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Editorial on the Research Topic

Recent advances in artificial neural networks and embedded systems

for multi-source image fusion

Multi-source image fusion can help robotic systems to perceive the real world by

fusing multi-source images from multiple sensors into a synthesized image that provides

either a comprehensive or reliable description (Geng et al., 2016; Jin et al., 2017; Ma

et al., 2017; Liu et al., 2018; Zhu et al., 2018; Zhang et al., 2021). At present, a large

number of brain-inspired algorithm methods (or models) are aggressively proposed to

accomplish image fusion asksk, and the artificial neural network has become one of

the most popular techniques in the field of multi-source image fusion, especially deep

convolutional neural networks (Liu et al., 2018; Jin et al., 2021). This is an exciting

research field for the research community surrounding image fusion, with deep few-

shot learning, unsupervised learning, application of embodied neural systems, and

industrial applications.

How to develop a sound biological neural network and embedded system to fuse the

multiple features of source images are two key questions that need to be addressed in the

field of multi-source image fusion (Liu et al., 2019; Xu and Ma, 2021; Tang et al., 2022).

Hence, studies of image fusion can be divided into two areas: first, new end-to-end neural

network models for merging constituent parts during the image fusion process; second,

the embodiment of artificial neural networks for image fusion systems. In addition,

current booming techniques, including deep neural systems and embodied artificial

intelligence systems, have been considered potential future trends for reinforcing the

performance of image fusion.

In the first work entitled “Multi-Focus Color Image Fusion Based on Quaternion

Multi-Scale Singular Value Decomposition (QMSVD)”, Wan et al. employed

multichannel quaternion multi-scale singular value to decompose the multi-focus color

images, and a set of low-frequency and high-frequency sub-images was obtained. The
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activity and matching levels are exploited in the focus decision

mapping of the low-frequency sub-image fusion, and a local

contrast fusion rule based on the integration of high-frequency

and low-frequency regions was also proposed. The fused images

were finally reconstructed by inverse QMSVD. Experiments

revealed that the color image fusion method has competitive

visual effects.

The visual quality of images is seriously affected by bad

weather conditions, especially on foggy days. To remove the fog

in the image, Liu et al. introduced a method entitled “Single

Image DefoggingMethod Based on Image Patch Decomposition

and Multi-Exposure Image Fusion”. In this method, the authors

propose a single image defogging method based on image

patch decomposition and multi-exposure fusion, which did not

use any a priori knowledge of the scene depth information.

First, a single foggy image was processed to produce a set

of underexposed images, and then the underexposed and

original images were enhanced and fused by guided filter and

patch operation.

To protect the Tujia brocades that form part of the

intangible cultural heritage, Shuqi He introduce a method

using an unsupervised clustering algorithm for Tujia brocades

segmentation, and a K auto-selection based on information

fusion was also used. In this method, the cluster number

K was calculated by fusing local binary patterns and gray-

level co-occurrence matrix characteristic values. Thus, the

clustering and segmentation operation can be performed on

Tujia brocade images by adopting a Gaussian mixture model to

get a rough preliminary segmentation image. Then, the voting

optimization and conditional random filtering operation were

used to optimize the preliminary segmentation and produce the

final result.

In the fourth paper, Wu et al. propose fractional wavelet-

based generative scattering networks (FrScatNets) in which

fractional wavelet scattering networks are used as the encoder

to extract image features, with deconvolutional neural networks

acting as the decoder, to generate an image. Moreover, the

authors also developed a feature-map fusion method to reduce

the dimensionality of FrScatNet embeddings. In this work, the

authors also discuss the application of image fusion in this study.

Conventional tensor decomposition is a kind of approximate

decomposition model in which the image details may be lost in

fused image reconstruction. To overcome this problem, Lu et al.

introduced a work entitled “multi-modal image fusion based

on matrix product state of tensor”. In this work, source images

were first separated into a third-order tensor, so that the tensor

can be decomposed into a matrix product form by singular

value decomposition, and then the Sigmoid function can be

employed to fuse the key components. Thus, the fused image can

be reconstructed bymultiplying all the fused tensor components.

Lin et al. introduced an integrated circuit board object

detection and image augmentation fusion model based on

YOLO. In this paper, the authors first analyzed several popular

region-based convolutional neural networks and YOLOmodels,

and then they proposed a real-time image recognition model for

integrated circuit board (ICB) in the manufacturing process. In

this work, the authors first constructed an ICBs training dataset,

and a preliminary image recognition model was then established

to classify and predict ICBs. Finally, image augmentation fusion

and optimization methods were used to improve the accuracy of

the method.

Yu et al. report on a bottom-up visual saliency model in

the wavelet domain. In this method, wavelet transform was

first performed on the image to achieve four channels, and

then discrete cosine transform was used to get the magnitude

spectra and corresponding signum spectra. Third, wavelet

decomposed multiscale magnitude spectra for every single

channel were produced. Fourth, six multiscale conspicuity maps

were generated for every single channel, and then the multiscale

conspicuity maps of the four channels were fused. At last, a

final saliency map after a scale-wise combination was obtained.

The experimental results showed that the proposed model

is effective.

Shi et al. propose an ensemble model for graph networks

on imbalanced node classification, which uses GNNs as the

base classifiers during boosting. In this method, the higher

weights were set for the training samples that were not

correctly classified by the previous classifiers. Besides, transfer

learning was also employed to reduce computational cost

and increase fitting ability. Experiments showed that the

proposed method can achieve better performance than a graph

convolutional network.

Deep neural networks have proven vulnerable to attack

from adversarial examples. In response, Xie et al. propose a

new noise data enhancement method, which only transforms

adversarial perturbation to improve the transferability of

adversarial examples with noise data enhancement and

random erasing. Experiments have proved the effectiveness of

this method.

The GAN-based method is difficult to converge completely

to the distribution of face space in training. Yang et al. propose

a face-swapping method based on a pretrained StyleGAN

generator and designed a control strategy of the generator

based on the idea of encoding and decoding to overcome the

problem of GAN in this task. Experiments have shown that

the performance of the proposed method is better than other

state-of-the-art methods.

In the paper entitled “Adaptive fusion based method for

imbalanced data classification”, Liang et al. propose an ensemble

method that combines data transformation and an adaptive

weighted voting scheme for imbalanced data classification. They

first utilized modified metric learning to obtain a feature space

based on imbalanced data, and then the base classifiers were

assigned different weights, adaptively. Experiments on multiple

imbalanced datasets were performed to verify the performance

of this algorithm.
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In the work entitled “Multi-Exposure Image Fusion

Algorithm Based on Improved Weight Function”, Xu et al.

proposed a multi-exposure image fusion method based on

the Laplacian pyramid. Based on the Laplacian pyramid

decomposition, an improved weight function was used to

capture source image details. Six multi-exposure image fusion

methods were compared with the proposed method on 20 sets

of multi-exposure image sequences.

Sketch face recognition can match cross-modality facial

images from sketch to photo, which is important in criminal

investigations. Guo et al. introduced an effective cross task

modality alignment network for sketch face recognition, and

a meta learning training episode strategy was introduced to

address the small sample problem. In this work, they propose

a two-stream network to capture modality-specific and sharable

features, and two cross taskmemorymechanisms to improve the

performance of feature learning. At last, a cross task modality

alignment loss is proposed to train the model.
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Most existing multi-focus color image fusion methods based on multi-scale

decomposition consider three color components separately during fusion, which leads

to inherent color structures change, and causes tonal distortion and blur in the fusion

results. In order to address these problems, a novel fusion algorithm based on the

quaternion multi-scale singular value decomposition (QMSVD) is proposed in this paper.

First, the multi-focus color images, which represented by quaternion, to be fused is

decomposed by multichannel QMSVD, and the low-frequency sub-image represented

by one channel and high-frequency sub-image represented by multiple channels are

obtained. Second, the activity level and matching level are exploited in the focus decision

mapping of the low-frequency sub-image fusion, with the former calculated by using local

window energy and the latter measured by the color difference between color pixels

expressed by a quaternion. Third, the fusion results of low-frequency coefficients are

incorporated into the fusion of high-frequency sub-images, and a local contrast fusion

rule based on the integration of high-frequency and low-frequency regions is proposed.

Finally, the fused images are reconstructed employing inverse transform of the QMSVD.

Simulation results show that image fusion using this method achieves great overall visual

effects, with high resolution images, rich colors, and low information loss.

Keywords: multi-focus color image, image fusion, quaternion, singular value decomposition, multi-scale

decomposition

INTRODUCTION

Image fusion is the process of combining the information from two or more images into a single
image. It has been applied widely, ranging frommedical analysis (Jin et al., 2018a,b, 2020), to remote
sensing imaging and artificial fog removal (Zhu et al., 2020). An important branch of image fusion
is multi-focus image fusion, which integrates images with different focal points into a full-focus
image with global clarity and rich details. Multi-focus image fusion algorithms mainly include
spatial domain methods, transform domain methods, and deep learning methods (Liu S. et al.,
2020; Liu Y. et al., 2020).

The spatial domain methods can be grouped into pixel-based method, block-
based method, and region-based method (Jin et al., 2018a,b; Qiu et al., 2019; Xiao
et al., 2020). Compared with the pixel-based method, the other two use the spatial
correlation of adjacent pixels to guide image fusion to avoid contrast reducing and
detail loss in the fusion images. First, the original images are divided into a number
of blocks or regions, and then the focus level and sharpness of each block or region is
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measured by image intensity information. Finally, a block or
region with a higher degree of focus as part of the fusion
image is selected. Vishal and Vinay (2018) proposed a block-
based spatial domain multi-focus image fusion method, and
used spatial frequency to measure the focus level of the blocks.
Duan et al. (2018) proposed a segmentation scheme based on
enhanced LSC, which embeds the depth information of pixels in
the clustering algorithm for multi-focus image fusion. The main
advantage of fusion methods based on spatial domain lies in the
fact that simple to implement, it can obtain the focus measure
with low computational complexity. However, the quality of
image fusion is relevant to the selection of image block sizes or
the segmentation algorithms. When the size of the image block
is not properly selected, the fusion image may generate a “block
effect.” And if the segmentation algorithm fails to segment the
region accurately, the focused region cannot be determined and
extracted correctly.

In the transform domain approach, various multi-scale
decomposition (MSD) methods are applied to multi-focus image
fusion. Multi-scale decomposition algorithm mainly includes
pyramid transform (Burt and Kolczynski, 1993; Du et al., 2016),
wavelet transform (Gonzalo and Jesús, 2002; Jaroslav et al., 2002)
and multi-scale geometric analysis (Li et al., 2017, 2018; Liu et al.,
2019a). Compared with the pyramid and wavelet transforms,
though the multi-scale geometric analysis method outperforms
the pyramid and wavelet transforms in feature representation
and excels in capturing multi-directional information and
translation invariance, it is not time-efficient when it comes to
decomposition and reconstruction. In addition to traditional
multi-scale decomposition methods mentioned above, some
other multi-scale fusion methods have been proposed. Zhou et al.
(2014) proposed a novel image fusion scheme based on large
and small dual-scale decomposition. In this scheme, the two-
scale method is used to determine the image gradient weight,
and removes the influence of anisotropic blur on the focused
region detection effectively. An and Li (2019) introduced a novel
adaptive image decomposition algorithm into the field of image
processing, which can fast decompose images and has multi-
scale characteristics. Zhang et al. (2017) proposed a multi-scale
decomposition scheme by changing the size of the structural
elements, and extracting the morphological gradient information
of the image on different scales to achieve multi-focus image
fusion. Ma et al. (2019) proposed a multi-focus image fusion
method based on to estimate a focus map directly using small-
scale and large-scale focus measures. Naidu (2011) proposed
a novel method of multi-focus images fusion. In this method,
multi-scale analysis and singular value decomposition are
combined to perform multi-scale singular value decomposition
on multi-focus images to obtain low-frequency sub-images
and high-frequency sub-images of different scales. This multi-
scale decomposition method has the stability and orthogonality
of SVD. Since no convolution operation is required, the
decomposition speed is fast.

Deep learning methods, which can be further grouped into
classification model based methods and regression model based
methods (Liu Y. et al., 2020). In the classification model, Liu et al.
(2017) first introduced convolutional neural networks (CNN)

into the field of multi-focus image fusion. With this method,
the activity level measurement and the fusion rule can be jointly
generated by learning a CNN model. In the regression model,
Li et al. (2020) proposed a novel deep regression pair learning
convolutional neural network for multi-focus image fusion. This
method directly converts the entire image into a binary mask
as the input of the network without dividing the input image
into small patche, thereby solving the problem of the blur level
estimation around the focused boundary due to patche division.
These methods can extract more image features through self-
learning of the deep network, and carry out image fusion based
on these features. However, the difficulties in training a large
number of parameters and large datasets have directly affected
the image fusion efficiency and quality. Compared with deep
learning methods, the conventional fusion methods are more
extensible and repeatable, facilitating real-world applications.
Thus, this paper mainly aims to improve the conventional multi-
focus image fusion algorithms.

Most of the existing multi-focus image fusion algorithms
mentioned above can process gray and color multi-focus images.
As for the color multi-focus image fusion, each color channel is
fused separately, and then combined to get the final fused image
(Naidu, 2011; Liang and He, 2012; Aymaz and Köse, 2019). These
traditional fusion methods ignore the inter-relationship between
the color channels, which will lead to hue distortions and blur
in the image fusion process. To solve the above problems, this
paper proposes a novel mathematical model for color images
based on quaternion matrix analysis. This model considers the
human visual characteristics and interaction between pixels in
color images and combines quaternion with multi-scale singular
value decomposition (MSVD) (Kakarla and Ogunbona, 2001;
Naidu, 2011). In this method, the three color components of
a color image are decomposed as a whole to extract the rich
color and detail information. Firstly, the three color components
of the pixel are represented by three imaginary parts of a
quaternion. Secondly, themulti-focus color image represented by
the quaternion matrix is decomposed into a low-frequency sub-
image and several high-frequency sub-images using multi-scale
singular value decomposition (MSVD). The former contains the
approximate structure and color information of the source image,
the latter contains detailed features. Then, the low-frequency
component and the high-frequency component are respectively
fused based on different fusion rules. The designed fusion rule
makes full use of the decomposition coefficient represented
by the quaternion and applies the structural information and
color information of the image to the fusion. Finally, the fusion
components are used to reconstruct the fusion image. The fused
image can more accurately maintain the spectral characteristics
of the color channel. We define this method as quaternion
multi-scale singular value decomposition (QMSVD). The main
innovations of this method are listed below:

• The combination of quaternion and multi-scale singular
value decomposition is applied to multi-focus color
image fusion for the first time. That is, the color image
represented by the quaternion is decomposed by multi-scale
singular value decomposition, and the sub-images obtained
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by decomposition better retain the structure and color
information of the original image.

• The multi-channel is introduced into the QMSVD for the
first time, and achieve the purpose of extracting the salient
features on the channels of different decomposition layers for
image fusion.

• In the fusion of low-frequency sub-images, in order to make
full use of the color information of the image, an improved
fusion rule of local energy maximization is proposed, and the
fusion rule introduces the color difference between pixels and
combines local energy. In the fusion of high-frequency sub-
images, the fusion results of low-frequency coefficients are
incorporated into the fusion of high-frequency sub-images,
and a local contrast fusion rule based on the integration of
high-frequency and low-frequency regions is proposed.

The structure of this paper is organized as follows. Section Multi-
Scale Singular Value Decomposition of a Color Image introduces
the concept of multi-scale singular value decomposition of a
color image. Section Multi-Focus Color Image Fusion Based on
QMSVD proposes multi-focus color image fusion model based
on QMSVD. Section Experimental Results and Discussion we
compare and analyze the results obtained through the state-of-
the-art methods. Finally, conclusions for this paper are made in
section Conclusion.

MULTI-SCALE SINGULAR VALUE
DECOMPOSITION OF A COLOR IMAGE

To decompose the color image we integrate quaternion
representation of color image with multi-scale decomposition.
In this way, the approximate and detailed parts represented
by quaternion can be obtained. The two parts are respectively
fused, and the fused components are used to reconstruct the
fusion image.

Quaternion Representation of a Color
Image
Quaternions were discovered in 1843 by the Irish mathematician
and physicist William Rowan Hamilton. It is extension of
ordinary complex number, which extends ordinary complex
numbers from a two-dimensional space to a four-dimensional
space. A quaternion is composed of a real part and three
imaginary parts. The operations of the three imaginary parts
are equivalent, which makes it very suitable for describing color
images and expressing the internal connection of color channels.
The three color channels of the image can be represented by three
imaginary parts of quaternion (Chen et al., 2014; Xu et al., 2015;
Grigoryan and Agaian, 2018). The general form of a quaternion
is q = qa + qbi+ qcj+ qdk. It contains one real part qa and three
imaginary parts qbi, qcj and qck, if the real part qa of a quaternion
q is zero, q is called a pure quaternion. The conjugation of
quaternions is defined as:

q∗ = qa − qbi− qcj− qdk (1)

The modulus of a quaternion is defined as:

∣

∣q
∣

∣ =
√

qq∗ =
√

q2a + q2
b
+ q2c + q2

d
(2)

The rotation theory of quaternions is stated as follows:
In the three-dimensional space, u is a unit of pure quaternion,

and the modulus is |u| = 1. If R = euθ , then RXR∗ indicates that
the pure quaternion X is rotated by 2θ radians about the axis. u
and θ are defined as:

u =
1

√

q2
b
+ q2c + q2

d

(qbi+ qcj+ qbiqdk)

θ =

{

tan−1
√

q2
b
+ q2c + q2

d
/qa, qa 6= 0

π/2 qa = 0

Let u = (i + j + k)/
√
3, which represents a three-dimensional

grayscale line in RGB space. The three color components of the
pixels on the grayscale line are all equal. Let θ = π/2, that is:

RXR∗ = euπ/2X(euπ/2)
∗ = (i+ j+ k)/

√
3*X*(−i− j− k)/

√
3 (3)

Equation (3) means that X is rotated around the gray line u by
180 degree. That is, X is turned to the opposite direction with u
as the axis of symmetry. Then, the pixel X + RXR∗ falls on the
grayscale line.

A color image can be represented as a pure quaternion, that is:

f (x, y) = fR(x, y) · i+ fG(x, y) · j+ fB(x, y) · k (4)

In Equation (4), fR(x, y), fG(x, y), fB(x, y) represent the R, G, and
B color channel components of the color image, respectively. The
x, y represent the rows and columns of the color image matrix,
where the pixels reside. Such a color image can be represented
by a quaternion matrix, and the processing of the color image
can be performed directly on the quaternion matrix. In contrast
with the traditional approaches, which convert a color image
to a grayscale one or process each color channel separately, the
quaternion method can process the color image as a whole.

Multi-Scale Decomposition of a Color
Image
The singular value decomposition is an important matrix
decomposition in linear algebra (Liu et al., 2019b), and it is to
decompose the image matrix diagonally according to the size of
the eigenvalues. There is no redundancy among the decomposed
images, and it is suitable to use different fusion rules for the fusion
of each sub-image. We extend decomposition to the multi-scale
form in this section. Using multi-scale can perform image fusion
in different scales and different directions.

Xq is the quaternion matrix form of the color image f (x, y).
The rank of the m × n quaternion matrix Xq is r. Given the
m×m quaternion unitarymatrixUq and n×n quaternion unitary
matrix Vq, we can get:

(Uq)
HXqVq =

[

3r 0
0 0

]

≡ 3 ∈ Rm×n (5)
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where the superscript H represents conjugate transpose, and
3r = diag{λ1, λ2, · · · , λr}, λi(1 ≤ i ≤ r) is the singular value
of Xq, λ1 ≥ λ2 ≥ · · · ≥ λr . It follows that the singular value
decomposition of the quaternion matrix Xq is:

Xq = Uq

[

3r 0
0 0

]

(Vq)
H (6)

In Equation (6), Uq(Uq)
H = Im×m,Vq(Vq)

H = In×nUnit matrix.
The multi-scale singular value decomposition of a color image

represented by a quaternion can be realized, according to the
ideas proposed in Naidu (2011). The M × N color image Xq,
represented by the quaternion, is divided into non-overlapping
m × n blocks, and each sub-block is arranged into an mn ×
1 vector. By combining these column vectors, a quaternion
matrix Xq

′ with a size of can be obtained. The singular value
decomposition of Xq

′ is:

Xq
′ = Uq

′3′(Vq
′)
H

(7)

Uq
′ and Vq

′ are orthogonal matrices, and 3′ is a non-
singular diagonal matrix after Xq

′ decomposition. According to
Equation (7):

S = (Uq
′)
H
Xq

′ = 3′(Vq
′)
H

(8)

the size of the quaternion matrix S ismn×MN/mn.
According to the singular value decomposition mentioned

above, the first column vector of Uq
′ corresponds to the

maximum singular value. When it is left multiplied by the matrix
Xq

′, the first row S(1, :) of S carries the main information from
the original image, which can be regarded as the approximate,
or smooth component of the original image. Similarly, the
other rows S(2 :mn, :) of S correspond to smaller singular
values, which retain such detailed information as the texture
and edge. Therefore, through singular value decomposition,
the image can be decomposed into low-frequency and high-
frequency sub-images by the singular value to achieve the multi-
scale decomposition of the image. In the QMSVD approach,
decomposition is goes layer by layer, repeating the process above.
In repeated decomposition, the approximate component S(1, :) of
the upper layer is used to replace the next layer of Xq.

