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Delayed cerebral ischemia (DCI) is one of the main prognosis factors for disability after

aneurysmal subarachnoid hemorrhage (SAH). The lack of a consensual definition for DCI

had limited investigation and care in human until 2010, when a multidisciplinary research

expert group proposed to define DCI as the occurrence of cerebral infarction (identified

on imaging or histology) associated with clinical deterioration. We performed a systematic

review to assess whether preclinical models of SAH meet this definition, focusing on the

combination of noninvasive imaging and neurological deficits. To this aim, we searched

in PUBMED database and included all rodent SAH models that considered cerebral

ischemia and/or neurological outcome and/or vasospasm. Seventy-eight publications

were included. Eight different methods were performed to induce SAH, with blood

injection in the cisterna magna being the most widely used (n = 39, 50%). Vasospasm

was the most investigated SAH-related complication (n= 52, 67%) compared to cerebral

ischemia (n= 30, 38%), which was never investigated with imaging. Neurological deficits

were also explored (n = 19, 24%). This systematic review shows that no preclinical SAH

model meets the 2010 clinical definition of DCI, highlighting the inconsistencies between

preclinical and clinical standards. In order to enhance research and favor translation to

humans, pertinent SAH animal models reproducing DCI are urgently needed.

Keywords: delayed cerebral ischemia, experimental models, subarachnoid hemorrhage, vasospasm, systematic

review

INTRODUCTION

Subarachnoid hemorrhage (SAH) is a neurological emergency characterized by the extravasation
of blood into subarachnoid spaces. Around 80% of non-traumatic subarachnoid hemorrhage result
from the rupture of an intracranial aneurysm, and have a high rate of death and complications.
Aneurysmal SAH is therefore one of the most frequent causes of admission in neurocritical
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care. Delayed cerebral ischemia (DCI) occurs in ∼30% of
cases after aneurysmal SAH (1) and is the leading cause of
morbidity for surviving SAH patients. To date, no treatment of
DCI improves neurological outcome. Unfortunately, the exact
mechanisms of DCI pathophysiology remain poorly understood.
The current consensus suggests that the origin of DCI is a
multifactorial and complex process. It not only includes the
narrowing of cerebral arteries (i.e., vasospasm) but also the
activation of others pathways, including a neuroinflammatory
reaction that promotes perfusion mismatch with neurovascular
uncoupling, as well as other pathological phenomena such
as microthrombosis, cortical spreading depolarization and
breakdown of the blood-brain barrier (Figure 1) (2, 3). All these
local and systemic inflammatory responses are involved in the
genesis and development of DCI.

These different mechanisms start at ictus, during early
brain injury, and result in neuronal injury and sometimes in
parenchymal infarction. Large vessel vasospasm was commonly
recognized as the main factor leading to DCI after SAH. In
fact, recent studies support that large vessel narrowing is a
delayed contributor to a cascade of events that starts earlier
during the acute phase after SAH. This critical earlier phase with
multifactorial pathophysiological pathways is probably the most
promising therapeutic target to improve patient outcomes. To
better understand SAH and its complications and to facilitate
the development of an effective treatment, many animal models
have been developed. The lack of a consensual definition of DCI
led to a large diversity of terms used and parameters studied.

FIGURE 1 | Pathophysiology of DCI after SAH.

As a result, findings from preclinical research were controversial
(4). But in 2010, an international expert panel involved in
SAH research developed a definition of DCI in humans.
The consortium decided that a uniform definition of DCI
should capture both cerebral infarction (imaging) and clinical
deterioration (functional) elements in terms of morphological
and clinical characteristics. They stated that in clinical trials
aiming to develop therapeutics against DCI after SAH, the two
main outcome measures should be: (1) infarction identified on
computed tomography (CT) or magnetic resonance imaging
(MRI) or proven at autopsy, after exclusion of procedure-related
infarctions and (2) functional outcome (3).

The definition of DCI-related cerebral infarction was as
follows: diagnosis of cerebral infarction performed by either a
brain CT or MR scan within 6 weeks after SAH, or on the latest
CT or MRI scan made before death within 6 weeks, or proven
at autopsy, not present on the CT or MRI scan between 24 and
48 h after early aneurysm occlusion, and not attributable to other
causes, such as surgical clipping or endovascular treatment.

Regarding the functional outcome, experts specified that
the definition of clinical deterioration caused by DCI is
the occurrence of focal neurological impairment (such as
hemiparesis, aphasia, apraxia, hemianopia, or neglect), or a
decrease of at least 2 points on the Glasgow Coma Scale, which is
not apparent immediately after aneurysm occlusion, and cannot
be attributed to other causes.

Based on clinical assessment in humans and considering the
occurrence of DCI as the main determinant for the functional
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outcome, this consensus-building approach allowed to determine
that the ideal SAHmodel should associate both the occurrence of
cerebral infarction evidenced on brain imaging or histology and
some altered functional outcome. In a translational perspective,
noninvasive imaging is preferable to histology for several reasons.
Brain imaging is the most common way to investigate cerebral
ischemia in clinical trials, and ischemia proved on brain imaging
is up to date the only paraclinical outcome that was improved
with use of therapeutics that enhance SAH-patients functional
outcome (5). Moreover, infarction is well defined by imaging in
contrast to histology, which is difficult to define with a consensual
diagnostic method.

This systematic review aimed at identifying and analyze the
different murine models of SAH, and to describe the extent
to which they meet the human definition of DCI, i.e., more
specifically according to the associating of the two most relevant
evaluation criteria that are the proof of brain ischemia with
imaging and the occurrence of neurological deficits.

MATERIALS AND METHODS

Systematic Search
This systematic review was reported following the Preferred
Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) statement (6, 7). We searched the PUBMED
database on July 1, 2020 with the search terms “subarachnoid
hemorrhage,” “models, animal,” “mice,” “rats,” “vasospasm,
intracranial,” and “delayed cerebral ischemia.” Abstracts
from relevant congresses were also considered. Two authors
independently screened the titles and abstracts and reviewed the
full text of any potentially eligible publication. Divergences were
resolved by consensus.

Eligibility Criteria for Included Animal
Studies
Studies were included if they involved (1) description and/or
modification of a subarachnoid hemorrhage model in rats or
mice (2) study of arterial cerebral vasospasm and/or ischemia
and/or neurological outcome. Systematic reviews and meta-
analyses as well as in vitro studies were excluded. Among
the experimental studies developing a method and/or assessing
therapeutic strategies, only those, which described a new SAH
model, were included The included studies were limited to
articles written in English, Spanish, German, Russian, Italian,
Portuguese, and French. There was no restriction for year
of publication.

Data Collection
For each study, we extracted the journal and authors names,
the year of publication, number of citations for each article and
the impact factor corresponding to that year. Two publications
were classified as coming from the same team if they had
one or more author in common considering only authors in
first, second, last or penultimate position. Animal characteristics
were extracted as follows: species, strain, sex, and weight;
model of SAH as follows: method of induction, vascular
territory, rupture of an aneurysmal vessel, location of blood

injection, using of a pharmaceutical adjuvant to induce ischemia,
characteristics of blood used (nature, volume, and number
of injections); anesthesia and monitoring as follows: general
anesthesia, mechanical ventilation, temperature, blood glucose
levels, cerebral blood flow, intracranial pressure, and blood
pressure monitoring; study of vasospasm as follows: method
(imaging, histology, times studies of vasospasm, study of cerebral
blood flow); study of cerebral ischemia as follows: method
(imaging, histology, times studies of ischemia, topography, and
related searches like neuroinflammation, microthrombosis or
microglial activation); mortality and behavioral study as follows:
general condition, weight, sensory-motor, and cognitive tests.

Statistical Analysis
We represented the median and extreme values (median
[minimum—maximum]) of continuous variables, and the
number of occurrences with proportions represented as
percentages for categorical variables.

RESULTS

Included Rodent Studies
Of 3,561 articles, only 78 reports proved eligible (8–85)
(Figure 2).

Characteristics of the Rodent Studies
The 78 articles were published in 26 different journals. The
median impact factor of the year of publication was 2.45 [0.82-
6.12]. The year of publication ranged from 1979 to 2020. Fifty-
nine studies (76%) were published between 2,000 and 2020,
27 of which were published following the 2010 article that
defined DCI (3). Fifty-three different teams were identified.
Half of publications (n = 39; 50%) resulted from 14 teams.
Five (6%) publications were extracted from team A (Bederson,
Mount Sinai School ofMedecine, New York), 5 (6%) publications
were extracted from team B (Prunell, Department of Clinical
Neuroscience, Section for neurosurgery, Karolinska Institute,
Stockholm, Sweden), and 3 (4%) publications were extracted
from team C (Solomon, the Department of Neurological Surgery,
Columbia University College of Physicians and Surgeons, New
York). Almost two thirds (64%) of citations were issued from 26
studies published by 7 teams (Figure 3).

Characteristics of SAH Models in Rats and
Mice
The characteristics of SAH models are summarized in Table 1.
The most commonly used species was rats (66 publications,
Figure 4). The two main strains of rats were Sprague-Dawley (n
= 49; 74%) and Wistar (n = 17; 26%). Two publications used a
model with comorbidity that was diabetes (64) or hypertension
(12). No model used female animals. With respect to the
surgical procedure, 58% of the models (n = 45) corresponded
to SAH involving posterior cerebral circulation. The two most
frequently used models were blood injection in the cisterna
magna (n = 39; 50%) and endovascular perforation (n =

23; 29%) (Figure 5). Among vascular perforation models, four
variants were described: endovascular perforation, endoscopic
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FIGURE 2 | PRISMA flow diagram of the systematic review; 78 studies were included in our systematical review.

FIGURE 3 | The 78 studies included in the systematical review generated since their publication 3681 citations. The graph shows the distribution of citations by

teams: Team A: Bederson, Mount Sinai School of Medicine, New York; Team B: Prunell, Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska

Institute, Stockholm, Sweden; Team C: Solomon, Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York; Team D:

Yamamoto, Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan; Team E: Macdonald RL, Division of Neurosurgery,

University of Alberta, Edmonton, Canada. Team F: Thal Institute for Surgical Research, University of Munich Medical Center—Grosshadern, Munich, Germany; Team

G: Warner DS, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

technique, perforation of the basilar artery and perforation of
subarachnoid veins. Among the direct injection models, blood
was injected into the cisterna magna, the pre-chiasmatic cistern,
the cerebral cortex or directly into the circle of Willis. Blood

was from autologous origin in 97% of publications (n = 76).
Blood could be arterial (n = 67; 92%) or venous (n = 7;
10%). The nature of the blood was not specified in 3 studies.
The injected blood volume varied across studies: the median
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TABLE 1 | Characteristics of SAH models.

Characteristics of subarachnoid hemorrhage models Number (%)

Species

Rats 66 (85)

Mice 13 (17)

Method of induction of SAH

Vascular perforation

Circle of Willis 23 (29)

Basilar artery 4 (5)

Subarachnoid vein 1 (1)

Direct injection

Cisterna magna 39 (50)

Prechiasmatic cistern 12 (15)

Cerebral cortex 1 (1)

Circle of Willis 1 (1)

Induced hypertension and elastase 1 (1)

Models with factors promoting cerebral ischemia 4 (5)

Number of direct blood injection in the subarachnoid space

0 28 (37)

1 36 (47)

2 15 (20)

Vascular territory of SAH

Anterior 38 (49)

Posterior 45 (58)

Blood

Arterial 67 (92)

Venous 7 (10)

No specified 4 (5)

Management of anesthesia

General anesthesia 77 (99)

No specified 1 (1)

Mechanical ventilation 38 (49)

Monitoring

Invasive blood pressure 45 (58)

Intracranial pressure 30 (38)

Global cerebral blood flow 23 (29)

Local cerebral blood flow 21 (27)

Temperature 58 (75)

Glucose level 9 (12)

Study of cerebral ischemia 30 (38)

Positive diagnostic of ischemia 24 (26)

Ischemia at distance of subarachnoid hemorrhage 21 (27)

Cerebral cortex 16 (21)

Hippocampus 16 (21)

Cerebellum 1 (1)

Basal ganglia 4 (5)

Diagnostic of cerebral ischemia

Imaging 3 (4)

Histology 24 (31)

Fluorojade B 5 (6)

Apoptosis 7 (9)

Quantitative assessment 8 (10)

Qualitative assessment 7 (9)

(Continued)

TABLE 1 | Continued

Characteristics of subarachnoid hemorrhage models Number (%)

Parameters associated with ischemia

Microthrombosis 6 (8)

Microglial activation 2 (3)

Inflammation (neutrophil polynuclear labeling) 1 (1)

Study of vasospasm

Imaging

Histology

Hematoxylin and eosin

Positive diagnostic of vasospasm

51 (67)

25 (32)

34 (44)

20 (26)

48 (62)

Study of cerebral blood flow

Doppler

Magnetic resonance imaging

Angiography

Others

39 (50)

25 (32)

11 (14)

9 (10)

7 (9)

Physical and behavioral examination

Neurological assessment

Sensory-motor tests

Cognitive tests

General condition

Weight

Death

19 (24)

18 (23)

7 (9)

32 (41)

12 (15)

45 (58)

blood volume injected was 300 µL [100–700 µL] and 80 µL
[50–100 µL] in rats and mice, respectively. Thirty-six studies
(47%) described a model with a single injection. Two injections
separated by a free period of 24 to 48 h were performed in
15 studies (20%). The aim of these double injection models
was to increase the severity of the SAH, while maintaining
an acceptable mortality rate. These double injection models
were only performed in rats. One model used the induction
of hypertension associated with elastase injection into the
cerebrospinal fluid in order to promote the aneurysmal rupture
(70). Some studies reported the use of adjuvants to promote
the occurrence of ischemia. The first study published in 2011
described a direct injection model in insulin-resistant rats (64).
Other studies combined induction of SAH by simple or double
direct blood injections with the occlusion of the common carotid
artery as an ischemia promoting factor (71). One of these
models promoted occurrence of DCI, which was associated
to the injection of blood, the occlusion of common carotid
and the induction of spreading depolarization. Then, authors
investigated the effect of an administration of a pro-inflammatory
agent, before SAH induction (73).

In all studies, the procedure took place under general
anesthesia. In 40 studies, the animals were kept in spontaneous
ventilation during general anesthesia. An invasive blood
pressure monitoring was used in 58% of the studies. Three
studies performed an invasive monitoring of blood pressure
in mice. Intracranial pressure was monitored during the
procedure in 38% of the studies. One study performed an
intracranial pressure monitoring in mice with the help of
a sensor placed in the cisterna magna (42). Blood glucose
monitoring was performed in 12% of studies (n = 9) and
temperature monitoring was carried out in 75% of the studies (n
= 58).
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FIGURE 4 | Number of publications by five-year periods depending whether studies were performed on rats or mice.

Study of Vasospasm
From the 39 studies evaluating cerebral hemodynamics, 37
observed a decreased cerebral blood flow following SAH. The
study window of cerebral blood flow varied according to
the publications (Figure 6). Twenty-five studies searched the
occurrence of arterial vasoconstriction with MRI, Doppler,
angiography, videomicroscopy, positron emission tomography
(PET) or photomicrography. All of them observed vasospasm.
Thirty-four studies assessed vasospasm with histology (Table 1).
The main staining was Hematoxylin and Eosin (20 studies).
Histological study were performed at different times. The authors
diagnosed vasospasm in 30 studies with histology. Vasospasm
was studied in a total of 588 animals in 34 publications. The
diagnosis was made in 513 animals (87%) but some authors did
not specify the number of animals studied.

Study of Ischemia
Overall, 532 animals were screened for cerebral ischemia in 30
publications. A positive diagnosis wasmade in 196 animals (37%)
but some of these publications (n = 9) did not specify the exact
number of animals for which the positive diagnosis of ischemia
was made. Out of 29 publications searching for ischemia with
histological study, 24 reported evidence of ischemia. All these
authors described occurrence of ischemia remotely from the
origin of SAH. The existence of ischemia was mainly studied in
two brain regions: the cortex and the hippocampus. The other
brain regions explored were the cerebellum and basal ganglia.
Different methods for studying ischemia were used in histology.
Neuronal quantification was the main method (in 8 studies).
The detection of apoptosis appeared to be the second way to
explore ischemia (7 publications). Apoptosis was assessed by

TUNEL staining or caspase activity assays. A specific labeling
of neuronal death was also used by fluorojade B in 5 studies.
Qualitative assessment of neurons was performed in 7 studies.
Histological studies of ischemia were achieved at early and/or late
times, as summarized on Figure 6. Some publications focused
on the pathophysiological mechanisms underlying ischemia.
Indeed, several studies have attempted to highlight phenomena of
microthrombosis and neuroinflammation. Microthrombosis was
evaluated by the presence of fibrin [anti-fibrin(ogen)] and platelet
(anti-platelet GpIIbIIIa) aggregates by immunofluorescences
studies. Neuroinflammation was evidenced at the local level by
histological studies (neutrophils labeling), but also at the systemic
level using markers, such as TNF and IL-1β. Two publications
studied microglial activation via specific immuno-staining of
microglia such as Iba-1 (73, 78). Only 4 studies investigated
ischemia with MRI.

Behavioral Evaluation and Body Weight
Monitoring
Behavioral assessment was performed in 32 studies. The general
status of animals was described using the spontaneous locomotor
activity, circling behavior, whisker movements, and coat state.
Eighteen studies used sensorimotor tests for the quantitative
behavioral assessment. These studies were performed with delays
ranging from <24-h to 4 weeks after SAH induction. Three
studies used the rotarod test. Tests assessing the cognitive abilities
of animals were conducted in 7 studies. Among these studies,
4 used the Morris water maze to assess working memory. Body
weight monitoring was carried out in 12 studies.
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FIGURE 5 | Schematic representation of two most used SAH murine models. ACA, Anterior Cerebral Artery; MCA, Middle Cerebral Artery.

Mortality Rate
The mortality rate was reported in 58% of the studies (n = 45).
However, the mortality study period and the death rate varied
between studies. The direct-injection model into the cisterna
magna was responsible for a mortality rate between 0 and 52%.
The prechiasmatic cistern injection pattern induced a mortality
rate ranging from 0 to 100%. The endovascular perforationmodel
was responsible for a mortality rate between 6 to 65%.

Included Non-primates Studies
Finally, we also reviewed non-human primate models keeping
the same eligibility criteria. Of 175 articles, citations from 22
reports were proved eligible (86–107). Then, we compared their
principal characteristic to the rodent models, as shown on
Table 2.

DISCUSSION

In this systematic review, we evaluated 78 publications and found
that 8 different methods were used to induce hemorrhage in
the subarachnoid spaces. These methods can be classified into

three groups. In the first group, SAH is due to perforation of
an arterial or venular vessel. In the second, a blood injection
is performed in cerebrospinal fluid or directly in the brain
parenchyma. In the third, SAH is induced by the combination of
hypertension (angiotensin infusion) and elastase injection. The
diversity of protocols notwithstanding, we found that no model
was consistent with the clinical definition of DCI in humans;
meaning that no model confirmed the evidence of cerebral
infarction with imaging plus neurological deficits.

Many publications came from a small number of teams.
In fact, over half of publications came from only 14 teams.
Different modalities were used for SAH induction with various
origin of the blood, vascular territory involved, severity of SAH,
method for the monitoring, and management of anesthesia. The
inconsistency of SAH models may threaten the reproducibility
of preclinical research. For instance, in models involving
injection of blood in rodent brains, stereotactic coordinates
guide the injection, but the diagnostic of SAH through imaging
or necropsy was rarely performed. Similarly, endovascular
perforation models did not control the quantity of blood released
in cerebrospinal fluid and thus variability occurs at this level.
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FIGURE 6 | Study window of vasospasm, cerebral blood flow, and cerebral ischemia.

TABLE 2 | Comparison between primates and rodents SAH models focusing on

main characteristics.

Characteristics of

experimental SAH models

Number of publications (%)

Species Primates

(n = 22)

Rodents

(n = 78)

SAH induction method

Direct blood injection 22 (100) 53 (68)

Vascular perforation 0 (0) 28 (36)

Study of cerebral ischemia

Imaging

Histology

3 (14)

0 (0)

3 (14)

30 (38)

3 (4)

24 (31)

Study of cerebral vasospasm

Angiography

Histology

Positive diagnosis of vasospasm

21 (95)

20

5 (23)

22 (100)

51 (67)

9 (10)

34 (44)

48 (62)

Study of cerebral blood flow 6 (27) 39 (50)

Neurological examination

Delayed neurological deficits

15 (68)

3 (14)

19 (24)

ND

ND, not documented.

Besides, different methods may result in different hemodynamic
and homeostasis conditions thereby affecting cerebral perfusion
differently. Another concern is the possible irrelevance of
described models to humans. More than half (58%) of the here-
described SAH models involve the posterior cerebral circulation.
In contrast, in humans, SAH occurs in most cases (90%) in the
anterior cerebral circulation. We found that arterial vasospasm
was the most frequently assessed outcome (67%; n = 51). On

the other hand, cerebral ischemia, and neurological status, which
lie at the root of DCI definition, were the outcomes assessed in
only 38 and 24% of publications respectively (Table 1). Although
it is difficult to estimate accurately the rate of vasospasm in
these preclinical studies given the lack of precise data on the
incidence rate, vasospasm is probably overestimated. Indeed,
vasospasm was evidenced in 87% of animals as compared to a
two third proportion of vasospasm observed in humans, only
half of whom are symptomatic (108). With respect to ischemia
outcomes, only 4 publications assessed ischemia through imaging
(43). For the first of them, the result is questionable given
that the surgical procedure contributes to early ischemia. This
result was not consistent with the experts’ definition of DCI in
humans since ischemia was assessed 1 h after SAH induction
while the definition excludes early lesions (occurring in the first
48 h) and procedure-related infarctions. In most publications,
ischemia was assessed through histology as illustrated on
the 10 most cited studies included in our systematic review
(Supplementary Table). Different histological techniques were
used for ischemia assessment such as neuronal counting or
detection of apoptosis. These modalities could be challenged
because, as in vasospasm, the incidence of ischemia may be
overestimated in comparison with epidemiological human data.
In humans, however, DCI is routinely diagnosed throughMRI or
computed tomography scan. We trust it would be valuable to use
imaging more often in preclinical settings since ischemia is well
defined by imaging. We found that behavioral studies of animals
were rarely performed, and no standardized protocol was used to
diagnose neurological deficits after brain injury.
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Regarding the literature on the same topic, a previous
systematic review focused on in vivo models of vasospasm (4).
Authors concluded that despite a great number of experimental
SAH methods, no consistent models could be identified and
recommended. In this review, 66 inductionsmethod of SAHwere
identified. But there results were not only restricted to rodents.
In contrast, in our systematic review we purposely restricted our
search to only rodents given that this species are far the most
used in biomedical research. Rodents have a well-characterized
genome, with a high quantity, and quality of resources available
for preclinical studies. Another review by Kamp et al. (109)
focused on the mortality in mouse models analyzing DCI after
SAH. They found that the mortality rate following aneurysmal
SAH and DCI was significantly lower in mice than in humans. As
in our review, the timing to assess mortality was not standardized
in mouse models, potentially influencing the mortality rate.
The authors concluded that further analyses would be required
to establish a link between mortality and DCI models. This
conclusion challenge DCI models themselves as well as their
outcomes. In a last systematic review, Oka et al. screened SAH
animal models and focused on DCI and neurological deficit. The
authors equally found that preclinical models do not consistently
lead to DCI (110). These conclusions further challenge DCI
models as well as their outcomes.

In we look in the literature, several pharmacological
treatments have been tested in the last few years to prevent or
treat DCI. Unfortunately, most were either negative or led to only
mild improvement in clinical outcome.

The only treatment which has shown an improvement in
the functional outcome and which is currently recommended
with a Level of Evidence grade A, by the American Heart
Association/American Stroke Association for prophylactic
treatment after SAH is Nimodipine (111). Nimodipine is a
calcium channel blocker, which has largely been tested. A meta-
analysis conducted in 2011 found a reduction of death or severe
disability in patients treated with a prophylactic administration
as compared to controls (112). Interestingly, cerebral infarctions
were reduced in the treated group, but vasospasm was not
significantly impacted.

Dorhout Mees et al. made a review about antiplatelet
agents that have failed to show any beneficial effect on
outcome (measure by death or handicap) and DCI (113).
An antagonist of Endothelin-1, Clazosentan has shown some
improvement in both vasospasm and DCI, demonstrated in
the large meta-analysis over 1900 patients (114). However,
the phase III clinical trial CONSCIOUS 2 reported that
Clazosentan has no significant effect on mortality and
vasospasm-related morbidity or functional outcome (115).
Besides these two targets, several anti-oxidants agents have
been tested at large scale, with no positive result on the
outcome (116). Statins have also been studied in large
phase III randomized and controlled trials, as a therapeutic
strategy blocking different pathophysiological targets at the
same time, but they failed to show any beneficial effect on
outcome (117).

These results of clinical trials are interesting both to
understand the pathophysiology of DCI and to design better

experimental models. For instance, since it showed benefit on
DCI in clinical trials, nimodipine could be used to demonstrate
the clinical relevance of experimental models of SAH. In a
clinically relevant model, nimodipine should have beneficial
effects, whereas the other treatments presented above should not.

We hope these results will influence future SAH preclinical
research. Our findings emphasize the need to standardize
the method for DCI diagnosis through short and long-
term behavioral motor, emotional and cognitive evaluations,
histology, and/or imaging. Most of preclinical studies assessed
solely intracranial vasospasm while it may not be a relevant
outcome. Indeed, it has been shown in therapeutic clinical
trials that pharmacological treatments can reduce the
angiographic vasospasm without any effect on functional
outcome or mortality (118). We believe that a comprehensive
neurobehavioral assessment, mortality and imaging proof
of ischemia should be the preferred outcomes in animal
studies. This approach is consistent with recommendations
for animal studies of ischemic stroke (119) or intracerebral
hemorrhage (120). The methodological heterogeneity we
observed in experimental SAH studies could also be found
in pathologies such as stroke (121), intracerebral hemorrhage
(120) or brain tumor (122). We trust that the assessment of
ischemia through the association of neurological evaluation
and imaging in experimental studies will enhance the quality of
translational research.

Our review has some limitations. First, we excluded
publications evaluating therapeutic agents. This may exclude a
number of articles with SAH models, but we considered that
the aim of these studies was not to describe new SAH models
but to assess drugs’ efficacy. Therefore, these studies were not
considered. Moreover, most of these studies used SAH models
previously described. Second, we selected only in vivo studies.
This point can be questionable because one could consider in
vitro studies more relevant to understand pathophysiological
mechanisms and to test therapeutics. But such in vitro models
cannot recapitulate all features of the DCI definition, in particular
neurological outcome, so that preclinical animal models remain
the only option.

Finally, in our meta-analysis we decided to focus on
rodents and not include other animals. Our choice was
justified a priori considering the prevalence of these species in
biomedical research. These species offer several possibilities with
genetically modified strains to focus on a therapeutic approach.
Nevertheless, aware of this limit of our review, we also reviewed
non-human primate models (but this was not a pre-planned
analysis) (Table 2).

This review demonstrates first the high proportion of non-
human primate models with blood injection either directly
with perivascular clot placement or by injection into a
cerebrospinal fluid cisterna (prechiasmatic or cisterna magna).
These models have the disadvantage to shifting away from
pathophysiological mechanisms involving aneurysm rupture
and acute autologous arterial blood extravasation. However,
non-human primate models have an unquestionable benefit
for neurological examination to detect delayed neurological
deficit. This is a crucial advantage over rodent models to
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make longitudinal examinations in the same animal and
to relate more closely to the human disease, since the
occurrence of neurological deficit is a diagnostic criterion
of DCI.

Furthermore, as noted with rodent models, the study
of vasospasm is largely overrepresented in non-human
primate models (21 studies) compared to the study of
DCI (3 studies) (Table 2). Thus, despite the possibility of
more efficient clinical longitudinal follow-up in non-human
primates, most of the studies did not take full advantage
of the possibilities offered by these experimental models.
Additionally, it is difficult to consider non-human primate
models for exploratory research because of reproducibility,
ethical issues, and cost. Non-human primates models could be
envisaged for preclinical SAH research especially to monitor
neurological status, in order to test therapeutic efficacy before
clinical trial.

At the end of this review, we were able to highlight that no
SAHmodel consistently lead to DCI rodents. In order to improve
translational research, efforts should focus on developing clinical
relevantmodels rather than continuing experimental studies with
irrelevant models.

Moreover, we insist on future studies with an urgent
need to develop SAH models focusing on the clinically
relevant outcomes. Future studies should choose the appropriate
experimental design study, in accordance with the existing data
in DCI, while reflecting on the choice of species, SAH induction
method and experimental study to answer the question from
therapeutics and/or pathophysiological mechanistic.

Furthermore, researchers should respect principles of good
laboratory practice with rigor and reproducibility as it is currently
recommended (123), in order to standardize preclinical studies
and results.

CONCLUSION

We described 8 published preclinical SAH models for rats and
mice. Some of them allow for the assessment of vasospasm
and/or ischemia; however, none allows the assessment of DCI as
the scientific community in humans defined it with association
between neurological evaluation and brain imaging. We believe
developing a consensual preclinical model matching the human
description of DCI will help enhance translational research.
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Objectives: To determine whether pre-operative cerebral small vessel disease is

associated with cerebral hyperperfusion (CH) after carotid endarterectomy (CEA).

Methods: Seventy-seven patients (mean age of 66 years and 58% male) undergoing

CEA for carotid stenosis were investigated using brain MRI before and after surgery. CH

was defined as an increase in cerebral blood flow > 100% compared with pre-operative

values on arterial spin labeling MR images. The grade or the number of four cerebral small

vessel disease markers (white matter hyperintensities, lacunes, perivascular spaces,

and cerebral microbleeds) were evaluated based on pre-operative MRI. Cerebral small

vessel disease markers were correlated with CH by using multivariate logistic regression

analysis. The cutoff values of cerebral small vessel disease markers for predicting CH

were assessed by receiver-operating characteristic curve analysis.

Results: CH after CEA was observed in 16 patients (20.78%). Logistic regression

analysis revealed that white matter hyperintensities (OR 3.09, 95% CI 1.72–5.54;

p < 0.001) and lacunes (OR 1.37, 95% CI 1.06–1.76; p = 0.014) were independently

associated with post-operative CH. Receiver-operating characteristic curve analysis

showed that Fazekas score of white matter hyperintensities ≥3 points [area under the

curve (AUC) = 0.84, sensitivity = 81.3%, specificity = 73.8%, positive predictive value

(PPV)= 44.8% and negative predictive value (NPV)= 93.8%] and number of lacunes≥ 2

(AUC= 0.73, sensitivity= 68.8%, specificity= 78.7%, PPV= 45.8% and NPV= 90.6%)

were the optimal cutoff values for predicting CH.

Conclusion: In patients with carotid stenosis, white matter hyperintensities and lacunes

adversely affect CH after CEA. Based on the NPVs, pre-operative MR imaging can help

identify patients who are not at risk of CH.

Keywords: cerebral small vessel disease, carotid stenosis, carotid endarterectomy, hyperperfusion syndrome,

magnetic resonance imaging
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INTRODUCTION

Carotid endarterectomy (CEA) is an established procedure for
the prevention of further ischemic events caused by carotid
stenosis. However, post-operative complications may reduce
the benefits of surgery. Cerebral hyperperfusion syndrome
(CHS), characterized by severe throbbing headache, confusion,
seizures, focal neurological deficits and occasional intracranial
hemorrhage, is associated with a mortality rate of 38.2% and
permanent disability of 28% (1). CHS often occurs in patients
with cerebral hyperperfusion (CH), which is defined as an
increase in perfusion by >100% after surgery compared with
baseline (2). If not recognized and treated early, a subset
of CH-patients may further develop CHS. Impaired cerebral
autoregulation is the most accepted mechanism for CH (3).
After carotid revascularization, impaired cerebral autoregulation
cannot maintain a stable cerebral blood flow (CBF) via
constriction of cerebral arterioles and capillaries in response to
a sudden increase in cerebral perfusion pressure, which leads
to CH.

From the perspective of the pathogenesis of CH, pre-operative
cerebral small vessel disease (SVD) may adversely affect CH after
CEA (2). Cerebral SVD is a disorder of the cerebral arterioles
and capillaries with cerebral small vessel endothelial dysfunction
being the major pathological mechanism. Endothelial damage
leads to the limitation of vasomotor function of cerebral small
vessels, and then impaired cerebrovascular autoregulation ability
(4). Common cerebral SVD lesions on magnetic resonance
imaging (MRI) include white matter hyperintensity (WMHs),
lacunes, perivascular spaces (PVSs), and cerebral microbleeds
(CMBs) (5). A previous study (6) found in patients with carotid
occlusion, ipsilateral WMHs were specific and sensitive for
the presence and severity of decreased cerebrovascular reserve,
which is an important manifestation of cerebral autoregulation
(7) and recommended as the gold standard for predicting CH
(8). This study also gave a hint that pre-operative cerebral SVD
may be associated with CH after CEA. However, the relationship
between cerebral SVD and CH has not been confirmed until now.

The common cerebral SVD lesions on MRI are reliable and
easy to collect as long as the standardized definitions are adopted
(5); thus, pre-operative cerebral SVD may be useful imaging
markers for the prediction of CH that can be applied in clinical
practice. This study aimed to investigate whether pre-operative
cerebral SVD was associated with CH after CEA, and to exhibit
practical cutoff values of cerebral SVD markers for predicting
CH. In a group of patients undergoing CEA for carotid stenosis,
we evaluated the relationship between cerebral SVD and CH
using a combination of MRI methods including conventional
structural imaging and perfusion weighted imaging.

MATERIALS AND METHODS

Study Design and Patients
This prospective, single-center observational study was approved
by the Medical Ethics Committee of the Peking Union Medical
College Hospital, in line with the Declaration of Helsinki. All
participants provided written informed consent for this study.

We consecutively enrolled patients who underwent CEA for
unilateral or bilateral carotid stenosis [≥50% for symptomatic
stenosis or ≥70% for asymptomatic stenosis, according to the
North American Symptomatic Carotid Endarterectomy Trial
(NASCET) grading (9)] diagnosed with computed tomography
angiography. The exclusion criteria included: (1) patients with
intracranial artery stenosis ≥50% or occlusion shown by pre-
operative computed tomography angiography, (2) history of
ipsilateral CEA and re-admission due to carotid re-stenosis, (3)
contraindications of MRI scanning or refuse MRI scanning, or
(4) artifacts on MR images that interfere with evaluation. Pre-
operative MRI was obtained within 2 weeks before CEA and
post-operative MRI was obtained within 7 days after CEA. From
May 2015 to March 2021, 97 patients were initially included
in this study. Three patients had ipsilateral middle cerebral
artery occlusion, 2 patients had a history of ipsilateral CEA, 12
patients had contraindications of MRI scanning and 3 patients
had artifacts on MRI. A final 77 patients were enrolled in our
study. A flow chart of the patient enrollment is shown in Figure 1.

MRI
All MRI examinations were performed on a 3.0 T scanner
(Discovery 750, GE Healthcare) with an eight-channel phased-
array head coil. Standard pseudo-continuous arterial spin
labeling (ASL) was performed with a 3D stack-of-spirals fast-
spin-echo readout: labeling duration/post labeling delay =

1,450/2,025ms, TR/TE = 4,886/10.5ms, in-plane spiral number
8, points per spiral 512, field of view (FOV)= 240mm× 240mm,
in-plane resolution 3.75mm × 3.75mm, 40 slices and slice
thickness = 4mm. CBF maps of standard ASL were generated
on GE AW 4.5 workstation by a commercial software 3D ASL
Functool kit. Conventional MRI sequences including diffusion-
weighted imaging, T1-weighted, T2-weighted, fluid-attenuated
inversion recovery, and T2∗-weighted gradient-recalled echo
imaging were also performed (Supplementary Table 1).

Evaluation of Cerebral SVD
Four imaging markers of cerebral SVD on MRI including
WMHs, lacunes, PVSs, and CMBs were recorded according to the
previously reported neuroimaging standards (5). Table 1 shows
the detailed evaluation criteria of four MRI markers and the total
cerebral SVD burden score. Briefly, WMHs were graded using
the Fazekas score ranged from 0 to 6 by summing the deep and
periventricularWMH scores (10). The number of lacunes located
in the territory of a perforating arteriole was conservatively
counted. The number of CMBs not strictly located in lobes was
also recorded.We graded the number of PVSs in the basal ganglia
with a three-category ordinal scale as follows: 0–10 (category 1),
11–25 (category 2), and >25 (category 3) (10). For each patient,
an overall cerebral SVD burden score was calculated according
to the presence of each cerebral SVD marker (11). The overall
cerebral SVD score ranged from 0 to 4.

Two neuroradiologists (H. You and T. Lin, with 19 and 7
years of neuroradiology experience, respectively) were trained
before evaluation and assessed the MRI data blindly for clinical
information. Disagreements were resolved by consensus.
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FIGURE 1 | Flowchart of patient enrollment.

Diagnosis of CH and CHS
Regions of interest were set at the cerebral cortex perfused by
ipsilateral carotid artery in watershed areas and 8 perfusion
territories (2 anterior and 6 middle cerebral artery territories),
corresponding with the Alberta Stroke Programme Early
Computed Tomography Score locations (12). The region of
interest placement was consistent between pre-operative and

post-operative CBF images. CH was defined as an increase in
CBF >100% compared with pre-operative values in ≥1 regions
of interest with or without clinical symptoms or signs (2).

CHS was defined as: (1) existence of CH, (2) occurrence
of a throbbing frontotemporal or periorbital headache on the
ipsilateral side of the CEA, seizure, confusion, deterioration of
consciousness level, development of focal neurological signs, or
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TABLE 1 | Evaluation criteria of the four cerebral SVD markers and the total cerebral SVD burden score.

MRI markers Definition and grades Number or degree Score

WMHs WMHs were defined as hyperintensity on T2-weighted images and

fluid-attenuated inversion recovery without cavitation.

Periventricular WMHs were graded as: 0 = absent, 1 = caps or pencil-thin lining, 2

= smooth halo, or 3 = irregular periventricular WMHs extending into the deep

white matter. Deep WMHs were graded as: 0 = absent, 1 = punctate foci, 2 =

beginning confluent foci, or 3 = large confluent areas.

Fazekas score <2 in the deep white

matter and <3 in the periventricular

white matter

Fazekas score ≥2 in the deep white

matter or ≥3 in the periventricular

white matter

0

1

Lacune Lacune was defined as a round or ovoid, subcortical, fluid-filled cavity of between

3mm and about 15mm in diameter located in the territory of a perforating arteriole.

Number of lacunes was conservatively counted.

0

≥1 lesion

0

1

CMBs CMBs were defined as a small (generally 2–5mm in diameter) area of signal void

with associated blooming seen on T2*-weighted MRI.

Number of CMBs were counted. CMBs strictly located in lobes were not recorded.

0

≥1 lesion

0

1

PVSs PVSs were round or ovoid, with a diameter generally smaller than 3mm and had

signal intensity similar to cerebrospinal fluid on all sequences.

The number of PVSs in the basal ganglia was graded with a three-category ordinal

scale as follows: 0–10 (category 1), 11–25 (category 2), and >25 (category 3).

Category-1 PVSs

Category-2 or−3 PVSs

0

1

SVD, small vessel disease; MRI, magnetic resonance imaging; WMHs, white matter hyperintensity; CMBs cerebral microbleeds; PVSs, perivascular spaces.

intracranial hemorrhage, and (3) absence of new ischemic lesions
on post-operative MRI (2).

Other Clinical and Imaging Characteristics
The presence of symptoms and time elapsed since the
last cerebrovascular event were recorded by an experienced
vascular surgeon. Age, sex, and vascular risk factors including
hypertension, diabetes mellitus, dyslipidemia, coronary heart
disease, history of smoking and alcohol were collected, according
to self-reported history, medication history or referring to
the results of laboratory examination. The use of intraluminal
shunt during surgery, baseline systolic blood pressure (BP)
on admission, the highest systolic BP within 24 h after CEA
and the highest systolic BP from the second day after CEA
to discharge were also recorded. The degree of stenosis was
determined according to the NASCET criteria (9) by computed
tomography angiography. We carefully performed the diagnosis
of carotid near-occlusion by using an interpretive approach based
on previous studies (13, 14).

Perioperative and Post-operative
Management
CEA was performed under general anesthesia. A bolus of
heparin (100 U/kg) was administered intravenously for systemic
anticoagulation. All CEAs were carefully performed by vascular
surgeons with more than 10 years of experience. Carotid
atherosclerotic plaques were removed by classic longitudinal
arteriotomy with patching or eversion surgery. If patients were
observed with poor collateral circulation before surgery (15) or
with asymmetry or diffuse slowing of the electroencephalogram
during clamping (16), an intraluminal shunt was used. Following
surgery, patients were transferred to the post-anesthesia care unit
for about 1 h until the blood pressure (BP) was stable, before
transfer back to the vascular ward.

Patients received electrocardiogram monitoring for 1–2 days
after surgery. BP was closely monitored to control systolic BP
between 120 and 140 mmHg. BP was measured three times daily
using a sphygmomanometer after removal of electrocardiogram
monitoring. Patients with a systolic BP > 140 mmHg received
oral antihypertensive drugs as the first-line treatment. If
systolic BP remains elevated, intravenous antihypertensive drugs
were given. For patients who complained of CHS symptoms,
intravenous mannitol or glycerol fructose was added to lower
intracranial pressure.

Statistical Analysis
All data was analyzed using statistical software (IBM SPSS v25.0).
The κ value was calculated for the inter-observer agreement of
each cerebral SVD marker. The κ values ≤ 0.40 represented
poor agreement, values > 0.40 and ≤ 0.65 represented general
agreement, values > 0.65 and ≤ 0.75 represented good
agreement, and values > 0.75 represented excellent agreement.
The relationship between each variable and CH was analyzed
by univariate analysis. To determine the association of cerebral
SVD with CH adjusted for other risk factors, we performed
multivariate logistic regression analysis by using a forward
stepwisemethod. Age, sex and variables with p< 0.2 in univariate
analysis were entered into the logistic regression models as
covariables. Since SVD markers share the common pathogenesis
and often coexist, to avoid the risk of multicollinearity, each
cerebral SVD marker and the total cerebral SVD score entered
different regression models, respectively, rather than including
them in the one model. The remaining covariates entered
all models consistently. The optimal cutoff values of cerebral
SVD markers for predicting CH were assessed using receiver-
operating characteristic (ROC) curve analysis. The sensitivity,
specificity, and negative and positive predictive values of
cerebral SVD markers for differentiating patients with and
without CH were calculated. All p-values were calculated
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TABLE 2 | Clinical characteristics and cerebral small vessel disease markers of patients.

All (n = 77) CH (n = 16) Non-CH (n = 61) p

Age, years 66.0 ± 7.3 66.4 ± 8.5 65.8 ± 7.0 0.765

Male 58 (75.3) 15 (93.8) 43 (70.5) 0.099

Presence of symptoms 0.324

Asymptomatic stenosis 47 (61) 7 (43.8) 40 (65.6)

TIA 14 (18.2) 4 (25) 10 (16.4)

Stroke 16 (20.8) 5 (31.3) 11 (18)

Days since the last cerebrovascular event 42.5 [27, 75] 45 [20, 120] 40 [33, 60] 0.304

Large infarcts on MRIa 15 (19.5) 6 (37.5) 9 (14.8) 0.071

Hypertension 53 (68.8) 13 (81.3) 40 (65.6) 0.364

Diabetes 28 (36.4) 7 (43.8) 21 (34.4) 0.490

Dyslipidemia 37 (48.1) 7 (43.8) 30 (49.2) 0.783

Coronary artery disease 17 (22.1) 6 (37.5) 11 (18.0) 0.172

Smoking 41 (53.2) 10 (62.5) 31 (50.8) 0.405

alcohol 22 (28.6) 3 (18.8) 19 (31.1) 0.375

Ipsilateral stenosis 0.002*

50–70% 10 (13) 0 (0) 10 (16.4)

70–99% 52 (67.5) 8 (50) 44 (72.1)

Near-occlusion 15 (19.5) 8 (50) 7 (11.5)

Contralateral stenosis 0.608

0 26 (33.8) 5 (31.3) 21 (34.4)

<50% 34 (44.2) 7 (43.8) 27 (44.3)

50–70% 8 (10.4) 1 (6.3) 7 (11.5)

70–99% 7 (9.1) 3 (18.8) 4 (6.6)

Occlusion 2 (2.6) 0 (0) 2 (3.3)

Shunt use 49 (63.6) 11 (68.8) 38 (62.3) 0.633

BP_baseline, mmHg 136.7 ± 15.7 140.7 ± 17.9 135.7 ± 15 0.258

BP_post_1st day, mmHg 126.0 ± 14.9 130.5 ± 20.7 124.8 ± 12.9 0.308

BP_before discharge, mmHg 139.4 ± 14.2 139.9 ± 21.1 139.3 ± 12.0 0.933

Cerebral SVD markers

Total SVD score 1 [0–2] 2 [1.25–3] 1 [0–2] 0.001†

0 23 (29.9) 1 (6.3) 22 (36.1)

1 25 (32.5) 3 (18.8) 22 (36.1)

2 15 (19.5) 7 (43.8) 8 (13.1)

3 10 (13) 3 (18.8) 7 (11.5)

4 4 (5.2) 2 (12.5) 2 (3.3)

Fazekas score of WMHs 2 [1–3] 4 [3–5] 1 [1–3] <0.001†

Any lacunes 38 (49.4) 12 (75) 26 (42.6) 0.021*

Number of lacunes 0 [0–2] 2.5 [0.25–4.75] 0 [0–1] 0.003†

Category of PVSs 1 [1–2] 1 [1–2] 1 [1–1.5] 0.198

Any CMBs 20 (25.3) 5 (31.3) 15 (24.6) 0.749

Number of CMBs 0 [0–1] 0 [0–1] 0 [0–0.5] 0.492

CH, cerebral hyperperfusion; TIA, transient ischemic attack; BP_baseline, baseline systolic blood pressure on admission; BP_ post_1st day, the highest systolic blood pressure within 24 h

after surgery; BP_before discharge, the highest systolic blood pressure from the second day after surgery to discharge; SVD, small vessel disease; WMHs, white matter hyperintensities;

PVSs, perivascular spaces; CMBs, cerebral microbleeds.

Normally distributed continuous variables were expressed as means ± standard deviation. Categorical variables were expressed as percentages of patients who satisfied the criteria.

Discrete variables were expressed as median [interquartile range].
aCortical infarcts or subcortical hemispheric infarcts >1.5 cm in diameter within the territory of ipsilateral carotid artery on MRI.

*Chi-square test or Fisher’s exact test.
†Mann-Whitney U test.

Italic values mean p < 0.05 between CH and non-CH groups.
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using two-tailed tests. A value of p < 0.05 was considered
statistically significant.

RESULTS

Characteristics of the Study Population
CEA was successfully performed in all patients. Of the 77
patients, 16 (20.78%) met CBF criteria for CH. The clinical and
radiological characteristics of the study population are shown in
Table 2. Themean age was 66± 7 years and 75.3%weremales. Of
the 77 patients, 14 (18.2%) patients had transient ischemic attack
and 16 (20.8%) patients had ischemic stroke. No emergency
surgery was performed. The median Fazekas score was 2 points
and median PVSs category was 1 grade. Thirty-eight (49.4%)
patients had lacunes and 20 (25.3%) patients had CMBs.

Inter-observer Agreement
Inter-observer agreement for each cerebral SVD marker was
good or excellent (Fazekas score, κ = 0.78; number of lacunes,
κ = 0.72; PVSs category: κ = 0.77; number of CMBs, κ = 0.86).

