmodel to RF-genomics, ourmodel achieves
significantly better balanced-accuracy, F1 score, NPV, and
sensitivity. Additionally, comparing our ATRX model to RF-
radiogenomics, our model achieves significantly (ANOVA test, p
< 0.05) better sensitivity but achieves similar accuracy, balanced-
accuracy, F1 score, and sensitivity. Our radiogenomics-NBATRX
model achieves an accuracy of 0.85 ± 0.07, a sensitivity of 0.86
± 0.13, a specificity of 0.85 ± 0.09, an F1 score of 0.82 ±

0.08, and a balanced accuracy of 0.85 ± 0.07, respectively. The
RF-radiogenomics ATRX model achieves an accuracy of 0.84 ±

0.08, a sensitivity of 0.80 ± 0.14, a specificity of 0.86 ± 0.10,
an F1 score of 0.80 ± 0.09, and a balanced accuracy of 0.83 ±

0.08, respectively.

Gender–Specific Effect Analysis of
Radiogenomics-NB
In our LGG dataset, IDH mutated patients, unlike IDH WT
patients, have significantly longer survival (65.7 vs. 19.9 months,
log-rank test p = 0.004). The association between IDH status
and overall survival remains significant after stratifying for
gender (likelihood ratio test p= 0.015). However, the association
between 1p/19q codeletion and ATRX status and overall survival
is not significant. Additionally, the chi-square test shows no
significant association (p >0.05) between gender and IDH status,
1p/19q codeletion, and ATRX status. Table 5 shows patient IDH
status, 1p/19q codeletion, and ATRX status distribution based
on gender.

To explore the gender-specific effect in the performance
of the radiogenomics-NB, we build two radiogenomics-NB
models based on gender; male-specific radiogenomics-NB and
female-specific radiogenomics-NB. Our analysis indicates that
female-specific models significantly outperform (ANOVA test,
p < 0.05) male-specific models as illustrated in Figure 7. In
the radiogenomics-NB IDH, female-specific model achieves an
accuracy of 0.93 ± 0.08, a sensitivity of 0.93 ± 0.09, a specificity
of 0.91± 0.10, a PPV of 0.97± 0.05, an NPV of 0.83± 0.21, and a
balanced accuracy of 0.92 ± 0.11, respectively. The male specific
IDH model achieves an accuracy of 0.85 ± 0.08, a sensitivity
of 0.97 ± 0.06, a specificity of 0.35 ± 0.33, a PPV of 0.86 ±

0.07, an NPV of 0.55 ± 0.48, and a balanced accuracy of 0.66 ±

0.17, respectively.
In the radiogenomics-NB codeletion, female-specific model

achieves an accuracy of 0.91 ± 0.09, a sensitivity of 0.77 ±
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TABLE 2 | Probability of significant difference using ANOVA test between the differentially expressed radiogenomics-NB model and different classifiers using the IDH

dataset.

IDH Accuracy Sensitivity Specificity PPV NPV F1 Balanced accuracy

radiogenomics-NB vs. NBLDA 0.000 0.010 0.000 0.000 0.000 0.000 0.000

radiogenomics-NB vs. VoomNSC 0.000 0.075 0.000 0.000 0.000 0.000 0.000

radiogenomics-NB vs. RF 0.001 0.023 0.000 0.000 0.138 0.000 0.000

radiogenomics-NB vs. RF-radiogenomics 0.069 0.432 0.061 0.000 0.084 0.001 0.01

A statistically significant difference exists if p < 0.05. Values in bold show a significant improvement of our radiogenomics-NB IDH over the compared one.

TABLE 3 | Probability of significant difference using ANOVA test between the differentially expressed radiogenomics-NB model and different models using the 1p/19q

codeletion dataset.

CODEL Accuracy Sensitivity Specificity PPV NPV F1 Balanced accuracy

radiogenomics-NB vs. NBLDA 0.232 0.186 0.756 0.514 0.253 0.123 0.181

radiogenomics-NB vs. VoomNSC 0.072 0.228 0.001 0.057 0.042 0.742 0.317

radiogenomics-NB vs. RF 0.242 0.390 0.020 0.636 0.027 0.271 0.42

radiogenomics-NB vs. RF-radiogenomics 0.671 0.815 0.893 0.825 0.282 0.855 0.792

A statistically significant difference exists if p < 0.05. Values in bold show a significant improvement of our radiogenomics-NB codeletion over the compared one.

TABLE 4 | Probability of significant difference using ANOVA test between the differentially expressed radiogenomics-NB model and different models using the ATRX

dataset.

ATRX Accuracy Sensitivity Specificity PPV NPV F1 Balanced accuracy

Radiogenomics-NB vs. NBLDA 0.000 0.269 0.000 0.000 0.677 0.004 0.001

Radiogenomics-NB vs. VoomNSC 0.003 0.741 0.001 0.002 0.432 0.021 0.012

Radiogenomics-NB vs. RF 0.083 0.005 0.540 0.960 0.004 0.026 0.025

Radiogenomics-NB vs. RF-radiogenomics 0.183 0.003 0.215 0.561 0.003 0.052 0.053

A statistically significant difference exists if p < 0.05. Values in bold show a significant improvement of our radiogenomics-NB ATRX over the compared one.

TABLE 5 | Gender-based distribution of IDH status, 1p/19q codeletion, and ATRX status in the LGG dataset.

IDH status 1p/19q codeletion ATRX status

Mutant WT Codeletion Non-codeletion Mutant WT

Female 43 14 14 43 24 33

Male 42 9 13 38 19 32

0.31, a specificity of 0.96 ± 0.07, a PPV of 0.80 ± 0.32,
an NPV of 0.93 ± 0.07, and a balanced accuracy of 0.84 ±

0.17, respectively. The male specific codeletion model achieves
an accuracy of 0.84 ± 0.10, a sensitivity of 0.56 ± 0.32,
a specificity of 0.95 ± 0.08, a PPV of 0.79 ± 0.32, an
NPV of 0.86 ± 0.10, and a balanced accuracy of 0.77 ±

0.17, respectively.
In the radiogenomics-NB ATRX, female-specific model

achieves an accuracy of 0.80± 0.11, a sensitivity of 0.79± 0.20, a
specificity of 0.81 ± 0.15, a PPV of 0.76 ± 0.16, an NPV of 0.87
± 0.12, and a balanced accuracy of 0.80 ± 0.12, respectively. The
male specific ATRX model achieves an accuracy of 0.76 ± 0.12,
a sensitivity of 0.69 ± 0.23, a specificity of 0.81 ± 0.14, a PPV of
0.73 ± 0.18, an NPV of 0.81 ± 0.12, and a balanced accuracy of
0.75± 0.13, respectively.

DISCUSSION

In this study, we propose a novel radiogenomics-NB model

to fuse radiomics (imaging features) with RNAseq (genes) for
glioma grading and prediction. NB distribution is appropriate

for modeling RNAseq discrete read counts data and for
preserving the count-based nature of this data. In the proposed

radiogenomics-NB model, log-linear regression modeling is
fitted to the estimated mean of the NB distribution and is linked
with radiomics. We introduce this step to fuse the continuous
radiomics data with the RNAseq count-based data without the
need to transform the RNAseq data into a normal distribution.

The NB, unlike a Poisson distribution, has two parameters;
the mean (e.g., the expected value of the RNAseq read counts
data) and dispersion (e.g., a parameter that helps in capturing
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FIGURE 7 | Gender-based radiogenomics-NB models performance. (A) IDH

mutations, (B) 1p/19q codeletion, and (C) ATRX mutations which are

computed across 100 testing sets. The error bar represents one standard

deviation. The asterisk * illustrates a significant difference between the two

measurements. Y-axis represents the average performance of the different

statistics on the X-axis. Different colors represent the female- and

male-specific radiogenomics-NB models.

the variability of the RNAseq read counts). If the dispersion of
NB is zero, the model reduces to Poisson distribution. In Poisson
distribution, the mean is equal to the variance, which makes it
rather restrictive. However, variation is usually observed in the
real data of RNAseq counts data that the Poisson distribution
cannot handle properly. On the other hand, NB has an additional
parameter called the “dispersion” that allows the NB distribution
of RNAseq counts data to modify its variance without affecting
the mean. Thus, NB serves as a practical approximation

to model RNAseq count data with variability different from
its mean.

The mean of the proposed radiogenomics-NB model is
estimated as the size factor multiplied by the total number
of reads per RNAseq. Moreover, we utilize EdgeR to estimate
the dispersion of the proposed radiogenomics-NB assuming
RNAseq variability is assessed using the weighted conditional log-
likelihood model. In the weighted conditional model, RNAseq
counts data is assumed to have a distinct and individual
dispersion for each RNAseq in addition to a common dispersion.
Such an assumption can be more reliable when estimating the
dispersion of real data of RNAseq counts data.

The performance evaluation of the proposed work indicates
that linking simple, clinically feasible radiomics (i.e., tumor
volumetric features) to RNAseq improves the performance of
IDH and ATRX mutations prediction. The radiomics features
utilized in the proposed radiogenomics-NB model that are
described in Table 1 mainly depend on volumetric features. Our
analysis shows that these features are associated with particular
glioma mutations. This outcome supports previous studies that
show the association between volumetric features and glioma
mutations (32–35). The efficacy of the proposed radiogenomics-
NB model is further investigated using the top 10, 20, 30, 50,
100, and 150 DERs, respectively. Our analysis shows that the
smaller the number of DERs (fewer than 30 DERs) utilized in
radiogenomics-NB, the better is the radiogenomics-NB model
performance. Our analyses indicate that using fewer than 30
DERs in our analysis offers the best performance (statically
significant) in the radiogenomics-NB codeletion and ATRX
prediction model. This suggests that using large numbers of
DERs (more than 30) in the proposed radiogenomics-NB would
over parametrize the dataset and create model fitting problems
and thus degrade the performance.

Comparing our radiogenomics-NB model to NBLDA,
RF-genomics, FR-radiogenomics, and VoomNSC, our model
significantly outperforms NBLDA, RF-genomics, and VoomNSC
for prediction of IDH and ATRX mutations. Our radiogenomics-
NB model offers similar performance as NBLDA, RF-genomics,
RF-radiogenomics, and VoomNSC models for prediction
of 1p/19q codeletion. Specifically, for prediction of IDH
mutations, while the proposed radiogenomics-NB model
achieves significantly better balanced-accuracy, F1 score, and
PPV than RF-radiogenomics, our model achieves similar
accuracy, sensitivity, and specificity. Such results indicate
the power of fusing radiomics and genomics data to develop
radiogenomics models for classification and prediction models.
The findings in this work indicate that the radiomics volumetric
features may be vital for the prediction of IDH and ATRX
mutations along with the genomics.

Different studies have revealed that gender is a significant
factor in identifying cancer survival, prognosis, and treatment
response (39–41). Hence, improved glioma molecular mutation
prediction may require the development of gender-specific
models. In this study, we explore the gender-specific effect on
the radiogenomics-NB models. Our analysis reveals that IDH
mutated patients remain significant after stratifying for gender,
unlike 1p/19q codeletion andATRX status. Moreover, our analysis

Frontiers in Medicine | www.frontiersin.org 11 August 2021 | Volume 8 | Article 70507114

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Shboul et al. Modeling of Radiogenomics Glioma Prediction

indicates that no association is found between gender and the
three specific mutations (IDH mutations, 1p/19q codeletion,
and ATRX status) using the Chi-square test. This result is
in agreement with the findings in Brat et al. (42), Li et al.
(43), and Ebrahimi et al. (44). However, our gender-specific
modeling shows that female-specific radiogenomics-NB models
significantly outperform the male-specific radiogenomics-NB
models for prediction of IDH status, 1p/19q codeletion, andATRX
status, respectively.

In conclusion, we present a glioma mutations radiogenomics-
NB prediction model that preserves the count nature of RNAseq
counts data in the NB model and utilizes radiomics to develop
a complete and a better characterization prediction model of
patient data. Our analysis shows the superiority of utilizing
both genomics and clinically feasible radiomics data when
compared to only genomics models. Use of tumor volumetrics
can be more easily and reproducibly implemented in clinical
practice compared to more complex radiomics metrics, such
as higher order texture analysis features. Finally, this study
shows the efficacy of volumetric radiomics features in the
radiogenomics-NB model for glioma molecular characterization
and prediction. This study is a first step toward implementing
joint modeling of RNAseq and MRI patient data for glioma
grading. However, further investigation is needed with a larger
dataset with both RNAseq and full multimodality MRI dataset
for each patient in a cohort. In the future, larger prospective
studies may be needed to investigate specific radiomics features
and their association with the different mutations and RNAseq
read counts data for implementation into clinical workflow.
Furthermore, it will be interesting to investigate the cause
of superior performance of female-specific radiogenomics-
NB models when compared to that of the male-specific
radiogenomics-NB models for prediction of IDH status, 1p/19q
codeletion, and ATRX status. Also, these models may be further

investigated in treatment response and survival prediction in
the future.
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The growth rate of non-enhancing low-grade glioma has prognostic value for both

malignant progression and survival, but quantification of growth is difficult due to

the irregular shape of the tumor. Volumetric assessment could provide a reliable

quantification of tumor growth, but is only feasible if fully automated. Recent advances

in automated tumor segmentation have made such a volume quantification possible,

and this work describes the clinical implementation of automated volume quantification

in an application named EASE: Erasmus Automated SEgmentation. The visual quality

control of segmentations by the radiologist is an important step in this process, as errors

in the segmentation are still possible. Additionally, to ensure patient safety and quality

of care, protocols were established for the usage of volume measurements in clinical

diagnosis and for future updates to the algorithm. Upon the introduction of EASE into

clinical practice, we evaluated the individual segmentation success rate and impact on

diagnosis. In its first 3months of usage, it was applied to a total of 55 patients, and in 36 of

those the radiologist was able to make a volume-based diagnosis using three successful

consecutive measurements from EASE. In all cases the volume-based diagnosis was

in line with the conventional visual diagnosis. This first cautious introduction of EASE

in our clinic is a valuable step in the translation of automatic segmentation methods to

clinical practice.

Keywords: brain tumor, low-grade glioma (LGG), segmentation (image processing), magnetic resonance imaging

(MRI), clinical translation, lesion quantification

INTRODUCTION

Magnetic resonance (MR) imaging plays a key role in the management of low-grade glioma
(LGG) as a method for measuring treatment response and for regular surveillance during periods
of watchful waiting. LGG are known to show constant slow growth (1), until—in adults—
they inevitably transform to a more malignant type. The early growth rate of the T2-weighted
hyperintense region is a known prognostic factor for malignant progression (2) and overall survival
(3), so the reliable quantification of growth may be a valuable tool for clinical decision making
(4). However, due to the anisotropic growth and irregular size it can be difficult to evaluate slow
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growth on consecutive imaging using a visual assessment or
2D measurement (5). Volumetric measurements are preferred
for the assessment of early growth due to their reproducibility
and sensitivity to subtle changes (6), but a manual segmentation
would require an effort that is unrealistic in clinical practice.

Automatic segmentation of glioma has shown great advances
in recent years due to the release of public datasets and the
development of artificial intelligence (7). A recent method
described in Kickingereder et al. (8) has been shown to be a
reliable alternative for the prognostication of glioma, comparable
to the current clinical standard of 2D measurement according to
the RANO criteria. Although these criteria apply specifically to
high-grade glioma and the measurement of enhancing tumor (6),
the performance evaluation in Kickingereder et al. also shows an
almost perfect quantification of non-enhancing abnormalities on
T2-weighted FLAIR imaging. This makes it potentially suitable
for the assessment of volume changes in non-enhancing low-
grade glioma.

Due to the clear clinical need of volume quantification in LGG,
we decided to implement a segmentation pipeline and integrate
it in the existing clinical workflow of the Brain Tumor Center,
ErasmusMCCancer Institute, Rotterdam. This introduced a new
measurement tool in the radiologists’ toolbox, which we named
EASE: Erasmus Automated SEgmentation. With a new tool come
potential risks to patient safety and quality of care, which need
to be considered in the design of the software and protocols for
its use.

For the clinical implementation of this segmentation pipeline,
we identified potential risks and practical challenges. The main
concern was that of incorrect tumor segmentations resulting in
incorrect volume measurements. Further risks were found in
software updates over time, potentially leading to unreliable or
inconsistent volume measurements, and finally in the incorrect
interpretation of volume measurements at time of diagnosis.
These risks and the design choices to address these are described
inmore detail in sectionsMaterials and Equipment andMethods,
and an overview is shown in Table 1.

This work describes the design of both the technical
implementation of EASE and its integration into the
clinical workflow, to ensure quality of results and prevent
incorrect interpretation of the resulting volume measurements.
Furthermore, an initial evaluation of the software was performed
in which both the success rate and clinical impact of the
volumetric assessment were measured.

TABLE 1 | Overview of identified risks and measures to address those risks.

Risk Measure

Segmentation

errors

Quality check in annotation interface (section Quality

Assessment)

Inconsistencies due

to updates

Reference dataset and version control (section

Validation and Version Control)

Incorrect

interpretation of

volumes

Design guidelines for usage (section Diagnosis)

Storage of segmentations in PACS (section

Reporting)

MATERIALS AND EQUIPMENT

This section describes the software implementation of EASE.
Each scan assessed with EASE goes through a number of
processing steps: (1) The images (pre- and post-contrast T1-
weighted, T2-weighted, and T2-weighted FLAIR) are received
and stored (section Data Management); (2) The segmentation
is generated (section Segmentation); (3) The segmentation is
checked by a radiologist (section Quality Assessment); (4)
A report is generated and sent back to the PACS (section
Reporting). A data and state management tool is used to manage
the state of each scan and launch processing tasks, in order
to balance the workload on the server and enable monitoring
of errors in the process. The global software design and data
flow are shown in Figure 1. The software components for data
management, processing and annotation are all open-source,
both as separate components and as an adaptable containerized
framework1 using Docker (11).

Data Management
The scan is sent from the PACS (Vue PACS, Carestream Health,
v12.2.2.1025) to a dedicated workstation where the scan protocol
is automatically checked and the required MR sequences (see
section Segmentation) are automatically selected. The images are
then stored on a local XNAT database (v1.7) (9), which forms the
common database for all further processing steps. The images are
stored for a maximum of 6 months to allow for monitoring of the
algorithm performance over time, while avoiding unnecessary
risk to patient privacy.

Segmentation
The input for the segmentation consists of four MR sequences:
pre- and post-contrast T1-weighted, T2-weighted and T2-
weighted FLAIR imaging. The pipeline consists of the following
steps: first, the images are converted from DICOM to Nifty
images using dcm2niix (v1.0.20171215) (12) and co-registered
to the postcontrast T1-weighted scan using Elastix (v4.8) (13).
Then, they are skull-stripped using HD-BET (git commit
98339a2) (14) and MR bias fields are corrected using N4ITK
(using SimpleITK v2.0.2 for Python) (15). The resulting
images are used as input for HD-GLIO (v1.5) (14, 16),
producing the final delineation of both the enhancing tumor
and non-enhancing hyperintensities on T2-weighted FLAIR.
Although bias correction is not included in the recommended
preprocessing for HD-GLIO, initial tests showed that this
improves the performance of the segmentations for scans from
our clinic. This pipeline was found, in initial experiments, to
perform well on representative images in our center. The Fastr
workflow engine (v3.2) (10) was used to integrate these different
tools in a robust pipeline.

Quality Assessment
Although the underlying segmentation algorithm, HD-GLIO,
was evaluated in a large number of scans and found to be reliable
(8), an initial evaluation in our center found that our pipeline

1https://gitlab.com/radiology/infrastructure/medical-imaging-demo.
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FIGURE 1 | Illustration of the different components of EASE. Images are sent from the PACS and added to the XNAT (9) database. The data and state manager

(Study Governor) triggers the processing using Fastr (10). After successful processing, the results can be checked in the VIEWR. A report, including the delineations, is

sent back to the PACS.

does not provide perfect segmentations in all scans of low-grade
glioma (see section Validation and Version Control). The manual
quality assessment of segmentations is therefore essential for the
use of EASE in clinical practice. To enable this assessment within
a clinical workflow, a dedicated interface was developed for the
radiologist to easily assess the segmentation.

Themain purpose of the quality assessment is to prevent failed
segmentations from being used for a volume-based diagnosis.
Additionally, the same quality assessment can be used for the
initial validation of the algorithm, prospective evaluation, and
continuous monitoring of the segmentation quality. Therefore,
besides a binary check on the usability of the segmentation, a
more refined quality assessment scoring system was included.
Important factors in the design were usability and prevention of
human errors.

The interface shows the segmentation as an overlay
over all four co-registered scans, and allows for basic
interaction through scrolling, manipulation of the contrast,
and selecting sequences and imaging planes. The radiologist
is asked to evaluate the segmentation both in a binary way
(ACCEPTABLE/UNACCEPTABLE) and on an ordinal scale
(rating of 1–5, where 5 is the best score). As an additional
sanity check, specifically to prevent unnoticed false positives,
the interface also lists the number of connected components in
the segmentation together with their volumes. Segmentations
deemed UNACCEPTABLE cannot be used for diagnosis. A
screenshot of the interface is shown in Figure 2.

Reporting
Results of the EASE assessment are sent back to the PACS in
the form of a report (see Figure 3) exported as DICOM file.
This report contains the quality assessment, current software
version and details of the scan session. Volume measurements
are included only if the segmentation is deemed acceptable, to
make sure rejected segmentations are not used for diagnosis.
In addition to the report, the segmentations are shown as
delineations on the T2-weighted FLAIR and post-contrast T1-
weighted scan. It would have been possible to store results as a
DICOM Structured Report and DICOM SEG respectively, but

conventional DICOM images were preferred as not all viewers
used in the clinic supported these formats.

METHODS

This section describes the protocols for usage of EASE
in diagnosis (section Diagnosis), the measures for software
validation and version control (section Validation and Version
Control), and themethod for initial evaluation in clinical practice
(section Evaluation in Clinical Practice).

Diagnosis
The purpose of volume measurements produced by EASE
is to assess therapy response or progression by estimating
tumor growth. The standard clinical procedure for estimating
growth is to compare the current measurement to two previous
measurements and measure the difference in size, with a manual
quantitative measurement of two perpendicular diameters if
possible, as described in the RANO guidelines (6). The EASE
software provides an automated 3D alternative to the existing
measurement. However, as the EASE software has not been
tested extensively in this setting, we decided that the existing 2D
method should still be performed before using EASE. The volume
measurements provided by EASE can lead to further insight and
even a different diagnosis, but if there is a discrepancy between
the two assessment methods leading to a different conclusion, the
diagnosis should be made in consensus with a second radiologist.

The following protocol is in place for the interpretation
of automatic volume measurements in clinical practice. The
complete workflow is illustrated in Figure 4.

1. Two prior reference scans are selected for the assessment (in
addition to the current scan).

2. The radiologist assesses the scan using the routine 2D
RANOmeasurement.

3. EASE is applied to all three scans and the segmentations are
checked for quality and acceptance. If any scan was already
processed and checked previously, this does not have to
be repeated.
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FIGURE 2 | Screenshot of the annotation interface. Both image panels can be controlled to show different scan sequences, imaging planes, to change the contrast,

to zoom in or out, or to set the overlay transparency. Besides the required annotation of quality, the panel on the right shows the volume of each connected

component in the segmentation, and allows for free text comments that are included in the report.

4. If any of the segmentations are rejected, a volumetric
assessment is not possible.

5. If all segmentations are accepted, the volumes can
be compared.

6. If the volume measurements lead to a change in interpretation
compared to the initial assessment after step 2, a second
radiologist must be consulted. This second rater first forms an
independent opinion of the diagnosis. If this is in line with
the first radiologist’s opinion, this finalizes the conclusion. If
not, both radiologists discuss together how their findings are
best described in the report, clearly indicating the uncertainty
regarding the findings.

The radiological report clearly describes how each assessment
is done (2D RANO, 3D EASE) and how the conclusion is
reached. If there was a discrepancy between the two methods,
leading to a consensus diagnosis, this should be reflected in
the report.

Validation and Version Control
Before deploying the EASE workflow/pipeline, and after any
subsequent update, the segmentation quality should be tested in
a reference dataset that is representative of the target domain.
For this purpose, 20 scans were selected of patients with
non-enhancing LGG. All sessions were surveillance scans of
patients who had undergone surgical resection, but no further
treatment, of LGG. For these scans, the same quality assessment
as described in section Quality Assessment was performed by an
experienced neuroradiologist.

It is essential that updates to the software do not cause a
bias in volume that might skew the diagnosis. Therefore, a
protocol for software updates was established that allows updates
of the processing pipeline while ensuring the continued quality
and consistency of the volume measurements. The protocol is
as follows:

1. In case of an update, the reference dataset of 20 segmentations
is processed again with EASE.

2. The segmentation results are compared to earlier versions of
the software. If there is no change in the segmentation, the
update can be deployed.

3. If there is a change in results, the manual validation is repeated
with the new results.

4. If the qualitative scores are equal or improved with respect to
the previous version, the update can be deployed.

5. If the update causes substantial differences in volume (defined
as a difference >25%) in any of the accepted segmentations
in the reference dataset, the new version is considered
incompatible with previous versions and volume results
cannot be compared between versions. A warning is included
in subsequent EASE reports, so that radiologists know when
they have to re-assess previously segmented reference scans
with the updated version of EASE.

Evaluation in Clinical Practice
To evaluate the impact of automated segmentation and volume
quantification, an observational study was performed for 3
months from first introduction of the software in the clinic. The
study protocol was reviewed and approved by the internal review
board (MEC-2021-0530). Users were asked to complete a survey
after each patient in whom EASE was applied, to measure the
success rate of EASE in practice and the rate at which volume
quantification leads to a change in diagnosis.

To assess the treatment response or tumor progression in
non-enhancing LGG three consecutive volume measurements
are required, as the standard clinical procedure is to
compare the current scan to two former scans. Therefore,
patients were excluded if EASE was applied to the first scan
after surgery. Furthermore, patients were excluded if any
contrast enhancement was found, which would automatically
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FIGURE 3 | Example of the EASE report.
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FIGURE 4 | Graphical representation of the protocol for the use of EASE in clinical practice. (A) Radiologist applies conventional method for visual diagnosis. (B)

Segmentations are produced by EASE and assessed separately. (C) Radiologist interprets volume measurements. (D) If volume measurements lead to change in

diagnosis, a second radiologist is consulted for a consensus conclusion.

lead to a diagnosis of tumor progression irrespective of
volume measurements.

For each of the included patients, the radiologist was first
asked whether EASE had led to a successful diagnosis. Although
the success rate of a single segmentation can be extracted from the
quality assessmentsmade in the user interface, the success of a full
diagnosis requires three accepted segmentations from the same
patient. If the diagnosis was unsuccessful, the user was asked to
submit the reason for failure.

When the volumetric diagnosis was successful, the radiologist

was asked to categorize both the visual (2D) diagnosis and

the volume-based diagnosis (through EASE) as progression
(PD), stable disease (SD) or treatment response. These results,
combined with the quality assessments made in EASE for the

individual scans, were used to measure the success rate of EASE
and the impact on the clinical diagnosis. The full user survey is
shown in Figure 5 in the form of a flowchart.

Additionally, for the purpose of a quantitative comparison,
measurements were made according to the 2D RANO-LGG
guidelines (6) if at all possible, measuring two perpendicular
diameters of the lesion. As these lesions are often irregular in
shape, the diameters were measured in the portion of the lesion
that could be measured most reliably.

RESULTS

Of the 20 scans in the reference set, which were processed and
evaluated before deployment of EASE, 13 (65%) were considered
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FIGURE 5 | Flowchart of the survey on the usage of EASE in clinical practice.

acceptable for clinical volume measurement. The quality scores
are summarized in Table 2.

EASE was released for local use in Erasmus MC on 25 May
2021, and the evaluation in clinical practice was performed from
1 June 2021 until 19 August 2021.

During the evaluation period, 55 patients were included in
the clinical evaluation, meaning that their visual diagnosis was
performed and a volume-based diagnosis was attempted. The
patient characteristics are summarized in Table 3. A successful

diagnosis requires three consecutive scans per patient, and in
total 162 scans were segmented by EASE and checked by a
radiologist. In one of the patients, the two reference scans were
not submitted to EASE after the first segmentation was already
rejected and in another scan the segmentation failed due to a
software error.

Of the 162 segmentations generated by EASE, 124 (77%) were
accepted by the radiologist. The distribution of quality scores can
be found in Table 4. A successful volume-based diagnosis was
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TABLE 2 | Results of reference dataset of 20 MR scans at initial release of EASE.

Acceptance

ACCEPTABLE 13 (65%)

UNACCEPTABLE 7 (35%)

Quality

Perfect (5) 0 (0%)

Good (4) 10 (50%)

Fair (3) 6 (30%)

Poor (2) 2 (10%)

Terrible (1) 2 (10%)

Scans were annotated for acceptability and quality by an experienced neuroradiologist.

TABLE 3 | Characteristics of 55 patients included in the evaluation of EASE in

clinical practice.

Patient characteristics: (total) 55

Age (years)

Median (minimum–maximum) 54 (26–76)

Sex

Female 24

Male 31

Tumor type

Oligodendroglioma 19

Astrocytoma 25

Oligo-astrocytoma 2

Presumed low-grade glioma (no tissue diagnosis) 9

Time after surgery (months)

Median (minimum–maximum) 80 (5–307)

Time after last treatment (months)

Median (minimum–maximum) 67 (5–307)

Treatment

Radiotherapy 33

Chemotherapy 33

Surgical resection 41

Time between scans from current scan (months)

vs. first reference scan, median (minimum–maximum) 14 (7–32)

vs. second reference scan, median (minimum–maximum) 7 (3–20)

Tumor volume found in successful volume-based diagnosis (mL)

Median (minimum–maximum) 13.2 (1.3–77.1)

Oligodendroglioma, median (minimum–maximum) 18.3 (2.1–77.1)

Astrocytoma, median (minimum–maximum) 16.1 (2.1–60.0)

Oligo-astrocytoma 27.8 (9.5–46.1)

Presumed low-grade glioma, median (minimum–maximum) 2.0 (1.3–14.9)

reached in 36 out of 55 patients. Results of the questionnaire
are summarized in Table 5. In all patients where volume-based
diagnosis was successful, the volume-based diagnosis made by
the radiologist was the same as the conventional visual diagnosis,
even though in some cases there was a discrepancy between 2D
and 3D measurements as shown in Figure 7. Figure 6 shows an
overview of the volume differences detected by EASE, separated
by diagnosis (stable disease vs. progression). Figure 7 shows a
comparison to the 2D RANO measurements for those patients

TABLE 4 | Results of annotations entered in EASE in clinical practice.

Acceptance

ACCEPTABLE 124 (77%)

UNACCEPTABLE 38 (23%)

Quality

Perfect (5) 15 (9%)

Good (4) 87 (54%)

Fair (3) 33 (20%)

Poor (2) 17 (10%)

Terrible (1) 10 (6%)

During the first 3 months of usage, 162 scans were annotated for acceptability, and quality

by five different radiologists.

TABLE 5 | Results of evaluation of EASE in clinical practice.

Total number of patients assessed 55

Volume-based diagnosis same as visual diagnosis 36

- Stable disease 32

- Progression 4

Volume-based diagnosis different from visual diagnosis 0

No usable results 19

- Segmentation unacceptable 17

- Inconsistent segmentations 1

- Software error 1

Radiologists were asked to fill in a questionnaire after assessing a patient with EASE, which

requires the successful segmentation of three consecutive scans.

in whom both measurements were possible. Three patients are
not included in this figure because the lesion was too small to
measure according to RANO guidelines. In four patients, EASE
measurements indicated a volume increase of more than 40%
while the final diagnosis was SD. These differences in volume
could be explained by inconsistencies between the segmentations,
possibly caused by differences in intensities on T2-FLAIR, and
therefore the radiologist maintained the original visual diagnosis
of SD. There were no other reported reasons for considering
volumetric measurements longitudinally unreliable.

Of the failed cases, 19 could be attributed to the rejection
of one of the segmentations and two failed diagnoses were
attributed to a different reason. Specifically, in one case a
segmentation was missing due to a software error, and in
another case all segmentations were accepted by the radiologist
but the final volume results were considered unusable due
to inconsistencies between the segmentations across the three
timepoints. Figure 8 shows examples of segmentations made
by EASE: two consecutive delineations that were considered
inconsistent and two consecutive delineations from a successful
volume-based diagnosis.

DISCUSSION

A clinical segmentation pipeline ‘EASE’ was implemented to
perform automated 3D volume measurements in LGG. As the
effect of such a measurement on clinical decision making is still
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FIGURE 6 | Overview of volume changes in successful volume-based diagnosis. Changes per patient with respect to the previous scan (left) and two scans earlier

(right). Values are given in percentage change (top) and change in volume (bottom), separated by diagnoses categorized as stable disease (SD) and progressive

disease (PD).

unknown, and perfect performance of the algorithm cannot be
expected, several steps were taken to ensure patient safety and
monitor results.

The main purpose of this work is to establish the protocols
and tools to allow the first introduction of a new, potentially
valuable diagnostic tool into clinical practice. From the initial
reference dataset, with 7 out of 20 segmentations rejected,
it is clear that the quality assessment remains an essential
step in the usage of EASE. First results from clinical practice

indicate a similar success rate of 74% for individual scans, and
approximately half of the patients could be successfully diagnosed
with three consecutive volume measurements. However, since
the sample size is limited, with almost exclusively diagnoses
of stable disease, so further validation of the performance is
required to draw firm conclusions on the expected success rate.
It must be noted that the segmentation of non-enhancing LGG
is particularly difficult due to their diffuse border and varying
signal intensity on particularly T2-FLAIR imaging. Furthermore,
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FIGURE 7 | Comparison of measurements using EASE (volume) and 2D RANO (product of two diameters), in percentage change with respect to the first (t−2) scan,

for patients where both measurements were successful (33 patients). Dotted lines indicate the recommended thresholds for diagnosis of PD.

the underlying deep learning solution, HD-GLIO, was evaluated
mostly on high-grade glioma. The current application is therefore
aimed at a different, and possibly more challenging patient
group and while our results show that a clinical application is
feasible, but a more reliable segmentation is needed to facilitate
efficient diagnosis.

The results confirm that automatic segmentation of low-grade
glioma during follow-up is not a solved problem, and therefore
highlight the importance of the quality assurance protocols and
manual checks that are presented in this work, and which are
ideally part of any introduction of new assessment tools into
clinical practice. EASE facilitates a quantitative measurement of
lesions that are often impossible to measure accurately even in
2D, due to their irregular shape, and therefore serves a long-
standing wish from the neuro-oncological community to move
to a potentially more accurate 3D measurement. In this light,
a successful diagnosis in over half of the patients is already a
valuable step forward.

The initial evaluation in clinical practice provides valuable
feedback on the use of automatic segmentation in low-grade
glioma. Notably, it shows that an automatic segmentation

method is no guarantee for consistent results. Even though
the inter-rater variation is removed through automation, the
diffuse border of low-grade glioma can still cause ambiguity in
the segmentation. Ideally, an automatic segmentation method
would be consistent in its choice of where to set the border,
but results from EASE show that slight variations in image
intensities between consecutive scans can lead to longitudinal
inconsistencies. This means that a critical assessment by the
radiologist is still needed even if all segmentations are checked
and accepted on an individual basis. In EASE, this is ensured
by a workflow that can be easily applied in the clinical routine
and the protocol for clinical decision-making described in section
Diagnosis. Future technical improvements in the automatic
segmentation of LGG should focus not only on improving the
quality of individual segmentations, but also on longitudinal
stability. For this, assessing the reproducibility of the entire
process from scan to measurement would be of value, although
this would require repeated measurements within a close enough
timeframe to assume no change in tumor volume. Such a set-
up is not consistent with clinical practice and would require a
dedicated study with funding for additional scanning procedures
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FIGURE 8 | Example of segmentations as they are stored in PACS as an overlay on the T2-FLAIR scan from two consecutive timepoints. (A) Two consecutive scans

of patient where EASE segmentations were considered inconsistent by the radiologist. (B) Two consecutive scans where a volume-based diagnosis of stable disease

could be made.
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and full consideration of whether the burden this incurs on
patients is justified reproducibility of the entire process from scan
to measurement.

This work describes a first and careful implementation of
automatic segmentation of LGG in clinical practice. Although
the results leave room for improvement for the segmentation
method, it is already being applied successfully in approximately
half of the patients. In all patients diagnosed thus far, the
volumemeasurements confirm the conventional visual diagnosis,
as would be expected, but the volume quantification increases
confidence in the diagnosis. Essentially, results show that
radiologists are cautious in their use of the measurements. The
fact that the segmentations are verified and stored for future
reference not only decreases the risk of a false diagnosis, but also
increases the confidence of the radiologist when using such deep
learning solutions in their clinical practice.