When the original image is divided into m × n blocks,
according to the different values of m and n, QMSVD can be
called (m × n)-channel QMSVD. For example: when m = 2 and
n = 2, it is called four-channel QMSVD when m = 2 and n = 3
orm= 3 and n= 2, it is called six-channel QMSVD, whenm= 2
and n= 4 orm= 4 and n= 2, it is called eight-channel QMSVD.

We take six-channel QMSVD as an example to illustrate the
decomposition structure of each layer. Let m = 2, n = 3, and
m×n= 6:

φLL = S(1 :)
ψH1 = S(2 :),ψH2 = S(3 :),ψH3 = S(4 :)
ψH4 = S(5 :),ψH5 = S(6 :)

(9)

Xq → {φLL, {ψH1,ψH2,ψH3,ψH4,ψH5},U}

In Equation (9), the lowest-resolution approximation
component vector is φLL, the detail component vectors are
{ψH1,ψH2,ψH3,ψH4,ψH5}, and the eigenvector matrix is U.
During the transformation of the lower layer, φLL is replaced

with Xq, the decomposition operates by Equation (9) and
the next layer decomposition is obtained, and the multilayer
decomposition of the image can be obtained by repeating the
process. Because the decomposition process is reversible, the
original image can be reconstructed by inverse transformation
of QMSVD.

The QMSVD method proposed in this paper, the MSVD
(Naidu, 2011) method and the QSVD (Bihan and Sangwine,
2003) method all decompose the image through singular value
decomposition, but they have their distinct characteristics. In
Naidu (2011), the MSVD is mainly a decomposition method
for gray images. When decomposing a color image, the MSVD
method is used on each color channel, and then combine
the three decomposed color channels to obtain a decomposed
color image. This decomposition method of channel information
separation ignores the correlation between channels and take
no account of color information of image. The QMSVD
method overcomes the shortcomings of the MSVD method,
and can maintain the correlation between color channels while
decomposing color images. Compared with theQMSVDmethod,
QSVD directly decomposes color images to get the eigenvalues
and corresponding eigenvectors. Then, according to experience,
we use the truncation method on QSVD to divide the eigenvalues
in a descending order into different segments to realize image
decomposition. However, the decomposition process based on
experience truncation method lacks a definite physical meaning.
In order to ascribe a clear physical and geometric meaning
to the decomposition process, the multi-channel QMSVD is
introduced, which directly decomposes the image into low-
frequency and high-frequency components of different scales
according to the size of eigenvalues.

Figure 1 compares the results achieved by three
decomposition methods. It can be seen that: (1) The QMSVD
method directly decomposes the color image into a low-
frequency component and three high-frequency components.
The low frequency component is an approximation of the
original image, which retains the characteristics of the original
image in terms of structure and color. The high-frequency
components extract the edge and contour features of the original
image. (2) The MSVD method does not directly decompose
the color image. First, decompose each color channel, and
then combine the decomposed components into low-frequency
components and high-frequency components. Compared with
the QMSVD method, the low-frequency component does not
retain the color characteristics of the original image. As it can
be seen from the Figure 1, the main color of the low-frequency
component is blue, while the main color of the original image
is red. The high-frequency component extracts the edge and
contour features of the original image, but does not have the
fine features extracted by the QMSVD method. This is due to
the fact that the edge features of each component cannot be
completely overlapped when the components are combined. (3)
Compared with the QMSVD method, the QSVD method is not
strong on extracting detailed features. It can be seen from the
Figure 1 that the main structure and color information are in
the decomposed image corresponding to the first feature value,
and the other feature values are truncated into three segments,
corresponding to the three decomposed images respectively,
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FIGURE 1 | This figure shows the decomposition of color image by QMSVD, MSVD, and QSVD. (A) The low-frequency image of the origianl image after decomposed

by QMSVD, and (B–D) the high-frequency images of the origianl image. (E) The low-frequency image of the original image after decomposed by MSVD, and (F–H) the

high-frequency images of the original image. (I) The decomposition image corresponding to the first eigenvalue of the original image decomposed by QSVD, and (J)

the decomposition image corresponding to the eigenvalue truncated from the 2th to the 25th after QSVD decomposition, (K) the decomposition image corresponding

to the eigenvalue truncated from the 26th to the 50th, (L) the decomposition image corresponding to the eigenvalue truncated from the 51th to the 240th. The

eigenvalues are arranged from large to small.

and these images only carry a small amount of detailed features.
Since the QSVD method is mainly used for image compression,
in the experimental comparison part, we only compare QMSVD
with MSVD methods.

MULTI-FOCUS COLOR IMAGE FUSION
BASED ON QMSVD

Low-Frequency Component Fusion Rules
The low-frequency sub-image of QMSVD reflects the overall
characteristics of the color original image. Commonly used

low-frequency sub-image fusion rules include weighted average
and maximum local energy. The weighted average rule is
to get the fusion coefficient by weighted average of the low
frequency coefficients in the same position of the images,
which will result in the decline in the contrast of the fused
image. The rule of maximum local energy is to compare
the energy of low-frequency coefficients at the same position
of the images, and choose the higher energy as the fusion
coefficient. This fusion rule only considers the local energy
of the image, and does not factor in the color information
contained in the color image, so the visual effect of the
color fusion image is not desirable. In order to overcome
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FIGURE 2 | Fusion of sub-images by QMSVD with six channels. LL is the low-frequency component of the decomposed image, H1–H5 are the high-frequency

components of the decomposed image, UA and UB are the orthogonal matrices of the decomposed image, and UF = (UA + UB)/2.

the inadequacy, QMSVD uses a quaternion to represent the
color image, and calculates the color differences between two
color pixels based on the quaternion rotation theory. The
coefficient window energy is used as activity level of the low
frequency component, and the color difference between the
color pixels in the center of the coefficient window is deemed
as the matching level, with both jointly participating in the
decision mapping.

Activity Level

Given the human visual system is sensitive to local variation,
local window energy is used as the measurement of activity
level. Local areas with larger variance exhibit greater contrast

between pixels, and stronger window activity level. In contrast,
pixel values more uniform in local areas with smaller variance,
display weaker window activity level. Therefore, the pixel with
the highest contrast in the low-frequency coefficient is selected as
the fusion result.

a
j
S(x, y) =

∣

∣

∣

∣

C
j
S(x, y)− mean

(x′,y′)∈p
(C

j
S(x+ x′, y+ y′))

∣

∣

∣

∣

(10)

Where S represents the two color multi-focus images A and B to

be fused, j represents the decomposition scale, C
j
S(x, y) is the low-

frequency sub-band coefficient of the original image S on scale j

at pixel (x, y), P is the range of the coefficient window, a
j
S(x, y) is
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the activity level of C
j
S(x, y) at pixel (x, y), andmean(·) represents

mean filtering. Experiments show that the visual effect after
image fusion is themost optimal when P uses 3×3 local windows.

Matching Level

The matching level between A and B pixels of two color
multi-focus images can be measured by the color differences
between them, which can be calculated with the quaternion
rotation theory (Jin et al., 2013). As the color difference includes
chromaticity and luminance, the formula for calculating the
matching level is as follows:

m
j
AB(x, y) = t

∣

∣Q(q1, q2)
∣

∣ + (1− t)
∣

∣I(q1, q2)
∣

∣ (11)

In Equation (11), q1 = r1i + g1j + b1k and q2 = r2i + g2j + b2k
are the pixels represented by quaternions in the color original
images A and B, respectively. Q(q1, q2) and I(q1, q2) denote
the differences in chromaticity and luminance, respectively,
between q1 and q2, the weight t ∈ [0, 1] indicates the relative
importance of chromaticity and luminance, and j represents
the decomposition scale. According to the theory of quaternion
rotation, the relationship between q1 and q2 can be expressed as
q3 = q1+Rq2R

∗ = r3·i+g3·j+b3·k,R = euπ /2, u = (i+j+k)/
√
3.

If the chromaticity of q1 is similar to that of q2, q3 should be near
the grayscale line u, and the chromaticity difference between q1
and q2 can be expressed by the following equation:

Q(q1, q2) = (r3 − (r3 + g3 + b3)/3) · i+ (g3 − (r3 + g3

+b3)/3) · j+ (b3 − (r3 + g3 + b3)/3) · k (12)

WhenQ(q1, q2) is small, the chromaticity of q1 and q2 are similar;
when Q(q1, q2) = 0, q1 and q2 have the same chromaticity. The
difference in luminance between q1 and q2 can be illustrated as:

I(q1, q2) = (r1 − r2)/3+ (g1 − g2)/3+ (b1 − b2)/3 (13)

According to Equations (11–13), the size ofm
j
q1q2 is proportional

to the color difference between q1 and q2. Therefore, the
matching level between the two pixels can be measured by the
size of the color difference.

Decision Plan
The decision value of the color image focus judgment is
determined by the activity level and matching level of the local
window. They are obtained by Equations (10, 11), respectively.
The decision value is calculated by the following formula:

dj(x, y) =































1, if m
j
AB(x, y) > T and a

j
A(x, y) ≥ a

j
B(x, y)

0, if m
j
AB(x, y) > T and a

j
A(x, y) < a

j
B(x, y)

1
2 + 1

2

(

1−T

1−m
j
AB(x,y)

)

, if m
j
AB(x, y) ≤ T and a

j
A(x, y) ≥ a

j
B(x, y)

1
2 − 1

2

(

1−T

1−m
j
AB(x,y)

)

, otherwise

(14)

According to the decision value dj(x, y), the fused low-frequency

image can be obtained using F
j
L(x, y) = dj(x, y) ∗ Aj

L(x, y)+ (1−

dj(x, y)) ∗ B
j
L(x, y), where F

j
L(x, y) represents the low-frequency

sub-image after the fusion of A
j
L(x, y) and B

j
L(x, y) at scale j. In

Equation (14), T is the matching threshold between the pixel A
and pixel B of a multi-focus image.

High-Frequency Component Fusion Rules
In Equation (8), the first row of S represents low-frequency
component of the original image, which carries the primary
information from the image. The other rows S(2 :mn, :) of
S denotes the high-frequency components of the original
image, presenting the details of the image. According to the
orthogonality of singular value decomposition, each component
forms an orthogonal complement on the same scale. The direct
sum of each component is:

Ij = Ij+1 ⊕
∑mn

i=2
S(i, :)j+1

(

j = 2, 1, 0
)

(15)

where j represents the decomposition scale; when j = 2, the
highest decomposition layer is 3, I3 = S(1, :)3, and each
component can be written as:







I2 = S(1, :)3 ⊕
∑mn

i=2 S(i, :)3j = 2,
I1 = I2 ⊕

∑mn
i=2 S(i, :)2j = 1,

I0 = I1 ⊕
∑mn

i=2 S(i, :)1j = 0,
(16)

The high-frequency sub-images of QMSVD reflect the detailed
characteristics of the original image. Most of the fused methods
operate in the feature domain of high-frequency components,
without taking the influence of low frequency into account,
compromising the fusion quality. To factor in the influence
of low-frequency components in high-frequency component
fusion, a local contrast fusion rule, which is applicable to both
high-frequency and low-frequency regions, is proposed. After
the original image is decomposed by QMSVD, the local contrast
of the high-frequency and low-frequency components can be
obtained by the following equation (Pu and Ni, 2000):

Ck
Sj
(x, y) = I

Hk
Sj
(x, y)/ILABj (x, y), (Sj = AjorBj) (17)

In Equation (17), ILABj represents the fusion component of the

low-frequency sub-image of the original image A and B at scale

j, and I
Hk
Sj

represents the k-th high-frequency component of the

original image S at scale j. According to Equation (15), the high-
frequency is not aliased with low-frequency components, and
therefore the definition of the local contrast mirroring the high-
frequency components is valid. The high-frequency sub-image
fusion is defined as:

Hk
Fj
(x, y) =







I
Hk
Aj
(x, y), if

∣

∣

∣
Ck
Aj
(x, y)

∣

∣

∣
≥

∣

∣

∣
Ck
Bj
(x, y)

∣

∣

∣

I
Hk
Bj
(x, y), otherwise

(18)

where Hk
Fj
(x, y) represents the kth high-frequency component of

the fused image F at scale j.
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Multi-Focus Color Image Fusion Process
Figure 2 shows the scheme of multi-focus color image fusion
based on QMSVD with six channels, and the corresponding
fusion process is as follows:

Step 1: Two original color multi-focus images A and B are
decomposed by QMSVD. The low-frequency sub-image
AL, BL is represented by one channel and the high-
frequency sub-images AHi, BHi (Hi is the ith high-
frequency channel) are represented bymultiple channels.
The orthogonal matrices UA and UB, corresponding to
singular values, are also obtained.

Step 2: The low-frequency sub-imagesAL,BL are fused following
low-frequency fusion rules, and the high-frequency
sub-images AHi, BHi are fused using high-frequency
fusion rules.

Step 3: The orthogonal matrices UA and UB (obtained in Step
1) are fused. In the fusion of two images after QMSVD
decomposition, the roles of UA and UB are identical,
so the fusion rule for the orthogonal matrix is: UF =
(UA + UB)/2.

Step 4: The final fusion image is obtained by inverse QMSVD
transform of the fusion results in Step 2 and Step 3.

EXPERIMENTAL RESULTS AND
DISCUSSION

In this study, color information richness (CCM) (Yuan et al.,
2011), spatial frequency (SF), image contrast metric (ICM) (Yuan
et al., 2011), and edge information retention (QAB/F) (Liu et al.,
2012) are utilized to evaluate the multi-focus color fusion image
objectively, and to verify the effectiveness of the algorithm. The
CCM index value is determined by the color chromaticity and
color difference gradient of the fused image. The SF index reflects
the clarity of the image details. The ICM index is composed of the
grayscale contrast and color contrast of the fused image, with the
value denoting the contrast in the fused image. The QAB/F index
implies how much information about edge and structure from
the original image is retained in the fused image. For the above
evaluation indicators, a larger evaluation value suggests a better
fusion result.

The proposed QMSVD color image fusion method is
compared with five typical multi-focus image fusion methods,
which fall into the category of the multi-resolution singular value
decomposition fusionmethod (MSVD) (Naidu, 2011), theMulti-
scale weighted gradient-based fusion method (MWGF) (Zhou
et al., 2014), the boosted random walks-based fusion method
(RWTS) (Ma et al., 2019), the guided fifilter-based fusion method
(GFDF) (Qiu et al., 2019), the deep CNN fusion method (CNN)
(Liu et al., 2017). Among them, the MSVD, MWGF, RWTS
and GFDF are traditional image fusion methods. The CNN is a
recently proposed image fusion method based on deep learning.
In Liu et al. (2017), Liu chooses the Siamese as the CNN model,
and the network has three convolutional layers and one max-
pooling layer. The training sample is a high-quality natural image
of 50,000 from the ImageNet dataset, and input patch size is
set at 16 × 16. The Matlab implementation of the above five
fusion methods are all obtained online, and the parameters are

the default values given in the literature. The original multi-
focus images used in the experiment are obtained from multiple
image datasets. The four images (A), (B), (D), (E) in Figure 4

and the one image (I) in Figure 6 are obtained from the Lytro
dataset (Nejati et al., 2015). The Six images (A)–(F) in Figure 6

are obtained from the Slavica dataset (Slavica, 2011). The one
image (C) in Figure 4 and the two images (G) and (H) in Figure 6
are obtained from the Saeedi dataset (Saeedi and Faez, 2015). The
one image (J) in Figure 6 is obtained from the Bavirisetti dataset
(Bavirisetti). In this paper, five groups of color images with
rich colors are selected in the image datasets Lytro and Saeedi,
and they are used in the comparison experiment. In addition,
10 groups multi-focus images commonly used in other related
papers as the experimental data are used in the comparison
experiment, and they have different sizes and characteristics.

In the experimental process, firstly, the experimental
parameters of the algorithm set prior to the experiment.
Secondly, the fusion results achieved using the proposed
algorithm and the other algorithms are presented and compared.

Selection of Experimental Parameters
Multi-scale singular value decomposition of color images is
conducted through multiple independent layers and channels.
Image decomposition generally divides the image into three
layers. Channel decomposition usually divides the image into
four-channel, six-channel, eight-channel, and nine-channel.
Channel decomposition is illuminated in Equation (9). The result
of image fusion is also affected related to the size of the local
window P, and the typical size is 3×3 or 5×5. The experimental
comparison suggests, the 5×5 local window exceeds the size
of the important feature of the image, which undermines the
judgment of the local window activity. Therefore, in this paper,
we set a local window size at P = 3 × 3. As can be observed
from Equation (11), the weight t ∈ [0, 1] indicates the relative
importance of chromaticity and luminance, with t positively
related to chromaticity. In Equation (14), T represents the
matching threshold of the matching level between the pixels of
the two color multi-focus images to be fused, and the value of T
directly affects the decision value d(x, y) of low-frequency fusion.
The parameters discussed above ultimately determine the effect
of image fusion.

We set different parameter values, conducted repeated
comparative experiments, and used two objective indices spatial
frequency (SF) and color colorfulness metric (CCM) (Yuan
et al., 2011) to evaluate Figure 3. As Table 1 reveals, the SF
value decreases as the number of channels increases, the larger
the number of channels the smoother the image after multi-
scale singular value decomposition, and the lower the spatial
frequency. The maximum value of CCM occurs when t = 0.9.
According to Equation (11), value t indicates the importance of
chromaticity. The analysis shows that the algorithm proposed
in this paper is feasible. From further analysis in Table 1, the
preliminary parameters could be obtained: P = 3, t = 0.9, T
= 0.01, and P = 3, t = 0.9, T = 0.03, with six and eight
decomposition channels.

Figure 3 demonstrates the results obtained in the second
decomposition layer using the preliminary parameters analyzed
above. Obviously, the fusion image based on four channel
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FIGURE 3 | Tested multi-focus color image. (A,B) are original images. The parameters are selected: in (C–F), layer = 2, P = 3, t = 0.9, T = 0.01; in (G–J), layer = 2,

P = 3, t = 0.9, T = 0.03; with four, six, eight, and nine decomposition channels.

TABLE 1 | Selection of initial parameters (1).

Parameters Decompose Spatial frequency (SF) Color colorfulness metric (CCM)

4-channel 6-channel 8-channel 9-channel 4-channel 6-channel 8-channel 9-channel

t = 0.8, T = 0.01 1-layer 27.7544 27.1201 27.0089 24.0205 17.1906 17.2659 17.3272 17.1945

2-layer 27.7476 27.1008 26.9451 23.9930 17.2387 17.3145 17.3351 17.1784

3-layer 27.7046 27.0782 26.9962 24.0224 17.2168 17.3000 17.2959 17.1949

t = 0.8, T = 0.02 1-layer 27.7530 27.1597 27.0169 24.0233 17.1766 17.2540 17.3045 17.1713

2-layer 27.7565 27.0789 26.9332 23.9857 17.1433 17.2997 17.3361 17.1717

3-layer 27.7017 27.0856 26.9821 23.9763 17.1764 17.2824 17.2891 17.1752

t = 0.8, T = 0.03 1-layer 27.7701 27.1563 27.0112 24.0128 17.1863 17.2646 17.3160 17.1813

2-layer 27.7474 27.0726 26.9467 24.0115 17.1571 17.2842 17.3379 17.1754

3-layer 27.6838 27.0666 26.9722 23.9911 17.1753 17.2689 17.2997 17.1662

t = 0.9, T = 0.01 1-layer 27.7659 27.1194 27.0250 24.0425 17.1872 17.2721 17.3282 17.2052

2-layer 27.7655 27.0759 26.9507 24.0050 17.2252 17.3203 17.3368 17.1696

3-layer 27.7285 27.0611 26.9984 24.0227 17.2239 17.3126 17.3529 17.1971

t = 0.9, T = 0.02 1-layer 27.7560 27.1401 27.0168 24.0097 17.1729 17.2506 17.2962 17.1755

2-layer 27.7343 27.0708 26.9335 23.9877 17.1538 17.3002 17.3354 17.1735

3-layer 27.6954 27.0692 26.9641 23.9779 17.1793 17.2707 17.2944 17.1755

t = 0.9, T = 0.03 1-layer 27.7818 27.1624 27.0196 23.9995 17.1861 17.2599 17.3134 17.1780

2-layer 27.7563 27.0767 26.9629 24.0269 17.1555 17.2871 17.3332 17.1750

3-layer 27.7052 27.0612 26.9701 24.0058 17.1757 17.2689 17.3034 17.1634

The numbers in bold indicate the maximum value obtained with different objective evaluation indicators.
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TABLE 2 | Selection of initial parameters (2).