Relationship Between Cerebral SVD and
CH
The results of univariate analysis between CH and non-CH
group are shown in Table 1. The total cerebral SVD score
was significantly higher in patients with CH compared with
patients without CH (p = 0.001). As for the four cerebral SVD
markers, the Fazekas score (p < 0.001), presence of lacunes (p
= 0.021) and number of lacunes (p = 0.003) were associated
with CH after CEA. There were no significant differences in
PVSs or CMBs between the two groups (p = 0.198 and p =

0.749, respectively). In terms of clinical characteristics, patients
with CH had a significantly higher degree of ipsilateral carotid
stenosis than those without CH (p = 0.002). Patients with
carotid near-occlusion had the highest risk of CH after CEA
(Supplementary Figure 1). No statistical difference was found in
other clinical variables.

Age, gender, large infarcts onMRI, coronary artery disease and
degree of ipsilateral carotid stenosis were included as covariates
according to the result of univariate analysis. In the logistic
regression models, Fazekas score of WMHs [OR 3.09, 95% CI
(1.72–5.54); p < 0.001], number of lacunes [OR 1.37, 95%
CI (1.06–1.76); p = 0.014] and total cerebral SVD score [OR
2.68, 95% CI (1.42–5.07); p = 0.002] were still significantly
associated with post-operative CH (Table 3). No association was
found between PVSs and CH (p = 0.184). Ipsilateral degree of
stenosis was associated with CH in all regression models (p <

0.05). No statistical difference was observed between CH and
other variables.

ROC Curves Analysis
Fazekas score ≥ 3 points [area under the curve (AUC) = 0.84,
sensitivity= 81.3%, specificity= 73.8%, positive predictive value
(PPV) = 44.8% and negative predictive value (NPV) = 93.8%]
and number of lacunes ≥ 2 (AUC = 0.73, sensitivity = 68.8%,
specificity = 78.7%, PPV = 45.8% and NPV = 90.6%) were the
optimal cutoff values for the prediction of post-operative CH

TABLE 3 | Logistic regression analysis of relationships between cerebral SVD

markers and post-operative cerebral hyperperfusion.

Cerebral SVD markers p OR 95% CI

WMHs <0.001 3.09 1.72–5.54

Number of lacunes 0.014 1.37 1.06–1.76

PVSs 0.184 NA NA

Total cerebral SVD score 0.002 2.68 1.42–5.07

SVD, small vessel disease; WMHs, the Fazekas score of white matter hyperintensities;

PVSs, category of perivascular spaces.

(Figures 2A,B). The relationships between the Fazekas score, the
number of lacunes and CH are shown in Figure 2C. Of the 41
patients with a Fazekas score < 3 and the number of lacunes <

2, only 2 (4.88%) patients had CH after CEA. And importantly,
both the 2 patients had ipsilateral carotid near-occlusion. A
representative case of CH is shown in Figure 3.

Patients Diagnosed With CHS
Of the 16 patients with post-CEA CH, 2 developed CHS.
One patient diagnosed with CHS complained of an ipsilateral
severe throbbing headache, lethargy, and weakness of the left
lower limb. Another CHS patient had an ipsilateral severe
throbbing headache, periorbital pain, dysphoria, delirium and
spraying vomiting. After strict control of BP and reduction
of intracranial pressure, further intracranial hemorrhage did
not occur.

The basic data of the 16 patients are listed in
Supplementary Table 2. Both of the 2 CHS patients were
male, had coronary artery disease, and showed clinical symptoms
before surgery. Moreover, the two CHS patients showed a trend
toward a higher maximum systolic BP within 24 h after surgery
(160 and 170 mmHg) compared with the other 14 patients (mean
value = 126 mmHg). A representative case of CHS is shown in
Figure 4.

DISCUSSION

As a large artery atherosclerotic disease, the role of cerebral SVD
was less mentioned in patients with carotid stenosis. Actually,
carotid stenosis often coexists with cerebral SVD because they
share common systematic vascular risk factors such as aging and
hypertension (17). In this preliminary study, we explored the
relationship between cerebral SVD MRI markers and CH after
CEA in patients with carotid stenosis and we found that pre-
operative WMHs and lacunes adversely affected CH after CEA.
This is, to the best of our knowledge, the first study to examine the
association between cerebral SVD and CH after CEA in patients
with carotid stenosis.

CHS is a serious perioperative complication after CEA and a
major cause of intracerebral hemorrhage during hospitalization
(18). The North American Symptomatic Endarterectomy Trial
(19) demonstrated that WMHs were associated with a higher
risk of any stroke (non-fatal or fatal ischemic stroke and
hemorrhagic stroke confirmed by brain imaging) within 30
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FIGURE 2 | The receiver operating characteristic (ROC) curves of pre-operative Fazekas score (A) and number of lacunes (B) for the prediction of cerebral

hyperperfusion (CH) after surgery. (C) Relationships between the Fazekas score, number of lacunes, and post-operative CH. The dotted horizontal line denotes the

cutoff value of lacunes (≥2) obtained from the ROC curve for prediction of CH. The dotted vertical line denotes the cutoff value of Fazekas score (≥3) obtained from

the ROC curve for prediction of CH.
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FIGURE 3 | A representative case of cerebral hyperperfusion. (A) Pre-operative computed tomography angiography shows severe stenosis of the right carotid artery.

(B–D) Pre-operative T2WI and FLAIR show severe white matter hyperintensities (Fazekas score = 6), multiple lacunes in bilateral basal ganglia, and category-3

perivascular spaces. (E) Pre-operative arterial spin labeling image shows a significantly decreased cerebral blood flow (23.21 ml/100 g/min) in the watershed area. (F)

Post-operative arterial spin labeling image shows the cerebral blood flow (52.79 ml/100 g/min) increase >100% compared with pre-operative values.

FIGURE 4 | A representative case of cerebral hyperperfusion syndrome. (A) This patient was diagnosed with bilateral severe carotid stenosis. During this

hospitalization, this patient received carotid endarterectomy (CEA) on the left side. (B–E) Pre-operative T2WI and FLAIR show Fazekas score of 4 points and multiple

lacunes in bilateral basal ganglia and left thalamus. (F) Pre-operative arterial spin labeling image shows a significantly decreased cerebral blood flow (22.72 ml/100

g/min) in the watershed area. (G) Post-operative arterial spin labeling image shows the cerebral blood flow (51.26 ml/100 g/min) increase >100% compared with

pre-operative values. (H) This patient developed cerebral hyperperfusion syndrome during the first day after CEA with systolic blood pressure of 170 mmHg. The

patient experienced dysphoria, delirium under fluctuating blood pressure. After adjusting the medication, the patient discharged with stable blood pressure.

BP_baseline, baseline systolic blood pressure on admission; BP_pre, systolic blood pressure measured the day before surgery; BP_post, systolic blood pressure

measured everyday after CEA before discharge.

days after CEA. However, that study did not report the rate of
ischemic and hemorrhagic stroke separately or the presence of
CH or CHS. Our findings showed that pre-operative WMHs
and lacunes were independently associated with post-operative
CH. A possible mechanism for this association involves impaired
cerebrovascular autoregulation, which is known as the main
mechanism of CH (2, 3). WMHs and lacunes are common
MRI markers for cerebral SVD caused by cerebral microvascular
endothelial dysfunction (4). Patankar et al. reported that

even in the presence of severe stenotic/occlusive large vessel
disease, microvascular abnormalities are the predominant
pathogenetic factor in WMHs (20). With increasing WMH
burden and lacunes, permeability of the small vessel wall
increases, followed by inflammatory reaction, thickening and
stiffness of the vessel wall, and impaired cerebral autoregulation
ability (15). Another possible mechanism may be the free
oxygen radicals. Patients with cerebral SVD would suffer
from cerebrovascular oxidative stress and extensive reactive
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oxygen species production (21), which can cause vasodilation
and increased permeability of cerebral vessels during ischemia
reperfusion (2).

The NPVs of Fazekas score ≥ 3 points and number of lacunes
≥ 2 were >90%. In our study, none of patients with both Fazekas
score < 3 points and number of lacunes < 2 (n= 41) experience
CH, except for 2 patients with carotid near-occlusion. These
findings indicate that combining the information of WMHs,
lacunes (representing the influence of cerebral small vessels) and
degree of stenosis (representing the influence of extracranial
large arteries) may identify patients who would not develop CH
after CEA. This can obviate unnecessary invasive intravenous
antihypertensive therapy on many post-CEA patients, different
from the one-size-fits-all strategy that treating all patients with
systolic BP > 140 or 160 mmHg (3, 22). Moreover, it will help
clinicians decide who can safely return to ward or home instead
of staying in intensive care unit; thus, this will lead to a reduction
in hospital and patient costs.

Furthermore, all 6 patients with both a Fazekas score
of 5 or 6 and number of lacunes ≥2 (2 of them with
carotid near-occlusion, Supplementary Table 2) developed CH
after CEA. Thus, our results gave a hint that clinicians may
need to pay particular attention for those patients with both
a higher Fazekas score (5 or 6 points) and more lacunes
(≥2) during the surgical and perioperative periods, such
as use of shunt or shortening of the cross-clamping time,
more careful use of anticoagulants and antiplatelet therapy,
and strict control of BP to minimize the occurrence of
CH/CHS (2). Given the relatively small number of patients
with severe WMHs (Fazekas score of 5 or 6, 9 of 77), this
finding needs to be verified by future studies with a larger
sample size.

In the present study, the incidence of CHS after CEA was
2.6%, and 12.5% of patients with CH developed CHS, which
was consistent with previous reports (23, 24). Of the 16 CH
patients, the 2 patients who further developed CHS had a
higher systolic BP within 24 h after CEA than the remaining
14 patients. Post-operative hypertension has been demonstrated
as an important risk factor for CHS by previous studies, both
in CEA and CAS (1–3, 25, 26). The current study emphasized
the effect of early post-operative BP during the progression
from CH to CHS. Moulakakis et al. (27), Newman et al. (28)
reported that post-endarterectomy hypertension was associated
with higher post-operative pain scores, which may partially
explain our findings. However, because of the small number of
CHS patients, the mechanism of BP in CHS requires further
exploration. Anyway, strict control of BP in the perioperative
phase is essential in the prevention and management of
CHS (2).

The study patients received CEA under general anesthesia.
CEA is the standard treatment for patients with symptomatic
carotid stenosis, and general anesthesia is the most preferable
technique for CEA practiced by clinicians (29–31). Our findings
may be applicable to most clinical situations. Theoretically,
impaired cerebral autoregulation is a shared mechanism of CH
for both CEA and CAS; thus, our finding of the association
between cerebral SVD and CH may also apply to CAS. Some

of general anesthetics may influence cerebral hemodynamics by
vasodilating effects or disturbing blood flow-activity coupling
(2, 32), while anesthesia protocols that may disturb CBF
and autoregulation were not performed in the current study.
Performing CEA under regional anesthetics does not impair
cerebral hemodynamic, which may be a better choice for
CH/CHS studies.

There are several limitations to our study. First, the sample
size was relatively small for the low incidence of CHS. Since
only 2 patients presented with CHS, statistical analysis was not
performed for CHS patients. Our preliminary findings of the
cutoff values of cerebral SVD for the prediction of CH need
to be validated by further studies with larger sample sizes.
Second, cerebrovascular reserve was not performed in our study.
The pathogenesis underlying the relationship between cerebral
SVD and CH cannot be directly verified in our study. Actually,
cerebrovascular reserve studies are in progress in our unit. Third,
our conclusions are applicable to patients undergoing CEA
under general anesthesia, but cannot be directly extrapolated to
patients undergoing carotid artery stenting or to those under
local anesthesia. Whether our findings are applicable for CAS
or CEA under regional anesthesia needs to be verified by
future studies.

CONCLUSION

In conclusion, pre-operative WMHs and lacunes adversely
affect CH after CEA. In patients with carotid stenosis, cerebral
SVD may be an important risk factor for CH after CEA and
can serve as a useful imaging marker for CH, especially for
predicting patients who will not develop CH. When considering
the risk of CH in patients undergoing CEA for carotid
stenosis, pre-operative brain MRI could help clinicians make
treatment decisions.
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Background: The circle of Willis is a network of arteries allowing blood supply to

the brain. Bulging of these arteries leads to formation of intracranial aneurysm (IA).

Subarachnoid hemorrhage (SAH) due to IA rupture is among the leading causes of

disability in the western world. The formation and rupture of IAs is a complex pathological

process not completely understood. In the present study, we have precisely measured

aneurysmal wall thickness and its uniformity on histological sections and investigated for

associations between IA wall thickness/uniformity and commonly admitted risk factors

for IA rupture.

Methods: Fifty-five aneurysm domes were obtained at the Geneva University Hospitals

during microsurgery after clipping of the IA neck. Samples were embedded in paraffin,

sectioned and stained with hematoxylin-eosin to measure IA wall thickness. The

mean, minimum, and maximum wall thickness as well as thickness uniformity was

measured for each IA. Clinical data related to IA characteristics (ruptured or unruptured,

vascular location, maximum dome diameter, neck size, bottleneck factor, aspect and

morphology), and patient characteristics [age, smoking, hypertension, sex, ethnicity,

previous SAH, positive family history for IA/SAH, presence of multiple IAs and diagnosis

of polycystic kidney disease (PKD)] were collected.

Results: We found positive correlations between maximum dome diameter or neck

size and IA wall thickness and thickness uniformity. PKD patients had thinner IA walls.

No associations were found between smoking, hypertension, sex, IA multiplicity, rupture

status or vascular location, and IA wall thickness. No correlation was found between

patient age and IA wall thickness. The group of IAs with non-uniform wall thickness

contained more ruptured IAs, women and patients harboring multiple IAs. Finally,

PHASES and ELAPSS scores were positively correlated with higher IA wall heterogeneity.

Conclusion: Among our patient and aneurysm characteristics of interest, maximum

dome diameter, neck size and PKD were the three factors having the most significant

impact on IA wall thickness and thickness uniformity. Moreover, wall thickness

heterogeneity was more observed in ruptured IAs, in women and in patients with multiple
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IAs. Advanced medical imaging allowing in vivo measurement of IA wall thickness would

certainly improve personalized management of the disease and patient care.

Keywords: intracranial aneurysm, subarachnoid hemorrhage, risk factors, wall thickness uniformity, wall

thickness

INTRODUCTION

Intracranial aneurysm (IA) resulting from the local outbulging of
cerebral arteries is a disease with life-threatening complications.
IAs are most often observed at bifurcations of cerebral arteries
in the circle of Willis, which is a network of arteries localized
at the basis of the brain and allowing its perfusion (Figure 1A).
IAs have usually a saccular form (Figure 1A-right panel). Once
an IA has formed, it can remain stable, grow or rupture. The
most severe complication of an IA is its rupture leading to
subarachnoid hemorrhage (SAH) (1). In Switzerland, a recent
study demonstrated that SAH is lethal in 24% of cases and
causes disability in more than 50% of patients (2). In the
general population, the prevalence of IAs ranges from 2 to
3% (3), with some sources indicating it might even reach 9%
(4, 5). Furthermore, IA prevalence is higher in 35–60 years old
patients (6), in women (7) or in patients affected by polycystic
kidney disease (PKD) (8, 9). Rupture probability of IAs has
been estimated between 0.3 and 15% per 5 years (1, 10) with
an annual rupture rate of 1% (11). Importantly, IAs are usually
asymptomatic until rupture, making this illness a silent killer.
Unruptured IAs are often unexpectedly found during cranial
imaging (10). The discovery of unruptured IAs results in stress
and anxiety for patients who are then confronted with the
difficult decision to undergo prophylactic surgery or not. A
precise evaluation of rupture probability is essential to help
patients and physicians in this difficult choice. However, means
to accurately estimate the likelihood of rupture are currently
missing. Existing prediction tools such as PHASES (12), UIAT
(13), and ELAPSS (14) scores consider various risk factors
commonly linked with IA rupture, such as arterial hypertension,
patient age, previous SAH, co-morbidities, IA size, location and
morphology. Although these scores are based on readily available
clinical data and correlate well with disease severity, they have
several limitations. Indeed, retrospective studies showed that
these scores do not perfectly reflect the likelihood of rupture,
which may lead to overtreatment of unruptured IAs (15–
22). Presently, no treatment is available to prevent IA rupture
and prophylactic surgery presents important risks that must
be considered (10). Indeed, endovascular coiling or surgical
clipping is associated with 4.8% (23) and 6.7% (24) unfavorable
outcomes, respectively.

The formation and rupture of IAs is a complex pathological
process that despite extensive research (25–27), is still poorly
understood. Considerable scientific evidence supports the
notion that hemodynamic forces acting on the vessel wall
induce vascular remodeling leading to IA formation, growth
and rupture (28–31). Involved processes include inflammatory
cell infiltration, smooth muscle cell (SMC) phenotypic switch,
apoptosis, reorganization of extra cellular matrix (ECM),

calcification and lipid accumulation (28–31). Numerous
studies have tackled the mysteries of IA instability based on
morphological dome aspects such as IA size and intraoperative
appearance (32–34). Some studies have classified aneurysmal
walls as “thick” or “thin” (35, 36), but to the best of our
knowledge no study has performed a quantitative analysis of
IA wall thickness or a rigorous description of IA wall thickness
uniformity. We believe these two factors to be of importance for
IA wall instability and rupture. In this study, we have precisely
measured and defined aneurysmal wall thickness and thickness
uniformity on histological sections. Potential links between
such IA characteristics and patient and aneurysm descriptors
commonly used in clinics to determine the rupture risk of IAs
were investigated.

MATERIALS AND METHODS

Clinical Data
Patients were recruited at the Geneva University Hospitals
following specific criteria. Inclusion criteria were as follows:
(1) IA identified based on angiographic imaging [3D Magnetic
Resonance Angiogram (3D-MRA), 3D Computed Tomography
Angiogram (3D-CTA) or 3D Digital Subtraction Angiography
(3D-DSA)]; (2) 18 years of age or older; and (3) patient having
provided informed consent. Exclusion criteria were as follows:
(1) lack of angiographic evidence for IA on 3D-MRA, 3D-CTA
or 3D-DSA; (2) insufficient access to clinical data; (3) younger
than 18 years of age; and 4) non-provision of informed consent.
The study was approved by the Ethical Committee of the Geneva
University Hospitals and by Swissethics (@neurIST protocol,
ethics authorization PB_2018-00073, previously CER 07-056).
All procedures were in accordance with the World Medical
Association’s Declaration of Helsinki.

Clinical data of recruited patients were collected with
respect to IA and patient characteristics. IA characteristics
were rupture status (ruptured or unruptured), vascular location,
maximum dome diameter (Figure 1B), neck size (Figure 1B),
and aspect (roughness, smoothness, presence of blebs and/or
lobules [defined as (i) lobules have a diameter close to the IA
diameter and (ii) blebs have a diameter much smaller than the
IA diameter)], as previously described (27, 37, 38). Moreover,
we calculated the bottleneck factor (ratio between maximum
dome diameter and neck size), which is considered to be a
potential predictor of IA rupture (39). Patient characteristics
were age at discovery/rupture of IA, smoking status (defined
as (i) never smoked more than 300 cigarettes and (ii) former
(smoked more than 300 cigarettes and stopped at least 6
months ago) or current (smoked more than 300 cigarettes and
continues smoking) smoker), hypertension (defined as arterial
blood pressure >140/90 mmHg, regardless of treatment status),
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sex, ethnicity, positive family history for IA or SAH, earlier SAH,
presence of multiple IAs and diagnosis of PKD.

The PHASES (12) and ELAPSS (14) scores, used to evaluate
IA rupture risk and growth respectively, were calculated for
all patients.

Human Saccular IA Samples
Saccular IA samples were provided by the Division of
Neurosurgery of the Geneva University Hospitals. All samples
were obtained during microsurgery by resection of the IA dome
(i.e., the bulging region of the IA) after clipping of the neck
(Figures 1C,D). IAs were stored as previously described [Aneux
Biobank (27)], fixed in formol, embedded in paraffin, sectioned
at 5µm and conserved at 4◦C.

Aneurysm Wall Thickness Measurement
To measure aneurysm wall thickness, aneurysmal dome sections
were stained with hematoxylin and eosin (Figures 1E, 2A,B).
Sections were scanned at 10× magnification in high resolution
using the fully automated slide scanner Axio Scan.Z1 (Carl
Zeiss Microscopy, Oberkochen, Germany). Using the software
MATLAB 2019a (Mathworks, Massachusetts, USA), IA wall
borders were precisely drawn (Figures 2C,D) and IA wall
thickness was calculated every 0.4µm all along the length of
the resected aneurysm dome. For each sample, minimum and
maximum IA wall thicknesses were extracted from all the data
and the mean IA wall thickness was calculated.

Aneurysm Wall Thickness Uniformity
Measurement
Based on the thickness measurements, a thickness topographic
map of each dome was obtained. Thickness values were divided
into 100µm classes from 0 to 2,000µm and frequencies of
each thickness classes were determined (Figures 2E,F). Gaussian
curves from this frequency distribution were obtained for each
aneurysm (Figures 2G,H). Using the Gaussian Mixture Model
(GMM) in the Excel software, each aneurysm Gaussian curve
was decomposed into a maximum of five simple Gaussian
functions, varying according to the mean thickness, amplitude
and standard deviation (Figures 2I,J). To make the best possible
match between the number of Gaussian and the GMM, the Chi-2
minimization simplex method was used. Based on the number
of Gaussian curves, IA walls were classified as uniform (i.e., 1
Gaussian curve, example given in Figure 2- left side) or non-
uniform (i.e., 2–5 Gaussian curves, example given in Figure 2-
right side).

Statistical Analysis
Results are shown as individual values and as median ±

interquartile range (IQR), as percentage or in correlations.
Comparisons of medians were performed using a non-
parametric Mann-Whitney U-test for two groups comparison
and using Kruskal-Wallis and Dunn’s multiple comparison tests
for 4 groups comparison. Comparisons of percentages was
performed using a Fisher exact test. For continuous variables
with normal distribution, verified by the Kolmogonov-Smirnov
test, Pearson correlations were performed to examine association

between variables. For ordinal variables, Spearman correlations
were performed to examine association between variables.
Differences were considered statistically significant at values of
p < 0.05.

RESULTS

Characteristics of the Studied Population
The studied population was composed of 55 patients with a
mean age of 54 ± 11 years. Fifty-four patients were of Eurasian
ethnicity and one was African. Our study group had a majority
of females (75%) and smokers (63%: 47% current smokers and
16% former smokers). Forty-two percent of patients (N = 23)
were diagnosed with hypertension, regardless of treatment status.
Positive family history of IA or SAH was declared in 18% of the
patients (N = 10). Previous SAH was present in 9% (N = 5) of
the patients. Multiple-aneurysm cases concerned 49% of patients
(N = 27). Six patients (11%) were affected by PKD. Eighteen
IAs (33%) were ruptured and 37 (67%) were unruptured. The
mean maximum dome diameter was 6.7 ± 3.6mm. The mean
aneurysm neck size was 3.9 ± 2.4mm. The mean bottleneck
factor was 1.7 ± 0.6. The majority of the aneurysms resected
for this study were located at the middle cerebral artery (MCA,
N = 38, 69%). The other vascular locations were internal carotid
artery (N = 1), A2 artery (N = 2), posterior communicating
artery (N = 2), anterior communicating artery (N = 5) and
anterior cerebral artery (N = 7). Concerning aneurysm aspects,
the ratio of rough/smooth domes was 0.3 rough and 0.7 smooth;
44% of domes included blebs, 27% included lobules and 55% of
them included blebs and/or lobules.

Effects of IA Characteristics on IA Wall
Thickness
Maximum dome diameter was positively correlated to mean
(Figure 3A) and maximum (Figure 3B) IA wall thickness.
A positive correlation was also observed between neck size
and maximum IA wall thickness (Figure 3E). Bottleneck
factor was positively correlated to mean (Figure 3G) and
minimum (Figure 3I) IA wall thickness. No correlations were
observed between maximum dome diameter and minimum IA
wall thickness (Figure 3C), or between neck size and mean
or minimum IA wall thickness (Figures 3D,F, respectively).
Furthermore, no correlation was found between bottleneck
factor and maximum IA wall thickness (Figure 3H). Finally,
no associations were found between IA wall thickness (mean,
maximum andminimum) and IA rupture status (Figures 4A–C),
IA location (Figures 4D–F), IA aspect (Figures 4G–I) or
morphology (Figures 4J–L).

Effects of IA Characteristics on IA Wall
Thickness Uniformity
IA wall thickness uniformity was based on the number of
Gaussian curves characterizing each aneurysm wall. For twelve
IA domes, one Gaussian curve (example given in Figure 2I)
characterized the aneurysm wall meaning that these walls had
a uniform thickness. For forty-three IA domes, the IA wall
thickness was depicted by 2–5 Gaussian curves (example given
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FIGURE 1 | Intracranial aneurysm dome, from the circle of Willis to histology. (A) Example of intracranial aneurysm location in the circle of Willis. (B) Schematic

representation of an aneurysm dome to show where neck size and maximum dome diameter were measured. (C–E) After clipping of the IA neck (C), the IA dome was

resected and fixed in formol (D), cutted and stained with hematoxylin and eosin (E) to allow IA wall thickness measurement.

in Figure 2J) implying that they had different degrees of non-
uniform wall thickness. Maximum dome diameter (Figure 5A)
and neck size (Figure 5C) were positively correlated with the
number of Gaussian curves characterizing each IA wall. No
correlation was found between the bottleneck factor and the
number of Gaussian curves (Figure 5E). IA walls classified
as uniform showed a lower maximum dome diameter in
comparison with IA walls classified as non-uniform (Figure 5B).
No difference with respect to neck size (Figure 5D) or bottleneck
factor (Figure 5F) was shown between uniform and non-
uniform IA walls. Mean (Figure 5G), maximum (Figure 5H)
and minimum (Figure 5I) IA wall thickness were lower in
uniform walls in comparison with walls with a non-uniform
thickness. The proportion of unruptured IAs was higher in
the IA group with uniform wall thickness (N = 10/12) in
comparison with the IA group with non-uniform wall thickness
(N = 27/43) (Figure 5J). This outcome was not induced by
differences in maximum dome diameter, neck size, or bottleneck
factor between unruptured IA domes with uniformwall thickness
and those with non-uniform wall thickness (Table 1). In the
group of IAs with uniform wall thickness, maximum dome
diameter was not different between unruptured and ruptured
IAs (Table 1). In the group of IAs with non-uniform wall
thickness, maximum dome diameter was significantly higher in
ruptured IAs in comparison with unruptured IAs (p < 0.05,
Table 1). No differences for neck size and bottleneck factor
were found between ruptured and unruptured IAs (Table 1).
The distribution of IA domes with smooth/rough aspect or with

presence or absence of blebs and/or lobules were not different
between IA domes having a uniform or a non-uniform wall
thickness (data not shown). In the group of IA domes with a
uniform IA wall thickness, the proportion of IAs located on the
MCA was higher than in the group of IA domes with a non-
uniform wall thickness (83 vs. 65%, p < 0.01). Maximum dome
diameter and bottleneck factor were not different between IA
domes located in MCA or located at other locations, and were
not different between IA domes with a uniform or non-uniform
wall thickness (Table 1). In the group of IAs with uniform wall
thickness, neck size was not different between MCA-located IA
domes and non-MCA-located IA domes (Table 1). However, in
the non-uniform wall thickness group, neck size was significantly
higher (p < 0.01) in MCA-located IA domes in comparison with
non-MCA-located IA domes (Table 1).

Effects of Patient Characteristics on IA
Wall Thickness and Thickness Uniformity
None of the patient characteristics (age, sex, hypertension,
smoking status, positive family history, or presence of multiple
IAs) had an effect on mean, maximum or minimum IA wall
thickness (data not shown). Although, no differences for mean
(Figure 6A), maximum (Figure 6B) or minimum (Figure 6C)
wall thickness were observed between men and women, the
proportion of women was higher in the IA group with non-
uniform wall thickness (N = 34/43, 79%) in comparison with
the group of IAs with uniform wall thickness (N = 7/12, 58%)
(Figure 6D). This observation was not induced by differences in

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 December 2021 | Volume 8 | Article 77530733

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Acosta et al. Factors Influencing Aneurysm Wall Thickness

FIGURE 2 | Methods for the measurement of aneurysm wall thickness and thickness uniformity. IA wall thickness was measured on hematoxylin and eosin sections

(A,B) after drawing the external border of the IA wall (C,D). A thickness topographic map of each dome was obtained (E,F) allowing the calculation of a Gaussian

curve from this frequency distribution (G,H). Each Gaussian curve was decomposed (I,J) to classify IA wall as uniform (i.e., 1 Gaussian curve, left side of the figure) or

non-uniform (i.e., 2–5 Gaussian curves, right side of the figure). Scale bar in (A,B) = 200µm.
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FIGURE 3 | Intracranial aneurysm characteristics and IA wall thickness. Pearson correlations between maximum dome diameter (A–C), neck size (D–F) or bottleneck

factor (G–I) and mean (A,D,G), maximum [Max. (B,E,H)] or minimum [Min. (C,F,I)] IA wall thickness.

maximum dome diameter, neck size or bottleneck factor between
women’s IA domes with uniform wall thickness and those
with non-uniform wall thickness (Table 1). Also, no significant
differences were found formaximumdome diameter, neck size or
bottleneck factor between men’s IA domes in the uniform group
and those in the non-uniform group (Table 1). Furthermore, no
difference was found for maximum dome diameter, neck size or
bottleneck factor when comparing men and women in uniform
and non-uniform wall thickness groups (Table 1). Existence of
multiple IAs did not affect the mean (Figure 6E), maximum
(Figure 6F) or minimum (Figure 6G) IA wall thickness, but their
proportion was higher in the group of IAs with non-uniform wall
thickness (N = 24/43, 56%) in comparison with the group of
IAs with uniform wall thickness (N = 3/12, 25%) (Figure 6H).
No difference was found for maximum dome diameter, neck size
or bottleneck factor when comparing patients with unique or
multiple IAs in uniform and non-uniform wall thickness groups
(Table 1). Mean (Figure 6I) and maximum (Figure 6J) wall
thickness were significantly lower in IA walls of patients affected
by PKD in comparison with non-PKD patients. No difference
was found for minimum wall thickness between PKD and non-
PKD patients (Figure 6K). The proportion of PKD patients was
higher in the group of IAs with uniformwall thickness (N = 4/12,
33%) in comparison with the group of IAs with non-uniform
wall thickness (N = 2/43, 5%) (Figure 6L). Although there was a
tendency to a lower maximum dome diameter of the IAs of PKD

patients, no significant differences were found for maximum
dome diameter, neck size or bottleneck factor between PKD and
non-PKD patients taking into account the uniformity or non-
uniformity of the IA wall (Table 1). The age of the patients
was not different between the uniform (48 (45–54) years old)
and non-uniform (55 (45–65) years old) groups. The proportion
of IA domes between uniform and non-uniform groups were
not affected by smoking status (smokers: uniform = 67%, non-
uniform = 63%), hypertension (yes: uniform = 42%, non-
uniform = 42%) or positive family history (yes: uniform = 25%,
non-uniform= 16%).

Clinical Prognosis Scores and IA Wall
Thickness Uniformity
The PHASES score (12), based on population, hypertension
status, age, size of the aneurysm, earlier SAH from another IA
and site of aneurysm was calculated for 54 patients; IA size was
missing for one patient resulting in omission of this patient for
this comparison. The ELAPSS score (14), based on earlier SAH,
location of the IA, age, population ethnicity, size and shape of
the IA was calculated for 51 patients; IA size was missing for
one patient and presence of irregularities was not described for
3 patients. Interestingly, the PHASES (Figure 7A) and ELAPSS
(Figure 7B) scores were positively correlated with the number of
Gaussian curves characterizing IA wall uniformity.
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FIGURE 4 | Effects of intracranial aneurysm rupture status, location, aspect and morphology on IA wall thickness. Intracranial aneurysm rupture status [Rup.:

Ruptured; Unrup.: Unruptured, (A–C)], location (D–F), aneurysm aspect (G–I) or morphology [presence of blebs and/or lobules (B/L), (J–L)] did not affect mean

(A,D,G,J), maximum [Max., (B,E,H,K)] or minimum [Min., (C,F,I,L)] IA wall thickness.
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FIGURE 5 | Intracranial aneurysm characteristics and wall uniformity. Spearman correlations between maximum dome diameter (A), neck size (C) or bottleneck factor

(E) and number of Gaussian curves characterizing each intracranial aneurysm. Maximum dome diameter (B), neck size (D), and bottleneck factor (F) values in groups

having a uniform or non-uniform IA wall thickness. Mean (G), maximum [Max. (H)] and minimum [Min. (I)] wall thickness in groups having a uniform or non-uniform IA

wall thickness. Data are shown as individual values and as median with interquartile range. *p < 0.05, **p < 0.01, ****p < 0.0001, non-parametric Mann-Whitney

U-test. (J) Distribution of ruptured (black) and unruptured (gray) IA domes between uniform and non-uniform wall thickness groups. **p < 0.01, Fisher’s exact test.
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FIGURE 6 | Sex, IA multiplicity and PKD effects on IA wall thickness and uniformity. Mean (A,E,I), maximum [Max. (B,F,J)] and minimum [Min. (C,G,K)] IA wall

thickness in men and women (A–C), for groups of multiple IAs and unique IA (E–G) and in patients diagnosed or not with PKD (I–K). Data are shown as individual

values and as median with interquartile range. *p < 0.05, **p < 0.01, non-parametric Mann-Whitney U-test. (D) Distribution of women (black) and men (gray) between

uniform and non-uniform wall thickness groups. (H) Distribution of multiple IAs (black) and unique IA (gray) between uniform and non-uniform wall thickness groups.

(L) Distribution of PKD (black) and non-PKD (gray) patients between uniform and non-uniform wall thickness groups. **p < 0.01, ****p < 0.0001, Fisher’s exact test.
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TABLE 1 | Maximum (Max.) dome diameter, neck size and bottleneck factor according to IA rupture status, IA location, IA multiplicity, patient sex, and PKD diagnosis in

groups with uniform or non-uniform wall thickness.

Uniform wall

thickness

Non-uniform

wall thickness

IA rupture status Unruptured IA Max. dome diameter 4.8 (3.2–7.3) 5.9 (4.2–8.0)

Neck size 3.1 (2.8–3.8) 3.3 (2.7–5.0)

Bottleneck factor 1.3 (1.1–1.8) 1.7 (1.2–2.0)

Ruptured IA Max. dome diameter 4.5 (2.8–6.2) 7.7 (6.8–10.7)

Neck size 2.2 (2.0–2.3) 3.9 (3.4–4.9)

Bottleneck factor 2.0 (1.4–2.7) 1.8 (1.5–2.7)

IA location MCA Max. dome diameter 5.6 (3.2–7.3) 7.7 (5.4–10.0)

Neck size 3.0 (2.6–3.8) 4.3 (3.7–5.2)

Bottleneck factor 1.5 (1.1–1.9) 1.6 (1.3–2.2)

Other locations Max. dome diameter 3.4 (2.8–4.1) 5.0 (4.3–7.0)

Neck size 2.7 (2.0–3.5) 3.0 (2.5–3.5)

Bottleneck factor 1.3 (1.2–1.4) 1.8 (1.2–2.2)

IA multiplicity Unique IA Max. dome diameter 5.4 (3.4–7.5) 7.7 (6.0–9.8)

Neck size 3.2 (2.4–3.9) 3.5 (3.0–5.0)

Bottleneck factor 1.4 (1.2–1.9) 1.9 (1.2–2.7)

Multiple IAs Max. dome diameter 3.3 (1.8–5.7) 5.7 (4.4–8.0)

Neck size 3.0 (2.5–3.1) 3.5 (2.6–4.5)

Bottleneck factor 1.1 (0.7–1.9) 1.7 (1.3–1.9)

Sex Women Max. dome diameter 5.7 (3.3–7.2) 7.2 (5.0–8.6)

Neck size 3.1 (2.5–4.0) 3.5 (3.0–5.0)

Bottleneck factor 1.8 (1.1–1.9) 1.8 (1.5–2.4)

Men Max. dome diameter 3.7 (2.9–6.8) 4.4 (4.9–8.4)

Neck size 2.8 (2.2–3.3) 3.5 (2.8–4.9)

Bottleneck factor 1.2 (1.1–1.4) 1.3 (1.2–1.9)

PKD diagnosis PKD Max. dome diameter 3.6 (2.1–6.4) 3.9 (3.7–4.0)

Neck size 3.2 (2.6–3.9) 3.0 (2.5–3.5)

Bottleneck factor 1.1 (0.9–1.6) 1.3 (1.1–1.5)

Non-PKD Max. dome diameter 5.6 (3.4–7.3) 6.9 (4.9–8.9)

Neck size 3.0 (2.3–3.6) 3.5 (3.0–5.0)

Bottleneck factor 1.5 (1.3–1.9) 1.7 (1.3–2.3)

Values are median (Interquartile range).

DISCUSSION

Formation, growth, remodeling, destabilization and rupture
of IAs are complex pathological processes. Prediction tools
such as PHASES (12) and ELAPSS (14) scores suggest age,
smoking status, hypertension, or aneurysm location to be strong
predictors of rupture risk. In 2017, a systematic review performed
by Kleinloog et al. (40) including 102 studies and describing 144
risk factors for IA rupture found strong evidence that changes
in some morphological factors, such as aspect ratio, size ratio
or bottleneck factor, increase IA rupture risk. Previous studies
on IA wall histological features focused on the effects of patients
and aneurysms characteristics on wall cellular content and ECM
protein organization (26, 27, 31, 41), but few investigated IA wall
thickness or thickness uniformity (35, 36). As SAH is induced by
a breach in the vessel wall, precise analyses of IA wall thickness
and wall thickness uniformity are paramount in grasping what
makes IAs prone to rupture. Through wall thickness assessment

of IA domes from the Aneux biobank, we demonstrate in this
study that maximum dome diameter, neck size and diagnosis
of PKD are the main factors correlated with IA wall thickness
and IA wall thickness uniformity. Interestingly, IAs with a non-
uniform wall thickness are more often observed in the ruptured
group, in women and in patients harboring multiple IAs. Finally,
PHASES and ELAPSS scores are positively correlated with IA
wall thickness heterogeneity.

One of our crucial findings is that IA wall thickness and
thickness heterogeneity, measured in detail on histological
sections, increase with maximum dome diameter, neck size or
diagnosis of PKD. These results further support a previous
study performed by Kadasi et al. (35) showing morphologically
that large aneurysms (>7mm) contained a larger proportion
of thick wall than thin translucent wall. This size-pathogenesis
interconnection was first put forward by Asari and Ohmoto (32)
who characterized a group of entirely thick-walled IAs, all having
a diameter over 9mm. Aneurysm and neck size are important
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FIGURE 7 | IA wall uniformity and clinical scores. Spearman correlations between PHASES score (A) or ELAPSS score (B) and the number of Gaussian curves

characterizing IA wall uniformity.

parameters modulating the impact of hemodynamic forces on
the IA wall (30, 42, 43). Indeed, altered cyclic circumferential
stretch was associated with reduced SMC viability and collagen
expression (44). Otherwise, pathological levels and patterns
of wall shear stress (WSS) have been linked to endothelial
cell dysfunction, phenotypic changes in SMCs, remodeling of
ECM, and activation of inflammatory pathways (42, 45). In a
cohort of patients with small (<10mm) or large/giant (>10mm)
aneurysms, Schnell et al. (43) demonstrated in 2014 that larger
IAs were subjected to higher WSS than smaller IAs. More
recently, Cebral et al. (46) showed that high average WSS
and pressure were more likely associated with thin IA wall

regions, and that hyperplastic regions had lower average WSS
and pressure than normal regions. Important cellular sensors
of WSS are primary cilia. Patients carrying a mutation of genes
affecting the expression or function of primary cilia are more
prone to develop IA than the general population (8, 9). In a
previous study (47), we showed that the wall of unruptured
IAs from PKD patients contained less collagen than the ones
of non-PKD patients. In addition, PKD IAs displayed a more
degraded vascular wall phenotype comparable to what was
observed in ruptured IAs. Interestingly, we also showed that the
expression of the junction protein Zonula Occludens-1 (ZO-1)
was reduced in endothelial cells of PKD patients in comparison
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with non-PKD patients. In subsequent in vitro experiments, we
showed that the decreased expression of ZO-1 led to increased
endothelial cell permeability suggesting that disturbed expression
of ZO-1 in human IAs could underly the leakiness of the
endothelium observed in PKD patients. Modification of IA wall
composition in PKD patients may participate in the thinning of
the aneurysmal wall observed in the present study. Altogether,
these studies suggest that the association between IA wall
thickness and morphological parameters may depend on local
hemodynamic forces.

Whereas, smoking status, hypertension, aneurysm aspect,
morphology, or location are risk factors used in current rupture
prediction tools (12–14), we did not find any association
between these parameters and IA wall thickness or thickness
uniformity. Cigarette smoke is known to induce endothelial
dysfunction, SMC phenotypic modulation or death, and
promotes inflammation (48), which could all increase the risk
of IA rupture. We have previously shown that the IA walls of
smokers contained less SMCs than the ones of non-smokers and
that this lower SMC content is similar to the one measured
in ruptured IAs (27), strongly suggesting that reduced SMC
content in the IA wall is associated with a higher risk of rupture
(41). In the present study, IA wall thickness and thickness
uniformity is not different between smokers and non-smokers
indicating that although a lower presence of SMCs favors rupture,
it does not necessarily lead to a thinner or non-uniform IA wall.
Cardiovascular remodeling via SMCs migration, proliferation or
hypertrophy has been shown to involve the renin-angiotensin
system (49, 50). Ohkuma et al. (51), proposed that increased
hemodynamic stress may activate local renin-angiotensin system
resulting in arterial wall thickening, and demonstrated that the
expression of angiotensin-converting enzyme, angiotensin type
1 receptor and angiotensin II were reduced in IA walls in
comparison to control arteries. However, no difference in the
expression of such proteins was found between patients with or
without hypertension, suggesting that the local renin-angiotensin
system is not activated in the case of IAs. This may explain why in
our cohort no difference has been found between normotensive
and hypertensive patients for IA wall thickness and thickness
uniformity. Even if morphological observation of irregularities
and presence of blebs and/or lobules were expected to have
an impact on IA wall thickness and thickness uniformity in
histological sections, no associations were found in our study.
One important limitation concerning the analysis of the effects of
these IA characteristics on wall thickness is that, due to IA neck
clipping, we do not have access to the complete IA for histological
investigations which can slightly skew the analysis. IA location
is a central factor for aneurysm rupture risk (12, 13, 52). Here,
IAs located in the MCA seemed to possess a more uniform
wall thickness than IAs located elsewhere in the circle of Willis.
The number of IAs in each sub-classification (i.e., smooth/rough
aspect, presence or absence of blebs and/or lobules, locations and
uniform/non-uniform wall thickness) lead to a low number of
samples in some of the subgroups rendering statistical analyses
underpowered. Another limitation to investigate a possible
association between IA location and wall thickness is that some
aneurysms are never treated by microsurgery preventing the
inclusion of such domes for histological studies.

The prevalence of IAs is higher in women than in men, but
the risk of IA rupture is not different between sexes (53, 54). In
our study population, we did not find differences in IA mean,
maximum or minimumwall thickness between men and women,
but we showed that IA walls in females were more likely to
be non-uniform in comparison to those of males. In the study
performed by Kadasi et al. (35), it was shown that IA domes
from women had a higher proportion of thin wall than IA domes
from men. This disparity in IA wall uniformity might indicate
a divergence in aneurysm remodeling between sexes, in which
hormones and hemodynamic factors likely play a crucial role.

CONCLUSION

Intracranial aneurysm walls are subject to a myriad of
complex cellular and biochemical mechanisms resulting in a
heterogeneous wall that may greatly vary from one patient
to another. Quantitative analysis of IA wall thickness and
thickness uniformity is paramount to better understand this
disease. Considering the ensemble of patient and aneurysm
characteristics used in clinical scores, perhaps the most
significant finding of our study is that higher values for
PHASES or ELAPSS scores were associated with higher IA
wall heterogeneity. Further improvement of advanced clinical
imaging techniques allowing for detailed measurement of
variations in IA wall thickness may greatly help in the decision
to treat or not unruptured IAs.
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Digna Cabral 1, Mitchell S. V. Elkind 5, Jose Gutierrez 5, Ralph L. Sacco 1 and
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4Department of Neurobiology, Karolinska Institute, Care Sciences and Society, Stockholm, Sweden, 5Department of
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Low Gray-Scale Median (GSM) index is an ultrasonographic parameter of soft, lipid rich

plaque morphology that has been associated with stroke and cardiovascular disease

(CVD). We sought to explore the contribution of the modifiable and not-modifiable

cardiovascular risk factors (RFs) to vulnerable plaque morphology measured by the

low GSM index. A total of 1,030 stroke-free community dwelling individuals with

carotid plaques present (mean age, 71.8 ± 9.1; 58% women; 56% Hispanic, 20%

Non-Hispanic Black, 22% Non-Hispanic White) were assessed for minimum GSM (min

GSM) using high-resolution B-mode carotid ultrasound. Multiple linear regression models

were used to evaluate the association between RFs and minGSM after adjusting for

sociodemographic characteristics. Within an individual, median plaque number was

2 (IQR: 1–3) and mean plaque number 2.3 (SD: 1.4). Mean minGSM was 78.4 ±

28.7 (IQR: 56–96), 76.3 ± 28.8 in men and 80 ± 28.5 in women; 78.7 ± 29.3 in

Hispanics participants, 78.5± 27.2 in Non-Hispanic Black participants, and 78.2± 29 in

Non-Hispanic white participants. In multivariable adjusted model, male sex (β = −5.78,

p = 0.007), obesity BMI (β = −6.92, p = 0.01), and greater levels of fasting glucose

(β = −8.02, p = 0.02) and LDL dyslipidemia (β = −6.64, p = 0.005) were positively

associated with lower minGSM, while presence of glucose lowering medication resulted

in a significant inverse association (β = 7.68, p = 0.04). Interaction (with p for interaction

<0.1) and stratification analyses showed that effect of age on minGSM was stronger in

men (β = −0.44, p = 0.03) than in women (β = −0.20, p = 0.18), and in individuals not

taking glucose lowering medication (β =−0.33, p= 0.009). Our study has demonstrated

an important contribution of glycemic and lipid metabolism to vulnerable, low density

or echolucent plaque morphology, especially among men and suggested that use of

glucose lowering medication was associated with more fibrose-stable plaque phenotype
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(greater GSM). Further research is needed to evaluate effects of medical therapies in

individuals with vulnerable, low density, non-stenotic carotid plaques and how these

effects translate to prevention of cerebrovascular disease.

Keywords: carotid artery, plaque, atherosclerosis, ultrasonology, gray-scale median, vascular risk factors,

glucose, lipids

INTRODUCTION

Carotid plaque assessed by high-resolution ultrasonography is a
well-validated marker of atherosclerosis and risk of stroke (1).
Plaque densitometry, measured by the ultrasonographic gray-
scale median (GSM) index, is a parameter of plaque morphology
and a helpful predictor of stroke and its outcomes (2, 3). The
GSM index represents a marker of plaque vulnerability with
the potential clinical use because of its simplicity and reliability
of assessment, low cost, and ability to be measured from
plaque images collected from a clinical B-mode ultrasonography
(2). Low GSM plaque values correspond to soft, echolucent
plaque with high lipid content and a thin fibrous cap, whereas
high GSM index represents echodense plaques with high
fibrous content and calcification (3, 4). Low GSM values
have been associated with higher prevalence of symptomatic
carotid stenosis, neurological symptoms (2), and cerebrovascular
disease (5). Recently, lower GSM values, established by brain
magnetic resonance diffusion-weighted imaging (DWI), was
found helpful to predict new cerebral ischemic lesions after
carotid endarterectomy (6). We previously reported on the
impacts of traditional and less traditional vascular risk factors
on atherosclerotic plaque phenotypes, including plaque area
and densitometry (7). In the Prospective Investigation of the
Vasculature in Uppsala Seniors (PIVUS) study, the low levels
of high-density lipoproteins (HDL) cholesterol, increased body
mass index (BMI), and decreased glutathione levels were
associated with the echolucent carotid plaque, implying the role
of metabolic factors in plaque composition (8). However, not
all studies were consistent and some reported no association
between risk factors and grayscale ultrasonographic plaque
features in middle-aged adults free of known cardiovascular
disease (9). Therefore, we sought to investigate contribution
of vascular risk factors to the vulnerable plaque morphology
measured by the low GSM index in an urban, multi-
ethnic cohort.