Only four patients were included with a diagnosis of
progressive disease (PD), which can be attributed to the fact
that the most common sign of PD is the presence of contrast
enhancement. This is often accompanied by concurrent volume
increase, but these cases were excluded from the study in order
to address the diagnostic uncertainty regarding non-enhancing
lesions. When comparing the volume change between patients
with SD and PD, there is no clear threshold to separate the
two categories. Although the RANO guidelines recommend a
threshold of 25% change for 2D measurements, which would
correspond to a 40% change in volume, the final interpretation
is left to the discretion of the radiologist and may depend on
other factors, such as baseline volume, the presence or absence of
treatment-related whitematter abnormalities and the consistency
of segmentations longitudinally.

When looking at the 2D RANOmeasurements there is a clear
distinction between SD and PD, even though thesemeasurements
do not capture the full extent of the irregular shape and diffuse
infiltration of these lesions. From these results it seems that the
existing visual diagnosis is still being used as the primary tool
to determine tumor growth, but are too few patients showing
progression in either method to draw a firm conclusion. Also, it
must be noted that these results were gathered in the first months
after EASE was released for clinical use.

EASE was put into service prior to the date of application
of EU regulation 2017/745 on medical devices (MDR). We
are aware that in case of substantial changes in the design or
intended purpose of EASE, the requirements of this regulation
are applicable. Our approach to ensure quality of results and
prevent incorrect interpretation is already in line with the general
aim of the MDR.

We think this implementation provides a potential benefit
to both the clinicians and researchers, as radiologist receive a
valuable tool for the quantification of glioma volume, even if
not fully perfected, while researchers receive valuable feedback
from clinical practice. In its current form, EASE does not
allow for correction of failed segmentations through manual
intervention of the radiologist, as this is not feasible in clinical
practice. However, the feedback from clinical practice could
enable further improvement in the segmentation, whether that
is in the preprocessing or by improving the HD-GLIO model
in a transfer learning approach, while the clearly defined
protocol for software updates ensures patient safety during such
future improvements.
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Accurate and consistent segmentation plays an important role in the diagnosis, treatment

planning, and monitoring of both High Grade Glioma (HGG), including Glioblastoma

Multiforme (GBM), and Low Grade Glioma (LGG). Accuracy of segmentation can be

affected by the imaging presentation of glioma, which greatly varies between the two

tumor grade groups. In recent years, researchers have used Machine Learning (ML) to

segment tumor rapidly and consistently, as compared tomanual segmentation. However,

existing ML validation relies heavily on computing summary statistics and rarely tests

the generalizability of an algorithm on clinically heterogeneous data. In this work, our

goal is to investigate how to holistically evaluate the performance of ML algorithms on

a brain tumor segmentation task. We address the need for rigorous evaluation of ML

algorithms and present four axes of model evaluation—diagnostic performance, model

confidence, robustness, and data quality. We perform a comprehensive evaluation of a

glioma segmentation ML algorithm by stratifying data by specific tumor grade groups

(GBM and LGG) and evaluate these algorithms on each of the four axes. The main

takeaways of our work are—(1) ML algorithms need to be evaluated on out-of-distribution

data to assess generalizability, reflective of tumor heterogeneity. (2) Segmentation metrics

alone are limited to evaluate the errors made by ML algorithms and their describe their

consequences. (3) Adoption of tools in other domains such as robustness (adversarial

attacks) and model uncertainty (prediction intervals) lead to a more comprehensive

performance evaluation. Such a holistic evaluation framework could shed light on an

algorithm’s clinical utility and help it evolve into a more clinically valuable tool.

Keywords: medical AI, evaluation, brain imaging, segmentation, GBM, LGG
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1. INTRODUCTION

Accurate and consistent segmentation of gliomas (Chen et al.,
2017), is important for diagnosis, treatment planning, and
post treatment evaluation. Glioblastoma Multiforme (GBM), the
most aggressive of high grade gliomas, has the worst prognosis
with a 5-year survival rate of <5% and a median survival of
approximately a year even with treatment (Tamimi and Juweid,
2017; Witthayanuwat et al., 2018). Low grade gliomas (LGG),
though less aggressive than GBM, reportedly undergo anaplastic
progression into higher grade tumors around 70% of the time
within 5–10 years of diagnosis. The median survival from initial
diagnosis is∼7 years (Claus et al., 2015).

Current standard of care for High Grade Glioma (HGG),
for example GBM, is surgical resection of the tumor followed
by radiotherapy combined with the chemotherapeutic agent
temozolomide (Tan et al., 2020). Segmentation for the surgical
resection for gliomas should be effective for total gross
resection or reduction in tumor bulk, without affecting the
surrounding normal functional brain tissue. Radiation therapy
requires accurate delineation of tumor margins to ensure
effective dosage to tumor region. Due to the relative low
aggressiveness of LGG, a more conservative management (“wait-
and-watch”) approach (Whittle, 2004) is sometimes adopted.
Segmentation is important in this scenario also to monitor
temporal morphological and volumetric alterations of the tumors
during observation, prior to elective tumor resection (Larsen
et al., 2017).

However, the imaging presentation of gliomas varies between
LGG and HGG, which could affect the accuracy of their
segmentation. Most HGGs, such as GBMs, have a heterogeneous
appearance on T1-weighted pre-contrast imaging and typically
show a heterogeneous thick-walled rim-enhancing appearance
on the T1 post-contrast (T1-Gd) sequence, with a surrounding
low attenuation of perifocal edema. The overall appearance
of HGGs on T2-weighted fluid-attenuated inversion recovery
(FLAIR) sequence is heterogeneously hyperintense, with areas
corresponding to enhancing and non-enhancing components as
seen on T1-weighted post contrast sequence. The advancing non
contrast-enhancing FLAIR hyperintense portions of the tumor
are of concern to clinicians because it is believed to contain
active tumor remote from the apparent enhanced portions of
the aggressive core. On the other hand, low grade tumors
appear hyperintense on a FLAIR sequence with or without clear
margins. On the pre-contrast T1-weighted sequences, the lesions
tend to be hypointense and typically do not enhance following
administration of gadolinium based agents (Forst et al., 2014;
Bulakbaşı and Paksoy, 2019).

Manually defining the margins of the tumor and surrounding

non-enhancing perifocal region remains challenging due to

tumor heterogeneity, ill-defined margins, and the varying

degrees of perifocal edema. This makes segmentation an

arduous task with questionable consistency. In recent years,
Machine Learning (ML) techniques have shown potential
to assist in tumor segmentation for correct diagnosis and
efficient treatment planning (Wadhwa et al., 2019; Bajaj and

Chouhan, 2020; Kocher et al., 2020; Nazar et al., 2020). While
both HGG, including GBM, and LGG, benefit from accurate
segmentation, existing ML validation rarely tests if an algorithm
generalizes well to out-of-distribution data that reflects this
tumor heterogeneity. Rebsamen et al. (2019) have shown that
implicitly incorporating high-vs.-low tumor grade information in
model training could improve model performance. While recent
work has evaluated for tumor heterogeneity across geographic
populations (McKinney et al., 2020), hospital systems (Zech et al.,
2018), and federated learning settings (Sheller et al., 2020), this
has yet to be done considering differences between HGG, for
example GBM and LGG imaging presentations.

In this work, we address the need for rigorous evaluation
of ML algorithms for brain tumor segmentation. We propose
a holistic evaluation framework (Figure 1) that takes into
account tumor heterogeneity, robustness, and confidence of
the ML algorithm, and batch effects that may arise from the
data. We demonstrate this framework with a cross-sectional
study design similar to Zech et al. (2018) and analyze how well
an ML algorithm trained on one glioma type (either HGG,
exemplified by GBM or LGG) generalizes to another, out-of-
distribution glioma type. We conduct four experiments and
holistically evaluate an ML algorithm for the problem of tumor
segmentation:
Diagnostic Performance: We compute standard segmentation
metrics to objectively compare the ML algorithm’s segmentation
performance against radiologist-annotated ground truth. Results
indicate that metrics such as Dice and AUROC do not sufficiently
capture differences in generalizability, although the classification
matrix reveals clear differences.
Model Confidence: We measure model confidence in
segmentation performance by computing prediction intervals
for the brain as well as tumor region. Results indicate that ML
algorithms trained on LGG data is more confident than the rest
on all homogeneous as well as mixed data.
Robustness: We measure the ML algorithm’s ability to maintain
performance despite adversarial perturbations to test their
reliability comparably. Results indicate that the ML algorithm
trained only on GBM data was least robust when segmenting
tumor corrupted with high levels of noise. Testing performance
of the model across out of distribution data, was performed
in all the experiments, but can be considered an extension of
robustness testing.
Data Quality (Batch Effects): We measure the degree to which
MRI scan quality influences segmentation metrics. Results found
that scan quality features are not significantly correlated with
performance, but that there were some batch effect differences,
primarily between LGG and GBM sites.

Our results demonstrate the limitations of segmentation
metrics, and caution that metrics alone do not capture all aspects
of an ML algorithm’s performance. We discuss how our findings
relate to recent literature in segmentation metrics. We further
discuss how such a holistic evaluation framework could shed light
on the algorithm’s clinical utility in post-deployment scenarios
and help it evolve into a more clinically valuable tool (Recht et al.,
2020).
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FIGURE 1 | Simplified flowchart of different axes of holistic evaluation—diagnostic performance, robustness, model confidence, and data quality. Axes are ordered by

dependency and relation with each other. We recommend models to be evaluated with atleast one experiment on each of these axes. We evaluate two aspects of

robustness, namely, closeness to decision boundary and generalizability on unseen glioma type. Decision points in the framework lead to alternate paths for

researchers to follow.
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TABLE 1 | Split of patients in each of the three datasets.

Dataset GBM patients LGG patients ALL patients

Train 102 (14,688) 65 (9,360) 167 (24,048)

Validation 16 (2,304) 21 (3,024) 37 (5,328)

Test 17 (2,448) 22 (3,168) 39 (5,616)

Values in brackets (.) indicate the total number of images available in the dataset for 2D

segmentation. Note that henceforth, we refer to the test dataset as DGBM (GBM patients

only), DLGG (LGG patients only), and DALL (All patients—GBM and LGG patients).

2. MATERIALS AND METHODS

The aim of this work is to propose a framework to evaluate model
performance across four axes—diagnostic performance, model
confidence, robustness, and data quality. To demonstrate this
framework, we first train ML algorithms by considering tumor
heterogeneity. We use publicly accessible code for algorithm
development and perform post-hoc calibration.

2.1. Dataset
We used publicly available Magnetic Resonance Imaging (MRI)
from The Cancer Genome Atlas (TCGA) (Clark et al., 2013).
Glioblastoma Multiforme (GBM) and Low Grade Glioma (LGG)
collection (Bakas et al., 2017a,b). This included the skull-stripped
and co-registered MICCAI-BraTS 2018 Test Dataset (Menze
et al., 2015; Bakas et al., 2017c). The data consisted of pre-
operative multimodal MR imaging sequences (i.e., T1, T1-Gd,
T2, T2-FLAIR) along with their whole-tumor segmentation
labels composed of edema, enhancing tumor, and non-enhancing
tumor. We combined these labels into a single whole tumor
for this study. Number of patients in GBM BraTS Test Dataset
and LGG BraTS Test Dataset were split approximately in half
and allotted to validation and test datasets. The GBM and LGG
data were merged across the three categories to form an ALL
dataset. Each patient was associated with 144 pre-operative MRI
scans, which were treated as independent data points for 2D
segmentation. These MRI scans were cropped to 144 × 144
pixels and further pre-processed the data by pixel-intensity
normalization. Table 1 describes the total number of patients
and total number of MRI scans available in each dataset. The
training datasets were used for model development (section 2.2),
validation datasets were used to determine hyperparameters and
calibrate the models (section 2.3), and test datasets (DGBM ,DLGG,
DALL) were used to perform subsequent experiments (section 3).

2.2. Network Architecture and Training
We used the state-of-the-art U-Net architecture (Ronneberger
et al., 2015) to develop three tumor segmentation models using
the GBM, LGG, and ALL train datasets. The U-Net architecture
consists of an encoder, decoder, and skip connections. Each
module of the encoder consists of 2D Convolution layers,
followed by Batch Normalization and MaxPooling layers. Four
such modules make up the encoder. The decoder consists of four
modules of Conv2DTranspose layers followed by Concatenate
layers. The network performs slice-wise (2D) segmentation with
multi-modal MRI scans provided as the input. Models were

TABLE 2 | We first compute calibration metrics on a patient-level, then

aggregated by mean.

Metrics
MGBM MLGG MALL

Before After Before After Before After

NLL 0.038212 0.013506 0.070146 0.022842 0.056573 0.018483

BS 0.003519 0.002970 0.006020 0.005263 0.004533 0.003862

ECE% 0.3413 0.1439 0.5877 0.3141 0.4454 0.1876

MCE% 36.4552 14.0762 31.9731 14.3702 37.0614 13.8812

We consider only pixels in the skull-stripped brain to compute these metrics. ECE and

MCE are presented in %. Metrics should ideally reduce upon calibration. Columns under

each model indicate metric values before and after calibration. Bold values indicate best

% decrease or increase as compared to the “before” column. All models improved after

calibration.

trained with Dice Loss function for 100 epochs on 8 GPUs.
Adam optimizer (Kingma, 2015) was used with a learning rate
of 1× 10−4 and a batch size of 128. Data augmentation was used
while training each of the models to improve generalization. This
consisted of random rotations (0–25◦ degrees range), random
zooming (value = 0.2, zooms image by 80–120% range), width
shift (value = 0.2, horizontal translation of images by 0.2 percent),
height shift (value = 0.2, vertical translation of images by 0.2
percent), shear (value = 0.2, clips the image in counter-clockwise
direction) and random horizontal flips. We referred to publicly
available code for model development, model training, and data
augmentation (Dong et al., 2017; Ojika et al., 2020).

2.3. Model Calibration
The goal of model calibration is to align the algorithm’s
predicted probabilities align with the observed (ground truth)
outcomes (Guo et al., 2017). Calibration process ensure that
algorithms do not overstate or understate their confidence
in prediction of tumor (Jungo and Reyes, 2019; Mehrtash
et al., 2020). Models that have been already trained can
be calibrated with post-hoc methods (Rousseau et al.,
2021). Guo et al. (2017) recommend performing post-hoc
calibration with the same validation dataset (Table 1) used for
model development. We use Platt Scaling technique (Platt,
1999) for post-hoc calibration due to its simplicity and
ease of implementation. To ensure models are properly
calibrated, we compute and report common calibration metrics.
Negative Log Likelihood (NLL) measures a probabilistic
model’s quality and is also known as cross-entropy loss. Brier
Score (BS) measures the accuracy of probabilistic predictors.
Percentage Expected Calibration Error (ECE%) partitions the
model’s predictions into equally spaced bins and takes a
weighted average of the difference between accuracy and
model confidence across bins. Percentage maximum calibration
error (MCE%) estimates the worst-case deviation between
confidence and accuracy. For metric definitions and more
information, we refer readers to Mehrtash et al. (2020) and
Guo et al. (2017). Table 2 indicates that all models are
properly calibrated.
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3. EXPERIMENTS

Here, we perform an experiment on each of the four
axes of our evaluation framework. We compute metrics to
summarize diagnostic performance, measure model confidence
by computing prediction intervals, simulate adversarial attacks
to assess robustness and use MRQy package to analyze batch
effects in data. For each experiment, we point to related work, and
provide details on the experiment procedure. Then, in section 4,
we provide the outcome of these experiments. We evaluate each
of the calibrated ML algorithms (MGBM , MLGG, and MALL) on
each of the three test datasets (DGBM , DLGG, and DALL). Thus, we
evaluate 3 (models)× 3 (datasets) = 9 conditions.

3.1. Metrics for Segmentation Performance
There exist a plethora of metrics to evaluate the performance
of a medical image segmentation algorithm (Udupa et al.,
2006; Taha and Hanbury, 2015). Each metric focuses on a
specific aspect of the algorithm’s performance, and is thus
limited in capability to describe the algorithm’s performance by
itself. Several metrics are necessary to describe comprehensive
characteristics of segmentation performance (Renard et al.,
2020).

We perform this experiment as a baseline, reflective of
the current standard practice for evaluation. We follow the
guidelines described by Taha and Hanbury (2015) and select
eight metrics to evaluate segmentation performance. Sensitivity
(Sens) measures the proportion of tumor pixels that are correctly
identified as tumor (foreground). Specificity (Spec) measures
the proportion of benign pixels that are correctly identified as
benign (background). Positive Predictive Value (PPV) measures
the probability that pixels classified as benign truly belong to parts
of the patients’ brain without a tumor. Negative Predictive Value
(NPV) measures the probability that pixels classified as tumor
truly belong to parts of the patients’ brain with a tumor. While
accuracy can be skewed due to the paucity of tumor pixels in
the tumor class, Balanced Accuracy (BAcc) takes into account
class imbalance. Dice Coefficient (Dice) and Jaccard Coefficient
(Jac.C) both measure the overlap between tumor annotated by
the different sources (ML algorithm and the radiologists’ manual
annotations). Area under Receiver Operating Characteristics
curve (AUROC) describes the probability that a randomly
selected tumor pixel will have a higher predicted probability
of being a tumor than a randomly selected benign pixel. We
eliminate any extra-cranial regions and only consider the skull-
stripped brain for computing the metrics. We compute metrics
on a per-patient level, as it offers more granularity than at
a population-level.

3.2. Prediction Intervals for Model
Confidence
Prediction Intervals (PIs) are often reported and considered for
medical decision-making (Kümmel et al., 2018). In radiation
oncology, Chan et al. (2008) used prediction intervals to capture
uncertainty in tumor and organ movement. While a confidence
interval measures the precision of a predicted value, PIs measure
the expected range where a future observation would fall, given

what has already been observed. The width of the PI is directly
proportional to the model uncertainty at that region (Kabir et al.,
2018). We use prediction intervals to quantify uncertainty in
tumor segmentation.

We use Conformal Quantile Regression (CQR) (Romano
et al., 2019) to compute PIs. Construction of PIs is difficult, as
PIs can be too small that they don’t capture the true magnitude
(Type 1 error) or too large that they are uninformative (Type
2 error) (Elder et al., 2021). The CQR method guarantees
construction of PI such that the target value is contained within
the PI by error probability α (valid coverage) and that the PIs
are informative.

We used the CQR method to compute PIs in a post-hoc
manner. The method uses a dataset for training the CQR models
and a separate test dataset to compute the PIs. To reduce
computational cost, we selected summary images (image with
the largest tumor) for each patient in the validation and test
datasets (Table 1). We designed a setup to generate prediction
intervals around the calibrated model values. We first obtained
logits (model output before the calibration) for the selected
summary images for patients in both datasets. The CQR models
were trained on validation dataset logits and the corresponding
calibrated model predictions as target values. The trained CQR
models were then used to compute prediction intervals for test
dataset logits. We followed the method described by Romano
et al. (2019) to compute average prediction intervals (API) per-
patient in the test set. We then generated API box plots for all
nine conditions.

3.3. Adversarial Attacks for Robustness
This experiment was designed to test the impact of data
quality and potential batch effects on the predictions of the
model. There has been a lot of work in other domains on
evaluating the adversarial robustness of ML algorithms. The
application of imperceptible noise can change the prediction of
image classification system from correctly identifying a panda
to confidently miscalling the image a gibbon (Goodfellow et al.,
2015). There are now a variety of adversarial attack techniques,
from white-box techniques that can look inside the algorithm
to those that can build attacks simply by testing inputs and
outputs. These techniques can provide a useful framework for
evaluating the robustness of a medical imaging machine learning
system. In tumor imaging in general, Zwanenburg et al. (2019)
showed how radiomics features can be evaluated for robustness
by perturbing the tumor mask. Understanding how vulnerable
ML algorithms are to noise, and how easily they change their
decisions in response, gives a sense of how these ML algorithms
might fail.

The adversarial attack used in this experiment was fast
gradient signed method (FGSM), described by Goodfellow et al.
(2015). This technique is a white-box method which takes the
calculated gradient of the neural network to find the direction
of the smallest change that will affect the label of the output. This
gradient adversarial noise is multiplied by a factor of epsilon, to
vary the strength of the attack. In these experiments the epsilon
factor was varied over a range of 0–1 (0, 0.005, 0.01, 0.05, 0.1, 0.2,
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0.4, 0.6, 0.8, 1.0), with more examples on the lower end of the
range to evaluate small perturbations.

We performed the FGSM attack on each of the test datasets
(DGBM , DLGG, and DALL), for all three ML algorithms (MGBM ,
MLGG, and MALL). The full panel of metrics was computed
for each of these experiments. The performance of the ML
algorithms was expected to decay as epsilon decreased, but the
relative robustness of each of the ML algorithms and the way that
they decayed was studied as well. The chosen epsilon values were
(0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 1). An epsilon of 0
indicates that no change was made to the image.

3.4. MRQy for Analyzing Batch Effects
Magnetic resonance imaging has many strengths in studying and
monitoring cancer status, including a variety of sequences to
investigate different aspects of tumors. However, the flexibility it
provides to radiologists can lead to inconsistencies in protocol
and scan quality. MRQy is MRI quality package that provides
a variety of features that assess the quality of a scan, and other
effects that might be considered batch effects (Sadri et al., 2020).
The complexity of machine learning algorithms makes it possible
for them to pick up on batch effects between sites rather than the
underlying biology of a problem.

These MRQy factors were used to audit the susceptibility
of the different ML algorithms to scan quality factors. For
each of the MRI sequences, MRQy features were calculated
independently on the original NIFTI files. The features used
per modality were: MEAN, RNG, VAR, CV, PSNR, SNR1,
SNR2, SNR3, SNR4, CNR, CVP, CJV, EFC, TSNEX, TSNEY,
UMAPX, UMAPY (For metric definitions, Sadri et al., 2020).
The metadata and size features were excluded as they were not
available, and the sizing was consistent across all the images.
The average true positive probability of a tumor pixel having
a tumor label was calculated, as well as for true negative, false
positive and false negative pixels. These were calculated on a
per patient level and then averaged across all the patients in
the test set. These values along with Dice score and AUROC
were then assessed for their correlation with the MRQy features
using Spearman correlation coefficient. MRQy features that
are correlated with model performance are potential quality
control metrics that might be used to flag problematic cases.
False discovery rate (FDR) correction was then performed using
Benjamini-Hochberg correction at an alpha of 0.25 (Benjamini
and Hochberg, 1995). We used this correction as it is less
stringent than a more aggressive Bonferroni correction and was
still found to eliminate the uncorrected p-values.

Additionally, independent of the metrics, batch effects were
investigated using the MRQy parameters to compare TCGA
site codes in the combined testing data set (DALL). The MRQy
features were normalized then decomposed using principal
component analysis (Tipping and Bishop, 1999). The first two
MRQy principal components and their relationship to institution
were investigated using ANOVA and paired T-tests in the
statsmodels python package (Seabold and Perktold, 2010). We
hypothesized that some site differences within the data sets might
be captured by this dimensionality reduction.

4. RESULTS

In this section, we present and analyze the results of the four
experiments in section 3. We discuss their implications in
section 6. Note that we perform these experiments for the pixels
within the skull-stripped brain.

4.1. Metrics Alone Do Not Sufficiently
Describe the Nature and Severity of
Segmentation Mistakes
True Negative (TN) panel in Figure 2 indicates all models
perform equally well in identifying benign pixels. MALL has
the highest percentage TP, indicating the best performance at
correctly identifying tumor pixels. On average, due to a higher
percentage of False Negatives than False Positives, all algorithms
(MLGG,MGBM ,MALL) under-segment tumor more often than they
over-segment. The FP value is highest for MLGG. Thus, out of
all models, MLGG classifies benign regions as tumor the most
(over-segments). The FN value is highest for MGBM , on average.
MGBM thus, under-estimates tumor pixels and classifies them as
benign (under-segments).

The training of the algorithms further explains these findings.
MLGG learns to pick up subtle patterns in the training phase, and
when evaluated on DGBM , classifies normal-appearing tissue as
part of a tumor. In contrast, MGBM is used to seeing dominant
contrast patterns, which explains why it misses a lot of tumor
pixels in LGG.

In Figure 3, all models have similarly worse performance
on some patients, indicated by red rows. This is visible across
all test datasets. This could be due to multiple confounding
variables such as different vendors, field strengths, parameters
of imaging, strength of the imaging magnet, type of machine,
and it is difficult to pinpoint the contributing factor. Metrics
show similar trends in all conditions. Models have a high
specificity, low sensitivity, and a high AUROC. There is an
overall trend of NPV being higher than PPV. These findings
reflect the effect of class imbalance in the dataset, and the
models’ ability to recognize benign areas much more easily than
tumor regions.

4.2. Example Illustrations
Here, we present example patients (Figures 4–7) with
the Ground Truth (GT) tumor and tumor segmentation
contours of MGBM ,MLGG, and MALL. We selected good
and bad segmentation examples from DGBM and DLGG

each for qualitative analysis. One of the authors, who
is a board-certified neuroradiologist of more than a
decade of experience in brain tumor diagnosis, interpreted
these images.

4.3. MLGG Has the Greatest Confidence for
Segmentation Across All Datasets
Violin plots were constructed to analyze average model
confidence across all patients. Figure 8 depicts the average
prediction intervals for the skull-stripped brain region. Models
have approximately the samemedian average prediction intervals
(API) on each test dataset. Figure 9 represents model confidence
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FIGURE 2 | Confusion Matrix to assess the performance of MGBM, MLGG, and MALL across stratified and composite datasets. The y-axis denotes percentage of total

pixels in a test dataset classified as TP, FN, FP, TN. MLGG has the tendency to over-segment (high %FP), while MGBM has the tendency to under-segment tumor(high

%FN), relative to each other. Note that metrics such as Dice coefficient routinely ignore the background (TN) in a segmentation context, so a 0.1% difference in false

positives should be understood relative to the 6–9% of the volume that is tumor.

while identifying tumor regions. Models have wider inter-
quartile range and greater variability compared to Figure 8.
This indicates models have low confidence in identifying
tumors as compared to non-tumor. MGBM and MALL have
similar distributions of API across patients, indicating both
models are similarly confident while segmenting both GBM
and LGG tumor. MLGG has the lowest median prediction
interval widths, and their distribution has the lowest variability
and highest concordance. This indicates MLGG is the most
confident model while segmenting both LGG and GBM patients.
Out of all models, MLGG is consistently confident while
making predictions.

MLGG has the highest confidence, even though it makes
mistakes (over-segments) in segmentation, suggestive of an
aggressive approach. MGBM also makes mistakes (under-
segments) but has lower confidence, which suggests a cautious
approach. LGG may be monitored for a longer period of time,
so a high rate of false positives can overburden clinicians, going
against the goal of reducing their burden. If mistakes are very
obvious, it can cause a high degree of frustration and eventual

abandonment of the algorithm (Beede et al., 2020). Previous
works have proposed monitoring cases with low confidence
(Kompa et al., 2021). However, in a case where a model makes
mistakes with high confidence, a confidence-based screening
approach might cause the reviewer to miss important areas of
model failure.

4.4. Models Trained on DGBM Deteriorated
the Most Under Adversarial Attacks
The three models (MGBM , MLGG, MALL) were each evaluated
on the three test datasets under FGSM attack across a range
of epsilons from 0 to 1. The 95% confidence intervals are also
included for each of the metrics that were evaluated on a per
patient level. MGBM was the least robust to this type of FGSM
attack, across all three test datasets for AUROC, Dice score,
and Sensitivity. This might be due to the somewhat consistent
imaging presentation of glioblastomas. It was marginally more
robust to attack on its own datatype (DGBM). All three models
failed by losing sensitivity instead of specificity, indicating that
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FIGURE 3 | Heat maps indicating patient-level performance metrics. Rows represent test datasets (DGBM, DLGG, DALL) and columns represent ML algorithms (MGBM,

MLGG, MALL). DALL is formed by concatenating the first two rows. In each individual heat map, rows represent model performance on a particular test dataset and

columns represent segmentation metrics. Patients for whom all models perform similarly worse are indicated in red.
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FIGURE 4 | Patient TCGA-06-0168 is diagnosed with GBM in the right temporal operculum. MLGG has low performance on Dice Coefficient (Dice = 0.6847) than

MGBM (Dice = 0.8103) and MALL (Dice = 0.8616). AUROC for all models is high despite unequal performance. The boundary of the edema on FLAIR sequence shows

where MLGG over-segments and MGBM under-segments tumor.
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FIGURE 5 | Patient TCGA-HT-7874 belongs to DLGG and has a tumor in the right frontal lobe. We selected this patient as it has consistently worse performance for

metrics (Sens, B.Acc, Dice, Jac.C) across all models. Segmentation plot indicates MAll and MGBM under-segment in this case, whereas MLGG over-segments. MALL

appears to be missing a central part of the tumor, as seen in the coronal and sagittal image planes. MLGG appears to extend well beyond the region of FLAIR

enhancement to over-segment the tumor. This LGG was significantly larger than most LGGs, and that may contribute to the difficulty of segmentation.
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FIGURE 6 | Patient TCGA-12-1093 belongs to DGBM and has a tumor in the left parietal lobe. We selected this patient as an example because it has consistently

good performance for metrics (Sens, B.Acc, Dice, Jac.C) across all models. This GBM has clear margins, and a sharp boundary on FLAIR enhancing regions. The

enhancing tumor core is central and distinct, and the models all perform relatively consistently in segmentation.

Frontiers in Neuroscience | www.frontiersin.org 11 October 2021 | Volume 15 | Article 74035340

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Prabhudesai et al. Holistic Brain Tumor Segmentation Evaluation

FIGURE 7 | Patient TCGA-DU-6400 belongs to DLGG and has a tumor in the left temporal parietal region. We selected this patient as an example because it has

consistently good performance for metrics (Sens, B.Acc, Dice, Jac.C) across all models. This LGG has clear margins, and the classic signature of FLAIR enhancement

and no T1-Gd enhancement.
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FIGURE 8 | The violin plot indicates models have equal median confidence while segmenting GBM and LGG patients due to greater number of non-tumor pixels in

the datasets. The x-axis represents the datasets. The y-axis represents average prediction intervals. Models are sorted by hues and grouped together by test dataset.

FIGURE 9 | Violin plots constructed to correct for effects of class imbalance and analyze model confidence while identifying tumor pixels only. Plots indicate models

confidence is less consistent in identifying tumors due to wider inter-quartile range and greater spread of prediction interval distribution. Plot indicates MLGG is the

most confident model while segmenting both LGG and GBM patients.

the models began drastically under-segmenting the tumor under
high levels of noise. Figure 10 highlights the model behavior
under different levels of noise. Under smaller amounts of noise
(Figure 11), the all model had the best performance generally,

though not significantly. MLGG and MGBM had the highest
AUROC values of the three models for DLGG and, DGBM

respectively, though the differences did not reach the significance
threshold of (p < 0.05).
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FIGURE 10 | Robustness of each model under FGSM attack, across the full range of epsilons (0–1.0) for four selected metrics. Ninety-five percent confidence

intervals are provided to each model, and each of the three data sets were evaluated. MGBM was least robust to FGSM attack at higher epsilon values with regard to

AUROC, Dice score, and sensitivity.
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FIGURE 11 | Robustness of each model under FGSM attack, zoomed in on the early range of epsilons (0–0.2) for four selected metrics. Ninety-five percent

confidence intervals are provided to each model, and each of the three data sets were evaluated. Models had more similar performance in the less aggressive levels of

attack, with all model having marginally better performance, except with MLGG and MGBM models performing better with AUROC on their own test data sets.
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FIGURE 12 | MRQy features after principal component analysis, plotted against site code, and Dice scores of three models. The DALL test dataset has the first two

principal components of the MRQy features plotted. Pairwise t-tests found that three clusters had significant differences in PCA space (06, 08, 12), (HT, DU, CS, and

FG), and (02). Notably, these numeric codes happen to correspond to GBM studies, and the letter codes happen to correspond to LGG studies.

We found that the models trained only on DGBM were
less robust to adversarial noise, particularly at high levels of
adversarial noise. These levels of noise may be extreme, but do
give some sense of the performance of the models under duress.
Other types of attacks that might be worthwhile to investigate
include: adversarial patch attacks, Carlini and Wagner attacks,
projected gradient descent, as well as GAN based attacks (Carlini
and Wagner, 2017; Brown et al., 2018; Ren et al., 2020). This
is not the only way of assessing robustness of models, as it
assumes a motivated attacker to guide attacks, as opposed to
natural sources of error, but it addresses how the margins of
the tumor are affected on a consistent scale across the models.
Natural sources of error are less coherent, comparable, and not
as well computationally modeled in MRI as the body of work on
adversarial attacks.

4.5. MRQy Features Vary Between Data
Sets and Institutions, but Are Not
Significantly Correlated With Metrics
The calibrated models’ metrics and probabilities were evaluated
for correlations with MRQy parameters, across the different
test datasets. While there were some limited parameters that

had significant correlations with model metrics, this was before
FDR correction. One Thousand two hundred and twenty-four
parameter to metric comparisons (17 MRQy parameters, 4
sequences, 6 metrics, 3 models) were performed, and none of the
parameter-metric pairs were significantly correlated after FDR
correction (p < 0.05). The MRQy features were collected before
preprocessing, and were shown to be different across different
institutions. However, the model used preprocessed data, and the
MRQy features were not significantly correlated with the models’
predictions and performance. This negative result adds more
confidence to the predictions of the machine learning pipeline.

The PCA analysis showed that there were significant
differences between three groups of site codes. The first cluster
of institutions was 12, 06, and 08, the second was HT, DU, CS
and FG, and the last was 02. Paired t-tests showed that the first
principal component created splits with significant differences (p
< 0.05). Notably, the numerical codes (02, 06, 08, 12) correspond
to GBM studies, and alpha codes corresponded to LGG studies
(HT, DU, CS, FG). However, within these clusters, the differences
didn’t reach significance. Figure 12 shows the site codes plotted
in PCA space, and then the three models with Dice coefficient.
The fact that Henry Ford Hospital (06 for GBM and DU for
LGG) had more in common with other GBM and LGG sites
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than between those two groups is notable, though hard to explain
with such a limited sample size. Site 02 was also an outlier
from both other clusters in this PCA space, and had relatively
poor performance, though with one case it’s hard to draw a
firm conclusion.

The BraTS 2018 test datasets (Menze et al., 2015) did not
have significant correlations after FDR correction between scan
quality and metrics. This could be due to the high-fidelity
curation and good consistency of the dataset. Another potential
explanation could be the limited size of the dataset. Still, these
data quality metrics show significant correlations with TCGA
sites after PCA analysis, indicating batch effect differences, at least
between the GBM and LGG datasets. Other data quality issues
that models should be tested for include bias based on race, sex,
and socioeconomic status. The rise of federated learning models
makes this more urgent, because they allow for training models
across collaborators without sharing data (Kairouz et al., 2021).
Since sensitive data is not shared between sites, tracking batch
effects and sources of bias requires more work and planning than
if all the data were shared and managed centrally.

5. DISCUSSION

In this work, we used publicly available data and compared
three U-Net-based algorithms in a stratified manner. Our main
finding is that traditional segmentation performance metrics
do not capture all aspects of an algorithm’s performance, and
can be potentially misleading. In this section, we first discuss
the limitations of segmentation metrics, and how our proposed
evaluation framework leads to a better understanding of model
performance. We discuss the four axes of evaluation—diagnostic
performance, model confidence, robustness, and analysis of batch
effects in detail. Finally, we address the practical utility of our
framework and list recommendations for model evaluation.

5.1. Limitations of Segmentation Metrics
Despite the technological advancements of Machine Learning
(ML), the adoption of Ml in clinical workflows remains
limited (Caruana et al., 2015; Strickland, 2019; Beede et al.,
2020). This divide between the development and adoption of ML
algorithms has been termed the “translation gap” (Steiner et al.,
2021). This limitation is in part due to lack of holistic evaluation
of the performance of those ML systems.

Majority of existing algorithms are statistically validated
only using segmentation metrics (van Kempen et al., 2021),
such as Dice Coefficient (Dice, 1945). In our experiments,
we followed guidelines (Taha and Hanbury, 2015) to compute
several segmentation metrics and test the differences between
segmentation of GBM and LGG patients. We hypothesized that
segmentation of LGG patients would be more difficult than
GBM patients. LGG is diffuse and has low proliferation, which
makes accurate segmentation of submicroscopic tumor tissues
and tendrils, a difficult task. In contrast, GBM has greater
signal intensity and characteristic presence of necrotic cavities,
which makes segmentation comparatively more obvious. Our
results found that metrics alone were insufficient to highlight
the severity of mistakes that models make in segmentation.

Only when segmentation contours were interpreted by a board-
certified neuroradiologist, the degree, and types of errors of these
models were evident. Similarly, in a recent systematic review
of glioma segmentation algorithms, van Kempen et al. (2021)
expected to find performance differences in segmentation of
HGGs and LGGs but found that reported metrics could not
capture such differences.