Channel Metrics t = 0.8, T = 0.01 t = 0.8, T = 0.02 t = 0.8, T = 0.03 t = 0.9, T = 0.01 t = 0.9, T = 0.02 t = 0.9, T = 0.03 Total

6-channel SF 81.2991 81.3242 81.2955 81.2564 81.2801 81.3003 798.8322

CCM 51.8804 51.8361 51.8177 51.905 51.8215 51.8159

8-channel SF 51.9582 51.9297 51.9536 52.0179 51.926 51.95 797.389

CCM 80.9502 80.9322 80.9301 80.9741 80.9144 80.9526

FIGURE 4 | Five groups of multi-focus color original images. Red frames are the area that need to be compared in image fusion. (A) Woman, (B) Child, (C) Book, (D)

Girl, and (E) Baby. The four images (A,B,D,E) from Lytro dataset, the image (C) from Saeedi dataset.

decomposition has the worst visual effect, and the edge of
detail appears zigzag distortion, which results from the block
effect caused by small channel decomposition. Artifacts emerge
at the edge of fused image obtained through nine- channel
decomposition. This due to the large channel decomposition
which lead to blurring of the fused image. Fused images
obtained through six-channel and eight-channel decomposition
have similar effects and the best quality. Judging from the
Table 1, it can be concluded that the subjective visual effects are
consistent with the objective evaluation values. In other words,
the objective evaluation value is positively proportional to the
subjective visual effect.

From the analysis above, the fusion effects of the six-channel
and eight-channel decomposition are superior to those of the
four-channel or nine-channel decomposition. Further analysis
from Table 2 reveals that the overall results of SF and CCM with
six channels are better than those with eight channels, therefore,
we finally adopt the six-channel decomposition approach.
According to Table 1, during the six-channel decomposition,
when P = 3, t = 0.9, T = 0.03, and layer = 1, the maximum SF
value is 27.1624, and when layer= 2, the maximumCCM value is
17.2871. To optimize the result of multi-focus color image fusion,
we take into account importance of color evaluation index CCM
in color image fusion, and take the six-channel decomposition
approach, and set P = 3, t = 0.9, T = 0.03, and layer= 2.

Subjective Evaluation
To verify the performance of the proposedmethod of multi-focus
color image fusion in terms of visual perception, 15 groups of

multi-focus color images are selected for our experiment. Five
groups come from the multi-focus image data set “Lytro,” while
the other 10 groups are widely used in multi-focus image fusion.
Meanwhile, the proposed fusion method is compared with five
typical multi-focus image fusion methods, which are the MSVD,
MWGF, RWTS, GFDF and CNN.

In Figure 4, we select five groups images from the multi-
focus data set “lytro” for experiments. They have rich colors,
which are also the experimental data used in the five comparison
algorithms. The areas in each image that need to be compared
are marked with a red frame. Figure 5 is the fusion result
corresponding to the five original images in Figure 4. For
better comparison, the red frame areas in the fusion image
are enlarged.

Group A(1)–A(6) show the images of the “woman” with the
size of 208 × 208 and the fused image obtained by 6 different
fusion methods. The comparison of red framed areas suggest
the QMSVD, RWTS, MSVD, and GFDF have the best visual
clarity, followed by CNN, and MDGF is the most blurry. A
further comparison shows that in the fused image obtained by
theMSVD, the red framed region and the image of “woman” have
obvious color distortion.

Group B(1)–B(6) show the images of the “child” with the size
of 256× 256 and the fused image obtained by six different fusion
methods. The comparison of the red framed areas demonstrates
that the QMSVD and MWGF have the best visual clarity, and
GFDF is the fuzziest. A further comparison shows that in the
fusion image obtained by the MSVD, the face brightness of
“child” is the lowest.

Frontiers in Neurorobotics | www.frontiersin.org 10 June 2021 | Volume 15 | Article 69596016

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wan et al. Multi-Focus Color Image Fusion

FIGURE 5 | Corresponding to the fusion results of the five original images in Figure 4. A(1)–E(1) are the fusion images obtained by the GFDF method. A(2)–E(2) are

the fusion images obtained by the MWGF method. A(3)–E(3) are the fusion images obtained by the CNN method. A(4)–E(4) are the fusion images obtained by the

RWTS method. A(5)–E(5) are the fusion images obtained by the MSVD method. A(6)–E(6) are the fusion images obtained by the QMSVD method.

Frontiers in Neurorobotics | www.frontiersin.org 11 June 2021 | Volume 15 | Article 69596017

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wan et al. Multi-Focus Color Image Fusion

FIGURE 6 | Ten groups of multi-focus color images. (A) Size of 267×171, (B) size of 267×175, (C) size of 267×177, (D) size of 267×177, (E) size of 267×174, (F)

size of 320×200, (G) size of 267×174, (H) size of 390×260, (I) size of 222×148, and (J) size of 360×360. The six images (A–F) from Slavica dataset, the two

images (G,H) from Saeedi dataset, the image (I) from Lytro dataset and the image (J) from Bavirisetti dataset.

Group C(1)–C(6) show the images of the “book” with the size
of 320× 240 and the fused image obtained by six different fusion
methods. Comparing the English letters in the red frame area
of each image. From a visual point of view, the MSVD-based
method is the most blurry, and fusion effects achieved by the
other methods are similar.

Group D(1)–D(6) show the images of the “girl” with the size
of 300 × 300 and the fused image obtained by six different
fusion methods. Comparing the leaves in the red frame area
of each image, the QMSVD and the RWTS can produce
the best fusion image effect, and the color is close to the
original image.

Group E(1)–E(6) show the images of the “baby” with the size
of 360 × 360 and the fused image obtained by 6 different fusion
methods. The comparison illustrates that the QMSVD, CNN, and
RWTS obtain the best fusion image effects, followed by the GFDF
and MSVD, and the MWGF lags behind.

To further prove the effectiveness of the QMSVD method for
multi-focus color image fusion, the 10 groups of original images
are given in Figure 6. In Figure 7, the fused image obtained by six
different fusion methods are shown. In Figures 8, 9, we compare
two groups of images in detail.

In Figure 8, the original image of “Coke Bottle” with a size
of 320 × 200 and the fused image obtained by six different
fusion methods are shown. Compare the bright spots in the red
frame area of each image, QMSVD, CNN, and GFDF achieve
better clarity, followed by MWGF and RWTS, and MSVD is the
most ambiguous.

In Figure 9, the original image of “Forest” with a size of
267 × 171 and the fused image obtained by six different fusion
methods are shown. Compare the brightness of leaves in the red
frame area of each image, QMSVD, superior to other methods,
obtains the best fusion image effect.

In general, the QMSVD method combines the advantages of
quaternions and multi-scale decomposition in color multi-focus
image fusion. The benefit is that quaternions can represent and
process different color channels of a color image as a whole,
producing the fused multi-focus image with high fidelity. Multi-
scale decomposition methods decompose the image into low-
frequency and high-frequency components at different levels.
In this way, the decomposed images can be fused accurately at
different components, scales, and levels, which renders the fused
color multi-focus image with high definition and contrast, and
good visual effects.
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FIGURE 7 | Ten groups of multi-focus color fusion images.

Frontiers in Neurorobotics | www.frontiersin.org 13 June 2021 | Volume 15 | Article 69596019

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wan et al. Multi-Focus Color Image Fusion

FIGURE 8 | “Coke Bottle” fusion images obtained by six different fusion methods.

FIGURE 9 | “Forest” fusion images obtained by six different fusion methods.

Objective Evaluation
We proposed the method for multi-focus color image fusion.
We classify experimental images in two categories. One type
is multi-focus color pictures with rich color information, and
their objective evaluation metrics of different methods are
presented in Table 3. The other type is commonly used multi-
focus color images. We have selected two groups, and their
objective evaluation metrics of different methods are counted
in Table 4. Table 5 is the average objective evaluation metrics
of different methods on 15 groups color images. The analysis
of Tables 3–5 shows that the average values of the 15 groups
using CCM and ICM indicators of the QMSVD algorithm are

significantly higher than those of other fusion algorithms. This
also shows that the fused image has a high definition and rich
color, which is consistent with the visual performance of the fused
image in the subjective evaluation. Of all the fusion algorithms,
the CCM index of the QMSVD algorithm ranks first. For the
QAB/F indicator, the QMSVD algorithm performs worse than
other algorithms in preserving edge and structure information.
In general, the QMSVD method achieves the best results on the
CCM indicator and performs well on the ICM and SF indicators.
This shows that the QMSVD method is effective, and the fused
image has a high definition, rich color, less information loss, and
good overall visual effects.
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TABLE 3 | Objective evaluation values of multi-focus color images.

Image Metrics GFDF MWGF RWTS CNN MSVD QMSVD Rank

“Woman” CCM 19.8116 19.6341 19.8065 19.8219 19.2142 19.9050 1

ICM 0.5448 0.5555 0.5447 0.5451 0.5463 0.5538 2

SF 30.2661 29.4158 30.3256 29.8675 27.3840 30.8316 1

QAB/F 0.6845 0.6656 0.6847 0.6866 0.6523 0.6692 4

“Child” CCM 26.6408 26.5463 26.6100 26.5925 25.5832 26.7334 1

ICM 0.4910 0.4913 0.4912 0.4915 0.3638 0.4988 1

SF 25.1688 24.9778 24.8987 24.6005 18.9458 25.4489 1

QAB/F 0.6240 0.6202 0.6251 0.6248 0.5054 0.5955 5

“Book” CCM 28.7924 28.7851 28.7922 28.7846 26.9576 28.9861 1

ICM 0.4582 0.4578 0.4578 0.4578 0.3506 0.4610 1

SF 35.3490 35.5172 35.3293 35.2197 17.5239 33.9891 5

QAB/F 0.6832 0.6814 0.6848 0.6853 0.3768 0.5944 5

“Girl” CCM 20.5994 20.5039 20.5796 20.5546 17.5183 20.6437 1

ICM 0.5311 0.5313 0.5312 0.5317 0.4446 0.5340 1

SF 48.7194 48.5660 48.3491 47.8869 35.3703 48.8196 1

QAB/F 0.6992 0.6943 0.7015 0.7023 0.6260 0.6854 5

“Baby” CCM 24.9107 24.8468 24.9080 24.9040 16.6895 24.9657 1

ICM 0.5161 0.5377 0.5161 0.5162 0.4229 0.5739 1

SF 19.4409 19.1723 19.3729 19.2464 13.3334 19.3610 3

QAB/F 0.6682 0.6599 0.6701 0.6712 0.5066 0.6479 5

The numbers in bold indicate the maximum value obtained with different objective evaluation indicators.

TABLE 4 | Objective evaluation metrics of multi-focus color images in Figures 8, 9.

Image Metrics GFDF MWGF RWTS CNN MSVD QMSVD Rank

“Coke Bottle” CCM 17.2691 17.2181 17.2865 17.2782 15.1438 17.2871 1

ICM 0.5521 0.5523 0.5521 0.5521 0.4400 0.5508 2

SF 27.5118 27.0422 27.4867 27.4254 19.1469 27.0767 4

QAB/F 0.7609 0.7446 0.7609 0.7613 0.4820 0.7563 4

“Forest” CCM 21.2723 21.2740 21.2442 21.2616 20.7242 21.5211 1

ICM 0.4493 0.4496 0.4503 0.4495 0.4346 0.5120 1

SF 26.5008 26.4351 26.6436 26.3499 23.4413 29.6777 1

QAB/F 0.6232 0.6229 0.6188 0.6171 0.4182 0.4626 5

The numbers in bold indicate the maximum value obtained with different objective evaluation indicators.

TABLE 5 | Average objective evaluation metrics of different methods on 15 groups color images.

Image Metrics GFDF MWGF RWTS CNN MSVD QMSVD Rank

15 groups color images CCM 20.0358 19.9940 20.0308 20.0249 20.5252 21.4558 1

ICM 0.4606 0.4641 0.4599 0.4581 0.3558 0.4763 1

SF 28.4214 28.2365 28.3956 28.1854 23.6767 28.3095 3

QAB/F 0.6821 0.6713 0.6820 0.6818 0.4619 0.6030 5

The numbers in bold indicate the maximum value obtained with different objective evaluation indicators.
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CONCLUSION

In this paper, a multi-focus color image fusion algorithm based
on quaternion multi-scale singular value decomposition
is proposed. In the algorithm, the color multi-focus
image, represented by quaternions, undergoes multi-scale
decomposition as a whole, avoiding the loss of color information
caused by the multi-scale decomposition of each color channel
separately. In addition, the algorithm can fuse the information
of the decomposed image accurately in different components,
scales, and levels. To verify the effectiveness of the algorithm, it
has been analyzed qualitatively and quantitatively, and compared
with the classical multi-scale decomposition fusion algorithm
and fusion algorithms proposed in the latest literature. The
experimental results show that the fusion result of this method
reports great enhancement in the subjective visual effects. It
also performs well in objective evaluation indices, particularly
the CCM index of color information richness of the fused
image. Because the algorithm proposed in this paper is based
on multi-focus color images represented by quaternion, it
takes more time to process the multi-scale decomposition of
the images. Further research needs to be done to improve the
efficiency of the algorithm and ensure the quality of image
fusion. Regarding the setting of algorithm parameters, it is
mainly based on empirical values, such as the selection of the
number of channels, the selection of local window size, etc. In
the future, the adaptive selection of parameters is also the focus
of our future research. Additionally, the color images are not
represented by the complete quaternion components, but by
pure quaternion in image fusion. How to exploit the real part

information of quaternion in color image processing will be our
focus in the future study.
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Bad weather conditions (such as fog, haze) seriously affect the visual quality of images.

According to the scene depth information, physical model-based methods are used to

improve image visibility for further image restoration. However, the unstable acquisition

of the scene depth information seriously affects the defogging performance of physical

model-based methods. Additionally, most of image enhancement-based methods focus

on the global adjustment of image contrast and saturation, and lack the local details

for image restoration. So, this paper proposes a single image defogging method based

on image patch decomposition and multi-exposure fusion. First, a single foggy image

is processed by gamma correction to obtain a set of underexposed images. Then the

saturation of the obtained underexposed and original images is enhanced. Next, each

image in the multi-exposure image set (including the set of underexposed images and the

original image) is decomposed into the base and detail layers by a guided filter. The base

layers are first decomposed into image patches, and then the fusion weight maps of the

image patches are constructed. For detail layers, the exposure features are first extracted

from the luminance components of images, and then the extracted exposure features

are evaluated by constructing gaussian functions. Finally, both base and detail layers are

combined to obtain the defogged image. The proposed method is compared with the

state-of-the-art methods. The comparative experimental results confirm the effectiveness

of the proposed method and its superiority over the state-of-the-art methods.

Keywords: image defogging, gamma correction, multi-exposure image fusion, image patch, base and detail layers

1. INTRODUCTION

In bad weather, small floating particles (such as dust, smoke, etc.) in the air seriously degrade
image quality. The color and details of scene are blurred in degraded images (Li Y. et al., 2017),
affecting the performance of the applications closely related to image quality, such as outdoor
videomonitoring, remote sensing, and so on. Therefore, image defogging has become an important
application of computer vision.
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As a branch of image processing techniques, image defogging
techniques can effectively reduce the adverse effects of fog/haze to
enhance image contrast and visibility. As shown in Figures 1A,E

represent two foggy images, and Figures 1B,F represent the
corresponding fog-free images of Figures 1A,E. The heat maps
of both foggy and fog-free images are shown in Figures 1C–H,
respectively. The overall brightness of foggy images Figures 1C,G
is higher than the corresponding brightness of fog-free images
Figures 1D,H. Compared with fog-free images, the feature
information of foggy images is obviously blurrier, so it is
necessary to remove fog/haze for the effective restoration of
the captured feature information (Mehrubeoglu et al., 2016).
There are many existing image defogging methods, which can be
categorized into image enhancement-based, image restoration-
based, and image defogging based on deep learning methods.

Most of image restoration-based defogging methods rely
on the responses of atmospheric degradation models. These
methods need to extract the a priori information of foggy
images. Based on the dark channel prior (DCP) method, the a
priori law of dark primary color is first obtained by analyzing
a large number of haze-free outdoor images, and then the
corresponding fog density is estimated (He et al., 2009). Based
on single image defogging methods, variable surface shading is
added to an atmospheric scattering model. This method assumes
that the surface shading and transfer function are statistically
independent. According to this assumption, an atmospheric
scattering model is analyzed. So, the transfer function is obtained
and haze/fog is removed from foggy images (Fattal, 2008). The
contrast of input images is enhanced to improve the image
visibility (Tan, 2008). In addition, fast image restoration method
(Tarel and Hautiere, 2009) and Bayesian defogging method
(Nishino et al., 2012; Ju et al., 2019) were proposed. Fog
density changes with the depth of scene, so the degradation of
image quality also changes in space. Physical degradation models
need the corresponding a priori knowledge to obtain the scene

FIGURE 1 | Foggy and fog-free images and their heat maps. (C,G) Represent the heat maps of foggy images (A,E), respectively. (D,H) Represent the heat maps of

fog-free images (B,F), respectively.

depth information. Scene depth information is not only used to
estimate the fog/haze distribution, but also affects the defogging
performance. The a priori knowledge of physical degradation
models can not be directly applied to any scene, so the acquisition
of scene depth information is unstable. Without relying on the
scene depth information, image enhancement-based defogging
methods can effectively achieve image defogging.

With the development of deep learning, deep learning has
been applied to image defogging. Image defogging methods
based on deep learning are divided into non end-to-end and
end-to-end. Non end-to-end methods used convolutional neural
network (CNN) to estimate parameters in an atmospheric
scattering model and taken parameters as the output. Parameters
are introduced into the atmospheric scattering model for image
restoration (Cai et al., 2016). End-to-end defogging methods
input a foggy image into CNN and the defogged image directly
output (Li B. et al., 2017).

Image enhancement-based defogging methods regard image
degradation as the lack of contrast and saturation. The detailed
information in foggy scenes can be improved by image
enhancement. These methods do not need to consider the
physical causes (such as fog/haze) of image degradation, and
can effectively avoid the a priori estimation of the scene
depth and depth mapping process. Representative defogging
methods include: histogram equalization (Reza, 2004; Thomas
et al., 2011), retinex-based methods (Rahman et al., 2004),
homomorphic filter (Yu et al., 2015), wavelet transform (Rong
and Jun, 2014; Jin et al., 2018a), and image fusion-based
defogging methods (Li Y. et al., 2017; Galdran, 2018). These
methods enhance both image contrast and saturation, so as to
improve image visual quality. The detailed image information
is first extracted from a single foggy image, and then fused to
restore the details of the blurred areas. However, the defogging
result obtained by the simply fusion of the two images cannot
preserve all the detailed information of the scene in the original
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foggy image. To improve the detail preservation ability of
image fusion techniques in the defogging process. Galdran
(2018) introduced multi-exposure fusion techniques into image
defogging. Multiple images with different exposure levels were
extracted from one image by gamma correction, and saturation
and contrast were considered as the weights of fusion. Multi-
exposure fusion method was used to improve image visual
quality from the global enhancement. However, some local
information may be ignored in the global enhancement process,
which affects the definition of the final output images. Therefore,
it is necessary to optimize both global and local exposure,
respectively (Qi et al., 2020).

To solve the above issues, this paper proposes a single image
defogging method based on image patch decomposition and
multi-exposure fusion. Since fog density is sensitive to contrast,
gamma function is used to restore the details of local information
by adjusting image contrast. A single input foggy image is
corrected by gamma correction, so a set of underexposed images
with different contrast are obtained. Spatial linear saturation
enhancement is applied to the underexposed and original images,
and then a set of foggy images with contrast and saturation
enhancement are obtained. To retain more detailed information,
images decomposition and fusion are used to enhance the
detailed information of foggy images. With the help of a guided
filter, each of multi-exposure images obtained after saturation
adjustment is decomposed into the base and detail layers in
the spatial domain. The guided filter does not damage any
structure and detailed information of the processed images. In
the base layer, a fixed-size moving window is used to extract
image patches, and the best-quality areas are selected from each
image patch for the fusion of image patches. According to the
exposure features of each input image, the value of each pixel in
the detail layer is estimated in the optimal exposure mode. The
weight maps of both base and detail layers are constructed for
image fusion. So, the fog-free image is obtained after fusing the
base and detail layers. This paper has two main contributions
as follows.