MATERIALS AND METHODS

Study Populations
The Northern Manhattan Study (NOMAS) is an ongoing
population-based study aimed to determine the incidence of
stroke, cognitive decline, and the role of novel risk factors
in a race/ethnically diverse community (10). The details of
the NOMAS design have been described previously (11). Data
were collected through interviews using standardized collection
instruments, review of the medical records, and physical and
neurological examinations (11). NOMAS was approved by the
Institutional Review Boards of Columbia University Medical

Center and the University of Miami. All participants gave written
informed consent for participation in the study NOMAS subjects
received carotid ultrasound at the time of baseline enrollment
from 1999. There were no specific selection criteria for the
participation in the carotid ancillary study. A sample of 1,790
stroke-free subjects has been enrolled into the NOMAS carotid
ultrasound imaging substudy (1).

Vascular Risk Factors
Definitions of vascular risk factors in NOMAS were described
previously (11). In brief, race/ethnicity was self-identified based
on questions adapted from the 2000 US census and classified
into four categories (White non-Hispanic, Black non-Hispanic,
Hispanic, and non-Hispanic other race). Hypertension was
defined as a SBP ≥ 140mm Hg or a DBP ≥ 90mm Hg
or a patient’s self-report of a history of hypertension or
use of antihypertensive medications. Diabetes was defined as
fasting blood glucose ≥ 126 mg/dL or the patient’s self-
report of such a history or use of insulin or hypoglycemic
medications. Dyslipidemia was defined as total cholesterol >200
mg/dL or self-reported history of increased blood cholesterol
levels or cholesterol-lowering medication use. We did not
capture duration of comorbidities before enrollment to NOMAS.
Therefore, if present diabetes and dyslipidemia at baseline of
NOMAS enrollment, they would have been present for at
least 6–8 years before the start of ultrasound ancillary study.
Medication for these specific diseases in NOMAS are classified
in specific classes of medications (e.g., for diabetes, insulin,
and oral glucose lowering med; for dyslipidemia statin, fibrates,
for hypertension, ACE inhibitors/ARBS, Ca2+ channel blockers,
diuretics, and beta-blockers). Cigarette smoking was categorized
as non-smoker, former, or current smoker (within the last year)
and pack-years of smoking were calculated. Mild to moderate
alcohol use was defined as current drinking of >1 drink
per month and ≤2 drinks per day. Body mass index (BMI)
was calculated in kg/m2. Physical activity was defined as the
frequency and duration of 14 different recreational activities
during the 2-week period before the interview. Years of education
were collected, and completion of high school was a proxy for
socioeconomic status. Medical insurance status (Medicare or
private insurance vs. Medicaid or uninsured) was used as a proxy
of socioeconomic status.

Carotid Ultrasound
High-resolution B-mode carotid ultrasound (GE LogIQ 700,
9–13-MHz linear-array transducer) was performed by trained
and certified sonographers as previously detailed (12). The left
and right carotid bifurcations and the internal and common
carotid arteries were examined for the presence of plaque.
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Plaque was defined as an area of focal wall thickening 50%
greater than surrounding wall thickness confirmed by marking
and comparing plaque thickness with the thickness of the
surrounding wall during scanning by electronic calipers (7). After
image normalization using linear scaling, GSM of an operator-
selected blood region inside the vessel lumen was mapped to 0
and the brightest region of the adventitia was mapped to 255
using M’Ath (Paris, France) (13). Both of these reference regions
were ∼0.4 mm2 in area and were selected on the first image of
the image sequence. The reference GSM values calculated on the
first frame were applied to that and all subsequent images. GSM
was expressed for each plaque. The minimal GSM (minGSM)
values of all carotid plaques insonated within an individual were
averaged and considered a measure of echolucent or vulnerable
plaque morphology (14).

Statistical Analysis
Among a total of 3,298 subjects enrolled in NOMAS, 1,790
stroke-free subjects represent the sample size needed to reach
a significant α level. Sample characteristics were summarized as
means with standard deviation (SD) for continuous variables and
reported as frequencies with percentages for categorical variables.
Student t-test, or F-test when more than two groups, was used to
compare group mean differences in minGSM, whereas Pearson
correlation analyses were conducted to examine the correlation
between minGSM and each continuous variable. A multiple
linear regression model fully adjusted for sociodemographic was
constructed to evaluate association of risk factors with minGSM
and collinearity was evaluated using variance inflation factor
(VIF). As a secondary and sensitivity analysis, a stepwise linear
regression was performed to identify risk factors associated
with minGSM independently. Two-way interactions between
the significant factors were also conducted by inclusions of
interaction terms of them in the regression models and
stratification analyses were followed if the interactions with a p<

0.10. All analyses were done using SAS version 9.4 (SAS Institute,
Cary, N.C.).

RESULTS

Among 1,790 stroke-free subjects, 1,030 subjects had at least one
carotid plaque. Plaques were non-stenotic (<1% of subjects had
carotid stenosis >50% on carotid ultrasound). The associations
between demographic and clinical characteristics with minGSM
are shown in Table 1. The mean age in the whole sample was
71.8 ± 9.1years; 58% were women; 56% Caribbean Hispanics,
20% Non-Hispanic Black, and 22% Non-Hispanic White. Mean
minGSM was 78.4 ± 28.7 in all subjects (IQR: 56–96), 76.3 ±

28.8 in men and 80 ± 28.5 in women; 78.7 ± 29.3 in Hispanic,
78.5 ± 27.2 in Non-Hispanic black, and 78.2 ± 29 in Non-
Hispanic white participants. In univariate analysis, male sex (p
= 0.04), increased BMI ≥ 30 (p = 0.005) and fasting glucose
level (p = 0.02) were significantly and inversely associated with
minGSM, while lower HDL cholesterol (p = 0.05) was positively
associated with minGSM (Table 1). In the fully adjusted model,
minGSM-correlates were observed for age (β = −0.42, p =

0.001), male sex (β = −5.78, p = 0.007), BMI ≥ 30 (β = −6.29,

TABLE 1 | Demographic and clinical characteristic of study sample.

Characteristics Sample Min. GSM P-value

N % Mean ± SD

All 1,030 100% 78.4 ± 28.7

Sex 0.04

Female 598 58% 80.0 ± 28.5

Male 432 42% 76.3 ± 28.8

Race/ethnicity

Non-Hispanic

White

223 22% 78.2 ± 29.0 Ref

Non-Hispanic Black 211 20% 78.5 ± 27.2 0.995

Hispanic 575 56% 78.7 ± 29.3 0.852

Non-Hispanic other 21 2% 74.1 ± 22.6 0.454

High school

completion

0.77

No 515 50% 78.2 ± 28.8

Yes 515 50% 78.7 ± 28.5

Private

insurance/medicare

0.89

No 234 23% 78.2 ± 30.1

Yes 796 77% 78.5 ± 28.3

Moderate alcohol

drinking

0.89

No 614 60% 78.3 ± 28.0

Yes 416 40% 78.6 ± 29.6

Physical activity 0.46

No 444 43% 77.7 ± 28.5

Yes 581 56% 79.0 ± 28.9

Smoking

Never 444 43% Ref

Former 399 33% 0.983

Current 187 69% 0.048

BMI, Kg/m2

<25 278 27% 81.3 ± 29.6 Ref

25–29 464 45% 78.7 ± 28.5 0.18

≥30 86 28% 75.1 ± 27.8 0.005

BS, mg/dL

<100 662 66% 79.3 ± 29 Ref

100–125 165 17% 79.6 ± 28.6 0.909

>125 170 17% 74.2 ± 27.1 0.036

SBP, mmHg

<120 127 12% 79.8 ± 29.6 Ref

120–139 313 30% 78.9 ± 28.2 0.808

≥140 589 57% 77.9 ± 28.7 0.636

DBP, mmHg

<80 508 49% 79.8 ± 29 Ref

80–89 224 22% 76.2 ± 27.5 0.081

≥90 297 29% 77.7 ± 29 0.224

LDL, mg/dL

<130 512 52% 79.4 ± 29.6 Ref

130–149 205 21% 79.2 ± 28.5 0.867

≥150 276 28% 75.7 ± 27.4 0.088

(Continued)
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TABLE 1 | Continued

Characteristics Sample Min. GSM P-value

N % Mean ± SD

HDL, mg/dL

≥40 for M, ≥50 for

f

473 47% 78.2 ± 28.9 Ref

≥30 for M, ≥40 for

f

338 34% 79.3 ± 27.2 0.725

<30 for M, <40 for

f

191 19% 77.2 ± 31.2 0.586

TC, mg/dL

<200 478 48% 77.4 ± 29.6 Ref

200–239 351 35% 80 ± 28.2 0.171

Antihypertension

medication

0.35

No 576 56% 79.2 ± 29.8

Yes 454 44% 77.5 ± 27.2

Lipid-lowering

medication

0.25

No 839 81% 78.9 ± 28.8

Yes 191 19% 76.3 ± 28.3

Glucose-lowering

medication

0.90

No 870 84% 78.5 ± 28.8

Yes 160 16% 78.2 ± 27.8

Hypertension 0.88

No 282 27% 78.5 ± 29.0

Yes 748 73% 78.4 ± 28.5

Hypercholesterolemia 0.19

No 690 67% 79.3 ± 28.9

Yes 340 33% 76.8 ± 28.1

Diabetes 0.09

No 798 77% 79.2 ± 28.8

Yes 232 23% 75.8 ± 28.0

Mean SD Correlation P-value

Age, years 71.8 9.1 −0.049 0.11

BMI, Kg/m2 28.0 4.9 −0.068 0.03

SBP, mmHg 143.8 20.4 −0.043 0.17

DBP, mmHg 82.8 10.8 −0.053 0.09

Fasting Glucose,

mg/dL

104.6 43.3 −0.075 0.02

LDL, mg/dL 129.7 36.4 −0.038 0.23

HDL, mg/dL 46.5 14.4 0.061 0.05

p = 0.01), diabetes (β = −8.02, p = 0.02), dyslipidemia (β =

−6.64, p= 0.005), and lipid lowering medication use (β= 7.68, p
= 0.04). All factors had a VIF < 3.5, suggesting that there was
no high correlation between these factors (Table 2). Similarly,
in multivariable adjusted model with stepwise selection, age,
male sex, current smoking, obesity, diabetes, dyslipidemia,
and antidiabetic medication use, were significantly associated
with minGSM (Supplementary Table 1). Interaction (with p for
interaction <0.1) and stratification analyses showed that effect
of age on minGSM was stronger in men (β = −0.44, p = 0.03)

TABLE 2 | Association of demographic and categorical vascular risk factors with

min GSM.

Variable Beta SE P-value VIF

Age −0.42 0.13 0.001 1.42

Male sex −5.78 2.15 0.007 1.23

Hispanic vs. non-Hispanic white 2.15 3.02 0.478 2.47

non-Hispanic black vs. non-Hispanic white −0.91 3.10 0.768 1.75

Non-Hispanic other vs. non-Hispanic white −3.38 6.77 0.618 1.12

High school completion (yes vs. no) −0.61 2.40 0.800 1.57

Private insurance/medicare (yes vs. no) 4.92 2.57 0.056 1.28

Smoker current vs. never smoker −4.68 2.83 0.098 1.29

Smoker former vs. never smoker 2.62 2.05 0.236 1.27

Moderate alcohol drinking (yes vs. no) 0.32 2.05 0.877 1.08

Physical activity (yes vs. no) 1.62 2.01 0.419 1.07

BMI overweight −2.72 2.42 0.263 1.59

BMI obese −6.92 2.84 0.015 1.72

Fasting glucose border 0.46 0.67 0.862 1.10

Fasting glucose diabetic −8.02 3.64 0.028 1.20

SBP border −0.74 3.45 0.830 2.68

SBP hypertension 0.49 3.48 0.888 3.20

DBP border −2.89 2.63 0.272 1.28

DBP hypertension −2.76 2.55 0.280 1.53

LDL border −2.19 2.56 0.394 1.19

LDL dyslipidemia −6.64 2.34 0.005 1.22

HDL border 2.26 2.32 0.330 1.35

HDL dyslipidemia 0.19 2.94 0.949 1.42

Glucose-lowering medication (yes vs. no) 7.68 3.70 0.038 1.91

Antihypertension medication (yes vs. no) −0.80 2.15 0.709 1.23

Lipid-lowering medication (yes vs. no) −2.51 2.73 0.359 1.12

Fully adjusted model: age, sex, race/ethnicity, high school completion and vascular risk

factors (moderate alcohol use, moderate-heavy physical activity, BMI, systolic blood

pressure, diastolic blood pressure, anti-hypertensive medication use, diabetes, LDL, HDL,

cholesterol-lowering medication use). VIF, variance inflation factor. The bold values are

significant, with a p-value < 0.05.

TABLE 3 | Effect of age on minGSM by sex and antidiabetic medication use and

their interactions.

Variable Beta SE P-value p for interaction

Sex

Male −0.44 0.18 0.02 0.04

Female −0.20 0.15 0.18

Glucose-lowering use

Yes 0.23 0.33 0.48 0.07

No −0.33 0.12 0.009

than in women (β =−0.20, p= 0.18), and in individuals without
taking glucose lowering medication (β = −0.33, p = 0.009;
Table 3; Figure 1).

DISCUSSION

In this study, we reported significant associations between
glycemic and lipidic parameters with unfavorable carotid plaque
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FIGURE 1 | Effect of age on minGSM by sex and antidiabetic medications.
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morphology measured by the ultrasonographic GSM index.
Our results suggest that along age and male sex, increased
levels of fasting glucose, LDL cholesterol, and greater BMI are
particularly critical for vulnerable plaque morphology, while
glucose lowering medication use was protective. Moreover,
the effects of these factors were more pronounced in older
men than in older women, and in older patients treated for
diabetes. No differences in vulnerable plaque morphology or
the effects of risk factors on plaque morphology were noted
between race-ethnic groups of participants. Our results indicate
an atherosclerotic plaque phenotype that may explain a greater
prevalence of extracranial atherosclerotic stroke in men than in
women. Smoking did not affect echolucent plaque phenotype
in our study. Aggressive treatments of metabolic factors and
glycemic control provide opportunities for effective prevention of
stroke and other atherosclerotic events. The carotid GSM index
may be utilized as an effective non-invasive imaging biomarker
to monitor vulnerable atherosclerotic plaque morphology and
success of preventive interventions.

The relevance of low GSM values in carotid plaque has
been established in a meta-analysis including 7,557 subjects with
a mean follow-up of 37.2 months, where echolucent carotid
plaques were associated with an increased risk of ipsilateral
stroke regardless of the degree of stenosis (15). Moreover, in the
Imaging in Carotid Angioplasty and Risk of Stroke (ICAROS)
study, lower GSM was associated with poor outcome after
intervention and low GSM improved stratification of patients
for carotid endarterectomy or stenting (16). Lowest GSM has
been characterized with a presence of lipid core, inflammation,
neovascularity, and foam cells (17). Age and male sex are
the main risk factors for the vulnerable atherosclerotic plaque
morphology. In Evaluation of Rosuvastatin (METEOR) study,
older age (mean 84 ± 29) was associated with more echolucent
plaques (18). Age-related changes in arterial hemodynamic
and increased arterial stiffness lead to an increase prevalence
of atheromatous plaques and decrease in fibrous plaques
morphology, characterized by higher macrophage and less
smoothmuscle cells content. This process seems to be accelerated
in men, as suggested in our study as well as in the Tromsø
Study (19). In patients with recent ischemic event, older men
had carotid plaque with lower GSM values compared to women
of same age (20), consistent with our findings. Sex seems to
be a critical determinant of atherogenic lipoprotein levels with
glycemic control and LDL cholesterol playing a central role (21).
Glycated LDL after oxidation increases their permeation in the
endothelial space generating atherosclerotic process, especially
in a state of vascular inflammation that is higher in older
men than women (20). Moreover, a histopathological study has
demonstrated that atherosclerotic carotid plaques obtained from
men had a greater prevalence of plaque hemorrhage and more
vascular inflammation (22). Here, we extend these observations
to a large multi-ethnic stroke-free population.

Alteration in glycemic metabolism and dyslipidemia plays
an important role in the development of heterogeneous plaque
morphology. They are directly related to change in BMI that
is considered an independent risk factor for carotid plaque
destabilization (23). In the Atherosclerosis Risk in Young Adults

(ARYA) Study, high BMI was associated with lower GSM values
independently of other RFs and phenotypes of atherosclerosis
(24). Hyperglycemia and high LDL cholesterol levels change the
structure of plaque to rise its susceptibility to ulceration and to
become more prone to rupture and consequently cause embolic
vascular events. We previously reported that this unfavorable
plaque morphology can be reversed by reducing the levels of
LDL cholesterol using a high-dose atorvastatin intervention in
30 days (25).

The association between low GSM and type 2 diabetes has
been established (26). A combined analysis of 5 longitudinal
studies with a total of 3,263 patients with uncontrolled
diabetes but without apparent CVD demonstrated that presence
of low-GSM echolucent plaques at baseline were the most
powerful prognostic factor for the occurrence of CVD,
even after adjustment for traditional risk factors (9). In
our study, there was a significant association with fasting
glucose even in those without diabetes, and a protective
effect of lipid lowering medication especially among older
patients. These evidences indicate that increased levels of
glucose may trigger the mechanisms leading to echolucent
plaque, which can be reverted by reducing glucose levels.
Soft plaques are more present in diabetic patients and higher
levels of glycated hemoglobin (HbA1c), further suggesting the
role of glucose homeostasis in the development of unstable
plaques (27).

Recently, in The Multi-Ethnic Study of Atherosclerosis
(MESA), total plaque area, but not grayscale plaque
features, was associated with risk factors and predicted
incident coronary heart disease events (9). However,
significant relationships with risk factors were observed
after adjustment for Non-Hispanic Black (vs. Non-Hispanic
White participants) who had plaques with the lower
GSM values (9). Discrepancy between our study and
MESA are mostly due to the differences in study designs,
inclusion criteria, and ultrasound methods and definition
of atherosclerosis.

Limitations of our study need to be acknowledged. The
cross-sectional nature of the current findings does not allow
inference of temporal effects or causality. Our study mainly
included well-known atherosclerotic risk factors, whereas
other factors of possible importance for atherosclerosis
such as diet or endothelial function were not considered.
Moreover, GSM analysis represents a mean value of whole
atherosclerotic area and does not reflect the presence of
particular regional plaque components. However, a lack of
regional plaque analyses may have underestimated plaque
vulnerability and therefore attenuated true associations. The
major strengths of our study include a well-characterized multi-
ethnic population representative of an urban community and
standardized and carful assessments of carotid plaque presence
and echogenic morphology.

In conclusion, it is important to highlight the usefulness of
GSM analysis as ultrasound markers in the clinical practice,
since based on its low cost, and lack of radiation can be
repeated routinely in diabetic and dyslipidemic patients to
evaluate, non-invasively, the risk for vascular diseases. By
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understanding the impact of metabolic risk factors, such as
increased levels of lipids and glycemia, on high-risk plaque
morphology in multi-ethnic communities is of great importance
for intensive interventions aimed at reversal of unfavorable
plaque morphology and successful prevention of stroke and
cardiovascular disease.
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Intracranial aneurysm (IA) is a frequent and generally asymptomatic cerebrovascular

abnormality characterized as a localized dilation and wall thinning of intracranial arteries

that preferentially arises at the arterial bifurcations of the circle of Willis. The devastating

complication of IA is its rupture, which results in subarachnoid hemorrhage that can

lead to severe disability and death. IA affects about 3% of the general population with

an average age for detection of rupture around 50 years. IAs, whether ruptured or

unruptured, are more common in women than in men by about 60% overall, and more

especially after the menopause where the risk is double-compared to men. Although

these data support a protective role of estrogen, differences in the location and number

of IAs observed in women and men under the age of 50 suggest that other underlying

mechanisms participate to the greater IA prevalence in women. The aim of this review

is to provide a comprehensive overview of the current data from both clinical and basic

research and a synthesis of the proposed mechanisms that may explain why women are

more prone to develop IA.

Keywords: intracranial aneurysm, cerebral artery, circle of Willis, sex difference, gender, endothelium, estrogens

INTRODUCTION

Intracranial aneurysm (IA) is defined as a localized dilation of cerebral arteries which preferentially
forms at arterial bifurcation of the circle of Willis. IAs are thought to result from an abnormal
thickening of the artery wall at sites where hemodynamic stress is high (1). Unruptured IAs are
generally silent but become symptomatic when they rupture, causing subarachnoid hemorrhage,
with mortality rates of about 30–40% and severe neurological dysfunction and disability in a great
part of subarachnoid hemorrhage survivors (2–4).

Cellular and molecular mechanisms leading to IA formation and rupture are not fully
elucidated, but risk factors such as familial history of IA, high blood pressure, cigarette smoking,
alcohol consumption, and female sex have been clearly identified. Indeed, in contrast to most
neurocardiovascular diseases, the incidence of IA is higher in women than in men, whereas
most of the risk factors that include cigarette smoking, hypertension, atherosclerosis, and alcohol
consumption are all more common among men (5–13).

Women are found to suffer two times as often from unruptured IAs as men. Whereas, the
overall prevalence of unruptured IAs in study population is reported about 3%−4%, it reaches 6%
in women, with a woman-to-man prevalence ratio of 1.57 (14). This woman-to-man prevalence
ratio changes with age, from 1.1 in populations with mean age of 50 years to 2.2 for populations
over the age of 50 years (14). In addition, the follow-up of a cohort of patients diagnosed with
either ruptured or unruptured IAs showed that female gender is an independent risk factors for the
formation of new IAs (7).
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Despite these clinical data, studies that are specifically
designed to explain and understand the reasons for this female
predisposition to IA remain few. Clinical analyses primarily
addressed the role of sex hormones, and preclinical studies
performed in rodent models of IA have mainly focused on
the effects of ovariectomy and/or estrogen treatments, and
in vitro on hormone actions in vascular cell models. The
synthesis of published data supports a possible role of sex-specific
hormonal mechanisms in the pathogenesis of IA. Nevertheless,
the particular features of IA in women suggest that the greater
predisposition of women to IA relies on complex and probably
multiple mechanisms, including a role for hemodynamic forces.

GENDER DIFFERENCE IN IA FEATURES

IA Number and Localization
There is no statistical difference between men and women
regarding the size and the laterality of unruptured IAs (15–17).
However, together with a higher susceptibility to IA formation
compared to men, women are more likely to develop multiple
IAs (17–22). Also, women exhibit about two times the rate of
bilateral IAs than men (16, 17). In addition, the number of
IAs rises in women of increasing age (19). Both female sex and
postmenopausal state are found as independent risk factors for
the formation of multiple IAs (19).

In women, unruptured IA aspect has been shown to change
with age: women of premenopausal age have a higher numbers
of aneurysm lobes, whereas those in women of postmenopausal
have larger size (23).

A gender difference in the anatomical distribution of IA is
also clearly demonstrated. In women, unruptured IA localizes
preferentially on the internal carotid artery (ICA; 54% vs. 38%
in men), whereas in men, IA affects more frequently the anterior
cerebral artery (ACA; 29% vs. 15% in women) and anterior
communicating artery (Figure 1) (15). No difference according
to the gender has been observed in the frequency of IA in
the middle cerebral artery and posterior circulation (posterior
cerebral, basilar and vertebral, artery) (15).

IA Growth and Rupture
As for IA formation, women are at increased risk for IA
growth (7, 24). More particularly, female sex is shown to be
an independent risk factor for the growth of unruptured IA in
elderly patients (age ≥ 70 years) (25). However, the growth rate
of an IA itself does not differ by sex (7).

Once an IA is formed, female sex does not represent a risk
factor for its subsequent rupture (7). As a whole, no difference
in the size of ruptured aneurysms between women and men
has been detected (15, 20, 22, 26). However, some differences
exist between ruptured IA in men and women. IA rupture and
aneurysmal subarachnoid hemorrhage more frequently affect
women than men but the gender distribution varied with
age (15, 18, 27–29). Indeed, in young people, incidence of
aneurysmal subarachnoid hemorrhage is slightly higher in men,
and the increased risk of aneurysmal subarachnoid hemorrhage
in women only appears after the fourth and fifth decades (28, 30–
32). Accordingly, among patients with ruptured IAs, the mean

age of women is higher (60–70 years) than that of men (50–60
years) (15, 16, 20, 26).

The location of aneurysmal subarachnoid hemorrhage also
differs between women and men. According to the preferential
location of IA on internal carotid artery in women, the posterior
communicating artery is also themost common site of IA rupture
in women, whereas anterior communicating artery aneurysm
ruptures are overrepresented in men (16, 18, 20, 26, 33–35). This
is in agreement with the majority of anterior communicating
artery aneurysms in men and their higher risk of rupture than
IAs at other locations (18, 36). Regarding this specific IA location,
women exhibit a lower rate of ruptured anterior communicating
artery aneurysms than men in whom these IAs are larger (16, 33).
This greater IA size may thus participate to the higher proportion
of men with ruptured anterior communicating artery.

For both women and men, outcomes varied according to
the location of aneurysmal subarachnoid hemorrhage but the
overall outcomes after IA rupture are similar in women and men
(16, 20, 26, 33).

POSSIBLE CAUSES OF THE GENDER
DIFFERENCE IN IA FORMATION AND
RUPTURE

Anatomical and Hemodynamic Parameters
Both IA formation and rupture did not occur on same arteries
in women and men. ICA and ACA have been identified as the
main sites of IA formation and rupture in women and men,
respectively. Indeed, there is a female preponderance of IA in
all intracranial arteries except the ACA. It is well admitted that
hemodynamic stress, such as high blood pressure or strong wall
shear stress, may participate to IA formation and growth (37),
which may suggest that gender difference in the arterial geometry
and consequent arterial wall shear stress could participate in the
different preferential location of IA in women and men.

Analysis of the anatomical variations in the circle of Willis
in more than one hundred of patients with IA by magnetic
resonance angiography suggested a correlation between the sex-
linked difference in IA distribution (preferential ICA aneurysm
in women) and a sex-linked difference in anatomical variations
of the circle of Willis (38). Beyond these anatomical variations,
measurement of the diameter of arteries of the circle of Willis
revealed that ICA, ACA, posterior cerebral artery and basilar
artery were significantly smaller in women than in men, with
the greatest difference found for ICA (39, 40). In contrast, the
diameter of posterior communicating artery has been found to
be either larger or similar in women compared to men. Since a
smaller arterial diameter results in higher blood flow velocity and
shear stress, arteries in women are expected to be submitted to
stronger wall shear stress and tension than in men. Examination
of the dimension and geometry of the terminal bifurcation of the
ICA confirmed that the diameter of the parent artery and the
branches is smaller in women than in men, but the bifurcation
angle is the same in both sexes (41). Modeling of bifurcations and
computational fluid dynamic simulations allowed to demonstrate
that the maximum wall shear stress in the ICA bifurcation in the
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FIGURE 1 | Major localization of IA in the circle of Willis of men and women. In men, IA affects more frequently the anterior cerebral artery (ACA) and anterior

communicating artery (AComA; left). In women, IA localizes preferentially on the internal carotid artery (ICA), in particular at the bifurcation with the posterior

communicating artery (PComA; right) (MCA, middle cerebral artery; BA, basilar artery; PCA, posterior cerebral artery).

female was 50% higher than in men (41). In addition, the area
of increased wall shear stress at the ICA bifurcation is larger in
women compared to men (Figure 2). Such differences between
men and women, although less pronounced, were also found at
the bifurcation of the MCA into two main branches (41).

Regarding the wall tension generated by pressure, blood flow
modeling of circle of Willis circulation has demonstrated that
peak pressure is higher when artery diameter is smaller and the
angle of the bifurcations is asymmetric (42).

All these observations thus support the idea that the gender
difference in the diameter and geometry of bifurcations of arteries
of the circle of Willis results in higher shear stress and peak
pressure in women that may induce more severe endothelial
damage and favors IA formation in women, particularly at ICA
bifurcation and ICA posterior communicating artery junction.
Moreover, it has been described that the larger the diameter of
an IA relative to the native artery diameter, the higher the risk
of rupture (43). With smaller diameter intracranial arteries in
women, it can be thus considered that at equal IA size, the risk
of rupture will be higher in women than in men.

Hormones
Hormones are a fundamental part of sex differences and
hormonal changes in the course of female life participate in sex
differences in neurocardiovascular disease prevalence. Although
the female preponderance of both unruptured and ruptured IAs
in the general population is clear, and even more pronounced in
familial forms of IA (44, 45), an important additional factor to
be considered is the age. The change in the preponderance of
IAs between men and women starts after the first two decades
of life and became significant after the age of 55, with the peak in

female prevalence of IA in the sixth decade (5, 14, 20, 28, 30–
32). These changes are contemporary with the fall in estrogen
levels occurring during and after menopause, which suggests
the possible protective effect of estrogens on IA formation and
rupture. This hypothesis is further supported by the greater
risk of IA in association with earlier age at menopause (46). In
contrast, women who used oral contraceptive pills and hormone
replacement therapy are less likely to have cerebral aneurysms
(47). The decline in estrogen concentration in peri- and post-
menopause periods can thus be responsible of changes in cerebral
artery structure and functions that favor the formation and/or the
rupture of IAs.

Animal models of aneurysm provided a useful way to address
the sex difference in IAs, in particular to understand the role
of estrogens thanks to the use of ovariectomized females and/or
estrogen supplementation. Estrogen effects are mediated by the
activation of two nuclear estrogen receptors, ERα and ERβ,
acting as transcription factors which control gene expression,
and through a more recently described membrane G protein-
coupled estrogen receptor (GPER) (48). Several studies have
demonstrated the presence of functional ERα and ERβ in
human and animal vascular smooth muscle and endothelial
cells. However, vascular effects of estrogens are predominantly
mediated by ERα (48).

In rodent models of IA, the incidence of IA is higher in
female animals than in males and was further significantly
increased in ovariectomized females, despite similar or even
lower systolic blood pressure in females (6, 49–51). Surgically or
pharmacologically induced-estrogen deficiency also aggravated
IA lesions and significantly increased rupture of IAs (49, 52).
In ovariectomized hypertensive rats, the increased incidence of
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FIGURE 2 | Wall shear stress intensity in ICA bifurcation in men (left) and women (right). According to computational fluid dynamics simulations, area of high WSS is

larger and of stronger intensity in women than in men [adapted from Lindekleiv et al. (41)].

carotid ligation-induced IA can be reversed by bazedoxifene, a
selective estrogen receptor modulator, without change in blood
pressure. This effect is associated with a restoration of ERα and
ERβ expression in cerebral arteries that were downregulated by
ovariectomy (53).

Estrogen treatment and specific estrogen ERβ agonist, but
not ERα agonist, reversed the increased incidence of IA in
ovariectomized female mice, which suggests that the protective
effect of estrogens on IA was mediated by ERβ activation (50, 54).
This role of ERβ was further confirmed by showing that the
effect of the ERβ agonist was not observed in ERβ knockout
mice and that non-ovariectomized ERβ knockout mice displayed
an increased incidence of IA compared to non-ovariectomized
control mice (50). With a protective effect of estrogens on IA
mostly attributed to ERβ, the cerebral circulation stands out from
the rest of the arteries in which the protective effect of estrogens
is mediated by ERα.

MOLECULAR MECHANISMS OF
ESTROGEN PROTECTION TO IA
FORMATION

Although the exact pathogenesis of IA formation, growth,
and rupture remains to be established, current knowledge
suggests that endothelial dysfunction induced by hemodynamic
injury at bifurcation of intracranial artery could be the
initial step of IA formation (55–58). This first event then

triggers a vascular inflammation process, with neutrophil and
macrophage infiltration, oxidative stress, fragmentation of the
internal elastic lamina, and degradation of the extracellular
matrix by metalloproteinase, endothelial, and smooth muscle
cell apoptosis (56, 59). All these interconnected processes lead
to the structural degradation and remodeling of the arterial
wall responsible for the weakening and fragility of the arterial
wall. Protecting effects of estrogens can thus result from
an inhibitory action on one or more components involved
in IA formation.

Estrogen Effect on Endothelial NO
Synthase and Cerebral Artery
Vasoreactivity
Endothelial dysfunction, with abnormal endothelial cell
morphology and a loss of endothelial nitric oxide synthase
(eNOS) expression, is a key early step of IA formation (Figure 3).
In a rat model of IA, ovariectomy significantly decreased eNOS
mRNA and protein expression, especially in the cerebral vascular
wall of animals with saccular aneurysms (51). In contrast,
estradiol treatment has been shown to increase the expression of
eNOS in endothelial cells in vitro (51). Thus, estrogen deficiency
promotes endothelial dysfunction whereas conversely, estrogen
would protect against endothelial damage in the early phase of
IA formation.

The in vitro effect of estrogen on eNOS expression in
endothelial cell culture is mediated by ERα (51). ERα has
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FIGURE 3 | Identified pathways involved in the protective effect of estrogens against IA formation and rupture leading to decrease inflammation and oxidative stress in

the arterial wall of cerebral arteries. Endothelial cells (pink), monocytes/macrophages (blue), and smooth muscle cells (light brow).

been also shown to induce eNOS phosphorylation through
phosphoinositide-3 (PI-3) kinase/Akt cascade leading to a rapid
NO production in intact cerebral arteries from ovariectomized
rats ex vivo and causing a long-term increase in NOproduction in
the cerebral circulation of ovariectomized rats chronically treated
with estrogen in vivo (60). This effect of ERα therefore seems
to contradict the causal link established between the rise in NO
production mediated by ERβ and the beneficial effect of estrogen
on IA (50). Indeed, the protective effect of ERβ agonist on IA
incidence in ovariectomized mice is completely abolished by the
inhibition of eNOS by L-NAME treatment, which supports the
fact that ERβ-induced NO production by eNOS mediates the
beneficial effect of estrogens against IA formation (50). The in
vivo role of ERα thus remains to be clarified but it has been shown
that ovariectomy induces a loss of ERα expression in the vascular
wall of mouse cerebral arteries with in contrast, an increase in
ERβ expression (51), which may contribute to the discrepancy in
the respective role of these two receptors in estrogen effects on
NO production.

With regard to vasoreactivity, ex vivo, 17β-estradiol and
agonists of ERα relax pressurized rat middle cerebral arteries
from both male and female animals through a direct effect on
smooth muscle cells (61). A relaxing effect of ERβ agonists was
observed only in female rat arteries and was also due to an action
on smooth muscle cells. ERβ agonists also induce relaxation
of human cerebral artery in a NO-independent manner likely
through an action on smooth muscle, whereas ERα receptor
agonists have only a minimal effect (61).

In agreement with this relaxing effect of estrogens,
ovariectomy enhanced the contractile response of rat cerebral
arteries to vasoconstrictors, in association with an alteration
of NO-dependent relaxing effect (62, 63). Tamoxifen or 17β-
estradiol treatment, presumably through ERα, normalized
cerebral artery reactivity to phenylephrine in ovariectomized rats
(62, 63).

In summary, estrogens preserve normal endothelial function
and have a limiting action on cerebral artery contraction
and cerebrovascular tone through both endothelial-mediated
NO dependent-relaxing effect and a direct relaxing action
on smooth muscle, which participate to their protective
effect on IA. Whereas, studies in ovariectomized rodent
models of IA support a major role of ERβ, the observed
changes in ERα and ERβ expression in cerebral artery wall
of ovariectomized animals support a differential role of
these receptors in the modulation of eNOS expression and
activity, with a major of ERα before menopause and of
ERβ after menopause.

Estrogen Effect on Cerebral Artery
Inflammation
The mechanisms linking high wall shear stress to the activation
of proinflammatory signaling pathway at arterial bifurcation are
not fully elucidated, but the transcription factor nuclear factor
kappa B (NF-κB) is shown to play a critical role in IA formation
and rupture (Figure 3). Its activation leads to an increase in
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the expression of vascular cell adhesion molecule-1 (VCAM-
1), intercellular adhesion molecule-1 (ICAM-1), and monocyte
chemoattractant protein-1 (MCP-1), which are responsible for
the recruitment and adhesion of inflammatory cells to the
endothelium where they produce proinflammatory cytokines
such as tumor necrotizing factor alpha (TNFα), interleukin
(IL)-1β, and IL-6 (56, 64–67). These cytokines then perpetuate
local inflammation and neutrophil and macrophage infiltration
in the cerebral artery wall, which produced damaging matrix
metalloproteinases (MMP-2/9), and reactive oxygen species
(ROS) (55). Whereas, the general vasculo-protector effects of
estrogens are quite well documented, only a limited number
of studies specifically addressed the anti-inflammatory action of
estrogens on cerebral arteries and on IA.

Estrogens have been shown to limit proinflammatory
cytokine expression and effects in cerebral arteries (Figure 3).
Ovariectomy in female animals increased expression of TNFα
and accumulation of neutrophils and macrophages in the
arterial wall (49). Estrogen deficiency was also shown to
upregulate IL-17A, which in turn downregulates E-cadherin
and favors macrophage infiltration in the IA wall (52).
Bazedoxifene decreases IL-1β mRNA expression in cerebral
arteries which was upregulated by ovariectomy (53). Recently, a
bioactive phytoestrogen daidzein, which reverses the increased
IA incidence in ovariectomized mice via ERβ, was shown to
decrease IL-6 mRNA level in cerebral arteries and, to a lesser
extent, IL-1β and TNFα mRNAs (68). IL-6 level in the serum
is increased and involved in the formation and rupture of IA in
estrogen-deficient mice but not in control mice, which suggests
that estrogen-induced repression of IL-6 expression participates
to the beneficial effect of estrogen on IA (67).

Estrogen not only reduces IL-1β expression, but
also suppresses exogenous IL-1β-mediated induction of
cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway
in cerebral blood vessels of ovariectomized rats (69). IL-1β
induces COX-2 expression through the activation of NF-κB, and
the observed inhibitory effect of estrogen has been ascribed to
an inhibition of NF-κB activity (70). This result is particularly
interesting as it has been proposed that COX-2/PGE2/NF-κB
pathway in cerebral artery endothelium is responsible for high
wall shear stress-induced endothelial cell damage and may be the
link between hemodynamic stress and IA formation (71). The
inflammatory PGE2 formation is catalyzed from arachidonic
acid by the sequential action of COX-2 and prostaglandin E
synthase-1 (PGES-1). COX-2 and prostaglandin E receptor 2
(EP2) mRNA expression was induced in vitro in endothelial
cell cultures exposed to shear stress. In a mouse model of IA
induced by elevated hemodynamic stress, expression of COX2
and EP2 is increased in the endothelial cell layer at early stage of
IA formation. Inhibition or knockout of COX-2 or EP2 resulted
in decreased NF-κB expression and a reduction of incidence
of IA formation (71, 72). The induction of COX-2/PGE2/EP2
signaling activates NF-κB, thus creating a self-amplified feedback
loop that prevents the resolution of this initial process and
contributes to generate the chronic inflammation in the cerebral
arterial wall enabling for IA formation and progression. The
observed inhibitory action of estrogen on NF-κB (69) might thus

limit the shear stress-induced amplification loop of the COX-
2/PGE2/NF-κB pathway and the perpetuation of inflammation
in cerebral artery wall.

Estrogen Effect on Cerebral Artery
Oxidative Stress
Vascular oxidative stress and increased production of reactive
oxygen species (ROS) are considered as the common
mechanisms of vascular dysfunction and arterial disease,
including IA (73) (Figure 3). Oxidative stress is mainly caused
by an imbalance of ROS production by prooxidative enzymes
(nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, xanthine oxidase or the mitochondrial respiratory
chain) and antioxidant mechanisms (superoxide dismutase,
glutathione peroxidase, heme oxygenase, catalase, and so on.).
The resulting rise in ROS concentration reduces bioactive
endothelial NO and inhibits eNOs, which favors monocyte
and macrophage recruitment creating a proinflammatory
environment which leads to the activation of MMPs, phenotypic
conversion of vascular smooth muscle cells and apoptosis, and
finally a harmful arterial wall remodeling.

Excessive production of ROS has been demonstrated in
aneurysmal walls in rodent models of IA, in association with an
increased expression of heme oxygenase-1 and NADPH oxidase
subunits (NOX4, p22phox, p47phox), mainly in macrophages
and smooth muscle cells, whereas superoxide dismutase 1 was
downregulated (51, 74). Free radical scavenger treatment or
p47phox deletion markedly reduced IA formation and inhibited
enlargement and medial degradation of IA (74). Estrogen
deficiency in a rat model of IA increased the expression of NOX4
and p22phox in IA walls, and in contrast, 17β-estradiol inhibited
NOX4 and p22phox expression in cerebral endothelial cell
culture, suggesting that NADPH oxidase regulation by estrogen
might participate to the gender difference in IA prevalence (51).

Additional indirect evidence supporting a role of ROS in the
sex difference in IA has been provided by the differential effect of
cigarette smoking on IA in men and women. Smoking is a well-
known risk factor of IA formation and rupture, which mainly
acts by inducing ROS accumulation (75). However, cigarette
smoking has a more severe impact on IA, particularly on IA
rupture, in smoking women than in men (76, 77). A recent study
showed that relatively young women (between 30 and 60 years)
with a positive smoking history have a four-fold increased risk
for having an incidental unruptured IA (78). These results are
consistent with an antiestrogenic effect of cigarette smoking (20),
which should become even more apparent after the menopause
when endogenous estrogen production is decreased and thus
have a greater impact on the risk of postmenopausal IA.

Estrogen Effect on Cerebral Artery Matrix
and Elastic Mechanical Properties
Vascular remodeling is an important process in the pathogenesis
of IA characterized by the degradation of the internal elastic
lamina of aneurysmal walls and dynamic modification of
extracellular matrix components such as elastin, collagens, and
proteoglycan leading to weakening of the arterial wall (79, 80).
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Arterial wall undergoes postmenopausal extracellular matrix
changes similar to those occurring in the skin and bones,
including a decrease in collagen and water content that leads
to thinning and loss of elasticity offering a favorable ground
to IA (81, 82). These changes particularly affect the media,
which is the layer richest in collagen and elastin of the arterial
wall. In contrast, thanks to the positive effect of estrogens on
connective tissue and its turnover, hormone replacement has
morphological effect on the carotid arteries in postmenopausal
women, preserving the thickness of the arterial media layer (83).

In rats with IA, an imbalance between MMP-9 and MMP-
2 and their inhibitors TIMP-1 and TIMP-2 is responsible for
extracellular matrix degradation in the arterial walls leading to
the progression and rupture of IA (84, 85)(Figure 3). In the same
experimental model, the reduction in the incidence of IA rupture
produced by treatment with the ER modulator bazedoxifene is
associated with a significant decrease of MMP-9 expression that,
on the contrary, was upregulated by ovariectomy (53). Estradiol
administration has been also shown to inhibit the formation of
lipid peroxidation products and restore middle cerebral arterial
viscoelasticity and compliance in aged female rats (86, 87).
In a rabbit model of IA induced by carotid ligation, estrogen
deficiency, in combination with hypertension, increases vessel
length and tortuosity in the circle of Willis, probably by lowering
the tolerance of vascular tissue to hemodynamic stresses caused
by carotid ligation, making it more vulnerable to flow-induced
aneurysmal remodeling (88).

POTENTIAL ROLE OF
15-HYDROXYPROSTAGLANDIN
DEHYDROGENASE (15-PGDH)

The key role of COX-2/PGE2/NF-κB pathway in IA pathogenesis
and its participation in the sex difference of the disease was
further supported by the sex difference in the effect of aspirin
on IA and the potential role of the PGE2 degrading enzyme
15-PGDH. Interestingly, frequent use of aspirin decreased the
risk of IA rupture more significantly in men than in women
(89, 90). This difference in aspirin effect was reproduced in
male and female mice in an experimental model of IA (89).
The beneficial effect of aspirin in mice is associated with a
decreased expression of inflammatory molecules in cerebral
arteries, which has been ascribed to its inhibitory action
of COX-2 (89). In an attempt to identify the mechanisms
involved in the differential effect of aspirin on IA in male
and female, gene expression analysis in cerebral arteries has
revealed a lower expression of 15-PGDH and higher levels of
proinflammatory molecules (COX-2, CD-68, MMP-9, MCP-1,
and NF-κB) in treated females than in treated males. 15-PGDH
is the main enzyme of prostaglandin degradation that stops
the biological activity of PGE2 by converting it to 15-keto-
PGE2, an endogenous peroxisome proliferator-activated receptor
γ (PPARγ) agonist. Thus, even if the activity of COX-2 is reduced
by aspirin, the low level of 15-PGDH in female could contribute
to maintaining, at least in part the activity of the PGE2/NF-κB

pathway. Indeed, expression of COX-2, CD-68, MMP-9, MCP-
1, and NF-κB was higher in cerebral arteries of aspirin-treated
female mice than in treated males, and this difference and also
the increased risk of IA rupture between males and females were
completely equalized by treatment a 15-PGDH activator (89).
This observation further supports the essential role of 15-PGDH-
mediating PGE2 degradation in the protective effect of aspirin.
It also suggests that the low expression of 15-PGDH in cerebral
artery in female might favor high shear stress-induced COX-
2/PGE2/NF-κB pathway activation and the resulting maintained
inflammation in arterial wall, thus participating to the increased
propensity to IA rupture. Moreover, the low catalytic activity of
15-PGDH also limits the activation of PPARγ shown to decrease
IA formation and rupture (91, 92).

CONCLUSION

Experimental works driven over the past decades to understand
the well-known higher prevalence of IA women compared
with men have gathered knowledge that allows us to propose
different mechanisms that would be involved. One of them
lies in the anatomic difference of the circle of Willis between
men and women, with diameters and geometry of bifurcation
of the arteries leading to higher hemodynamic stresses in
women, driving more severe endothelial damage which favors
IA formation. In addition, cigarette smoking appears to have a
greater impact on IA in women than in men, an effect that could
be related to the low level of 15-PGDH described in cerebral
artery in female, and as a consequence, a stronger prooxidative
damaging action of smoking in women. However, although these
unmodifiable and modifiable risk factors predispose women to
IA, they are counteracted by the protective effects of estrogens,
acting on multiple steps of IA formation including, endothelial
dysfunction, inflammation, and oxidative stress. The loss of these
estrogen-mediated protecting mechanisms at menopause thus
plays a major role in the critical increase in IA prevalence in
women over the age of 50 years.

It is obvious that multiple combined mechanisms are
responsible for the gender differences of IA disease. As in any
disease, sex differences in IA may be linked to sex hormones but
also to nonhormonal factors dependent of the genes present in
the X and Y chromosomes. Currently, the vastmajority of studies,
in humans and animal models, have focused on the role of sex
hormones, more particularly of estrogens, and further research
is needed to determine the part of each of these mechanisms
in the female susceptibility to IA. Moreover, beside biological
sex influences on IA pathophysiology, the psycho-sociocultural
construct of gender can further participate to the difference
between men and women. Societal, cultural, behavioral, and
psychological factors may add to or modulate the biological
factors involved in men and women differences toward IA
formation and rupture.