This points to a bigger concern raised by Reinke et al.
(2021) that metrics alone are insufficient to evaluate all aspects
of segmentation performance. While metrics are important for
objective performance evaluation, they have several limitations
for clinical utility (Maier-Hein et al., 2018). Difference in
consequences of an algorithm’s errors cannot be uncovered
by metrics alone, and requires a clinical expert to elucidate
them. For example, the consequences of under-segmenting in
DGBM might be more severe than under-segmenting in DLGG

due to the prognosis and management of the two diseases.
As LGGs may merit a more conservatory, “wait-and-watch”
approach, tumor that might be previously missed can be
caught with additional tests. However, segmentation in case
of GBM has more immediate consequences for resection and
radiotherapy. Under-segmentation in this case would result in
non-total resection, and perhaps if tumor tissue remains, would
increase the likelihood of recurrence. Over-segmentation on
the other hand would cause removal of non-tumor regions of
the brain, or subject them to higher levels of radiotherapy,
potentially causing functional impairments for patients. In
case of glioma, the Dice Coefficient has a limited utility for
evaluation of multifocal lesions (Giannopoulos and Kyritsis,
2010) because it cannot represent over-segmentation and under-
segmentation (Yeghiazaryan and Voiculescu, 2018), does not
support segmentation of multiple structures (Yeghiazaryan and
Voiculescu, 2018), and is not immune to imaging artifacts and
shape differences (Reinke et al., 2021). This serves as a cautionary
tale that metrics alone are insufficient for reporting model
performance, and there is clearly a need for better evaluation and
reporting standards (Nagendran et al., 2020).

Since medical data is tightly controlled to protect patient
privacy, federated learning has risen as a methodology to train
models without exposing data. However, while the cross-site
training structure has it’s advantages, it requires thoughtful
planning of model evaluation since model designers will not
have access to the underlying data from other sites. Any metrics,
quality control features, and batch effect monitoring will have to
be carefully pre-planned to judge any resultingmodels. Thorough
and holistic evaluation is especially important as site variability
in protocol and patient populations is a known confounding
factor. Our framework also helps illuminate the axes on which
a federated learning network should judge their models beyond
simple metrics like accuracy or AUROC.

5.2. Dimensions of the Evaluation
Framework
The goal of our work is to inform how researchers can holistically
evaluate their segmentation algorithms, and consider other
axes of model performance than metrics alone. A problem
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faced by model developers in this domain is the lack of large
datasets to effectively train and evaluate their algorithms. To
realistically recreate this, we worked with smaller test datasets
from TCGA-GBM and TCGA-LGG. Our work explores the
effects of working with limited data, and informs how to
interpret results meaningfully in such scenarios. Our experiments
and methodology stand independently of whether the model
evaluator has pre-built models, or is yet to train them.
Our framework considers tumor heterogeneity, limitations of
metrics and evaluates other axes such as model confidence,
robustness, and batch effects. We don’t suggest completely
abandoning metrics—they would be important as a start, to
get some level of insight. However, we caution against solely
relying on metrics, and propose a more holistic evaluation
of algorithms. In Figure 1, we map the axes of evaluation
onto the standard ML pipeline. We provide other potential
experiments that researchers can choose for model evaluation
along specific axes. For example, techniques such as model
ensembles and k-fold cross validation can be used to evaluate
model confidence.

In our experiments, we evaluate model robustness with
adversarial attacks. Recent work has shown the importance to
evaluate the models’ abilities to withstand adversarial attacks,
especially in high-stakes scenarios such as radiology (Wetstein
et al., 2020). These attacks can arise due to strong financial
interests or technical infrastructure.We designed this experiment
to test how and in what way could models fail in deployment
under such an attack. This could lead to appropriate safeguards
being put in place. Adversarial attacks also help shed light
on the decision boundary of a neural network (Woods
et al., 2019), which is otherwise something of a black box.
Other sources of noise could be added, but have their own
complications. Adding Gaussian noise to the inputs can be
difficult to calibrate and variable due to randomness. Addition
of artifacts, such as motion artifacts, is complex to model, and
tools for doing so are not publicly available. Further research
should investigate models using these failure modes, but is
outside the scope of this paper. Another axes we investigate
is analyzing the dataset for batch effects. In the context of
tumor segmentation, batch effects could occur when image
acquisition parameters or technical variations correlate with
measurement quantity (Sadri et al., 2020). This may become a
major problem when it leads to incorrect conclusions (Leek et al.,
2010), especially when ML algorithms learn to pick up on these
patterns. Analyzing for batch effects thus becomes important,
as model predictions can be correlated with confounding
factors. Our experiments found that pre-processing might
help in making MRI scans more homogeneous and reduce
these correlations.

We demonstrated our evaluation framework on ML
algorithms trained with reliable, high-fidelity. expert-annotated
BraTS Datasets. To further simplify the process of model
development, we used straightforward implementations such
as fixed dataset split (testing/validation) and 2D segmentation
to work with limited data. Model developers can certainly use
more sophisticated techniques that result in higher accuracy.

Despite these limitations, our experiments are aligned to the
overall goal of this work. Another limitation is we consider LGG
for evaluation of generalizability. While there are significant
imaging differences as compared to GBM, LGG is a broad
category consisting of a range of tumor types. A more clinically
useful investigation would be to evaluate performance on
WHO recognized genetic subtypes such as IDH-mutant vs
IDH-wt or 1p/19q codeleted tumors, as the literature on tumor
subtypes evolves (Louis et al., 2016). However, we defer this
as future work.

5.3. Recommendations for Evaluation of
Tumor Segmentation Algorithms
Here, we summarize our work and presented the following
recommendations for holistic evaluation of ML algorithms:

Accounting for tumor heterogeneity in evaluation: We
focus on a specific problem of glioma, and evaluate for differences
in models trained by stratification of GBM and LGG Data. The
first stage in standard of care for glioma is the identification
of the type, which further dictates the prognosis and treatment
planning. However, there is high variability in this stage, and
experts often don’t reach immediate consensus. It is thus
important for ML algorithms to generalize well across all tumor
grades. We set out to investigate this question, by performing
holistic evaluation on LGG, GBM, and mixed data. Researchers
should consider unique imaging presentations of each patient
and evaluate on a patient-level, as important differences might be
diminished upon aggregation of data. Researchers should avoid
evaluation on a dataset-level.

Adoption of tools in other domains to investigate glioma

segmentation: Domains such as adversarial robustness and
statistics have highly specialized tools (e.g., FGSM, conformal
prediction intervals) to interrogate different aspects of model
performance. In this work, we demonstrate the value of adopting
such tools for the problem of performance evaluation of glioma
segmentation. Our results indicate clear differences in these
experiments. We found model trained on LGG Data to be more
confident, and model trained on GBM to suffer the most under
adversarial attacks. Researchers should evaluate their algorithms
on each of the evaluation axes, by performing at least one
experiment on each of the axes (Figure 1).

Exploring limitations of metrics in clinical utility: In
recent years, the community has started to acknowledge the
clinical limitations of standard segmentation metrics. Our work
demonstrates why evaluation by metrics alone is limiting in
investigating heterogeneity in clinical populations (i.e., GBM vs.
LGG patients), and our findings further support recent literature.
Researchers should avoid relying solely on metrics to evaluate
their models.

The framework can further shed light on the practical utility
of an algorithm, and serve as a decision-support tool. It is not
meant to replace the triaging mechanisms already in place. Since
the action that accompanies a decision is different, researchers
should know the situations and the patient case before use of
these algorithms. If the algorithm’s prediction would be followed
by a high-stakes action component such as surgery, tumor
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resection, or radiation therapy, accuracy of segmentation is
critical. Our results indicate that algorithms trained on a specific
glioma grade group do not generalize well out of distribution,
so it is best to use specifically-trained models. For example, if
a patient with GBM is to undergo surgery, use of MGBM as a
decision-support tool would be best. In low-stakes scenarios such
as accessing the extent of tumor infiltration, generalizability is
more important at the cost of accuracy. The use of MALL, which
has knowledge of all glioma grade groups, would be best in
this scenario.

Establishing a close collaboration with a clinical expert is
crucial to ensure that results of the framework are appropriately
interpreted. In this work, the authors collaborated with experts
in neuroradiology and radiation oncology to deep-dive into the
problem of brain tumor segmentation and present the limitations
of metrics in a clinically meaningful way. Researchers should
similarly consult a clinical expert to understand how tumor
heterogeneity manifests in imaging presentations between the
subgroups of the tumor they are interested to investigate. The
use of this framework in other domains would thus require a
close collaboration between ML researchers and clinicians for
effective investigation.

6. CONCLUSION

In this work, we proposed a framework to evaluate the
performance of tumor segmentation algorithms. To illustrate the
framework, we investigated the generalizability of algorithms in
different glioma grade groups. Institutions such as the American
College of Radiology, Data Science Institute (ACR DSI) often
lay out guidelines to researchers for best practices before model
deployment. However, it is often not clear to researchers on how
to evaluate models. We take a more granular view and present
a tutorial of sorts, in addition to proposing a holistic framework
for better model evaluation. In addition, we provide the following
recommendations to researchers: (1) Perform at least one
experiment on model confidence, diagnostic performance, data
quality and robustness. (2) Perform analysis on a per-patient
basis. (3) Gather representative images informed by the results
of such analysis. (4) Collaborate with a clinical expert to perform
qualitative evaluation of these images to get deeper insight on
model performance.
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Over the last 10 years, the number of approved disease modifying drugs acting on

the focal inflammatory process in Multiple Sclerosis (MS) has increased from 3 to 10.

This wide choice offers the opportunity of a personalized medicine with the objective

of no clinical and radiological activity for each patient. This new paradigm requires

the optimization of the detection of new FLAIR lesions on longitudinal MRI. In this

paper, we describe a complete workflow—that we developed, implemented, deployed,

and evaluated—to facilitate the monitoring of new FLAIR lesions on longitudinal MRI

of MS patients. This workflow has been designed to be usable by both hospital and

private neurologists and radiologists in France. It consists of three main components:

(i) a software component that allows for automated and secured anonymization and

transfer of MRI data from the clinical Picture Archive and Communication System

(PACS) to a processing server (and vice-versa); (ii) a fully automated segmentation

core that enables detection of focal longitudinal changes in patients from T1-weighted,

T2-weighted and FLAIR brain MRI scans, and (iii) a dedicated web viewer that provides

an intuitive visualization of new lesions to radiologists and neurologists. We first present

these different components. Then, we evaluate the workflow on 54 pairs of longitudinal

MRI scans that were analyzed by 3 experts (1 neuroradiologist, 1 radiologist, and

1 neurologist) with and without the proposed workflow. We show that our workflow

provided a valuable aid to clinicians in detecting new MS lesions both in terms of

accuracy (mean number of detected lesions per patient and per expert 1.8 without the

workflow vs. 2.3 with the workflow, p = 5.10−4) and of time dedicated by the experts

(mean time difference 2
′
45

′′
, p = 10−4). This increase in the number of detected lesions

has implications in the classification of MS patients as stable or active, even for the

most experienced neuroradiologist (mean sensitivity was 0.74 without the workflow and

0.90 with the workflow, p-value for no difference = 0.003). It therefore has potential

consequences on the therapeutic management of MS patients.

Keywords: computer aided diagnosis, radiology, lesion activity, MRI, Multiple Sclerosis
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INTRODUCTION

Magnetic Resonance Imaging (MRI) currently plays a central
role in the diagnosis, prognosis and follow-up of patients with
Multiple Sclerosis (MS) (1). In particular, the identification of
new FLAIR hyperintense lesions between two longitudinal MRI
scans allows: (i) to confirm the diagnosis of relapsing-remitting
MS if the criterion of dissemination in time is not met on the
first MRI scan (2); (ii) to provide information on the prognosis
of the disease (3); (iii) to evaluate for each patient the current
efficacy of its disease modifying treatment. Indeed, in recent
years, the number of disease-modifying treatments for MS has
increased significantly (1). In particular, highly effective second-
line immunosuppressive treatments have become available and
the number of first-line treatments has increased. However,
these treatments are not without potential side-effects. The
challenge is therefore to prescribe the right treatment to the
right patient and to monitor its effectiveness closely. In this
context, the concept of No Evidence of Disease Activity (NEDA)
has emerged (4) and implies that MS patients have neither
clinical relapse nor new FLAIR lesions on their follow-up
MRI under treatment. An annual follow-up by brain MRI is
therefore currently recommended, at least during the first year
of treatment (5, 6), and the comparison of annual MRI scans
is frequently performed by the radiologists and neurologists in
charge of the follow-up ofMS patients. However, this comparison
is a complex and mentally demanding task that often leads
to an underestimation of lesion accumulation, even for most
experienced radiologists (7). Consequently, there is a need for
dedicated systems that can provide clinicians, regardless of their
level of expertise, an aid for accurate and robust detection of
new FLAIR MS lesions. The ultimate goal of these systems will
be to reduce the underestimation of patients wrongly reported
as having no or few new lesions as well as the associated expert
dependencies, resulting in better therapeutic decisions. For many
years, different methods have been proposed to address this
issue (8).

More recently, standardization of MR imaging acquisitions
and data-transfer protocols as well as advances in computer
vision methods have offered the premises for an end-to-
end workflow for computer-aided comparative analysis of
longitudinal MRI data. In particular, thanks to the development
of deep learning techniques, powerful tools for the automatic
segmentation of new MS lesions have been proposed in the
context of academic research on the one hand [e.g., (7, 9,
10)], and integrated into commercial products on the other
hand (11). However, the added-value of these tools in clinical
practice is not well-documented, especially regarding therapeutic
strategy and disability progression. In addition, the question
of their integration into clinical practice is generally not
addressed. Finally, commercially available solutions based on
Artificial Intelligence often lack available scientific evidence in
peer-reviewed Journals (11) and their high cost limits their
deployment for patient care. Consequently, such tools have not
yet been adopted in routine clinical practice by the majority of
radiologists and neurologists.

Within this context, we launched the MUSIC project (an
acronym for MUltiple Sclerosis Image Checkout) in 2017 in
Brittany, a region in the north-west of France. The objective of
this project was to develop, deploy and evaluate a fully-integrated
clinical workflow allowing to improve detection of new brain
lesions in MS patients. The system has been designed to be usable
by both hospital and private radiologists and neurologists in
Brittany. The MUSIC project also included centralized storage of
MS patients’ MRI data so that their data could be accessed and
compared even if theymoved from one center to another for their
MRI or neurological follow-up. The first “proof of concept” phase
of the project reported in this article was deployed in 5 centers (2
university hospitals, 2 local hospitals, 1 private radiology center).

The MUSIC workflow consists of three main components: (i)
a software component that allows for automated and secured
anonymization and transfer of MRI data from the clinical Picture
Archive and Communication System (PACS) to a processing
server (and vice versa); (ii) a fully automated MR image
segmentation core that enables detection of new lesions from
patients T1 weighted, T2 weighted and FLAIR brain acquisitions,
and (iii) a dedicated web viewer that provides an intuitive
visualization of new lesions to the clinical staff, easy to show to the
patients. These elements allow clinicians to access and visualize
enhanced patient data scanned in any connected clinical center,
even without being linked to a clinical PACS. In the present
paper, we first illustrate the MUSIC project workflow. Second, we
assess the performance of three clinicians, with different levels of
expertise, in identifying newMS lesions on follow-up MRI scans,
with and without the proposed workflow. For this evaluation, we
used longitudinal pairs of scans from 54 MS patients.

MATERIALS AND METHODS

Figure 1 summarizes the overall MUSIC project workflow.
Briefly, after being stored in the clinical local PACS, MR
images are pseudonymized and securely transferred into a
processing hosting, where images are processed and new
lesions are automatically segmented using a deep neural
network. Then, the processed images and corresponding
segmentation maps are transferred back to the clinical
hosting from which they can be efficiently visualized in a
dedicated web MRI viewer. In the following, we describe
the three main elements of the workflow: the transfer and
storage modules (section The transfer and storage modules:
Servers interoperability and data access), the segmentation
module (section The segmentation module: Detection of
new lesions from longitudinal brain MR images) and the
visualization module (section The visualization module: Efficient
and adapted reporting). Then, in section Evaluation of the
MUSIC workflow, we present a set of experiments that we
designed and carried out to evaluate the radiologist and the
neurologist performances in identifying new FLAIR lesions
between two sets of MRIs of MS patients with and without
the workflow.
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FIGURE 1 | Workflow overview. Colored elements were specifically designed and developed in the context of our MUSIC project and consists of (i) a set of Transfer

and Storage Modules (yellow), (ii) a Segmentation Module (blue) and (iii) a Visualization Module (red). Briefly, after being stored in the clinical PACS, MR images are

pseudonymised and securely transferred into a processing hosting, where images are processed so that new lesions are automatically segmented. Then the resulting

processed images and associated new lesions segmentation maps are returned to the clinical data hosting platform where they can be visualized in a dedicated web

MRI viewer.

Workflow Description
The Transfer and Storage Modules: Servers

Interoperability and Data Access
In order to process the images outside the hospitals, a set of
tools to pseudonymize, securely transfer and reidentify data
has been set up. Overall, this module is composed of five
main components: the hospital PACS, the centralized PACS,
a telemedicine platform, the NodeJS transfer server and the
research PACS. These elements and their interconnections are
presented in Figure 2. The telemedicine platform is responsible
for transferring the medical images from the hospital PACS to
the centralized PACS. The latter gathers images coming from
different hospitals and is hosted in a certified health data hosting
provider. At this stage, patient data are still identified. From
here, a clinical research assistant initiates the pseudonymization
procedure. An HTTP request is sent to a NodeJS server, also
deployed in the same location, with the Universally Unique
IDentifier (UUID) of the study to be transferred and the
new patient identifier. The server, developed using NodeJS, a
JavaScript runtime to develop modular network applications, is
a simple server which listens to incoming HTTP requests. It can
answer two specific requests: “transfer data” and “import results.”
Once it receives a HTTP “transfer data” request, it retrieves the
images from the PACS using a DICOMwebTM WADO-RS (Web
Access to DICOMObjects Retrieved Study) request, de-identifies
the images according to DICOM recommendations (DICOM
Supplement 142), and sends the de-identified images to the
Research PACS over an HTTPS connection to prevent any attack,
using DICOMwebTM STOW-RS (STore Over the Web Retrieved
Study). Thanks to this procedure, the pseudonymization is

performed inside the health data hosting provider and no
identifying data goes out.

To process a set of patient acquisitions, a web application
has been developed. This application lists the patients available
and is able to run a segmentation over one or multiple selected
patients. It also communicates with the research PACS using
DICOMwebTM, locally downloads the data temporarily and runs
the segmentation algorithms from a Python script. Once the
images have been processed and segmented, the NodeJS server
is notified that results are available by an “import result” HTTP
request. It retrieves the images from the research PACS using a
DICOMwebTM WADO-RS request, reidentifies the new images
using a patented method (ID EP3756123), and stores them in
the centralized PACS. The images are finally exported to the
radiologist and neurologist to be analyzed via the telemedicine
platform. In practice, follow-up data from each patient is thus
accessible from any connected clinical environment. The overall
transfer time to perform these various tasks is about 15min per
subject (excluding segmentation).

Overall, this workflow has been designed to use only
standardized requests for interoperability purposes and can be
connected to any telemedicine platform.

The Segmentation Module: Detection of New Lesions

From Longitudinal Brain MR Images
The visual identification of new lesions in MRI requires
the mental processing of a large amount of 3D information
and it is common for radiologists to miss notable lesions
emerging from one acquisition to another, even for highly-
experienced radiologists (7). The segmentationmodule thus aims
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FIGURE 2 | Detailed architecture and interconnections in the MUSIC network. The system is composed of 2 main interconnected PACS (the centralized and the

research PACS). The centralized PACS is interconnected to each connected hospital PACS to download the acquisitions to process and to upload the results. The

research PACS is dedicated to data processing. The different connections are based on standardized HTTP requests (DICOMwebTM) and are secured by an HTTPS

tunnel.

at automatically extracting candidate new lesions that will then
be highlighted in a dedicated viewer accessible to experts. This
design comes with two consequences:

- First, we accept a reasonable amount of false positive
candidates that will be naturally considered as irrelevant by
image readers, with the counterpart that it increases our
chances to detect relevant changes (in other terms, we favor
sensitivity over specificity).

- Second, we accept to segment both growing and new
lesions without distinction and let the image readers
assess the relevance of including each of them into their
radiological analysis.

A first natural solution to detection and segmentation of new
lesions consists in first, independently segmenting the lesions
for each of the two time-points of interest using a dedicated
algorithm and second, comparing the resulting segmentation
masks (or their associated probability maps) to infer a mask
associated to the presence of new lesions. The main advantages of
such an approach consist in its ability to stand on the numerous
methods developed in the last decades to segment lesions from
brainMRI (12) and on the availability of the associated annotated
databases. However, by splitting the original problem into two
subtasks, this approach disregards the temporal correlation in
the images, which may lead to inaccurate segmentations for
small lesions or subtle changes. A second fruitful approach
thus consists in inferring notable signal changes due to lesions
from one acquisition to another directly from the MRI volumes
of interest at the two time points, instead of from the two
lesion maps (9, 13–18). Such a solution has the advantage of
benefiting from all the information available at once and thus
maximizing its ability to detect relevant signals of interest.
Intuitively, by comparing scans from one session to another, we

alleviate the problem from a part of confounding factors due
to interindividual anatomical differences. Nonetheless, such a
method needs databases of serial MR scans acquired at different
time steps and with manually segmented new lesions, which are
relatively uncommon as of now.

In this project, we chose to develop a method following this
second approach. This method is briefly detailed in the four
next subsections. First, we designed a training/testing dataset
consisting of a set of pairs of FLAIR, T2-weighted (T2w) and T1-
weighted (T1w) acquisitions from 41MS patients. Second, we set
out a pre-processing pipeline so that data of a given patient are
appropriately aligned and signal intensity is comparable from one
acquisition to another. Third, we trained a deep neural network
whose inputs consist, for a given patient, of the two sets of T1w,
T2w, and FLAIR images and output consists of the softmax
output map associated with the presence of new lesions at each
voxel. Fourth, we implemented a few post-processing steps to
produce a binary segmentation mask from the network softmax
layer. The resulting trained model achieved a true positive rate of
0.83 and an overall rate of false positive of 0.09 on our testing
dataset (17 patients, 41 new lesions). Moreover, comparable
results were obtained on an additional set of 10 data consisting
of acquisitions on Philips and General Electric 3T MRI scanners.

Building the Training and Testing Dataset
We designed our segmentation module using a dataset from
a previous clinical project (ClinicalTrials ID: NCT02117375)
consisting of a set of MR scans from 41 patients acquired on two
Siemens 3T MRI scanners (Magnetom Verio, VB17). For each
of these patients, data consists of 3D T1w, 2D axial T2w, and
3D FLAIR imaging at two times temporally distant by 1 year.
Acquisition parameters were: for 3D T1w: 4min 30, 1 × 1 ×

1mm, TR = 1,900, TE = 2.26, TI = 900, FA = 9, matrix = 256
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× 256, GRAPPA2; for Axial DPw T2w: 2min 12, 0.7 × 0.7 ×

3mm, TR = 6,530, TE = 9.4/84, FA = 150, matrix = 320 × 320,
GRAPPA2; for 3D FLAIR: 5min, 1 × 1 × 1.1mm, TR = 5,000,
TE= 399, TI= 1,800, matrix= 256× 256, GRAPPA2.

New lesions from the first acquisition to the second one
were manually segmented by an expert and reviewed by another
expert using the ITK-SNAP software (http://www.itksnap.org/).
This procedure provides the delineation of 152 new lesions.
The dataset was split into a learning dataset (24 patients,
111 lesions) and a testing dataset (17 patients, 41 lesions).
Data splitting was achieved by stratifying lesions according to
their locations (deep white matter, periventricular, juxtacortical,
brainstem, cerebellum) and optimizing patients repartition to
achieve balanced (60%/40%) training and testing groups with
respect to these characteristics.

Data Pre-processing
Our preprocessing pipeline, close to the subtraction pipeline
proposed in Ref. (16), aims at preparing the T1w, T2w,
and FLAIR data so that voxel-wise differences between
consecutive scans were as meaningful as possible. Briefly,
firstly MR volumes are reoriented in RAS coordinates.
Secondly, skulls and skin tissues are removed from the
data using a robust registration-based brain extraction method
(animaAtlasBasedBrainExtraction, available at anima.irisa.fr,
RRID:SCR_017017 and RRID:SCR_01707). Thirdly, baseline
and follow-up T1w, T2w, and FLAIR scans are rigidly registered
on the FLAIR baseline using a block matching registration
method [animaPyramidalBMRegistration (19)]. We used the
FLAIR baseline scan as reference for the registration as this is the
one generally used by experts in clinical practice. Nevertheless,
we did not observe any notable difference in results when
modifying the choice of the reference (neither in training, nor in
testing). Fourth, images are all cropped using the FLAIR baseline
as a mask in order to reduce pointless data. Fifth, bias due to
spatial inhomogeneity is estimated using the N4 algorithm (20)
and removed from the data (animaN4BiasCorrection). Finally,
for each pair of baseline and follow-up images (e.g., FLAIR
baseline and FLAIR follow-up) voxel intensities are jointly
corrected using a 2 fold procedure: (i) first, their joint histogram
is linearly rescaled so that it best fits the y = x line in a least
square sense, (ii) second, a Nyul standardization (21) on an
in-house multisequence template is applied independently on
each acquisition (animaNyulStandardization).

Deep Neural Network Architecture and Learning
The core of the segmentation module consists of a fully
convolutional neural network that was trained to segment
new lesions from a pair of preprocessed FLAIR, T1w,
and T2w acquisitions. Specifically, we adopted the nnU-net
framework proposed by Isensee et al. [(22), github.com/MIC-
DKFZ/nnUNet] that enables training of a 3D U-Net (23)
while automating the choice of the hyperparameter values. This
framework has been shown to outperform a number of deep
learning-based methods on a variety of segmentation tasks.
Precisely, our 3D U-Net has 6 input channels (one for each
sequence and each time point) of size [160, 192, 64]. To fit

this frame, each input image is first resampled to size [0.5,
0.5, 1.1mm] (median training image resolution) and then each
set of 6 images (3 sequences for each of the 2 time points) is
split into patches of such a size. Finally, each such 6× [160,
192, 64] patch is processed independently and aggregated to
others to form the final softmax outputs map. Data augmentation
included: (i) isotropic rescaling, (ii) 3D rotation, (iii) mirroring
in the sagittal plane, (iv) smooth elastic deformations and
(v) intensity enhancements and attenuations on lesion voxels
(modeling the diversity of signal change due to lesions). This
network was trained to minimize the sum of Cross-Entropy
and Dice loss over the training dataset and included a drop-
out based regularization (with probability = 0.2). Training
was performed using a stochastic gradient descent run over
1,000 epochs, each of them consisting of 250 minibatches.
Learning was conducted on a GPU NVIDIA Quadro P6000,
24 GB and lasted 10 days. Prediction for a given patient
lasted about 6min (including pre and post-processing) on the
same hardware.

Data Post-processing
Once the neural network evaluated for a given pair of
acquisitions, a binary segmentation map was obtained from
the network softmax outputs using the following empirical
procedure. First, the softmax outputs map is binarized using
a threshold of 0.01. Second, connected components (26-
connectivity) were extracted from the resulting binary map.
Third, only connected components with volume larger than
12 mm3 and including at least one voxel with softmax value
>0.1 were selected as new lesions in the final output mask.
Last, preprocessed data and the corresponding segmentation
mask were resampled to the original baseline FLAIR image slab
and resolution.

The Visualization Module: Efficient and Adapted

Reporting
The CADIMS software has been designed to allow a fast and
intuitive access to the preprocessed volumes and new lesions
segmentation masks (Figure 3, as well as Video available in
Supplementary Material). It was built in collaboration with a
neurologist and a neuroradiologist following MS patients to
meet their clinical needs. It consists of a MRI viewer usable
from a standard web browser. It has been developed using
the AMI framework (https://github.com/FNNDSC/ami) for the
visualization of medical images and integrated in an Angular
application. It allows the visualization of DICOM images that are
directly retrieved from the hospital PACS using DICOMWebTM,
the DICOM Standard for web-based medical imaging. As
explained in section The transfer and storage modules: Servers
interoperability and data access, the processed scans and the
segmentation maps are transferred back via the telemedicine
platform and are directly available in the viewer. Moreover,
images are still stored durably in the centralized backed up
PACS and are also available to any clinicians connected to the
MUSIC network.

From a practical perspective, the viewer is composed of
three synchronized views where three registered images are
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FIGURE 3 | The CADIMS viewer: The CADIMS MRI viewer is usable from a standard web browser. It consists of three synchronized views displaying from left to right

(i) the baseline scan, (ii) the follow-up scan and (iii) the follow-up scan with segmented new lesions highlighted in red.

visualized simultaneously (from left-to-right: initial image,
follow-up image, follow-up image with new lesions mask). The
viewer displays the FLAIR images in the axial plane at startup.
The other sequences (T1-w, T2-w) and other planes (sagittal,
coronal) can be visualized by selecting them on dedicated menus.
If more than one follow-up MRIs has been acquired for the
same patient, previous acquisitions are also accessible. The viewer
also integrates the following basic navigation functionalities:
padding, zooming, and intensity windowing, all accessible from
the computer-mouse.

Evaluation of the MUSIC Workflow
In this section, we present the datasets used and the two sets of
experiments conducted to assess the added value of the MUSIC
workflow on routine clinical practice.

Data Sets
Patients from 5 MRI centers were prospectively included in
the MUSIC project. All patients were informed and written
consents were obtained. All patients were included in the OFSEP
(“Observatoire Français de la Sclérose en Plaques”) cohort,
registered on clinicaltrials.gov (NCT02889965) and compliant
with French data confidentiality regulations. The study was
approved by the relevant ethics committee.

Inclusion criteria were chosen to target a population with
a substantial number of active patients. They included (i) a
diagnosis of MS according to 2017 Mc Donald criteria (2); (ii) a
disease duration <10 years; (iii) an Expanded Disability Status

Scale (EDSS) score <4; (iv) a follow-up MRI available 10–16
months after the first MRI.

Our evaluation dataset consists of 54 pairs (baseline and
follow-up) of 2D or 3D FLAIR, T1w, and T2w scans acquired on
9 different 3T MR scanners from Siemens, Philips and General
Electrics. Thirty out of the 54 studied MS patients had a follow-
up scan on a different MR scanner than the first scan, and 22
out of these 30 on a MR scanner from a different manufacturer.
The overall allocation between scanners is depicted inTable 1. All
data were acquired according to the OFSEP recommendations
(6). The median and range FLAIR, T1w, and T2w spatial
resolutions (in mm) were, respectively [1, 1, 1] (range [0.7, 0.7,
0.6]; [1, 1, 1]), [1, 1, 1] (range [0.5, 0.5, 2]; [1, 1, 1]) and [0.7,
0.7, 3] (range [0.5, 0.5, 1]; [1, 1, 3]). Data were not preselected
according to quality criteria and a few acquisitions were of lower
quality (example in Figure 4). Patients main characteristics were:
mean age 35 yo (SD = 10), mean EDSS 1.1 (SD = 1.3), disease
duration 3.7 years (SD= 1.3), percent of women= 67%.

Experimental Setting
We conducted two experiments involving three experts with
different levels of experience: a senior neuroradiologist with
15 years of experience (named “expert 1” below), a senior
neurologist with 8 years of experience (named “expert 2” below)
and a junior radiologist (named “expert 3” below). Each of
these two experiments are detailed below and consisted of
the visual analysis of a set of pairs of acquisitions in two
different conditions.
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TABLE 1 | Repartition of patients in the different scanners (each row is a different

scanner).

Manufacturer Version Number of sessions (overall 108)

Phillips Ingenia 47

Siemens Prisma 23

Siemens Verio 17

Phillips Ingenia 9

Phillips Ingenia 5

Siemens Aera 3

General Electrics SIGNA Explorer 2

Siemens Aera 1

General Electrics SIGNA Explorer 1

FIGURE 4 | A pair of FLAIR acquisitions from a patient of the evaluation

dataset experiencing a low quality baseline scan. (Left) Baseline FLAIR axial

slice. (Right) Follow-up FLAIR axial slice.

Impact of the Segmentation Module on Expert Performances
In this first experiment, we assessed the added value of the
segmentation module on the ability of each expert to detect new
lesions arising between the two time points. This experiment
was conducted on 48 patients out of the 54. It consists of
a 2-fold procedure. In its first phase, each expert was asked
to annotate all notable new lesions—by simply drawing a
point near the center of the lesion—from the pre-registered
FLAIR, T1w, and T2w volumes for the two time points of
interest. Then, in a second phase 2 weeks later, each expert was
asked to perform the same exercise with an additional input:
the segmentation mask provided by the segmentation module.
Annotated lesions as well as time to perform each segmentation
were recorded.

This experiment was performed on a dedicated reading
system allowing MR volume annotation built from the fsleyes
software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes). The time
measurement was automated. All experts were asked to
conduct this experiment in situations as similar as possible
to clinical practice. In particular, experts were explicitly
instructed not to spend more time reading MRIs than they
would have in clinical routine. However, they had to be

in a quiet environment so as not to be interrupted during
their reading. A few days prior to the first phase, each
expert experienced a short session to experiment with the
reading system.

Impact of the MUSICWorkflow on Routine Clinical Practice
In this second experiment, we explored the added value of the
overall MUSIC workflow in clinical practice. This experiment
was conducted on 6 patients. Again, it was a 2-fold procedure.
In the first phase, each expert was asked to visualize the MRI data
and write a radiological report using the fully manual procedure
currently in use. Hence, the images were viewed directly from the
PACS and MRI for the two time points were manually roughly
registered. The presence of new lesions was visually assessed and
annotated in the radiological report, without any computer-aided
tool. In the second phase of the experiment, 2 weeks later, each
expert was asked to repeat the exercise via the MUSIC workflow
(i.e., from a user perspective, using the new lesion segmentation
mask and realigned data in the dedicated web MRI viewer). The
experts measured the time needed to load data, read the MRI and
write the report in the two phases. As in the first experiment,
experts were explicitly instructed not to spend more time reading
MRIs than they would have in clinical routine. They again had
to be in a quiet environment so as not to be interrupted during
their reading.

Statistical Analysis

Impact of the Segmentation Module on Expert Performances
First, for each expert and during each phase of this first
experiment, detected lesions were colocalized using an
automated analysis and manual intervention when necessary.
This stage allows us to produce a mapping between each detected
lesion, the names of the experts who detected it and the phase
(phase 1 or/and phase 2) in which it was detected. Second, each
lesion that has been reported, regardless of the phase of the
experiment, was labeled as a true positive or a false positive via a
consensus reading of all lesions from the two most experienced
experts. Finally, we computed:

- The number of lesions detected by each expert as well as the
overall number of individual lesions (i.e., counted only once
for all experts) detected, for each phase.

- The inter-expert differences on detected lesions within each
phase reported as ratio, pairwise Cohen’s kappa statistics
and multi-rater Fleiss’ kappa statistic and associated 95%
confidence intervals (CI).

- The number of lesions detected in phase 1 and not in phase 2
and conversely.

- The averaged patient-wise number of lesions detected by
experts in each phase, that is compared between phases using
a paired student test.

- The number of patients reported with at least one notable
lesion by each expert and in each phase, as well as the
associated pairwise Cohen’s kappa statistics and multi-rater
Fleiss’ kappa statistic and associated 95% CIs. The overall
sensitivity and specificity associated to this categorization (i.e.,
at least one new lesion vs. no new lesion) was then computed
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TABLE 2 | Inter-expert heterogeneity during phase 1.

Expert 1 Expert 2 Expert 3

Expert 1 – 23/90

κ =0.38 [0.22, 0.53]

17/90

κ = 0.62 [0.48, 0.75]

Expert 2 16/83 – 19/83

κ = 0.44 [0.29, 0.59]

Expert 3 8/83 18/83 –

The first figures give the number of lesions detected by the expert in row not detected by

the expert in column. For example, over its 90 new lesions detected, expert 1 detected

23 lesions that were not detected by expert 2 and 17 that were not detected by expert 3.

The second figures (only once per expert combination) give the Cohen’s Kappa coefficient

and its associated 95% CI.

for each phase and tested for equality between phase 1 and
phase 2 using a logistic regression including a patient and an
expert random effect.

- The pooled inter-expert standard deviation associated to the
number of lesions detected in each phase, that is compared
between the phases.

- The individual sensitivity together with its 95% CI for each
expert and each phase. Moreover, for each expert, sensitivity
is tested for equality between phase 1 and 2 using a logistic
regression including a patient random effect. Associated odds
ratio, p-values for odds ratio = 1 and associated 95% CI
are reported.

Finally, mean time elapsed for each expert and each phase was
estimated and tested for equality between phases using a paired
student test.

Impact of the MUSICWorkflow on Routine Clinical Practice
First, radiological reports from this second experiment were
gathered. Then for each expert and each setting (i.e., using the
full MUSIC workflow or using the current manual approach),
patients were categorized according to the report as: “no activity,”
“1 lesion” or “> 1 lesion.”

Second, the time spent to perform radiological readings for
each of the three experts and each of the two settings were
summarized and the mean times elapsed in the two settings were
tested for equality using a paired t-test.