1. The proposed method can effectively avoid the complex
process of both scene depth a priori estimation and depth
mapping. A set of underexposed images are obtained by
adjusting the contrast of foggy images. Spatial linear saturation
adjustment is used to improve image saturation. Local
features of foggy images are optimized by image patch
structure decomposition to enhance the visual quality of fog-
free images.

2. The proposed method can further improve the visual quality
of the obtained fog-free images. Each exposure image is
decomposed into based and detail layers. In the base
layer, the local exposure quality is optimized by image
patch structure decomposition. In the detail layer, the
global exposure quality is optimized by the exposure degree
evaluation model.

The rest of this paper is organized as follows. Section 2 discusses
the related work; Section 3 elaborates the proposed solution in
detail; Section 4 analyzes the comparative experimental results;
and Section 5 concludes this paper.

2. RELATED WORK

Some researchers regard image defogging as a type of image
restoration, so fog-free images can be obtained by an atmospheric
light scattering model (Gonzalez et al., 2014). As a representative
solution, dark channel prior (DCP) method proposed by He
et al. (2009) makes at least one low-intensity pixel in a color
channel of the local neighborhood around each pixel. This
method learns the mapping relationship between a foggy image
and the corresponding scene depth, and uses the value of the
learned image transmission map to retrieve a physical model, so
as to obtain the fog-free image by physical model calculation.
Zhu et al. (2015) established a linear model based on the a
priori information of a foggy image. According to the a priori
scene depth information, an atmospheric scattering model is
used to estimate transmittance and restore scene radiance, so as
to effectively eliminate fog from a single image. He et al. (2016)
proposed a convex optimization formula for image defogging.
In the proposed foggy image model, bilinear coupled foggy
images and light transmission distribution term are established
to directly reconstruct the fog-free image. Fan et al. (2016)
constructed a two-layer Gaussian process regression model,
which established the relationship between an input image and
its depth information transmission. In this method, the a priori
knowledge of the local image structure is learned, and the multi-
scale feature vectors of the input image are mapped to the
corresponding transmitted light. The training model is used to
restore the fog-free image. Wang et al. (2019) found that fuzzy
regions were mainly concentrated on the luminance channel
of YCrCb color space. So, the texture information lacking in
the luminance channel can be recovered to enhance the visual
contrast of foggy scenes. Yuan et al. (2017) introduced the
gaussian mixture model (GMM). Based on haze density feature
maps, an input foggy image is segmented into multiple scenes.
The segmentation results can effectively identify sky areas that
DCP cannot handle well. In the improved DCP model (Singh
and Kumar, 2017), the atmospheric veil enhancement estimation
is obtained by using the joint trilateral filter, and transmission
maps are redefined to reduce the color distortion. Liu et al. (2017)
proposed a ground radiation suppressed haze thickness map
(GRS-HTM) based on haze thicknessmap (HTM) to calculate the
fog distribution in the foggy image. The visible bands are affected
by fog density. Fog components of each band are calculated by
GRS-HTM to restore the fog-free image. Fog density changes
with the depth of scene, so the degradation of image quality is
also spatially variable. Atmospheric degradation model depends
on the depth information of the corresponding scene, but
the acquisition of scene depth information is unstable. This
affects the accurate estimation of fog distribution and defogging
performance. Without relying on the scene depth information,
image enhancement-based defogging methods were proposed.

Image enhancement-based defogging methods mainly
focus on enhancing both image contrast and saturation and
highlighting image details. Yu et al. (2015) converted foggy
images from RGB to HSV space. The overlapped sub-patch
homomorphic filter is applied to the luminance components,
and the processed image is converted back to RGB space to
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obtain the fog-free image. Kim et al. (2017) combined DCP,
contrast constrained adaptive histogram equalization and
discrete wavelet transform (CLAHE-DWT). First, the estimation
of transfer function is improved in DCP. Then, image contrast
and definition are improved by CLAHE-DWT, respectively.
Finally, images processed by CLAHE-DWT are fused to generate
the enhanced image. Galdran et al. (2015) proposed an enhanced
variable image dehazing (EVID) method. This method enhances
the local low pixels by adjusting the gray world hypothesis.
Image colors are restored by controlling saturation, and image
contrast between different channels is also improved. Image
fusion is an important method used in image defogging, which
can effectively improve the image contrast, detail information
and so on (Jin et al., 2020; Liu et al., 2020). In the same scene,
since the imaging equipment cannot focus different depth
objects at the same time, so multi-focus image fusion technology
is used to extract different focus areas from multiple images to
synthesize a clear image (Jin et al., 2018b; Liu et al., 2019b). A
fusion framework decomposes the source image into high- and
low-pass subbands. The high-pass subbands are processed by a
phase congruency-based fusion rule, and the low-pass subbands
are processed by a local Laplacian energy-based fusion rule. The
fused image is obtain by inversely transforming the processed
high-pass and low-pass subbands. The fused image not only
contains the enhanced detailed features, but also retains the
structural information of the source image (Zhu et al., 2019). Li
Y. et al. (2017) first used an adaptive color normalization method
to correct color distortion images, and then enhanced the local
details of both original and color corrected images. Dark channel,
sharpness, and saliency features were taken as the weight maps
for image fusion, and the pyramid fusion strategy was used
to reconstruct images. Liu et al. (2019a) first transformed the
speckle noise into additive noise by logarithmic transformation.
Then, the local image blocks are matched by Gray theory, the
approximate low-rank matrices grouped by the similar blocks
of the reference patches is obtained. Wavelet transform is
used to estimate the noise variance of the noisy image. Finally,
weighted nuclear norm minimization is used to the denoised
image. Gao et al. (2020) obtained a set of self-constructed images
with different exposure levels by segmenting atmospheric light
range. Therefore, an adaptive multi-exposure image fusion
method based on scale invariant feature transform (SIFT) flow
was proposed. On the basis of fusion, self-constructed images
with different exposure levels are adaptively selected by using
two-layer visual sense selectors. Galdran (2018) applied the
multi-exposure image fusion method to image defogging. The
global image exposure quality is enhanced to improve the image
visual quality. This method enhances the global image features,
but the enhancement of local features is uncertain, which affects
the image quality. On the same basis, Zhu et al. (2021) also
used gamma correction to obtain a set of images with different
exposure. By analyzing the global and local exposure, the weight
maps are constructed to guide the fusion process. The defogged
image is obtained after saturation adjustment. Zheng et al.
(2020) directly adjusted the saturation of underexposed images
after gamma correction, and proposed a fusion method based
on adaptive decomposition of image patches. The adaptive

selection of image patch size is realized by fitting both texture
entropy and image patch size. High weights are assigned to
image patches with good visual quality for image fusion. Similar
to this method, this paper also proposes an image patch based
multi-exposure fusion method for image defogging. Image
restoration is achieved through the optimization of both local
and global exposure quality.

Now, deep learning is widely used in image defogging. Cai
et al. (2016) first applied deep learning to image defogging and
proposed DehazeNet. This paper used DehazeNet to estimate a
medium transmission map in an atmospheric scattering model.
A hazy image as input, and outputs its medium transmission
map. Then, a haze-free image is recovered by atmospheric
scattering model. And a novel nonlinear activation function is
proposed, the quality of recovered haze-free image is improved
by this function. Zhang and Patel (2018) proposed a new
single image dehazingmethod, called densely connected pyramid
dehazing network (DCPDN). DCPDN includes two generators,
which are used to generate the transmission map and the
atmospheric light, respectively. A new edge-preserving densely
connected encoder-decoder structure with multi-level pyramid
pooling module is designed to estimate the transmission map.
Then the U-net structure is used to estimate the atmospheric
light.Both the transmission map and the atmospheric light are
introduced into an atmospheric scattering model to restore
the fog-free image. A joint-discriminator based on generative
adversarial network (GAN) framework is proposed to further
incorporate the mutual structural information between the
estimated transmission map and the dehazed result. This kind
of defogging method using network estimation parameters still
needs the help of atmospheric scattering model. Li B. et al.
(2017) proposed an image dehazing model built with a CNN,
called All-in-One Dehazing Network (AOD-Net). This paper
dosed not estimate the transmission map and the atmospheric
light separately, but directly generated clear images through
light-weight CNN. Qin et al. (2020) proposed an end-to-end
feature fusion attention network (FFA-Net) for single image
dehazing. This paper combined channel attention and pixel
attention mechanism to form a novel feature attention (FA)
module. FA focused more attention on the thick haze pixels and
more important channel information. And local residual learning
allows the less important information to be bypassed through
multiple skip connections. To giving more weight to important
features, an attention-based different levels feature fusion (FFA)
structure is proposed, the feature weights are adaptively learned
from FA.

3. THE PROPOSED IMAGE DEFOGGING
METHOD

As shown in Figure 2, the proposed single image defogging
method performs gamma correction on an input foggy image
to obtain a set of underexposed images. Both the underexposed
images and the original image are enhanced by spatial linear
saturation. All the images are decomposed into base and detail
layers by a guided filter. A fixed-size moving window is used to
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FIGURE 2 | The proposed image defogging framework based on image patch and multi-exposure fusion.

extract image patches from the base layer. Low-level features such
as signal strength, signal structure, and mean intensity are used
to improve fusion quality. Image patches are decomposed into
signal strength, signal structure, andmean intensity by a structure
decomposition method. The best-quality areas of the above three
low-level features are selected for fusion. The whole luminance
components of each input image are used to extract exposure
features, and the extracted features are applied to optimize the
global exposure quality of detail layer.

3.1. Image Preprocessing by Gamma
Function
Gamma correction is used to adjust an input foggy image I (x)
nonlinearly by increasing or decreasing the exposure of the input
image to change the local contrast of blurry areas.

I (x) 7→ α · I(x)γ (1)

where α and γ are positive numbers. When γ < 1, the gray
level of bright areas is compressed. The gray level of dark areas
is stretched to be brighter, and the whole image becomes bright,
which causes the color tone of high-luminance contents to be too
bright. So, the detailed contents are not obvious in human visual
perception (Galdran, 2018). On the contrary, when γ > 1, the
whole image darkens and a series of underexposed images are
obtained, and the image details are highlighted. For the input
foggy image I (x), the contrast Y of the given area � is shown
as follows.

Y (�) = yI�max
− yI�min

(2)

where yI�max
= max

{

yI(x) |x ∈ �
}

and yI�min
=

min
{

yI(x) |x ∈ �
}

. When γ > 1, a set of underexposed
images are obtained by Equation (2). Gamma correction is a
kind of global correction, and the contrast of some areas with
moderate exposure is reduced. As shown in Figure 3, the value
of γ is 2, 3, 4, or 5, respectively, four foggy images with different
exposure are obtained by gamma correction. Different exposure
images highlight the details of different areas.

3.2. Saturation Enhancement
The input foggy image I (x) is corrected by gamma ray
to obtain a set of multi-exposure image sequences Q =
{I1 (x) , I2 (x) , ..., IN (x) |N = 5 }. Each image has In (x) =
[

IRn (x) , IGn (x) , IBn (x)
]

. For each image, the maximum and
minimum values of each pixel are calculated.

{

rgbmax = max (R, max (G,B))

rgbmin = min (R, min (G,B))
(3)

When 1 =
(

rgbmax − rgbmin

)

/255 > 0, the saturation P of each
pixel in an image is calculated as follows.

P =
{

1/value, L < 0.5

1/
(

2− value
)

, L ≥ 0.5
(4)

where value =
(

rgbmax + rgbmin

)

/255 and L = value/2. The
saturation of each pixel is normalized. The same adjustment
operation is performed on the three channels of RGB, and the
adjustment of saturation increment for each image is within
[−100, 100].

When Increment ≥ 0, the three channels of RGB are adjusted
by Equation (5).

I′n (x) = In (x) + [In (x) − L× 255]× α (5)

where α= 1/β−1 and I′n (x) =
[

IR
′

n (x) , IG
′

n (x) , IB
′

n (x)
]

represents the saturation of an image after saturation adjustment.

β =
{

P, Increment + P ≥ 1
1− Increment, else

(6)

When Increment < 0, the three channels of RGB are adjusted by
Equation (7).

I′n (x) = In (x) + [In (x) − L× 255]× (1+ α) (7)

where α = Increment.
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FIGURE 3 | Original image is corrected by gamma function. (A) A foggy image, (B) γ = 2, (C) γ = 3, (D) γ = 4, (E) γ = 5.

FIGURE 4 | The fusion process of the base layer. b
j
n represents image patches. y

j
n, p

j
n, and g

j
n represent signal strength, signal structure, and mean intensity,

respectively. yj , pj , and gj represent the desired signal strength, signal structure, and mean intensity, respectively. b̂j represents the fusion of image patches, B′ is the

fused base-layer image.

3.3. Multi-Exposure Image Fusion
Defogging
3.3.1. Image Decomposition by a Guided Filter
The input images

{

I′n (x) |1 ≤ n ≤ N,N = 5
}

is decomposed
into the base and detail layers. Luminance component Gn of
the input image is calculated by the weighted sum of the three
channels of RGB. Since a guided filter can keep edge-preservation
smooth (Li et al., 2012), the base layer is obtained by a guided
filter as follows.

Bn = Tr,δ (Gn,Gn) (8)

where Tr,δ (Z,H) is a guided filter operator, r is the filter radius,
and δ is used to control fuzzy degree. Z and H represent both
input image and guide image, respectively. Gn represents both
input image and guide image (Nejati et al., 2017). The detail layer
Dn is obtained as follows.

Dn = I′n (x) − Bn (9)

3.3.2. Fusion Defogging Based on Global and Local

Optimization
As shown in Figure 4, the optimization of both global and
local exposure is realized by structure decomposition. A fixed-

size moving window is used to extract image patches b
j
n =

{

b
j
n

∣

∣1 ≤ n ≤ N, 1 ≤ j ≤ J
}

from the base layer, b
j
n represents

the j-th image patch of the n-th image. Structure decomposition
proposed in Ma et al. (2017) is used to decompose image patches.

Image patches are decomposed into three parts by Equation (10):

signal strength y
j
n, signal structure p

j
n, and mean intensity g

j
n.

b
j
n =

∥

∥

∥
b
j
n − µ

b
j
n

∥

∥

∥
·

b
j
n−µ

b
j
n

∥

∥

∥

∥

b
j
n−µ

b
j
n

∥

∥

∥

∥

+ µ
b
j
n

=
∥

∥

∥
b̃
j
n

∥

∥

∥
· b̃

j
n

∥

∥

∥
b̃
j
n

∥

∥

∥

+ µ
b
j
n

=y
j
n · p

j
n + g

j
n

(10)

where µ
b
j
n
is the mean value of each image patch, and ‖·‖ is the

l2-norm of the vector.
The highest signal strength of all image patches at the same

spatial position in the image set is taken as the expected signal
strength ŷj of the fused image patch.

ŷj = max
1≤n≤N

y
j
n = max

1≤n≤N

∥

∥

∥
b̃
j
n

∥

∥

∥
(11)

To obtain the expected image patch signal structure, the weighted
average of the signal strength of input image patch set is
calculated as follows.

p̂j =

∑N
n=1 P

(

b̃
j
n

)

p
j
n

/

∑N
n=1 P

(

b̃
j
n

)

∥

∥

∥

∑N
n=1 P

(

b̃
j
n

)

p
j
n

/

∑N
n=1 P

(

b̃
j
n

)∥

∥

∥

(12)

where the weight function P
(

b̃
j
n

)

=
∥

∥

∥
b̃
j
n

∥

∥

∥

t
determines the

contribution of each image patch to the fused image patch, and
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t ≥ 0 is an exponential parameter.When the value of t gets larger,
the image patch with higher intensity is highlighted.

The exposure quality of each image patch in the input image
is measured by a two-dimensional gaussian function.

G
(

µn, g
j
n

)

= exp






−

(µn − 0.5)2

2δ2µ
−

(

g
j
n − 0.5

)2

2δ2g






(13)

where δµ and δg are the gaussian standard deviations of
the constructed two-dimensional gaussian function. δµ and

δg control the expansion of contour along µn and size g
j
n,

respectively. The expected mean intensity ĝj of the image patch
is shown as follows.

ĝj =

∑N
n=1 G

(

µn, g
j
n

)

g
j
n

∑N
n=1 G

(

µn, g
j
n

) (14)

ŷj, p̂j, and ĝj form a new vector. The fused image patch b̂j is
represented as follows.

b̂j = ŷj · p̂j + ĝj (15)

To optimize the local-exposure quality, a fixed-size moving
window is used to extract image patches at the same spatial
position from the base layer of the input image. The pixels in
the overlapped image patches are averaged. The above steps of
the decomposition and fusion of image patches are repeated, and

then
J
∑

j=1
b̂j is used to obtain the fused image B′ of the base layer.

Two dimensional gaussian function is used to evaluate the
exposure quality of B′ and optimize the global exposure quality of
B′. The mixed weight En,B of each pixel

(

x, y
)

in B′n is calculated
as follows.

En,B
(

x, y
)

= exp

(

−
(

B′
(

x, y
)

− 0.5
)2

2δ2µ
−
(

Ḡ− 0.5
)2

2δ2g

)

(16)

B̂ represents the weighted sum of each base-layer image in the
input image set and its corresponding weight En,B in the fused
image.

B̂ =
N
∑

n=1

En,BB
′ (17)

3.3.3. Exposure Fusion Image Based on Gaussian

Weight Method
Each luminance component is convoluted with a 7 × 7 average
filter to simply calculate the exposure features ϕn

(

x, y
)

of each
pixel in multi-exposure image set, and ϕn

(

x, y
)

is the mean
intensity of a small area around the pixel (x, y). The value of
each pixel in the detail layer in the optimal exposure mode is
estimated by analyzing the shading changes of different pixels.
The weight En,D

(

x, y
)

of each pixel (x, y) in the detail layer of

the n-th input image is calculated by using the exposure degree
evaluation model.

En,D
(

x, y
)

= exp

(

−
(

ϕn

(

x, y
)

− ϕ0

)2

2δ2
d

)

(18)

where ϕn (·) is the exposure feature, δd is the gaussian standard
deviation, and ϕ0 as the best exposure constant equals the middle
value of the intensity range.

The defogged image is defined as follows.

J (x) = B̂+ ω

N
∑

n=1

En,DDn (19)

where ω ≥ 1 controls the detail intensity and local contrast of
the defogged image J (x). According to the experimental results
of the fusion performance, the value of ω is set to 1.1.

3.3.4. Verification of Image Intensity Reduction After

Defogging
Koshmieder proposed an atmospheric scattering model to solve
the image degradation issues caused by fog (Gonzalez et al.,
2014).

I (x) = t (x) J (x) + A (1− t (x)) (20)

where I (x) represents a foggy image. J (x) represents the
corresponding fog-free image of I (x). A represents the global
atmospheric light. t (x) is the transmitted light. t (x) J (x)
describes the radiation and attenuation of the scene in the
medium. A [1− t (x)] is the atmospheric light formula.

Equation (20) that reduces image intensity is used to formalize
foggy images. In this paper, underexposure or overexposure
processing is applied to foggy images, and the corresponding
exposure results are fused to obtain the image areas with
good exposure quality. To meet the requirement of image
intensity reduction, the proposed method is only applied to the
underexposed images to reduce global exposure. When γ > 1,
it is easy to verify that the fused image obtained by using B′n =
J
∑

j=1
b̂
j
n always meets the requirement of image intensity reduction.

Proof:
In Zheng et al. (2020), it simply verifies that the fusion

of the images obtained after gamma correction, saturation
linear adjustment and image structure decomposition meets the
requirement of intensity reduction J (x) ≤ I (x). The proof is
shown as follows.

Given a set of gamma parameters Ŵ =
{

γ 1, γ 2, ..., γ K |γ k > 1
}

, a set of underexposed images

Q={I1 (x) , I2 (x) , ...., IN−1 (x)} is obtained. Since I (x) ∈ [0, 1],

I(x)γ
k

< I (x) is available for all pixels. Due to the invariance
principle of brightness in the linear adjustment of saturation, the
pixel intensity component is I (x) = 1

3 (R+ G+ B) (Gonzalez
andWoods, 1977). Therefore, for any foggy image, I (x) = Q′

n (x)
is satisfied before and after saturation adjustment. Therefore, all

the pixels after saturation adjustment satisfy
(

Qn(x)
γ k
)′

< I (x).
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Since an image patch b
j
n ∈ I (x), all b

j
n(x)

γ k ∈
(

Qn(x)
γ k
)′

satisfy b
j
n(x)

γ k
< b

j
n (x). Therefore, image patches can meet

the requirements of image intensity reduction after gamma
correction and saturation adjustment.