Regarding IA patient care, despite the significant data
that demonstrate the negative impact of female sex on IA
incidence and rupture, this important variable is surprisingly
largely neglected in clinical practice. However, even if the
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mechanisms involved are not elucidated, the current data would
nevertheless make it possible to propose ways to improve
the management of women suspected or diagnosed with IA.
First, it would be relevant to consider women as a high-
risk group. Second, given the strong impact of hemodynamic
and oxidative stress on IA in women, the implementation
of intensive strategies to lower blood pressure and promote
cigarette smoking cessation seems to be strongly warranted
in women.

There is no doubt that our understanding of the mechanisms
underlying sex differences in IA will improve further in
the coming years and contribute to a better understanding
of the pathophysiology of IA. The challenge will then be
to transform this knowledge into means to improve the
prevention of IA formation, progression, and rupture, and
more globally for a better care of IA patients, both women
and men.
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Intracranial aneurysms (IA) are often asymptomatic and have a prevalence of 3 to 5%

in the adult population. The risk of IA rupture is low, however when it occurs half of

the patients dies from subarachnoid hemorrhage (SAH). To avoid this fatal evolution, the

main treatment is an invasive surgical procedure, which is considered to be at high risk of

rupture. This risk score of IA rupture is evaluated mainly according to its size and location.

Therefore, angiography and anatomic imaging of the intracranial aneurysm are crucial for

its diagnosis. Moreover, it has become obvious in recent years that several other factors

are implied in this complication, such as the blood flow complexity or inflammation. These

recent findings lead to the development of new IA imaging tools such as vessel wall

imaging, 4D-MRI, or molecular MRI to visualize inflammation at the site of IA in human

and animal models. In this review, we will summarize IA imaging techniques used for the

patients and those currently in development.

Keywords: intracranial aneurysm, vessel wall imaging, imaging technique, hemodynamic imaging, inflammation

imaging

Intracranial aneurysms (IA) are pathological focal dilatations of intracranial arteries mainly located
at bifurcations of the circle of Willis. IAs are found approximatively in 3.2% of the adult population
and are being detected mostly incidentally. Unruptured IAs are commonly asymptomatic but
their rupture has severe consequences. Indeed, IA rupture leads to aneurysmal subarachnoid
hemorrhage (SAH) which affects 6 in 100,000 persons per year and leads to death for 27–44% of
patients (1, 2). Even if the majority of IAs do not evolve toward their rupture, 1 in 200 to 400 will
(3). Therefore, there is a need to identify those IAs at risk of rupture in order to treat them and
decrease this risk.

In the past few decades, several pathophysiological processes leading to IA rupture were
identified as irregular IA shape, an altered hemodynamic stress within the IA and vessel wall
inflammation (4). Those findings led to the development of a variety of new imaging tools which
provide a better characterization of IAs and enable clinicians to identify those at risk of rupture.

This review will summarize the classical methods of imaging aneurysms and the latest
development in the field. It should be noted that this review intend to provide a comprehensive
overview of the imagingmodalities and discuss their relevance in the field of aneurysmal pathology.
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MORPHOLOGICAL IMAGING

Imaging is a crucial diagnostic tool for the aneurysm’s detection
and characterization. Indeed, IA imaging can provide detailed
information such as its location, size, morphology and geometry,
determining the therapeutic strategy (surgical intervention or
conservative management) (3). In routine clinical practice, IA are
detected and imaged based on their morphology.

Digital subtraction angiography (DSA), a fluoroscopy
technique using iodine contrast, is used to produce images
of intracranial blood vessels without surrounding tissues as
they are removed by digital subtraction (5). Thanks to its high
spatial resolution, specificity and sensitivity, DSA is the gold
standard for IA imaging and can determine its morphological
characteristics such as its size, neck diameter and delineation
(3, 6, 7). The development of 3D rotational angiography (3DRA)
improved the spatial resolution of DSA, as 3D reconstruction
helps to avoid imaging errors related to the superposition
of vascular structures, allowing the visualization of small
IAs (<3mm) (8). However DSA remains invasive and rare
complications exist due to the use of intra-arterial devices
and iodine-containing contrast agents during the catheter
angiography [neurological: 0.1–1%; severe allergic reaction:
0.05–0.1%] (9).

Several non-invasive imaging techniques have been developed
such as computational tomography angiography (CTA). CTA
specificity and sensitivity are nearly as good as DSA [sensitivity
for IA > 3 mm: 93.3–97.2%; specificity: 87.8–100%] (3, 6,
7). However, CTA is a poor choice for detection of small
IAs localized near the skull bone as ionizing ray are almost
equally absorbed by calcium and iodinated contrast agents
[sensitivity = 61%] (10). Thus, a match mask bone elimination
(MMBE) technique has been developed, removing non-specific
signal induced by bones, but it requires a longer exposure
to ionizing ray and is sensitive to patient movement (11).
The advent of dual energy CTA (DE-CTA) subsequently
improved material differentiation thereby reducing artifacts
created by bony structures without the drawback of the MMBE
method (12, 13).

Unlike CTA and DSA, magnetic resonance angiography
(MRA) is performed without X-rays. MRA sequences,
such as time-of-flight MRA (TOF-MRA) or non-enhanced
magnetization-prepared rapid acquisition gradient echo
(MPRAGE), do not require contrast agents and is thus

Abbreviations: AWE, Aneurysm wall enhancement; CAWE, Circumferential
aneurysm wall enhancement; CFD, Computational fluid dynamics; CSF,
Cerebrospinal fluid signal; CTA, Computational tomography angiography;
DE-CTA, Dual energy computational tomography angiography; DSA, Digital
subtraction angiography; FAWE, Focal aneurysm wall enhancement; GE-
MRA, Gadolinium-enhanced magnetic resonance angiography; IA, Intracranial
aneurysm; MMBE, Match mask bone elimination; MPRAGE, Magnetization-
prepared rapid acquisition gradient echo; MRA, Magnetic resonance angiography;
MRI, Magnetic resonance imaging; MR-IBBVI, Magnetic resonance- intracranial
black blood vessel imaging; OCT, Optical coherence tomography; OSI, Oscillatory
shear index; PIV, Particule image velocimetry; RRT, Relative residence time;
SAH, Subarachnoid hemorrhage; T, Tesla; TOF-MRA, Time-of-flight magnetic
resonance angiography; VWI, Vessel wall imaging; WSS, Wall shear stress; 3DRA,
3-dimensional rotational angiography.

considered the least invasive method to date. Non-contrast
enhanced MRA gained interest in the last decade due to the
well-known health risk of iodinated agents (14). TOF-MRA
at 1.5 and 3 Tesla (T) are the most common MRA performed
to visualize IAs with a greater sensitivity and accuracy for 3T
[Sensitivity: 1.5T = 53.6% vs. 3T = 76.6%; accuracy: 1.5T =

84% vs. 3T = 91.9%] (15, 16). This MRA method relies on the
magnetic properties of circulating blood (17). Although this
allows for the elimination of contrast agents, some artifacts can
be observed especially when the blood flow is turbulent or low,
which constitute a limiting factor as those flow disturbances are
common in large or coiled aneurysms (17, 18). To alleviate this
issue, gadolinium-enhanced MRA (GE-MRA) can be performed
as it is flow-independent (18–20). Both TOF- and GE-MRA have
95% sensitivity compared to DSA (6). Recently, 7T MRA has
been evaluated in the study of IA. 7T MRI remains infrequent
but studies agree on its high potential for the detection of IAs
as well as their anatomical description and is a great tool for
IA follow-up (21–23). The combination of 7T 3D-TOF and
MPRAGE has been demonstrated to delineate unruptured IAs
as well as DSA (22). Finally, intracranial black blood vessel
imaging (MR-IBBVI), a new MRA sequence based on blood
signal suppression, has been compared to TOF-MRA and DSA.
Its sensitivity and specificity is higher than TOF-MRA regardless
of aneurysm size [Sensitivity: MR-IBBVI = 94.5% vs. TOF-MRA
= 62.7%; specificity: MR-IBBVI = 94.5% vs. TOF MRA = 92%;
both compared with DSA] (24).

All these IA morphology imaging, with their benefits and
disadvantages, summarized in Table 1, have a millimeter spatial
resolution which is sufficient for IA detection and morphological
characterization and the risk of rupture. However, vessel wall
remodeling, which is a main feature of IAs evolving toward
rupture, can not be observed with classical imaging mentioned
above and there is currently no imaging technique to visualize the
elastic lamina disruption or the thinning of the media. Optical
coherence tomography (OCT), which is already widely used in
ophthalmology, is being optimized for intracranial usage. OCT
is based on the differential reflective properties of tissues to near
infra-red light. A catheter is introduced in the targeted vessel and
2D cross-sectional images are acquired with a high resolution
(1 to 15µm) (31, 33). It has already been demonstrated that
OCT allows the visualization of layers disruption in IA as the
delimitations between intima and media layers are no longer
visible compared to healthy vessel wall (31, 34). Moreover, the
good position of intrasaccular devices can be monitored through
OCT in real-time during the surgical procedure (35, 36). The
development of such imaging would significantly complement
the existing IA rupture risk stratification tools based on IA
morphology enabled by current imaging.

HEMODYNAMIC IMAGING

All the above-mentioned imaging procedures are performed
to assess the morphologic characteristics of IAs, evaluating its
rupture risk. However, these parameters seem to be insufficient
to accurately predict this evolution toward rupture (37). Indeed,
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TABLE 1 | IA morphology imaging techniques.

IA morphology imaging

Features imaged Principle Observations References

Rotational angiography (3DRA)

Arteries’ lumen without

surrounding tissues

Angiography principle: pre and post contrast

rotational acquisition

- High spatial resolution; best specificity, sensitivity,

depiction of small IA (<3mm)

- Iodinated agent needed

- Invasive imaging (catheterization)

(5, 25)

Computational tomography angiography (CTA)

Classical CTA: Arteries’ lumen in

hypersignal with surrounding

tissues

Tomography principle - Iodinated agent needed

- Artifacts due to bones signal but software to

remove bony structures exists

- Non-invasive

(26–28)

Dual-energy CTA: Arteries’ lumen

in hypersignal with improved

contrast of surrounding tissues

Same principle as classical CTA. Differs by

the type of scanner used which emit X-rays

of different energies

- Iodinated agent needed

- Bones signal removed directly

- Non-invasive

(12, 28)

Magnetic resonance angiography (MRA)

Time of flight (TOF): arteries’

lumen in hypersignal

Principle of flow-related enhancement MRI.

Under repetitive radiofrequency pulses, static

tissues undergo a magnetic saturation unlike

the circulating blood

- Ionizing radiation and contrast agent free

- Less invasive technic

- Abnormal blood flow related artifacts

- Lowest spatial resolution when compared to CTA

and DSA

(29)

Gadolinium-enhanced: arteries’

lumen in hypersignal at the bolus

passage

MRI sequences sensitive to gadolinium - Ionizing radiation free

- Lowest resolution when compared to CTA

and DSA

(30)

Optical coherence tomography (OCT)

Layers disruption in

2D-cross-sectional imaging of

arteries

The differential reflective properties of tissues

to near infra-red light

- Catheterization needed

- High spatial resolution (µm)

(31, 32)

it has been described that hemodynamics stressors are a major
cause of IA formation, growth and rupture (38, 39). The main
hemodynamic parameters studied are the wall shear stress (WSS
defined as the frictional force tangent to vessel wall induced
by blood flow), the oscillatory shear index (OSI defined as the
direction and intensity flow changes during a cardiac cycle),
relative residence time (RRT express the distribution of blood
flow over time at the aneurysm wall) and flow patterns (40).
Nowadays, a high WSS is commonly accepted to be involved in
the formation of IAs, but its role in rupture is less certain as a high
or a low WSS can both lead to a destructive remodeling of the
aneurysm wall. Indeed, a high WSS is believed to be at the origin
of a mural cell-mediated pathological response whereas a low
WSS is the source of an inflammatory cell-mediated pathological
response (39, 41). However, IA rupture is associated with a higher
OSI, a prolonged RTT and complex flow patterns and yet, these
hemodynamics parameters are not accessible via the current
clinical imaging methods described in morphological imaging
section of this review (40–43).

Computational fluid dynamics (CFD), widely used to study
hemodynamic parameters, is performed on high-resolution 3D
data sets (44). CFD uses static characteristics of IAs (size,
location, aspect ratio, size ratio) to calculate WSS, OSI, flow
velocity and RRT (39, 45). Thus, CFD is highly influenced by
the choice of imaging modality, albeit no imaging modality, so
far, has been described as the gold standard to CFD calculations

(46, 47). Although CFD is an effective method to calculate
hemodynamic parameters and has led to a better understanding
of IAs, varying degrees of errors are observed due to some
limitations (e.g., considers blood as a Newtonian fluid, arteries
as rigid, no standardized protocol) and should be overcome in
order to provide important information to clinicians (45, 46, 48).

3DRA is considered the gold standard for the detection and
definition of static aneurysm characteristics, however, there are
no such clear-cut opinions for dynamic features. In clinical
practice, a combination of 2D and 3DRA are used to assess
cerebrovascular blood flow. 2D-DSA gives flux information
during the contrast-agent passage and 3DRA provides static
anatomic information (49, 50). This has led to the development
of 4D-DSA, also named time-resolved 3DRA, combining 2D-
DSA and 3DRA. This method uses the 3D images obtained
with conventional 3DRA and retains the temporal information
of these acquisitions, allowing visualization of the influx and
efflux of the contrast agent at any angle (51). Vanrossomme
et al. reviewed several studies which successfully detected and
quantified IA wall deformation between different frames with
high spatial and temporal resolutions [35–165ms and 0.2mm]
(52). Concerning hemodynamics, 4D-DSA applications have
mostly been studied in arteriovenous malformations (50) and
only one study assessed qualitatively the capacity of this imaging
to detect IA flow pattern [excellent visualization in 27.7% of
IA and fair visualization in 72.3% of IA] (53). Additionally,
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Lang et al. demonstrated that 4D-DSA is as reliable as 3DRA
for CFD analysis as there is no significant differences in the
flow velocity or WSS calculated (54). Moreover, with its high
spatial resolution [voxel volume = 0.008 mm3] (51) 4D-DSA
allows the same anatomic characterization of IAs than the gold
standard 3DRA (54). Thus, 4D-DSA still needs to be improved
to achieve a direct quantification of blood hemodynamics but
its spatial resolution could allow, in addition to a morphological
characterization of IAs, a robust CFD analysis.

Conventionally, to visualize blood flow with magnetic
resonance imaging (MRI), a phase-contrast method is performed
to access unidirectional flow in a 2D space (55). This 2D phase-
contrast MRI has evolved to 3D time-resolved phase-contrast
MRI, also called 4D-MRI. This flow imaging quantifies direct
blood flow velocity in 3D, allowing flow pattern modeling and
quantification of WSS, OSI and vorticity (55–58). In 2020,
two complete state-of-the-art reviews on the 4D-MRI’s ability
to study IA hemodynamics have been published (56, 58). To
summarize, 4D-MRI, mostly compared to CFD, reliably depicts
intra-aneurysmal flow pattern in different IA morphologies.
However, this 4D-imaging still has great limitations, in
particular in terms of spatial and temporal resolution which has
consequences on the calculation of hemodynamic parameters
(depending on magnetic field and acquisition protocol, 4D-MRI
= ranging from 0.43 × 0.43 × 0.43 to 1 × 1 × 1.6 mm3 voxels
vs. CFD= 0.1-mm voxels) (56, 58). For instance, the WSS values
had a lower magnitude when derived from 4D-MRI even if the
localization of these WSS are similar (59). Another limit to the
use of 4D-MRI in clinic is the long time of acquisition (depending
on magnetic field and acquisition protocol, 5–30min) (58). To
overcome this limitation, an accelerated high spatiotemporal
resolution 4D-7T-MRI have been proposed, providing accurate
quantitative flow values with a 10min acquisition (vs. 20min)
(60). Moreover, 4D-MRI has also been validated in vitro by
comparing its hemodynamic measurements to those obtain by
particle image velocimetry (PIV) (61). PIV is an optical imaging
method which tracks particle displacement throughout a fluid
field illuminated by a laser (62). As an increasingly popular in
vitro tool to analyze fluid dynamics and validate medical flux
imaging modality, PIV has been used to assess flow pattern in
patient IAmodels with ultra-high spatial and temporal resolution
[4Mpixel, 100 images/sec] (63).

Compared to classical CTA, with a longer acquisition time
or several acquisitions over a given period, 4D-CTA records
the influx and efflux of the contrast product and morphological
changes of IA within a cardiac cycle when the acquisition is
ECG-gated (64). 4D-CTA is mostly used in the evaluation of
hemorrhagic/ischemic stroke and vascular malformations and
has been proposed to replace the gold standard 3D-DSA for
follow-up imaging since it produces accurate IA geometrics and
reliable CFD results when compared to 3DRA (65).

Aside from these classical hemodynamic parameters, the
notion of aneurysmal pulsatility arose. Aneurysm pulsation is
an important dynamic parameter of IA since increased wall
motion is assumed to be linked to a reduced stability of the
aneurysm wall and, consequently, to the rupture (52, 66). This
pulsation, composed of the global pulsation of the aneurysm

and the movement of focal parts (blebs), must be differentiated
from the physiological cerebrovascular movement during the
cardiac cycle. As those pulsations are quick and of lowmagnitude,
the development of an accurate imaging modality is a real
challenge (52, 66). A study performed on 7T MRI quantifying
volume pulsation showed insufficient accuracy due to multiple
imaging artifacts (67). The most used imaging technique to
study aneurysmal pulsation is 4D-CTA (52, 66). This imaging
achieves a spatial resolution going up to the same order as the
studied IA movements [high-resolution CT scans = 0.25mm;
standard scan = 0.6–0.8mm] (52). Also, its ability to measure
aneurysm pulsation in IAs larger than 5mm in vivo have been
reported (68). These above-mentioned imaging techniques have
been summarized in Table 2.

INFLAMMATION IMAGING

Over the past decades, a growing amount of evidence seems
to involve vessel wall inflammation in the pathogenesis of
IA (73). Indeed, several histological studies demonstrated that
inflammatory cells (mainly T-cells and macrophages) infiltration
and complement activation are associated with IA rupture (74,
75). In line with this observation, vessel wall inflammation
detection could help to identify IA at high risk of rupture. In
order to develop new tools to visualize inflammation in vivo, non-
invasive inflammation imaging has been developed over the past
few years.

As macrophage infiltration is a typical feature observed
in aneurysmal vessel wall, macrophage imaging emerged
thanks to the development of ferumoxytol. Ferumoxytol
is a superparamagnetic form of iron oxide, engulfed by
macrophages and detectable using MRI. Therefore, MRI after
ferumoxytol infusion can reflect macrophage activity and
associated inflammation within aneurysmal vessel wall. A
first histological study analyzed unruptured aneurysm tissues
from patients displaying ferumoxytol-induced hyposignal (72h
after ferumoxytol infusion) and observed both macrophage
infiltration and iron particle uptake by IA vessel wall (69).
Intriguingly, they observed a noticeably different level of
ferumoxytol uptake among patients, some considered with “early
uptake” (visible 24h after infusion) or “late uptake” (visible 72h
after infusion) (76). The authors showed that IA with “early
uptake” had a similar level of macrophage infiltration compared
to ruptured IA, and it was significantly higher in “early uptake”
IAs vs. “late uptake” IAs. Finally, all of the “early uptake” IAs
managed conservatively evolved to rupture within 6 months
while no “late uptake” IAs did. Thus, this study by Hasan et al.
suggested that ferumoxytol-MRI could identify unstable IAs at
high risk of rupture within 6 months. However, since iron
is abundant in red blood cells, subtraction of pre- and post-
ferumoxytol infusion images is required to detect ferumoxytol
engulfed by macrophages. These pre- and post- infusion images
performed independently make this analysis technically difficult
and time-consuming therefore, a simpler diagnostic method is
desirable (70, 77).

Vessel wall imaging (VWI) has recently emerged as a
promising diagnostic tool to image intracranial vessel wall
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TABLE 2 | IA hemodynamics and inflammation imaging techniques.

IA hemodynamics imaging

Features imaged Principle Observations References

Computational fluid dynamics (CFD)

Allows calculation of WSS, OSI,

flow velocity and RTT

In silico blood flow simulation on high

resolution 3D anatomical images of IAs

- Most advanced method for visualizing

hemodynamic characteristics

- Numerous approximations: blood as a Newtonian

fluid, arteries as rigid entities

(46)

4D digital subtraction angiography (4D-DSA)

Influx and efflux of the contrast

product and therefore of the blood

flow pattern and arteries’ lumen in

hypersignal

Same principle as 3DRA. Differs in the

images processing

- As reliable as 3DRA for CFD analysis

- High spatial resolution

- Iodinated agent needed

- Most invasive imaging (catheterization)

(50, 51)

4D-magnetic resonance angiography (4D-MRA)

Characterization and quantification

of WSS, blood flow pattern and

velocity

Principle of a flow-sensitive MRI (Phase

contrast-MRI). Under bipolar gradient, blood

emit a signal directly proportional to its speed

- Direct quantification of blood flow velocity

- No contrast agent

- Long time acquisition

(55, 56)

4D-computational tomography angiography (4D-CTA)

Blood flow pattern and arteries’

lumen in hypersignal

Same principle as classical CTA. Differs in

protocol of acquisition to have temporal

information

- Promising technic to study aneurysm pulsation

- Longer exposition to ionizing ray compared

to CTA

(64)

IA inflammation imaging

Macrophage imaging

Inflamed arteries’ wall in hyposignal Property of ferumoxytol to be engulfed by

macrophages and detectable using specific

MRI sequences

- Risk of allergic reaction to ferumoxytol

- Technically difficult and time consuming

(69, 70)

Vessel wall imaging (VWI)

Inflamed arteries’ wall in

hypersignal

MRI sequences which suppress both blood

and cerebrospinal fluid signal

- High negative predictive value; moderate positive

predictive value

- Stagnant flow artifact

- Lack of reproducibility

(71, 72)

inflammation through MRI. This technique, also known as
black blood MRI, provides only signals from the vessel wall
thanks to the suppression of both blood and cerebrospinal fluid
signal (CSF). The acquisition of VWI demands high resolution,
therefore a 3T or higher magnet strength is required. Briefly,
VWI generally consist in T1-weighted pre- and post- contrast
sequences along with blood and CSF suppression obtained
with a 3D turbo spin-echo sequence with variable flip angle
refocusing pulses (71). VWI sequence names differ among
MRI constructors: VISTA (volume isotropic turbo spin-echo
acquisition; Phillips healthcare, Eindhoven, Netherlands), SPACE
(sampling perfection with application-optimized contrasts by
using different flip angle evolutions; Siemens Healthinners,
Erlangen, Germany) or CUBE (GE Healthcare, Milwaukee,
WI, USA) (78).

Thanks to blood signal suppression, VWI has been used to
study aneurysm wall structure, thickness and wall enhancement.
Aneurysm wall enhancement (AWE) is mainly qualitatively
assessed and can be classified as focal or circumferential. Radio-
histological correlation studies revealed that focal AWE (FAWE)
is associated with fresh intraluminal thrombus at the rupture
site (79). This finding can provide useful information for the
surgical treatment of ruptured IA before treating the patient by
microsurgical clipping or endovascular coiling. FAWE can also be

observed in unruptured IA and colocalized with hemodynamic
factors in favor to a higher rupture risk (80). Moreover, FAWE
is observed in areas of morphological changes in the IA vessel
wall, supporting the hypothesis that FAWE could be a marker
of instability (80). On the other hand, circumferential AWE
(CAWE) is thought to be due to wall thickening with abundant
inflammatory cell infiltration and neovascularization (78, 81, 82).

In cases of subarachnoid hemorrhage and multiple
aneurysms, several criteria are used to determine which
one underwent rupture (i.e. hemorrhage localization, IA size,
location, shape, aspect ratio). As vessel wall inflammation is
a risk factor of IA rupture, AWE is nearly always observed in
ruptured IAs (83). Along with this observation, some studies
performed on patients presenting multiple IAs, demonstrated
that VWI can identify the ruptured IA which is characterized
by a thick vessel wall enhancement (84, 85). Thus, VWI can
be a useful diagnostic tool in identifying ruptured IA and its
site of rupture (79).

With regard to unruptured IA, current research is deciphering
the clinical interpretation of AWE. It has been proposed that
AWE could be a biomarker of vessel wall inflammation in
unstable IAs prone to evolve toward rupture (86). Indeed, some
studies performed on unruptured IAs demonstrated a correlation
between AWE and common risk factors of IA rupture such as
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a larger size (≥7mm), an irregular shape, a high aspect ratio
(depth/neck width) and its localization in the anterior cerebral,
posterior communicating and posterior cerebral arteries (87–91).
A correlation betweenAWE intensity and the severity of PHASES
and ELAPSS scores has also been demonstrated (92).

Finally, a meta-analysis performed on 6 studies analyzed VWI
and aneurysm instability. The authors concluded that unstable
aneurysms (defined as ruptured, symptomatic, or growing on
serial imaging) had statistically higher odds to display AWE.
There was still a significant correlation between AWE and
IA instability after the removal of ruptured aneurysms (93).
Moreover, these meta-analyses highlighted that the absence of
wall enhancement on VWI is strongly associated with IA stability
(negative predictive value: 96.2%). Very recently, another
meta-analysis added 6 more studies, including a longitudinal
prospective study, and confirmed these positive and negative
predictive value (94, 95). Therefore, VWI and AWE could be a
useful risk stratification tools in assessing IAs stability.

Despite potential clinical applications of VWI, it is important
to highlight potential limitations of this new diagnostic tool.
The meta-analysis demonstrated a moderate specificity (62.7%)
and positive predictive value (55.8%) of AWE in identifying
unstable aneurysms, meaning that a part of IAs with AWE on
VWI are considered to be stable (93). Moreover, flow artifacts
within the sac, contrast extravasation and stagnant flow could
mimic AWE, leading to false-positive signals (96, 97). In addition,
there is no consensus on the definition of AWE as some studies
included both FAWE and CAWE whereas others only studied
CAWE. Most studies qualitatively assessed AWE inducing a
lack of reproducibility, therefore quantitative AWEmeasurement
should be considered (91). Finally, there is a heterogeneity
concerning the definition of unstable IA qualified as growth,
morphology changes, symptomatic and/or rupture (97). The
different inflammation imaging methods have been summarized
in Table 2.

Imaging in Animal Model of IAs
Understanding of IA pathophysiology has been largely enabled
by the use of small animal models (rat, mouse, rabbit) in which
induced IA can mimic aspects of the human pathology. As such,
induced IA are smaller than those found in humans thus, the
above-mentioned imaging techniques are not widely used to

analyze IA’s dynamic and static characteristics (98). In fact, only a
few studies use them other than as IA detection tools, for instance
to detect macrophage infiltration or to perform CFD analysis on
3DRA images (77, 99). To the best of our knowledge, only 2
studies managed to follow aneurysmal remodeling in mice over 3
months using really high-field MRI (9,4T) (100, 101). Regarding
IA’s hemodynamics, Doppler ultrasound imaging can be used to
measure blood flow velocity in rabbit models of internal carotid
aneurysm (99, 102, 103).

CONCLUSION AND PERSPECTIVES

As IA pathophysiology becomes better understood, new factors
contributing to IA progression and rupture are discovered,
such as altered hemodynamic parameters or inflammation
within IA vessel wall. Novel imaging technique must be
developed to visualize these important characteristics and
provide essential information’s to clinicians for a better IA
management. One can speculate that the combination of different
imaging techniques that rely on morphological, hemodynamic
and inflammatory markers will allow clinicians to accurately
assess the risk of aneurysm rupture and adopt the best
care strategy.
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Background: Dyslipidemia and hypertension are two important independent risk factors

for ischemic stroke (IS); however, their combined effect on IS remains uncertain.

Objectives: This present study aimed to evaluate the interaction effect of hypertension

and abnormal lipid indices on IS in a 10-year prospective cohort in Chinese adults.

Methods: The cohort study of 4,128 participants was conducted in May 2009 and

was followed up to July 2020. All qualified participants received a questionnaire survey,

physical examination, and blood sample detection. Cox regression was used to evaluate

the association of dyslipidemia and hypertension with IS, and calculate the hazard

ratio (HR) and 95% confidence interval (CI). The relative excess risk of interaction

(RERI) and the HR (95%CI) of interaction terms were used to examine additive and

multiplicative interactions.

Results: In the hypertensive population, Non-HDL-C ≥190 mg/dl, LDL-C/HDL-C ≥2

and HDL-C ≥60 mg/dl were statistically associated with IS, and after adjusting for

covariates, HRs (95%CIs) were 1.565 (1.007–2.429), 1.414 (1.034–1.933) and 0.665

(0.450–0.983), respectively. While in the non-hypertension population, no significant

association of Non-HDL-C ≥190 mg/dl, LDL-C/HDL-C ≥2, and HDL-C ≥60 was

detected with IS (P > 0.05). There was a significant association between TC/HDL-C

≥ 3.6 and the decreased risk of IS in the non-hypertension population, and the HR

(95%CI) was 0.479 (0.307–0.750). Whereas, a similar association was not observed in

the hypertensive population. HDL-C ≥ 60 mg/dl, Non-HDL-C ≥ 190 mg/dl, TC/HDL-C

≥ 3.6, and TG/HDL-C≥ 1 have additive and multiplicative interactions with hypertension

(P < 0.05). The RERIs (95% CIs) of the additive interaction are −0.93 (−1.882–

0.044), 1.394 (0.38–2.407), 0.752 (0.354–1.151) and 0.575 (0.086–1.065), respectively.

The HRs (95% CIs) of the multiplicative interaction terms were 0.498 (0.272–0.911),

4.218 (1.230–14.464), 2.423 (1.437–4.086) and 1.701 (1.016–2.848), respectively.
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Conclusion: High concentration of HDL-C reduces the impact of hypertension on

IS, while the high concentration of Non-HDL-C, TC/HDL-C, and TG/HDL-C positively

interact with hypertension affecting the incidence of IS. This study provides useful

evidence for the combined effects of dyslipidemia and hypertension in predicting IS.

Keywords: lipids, hypertension, ischemic stroke, interaction, cohort study, dyslipidemia

INTRODUCTION

Stroke is a major public health issue worldwide, with a high
incidence rate, recurrence rate, disability rate, and mortality rate
in the population (1). The global lifetime stroke risk from 25
years onward was estimated to be 24.9%, with China having the
highest risk of stroke (39.3%), in 2016 (2). In China, stroke has
also caused the highest number of disability-adjusted life years
of all diseases and has been ranked third among the leading
causes of death after malignant tumors and heart disease (3, 4).
Moreover, due to changes in lifestyle and population structure
and insufficient control over major risk factors, the burden it
has brought to public health will be worsened in the future (5).
Ischemic stroke (IS), the main subtype of stroke, accounts for
almost 78% of stroke cases in China and takes up most of the
health burden that stroke caused (6). IS usually occurs suddenly
with acute signs and symptoms, which calls for emergency
treatment. If emergency care is not provided timely, it will cause
severe damage to blood vessels and nerves in the brain, resulting
in irreversible complications, lifelong disabilities, or even death.
However, the existing treatment for IS requires a strict time
window, and the effect of its treatments is not satisfactory. The
function damage to the brain will basically not recover fully after
the stroke. Consequent side effects and a high risk of recurrence
will continuously impact the prognosis and survivors’ quality of
life. Thus, it is key to focus on the management of risk factors to
prevent IS.

IS is a multi-factorial disorder (7) of which prevention
may require an improved understanding of modifiable risk
factors. Several risk factors increase the IS incidence, such
as hypertension, diabetes mellitus, hyperlipidemia, obesity,
smoking, drinking, physical inactivity, and a family history
of stroke (8, 9). Although each risk factor may contribute
significantly to the development of IS, its occurrence is the result
of a combination of multiple risk factors (10). According to GBD,
over 90% of the global stroke burden is caused by the combined
impact of modifiable risk factors (11).

Numerous studies have demonstrated that hypertension and
dyslipidemia are two important independent risk factors that can
be controlled and modified to prevent IS (12–15). Dyslipidemia
is generally believed to play a critical role in the pathogenesis
of IS, which can be represented by abnormal changes of
traditional and non-traditional lipid indices. Traditional lipid
indices, usually referring to total cholesterol (TC), triglycerides
(TGs), low-density lipoprotein cholesterol (LDL-C), and high-
density lipoprotein cholesterol (HDL-C), were identified to
have predictive effects on the risk of cardiovascular disease
and stroke (16–18). While compared with the traditional lipid

indices, non-traditional lipid indices (non-HDL-C, TG/HDL-C,
TC/HDL-C, and LDL-C/HDL-C) could serve as a more powerful
predictor for vascular risk in stroke and CVD (19). Hypertension
has a high co-occurrence rate with dyslipidemia, especially in
the middle-aged and elderly population (20). A large cohort
study in a French population showed a significantly higher
risk of CVD in people under 55 years of age who suffered
from comorbid hypertension and dyslipidemia (21). Therefore,
exploring the possible interaction effect between hypertension
and dyslipidemia on IS is of great significance for preventing and
treating IS. However, few studies have examined the interaction
of these two risk factors regarding IS. This present study aimed to
evaluate the interaction effect of hypertension and abnormal lipid
indices on IS in a 10-year prospective cohort in Chinese adults.

METHODS

Study Design and Ethics Approval
This study adopted a prospective cohort design and a total of
4,128 individuals over 18 years old were recruited by a cluster
sampling approach from 6 villages for baseline investigation in
Guanlin Town and Xushe Town, Yixing City, Jiangsu Province
from May to October 2009. The first field follow-up survey
proceeded from May to October in 2014. After excluding 30
baseline stroke patients, the remaining 4,098 patients were
followed up to July 27th, 2020 for stroke onset. For more
information of this cohort, please refer to our previous published
literature (22).

The Ethics Committee approved this study of NanjingMedical
University (#200803307). All participants or their caregivers
provided signed informed consent before being included in
this study.

Data Collection and Related Covariates
Definition
Population baseline investigation included questionnaire survey,
physical examination, blood sample collection, etc. All the
personnel involved in on-site investigations have received
standardized training, and only after passing the assessment
could they start their investigation.

Participants’ demographic characteristics, smoking status,
drinking status, and disease history were obtained from a
validated questionnaire at the time of enrollment. Height, weight,
and blood pressure were measured by standardized instruments,
which were performed in duplicates to reduce random errors.
Smoking was defined as cigarettes consumption greater than ≥

cigarettes per week, lasting at least 3 months a year. Drinking
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was defined as alcohol consumption≥2 times per week, lasting at
least 6 months per year. Body mass index (BMI) was obtained by
dividing weight (kg) by the square of height (m2). Hypertension
was defined as average systolic blood pressure (SBP) ≥ 140
mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg, or
currently receiving antihypertensive medication to lower blood
pressure. The blood pressure of all subjects was measured 3
times with an interval of 30 s. If the difference between any
two systolic or diastolic blood pressures is more than 8 mmHg,
the fourth measurement is performed. Diabetes was defined as
fasting plasma glucose (FPG) ≥7.0 mmol/l or a self-reported
diabetes history. Received lipid-lowering treatment was defined
as patients self-reported taking lipid-lowering medications or
other lipid-lowering treatment measures.

All participants underwent 8-h overnight fasting and blood
sampling to detect FPG and lipid indices, including total
cholesterol (TC), triglycerides (TG), high-density lipoprotein
cholesterol (HDL-C), and low-density lipoprotein cholesterol
(LDL-C). Non-HDL-C, TC/HDL-C, TG/HDL-C, LDL-C/HDL-
C, and remnant-cholesterol (RC) were derived from detected
lipids. The non-HDL-C value was calculated as the difference
value of TCminus HDL-C. RC was calculated by TCminus LDL-
C minus HDL-C. Baseline dyslipidemia was defined by meeting
any of the following conditions: (1) TC≥ 6.2mmol/l (240mg/dl),
TG≥ 2.3 mmol/l (200 mg/dl), LDL-C≥ 4.1 mmol/l (160 mg/dl),
HDL-C < 1.04 mmol/l (40 mg/dl) or HDL-C ≥ 1.55 mmol/l (60
mg/dl); (2) Self-reported diagnosis of dyslipidemia; (3) Currently
taking lipid-lowering drugs. As per Chinese Guidelines for the
Management of Dyslipidemia in Adults (2016), the cut-off points
of TC, TG, LDL-C, HDL-C, and non-HDL-C were 240 mg/dl,
200 mg/dl, 160 mg/dl, 40–60 mg/dl, and 190 mg/dl, respectively.
While for indices like RC, TC/HDL-C, TG/HDL-C, and LDL-
C/HDL-C, there are no definite clinical diagnostic criteria, so the
median of these indicators, which were 30 mg/dl, 3.6, 1, and 2,
were defined as the cut-off point value in this study.

Outcome Ascertainment
Outcome events of stroke in this cohort were collected through
the local register system of disease and death of the Center
for Disease Control and Prevention (CDC). International
Classification of Diseases, Tenth Revision, Clinical Modification
(ICD-10-CM) was used to identify for stroke (I60∼I64), IS
(I63), and hemorrhagic stroke (I60, I61, I62, and I64). All the
monitored stroke onset events were further inspected by certified
neurologists and cardiologists through reviewing the medical
records system and relevant files of Yixing People’s Hospital.

Statistical Analysis
Mann-Whitney U test was used to examine the differences
of all the quantitative variables among groups of dyslipidemia
presented as median (interquartile range). Chi-square (χ2)
test was performed to compare the frequency distributions of
qualitative variables. Cox proportional hazards regressionmodels
were used to estimate the HRs and 95% confidence intervals (CIs)
of IS after adjustment for age, gender, smoking, drinking, BMI,
hypertension, diabetes, and received lipid-lowering treatment.
Heterogeneity was tested for inter-subgroup associations using

Cochran’s Q test. The interaction effect was evaluated using
the relative excess risk of interaction (RERI) for additive
interactions and the HR (95% CI) of multi-factor interaction
terms for multiplicative interactions. All statistical analyses were
conducted using SAS software version 9.4 (SAS Institute, Inc,
Cary, NC), and test results were considered significant at the
two-sided 0.05 level.

RESULTS

Baseline Characteristics of the Cohort
Study Population
Descriptive characteristics of the 4,098 participants at baseline
are presented in Table 1. The participants were followed up
for a median duration of 10.76 years, with 272 participants
who developed IS. All participants were categorized into
four groups according to the presence of dyslipidemia and
hypertension at baseline. The proportion of people with only
dyslipidemia, hypertension, and co-morbidity were 26.2, 20.8,
and 27.6%, respectively. The median age is 59.20 years, with
females accounting for 59.5% of the total population. Smokers
and drinkers accounted for 24.3 and 21.5%, respectively. The
prevalence of dyslipidemia, hypertension, and diabetes in the
population was 53.9, 48.4, and 11.2%, respectively, at baseline.
Participants with dyslipidemia or hypertension were more likely
to have higher levels of BMI and higher proportions of drinkers
and diabetes than their counterparts without dyslipidemia and
hypertension (P < 0.05). The sex ratio and the proportion
of smokers were approximately the same among four groups
(Table 1).

Association of Dyslipidemia and
Hypertension With IS
As of July 27th, 2020, the median follow-up time was 10.76
years. There were 272 new IS with a prevalence density of
65.41 per 10,000 person-years during the follow-up period.
The incidence density was higher among hypertensive patients,
those with dyslipidemia, and both together, at 43.48 per 10,000
person-years, 91.52 per 10,000 person-years, and 92.28 per
10,000 person-years, respectively, compared to those with normal
lipids and no hypertension. The corresponding HRs (95%) CIs
are 1.603 (1.097–2.343), 1.025 (0.677–1.553) and 1.627 (1.129–
2.343), respectively (Table 2).

Association Between Blood Lipids and the
Risk of IS
Non-HDL-C ≥ 190 mg/dl was associated with an increased
risk of IS in the whole population, but the correlation
was not statistically significant after adjusting the covariates
(Supplementary Table S1). The HR (95%CI) before and after
adjustment were 1.529 (1.028–2.275) and 1.128 (0.751–1.694),
respectively. The remaining lipid indices showed no statistically
significant association with IS among the total population
(Supplementary Table S1).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 March 2022 | Volume 9 | Article 81927473

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


W
e
ie
t
a
l.

D
yslip

id
e
m
ia
,
H
yp

e
rte

n
sio

n
in

Isc
h
e
m
ic
S
tro

ke

TABLE 1 | Baseline characteristics of the study population.

Characteristics All subjects Non-dyslipidemia and non-hypertension Only dyslipidemia Only hypertension Dyslipidemia and hypertension Z/χ2 pa

(N = 4,098) (N = 1,038) (N = 1,075) (N = 853) (N = 1,132)

Age (years) 59.20 (52.75, 67.00) 56.78 (49.78, 63.81) 57.80 (51.77, 64.78) 61.75 (54.76, 69.77) 61.62 (54.74, 69.39) 144.538 <0.001

Gender (%) 2.541 0.468

Male 1,661 (40.5) 408 (39.3) 444 (41.3) 334 (39.2) 475 (42.0)

Female 2,437 (59.5) 630 (60.7) 631 (58.7) 519 (60.8) 657 (58.0)

Smokers (%) 995 (24.3) 258 (24.9) 266 (24.7) 191 (22.4) 280 (24.7) 2.095 0.553

Drinkers (%) 883 (21.5) 212 (20.4) 256 (23.8) 157 (18.4) 258 (22.8) 10.059 0.018

Diabetes (%) 461 (11.2) 80 (7.7) 112 (10.4) 86 (10.1) 183 (16.2) 42.362 <0.001

BMI (kg/m2) 24.00 (21.93, 26.40) 23.35 (21.51, 25.71) 23.50 (21.47, 26.02) 24.30 (22.33, 26.80) 24.88 (22.37, 27.28) 99.665 <0.001

TC (mg/dl) 185.33 (162.93, 210.42) 178.19 (159.07, 198.46) 189.96 (164.09, 220.85) 177.99 (160.23, 200.77) 197.30 (171.43, 229.34) 231.087 <0.001

TG (mg/dl) 116.81 (79.65, 176.99) 93.81 (69.91, 130.97) 128.32 (76.11, 224.78) 107.96 (79.65, 146.02) 162.39 (95.58, 253.98) 452.728 <0.001

HDL-C (mg/dl) 51.35 (43.63, 59.85) 50.19 (45.95, 54.83) 59.07 (39.00, 66.02) 50.19 (45.95, 54.83) 55.21 (39.77, 65.25) 81.570 <0.001

LDL-C (mg/dl) 102.32 (84.94, 120.08) 99.61 (86.49, 114.29) 100.77 (81.85, 122.78) 102.32 (87.84, 117.18) 105.41 (84.94, 129.34) 36.332 <0.001

Non-HDL-C (mg/dl) 133.59 (111.58, 157.14) 128.57 (108.88, 147.10) 135.52 (111.20, 162.55) 128.57 (109.65, 149.42) 143.24 (115.83, 173.26) 141.155 <0.001

RC (mg/dl) 29.34 (13.90, 43.63) 27.41 (13.42, 38.61) 32.05 (13.51, 49.03) 26.64 (12.74, 38.42) 32.82 (15.44, 51.74) 77.174 <0.001

TC/HDL-C 3.64 (3.06, 4.22) 3.59 (3.13, 4.00) 3.62 (2.90, 4.48) 3.61 (3.14, 4.00) 3.87 (3.06, 4.68) 57.117 <0.001

TG/HDL-C 0.99 (0.63, 1.63) 0.83 (0.60, 1.15) 1.11 (0.54, 2.15) 0.93 (0.68, 1.27) 1.44 (0.67, 2.49) 266.166 <0.001

LDL-C/HDL-C 2.02 (1.64, 2.39) 2.01 (1.69, 2.32) 1.94(1.48, 2.39) 2.05 (1.74, 2.34) 2.07 (1.62, 2.57) 26.279 <0.001

Taking lipid lowering drugs 19 (0.5) 0 (0.0) 3 (0.3) 0 (0.0) 16 (0.5) 31.729 <0.001

All continuous variables are tested for normality (Shapiro-Wilk test and Kolmogorov–Smirnov test), and none of them obey normal distribution. Values are presented as median (interquartile range) or n (%).

BMI, body mass index; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Non-HDL-C, non-high-density lipoprotein cholesterol; RC, remnant cholesterol.
a: For each quantitative variable, the P-value is obtained by the Mann-Whitney U test; for each categorical variable, the P-value is obtained through Pearson’s χ2 test.
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TABLE 2 | Association of dyslipidemia and hypertension with IS.

Dyslipidemia Hypertension IS cases Follow-up time

(person-years)

Incidence

density (/10,000

person-years)

HR(95%CI)a Pa

No No 42 10,749.9 39.07 Ref -

Yes 78 8,522.4 91.52 1.603 (1.097–2.343) 0.015

Yes No 48 11,040.22 43.48 1.025 (0.677–1.553) 0.907

Yes 104 11,270.54 92.28 1.627 (1.129–2.343) 0.009

IS, Ischemic stroke.
a: Adjusted for age, gender, BMI, cigarette smoking, alcohol consumption, T2DM at baseline, and use of lipid-lowering drugs.

Stratification Analysis of the Association
Between Blood Lipids and the Risk of IS by
Hypertension
In the hypertensive population, Non-HDL-C ≥ 190 mg/dl and
LDL-C/HDL-C ≥ 2 were significantly associated with increased
risk of IS, after adjusting for covariates, HRs (95%CIs) were 1.565
(1.007–2.429) and 1.414 (1.034–1.933), respectively. HDL-C ≥

60 mg/dl was significantly associated with reduced risk of IS
with adjusted HR (95%CI) of 0.665 (0.450–0.983). While in the
non-hypertension population, no significant association of Non-
HDL-C ≥ 190 mg/dl, LDL-C/HDL-C ≥ 2, and HDL-C ≥ 60 was
detected with IS (P > 0.05).

Additionally, there was a significant association between
TC/HDL-C ≥ 3.6 and the decreased risk of IS in the non-
hypertension population, and the HR (95%CI) was 0.479 (0.307–
0.750). However, a similar association was not observed in the
hypertensive population.

Further analysis of heterogeneity test results indicated that
the association of HDL-C ≥ 60 mg/dl, Non-HDL-C ≥ 190
mg/dl, TC/HDL-C ≥ 3.6, and TG/HDL-C ≥ 1 and IS are
heterogeneous between hypertension and non-hypertension
groups (Pheterogeneity < 0.05). See Table 3 for details.

Interaction Analysis of Abnormal Blood
Lipid Indices and Hypertension for IS
We further analyzed the interaction between those indices which
had heterogeneous associations with IS among different blood
pressure statuses and hypertension. The results showed that
HDL-C ≥ 60 mg/dl (vs HDL-C < 60 mg/dl), Non-HDL-C ≥

190 mg/dl (vs. Non-HDL-C < 190 mg/dl), TC/HDL-C ≥ 3.6
(vs TC/HDL-C < 3.6), and TG/HDL-C ≥ 1 (vs. TG/HDL-
C < 1) have additive and multiplicative interactions with
hypertension. The RERIs (95%CIs) of the additive interaction are
−0.93 (−1.882–0.044), 1.394 (0.38–2.407), 0.752 (0.354–1.151)
and 0.575 (0.086–1.065), respectively. The HRs (95% CIs) of
the multiplicative interaction terms were 0.498 (0.272–0.911),
4.218 (1.230–14.464), 2.423 (1.437–4.086) and 1.701 (1.016–
2.848), respectively. In the analysis of the interaction between
total dyslipidemia and hypertension, the association was not
statistically significant. The RERI (95% CI) of the additive
interaction was −0.002 (−0.635–0.632), while the HR (95% CI)
of the multiplicative interaction term was 0.990 (0.595–1.645).
See Table 4 for details.