RESULTS

Impact of the Segmentation Module on
Expert Performances
Detection of New Lesions Without the Segmentation

Mask
During the first phase, overall 113 lesions were detected. The
three experts, respectively, detected 90, 83, and 83 new lesions.
Table 2 reports the difference of lesions detected from one expert
to another as well as the inter-rater Cohen’s Kappas, illustrating
the high inter-rater variability on detected lesions. Moreover, the
overall Fleiss’s Kappa coefficient was 0.47 with 95% CI = [0.38,
0.57]. Figure 5 gives an example of a notable lesion detected by
only one of the three experts.

FIGURE 5 | An example of lesion detected by expert 1 in the first phase of the

experiment but not by experts 2 and 3. First row shows the baseline FLAIR

scan (from left-to-right: coronal and axial view), second row shows the FLAIR

scan 1 year later (from left-to-right: coronal and axial view). Red arrows

designate the lesion of interest.

At the patient scale, depending on the experts, 19, 19, and
20 patients out of 48 were reported to have at least one
sign of MRI disease activity. When combining the different
expert segmentations, this number increased to 22. The inter-
rater Cohen’s Kappa coefficients associated with these patients
classifications were: for Expert 1-Expert 2: 0.83 [0.66, 0.99], for
Expert 2-Expert 3: 0.78 [0.74, 1], and for Expert 1-Expert 3:
0.96 [0.87, 1]. The overall Fleiss’s Kappa coefficient was 0.86
[0.75, 0.97].

Detection of New Lesions With the Segmentation

Mask
During the second phase (i.e., when segmentation masks
provided by the segmentation module were used as supplemental
information), the three experts, respectively, detected 114, 111,
and 104 lesions. Overall 125 lesions were detected. Table 3

reports the difference of lesions detected from one expert
to another in this second phase. The overall Fleiss’s Kappa
coefficient was 0.59 [0.49, 0.69]. Table 4 details the number of
lesions from the segmentation module accepted and rejected by
the experts as well as the number of supplemental lesions added.
Overall, a large majority of the 121 candidate lesions detected by
the segmentation module were accepted by the experts (between
103 and 107 depending on the expert). Eleven lesions out of
these 121 were rejected by each of the three experts. After the
consensus reading, one supplemental lesion proposed by the
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TABLE 3 | Inter-expert disparity during phase 2.

Expert 1 Expert 2 Expert 3

Expert 1 – 10/114

κ = 0.44 [0.29, 0.59]

16/114

κ = 0.51 [0.34, 0.69]

Expert 2 7/111 – 11/111

κ = 0.69 [0.53, 0.83]

Expert 3 6/104 4/104 –

The first figures give the number of lesions detected by the expert in row not detected by

the expert in column. For example, over its 114 detected new lesions, expert 1 detected

10 lesions that were not detected by expert 2 and 16 that were not detected by expert 3.

The second figures (only once per expert combination) give the Cohen’s Kappa coefficient

and its associated 95% CI.

TABLE 4 | Relevance of the segmentation masks produced by the segmentation

module.

Expert 1 Expert 2 Expert 3

Accepted lesions 105 107 103

Rejected lesions 16 14 18

Supplemental lesions 9 4 1

Number of lesions accepted, rejected and added by the different experts when using the

segmentation mask as supplemental information.

segmentation module was rejected, leading to a total of 12 false
positive lesions distributed among 8 patients (10% rejection rate)
for the segmentation module. At the patient scale, depending on
the experts, 24, 23, and 23 patients were reported to have at least
one sign of disease activity. When combining the different expert
segmentations, this number rises to 25. The inter-rater Cohen’s
Kappa coefficients associated with these patients classifications
were: for Expert 1-Expert 2: 0.96 [0.88, 1], for Expert 2-Expert
3: 0.92 [0.80, 1], and for Expert 1-Expert 3: 0.88 [0.74, 1]. The
overall Fleiss’s Kappa coefficient was 0.92 [0.83, 1].

Consensus Lesions Reading and Patient

Characteristics
Overall, 138 individual lesions were reported by the experts
during the two phases. Two of these 138 lesions were then
discarded during the concerted reading (one was reported in
phase 1 and the other one in phase 2). The patient-wise
repartition of lesions is given in Supplementary Figure 1. Briefly,
the median lesion number was 1, ranging from 0 to 18. Twenty-
two patients (about 46%) did not develop new lesions.

Comparison of New Lesions Detection With and

Without the Segmentation Mask at the Lesion Scale
By comparing lesions detected in the two phases (and excluding
the two false positive lesions), we identified 103 cases of lesions
that were not detected by an expert in the first phase but were
detected by this expert in the second phase. Figure 6 displays an
example of lesion that was detected by the segmentation module
and accepted by the three experts in the second phase of the
experiment but that was reported by none of the three experts
during the first phase of the experiment. Conversely, we identified

FIGURE 6 | Example of a lesion detected by none of the experts in the first

phase of the experiment, detected by the segmentation module and accepted

by all experts in the second phase of the experiment. First row shows the

baseline FLAIR scan (from left-to-right: coronal and axial view), second row

shows the FLAIR scan 1 year later (from left-to-right: coronal and axial view).

Red arrows designate the lesion of interest.

only 30 cases of lesions that were first detected by an expert in the
first phase but not detected in the second phase.

Table 5 reports the statistics on lesion detection averaged over
patients and highlights the added value of the segmentation
module to increase expert performance. Similarly, Table 6

reports increased ability of each expert to detect new lesions using
the segmentation module. Finally, Table 7 reports the statistics
on elapsed time for each of two phases for the three experts and
highlights the gain in expert processing time brought by the use
of the segmentation mask.

Comparison of New Lesions Detection With and

Without the Segmentation Mask at the Patient Scale
Table 8 provides a contingency table summarizing the numbers
of patients that were identified as having no lesion, one lesion or
more than one lesion during the two phases of the experiment.
Moreover, 20 patients (by adding those identified by each expert)
were wrongly identified as having no new lesion in the first phase,
against only 8 patients in the second phase of the experiment.
The overall sensitivity at the patient scale (i.e., no new lesion
vs. at least one new lesion) was 0.74 in the first phase, and 0.90
in the second phase of the experiment (p-value for unit odds

Frontiers in Medicine | www.frontiersin.org 9 November 2021 | Volume 8 | Article 74024859

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Combès et al. Computer-Aided Assessment of MS Activity

TABLE 5 | Statistics on lesion detections averaged over patients and differences between phase 1 (lesions detection only using patient acquisitions) and phase 2 (lesions

detection using patient acquisitions and segmentation mask produced by the segmentation module).

Phase 1 Phase 2 Phase 2 to Phase 1 differences

value, [95%CI]

and p-value for

no difference

Mean number of detected lesion per patient and per expert 1.8 Lesion 2.3 Lesion Mean difference = 0.5

[−0.78, −0.23]

p = 5.10−4

Pooled standard deviation from interexpert variability 0.76

Lesion

0.55

Lesion

Mean difference = 0.09

[−0.02, 0.29]

p = 0.12

First row: averaged patient-wise number of lesions detected in phase 1 (column 1) and 2 (column 2) and mean difference, associated 95% CI and p-value for a null difference between

the two phases (column 3). Second row: pooled inter-expert standard deviation associated with lesions number detected in phase 1 (column 1) and 2 (column 2) and mean difference,

associated 95% CI and p-value for a null difference between the two phases (column 3).

TABLE 6 | Ability of each expert to detect a new lesion during the two phases.

Phase 1

sensitivity

[95%CI]

Phase 2

sensitivity

[95%CI]

Phase 2 to Phase 1

differences

odds ratio, [95%CI]

and p-value

Expert 1 0.66

[0.58, 0.74]

0.84

[0.76, 0.90]

2.77

[1.55, 5.15]

p = 7.10−4

Expert 2 0.60

[0.51, 0.68]

0.82

[0.74, 0.88]

3.35

[1.84, 6.29]

p = 8.10−5

Expert 3 0.61

[0.52, 0.69]

0.75

[0.68, 0.83]

2.31

[1.33, 4.10]

p = 3.10−3

For each expert (in row): the ratio of new lesions detected over the overall 136 lesions (the

overall number of lesions detected on all patients, by all experts during the two phases and

confirmed during the concerted reading) as well its 95% CI for phase 1 (first column) and

phase 2 (second column) and difference between phase 1 and phase 2 (third column).

TABLE 7 | Statistics on time elapsed for each of two phases for the three expert

and comparison between the two phases.

Phase 1

duration

(mean, [range])

Phase 2

duration

(mean, [range])

Phase 1 to Phase 2

difference

[mean, (sd), p-value]

Expert 1 317s

[144, 807]

232 s

[91, 603]

85 s (137 s)

p =10−5

Expert 2 283s

[125, 847]

204s

[93, 511]

78 s (126 s)

p = 10−5

Expert 3 272 s

[146, 525]

160 s

[82, 287]

112 s (79 s)

p = 10−13

First column: Mean time and associated range associated with the processing of the 48

patients in Phase 1. Second column: same elements for phase 2. Third column: Mean

time reduction from Phase 2 to Phase 1, associated standard deviation and p-value for a

null time reduction.

ratio = 0.003). Moreover, for each expert and each phase, the
patient-wise specificity was equal to 1.

TABLE 8 | Contingency table of numbers of patients reported with no (0), one (1),

or more than one (>1) lesion in the two phases of the experiment.

Phase 2

0 1 >1

Phase 1 0 71

(23, 23, 25)

13

(5, 5, 3)

2

(1, 1, 0)

1 3

(1, 2, 0)

10

(3, 3, 4)

2

(0, 0, 2)

>1 0

(0, 0, 0)

2

(1, 0, 1)

41

(14, 14, 13)

In each cell, the top figure indicates the overall number of reported patients while the three

bottom figures give, respectively, these figures for expert 1, expert 2, and expert 3.

When assessing the reported new lesions as detected by the
segmentation module (i.e., with no adjustment by an expert),
we computed a sensitivity of 0.90 and specificity of 0.84 at the
patient scale.

Impact of the MUSIC Workflow on Routine
Clinical Practice
Supplementary Table 1 gives the main elements of reporting for
each expert and each patient when using a standard manual
examination of data from the clinical PACS (phase 1) and when
using the MUSIC workflow (phase 2). In particular, expert 2
and expert 3 reported two patients without activity in phase 1
(patients 2 and 3) while they reported a notable new lesion for
these same patients in the second phase. Finally, Table 9 gives
the mean time elapsed by the three experts in the two settings.
Mean times elapsed in the two settings differ significantly [mean

difference= 2
′
45

′′
(SD= 2

′
00

′′
), p= 10−4].

DISCUSSION

While there is a growing number of methodological works
addressing the question of automating the detection of new MS
lesions from one acquisition to another using deep learning
techniques [e.g., (7, 9, 10)], the integration of such tools in clinical
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TABLE 9 | Mean (standard deviation) time elapsed to perform radiological

readings of the patients of interest for each of the three experts and each of two

phases of the second experiment.

Expert 1

mean

(standard deviation)

Expert 2

mean

(standard deviation)

Expert 3

mean

(standard deviation)

Phase 1 4
′
45

′′

(1
′
30

′′
)

7
′
00

′′

(3
′
00)

5
′
15

′′

(1
′
30

′′
)

Phase 2 3
′
15

′′

(0
′
30

′′
)

3
′
00

′′

(0
′
30

′′
)

3
′
45

′′

(0
′
30

′′
)

practice as an aid to clinicians and the associated added-value on
the resulting radiological reports have not been fully evaluated.
This work aims at providing elements to document these two
points. In particular, we described a fully-integrated workflow
and showed that the proposed workflow increases MRI reader
performance to detect newMS lesions on longitudinal MRI scans
while decreasing MRI comparison time. Beyond the number of
lesions detected, our workflow has an impact on the number
of MS patients classified as stable or active based on their MRI,
even by the most experienced neuroradiologist. It may therefore
have substantial consequences on the therapeutic management of
MS patients.

Visual Detection of New MS Lesions Is a
Complex Task
First, as previously reported, we observed a high inter-expert
variability in the detection of new FLAIR lesions (24, 25).
In practice, a significant part of this variability is not due
to differences of MR signal interpretations but related to the
difficulty to visually notice them within the whole 3D volumes
of interest. Indeed, while we did not investigate the intra-expert
variability, a previous study reported a mean intraobserver kappa
score for new lesions detection at 0.72 (25). As expected, in the
present study, the expert with the highest level of experience
(neuroradiologist with 15 years of experience) detected a higher
number of new lesions than the other clinicians.

Automated New Lesion Segmentation
Tools Provide a Relevant and Valuable Aid
for Clinicians
Second, we observed that the use of lesion masks produced by
the lesion detection module significantly increases the number
of lesions detected regardless of the level of expert’s experience
(more than 15% more lesions with the MUSIC workflow than
without). This observation is in line with recent studies not
involving deep learning based segmentation (26–28). In parallel,
while not significant, we also observed a natural reduction of the
inter-expert variability when using the segmentation masks.

It is also interesting to note that we deliberately put ourselves
in difficult conditions by including longitudinal data acquired
on different scanners in 56% of the cases. These conditions are
representative of the follow-up conditions in clinical practice
where patients may be followed in different centers and on

different scanners. Moreover, we did not discard lower quality
acquisitions from the study. Despite these heterogeneities the
segmentation module provides valuable aid to clinicians. In
particular, we did not observe evidence of mean differences in
sensitivity of the segmentation module depending on whether
baseline and follow-up data come from the same scanner or
from two different scanners/brands (mean difference = 0.10, p
= 0.44 for “same scanner vs. different scanners,” mean difference
= 0.04, p = 0.77 for “same brand vs. different brands”). This
point must however be mitigated by our sample size that may
be too low to evidence subtle mean differences. Meanwhile, the
rejection rate, i.e., the percentage of candidate lesions detected
by the segmentation module that were rejected by the experts
was moderate (about 10%) and most segmentation masks (about
80%) did not present any false positive lesions. Overall, this
rate must be considered in light of our methodological choices.
Indeed, in this work, we chose to accept the presence of a
reasonable amount of false positives (favoring sensitivity over
specificity). Optimizing the balance between the number of false
negative lesions (increasing experts’ acceptance and comfort) and
the number of true positive lesions (decreasing the probability to
miss a new lesion) may consist of interesting future directions.
In particular the segmentation module, and especially the post-
processing rules that drive most of this balance, could be
modified for this purpose. This optimization could also depend
on acquisition characteristics (e.g., acquisition signal-to-noise
ratio, scanner brand) to reduce potential effect of these factors
on performance.

It is worth noting that we do not think these results are
intrinsically related to our segmentation module. Indeed, while
being built on state-of-the-art solutions and exhibiting satisfying
performances, it may be replaced by other recent methods
of the literature [e.g., (7–10)]. Our aim is not to show the
superiority of our segmentation module but to evidence the
potential impact of using state-of-the-art segmentation methods
on MS clinical practice.

Using a New Lesion Segmentation Mask
Was Well-Received by the Experts
Importantly, all three experts reported a satisfying and
comfortable reading experience when using the segmentation
mask as an aid, especially with the full workflow (Experiment
2). Additionally, for each of them, the time spent to analyze
the images was significantly reduced in the second phase of
the experiments.

More specifically, the three experts were satisfied by the
information provided by the segmentation masks and reported
that the segmentation module offered very good performances.
While this result is satisfactory, it also raises issues related to
the confidence to place in these segmentation masks, especially
regarding their potential lack of sensitivity. As an example, in
the second phase of our first experiment, expert 3 only added
1 supplemental lesion to those proposed by the segmentation
module, while being the expert exhibiting the highest gain of
processing time between Phase 1 and Phase 2. While on average,
the performances of expert 3 were notably superior with the
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MUSIC workflow than without, this observation also suggests a
risk for the experts to place too much trust into the automated
outputs. We think that ways to mitigate such risk, such as
confidence intervals or uncertainty estimation (10, 29), have to
be considered in future methodological developments.

Automated New Lesion Segmentation
Tools May Have Substantial Consequences
on the Therapeutic Management of MS
Patients
Beyond lesion-wise statistics, our results suggest that the use
of segmentation masks has also consequences at the patient
level. Indeed, in the first experiment, it allows each expert to
identify three to five supplementary active MS patients (i.e.,
with at least one new lesion on MRI). This result, which may
seem important, should be interpreted in relation to our dataset,
including particularly active patients. This high activity rate is
well-explained by our inclusion criteria, selecting patients at the
early stage of the disease.

Moreover, it would be interesting to evaluate the consequences
on patient management by the clinician (in particular with
respect to potential treatment changes). Indeed, the appearance
of new lesions under treatment is recognized as being prognostic
of an increased risk of clinical relapse and of disability
progression. It consequently often leads to a change of treatment
in clinical practice (30, 31). This point could be evaluated in
a future study including the neurologists in charge of these
patients. In the longer term, the objectives would be to evaluate
the impact of such a tool on the evolution of disability in patients
and on the costs of managing the disease. Finally, it would be
interesting to evaluate this workflow from the patient’s point of
view. There is indeed a potential added-value of a straightforward
visualization enhancing new lesions to facilitate the clinician-
patient dialogue, especially to argue for a change of DMT.

Limits and Perspectives
Our study has several limitations that need to be discussed. First,
our evaluation must be interpreted in light of our population,
which exhibits a high prevalence of new lesions due to our
inclusion criteria. Indeed, we voluntarily put ourselves in a
setting where the inter-expert and intra-expert variabilities are
exacerbated and, as a consequence, where a computer-guided
aid is likely to offer a high added-value. If the number of
active patients had been lower, we can reasonably assume that
average expert performances without the computer-guided aid
would have been better and that the resulting added-value of our
workflow would have been less pronounced.

Secondly, all FLAIR, T2-w, and T1-w images were used
as input to the automatic lesion detection module. These 3
sequences correspond to those currently recommended in the
OFSEP protocol in France (6) and are mostly performed in
clinical routine for the follow-up of MS patients. However, in
some cases, due to time constraints, some of these sequences are
not acquired. Our segmentation module therefore needs to be
adapted and evaluated to deal with this configuration.

Thirdly, while it is consistent with that used in other studies
(26, 32), our evaluation sample size (54 patients) is limited. It
will be interesting to evaluate our workflow and confirm our
results on a larger sample from all centers involved in the follow-
up of MS patients in our region. Moreover, some MRI scanners
are under-represented in our sample (as GE scanners) and the
size of our cohort did not allow us to analyze the performance
of our tool by subgroup, e.g., according to the type of MRI
scanners used. Despite these limitations, overall, the added value
of our segmentation module compared to a standard radiological
reading appears clearly significant, both on the number of lesions
detected and on the time to perform this task.

Fourth, the fact that all readings were firstly performed
without assistance (phase 1) and secondly using the segmentation
mask as an aid (phase 2) may have introduced a bias that would
have been reduced by using a dedicated design. However, we are
confident about the lack of such substantial bias. Indeed, a 2-
week period was included between the two phases and this period
consisted, for each expert, of a dense clinical and radiological
activity. Moreover, the number of data analyzed was consequent
and the order of analysis of the patients was different between the
two readings.

Fifth, our segmentation module could be improved following
recent methodological advances. In particular, a two-path
encoder that extracts hierarchical features for each time-point
separately, while allowing for an exchange of information at
certain levels of abstraction, might be explored in the future (33).
In parallel, the design of methods using both a joint analysis of
the baseline and follow-up acquisitions (as in the present work)
and an analysis of each cross sectional segmentation probability
maps, obtained from dedicated algorithms, could maximize
the use of the information available in the different annotated
databases (34, 35). In particular, these latter segmentation
probability maps could be obtained estimating the confidence
maps associated with the presence of lesions (10), that have
already shown their interests to detect new MS lesions.

Sixth, our experiments were limited to follow-up with two
time points and did not include settings with more time
points. Our workflow can actually deal with such settings by
processing the data sequentially, using the first baseline images as
reference target for registration, and performing segmentations
independently for each consecutive pair of acquisition sessions.

Finally, in our study, we mainly evaluated our workflow at
the lesion scale. Evaluating the impact of such workflow at the
patient scale, and in particular its consequences on patient’s
management (continuation or change of treatment, effect on
disability progression for example) is a final objective that we
did not fully address in this study and constitutes the future
directions of our work.

CONCLUSION

The workflow proposed in this paper consists of a fully-
integrated and user-friendly computer-aided MRI reading
system, potentially accessible to all neurologists and
radiologists in a given area. Importantly, the aid provided
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by the segmentation module significantly improved both
the number of new FLAIR lesions detected by MRI-readers,
including highly experienced ones, the number of patients
classified as having active disease, and the time spent
interpreting follow-up MRIs. These results should make us
think about how to widely disseminate such workflows, to
allow an optimized follow-up for all MS patients wherever
they are followed and whatever the level of expertise of
their clinicians.
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Objective: Reliable quantification of white matter hyperintensities (WHMs) resulting

from cerebral small vessel diseases (CSVD) is essential for understanding their clinical

impact. We aim to develop and clinically validate a deep learning system for automatic

segmentation of CSVD-WMH from fluid-attenuated inversion recovery (FLAIR) imaging

using large multicenter data.

Method: A FLAIR imaging dataset of 1,156 patients diagnosed with CSVD associated

WMH (median age, 54 years; 653 males) obtained between September 2018 and

September 2019 from Beijing Tiantan Hospital was retrospectively analyzed in this study.

Locations of CSVD-WMH on the FLAIR scans were manually marked by two experienced

neurologists. Using the manually labeled data of 996 patients (development set), a

U-shaped novel 2D convolutional neural network (CNN) architecture was trained for

automatic segmentation of CSVD-WMH. The segmentation performance of the network

was evaluated with per pixel and lesion level dice scores using an independent internal

test set (n = 160) and a multi-center external test set (n = 90, three medical centers).

The clinical suitability of the segmentation results, classified as acceptable, acceptable

with minor revision, acceptable with major revision, and not acceptable, was analyzed

by three independent neuroradiologists. The inter-neuroradiologists agreement rate was

assessed by the Kendall-W test.

Results: On the internal and external test sets, the proposed CNN architecture

achieved per pixel and lesion level dice scores of 0.72 (external test set), and they

were significantly better than the state-of-the-art deep learning architectures proposed

for WMH segmentation. In the clinical evaluation, neuroradiologists observed the

segmentation results for 95% of the patients were acceptable or acceptable with a

minor revision.

Conclusions: A deep learning system can be used for automated, objective, and

clinically meaningful segmentation of CSVD-WMH with high accuracy.

Keywords: masking white matter hyperintensities, deep learning, neural network, segmentation, clinical

evaluation
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INTRODUCTION

White matter accounts for approximately half of the adult
cerebral hemisphere volume, and it primarily contains
myelinated axons that connect various gray matter areas of
the cerebral cortex and subcortical regions with each other
(1). White matter lesions damage this connectivity, leading

to an interruption in communication between different
functional areas, which ultimately manifests in a form of various

neurobehavioral disorders (1, 2).
White matter hyperintensity (WMH), or leukoaraiosis are

characteristic lesions of the white matter that appear as
hyperintense regions on the fluid-attenuated inversion recovery
(FLAIR) magnetic resonance images (MRI) (3–6). Clinically,
WMHs can be caused by many conditions, such as plaque
accumulation in the white matter small vessels, small vessel
inflammation, toxicity after medication use, genetic white matter

diseases, infections, demyelinating diseases, metabolic diseases,
tumors, brain trauma, and persistent chronic damage in white
matter small vessels (4). Matsue and others considered that these
imaging findings correspond to a series of histological changes.
For example, histological analysis revealed that the ventricle’s
high signal corresponded to a pale myelin sheath, perivascular
proliferation, a discontinuous inner layer of ependyma, and
increased subependymal glia. The hyperintensity in the deep
and subcortical white matter has been primarily observed as a
result of the pale myelin sheath and perivascular hyperplasia.
Perivascular hyperplasia has been mainly found in the frontal
and/or apical subcortical white matter (4, 7–13). The diameter
of hyperplastic areas was usually <3mm and had an obvious
boundary. The diffused white matter lesions (WMLs) in
Binswanger’s disease are characterized by a pale myelin sheath
and tissue thinning due to the loss of myelin sheaths and axons.
All of the above WMLs show different degrees of arteriosclerosis
(12, 13).

Although WMLs are closely related to cerebrovascular
diseases and vascular risk factors, their pathogenesis remains
largely unclear and they can be caused by multiple factors (14).
WMHs have been observed to be the main manifestation of
cerebral small vessel disease (SVD) and they are important
factors in the indication of stroke, dementia, and aging (7–13).
Additionally, WMHs have been observed to be prevalent in aged
people (15).

At present, the Age-related White Matter Changes
(ARWMC), Fazekas, modified Scholten’s, and Ylikoski scales are
widely used in clinical practice (16–18). Existing quantitative
methods are time-consuming, laborious, and subjective.
Currently, deep convolutional neural networks (CNNs) have
been shown to be useful and effective in medical applications.
Thus, a highly accurate system for automatic segmentation of
WMH aid neuroradiologists in timely quantitative assessment of
WMH and significantly reduce the time required for diagnoses
(4, 19–22).

In this work, we propose a deep learning system (DLS) for
efficient, objective, and automatic prediction of WMH from the
FLAIR images. We compare the proposed DLS with the state-of-
the-art deep learning architectures and validate its performance

using two independent multi-center test datasets. Finally, to
analyze the clinical utility of the proposed DLS and check
its acceptance by clinicians, we perform a qualitative analysis
whereby three clinical neuroradiologists assess the accuracy and
quality of the WMH segmentation on four levels, viz: acceptable,
acceptable with minor revision, acceptable with major revision,
and not acceptable.

MATERIALS AND METHODS

The study was approved by the Ethics Committee of the Beijing
Tiantan Hospital in accordance with the Helsinki Declaration.
Written informed consent from the participants was not required
for participation in this study.

Study Design and Participants
This study retrospectively analyzed the data from 1,156 patients
diagnosed with the CSVD associated WMH admitted to
the Beijing Tiantan Hospital between September 2018 and
September 2019. The patients with a mention of WMH in their
electronic health records (EHRs) were reviewed by clinicians
for the presence of WMH and the patients with confirmed
WMH were included in this analysis. Patients with poor FLAIR
image quality were excluded from the analysis. The included
patients were randomly divided into a development dataset (n
= 996, ∼85% of the data) and an independent internal test
dataset (n = 160). Furthermore, for external validation of the
segmentation performance, 90 randomly selected patients with
clinically diagnosedWMH from the Third China National Stroke
Registry (CNSR-III) study were included in the analysis as an
external test dataset.

Data Distribution
MRI Acquisition
All the patients were reviewed for the availability of good quality
FLAIR images. The scans were acquired from multiple different
scanners with a field strength of either 1.5T or 3T according to the
clinically used FLAIR collection protocol. The analyzed images
had an axial thickness between 0.55 and 1.2mm and the sagittal
and coronal view spacings were between 0.43 and 0.9 (equal along
both the planes).

Manual Annotation of the WMH
In total, we included 34,228 T2-FLAIR images from
1,156 patients from Beijing Tiantan Hospital with labeled
segmented WMHs. In this data set, we labeled 12,087 small
leukoencephalopathies (<20 plex∗spacing), 14,759 medium
leukoencephalopathies (between 20 and 150 plex∗spacing) and
4,003 large leukoencephalopathies (over 150 plex∗spacing).

For clinical evaluation data set included 90 patients’ T2-FLAIR
images from three other hospitals across China, which were
included in The Third China National Stroke Registry (CNSR-
III). Additional detailed information about the lesion sizes can
be found in Table 1. Each volumetric MRI had a vertical spacing
between 0.55 and 1.2mm. For each image, the spacing along
the x- and y-directions varied from 0.43∗0.43 to 0.9∗0.9 mm2
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TABLE 1 | Data distribution in the manuscript.

Positive number

DLS development Traning set 870 patients

Validation set 126 patients

Inner test set# 160 patients

Summary 1,156 patients

Clinical evaluation Test data set 90 patients

Summary 1,246 patients

# inner test set used for the code optimizzatio program only.

Test data set used for the clinical evaluation only.

TABLE 2 | Validation Test 1.

Data set Lesion size Percentage

correctly

labeled (n,%)

Dice

Data set 1

Small <20 (plex*spacing) 462 (64.71%)

Medium 20 ∼ 150 (plex*spacing) (80.09%)

Large >150 (plex*spacing) 39 (96.12%) 0.722

Data set 2

Small <20 (plex*spacing) 601 (68.37%)

Medium 20 ∼ 150 (plex*spacing) 909 (82.86%)

Large >150 (plex*spacing) 325 (96.73%) 0.776

Date set 3

Small <20 (plex*spacing) 361 (50.14%)

Medium 20 ∼ 150 (plex*spacing) 425 (68.77%)

Large >150 (plex*spacing) 234 (92.49%) 0.722

between consecutive pixels. The distribution of pixel spacings for
each data set is shown in Table 2.

Development of Deep Learning System for WMH

Segmentation
For automatic segmentation of the WMH, we developed a deep
learning system using the data from the training dataset along
with manual annotations (Figure 1). The deep learning system
consisted of a four layered modified U-Net architecture which
is presented in Figures. The architecture was trained using 996
patients’ data from the development dataset. The model was
designed to predict a 2D lesion mask using 2D axial slices of
FLAIR images. The FLAIR images were first preprocessed by
scaling the global (3D) image intensities to follow a standard
normal distribution (mean of 0, and standard deviation of 1).
Next, images were zero-padded to obtain square-shaped images
in the axial plane. The images were next transformed to have
uniform axial dimensions of 384 × 384 pixels either using
bilinear interpolation (for images with dimensions smaller than
384 × 384 pixels) or using the center crop technique (for images
with dimensions larger than 384 × 384 pixels). The decision to
center crop the larger images was taken to preserve the spatial
resolution of the image which was observed to crucial in the
detection of small lesions.

FIGURE 1 | Flowchart of the distribution of patients in the training and clinical

evaluation steps. The distribution and classification of all samples in each step

was used for the model training and clinical evaluation steps.

The model was trained using the above preprocessed 2D
axial slices of T2 Flair scans (input shape: 384 × 384 × 1)
with an Adam optimizer for 200 epochs using a cross-entropy
loss and a batch size of 32. The initial learning rate was set
to 3 × 10−4. To increase the generalizability of the model,
data augmentation strategies including vertical flip, horizontal
flip, rotation, contrast enhancement, scaling, translation, and
addition of Gaussian noise were randomly applied to the images
during the training process. The learning rate was modulated
based on the dice score on the reserved validation set (n =

126 patients from the development dataset). The learning rate
was reduced by 10% if the validation set dice score did not
improve for 30 consecutive epochs. To avoid model overfitting,
the training was stopped if the validation set dice did not improve
for 60 consecutive epochs. After the completion of training, the
model with the highest dice score on the validation set was
selected as a final segmentation model. This model was then used
for automatic segmentation of WMH in the external and internal
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test datasets. The complete 3D WMH mask for each patient was
computed by concatenating the 2D WMH masks from all the
axial slices.

Performance Evaluation of the DLS
The segmentation performance of the proposedDLSwas assessed
using per-pixel precision, recall, dice score, and accuracy. The
precision was defined as the total number of correctly predicted
WMHpixels divided by the total number of pixels predicted to be
of WMH. The recall was defined as the total number of correctly
predicted WMH pixels divided by the total number of WMH
pixels in the ground truth segmentation. The dice score was
calculated as 2∗precision∗recall/(precision + recall). Also, based
on the precision and recall, the receiver operating characteristics
(ROC) curves were constructed and the area under the ROC
was calculated. All these metrics were calculated for each

patient and final results on the entire dataset were calculated
as the arithmetic mean of the per-patient value. Also, the dice
score was independently calculated for small, medium, and
large lesions.

Also, the dice score is biased toward the correct prediction
of large WMH and by correctly segmenting one large WMH
the model can have a high dice score despite it missing
multiple small WMH. Therefore, considering the importance
of correct segmentation of small WMH, we also employed
a lesion-wise precision, recall, dice score as a performance
measure. In the lesion-wise analysis, a lesion was said to
be correctly identified if at least 40% of the lesioned pixels
were correctly marked by the prediction model. In this
manner, by counting the correctly identified lesions, and
missed lesions, the lesion dice score, precision, and recall
were calculated.

FIGURE 2 | (A) Example cases of white matter hyperintensities (WMHs) labeled manually and by the DLS system. (B) WMH lesion distribution in the training and

validation step. (C) Data distribution in the model development for training and validation.
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Lastly, using the above evaluation metrics, we compared the
segmentation performance of the proposed DLS with the state-
of-the-art WMH segmentation architectures named U-Resnet
and 3D-unet. The architectures were constructed according to
the best settings proposed by the respective authors and were
trained using the same training data as that of the proposed DLS.

Clinical Evaluation of the Proposed DLS
To analyze the clinical utility of the proposed DLS and assess
its acceptance by clinicians, we performed a qualitative clinical

FIGURE 3 | Network architecture of the proposed two-dimensional (2D)

convolutional neural network (CNN). The network has 19 layers integrating

nine Convolution blocks. Bilinear interpolating arrows indicate up sampling

operations to make predictions for the segmentation task. The pool arrow

indicates the down sampling operation to gradually increasing the receptive

field for the segmentation task. Concatenate connections are used to fuse

Multi-scale features in the network. Batch normalization is a linear

transformation of the features performed to reduce the covariance shift, thus

speeding up the training procedure. Convolution bars indicate the convolution

operation, which computes the features. The number 16, 32, 64, 128, 256

indicates the number of channels in that layer, and 3·3·3·3·3·3 denotes the

size of the 2D CNN kernels.

analysis. In this analysis, three expert neuroradiologists with
more than 7 years of experience independently assessed the
WMH segmentation results of the proposed DLS for the
90 patients from the external test set. Each neurologist was
instructed to rate the segmentation quality of the proposed DLS
into four grades, with each of them being defined as:

Grade I (perfectly acceptable, score 4): no missed lesions
and <5% mismatch between the predicted and the ground-
truth lesions.
Grade II (acceptable with minor revision, score 3): small
lesions: 1-4 missed lesions and <10% mismatch for predicted
lesions; medium lesions: <2 missed lesions and <5%
mismatch; large lesions: no missed lesions.
Grade III (acceptable with major revision, score 2): small
lesions: more than four missed lesions and <50% mismatch;
medium lesions: more than two missed lesions. Large lesions:
more than 30% mismatch.

FIGURE 4 | Model performance in terms of the training loss, validation score,

training accuracy and validation accuracy.
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TABLE 3 | Models head-to head analysis (Data set 2)/Correct labled ratio.

Models Small lesions

(879)

Medium lesions

(1,097)

Large lesions

(336)

U-Resnet 551, 62.68% 863, 78.66% 321, 95.54%

3D-unet 365, 41.52% 778, 70.92% 328, 97.62%

Our model 601, 68.37% 909, 82.86% 325, 96.73%

TABLE 4 | Models head-to head analysis.

Our model Our model

no preprocess

U-Resnet 3D-unet

ACC. 0.97 0.906 0.97 0.93

Sensitivity 0.7244 0.5706 0.6024 0.6499

Specificity 0.9989 0.9998 0.9998 0.9997

AUC 0.9959 0.9944 0.9958 0.9896

Grade III (not acceptable, score 1): small lesions: more than
eight missed and more than 50% mismatch; medium lesions:
more than two missed; Large lesions: more than 30% missed
and more than 30% mismatch.

Statistical Analysis
The inter-radiologist agreement rate and the Kendall W
statistic were calculated for each validation using SPSS software
(version 20.0). One-way ANOVA with post hoc Tukey’s test was
applied to assess the differences between each group. Statistical
significance was considered at p < 0.05. ROC curve and AUC
score are performed for the segmentation analysis (https://www.
kaggle.com/kmader/use-roc-curves-to-evaluate-segmentation-
methods).

RESULTS

Baseline Imaging Characteristics
The FLAIR images from the 1,156 patients contained a
total of 34,228 2D axial slices. In these slices, following
manual annotations, a total of 12,087 small, 14,759 medium,
and 4,003 large WMH lesions were identified (Figure 1).
The distribution of the lesion size was observed to be
consistent across the development, internal test, and external
test datasets.

Segmentation Performance of the DSL
To set up the DLS, the images were first labeled manually. In
summary, we manually labeled ∼12,087 small lesions, 14,759
medium lesions, and 4,003 large lesions for training and
validation (Figures 2A-C; Table 2). The network architecture
of the proposed 2D convolutional neural network is shown
in Figure 3. The model quality control parameters could be
fond in Figure 4. More detailed information on the network
can be found in the Network Architecture portion of the
Methods section. After training and validation, the DLS was

FIGURE 5 | (A) Overall framework for the testing stage. (B) Clinical evaluation

of the testing data set and Segmentation model ROC-curve and AUC score

analysis. Number of neuroradiologists are 3. ***P < 0.001.

tested with the testing data set. The accuracy of the DLS-
generated masking is represented in Figures 2A,B, with a Dice
score of 0.87.