According to the above proof b
j
n ∈ I (x) is satisfied for any

image patch. The structure decomposition of image patches is
performed on both sides of Equation (21) (Ma et al., 2017).

(

(

y
j
n

)γ k

·
(

p
j
n

)γ k

+
(

g
j
n

)γ k)

<

(

y
j
n · p

j
n + g

j
n

)

(21)

Since y
j
n, p

j
n, and g

j
n of each image patch are unit length vectors,

and the initial foggy image I (x) is the input of image fusion.
Therefore, the expected contrast of the fused image patch satisfies

ŷj = max
1≤n≤N+1

y
j
n ≤ yj. Similarly, since the weight of the mean

luminance is
∑N

n=1

(

G
(

µn ,g
j
n

)

∑N
n=1 G

(

µn ,g
j
n

)

)

= 1, the expected average

brightness is satisfied as follows.

ĝj =

∑N
n=1 G

(

µn, g
j
n

)

g
j
n

∑N
n=1 G

(

µn, g
j
n

) < gj (22)

The mode of signal structure satisfies
∥

∥

∥
p
j
n

∥

∥

∥
=
∥

∥pj
∥

∥. So, b̂j =

ŷj · p̂j + ĝj ≤ b
j
n. Image patches meet the requirements of

image intensity reduction after structural decomposition. Since

b̂j ∈ J (x) follows b̂j ≤ b
j
n, J (x) ≤ I (x). So, the fused image

always meets the requirements of image intensity reduction.

4. EXPERIMENTAL ANALYSIS

4.1. Experiment Preparations
Eighty three real-world foggy natural images with different sizes
are used in the comparative experiments. These images can be
downloaded from http://live.ece.utexas.edu/research/fog/fade_
defade.html, http://github.com/agaldran/amef_dehazing, http://
github.com/JiamingMai/Color-Attenuation-Prior-Dehazing or
captured by ourselves. A synthetic foggy image dataset
(RESIDE) with 100 scene images (Li et al., 2019) downloaded
from http://sites.google.com/view/reside-dehaze-datasets. One
hundred remote-sensing geographic images were collected from
Google Earth by ourselves. Seventeen real-world tunnel images
were collected by ourselves. Thirteen image defogging methods
are used for comparison, which are AMEF (Galdran, 2018), CAP
(Zhu et al., 2015), CO (He et al., 2016), DCP (He et al., 2009),
DEFADE (Choi et al., 2015), GPR (Fan et al., 2016), MAMF
(Cho et al., 2018), OTE (Ling et al., 2018), WCD (Chiang and
Chen, 2012), DehazeNet (Cai et al., 2016), FFA-Net (Qin et al.,
2020), a novel fast single image dehazing algorithm based on
artificial multiexposure image fusion (MIF) (Zhu et al., 2021)
and the proposed defogging method. All the experiments were
programmed by MATLAB 2016b and run on a desktop with an
Intel I9-7900X@3.30 GHz CPU and 16.00 GB RAM.

4.2. Subjective Visual Evaluation
As shown in Figures 5–9. The results of five different scenes
are selected to confirm that the proposed method has good
defogging performance.

Figure 5 compares the defogging performance of thirteen
methods on a real-world natural image. As shown in
Figures 5C–K, the performance of CAP, CO, GPR, DehazeNet
is poor. In the magnified areas, the details of the mountain are
not visible. The hues shown in Figures 5E,I deviate. The global
brightness of DEFADE and WCD as shown in Figures 5F,J

respectively is low, and the fog shown in the magnified areas
of Figure 5J is not completely removed. The brightness and
saturation of Figure 5L are low. Although MAMF restores the
high saturation of the source image, the contrast is sacrificed
in the defogged image shown in Figure 5H, and the loss of
structural and texture details can be seen from the magnified
areas. As shown in Figures 5B–N, compared with other 10
methods, AMEF, MIF, and the proposed method achieve better
defogging performance in local details and global brightness.
The global saturation of the defogged image obtained by MIF
or the proposed method is slightly better than the one obtained
by AMEF.

Figure 6A is a real-world rural natural image. Due to the poor
defogging performance of DCP and OTE, the color of sky is
distorted, and the details shown in the magnified areas are lost, as
shown in Figures 6E,I. In Figures 6D–L, the overall brightness
of defogged images is too low, and the details shown in the
magnified areas are lost. CAP and WCD have poor defogging
performance. As shown in Figure 6C, there is no obvious change
after defogging. The image saturation of Figure 6J is too low.
As shown in Figures 6B, 7C–N, the image visibility is greatly
improved, and the details shown in the magnified areas are
clear. However, color distortion appears in the sky of Figure 6H.
AMEF, MIF, and the proposed method have the best image
defogging performance. The comparative results show that the
overall brightness of the defogged image obtained by MIF or
the proposed method is slightly better than the one obtained
by AMEF.

Figure 7 compares the defogging performance of thirteen
methods on a synthetic driving image. As shown in Figures 7E,I,
the color of some areas in images is distorted, and the details
shown in the magnified areas are lost. GPR have poor defogging
performance, the clarity of the image decreased after defogging,
as shown in Figure 7G. As shown in Figures 7C–K, the overall
brightness of defogged images is too low, and the details shown
in the magnified areas are lost. The sharpening degree of MAMF
is toomuch, as shown in Figure 7H. In Figures 7F,L, some details
information shown in the magnified areas are lost. As shown
in Figures 7B–N, compared with other 10 methods, AMEF,
MIF, and the proposed method have the best image defogging
performance. The saturation of MIF and the proposed method
is closer to the human eye observation habits than AMEF.

Figure 8 compares the defogging performance of 13
methods on a remote-sensing geographic image. As shown in
Figures 8D–F, the details of the magnified areas are missing.
The overall blurring degree of the defogged image obtained
by GPR increases. The saturation of Figures 8H,I is too high,
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FIGURE 5 | Real-world natural image. (A) Represents the original foggy image. (B–N) Represent foggy-free images processed by AMEF, CAP, CO, DCP, DEFADE,

GPR, MAMF, OTE, WCD, DehazeNet, FFA-Net, MIF, and the proposed method.

FIGURE 6 | Real-world rural natural image. (A) Represents the original foggy image. (B–N) Represent foggy-free images processed by AMEF, CAP, CO, DCP,

DEFADE, GPR, MAMF, OTE, WCD, DehazeNet, FFA-Net, MIF, and the proposed method.

which leads to color distortion. The details of the magnified areas
of Figure 8I are lost. As shown in Figure 8J, there is obvious
contrast between light and dark light in the magnified areas.
Figures 8B,K–N show good defogging performance, the overall
brightness of the defogged images is good. However, the details
shown in the magnified areas are lost, as shown in Figures 8K,L.
After removing fog from the remote-sensing geographic image,
it is helpful to recognize the objects shown in the remote-sensing
geographic images and improve the recognition accuracy.

Figure 9 shows the defogged tunnel images obtained by
13 methods. The defogged image obtained by OTE has high
saturation and color distortion, as shown in Figure 9I. In
Figures 9C–L, obvious fog residue exists. The defogged image
obtained by WCD has obvious distortion, as shown in Figure 9J.
The overall brightness of Figure 9E is low. The overall brightness
of Figures 9G,H is high, and the saturation is low. The saturation

of Figure 9M is high. DEFADE, AMEF, DehazeNet, and the
proposed method achieve good defogging performance. As
shown in the magnified areas of Figure 9F, high saturation can
reduce image contrast, and the texture details of tunnel wall are
lost. After defogging tunnel images, the cracks on the inner wall
of the tunnel and the pavement damages are well-observed.

4.3. Objective Evaluation
Structural similarity (SSIM) (Wang et al., 2004), peak-signal-to-
noise ratio (PSNR) (Hore and Ziou, 2010), fog aware density
evaluator (FADE) (Choi et al., 2015), and Entropy (Qing et al.,
2016) are used as objective evaluation indexes. SSIM is used
to measure the similarity between the defogged and reference
images. The high SSIM value means the high similarity between
the foggy and defogged images. PSNR is used to measure the
distortion of defogging image compared with reference image.
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FIGURE 7 | Synthetic driving image. (A) represents the original foggy image. (B–N) Represent foggy-free images processed by AMEF, CAP, CO, DCP, DEFADE, GPR,

MAMF, OTE, WCD, DehazeNet, FFA-Net, MIF, and the proposed method.

FIGURE 8 | Remote-sensing geographic image. (A) Represents the original foggy image. (B–N) Represent foggy-free images processed by AMEF, CAP, CO, DCP,

DEFADE, GPR, MAMF, OTE, WCD, DehazeNet, FFA-Net, MIF, and the proposed method.

FIGURE 9 | Tunnel image. (A) Represents the original foggy image. (B–N) Represent foggy-free images processed by AMEF, CAP, CO, DCP, DEFADE, GPR, MAMF,

OTE, WCD, DehazeNet, FFA-Net, MIF, and the proposed method.

The high PSNR value means less distortion of defogging image.
FADE is a no-reference evaluation index of image defogging
performance. The image blurring degree is directly proportional

to the value of FADE. Entropy reflects the average amount of
information in the image. A large Entropy value means the large
average amount of information is retained. Thirteen defogging
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TABLE 1 | Evaluation of two objective indexes in the real-world natural image (Figure 5) defogging experiment.

AMEF CAP CO DCP DEFADE GPR MAMF OTE WCD DehazeNet FFA-Net MIF Proposed

FADE 0.4177 0.7179 0.5151 0.3797 0.3121(4) 0.4086 0.2055(1) 0.2885(3) 0.5986 0.5366 0.8632 0.3414 0.2685(2)

Entropy 7.0971 6.7348 6.3071 7.0064 6.9570 6.7810 7.5853(1) 6.5808 7.0994(4) 6.9760 6.9084 7.3268(3) 7.3465(2)

TABLE 2 | Evaluation of two objective indexes in the real-world rural natural image (Figure 6) defogging experiment.

AMEF CAP CO DCP DEFADE GPR MAMF OTE WCD DehazeNet FFA-Net MIF Proposed

FADE 0.4169 0.7189 0.6898 0.4854 0.3776 0.3087(3) 0.1874(1) 0.5654 0.4919 0.3584 0.7282 0.3158(4) 0.2691(2)

Entropy 7.4687 7.2995 6.2526 6.3164 7.1563 7.3750 7.4412 7.5312(2) 7.1124 6.5062 7.5052(4) 7.5942(1) 7.5176(3)

TABLE 3 | Evaluation of two objective indexes in the synthetic driving image (Figure 7) defogging experiment.

AMEF CAP CO DCP DEFADE GPR MAMF OTE WCD DehazeNet FFA-Net MIF Proposed

SSIM 0.8037 0.8904(3) 0.6737 0.7191 0.9273(2) 0.8221 0.7415 0.6733 0.5641 0.4868 0.9897(1) 0.8603 0.8645(4)

PSNR 29.198 25.983 26.114 24.650 33.323(3) 26.223 28.103 28.718 25.790 63.748(1) 37.461(2) 28.513 29.428(4)

TABLE 4 | Evaluation of two objective indexes in the remote-sensing geographic image (Figure 8) defogging experiment.

AMEF CAP CO DCP DEFADE GPR MAMF OTE WCD DehazeNet FFA-Net MIF Proposed

FADE 0.4201 0.6580 0.4681 0.3367 0.3028(4) 0.3852 0.1915(2) 0.2479(3) 0.4045 0.5049 0.7200 0.4105 0.1907(1)

Entropy 7.3273(3) 6.4009 6.6120 6.8067 7.2608 6.5937 7.4313(2) 6.5041 7.0765 6.7150 7.0420 7.3230(4) 7.5685(1)

methods are applied to 300 foggy images. Five defogged images
are selected for illustration.

As shown in Table 1. According to the FADE and Entropy
indexes of MAMF, MAMF can effectively reduce the fog density
and retain the image information as much as possible. The
Entropy of MIF and WCD is high, but FADE index of MIF
and WCD reflects that MIF and WCD cannot effectively reduce
the fog density. The FADE score is high, and the defogging
performance is not effective enough. OTE and DEFADE can
effectively reduce the fog density, but the Entropy of OTE
and DEFADE rank low. In the defogging process, OTE and
DEFADE lose some image information. The results of FADE
and Entropy show that the proposed method can achieve good
defogging performance.

In Table 2, FADE index of GPR and MAMF reflect that GPR
and MAMF can effectively reduce the fog density, but Entropy
index is low, some image information is lost in the defogging
process. Entropy scores of FFA-Net and OTE are high, but their
FADE indexes reflect that the defogging performance of FFA-Net
and OTE are not good enough. MIF and the proposed method
achieve a good ranking in FADE and Entropy indexes. MIF and
the proposed method can effectively reduce the fog density and
retain more image information.

As shown in Table 3, CAP, DEFADE, FFA-Net, and the
proposed method have the highest four scores in SSIM index,
which means that defogged result can effectively retain the
structural information of the original image. However, PSNR
index of CAP is low which means that there is more distortion in

the defogging image. The PSNR of DehazeNet is high, but SSIM
index of DehazeNet reflects that the structural information of the
original image cannot be effectively preserved. DEFADE, FFA-
Net and the proposed method achieve a good ranking in SSIM
and PSNR indexes. DEFADE, FFA-Net, and the proposedmethod
can effectively retain the structural information of the original
image and reduce image distortion.

As shown in Table 4, the Entropy index of AMEF and MIF
reflects that AMEF and MIF can retain more image information
in the process of defogging. But the FADE index ranking
of AMEF and MIF is low, which proves that its defogging
performance is poor. FADE index of OTE and DEFADE show
that OTE and DEFADE can effectively reduce fog, but the
score of Entropy is low. In the process of defogging, OTE
and DEFADE lose some image information. MAMF and the
proposed method achieve good results in FADE and Entropy.
MAMF and the proposed method can ensure the high defogging
performance and reduce the information loss during the
defogging process.

According to FADE index in Table 5, DCP, OTE, WCD, and
the proposed method can effectively reduce the fog density.
However, the ranking of Entropy index of OTE and WCD
show that more image information is lost in the defogging
process. Entropy index of GPR and DehazeNet reflect that GPR
and DehazeNet can retain most of image information in the
defogging process, but the ranking of FADE index of GPR and
DehazeNet is low. For DCP and the proposed method, their
FADE and Entropy index rankings are high, which proves that
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TABLE 5 | Evaluation of two objective indexes in the tunnel image (Figure 9) defogging experiment.

AMEF CAP CO DCP DEFADE GPR MAMF OTE WCD DehazeNet FFA-Net MIF Proposed

FADE 0.9207 1.1100 1.8038 0.5151(2) 0.6831 1.0563 1.0287 0.5799(4) 0.4712(1) 1.1700 1.5285 0.8143 0.5566(3)

Entropy 7.2576 7.3430 6.6227 7.5081(2) 7.1100 7.6589(1) 7.3797 6.8962 7.3096 7.4397(4) 6.9371 7.0303 7.4451(3)

they achieve good defogging performance and can effectively
retain image information.

The proposed method is more in line with human eye
observation habits in color saturation, image brightness, and
sharpness. The image details are effectively restored. In general,
compared with the other 12 methods, the proposed method can
achieve good defogging performance, reduce image distortion,
and retain rich image information. For 300 foggy images, the
average running time of AMEF, CAP, CO, DCP, DEFADE,
GPR, MAMF, OTE, WCD, DehazeNet, FFA-Net, MIF, and the
proposed methods were 2.8274, 3.1197, 6.1310, 3.4911, 85.7802,
433.5796, 3.9043, 38.7347, 7.3273, 7.6966, 302.5901, 1.8056, and
20.7910 s, respectively. Although the proposed method has good
defogging performance and is widely used in various image
scenes, the average processing time is relatively long owing to the
high computational complexity.

5. CONCLUSION

The proposed method can effectively achieve fog removal
without any a priori knowledge of the scene depth information.
A single foggy image is first corrected by gamma correction, and
then a set of underexposed images is obtained. Multi-exposure
image set is composed of these underexposure images and the
original foggy image. Next, the saturation of multi-exposure
images is adjusted. The multi-exposure images are decomposed
into the base and detail layers by a guided filter. The image
details are enhanced by image patch decomposition. Low-level
features such as mean intensity, signal strength, and signal
structure are used to improve fusion quality. The best-quality
areas are collected from each base-layer image patch for the
fusion of image patches. The global exposure quality of the detail
layer is optimized by using the global luminance components of
each input image. The comparative experimental results confirm
the effectiveness of the proposed method and its superiority
over the state-of-the-art methods. The proposed method can
be applied to natural images, synthetic images, remote-sensing
geographic images, and tunnel images to improve image quality.
This method includes image scale decomposition, exposure

quality detection, base-layer image fusion, and detail-layer image
fusion. These calculation processes can achieve effective image
defogging, but also increase the computational complexity. In
future, a simpler and more effective fusion strategy will be
designed to reduce the calculation steps and the running time of
image defogging, while maintaining defogging performance.
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Research on a Segmentation
Algorithm for the Tujia Brocade
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Gaussian Mixture Clustering
Shuqi He*
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Tujia brocades are important carriers of Chinese Tujia national culture and art. It records

the most detailed and real cultural history of Tujia nationality and is one of the National

Intangible Cultural Heritage. Classic graphic elements are separated from Tujia brocade

patterns to establish the Tujia brocade graphic element database, which is used for the

protection and inheritance of traditional national culture. Tujia brocade dataset collected a

total of more than 200 clear Tujia brocade patterns andwas divided into seven categories,

according to traditional meanings. The weave texture of a Tujia brocade is coarse, and

the textural features of the background are obvious, so classical segmentation algorithms

cannot achieve good segmentation effects. At the same time, deep learning technology

cannot be used because there is no standard Tujia brocade dataset. Based on the above

problems, this study proposes a method based on an unsupervised clustering algorithm

for the segmentation of Tujia brocades. First, the cluster number K is calculated by fusing

local binary patterns (LBP) and gray-level co-occurrence matrix (GLCM) characteristic

values. Second, clustering and segmentation are conducted on each input Tujia brocade

image by adopting a Gaussianmixturemodel (GMM) to obtain a preliminary segmentation

image, wherein the image yielded after preliminary segmentation is rough. Then, a

method based on voting optimization and dense conditional random field (DenseCRF)

(CRF denotes conditional random filtering) is adopted to optimize the image after

preliminary segmentation and obtain the image segmentation results. Finally, the desired

graphic element contour is extracted through interactive cutting. The contributions of this

study include: (1) a calculation method for the cluster number K wherein the experimental

results show that the effect of the clustering number K chosen in this paper is ideal; (2)

an optimization method for the noise points of Tujia brocade patterns based on voting,

which can effectively eliminate isolated noise points from brocade patterns.

Keywords: Tujia brocade segmentation, GMM, DenseCRF, K auto-selection based on information fusion,

optimization based on the vote
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INTRODUCTION

Intangible cultural heritage is an important symbol of the
historical and cultural achievements of a country or a nation.
It is not only of great significance to the study of the evolution
of human civilization but also plays a unique role in showing
the diversity of world culture, being the common cultural wealth
of mankind. Tujia nationality is one of the 56 ethnic groups in
China. Tujia brocade is an important carrier of the culture and
art of Tujia nationality. Furthermore, it records the most detailed
and real cultural history of Tujia nationality, making it one of the
National Intangible Cultural Heritage (Wan and Nie, 2018).

The basic primitives of a Tujia brocade are extracted by digital
image technology for classification and storage to form a Tujia
brocade database. This provides a safe and convenient way to
protect the Tujia brocade culture. Tujia brocades use cotton
yarn as warps and silk thread or cotton thread, and useful wool,
as wefts, which are much thicker than ordinary fabric fibers.
Therefore, the weave texture of a Tujia brocade is coarse, and
it is not easy to form smooth and round curves and shapes.
Brocade patterns have pixelated visual textures and the features
of abstract geometric patterns (Wan and Nie, 2018). These
characteristics make Tujia brocade images have exceptionally
large color characteristic differences from ordinary images, and
the texture-level image contrast is not strong, which brings
difficulty to image segmentation.

Image segmentation is one of the research hotspots in the
field of computer vision. The traditional image segmentation
algorithms mainly use the low-level semantics of images
including color, texture, and shape for segmentation, such as
threshold method, region grow algorithm, and edge detection
algorithm, among others (Heath et al., 1997; Fan et al., 2001;
Otsu, 2007). Superpixel segmentation methods emerged after
researchers introduced graph theory to image segmentation
such as Graph Cuts and Simple Linear Iterative Clustering
(SLIC) (Felzenszwalb and Huttenlocher, 2004; Achanta et al.,
2012). It is difficult to achieve semantic segmentation via
traditional clustering segmentation based on the shallow features
of images.