DISCUSSION

This study indicated that higher HDL-C levels will reduce the
impact of hypertension on the risk of developing IS, while
higher levels of Non-HDL-C, TC/HDL-C, and TG/HDL-C have
a positive interaction effect with hypertension on the incidence of
IS in Chinese adults.

Dyslipidemia is one of the major and modifiable risk factors
for IS (23, 24). In China, the prevalence of adult dyslipidemia has
increased significantly, from 18.6 in 2002 to 40.4% in 2012. Yet
the awareness, treatment, and control rates of dyslipidemia are
still low, at 31.0, 19.5, and 8.9%, respectively (12, 25, 26). Several
studies have reported the association between cardiovascular
disease and dyslipidemia, involving the conventional lipid indices
such as TC, TG, LDL-C, HDL-C, and the lipid ratios such
as TC/HDL-C, TG/HDL-C, and LDL-C/HDL-C. Two large
prospective cohort studies both confirmed that high TC, TG,
and LDL-C levels or low HDL-C levels increase the risk of
CVD (27, 28). However, recent studies have also found a “U”
or “J” shaped association between cholesterol levels (including
TC, LDL-C, HDL-C) and CVD, with both high and low TC,
LDL-C, and HDL-C levels contributing to adverse cardiovascular
events (29–34). To comprehensively consider the effects of
different lipid components on CVD risk, non-HDL-C, TC/HDL-
C, TG/HDL-C, and LDL-C/HDL-C were proposed. Due to the
ease of calculation of non-HDL-C and its strong predictive power
for CVD, non-HDL-C was recommended as an independent risk
factor for CVD (35, 36). Previous epidemiological studies have
also demonstrated that higher levels of TC/HDL-C, TG/HDL-
C, and LDL-C/HDL-C are associated with an increased risk of
developing CVD.

In this study, stratification analysis showed that Non-
HDL-C, LDL-C/HDL-C, and HDL-C were associated with IS
in the hypertensive population and TC/HDL-C in the non-
hypertensive population. These statistically significant indices are
derived indices of HDL-C, which may indicate the important
influence of HDL-C in the occurrence and development of
IS. Besides, analyses of the association of dyslipidemia with
IS demonstrated that, compared to LDL-C, non-HDL-C had a
stronger relationship with IS risk in the hypertension stratified
analysis. This finding may provide more evidence for non-
HDL-C as a better predictor for atherogenesis risk than LDL-
C in the hypertensive population. However, in the whole
population analysis, none of the lipid indices showed a statistical
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TABLE 3 | Hypertension status stratified analyses of abnormal lipid indices and the risk of IS.

Lipid indices Group Non-hypertension Hypertension Pb
heterogeneity

HR (95% CI)a Pa HR (95% CI)a Pa

TC <240 mg/dl reference - reference -

≥240 mg/dl 0.445 (0.176–1.123) 0.086 1.224 (0.801–1.868) 0.350 0.052

TG <200 mg/dl reference - reference -

≥200 mg/dl 0.714 (0.373–1.368) 0.310 1.254 (0.891–1.765) 0.194 0.133

HDL-C 40–60mg/dl reference - reference -

<40 mg/dl 0.884 (0.477–1.639) 0.695 1.157 (0.778–1.720) 0.471 0.472

>60 mg/dl 1.411 (0.883–2.253) 0.150 0.665 (0.450–0.983) 0.041 0.016

LDL-C <160 mg/dl reference - reference -

≥160 mg/dl 0.401 (0.056–2.880) 0.364 1.000 (0.542–1.847) 0.999 0.385

Non-HDL-C <190 mg/dl reference - reference -

≥190 mg/dl 0.319 (0.098–1.036) 0.057 1.565 (1.007–2.429) 0.046 0.013

RC <30 mg/dl reference - reference -

≥30 mg/dl 0.749 (0.488–1.148) 0.184 1.071 (0.795–1.442) 0.651 0.179

TC/HDL-C <3.6 reference - reference -

≥3.6 0.479 (0.307–0.750) 0.001 1.303 (0.955–1.778) 0.094 <0.001

TG/HDL-C <1 reference - reference -

≥1 0.698 (0.447–1.090) 0.114 1.259 (0.925–1.714) 0.143 0.033

LDL-C/HDL-C <2 reference - reference -

≥2 0.800 (0.523–1.223) 0.302 1.414 (1.034–1.933) 0.030 0.126

TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Non-HDL-C, non-high-density lipoprotein cholesterol;

RC, remnant cholesterol.
a: Adjusted for age, gender, BMI, cigarette smoking, alcohol consumption, T2DM at baseline, and use of lipid-lowering drugs.
b: Pheterogeneity stands for the P value of the heterogeneity test.

TABLE 4 | Analysis of the additive and multiplicative interaction of abnormal blood lipids and hypertension on IS.

Interaction terms Additive interaction Multiplicative interaction

RERI (95% CI)a pa HR (95% CI)a pa

HDL-C (≥60 mg/dl) * HT −0.963 (−1.882– −0.044) 0.040 0.498 (0.272–0.911) 0.024

Non-HDL-C (≥190 mg/dl) * HT 1.394 (0.38–2.407) 0.007 4.218 (1.230–14.464) 0.022

TC/HDL-C (≥3.6) * HT 0.752 (0.354–1.151) 0.001 2.423 (1.437–4.086) 0.001

TG/HDL-C (≥1) * HT 0.575 (0.086–1.065) 0.021 1.701 (1.016–2.848) 0.044

Dyslipidemia*HT −0.002 (−0.635–0.632) 0.996 0.990 (0.595–1.645) 0.968

TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; Non-HDL-C, non-high-density lipoprotein cholesterol; RERI, relative excess risk due to interaction.
a: Adjusted for age, gender, BMI, cigarette smoking, alcohol consumption, T2DM at baseline, and use of lipid-lowering drugs.

association with IS. There are two main reasons. First, the
cohort population and the number of patients with IS are
relatively small, especially in performing subgroup analysis.
So, it may be difficult to observe a statistically significant
association, but the association trend can still be observed.
Second, hypertension has a greater effect on the onset of IS,
and the etiologic effect of dyslipidemia is relatively small. In
the present study population, the prevalence of hypertension
was as high as ∼50%, so the effect of dyslipidemia may
be masked.

Hypertension is another critical and controllable risk
factor for IS. It can occur simultaneously with dyslipidemia
and act synergistically to affect the risk of CVD according

to previous research (21, 37). So, in this study, we analyze
different results of the additive model and multiplicative
models to evaluate the interaction between blood lipid
indices and hypertension comprehensively. Our results
suggested that HDL-C ≥ 60 mg/dl negatively affected IS
in the hypertension group, from which we could infer
that higher HDL-C levels may help reduce the impact of
hypertension on IS risk. The underlying mechanism of
this finding could be related to endothelial dysfunction in
cerebral blood vessels. Atherosclerosis involving impairment
of endothelial function and vascular contractility is an essential
pathological basis for the development of IS (38). Hypertension-
induced abnormalities in the cerebrovascular structure are
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known to play an important part in the pathogenesis of
IS (39). Previous studies have shown that endothelium-
mediated vasodilation is undermined in patients with essential
hypertension (40–42). This abnormality is associated with
attenuated endothelial Nitric Oxide (NO) activity and may
be caused by selective abnormalities in NO synthesis (43).
However, HDL particles could increase NO production by
stimulating endothelial nitric oxide synthase (eNOS) activity
and enhance endothelium- and NO-dependent relaxation in
wild-type mice (44), which may help to explain, to some extent,
the atheroprotective role of HDL-C in reducing the effect of
hypertension on IS.

Non-HDL-C, TC/HDL-C, and TG/HDL-C, closely related
to HDL-C, are all lipid indices derived from HDL-C but
measure other lipids in the blood as well. Thus, these non-
traditional lipid parameters may depict a more accurate and
more comprehensive lipid profile than traditional ones. In
the present study, non-HDL-C, TC/HDL-C, and TG/HDL-C
had a positive interaction with hypertension for IS, implying
that the abnormal imbalance of circulating lipids may amplify
the effect of hypertension on IS. The pathophysiological
mechanisms that could possibly explain the interaction between
dyslipidemia and hypertension can be summarized as follows.
First, LDL-C and hypercholesterolemia have been shown to
make a difference in the interference for NO signaling activities
resulting in the decrease of NO production and bioavailability,
which consequently reduce endothelial vasolidaiton and enhance
vasoconstructive activation. Therefore, dyslipidemia exacerbates
the development of hypertensive status (45, 46). Moreover,
subsequent vascular changes in function and structure caused
by hypertension, such as altered hemodynamics at arterial
bifurcations, as well as proinflammatory activities and oxidative
stress, may worsen the harm produced by dyslipidemia (47).
These can be supported by an animal study, which suggests that
hypertension and hypercholesterolemia synergistically reduce
endothelial function and increase oxidative stress in blood
vessels in pigs, possibly exacerbating atherosclerosis due to
dyslipidemia (48). In addition, previous research also indicated
that the elevated LDL-C level indirectly increased the calcium
influx into cells and stimulated vascular smooth muscle cell
contraction (47).

With a follow-up of up to 10.75 years, this study systematically
and prospectively investigated the interaction between lipid
indices and hypertension on IS development. However, the
following limitations exist. First, the sample size of this
study was relatively small, which may reduce the efficacy of
the test. Second, the study did not collect information on
physical activity, whereas previous studies have shown that
active physical activity reduces the risk of CVD morbidity
and mortality by improving CVD risk factors. In addition,
because the lipid data in this analysis were collected only at
baseline, it was impossible to assess the effect of changes in
lipid levels on CVD morbidity and mortality during follow-up.
Therefore, a prospective cohort study with larger sample size,
more comprehensive baseline information, and repeated lipid
measurements during follow-up is urgently needed to validate
the results of this study.

CONCLUSION

This large prospective cohort study is the first for all we know
to evaluate the combined effects of abnormal lipid parameters
and hypertension on IS. The current results demonstrate that
higher HDL-C levels may help reduce the impact of hypertension
on IS risk and higher levels of non-HDL-C, TC/HDL-C, and
TG/HDL-C, additively interacting with hypertension, increase
the risk for developing IS. This study provides useful evidence
for the combined effects of dyslipidemia and hypertension in
predicting IS in Chinese adults. Therefore, the combination of
non-traditional lipid indices and hypertension could aid in the
screening process to identify high-risk populations before IS and
may lead to more effective prevention of IS in clinical practice.
Furthermore, because of the high comorbidity of dyslipidemia
and hypertension and the interaction effect on IS, it is essential
to implement lipids-control measures to prevent and treat IS in
patients with hypertension in China. Targeting both dyslipidemia
and hypertension in the clinical context could help build optimal
therapeutic interventions for the prevention and management
of IS.
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Stroke is a disease with high morbidity, disability and mortality, which seriously endangers

the life span and quality of life of people worldwide. Angiogenesis and neuroprotection are

the key to the functional recovery of penumbra function after acute cerebral infarction. In

this study, we used the middle cerebral artery occlusion (MCAO) model to investigate

the effects of 1α,25-dihydroxyvitamin D3 (1,25-D3) on transforming growth factor-β

(TGF-β)/Smad2/3 signaling pathway. Cerebral infarct volume was measured by TTC

staining. A laser speckle flow imaging system was used to measure cerebral blood

flow (CBF) around the ischemic cortex of the infarction, followed by platelet endothelial

cell adhesion molecule-1 (PECAM-1/CD31) and isolectin-B4 (IB4) immunofluorescence.

The expression of vitamin D receptor (VDR), TGF-β, Smad2/3, p-Smad2, p-Smad3,

and vascular endothelial growth factor (VEGF) was analyzed by western blot and RT-

qPCR. Results showed that compared with the sham group, the cerebral infarction

volume was significantly increased while the CBF was reduced remarkably in the MCAO

group. 1,25-D3 reduced cerebral infarction volume, increased the recovery of CBF and

expressions of VDR, TGF-β, p-Smad2, p-Smad3, and VEGF, significantly increased

IB4+ tip cells and CD31+ vascular length in the peri-infarct area compared with the

DMSO group. The VDR antagonist pyridoxal-5-phosphate (P5P) partially reversed the

neuroprotective effects of 1,25-D3 described above. In summary, 1,25-D3 plays a

neuroprotective role in stroke by activating VDR and promoting the activation of TGF-β,

which in turn up-regulates the TGF-β/Smad2/3 signaling pathway, increases the release

of VEGF and thus promotes angiogenesis, suggesting that this signaling pathway may

be an effective target for ischemic stroke treatment. 1,25-D3 is considered to be a

neuroprotective agent and is expected to be an effective drug for the treatment of

ischemic stroke and related diseases.

Keywords: 1α,25-dihydroxyvitamin D3, vitamin D receptor, TGF-β/Smad2/3 signaling pathway, vascular endothelial

growth factor, cerebral ischemia-reperfusion, angiogenesis
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INTRODUCTION

For past two decades, thrombolytic therapy has been the standard
treatment for acute ischemic stroke. Intravenous thrombolysis
can be used to treat acute stroke only when it can be
determined that the time after the onset of symptoms is less
than 4.5 h (1, 2). Although its efficacy has been demonstrated
in clinical trials, the number of patients benefited by this
procedure is unfortunately low, around 5% of all stroke
patients, a fact ascribed to the narrow time window for t-PA
administration and because delayed thrombolytic therapy and
blood reperfusion have been associated with a high risk of
hemorrhagic transformation and oxidative stress, thus causing
additional damage (3). A recent clinical study showed that in
patients with acute stroke whose onset time was unknown,
the incidence of intracranial hemorrhage was also significantly
increased at 90 days after intravenous injection of alteplase
under the guidance of diffusion-weighted imaging and FLAIR
(fluid attenuated inversion recovery) mismatch in the ischemic
area compared with the placebo group (4). Endovascular
thrombectomy (EVT) has been shown to be a highly effective
treatment in high-resource countries. Infrastructure and support
are needed for EVT in the developing world (5). Therefore,
it is particularly important to seek more therapeutic measures
for ischemic stroke.

1α,25-dihydroxyvitamin D3 (1,25-D3) is widely expressed
in human organs and tissues and exerts the steroid effect
in the whole body. Its neuroprotective effect has been paid
more and more attention by scholars. 1,25-D3 produces a
wide range of biological activities once binding to vitamin D
receptor (VDR), including inhibition of proliferation, affecting
angiogenesis, regulating immune activity, and endocrine activity
(6–8). Observational studies have shown that patients with
lower serum 1,25-D3 levels experience infarct volume and worse
functional outcomes after stroke, indicating that 1,25-D3 may
play a protective role during cerebral ischemia, but whether it can
promote brain function recovery in terms of angiogenesis has not
been reported (9).

After the brain encounters ischemia and hypoxia, cells around
the ischemic core suffer irreversible necrosis (10, 11). The injury
around the infarction is selective and progressive, thus ensuring
the survival of cells around the infarction and angiogenesis
is an effective target for brain protection. Angiogenesis is the
key for functional recovery of ischemic penumbra after acute
cerebral infarction (12–14). Vascular endothelial growth factor
(VEGF) is essential for angiogenesis and neovascularization,
and the release of VEGF is regulated by neurotrophic factors
including transforming growth factor β (TGF-β) (15). In recent
years, more and more attention has been paid to the link
between TGF-β signaling pathway and angiogenesis. TGF-
β participates in angiogenesis by regulating the stability of
capillaries (16). Maharaj et al. demonstrated that activated
TGF-β acts on endothelial cells and pericytes to induce the
production and the release of VEGF (17). VEGF and TGF-
β are involved in the regulation of endothelial cell stability,
ependymal cell function and periventricular permeability (17).
Patients with scleroderma can lessen angiogenesis by inhibiting

TGF-β signaling pathway (18). Nanda et al. have confirmed
that after TGF-β signal damage, angiogenesis decreases in
non-atherosclerotic ischemic injury model, which weakens the
ability of neovascularization to mature (19). A lot of evidence
confirmed the crucial role of TGF-β signaling pathway in
angiogenesis (20, 21).

We investigated the effects of 1,25-D3 on angiogenesis
and explore the possible mechanism after ischemia. We
found that 1,25-D3 protected against ischemic injury and
improved stroke outcome 3 days after MCAO. 1,25-D3
promotes angiogenesis by activating VDR, up-regulating TGF-
β/Smad2/3 signaling pathway and inducing the release of VEGF.
Therefore, our study highlights the potential of 1,25-D3 in
stroke treatment.

MATERIALS AND METHODS

Ethics Statement
All animal experiments were conducted in accordance with
the National Institute of Health Guide for the Care and
Use of Laboratory Animals of Laboratory Animals. All the
experimental procedures involved in this study were approved
by the Animal Ethics Committee of Xuzhou Medical University
(protocol: 202007A102).

Animals
Male Sprague-Dawley (SD) rats were provided by the
Experimental Animal Center of Xuzhou Medical University.
All rats were kept in pathogen-free conditions and
housed under a light-dark cycle for 12 h (20 ± 1◦C,
and 55 ± 10% humidity), with access to food and water
ad libitum.

Chemicals and Reagents
1,25-D3 and VDR antagonist pyridoxal-5-phosphate (P5P) were
purchased from Med chem Express. 2,3,5-triphenyltetrazolium
chloride (TTC) was purchased from Sigma-Aldrich. The primary
antibodies: anti-VDR antibody (14526-1-AP) and anti-β-actin
antibody (20536-1-AP) were purchased from Proteintech. Anti-
VEGF antibody (ab1316) and anti-platelet endothelial cell
adhesion molecule-1 (PECAM-1/CD31) antibody (ab222783)
were purchased from Abcam. Anti- isolectin-B4 (IB4) antibody
(DL-1207) was purchased fromVector Laboratories. The primary
antibodies of anti-TGF-β (3711S), anti-Smad2/3 (8685T), anti-
p-Smad2 (18338T) and anti-p-Smad3 (9250T) were purchased
from Cell Signaling Technology. MCAO threads (2636-100,
diameter of the head of nylon filament: 0.36 ± 0.02mm)
were purchased from Beijing Shadong Biotechnology. Reverse
transcription kit, SYBRGreen R© PremixExTaqTM II kits were
purchased from Takara.

Establishment of the Middle Cerebral
Artery Occlusion/Reperfusion (MCAO) and
Grouping
A total of 120 male Sprague-Dawley rats weighing 250 to
280 g were used in this study. Rats were randomly assigned
resulting in five groups, each consisting of 24 rats:sham group,
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middle cerebral artery ischemia-reperfusion group (MCAO),
MCAO + dimethyl sulfoxide group (DMSO), MCAO + 1,25-
D3 group (1,25-D3) and MCAO + 1,25-D3 + VDR antagonist
(P5P, Pyridoxal-5-Phosphate) group (1,25-D3+ P5P). Rats from
all the groups were subjected to a 90-min middle cerebral
artery occlusion followed by reperfusion as previously described
(10). The neurological function was scored according to the
neurological deficit score established by Longa et al. (22). Grade
0: no neurological deficit; Grade I: mild focal neurological
deficit (inability to fully extend the ischemic forelimb); Grade
II: moderate focal neurological deficit (circling to the ischemic
scar); Grade III: severe focal neurological deficit (dumping to
the ischemic scar); Grade IV: lethargic and unable to walk
spontaneously. Neurological severity scores of I to III were
considered successful modeling, otherwise the corresponding
number of rats was eliminated and supplemented. Rats of the
1,25-D3 group were administered intravenously with 1,25-D3
at a dose of 5 mg/kg (dissolved in 2% DMSO) 30min before
reperfusion, and the 1,25-D3 + P5P group was administered
intravenously with 1,25-D3 at a dose of 5 mg/kg (dissolved in
2% DMSO) and P5P at a dose of 0.4 mg/kg (dissolved in 0.9%
NaCl). The same volume of DMSO was given in the DMSO
group intravenously. The drug was given once a day for 3
consecutive days.

Cerebral Infarction Volume Assessment
After anesthesia, the brains were refrigerated at −20◦C for
20min and then consecutively sliced into coronal slices, each
slice being about 2mm thick. Then they were placed into
2%TTC and incubated at 37◦C for 20min. After staining, the
brain slices were fixed overnight in 10% paraformaldehyde
and photographed by camera. Image J was used to calculate
the percentage of cerebral infarction volume. The percentage
of cerebral infarct volume in rats (%) = (volume of the

normal cerebral hemisphere - volume of the non-infarct cerebral
hemisphere on the infarct side)/volume of the normal cerebral
hemisphere ∗100%.

Cerebral Blood Flow Measurement
Cortical cerebral blood flow (CBF) was monitored by a laser
speckle flow imaging technique 3 days after reperfusion. All
procedures were performed under double-blind conditions.
Briefly, rats were anesthetized and disinfected using iodophor,
and the skull was exposed. The fascia attached to the skull was
removed as much as possible and 0.9% saline was added to
maintain the liquid level. Images and quantification of cerebral
blood flow in the penumbra can be accessed by the laser speckle
flow imaging technique (RFLSI III, RWD, China).

Immunofluorescence
The rats in each group were sacrificed 3 days after reperfusion
and fixed for immunofluorescence of CD31 and IB4. Sections
were incubated with 5% BSA for 1 h and then overnight
with anti-CD31 antibody (1:200) at 4◦C. After washing with
PBST (0.1% Triton X-100 in 0.1M PBS), fluorescent secondary
antibody (1:500) and IB4 were incubated at room temperature
for 1 h, then incubated with DAPI. Ultra-high resolution
inverted fluorescence microscope (Stellaris5, Leica) was used
for observation, and appropriate fluorescent light source was
selected, and photos were taken. The vascular length and tip cell
count was quantified by Image J.

Western Blot Analysis
The fresh tissue around the cerebral infarction was cryopreserved
with liquid nitrogen, homogenized, centrifuged, and the total
protein was extracted. The protein concentration was detected
by BCA protein assay kit (Beyotime Biotechnology) and the 5
ug/ul systemwas prepared. Protein was boiled at 100◦C for 5min,
then separated by SDS-PAGE and transferred to NC membrane

FIGURE 1 | 1,25-D3 reduced the volume of infarct regions in rats 3 days after stroke. Data were represented as Mean ± SEM, n = 5 per group, *p < 0.05, **p <

0.005, ***p < 0.001. MCAO, middle cerebral artery occlusion; DMSO, dimethyl sulfoxide; P5P, antagonist of VDR; 1,25-D3, 1α,25-dihydroxyvitamin D3.
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(Cytiva). After incubated with 5% skimmed milk at room
temperature for 2 h, incubated with the primary antibodies at
4◦C overnight (1:1,000), incubated with the secondary antibodies
at room temperature for 1 h (1: 10,000), and developed by ECL
colorimetric method. The Image J was used to measure the gray
value of the strip. The expression of the target protein band is

expressed by the gray value of the target protein band/β-actin
gray value.

Quantitative Real-Time PCR
Total RNA was extracted from peri-infarct tissues by Trizol.
Complementary deoxyribonucleic acid (cDNA) was reverse

FIGURE 2 | 1,25-D3 increased cerebral blood flow of peri-infarcted cortex 3 days after stroke, and P5P partially reversed the neuroprotective effect. Data were

represented as Mean ± SEM, n = 5 per group, *p < 0.05, **p < 0.005, ***p < 0.001. MCAO, middle cerebral artery occlusion; DMSO, dimethyl sulfoxide; P5P,

antagonist of VDR; 1,25-D3, 1α,25-dihydroxyvitamin D3.

FIGURE 3 | 1,25-D3 increased the microvascular length and density and alleviated impairments induced by cerebral ischemic reperfusion 3 days after MCAO.

(A,B,D) In situ expression of CD31 (red) and 4’,6-diamidino-2-phenylindole (DAPI; blue) in different region of MCAO group (100× magnification 100). (C,E) In situ

expression of CD31 (red) and 4’,6-diamidino-2-phenylindole (DAPI; blue) in the peri-infarct region of sham, MCAO, DMSO, 1,25-D3 and 1,25-D3 + P5P groups

(400× magnification 400). Data were represented as Mean ± SEM, n =5 per group. *p < 0.05, **p < 0.005, ***p < 0.001. MCAO, middle cerebral artery occlusion;

1,25-D3, 1α,25-dihydroxyvitamin D3.
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transcribed and used as a template for the reaction by
fluorescence quantitative real-time PCR apparatus. The
target gene fragment was amplified according to the steps of
the Power SYBR Green PCR Master Mix kit (Takara). Real-time
PCR reaction conditions were as follows: pre-denaturation
at 95◦C for 10 s, denaturation at 95◦C for 5 s, annealing and
extension at 60◦C for 20 s, a total of 40 cycles. After the reaction
was complete, the dissolution curve program was run to detect
the specificity of the amplified products. The following primers
were used: TGF-β1_fwd 5’-3’: TGAGTGGCTGTCTTTTGACG,
TGF-β1_rev 5’-3’: GGTTCATGTCATGGATGGTG. TGF-
β2_fwd 5’-3’: GTGATTTCCATCTACAACAGTACC,
TGF-β2_rev 5’-3’: TATAAACCTCCTTGGCGTAGTAC;
TGF-β3_fwd 5’-3’: CCCAACCCCAGCTCCAAGCG;
TGF-β3_rev 5’-3’: AGCCACTCGCGCACAGTGTC;
VDR_fwd 5’-3’: CCACCGGCAGAAACGTGTAT;
VDR_rev 5’-3’: TGCCTTGTGAGAGGCTCTAGGA;
VEGF_fwd 5’-3’: CCGTCCTGTGTGCCCCTAATG;
VEGF_rev 5’-3’: CGCATGATCTGCATAGTGACGTTG;
GAPDH_fwd 5’-3’: GCATCTTCTTGTGCAGTGCC
and GAPDH_rev 5’-3’: TACGGCCAAAT
CCGTTCACA.

Statistical Analysis
GraphPad Prism 5 (Graph Pad Software Inc, La Jolla, CA)
was used to generate graphs and perform statistical analysis.
Normal distribution was determined by the Kolmogorov-
Smirnov test. One-way ANOVA was used for comparison
among multiple groups, and Turkey

′

s post hoc test was used

for further pairwise comparison. Data were expressed as Mean
± SEM. Differences were considered statistically significant
at p < 0.05.

RESULTS

1,25-D3 Significantly Reduced the Volume
of Infarct Regions, Alleviated Brain Injury in
Rats With Stroke
In order to confirm the effect of 1,25-D3 on stroke, we analyzed
the volume of cerebral infarction 3 days after MCAO. Compared
with sham group, the volume of cerebral infarction in MCAO
group was significantly increased. There was no significant
difference in cerebral infarction volume in DMSO and MCAO
group. The cerebral infarct volume was decreased in 1,25-D3
group compared with the DMSO group. While it was more
in 1,25-D3 + P5P group than 1,25-D3 group (Figure 1). It is
suggested that 1,25-D3 treatment can significantly reduce the
cerebral infarct volume and reduce the brain injury in stroke rats.
VDR antagonist P5P partially reversed the neuroprotective effect
of 1,25-D3.

1,25-D3 Promoted the Recovery of CBF
After Ischemia-Reperfusion
We analyzed the CBF of peri-infarcted cortex in different
groups of rats 3 days after ischemia-reperfusion using a laser
speckle imaging system. The results showed that compared
with the sham group, the CBF around the infarct cortex
was significantly decreased in the MCAO group. Compared

FIGURE 4 | 1,25-D3 increased neovascularization and improved vascular function 3 days after stroke. (A) In situ expression of CD31 (green), IB4 (red) and

4’,6-diamidino-2-phenylindole (DAPI; blue) in the peri-infarct region of DMSO, 1,25-D3 and 1,25-D3 + P5P groups (400× magnification 400). Levels of IB4+ tip cells

(B), CD31+vascular length (mm/mm2 of brain tissue) (C), and IB4+cell coverage (area ratio of IB4+ and CD31+) (D) in the peri-infarct region of DMSO, 1,25-D3 and

1,25-D3 + P5P groups. Data were represented as Mean ± SEM. Data were represented as Mean ± SEM, n = 5 per group, *p < 0.05, **p < 0.005, ***p < 0.001.

MCAO, middle cerebral artery occlusion; DMSO, dimethyl sulfoxide; P5P, antagonist of VDR; 1,25-D3, 1α,25-dihydroxyvitamin D3.
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FIGURE 5 | Changes in the expression of relevant proteins at different time after ischemia reperfusion. (A,D–H) Western blots shows the expression levels of VDR,

VEGF, TGF-β, Smad2/3, p-Smad2, p-Smad3 differ at different time after ischemia reperfusion in the ischemic penumbra cortex. Data were represented as Mean ±

SEM, n =3 per group. *p < 0.05, **p < 0.005, ***p < 0.001. (B,C) The yellow box selection indicates the area of the ischemic penumbra.

with the DMSO group, the CBF at the infarct margin
was increased in the 1,25-D3 group, which was decreased
in the 1,25-D3 + P5P group (Figure 2). Namely, 1,25-D3
increased CBF recovery in ischemia-reperfusion rats, while
VDR antagonist P5P partially reversed the neuroprotective
effect of 1,25-D3.

1,25-D3 Increased Neovascularization and
Improves Vascular Function After Stroke
The results of CD31 staining suggested that the length
of vessel at various positions after ischemia-reperfusion
differ. The microvascular length was longer than that in the
infarct core area (Figures 3A,B,D). Comparison of different
groups showed that the microvascular length was lower in
the MCAO group than in the sham group, higher in the
1,25-D3 group than in the DMSO group. In addition, the
microvascular length in 1,25-D3+P5P group was lower than
in the 1,25-D3 group, suggesting that P5P can partially
reduce the microvascular increase induced by 1,25-D3
(Figures 3C,E).

To further understand the role of 1,25-D3 in neovascular
development, we used IB4 fluorescence staining to look for
neovascular sprouting as it is a marker of angiogenesis after

we have confirmed that 1,25-D3 could increase CD31-labeled
microvascular density after ischemia-reperfusion. IB4 staining
showed that 1,25-D3 increased IB4+ tip cells in the peri-
infarct area while P5P reversed the improvement of vascular
development induced by 1,25-D3 (Figure 4).

1,25-D3 Promotes the Expression of VDR,
VEGF, and TGF-β/Smad2/3 Signal Pathway
Proteins in MCAO Rats
In order to explore the angiogenic effects of 1,25-D3 on TGF-
β/Smad2/3 signaling pathway, we analyzed the expression of
VEGF, TGF-β/Smad2/3 and VDR at different time points: 6 h, 12
h, 24 h, 3 d, 5 d, 7 d after reperfusion. We found that compared
with the sham group, the expression of VDR decreased gradually
at 6 h after ischemia-reperfusion. VEGF increased gradually at
12 h after stroke, reaching the peak at 3 d and then decreased
slowly. The expression of TGF-β increased gradually at 12 h
after stroke and reached the peak at 5 d. The phosphorylation
levels of Smad2 and Smad3 increased at 12 h after reperfusion,
reached the peak at day 3 after reperfusion, and then decreased
gradually (Figure 5). We chose 3 days after reperfusion as the
time point to measure the expression of angiogenesis-related
proteins induced by 1,25-D3. Results showed that the expression

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 March 2022 | Volume 9 | Article 76971785

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zhang et al. 1α,25-Dihydroxyvitamin D3 Promotes Angiogenesis

FIGURE 6 | 1,25-D3 promoted the expression of VDR, TGF-β, p-Smad2, p-Smad3, and VEGF induced by cerebral ischemic reperfusion 3 days after MCAO. (A)

Western blot showed the expression of VDR, TGF-β, Smad2/3, p-Smad2, p-Smad3, VEGF in the ischemic penumbra cortex. Quantification of VDR (B), TGF-β (C),

p-Smad2 (D), p-Smad3 (E), VEGF (F) in (A). Data were represented as Mean ± SEM, n = 3 per group, *p < 0.05, **p < 0.005, ***p < 0.001. MCAO, middle cerebral

artery occlusion; DMSO, dimethyl sulfoxide; P5P, antagonist of VDR; 1,25-D3, 1α,25-dihydroxyvitamin D3.

FIGURE 7 | The expression of VDR, VEGF and TGF-β1, TGF-β2, TGF-β3 mRNA in MCAO rats increased after pretreatment with 1,25-D3. Data were represented as

Mean ± SEM, n = 5 per group, *p < 0.05, **p < 0.005, ***p < 0.001. MCAO, middle cerebral artery occlusion; DMSO, dimethyl sulfoxide; P5P, antagonist of VDR;

1,25-D3, 1α,25-dihydroxyvitamin D3.

of VDR, TGF-β, p-Smad2/Smad2, p-Smad3/Smad3, and VEGF
in the periinfarcted cortex was significantly higher than DMSO
group 3 days after stroke. The effect can be partially reversed by
P5P. These results were confirmed by western blotting (Figure 6).

The Expression of VDR, VEGF, and TGF-β1,
TGF-β2, TGF-β3 mRNA in MCAO Rats Was
Increased After Pretreatment With 1,25-D3
RT-qPCR analysis reveals the expression of VDR, TGF-β1, TGF-
β2, TGF-β3, and VEGF mRNA levels in the peri-infarct cortex
after 1,25-D3 treatment. The results showed that compared
with the sham group, the expression of VDR mRNA decreased

in MCAO rats. 1,25-D3 activated the VDR, TGF-β1, TGF-
β2, TGF-β3 and VEGF mRNA level induced by ischemia,
while the increase was partially reversed by P5P treatment
(Figure 7). Therefore, 1,25-D3 promotes angiogenesis after
stroke by activating VDR, thus promotes the activation of TGF-β
subtypes and the expression of VEGF mRNA.

DISCUSSION

The strength and novelty of present study was that we
demonstrated a salutary effect of 1,25-D3 on angiogenesis after
ischemia stroke. 1,25-D3 activated VDR then up-regulated TGF-
β/Smad2/3 signaling pathway and enhanced VEGF production,
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which contribute to promoting angiogenesis and improving
stroke outcomes in rats after stroke.

We confirmed that 1,25-D3 reduces infarct volume and has
a neuroprotective effect after cerebral ischemia injury in rats
by TTC staining. Since our group previously demonstrated that
1,25-D3 reduces infarct size and attenuates neuronal cell death
via PPAR-γ during cerebral ischemia (10). What is more, we find
that 1,25-D3 can increase the CBF. As shown by CD31 and IB4
staining, micro-vascular density and length in the peri-infarct
cortex was significantly higher in the 1,25-D3 group than in the
DMSO and 1,25-D3 + P5P group, which has accompanied by
increase in the number of new vessel sprouts, thereby playing
a role in promoting angiogenesis. Compensatory angiogenesis
and new capillaries improve blood perfusion around the
ischemic area, providing a suitable microenvironment for
nerve cell repair and promoting the recovery of neurological
function after ischemic stroke (23). However, compensatory
angiogenesis is often insufficient (24, 25). In order to explore
the possible mechanism of promoting angiogenesis, we analyzed
the expression of VDR, VEGF, TGF-β, and Smad2/3 at different
time points after ischemia-reperfusion. At the end, we found that
the expression of the corresponding proteins differs at different
time points after ischemia-reperfusion. In western blot and RT-
qPCR, we were surprised to find that 1,25-D3 could promote
the expression of VDR, VEGF and TGF-β signaling pathway
proteins 3 days after infarction. Because of this, we speculate
that the proangiogenic effect of 1,25-D3 may be related to the
TGF-β/Smad2/3 signaling pathway. Previous studies have shown
that 1,25-D3 can promote the activation of PPAR-γ, while PPAR-
γ and TGF-β are involved in the regulation of angiogenesis
in the central nervous system (26, 27). Our results showed
that reduction of VDR expression was strongly up-regulated by
1,25-D3 in rats under the condition of ischemia-reperfusion.
VDR affects downstream proteins by inducing TGF-β/Smad2/3
signaling pathway. In response to 1,25-D3, the TGF-β/Smad2/3
signaling pathway is enhanced and acts as its activator to regulate
downstream signaling (28–30). A large body of literature suggests
that TGF-β, its receptors, and mediators of its downstream
signaling are attractive targets for therapeutic interventions (20,
31, 32). TGF-β exerts its effects on effects mainly by upregulating
the expression of proteins through TGF-β/Smad2/3 signaling (30,
33–35).

Lack of 1,25-D3 is a decisive causative factor in several
neurodegenerative and neuropsychiatric disorders (36, 37). Once
1,25-D3 linked to the VDR, abundant biological effects can be
exerted (8, 38). Mounting evidences have shown that 1,25-D3
plays a critical role in the process of stroke, including regulating
the expression of neurotrophic factors and hormonal (36, 39, 40).
It is involved in immune cell differentiation, gut microbiota
modulation, gene transcription, blood-brain barrier integrity and
so on (36, 39, 41). Further studies are needed to validate TGF-
β isoforms, and their receptor subtypes involved in the TGF-
β/Smad2/3 pathway.

In conclusion, we have demonstrated that 1,25-
D3 promotes angiogenesis of the cortex around the
ischemic boundary zone. Our results suggest that 1,25-D3
promotes angiogenesis by up-regulating TGF-β/Smad2/3
signaling pathway via VDR activation, thereby alleviating
ischemia/reperfusion injury and improving stroke outcomes
in rats.

Our study has several limitations to be resolved in
the future. In this study, we show the effect of 1,25-
D3 act on TGF-β/Smad2/3 in stroke. While TGF-β has
several subtypes as TGF-β1 TGF-β2, TGF-β3 and so on.
Future work should extend to the mechanism study for
detail. In addition, no VDR overexpression group was set
up in this study, and the effect of VDR was verified
only by the antagonist group, thus plasmid construction
will be performed in the next assay. Moreover, few studies
address the effect of 1,25-D3 response on long-term outcome
during late stage of stroke. Therefore, future studies are
required to determine the potential impact of 1,25-D3 during
stroke recovery.
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Cardiocerebrovascular diseases (CCVDs) are the leading cause of death worldwide;

therefore, to deeply explore the pathogenesis of CCVDs and to find the cheap and

efficient strategies to prevent and treat CCVDs, these are of great clinical and social

significance. The discovery of nitric oxide (NO), as one of the endothelium-derived

relaxing factors and its successful utilization in clinical practice for CCVDs, provides

new ideas for us to develop drugs for CCVDs: “gas medicine” or “medical gases.” The

endogenous gas molecules such as carbon monoxide (CO), hydrogen sulfide (H2S),

sulfur dioxide (SO2), methane (CH4), and hydrogen (H2) have essential biological effects

on modulating cardiocerebrovascular homeostasis and CCVDs. Moreover, it has been

shown that noble gas atoms such as helium (He), neon (Ne), argon (Ar), krypton (Kr),

and xenon (Xe) display strong cytoprotective effects and therefore, act as the exogenous

pharmacologic preventive and therapeutic agents for CCVDs. Mechanistically, besides

the competitive inhibition of N-methyl-D-aspartate (NMDA) receptor in nervous system

by xenon, the key and common mechanisms of noble gases are involved in modulation

of cell death and inflammatory or immune signals. Moreover, gases interaction and

reduction in oxidative stress are emerging as the novel biological mechanisms of noble

gases. Therefore, to investigate the precise actions of noble gases on redox signals,

gases interaction, different cell death forms, and the emerging field of gasoimmunology,

which focus on the effects of gas atoms/molecules on innate immune signaling or

immune cells under both the homeostatic and perturbed conditions, these will help us

to uncover the mystery of noble gases in modulating CCVDs.

Keywords: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), cardiovascular diseases, cerebrovascular

disease, gasoimmunology
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INTRODUCTION

Cardiovascular diseases (CVDs) are a group of disorders of
heart and blood vessels, CVDs include primary hypertension,
pulmonary arterial hypertension, abdominal aortic aneurysm,
coronary heart disease (CHD) (especially myocardial ischemia,
which is primarily mediated by the buildup of atherosclerotic
plaque in the blood vessels that supply oxygen and nutrients
to the heart, coronary artery vasospasm, and coronary
microvascular dysfunction) (1–4), congenital heart disease,
valvular heart disease (e.g., rheumatic heart disease), myocarditis
and inflammatory cardiomyopathy, diabetic cardiomyopathy,
and other conditions, ultimately cardiac arrhythmias and/or
heart failure; additionally, cerebrovascular diseases (CBVDs), a
range of conditions influencing brain and cerebral arteries, e.g.,
ischemic stroke, also belong to CVDs; therefore, CVDs also refer
to as cardiocerebrovascular diseases (CCVDs) (5–13). Heart
attack and stroke are the representative diseases of CCVDs (14).
CCVDs are the leading cause of death globally and the statistical
data from the WHO indicate that CCVDs take an estimated
17.9 million lives each year (15). Therefore, to deeply explore
the pathogenesis of CCVDs and to find the cheap and efficient
strategies to prevent/treat CCVDs, these are of great clinical and
social significance.

The discovery of nitric oxide (NO), as one of the endothelium-
derived relaxing factors (for which the Nobel Prize in Physiology

FIGURE 1 | Noble gases have emerged as the novel preventive and therapeutic agents for cardiocerebrovascular diseases (CCVDs). The noble gas family includes

helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the radioactive radon (Rn). They are monatomic gases at the far right of the periodic table and are

chemically inert. Last but not least, it has been shown that most of noble gases have essential biological effects, including modulation of cell death,

immunity/inflammation, gases interaction, and oxidative stress. They have been acted as protectants for alleviating the injuries of heart, brain, blood vessels (e.g.,

endothelial cells), liver, kidney, and intestine in animal models or in human body. Therefore, noble gases therapy provides a novel idea for the prevention and treatment

of CCVDs.

or Medicine was awarded in 1998) and its successful clinical
application in CCVDs, opens a new direction for the scientists
to discover drugs for treating CCVDs: “medical gases” or “gas
medicine” (16–18). For example, the endogenous gases, including
carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide
(SO2), methane (CH4), and hydrogen (H2, which is primarily
produced by intestinal flora), have been shown to prevent or treat
CCVDs in animals or in human body (19–32). Recently, noble
gas family has emerged as the novel exogenous pharmacologic
preventive and therapeutic agents for CCVDs (33–38). The aim
of this comprehensive review is to summarize and discuss the
current understanding of the biological effects and mechanisms
of noble gases on CCVDs.

BASIC CHARACTERISTICS OF NOBLE
GASES

The noble gases refer to the gas atoms corresponding to all
the group 18 elements on the periodic table of the elements.
This family constitutes six naturally occurring gases: helium
(He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the
radioactive radon (Rn) (38) (Figure 1). Xe was first shown to
possess anesthetic properties in 1951, whereas none of the other
five noble gases show anesthetic properties under normobaric
conditions (38, 39). At normal temperature and normal pressure,
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noble gases are odorless, colorless, and monatomic gases that
are characterized by a filled outer shell of valence electrons,
making them “inert” or at least less capable of interaction with
other compounds; therefore, they are also known as “inert gases”
(34–36, 38). However, some of these noble gases have strong
biological activities such as the properties of neuroprotection and
cardioprotection (34–36, 38).

NOBLE GASES: THE “NEW WORLD” OF
CARDIOCEREBROVASCULAR
PROTECTION

Helium
Helium is the secondmost abundant element in the universe after
H2; however, He is only sixth element in the composition of dry
air (0.00052%) (40). It is the lightest noble gas with an atomic
weight of 4 g/mol and has the lowest melting (−458◦F,−272.2◦C)
and boiling (−452.1◦F, −268.9◦C) points of all the elements
(36, 40). Due to the lower density and viscosity, heliox-21 (21%
oxygen and 79% helium), which weight is one-third compared
with air, can reduce work of breathing; therefore, heliox has been
reported to be effective in a variety of respiratory conditions,
including asthma exacerbation, post-extubation stridor, croup,
upper airway obstruction, bronchiolitis, acute respiratory distress
syndrome (ARDS), chronic obstructive pulmonary disease
(COPD), and pulmonary function testing (36, 40, 41). He has
the lower solubility than nitrogen; the mixture of helium and
oxygen rather than nitrogen and oxygen decreases the formation
of nitrogen bubbles and, therefore, alleviating decompression
illness in deep-sea divers (41). Moreover, He is safe for abdominal
insufflation andmay be the insufflating agent of choice in patients
with significant cardiopulmonary disease and laparoscopic renal
surgery (42–44). He inhalation enhanced vasodilator effect of
inhaled NO on pulmonary vessels in hypoxic dogs; this enhanced
vasodilatory effect of NO on He might be associated with
facilitated diffusion of NO diluted in the gas mixture with He
(45). In the past decade, a series of studies showed that He has
essential cytoprotective effects on endothelial cells (ECs) (46–48),
heart (49–60), brain (59, 61–67), liver (68), and intestine (69).

Helium in Endothelial Protection
Caveolin-1 (Cav-1) was secreted after He exposure in vitro,
altered the cytoskeleton, and increased the adherent junction
protein vascular endothelial-cadherin (VE-cadherin) and gap
junction protein connexin 43 (Cx43) expression thus, resulting
in decreased permeability in ECs (47). These indicated that
He protected endothelium by maintaining barrier function
and preventing leakage and tissue edema and ultimately
preserving endothelial function (47). Furthermore, the plasma
of healthy volunteers breathing He protected ECs against
hypoxic cell damage by increasing Cav-1 expression and Cav-
1 knockdown in ECs abolished this effect (48); the interesting
question is what contents from the plasma contribute to these
effects. However, another study showed that pretreating with
He increased ECs damage in vitro under the stimulation

of tumor necrosis factor-α (TNF-α) or hydrogen peroxide
(H2O2) (70).

Helium can induce preconditioning in human endothelium
in vivo: inhalation of 3 cycles of heliox21 for 5min, followed
by 5min of normal air breathing either directly before forearm
ischemia (20min) or 24 h before forearm ischemia (20min),
attenuated ischemia-reperfusion (I/R)-induced endothelial
dysfunction independent of endothelial NO synthase (eNOS),
as that the protection of He was not abolished after blockade
of eNOS (46). However, Eliana Lucchinetti et al. (71) showed
that heliox-50 (50% helium and 50% oxygen), breathing from
15min before ischemia until 5min after the onset of reperfusion,
provided modest anti-inflammatory effects, but did not restore
endothelial dysfunction of the forearm in humans in vivo. A
case report indicated that accidental inhalation of He under
high pressure can cause symptomatic cerebral and coronary
artery gas embolism (72). Therefore, the concentration, time,
and mode (continuously or intermittently) of supplying He, the
different pathological stimuli, and in vivo and in vitro might be
responsible for the above controversies.

Helium in Cardioprotection
Helium preconditioning (HePC) can considerably reduce infarct
size in myocardial I/R injury model of rabbits, young rats but
not aged rats, Zucker lean rat but not Zucker obese rats (49–
51, 73) (Table 1). These He-induced cardioprotection are related
to activating phosphoinositide 3-kinase (PI3K), p44/42 mitogen-
activated protein kinase (MAPK) (ERK1/2), p70S6 kinase
(p70s6K), cyclic AMP (cAMP)-dependent protein kinase (PKA),
cyclooxygenase-2 (COX-2), opioid receptors, mitochondrial
Ca2+-sensitive potassium channel, and mitochondrial ATP-
regulated potassium (KATP) channels (possibly producing
small quantities of ROS); inhibiting mitochondrial permeability
transition pore (mPTP) opening and NO production by eNOS
(49, 50, 53, 73–76, 78). Moreover, suppression of glycogen
synthase kinase-3 (GSK-3) or p53 lowered the threshold of He-
induced preconditioning via themPTP-dependent mechanism in
vivo (77). He also induced post-conditioning in the myocardial
I/R injury model of Zucker lean rats or male Wistar rats, these
protective effects on Wistar rats are related to increasing genes
involved in autophagy, inhibiting genes involved in apoptosis,
increasing protein levels of Cav-1/3, and activating ERK1/2 and
Akt (51, 56, 57) (Table 1). However, inhaled 30 or 60min of 70%
He during reperfusion dose does not induce cardioprotection in
male adult Wistar rats (55). This process was not accompanied
by reducing the hyperacute burst of inflammatory cytokines,
but the prolonged He inhalation might contribute to the
proinflammatory response, such as increasing cytokine-induced
neutrophil chemoattractant 3 (CINC-3) and interleukin-1β (IL-
1β) in myocardium from area at risk, but not from area not
at risk (55). Moreover, one clinical investigation indicated that
HePC (3 × 5min of 70% He and 30% oxygen was applied
before aortic cross-clamping), helium post-conditioning (15min
of He was applied before release of the aortic cross-clamp and
was continued for 5min after begin of reperfusion) or the
combination had no effects on the activation of p38 MAPK,
ERK1/2, or on the levels of protein kinase C-epsilon (PKC-ε)
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TABLE 1 | Noble gases alleviate myocardial ischemia/reperfusion (I/R) injury in animal models.