In the segmentation of WMH lesions, the proposed DLS
achieved average pixel-wise dice score, precision, and recall of
0.711, 0.789, and 0.647 on the external test set. The lesion wise
dice score, precision, recall, and accuracy achieved by the model
were 0.735, 0.725, and 0.653 on the external test set. Also, the
dice score of the model in segmentation of small, medium, and
large WMH was 0.53, 0.82, and 0.96, respectively. Furthermore,
in the lesion level analysis on the external test set, the model
could correctly identify 61.07, 77.24, and 95.11% of the small,
medium, and large lesions, respectively, and the detailed results
of this analysis are presented in Table 2. A few examples of
WMH segmentation using the proposed system are presented in
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TABLE 5 | Clinical evaluation 1.

Physician 1 Physician 2 Physician 3

Perfect (score 3) 34 33 45

Minor revision (score 2) 54 53 35

Major revision (score 1) 1 3 8

Not acceptable (score 0) 1 1 2

Figure 2. Also, in the segmentation of the WMH, the proposed
DLS achieved a mean AUC of 0.9959 on the external test
dataset (Table 3).

Lastly, the average pixel-wise dice score achieved by the
UresUnet and 3D-unet networks on the external datasets were
0.584, and 0.623, respectively, and these were worse than the
performance of the proposed DLS. Beside the preprocess is also
import in the DLS development. For more detail information
about the models head-to-head analysis in Table 4.

All the testing data are summarized in Tables 2, 3,
representing the relabeling results between the DLS tool and the
experts (percentage correctly labled rato). From the table, we
can see that the manual image labeling is precise and perfectly
matches the contouring with the true signaling. This is because
the labeling tool and pixels could not be well-controlled when
manually drawing the labeling. Thus, the Dice score does not
perfectly reflect the DLS segmentation result. These data can only
support DLS training and validation. Visually, we checked all
the data and found a strong concordance between our DLS and
human experts for lesion contouring but, as mentioned above,
with low Dice scores.

Clinical Assessment of the DLS
Segmentation
The workflow of clinical evaluation (Figure 5) and results of the
clinical acceptability analysis of the DLS are presented in Table 5.
In this analysis, the majority [85 of 90 (94.0%)] of the DLS-
generated segmentations were deemed satisfactory by the experts
(no revision required, n = 37; minor revision, n = 47) (Table 3).
Only four patients were assessed to require major revision, with
two patients having clinically unacceptable segmentation results.
In the assessment of the interrater agreement between the three
neuroradiologists for the 90 test patients, the Kendall W test
produced a score of 0.006 (p = 0.605) indicating a good inter-
rater agreement.

DISCUSSION

In this paper, based on a large dataset of FLAIR images from
more than 1,000 patients and with more than 50,000 lesions,
we trained a DLS for automatic, and objective segmentation of
WMHs. The proposed system was evaluated using pixel-wise and
lesion-wise dice scores on internal and external test datasets. The
results indicated that the proposed DLS achieved a consistent
performance across both the test datasets, indicating good

generalizability in the segmentation of WMH from different data
sources. Furthermore, in the clinical acceptance analysis, with the
95% acceptance rate by the neuroradiologists, the segmentation
results produced by the proposed DLS were observed to have a
high clinical acceptance rate. These results collectively indicate
that the proposed system can be deployed in clinical practice to
quantitatively assess the WMH load in an end-to-end manner
with high accuracy and in significantly reduced analysis time.
Such a system can aid clinicians in fast and accurate assessment
of WMH of the CSVD origin.

Limitation
This retrospective study analyzed the data from multiple
different scanners which could result in a more robust and
better generalizable model. However, our analysis did not
exhaustively include the data from all the scanners and associated
FLAIR image collection protocols, and hence, more extensive
testing of the model, in prospective studies is necessary before
its adaptation for clinical use. Second, our DLS system for
segmentation of WMHs is solely based on MRI-FLAIR imaging
features and it does not include complementary information
that can be provided by other MRI sequences. Therefore, the
possibility of better WMH segmentation using multiple imaging
modalities should be explored in future studies.

CONCLUSION AND CONTRIBUTIONS

This study presented a DLS for the segmentation of WMH. Our
findings indicate that the DLS can segment theWMHs with good
accuracy and significantly smaller analysis time, minimizing the
need for the physicians to perform repetitive tasks associated with
segmentation. Additionally, the DLSmodel can reduce intra- and
inter neuroradiologists’ variation.
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Amultitude of image-based machine learning segmentation and classification algorithms

has recently been proposed, offering diagnostic decision support for the identification

and characterization of glioma, Covid-19 and many other diseases. Even though these

algorithms often outperform human experts in segmentation tasks, their limited reliability,

and in particular the inability to detect failure cases, has hindered translation into

clinical practice. To address this major shortcoming, we propose an unsupervised

quality estimation method for segmentation ensembles. Our primitive solution examines

discord in binary segmentation maps to automatically flag segmentation results that are

particularly error-prone and therefore require special assessment by human readers. We

validate our method both on segmentation of brain glioma in multi-modal magnetic

resonance - and of lung lesions in computer tomography images. Additionally, our

method provides an adaptive prioritization mechanism to maximize efficacy in use

of human expert time by enabling radiologists to focus on the most difficult, yet

important cases while maintaining full diagnostic autonomy. Our method offers an

intuitive and reliable uncertainty estimation from segmentation ensembles and thereby

closes an important gap toward successful translation of automatic segmentation into

clinical routine.
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1. INTRODUCTION

Advances in deep learning for segmentation have facilitated
the automated assessment of a variety of anatomies and
pathologies in medical imaging. In particular for glioma,
automatic segmentation has shown great promise as a basis for
objective assessment of tumor response (Kickingereder et al.,
2019). In segmentation challenges such as BraTS (Menze et al.,
2015), VerSe (Sekuboyina et al., 2021) and LiTS (Bilic and
et al., 2019) virtually all top-performing solutions are based
on ensembling. Recent efforts such as HD-GLIO (Kickingereder
et al., 2019; Isensee et al., 2021), GaNDLF (Pati et al., 2021),
and BraTS Toolkit (Kofler et al., 2020) have paved the way
to apply state-of-the-art deep-learning ensembles in clinical
practice. Even though algorithms often outperform human
readers (Kofler et al., 2021), algorithmic reliability remains
a major obstacle toward safe implementation of automated
segmentation (and hence volumetry) into clinical routine
(D’Amour et al., 2020). Researchers in the field of Out-of-
Distribution (OOD) detection try to address this shortcoming
by discovering systematic patterns within convolutional neural
networks (CNN) (Schölkopf et al., 2001; Jungo et al., 2018;
Mehrtash et al., 2020; Berger et al., 2021; Ruff et al., 2021). These
sophisticated anomaly detection methods have the disadvantage
of being limited to CNNs, often specific CNN architectures.

In contrast, we present a primitive, and therefore more
applicable, solution exploiting discord in binary segmentation
maps to estimate segmentation quality in an unsupervised
fashion. We evaluate our method on segmentation of brain
glioma in multi-modal magnetic resonance (MR)—and of
lung lesions in computer tomography (CT) images. Our
method allows detecting error-prone segmentation results, which
require special assessment by human readers. Working only
on binary segmentation maps enables our method to analyze
the segmentations of human readers, classical machine learning,
and modern deep learning approaches interchangeably. As
segmentations are the basis for objective disease assessment as
well as subsequent image analysis, our method addresses an
urgent need for improving the trustworthiness of automatic
segmentation methods. Furthermore, by implementing our
method healthcare providers can streamline efficient use of
human workforce, arguably the most persistent and major
bottleneck in healthcare service worldwide (Krengli et al., 2020;
Starace et al., 2020).

2. METHODS

2.1. Unsupervised Quality Estimation
Figure 1 depicts the quality estimation procedure. By aggregating
and comparing multiple candidate segmentations, cases with
large discordance, therefore a high chance of failure, can be
rapidly identified. In more detail, our method consists of the
following steps:

1. We obtain candidate segmentations from all methods
in an ensemble, and then compute a fusion from the
candidate segmentations.

2. We calculate similarity metrics between the
fused segmentation result and the individual
candidate segmentations.

3. We obtain the threshold for setting an alarm value by
subtracting the median absolute deviation (mad) of the
similarity metric times the tunable parameter α from its
median value. This happens individually for each candidate
image. We prefer the median based statistics for their better
robustness toward statistical outliers. For metrics that are
negatively correlated with segmentation performance, such as
Hausdorff distance, we propose to use the additive inverse.

4. We set an alarm flag if the individual similarity metric is below
the computed threshold. For infinite (or Nan) values, which
can for instance happen for distance-based metrics such as
Hausdorff distance, alarm flags are raised too.

5. Finally, we accumulate the alarm flags to obtain risk scores and
therefore quality estimation for each image.

The results of this procedure are illustrated in Figure 4. We
hypothesize that a higher count of alarm flags is associated with
worse segmentation quality, here measured by lower volumetric
Dice performance.

2.2. MR Experiment: Multi-Modal Brain
Tumor Segmentation
To test the validity of our approach we use BraTS Toolkit
(btk) (Kofler et al., 2020) to create a segmentation ensemble for
brain glioma in multi-modal magnetic resonance (MR) images.
Therefore, we incorporate five segmentation algorithms (Feng
et al., 2019; Isensee et al., 2019; McKinley et al., 2019, 2020; Zhao
et al., 2019) developed within the scope of the BraTS challenge
(Menze et al., 2015; Bakas et al., 2017a,b,c, 2018). We compute
alarms according to the above procedure based on Dice similarity
and Hausdorff distances.

2.2.1. Fusions and Segmentation Metrics
We fuse the segmentations with an equally weighted majority
voting using btk (Kofler et al., 2020) and compute segmentation
quality metrics with pymia (Jungo et al., 2021). Figure 2

illustrates fusions and individual segmentations with an
example exam.

2.2.2. Data
We evaluate on a dataset of 68 cases capturing the wide diversity
in glioma imaging. Our dataset consists of 15 high-grade glioma
(HGG) from the publicly available Rembrandt dataset (Gusev
et al., 2018), as well as another 25 HGG from TUM university
hospital (MRI TUM). Furthermore, we evaluate 13 low-grade
glioma (LGG) from Rembrandt and 15 from MRI TUM. Two
expert radiologists generated the ground truth segmentations
using ITK-SNAP (Yushkevich et al., 2006) and corrected each
other’s tumor delineations.

2.3. CT Experiment: COVID-19 Lung CT
Lesion Segmentation
For further validation, we compose an ensemble based on
the MONAI challenge baseline (MONAI CORE Team, 2020)
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FIGURE 1 | Quality estimation procedure. After computing fusion from the candidate segmentations, similarity metrics between the fused and the candidate

segmentations are evaluated. Using this information, we obtain threshold values by subtracting the median absolute deviation (mad) of similarity metrics times the

tunable parameter α from their median value. We set an alarm flag if the individual similarity metric is below the computed threshold, for example:

median(Dice)−mad(Dice) ∗ α.

developed for the COVID-19 Lung CT Lesion Segmentation
Challenge - 2020 (Clark et al., 2013). To segment lung lesions in
computer tomography (CT) images, the code implements a 3d-
Unet inspired by Falk et al. (2019). q2a1We first train the original
baseline for 500 epochs. Then we generate a small ensemble of
three networks by warmstarting the training with the baseline’s
model weights and replacing the following parameters for the
respective model for training another 500 epochs:

To obtain our first model (ADA) we swap the baseline’s

original Adam optimizer to AdamW (Loshchilov and
Hutter, 2019). In a similar fashion, the second model (RAN)

utilizes Ranger (Wright, 2019) to make use of Gradient

Centralization (Yong et al., 2020). Our third model (AUG)
adds an augmentation pipeline powered by batchgenerators

(Isensee et al., 2020), torchio (Pérez-García et al., 2020), and
native MONAI augmentations. In addition we switch the
optimizer to stochastic gradient descent (SGD) with momentum
(momentum= 0.95).

Our metric for training progress is the volumetric Dice
coefficient. All networks are trained with an equally weighted

Dice plus binary cross-entropy loss. The training is stopped once
we observe no further improvements for the validation set. We
conduct model selection by choosing the respective model with
the best volume Dice score on the validation set. The code for the
CNN trainings is publicly available via GitHub (***censored to
maintain the double blind review process***).

2.3.1. Fusions and Segmentation Metrics
To unify the individual outputs of our ensembles’ components
to a segmentation mask we choose SIMPLE (Langerak et al.,
2010) fusion. SIMPLE is an iterative fusion method introduced
by Langerak et al., which tends to outperform generic majority
voting across various segmentation problems. An example
segmentation for one exam is illustrated in Figure 3. We
generate SIMPLE fusions using BraTS Toolkit (Kofler et al.,
2020) and generate alarms for Dice scores calculated with pymia
(Jungo et al., 2021). Segmentation quality metrics, in particular
volumetric Dice coefficient and Hausdorff distances, for the test
set are obtained through the challenge portal (COVID Challenge
Team, 2021).
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FIGURE 2 | Exemplary glioma segmentation exam with multi-modal MR. Segmentations are overlayed on T1, T1c, T2, FLAIR images for the tumor’s center of mass,

defined by the tumor core (necrosis and enhancing tumor) of the ground truth label. The segmentation outlines represent the tumor core labels, meaning the sum of

enhancing tumor and necrosis labels. Top: the four input images without segmentation overlay; Middle: ground truth segmentation (GT ) in reddish purple vs. majority

voting fusion (mav) in bluish green; Bottom: mav fusion in bluish green vs. individual segmentation algorithms in various colors. Notice the small outliers encircled in

pink on the frontal lobe which probably contribute to the raise of 3 Dice - and 4 Hausdorff distance based alarms for this particular exam with a mediocre volumetric

Dice similarity coefficient with the ground truth data of 0.66.

2.3.2. Data
We run our experiments on the public dataset of the COVID-
19 Lung CT Lesion Segmentation Challenge - 2020 (COVID
Challenge Team, 2021), supported by the Cancer Imaging
Archive (TCIA) (Clark et al., 2013).

2.4. Calibration of Alpha (α)
The α parameter can be fine-tuned to account for different
optimization targets and adjusted dynamically depending on
workload, e.g., in an extreme triage scenario, an alarm flag could
only be raised for the strongest outliers, hence a high α should be
chosen. Once the situation has been amended, α can be reset to a
smaller value, resulting in a more sensitive failure prediction.

With the default value α = 0 the threshold is set to the
median. Therefore, approximately half of the cases will trigger an
alarm for each metric. Alternatively, alpha can be automatically
adjusted to maximize the Pearson correlation coefficient with a
segmentation quality metric or entropy, or combinations thereof.
Tables 1, 2 illustrate how the distributions of alarm counts
correlate with Dice performance and the resulting entropy in
response to variations in α.

Note that α can also be adjusted for each segmentation target
class, as well as, each of the ensemble’s components, and for
each similarity metric on an individual basis to fine-tune the
quality estimation toward specific needs. For instance, hence the
enhancing tumor label is of higher clinical relevance for glioma
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FIGURE 3 | Example Covid-19 lung lesion segmentation exams with CT images. Segmentations are overlayed for the lesions’ center of mass, defined by the slice

with most lesion voxels: Left: the empty input images; Middle: SIMPLE segmentation fusion (simple) in bluish green; Right: SIMPLE fusion in bluish green vs.

individual segmentation algorithms in various colors. The volumetric Dice similarity coefficients with the ground truth and respective alarm counts are as following: Top

row: 0.81, 0; Middle row: 0.58, 2; Last row: 0.14, 3.

TABLE 1 | Distribution of alarm counts depending on α for the MR experiment: The table illustrates the number of images classified in the individual alarm count

categories (a) from 0 to 10; for different values of α.

Alpha Entropy r:dice r:hd 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

−3.00 −0.00 NA NA 0 0 0 0 0 0 0 0 0 0 68

−2.00 0.22 NA 0.04 0 0 0 0 0 0 0 0 0 4 64

−1.00 1.28 −0.27 −0.2 0 0 0 1 0 2 2 5 5 13 40

−0.75 1.80 −0.55 −0.27 0 0 1 3 4 2 10 5 4 14 25

−0.50 2.02 −0.63 −0.3 0 6 1 3 5 4 11 1 10 8 19

−0.25 2.33 −0.7 −0.38 3 5 4 5 7 4 6 7 8 7 12

−0.10 2.37 −0.73 −0.41 7 4 4 6 4 7 7 8 7 6 8

0.00 2.35 −0.76 −0.45 9 5 7 4 4 6 6 8 8 3 8

0.10 2.30 −0.77 −0.46 9 6 10 3 6 7 2 9 5 3 8

0.25 2.28 −0.77 −0.51 11 7 12 3 2 7 3 8 5 5 5

0.50 2.23 −0.78 −0.59 15 11 8 3 2 4 5 8 4 4 4

0.75 2.06 −0.73 −0.59 18 13 7 3 1 5 6 7 2 6 0

1.00 1.97 −0.72 −0.58 23 12 3 3 2 6 8 6 3 2 0

2.00 1.71 −0.66 −0.55 30 10 6 4 3 8 2 5 0 0 0

3.00 1.40 −0.65 −0.52 37 11 4 1 3 10 1 1 0 0 0

Additionally, we depict the Pearson correlation coefficients for the Dice (r:dice) - and Hausdorff distance (r:hd) based alarm counts with volumetric Dice segmentation performance, as

well as the respective alarm count distribution’s entropy. The selected value for α of 0.1 is highlighted in pink The resulting computed thresholds are depicted in Table 3.

(Weller et al., 2014), one might consider setting the associated
thresholds to more conservative values using a smaller alpha.

For simplicity, we set parameter α to 0.1 for each class,
component and metric in our analysis. This results in a slightly
less conservative failure prediction compared to the default.

3. RESULTS

Our method accurately predicts the segmentation performance

in both experiments and is able to capture segmentation

failures. Even though our code is not optimized for speed, the
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TABLE 2 | Distribution of alarm counts depending on α for the CT experiment:

The table illustrates the number of images classified in the individual alarm count

categories (a) from 0 to 3; for different values of α.

Alpha Entropy r:dice 0a 1a 2a 3a

−3.00 −0.00 NA 0 0 0 46

−2.00 −0.00 NA 0 0 0 46

−1.00 0.58 −0.45 0 3 5 38

−0.75 0.88 −0.56 5 2 6 33

−0.50 1.19 −0.67 6 7 8 25

−0.25 1.32 −0.64 10 7 10 19

−0.10 1.36 −0.73 12 8 11 15

0.00 1.37 −0.7 13 8 14 11

0.10 1.37 −0.7 15 10 11 10

0.25 1.33 −0.62 18 9 11 8

0.50 1.20 −0.61 23 6 12 5

0.75 1.17 −0.69 25 9 8 4

1.00 1.13 −0.71 26 10 6 4

2.00 0.86 −0.67 33 8 2 3

3.00 0.66 −0.62 37 6 1 2

Additionally, we depict the Pearson correlation coefficients for the Dice (r:dice) based alarm

counts with volumetric Dice segmentation performance, as well as the respective alarm

count distribution’s entropy. The selected value for α of 0.1 is highlighted in pink. The

resulting computed Dice similarity thresholds are as following: ADA: 0.9489; RAN: 0.9446;

AUG: 0.9024.

computation of the fused segmentation masks, similarity metrics
and resulting alarm counts is a matter of seconds. Quantitative
metrics for the MR and CT experiment are summarized in
Figure 4.

3.1. MR Experiment
Setting α to 0.1 leads to an even distribution across alarm
count groups, (see Tables 1, 3). Figure 4A plots the average Dice
coefficients across the tumors labels: enhancing tumor, necrosis
and edema against the alarm count. We observe a strong negative
correlation between segmentation performance and increasing
alarm count: Pearson’s r = −0.72, p = 3.874e-12. This is also
reflected in the Hausdorff distance, (see Figure 4B).

3.2. CT Experiment
Choosing an α of 0.1 leads to an even distribution across alarm
count groups, (see Table 2). Figure 4C plots Dice coefficients1

on the challenge test set against alarm count. As for the
MR experiment, we find a strong negative correlation between
segmentation performance and increasing alarm count: Pearson’s
r = -0.70, p-value = 4.785e-08. As observed before, this effect is
mirrored by the Hausdorff distance, (see Figure 4D).

1Our basic ensemble reaches a median volumetric Dice score of 0.67. We observe

a wide performance distribution with a minimum of 0, a maximum of 0.93 and a

standard deviation of 0.25 around a mean of 0.61, as displayed in Figure 4C. With

regard to volumetric Dice coefficients mainly low-performing outliers separate our

method from the top-performing methods in the challenge.

4. DISCUSSION

It is important to note that, the validity of our method is
closely tied to the chosen evaluation metrics’ representation
of segmentation performance (Kofler et al., 2021). For
our experiments, we evaluate the volumetric Dice score
and Hausdorff distance. Based on this fundamental
assumption, we provide an unsupervised quality estimation for
segmentation ensembles that does not perform any background
diagnostic decisions and fully maintains the radiologists’
diagnostic autonomy.

We demonstrate efficacy for two different use cases, namely
multi-modal glioma segmentation in brain MR and Covid-19
lesion segmentation in lung CT images. The sensitivity of our
method can be fine-tuned to specific requirements by adjusting
α for ensemble components, classes, and segmentation quality
metrics. Additionally, the low computational requirements make
it easy to integrate into existing pipelines as computing the alarms
takes only seconds and creates very little overhead.

Even though there are various efforts, such as the BraTS
algorithmic repository2, to facilitate clinical translation of
state-of-the-art segmentation algorithms, quality estimation
mechanisms represent a currently unmet, yet important
milestone on the road toward reliably deploying deep learning
segmentation pipelines in clinical practice. The proposed
solution can assist clinicians in navigating the plethora of exams,
which have to be reviewed daily. It provides a neat prioritization
mechanism, maximizing the efficient use of human expert time,
by enabling focus on the most difficult, yet important cases.

It is important to note further limitations of our method.
First of all, it can only be applied to model ensembles and
not to single algorithms. However, as most top-performing
segmentation solutions employ ensembling techniques there is a
broad field of potential application. Second, the computation of
alarms relies on discordance in the ensemble. If all components
of the ensemble converge to predicting the same errors they
cannot be detected. Notably, we did not observe such a case in
our experiments, even though our CT segmentation ensemble
featured only three models employing the same architecture and
little variation in training parameters. As ourmethod profits from
bigger ensembles and more variations in the network training,
one could argue that our experiment is probably more difficult
than most real-world scenarios. Along these lines, Roy et al.
(2019) activated dropout during inference and Fort et al. (2020)
demonstrated that it might be enough to choose different random
initialization to achieve variance in network outputs. Third, even
though the default value of α, 0 and 0.1, which we chose for
demonstration purposes, performed well in our experiments,
there might be segmentation problems for which α needs to be
manually fine-tuned.

Future research could investigate whether α how global
thresholding, instead of the proposed individual thresholding
per algorithm, affects the results. It should also be explored
whether the methodology can be improved by including further

2https://www.med.upenn.edu/sbia/brats2017/algorithms.html
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FIGURE 4 | Segmentation performances vs. alarm counts. The group means are illustrated with horizontal black lines. For display purposes only the 0–95 percent

quantile is displayed for Hausdorff distances on the y-axis. In line with the performance of the volumetric Dice coefficient, Hausdorff distances increase with increasing

alarm count. Infinite values for Hausdorff distances, which can happen when ground truth or prediction are empty, are excluded from the plot. Subplots (A) + (B)

illustrate findings for the MR experiment, while subplots (C) + (D) depict results for the CT experiment.

TABLE 3 | Thresholds computed with α = 0.1 for the MR experiment per

algorithm: The columns Dice and Hausdorff depict, the respective volumetric Dice

and Hausdorff distance based thresholds for the alarm computation for each of

the segmentation algorithms.

Algorithm Citation Dice Hausdorff

micdkfz Isensee et al., 2019 0.9055 10.2277

xfeng Feng et al., 2019 0.9092 8.9835

scan2019 McKinley et al., 2020 0.9147 8.8292

scan McKinley et al., 2019 0.9084 10.4850

zyx Zhao et al., 2019 0.9293 8.4451

segmentation metrics and to which extend it generalizes to other
segmentation problems.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. The
CT data can be found here: https://covid-segmentation.grand-
challenge.org/data/. The MR data will be published at: https://
neuronflow.github.io/btk_evaluation/.

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required for this study in accordance
with the national legislation and the institutional requirements.
Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.

AUTHOR CONTRIBUTIONS

FK, IE, and LF contributed to conception and design of the study.
FK, IE, CP, and JP wrote the first draft of the manuscript. All
authors contributed to manuscript revision, read, and approved
the submitted version.

FUNDING

The annotation of the dataset was made possible through
the joint work of Children’s National Hospital, NVIDIA, and

Frontiers in Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 75278079

https://covid-segmentation.grand-challenge.org/data/
https://covid-segmentation.grand-challenge.org/data/
https://neuronflow.github.io/btk_evaluation/
https://neuronflow.github.io/btk_evaluation/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kofler et al. Robust, Primitive, and Unsupervised Quality Estimation

National Institutes of Health for the COVID-19-20 Lung CT
Lesion Segmentation Grand Challenge. BM, BW, and FK are
supported through the SFB 824, subproject B12. Supported
by Deutsche Forschungsgemeinschaft (DFG) through TUM
International Graduate School of Science and Engineering
(IGSSE), GSC 81. LF, SS, and IE are supported by the
Translational Brain Imaging Training Network (TRABIT) under
the European Union’s Horizon 2020 research & innovation
program (Grant agreement ID: 765148). With the support of
the Technical University of Munich - Institute for Advanced
Study, funded by the German Excellence Initiative. JP and
SS are supported by the Graduate School of Bioengineering,
Technical University of Munich. Research reported in this
publication was partly supported by the National Cancer

Institute (NCI) and the National Institute of Neurological
Disorders and Stroke (NINDS) of the National Institutes
of Health (NIH), under award numbers NCI:U01CA242871
and NINDS:R01NS042645. The content of this publication
is solely the responsibility of the authors and does not
represent the official views of the NIH. Research reported
in this publication was partly supported by AIME GPU
cloud services.

ACKNOWLEDGMENTS

We would like to thank the YouTube channel Primitive
Technology for inspiration regarding the manuscript’s title
and methodology.

REFERENCES

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al. (2017a).

Segmentation Labels and Radiomic Features for the Pre-operative Scans of the

TCGA-GBM Collection. The Cancer Imaging Archive.

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al. (2017b).

Segmentation Labels and Radiomic Features for the Pre-operative Scans of the

TCGA-LGG Collection. The Cancer Imaging Archive.

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J. S.,

et al. (2017c). Advancing the cancer genome atlas glioma MRI collections

with expert segmentation labels and radiomic features. Sci. Data 4:170117.

doi: 10.1038/sdata.2017.117

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al. (2018).

Identifying the bestmachine learning algorithms for brain tumor segmentation,

progression assessment, and overall survival prediction in the brats challenge.

arXiv preprint arXiv:1811.02629.

Berger, C., Paschali, M., Glocker, B., and Kamnitsas, K. (2021). Confidence-based

out-of-distribution detection: a comparative study and analysis. arXiv preprint

arXiv:2107.02568. doi: 10.1007/978-3-030-87735-4_12

Bilic, P., Christ, P. F., Vorontsov, E., Chlebus, G., Chen, H., Dou, Q., et al.

(2019). The liver tumor segmentation benchmark (LiTS). arXiv preprint

arXiv:1901.04056.

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., et al.

(2013). The Cancer Imaging Archive (TCIA): maintaining and operating

a public information repository. J. Digit. Imaging 26, 1045–1057.

doi: 10.1007/s10278-013-9622-7

COVID Challenge Team (2021). COVID Challenge. Available online at: https://

covid-segmentation.grand-challenge.org/Data/

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A.,

et al. (2020). Underspecification presents challenges for credibility in modern

machine learning. arXiv preprint arXiv:2011.03395.

Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., et al.

(2019). U-Net: deep learning for cell counting, detection, and morphometry.

Nat. Methods 16, 67–70. doi: 10.1038/s41592-018-0261-2

Feng, X., Tustison, N., and Meyer, C. (2019). “Brain tumor segmentation using an

ensemble of 3DU-Nets and overall survival prediction using radiomic features,”

in International MICCAI Brainlesion Workshop, eds A. Crimi, S. Bakas, H.

Kuijf, F. Keyvan, M. Reyes, and T. van Walsum (Cham: Springer), 279–288.

doi: 10.1007/978-3-030-11726-9_25

Fort, S., Hu, H., and Lakshminarayanan, B. (2020). Deep ensembles: a loss

landscape perspective. arXiv preprint arXiv:1912.02757.

Gusev, Y., Bhuvaneshwar, K., Song, L., Zenklusen, J.-C., Fine, H., and Madhavan,

S. (2018). The rembrandt study, a large collection of genomic data from brain

cancer patients. Sci. Data 5:180158. doi: 10.1038/sdata.2018.158

Isensee, F., and et al. (2019). “No new-net,” in International MICCAI Brainlesion

Workshop (Cham: Springer), 234–244. doi: 10.1007/978-3-030-11726-9_21

Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., and Maier-Hein, K. H. (2021).

NNU-Net: a self-configuring method for deep learning-based biomedical

image segmentation. Nat. Methods 18, 203–211. doi: 10.1038/s41592-020-

01008-z

Isensee, F., Jager, P., Wasserthal, J., Zimmerer, D., Petersen, J., Kohl, S., et al.

(2020). Batchgenerators - A Python Framework for Data Augmentation.

doi: 10.5281/zenodo.3632567

Jungo, A., Meier, R., Ermis, E., Herrmann, E., and Reyes, M. (2018).

Uncertainty-driven sanity check: application to postoperative brain tumor

cavity segmentation. arXiv preprint arXiv:1806.03106.

Jungo, A., Scheidegger, O., Reyes, M., and Balsiger, F. (2021). pymia: a

python package for data handling and evaluation in deep learning-

based medical image analysis. Comput. Methods Prog. Biomed. 198:105796.

doi: 10.1016/j.cmpb.2020.105796

Kickingereder, P., Isensee, F., Tursunova, I., Petersen, J., Neuberger, U., Bonekamp,

D., et al. (2019). Automated quantitative tumour response assessment of mri

in neuro-oncology with artificial neural networks: a multicentre, retrospective

study. Lancet Oncol. 20, 728–740. doi: 10.1016/S1470-2045(19)30098-1

Kofler, F., Berger, C., Waldmannstetter, D., Lipkova, J., Ezhov, I., Tetteh, G.,

et al. (2020). Brats toolkit: translating brats brain tumor segmentation

algorithms into clinical and scientific practice. Front. Neurosci. 14:125.

doi: 10.3389/fnins.2020.00125

Kofler, F., Ezhov, I., Isensee, F., Balsiger, F., Berger, C., Koerner, M., et al. (2021).

Are we using appropriate segmentation metrics? Identifying correlates of

human expert perception for cnn training beyond rolling the dice coefficient.

arXiv preprint arXiv:2103.06205.

Krengli, M., Ferrara, E., Mastroleo, F., Brambilla, M., and Ricardi, U. (2020).

Running a radiation oncology department at the time of coronavirus: an

Italian experience. Adv. Radiat. Oncol. 5, 527–530. doi: 10.1016/j.adro.2020.

03.003

Langerak, T. R., van der Heide, U. A., Kotte, A. N., Viergever, M. A., Van Vulpen,

M., and Pluim, J. P. (2010). Label fusion in atlas-based segmentation using

a selective and iterative method for performance level estimation (SIMPLE).

IEEE Trans. Med. Imaging 29, 2000–2008. doi: 10.1109/TMI.2010.2057442

Loshchilov, I., and Hutter, F. (2019). Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101.

McKinley, R., Meier, R., and Wiest, R. (2019). “Ensembles of densely-

connected cnns with label-uncertainty for brain tumor segmentation,” in

International MICCAI Brainlesion Workshop, eds A. Crimi, S. Bakas, H.

Kuijf, F. Keyvan, M. Reyes, and T. van Walsum (Cham: Springer), 456–465.

doi: 10.1007/978-3-030-11726-9_40

McKinley, R., Rebsamen, M., Meier, R., and Wiest, R. (2020). “Triplanar ensemble

of 3D-to-2D CNNs with label-uncertainty for brain tumor segmentation,” in

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries,

eds A. Crimi and S. Bakas (Cham: Springer International Publishing), 379–387.

doi: 10.1007/978-3-030-46640-4_36

Mehrtash, A., Wells, W. M., Tempany, C. M., Abolmaesumi, P., and Kapur,

T. (2020). Confidence calibration and predictive uncertainty estimation for

deep medical image segmentation. IEEE Trans. Med. Imaging 39, 3868–3878.

doi: 10.1109/TMI.2020.3006437

Frontiers in Neuroscience | www.frontiersin.org 8 December 2021 | Volume 15 | Article 75278080

https://www.youtube.com/channel/UCAL3JXZSzSm8AlZyD3nQdBA
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1007/978-3-030-87735-4_12
https://doi.org/10.1007/s10278-013-9622-7
https://covid-segmentation.grand-challenge.org/Data/
https://covid-segmentation.grand-challenge.org/Data/
https://doi.org/10.1038/s41592-018-0261-2
https://doi.org/10.1007/978-3-030-11726-9_25
https://doi.org/10.1038/sdata.2018.158
https://doi.org/10.1007/978-3-030-11726-9_21
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.5281/zenodo.3632567
https://doi.org/10.1016/j.cmpb.2020.105796
https://doi.org/10.1016/S1470-2045(19)30098-1
https://doi.org/10.3389/fnins.2020.00125
https://doi.org/10.1016/j.adro.2020.03.003
https://doi.org/10.1109/TMI.2010.2057442
https://doi.org/10.1007/978-3-030-11726-9_40
https://doi.org/10.1007/978-3-030-46640-4_36
https://doi.org/10.1109/TMI.2020.3006437
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kofler et al. Robust, Primitive, and Unsupervised Quality Estimation

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.

(2015). Themultimodal brain tumor image segmentation benchmark (BRATS).

IEEE Trans. Med. Imaging 34, 1993–2024. doi: 10.1109/TMI.2014.2377694

MONAI CORE Team (2020).MONAI. doi: 10.5281/zenodo.4323059

Pati, S., Thakur, S. P., Bhalerao, M., Baid, U., Grenko, C., Edwards, B., et al. (2021).

Gandlf: A generally nuanced deep learning framework for scalable end-to-end

clinical workflows in medical imaging. arXiv preprint arXiv:2103.01006.

Pérez-García, F., Sparks, R., and Ourselin, S. (2020). TorchIO: a Python

library for efficient loading, preprocessing, augmentation and patch-based

sampling of medical images in deep learning. arXiv preprint arXiv:2003.04696.

doi: 10.1016/j.cmpb.2021.106236

Roy, A. G., Conjeti, S., Navab, N., and Wachinger, C. (2019). Bayesian quicknat:

model uncertainty in deep whole-brain segmentation for structure-wise quality

control. Neuroimage 195, 11–22. doi: 10.1016/j.neuroimage.2019.03.042

Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Montavon, G., Samek, W., Kloft,

M., et al. (2021). A unifying review of deep and shallow anomaly detection.

Proc. IEEE 109, 756–795. doi: 10.1109/JPROC.2021.3052449

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson,

R. C. (2001). Estimating the support of a high-dimensional

distribution. Neural Comput. 13, 1443–1471. doi: 10.1162/0899766017502

64965

Sekuboyina, A., Husseini, M. E., Bayat, A., Loffler, M., Liebl, H., Li, H., et al. (2021).

Verse: a vertebrae labelling and segmentation benchmark for multi-detector

CT images. Medical Image Anal. 2021:102166. doi: 10.1016/j.media.2021.1

02166

Starace, V., Brambati, M., Battista, M., Capone, L., Gorgoni, F., Cavalleri, M.,

et al. (2020). A lesson not to be forgotten. Ophthalmologists in Northern Italy

become internists during the SARS-CoV-2 pandemic. Am. J. Ophthalmol. 220,

219–220. doi: 10.1016/j.ajo.2020.04.044

Weller, M., van den Bent, M., Hopkins, K., Tonn, J. C., Stupp, R.,

Falini, A., et al. (2014). Eano guideline for the diagnosis and treatment

of anaplastic gliomas and glioblastoma. Lancet Oncol. 15, e395-e403.

doi: 10.1016/S1470-2045(14)70011-7

Wright, L. (2019). Ranger - a synergistic optimizer. GitHub Repos. Available online

at: https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

Yong, H., Huang, J., Hua, X., and Zhang, L. (2020). Gradient centralization:

a new optimization technique for deep neural networks. arXiv preprint

arXiv:2004.01461. doi: 10.1007/978-3-030-58452-8_37

Yushkevich, P. A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J.