The model based on deep learning can automatically extract
the image features representation and has achieved excellent
results in many challenging computer vision tasks, including
object detection, location, recognition, and segmentation. Classic
image segmentation models such as Fully Convolutional
Networks (FCN) (Long et al., 2015), Mask Regional-Based
Convolutional Neural Networks (Mask R-CNN) (He et al.,
2017), DeepLab, and so on. The semantic segmentation DeepLab
(Chen et al., 2018a,b) employs a series algorithm by integrating
various classical deep learning methods and using Atrous
Convolution, Atrous Spatial Pyramid Pooling (ASPP), along
with the other structures. Meanwhile, a dense conditional
random field (DenseCRF) structure was connected to the back
end of the neural network to provide a refined segmentation
for the boundary after initial segmentation. Nonetheless, most
classic image segmentation models rely on high-quality massive
datasets. It is difficult to conduct image segmentation by the
classic deep learning segmentation model because the dataset

in this study only contains more than 200 images without a
pixel-level segmentation tag.

More recently, unsupervised deep learning becomes a
research hotspot. A dual-branch combination network (DCN)
(Yang et al., 2017) was proposed as a method combining
an autoencoder and K-means. The model encoder maps the
input data from high-dimensional features to low-dimensional
subspaces, obtains the potential features of the data, performs K-
means clustering on them, and obtains the K-means loss. The
decoder reconstructs the latent features into the original data
to obtain the reconstruction loss. The network combines the
reconstruction loss and K-means loss through backpropagation
to optimize the learning process. The study of Kanezaki (2018)
used standard unsupervised over-segmentation techniques to
supervise convolutional neural networks. This method uses
standard algorithms to extract pre-segmented regions from
the original image. The segmentation model extracts image
features through convolutional neural networks to obtain a
rough segmentation of the image and then adjusts the rough
segmentation results according to multiple constraints, such as
feature similarity and spatial continuity so that all pixels in the
same pre-segmented area have the same label. The loss incurred
between the two segmentation images before and after the
adjustment is used as the backpropagation loss of the supervision
signal to update the network weight.

The recognition and segmentation of brocade texture are
also one of the applications of image segmentation. Brocade
texture feature extraction technology originated in the mid-
1980’s. Over the past decade, researchers began to focus on
textile-aided design, fabric pattern segmentation, and contour
extraction technology. The study of Kuo et al. (2005, 2007) and
Kuo and Shih (2011) advocated extracting the color features
of printed fabrics through feature extraction algorithms, such
as self-organizing map network (SOM), and then obtained the
pattern by using the Fuzzy-c means (FCM) algorithm to achieve
the automatic classification of the colors. The study of Lachkar
et al. (2006) adopted a clustering method based on a GMM.
The method combined a GMM and a content validity index
(CVI) to form an adaptive, efficient segmentation algorithm. In
the research conducted by Jiang et al. (2014), they studied the
automatic recognition technology of jacquard warp knitted fabric
pattern images. The fabric image uses a two-dimensional wavelet
decomposition algorithm to extract features, given the clustering
center, and then uses the K-means clustering multi-channel
algorithm for segmentation.

Based on the research of textile image segmentation
algorithm, we found that there are two difficulties in the

segmentation of Tujia brocade by the commonly used image

segmentation algorithm.

• The material of Tujia brocade is rougher than the common

fabric fiber and the background texture of the brocade pattern

is very prominent. This forms a similar feeling to “mosaic,”
which is represented as a noise signal on the fabric image.
Such kind of noise information can cover up part of the
detail information, and increase the image entropy, making
the boundary between the Tujia brocade primitive and the
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image background becomes blurred. This will increase the
difficulty of edge detail segmentation and reduce the accuracy
of pattern texture segmentation.

• Deep learning-based image segmentation algorithms typically
use large datasets for training to prevent overfitting during
data processing. Tujia brocade image segmentation research
is relatively rare; there is a lack of training data specifically
designed for brocade image segmentation. If the image
matting or image segmentation tools are used to build a data
set, it needs a lot of manual labor to extract material from
massive data through tedious operations.

In response to the above problems, this study proposes a
clustering segmentation process for Tujia brocades. First, the
input Tujia brocade is divided into basic clusters. Then, a
voting-based optimization method is used to eliminate the noise
points of the image based on the characteristics of the Tujia
brocade. Afterward, DenseCRF is employed to optimize the
image and obtain effective segmentation results. Finally, the
desired primitive outline is extracted through interactive cutting.
The contributions of this study are as follows:

• A calculation method for cluster number K. In unsupervised
clustering, theK-value has an extraordinarily strong impact on
the clustering results. The algorithm uses local binary patterns
(LBP) to calculate the base for the image texture features
and uses the feature value of the GLCM as the weight. The
two values are fused to calculate the K-value for clustering.
Experiments show that the clustering effect of the K-value
selection algorithm is ideal.

• An optimization method for Tujia brocade noise points.
Due to the extensive weave textures of Tujia brocades and
the obvious textural characteristics of the background, noise
points easily occur after clustering. DenseCRF can be used
to optimize the image contour, but it is not effective in
eliminating the noise points of a Tujia brocade. Therefore,
we propose a voting-based optimization method. The
classification labels obtained after the preliminary clustering
process are voted on according to the classification results of
their neighboring pixels to redistribute the labels of the center
pixels. This method for the elimination of isolated noise points
is remarkably effective and is then combined with DenseCRF
to optimize the preliminary clustering-based segmentation
map to obtain the final Tujia brocade segmentation map.

METHOD

For a small unlabelled dataset, we used an unsupervised
clustering method to segment the input Tujia brocade. First,
the LBP and GLCM feature values were fused to calculate the
K-value of the cluster. Afterward, a GMM is used to cluster
and obtain a preliminary segmentation map. This approach
does not extract image features that are different from those
obtained via traditional image segmentation. The image yielded
after the initial segmentation process is relatively rough, and
we propose a method based on the combination of voting
optimization and DenseCRF to optimize this to obtain the final

image segmentation result. The specific flow chart is shown in
Figure 1.

Cluster Number K Auto-Selection
In an image, regions belonging to the same object mostly
have similar textures and colors. During the image clustering
segmentation, similar pixels were classified into a category.
This category is regarded as a segmentation object which is
classified according to the similarity between image pixels. The
K-value selection is particularly important to obtain a good image
segmentation effect. Due to the influence of brocade weaving
technology, the image background of Tujia brocade has a strong
sense of grain. If the K-value is too large when clustering,
the image background will be clustered, forming the mosaic
effect and affecting the segmentation effect. However, if the K-
value is too small, the fine lines in the image will be ignored.
Figure 2 shows the segmentation effect of different K-values in
the GMM algorithm.

Under observation, we found that the visual effect of the
clustering was better when K = 2, 3, or 6, but we were not sure
exactly what the clustering K-value should be until the clustering
results come out. The model was selected mostly through
criterion functions such as Bayesian information criterion (BIC)
(Chakrabarti and Ghosh, 2011), Akaike information criterion
(AIC) (Burnham and Anderson, 2002), among others. However,
such application was very difficult in the actual model selection
because the computational effort was too large, and it was
found via specific experiments that the model selected by
the criteria function was not the optimal estimation model
for the image segmentation. All models obtained by training
were only regarded as an approximate model of the real
model. The objective of this study is to obtain a reasonable
clustering K-value quickly and effectively. Traditional Tujia
brocade consists of many similar graphic elements with strong
regularity and has obvious texture features. For this reason,
the number of texture features can be used to select the K-
value of the clustering model. We introduce the statistical
eigenvalues of the image GLCM and LBP to calculate the K-
value.

Local Binary Patterns

Local binary patterns is an operator to describe the local texture
features of the image and has gray and rotation invariance.
LBP operator proposed by the study of Ojala et al. (2002) can
divide the whole image into different subregions to perform
local texture feature histogram statistics in each small region,
that is, to count the feature number belonging to a certain
pattern in the region. Finally, the histogram of all regions
was connected as the image feature vector. The original LBP
operator took the center pixel of the 3 × 3 window as the
threshold value to compare the gray values of the adjacent
eight pixels with the threshold value in turn clockwise. If the
gray value is greater than or equal to the threshold value,
the value of this pixel point is marked as 1, otherwise 0.
After the comparison between the adjacent eight pixels, an
8-bit binary number was generated as the LBP value of the
center pixel of the window to reflect the texture information
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FIGURE 1 | Tujia brocade image segmentation process.

of the region. The specific calculation process is shown in
Formula (1).

LBP
(

xc, yc
)

=
p−1
∑

p=0

2ps
(

ip − ic
)

. (1)

where (xc, yc) is the coordinate of the central pixel; p is the pth

pixel of the adjacent region; ip is the gray value of the pixel of the
adjacent region; ic is the gray value of the central pixel; s(x) is a
sign function as shown in Formula (2).

S (x) =







1, if x ≥ 0

0, else
(2)

The original LBP operator only covers a small area of 3 × 3 in
practical application, which cannot adapt to the texture features
of different sizes. For this purpose, Extended LBP (Ojala et al.,
2002) was proposed which extended the coverage area of the LBP
operator to a circular neighborhood with a radius of R. The LBP
operator can sample P points in the circular region. The method
adopted Uniform Pattern LBP. P sampling points generated 2P

patterns in Extended LBP. The introduction of “equivalentmode”
(Ojala et al., 2002) reduced the number of modes from the
original 2P to P(P – 1)+ 2. We adopted the LBP algorithm which
can calculate the occurrence frequency of image texture feature
pattern, to calculate the cardinality of clustering K-value.

Gray Level Co-occurrence Matrix (GLCM)

Tujia brocade images are generally permuted by many repeated
arrays of basic primitives. The basic texture feature cardinality
calculated by the LBP operator may not fully represent the
number of categories of segmented objects. Therefore, we
introduced the statistical feature values of the image GLCM
(Sulochana and Vidhya, 2013) which was commonly used to
describe texture by studying the spatial correlation characteristics
of gray level. The texture is formed by the repeated appearance
of gray distribution in spatial positions, so there is a certain
gray relationship between two pixels separated by a certain
distance in the image space, that is, the spatial correlation
characteristics of gray level in the image. For GLCM, the
joint probability density of the two pixels was used to reflect
the gray direction, interval, and change amplitude of the
image. However, GLCM cannot directly provide the features
of the texture. Some scalars can be used to represent GLCM
features. The entropy value of the co-occurrence matrix contains
the randomness measure of the image information amount,
indicating the complexity of the image gray level distribution.
The greater the entropy value is, the more complex the
image is, as shown in the calculation Formula (3). The M-
value reflects the degree of regularity of the texture. The
smaller M-value means that the texture features are more
chaotic and difficult to describe, as shown in the calculation
Formula (4). The greater the contrast of the image, the clearer
the visual effect of the image, as shown in the calculation
Formula (5). We assumed that images with more complex
patterns and chaotic texture features tended to be described by
more models.

Frontiers in Neurorobotics | www.frontiersin.org 4 September 2021 | Volume 15 | Article 73907741

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


He Tujia Brocade Images Segmentation

FIGURE 2 | The segmentation results by the GMM uses different K-values. (A) Original. (B) K = 2. (C) K = 3. (D) K = 4. (E) K = 5. (F) K = 6. (G) K = 7. (H) K = 8.

Entropy = −
L−1
∑

i=0

L−1
∑

j=0

P
(

i, j, d, θ
)

× lnP
(

i, j, d, θ
)

(3)

Mean =
L−1
∑

i=0

L−1
∑

j=0

P
(

i, j, d, θ
)

× i (4)

Contrast =
L−1
∑

i=0

L−1
∑

j=0

p(i, j)× (i− j)2 (5)

Calculating K-Values

The occurrence frequency of LBP texture features in the image
was counted by the algorithm where a threshold value was set
up and the number of LBP features whose frequency exceeds

the threshold value was used as the cardinality of clustering
K-value. Entropy, M, and contrast parameters of GLCM were
used to calculate the weight of the clustering K-value. The
calculation formula of K-value was shown as Formula (6). The
weight calculation formula of clustering K-value was shown as
Formula (7).

K = COUNT
(

P(LBPimage_i) > threshold
)

×Wimage_i (6)

Wimage_i = Entropy× α1 +Mean× α2 + Contrast × α3 (7)

In Formula (6), P(LBPimage_i) represents the frequency of a
texture feature;Wimage_i represents the image texture complexity
measure of image_i, which is obtained by Formula (7).
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Gaussian Mixture Model
The GMM (Bishop, 2006) is a probabilistic model. In image
segmentation, image features, such as gray information, color
information, or texture information, are used as the observation
vectors of the image. It is assumed that the overall image pixels
obey a Gaussian mixture distribution. The segmented areas can
be regarded as single Gaussian models with the same form, and
each model is independent of all other models. The entire image
is a GMM formed by fusingmultiple single Gaussianmodels with
a certain weight.

Assuming that the GMM is composed of K-Gaussian models
(the data contain K-classes), the probability density function of
the GMM is shown in Formula (8) (Bishop, 2006).

p (x) =
K
∑

k=1

wkg(x|µk,
∑

k
) (8)

where K is the number of components in the GMM, wk is the
mixture weight, which represents the proportion of the K single

Gaussian models in the mixture model, 0 ≤ wk ≤ 1,
K
∑

k=1

wk = 1,

g(x|µk,
∑

k) is the distribution of the Gaussian component k, and
its function expression is shown in Formula (9) (Bishop, 2006).

g(X) =
1

√

(2π)N |
∑

|
e−

1
2 (X−µ)T

∑−1(X−µ) (9)

where X is a random variable (which can be understood as
the observation vector of the image), N is an arbitrary integer
determined by the dimensionality of X, µ is the mean vector,
µ = E {X} = [µ1,µ2, · · · ,µN]

T ,
∑

is the covariance matrix,
N × N represents the number of dimensions,

∑−1 is the
inverse matrix of

∑

, and |
∑

| is the determinant of
∑

,
∑

=
E
{

(X − µ) (X − µ)T
}

. The iterative EM algorithm is used to
solve the likelihood function criterion of the GMM and estimate
the Gaussian distribution parameters to obtain the probability
that each pixel belongs to each category. Finally, the category
with the highest probability is regarded as the category to which
the pixel belongs; this process is repeated until all image pixels
have been classified, thus realizing the segmentation of the entire
image. The likelihood function criterion is shown in Formula
(10) (Bishop, 2006).

L (θ) = ln

[

n
∏

i=1

p (x)

]

=
n
∑

i=1

ln

K
∑

k=1

wjg(x|µk,
∑

k
) (10)

Optimization of the Clustering Results
Optimization Method Based on the Voting Method

Traditional Tujia brocades use cotton yarn, silk thread, or cotton
thread as the main weaving materials, and the formed image
background has a strong weave texture, as shown in Figure 4A.
After clustering, some noise points are formed that affect the
segmentation results, as shown in Figure 4B. GMM clustering

FIGURE 3 | Optimization based on a voting window.

yields the classification probabilities of image pixels. Clustering
does not consider the relationships between image pixels, and
misclassification occurs when the image quality is not high.
Generally, adjacent pixels in an image may belong to the same
object. We draw on the idea of voting and define a 3× 3 window,
as shown in Figure 3. The center pixel is reassigned to a category
according to the classification probabilities of the adjacent eight
pixels. The algorithm sets a threshold, and when the probability
of a category among the eight pixels adjacent to the center pixel
exceeds the threshold, the category of the center pixel is modified
to this category.

Each neighbor[i] has two attributes (Prob, label), where the
label represents the assigned category k for the pixel, Prob=[P(2),
P(3), . . . . . . , P(k)], k ∈ [2, K], and P(k) represents the probability
that this pixel belongs to category k. The category assignment of
the center pixel is calculated via Formula (11).

Prob[k] = max
k∈(1,K)

(

Average

8
∑

i=1

Prob
(

neighour [i]
)

)

(11)

If Prob[k] > = threshold, then label[center]= k.
Experiments show that this optimization process has a good

effect on eliminating obvious independent noise points. As
shown in Figure 4C, after the algorithm iteratively optimizes
the image once, the background lines and noise points
evidently disappear.

Dense Conditional Random Field

Optimization based on the voting method considers only the
associations between neighboring pixels without considering the
overall image and cannot optimize the image globally. As shown
in Figure 4C, the details of the clustering result are relatively
rough. For further optimization, we introduce DenseCRF. If the
distance between and colors of the image pixels are very close,
they belong to the same category in theory. DenseCRF (Philipp
and Koltun, 2012) readjusts the existing clustering results from
these two aspects based on the colors and the spatial location
information of the pixels provided by the entire image and
assigns the attributes of the pixels. In the fully-connected random
field, the energy function of label x is expressed as Formula (12)
(Philipp and Koltun, 2012).

E (x) =
∑

i

θi (xi) +
∑

ij

θij
(

xi, xj
)

(12)
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FIGURE 4 | Optimization of clustering results. (A) Image: Original. (B) GMM, K = 5. (C) Vote_Optimization: GMM + Vote_Optimization. (D) GMM + DenseCRF. (E)

GMM + DenseCRF + Vote_Optimization.

FIGURE 5 | Binarized images of the clustering categories. (A) Image: Original. (B) Cluster (k = 3). (C) Binary Image (Label = 0). (D) Binary Image (Label = 1). (E)

Binary Image (Label = 2).
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FIGURE 6 | Image mask obtained by interactive cutting. (A) Binary Image (Label = 2). (B) Contour. (C) Mask.

FIGURE 7 | Tujia brocade dataset.

In the formula, the unary potential θi(xi) comes from the front-
end output (such as predicted by a classifier), and it represents
the energy of dividing pixel i into label xi, which includes the
shape, texture, position, and color of the image. The pairwise
potentials θij(xi, xj) is the energy in which the pixel i and j
are simultaneously assigned label xi and xj. It describes the

relationship between the pixels and encourages similar pixels

to be assigned the same label. Pixels with large differences are

assigned different labels so that the model can segment the image

at the boundary as much as possible.
As shown in Figure 4D, the details of the clustering results

are more delicate and smoother after DenseCRF optimizes the
clustering results, but there are still background textures and

noise points.We combine the two optimizationmethods, and the
final optimization result is shown in Figure 4E.

Mask Extraction
A Tujia brocade is a geometric lattice pattern. Because of
the interweaving of warps and wefts, its patterns are mostly
composed of parallel lines, vertical lines, and diagonal lines. The
clustering results in Figure 5B are shown in Figures 5C–E, which
correspond to the binarized images (black background) of the
clustering categories (such as label = 0 and label = 1). Each
binary image (as Figure 6A) can be regarded as a part of the
texture object that needs to be extracted, and its contour (as
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FIGURE 8 | (A) Elbow method curve diagram; (B–D) K-means clustering results based on the K-values obtained by the elbow method. The red color represents the

K-values calculated by the algorithm in this study.

TABLE 1 | Calinski-Harabaz index (CH) ranking table.

CH ranking 1 2 3 4 5 6 7 8

Our method (sheet) 61 12 14 10 14 9 16 20

TABLE 2 | The calculation time of the cluster value K.

Algorithm Elbow method Calinski-Harabaz Our method

Time to calculate K-value (sheet) 40.17 s 56.05 s 0.22 s

Figure 6B) is detected for interactive segmentation to obtain the
object mask, as shown in Figure 6C.

EXPERIMENTS

The experiment is implemented by Python Software Foundation
and the experimental environment is Microsoft Windows 10.

The testing machine contains an Intel Core i7-8750H 2.20 GHz,
an Nvidia GeForce GTX 1060 with Max-Q Design, and 24 GB
of memory.

Dataset
Since there are few studies on Tujia brocade image segmentation
based on machine learning, there is no ready-made Tujia
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FIGURE 9 | Gray histograms of cluster contrast optimization. (A) Before optimization. (B) Optimization. (C) Gray histograms.

brocade dataset for use in experiments. We retrieve public Tujia
brocade image data from the Internet, manually photograph
the Tujia brocade, and collect a total of more than 200 clear
Tujia brocade patterns. According to the traditional meanings
of the Tujia brocades, the patterns are roughly divided into six
categories: animals patterns, flowers and plants patterns, living
utensils patterns, natural object patterns, geometric patterns, text
patterns. The woven material of a Tujia brocade is rougher than
ordinary fabric fibers, so the background textures of the brocade
patterns are very prominent, the pictures are not clear, and the
brocades are bright in color, as shown in Figure 7.