Noble gases Animals Doses and Time Key Results References

Helium Male New Zealand white rabbits

(2.5–3.0 kg)

Rabbits received 1, 3 or 5 cycles of 70% He-30% O2 for 5min

interspersed with 5min of 70% N2-30% O2 or an air-oxygen mixture

before ischemia

Reduced infarct size (49–51, 53, 54, 56, 57,

73–78)

Young male Hannover Wistar rats

(352 ± 15 g)

Rats received 70% He-30% O2 for three 5-min periods, interspersed

with two 5-min washout periods 10min before ischemia

Male Wistar rats (∼328g) Rats received 70% He-30% O2, 50% He-30% O2-20% N2, or 30%

He-30% O2-40% N2 for 15min 24 h before ischemia, or received 30%

He-30% O2-40% N2 for 15min on 3, 2, or 1 day(s), interspersed by

24 h, respectively

Zucker lean rat (238–262 g) Rats received 70% He-30% O2 for three 5-min periods, interspersed

with two 5-min washout periods 10min before ischemia, or inhaled

70% He-30% O2 for 15min at the onset of reperfusion

Male Wistar rats (354–426g) Rats were subjected to 25min ischemia and 15min reperfusion, and

70% He-30% O2 post-conditioning (PostC) encompassed the entire

reperfusion phase

Male Wistar Kyoto rats (WKR) and

spontaneous hypertensive rats

(SHR) (12–14 weeks)

PostC, Late preconditioning (LPC) + PostC, or Early preconditioning

(EPC) + LPC + PostC was performed in WKR. EPC + LPC + PostC

was performed in SHR. EPC comprised 3 short cycles of 70% He-30%

O2 (5min each, with wash outs of 5min in between and a final washout

episode of 10min before ischemia). LPC was induced by 15min of

70% He-30% O2 administration 24 h before ischemia. PostC was

induced by 15min of 70% He-30% O2 administration since the

beginning of reperfusion

Neon Male New Zealand white rabbits

(2.5–3.0 kg)

Rabbits received 3 cycles of 70% Ne-30% O2 for 5min interspersed

with 5min of 70% N2-30% O2 before ischemia

Reduced infarct size (73)

Argon Male New Zealand white rabbits

(2.5–3.0 kg)

Rabbits received 3 cycles of 70% Ar-30% O2 for 5min interspersed

with 5min of 70% N2-30% O2 before ischemia

Reduced infarct size (73, 79)

Male Wistar rats (240–380g) Inhalation of 80% Ar-20% O2 for 20min starting 5min before

reperfusion

Preserved left ventricular function

at 1 and 3 weeks after surgery

Krypton No report yet No report yet No report yet None

Xenon New Zealand white rabbits

(2.7–3.4 kg)

Inhalation of 70% Xe-30% O2 during first 15min of reperfusion Reduced infarct size (80–87)

Male Wistar rats (275–350g) Administration of 20% Xe-80% O2 was commenced 3min prior to, and

discontinued 30min after, the onset of reperfusion. Moreover, active

cooling was commenced 5min prior to, and hypothermia maintained

for 1 h after, the onset of reperfusion

Male Wistar rats (200–250 or

300–450g)

Rats received 70% Xe-25% O2-5% N2 for three 5-min periods,

interspersed with two 5min and one final 10-min washout periods

before ischemia

Male Wistar rats (280–340g) Rats received 3 cycles of 70% Xe-30% O2 administered for 5- min

periods interspersed with 5 -min intervals 70% N2-30% O2 following by

a final 15-min interval of 70% N2-30% O2 before ischemia

Male Wistar rats (200–250g) 24 h before ischemia, rats received 70% Xe-30% O2 for 15min

Radon No report yet No report yet No report yet None
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and heat-shock protein 27 (HSP27) in patient hearts undergoing
coronary artery bypass graft surgery; HePC and helium post-
conditioning did not affect postoperative troponin release in
these patients (58). In contrast to the healthy Wistar Kyoto
rats (WKRs), only a triple intervention of He conditioning
can reduce cell damage after myocardial I/R in spontaneous
hypertensive rats (SHR), suggesting the presence of a threshold
in the hypertensive heart (54) (Table 1). An in-vitro study
indicated that He conditioning contributed to cardioprotection
by increasing fibroblast migration, but not by releasing protective
medium extracellular vesicles or soluble factors from the cardiac
fibroblasts (88). Our recent study indicated that intraperitoneal
injection of 99.999% He gas improved lipopolysaccharide (LPS)-
induced left ventricular dysfunction and cavity enlargement in a
dose-dependent manner, it is better at the dose of 1.0 ml/100 g
(89). Mechanistically, He inhibited Toll-like receptor 4 (TLR4)
expression, reduced the phosphorylation of nuclear factor-kappa
B (NF-κB), and subsequently alleviated interleukin-18 (IL-18)
and TNF-α expression in heart (89). The dose effect of He gas
has also been confirmed in intestine; the HePC profile consisting
of three cycles of 10 or 15min He breathing interspersed with
three 5-min washout periods by breathing room air reduced
I/R-induced intestinal injury, inflammatory response, and cell
apoptosis; however, the 2- or 5-min He breathing dose does not
confer any protective effects (69).

Helium in Neuroprotection
Helium displayed neuroprotective effects on a traumatic brain
injury model in vitro (61) and in a decompression-induced
neurological deficits model in vivo (90). Breathing 70% He
during a middle cerebral artery occlusion (MCAO) for 2 h and
early reperfusion (1 h) reduced infarct volume and improved
neurological deficits 24 h after MCAO in rats (91). Seventy-
five percentage He treatment from 1 h after reperfusion to 4 h
after reperfusion also provided neuroprotection by producing
hypothermia in rats (62). In a rat resuscitation model, HePC
and He post-conditioning (received 70% He and 30% oxygen
for 5min before cardiac arrest and for 30min after restoration
of spontaneous circulation) reduced apoptosis in brain, but
had no influence on viable neuron count and no beneficial
effects were seen on neurofunctional outcome (59). He-PC-
induced NO production and subsequent NO-mediated up-
regulation of antioxidases (e.g, nuclear factor E2-related factor
2), angiogenesis, and inhibition of inflammation and apoptosis,
all contributed to the neuroprotective effect of helium in a
neonatal cerebral hypoxia/ischemia model (63, 65, 66). However,
in a clinical perspective for the treatment of acute ischemic
stroke, He should not be administered before or together
with tissue plasminogen activator therapy due to the risk of
inhibiting the benefit of tissue plasminogen activator-induced
thrombolysis; He therapy could be an efficient neuroprotective
agent, if given after tissue plasminogen activator-induced
reperfusion (64).

Helium in Hepatic Protection
Fukuda et al. have confirmed that inhalation of H2 gas (1–4%
at 10min before reperfusion until the end of reperfusion)

suppressed hepatic I/R (90/180min) injury through reducing
oxidative stress in male C57 BL/6N mice (4–5 weeks old, 15–
18 g); however, 4% He gas showed no protective effect (92).
Similarly, HePC (three cycles of ventilation with inhalation of
mixture of 70% He and 30% oxygen for 5min, each followed
by 5-min washout with inhalation of mixture of 30% oxygen
and 70% nitrogen) did not attenuate hepatic I/R (45/240min)
injury in male Wistar rats (300 ± 30 g), although there was
evidence for a modulation of the inflammatory response (93).
In contrast, Zhang et al. have revealed that HePC (70%
He-30% oxygen mixture inhalation for three 5-min periods
interspersed with three 5-min washout periods using room
air) alleviated 90min ischemia-induced liver injury at 1, 3,
and 6 h after reperfusion in male BALB/c mice (25–30 g);
mechanistically, activation of hepatic adenosine A2A receptor-
PI3K-Akt axis, alleviation of necrosis and apoptosis, reduction
of IκBα phosphorylation, and TNF-α, interleukin-6 (IL-6),
monocyte chemotactic protein-1 (MCP-1) and chemokine (C-X-
C motif) ligand 10 (CXCL10, IP-10) expression, and inhibition
of inflammatory cell infiltration in liver all contributed to
this protective effects of HePC (68). The difference of animal
strains, the time of I/R, and even the gas mixture used in
washout periods might be responsible for these controversy.
Furthermore, Zhang et al. have confirmed that HePC-induced
protection in hepatic I/R injury and Akt activation were
dependent on the interaction between He inhalation and
air gaps, but not any of the two factors alone (68). As
the protection of the intermittent pattern of He inhalation,
drinking hydrogen-rich water, or intermittent hydrogen gas
exposure, but not lactulose or continuous hydrogen gas exposure,
prevented 6-hydroxydopamine-induced Parkinson’s disease in
rats (94). Therefore, the continuous heliox inhalation, rather than
intermittent pattern, might be responsible for the none alteration
of myocardial infarct size or the extent of no reflow in rabbits
with continuous heliox breathing during 30min of ischemia and
180min of reperfusion (95).

Argon
Argon in Neuroprotection
When 7-day-old postnatal Sprague-Dawley rats subjected to
hypoxic-ischemia (moderate) injury, 2 h after hypoxic insult,
exposure of He, Ar, and Xe (70% noble gas balanced with
oxygen) for 90min improved cell survival, brain structural
integrity, and neurologic function on postnatal day 40 compared
with nitrogen, whereas only Ar and Xe reduced infarct volume
after more severe hypoxic-ischemic injury (96). The in-vivo
and in-vitro studies indicated that Ar acted as a protector
for cerebral ischemia injury, brain trauma, and cardiac arrest-
induced neurological damage (97–110). The neuroprotective
effects of Ar were involved in inhibiting microglia/macrophage
activation and enhancingM2microglia/macrophage polarization
(107, 109, 110), reducing stress-activated protein kinase/c-Jun
N-terminal kinase (SAPK/JNK) activation and high mobility
group protein B1 (HMGB1) expression (106), inhibiting TLR2/4-
mediated activation of signal transducer and activator of
transcription 3 (STAT3) and NF-κB, and subsequently decreasing
IL-8 expression (111).
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Argon in Cardioprotection
Argon displayed cardioprotective effects both in vitro and in
vivo (73, 79, 106, 112, 113). Pre-treatment with 30 or 50%
Ar for 90min before oxygen-glucose deprivation protected
human cardiac myocyte-like progenitor cells against apoptosis
via activation of ERK, Akt, and biphasic regulation of JNK
(113). Preconditioning with three cycles of 50% Ar (50% Ar,
21% oxygen, and 29% nitrogen) for 5min, interspersed with
5min of 79% nitrogen-21% oxygen in vivo, enhanced post-
ischemic cardiac functional recovery following cardioplegic
arrest and global cold ischemia in vitro; this protective effect
of Ar was related to improving cardiac energy metabolism,
inhibiting JNK phosphorylation, and HMGB1 expression (106).
The cardioprotection of Ar on ischemia was also confirmed in
rabbit in vivo (73) (Table 1). Lemoine et al. have further revealed
the therapeutic effect of Ar on left ventricular dysfunction
in myocardial I/R injury in vivo, in which Ar activated
PI3K/Akt mitogen-activated protein kinase kinase (MEK)-
ERK1/2 signaling, inhibited the opening of mitochondrial
permeability transition pore (79) (Table 1).

Argon in Hepatic Protection
Argon is the key modulator of IL-6 expression in different
liver injury models. Under the physiological conditions, IL-
6 is essential for proper hepatic tissue homeostasis, liver
regeneration, infection defense, and fine-tuning of metabolic
functions, while persistent activation of IL-6 seems to be
detrimental, impairs liver regeneration and can even lead to
the development of liver cancer (114, 115). Inhalation of 50%
Ar inhibited liver regeneration after hepatic I/R or after partial
hepatectomy in rats, the former may be related to upregulation
of IL-1β and IL-6 in liver, and the latter may be related
to the downregulation of hepatocyte growth factor (HGF)
and IL-6 (116, 117). Breathing 70% Ar in a rabbit model
of abdominal aorta occlusion for 30min and reperfusion for
300min also reduced the plasma concentrations of IL-6 and
HMGB1, improved hepatic and renal injuries (118). The detail
mechanisms of Ar-mediated IL-6 expression are not clear.

Xenon
Xenon in Neuroprotection
As that of Ar, Xe also has essential neuroprotective effects
and it has been extensively investigated in the animal models
of ischemia- and/or hypoxia-induced nervous system damage,
such as, stroke, brain trauma, and hypoxic-ischemic injury in
rat hippocampus (61, 96, 119–135). Glutamate mediates most
excitatory neurotransmission in the mammalian central nervous
system; normal activation of glutamate receptors mediates, in
large measure, physiological excitatory synaptic transmission in
the brain and is, therefore, crucial for the normal functioning
of nervous system (136, 137). However, among three classical
glutamate-gated ion channels, excessive activation of N-methyl-
D-aspartate receptor (NMDA-R) leads to increasing intracellular
calcium concentrations and the consequent production of
damaging free radicals and activation of proteolytic processes
that contribute to cell injury or death (136, 138). Xe has been
identified to competitively inhibit the glycine site of NMDA-R,

thus contributing to neuroprotective effects (128, 133, 139, 140)
and it has carried out several clinical trials on brain–heart injury
after cardiac arrest and achieved the positive results (141–143).

Xenon in Cardioprotection
Xenon is a new type of gaseous anesthetic with minimal
hemodynamic side effects, thus, it is an ideal anesthetic for
patients with heart damage (80, 144), while it has been suggested
that Xe should be used with caution in patients with known
intracranial hypertension (145–148). Global administration of
50 or 70% Xe only significantly reduced left ventricular systolic
pressure and the maximum rate of pressure increase (dP/dtmax),
the regional myocardial function and coronary blood flow in
left anterior descending coronary artery- and left circumflex
coronary artery-dependent myocardium were not changed;
regional administration of 50 or 70% Xe only to the left
anterior descending-perfused myocardium had no influence
in global hemodynamics, regional myocardial function, and
coronary blood flow in the circumflex coronary artery-dependent
myocardium, while 70% xenon, rather than 50% xenon, reduced
systolic wall thickening by 7.2 ± 4.0% and mean velocity of
systolic wall thickening by 8.2 ± 4.0% in the left anterior
descending coronary artery-perfused area, resulting in a small but
consistent negative inotropic effect on beagle dog heart in vivo
(149). Forty or 80% Xe did not significantly alter NO-dependent
flow response, the electrical, mechanical, or metabolic effects
in isolated guinea pig hearts, possibly due to no alteration of
major cation currents in cardiomyocytes by Xe (150). Moreover,
breathing 70% Xe had only minimal negative inotropic effects
on rabbits with left ventricular dysfunction after coronary artery
ligation (151). Schroth et al. also showed that 65%Xe did not alter
myocardial contractility and the response to inotropic stimuli
such as calcium, isoproterenol, or increase in pacing frequency
in isolated guinea pig ventricular muscle bundles (144). The
biological mechanisms of cardiovascular stability and unchanged
muscle sympathetic activity during Xe anesthesia have been
revealed by the Peter Kienbaum group; they found that the
increased concentrations of norepinephrine at the synaptic cleft
and in plasma by Xe in an NMDA-R-dependent mechanism
contributed to the hemodynamic stability of patients during Xe
anesthesia (152).

However, Xe (0, 20, 50, and 65%), in addition to basic
intravenous anesthesia, has been shown to elicit downregulation
of heart rate and cardiac output with no change in mean arterial
pressure, decrease portal venous blood flow with no change
in hepatic arterial blood flow, and reduce total hepatic oxygen
delivery and venous hepatic oxygen saturation, but did not
impair intestinal oxygenation in pigs (153, 154). 73–78% Xe with
additional supplementation of pentobarbital and buprenorphine
increased oxygen contents of hepatic venous blood in pigs
(155). These indicate that the basic intravenous anesthesia might
influence the effects of Xe on cardiovascular activities and hepatic
oxygen contents.

Under pathological conditions, 70% Xe inhalation in the early
stage of reperfusion can reduce infarct size after myocardial
ischemia in rabbits (81); combined application of 20% Xe
and 34◦C hypothermia in early reperfusion can also reduce
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myocardial infarction size in rats (82) (Table 1). The mechanisms
of Xe in cardioprotection have been relatively clear. Xe first
activates mitochondrial KATP channel and phosphatidylinositol-
dependent kinase-1 (PDK-1); these two activates PKC-ε, PKC-
ε activates p38 MAPK, subsequently, two downstream targets
of p38 MAPK, MAPK-activated protein kinase-2 (MAPKAPK-
2/MK-2) and HSP27, are phosphorylated, and then, induces the
translocation of HSP27 to particulate fraction and increases F-
actin polymerization (80, 83, 84). Besides p38 MAPK, ERK1/2,
and COX-2 are essential mediators of Xe preconditioning
(85, 86); Xe can also induce the phosphorylation of Akt and
GSK-3β, inhibit Ca2+-induced opening of mPTP, and preserve
mitochondrial function (87). Similar to Ar, Xe also acts as an
inhibitor of NF-κB activation and prevents adhesion molecule
expression in TNF-α-treated ECs in vitro (156). The saturation
point of Xe in water without a cage vehicle for encapsulation of
xenon was 0.22mM; when the cage molecule 2-hydroxypropyl-
β-cyclodextrin (HPCD) was added, Xe solubility increased from
0.22 to 0.67mM; supplement of this Xe-enriched solutions by
gavage improved hypertension and left ventricular hypertrophy
and dysfunction in aged apolipoprotein E (ApoE)-knockout mice
fed high-fat diet (HFD) for 6 weeks (157).

Xenon in Renoprotection
Both the Ar and Xe have been shown as renoprotectants in
kidney transplantation (158, 159). In addition, 70% Xe has
been reported to improve kidney function and renal histology
and decrease neutrophil chemoattractants expression in kidney,
thereby attenuating the glomerular neutrophil infiltration in
an accelerated and severe lupus nephritis model in female
NZB/W F1 mice (160). This protective effects of Xe on kidney
was mediated by enhancing renal hypoxia inducible factor 1-
α expression; decreasing serum levels of antidouble-stranded
DNA autoantibody; and inhibiting ROS production, glomerular
deposition of IgG and C3 and apoptosis, nucleotide-binding
oligomerization domain (NOD)-like receptor family protein 3
(NLRP3) inflammasome and NF-κB activation, and intercellular
cell adhesion molecule-1 (CD54 or ICAM-1) expression in
kidney (160). The role of Xe and other noble gases on the
activation or inhibition of other forms of inflammasomes still
need further investigation.

Neon and Kr
The biological effects of Ne and Kr have been relatively few
investigated in the past. Similar to He and Ar, Ne has also
been shown to reduce the infarct area in rabbit model of
myocardial I/R injury (73) (Table 1). Kr gas can promote
the survival rate of Japanese quails embryos under acute
hypoxia, Kr partial pressure of 5–5.5 kg/cm2 produces the
narcotic effect on adult Japanese quails (161). However, in
hypoxia/glucose deficiency injury model and in focal mechanical
injury model of mouse hippocampal slices, only Ar and Xe
showed the neuroprotective effects, while He, Ne, and Kr
did not show neuroprotective effects (128, 133). Thus, the
biological effects and mechanisms of Ne and Kr are worthy of
further exploration.

Radioactive Rn
Radon is an imperceptible natural occurring radioactive noble
gas that exists in soil, water, and outdoor and indoor air;
exposure to Rn accounts for more than 50% of the annual
effective dose of natural radioactivity, it contributes as the
largest single fraction to radiation exposure from natural sources
(162, 163). Rn is a recognized pathogenic factor of human lung
cancer, it is the second leading cause of lung cancer death
after tobacco smoke (162). However, a certain dose of Rn has
been reported for treating chronic musculoskeletal diseases, e.g.,
ankylosing spondylitis, osteoarthritis, or rheumatoid arthritis,
these effects may be related to the regulation of oxidative stress
and inflammation (163).

PERSPECTIVE

The noble gases are chemically inert because their outer electron
orbitals are completely filled; however, they have been found to
be very biologically active (159, 164). The noble gas family has
emerged as the essential cellular or organic protectants such as in
ECs, heart, brain, liver, kidney, and intestine; therefore, it protects
against CCVDs (Figure 1).

Helium, Ar, and Xe displayed the neuroprotective effects on
acute brain I/R injury models in vivo or in vitro. He, Ne, Ar,
and Xe can reduce infarct size; Ar can improve the impaired
left ventricular function in myocardial I/R injury animal models;
however, the roles of other noble gases on left ventricular
function under I/R or other pathological conditions still need
further investigation (Table 1). It has been reported that oral
administration of 6 weeks of Xe-enriched solution can be a
promising nutraceutical strategy for cardiovascular protection
(157). However, the effects of noble gases on chronic CCVDs and
the side effects of long-time supplement of noble gases still need
further investigation.

Besides competitively inhibiting NMDA-R by Xe in
nervous system, modulation of cell death (mainly apoptosis),
inflammatory or immune signals, oxidative damage, and
gases interaction are the essential mechanisms of noble gases
(Figure 1). The detail roles of noble gases on redox signaling,
necrosis, autophagy, pyroptosis, and ferroptosis, which all play
essential roles in CCVDs (165–167), and on other novel cell
death types, such as alkaliptosis (168) and oxeiptosis (169),
still need further investigation. The modulation of TLR4
signaling by He (89), NLRP3 inflammasome by Xe (160), and
TLR2/4-mediated signaling by Ar (111) indicated that noble
gases might act as essential modulators of innate immune
signaling. Innate immune signaling is a complex cascade that
quickly recognizes pathogen-associated molecular patterns
(PAMPs) or damage-associated molecular patterns (DAMPs)
through multiple germline-encoded cell surface or cytoplasmic
pattern recognition receptors (PRRs), then, transmits signals
through adaptors, kinases, and transcription factors, resulting
in the production of cytokines (170–174). The mammalian
host innate defense system utilizes more than 50 PRRs, which
can be divided into two classes: the membrane-bound PRRs
[including TLRs, C-type lectin receptors (CLRs), and receptors
for advanced glycation end-products (RAGE)] and the cytosolic
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PRRs [including RIG-I-like receptors (RLRs), NOD-like
receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors
(ALRs), and other nucleic acid-sensing receptors] (173, 174).
Gasoimmunology, which investigates the effects of medical gases
(such as NO, CO, H2S, SO2, H2, CH4, and noble gases) on
innate immune signaling or on immune cells under both the
homeostatic and perturbed conditions, will help us to open a
novel door for medical gases investigation. Moreover, NO, CO,
H2S, SO2, H2, and CH4 are essential endogenous gas molecules
in modulating cardiocerebrovascular homeostasis (19–32). The
cardioprotection of He is partially mediated by inducing NO
production through eNOS in rabbits (78). It is not clear whether
other noble gases can influence the levels and/or activities
of these endogenous gases, if they can, what will happen to
cardiocerebrovascular homeostasis and CCVDs?

It is not known the action forms of noble gases in vivo, by gases
directly (in the alveolus where a gas phase exists) or dissolved
non-electrolytes at very low concentration and with extremely
weak interactions with other atoms/molecules. Therefore, as that
of the small molecule signaling agents NO, CO, H2S, and their
derived species, the physical or chemical interactions between
noble elements and biological targets will be an important
factor in their roles as signaling agents; thus, a fundamental
understanding of the physics, chemistry, and biochemistry of
noble gas atoms will be essential to understand their biological,
physiological, or pathophysiological utility (175).
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Ischemic diseases are the leading cause of death and disability worldwide. The main

compensatory mechanism by which our body responds to reduced or blocked blood

flow caused by ischemia is mediated by collateral vessels. Collaterals are present in

many healthy tissues (including brain and heart) and serve as natural bypass vessels, by

bridging adjacent arterial trees. This review focuses on: the definition and significance of

pial collateral vessels, the described mechanism of pial collateral formation, an overview

of molecular players and pathways involved in pial collateral biology and emerging

approaches to prevent or mitigate risk factor-associated loss of pial collaterals. Despite

their high clinical relevance and recent scientific efforts toward understanding collaterals,

much of the fundamental biology of collaterals remains obscure.
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INTRODUCTION

Collateral vessels are anatomically defined as inter-tree anastomoses cross-connecting adjacent
arterial trees (1, 2).

Functionally, they represent a specialized network of endogenous bypass vessels, which
serve to partially attenuate hypoperfusion or ischemic injury following blockage of an artery.
Collateral retrograde perfusion from adjacent territories may provide transient or permanent
endogenous protection against ischemic injury in various organs (caused by ischemic stroke,
coronary atherosclerosis, myocardial infarction, peripheral artery disease, etc.). However, the
extent to which collaterals endow individuals with protection against occlusive disease varies
greatly and directly impacts clinical outcome (3, 4). Naturally occurring differences in the
number and diameter of collateral vessels as well as their ability to rapidly increase their
diameter upon arterial vessel occlusion limit the protective capacity of collaterals (5). In humans,
angiography of patients suffering from acute middle cerebral artery (MCA) occlusion show
that retrograde perfusion of the ischemic MCA territory downstream from the occlusion via
pial collaterals exhibits significant variation among individuals. Good collateral flow correlates
with improved likelihood of major reperfusion, reduced infarct expansion and other favorable
outcomes: infarct volume and modified Rankin scale scores at discharge are significantly
lower for patients with better pial collaterals (angiographically assessed), while the National
Institutes of Health Stroke Scale (NIHSS) score and collateral flow scores show an inverse
relationship. Nowadays,MRI diffusion and perfusion imaging together with angiographic collateral
scoring during acute cerebral ischemia show that patients with good collaterals have larger
areas with only mild hypoperfusion and reduced infarct growth within the penumbra (6).
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In an effort to standardize the terminology around collateral
vessels, Faber and colleagues (1) define collaterals as naturally
occurring artery-to-artery or arteriole-to-arteriole anastomoses
present in healthy tissues that increase their anatomic diameter,
i.e., outwardly remodel, in obstructive disease. Furthermore, they
describe two distinct types of collateral vessels:

� Collateral arteries, which are, in fact, artery-to-artery
anastomoses and occur in anatomically similar locations
among humans and other mammals. Due to their common
anatomical location, they often have a defined name (e.g.,
superior ulnar collateral artery, anterior and posterior
communicating arteries/collaterals of the circle of Willis).
Mature healthy collateral arteries exhibit minimal or no
tortuosity, have a considerably smaller capacity to increase
their lumen in obstructive disease and form differently from
microvascular collaterals.

� Microvascular collaterals are arteriole-to-arteriole
anastomoses that cross-connect a small fraction of distal-end
arterioles in the crowns of adjacent arterial trees. These
vessels in healthy humans and animals average <100
microns in diameter. Interestingly, they are completely
absent in the mouse retinal circulation. Examples are: pial
(leptomeningeal) collaterals of the brain and spinal cord,
coronary collaterals, collaterals of the skeletal muscle and
skin. They are characterized by significant tortuosity in
healthy young adults and their inherent capacity to enlarge
their lumen 5–10-fold upon occlusive disease. Between
different inbred mouse strains, there exists a large genetic
background variability in collateral number, diameter and
remodeling capacity. Considering that collateral arteries
have distinct names, usually the term collateral implies the
microvascular collaterals of a given tissue/organ.

MECHANISMS OF FORMATION—BRAIN
VS. HEART

In mice, pial collaterals have been reported to begin forming
between embryonic day 13.5 (E13.5) and 15.5 (E15.5), with the
peak collateral formation at E18.5 (7, 8). The pial vasculature
matures between E18.5 and approximately postnatal day 21
(P21), involving the pruning of a variable proportion of
nascent collaterals. The remaining collaterals undergo wall
maturation, increase their diameter and length and acquire their
characteristic tortuosity. The process of collateral formation
during embryonic and postnatal development to yield the
collateral extent present in the healthy adult tissue is termed
collaterogenesis (1). To date, many details on the mechanism
of collateral formation remain unclear: collaterals present in
the adult may arise either by 1) retention or transformation of
a capillary vessel(s) present early in embryonic/early postnatal
development (pre-existing arteriolar connections) or by 2)
sprouting from established arterioles to form novel inter-
arteriolar connections. One current hypothesis suggests that pial
collaterals form via arteriolar sprouting during late gestation (8).
This is based on the exclusion of intussusception as a forming
mechanism, as no intussusceptive pillars could be observed

via confocal or scanning electron microscopy. Additionally, the
authors identified a vessel which appears to be sprouting from a
pial arteriole.

One angiographic study (9) shows that in human embryonic
hearts (between 19 and 39 weeks, from the mid-second trimester
until the end of the third trimester), collateral coronary arteries
are already present, ranging between 3 and 50 micrometers in
diameter. It has, in fact, been confirmed that human hearts
have inherent collateral vessels in individuals with no previous
occlusion (individuals with normal coronary arteries) (10). A
more recent report investigated the presence of pre-existing
collaterals in the mouse heart using various techniques, namely:
angiographic casting, casting with low-viscosity Microfil or with
high pressure, casting after minimizing resistance, perfusion with
Evans-blue PBS, staining with Isolectin and ephrin-B2Lacz/+ on
two different backgrounds (B6 and BALB/c) (11). This study
alongside others indicates that in the mouse heart, collateral
coronary arteries form only upon vascular occlusion (also termed
neo-collateral formation, de novo collateral formation in adults),
and once again, determine the clinical outcome of infarction.
Patients with significant collateral coronary arteries can survive
having one or two completely occluded native coronary arteries
and exhibit normal heart function. Most studies of embryonic
microvascular collaterogenesis in the past two decades have
focused on microvascular collaterals of the brain and hindlimb.
A genetic lineage tracing study by He et al. (12) identified
that upon myocardial infarction in adult mice, new coronary
collateral vessels are formed from existing arteries. Briefly, the
genetic lineage tracing method uses a cell-type specific Cre driver
mouse line, which in this case is the capillary-specific Apln-
CreER. Cre is expressed as a fusion protein to the mutated
estrogen receptor (ER) to mediate activation in a conditional
fashion by treatment with Tamoxifen. Such a mouse line is
then crossed with a Cre-dependent reporter mouse line, which
can be pharmacologically activated by Tamoxifen as it harbors
a stop cassette flanked by loxP sites that are Cre-responsive
(13). This allows for the reporting of certain cell types and
their permanent lineage tracing over time, as expression of the
reporter is irreversible once activated, and passed on to daughter
cells when they divide. By genetic tracing of capillary-specific
Apln-CreER cells, the authors showed that a mid-embryogenesis
Tamoxifen induction with Apln-CreER will label both coronary
arteries and capillaries at P7. However, if Apln-CreER was
induced only after birth, at P1 or in the adult mouse, only
the coronary microvasculature is labeled. This implies that the
embryonic coronary capillaries significantly contribute to the
formation of coronary arteries. When myocardial infarction was
induced in adult-induced Apln-labeled hearts, no contribution of
capillaries was found to the newly formed collaterals. Kristy Red-
horse and colleagues (14) looked specifically into themechanisms
of formation of collateral coronary arteries and found that upon
permanent ligation of the left coronary artery (LCA) at P2
neonates, arterial endothelial cells migrate from existing arteries,
along capillaries and reassemble into collateral arteries, which
the authors termed artery reassembly. Moreover, this process
was largely dependent on the chemokine CXCL12—CXCR4
receptor signaling axis. In adult mice, the artery reassembly
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after myocardial infarction could be triggered by administering
a single dose of CXCL12.

PIAL COLLATERALS—PATHWAYS THAT
PLAY A ROLE IN THEIR DEVELOPMENT
AND MAINTENANCE

Although the question of whether collaterals possess a truly
unique transcriptional and proteomic profile remains open,
several molecular factors have been shown to affect collateral
formation, maturation, maintenance and response to ischemia.

Formation
Embryonic collateral formation is dependent on VEGF signaling.
In two mouse strains which exhibit large differences in collateral
density, namely C57BL/6 and BALB/c, Vegfa expression was
higher in the C57Bl/6 (the strain with higher collateral
density) than in BALB-c mice (7). Functionally, hypomorphic
Vegflo/+ embryos developed almost no collaterals. Inducible,
global knockdown of either Vegfa or Flk1 (VEGFR2 gene)
impairs embryonic collateral formation. However, endothelial
specific inducible Vegfa deletion had no effect on collateral
formation, suggesting that paracrine VEGF signaling is relevant
in collateral formation (8). Notch signaling works in conjunction
with VEGF signaling in the process of endothelial tip
cell selection and sprout formation. Membrane-bound Notch
becomes active only upon two cleavage steps (ADAM sheddases
participate in the 1st step, gamma secretase in the 2nd
step), which allow for its translocation to the nucleus and
target gene activation (15). Both endothelial-specific Adam10
knockdown and pharmacological inhibition of gamma-secretase
lead to an increase in embryonic collateral formation (8). The
authors suggested that paracrine VEGF through the endothelial
VEGFR2-ADAM10-Notch signaling pathway is crucial for
embryonic development of pial collaterals, and when altered,
permanently changes collateral density in the adult.

Intercellular communication to Notch is transmitted via
Delta-like 4 (Dll4). Dll4-Notch signaling is a pathway implicated
in the regulation of arterial identity and angiogenic sprouting
(15–17). Dll4 is a transmembrane ligand of Notch receptors,
selectively expressed in arterial and angiogenic tip cells during
development. Similarly, Dll4-Notch signaling restricts pial
collateral artery formation by modulating arterial branching
morphogenesis during embryogenesis (18). DLL4 heterozygous
mice show an increased number of pial collaterals compared to
littermates, whereas the infarct volume upon MCA occlusion
remains unchanged. Furthermore, functional recovery and
ischemic outcome in stroke and hindlimb ischemia models
were not improved in Dll4+/− mice, despite the clear increase
in collateral vessel number. The authors speculate that this
discrepancy is due to the adverse effects Dll4-Notch loss has on
vessel formation and remodeling during development. Together,
these results indicate that the protection pial collateral networks
provide in ischemic stroke is not only determined by collateral
numbers, but also by collateral functionality.

Mouse strains with different genetic backgrounds exhibit
wide variation in collateral density, ∼80% of which is assigned
to a polymorphic region on chromosome 7, Dce1. A single
gene, Rabep2, was identified as responsible for most of the
differences in native collateral density. Collateral formation is
impaired in Rabep2−/− embryos (5). Rabep2 is ubiquitously
expressed and associated with vesicular trafficking, particularly
in the internalization of cell surface receptors into vesicles
which fuse into early endosomes in a Rab4- and Rab5-
dependent matter. The embryonic pial plexus of Rabep2−/−

mice exhibits increased vessel diameter and reduced branching.
Moreover, early endosomes are enlarged in E14.5 Rabep2−/−

mice. In vitro, Rabep2-deficiency leads to increased Rab7 co-
localization of VEGFR2, indicating that in absence of Rabep2,
a higher proportion of internalized VEGFR2 is targeted for
degradation (19).

Maturation
Chloride intracellular channel-4 (CLIC4) is a member of a 7-
membrane-spanning family of proteins (CLICs). Knockdown of
CLIC4 impairs EC proliferation, as well as formation of EC cords
and tubular plexus. Clic4(–/–)mice have reduced native collateral
density, which results in more severe infarctions (20). In a follow-
up study, the authors have shown that Clic deficiency has no
effect on embryonic collaterogenesis, yet leads to reduced mural
cell recruitment and excessive pruning of pial collaterals. VEGF-
A overexpression in CLIC4-deficient mice partially rescues
deficits in perinatal collateral mural cell investment, and fully
rescues aberrant perinatal collateral pruning and enlarged infarct
volume after stroke in adults (21). Whereas Vegfr2 signaling is
involved in both formation and maturation of pial collaterals,
other pathways are more confined: Notch signaling seems crucial
in collateral formation and CLIC4 in collateral maturation.

Ephrin (Eph) receptors are known to control cell migration,
proliferation and mediate responses to guidance/repulsive cues.
They have well-identified roles in neuronal development (axon
guidance, neural crest migration, etc.) (22). EphrinB2 and EphB4
null mice show defects in arterio-venous patterning. Ephrin-
B2, an Eph family transmembrane ligand, marks arterial but
not venous endothelial cells from the onset of angiogenesis
whereas Eph-B4, a receptor for ephrin-B2, marks veins but not
arteries. Interestingly, endothelial-specific EphA4 deletion leads
to an early postnatal increase in collateral number, but not
diameter (23). By P21, this number lowers to wild-type values.
Further work suggests that EphA4 acts as a major suppressor of
pial collateral remodeling, as well as cerebral blood flow (CBF)
and functional recovery after permanent middle cerebral artery
occlusion, by acting as a negative regulator of Tie2 receptor
signaling (24).

Signaling in the Collaterals of the Heart
Molecular effectors and pathways responsible for collateral
formation in the mouse heart have only started to be studied.
In 2015, Zhang and Faber showed the dependency of neo-
collateral formation on MCP1—CCR2 signaling. MCP1 is
released from cardiomyocytes, endothelial, smooth muscle
cells and a variety of hematopoietic cells types and binds
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CCR2 receptors which are present on monocytes, CD4 T-
cells, endothelial cells and others. Mice lacking either MCP1 or
CCR2 exhibited reduced neo-collateral formation and increased
infarct volume (11). Interestingly, a recent cohort study showed
that low matrix metalloproteinase-9 (MMP-9) and high MCP1
levels are associated with good pretreatment collateral status in
patients suffering from acute ischemic stroke with large vessel
occlusion (25).

The chemokine CXCL12, also known as SDF1, has
chemotactic and mitogenic activity on many cell types (26).
CXCL12 signaling has an important role in vasculogenesis,
including endothelial cell migration, arterial-nerve alignment
and mediation of plexus connections to systemic arteries.
CXCL12 primarily acts through the G protein coupled receptor
CXCR4; global mouse knockouts of Cxcl12 or of Cxcr4 die
shortly before birth with vascular deficiencies in the gut, kidney,
and skin, and with a number of additional hematopoietic and
neural defects (27). Cxcl12 is important for guiding coronary EC
migration during embryonic development. One study identified
the CXCR4—CXCL12 axis as necessary for early postnatal
collateral formation in response to myocardial infarction.
Moreover, coronary collateral development was inhibited upon
endothelial Cxcl12 or arterial Cxcr4 deletion. One dose of
CXCL12 at the time of adult myocardial infarction stimulated
collateral growth. The authors suggest that in this mechanism
of arterial reassembly, arterial endothelial cells are attracted by
a capillary CXCL12 gradient, in order to migrate, expand and
establish a novel collateral artery network (14).

PIAL COLLATERALS—EMERGING
CONCEPTS IN ISCHEMIA: PREVENTIVE
CONDITIONING OF COLLATERALS (ROLE
OF EXERCISE, HYPOXIA, eNOS
SIGNALING)

The field of pial collateral biology has gained a lot of momentum
in the past two decades, yet there are still many unknowns.
Important questions are yet to be answered: 1) What prevention
measures can be taken to halt or revert the progressive loss
(rarefaction) of collaterals in aging individuals? 2) What acute
intervention steps can be taken to stimulate the inherent
bypassing capacity of collaterals upon stroke? 3) What acute
intervention steps might stimulate neo-collateral growth in
the adult?

A report from Rzechorzek et al. studied the effect of voluntary
wheel running, a proxy for aerobic exercise in mice, on the
outcome of permanentMCA occlusion in agingmice (26-month-
old mice). In this study, the authors compared 3-month-old
sedentary mice to 26-month-old sedentary and running mice.
Their results indicate that regular aerobic exercise prevents age-
induced rarefaction of pial collaterals and associated increase
in infarct volume (28). Another interesting report from Zhang
et al., examined the impact of hypoxia on adult mice neo-
collateral formation. After gradually acclimating mice to lower
concentrations of inspired oxygen and maintaining them for 2–8
weeks at 12, 10, 8.5, or 7% inspired oxygen concentrations, the

authors observed a correlation between neo-collateral formation
and hypoxemia, as well as remodeling of native collaterals and
decreased infarct volume after permanent MCA occlusion and
hypoxemia. Hypoxia led to an increased expression of Hif2α,
Vegfa, Rabep2, Angpt2, Tie2, and Cxcr4. Moreover, neo-collateral
formation was abolished in mice lacking Rabep2, and inhibited
by conditional knockout of Vegfa, Flk1, and Cxcr4 (29). These
results suggest mechanistic links between embryonic collateral
formation and neo-collateral formation in adult mice. Whether
an increased need for oxygen is enough of a stimulus for
adult physiological neo-collateral formation in humans as well is
not known.

Additionally, a recent publication indicated that pial collateral
cells are endowed with primary cilia more frequently than
their neighboring vessels, distal-most arterioles. Moreover,
collateral vessels showed an increased expression of Pycard,
Ki67, Pdgfb, Angpt2, Dll4, and Ephrinb2 when compared to
their neighboring distal-end arterioles. Collaterals were enriched
in both eNOS and phospho-eNOS compared to distal-most
arterioles (30).

Interestingly, global eNOS KOmice have fewer pial collaterals
and worse perfusion capacity upon femoral artery ligation
(31). One recent report (32) proposed the cell cycle gene
networks as the pathways responsible for the role of eNOS
in collateral health and disease. It remains to be seen which
of the effects of eNOS loss are specific for the endothelium
and what is the role of paracrine signaling in pial collateral
response to injury. In rodents, aging correlates with collateral
rarefaction (33). According to Wang et al. (31), in a hind-
limb ischemia model, aging decreases collateral responsiveness
to angiogenic stimuli and increases endothelial and smooth
muscle cell susceptibility to apoptosis via lack of functional
eNOS signaling.

CONCLUDING REMARKS AND OUTLOOK

Collateral vessels are a rare gem in vascular biology. They
undergo massive remodeling in a matter of days upon an
ischemic event, all while maintaining vessel integrity and
function. In the brain, an organ of high complexity and
metabolic demand and low regenerative capacity, this ability
of pial collateral vessels to quickly expand directly determines
the volume of the damaged neuronal tissue. Therefore, it is
of utmost importance for vascular biologists to understand
the fundamentals of collateral formation, maintenance
and remodeling in order to harness this knowledge and
translate it into generation of more targeted therapeutics.
If we understood exactly how pial collaterals form on the
levels of brain morphogenesis, individual cell behavior
and molecular drivers, we would know more about how
to reactivate collateral formation or opening in patients
suffering from ischemia with particularly poor prognosis
due to collateral rarefaction or low collateral blood flow.
In this review, we aimed to highlight the most important
findings in collateral biology, in terms of endothelial
cellular behavior in developing collaterals as well as in
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terms of molecular effectors driving collateral formation
and maturation. Despite their anatomical and biomechanical
uniqueness, we still do not know whether native collaterals are
somehow molecularly equipped to adapt to new blood flow
requirements so rapidly. Only in recent years have scientists
started to understand ways of preserving or increasing the
abundance of collaterals in tissues by means of exercise and
hypoxic treatment.

Pre-clinical models and animal research is currently
highlighting commonalities and differences in heart and
brain collaterals, and point toward signaling mechanisms of
general importance in vascular formation and remodeling,
such as hypoxia and VEGF, as well as blood flow, shear forces
and chemokine signaling. Future research will need to identify
whether specific endothelial cell types are uniquely endowed with
the capacity to form neo-collaterals upon injury, what genetic
and epigenetic mechanisms confer the risk to progressively lose
collaterals in aging, and how we can devise both preventative
and therapeutic measures to maintain and functionalize
collaterals to mitigate the most devastating consequences of
ischemic disease.
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Background: Patients with lower extremity arteriosclerosis obliterans (LEASO) are more
likely to appear to be associated with adverse cardiovascular outcomes. Currently, few
studies have reported the sex-specific characteristics and risk of major cardiovascular
and cerebrovascular adverse events (MACCEs) in LEASO. Our study was conducted
to determine the characteristics and contributions of LEASO to MACCEs in males and
females.

Methods: We conducted a single-center retrospective study of consecutively
enrolled patients with first-diagnosed LEASO at Renmin Hospital of Wuhan
University from November 2017 to November 2019. The ratio of patients
between the LEASO and control groups was 1 to 1 and based on age, sex, comorbid
diabetes mellitus and hypertension, current smoking and medications. The occurrence
of MACCEs was used as the primary endpoint of this observational study.

Results: A LEASO group (n = 430) and control group (n = 430) were enrolled
in this study. A total of 183 patients experienced MACCEs during an average of
38.83 ± 14.28 months of follow-up. Multivariate Cox regression analysis indicated that
LEASO was an independent predictor of the occurrence of MACCEs in all patients (HR:
2.448, 95% CI: 1.730–3.464, P < 0.001). Subgroup analysis by sex subgroup was
conducted for sex, and LEASO was also an independent predictor of the occurrence of
MACCEs in both male cases (HR: 2.919, 95% CI: 1.776–4.797, P < 0.001) and female
cases (HR: 1.788, 95% CI: 1.110–2.880, P = 0.017). Moreover, Kaplan–Meier analysis
indicated no significant difference in event-free survival between patients of different
sexes with LEASO (χ2 = 0.742, P = 0.389).

Conclusion: LEASO tended to a useful risk stratified indicator for MACCEs
in both male and female patients in our study. Notably, attention should be
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given to patients with LEASO who should undergo comprehensive cardiovascular
evaluation and intervention, even if there is a lack of traditional cardiovascular
risk factors.

Keywords: lower extremity arteriosclerosis obliterans, major cardiovascular and cerebrovascular adverse events,
gender, panvascular disease, coronary artery disease

INTRODUCTION

Lower extremity arteriosclerosis obliterans (LEASO), the main
and most common type of lower extremity peripheral arterial
disease (PAD), tends to increase with age (1, 2). Notably,
accumulating evidence suggests that people suffering from PAD
are at higher risk of other health risks, including cardiovascular
death, stroke, heart failure, and myocardial infarction (MI) (3,
4). Furthermore, patients with lower extremity PAD maintained
higher cardiovascular (CV) mortality than MI patients due
to less intensive treatment, which is closely associated with
heart failure hospitalization, ischemic stroke and CV death
(5, 6). Notably, LEASO shares cardiovascular risk factors in
common with coronary heart disease (CHD) and may also have
a similar pathophysiologic basis. Therefore, it is significant for
patients with LEASO to carry out comprehensive cardiovascular
follow-up examinations and medical prevention.

It is well known that sex is a substantial unchangeable
cardiovascular risk factor, and men and women differ in
terms of characteristics and management of coronary artery
disease (CAD) (7, 8). A previous study showed that females
with acute ischemic stroke who received parallel in-hospital
care had more vascular risk factors and were more likely
to be discharged with disability (9). In addition, female
patients with CAD carry a higher risk of heart failure,
ischemic stroke and all-cause mortality than male patients
with CAD (10). Nevertheless, men with AF reported better
overall health-related quality of life (11). Moreover, males
and females also differ with regard to key features of other
cardiovascular diseases (12–14). Although lower extremity PAD
is a component of systemic atherosclerosis and carries a
dramatically heightened risk of cardiovascular morbidity and
mortality, sex differences were not included in further analyses
(3, 15). Moreover, existing data are limited to correcting for
a possible confounder, including routine laboratory results and
drug treatments. Therefore, in this study, we aimed to evaluate
whether LEASO could serve as an independent predictor of major
cardiovascular and cerebrovascular adverse events (MACCEs)
and determine whether these quantitative assessments provide
parallel prognostic intelligence in males and females.