C., et al. (2006). User-guided 3D active contour segmentation of anatomical

structures: significantly improved efficiency and reliability. Neuroimage 31,

1116–1128. doi: 10.1016/j.neuroimage.2006.01.015

Zhao, Y.-X., Zhang, Y. M., Song, M., and Liu, C. L. (2019). “Multi-view semi-

supervised 3D whole brain segmentation with a self-ensemble network,” in

International Conference on Medical Image Computing and Computer-Assisted

Intervention (Cham: Springer), 256–265. doi: 10.1007/978-3-030-32248-9_29

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Kofler, Ezhov, Fidon, Pirkl, Paetzold, Burian, Pati, El Husseini,

Navarro, Shit, Kirschke, Bakas, Zimmer, Wiestler and Menze. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 9 December 2021 | Volume 15 | Article 75278081

https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.5281/zenodo.4323059
https://doi.org/10.1016/j.cmpb.2021.106236
https://doi.org/10.1016/j.neuroimage.2019.03.042
https://doi.org/10.1109/JPROC.2021.3052449
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1016/j.media.2021.102166
https://doi.org/10.1016/j.ajo.2020.04.044
https://doi.org/10.1016/S1470-2045(14)70011-7
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://doi.org/10.1007/978-3-030-58452-8_37
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1007/978-3-030-32248-9_29
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


ORIGINAL RESEARCH
published: 13 January 2022

doi: 10.3389/fmed.2021.774632

Frontiers in Medicine | www.frontiersin.org 1 January 2022 | Volume 8 | Article 774632

Edited by:

Susanne Wegener,

University of Zurich, Switzerland

Reviewed by:

Wenyue Su,

Western University of Health

Sciences, United States

Archana Hinduja,

The Ohio State University,

United States

*Correspondence:

Feng Ming

jackietz@163.com

Jianhua Yao

Jianhua.yao@gmail.com

Wang Renzhi

wangrz@126.com

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Translational Medicine,

a section of the journal

Frontiers in Medicine

Received: 12 September 2021

Accepted: 17 December 2021

Published: 13 January 2022

Citation:

Jianbo C, Ting X, Yihao C, Xiaoning W,

Hong S, Qinghua Z, Zeju Y,

Xingong W, Fengxuan T, Jianjun C,

Wenbin M, Junji W, Ming F, Yao J and

Renzhi W (2022) The Patterns of

Morphological Change During

Intracerebral Hemorrhage Expansion:

A Multicenter Retrospective Cohort

Study. Front. Med. 8:774632.

doi: 10.3389/fmed.2021.774632

The Patterns of Morphological
Change During Intracerebral
Hemorrhage Expansion: A
Multicenter Retrospective Cohort
Study
Chang Jianbo 1†, Xiao Ting 2,3†, Chen Yihao 1, Wang Xiaoning 2, Shang Hong 2,

Zhang Qinghua 4, Ye Zeju 5, Wang Xingong 6, Tian Fengxuan 7, Chai Jianjun 8, Ma Wenbin 1,

Wei Junji 1, Feng Ming 1*, Jianhua Yao 2* and Wang Renzhi 1*

1Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy

of Medical Sciences, Beijing, China, 2 Tencent AI Lab, Shenzhen, China, 3Department of Computer Science and Technology,

Harbin Institute of Technology, Harbin, China, 4Department of Neurosurgery, Shenzhen Nanshan Hospital, Shenzhen, China,
5Department of Neurosurgery, Dongguan People’s Hospital, Dongguan, China, 6Department of Neurosurgery, Linyi People

Hospital, Linyi, China, 7Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, China, 8Department of

Neurosurgery, Zhangqiu People Hospital, Jinan, China

Objectives: Hemorrhage expansion (HE) is a common and serious condition in patients

with intracerebral hemorrhage (ICH). In contrast to the volume changes, little is known

about the morphological changes that occur during HE. We developed a novel method

to explore the patterns of morphological change and investigate the clinical significance

of this change in ICH patients.

Methods: The morphological changes in the hematomas of ICH patients with

available paired non-contrast CT data were described in quantitative terms, including

the diameters of each hematoma in three dimensions, the longitudinal axis type, the

surface regularity (SR) index, the length and direction changes of the diameters, and

the distance and direction of movement of the center of the hematoma. The patterns

were explored by descriptive analysis and difference analysis in subgroups. We also

established a prognostic nomogrammodel for poor outcomes in ICH patients using both

morphological changes and clinical parameters.

Results: A total of 1,094 eligible patients from four medical centers met the inclusion

criteria. In 266 (24.3%) cases, the hematomas enlarged; the median absolute increase

in volume was 14.0 [interquartile range (IQR), 17.9] mL. The initial hematomas tended

to have a more irregular shape, reflected by a larger surface regularity index, than the

developed hematomas. In subtentorial and deep supratentorial hematomas, the center

moved in the direction of gravity. The distance of center movement and the length

changes of the diameters were small, with median values of less than 4mm. The most

common longitudinal axis type was anterior–posterior (64.7%), and the axis type did

not change between initial and repeat imaging in most patients (95.2%). A prognostic

nomogram model including lateral expansion, a parameter of morphological change,

showed good performance in predicting poor clinical outcomes in ICH patients.
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Conclusions: The present study provides a morphological perspective on HE using

a novel automatic approach. We identified certain patterns of morphological change in

HE, and we believe that some morphological change parameters could help physicians

predict the prognosis of ICH patients.

Keywords: intracerebral hemorrhage, hemorrhage expansion, anatomy, shape, stroke

INTRODUCTION

Spontaneous intracerebral hemorrhage (sICH) produces
mortality or disability in approximately 50% of cases (1, 2),
imposing a severe burden (3, 4). Hemorrhage expansion (HE)
occurs in approximately one-quarter of sICH patients (2, 5) and
is a major determinant of deterioration and death (5–7). Thus, it
is important to explore the changes associated with HE (8, 9).

In contrast to the volume changes (5, 10), little is known about
the morphological changes that occur in HE (11). Some studies
have shown that hemorrhagic lesions expand asymmetrically
and non-uniformly, especially in the hyperacute phase (12, 13).
However, the patterns of morphological change have not been
explored. Additionally, many studies have found that the initial
shape of a hematoma was associated with the quality of outcomes
(14, 15). However, few studies have focused on the relationship
between morphological changes and patient prognosis.

In the current study, we developed and applied a novel
approach to explore the patterns of morphological change during
HE, which provided a new perspective on hematoma expansion
and might help physicians predict the prognosis of ICH patients.

METHODS

Subjects
All data were obtained from the Chinese Intracranial
Hemorrhage Image Database (CICHID), which was initiated
by Peking Union Medical College Hospital (PUMCH) in
February 2019 and supported by the Group of Medical Data,
Chinese Medical Doctor Association (16). As of October 2020,
the database contained approximately twenty-eight thousand
scans from eight thousand patients at twenty-two centers
located in Mainland China. All medical records and CT images
were anonymized. The CT scans were in Digital Imaging and
Communications in Medicine (DICOM) format.

The inclusion criteria were as follows: 1. The cohort from
each center included more than 100 patients; 2. the medical
records were searchable through the case retrieval system in each
center; 3. the patients were adults diagnosed with spontaneous
intracerebral hemorrhage (ICH); 4. the patients had one initial
and at least one repeat non-contrast computed tomography
(NCCT) scan not preceded by surgery; and 5. the initial CT
scan was taken within 24 h after symptom onset, and the repeat
scan was taken more than 8 but less than 72 h after the initial
scan. The exclusion criteria were as follows: 1. The patients
were diagnosed with secondary intracranial hemorrhage, such
as epidural hemorrhage, subdural hemorrhage, traumatic brain
injury, brain tumor, or hemorrhagic transformation of ischemic

infarction; 2. the medical records were not available; 3. the
hematoma volume in the repeat CT scan was < 3mL or the
volume had decreased by more than 3mL; and 4. the scans were
low-quality images or failed to be registered to the atlas.

The boundary of each hematoma was determined on CT
axial slices by a semiautomatic method, in which research
assistants independently used the software platform ITK-SNAP
3.6 (17) to correct the boundary drawn by the laboratory’s
in-house automatic hematoma segmentation software (18).
The following clinical characteristics were collected: age, sex,
symptom onset time, Glasgow Coma Scale (GCS) score,
Glasgow Outcome Scale (GOS) score, initial hematoma volume,
location, intraventricular hemorrhage (IVH), and expansion.
Both the hematoma boundary and the clinical characteristics
were assessed by researchers (WXN, CYH and SH), and any
disagreement was reviewed by a neurosurgeon (CJB). Absolute
change and relative change were used to describe the change in
hematoma volume, and HE was defined as an increase of at least
6mL or 33% (5, 10).

Measurement of Changes in Hematoma
Morphology
The shape irregularity of each hematoma was measured by the
surface regularity (SR) index (19, 20), calculated as follows: SR
index = π

1/3(6V)2/3/A, where V represents the volume and “A”
represents the surface area of the hematoma. The SR index ranges
on a continuous scale from 0 (very irregular shape) to 1 (perfectly
regular sphere) (21).

Hematoma morphology was characterized in the initial CT
by three diameters determined on the slices with the maximum
hematoma area in the planes parallel to the coordinate system;
these diameters are presented as length (anterior–posterior,
AP), width (left–right, LR) and height (superior–inferior, SI)
(Supplementary Figure 1) (22). The longitudinal axis of each
initial hematoma was categorized into one or four types: AP,
LR, SI, or no longitudinal axis (NL), determined by which
diameter was the longest. The NL group was defined by
pairwise ratios ranging between 0.850 and 1.176 for all pairs of
diameters, which means that all three diameters were similar
(Supplementary Figure 2).

The changes in diameters between the initial and repeat
scans were described by the length change and direction change.
The length change was calculated as the difference between the
diameters of the hematoma on the initial and repeat scans. The
direction change of the diameters was defined by the axis that
showed the largest absolute change in length, categorized as AP,
LR, SI or no direction change (Figure 2). “No direction change”
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was defined by similar length changes in two directions or in all
three directions.

The geometric center was defined as the centroid of the largest
connected region of the hematoma in 3D space. The distance
of center movement was defined as the spatial distance between
the geometric center locations of the hematoma on the initial
scan and the repeat scan. The direction of center movement
is presented as the projection of the vector’s direction in the
standard planes (axial, coronal and sagittal). The directions of
center movement from all cases in the same anatomical region
were synthesized into one arrow and visualized in an atlas
(ICBM 2009c Non-linear Symmetric template, MNI152) (23)
(Supplementary Figure 3).

Image Processing
To compare morphological changes among different cases, the
paired CT scans were registered to an atlas. After the skull
was stripped away and the brain was extracted using BET
(24), each pair of initial and repeat CT scans from the same
patient was spatially registered to a common atlas using the
MNI152 template (23, 25). The registration pipeline consists
of two sequential linear registrations and two sequential non-
linear registrations, where both registration tools were provided
by Advanced Normalization Tools (ANTs), and the non-linear
registration was based on a B-spline function (26). The Dice
coefficient between the registered CT and the template was
calculated after each registration. If the Dice value did not
reach the predetermined threshold (0.93), the registration was
considered a failure, and the pair of scans was excluded. To
ensure the registration quality, a predetermined threshold was
applied by visually checking the registered CT quality. After
registration to a common atlas, all CTs and their hemorrhage
masks were in the same template space. The synthesis to
determine the direction of center movement was performed by
the package Mayavi (27). The surface area, volume, geometric
center and diameters were calculated by the image processing
package Skimage (28).

Prediction Model for Poor Outcomes (GOS
≤ 3) at Discharge
To explore the clinical significance of changes in hematoma
morphology, we conducted multivariate logistic regression
incorporating clinical parameters and hematoma morphological
change parameters. Multiple logistic regression was used to select
the most useful predictive variables for poor outcomes (GOS≤ 3)
at discharge. All useful predictors, defined as those with P < 0.05,
were used to develop the final multivariate logistic regression,
and a nomogram was then built to predict which ICH patients
could have poor outcomes (29). Discrimination was evaluated by
the area under the curve (AUC) value of the receiver operating
characteristic curve (ROC), and calibration was measured by the
calibration curve (30).

Statistical Analysis
Baseline characteristics were summarized as counts [percentages
(%)] for categorical variables and the mean [standard deviation
(SD)] or median [interquartile range (IQR)] for continuous

variables. Both clinical and morphological change parameters
were investigated by descriptive analysis and difference analysis
in subgroups (expansion and longitudinal axis type). A two-
sided Pearson’s chi-squared test or Fisher’s exact test was used for
categorical variables, and Student’s t-test, ANOVA or the Mann-
Whitney U test was used for continuous variables. The threshold
for statistical significance was set to 0.05. Statistical analyses were
conducted with SPSS Statistics (version 21.0.0, IBM, Armonk,
New York) and R (version 3.6.3, R Foundation for Statistical
Computing, Vienna, Austria).

RESULTS

The database contained 3,231 ICH patients who underwent
repeat CT between Jan. 1, 2016, and Aug. 30, 2020, at 4
medical centers; 1,094 of these patients met the inclusion
criteria to be analyzed (Figure 1, Supplementary Table 1). The
baseline characteristics of the patients are summarized inTable 1.
Most included patients were elderly males with ICH in deep
supratentorial brain regions. HE occurred in 24.3% of patients,
with median absolute and relative increases of 14.0 (IQR 17.9)
mL and 53.4 (IQR 97.3) %, respectively. The initial volume in the
expansion group was larger than that in the non-expansion group
(25.9 vs. 18.7mL, P < 0.05). To compare the morphological
changes, the CTs were registered to an atlas, as shown in
Supplementary Figure 4.

Themorphological characteristics of HE are shown inTable 2.
The hematomas became more irregular in repeat CTs in both the
expansion and non-expansion groups, with the median SR index
decreasing from 0.542 to 0.515. The median change in the SR
index was−0.027, and the change in this index was significantly
larger in the expansion group (-0.049) than in the non-expansion
group (-0.020, P < 0.05).

The most common type of longitudinal axis was the AP
direction (64.7%), followed by the SI direction (19.5%). A total
of 10.3% of hematomas had an approximately spherical shape
and were categorized as the NL type in this study. There was
no significant difference in the longitudinal axis types between
the expansion and non-expansion groups (Table 2). The length
change of the diameters was small, and the largest change was in
the AP direction, with an increase of 4.8mm in the expansion
group (Figure 2). The distance of center movement was small,
with a median of 3.5mm for all patients and 6.1mm in the
expansion group.

We investigated the patterns of change in the diameters and
geometric center for different longitudinal axis types (Table 3).
Regardless of the longitudinal axis type, the diameter direction
change was mostly AP [43.1% (471/1094) in total, ranging
from 38.3 to 45.2%], followed by LR (ranging from 23.9 to
31.0%). The length change of the diameters was < 3.3mm in
most cases.

The distance of center movement was small, ranging from 2.3
to 4.1mm. As Figure 3 shows, the direction of center movement
in deep supratentorial hematomas was in the direction of gravity
as patients lay in a supine position. A similar pattern was also
observed in subtentorial hematoma; however, it did not exist in
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FIGURE 1 | Flowchart of patient selection.

TABLE 1 | Baseline characteristics of ICH patients.

Variable Total

(N = 1,094)

Expansion group

(N = 266)a
Non-expansion

group

(N = 828)

P-value

Male, n (%) 698 (63.8) 195 (73.3) 503 (60.7) *

Age, median (IQR), y 61.0 (18.0) 59.0 (19.0) 61.0 (18.0)

Onset to CT, median (IQR), hr 3.0 (4.0) 3.0 (3.0) 3.0 (5.0) *

Time interval between CT scans, median (IQR), hr 22.8 (19.8) 22.4 (20.2) 22.9 (20.0)

GCS score, median (IQR) 14 (4) 13 (5) 14 (3) *

GOS score, median (IQR) 3 (1) 3 (1) 3 (1) *

Initial hematoma volume, median (IQR), mL 20.2 (25.4) 25.9 (33.2) 18.7 (23.0) *

IVH, n (%) 374 (34.2) 91 (34.2) 283 (34.2)

Hematoma location *

Deep, n (%) 763 (69.8) 176 (66.2) 587 (71.0)

Lobar, n (%) 236 (21.6) 75 (28.2) 161 (19.5)

Subtentorial, n (%) 94 (8.6) 15 (5.6) 79 (9.5)

Absolute change in hematoma volume, median (IQR), mL 0.9 (5.5) 14.0 (17.9) 0.4 (2.4) *

Percentage change in hematoma volume, median (IQR), % 4.5 (24.4) 53.4 (97.3) 6.8 (12.4) *

aExpansion was defined as a volume change ≥ 6mL or 33%. *P < 0.05. IQR, interquartile range; CT, computed tomography; GCS, glasgow coma scale; GOS, glasgow outcome scale;

IVH, intraventricular hemorrhage.
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TABLE 2 | Morphological characteristics of hematoma expansion.

Total

(N = 1,094)

Expansion

(n = 266)

Non-expansion

(n = 828)

P-value

SR index on admission, mean (SD) 0.542 (0.104) 0.536 (0.106) 0.544 (0.104)

SR index on follow-up, mean (SD) 0.515 (0.101) 0.487 (0.098) 0.524 (0.101)

SR index change, mean (SD) −0.027 (0.073) −0.049 (0.090) −0.020 (0.065) *

Longitudinal axis type of hematoma on admission, n (%)

AP 708 (64.7) 175 (65.8) 533 (64.4)

LR 60 (5.5) 9 (3.4) 51 (6.2)

SI 213 (19.5) 55 (20.7) 158 (19.1)

NL 113 (10.3) 27 (10.2) 86 (10.4)

Diameters of hematoma on admission, mean (SD), mm

Length (AP) 60.54 (23.3) 64.1 (25.0) 59.4 (22.6) *

Width (LR) 43.9 (15.0) 46.9 (17.2) 43.0 (14.1) *

Height (SI) 55.3 (15.8) 58.8 (16.6) 54.2 (15.4) *

Length change of hematoma diameters, mean (SD), mm

AP 2.8 (9.8) 4.8 (13.0) 2.1 (8.5) *

LR 1.9 (9.0) 2.8 (11.3) 1.6 (8.1) *

SI −0.5 (9.2) −1.2 (16.8) −0.4 (4.7) *

Distance of center movement, mean (SD), mm 3.5 (5.4) 6.1 (8.2) 2.7 (3.7) *

*P < 0.05. AP, anterior-posterior; LR, left-right; SI, superior-inferior; NL, no longitudinal axis; SD, standard deviation; SR, surface regularity.

some supratentorial lobar hematomas, such as those in the frontal
lobe, parietal lobe and occipital lobe (Figure 3, Attachment 1).

Although most changes in diameter length were small, there
were 139 cases with obvious changes, where the changes in
diameter length and the distance of center movement were both
greater than 10mm, or the direction change was inconsistent
with the longitudinal type. However, among these cases with
obvious changes, only 53 (38.1%) patients’ longitudinal axis types
were changed, accounting for 4.84% of all patients (53/1,094).

To explore the clinical significance of the morphological
change in HE, we established a prognostic nomogram to
predict poor outcomes (GOS ≤ 3). Eight potential predictors
(age, volume, location, GCS, hematoma expansion, initial SR
index, hematoma diameter length, and length change of the LR
diameter) were selected from 19 collected variables by using
multivariate logistic regression (Supplementary Table 2). Then,
the logistic regression analysis was visualized as a nomogram
(Figure 4A), which was preliminarily built to predict the
probability of poor outcome in ICH patients. ROC curve analysis
indicated that the nomogram performed well in prognostic
prediction, with an AUC of 0.824 (95% CI 0.800, 0.846). The
calibration plot also showed excellent agreement between the
nomogram predictions and actual observations in ICH patients
with GOS ≤ 3 (Figure 4). In particular, the length change of
the LR diameter (the lateral expansion) was a morphological
change factor that contributed strongly to the model, with an
odds ratio of 1.1386 (95% CI: 1.0216, 1.2691). All these findings
suggested that our prediction model including morphological
change parameters had good performance in predicting poor
clinical outcomes in ICH patients. This scale should remind
physicians to pay attention to lateral expansion, especially in ICH
patients who are predicted to have GOS ≤ 3.

DISCUSSION

In this study, we investigated the patterns of morphological
change in sICH based on a large cohort. We found that the initial

hematoma tended to be more irregularly shaped, with a larger

SR index, than the developed hematoma. In deep supratentorial

hematomas and subtentorial hematomas, the direction of center
movement was toward the pull of gravity. Most hematomas

had their longitudinal axis in the AP direction (64.7%), and
the direction of the diameter change was AP in approximately
40% of patients. The length change of the diameters and the
distance of center movement were < 4mm. The longitudinal
axis type did not change between the initial and repeat CT
scans in most patients. In addition, one morphological change
parameter, the length change of the diameter in the LR direction
(lateral expansion), was found to be associated with poor
prognosis in ICH patients. The prediction model including
lateral expansion for ICH patients with poor prognosis showed
good performance. The results of our analysis provide a new
perspective on hematoma expansion in terms of morphological
changes. Physicians should take these results as a reminder not to
ignore ICH with lateral expansion.

The SR index quantifies irregularity by the ratio of
surface area to volume (20, 21). As in previous studies
(21), the SR index decreased in the repeat hematoma group,
especially in the expansion group, which indicated that the
hematomas tended to become more irregular as they developed.
Previous studies showed that the efficacy of hematoma
evacuation surgery decreased in irregular hematoma (31),
and our findings reminded the surgeon to consider the
tendency of hematoma to be more irregular before making
surgical decisions.
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FIGURE 2 | Example of morphological change in a hematoma. These images are from a 73-year-old male patient with ICH. The volume of the hematoma was

15.6mL on initial CT and 23.5mL on repeat CT. The first column shows the shape characteristics of the initial hematoma, including its three diameters (length 44mm,

width 22mm, and height 29mm). The longitudinal axis is of the AP type and the SR index is 0.628. The second column shows the shape characteristics of the

hematoma on the repeat scan, including its three diameters (length 50mm, width 32mm, and height 32mm). The longitudinal axis is of the AP type and the SR index

is 0.552. The third column shows the morphological change. The white line is the contour of the initial hematoma and the red area is the hematoma as of the repeat

scan. The length changes of the hematoma diameters are 6mm, 10mm, and 3mm in the AP, LR, and SI directions, respectively. The direction change of the

hematoma diameters is LR and the longitudinal axis type does not change (AP). The SR index decreases, which means that the hematoma becomes more irregular

from initial CT to repeat CT.

TABLE 3 | Morphological changes by longitudinal axis type.

Hematoma longitudinal axis type

AP (n = 708) LR (n = 60) SI (n = 213) NL (n = 113)

Direction change of hematoma diameters, n (%)

AP 320 (45.2) 23 (38.3) 83 (39.0) 45 (39.8)

LR 197 (27.8) 16 (26.7) 66 (31.0) 27 (23.9)

SI 88 (12.4) 12 (20.0) 21 (9.9) 21 (18.6)

No direction change 103 (14.5) 9 (15.0) 43 (20.2) 20 (17.7)

Length change of hematoma diameters, mean (SD), mm

AP 3.0 (10.5) 1.8 (6.7) 2.2 (7.4) 3.3 (10.9)

LR 1.8 (8.2) 0.4 (4.0) 2.9 (13.2) 0.9 (5.1)

SI −0.3 (6.9) −0.8 (4.4) −0.6 (6.4) −1.7 (21.0)

Distance of center movement, mean (SD), mm 3.6 (3.5) 2.3 (2.0) 3.4 (7.0) 4.1 (10.4)

AP, anterior-posterior; LR, left-right; SI, superior-inferior; NL, no longitudinal axis; SD, standard deviation.

Similar to previous studies (11–13, 22), our study showed that
hematoma growth was asymmetric and that the geometric center
moved in HE. Furthermore, we found a pattern regarding center

movement. In subtentorial and deep supratentorial hematomas,
the center tended to move in the direction of gravity. Although
the center moved only a short distance, researchers should take
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FIGURE 3 | The direction of movement of the geometric center of hematomas. Each arrow of a different color represents the synthesized direction of center

movement in a different anatomical region (the frontal lobe is shown in blue, the parietal lobe in brown, the insula and temporal lobe in green, the occipital lobe in

yellow, the basal ganglia/thalamus area in pink, the brain stem in orange, and the cerebellum in purple). The direction of center movement in deep supratentorial

regions (basal ganglia/thalamus area) and subtentorial regions (brain stem and cerebellum) was in the direction of gravity as patients lay in a supine position; some

supratentorial lobar hematomas showed no such pattern. This is a schematic diagram; the details are shown in attachment 1.

this movement as a reminder to consider the effect of gravity
when studying the pathophysiological mechanism of acute-phase
hematoma formation and expansion.

In this study, we found that the longitudinal axis type did
not change in 90% of HE cases. Although the direction change
of the diameters did not always align with the longitudinal axis,
the length changes of the diameters were ordinarily < 4mm,
which is insufficient to change the longitudinal axis type. The
median distance of center movement was only 3.5mm, such that
the change would not influence the drainage trajectory traversing
the epicenter of the hematoma (31, 32). These findings alleviate
the concern as to whether the longitudinal direction or geometric
center would change after drainage surgery for HE (33, 34).

Another interesting finding in our study was that lateral
expansion (the length change of the diameter in the LR direction)
was associated with poor outcomes. As important factors in
HE and prognosis, the shape features of the initial hematoma
have been described by various methods and demonstrated
to be associated with outcomes. These studies have included
qualitative analytical variables, such as Barras grade, island sign
and satellite sign (8, 14, 20), and quantitative analytical variables,
such as the SR index, compactness, Fourier factor and fractal
dimension (15, 21, 35). The present study is the first to relate

changes in hematoma morphology to the patient’s prognosis.
The prediction model showed that the risk of a poor outcome
increased by a factor of 1.139 for every 1mm of lateral expansion.
This finding should remind physicians not to ignore lateral
expansion, especially in ICH patients who are predicted to have
poor outcomes.

This study has several limitations. For the purposes of
maintaining analytic rigor, we excluded patients who had
undergone any invasive operation before repeat CT, as these
interventions directly affect hematoma shape. We also excluded
patients with time intervals of < 8 h or more than 72 h between
scans, as the shape of a hematoma tends to be most stable from
8 to 72 h. The volume of the lesion may significantly increase
in the first 8 h, and absorption starts after 72 h (34). These
criteria may bias our sample toward populations less severely
affected by their hemorrhage. In addition, the absolute value of
the length change was affected by the accuracy of the registration
process. Althoughwe strictly excluded failed registration (36) and
manually checked each case, there might still have been some
registration error. Considering that the actual length change was
small, this registration error may have an adverse effect on the
accuracy of the calculated absolute value of the length change.
Moreover, the longitudinal axis in our study was defined as the
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FIGURE 4 | Nomogram of the prognostic model for predicting poor outcomes (GOS ≤ 3) at discharge. (A) The nomogram was developed from a multivariable logistic

regression model based on age, volume, location, GCS, hematoma expansion, initial SR index, diameter lengths, and length change in the LR direction. (B) ROC

curve of the nomogram representing the discrimination performance of the model. (C) Calibration curve of nomogram. A calibration curve depicts the calibration of a

model in terms of the agreement between the predicted risk of a poor outcome and the outcome actually observed. The Y-axis represents the actual poor-outcome

rate. The X-axis represents the predicted poor-outcome risk. The diagonal dotted line represents a perfect prediction by an ideal model. The solid black line represents

the performance of the nomogram, where a closer fit to the diagonal dotted line represents a better prediction.

longest of the three diameters. These diameters were measured
parallel to the coordinate system to compare the direction
changes across different hematomas (Supplementary Figure 1).
Thus, the longitudinal axis as defined here is merely the
projection of the actual longitudinal axis onto the coordinate axis
that best approximates its direction. This imperfect definition
might limit the interpretability of the findings. Finally, while our
study included more than one thousand patients who underwent
repeat imaging, all the patients were from a single country,
China. The retrospective nature of this multicenter analysis is
another limitation. Further validation must be carried out with
independent data sets to ensure generalizability.

In conclusion, the present study provides a morphological
perspective on hematoma expansion by a novel approach. We
identified certain patterns of morphological change in HE. As
hematomas enlarged, they shifted in the direction of gravity and
tended to be more irregular. The most common longitudinal axis

type of hematoma was AP, which did not change during HE.
Based on our findings, we usedmorphological change parameters
to establish a novel, promising prognostic nomogram model for
the individualized prediction of poor outcomes in ICH patients.
This nomogram requires further validation in other centers.
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Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system that

affects nearly 1 million adults in the United States. Magnetic Resonance Imaging (MRI)

plays a vital role in diagnosis and treatment monitoring in MS patients. In particular,

follow-up MRI with T2-FLAIR images of the brain, depicting white matter lesions, is

the mainstay for monitoring disease activity and making treatment decisions. In this

article, we present a computational approach that has been deployed and integrated

into a real-world routine clinical workflow, focusing on two tasks: (a) detecting new

disease activity in MS patients, and (b) determining the necessity for injecting Gadolinium

Based Contract Agents (GBCAs). This computer-aided detection (CAD) software has

been utilized for the former task on more than 19, 000 patients over the course of 10

years, while its added function of identifying patients who need GBCA injection, has

been operative for the past 3 years, with > 85% sensitivity. The benefits of this approach

are summarized in: (1) offering a reproducible and accurate clinical assessment of MS

lesion patients, (2) reducing the adverse effects of GBCAs (and the deposition of GBCAs

to the patient’s brain) by identifying the patients who may benefit from injection, and (3)

reducing healthcare costs, patients’ discomfort, and caregivers’ workload.

Keywords: Multiple Sclerosis, clinical setting, machine learning, deep learning, gadolinium

1. INTRODUCTION

Multiple Sclerosis (MS) is a chronic immune-mediated disease that affects the central nervous
system (CNS) with a complex pathophysiology. The prevalence of MS in the United States of
America is reported as approximately 1 million adults (1), with several more million patients
recorded worldwide.

MRI is an essential tool in the diagnosis and treatment monitoring of MS. Patients with
MS typically undergo annual follow up MRI scanning that commonly includes T1 post-contrast
images to assess for subclinical disease, i.e., formation of new focal demyelinating lesions in the
absence of clinical symptoms. Previous work has shown that in the absence of a new T2-weighted
Fluid-Attenuated-Inversion-Recovery (T2-FLAIR) lesion, contrast does not usually add additional
clinical information to the interpretation of the scan (2). A common challenge in the clinical
assessment of MS is relying on visual interpretation of images, particularly in the case of high lesion
burden, to determine if new lesions developed. Automated techniques could aid clinicians in their
visualization of new MS lesions improving efficiency and confidence in clinical decisions.
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Here, we present a computer-aided-detection (CAD)
approach that uses machine learning techniques to detect
changes in white matter brain lesions on MRI scans of
patients with MS. The presented system has been deployed
and fully integrated into the routine clinical workflow for 10
years. Although it was initially designed and used solely as a
neuroradiological aid in detectingMS lesion burden changes, this
CAD approach is also contributing to reducing the number of
gadolinium injections in the MS patient population. Specifically,
our CAD system focuses on two targets: (i) assessing MS lesion
burden changes from a given previous time-point; and (ii)
reducing the administration of GBCAs, based on the detection
of new/growing lesions. In a nutshell, the development of
our CAD system initiated in 2009 and following its offline
evaluation it is clinically translated and integrated in the routine
clinical workflow since 2012 focusing solely on its first target. In
2019, the same CAD system was further successfully evaluated
and integrated to the clinical workflow for the reduction of
GBCA administration.

2. LITERATURE REVIEW

According to related literature (3), computational methods for
the assessment of MS, can be divided into two categories: (1)
lesion detection, and (2) lesion-change detection. As shown
in Figure 1, the lesion detection approach detects both static
and dynamic MS lesions on a given single-time MRI volume.
These segmentation methods are usually supervised and rely
on distinguishing hyperintense lesions from normal appearing
white matter tissue in the brain. The lesion-change detection
is a longitudinal analysis of volumes taken at different time-
points, and a lesion quantification approach is required to see
the lesion changes quantitatively (5). A lesion-change occurs as a
result of “tissue transformation” or even “tissue deformation” (6).
“Tissue transformation” in the context of MS lesions refers to the
change in signal intensity within a MS lesion (after accounting
for acquisition differences), whereas “tissue deformation” refers
to surrounding tissue changes as a result of the lesion’s expansion
or contraction. Neurologists referring patients for a follow-up
MRI, want to know if new lesions have formed since the previous
timepoint. This information may prompt neurologists to modify
the treatment regimen, in order to avoid future recurrences.

The current clinical routine to detect new white matter lesions
is based on the visual observation and longitudinal comparison
of T2-FLAIR MRI brain scans, by neuroradiologists, from
current and previous sessions. However, the typical acquisition
protocol for MS patients includes high-resolution 3-D MRI
scans, which render this manual reviewing process a tedious
and time-consuming task. The current clinical practise based
on visual observation can be inaccurate if there are large
angulation differences between the two studies or at times,
when particular 3-D protocols are not followed and 2-D scans
of large slice thickness are acquired instead. These constraints
suggest that the utilization of CAD tools could contribute
and software-based interventions to speeding up the whole
procedure, while at the same time improving the accuracy of

quantification. Taking into consideration the optimal patient
care, a semi-automatic “human-in-the-loop” approach (where
the neuroradiologist removes potential false positive detections
generated by the computational tool) may be the best solution.

There are multiple ways for MS lesion detection, and some
of them are (i) intensity-based approaches, which depend on
detecting the changes of intensity (7, 8), (ii) deformation-based
approaches, which analyse the deformation of brain tissue (9,
10), (iii) segmentation-based approaches, which segment white
matter hyper-intensities from the acquired scans (11, 12), and (iv)
subtraction-based approaches, which depend on subtracting two
longitudinal scans (7).

In the intensity-based approaches, a voxelwise comparison
is made between MRI scans of different time-points to detect
and segment new MS lesions (7, 8). In the deformation-based
approaches, the new lesions detected in a T2-FLAIR scan
are identified by analyzing the deformation fields between the
different MRI scans, obtained through non-rigid registration
(9, 10). The non-rigid registration method between the
two timepoints has shown to improve the detection of
the new T2-w MS lesions in longitudinal studies (10, 13).
These deformation fields can be generated through non-rigid
registration approaches, either based on optimization (14)
or newer learning-based approaches (15). Typically, both the
“tissue transformation” (via intensity change) and the “tissue
deformation” occur, and as such the mass effect of the particular
lesion needs to be taken into account for a precise assessment of
the lesion’s evolution status.

Furthermore, numerous strategies that combine intensity-
based and deformation-based approaches have been proposed.
Cabezas et al. (10) modified Ganiler et al. (7)’s subtraction
pipeline by merging subtraction and Deformation Field (DF)
operators to reduce the amount of false positive lesions found
by the subtraction pipeline. Registration is characterized as an
optimization issue that must be solved for each volume pair
of longitudinal scans using a similarity metric, while enforcing
smoothness requirements on the mapping in these approaches.
Because solving this optimization is generally computationally
costly (16–19), it is exceedingly slow in practise. Various GPU-
based accelerated methodologies have been presented to improve
the efficiency and speed up the optimization (20–22).

Currently, Convolutional Neural networks (CNNs) have
shown superior performance in brain imaging, particularly
for segmenting tissues, (23, 24), brain extraction (25–27),
brain tumors (27–33), and white matter lesions (34, 35).
During training, learning-based registration techniques
learn a parameterized registration function from a set of
images. Some proposed methods (36, 37) use a precomputed
DF as the ground truth (GT), while others depend solely
on image registration or segmentation masks, without
comparing the predicted DF to a precomputed DF (38, 39).
Balakrishnan et al. (15) developed a new CNN approach
that computes the deformation between two images
by training the network using a similarity metric and
a regularization term similar to traditional registration
methods, yielding results that are comparable to current
state-of-the-art approaches.

Frontiers in Medicine | www.frontiersin.org 2 March 2022 | Volume 9 | Article 79758693

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Thakur et al. Clinical Computational Assessment of MS

FIGURE 1 | Example Illustration of Multiple Sclerosis lesions overlaid on a 2-D T2-FLAIR scan, together with manual delineations from independent experts taken from

(4).

3. MATERIALS AND METHODS

3.1. Data
The routine MRI acquisition protocol for MS patients in the
University of Pennsylvania Health System (UPHS) network
includes (i) 3-D T2-FLAIR (ii) high resolution isotropic or
near-isotropic T1 pre-contrast [3-D magnetization-prepared
180 degrees radio-frequency pulses and rapid gradient-echo
(MPRAGE)], as well as (iii) 2D T2-weighted images, and (iv)
30-direction Diffusion Tensor Imaging (DTI). Additionally, 3-D
T1 post-contrast images are optional and acquired only if new
lesions are detected from the CAD results. All MRI sequences
described here are acquired within the UPHS, at multiple satellite
sites. However, the vast majority of MS patients get their MRI
scans at the main site of the Hospital of the University of
Pennsylvania (HUP). The scanner magnetic field strength of the
equipment used to acquire these MRI scans was either 1.5 or 3
Tesla, with the HUP scanners being exclusively at 3 Tesla.

The CAD approach presented here uses only the 3-D T2-
FLAIR, which is the first acquired sequence in the UPHS
acquisition protocol for MS patients. In some rare cases, the prior
T2-FLAIR sequence is part of an outside study that has been
uploaded to PACS.