Selection of the Clustering Value K and
Evaluation of the Clustering Results
Evaluation by the Elbow Method

In unsupervised clustering, the clustering effect on the image
details becomes clearer as the K-value increases, which is due to
the particularity of the Tujia brocade dataset. When K reaches a
certain critical point, the definition of the image details increases.
However, the background texture is also clustered, forming noise
points that affect the clustering results.

In the experiment, the cluster value K is calculated by
auto-selection. To verify whether the selection of the K-value

produced by the algorithm is reasonable, the K-means algorithm
is used to conduct an experimental comparison on 100 Tujia
brocade pictures. Based on the index of the intra-cluster error
variance [the sum of squared errors (SSE)] through the elbow
method (Marutho et al., 2018), different K-values (K ∈ [2,9]) are
selected to repeatedly train multiple K-means models to obtain
relatively suitable clustering categories. The output values are
then compared with the K-values calculated by the algorithm.
Figure 8A displays the clustering SSE line graph obtained by the
elbow method algorithm. As shown in Figure 8A, the optimal
range of k-value is 2,3,4. Figures 8B–D shows the segmentation
results of k= 2,3,4.

Calinski-Harabaz Index (CH)

For a clustering task, because the structure of the given dataset
is unknown, the evaluation of the clustering results relies only
on the characteristics and values of the dataset itself. Usually, the
density within each cluster and the degrees of dispersion between
clusters are used to evaluate the effect of clustering. Commonly
used evaluation indicators are the silhouette coefficient (Luan
et al., 2012) and CH (Liu et al., 2020). The CH is simple to
calculate and runs much faster than the silhouette coefficient.
Therefore, we choose the CH to evaluate the clustering effect of
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FIGURE 10 | Contrast classic image segmentation algorithms and the method. (A) Original. (B) SLIC. (C) DCN. (D) Unsupervised Image Segmentation. (E) Our

method.

the approach. The CH calculation formula (13) (Liu et al., 2020)
is as follows.

CH
(

k
)

=
trB

(

k
)

/
(

k− 1
)

trW
(

k
)

/
(

n− k
) (13)

where n represents the number of clusters, k represents the
current class, trB(k) represents the trace of the inter-class
dispersion matrix, and trW(k) represents the trace of the intra-
class dispersion matrix. The larger the CH, the tighter the class
itself, and the more scattered the classes, better clustering results
are obtained.

In the experiment, the CH is calculated based on 156 Tujia
brocades, and GMM is used to calculate the CH value of each
cluster from k= 2 to k= 9. The K-value rankings of our method
are shown in Table 1.

The commonly used clustering value selection methods and
the method in this article are compared in terms of their running
times and are shown in Table 2.

Among them, the CH score for the K-value calculated by the
method is the highest at 61. However, the highest CH score does
not necessarily correspond to the best visual effect due to the
particularity of the Tujia brocade dataset.

Cluster Segmentation and Optimization
Results
It was found through the experiments that K-means clustering
is extremely sensitive to the choice of the K-value; K-means
is also sensitive to noise points. The clustering effect is very
good when the image background is clear and monotonous,
but the clustering effect is not very good if the optimal
cluster value K is not chosen or the image background
texture is not obvious. Comparing the experimental results,
it is found that GMM is more robust to the dataset than
other models. As long as a suitable K-value range is chosen,
the clustering effect is improved and the background texture
characteristics have relatively little effect on the clustering
results. From the perspective of the entire dataset, the GMM
clustering effect is better than the K-means effect on the
whole dataset.

Due to the particularity of Tujia brocade material and the
brocade process, some noise points are formed after image
clustering that affects the segmentation results. Therefore, we
optimize the results after image clustering and compare the

greyscale histograms before and after image optimization. The

results are shown in Figure 9.

We adopted some classic image segmentation algorithms,

such as SLIC (Achanta et al., 2012), DCN (Yang et al., 2017),
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FIGURE 11 | Clustering and optimization results of Tujia brocades. (A) Image: Original. (B) Cluster. (C) Optimization. (D) Mask.
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FIGURE 12 | Clustering and optimization results of natural scene pictures. (A) Image: Original. (B) Cluster. (C) Optimization.

Frontiers in Neurorobotics | www.frontiersin.org 13 September 2021 | Volume 15 | Article 73907750

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


He Tujia Brocade Images Segmentation

and Unsupervised Image Segmentation (Kanezaki, 2018), and

the algorithm proposed in this study for the image segmentation

of Tujia brocade. The segmentation results are shown in
Figure 10. It was revealed that image information was lost by the
segmentation based on a convolutional neural network as shown
in Figures 10C,D.

Figure 11A is the original picture, Figures 11B,C show the
clustering and optimization results of some Tujia brocades. After

the clustering and optimization processes are completed, the

required object mask is extracted, and the specific result is shown

in Figure 11D.

Figure 12A is a randomly selected picture from the Microsoft

Common Objects in Context (MS COCO) dataset. The K-

value of the cluster is calculated by the algorithm proposed

in this article, and then the GMM is used for clustering.

The result is shown in Figure 12B. The images in the
MS COCO dataset are all high-definition pictures, and
there is less interference from noise points, so only the
dense conditional random field (DenseCRF) method is used
in the optimization process, and the result is shown in
Figure 12C.

CONCLUSION

Due to the lack of a segmentation dataset for Tujia brocades, this
article uses an unsupervised clustering method to segment Tujia
brocades. Due to the rough textures of Tujia brocade patterns,
the clustering results are more sensitive to the K-value, so we

propose a K-value auto-selection algorithm based on a GLCM
and LBPs. This method can quickly and effectively calculate a
suitable K-value, and the speed is close to 100 times that of

the elbow method and the CH approach. At the same time, an
optimization method based on voting is proposed for the noise
points generated after the clustering of the Tujia brocades. An
experiment proved that the new method is remarkably effective
for eliminating isolated noise points. Unsupervised clustering did
not perform image segmentation semantically, so the clustered
image needed post-processing to merge the clustered regions
to form a whole segmentation object. Clustering-based image
segmentation has high computational efficiency, but it is difficult
to achieve image semantic segmentation because this method
is based on low-level features of the image. In follow-up work,
we plan to design an unsupervised image segmentation model
by combining clustering with deep learning. It will use the
feature extracted by a CNN for clustering, the clustering category
labels as supervision information, and complete end-to-end Tujia
brocade semantic segmentation.
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Generative adversarial networks and variational autoencoders (VAEs) provide impressive

image generation fromGaussian white noise, but both are difficult to train, since they need

a generator (or encoder) and a discriminator (or decoder) to be trained simultaneously,

which can easily lead to unstable training. To solve or alleviate these synchronous training

problems of generative adversarial networks (GANs) and VAEs, researchers recently

proposed generative scattering networks (GSNs), which use wavelet scattering networks

(ScatNets) as the encoder to obtain features (or ScatNet embeddings) and convolutional

neural networks (CNNs) as the decoder to generate an image. The advantage of GSNs

is that the parameters of ScatNets do not need to be learned, while the disadvantage

of GSNs is that their ability to obtain representations of ScatNets is slightly weaker than

that of CNNs. In addition, the dimensionality reduction method of principal component

analysis (PCA) can easily lead to overfitting in the training of GSNs and, therefore,

affect the quality of generated images in the testing process. To further improve the

quality of generated images while keeping the advantages of GSNs, this study proposes

generative fractional scattering networks (GFRSNs), which usemore expressive fractional

wavelet scattering networks (FrScatNets), instead of ScatNets as the encoder to obtain

features (or FrScatNet embeddings) and use similar CNNs of GSNs as the decoder

to generate an image. Additionally, this study develops a new dimensionality reduction

method named feature-map fusion (FMF) instead of performing PCA to better retain the

information of FrScatNets,; it also discusses the effect of image fusion on the quality of

the generated image. The experimental results obtained on the CIFAR-10 and CelebA

datasets show that the proposed GFRSNs can lead to better generated images than the

original GSNs on testing datasets. The experimental results of the proposed GFRSNs

with deep convolutional GAN (DCGAN), progressive GAN (PGAN), and CycleGAN are

also given.

Keywords: generative model, fractional wavelet scattering network, image generation, image fusion,

feature-map fusion
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INTRODUCTION

Generative models have recently attracted the attention of
many researchers, and they are widely used in image synthesis,
image restoration, image inpainting, image reconstruction, and
other applications. Many generative models have been proposed
in the literature. They can be roughly classified into two
types (Goodfellow et al., 2014): explicit density and implicit
density models.

Among explicit density generative models, variational auto-
encoders (VAEs) (Kingma and Welling, 2014) and their variants
(Rezende et al., 2014; Salimans et al., 2015; Gregor et al., 2018)
are most likely the most commonly used models, since they
have useful latent representation, which can be used in inference
queries. Kingma and Welling (2014) were the first to propose
VAEs, which train an encoder and decoder simultaneously
and can perform efficient inference and learning in directed
probabilistic models and in the presence of continuous latent
variables with intractable posterior distributions. Salimans et al.
(2015) bridged the gap between Markov chain Monte Carlo
(MCMC) and VAEs, and incorporated one or more steps
of MCMC into variational approximation. Sohn et al. (2015)
proposed a conditional VAE (CVAE), which joins existing label
information in training to generate corresponding category data.
Rezende and Mohamed (2015) introduced a new approach for
specifying flexible, arbitrarily complex, and scalable approximate
posterior distributions and made a clear improvement in the
performance and applicability of variational inference. Sønderby
et al. (2016) presented a ladder variational autoencoder, which
uses a process similar to a ladder network and recursively
corrects the generation distribution based on a data-independent
approximate likelihood. Higgins et al. (2017) presented a β-
VAE, which is a modification of a variational autoencoder
(VAE), with special emphasis on discovering disentangled
latent factors. Oord et al. (2017) proposed a simple yet
powerful generative model that learns discrete representations
and allowed the model to circumvent issues of posterior
collapse. Gregor et al. (2018) proposed temporal difference
VAE (TD-VAE), which is a generative sequence model that
learns representations containing explicit beliefs about states
in several steps into the future Razavi et al. (2019) proposed
vector quantized variational autoencoder (VQ-VAE), which
augments with powerful priors over latent codes and is able
to generate samples with a quality that rival those of state-
of-the-art GANs on multifaceted datasets, such as ImageNet.
Simonovsky and Komodakis (2018) proposed Graph VAE,
sidesteps the hurdles of linearization of discrete structures by
outputting a probabilistic fully connected graph of a predefined
maximum size directly at once. For more references on VAEs, see
Blei et al. (2017).

Among implicit density generative models, generative
adversarial networks (GANs) (Goodfellow et al., 2014) and their
variants (Chen et al., 2016; Radford et al., 2016) are probably
the most commonly used models, since they provide better
generated images than other generative models. Goodfellow et al.
(2014) were the first to propose GANs, which estimate generative
models via an adversarial process, where a generative model G

and a discriminative model D are trained simultaneously without
the need for Markov chains or unrolled approximate inference
networks during either training or the generation of samples.
However, the application of GANs to real-world computer vision
problems still encounters at least three significant challenges
(Wang et al., 2021): (1) high-quality image generation; (2)
diverse image generation; and (3) stable training. Therefore,
many variants of GANs have been proposed to handle the
three challenges. The variants can be roughly classified into two
groups (Wang et al., 2021): architecture variant GANs and loss
variant GANs.

In terms of architecture variant GANs, for example, Radford
et al. (2016) proposed deep convolutional GAN (DCGAN),
which uses a convolutional neural network (CNN) as the
discriminator D and deploys a deconvolutional neural network
architecture for G; the spatial upsampling ability of the
deconvolution operation enables the generation of images with
higher resolution compared with the original GANs. Mirza
and Osindero (2014) proposed conditional GAN (CGAN),
which imposes a condition of additional information, such as
a class label, to control the process of data generation in a
supervisedmanner. Chen et al. (2016) presented InfoGAN, which
decomposes an input noise vector into a standard incompressible
latent vector and another latent variable to capture salient
semantic features of real samples. Karras et al. (2018) presented
progressive GAN (PGAN) for generative high-resolution images
using the idea of progressive neural networks (Rusu et al., 2017),
which does not suffer from forgetting and is able to deploy prior
knowledge via lateral connections to previously learned features.
Karras et al. (2020a,b) proposed StyleGAN, which leads to
an automatically learned, unsupervised separation of high-level
attributes and stochastic variation in generated images and, thus,
enables intuitive, scale-specific control of the synthesis. More
recently, Hudson and Zitnick (2021) introduced the Generative
Adversarial Transformer (GANformer), which is a generalization
of the StyleGAN and a simple yet effective generalization of the
vanilla transformer, for a visual synthesis task.

In terms of loss-variant GANs, for example, Arjovsky et al.
(2017) proposed Wasserstein GAN (WGAN), which uses the
Wasserstein distance as the loss measure for optimization instead
of Kullback–Leibler divergence. Gulrajani et al. (2017) proposed
an improved method for training the discriminator for aWGAN,
by penalizing the norm of discriminator gradients with respect to
data samples during training rather than performing parameter
clipping. Nowozin et al. (2016) proposed an alternative cost,
which is a function of the f-divergence, for updating the
generator, which is less likely to saturate at the beginning
of training. Zhu et al. (2017) proposed CycleGAN for the
task of image-to-image translation. Qi (2020) presented loss-
sensitive GAN (LS-GAN), which trains the generator to produce
realistic samples by minimizing the designated margins between
real and generated samples. Miyato et al. (2018) proposed
spectral normalization GAN (SN-GAN), which uses a weight
normalization technique to train the discriminator more stably.
Brock et al. (2019) proposed BigGAN, which uses hinge loss
instead of Jensen–Shannon divergence and a large-scale dataset
to train the generator to produce more realistic samples.
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Although GANs and VAEs are great generative models, they
raise many questions. A significant disadvantage of VAEs is
that the resulting generative models produce blurred images
compared with GANs, since the quality of VAEs crucially relies
on the expressiveness of their inference models. A significant
disadvantage of GANs is that the training process is very difficult
and may lead to unstable training and model collapse. To
design a network that can maintain the characteristics of high-
quality generated images of GANs as much as possible while
reducing the training difficulty of GANs, Angles and Mallat
(2018) proposed generative scattering networks (GSNs), which
use wavelet scattering networks (ScatNets) (Bruna and Mallat,
2013) as the encoder to obtain features (or ScatNet embeddings)
and the deconvolutional neural network of DCGAN (Radford
et al., 2016) as the decoder to generate an image. The advantage
of GSNs is that there is no need to learn the parameters of
ScatNets; therefore, the difficulty of training is reduced when
compared with DCGAN, while the disadvantage of GSNs is that
generated images can lose details, which affects the quality of
the generated images. After careful inspection, we determined
that the sources of relatively low-quality generated images of
GSNs include at least two aspects: (1) the expression ability of
ScatNets is slightly weaker than that of CNNs used in DCGAN;
(2) applying PCA (Abdi and Williams, 2010) to reduce the
dimension of the feature map of ScatNets in the encoder part
of GSNs leads to an overfitting problem in the testing process of
GSNs. This finding leads to the central question of our study:

Can we change the feature extraction method of ScatNets
to a more powerful one that still does not need learning? Can
we develop a more suitable dimensionality reduction method to
solve the overfitting problem in the testing process of GSNs?

In an attempt to solve the above questions, in this study,
we propose generative fractional scattering networks (GFRSNs),
which can be seen as an extension of GSNs. The contributions of
this article are as follows:

1) We use, for more expressiveness, fractional wavelet scattering
networks (FrScatNets) (Liu et al., 2019) instead of ScatNets
(Bruna and Mallat, 2013) to extract features of images, and
we use image fusion (Liu et al., 2016; Yang et al., 2017)
in GFRSNs to effectively improve the visual quality of the
generated images.

2) We propose a new dimensionality reduction method named
feature-map fusion (FMF), which is more suitable for
reducing the feature dimension of FrScatNets than PCA, since
the FMF method greatly alleviates the overfitting problem on
the testing datasets using GFRSNs.

3) The image generated by the proposed GFRSN on the test set
is better than that produced by the original GSNs.

The remainder of this article is organized as follows: In section
Generative Scattering Networks (GSNs), wavelet scattering
networks and the architectural components of GSNs are briefly
introduced. The main architectural components of GFRSNs,
which include fractional wavelet scattering networks, the FMF
dimensionality reduction method and generative networks, and
an image fusion method are introduced in section Generative
Fractional Scattering Networks (GFRSNs). The performance of

FIGURE 1 | Structure of generative scattering networks (GSNs) with principal

component analysis (PCA) dimensionality reduction method.

GFRSNs is analyzed and compared with that of the original GSNs
in section Numerical Experiments. The conclusions and further
discussion are presented in section Conclusions.

GENERATIVE SCATTERING NETWORKS
(GSNS)

In this section, we first briefly recall the generative scattering
networks (GSNs) (Angles and Mallat, 2018), whose structure is
shown in Figure 1.

The input Mth-order tensor X ∈ R
N1×N2×···×NK , where

Rdenotes the real domain and eachNi,i = 1, 2, 3, · · ·K, addresses
the i-mode of X , and is first fed into the feature extraction part of
the encoder to obtain the ScatNet features ∈ R

M1×M2×···×ML .
The next part of the encoder aims to map the features to
a Gaussian latent variable z ∈ R

U , which is accomplished
by whitening and projection to a lower-dimensional space.
Inspired by Zou and Lerman (2019), we refer to this process as
Gaussianization. Decoder G can be seen as a generator and is
trained byminimizing the reconstruction loss between the output
X̃ ∈ R

N1×N2×···×NK and input X . In other words, the generator
calculation is regarded as the inverse problem of the scattering
transform. The main components of GSNs include ScatNets,
Gaussianization with PCA, and the generative network G. These
components are recalled as follows.

Wavelet Scattering Networks (ScatNets)
Let the complex bandpass filter ψλ be constructed by scaling and
rotating a filter ψ , respectively, by2j and δ, as follows (Bruna and
Mallat, 2013):

ψλ (t) = 22jψ
(

2jδ−1t
)

, λ = 2jδ, (1)

with 0 ≤ j ≤ J − 1, and δ = kπ/K, k = 0, 1, ...,K − 1.
The wavelet-modulus coefficients of x are given by:

U [λ] x = |x ∗ ψλ| . (2)

The scattering propagator U
[

p
]

is defined by cascading wavelet-
modulus operators

U
[

p
]

x = U [λm] · · ·U [λ2]U [λ1] x

=
∣

∣

∣

∣

∣

∣

∣

∣

∣x ∗ ψλ1
∣

∣ ∗ ψλ2
∣

∣

∣
· · · ∗ ψλm

∣

∣

∣

∣

, (3)
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where p = (λ1, λ2, .., λm) are the frequency-decreasing paths;
in other words, |λk| ≥

∣

∣λk+1

∣

∣ , k = 1, 2, ...,m − 1. Note that
U[∅]x = x, and∅ expresses the empty set.

The scattering operator SJ performs spatial averaging on a
domain whose width is proportional to 2J :

S
[

p
]

x = U
[

p
]

x ∗ φJ = U [λm] · · ·U [λ2]U [λ1] x ∗ φJ

=
∣

∣

∣

∣

∣

∣

∣

∣

∣x ∗ ψλ1
∣

∣ ∗ ψλ2
∣

∣

∣
· · · ∗ ψλm

∣

∣

∣

∣

∗ φJ . (4)

The network nodes of layer m correspond to the set Pmof all
paths p = (λ1, λ2, .., λm) of length m. This m-th layer stores
the propagated signals

{

U
[

p
]

x
}

p∈Pmand outputs the scattering

coefficients
{

S
[

p
]

x
}

p∈Pm . The output is obtained by cascading

the scattering coefficients of every layer.
Note that x in (2) can be one-dimensional data x ∈ R

N1 ,
two-dimensional data X ∈ R

N1×N2 , and third-order tensor X ∈
R
N1×N2×N3 , which can be seen as N3 two-dimensional data X ∈

R
N1×N2 , and ScatNet addresses with these Xs one by one and

then superimposes the results as output features. According to
Mallat (2012), if we feed the input X ∈ R

N1×N2×N3 into ScatNet,
then we can obtain ScatNet features (or ScatNet embeddings)
as follows:

= S
[

p
]

X ∈ R
N3×(1+LJ+L2J(J−1)/2)×(N1/2

J)×(N2/2
J), (5)

whereN3 is the number of input sample channels, andN1 andN2

are the width and height of the input sample, respectively. N1/2
J

and N2/2
J are the width and height of the output features. J is a

scale factor, and L is the number of rotation angles. Note that the
number of feature maps in the first, second, and third layers is 1,
LJ, and L2J(J-1)/2, respectively.