MATERIALS AND METHODS

Study Population
A single-center retrospective cohort study was launched at the
Renmin Hospital of Wuhan University. In total, 430 consecutive
patients with a first diagnosis of LEASO and without a history
of LEASO or CAD who received optimal clinical intervention
from November 2017 to November 2019 were enrolled in

our retrospective study. Patients suffering from a history of
LEASO, prior CAD, malignancy, severe renal insufficiency
(eGFR < 30 ml/min), severe liver disease, stroke, and severe
lung disease were not recruited for the study. Individuals without
LEASO who underwent coronary angiogram to rule out CAD in
the same period were included in the control group (n = 430),
which was matched with the LEASO group at a 1-to-1 ratio,
according to age, sex, diabetes, hypertension, current smoking
status, and medications.

Data Collection
Venous blood taken from all patients on the day of admission
was sent to the Department of Clinical Laboratory of Renmin
Hospital of Wuhan University to measure the parameters of
routine blood examination and biochemistry, such as white
blood cell count (WBC), lymphocyte cell count, neutrophil
cell count, platelet count, neutrophil-to-lymphocyte ratio
(NLR), platelet-to-lymphocyte ratio (PLR), uric acid (UA),
glucose, total cholesterol (TC), total triglycerides (TG),
high-density lipoprotein cholesterol (HDL-c), low-density
lipoprotein cholesterol (LDL-C), apolipoprotein A1 (Apo
A1), apolipoprotein B (Apo B), lipoprotein a, hypersensitive
C-reactive protein (hs-CRP), total bilirubin (TBil), direct
bilirubin (DBil), fibrinogen, and D-dimers.

Follow-Up and End-Point
After discharge, all the patients were followed-up by telephone or
outpatient visits, and the mean follow-up time was approximately
38.83 months. The observed outcome of this study was identified
as the occurrence of MACCEs together with (a) all-cause
mortality, (b) cardiac mortality, (c) acute coronary syndromes,
(d) stroke, (e) admission to the hospital necessitated by heart
failure, (f) admission to the hospital necessitated by atrial
fibrillation, and (g) revascularization.

Propensity Score Matching
Potential confounding factors were controlled by matching the
covariates of the LEASO groups and controls group as many as
possible based on the propensity scores calculated, implementing
logistic multiple regression analysis after applying propensity
scores matching (PSM), as recommended in the literature (16).
Final covariates were age, sex, diabetes, hypertension, current
smoking status, and medications according to the results of the
pre-survey. Propensity score analysis with 1-to-1 ratio matching
and the nearest neighbor matching method was applied to ensure
well-balanced features between the LEASO groups and controls
group. The propensity score with a standard caliper width of 0.2.
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GRAPHICAL ABSTRACT | Central illustration: lower extremity arteriosclerosis obliterans as a prognostic factor for the occurrence of major cardiovascular and
cerebrovascular adverse events.

Statistical Methods
The mean and standard deviation (SD) or median and
interquartile range (IQR) were applied to our results to represent
continuous variables, whereas percentage was used to represent
categorical variables. For data processing methods, t tests were
used for continuous variables, and chi-square (χ2) tests were
used for categorical variables. The Kaplan–Meier survival method
was applied to identify prognostic factors for the occurrence
of MACCEs. The Kaplan–Meier survival curves were compared
using the logrank test. Univariate analysis was performed first,
and the significant variables were included in a subsequent
multivariate Cox analysis. Comparisons were performed to
analyze whether adding LEASO to the traditional cardiovascular
risk factors, including gender, age, hypertension, diabetes, current
smoking, current drinking, for MACCEs could improve the
predictive ability of the models. The addition of LEASO to the
existing models 1 with the traditional cardiovascular risk was
evaluated with the predicted probabilities of MACCEs, using
increase in the area under the receiver operating characteristic
curve (AUC), sensitivity, specificity and C-index and Youden
index. A statistically significant difference was denoted when
the P value was < 0.05. SPSS 23.0 (SPSS, Inc., Chicago, IL,
United States) was applied for all analyses.

RESULTS

Patient Characteristics of the Lower
Extremity Arteriosclerosis Obliterans
Group and Control Group
A total of 860 patients were identified, of whom 430 were
diagnosed with LEASO. Four-hundred thirty patients composed

a control group, and their clinical characteristics are shown
in Table 1. The data showed that white blood cell count
(P < 0.001), neutrophil cell count (P < 0.001), NLR (P < 0.001),
PLR (P = 0.002), glucose (P < 0.001), TG (P = 0.001), TC
(P < 0.001), LDL-C (P = 0.002), Apo B (P = 0.27), Lp (a)
(P = 0.017), fibrinogen (P < 0.001), D-dimer (P < 0.001), and
DBil (P < 0.001) tended to be higher in LEASO patients than in
the control patients. In addition, patients with LEASO remained
more likely to have lower lymphocyte counts (P < 0.001), HDL-
C levels (P = 0.001), and Apo A1 levels (P < 0.001) than did the
control group patients.

Predictors of Patients’ Clinical Outcomes
In our study, patients were followed-up for 38.83 ± 14.28 months.
The clinical outcomes of all patients are presented in Table 2, and
a total of 183 patients suffered from MACCEs during the follow-
up period. Our study showed that, compared to the control group
patients, patients subjected to LEASO tended to have a higher
incidence of MACCEs (P < 0.001), all-cause death (P < 0.001),
cardiac death (P < 0.001), stroke (P = 0.002) and admission to
the hospital necessitated by heart failure (P < 0.001). According
to Kaplan–Meier analysis, an obvious difference could be found
in the incidence of MACCEs between the LEASO patients and
controls (χ2 = 47.128, p < 0.001), and the incidence of MACCEs
in the LEASO group was higher than that in the control group, as
shown in Figure 1.

According to univariate Cox analysis, hypertension, diabetes,
LEASO, WBC, neutrophil, lymphocyte, NLR, PLR, UA, Apo
A1, fibrinogen, D-dimers, and the application of aspirin
and β-blockers were predictors of MACCEs, as shown in
Table 3. Multivariate Cox analysis was then applied to identify
independent influencing factors that predict MACCEs in
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TABLE 1 | Characteristics of LEASO group and control group.

Control (n = 430) LEASO (n = 430) t/Z/χ 2 p

Gender (male) 205 (47.7) 223 (51.9) 1.507 0.220

Age (years) 65.75 ± 7.98 66.55 ± 11.54 1.182 0.237

Hypertension (%) 203 (47.2) 216 (50.2) 0.787 0.375

Duration of Hypertension (years) 10.00 (5.00, 15.00) 10.00 (6.00, 15.00) 1.179 0.238

Diabetes (%) 66 (15.3) 87 (20.2) 3.506 0.061

Duration of Diabetes (years) 9.00 (3.00, 10.25) 10.00 (5.00, 12.00) 1.765 0.078

Current Smoking (%) 87 (20.2) 106 (24.7) 2.412 0.120

Duration of smoking (years) 30.00 (20.00, 35.00) 30.00 (20.00, 40.00) 0.255 0.799

Current smoking cigarettes (per day) 20.00 (10.00, 20.00) 20.00 (10.00, 20.00) 0.956 0.339

Current Drinking (%) 44 (10.2) 56 (13.0) 1.629 0.202

WBC (×109/L) 6.09 ± 1.72 7.74 ± 3.72 8.375 <0.001

Neutrophil (×109/L) 3.82 ± 1.63 5.34 ± 3.47 8.218 <0.001

Lymphocyte (×109/L) 1.72 ± 0.56 1.54 ± 0.59 4.653 <0.001

NLR 2.04 (1.51, 2.83) 2.82 (1.88, 4.84) 8.348 <0.001

PLT (×109/L) 212.60 ± 58.21 214.32 ± 84.65 0.346 0.729

PLR 124.81 (101.30, 156.37) 136.92 (98.58, 188.62) 3.060 0.002

Creatinine (µmol/L) 73.14 ± 29.43 71.40 ± 12.19 1.131 0.259

UA (µmol/L) 354.17 ± 99.39 368.37 ± 116.86 1.920 0.055

Glucose (mmol/L) 5.61 ± 1.70 6.21 ± 2.57 3.993 <0.001

TG (mmol/L) 1.13 (0.87, 1.38) 1.20 (0.90, 1.67) 3.433 0.001

TC (mmol/L) 3.74 ± 0.59 4.03 ± 1.04 4.990 <0.001

HDL-C (mmol/L) 1.15 ± 0.31 1.08 ± 0.31 3.454 0.001

LDL-C (mmol/L) 2.12 ± 0.56 2.27 ± 0.87 3.047 0.002

Apo A1 (g/L) 1.36 ± 0.22 1.27 ± 0.22 6.307 <0.001

Apo B (g/L) 0.73 ± 0.17 0.76 ± 0.23 2.217 0.027

Lp (a) (g/L) 145.50 (68.00, 305.38) 189.00 (80.75, 401.50) 2.379 0.017

hs-CRP (mg/L) 1.89 (0.32, 8.98) 1.52 (0.58, 5.98) 1.359 0.174

Fibrinogen (g/L) 2.90 ± 0.74 3.62 ± 1.36 9.551 <0.001

D-dimer (ug/ml) 0.24 (0.17, 0.41) 0.73 (0.38, 1.56) 14.976 <0.001

TBil (µmol/L) 11.63 (9.18, 15.60) 12.00 (8.88, 15.70) 0.429 0.668

DBil (µmol/L) 3.40 (2.70, 4.40) 4.00 (3.08, 5.80) 5.577 <0.001

Medications

Aspirin (%) 284 (66.0) 262 (60.9) 2.428 0.119

Statins (%) 291 (67.7) 277 (64.4) 1.016 0.313

β-blocker (%) 113 (26.3) 106 (24.7) 0.300 0.584

ACEI/ARB (%) 48 (11.2) 45 (10.5) 0.109 0.742

CCB (%) 109 (25.3) 86 (20.0) 3.508 0.061

WBC, white blood cell count; NLR, neutrophil-to-lymphocyte ratio; PLT, platelet count; PLR, platelet-to-lymphocyte ratio; UA, uric acid; TG, triglycerides; TC, total
cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Apo A1, Apolipoprotein A1; Apo B, Apolipoprotein B; Lp (a), lipoprotein
a; hs-CRP, hypersensitive C-reactive protein; TBil, total bilirubin; DBil, direct bilirubin; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blockers;
CCB, calcium ion channel blockers; LEASO, lower extremity arteriosclerosis obliterans.

TABLE 2 | Incidence of MACCEs of LEASO group and control group.

Control (n = 430) LEASO (n = 430) χ2 p

MACCEs 52 (12.1) 131 (30.5) 43.322 <0.001

All-cause death 1 (0.2) 75 (17.4) 79.037 <0.001

Cardiac death 1 (0.2) 39 (9.1) 37.861 <0.001

Revascularization 4 (0.9) 10 (2.3) 2.614 0.106

Stroke 17 (4.0) 40 (9.3) 9.939 0.002

Acute coronary syndromes 37 (8.6) 31 (7.2) 0.575 0.448

Admission to the hospital necessitated by Atrial fibrillation 13 (3.0) 10 (2.3) 0.402 0.526

Admission to the hospital necessitated by Heart failure 5 (1.2) 37 (8.6) 25.633 <0.001
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FIGURE 1 | Major adverse cardiovascular and cerebrovascular events (MACCEs)-free survival rates for patients with LEASO group and control group during the
follow-up period.

patients. The results showed that hypertension (HR: 1.795,
95% CI: 1.320–2.440, P < 0.001), NLR (HR: 1.109, 95%
CI: 1.057–1.163, P < 0.001), and LEASO (HR: 2.448, 95%
CI: 1.730–3.464, P < 0.001) were independent risk factors
for MACCEs, as presented in Table 3 (Central illustration).
Moreover, the application of aspirin (HR: 0.608, 95% CI: 0.450–
0.821, P = 0.001) or β-blockers (HR: 0.423, 95% CI: 0.280–0.638,
P < 0.001) remained a protective factor for MACCEs, as shown
in Table 3.

In the multivariable analysis model, when added to clinical
risk factors, LEASO increased the discriminatory indices
(Figure 2). Distribution of predicted risks for MACCEs
from model 1 based on age, sex, hypertension, diabetes,
current smoking, and current drinking (AUC: 0.614; C-index:
0.632; Youden index: 0.176; sensitivity: 84.2%; specificity:
33.4%; P < 0.001). For the predictability of MACCEs, the
positive Youden index of the combined LEASO increased
in model 2 (AUC: 0.690; C-index: 0.700; Youden index:
0.318; sensitivity: 66.1%; specificity: 65.7%; P < 0.001).
This suggested that incorporating LEASO enhanced the
ability to predict accurately the MACCEs compared with
Model 1, which included traditional cardiovascular risk
factors only (AUC: 0.690 versus 0.614; C-index: 0.700
versus 0.632).

Predictors of Clinical Outcomes in Male
Patients
According to Kaplan–Meier analysis, in all of the evaluated male
patients, compared with the control patients, the patients with
LEASO seemed to maintain lower MACCE-free survival rates
(χ2 = 22.818, P < 0.001, Figure 3).

According to univariable Cox analysis, diabetes, current
smoking, LEASO, NLR, and HDL-C (all P < 0.05) were
predictors of MACCEs in all of the evaluated male patients
(Table 4). Moreover, multivariate Cox analysis indicated that
diabetes (HR: 1.725, 95% CI: 1.068–2.787, P = 0.026), current
smoking (HR: 1.734, 95% CI: 1.133–2.652, P = 0.011), LEASO
(HR: 2.919, 95% CI: 1.776–4.797, P < 0.001), and HDL-C

(HR: 0.269, 95% CI: 0.117–0.620, P = 0.002) were independent
influencing factors for MACCEs in all of the evaluated male
patients (Table 4).

Predictors of Clinical Outcomes in
Female Patients
Compared with the female control patients, the female LEASO
patients tended to be at a higher risk for the incidence of
MACCEs during the follow-up period (χ2 = 24.979, P < 0.001,
Figure 4).

Univariable Cox analysis demonstrated that hypertension,
LEASO, WBC, neutrophils, lymphocytes, NLR, PLR, UA,
glucose, Apo A1, fibrinogen, DBil, and the application of aspirin
and β-blockers (all P < 0.05) were independent factors for
MACCEs in all evaluated female patients in this study, as
shown in Table 5. According to multivariate Cox analysis,
independent influencing factors for the incidence of MACCEs
in female patients included hypertension (HR: 2.010, 95% CI:
1.293–3.124, P = 0.002), LEASO (HR: 1.788, 95% CI: 1.110–
2.880, P = 0.017), NLR (HR: 1.113, 95% CI: 1.041–1.190,
P = 0.002), UA (HR: 1.002, 95% CI: 1.000–1.004, P = 0.049),
and application of aspirin (HR: 0.472, 95% CI: 0.311–0.715,
P < 0.001) or β-blockers (HR: 0.321, 95% CI: 0.176–0.586,
P < 0.001) (Table 5).

Sex Differences in the Characteristics
and Prognosis of Lower Extremity
Arteriosclerosis Obliterans Patients
Our results demonstrated that, compared with male patients
with LEASO, female patients with LEASO remained more likely
to suffer from hypertension and had higher levels of HDL-
C and Apo B and lower levels of UA (Table 6). In addition,
Kaplan–Meier analysis indicated no significant difference in
event-free survival rate between male and female LEASO patients
(χ2 = 0.742, P = 0.389, Figure 5).
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TABLE 3 | Predictors of the occurrence of MACCEs in LEASO patients: results of univariate and multivariate Cox-regression analyses.

Indicators Univariate Multivariate

HR 95%CI p HR 95%CI p

Gender (female) 1.134 0.848–1.515 0.397

Age (years) 0.999 0.984–1.014 0.891

Hypertension (%) 1.759 1.307–2.368 <0.001 1.795 1.320–2.440 <0.001

Diabetes (%) 1.478 1.051–2.081 0.025 1.242 0.872–1.771 0.230

Current Smoking (%) 1.282 0.922–1.781 0.140

Current Drinking (%) 0.921 0.579–1.466 0.730

LEASO (%) 2.914 2.113–4.019 <0.001 2.448 1.730–3.464 <0.001

WBC (×109/L) 1.086 1.049–1.124 <0.001 0.971 0.918–1.028 0.308

Neutrophil (×109/L) 1.106 1.067–1.146 <0.001

Lymphocyte (×109/L) 0.643 0.491–0.841 0.001

NLR 1.104 1.075–1.134 <0.001 1.109 1.057–1.163 <0.001

PLT (×109/L) 0.998 0.996–1.000 0.098

PLR 1.002 1.001–1.004 0.006 0.998 0.996–1.001 0.198

Creatinine (µmol/L) 1.002 0.996–1.008 0.464

UA (µmol/L) 1.001 1.000–1.003 0.046 1.000 0.999–1.002 0.449

Glucose (mmol/L) 1.043 0.983–1.108 0.165

TG (mmol/L) 0.992 0.812–1.212 0.940

TC (mmol/L) 1.042 0.880–1.233 0.635

HDL-C (mmol/L) 0.654 0.400–1.071 0.091

LDL-C (mmol/L) 0.997 0.817–1.217 0.976

Apo A1 (g/L) 0.493 0.259–0.939 0.032 0.882 0.450–1.731 0.716

Apo B (g/L) 1.109 0.532–2.310 0.782

Lp (a) (g/L) 1.001 0.999–1.001 0.983

hs-CRP (mg/L) 1.001 0.994–1.007 0.800

Fibrinogen (g/L) 1.231 1.112–1.362 <0.001 1.057 0.923–1.210 0.424

D-dimer (ug/ml) 1.038 1.009–1.069 0.010 0.982 0.931–1.035 0.502

TBil (µmol/L) 1.005 0.987–1.023 0.590

DBil (µmol/L) 1.023 0.995–1.052 0.109

Medications

Aspirin (%) 0.677 0.506–0.906 0.009 0.608 0.450–0.821 0.001

Statins (%) 0.928 0.685–1.258 0.630

β-blocker (%) 0.472 0.314–0.711 <0.001 0.423 0.280–0.638 <0.001

ACEI/ARB (%) 1.236 0.798–1.913 0.342

CCB (%) 1.236 0.889–1.718 0.207

HR, hazard ratio; CI, confidence interval.

DISCUSSION

We have confirmed that LEASO can serve as a potential
and powerful predictor for MACCEs. Moreover, subgroup
analysis based on sex showed that LEASO also remained an
independent predictor for the occurrence of MACCEs. These
important observations show that our results support that
LEASO is a robust predictor of the occurrence of MACCEs,
irrespective of sex.

Cardiovascular disease is a complication of LEASO, which
is explained by the theory of “panvascular disease,” which
considers the vascular system as a whole (17). LEASO and
cardiovascular diseases share a common atherosclerosis
pathology, and both present the same risk factors (17). In
other words, LEASO may be considered a poor prognostic

predictor for the incidence of MACCEs. A retrospective
cohort study including 1442 ACS patients showed that patients
with PAD of the lower extremities carried a higher risk
for cardiovascular disease (18). Another retrospective
cohort study showed that lower extremity PAD patients
with simultaneous CAD had a completely increased risk
of all-cause mortality and MACCEs, which is in good
agreement with our clinical result (19). Although there
have been many similar studies regarding the potential
association between LEASO and CAD in recent years, few
studies have considered quantifying the potential impact and
comparing important demographic characteristics, including
risk factor exposure history and blood biochemical test
data. Our study indicated that LEASO is an important
prognostic factor for MACCEs, regardless of whether
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FIGURE 2 | Receiver operating character analysis for the predictive efficacy of variables for MACCEs (Model 1, Gender + Age + Hypertension + Diabetes + current
smoking + current drinking; Model 2, Model 1 + LEASO).

FIGURE 3 | Major adverse cardiovascular and cerebrovascular events-free survival rates for male patients with LEASO group and control group during the follow-up
period.

the influence of lipid profiles, inflammatory markers and
other potentially prognostic confounders is considered.
Therefore, our study provides more detailed data support
for the concept of panvascular disease and demonstrates
the importance of establishing an interdisciplinary center
for panvascular disease management. In particular, whether
the LEASO differs between females and males and whether
these assessments provide parallel prognostic intelligence
remain uncertain.

Inflammatory cytokines follow various stages of
atherosclerosis, emphasizing the vital function of inflammation
in the pathogenesis of atherosclerosis (20, 21). Recently, the
popularity of atherosclerotic inflammation theory has mainly
focused on emerging indicators such as NLR and PLR (22–25).
The NLR, a novel meaningful and easily obtained inflammatory
biomarker, serves not only as an independent predictor of
carotid plaque vulnerability but also as a key predictor of
future CV events and all-cause mortality (26, 27). Moreover,
previous studies reported a close association between PLR

and adverse outcomes (28, 29). Therefore, NLR, PLR and
other inflammatory indicators, including white blood cells
and hs-CRP, were included to further explore the relationship
between inflammation and LEASO in our study. Our results
showed that LEASO patients were more likely to have higher
NLR, PLR, WBC, and neutrophil counts than the control
group was, which implied that they remained in a higher
inflammatory state. In light of this, inflammation is thought to
play a vital role in the underlying mechanism between LEASO
and poor outcome. However, whether inflammation acts as a
bridge or only shares a common trigger with LEASO remains
to be identified.

At the same time, we examined other measures of routine
clinical test indicators, such as lipid profiles and coagulation
function. Our results also found that patients with LEASO
were inclined to have higher levels of TGs, TC, LDL-
C, Apo B, and lipoprotein a and lower levels of HDL-
C and Apo A1. The results of our study are consistent
with previous results concerning atherosclerotic diseases, such
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TABLE 4 | Predictors of the occurrence of MACCEs in male patients: results of univariate and multivariate Cox-regression analyses.

Indicators Univariate Multivariate

HR 95%CI p HR 95%CI p

Age (years) 1.006 0.984–1.028 0.606

Hypertension (%) 1.397 0.914–2.136 0.123

Diabetes (%) 1.918 1.190–3.092 0.008 1.725 1.068–2.787 0.026

Current Smoking (%) 1.670 1.093–2.551 0.018 1.734 1.133–2.652 0.011

Current Drinking (%) 0.989 0.600–1.631 0.966

LEASO (%) 3.058 1.884–4.966 <0.001 2.919 1.776–4.797 <0.001

WBC (×109/L) 1.050 0.992–1.112 0.094

Neutrophil (×109/L) 1.054 0.991–1.120 0.095

Lymphocyte (×109/L) 0.829 0.562–1.222 0.343

NLR 1.069 1.016–1.126 0.011 1.044 0.985–1.106 0.148

PLT (×109/L) 0.998 0.995–1.001 0.260

PLR 1.001 0.998–1.004 0.471

Creatinine (mmol/L) 1.006 0.998–1.014 0.162

UA (mmol/L) 1.001 0.999–1.002 0.671

Glucose (mmol/L) 0.939 0.845–1.044 0.242

TG (mmol/L) 1.106 0.826–1.482 0.498

TC (mmol/L) 1.097 0.853–1.411 0.471

LDL-C (mmol/L) 0.920 0.684–1.239 0.585

HDL-C (mmol/L) 0.242 0.101–0.584 0.002 0.269 0.117–0.620 0.002

Apo A1 (g/L) 0.933 0.341–2.548 0.892

Apo B (g/L) 0.569 0.170–1.897 0.358

Lp (a) (g/L) 1.001 0.999–1.001 0.390

hs-CRP (mg/L) 0.999 0.988–1.009 0.803

Fibrinogen (g/L) 1.124 0.968–1.304 0.124

D-dimer (ug/ml) 1.035 0.999–1.072 0.051

TBil (µmol/L) 0.998 0.973–1.025 0.904

DBil (µmol/L) 1.007 0.964–1.051 0.766

Medications

Aspirin (%) 0.778 0.505–1.199 0.256

Statins (%) 1.112 0.705–1.753 0.648

β-blocker (%) 0.567 0.320–1.004 0.052

ACEI/ARB (%) 1.146 0.593–2.216 0.685

CCB (%) 1.028 0.611–1.728 0.918

FIGURE 4 | Major adverse cardiovascular and cerebrovascular events-free survival rates for female patients with LEASO group and control group during the
follow-up period.
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TABLE 5 | Predictors of the occurrence of MACCEs in female patients: results of univariate and multivariate Cox-regression analyses.

Indicators Univariate Multivariate

HR 95%CI p HR 95%CI p

Age (years) 0.993 0.973–1.013 0.493

Hypertension (%) 2.178 1.426–3.326 <0.001 2.010 1.293–3.124 0.002

Diabetes (%) 1.150 0.703–1.880 0.578

LEASO (%) 2.845 1.849–4.377 <0.001 1.788 1.110–2.880 0.017

WBC (×109/L) 1.117 1.070–1.166 <0.001 0.960 0.887–1.040 0.318

Neutrophil (×109/L) 1.163 1.112–1.217 <0.001

Lymphocyte (×109/L) 0.541 0.375–0.779 <0.001

NLR 1.121 1.088–1.155 <0.001 1.113 1.041–1.190 0.002

PLT (×109/L) 0.998 0.995–1.001 0.212

PLR 1.004 1.002–1.007 <0.001 0.998 0.995–1.002 0.424

Creatinine (µmol/L) 0.998 0.990–1.007 0.732

UA (µmol/L) 1.002 1.001–1.004 0.005 1.002 1.000–1.004 0.049

Glucose (mmol/L) 1.147 1.071–1.230 <0.001 1.076 0.988–1.171 0.093

TG (mmol/L) 0.913 0.693–1.203 0.517

TC (mmol/L) 0.991 0.788–1.248 0.942

HDL-C (mmol/L) 1.042 0.568–1.910 0.894

LDL-C (mmol/L) 1.060 0.812–1.384 0.668

Apo A1 (g/L) 0.287 0.123–0.668 0.004 0.624 0.241–1.617 0.332

Apo B (g/L) 1.611 0.656–3.956 0.298

Lp (a) (g/L) 0.999 0.999–1.000 0.439

hs-CRP (mg/L) 1.002 0.994–1.010 0.594

Fibrinogen (g/L) 1.384 1.201–1.595 <0.001 1.168 0.970–1.406 0.100

D-dimer (ug/ml) 1.061 0.992–1.136 0.086

TBil (µmol/L) 1.014 0.988–1.041 0.290

DBil (µmol/L) 1.058 1.014–1.103 0.009 1.026 0.961–1.096 0.441

Medications

Aspirin (%) 0.607 0.407–0.903 0.014 0.472 0.311–0.715 <0.001

Statins (%) 0.793 0.527–1.195 0.268

β-blocker (%) 0.397 0.221–0.712 0.002 0.321 0.176–0.586 <0.001

ACEI/ARB (%) 1.315 0.733–2.359 0.358

CCB (%) 1.404 0.913–2.160 0.122

as acute coronary syndromes and acute ischemic stroke
(30, 31). Moreover, a previous study found that steady
outpatients with PAD and higher levels of plasma fibrinogen
had increased rates of equivalent ischemic events, which
is consistent with findings in our study (32). Thus, our
data also indicate that clinicians should attach importance
to the routine examination results of LEASO patients, and
timely intervention should be given to improve the prognosis
of these patients.

Cardiovascular risk factors integrating sex-specific
research have shown that although males and females share
similar risk factors for CAD, certain risk factors are more
potent in women (33). In particular, men remain more
likely to suffer from ischemic heart disease, and women
with coronary artery disease rarely present syndromes
(34). Furthermore, compared to men, women more often
experience less atherosclerotic plaque, manifested by chest
pain and a lower risk of subsequent myocardial infarction
(35). Our available data demonstrated that LEASO is
an effective predictor in women as men, with a LEASO

relative to a twofold increase in the risk of MACCEs.
However, given sex-specific cardiovascular risk factor
characterization, we found that female patients with LEASO
tend to be more susceptible to hypertension, whereas male
patients with LEASO are more at risk for higher Apo
B and UA and lower HDL-C. Our studies were in the
agreement with the previous studies indicated that the
prevalence of hypertension is higher among post-menopausal
women than among both premenopausal women and
men (36–38). Additionally, our findings, together with
previous observations that men have higher levels of UA
(39) and hyperlipidemia (40), relative to women, which
may be because of a high frequency of smoking, higher
body mass index and other cardiovascular risk factors
in men (40, 41). Thus, we should be cognizant of sex-
specific cardiovascular risk factors in patients with LEASO.
Further planning of effective preventive interventions for
multiple cooccurring drivers may indicate poor clinical
outcomes and provide patients with optimal clinical
treatment decisions.
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TABLE 6 | Characteristics of male and female patients with LEASO.

Male (n = 223) Female (n = 207) t/Z/χ 2 p

Age (years) 66.88 ± 11.56 66.19 ± 11.54 0.619 0.536

Hypertension (%) 100 (44.8) 116 (56.0) 5.382 0.020

Duration of Hypertension (years) 10.00 (6.25, 13.75) 10.00 (5.25, 15.00) 0.161 0.872

Diabetes (%) 43 (19.3) 44 (21.3) 0.259 0.611

Duration of Diabetes (years) 10.00 (6.00, 14.00) 10.00 (5.00, 14.50) 0.672 0.502

WBC (×109/L) 7.89 ± 3.45 7.58 ± 3.99 0.723 0.470

Neutrophil (×109/L) 5.45 ± 3.32 5.21 ± 3.62 0.727 0.468

Lymphocyte (×109/L) 1.52 ± 0.54 1.55 ± 0.63 0.476 0.634

NLR 3.05 (1.94, 5.04) 2.63 (1.81, 4.47) 1.593 0.111

PLT (×109/L) 219.01 ± 88.10 209.27 ± 80.67 1.193 0.234

PLR 139.07 (96.27, 191.71) 133.09 (102.38, 188.41) 0.454 0.650

Creatinine (µmol/L) 71.04 ± 12.12 71.79 ± 12.28 0.631 0.529

UA (µmol/L) 382.32 ± 120.26 353.34 ± 111.42 2.587 0.010

Glucose (mmol/L) 6.19 ± 2.69 6.23 ± 2.45 0.151 0.880

TG (mmol/L) 1.15 (0.87, 1.63) 1.23 (0.94, 1.75) 1.526 0.127

TC (mmol/L) 3.94 ± 1.01 4.12 ± 1.07 1.731 0.084

HDL-C (mmol/L) 1.04 ± 0.30 1.13 ± 0.32 2.879 0.004

LDL-C (mmol/L) 2.25 ± 0.85 2.30 ± 0.90 0.620 0.536

Apo A1 (g/L) 1.26 ± 0.23 1.28 ± 0.22 0.710 0.478

Apo B (g/L) 0.74 ± 0.22 0.79 ± 0.24 2.088 0.037

Lp (a) (g/L) 178.00 (73.00, 375.00) 205.00 (87.60, 461.00) 1.299 0.194

hs-CRP (mg/L) 1.42 (0.57, 5.37) 1.62 (0.59, 7.02) 1.043 0.297

Fibrinogen (g/L) 3.69 ± 1.41 3.54 ± 1.30 1.173 0.242

D-dimer (ug/ml) 0.65 (0.38, 1.37) 0.78 (0.39, 1.76) 1.123 0.261

TBil (µmol/L) 11.50 (8.80, 15.30) 12.50 (8.90, 16.50) 1.005 0.315

DBil (µmol/L) 4.00 (3.10, 5.60) 4.00 (3.00, 6.20) 0.145 0.885

Medications

Aspirin (%) 141 (63.2) 121 (58.5) 1.028 0.311

Statins (%) 141 (63.2) 136 (65.7) 0.286 0.593

β-blocker (%) 50 (22.4) 56 (27.1) 1.240 0.266

ACEI/ARB (%) 20 (9.0) 25 (12.1) 1.107 0.293

CCB (%) 38 (17.0) 48 (23.2) 2.536 0.111

STUDY LIMITATIONS

There are several limitations of our study. First, our diagnosis
was based on the clinical record system, which means that our
inclusion in the study was influenced by the experience of the
clinician. Second, this study is retrospective; thus, our results
may be subject to much bias (such as recall bias). Third, we
eliminated many known confounding factors, but there is no
guarantee about other unknown confounding factors. Fourth,
we did not quantitatively assess atherosclerotic plaques in the
lower extremities.

CONCLUSION

This study indicates that LEASO tends to be a useful risk-
stratified indicator for MACCEs in both male and female
patients, regardless of sex. Where applicable, we highlight
that attention should be given to patients with LEASO
regardless of other risk factors and who should undergo
comprehensive cardiovascular evaluation and intervention.

FIGURE 5 | Major adverse cardiovascular and cerebrovascular events-free
survival rates for male and female patients with LEASO during the follow-up
period.

Moreover, appropriate prevention programs should be
tailored to different sex LEASO groups as well as different
risk factors.
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Objective: Although alcohol abuse has been indicated to cause cerebral aneurysm

development and rupture, there is limited data on the impact of alcohol abuse on

outcomes after an aneurysmal subarachnoid hemorrhage (aSAH). This study aims to

investigate whether alcohol abuse increases the risk of angiographic vasospasm and

delayed cerebral ischemia (DCI) in critically ill patients with aSAH.

Methods: We conducted a secondary analysis based on a retrospective study in

a French university hospital intensive care unit (ICU). Patients with aSAH requiring

mechanical ventilation hospitalized between 2010 and 2015 were included. Patients

were segregated according to alcohol abuse (yes or no). Multivariable logistic regression

analysis was used to identify the independent risk factors associated with angiographic

vasospasm and DCI.

Results: The patient proportion of alcohol abuse was dramatically greater in males

than that in females (p < 0.001). The Simplified Acute Physiology Score II (SAPSII) score

on admission did not show a statistical difference. Neither did the World Federation

of Neurosurgical Societies (WFNS) and Fisher scores. Patients with alcohol abuse

were more likely to develop angiographic vasospasm (OR 3.65, 95% CI 1.17–11.39;

p = 0.0260) and DCI (OR 3.53, 95% CI 1.13–10.97; p = 0.0294) as evidenced by

multivariable logistic regression analysis.

Conclusions: In this study, patients with alcohol abuse are at higher odds of

angiographic vasospasm and DCI, which are related to poor prognosis following aSAH.

These findings are important for the prevention and clinical management of aSAH.

Keywords: aneurysmal subarachnoid hemorrhage, alcohol abuse, retrospective study, clinical outcomes,

angiographic vasospasm, delayed cerebral ischemia
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INTRODUCTION

Alcohol abuse is associated with an increased risk of death and
cardiovascular disease (CVD). Excessive alcohol intake is one of
the top three leading causes of premature deaths in the US (the
other two are smoking and obesity) (1, 2). Also, the prevalence
of alcohol use is still rising (3). Alcohol abuse is a chronic disease
characterized by uncontrolled drinking and preoccupation with
alcohol. The patients generally exhibit an inability to control
drinking due to both a physical and emotional dependence
on alcohol. Notably, it has been indicated that alcohol abuse
may cause cerebral aneurysm development and rupture, leading
to aneurysmal subarachnoid hemorrhage (aSAH) (4–7). Also,
reduced alcohol intake may substantially decrease subarachnoid
hemorrhage (SAH) risk (4).

The clinical outcomes following aSAH are associated with
multiple factors, including the patient’s severity on admission,
angiographic vasospasm, and delayed cerebral ischemia (DCI)
(8–11). Angiographic vasospasm is the arterial narrowing of
large cerebral vessels observed on a radiological test such as CT
angiography (CTA), magnetic resonance angiography (MRA),
or digital subtraction angiography (DSA) (12). Additionally,
angiographic vasospasm is considered a critical factor leading
to DCI, which causes poor outcomes or death in up to 30% of
patients with SAH (11, 13). While alcohol abuse is a potential
risk factor for aSAH, the impact of alcohol abuse on outcomes
after aSAH has not been fully evaluated. Herein, we investigated
the effect of alcohol abuse on angiographic vasospasm andDCI in
a cohort of patients with aSAH requiring mechanical ventilation.

METHODS

Data Source
We obtained data from the “DATADRYAD” database
(https://datadryad.org/search). This website permitted users
to freely download the raw dataset. According to Dryad Terms
of Service, we cited the Dryad data package in this study
[Dryad data package: Chalard et al. (14), Long-term outcome
in patients with aSAH requiring mechanical ventilation, Dryad,
Dataset, https://doi.org/10.5061/dryad.47d7wm3b4].

Study Cohort
Chalard et al. completed the entire dataset in the previous study
(14). The details were described in the original article. Between
January 2010 and December 2015, adult patients with aSAH
hospitalized in the neuro-ICU were recruited. Only patients with
mechanical ventilation were included in the current study. CTA
was performed in all patients at admission to confirm SAH was
caused by an aneurysm rupture.

Patients Characteristics and Clinical
Outcomes Collection
The following variables were collected: age, sex, tobacco use,
alcohol abuse, diabetes, CVD, Simplified Acute Physiology
Score II (SAPSII), World Federation of Neurosurgical Societies
(WFNS) score, Fisher score, aneurysm location, and presence of

intracerebral hemorrhage (ICH). Type of aneurysm treatment
procedure and presence of angiographic vasospasm and DCI
were also recorded.

Statistical Analysis
Continuous variables were expressed as mean ± SD (normal
distribution) and categorical variables were expressed
in frequency (percentage). The Student’s t-test (normal
distribution) and chi-square test (categorical variables) were
used to determine statistical differences between the means
and proportions of the groups. Univariate logistic regression
analysis was initially performed to identify factors of potential
risk, then a multivariable logistic regression model was used to
identify independently associated risk factors for the outcomes.
The variables included in the multivariable logistic regression
analysis were selected on the basis of their associations with
the outcomes of interest or a change in effect estimate of
more than 10%. All of the analyses were performed using the
statistical software packages R (http://www.R-project.org, The R
Foundation) and EmpowerStats (http://www.empowerstats.com,
X&Y Solutions, Inc., Boston, MA). A p-value < 0.05 (two-sided)
were considered statistically significant.

RESULTS

Patient Demographics and Outcomes
There were 236 patients in this cohort, including 20 patients
with alcohol abuse and 216 patients without alcohol abuse. As
shown in Table 1, the mean age of non-alcohol abuse patients
was 54.87 (SD = 13.32). The mean age of patients with alcohol
abuse was 56.25 (SD = 9.94). The comparison of age in the two
groups of patients indicated no statistical significance (p= 0.651).
There were 17 male patients included in the group of alcohol
abuse, which was of statistical significance compared with the
proportion of alcohol abuse in the female patients (p < 0.001).
There were 16 patients with tobacco use in alcohol abuse patients
with a percentage of 80.00%, which was markedly greater than
that in non-alcohol abuse patients (p < 0.001). There were 8
patients with diabetes in the non-alcohol abuse group with a
percentage of 3.7%. In patients with alcohol abuse, no patients
had diabetes. There were 37 patients with CVD in the non-
alcohol abuse group (17.13%). In the alcohol abuse group,
3 patients had CVD (15.00%). No statistical significance was
observed as to diabetes and CVD (p = 0.381, 0.808, respectively)
in these two groups.

As for the location of the aneurysm, there were 180 patients
with anterior circulation aneurysms in the non-alcohol abuse
group (83.72%). In the alcohol abuse group, 17 patients
had anterior circulation aneurysms (85.00%). No statistical
significance was detected between the two groups (p = 0.882).
The mean SAPS II of non-alcohol abuse patients was 42.22
(SD = 12.09). The mean SAPS II of alcohol abuse patients
was 44.00 (SD = 11.79). The differences between SAPS II,
WFNS score, and Fisher score were of no statistical significance
(p = 0.528, 0.931, 0.807, respectively). There were 99 patients
with ICH in the non-alcohol abuse group (45.83%). In the alcohol
abuse group, 10 patients exhibited ICH (50.00%). No statistical
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TABLE 1 | Patient demographics and outcomes.

Alcohol abuse No Yes p-value

N 216 20

Age 54.87 ± 13.32 56.25 ± 9.94 0.651

Sex <0.001

Female 144 (66.67%) 3 (15.00%)

Male 72 (33.33%) 17 (85.00%)

Tobacco use <0.001

No 156 (72.22%) 4 (20.00%)

Yes 60 (27.78%) 16 (80.00%)

Diabetes 0.381

No 208 (96.30%) 20 (100.00%)

Yes 8 (3.70%) 0 (0.00%)

CVD 0.808

No 179 (82.87%) 17 (85.00%)

Yes 37 (17.13%) 3 (15.00%)

Aneurysm location 0.882

Ant circ 180 (83.72%) 17 (85.00%)

Post circ 35 (16.28%) 3 (15.00%)

SAPSII 42.22 ± 12.09 44.00 ± 11.79 0.528

WFNS score 0.931

III 22 (10.19%) 2 (10.00%)

IV 88 (40.74%) 9 (45.00%)

V 106 (49.07%) 9 (45.00%)

Fisher score 0.807

I 1 (0.46%) 0 (0.00%)

II 4 (1.85%) 1 (5.00%)

III 42 (19.44%) 4 (20.00%)

IV 169 (78.24%) 15 (75.00%)

ICH 0.721

No 117 (54.17%) 10 (50.00%)

Yes 99 (45.83%) 10 (50.00%)

Treatment 0.475

Coil 138 (70.05%) 12 (63.16%)

Clipping 56 (28.43%) 6 (31.58%)

Combined 3 (1.52%) 1 (5.26%)

Angiographic vasospasm 0.058

No 143 (66.20%) 9 (45.00%)

Yes 73 (33.80%) 11 (55.00%)

DCI 0.060

No 161 (74.54%) 11 (55.00%)

Yes 55 (25.46%) 9 (45.00%)

CVD, cardiovascular disease; Ant circ, anterior circulation; Post circ, posterior circulation;

SAPSII, Simplified Acute Physiology Score II; WFNS, World Federation of Neurosurgical

Societies; ICH, intracerebral hemorrhage; DCI, delayed cerebral ischemia.

significance was detected in the comparison of ICH between the
two groups (p= 0.721).

A total of 138 patients were treated with a coil and 56 patients
were treated with clipping in the non-alcohol abuse group.
No statistical significance was observed in the comparison of
treatment between the two groups (p = 0.475). A total of 73
patients (33.80%) presented with angiographic vasospasm in the

non-alcohol abuse group, and 11 patients (55.00%) presented
with angiographic vasospasm in the alcohol abuse group, with
the p-value approaching significance (p = 0.058). There were 55
patients (25.46%), who presented with DCI in the non-alcohol
abuse group, vs. 9 patients (45.00%) with DCI in the non-alcohol
abuse group, a difference that also nearly reached statistical
significance (p= 0.060).

Univariate Analysis of Risk Factors for
Angiographic Vasospasm and DCI
The risk factors for angiographic vasospasm and DCI were then
identified using univariate logistic regression analysis. Alcohol
abuse [odds ratio (OR) 2.39, 95% confidence interval (CI)
0.95–6.04; p = 0.0643] was likely associated with an increased
risk of angiographic vasospasm, with the p-value approaching
significance. Clipping treatment was associated with a reduced
likelihood of angiographic vasospasm (OR 0.26, 95% CI 0.13–
0.54; p = 0.0003). The results of the univariate analysis of risk
factors for angiographic vasospasm are presented in Table 2.

Alcohol abuse (OR 2.40, 95% CI 0.94–6.09; p = 0.0664)
was likely associated with increased risk of DCI, with the p-
value nearly reaching statistical significance. ICH (OR 0.42, 95%
CI.23–0.78; p = 0.0056) and clipping treatment were associated
with a reduced likelihood of DCI (OR 0.19, 95% CI 0.07–0.46;
p = 0.0003). The results of the univariate analysis of risk factors
for DCI are presented in Table 3.

Multivariable Analysis of Independent Risk
Factors for Angiographic Vasospasm and
DCI
The multivariable logistic regression analysis used non-adjusted
(crude) and adjusted models to examine the independent risk
factors. As shown in Table 4, in model I (adjusted for age and
sex), the OR is 2.75, 95% CI 1.03–7.36 (p = 0.0440). In model
II (adjusted for age, sex, Fisher score, and treatment), the OR is
3.61, 95% CI 1.17–11.17 (p = 0.0259). In model III (adjusted for
age, sex, Fisher score, treatment, CVD, and SAPS II), the OR is
3.65, 95%CI 1.17–11.39 (p= 0.0260). The results of multivariable
logistic regression analysis indicated that alcohol abuse was
independently associated with increased odds of angiographic
vasospasm after adjusting for age, sex, Fisher score, treatment,
CVD, and SAPS II.

Similarly, the ORs of alcohol abuse for DCI were
calculated in different adjusted models (Table 5). The results
suggested that alcohol abuse was independently associated
with increased odds of DCI (OR 3.53, 95% CI 1.13–10.97;
p= 0.0294, model III).

DISCUSSION

Angiographic vasospasm and DCI are strongly associated with
the outcomes following aSAH (11, 13). This study aims to
have a better understanding of the risk factors involved that
may lead to angiographic vasospasm and DCI. Alcohol abuse
has about 2.5-fold higher odds of angiographic vasospasm and
DCI viamultivariable logistic regression analysis when adjusting
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TABLE 2 | Univariate logistic regression analysis of risk factors for angiographic

vasospasm.

Variable OR (95% CI) P-value

Age 0.98 (0.96, 1.00) 0.0613

Sex

Female Ref

Male 0.95 (0.55, 1.64) 0.8492

Tobacco use

No Ref

Yes 1.28 (0.73, 2.25) 0.3913

Alcohol abuse

No Ref

Yes 2.39 (0.95, 6.04) 0.0643

Diabetes

No Ref

Yes 1.09 (0.25, 4.67) 0.9088

CVD

No Ref

Yes 0.47 (0.21, 1.04) 0.0618

Aneurysm location

Ant circ Ref

Post circ 0.69 (0.32, 1.48) 0.3414

SAPSII 0.98 (0.96, 1.00) 0.0460

WFNS score

III Ref

IV 1.02 (0.41, 2.54) 0.9574

V 0.56 (0.23, 1.39) 0.2148

Fisher score

I Ref

II 0.00 (0.00, Inf) 0.9899

III 0.00 (0.00, Inf) 0.9944

IV 0.00 (0.00, Inf) 0.9943

ICH

No Ref

Yes 0.75 (0.44, 1.29) 0.3010

Treatment

Coil Ref

Clipping 0.26 (0.13, 0.54) 0.0003

Combined 3.62 (0.37, 35.58) 0.2702

CVD, cardiovascular disease; Ant circ, anterior circulation; Post circ, posterior circulation;

SAPSII, Simplified Acute Physiology Score II; WFNS, World Federation of Neurosurgical

Societies; ICH, intracerebral hemorrhage; ref, reference (OR = 1.0).

for other potential confounding variables. Our findings provide
important evidence for the prevention and clinical management
of aSAH.

Although previous studies have suggested that alcohol abuse
increases the risk of aSAH (4), the role of alcohol abuse in
the development of angiographic vasospasm and DCI has not
been fully investigated yet. Because alcohol abuse is present in
a large proportion of patients with aSAH, especially in men,
identification of alcohol abuse as an independent risk factor of
angiographic vasospasm and DCI is of great clinical significance

TABLE 3 | Univariate logistic regression analysis of risk factors for DCI.