Since the acquisition parameters vary across sites, we briefly
cover them as majority of scans are performed at 3/1.5 Tesla,
with the sagittal 3D T2/FLAIR acquired using the following
parameters: TR/TE/TI = 5,000/395/1,800 ms, FOV 250 × 250 ×
160 mm, matrix of 256 × 256 × 160, near isotropic 1mm3 voxel
size. Outside studies with only available 2D T2-FLAIR scans with
slice thickness larger than or equal to 5mm are not considered
useful and as such our CAD system is not applied to them.
However, outside studies with 2D T2-FLAIR scans with <5mm
thickness are still used by resampling the higher resolution scans
to match the lower resolution images. Notably, the proportion

of patients with 2D T2-FLAIR scans from outside studies have
been rare.

3.2. CAD System Overview
The functionality of the CAD approach is described in the
following sections and visually summarized in Figure 2. The
overview of the CAD method can be explained as follows:
after acquiring the 3D T2-FLAIR scan at Timepoint-2, the
CAD system is executed. The registration of Timepoint-2 to
a Timepoint-1 3D T2-FLAIR scan occurs, followed by brain
extraction and bias field correction for both time points. Then
subtraction and false positive reduction methods are applied to
identify new lesions, as well as resolve false positives generated
by the CAD system. While the CAD system is running, for the
routine protocol, we acquire the T1 precontrast, 2D T2-weighted,
and DTI images. After the CAD system points out whether new
lesions are present, the decision to inject GBCAs is delivered to
the MRI technologists.

The hereby presented computational approach, integrated
and routinely used in clinical practice since April 2012, has
been applied to the assessment of MS lesion scans more than
19, 000 times and is currently assessing more than 200 MS
patients per month. Figure 3 provides a visual representation
of the CAD’s lifecycle to-date. The “3-D lab” (i.e., a UPHS
team of technologists, trained for executing specific software,
e.g., for post-processing cardiac CT, MR arteriograms, and
more) currently runs and monitors the CAD approach for every
scanned MS patient.

3.3. Pre-processing
Prior to any image processing specific to the CAD targets, a set of
pre-processing steps are considered essential toward defining the
search space to assess lesion burden changes.
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FIGURE 2 | Workflow followed for generating the lesion maps.

FIGURE 3 | Visual representation of the CAD’s lifecycle to-date.

All acquired MRI scans are stored in the SECTRA Picture
Archiving and Communications System (PACS)1, as DICOM

1https://medical.sectra.com/

file sequences. Once a scan is retrieved from the PACS, the
CAD system first converts the DICOM file sequences into the
Neuroimaging Informatics Technology Initiative (NIfTI) (40) file
format to facilitate subsequent image processing steps.
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FIGURE 4 | Illustrative examples of detecting false positives and new lesions. (A) An example of patient with two identified false positives (depicted in green) and a

new lesion (depicted in red). (B) Example of a different patient with a single identified false positive (green) and a single new lesion (red).

Since the CAD approach is intended for use across multiple
UPHS sites, some harmonization needs to be considered in the
imaging space to account for any heterogeneity in the acquisition
protocol, thereby ensuring consistent interpretation of the input
scans. The most typical harmonization considered here is on the
normalization of the scanning resolution, since the acquiredMRI
scans can range from good quality 1mm3 isotropic resolution
(or near-isotropic) to a scan of much higher slice thickness,
e.g., 5mm3. Specifically, when the resolution of the scans across
the two time-points differs, the higher resolution scans are
downsampled to match the lower resolution scans. The reason
to select the lower resolution target is to reduce interpolation
artifacts that would have been generated when going from lower
resolution to higher resolution. The software can work with
2D images, but the low out-of-plane resolution (slice thickness)
limits results accuracy.

Following this resolution normalization, all apparent non-
brain tissue has to be removed from the MRI scans to
facilitate optimal downstream analyses, by removing parts of
skull and to keep the region of interest focused to the brain.
Firstly, each patient’s Timepoint-2 T2-FLAIR MRI scan has to
be rigidly registered to the patient’s Timepoint-1 T2-FLAIR
anatomical space. Then, the step of brain extraction (also
known as skull-stripping) is performed, in order to reduce
false positives that may be generated during the downstream
analysis, by including portions that do not belong to the brain
tissue.

3.4. Intensity Processing
After identifying the complete search space comprising of the
brain tissue apparent in the acquired scans, certain intensity
processing needs to take place, to facilitate further analyses.
Firstly, the magnetic field strength inhomogeneties observed
in the acquired scans are corrected by applying the N4 bias
field correction (41), available through the ANTs Toolkit (42).
We then apply histogram matching to normalize intensities
between the “Timepoint-1” and “Timepoint-2” scans, prior to the
subtraction process. This step allows us to take into account any
contrast differences that are not related to the lesion appearances.
Subsequently, an intensity subtraction takes place between the
different time-point MRI scans (Timepoint-1 & Timepoint-2).
This subtraction operation identifies new lesions (i.e., through
their post-subtraction higher intensity appearance). Thirdly, and
importantly, a false positive reduction routine is applied to
compensate for false positive “artifacts” occurred due to potential
misregistrations. This routine leverages the temporal intensity
information between the T2-FLAIR scans of Timepoint-1 and
Timepoint-2. Specifically, it assesses the pixel intensity of the
lesion’s center of gravity, and if it is higher in Timepoint-1 the
identified lesion is considered as a false positive, but otherwise a
true positive. If this criterion is not met, the identified lesion is
considered as a false positive. However, in order to maintain high
sensitivity, false positive detections from the CAD are tolerated,
and are eventually discarded by human evaluation. An example
of a true lesion and a false positive detection is shown in Figure 4.
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FIGURE 5 | In order to create automated reports, we need anatomical atlas, which can be seen through the subfigures. (A) Over 130 anatomical regions of jacob

atlas identified and overlayed which allows the software to detect the exact location of new lesions in the brain. (B) Example of the automatically generated report,

indicating new found lesions. (C) Example of the automatically generated report, indicating lack of no newly identified lesions.
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FIGURE 6 | Illustrative examples of resulted images stored in the DICOM file format. (A,B) Represent the Timepoint-1 and Timepoint-2 scans of a given patient,

respectively. (C) Describes Timepoint-2 (B), with superimposed annotations for detected new lesions (depicted in red) and false positives (depicted in green). (D) Is a

larger version of Timepoint-2 (B) without annotations, for visualization purposes.

3.5. Atlas Mapping and Lesion
Quantification
After any new or changed lesions are detected, the lesion
space is affinely registered to the Jacob Atlas Map (43)
(Figure 5), to identify an approximate anatomical location
of the lesion. Additionally, the size of new lesions is also
returned in mm3. These measurements are included in a
draft radiology report available to the neuroradiologist for
editing, thereby improving patient care with quantification
information, and improving radiology workflow efficiency.
Figures 5B,C depict representative positive and negative report
examples, respectively.

Finally, the CAD system generates DICOM files from the
lesion map images, with the temporal pair of images adjacent
to assist radiologists re-verify the images manually, without the
need of opening up images from every Timepoint separately.
Figure 6 shows the scans of Timepoint-1 (Figure 6A) and
Timepoint-2 (Figure 6B) on the image and the predicted lesions
(Figure 6C) in the larger size to identify lesions in the subject.
These DICOM files are sent to the patient’s folder in PACS, so
they are available to the neuroradiologist that reads the case.

3.6. Gadolinium Reduction Initiative
A new initiative was started in 2019, namely to use the CAD
results not only to assist neuroradiologists, but also to determine

in real-time which MS patients would benefit from T1 post-
contrast imaging. Since the discovery that gadolinium deposition
can be detected in the brain of patients that undergo serial MRI
studies with GBCAs, many people involved in the domain of
Radiology have started initiatives to decrease the numbers of
unnecessary contrast injection when performing MRI scans (44).
This is one example of application of the principle of precaution,
as the long term effects of this deposition in the brain, and
probably other organs of the body, are yet unknown and to
be determined. The ability of the presented CAD approach to
determine accurately and in real time the patients that would
benefit from the injection of GBCAs and those that would
not, has decreased the rate of injections substantially. This
not only has a positive impact on patients by decreasing their
exposure to unnecessary gadolinium, but also benefits the caring
healthcare institution.

The principle of this initiative is based on the routine use of the
CAD system and only in the case of newly detected white matter
lesions to intravenously inject GBCAs, enabling the acquisition of
post-contrast T1 imaging. Specifically, once the patient is placed
in the scanner, the MR technologist initiates the acquisition of
the 3D T2-FLAIR sequence. Once this acquisition is complete,
the MR technologist contacts the 3D lab technologist to runs
the CAD tool. While the CAD tool is being executed, the MR
technologist continues with the acquisition of the remaining non-
contrast sequences. Once the CAD 3D Lab technologist assesses
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TABLE 1 | GBCA reduction initiative: results from the 2 month feasibility study.

New brain lesion No new brain lesion Total

Gad given 14 3 17

Gad not given 4 120 124

Total 18 123 141

TABLE 2 | GBCA reduction initiative: results from the 3 month follow up validation

study.

New brain lesion No new brain lesion Total

Gad given 119 146 265

Gad not given 17 350 367

Total 136 496 632

the CAD results, informs the MR technologist if there is a need
for an intravenous injection (e.g., butterfly) and an acquisition
of a T1 post-contrast sequence, subject to a new lesion being
identified by the CAD system.

To assess the value and the potential clinical relevance of this
gadolinium reduction initiative, we conducted a initial 2-month
feasibility study involving 141 patients. During this feasibility
study, the CAD was already integrated in the clinical workflow
for the assessment of lesion burden changes, and hence the
feasibility study was directly conducted. After the successful
conclusion of this initial feasibility study, we conducted a follow
up validation study, including 632 MS patients over the course of
3 months. The purpose of the follow-up study was to confirm the
success of the approach in reducing the use of GBCAs, in a larger
patient population. The metrics of sensitivity and specificity
were calculated for patients who received GBCAs when new
brain lesions were found (Equation 1). Following the successful
conclusion of both studies, we started using the CAD system
as part of our clinical routine for reducing the unnecessary use
of GBCAs.

sensitivity =
GBCA given for new brain lesion

GBCA given for new brain lesion + GBCA not given for new brain lesion
(1)

Inclusion/exclusion of patients in our studies was based on
informed consent of participation. For any included patient,
the choice to inject GBCA was based on the detection of new
lesions as communicated from the CAD operator to the MR
technician. The monitored outcome was the performance of
correctly identifying patients in need of GBCAs with the use of
our CAD system. The sensitivity and specificity calculated here
assess the results of the feasibility study (Table 1), as well as the
follow up validation study (Table 2) of giving Gadolinium to MS
patients when new lesions are detected.

3.7. CAD’s Lifecycle To-Date
Almost 20, 000 patients have been assessed with the clinically
deployed CAD system to-date. However, the presented CAD
tool has undergone a code refactoring during its lifecycle,
to improve performance in terms of execution time and

sensitivity, resulting in a second version (Figure 3). Specifically,
the initial development and evaluation of the presented
CAD tool has successfully concluded in 2012, resulting
in its original deployed v.1.0. This version was integrated
to the routine clinical workflow for MS patients across
the UPHS network. Ever since, we have been monitoring
technological developments and methodological advancements
that could improve the performance of the deployed tool.
Taking into consideration its high throughput application
we have only performed some basic code refactoring in
2020, when we observed that the numbers of assessed scans
were lowered due to pandemic-related cancellations. The
number of patients assessed during the clinical use of v.1.0
(2012-07/2020) and v.2.0 (07/2020-Now) were 14, 900 and
4, 875, respectively.

The algorithmic differences between the CAD tool’s v.1.0
and v.2.0 relate to the steps of rigid registration and brain
extraction. Further modifications have also been considered
that are unrelated to any methodological components and are
associated with the optimization of graphical elements of the tool
according to feedback from the technologists in the “3D-lab”. For
the rigid registration step, we specifically substituted the FSL’s
FLIRT (45) algorithm that was used in v.1, with “Greedy” (https://
github.com/pyushkevich/greedy) (46) to optimize for the total
execution time. “Greedy” is a CPU-based C++ implementation
of the greedy diffeomorphic registration algorithm (47) and was
designed and developed for rapid registration of radiologic scans.
“Greedy” shares the Symmetric Normalization (SyN) of the ANTs
registration approach (42). Greedy, on the other hand, is non-
symmetric, which makes it quicker (in applications like multi-
atlas segmentation, where symmetric property is not required).
For the brain extraction step, the initial version of the CAD
system (v.1.0) used the “Brain Extraction Tool” (BET) (48).
During the CAD’s refactoring to its second version, in 2020, BET
was substituted by an in-house deep learning based method (26)
developed explicitly for brain MRI scans including pathologies,
with the intention of improving the execution time, as well as the
brain extraction quality.

4. RESULTS

Figure 7 depicts the number of clinical cases assessed by the CAD
software, since its integration into the routine clinical workflow.
The increase over the years reflects both the growth of the patient
population at the UPHS MS clinic and the greater application
of the CAD software across the UPHS network, i.e., at satellite
locations. We should note the drop in the patients evaluated in
2020 due to the COVID-19 pandemic, when patients cancelled
or postponed their followup MRI examinations.

For the assessment of lesion burden changes, we have not
conducted an explicit quantitative performance evaluation of the
two versions of the software. However, the “3D-lab” technologists
have internally reported the sensitivity of the initial version
in detecting new lesions as 88%, whereas the sensitivity of
v.2.0 being greater than 95%, following the aforementioned
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FIGURE 7 | Annual use of the software displayed per year for the number of

patients assisted.

TABLE 3 | GBCA reduction initiative: quantitative performance evaluation from the

feasibility and the follow up validation studies.

Metric Feasibility study Follow-up study

Sensitivity 0.78 0.88

Specificity 0.98 0.71

Precision 0.82 0.45

Recall 0.78 0.88

Positive predictive value 0.82 0.45

Negative predictive value 0.97 0.95

False positive rate 0.02 0.30

False negative rate 0.22 0.13

Accuracy 0.95 0.75

F1 score 0.80 0.59

algorithmic modifications. In terms of execution time, the “3-
D lab” technologists require minimal manual intervention to
execute the tool (approximately 1 min), and the total time that
the approach takes to perform a single patient assessment, on an
4-core CPU (Intel Xeon W-2123 3.60 GHz), has been reported
as 11 min for v.1.0 and 5.5 min for v.2.0, on average. The false
positives are relatively easy to discard by humans because they
tend to occur outside of the white matter of the brain, and in
specific areas of the images that are inherently noisy.

For the initial testing phase of gadolinium reduction initiative,
we conducted a 2 month feasibility study during which a
total of 141 patients participated. Following Table 1, we note
an 88% reduction in the overall use of GBCAs. We further
note a 98% reduction of GBCAs use, when considering only
patients with new lesions. Following a performance evaluation,
we maintained a high specificity (shown in Table 3), while
keeping high sensitivity of 78%. This feasibility study showed
promising results, and the new protocol, with contrast imaging
conditioned upon finding new disease activity on CAD results,
became the current standard.

Further evaluation of the gadolinium reduction initiative
described a 3 months analysis for 632 additional MS patients, as
a follow up validation. In this analysis, we note a reduction of
58% of GBCAs’ use, which is lower when compared to the 88%
reduction observed in the feasibility study.We further note a 71%
reduction of GBCAs use on only patients with existing lesions.
This study yielded an increase in sensitivity to 88% (from 78%
of the feasibility study), while a reduction occurred in specificity
from 98% of the feasibility study to 71%.

These metrics are being passively tracked by the “3-D lab”, and
the current estimate is about 85% reduction in GBCAs use, as the
protocol continues to be utilized across nearly all UPHS sites.

5. DISCUSSION AND FUTURE WORK

In this study we have presented a CAD based method deployed
and integrated to the routine clinical workflow for (i) assisting
neuroradiologists assess MS lesion burden changes, and (ii)
reducing the need for use of GBCAs. We demonstrate the
successful evaluation of this computational approach in both
the initial evaluation studies and during its routine clinical use,
following its complete integration to the clinical workflow since
2012. The findings of this study support our claims that CAD
based systems built around clinical settings forMS can contribute
in improving patient care and assist radiologists in making better
informed decisions.

Temporal changes in patients with existing diagnosed
MS lesions were identified better through the presented
computational approach using a 3-D T2-FLAIR MRI
sequence, than the routine clinical interpretation based on
visual observation. The computational approach assisted in
improving the sensitivity and false-positive ratio in identifying
patients with new (or growing) lesions compared to manual
interpretation. Cases can be run in real time (during the patient
scanning session, and in < 10 min) within the clinical workflow
due to the processing time being so short. The approach has been
tuned toward producing the highest possible sensitivity of 90%
on a patient basis, where GBCAs are given only when necessary,
but still with a low rate of false positive of 30%, allowing for
efficient temporal change assessment (Table 3).

Non-enhancing new lesions are also of great interest from a
clinical standpoint. In fact, as the number of treatment options
for MS patients grows, neurologists caring for them are more
interested than ever in knowing if new lesions have emerged
from previous scans, regardless of their enhancing status. The
presented computational approach is not intended to detect
lesions that are enhancing. However, we do not believe that these
are clinically significant, and the detection of enhancing lesions
“manually” (i.e., by visual observation) is relatively simple.

The presented computational approach helps answer the
essential clinical question that neurologists are asking when
ordering a follow up MRI scan: “Are there new white matter
lesions from the prior scan?”. This is still one of the most relevant
metric for assessing the performance of a therapeutic regimen.
The high sensitivity (90%) of this approach in detecting new focal
MS lesions allows neurologists to determine if a patient’s current
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Disease Modifying Therapy (DMT) is appropriately controlling
their disease (i.e., no new MS lesions) and may be continued,
or if it is not controlling their disease (i.e., new lesions are
detected) and a change in DMT may need to be considered.
This is more relevant nowadays that the number of available
therapeutic options has increased in the past several years,
including higher efficacy drugs that also carry the potential for
more adverse effects.

Although the presented approach has a clear benefit to clinical
practice, it also has its limitations. One of them is that the
different time-point MRI scans have to be acquired at the same
institution, or more specifically to have a record stored under the
institutional PACS. This is required for the approach to produce
appropriate results shared with the attending clinician through
the platform used typically for the assessment of MS patients. Use
of multi-institutional data with medical record number varying

across patients and scanning sessions has not been utilized yet, as
it was out of scope of this 10-year analyses. Another limitation is
the assessment of the rarely observed spinal cord lesions that are
not taken into consideration. Any new lesions formed around the
spinal cord are currently not considered/processed, and can be
potentially missed through the computational approach, since we
have primarily focused only on the brain. Limitations also occur
when a lower resolution space is used as the reference space to
avoid the interpolation artifacts that are generated going from a
lower resolution space to a higher resolution space.

The presented approach could also be further utilized in a
clinical research setting, such as drug trials, when the ability of the
approach to detect temporal changes consistently and reliably,
with high sensitivity 90%, is critical. Although the approach
presented here does not calculate either the exact volume of
each lesion, or the total change in lesion load, this quantification

capability belongs to the immediate future work incorporating
multi-institutional pilot projects.
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Objective: To validate the reliability and efficiency of clinical diagnosis in practice based
on a well-established system for the automatic segmentation of cerebral microbleeds
(CMBs).

Method: This is a retrospective study based on Magnetic Resonance Imaging-
Susceptibility Weighted Imaging (MRI-SWI) datasets from 1,615 patients (median
age, 56 years; 1,115 males, 500 females) obtained between September 2018 and
September 2019. All patients had been diagnosed with cerebral small vessel disease
(CSVD) with clear cerebral microbleeds (CMBs) on MRI-SWI. The patients were divided
into training and validation cohorts of 1,285 and 330 patients, respectively, and another
30 patients were used for internal testing. The model training and validation data
were labeled layer by layer and rechecked by two neuroradiologists with 15 years of
work experience. Afterward, a three-dimensional convolutional neural network (CNN)
was applied to the MRI data from the training and validation cohorts to construct a
deep learning system (DLS) that was tested with the 72 patients, independent of the
aforementioned MRI cohort. The DLS tool was used as a segmentation program for
these 72 patients. These results were evaluated and revised by five neuroradiologists
and subjected to an output analysis divided into the missed label, incorrect label, and
correct label. The interneuroradiologists DLS agreement rate, which was assessed using
the interrater agreement kappas test, was used for the quality analysis.

Results: In the detection and segmentation of the CMBs, the DLS achieved a
Dice coefficient of 0.72. In the evaluation of the independent clinical data, the
neuroradiologists reported that more than 90% of the lesions were directly detected and
less than 10% of lesions were incorrectly labeled or the label was missed by our DLS.
The kappa value for interneuroradiologist DLS agreement reached 0.79 on average.

Conclusion: Based on the results, the automatic detection and segmentation of CMBs
are feasible. The proposed well-trained DLS system might represent a trusted tool for
the segmentation and detection of CMB lesions.

Keywords: cerebral microbleed, deep learning, neural network, segmentation, clinical evaluation
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INTRODUCTION

Cerebral microbleeds (CMBs) are radiological constructs that
were first observed and defined on MRI (1). T2∗-weighted
gradient-recalled echo (GRE) and susceptibility-weighted
imaging (SWI) are commonly used to detect CMB in clinical
practice (2). On GRE images or SWI, a CMB is a small elliptical
or circular lesion of 2–5 mm but sometimes up to 10 mm
(3). According to previous studies, SWI is usually the main
modality recommended for quantifying numbers of CMBs, as
it shows higher sensitivity and reliability for CMB detection
than GRE imaging. The pathophysiology of CMB has not yet
been fully elucidated. Histopathologically, microbleeds represent
the perivascular focal collection of hemosiderin deposits (1–5).
Vitreous degeneration of small vessels and vascular amyloidosis
are considered to be the two main pathological mechanisms.
They might damage the small vascular wall and cause the
destruction of the blood-brain barrier. The focal remnant
deposits of hemosiderin are most likely secondary to such
arteriolar and capillary damage caused by multiple mechanisms,
which result in blood product leakage in the perivascular
space (6). A group of risk factors for CMB has been reported,
including age, hypertension, cholesterol, diabetes mellitus, and
smoking (7–9). CMB is associated with an increased risk of
several diseases and conditions. CMBs increase the risk of
subsequent ischemic stroke and intracranial hemorrhage (ICH)
(2, 3, 10, 11). CMBs are associated with small vascular disease
(SVD) and are thus more likely to accompany strokes with
lacunar infarction than infarction caused by cardioembolism
or atherosclerosis (12). CMB is also expected to cause ICH (8,
13). Therefore, CMB was considered a predictor of future stroke
and hemorrhage in patients receiving thrombolytic therapy or
long-term antithrombotic treatment for ischemic stroke (3).

Cerebral microbleeds (CMBs) are also associated with an
increased risk of cognitive impairment and dementia in patients
with normal cognitive function, mild cognitive impairment,
and dementias such as Alzheimer’s disease (4, 14–16). In
addition, CMBs may be present in individuals with some genetic
diseases, such as cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy (CADASIL)
or Moyamoya disease (17, 18). The risk and extent of CMB,
which is considered a biomarker of SVD, has been used as an
index for evaluating the status of underlying diseases and might
influence the management of these diseases (12). Thus, a systemic
and quantitative evaluation of CMB with high accuracy and
efficiency is essential in assessing disease prognosis. At present,
visual scoring systems are used in CMB evaluations, including
the Microbleed Anatomical Rating Scale (MARS) (19) and the
Brain Observer MicroBleed Scale (BOMBS) (20). However, the
reliability of these methods in assessing the number and location
of CMBs is relatively low without the use of evaluation tools.
In recent years, automated or semiautomated brain imaging
analysis methods have been applied to evaluate CMBs (21–23).
A deep learning system (DLS) for automatic CMB detection
was developed and analyzed in terms of reliability to support
clinical work with consistent and efficient CMB identification
and simplify the clinical workflow of CMB marking. We invited

five clinical neuroradiologists to assess the performance of the
proposed DLS, especially the number and location of CMBs based
on SWI sequences. This study aimed to validate an appropriately
trained DLS that could be trusted by a neuroradiologist with
sufficient experience.

MATERIALS AND METHODS

Standard Protocol Approvals, and
Patient Consent
This study was approved by the ethics committee of Beijing
Tiantan Hospital and fulfilled the Declaration of Helsinki.

Image Dataset
We retrospectively obtained MRI-SWI data with good SWI image
quality from 1,615 patients, and all the data were obtained
from Beijing Tiantan Hospital. According to the SWI acquisition
protocol used clinically, scans were obtained using multiple
different scanners with a field strength of 1.5T or 3T. In this
dataset, we labeled 10,525 lesions, including 9,387 small size
lesions ranging in size from 2 to 5 mm and 1,138 large lesions
ranging in size from 5 to 10 mm. The basic information of the
patients and manufacturers is provided in Table 1, and more
detailed information about lesion sizes is presented in Table 2.
The clinical evaluation dataset (test data) included MRI-SWI
images from 72 patients with CMBs in the Third China National
Stroke Registry (CNSR-III), a nationwide registry of ischemic
stroke or transient ischemic attack (TIA) in China based on
etiology, imaging, and biological markers that recruit consecutive
patients with ischemic stroke or TIA from 201 hospitals that
cover 22 provinces and four municipalities in China. This dataset
is independent of the previous 1,615 patients.

Data Quality Control
Minor artifacts or mildly reduced signal-noise ratios with no
effects on diagnosis or no artifacts and optimal artifacts were
selected for the evaluation of image quality in this retrospective
study. Diagnostic Screening: All patient electric health records
(EHRs) were reviewed and reanalyzed by medical doctors before
preprocessing the images, labeling, and generating ensemble
models. The segmentation labels with CMBs were based on a
manual slice by slice analysis of the MRI-SWI data. After labeling
all images with CMBs, all data were rechecked and endorsed by
two radiologists with 15 years of clinical experience, which were
used for DLS training and validation.

Network Architecture
The SWI image is a three-dimensional (3D) axial slice, and the
image size is Z∗X∗Y. Z represents the number of slices and X∗Y
represents the length and width of each slice. Microbleeding is
a disease with contextual information. The normal network used
two-dimensional (2D) U-net and 3D U-net for prediction, but the
number of slices of the SWI was quite different. If 3D U-net and
resampling are used, some slice information will be missing, and
a simple 2D U-net will lack the upper and lower slice information.
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TABLE 1 | Basic information of the patients, manufacturers, and
parameters of scanners.

Patients characteristics (training/validation dataset) Patient
(images)
metric

Number of patients 1285/330

Female to male ratio 405:880/95:235

Different macufacturers (numbers in the training/validation
datasets)

GE 287/72

Siemens 356/88

Philips 642/170

Field strength (numbers in the training/validation datasets)

1.5T 174/34

3T 1111/296

Scanner model (numbers in the training/validation datasets)

Verio 89/25

Ingenia 429/116

Achieva 77/13

Trio Tim 110/33

Signa HDxt 71/10

DiSCOVERY MR750 205/70

Ingenia CX 133/33

Skyra 16/2

Avanto 100/18

Aera 43/6

SIGNA Explorer 12/2

Prisma 0/2

Resolution (numbers in the training/validation datasets)

512 × 384 96/15

432 × 432 459/157

512 × 512 326/60

256 × 192 183/47

256 × 232 62/15

480 × 480 21/7

768 × 624 9/3

256 × 224 42/9

224 × 256 10/2

320 × 320 9/1

384 × 264 3/0

320 × 260 18/3

640 × 520 13/2

310 × 320 1/0

352 × 352 9/1

256 × 256 21/8

260 × 320 1/0

560 × 560 2/0

Therefore, in this article, we adopted a new approach. In the
training process, three consecutive layers of slices were used as
input. The size was X∗Y∗3, and the output was X∗Y. The middle
slice of the positive sample had microbleeds, and the middle slice
of the negative sample had no microbleeds. Bleeding was not set
for the analysis of whether microbleeds were present in the upper
and lower layers. Here, the ratio of positive to negative was 1:1.

TABLE 2 | Data distribution.

patients Small lesions Large lesions

Training dataset 1,285 (79.6%) 7,461 (79.5%) 927 (81.5%)

Validation dataset 330 (20.4%) 1,926 (20.5%) 211 (18.5%)

Summary 1,615 9,387 1,138

During the test, the entire image was input into the network in
sequence according to the scanning order.

We implemented a 3D CNN to extract representative features
for complicated CMBs based on the MRI-SWI sequences.
Specifically, we designed a full CNN architecture composed
of encoder and decoder paths to conduct the segmentation
task. More specifically, our network was based on the widely-
used modified 3D U-Net architecture with 3 layers. The
detailed network architecture is shown in Figure 1, which
provides a detailed description of the segmented network
used to detect CMBs.

Establishing the Deep Learning
Algorithm
Before feeding the model, all MRI-SWI data were preprocessed by
scaling the global (3D) image intensities and were standardized
across the acquisition parameters to increase the convergence
rate of network training. We performed the normalization and
alignment based on the histogram peaks to the white matter
content in the MRI. All images were cropped into squares
according to the shortest side, and the size was cropped or resized
to 384× 384 pixels. According to the histogram, we deleted fewer
points (less than 1e-4), and the window width was determined
and then max-min normalized. Lesions with sizes other than
2–10 mm were deleted.

The training set and validation set consisted of CMB data
(n = 1,285 positive volumetric scans and 330 positive volumetric
scans, respectively). The model was trained using 3D axial SWI
slices. The SWI data from all patients were preprocessed, resized,
and normalized to have a uniform size of 384 × 384 × 3
pixels and pixel intensities in the range of 0–1. Using these
data, the network was trained using binary cross-entropy loss
and the Adam optimizer with an initial learning rate of 10−3.
During training, model training progress was monitored using
a validation set Dice score. The learning rate was reduced by
a factor of 0.1. An early stopping criterion was implemented if
the validation Dice did not improve for 30 consecutive epochs
to avoid model overfitting. Training stopped if the validation
Dice score did not improve for 60 consecutive epochs. At the
end of the training, the model with the highest Dice score for
the validation set was retrieved. Its performance was evaluated
on the test dataset. The training was stopped when the training
loss was less than 10 and the validation scores reached 0.8, as
we presumed that the DLS reached the optimal performance at
this time. The dataset was augmented in the training process,
including image vertical, rotation, translation, contrast changes
and other parameters, to increase the robustness of the model.
Thus, it forms a more diverse dataset with slight differences.
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FIGURE 1 | Network architecture of the proposed three-dimensional (3D)
convolutional neural network (CNN). The network has 28 layers integrating six
residual blocks. Bilinear interpolating arrows indicate upsampling operations
to provide dense predictions for the segmentation task. Skip connections are
used to fuse low- and high-level features in the network. Batch normalization
is a linear transformation of the features to reduce covariance shift and
accelerate the training process. The convolution bar represents the
convolution operation that computes features. The number 64 indicates the
number of channels in that layer, and 3 3 3 3 3 denotes the size of the 3D
CNN kernels.

If the prediction mask and the reference mask intersected, a
value greater than the threshold value was considered predicted
correctly; otherwise, prediction error was considered. Similarly, if
the reference mask and forecast masks intersect, a value greater

than the threshold value was considered correctly predicted;
otherwise, the prediction miss was considered. The threshold was
set to 0.4 obtained from the optimized model results. Computed
precision and recall were analyzed using this method. After
the establishment of the model, 90 healthy patients without
CMBs were used as the control to test the model, and no
false-positive CMBs were detected. Then, the model entered the
evaluation phase.

Evaluation Dataset and Reference
Standard
Commonly used metrics known as the Dice score, precision,
recall, and accuracy were used to evaluate the performance of the
proposed segmentation networks (24). Pixel level dice score was
the primary model performance criteria and it was calculated as
follows:

TPpixel =
∣∣Pixels correctly predicted as positive

∣∣
= |Predicted Mask ∩ Ground truth mask|

FPpixel =
∣∣Pixels wrongly predicted as positive

∣∣
FNpixel = |Pixels wrongly predicted as negative|

Dicepixel =
2 ∗ TPpixel

2 ∗ TPpixel + FPpixel + FNpixel

Along with the dice score, the pixel level precision and recall
were also calculated as follows:

Presicionpixel =
TPpixel

TPpixel + FPpixel

Recallpixel =
TPpixel

TPpixel + FNpixel

Also, along with the pixel-level computations, to understand
how good the model is in identifying isolated lesions, the lesion
level precision and recall were computed. For this computation,
first, the individual lesions were identified as a set of continuous
positive pixels from both the predicted and ground truth mask.
Next, the overlap between the predicted lesions and the ground
truth lesions was computed and the lesions were termed as
TP lesions if this overlap was greater than 40% of the true
lesion. Following this, the lesion-level precision and recall were
computed as follows:

TPlesion =
∣∣Correctly predicted as lesions

∣∣
Predictedlesion =

∣∣Predicted lesions
∣∣

Truelesion =
∣∣Ground truth lesions

∣∣
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Presicionlesion =
TPlesion

Predictedlesion

Recalllesion =
TPlesion
Truelesion

We count the data level and patient level at the same time, and
the data level is calculated on the entire data set. The patient level
is calculated for each patient first and then averaged.

Furthermore, based on the condition of whether the model
was able to identify at least one correct lesion, the patients were
also classified into the TP, TN, FP, and FN categories. Based on
this data, the patient-level FP rate (FPR), FN rate (FNR), and TP
rate (TPR) were calculated as follows:

FPR =
FP

TN + FP

FNR =
FN

TP + FN

TPR =
TP

TP + FN

The FP rate indicates the model’s tendency for wrongly
identifying a patient as having infarction (Type I error rate)
whereas, FNR indicates the possibility of the model missing a
patient with infarction (Type II error rate). Based on the FPR
and TPR, the receiver operating characteristics (ROC) curve was
constructed: the abscissa was FPR and the ordinate was TPR.
Then the area under the ROC (AUC) was calculated. Pixel-level
ROC and lesion-level ROC were defined as follows:

Pixel-level ROC: taking each pixel as a sample, the ROC
curve is calculated from the pixel prediction probability
and ground truth.

Lesion-level ROC: taking each lesion as a sample, the average
pixel probability of each lesion is counted, and the ROC curve is
calculated from the average probability and ground truth.

Compared with pixel-level ROC, lesion-level ROC is more
clinically relevant. So we constructed the lesion-level ROC to
evaluate the performance of the system.

We generated predictions for 72 patients randomly chosen by
a doctor among patients who had SWI sequences in their records
from the CNSR-III research group to evaluate the performance
of the model and assess whether it would meet the clinical
requirements. The clinical diagnosis must meet the inclusion
criteria, and all of these patients are independent of the previous
training and validation datasets.

The clinical doctors included in this study are top experts
neuroradiologists with at least 15 years of clinical experience.
After DLS prediction, we asked them to categorize the prediction
results into three subgroups: correct label, missed label, and
incorrect label. Each of these terms was defined as follows:

Correct label: the label was accurate compared with
the ground truth.

Missed label: compared with the ground truth, the model did
not produce the corresponding label.

FIGURE 2 | Flowchart of the patients’ distribution in training and clinical
evaluation sets. Model training and clinical evaluation steps use the
distribution and classification of all samples in each step.

Incorrect label: the model assigned additional labels that were
not in the ground truth label during the test.

Ground truth: two different chief physicians double confirmed
the ground truth label in the test dataset (72 patients).

Doctors were requested to perform the segmentation to the
best of their abilities, without any constraint on time or duration
to ensure that they evaluated the data in its best state. They
revised the prediction results obtained from DLS when the
prediction results were missing or incorrect.

Statistical Analysis
The clinical evaluation was performed by five clinical medical
doctors to assess the deep learning segmentation results. The
interradiologist agreement test was performed for each validation
case using the SPSS software (version 20.0) (IBM, Armonk, NY,
United States). The statistical significance was set to P< 0.05, and
a kappa value >0.21, based on the ground truth.

RESULTS

Patient Demographic Characteristics
In Figure 2, we present the entire method for the DLS setup.
A total of 1,615 MRI examinations with l0,525 lesions identified
in 1,615 patients were included. We randomly distributed these
data into a training cohort and a validation cohort; thus, no
significant differences in sex or age were observed.

Additionally, our dataset comprised an adequate number
of CMBs, and the distribution of the lesion data had no
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FIGURE 3 | (A) Overall framework for the testing stage. (B) Segmentation
receiver operating characteristic (ROC) curve and area under the curve (AUC)
score in the lesion level analysis.

bias. The parameters of these data were obtained from a
similar investigator and scanner. We confirmed the scanner
parameters of pixel and thinness. The brightness and contrast
were normalized before being input into the DLS system.

DLS Set-Up and Performance of the DLS
Contouring Method
A total of 10,525 lesions were manually labeled to establish the
DLS. Briefly, we manually labeled approximately 9,387 small
size lesions (2–5 mm, 7,461 lesions for the training set and
1,926 lesions for the validation set) and 1,138 large lesions (5–
10 mm, 927 lesions for the training set, and 211 lesions for the
validation set) for training and validation (Table 1). The network
architecture of the proposed 3-dimensional convolutional neural
network is shown in Figure 1, and more detailed information
about the network is presented in the methods section. After
training and validation, the DLS was tested using the testing
dataset. The average pixelwise DSC, precision, and recall of
the proposed DLS reached 0.72, 0.718, and 0.765, respectively.