Variable OR (95% CI) p-value

Age 0.99 (0.96, 1.01) 0.2141

Sex

Female Ref

Male 1.08 (0.60, 1.95) 0.7940

Tobacco use

No Ref

Yes 0.94 (0.51, 1.75) 0.8484

Alcohol abuse

No Ref

Yes 2.40 (0.94, 6.09) 0.0664

Diabetes

No Ref

Yes 0.37 (0.05, 3.10) 0.3623

CVD

No Ref

Yes 0.42 (0.17, 1.05) 0.0646

Aneurysm location

Ant circ Ref

Post circ 0.55 (0.23, 1.33) 0.1872

SAPSII 0.98 (0.96, 1.00) 0.1136

WFNS score

III Ref

IV 1.03 (0.40, 2.66) 0.9492

V 0.50 (0.19, 1.31) 0.1587

Fisher score

I Ref

II 0.00 (0.00, Inf) 0.9899

III 0.00 (0.00, Inf) 0.9944

IV 0.00 (0.00, Inf) 0.9941

ICH

No Ref

Yes 0.42 (0.23, 0.78) 0.0056

Treatment

Coil Ref

Clipping 0.19 (0.07, 0.46) 0.0003

Combined 0.58 (0.06, 5.67) 0.6362

CVD, cardiovascular disease; Ant circ, anterior circulation; Post circ, posterior circulation;

SAPSII, Simplified Acute Physiology Score II; WFNS, World Federation of Neurosurgical

Societies; ICH, intracerebral hemorrhage; ref, reference (OR = 1.0).

in determining how closely the patients should be monitored for
these two events.

Alcohol has been suggested to induce vessel constriction
via various mechanisms. Alcohol can increase the activity
of the sympathetic nervous system and the release of
catecholamines, leading to the constriction of blood vessels
(15, 16). Besides, alcohol has been indicated to decrease
the levels of electrically charged (i.e., ionized) magnesium
in plasma (17). A delicate balance between magnesium
and calcium ions is needed to maintain vascular tone at
a normal level. Magnesium triggers vessel relaxation and
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TABLE 4 | Relationship between alcohol abuse and angiographic vasospasm in different models by multivariable logistic regression analysis.

Exposure Crude Adjust I (OR, 95% CI, p) Adjust II (OR, 95% CI, p) Adjust III (OR, 95% CI, p)

Alcohol abuse

No 1.0 - - -

Yes 2.39 (0.95, 6.04) 0.0643 2.75 (1.03, 7.36) 0.0440 3.61 (1.17, 11.17) 0.0259 3.65 (1.17, 11.39) 0.0260

Crude model: we did not adjust other variables.

Adjust I: we adjusted age and sex.

Adjust II: we adjusted age, sex, Fisher score, and treatment.

Adjust III: we adjusted age, sex, Fisher score, treatment, CVD, and SAPS II.

CVD, cardiovascular disease; SAPSII, Simplified Acute Physiology Score II.

TABLE 5 | Relationship between alcohol abuse and DCI in different models by multivariable logistic regression analysis.

Exposure Crude Adjust I (OR, 95% CI, p) Adjust II (OR, 95% CI, p) Adjust III (OR, 95% CI, p)

Alcohol abuse

No 1.0 - - -

Yes 2.40 (0.94, 6.09) 0.0664 2.54 (0.94, 6.87) 0.0656 3.52 (1.14, 10.85) 0.0285 3.53 (1.13, 10.97) 0.0294

Crude model: we did not adjust other variables.

Adjust I: we adjusted age and sex.

Adjust II: we adjusted age, sex, Fisher score, and treatment.

Adjust III: we adjusted age, sex, Fisher score, treatment, CVD, and SAPS II.

DCI, delayed cerebral ischemia; CVD, cardiovascular disease; SAPSII, Simplified Acute Physiology Score II.

calcium, on the contrary, causes vessel constriction. When the
level of magnesium ions is reduced by alcohol, the calcium
ions will predominate, resulting in vessel constriction.
These mechanisms help to explain alcohol abuse as an
independent risk factor for angiographic vasospasm after
aSAH in this study.

Apart from the effect on vascular tone, alcohol may lead to
endothelial dysfunction. A high dose of alcohol consumption
leads to an increased endothelin level, which is also involved
in vessel constriction (18, 19). Alcohol abuse also leads to
oxidative stress. For example, a high dose of alcohol leads to
the overproduction of reactive oxygen species, leading to the
peroxidation of lipids, proteins, and DNA and ultimately to
necrosis and apoptosis (20). The increased level of endothelin
induced by alcohol abuse is also associated with oxidative
stress (18). The blockade of oxidative stress may prevent
endothelial dysfunctions induced by alcohol. A study by
Sacanella et al. indicated that alcohol abuse increases the
expression of intercellular adhesion molecule (ICAM-1) and E-
selectin, which participates in the adhesion and migration of
inflammatory cells. As for inflammation, a high dose of alcohol
consumption may cause an increase in tumor necrosis factor-
alpha (TNF-alpha) and interleukin-6 (IL-6) (21), contributing
to the aggregation of inflammatory cells and vessel constriction
or spasm.

Alcohol also acts on coagulation and fibrinolysis. It has
been demonstrated that heavy alcohol intake is associated
with lower fibrinolytic capacity and a more procoagulant
state, with an elevation in the plasma levels of factor VII,
fibrinogen, and viscosity (22). Fibrinolysis is mainly regulated
by two proteins in the blood: tissue plasminogen activator
(tPA) and plasminogen activator inhibitor 1 (PAI-1). TPA

promotes fibrinolysis, whereas PAI-1 inhibits fibrinolytic activity.
Heavy alcohol consumption has been indicated to stimulate
PAI-1 production and thereby suppress fibrinolysis (23).
Fibrinolysis suppression may lead to subsequent thrombosis and
vessel spasms.

Angiographic vasospasm has been indicated to be present in
up to 70% of patients following SAH (9), and it has been regarded
as an important factor causing DCI for a long time. However,
recent findings have suggested that angiographic vasospasm
alone is not sufficient to trigger DCI (9). DCI is only found in
about 30% of patients and does not always fall within the vascular
distribution of the angiographic vasospasm (24). DCI, therefore,
may occur in an area that does not involve angiographic
vasospasm. In our study, DCI was found in 27% of patients,
which is nearly 30%. For the non-alcohol abuse group, 73 patients
presented with angiographic vasospasm and 55 with DCI. For
the alcohol abuse group, 11 with angiographic vasospasm, and
9 with DCI. Notably, the patients with DCI all presented with the
presence of angiographic vasospasm, which verified the critical
role of angiographic vasospasm in the development of DCI
following aSAH. However, further research is still needed to find
out other causes of DCI.

Limitations
There are some limitations to our study. First, this is a single-
center study based on a French patients cohort, and only
patients with mechanical ventilation were analyzed. Therefore,
the generalizability of the results to other geographical areas
and the patient groups may be limited. Second, this is a
retrospective study, so we can only conclude that alcohol abuse
was associated with angiographic vasospasm and DCI, but
causation cannot be proved. Therefore, only an OR could be
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calculated, not the relative risk. Third, due to raw data limitations,
the dose of alcohol consumption was not recorded, which would
otherwise provide more details regarding the effect of alcohol on
angiographic vasospasm and DCI.

CONCLUSIONS

In this study, we have demonstrated that patients with alcohol
abuse havehas about 2.5-fold higher odds of angiographic
vasospasm and DCI compared to non-alcohol abuse patients
after aSAH, independent of age, sex, Fisher score, treatment,
CVD, and SAPS II. Our findings may be helpful in monitoring
patients with known risk factors for the development of
angiographic vasospasm and DCI following aSAH.

DATA AVAILABILITY STATEMENT

The dataset is available on Dryad at DOI: 10.5061/dryad.
47d7wm3b4.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Comite de Protection des Personnes Sud-
Mediterannee IV, Montpellier, France; ID: Q-2015-09-07.
Written informed consent for participation was not required for
this study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

LZhao wrote the first draft of the manuscript. All authors
contributed to the conception and design of the study,
statistical analysis, manuscript revision, read, and approved the
submitted version.

ACKNOWLEDGMENTS

We are very grateful to the data providers of the study.

REFERENCES

1. O’Keefe EL, DiNicolantonio JJ, O’Keefe JH, Lavie CJ. Alcohol and CV
health: Jekyll and Hyde J-curves. Prog Cardiovasc Dis. (2018) 61:68–
75. doi: 10.1016/j.pcad.2018.02.001

2. Mokdad AH, Marks JS, Stroup DF, Gerberding JL. Actual causes
of death in the United States, 2000. JAMA. (2004) 291:1238–
45. doi: 10.1001/jama.291.10.1238

3. Grant BF, Chou SP, Saha TD, Pickering RP, Kerridge BT, Ruan WJ, et al.
Prevalence of 12-month alcohol use, high-risk drinking, and DSM-IV
alcohol use disorder in the United States, 2001-2002 to 2012-2013: results
from the national epidemiologic survey on alcohol and related conditions.
JAMA Psychiatry. (2017) 74:911–23. doi: 10.1001/jamapsychiatry.201
7.2161

4. Kissela BM, Sauerbeck L, Woo D, Khoury J, Carrozzella J, Pancioli A,
et al. Subarachnoid hemorrhage: a preventable disease with a heritable
component. Stroke. (2002) 33:1321–6. doi: 10.1161/01.STR.0000014773.57
733.3E

5. Juvela S, Hillbom M, Numminen H, Koskinen P. Cigarette
smoking and alcohol consumption as risk factors for aneurysmal
subarachnoid hemorrhage. Stroke. (1993) 24:639–46. doi: 10.1161/01.STR.
24.5.639

6. King JT, Jr. Epidemiology of aneurysmal subarachnoid hemorrhage
Neuroimaging. Clin N Am. (1997) 7:659–68.

7. Feigin VL, Rinkel GJ, Lawes CM, Algra A, Bennett DA, van Gijn
J, et al. Risk factors for subarachnoid hemorrhage: an updated
systematic review of epidemiological studies. Stroke. (2005)
36:2773–80. doi: 10.1161/01.STR.0000190838.02954.e8

8. Galea JP, Dulhanty L, Patel HC, UK and Ireland Subarachnoid Hemorrhage
Database Collaborators. Predictors of outcome in aneurysmal subarachnoid
hemorrhage patients: observations from a multicenter data set. Stroke. (2017)
48:2958–63. doi: 10.1161/STROKEAHA.117.017777

9. Crowley RW, Medel R, Dumont AS, Ilodigwe D, Kassell NF, Mayer
SA, et al. Angiographic vasospasm is strongly correlated with
cerebral infarction after subarachnoid hemorrhage. Stroke. (2011)
42:919–23. doi: 10.1161/STROKEAHA.110.597005

10. Rumalla K, Lin M, Ding L, Gaddis M, Giannotta SL, Attenello FJ, et al. Risk
factors for cerebral vasospasm in aneurysmal subarachnoid hemorrhage: a
population-based study of 8346 patients. World Neurosurg. (2021) 145:e233–
e41. doi: 10.1016/j.wneu.2020.10.008

11. Macdonald RL. Delayed neurological deterioration after
subarachnoid haemorrhage. Nat Rev Neurol. (2014) 10:44–
58. doi: 10.1038/nrneurol.2013.246

12. Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF,
Muizelaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal
subarachnoid hemorrhage as an outcome event in clinical trials and
observational studies: proposal of a multidisciplinary research group. Stroke.
(2010) 41:2391–5. doi: 10.1161/STROKEAHA.110.589275

13. Suarez JI, Tarr RW, Selman WR. Aneurysmal subarachnoid hemorrhage. N
Engl J Med. (2006) 354:387–96. doi: 10.1056/NEJMra052732

14. Chalard K, Szabo V, Pavillard F, Djanikian F, Dargazanli C, Molinari
N, et al. Long-term outcome in patients with aneurysmal subarachnoid
hemorrhage requiring mechanical ventilation. PLoS ONE. (2021)
16:e0247942. doi: 10.1371/journal.pone.0247942

15. Russ R, Abdel-Rahman AR, Wooles WR. Role of the sympathetic nervous
system in ethanol-induced hypertension in rats. Alcohol. (1991) 8:301–
7. doi: 10.1016/0741-8329(91)90433-W

16. O’Connor AD, Rusyniak DE, Bruno A. Cerebrovascular and cardiovascular
complications of alcohol and sympathomimetic drug abuse. Med Clin North

Am. (2005) 89:1343–58. doi: 10.1016/j.mcna.2005.06.010
17. Altura BM, Altura BT. Role of magnesium and calcium in alcohol-induced

hypertension and strokes as probed by in vivo television microscopy, digital
image microscopy, optical spectroscopy, 31P-NMR, spectroscopy and a
unique magnesium ion-selective electrode. Alcohol Clin Exp Res. (1994)
18:1057–68. doi: 10.1111/j.1530-0277.1994.tb00082.x

18. Soardo G, Donnini D, Varutti R, Moretti M, Milocco C, Basan L, et al.
Alcohol-induced endothelial changes are associated with oxidative stress and
are rapidly reversed after withdrawal. Alcohol Clin Exp Res. (2005) 29:1889–
98. doi: 10.1097/01.alc.0000183004.28587.23

19. Zilkens RR, Burke V, Hodgson JM, Barden A, Beilin LJ, Puddey IB. Red wine
and beer elevate blood pressure in normotensive men. Hypertension. (2005)
45:874–9. doi: 10.1161/01.HYP.0000164639.83623.76

20. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health
and disease. Physiol Rev. (2007) 87:315–424. doi: 10.1152/physrev.00029.
2006

21. Luedemann C, Bord E, Qin G, Zhu Y, Goukassian D, Losordo DW, et al.
Ethanol modulation of TNF-alpha biosynthesis and signaling in endothelial
cells: synergistic augmentation of TNF-alpha mediated endothelial cell
dysfunctions by chronic ethanol. Alcohol Clin Exp Res. (2005) 29:930–
8. doi: 10.1097/01.ALC.0000171037.90100.6B

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 May 2022 | Volume 9 | Article 825890126

10.5061/dryad.47d7wm3b4
10.5061/dryad.47d7wm3b4
https://doi.org/10.1016/j.pcad.2018.02.001
https://doi.org/10.1001/jama.291.10.1238
https://doi.org/10.1001/jamapsychiatry.2017.2161
https://doi.org/10.1161/01.STR.0000014773.57733.3E
https://doi.org/10.1161/01.STR.24.5.639
https://doi.org/10.1161/01.STR.0000190838.02954.e8
https://doi.org/10.1161/STROKEAHA.117.017777
https://doi.org/10.1161/STROKEAHA.110.597005
https://doi.org/10.1016/j.wneu.2020.10.008
https://doi.org/10.1038/nrneurol.2013.246
https://doi.org/10.1161/STROKEAHA.110.589275
https://doi.org/10.1056/NEJMra052732
https://doi.org/10.1371/journal.pone.0247942
https://doi.org/10.1016/0741-8329(91)90433-W
https://doi.org/10.1016/j.mcna.2005.06.010
https://doi.org/10.1111/j.1530-0277.1994.tb00082.x
https://doi.org/10.1097/01.alc.0000183004.28587.23
https://doi.org/10.1161/01.HYP.0000164639.83623.76
https://doi.org/10.1152/physrev.00029.2006
https://doi.org/10.1097/01.ALC.0000171037.90100.6B
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zhao et al. Alcohol Abuse and aSAH

22. Lee KW, Lip GY. Effects of lifestyle on hemostasis, fibrinolysis, and
platelet reactivity: a systematic review. Arch Intern Med. (2003) 163:2368–
92. doi: 10.1001/archinte.163.19.2368

23. Ballard HS. The hematological complications of alcoholism. Alcohol Health
Res World. (1997) 21:42–52.

24. Hijdra A, Van Gijn J, Stefanko S, Van Dongen KJ, Vermeulen
M, Van Crevel H. Delayed cerebral ischemia after aneurysmal
subarachnoid hemorrhage: clinicoanatomic correlations. Neurology. (1986)
36:329–33. doi: 10.1212/WNL.36.3.329

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Zhao, Cheng, Peng, Zuo, Xiong, Zhang, Mao, Zhang, Wu,

Jiang, Wang and Li. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 May 2022 | Volume 9 | Article 825890127

https://doi.org/10.1001/archinte.163.19.2368
https://doi.org/10.1212/WNL.36.3.329
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-885426 September 8, 2022 Time: 15:15 # 1

TYPE Original Research
PUBLISHED 14 September 2022
DOI 10.3389/fcvm.2022.885426

OPEN ACCESS

EDITED BY

Anne-Clémence Vion,
INSERM U1087 Institut du Thorax,
France

REVIEWED BY

Hong Jin,
Karolinska Institutet (KI), Sweden
Frrédéric Clarençon,
Hôpitaux Universitaires Pitié
Salpêtrière, France

*CORRESPONDENCE

Omer F. Eker
omer.eker@chu-lyon.fr

SPECIALTY SECTION

This article was submitted to
Atherosclerosis and Vascular Medicine,
a section of the journal
Frontiers in Cardiovascular Medicine

RECEIVED 28 February 2022
ACCEPTED 27 July 2022
PUBLISHED 14 September 2022

CITATION

Eker OF, Lubicz B, Cortese M,
Delporte C, Berhouma M, Chopard B,
Costalat V, Bonafé A,
Alix-Panabières C, Van Anwterpen P
and Zouaoui Boudjeltia K (2022)
Effects of the flow diversion technique
on nucleotide levels in intra-cranial
aneurysms: A feasibility study providing
new research perspectives.
Front. Cardiovasc. Med. 9:885426.
doi: 10.3389/fcvm.2022.885426

COPYRIGHT

© 2022 Eker, Lubicz, Cortese,
Delporte, Berhouma, Chopard,
Costalat, Bonafé, Alix-Panabières, Van
Anwterpen and Zouaoui Boudjeltia.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Effects of the flow diversion
technique on nucleotide levels
in intra-cranial aneurysms: A
feasibility study providing new
research perspectives
Omer F. Eker1,2*, Boris Lubicz3, Melissa Cortese4,
Cedric Delporte4, Moncef Berhouma5, Bastien Chopard6,
Vincent Costalat7, Alain Bonafé7,
Catherine Alix-Panabières8,9, Pierre Van Anwterpen4 and
Karim Zouaoui Boudjeltia10

1Department of Neuroradiology, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France,
2CREATIS Laboratory, UMR 5220, U1206, Université Lyon, INSA-Lyon, Université Claude Bernard
Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Lyon, France, 3Department of Interventional
Neuroradiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium,
4RD3–Pharmacognosy, Bioanalysis, and Drug Discovery and Analytical Platform, Faculty
of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium, 5Department of Vascular
Neurosurgery, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France, 6Scientific
and Parallel Computing Group, CUI, University of Geneva, Geneva, Switzerland, 7Department
of Neuroradiology, Hôpital Gui de Chauliac, Montpellier, France, 8Laboratory of Rare Human
Circulating Cells, University Medical Center of Montpellier, University of Montpellier, Montpellier,
France, 9CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France, 10Laboratory
of Experimental Medicine (ULB 222), Medicine Faculty, Université Libre de Bruxelles, CHU
de Charleroi, Charleroi, Belgium

Introduction: The flow diverter stent (FDS) has become a first-line

treatment for numerous intra-cranial aneurysms (IAs) by promoting aneurysm

thrombosis. However, the biological phenomena underlying its efficacy

remain unknown. We proposed a method to collect in situ blood samples

to explore the flow diversion effect within the aneurysm sac. In this feasibility

study, we assessed the plasma levels of nucleotides within the aneurysm sac

before and after flow diversion treatment.

Materials and methods: In total, 14 patients with unruptured IAs who were

selected for FDS implantation were prospectively recruited from February

2015 to November 2015. Two catheters dedicated to (1) FDS deployment and

(2) the aneurysm sac were used to collect blood samples within the parent

artery (P1) and the aneurysm sac before (P2) and after (P3) flow diversion

treatment. The plasma levels of adenosine monophosphate (AMP), adenosine

diphosphate (ADP), and adenosine triphosphate (ATP) at each collection point

were quantified with liquid chromatography and tandem mass spectrometry.

Results: The aneurysms were extradural in nine (64.3%) patients and intra-

dural in five (35.7%) patients. They presented an average diameter of

15.5 ± 7.1 mm, height of 15.8 ± 4.6 mm, and volume of 2,549 ± 2,794 ml.

In all patients (100%), 16 FDS implantations and 42 in situ blood collections

Frontiers in Cardiovascular Medicine frontiersin.org

128

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.885426
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.885426&domain=pdf&date_stamp=2022-09-14
https://doi.org/10.3389/fcvm.2022.885426
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.885426/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-885426 September 8, 2022 Time: 15:15 # 2

Eker et al. 10.3389/fcvm.2022.885426

were performed successfully without any complications associated with the

procedure. The ATP, ADP, and AMP concentrations within the aneurysm sac

were decreased after flow diversion (p = 0.005, p = 0.03, and p = 0.12,

respectively). Only the ATP levels within the aneurysm sac after flow diversion

were significantly correlated with aneurysm volume (adjusted R2 = 0.43;

p = 0.01).

Conclusion: In situ blood collection within unruptured IAs during a flow

diversion procedure is feasible and safe. Our results suggest that the flow

diversion technique is associated with changes in the nucleotide plasma levels

within the aneurysm sac.

KEYWORDS

intra-cranial aneurysm, flow diversion, nucleotides, in situ blood collection,
thrombosis – etiology

Introduction

The flow diversion technique is recognized as a safe and
efficacious first-line therapy for selected intra-cranial aneurysms
(IAs). Although initially dedicated to the treatment of large
or giant complex IAs in proximal intra-cranial arteries (i.e.,
the internal carotid or vertebral arteries), this technique has
been expanded to various types of aneurysms and locations,
such as ruptured aneurysms (1). Unlike surgical clipping and
endovascular coiling, which target the aneurysm itself, the
flow diversion technique relies on the primary endoluminal
reconstruction of the parent vessel through the deployment
of a flow diverter stent (FDS), thus leading to the secondary
occlusion of the aneurysm (1, 2). The aneurysm cure results
from intra-saccular thrombosis are favored by this technique
and therefore are not immediate but progressive. Indeed, a
recent meta-analysis has reported complete occlusion rates
of 68% (65–72%) and 90% (88–92%) with this technique in
follow-up before 6 months and at 6–12 months, respectively
(3, 4).

Despite the increasing use of FDSs in recent years and
the introduction of newer-generation surface-modified FDSs,
the mechanism of flow diversion and its therapeutic effects
remain unclear. Two mechanisms are commonly understood
to be involved in FDS action: (1) the hemodynamic alteration
in the aneurysm sac induced by the flow redirection within the
parent vessel and (2) the promotion of endothelialization at the
aneurysm neck favored by the implant acting as a “scaffold”
that increases endothelial cell migration and colonization (2,
5, 6). These two mechanisms, dependently or independently,
have been proposed to explain the intra-saccular thrombosis
resulting from the treatment and leading to IA cure. Numerous
studies exploring these two mechanisms have improved the
understanding of this technique (2, 7–9). However, they have
not provided a comprehensive picture of the flow diversion

effect that may explain why as many as 10% of IAs treated with
FDSs remain patent at 1-year follow-up (4).

Little is known regarding the biological phenomena induced
by the flow diversion technique within the IA. Notably, the effect
of intra-saccular blood stasis on platelet aggregation remains
unknown. Nucleotides (intra- and/or extracellular) play diverse
physiological roles but are pathological under certain conditions
(10). The role of adenosine diphosphate (ADP) in platelet
aggregation through the P2Y12 receptors is well known, and
many antiplatelet therapies target its action (11). Adenosine
triphosphate (ATP) is released from erythrocytes and platelets
under certain pathophysiological conditions, such as hypoxia
or venous stasis (12). ATP is also known to induce platelet
aggregation in whole blood via conversion to ADP by ecto-
ATPases on leukocytes (11).

In this article, we propose an original investigative technique
to collect blood samples from the aneurysm sac during
endovascular treatment (EVT) of unruptured IAs with the flow
diversion technique. We demonstrated its feasibility in patients
treated with FDSs for unruptured IAs. The collected blood
samples were analyzed to assess the levels of intra-saccular
nucleotides before and after flow diversion treatment.

Materials and methods

Population

In total, 14 patients with unruptured IAs who
were selected for FDS implantation were prospectively
recruited from February 2015 to November 2015 in
two INR centers. The indications for FDS implantation
were assessed after a multidisciplinary meeting at the
relevant institution for all patients. Local ethics committee
guidelines were followed for this study (DGRI CCTIRS
MG/CP 2012.528; Comité d’Ethique du CHU de Lyon;
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Lyon/France). Informed consent was obtained from all
patients. This work was funded partly by the THROMBUS
VPH Project (7th Framework Programme/Seventh
Framework Programme of European Commission/Virtual
Physiological Human ICT-2009.5.3/Project reference: 269966;
http://www.thrombus-vph.eu).

Aneurysm treatment

All patients were treated under general anesthesia with
a biplane angiographic system (Phillips Allura, Philips, Best,
Netherlands) after preparation according to the institutional
protocol common to both centers (loading dose of 300 mg
of clopidogrel administered 1 day before EVT; systemic
heparinization administered during the endovascular procedure
and stopped at the end of the treatment; per-procedural loading
dose of 300 mg of acetylsalicylic acid after FDS deployment;
and double antiplatelet therapy initiated for 6 months starting
on day 1 after treatment, with 75 mg of acetylsalicylic acid
and 75 mg of clopidogrel per day). The aneurysm and parent
vessel underwent 3D rotational angiography before the EVT,
thus allowing for 3D reconstruction and treatment planning.
One or more FDSs were deployed in one session according to the
aneurysm neck size (PipelineTM Embolization Device, PEDTM,
ev3-Covidien, Irvine, CA, United States; Flow Redirection
Endoluminal Device, FREDTM, Microvention Terumo, Aliso
Viejo, CA, United States; and p64 Flow Modulation Device,
Phenox, Germany). If deemed necessary by the interventional
neuroradiologist, additional coiling was performed (Target
Coils, Stryker Neurovascular, Fremont, CA, United States).

Aneurysm assessment

The 3D aneurysms and parent vessel geometries
were segmented and reconstructed from the 3D
angiographic acquisition before the EVT (spatial resolution
0.48 mm × 0.48 mm), according to a new active contour
method dedicated to the near real-time segmentation of 3D
objects with the level-set method (13). This method allowed for
the calculation of the two maximal diameters (mm), the depth
(mm), the neck size (mm), and the volume (i.e., the volume
of the patent intra-saccular lumen; mm3) of all aneurysms in
dedicated software (ITK-SNAP, Penn Image Computed and
Science Laboratory, University of Pennsylvania, United States).

In vivo intra-aneurysmal blood
collection

The principle of the technique relies on using the catheter
normally dedicated to the FDS deployment and to coiling for

the blood collection. During the EVT, a 0.027-inch Marksman
Microcatheter (ev3 Neurovascular, Irvine, CA, United States)
dedicated to FDS deployment was positioned within the parent
artery and allowed for blood collection at the P1 position
(i.e., parent artery catheter, PAC). The catheter was positioned
upstream of the target IA for blood collection. The PAC
was then positioned in the parent artery downstream of the
IA for FDS deployment. Before FDS deployment, a 0.021-
inch Headway Microcatheter (Microvention Terumo, Aliso
Viejo, CA, United States) normally dedicated to coiling was
positioned within the aneurysm sac and allowed for blood
collection at this position (i.e., intra-IA catheter, IIAC). The
deployment of the FDS while the IIAC was within the aneurysm
lumen enabled the aneurysm neck to be covered and the
IIAC to be jailed. The intra-aneurysmal blood samples were
collected via the IIAC within the aneurysm sac before and after
FDS deployment (blood collection P2 and P3, respectively).
All microcatheter navigations were performed with 0.014-
inch Synchro Guidewires, which were withdrawn before blood
collection (Stryker Neurovascular, Fremont, CA, United States).
From each catheter at each location (i.e., P1, P2, and P3), before
each blood sampling, the catheter (i.e., either PAC or IIAC)
was purged with a 1-cc Luer lock syringe (Becton Dickinson,
Belgium). The purged volume corresponded approximately to
their dead volume space of 0.87 and 0.55 ml for the 0.087-inch
and the 0.021-inch catheters, respectively. At the end of the
purging, when the blood appeared at the tip of the syringe, a new
1-cc Luer lock syringe was used to collect at least 700 µl of blood.
The catheter purging and the blood collection were performed
slowly during approximately 30 s of aspiration to minimize
the red blood cell (RBC) hemolysis. Thus, three samples per
patient were yielded, in the following order, to minimize the
intra-luminal device manipulation:

- Within the parent artery upstream of the aneurysm and
before the flow diversion (P1);

- Within the aneurysm sac before the flow diversion (P2);
and

- Within the aneurysm sac after 10 min of flow diversion
(P3).

After collection, the blood samples were collected in 1.5 ml
tubes containing citrate and stored at +4◦C for less than 2 h.
Second, the samples were centrifuged at 3,500 g for 10 min, thus
allowing for separation and extraction of the serum, which was
stored at −80◦C until further analyses.

Biological analyses

In each blood sample, the plasma levels of adenosine
monophosphate (AMP), ADP, and ATP were quantified through
a liquid chromatography and tandem mass spectrometry
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TABLE 1 Population and aneurysm characteristics, procedural features, and follow-up.

Case Age Sex Symptoms Aneurysm characteristics Procedural characteristics Occlusion
(time)

Localization* Height
(mm)

Diameter
1 (mm)

Diameter
2 (mm)

Volume
(mm3)

Mural
thrombus

n of
FDSs

Type of
FDS

Coiling Complications Contrast
media

stagnation

1 30 M Cavernous sinus
syndrome

R ICA C4 12.00 14.00 15.00 1319 No 2 PEDTM No No Yes Complete
(12 months)

2 55 F Cavernous sinus
syndrome

R ICA C4 24.50 33.50 22.50 9669 No 1 PEDTM Yes No Yes Complete
(48 months)

3 43 M Headaches L ICA C5 20.00 16.00 20.00 3351 No 1 PEDTM No No Yes Complete
(48 months)

4 79 F Incidental discovery L ICA C2 12.00 8.00 9.00 452 No 1 PEDTM No No Yes Complete
(12 months)

5 50 M Incidental discovery L Pericallosal a. 9.00 5.60 7.70 203 Yes 1 PEDTM No No Yes Complete
(6 months)

6 78 F Cavernous sinus
syndrome

R ICA C4 13.50 12.00 11.50 975 No 1 PEDTM No No Yes Complete
(12 months)

7 71 F Cavernous sinus
syndrome

R ICA C4 21.00 26.00 23.00 6575 No 1 PEDTM No No Yes Complete
(48 months)

8 63 F Cavernous sinus
syndrome

L ICA C4 10.00 13.00 18.00 1225 No 1 FREDTM No No Yes Complete
(6 months)

9 61 F Headaches L ICA C1–C2 18.00 9.50 9.50 851 No 1 PEDTM Yes No No Complete
(12 months)

10 53 M Incidental discovery R ICA C2 18.50 7.80 8.00 604 No 1 PEDTM Yes No Yes Complete
(12 months)

11 51 F Incidental discovery R ICA C3 13.00 19.00 20.00 2587 No 2 P64 No No Yes Complete
(6 months)

12 61 F Headaches R ICA C2 14.00 7.00 8.00 411 No 1 PEDTM Yes No No Complete
(12 months)

13 39 M Cavernous sinus
syndrome

R ICA C4 20.00 15.50 14.00 2272 Yes 1 PEDTM No No Yes Complete
(12 months)

14 58 F Cavernous sinus
syndrome

R ICA C3–C4 16.00 20.00 31.00 5194 Yes 1 PEDTM No No Yes Complete
(12 months)

F, female; FDS, flow diverter stent; FREDTM , flow redirection endoluminal device; ICA, internal carotid artery; L, left; M, male; P64, P64 flow modulation device; PEDTM , PipelineTM embolization device; R, right;
*ICA localizations according to Fisher’s classification: C1, communicating segment; C2, ophthalmic segment; C3, clinoidal segment; C4, cavernous segment; C5, intra-petrous.
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method that was previously developed, validated, and fully
described by our team (10). This technique provides the
advantages of a lower limit of quantification than other methods
and the ability to simultaneously quantify all nucleotides within
a single injection within less than 10 min on the same blood
sample (10).

Statistical analyses

Categorical variables are expressed as counts and
percentages. Continual variables are expressed as
mean ± standard deviation (SD). The nucleotide levels at
the three blood collection points (P1, P2, and P3) were
compared with Student’s t-test, the Mann–Whitney rank sum
test, the one-way analysis of variance (ANOVA), or the Kruskal–
Wallis rank test, according to the results of the Shapiro–Wilk
normality test and the Levene test of homogeneity. Linear
regression analyses were performed to evaluate any correlation
between the nucleotide levels and the aneurysm volume at
each blood collection point. A two-sided p-value of <0.05
was considered statistically significant. Statistical analyses
were performed in R version 3.2 (R Foundation for Statistical
Computing, Vienna, Austria) (14).

Results

Table 1 summarizes the demographic characteristics of
the population, the aneurysm characteristics, the procedural
features, and the aneurysm occlusion status at follow-up.
Figure 1 shows the blood collection workflow during EVT.

Table 2 summarizes the nucleotide plasma concentrations at
each blood collection point.

Figure 2 illustrates the sampling process in one
case (in patient 2).

Figures 3–5 report the nucleotide levels at each blood
collection point.

Figure 6 reports the distribution of ATP levels according to
the aneurysm volume.

Study population

In total, 9 (60.0%) patients were women. The median
patient age was of 57 ± 15 years (range 30–79 years). Seven
(50%) patients had a cavernous sinus syndrome associated
with headaches, ipsilateral ptosis, and ophthalmoplegia, due
to III, IV, or VI nerve palsy, without any decrease in visual
acuity or pupillary abnormalities. Three (21.4%) patients had
headaches whose symptoms had no confirmed relationship with
their aneurysms. Four (28.6%) patients were asymptomatic,
and their aneurysms were incidentally discovered (Table 1).

The patients’ medical histories included high blood pressure
in three (21.4%) patients, cigarette smoking in six (42.9%)
patients, and diabetes mellitus in one (7.1%) patient. No
patients presented any vascular steno-occlusive lesions of
the supra-aortic trunks or intra-cranial arteries or any
hypoxic conditions.

Aneurysm characteristics

One (7.1%) partially thrombosed aneurysm was located
on the left pericallosal artery, and all other aneurysms
were located on the right (n = 9, 64.3%) and the left
(n = 4, 28.6%) intra-cranial carotid arteries (Table 1),
from their intra-petrous segment to termination. Nine
(64.3%) aneurysms were in extradural locations, and
five (35.7%) were in intra-dural locations. The maximal
aneurysm diameters were 1 and 2, heights and volumes
were 14.8 ± 7.8 mm (range 5.6–33.5 mm), 15.5 ± 7.1 mm
(range 7.7–31.0 mm), 15.8 ± 4.6 mm (range 9–
24.5 mm), and 2,549 ± 2,794 ml (range 203–9,669 ml),
respectively. Three (21.4%) aneurysms presented a mural
thrombus (Table 1).

Procedure safety and aneurysm
occlusion

In all patients, the intra-arterial and intra-aneurysmal
navigations with the IIAC and the PAC were performed
successfully. The aneurysms were treated with PEDTM in
12 (85.7%), FREDTM in 1 (7.1%), and P64 in 1 (7.1%)
cases, respectively. In two (14.3%) patients, two FDSs were
deployed in a telescopic fashion to treat the aneurysm. All
stents were successfully deployed. Intra-aneurysmal contrast
media stagnation after flow direction was observed in 12
(85.7%) patients. In three (21.4%) cases, the aneurysm coil
embolization was deemed necessary by the physician and
was performed in addition to the flow diversion technique
through the jailed IIAC after P3 blood collection (Table 1).
Apart from a groin hematoma in one (7.1%) patient, no
postoperative complications were observed in all procedures.
In all patients (100%), the blood collection through the
PAC and IIAC did not affect the EVT and its duration. The
aneurysm occlusion was obtained between 6 and 48 months
of follow-up in all patients. The occlusion status did not
change during the follow-up between 2015 and 2021.
No patients presented any clinical consequences of the
intra-cranial blood sampling. All patients who initially
presented with cavernous sinus syndrome showed clinical
improvement or complete regression of their symptoms
at the 1-year follow-up. The other patients remained
clinically unchanged.
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FIGURE 1

Illustrates the different steps of the blood collection within the parent vessel and the aneurysm sac during the endovascular treatment with the
flow diverter stent.

TABLE 2 Nucleotide plasma concentrations at each blood
collection point.

Blood collection points p-Value

P1 P2 P3

AMP (µM) 911 ± 520 624 ± 385 600 ± 393 0.12*

ADP (µM) 1,163 ± 286 1,009 ± 283 903 ± 467 0.03*

ATP (µM) 2,566 ± 453 2,158 ± 193 2,049 ± 179 0.005**

P1, parent vessel; P2, intra-aneurysmal before flow diversion stent implantation; P3,
intra-aneurysmal after flow diversion stent implantation; ADP, adenosine diphosphate;
AMP, adenosine monophosphate; ATP, adenosine triphosphate.
For each measured metabolite, a one-way analysis of variance (ANOVA; *) or the
Kruskal–Wallis test (**) was used to compare the mean values among the three blood
collection points, according to the results of the Shapiro–Wilk normality test and the
Levene test for homogeneity of variance.

Biological results

In total, 42 blood collections were successfully performed
in 14 patients without any difficulties or per-procedural
complications. We observed significantly lower ATP, ADP,
and AMP concentrations within the aneurysm sac after flow

diversion than within the parent artery and the aneurysm sac
before flow diversion (p = 0.005, p = 0.03, and p = 0.01,
respectively; Table 2 and Figures 3–5). No differences were
observed in the nucleotide levels between smoker (n = 6) and
non-smoker (n = 8) patients. The ATP level within the aneurysm
sac after flow diversion was significantly correlated with the
aneurysm volume (adjusted R2 = 0.44, p = 0.01; Figure 6
and Supplementary material). No significant correlations were
observed between aneurysm volume and ATP levels within
the aneurysm sac before flow diversion or within the parent
vessel, or AMP and ADP levels at each blood collection point
(Supplementary material).

Discussion

In this work, we used an approach to collect blood samples
within the parent artery and the aneurysm sac during EVT
for IAs with the flow diversion technique. In this feasibility
study, the collected blood was analyzed, and the nucleotide levels
were measured. The blood collection had no consequences on
the EVT, and there were no complications observed in any
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FIGURE 2

Illustrates a patient presenting a giant aneurysm of the right internal carotid artery (segment C4; red asterisk; A–E). The 0.027-inch catheter for
the first blood collectio (P1) is visible in panels (B–E) (single black arrow). The 0.021-inch catheter within the aneurysm sac is visible in panels
(B–E) (double black arrows). The flow diverter stent is deployed in panels (C–E) (triple black arrows).

FIGURE 3

The boxplot shows the results of the measured AMP levels (in µM) within the parent vessels (P1) and the aneurysm sacs before (P2) and after (P3)
flow diversion. No significant differences were observed for the AMP levels between the three sampling locations.
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FIGURE 4

The boxplot shows the results of the measured ADP levels (in µM) within the parent vessel (P1) and the aneurysm sac before (P2) and after (P3)
flow diversion. The ADP levels were significantly lower within the aneurysm sacs after flow diversion (P3) compared to the ones in the parent
vessels (P1) (p = 0.008).

patients. First, we observed significant decreases in the ATP
and ADP levels within the aneurysm sac after flow diversion.
Second, our results showed a significant correlation between
the intra-aneurysmal ATP decrease after flow diversion and the
aneurysm volume.

The flow diversion technique has revolutionized the
treatment of large and complex IAs that were difficult (or
even impossible) to treat with previous techniques. Compared
with conventional techniques (i.e., coiling, stent-assisted coiling,
parent vessel occlusion, or surgical clipping), FDSs showed
higher rates of occlusion and lower rates of recurrence without
increasing the rate of complications in the treatment of specific
aneurysms, such as giant or complex aneurysms (3, 4, 15).
Their efficacy relies on the ability to redirect the blood flow
out of the aneurysmal sac, thus decreasing the intra-aneurysmal
blood flow and the endothelization of the aneurysm neck, hence
promoting thrombosis of the aneurysm and its regression (2).
Despite the improvements in IA treatment with this technique,

its mechanism of action is not fully understood. Previous studies
on flow diversion have focused on hemodynamic alterations
within the aneurysm sac and/or the endothelization processes
within the parent artery that promote IA thrombosis (2, 5,
6). Those studies have not provided information on the intra-
saccular biological phenomena occurring after flow diversion.
We believe that these phenomena may play a key role in
the curative effect of this technique. Better knowledge of the
blood modification within the IA induced by flow diversion
should aid in understanding its efficacy (or lack thereof) and
eventually enable the identification of patients who will not
benefit from this technique.

However, any exploration of the blood biology within the
IA lumen requires in situ real-time blood samples that are
not available or accessible in normal conditions or after IA
treatment through conventional techniques. A method to obtain
sufficient usable blood to explore these mechanisms is lacking.
The ideal technique to obtain in situ blood samples should
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FIGURE 5

The boxplot shows the results of the measured ATP levels (in µM) within the parent vessel (P1) and the aneurysm sac before (P2) and after (P3)
flow diversion. The AMP levels were significantly lower within the aneurysm sacs before (P2) and after (P3) flow diversion compared to the ones
in the parent vessels (P1) (p = 0.018 between P1 and P2, and p = 0.003 between P1 and P3).

meet several criteria. First, it must be safe, posing minimal
complication risk to patients. Second, it must be as rapid as
possible to prevent or minimize any potential modification of
the assessed biological environment by the collection devices
or techniques. Third, it must be standardized and reproducible
to allow the comparison of blood samples in the same patient
or among patients. Fourth, it must be as easy as possible to
perform, to enable the dissemination of the technique, and to
promote research in this field. For these purposes, we propose a
minimally invasive method to achieve this goal while meeting
all these criteria. Our approach exploits the flow diversion
EVT itself and the materials used during the procedure, i.e.,
the catheters dedicated to the intra-cranial navigation, the FDS
deployment, and additional coiling of the aneurysm if necessary.
The catheters are positioned sequentially within the parent
artery and the aneurysm sac. The blood collection at each
targeted location lasts approximately 30 s through the catheters,
a duration compatible with that of EVT. The last collection
(i.e., within the aneurysm sac after flow diversion) is performed

10 min after flow diversion, on the basis of previous reports of
the changes in nucleotide levels in venous blood after 4 min of
stasis (10), to maximize the chances of detecting any changes in
nucleotide levels after flow diversion.

The nucleotides in the blood play complex and various
roles that are closely associated with local conditions. Indeed,
in addition to functioning as an intra-cellular energy source,
ATP and ADP are important extracellular signaling molecules
(16). Extracellular circulating ATP is rapidly degraded into ADP,
AMP, and adenosine by ectonucleotidases (17). ATP and ADP
activate P2 receptors on various cells, particularly blood cells,
such as platelets and endothelial cells (18, 19), thus regulating
several physiological responses. These responses include platelet
aggregation, vascular tone (20), and the release of endothelial
factors. At least 15 nucleotide-activated cell surface receptors
have been found in humans (P2X and P2Y receptors) and show
remarkably varied physiological responses.

Platelet aggregation is mediated by ADP through the
P2Y12 receptors (21, 22), in a process involving leukocytes,
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FIGURE 6

The scatter plot reports the ATP levels (in µM) within the
aneurysm sacs after flow diversion (P3) according to the
aneurysm volumes (in mm3). A significant correlation was
observed between the ATP levels within the aneurysm sacs after
flow diversion (P3) and the aneurysm volumes (R2 = 0.44;
p = 0.014).

which present cell surface enzymes that degrade ATP into
ADP and then AMP, such as the ectonucleoside triphosphate
diphosphohydrolase-1 (also known as cluster of differentiation
39, CD39) (23). ATP itself is not considered a platelet-
aggregating agent. However, it can induce platelet aggregation
when it is added to whole blood (24). In addition, RBCs play
a role in platelet aggregation by capturing adenosine (23).
These mechanisms may be involved in the progressive intra-
aneurysmal thrombosis observed after flow diversion treatment.

Our work showed that ATP and ADP significantly decrease
within the aneurysm sac after flow diversion and that
aneurysmal volume may influence these phenomena (or at least
the ATP decrease). However, given the limited sample size
and analyses performed (i.e., measurement of only nucleotide
levels), our results cannot explain this observation or indicate
a clear conclusion. At most, among the potentially unknown
mechanisms triggered by flow diversion, the decreases in ATP
and ADP might suggest that flow diversion induces intra-
aneurysmal local hypoxia. Indeed, RBCs are known to function
as O2 sensors, which contribute to the regulation of blood
flow and O2 delivery. They perform this role by releasing ATP
depending on the oxygenation state of hemoglobin and the
pH (20, 25–33). In this physiologically important signaling
system, when O2 decreases, ATP is rapidly degraded to ADP
in circulation by ectonucleotidases. The ADP in turn acts on
P2Y13 receptors on RBCs in a negative feedback pathway for
the inhibition of ATP release (34). The increase in ADP levels
is also known as a primary mediator of platelet aggregation,
thus leading to a sustained response via activation of the
P2Y12 receptors (21, 22). The rapid degradation of ATP into

ADP within the stagnating blood “trapped” outside the FDS
might explain the decrease in ATP. After its initial transient
increase secondary to the previously described mechanism, the
consumption of ADP by the P2Y13 receptors on RBCs and the
P2Y12 receptors on platelets might explain the decrease in ADP.

Limitations

Our work is hypothesis generating but does not provide
further answers because of several limitations. First, this was
a preliminary feasibility study. Hence, we included only a
limited number of patients, and we assessed only the nucleotide
levels. The patients had large intra-cranial, mostly internal
carotid artery, aneurysms. This design aspect was aimed at
minimizing the risk of complications to the patients while
maximizing the possibility of successfully collecting blood
samples within the aneurysmal sac. Indeed, the internal carotid
artery aneurysms are proximal and less prone to accessibility
issues than distally located aneurysms. The large aneurysm
size also minimized the risk of complications during the
intra-aneurysmal catheter manipulation (particularly the risk
of aneurysm perforation). Second, we did not evaluate the
effects of platelet activation or many other factors with roles
in thrombosis, such as the von Willebrand factor, thrombin,
thromboxane A2, coagulation activators (such as thrombin-
antithrombin complex), and components of the glycocalyx
at the endothelial cell surface. Third, we did not consider
the dual platelet inhibition required with flow diversion
treatment in the analyses of the nucleotide levels. The
antiplatelet regimen is commonly based on a combination of
acetylsalicylic acid and a P2Y12 inhibitor (i.e., clopidogrel,
prasugrel, or ticagrelor) that targets the P2Y12 receptor
and therefore may theoretically affect nucleotide levels. For
instance, ticagrelor has been reported to induce ATP release
from human RBCs (35). Fourth, the intra-aneurysmal flow
conditions after flow diversion were also not considered in
the analyses of the nucleotide levels. The intra-aneurysmal
hemodynamic alterations due to flow diversion markedly vary
from no effects (i.e., almost normal patency of the aneurysm)
to abrupt stasis. In the first scenario, few or no changes
in nucleotide levels within the aneurysm when compared
with the parent vessel can reasonably be expected, whereas
maximal changes should be expected in stagnating blood.
In our work, the intra-aneurysmal contrast media stagnation
(indicating blood stagnation) was unevenly distributed and
was observed in 85.7% of patients, thus preventing us from
drawing any conclusion. Finally, we collected blood within
the aneurysm sac after flow diversion at only one time
point (i.e., 10 min after the FDS deployment). Sequential
and consecutive blood collection might be considered to
analyze the kinetics of the intra-aneurysmal biological cascades
after flow diversion.
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Conclusion

Blood collection within unruptured IAs during a flow
diversion procedure is feasible and appeared safe in our
case series. Our preliminary work suggests that flow
diversion treatment is associated with changes in plasma
nucleotide levels within the aneurysm sac after flow diversion.
Further studies in larger populations are needed to better
understand the mechanisms involved in thrombus formation
after flow diversion.
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