TABLE 3 | Model performance obtained from the testing dataset.

DSC Precision Recall Sensitivity Specificity

Small lesions 0.71 0.707 0.762 84.4% 78.07%

Large lesions 0.73 0.729 0.768 93.51% 83.72%

In average 0.72 0.718 0.765 / /

TABLE 4 | Clinical evaluation.

Observer
1

Observer
2

Observer
3

Observer
4

Observer
5

Average

Correct
label

787
(94.4%)

770
(92.8%)

790
(94.6%)

784
(93.3%)

761
(91.2%)

778.4
(93.3%)

Incorrect
label

27 (3.2%) 44 (5.3%) 24 (2.9%) 30 (3.6%) 53 (6.4%) 35.6 (4.3%)

Missed
label

20 (2.4%) 16 (1.9%) 21 (2.5%) 26 (3.1%) 20 (2.4%) 20.6 (2.5%)

The 3D lesionwise precision and recall reached 0.751 and
0.852, respectively. A lesion level analysis was performed on the
independent test set, and the results showed that the sensitivities
of detecting the small and large lesions were 84.4 and 93.51%,
respectively. Additionally, in the lesion level analysis, the AUC
score of the proposed DLS system was 0.861, and the ROC
curve is shown in Figure 3B. The patient level analysis was also
performed with the FP, FN, TN, and TP of 10, 2, 84, and 93,
respectively. And the FP rate and FN rate were 0.106 and 0.021,
respectively. The detailed results of the model are presented
in Table 3.

The data show the relabeling results after a comparison
between the DLS tool and expert labeling results. From the
data, we found that the labels attained from the model were
accurate and perfectly matched the contour of the real signal.
However, the labeling tools and pixels did not adequately control
the manual labeling, and the Dice score did not adequately
reflect the DLS segmentation results. These data could only
support DLS training and validation. Visually, we examined all
the data and found that our DLS and human experts had strong
consistency in the lesion contour, but the Dice score was low, as
described above.

Assessment of DLS-Generated Contours
by Human Experts
Figure 3A presents the overall framework for data prediction
and the clinical evaluation process. Based on the labeling
sensitivity and Dice score, the sensitivity of labeling small
lesions was approximately 84.47% and that of large lesions
was approximately 93.51%, with an average Dice score
of approximately 0.72. The specificity of labeling was
approximately 78.07% for small lesions and 83.72% for large
lesions (Table 3).

However, in the clinical evaluation, the doctors evaluated
the output labeling results and revised the labeling results
to “missed label,” “incorrect label,” and “correct label.” The
missed label group included approximately 20.6 lesions on
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FIGURE 4 | Representative cases of manual cerebral microbleeding (CMB) labeling and labeling with the deep learning system (DLS) system (A,B) along with the
data distribution (C).

average and 2.5% in total, and the incorrect-label group
included approximately 35.6 lesions on average and 4.3%
in total. We concluded that using DLS as a contouring

accuracy evaluation criterion is reliable and provides accurate
lesion quantification. The average kappa value for the
internal agreement between observers and DLS prediction
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was 0.79. Detailed information in the clinical evaluation
is presented in Table 4. Several examples obtained from
the DLS are shown in Figure 4 and compared with those
obtained manually.

DISCUSSION

Cerebral microbleed (CMB) is closely related to many diseases,
including SVD, AD, and CADASIL. A previous study has shown
that in addition to the location of the CMB, the number is also
an independent predictor of the severity of cognitive impairment
and dementia in multiple fields (25). Therefore, systematic and
accurate quantification of CMB is of great clinical significance.

Based on the SWI data from 1,615 patients with a total
of 10,525 lesions, we established a DLS that automatically
and objectively segmented CBMs. Compared with other
studies (26–28) that automatically recognized CMBs using
deep convolutional networks, our DLS was trained with a
larger dataset, and the sensitivity and specificity of the model
were high, suggesting that it was reliable and would better
serve clinicians. Previous studies usually adopted 2D CNNs to
construct automatic detection systems, but they lacked upper
and lower slice information. In our study, the FN rate of the
DLS was low, and we used the widely-used modified 3D U-Net
architecture. It made full use of the spatial information of
biomarkers and accelerated the computing speed. In addition
to studies that used 2D/3D CNNs to detect CMBs on MRI-
SWI, Chesebro et al. (29) presented an algorithm for microbleed
automated detection using geometric identification criteria
(MAGIC) to detect CMBs automatically. It has reasonable
precision on both T2∗-weighted GRE images and SWI and
had high sensitivity in longitudinal identification, with 50%
of longitudinal microbleeds correctly labeled. Limited to the
algorithm, this study was unable to discriminate between edge
artifacts and true positives better than other studies using deep
convolutional networks.

We evaluated the DLS performance based on the Dice score,
which allows for minor uncertainties in the neighborhood
of a few pixels, and the region-wise F1 score, which may
not be a suitable indicator for success in evaluating lesions.
The AUC of our DLS was 0.861, revealing the excellent
performance of the system. Due to the high AUC and low
FP rate and FN rate, we propose that it accurately quantified
CMBs. Based on a manual data recheck and the variation in
lesion marking by individual neuroradiologists, we performed
a clinical evaluation based on a multicenter analysis with
a score scale. Our DLS performed favorably according to
the evaluation by neuroradiologists with an average accuracy
of 93.3%. Our marking results were directly or clinically
accepted, with most DLS-identified CMBs agreed upon by
expert specialists. Moreover, these processes were performed
much faster than the manual evaluation process [DLS 2.8
s/case vs. doctors 146 s/case (on average)], which is time-
consuming and produces systemic and quantified results,
significantly minimizing heterogeneity among neuroradiologists
in the delineation of lesions. The results in this study showed

that our model was used for the diagnosis and evaluation
of CMBs and was more reliable than manual evaluation
performed by specialists.

Limitations
First, several different MRI devices with varying scan parameters
produced all the images evaluated in this study. The use of
these images might increase the data diversity in training
the algorithm and testing interpretation subjectivity. However,
we were unable to include all the different devices or their
corresponding parameter sets for each patient. Therefore, the
further clinical application of our system may be challenging
due to this limitation. Second, due to the heterogeneity in
different neuroradiologists’ clinical backgrounds, the accurate
recognition and consistent interpretation of the number and
location of CMBs by all of these clinicians was challenging.
Notably, all annotations made in the dataset have been
endorsed by associate chief physicians with at least 15 years
of experience. As our model was trained on these data,
the limitation of clinical experience in these doctors might
affect their evaluation of CMBs and subsequently affect the
training process. Improving data quality using more experienced
doctors and rigorous training of study protocols might optimize
the reliability of training our DLS model. Third, the well-
trained DLS has advantages in overcoming the heterogeneity
of individual human interpretations with good consistency
based on the training features (30). This automated procedure
is independent of clinical experience, overcoming limitations
imposed by an individual physician’s visual sensitivity and
clinical experience. The results from the DLS report are
produced instantly by the graphical processing unit after
input with the output scanning results, which is helpful for
neuropathologists to perform the interpretation process faster.
Prospective clinical studies are needed to determine whether
this hypothesis is valid, and the interpretation should also
be modified by performing a post-DLS analysis to match
the equipment and the DLS. In addition, our DLS system
for CMBs is based only on MRI-SWI and does not include
other useful clinical diagnostic information, such as natural
history and other imaging performance in the resulting output.
Thus, the information is limited in producing a powerful and
clinically significant prediction, and differential diagnosis, such
as calcification and normal vascular fluid voids, is sometimes
needed. Currently, our DLS only serves as a method for assisting
neuroradiologists. Future studies involving more comprehensive
clinical information are necessary. Another limitation of this
study is that it is based on local and regional data. All the data
were collected in China and thus do not include data from other
countries and regions.

CONCLUSION AND CONTRIBUTIONS

In summary, we developed a DLS tool to perform the CMB lesion
segmentation. Our results show that DLS can significantly and
quickly masks CMBs in less time to reduce physicians’ repetitive
labor. Additionally, based on the DLS model, variation within
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and between neuroradiologists might be reduced. The resulting
output produced by the system will be more subjective.
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Automatic brain tumor segmentation is particularly challenging on magnetic resonance

imaging (MRI) with marked pathologies, such as brain tumors, which usually cause

large displacement, abnormal appearance, and deformation of brain tissue. Despite

an abundance of previous literature on learning-based methodologies for MRI

segmentation, few works have focused on tackling MRI skull stripping of brain tumor

patient data. This gap in literature can be associated with the lack of publicly available

data (due to concerns about patient identification) and the labor-intensive nature of

generating ground truth labels for model training. In this retrospective study, we assessed

the performance of Dense-Vnet in skull stripping brain tumor patient MRI trained on

our large multi-institutional brain tumor patient dataset. Our data included pretreatment

MRI of 668 patients from our in-house institutional review board–approved multi-

institutional brain tumor repository. Because of the absence of ground truth, we used

imperfect automatically generated training labels using SPM12 software. We trained

the network using common MRI sequences in oncology: T1-weighted with gadolinium

contrast, T2-weighted fluid-attenuated inversion recovery, or both. We measured model

performance against 30 independent brain tumor test cases with available manual brain

masks. All images were harmonized for voxel spacing and volumetric dimensions before

model training. Model training was performed using the modularly structured deep

learning platform NiftyNet that is tailored toward simplifying medical image analysis.

Our proposed approach showed the success of a weakly supervised deep learning

approach in MRI brain extraction even in the presence of pathology. Our best model

achieved an average Dice score, sensitivity, and specificity of, respectively, 94.5, 96.4,

and 98.5% on the multi-institutional independent brain tumor test set. To further

contextualize our results within existing literature on healthy brain segmentation, we

tested the model against healthy subjects from the benchmark LBPA40 dataset. For

this dataset, the model achieved an average Dice score, sensitivity, and specificity of

96.2, 96.6, and 99.2%, which are, although comparable to other publications, slightly

lower than the performance of models trained on healthy patients. We associate this

drop in performance with the use of brain tumor data for model training and its influence

on brain appearance.

Keywords: MRI, brain tumors, brain extraction, skull stripping, deep learning, weakly supervised learning
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INTRODUCTION

Magnetic resonance imaging (MRI) has a pivotal role in
noninvasive diagnosis and monitoring of many neurological
diseases (Fox and Schott, 2004; Bauer et al., 2013). The large
amount of data produced in routine patient care has prompted
the birth of many studies aiming to automate image analysis tasks
relevant to patient care including volumetric analyses (Filipek
et al., 1997; Shattuck et al., 2001), tissue classification (Hu et al.,
2015, 2017; Kickingereder et al., 2016; Ramkumar et al., 2017),
disease staging (Chaddad et al., 2018; Ranjbar et al., 2019b), and
localization of pathology (Fox and Schott, 2004; Bauer et al.,
2013). To successfully characterize both normal baseline and
pathological deviation (Kalavathi and Prasath, 2016) on MRI,
non-brain tissues such as fat, skull, eyeballs, eyes, and teeth need
to be removed from images, as well as cerebrospinal fluid (CSF)
surrounding the brain. As manual annotation of brain tissue in a
volumetricMRI is excruciatingly labor intensive, many automatic
“whole brain extraction” or “skull stripping” techniques have
been introduced in the literature to tackle this need. Separating
brain and non-brain tissue has been achieved using edge-
based (Somasundaram and Kalaiselvi, 2011; Speier et al., 2011),
intensity-based (Ashburner and Friston, 2000; Hahn and Peitgen,
2000), and deformable surface-based methods (Smith, 2002;
Jenkinson et al., 2005; Zhuang et al., 2006; Galdames et al., 2012).
Atlas-based (Leung et al., 2011) and patch-based (Eskildsen et al.,
2012; Roy et al., 2017) methods define the boundaries of the brain
by registering images to one or many atlases either on the entire
image or on nonlocal image patches. Hybrid methods (Segonne
et al., 2001; Rehm et al., 2004) that integrate several of the
above approaches have been found (Boesen et al., 2004; Iglesias
et al., 2011) superior to any individual method in accuracy at the
expense of time efficiency.

However, these methods offer fluctuating accuracies with
heterogeneous datasets with varying levels of image resolutions,
noise, and artifacts (Kalavathi and Prasath, 2016), and as they
are designed for healthy brains, they fail in the presence
of pathological conditions on images (Speier et al., 2011).
Glioblastoma (GBM), a brain tumor known for its diffuse
infiltration, creates serious challenges for most skull stripping
methods because of large regions of edema or administration
of contrast agents during the examination (Speier et al., 2011).
Moreover, GBMs are often cortically localized with abnormalities
extending to the edge of the brain and deformities in MRI known
as brain shift, which can throw off morphological skull stripping
approaches that have rigid assumptions about brain appearance.

Recent success of deep learning has made a lasting impact

in computer vision and by extension in biomedical image
analysis. Deep convolutional neural networks (CNNs) have

shown success in several neuroimaging applications such as
MR sequence classification (Ranjbar et al., 2019a), prediction of
genetic mutation usingMRI (Chang et al., 2018; Yogananda et al.,
2019), and tumor segmentation (Işin et al., 2016; Pereira et al.,
2016). Naturally, several works have explored the utility of deep
learning approaches in MRI skull stripping (Kleesiek et al., 2016;
Mohseni Salehi et al., 2017) and have reported high performance
on publicly available datasets of normal brains. Given the level

of variability that we routinely observe in brain tumor data with
respect to image quality as well as shape, size, and the location
of abnormalities, rule-based approaches might not be well-suited
for skull stripping MRI data in oncology, and there is a need
for learning-based approaches for skull stripping MRI of patients
with brain tumors. However, labeled training data are scarce
in this case as whole-brain labels require substantial time to
obtain and have no immediate clinical utility. In the absence
of fully ground truth labels, weakly supervised learning, where
imperfect and inexact labels are used for model training, offers a
more approachable alternative and has previously shown success
in segmentation of brain structures on MRI (Bontempi et al.,
2020). In this work, we assessed the performance of a weakly
supervised three-dimensional (3D) skull stripping approach to
generate brain masks for multi-institutional brain tumor data
when training data were also brain tumor data. To the best of our
knowledge, our work is the first of its kind as no previous study
has explored the use of both imperfect labels and pathological
MRIs to train a skull stripping model.

The contributions of our work are therefore (1) training
a 3D CNN for brain extraction leveraging a diverse set of
multi-institutional brain tumor data for model training, (2) use
of imperfect automatically generated labels for ground truth,
(3) comparison of results across two clinically standard MRI
sequences (T1-weighted post injection of gadolinium contrast
([T1Gd] or fluid-attenuated inversion recovery [FLAIR]) used
in oncology, and (4) assessing the performance of a skull
stripping model trained on brain tumor data on a dataset of
healthy subjects.

MATERIALS AND METHODS

Data
Brain Tumor Images
Our in-house institutional review board (IRB)–approved
repository [described in our previous work; Ranjbar et al.,
2019a), which contains more than 70,000 serial structural MR
studies of 2,500+ unique brain tumor patients acquired across
20+ institutions, was used as the source of brain tumor data.
We included paired pretreatment T1Gd and FLAIR series of
668 adult brain tumor image series. The vast majority of this
dataset consists of one imaging time point per patient with
available T1Gd and FLAIR series, with the exception of one
patient with two time points and another with three, which
were also acquired at different institutions. We used patients
with paired imaging available to compare model performance
across different input combinations without concerns about
dataset differences influencing the results. We also excluded
post-treatment images from the cohort as brain tumor treatment
typically including surgery, radiation, and chemotherapy can
have varying effects on the appearance of MRI. Because of the
retrospective nature of our database, various anatomical and
quantitative MRI sequences were available for our patients,
and the availability of a certain sequence was dependent on the
decision of the patient’s clinical team. We chose to include only
T1Gd and FLAIR sequences because of their common use in
clinical practice and their prevalence in our database. These
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FIGURE 1 | Steps for creating the SPM12-p brain masks; images reflect the MRI of a 29-year-old male brain tumor patient with a diagnosis of GBM. FLAIR refers to

fluid-attenuated inversion recovery MRI and T1Gd refers to T1-weighted MRI with gadolinium contrast enhancement. Gray matter, white matter, and CSF probability

masks were generated using the SPM12 software. Bright voxels in these masks reflect higher probability. The final brain mask was generated by combining probability

masks, using a threshold of 0.7, and minimal post-processing.

series were randomly assigned to 586 training, 52 validation, and
30 test cases. Imaging time points from the same patient were
placed in the same data split. As creating ground truth labels
for the entire brain on volumetric MRI is very cumbersome
and time-consuming, the number of test cases were limited to
only 30.

As the data were acquired between 1990 and 2016, many
factors varied among samples including field strength and
acquisition parameters.We used a number of preprocessing steps
to harmonize the data including noise reduction with nonlinear
curvature-flow noise reduction (Sethian, 1999), radiofrequency
non-uniformity correction reduced using the N4 algorithm
(Tustison et al., 2010), resizing to a common matrix size of 240
× 240 × 64 voxels and a voxel resolution of 1 × 1 × 2mm. The
SimpleElastix framework (Marstal et al., 2016) was used to rigidly
coregister the FLAIR image to the T1Gd image within each study
to enable a comparative experiment of model training on both
sequences simultaneously.

Brain Tumor Labels
Given the large size of our cohort and the time-consuming nature
of manual segmentation, we devised an automatic approach
to substitute manual delineation of brain masks for model
training. We used the Statistical Parameter Mapping (Penny
et al., 2011) software SPM12, which contains tools for processing
many neuroimagingmodalities including structural MRI. SPM12
software generated probability maps for gray matter, white
matter, and CSF from all T1Gd MRIs. For each case, the maps
were combined into a single map and binarized using 0.7
probability (empirically decided) to generate a brain mask. In
some cases, the presence of tumor necrosis resulted in occasional
missing areas inside the combined mask, which we accounted
for by performing minimal morphological operations erosion
followed by dilation to fill in the gaps. The final post-processed
result for each brain (referred to as SPM12-p) was stored as a label
for model training and validation (Figure 1). SPM12 was run in
MATLAB version 2018a, and postprocessing steps were executed

FIGURE 2 | An example of a final training label compared with ground truth;

semiautomatically generated training labels were created using SPM12

software. As highlighted with arrows, compared with ground truth delineated

manually, the training label included some undersegmentation and

oversegmentation particularly around the edges of the brain, but included the

bulk of the tumor (outlined on top left slice).

in Python 3.6.6. This process was also conducted on test cases to
allow for comparison of labels with manual ground truth.

On the test set, we manually segmented brain regions to
establish ground truth for estimating model performance. The
intracranial volume was defined as the combination of gray
matter, white matter, subarachnoid CSF, ventricles (lateral, third,
fourth), and cerebellum as suggested by a previous work in
the literature (Roy et al., 2017). Manual segmentation was
initiated by one of two trained individuals with experience in
MRI tumor segmentation using our in-house semiautomatic
software. The results were further loaded into the ITK-SNAP
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FIGURE 3 | Overview of model architecture. Detailed description of the model architecture is available in Gibson et al. (2018a). The output of the model is resized to

the original input image dimension during postprocessing. An implementation of the model is available in the NiftyNet platform (http://niftynet.io) in code repositories.

(Yushkevich et al., 2006) software version 3.8.0 and corrected
manually by a third individual as needed. Figure 2 compares the
manual mask and SPM12-p label for one of the test cases.

To further enable comparison with existing atlas-based skull
stripping methods in the literature, we generated a third set of
labels for the test cases using theMulti-cONtrast brain STRipping
method (MONSTR; Roy et al., 2017), a patch-based multiatlas
skull stripping method. Although not extensively tested on
brain tumor patient data, MONSTR is a benchmark skull
stripping approach that was advertised for having success in brain
extraction of pathological MRI including patients with traumatic
brain injuries and tumors. We refer to these brain masks as
MONSTR masks hereon. MONSTR masks were generated using
both T1Gd and FLAIR contrasts as inputs.

Healthy Subjects Data
The publicly available LONI Probabilistic Brain Atlas Project
(LBPA40) (Shattuck et al., 2009) consisting of T1-weighted
MRI of 40 healthy subjects was used for evaluation of the
model against publicly available benchmarks. The corresponding
manually delineated brain masks included in this dataset were
used as ground truth. Although training data for this work
were entirely brain tumor patients, using this dataset will
allow us to contextualize our work within the existing skull
stripping literature that have evaluated their approach on MRI
of healthy subjects.

Model Training and Convolutional Neural
Network
We used TensorFlow (version 1.12.0) and the medical imaging
deep learning platform NiftyNet (Li et al., 2017; Gibson et al.,
2018b; version 0.6.0) for implementation of all experiments.
NiftyNet is a modularly structured deep learning platform
tailored toward medical image analysis applications with

modules for preprocessing, network training, evaluation, and
inference. Minimal coding is required from the user using
this platform, and the specific settings related to preprocessing
images, training, and testing can be communicated via a
configuration file. We used the 3D fully CNN (Long et al.,
2015) architecture known as dense V-network (Dense-Vnet)
that has previously demonstrated success in establishing voxel-
to-voxel connections between input and output images in
multiorgan segmentation of abdominal computed tomography
images (Gibson et al., 2018a). The architecture of the model is
shown in Figure 3, and it only differs from the original model
in the size of input image (in our case, 240 × 240 × 64)
and the lack of priors. The encoder block of the segmentation
network generates three different sized sets of feature maps
using dense feature stacks (Huang et al., 2017). The outputs are
upsampled using the decoder block so that the smaller feature
maps match the original input size. The final output is the
concatenated version of all outputs after a single convolution
in the skip connection. It should be noted that the Dense-
Vnet architecture is designed to work with a smaller version
of the original image to constrain memory usage (i.e., the first
convolutional downsampling layer in Figure 3), and the final
output is resized to the original image size during postprocessing.
An implementation of the model and post-processing is available
in the NiftyNet platform (http://niftynet.io).

Hyperparameters included learning rate, optimizer, and
augmentation, which were selected using the validation set.
Training was conducted using He weight initialization (He
et al., 2015), whitening (scaling image intensities to 0–1), adam
(Kingma and Ba, 2014) optimizer with a batch size of 6, and
the Dice coefficient as the loss criteria (Milletari et al., 2016).
We trained the model for a maximum of 300 iterations, and
the model that performed best on the validation set was used
as the final model. It should be added that the results reported
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TABLE 1 | Comparison of model performance across input type on the test set.

Model input Dice score Sensitivity Specificity Hausdorff distance

T1Gd 93.09 (1.78) 96.14 (3.81) 97.92 (1.28) 3.69 (0.55)

FLAIR 94.54 (1.09) 96.39 (2.34) 98.48 (1.05) 3.39 (0.44)

T1Gd + FLAIR 94.47 (1.61) 94.80 (3.49) 98.84 (0.79) 3.44 (0.49)

Values indicate mean and standard deviation. Best result is highlighted in bold font.

here were generated without the use of any augmentation as data
augmentation (including rotation, scaling, and flipping images
on the x-axis) did not improve model performance on the
validation set. All experiments were conducted on an Ubuntu
17.10 system with a single Nvidia TITAN V GPU. The source
code for NiftyNet platform along with instructions on how to
call the platform via terminal is available at: https://github.com/
NifTK/NiftyNet.

Our trained models along with the complete list of parameters
utilized for model training are available at: https://github.com/
SARARANJBAR/skullstripping_niftynet.

Experiments
Using only brain tumor data, we evaluated the performance of the
network across MRI contrasts by repeating model training three
times: first using only T1Gd MRIs, second using only FLAIR
MRIs, and finally using both series as inputs. When both T1Gd
and FLAIR sequences were provided to the network as input,
the two images were simultaneously provided to the model.
Apart from input image type, all other training parameters
were identical between different runs. We evaluated model
performance using Dice similarity coefficient (Kingma and Ba,
2014), sensitivity, specificity, and Hausdorff distance (Kingma
and Ba, 2014), comparing predicted labels with manual brain
masks. Sensitivity measures the detection rate of brain tissue,
and specificity measures how much non-brain tissue is correctly
identified, whereas Dice score evaluates the trade-off between
sensitivity and specificity, measuring the overlap of predictions
and ground truths. Hausdorff distance measures the Euclidean
distance between the farthest contours of the ground truth and
predictions and is relevant to this work to assess accuracy of
predictions at the edge of the brain.

In addition to brain tumor data, we used the healthy subject
data from LBPA40 (Gibson et al., 2018b) dataset to evaluate
the performance of trained models on a publicly available
benchmark. Other deep-learning skull stripping methods in the
literature (Chang et al., 2009; Kleesiek et al., 2016; Mohseni Salehi
et al., 2017; Lucena et al., 2019) have used this data collection
to evaluate their model. Although our model was not trained on
healthy subjects, we believe addition of this experiment will help
place our work within existing literature. Average Dice score was
used as the performance measure. The Dice scores of previous
approaches were acquired from their publications.

RESULTS

Table 1 compares the performance of model training on brain
tumor data across input types on previously unseen test cases

TABLE 2 | Comparison of performance between model and non-learning

methods on the test set.

Method Dice score Sensitivity Specificity Hausdorff distance

MONSTR 91.34 (6.76) 88.22 (7.44) 98.91 (2.22) 3.67 (0.75)

SPM12-p 93.36 (3.75) 93.39 (6.59) 98.76 (1.05) 3.44 (0.80)

Our approach 94.54 (1.09) 96.39 (2.34) 98.48 (1.05) 3.39 (0.44)

Values indicate mean and standard deviation. Best result is highlighted in bold font.

with available ground truth. We found the model trained on
FLAIR to achieve the highest Dice score and sensitivity, and the
model trained on both sequences was superior to single input
models in specificity (98.84%). Our FLAIR-onlymodel achieved a
meanDice score of 94.54%, a sensitivity of 96.39%, and specificity
of 98.48% on the test set with available ground truth. The average
Dice score for the FLAIR-only model was not significantly higher
than that of the model trained on both sequences (p = 0.83,
t-test) but was significantly higher than that of the T1Gd-only
model (p = 0.00042), which was also significantly outperformed
by the model trained on both (p = 0.0027). The model trained
on both modalities achieved a slightly higher but non-significant
mean specificity than the FLAIR-only model (p = 0.14), with
the FLAIR model significantly outperforming the model trained
on both in mean sensitivity (p = 0.043). The T1Gd model was
significantly lower in mean specificity than the model trained on
both modalities (p = 0.0016) and lower than the model trained
only on FLAIR; this result was not significant (p = 0.068). The
T1Gd-only model had a slightly lower mean sensitivity than the
FLAIR-only model (p= 0.7612). The average Hausdorff distance
between the predictions of the FLAIR model and ground truth
was also superior to that of T1Gd-only (p = 0.023) and dual
input (T1Gd+ FLAIR) models (p= 0.71). Table 2 compares the
performance of our model with non-learning methodsMONSTR
and SPM12. While MONSTR did not fail to include the regions
occupied by tumors into the segmentation, its performance was
much worse in identifying the boundaries of the brain in other
regions, and oversegmentation and undersegmentation were
observed at the top and bottom slices. In comparison, SPM12-
p showed a much improved sensitivity. Our model was superior
in Dice score, Hausdorff distance, and sensitivity compared with
both non-learning approaches. An example of predicted brain
mask and comparison with MONSTR and SPM12 is presented
in Figure 4. Using the same machine for training, generating
an SPM12-p mask required an average of 2–3min compared
with 10–20min for MONSTR, and 2–3 s for the model. Longer
runtime is expected for MONSTR as atlas-based methods tend to
take longer than other approaches.

Figure 5 shows two examples of a model prediction (red),
ground truth (blue), and overlap (purple) (left). This prediction
achieved a relatively low Dice score of 92.4%, with areas of both
underprediction and overprediction. In this case, themodel more
commonly underpredicted the anterior and posterior regions
of the brain, while overpredicting the superior and inferior
regions. This prediction achieved a relatively high Dice score
of 96.6%, primarily underpredicting the superior region and
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FIGURE 4 | Masks overlaid on brain tumor MRIs; images on the left show the brain masks created using MONSTR, SPM12-p, and our model in different anatomical

views. Areas highlighted in yellow show errors in results. The right image shows the ground truth manual segmentation. Our approach performed very well and much

better than the other two methods. The Dice coefficient, sensitivity, and specificity, calculated based on the ground truth for this case, are shown to the left of each

image.

FIGURE 5 | Visual examples of a less successful case (A) and a more

successful case (B). Prediction is shown in red, ground truth in blue, and

overlap in purple.

overpredicting the inferior regions. Importantly, there is no
evidence that the net suffered from the presence of tumor
abnormalities in either case.

Table 3 presents the performance of our model on healthy
subjects. On average, our model achieved a Dice score of 96.2%,

TABLE 3 | Comparison of performance with previous literature on healthy brains

from the LBPA40 dataset.

Method Dice score Sensitivity Specificity

CONSNet (Milletari et al.,

2016)

97.35 (0.003) 97.26 (0.007) 99.54 (0.001)

Auto-U-Net (Mohseni Salehi

et al., 2017)

97.73 (0.003) 98.31 (0.006) 99.48 (0.001)

U-Net (Mohseni Salehi et al.,

2017)

96.79 (0.004) 97.22 (0.016) 99.34 (0.002)

3D CNN (Kleesiek et al.,

2016)

96.96 (0.010) 97.46 (0.010) 99.41 (0.003)

Our approach 96.17 (0.220) 96.60 (0.080) 99.22 (0.090)

Performance measures of others’ works are extracted from their publication. Values in

bold font indicate the best result.

sensitivity of 96.6%, and specificity of 99.2% on the LBPA40
dataset. Overall, our results were within the range of those
reported by others in similar applications. However, our Dice
score and sensitivity were on the lower end of scores. We believe
this is expected given that, unlike others, we trained our model
using brain-tumor patient data that divert from the normal brain
due to imaging patterns resulting from pathology.

DISCUSSION

Despite the large body of existing literature on automatic skull
striping methods on MRI, few have reported robustness in
the presence of a pathology (Thakur et al., 2019). The closest
work to ours is the modality-agnostic 3D CNN created by
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Thakur et al., Lucena et al. (2019), which was tested on brain
tumor data from three different institutions compared with
ours with 20+ institutions. Authors trained their network with
pretreatment images of glioma patients using T1-weighted,
T1Gd, T2-weighted, and FLAIR sequences. Their model achieved
an average Dice coefficient of 97.8% on images from the training
institution and 95.6, 91.6, and 96.9% on datasets of other
institutions. Another learning-based skull stripping approach is
the work of Kleesiek et al. (2016), in which authors created a
modality-agnostic fully convolutional CNN model with similar
input channels as Thakur et al. and achieved an average Dice of
95.2% and a sensitivity of 96.25% on a cohort of 53 brain tumor
patients from training institution. Our work differs from these
works (Kleesiek et al., 2016; Thakur et al., 2019) in a number
of ways. First, our approach is considered weakly supervised,
as the network was trained using automatically generated labels
with known imperfections (Malone et al., 2015) compared with
accurate ground truth delineated by neuroradiologists. The data
used in this work were collected at 20+ institutions from 1990 to
2016 using a variety of imaging devices that has been shown to
impact the outcome of skull stripping (Rex et al., 2004; Fennema-
Notestine et al., 2006). However, we argue that an advantage
of this type of data heterogeneity is that it better approximates
the data found in clinical practice and therefore can serve as a
realistic benchmark for estimating model performance in clinical
practice. The fact that our result is within the range of reported
performance in Thakur et al. (Lucena et al., 2019) on data from
other institutions is a good indicator for this argument. Given
that the CSF is dark on both FLAIR and T1Gd images, and
brain tissue is brighter than CSF on both images, the major
visual difference between the two images is the high intensity
of skull on T1Gd and its low intensity the FLAIR image. This
can result in a sharper edge at the boundary of the brain
on the FLAIR images, which we associate with the improved
performance of the FLAIR model. That said, given the small
size of our test set and similarly promising results of our other
models, we urge the reader not to discount models trained only
on T1Gd or a combination of images. One limitation of our
work is that we did not train a sequence-agnostic model. In our
results, the FLAIR model yielded the highest Dice and sensitivity,
and the addition of T1Gd slightly improved specificity. Given
the heterogeneity of data types across institutions, a sequence-
agnostic approach is beneficial for ensuring utility across data
found in clinical practice, and we intend to adopt a similar
approach in future work.

Because of the size of our cohort and the labor-intensive
nature of manual segmentation, we needed an automatic method
to create brain masks for training. We selected SPM12 because
of its reported comparable performance with manual delineation
in segmenting total intracranial volume on MRI even in the
presence of neurodegenerative pathology (Malone et al., 2015).
Compared with ground truth, the SPM12-p labels achieved a
Dice of 93.34% on the test set. Visualization of model output
against ground truth showed the net was not hindered by the
presence of tumor abnormalities; rather, the differences in Dice
score were related to the overall brain shape. Despite the reported
high performance of MONSTR in skull stripping brain tumor

data, we found its performance worse than SPM12, demonstrated
by comparing the Dice score of generated masks with ground
truth (Table 2). As a result of this finding, we decided to proceed
with model training with SPM12. However, no single automatic
method for generating labels can outperform consensus methods
that combine different skull-stripping methods through a meta-
algorithm and allow for combining the strength of different
approaches. In the work of Lucena et al. (Milletari et al., 2016),
the authors generated silver standard labels for training using
the STAPLE (Warfield et al., 2004) method combining eight
different segmentation approaches into a probabilistic consensus
mask, and achieved a Dice score of 97.3% and sensitivity of
97.2% on healthy subjects. In comparison, our approach could
be considered a “bronze standard” given that our labels were
acquired using one segmentationmethod. In future work, we aim
to repeat our analysis using a silver standard.

Among the non–learning-based skull stripping approaches in
the literature, the MONSTR algorithm (Roy et al., 2017) was
reported to outperform other methods on a small cohort of five
brain tumor cases with an average Dice agreement of 96.95%
with ground truth. MONSTR achieved a moderate Dice score of
91.34% on the test set. In comparison, SPM12-p outperformed
MONSTR, particularly with respect to sensitivity (93.39 vs.
88.22%), as well as average runtime for creating masks (2–3 vs.
10–20min on the machine used for model training). Discrepancy
between the results here and the reported performance in the
original paper could also be related to our use of T1Gd and
FLAIR inputs for creating MONSTR masks, as opposed to T1Gd
and T2W images that were used in the original results (Roy
et al., 2017). The worse performance by MONSTR could also be
associated with the atlas-based nature of the algorithm, which can
result in inaccuracies when images deviate from healthy brain
MRIs. The performance of our model on healthy subjects was
decidedly on the lower end of reported results for deep learning–
based skull stripping models in the literature. Mohseni Salehi
et al. (2017) compared the performance of a voxel-wise approach
using three convolutional pathways for each anatomical plane
and a fully convolutional U-Net (Ronneberger et al., 2015)
architecture and achieved Dice coefficients of 97.7 and 96.8% on
two publicly available datasets of normal brains. Although the
authors used the U-Net architecture, which might be considered
dated in today’s deep learning context, their approach achieved
a higher performance than ours because of their use of different
convolutional pathways for each anatomical plane. Kleesiek et al.
(2016) used a 3D input-agnostic fully convolutional network and
compared its performance to six other skull stripping methods
on publicly available datasets. Whereas, Kleesiek et al. (2016)
reported the performance of their model on merged public
datasets, others (Lucena et al., 2019) reported their performance
on the LBPA40 dataset alone to be an average Dice score of 97.0%
and sensitivity of 97.4%. Lucena et al. (Milletari et al., 2016)
adopted a brain extraction model consisting of three parallel,
fully convolutional networks using the U-Net architecture and
achieved a Dice score of 97.3% and sensitivity of 97.2%. Here
again, the authors utilized parallel pathways to achieve high
performance. Our approach did not yield the same level of Dice
score on the LBPA40 dataset. We believe this is expected given
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that unlike others we trained our network using only brain-
tumor MRI and did not use manually delineate or consensus
methods for training labels. In future work, we intend to adopt
a consensus method for creating training labels. To maximize
generalizability and utility of this tool, we will supplement brain
tumor data with healthy subjects to improve model performance
on healthy subjects as well as to stay relevant for utility in clinical
settings. In addition to using pathologicalMRI for model training
with suboptimal labels, we adopted a straightforward volumetric
training approach with no pathway parallelization for different
anatomical planes. This could also explain the drop in our model
performance compared with others.

In summary, we assessed the performance of a deep learning
model in MRI brain extraction of a diverse multi-institutional
brain tumor patient dataset using weak labels. On previously
unseen brain tumor cases, our approach reached comparable
performance to previous literature. The model underperformed
compared with state-of-the-art models in the literature on
healthy subjects, which can be attributed to the absence of healthy
patients in our training set and our rather simplistic model
training approach. The shortcomings can be addressed by fine
tuning the model on healthy subjects, leveraging a consensus
approach to generating training labels, and allocating training
pathways within the model for different anatomical planes.
Despite the shortcomings, we believe that our approach can be
a practical choice for skull stripping MRI data in repositories of
brain tumor patients given its turnaround time and simplicity.
In future work, we intend to extend this work to perform skull
striping on post-treatment MRIs.
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