Gaussianization With PCA
As shown in Figure 1, the last step of the encoder maps the
transformed features in such a way that we can sample from
the Gaussian distribution to generate new images, as required
by the generator. Specifically, let { }Tt=1 be the output features
of the ScatNet embedding, and let be the representing matrix
of { }Tt=1, while z is the latent variable of the generator. As
advocated in Angles and Mallat (2018), z can be interpreted as an
address, with a dimension d lower than that in the input image.
Hence, to get a lower-dimensional embedding of the output
features, one can perform principal component analysis (PCA)
(Abdi andWilliams, 2010) to project the features of the scattering
transform to a lower-dimensional space.

Next, to whiten them, we choose u = 1
T

∑

T
t=1 ,

∑

=
1
T

∑

T
t=1

(

− u
) (

− u
)∗
, and the whitening map A =

∑−1/2 (

Id − u
)

.
Hence, the resulting embedding of the encoder is

z =
∑−1/2 (

− u
)

. (6)

After the above process, the whitened sample is uncorrelated,
and their distribution will be close to a normal one with identity
covariance (Angles and Mallat, 2018), which is exactly what we
want to feed to the generator.

Generator Networks in GSNs
The generative network G of GSNs is a neural one, which
is similar to the generator of DCGAN (Radford et al., 2016),
which inverts the whitened scattering embedding on training
samples. The generator network G includes a fully connected
layer (FC), batch normalization layer (BN) (Ioffe and Szegedy,
2015), bilinear upsampling (Upsample) layer, and convolutional
layer (Conv2d) with a kernel size of 7 × 7. Except for the last
layer, which uses the tanh activation function, the others use the
default ReLU (Nair and Hinton, 2010) activation function.

Generative scattering networks with PCA as the
dimensionality reductional method choose the L1-norm
loss function and solve the following optimization problem
(Zhao et al., 2017):

g1 = min LossL1
(

X , X̃
)

= min
1

N

N
∑

i=1

∣

∣

∣
X
(i) − X̃

(i)
∣

∣

∣
, (7)

where X represents the input data, X̃ represents the generative
data, X (i) represents the i-th input sample, and X̃

(i) represents
the i-th generative sample:

X̃ = G
(

PCA
(

S
[

p
]

X
))

, (8)

where S[p]X denotes the feature extraction process with
ScatNets, and PCA(.) represents that the feature dimensionality
reduction method is PCA. G(.) represents the generative
network G. The optimization problems in (7) are then solved
with the Adam optimizer (Kingma and Ba, 2015) using the
default hyperparameters.

GENERATIVE FRACTIONAL SCATTERING
NETWORKS (GFRSNS)

In this section, we introduce the proposed generative fractional
scattering networks (GFRSNs), whose structure is shown in
Figure 2.

The input X ∈ R
N1×N2×···×NK is first fed into the fractional

wavelet scattering networks (FrScatNets) to obtain FrScatNet
features (or FrScatNet embeddings)

α
∈ R

M1×M2×···×ML ,
whose dimensions are then reduced by the proposed feature-
map fusion (FMF) method to obtain an implicit tensor α ∈

FIGURE 2 | Structure of generative fractional scattering networks (GFRSNs).
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FIGURE 3 | Fractional wavelet scattering network and the feature-map fusion dimensional reduction method.

R
O1×O2×···×OK , which is then fed into the generator G to

obtain the generated output tensor X̃α ∈ R
N1×N2×···×NK . In

other words, the generative network G is seen as the inverse
problem of FrScatNets. The main components of GFRSNs
include FrScatNets, Gaussianization with feature-map fusion
dimensionality reduction method, and the generative network G.
In the following, these components of GFRSNs are introduced.

Fractional Wavelet Scattering Networks
(FrScatNets)
In this subsection, fractional wavelet scattering networks
(FrScatNets) (Liu et al., 2019) are briefly introduced. Similar to
(2), the fractional wavelet modulus coefficients of x are given by:

Uα [λ] x = |xΘαψλ| , (9)

where Θα is the fractional convolution defined
by Shi et al. (2010);

x (t)Θαψλ (t) = e−
j
2 t

2 cot θ
[(

x (t) e
j
2 t

2 cot θ
)

*ψλ (t)
]

, (10)

where the parameter α is the fractional order and θ = απ /2
represents the rotation angle. Note that when α= 1, the fractional
convolution in (10) reduces to conventional convolution in (2).

The fractional scattering propagator Uα
[

p
]

is defined by
cascading fractional wavelet modulus operators

Uα
[

p
]

x = Uα [λm] · · ·Uα [λ2]Uα [λ1] x

=
∣

∣

∣

∣

∣

∣

∣

∣

∣xΘαψλ1
∣

∣Θαψλ2

∣

∣

∣
· · ·Θαψλm

∣

∣

∣

∣

, (11)

where p = (λ1, λ2, .., λm)are the frequency-decreasing paths;
in other words, |λk| ≥

∣

∣λk+1

∣

∣ , k = 1, 2, ...,m − 1. Note that
Uα [∅] x = x, and∅ expresses the empty set.

The fractional scattering operator Sα performs spatial
averaging on a domain whose width is proportional to 2J :

Sα
[

p
]

x = Uα
[

p
]

xΘαφJ = Uα [λm] · · ·Uα [λ1] xΘαφJ

=
∣

∣

∣

∣

∣

∣

∣

∣

∣xΘαψλ1
∣

∣Θαψλ2

∣

∣

∣
· · ·Θαψλm

∣

∣

∣

∣

ΘαφJ . (12)

The structure of FrScatNets is shown on the left of Figure 3.
The network nodes of the layer m correspond to the set Pm

of all paths p = (λ1, λ2, .., λm) of length m. This m-th layer
stores the propagated signals

{

Uα
[

p
]

x
}

p∈Pm and outputs the

fractional scattering coefficients
{

Sα
[

p
]

x
}

p∈Pm . The output is

obtained by cascading the fractional scattering coefficients of
every layer. Note that when α = 1, the FrScatNets in (12) default
to conventional ScatNets in (4), since the fractional convolution
in (10) reduces to conventional convolution in (2).

Note that FrScatNets retain the advantages of ScatNets, for
example, no need for learning, translation-invariant property,
linearized deformations, and certain parameters. Compared with
ScatNets, FrScatNet adds a free parameter α, which represents
fractional order. With α continuously growing from 0 to 2,
FrScatNets can show the characteristics of an image from time
domain to frequency domain. Thus, FrScatNets provide more
fractional domain choices for the feature extraction of input data.
Furthermore, for the image generation task in this study, we can
obtain as many generated images from FrScatNet embeddings
as different fractional orders αi, and then they can be fused to
further improve the quality of the generated images.
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If we feed the input X ∈ R
N1×N2×N3 into the FrScatNet,

then we can obtain the features of FrScatNet (or FrScatNet
embeddings) as follows:

α
= Sα

[

p
]

X ∈ R
N3×(1+LJ+L2J(J−1)/2)×(N1/2

J)×(N2/2
J). (13)

Note that the size of output features of FrScatNets is the same as
that of ScatNets, whose size is shown in (5).

Gaussianization With FMF
In this subsection, we introduce a new method called FMF
to reduce the dimensionality of the features after a fractional
scattering transformation. We propose such an algorithm based
on the hierarchical tree structure of features extracted by the
fractional scattering transform to replace PCA to map the
features to a low-dimensional space. More specifically, since the
output features of different layers from the fractional scattering
transform have a hierarchical structure, which is not considered
in the PCA algorithm, we need a dimensionality reduction
method that can make full use of this hierarchical information.
The number of feature maps in the first, second, and third layers
is 1, LJ, and L2J(J-1)/2, respectively. Obviously, the third layer
has the largest number of feature maps. Therefore, we fuse only
the feature maps from the third layer of the fractional scattering
transform to significantly reduce the data dimension. The fusion
method is very simple: we obtain a new feature map by simply
taking the average of every L(J-1)/2 feature map, which obtains LJ
feature maps after applying the FMF method to the output of the
third layer of FrScatNets. The dotted box on Figure 3 illustrates
the proposed FMF method.

Therefore, an input tensor X ∈ R
N1×N2×N3 is fed into the

FrScatNets to obtain FrScatNet features
α
in (13), which are

then processed by the FMF method, obtaining an implicit tensor

α = FMF
(

α

)

∈ R
N3×(1+LJ+LJ)×(N1/2

J)×(N2/2
J), (14)

whose size is significantly smaller than the size shown in
(13) without using the FMF method. Note that FMF(.) means
performing the FMF method.

The obtained implicit tensor α is then input to the generator
network G, described below, to obtain the generated image.

Generative Networks in GFRSNs
The generative network G of GFRSNs is also a deconvolutional
neural network that has a generator similar to that of DCGAN
(Radford et al., 2016), which inverts fractional scattering
embeddings on training samples. The generative network G of
GFRSNs also includes a fully convolutional layer (Fully Conv)
(Long et al., 2015) and several convolution blocks that consist
of bilinear upsampling (UP), two convolutional layers (Conv)
with a 3 × 3 kernel size, batch normalization, and ReLU (the
activation function of the last convolution layer is tanh). GFRSNs
also choose the L1-norm loss function and solve the following
optimization problem:

g2 = min LossL1
(

X , X̃α
)

= min
1

N

N
∑

i=1

∣

∣

∣
X
(i) − X̃

(i)
α

∣

∣

∣
, (15)

where X̃α represents the generative data and X̃
(i)
α . represents the

i-th generative sample, and

X̃α = G
(

FMF
(

Sα
[

p
]

X
))

, (16)

where Sα[p]X denotes the feature extraction process with
FrScatNets, FMF(.) represents the dimensionality reduction
process, and G(.) represents the generative network.

The optimization problem in (15) is then solved with the
Adam optimizer (Kingma and Ba, 2015).

Image Fusion
In contrast to GSNs, the proposed generative fractional scattering
networks (GFRSNs) embed the input using FrScatNets, which
allows for deriving many embeddings, since FrScatNets have
an additional fractional order α; therefore, we can embed the
input in different fractional order domains. These FrScatNet
embeddings may extract many different but complementary
features from the input. We can effectively use these embeddings
to generate many images and further improve the quality of
the synthesized images using fusion methods. In this study, as
shown at the bottom of Figure 2, we use a simple image fusion
method that is weighted average. As examples, we simply use
the following:

X̃α1 ,α2 = λX̃α1 + (1− λ) X̃α2 , (17)

where λ is the balanced parameter, which is set here to 0.5.

NUMERICAL EXPERIMENTS

In this section, we evaluate the quality of the generated images
by the proposed GFRSNs by means of several experiments. The
quality of the generated images is evaluated with two criteria:
peak signal to noise ratio (PSNR) (Wang et al., 2003) and
structural similarity (SSIM) (Wang et al., 2004).

We performed experiments on two datasets that have different
levels of variability: CIFAR-10 (Krizhevsky, 2009) and CelebA
(Liu et al., 2015). The CIFAR-10 dataset includes 50,000 training
images and 10,000 testing images, whose sizes are 32 × 32 ×
3. In all the experiments on the CIFAR-10 dataset, after image
grayscale preprocessing, the number of rotation angles L is set to
8, and the fractional scattering averaging scale is set to 2J = 23 =
8, which means that we linearize translations and deformations
of up to 8 pixels. Therefore, the size of the output features from
FrScatNets according to Equation (13) is 1 × 217 × 4 × 4,
which is then, after the FMF method according to Equation (14),
reduced to 1 × 49 × 4 × 4 (the size of implicit tensor α).
In addition, the CelebA dataset contains thousands of images,
and we choose 65,536 training images and 16,384 testing images,
whose sizes are 128 × 12 8 × 3. In all the experiments on the
CelebA dataset, after image grayscale preprocessing, the number
of rotation angle L is set to 8, and the fractional scattering
averaging scale is set to 2J = 24 = 16, which means that we
linearize translations and deformations of up to 16 pixels. Thus,
the size of the output features from FrScatNets according to (13)
is 1 × 417 × 8 × 8, which is then, after FMF method according
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TABLE 1 | Core parameters of FrScatNet with and without feature

dimensionality reduction.

Parameter Descriptions Dataset

CIFAR-10 CelebA

N1 × N2 ×
N3

The size of input

image

32 × 32 × 1 128 × 128 × 1

J The fractional

scattering

averaging scale

3 4

L The number of

rotation angle

8 8

N3×(1+ LJ+
L2J(J−1)

2 )× N1

2J
× N2

2J

The shape of

FrScatNets

features
α

1 × 217 × 4 × 4 1 × 417 × 8 × 8

N3 ×
(1+ 2× LJ)×
N1

2J
× N2

2J

The shape of

implicit tensor
α

with FMF

1×49×4×4 1×65×8×8

to Equation (14), reduced to 1 × 65 × 8 × 8 (the size of implicit
tensor α). Table 1 shows the core parameters of FrScatNet and
its settings on the CIFAR-10 and CelebA datasets.

In the following, we first compare the visual quality of the
generated images with different feature dimensionality reduction
methods in the framework of GFRSNs. Then, we compare
the visual quality of the generated images with FrScatNets.
Finally, we compare the visual quality of the fused images and
unfused images. The following experiments are implemented
using PyTorch on a PC machine, which sets up an Ubuntu 16.04
operating system and has an Intel (R) Core(TM) i7-8700K CPU
with a speed of 3.7 GHz and 32 GB RAM, and has two NVIDIA
GeForce GTX1080-Ti GPUs.

Image Generative Results With Different
Dimensionality Reduction Methods
In this subsection, we compare the results on the quality of
generative images with two different dimensionality reduction
methods: the PCA method and the proposed FMF method. We
set the fractional orders to be α1 = α2 = 1, and use conventional
ScatNets to extract features from the input X for simplicity.

For the PCA-based GFRSNs, the flow chart is shown in
Figure 1. For the CIFAR-10 dataset, the size of the implicit vector
z is 49 × 4 × 4 = 784, and for the CelebA dataset, the size of the
implicit vector z is 65× 8× 8= 4,160. We use the PyTorch code
of generative scattering networks1 provided by Tomás Angles.
The PSNR and SSIM on the CIFAR-10 and CelebA datasets are
shown in the second columns of Tables 2, 3, respectively.

As shown in the two tables, the scores of PSNR (Train PSNR)
and SSIM (Train SSIM), both in the training dataset, are very
good for the PCA-based GFRSNs; however, their corresponding
values (test PSNR and test SSIM) in the testing dataset are slightly
low. This phenomenon indicates that an overfitting problem has
occurred using the PCA-based GFRSNs. We argue the reason
behind this phenomenon could be that the output feature of

1https://github.com/tomas-angles/generative-scattering-networks

TABLE 2 | Peak signal to noise ratio (PSNR) and structural similarity (SSIM) scores

of training and testing images from FrScatNets with fractional orders α1 = α2 = 1

on the CIFAR-10 dataset.

PCA Feature-Map Fusion Increased (%)

Train PSNR 23.08 20.1500 −12.69

Test PSNR 17.92 18.1000 1.00

Train SSIM 0.9428 0.8859 −6.08

Test SSIM 0.8206 0.8352 1.78

Increased means the percentages of relative improvements of FMF over principal

component analysis (PCA), the better results are shown in bold.

TABLE 3 | PSNR and SSIM scores of training and testing images from

FrScatNets with fractional orders α1 = α2 = 1 on the CelebA dataset.

PCA Feature-Map Fusion Increased (%)

Train PSNR 23.8124 22.7526 −4.45

Test PSNR 20.5312 19.7688 −3.71

Train SSIM 0.9529 0.944 −0.93

Test SSIM 0.9104 0.8993 −1.22

Increased means the percentage of relative improvements of FMF over PCA, the better

results are shown in bold.

FrScatNets
α
in (16) is a 4th-order tensor, which is performed

by PCA to obtain an implicit vector z. This process loses
correlations between various dimensions of the data. Therefore,
we consider using FMF as the dimensionality reduction method
to maintain the structures of the input data better.

For the proposed FMF-based GFRSNs, the flow chart is shown
in Figure 2. The size of the implicit tensor αi

is 1 × 49 × 4 ×
4 on CIFAR-10, and for the CelebA dataset, the size of implicit
tensor αi

is 1 × 65 × 8 × 8. The PSNR and SSIM on the
CIFAR-10 and CelebA datasets are shown in the third columns
of Tables 2, 3, respectively. As can be seen from the two tables,
train PSNR and train SSIM of the FMF-basedGFRSNs are slightly
worse than those of the PCA-based GFRSNs on the CIFAR-10
and CelebA datasets; however, the test PSNR and test SSIM of the
proposed FMF-based GFRSNs are better than those of the PCA-
based GFRSNs. For example, Test PSNR and Test SSIM have
relatively increased by 1 and 1.8%, respectively, when compared
with the PCA-based GFRSNs, on the CIFAR-10 dataset. However,
with regard to the CelebA dataset, Test PSNR and Test SSIM have
decreased by 3.71 and 1.22%, respectively, when compared with
the PCA-based GFRSNs. Nevertheless, the experimental results
still show that the overfitting problem on the testing datasets can
be alleviated with the FMF dimensionality reduction method.

Although the performance of the proposed FMF method on
theCIFAR-10 dataset is better than that of PCA and has a similar
generation ability on the CelebA dataset, more importantly, FMF
has better generalization performance under the framework of
GFRSNs. In other words, our generative model will not overfit
on the test set. However, in order to better reflect the role
of fractional scattering transformation and, hence, abolish the
influence of FMF, we still use the PCA method in the following
two experiments.
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TABLE 4 | Results with FrScatNets on the CIFAR-10 dataset.

(α1, α2) Fusion Test PSNR Increased (%) Test SSIM Increased (%)

Base line with

(α1, α2 ) =
(1.00,1.00)

No 18.1000 0 0.8352 0

(0.10,1.00) No 13.9738 −22.80 0.5442 −34.84

Yes 16.9597 −6.30 0.6974 −16.50

(0.40,1.00) No 18.8280 4.02 0.8514 1.94

Yes 18.9869 4.90 0.8970 7.40

(0.70,1.00) No 18.6614 3.10 0.8469 1.40

Yes 18.8421 4.10 0.8887 6.40

(1.30,1.00) No 18.6169 2.86 0.8462 1.32

Yes 18.8059 3.90 0.8870 6.20

(1.60,1.00) No 18.8209 3.98 0.8517 1.98

Yes 18.9688 4.80 0.8987 7.60

(1.90,1.00) No 14.0110 −22.59 0.5474 −34.46

Yes 16.9959 −6.10 0.7041 −15.70

(1.00,0.10) No 14.0099 −22.60 0.5498 −34.17

Yes 16.9054 −6.60 0.6941 −16.90

(1.00,0.40) No 18.9351 4.61 0.8550 2.37

Yes 18.9507 4.70 0.8978 7.50

(1.00,0.70) No 18.7289 3.47 0.8499 1.76

Yes 18.7335 3.50 0.8753 4.80

(1.00,1.30) No 18.6947 3.29 0.8434 0.98

Yes 18.5887 2.70 0.8753 4.80

(1.00,1.60) No 18.9056 4.45 0.8545 2.31

Yes 18.9507 4.70 0.8987 7.60

(1.00,1.90) No 14.0487 −22.38 0.5520 −33.91

Yes 16.9778 −6.20 0.7074 −15.30

Fusing

(0.40,1.00)

and

(1.60,1.00)

Yes 19.1589 5.85 0.8927 6.89

Some better results are shown in bold. In the second column, “No” means un-fused

image, and “Yes” means fused image. We also show the percentages of relative

improvements on Test PSNR and Test SSIM of FrScatNets of various fractional orders

(α1, α2 ) over the conventional ScatNets (the first row), respectively.

Image Generative Results With Different
Fractional Order α

In this subsection, we explore the impact of fractional order
α on the quality of the generated image using the framework
of GFRSNs shown in Figure 1. The other parameter settings of
FrScatNets are shown in Table 1. We choose the L1 loss function
in (15) and train the generator with the Adam optimizer using
the default hyperparameters.

In this subsection, we use a two-dimensional fractional Morlet
wavelet to construct the FrScatNets. For the two-dimensional
fractional wavelet, two fractional orders, α1 and α2, are needed to
determine the rotational angle. The angle is defined asθ = απ/2,
ranging from 0 toπ; thus, the fractional orders α1 and α2 change
from 0 to 2. To save computation time, we fix one order as 1
and the other order changes within the range 0–2 for computing
the fractional scattering coefficients. The chosen values are 0.1,
0.4, 0.7, 1, 1.3, 1.6, and 1.9. The above parameter settings are

TABLE 5 | Results with FrScatNets on CelebA dataset.

(α1, α2) Fusion Test PSNR Increased (%) Test SSIM Increased (%)

Base line with

(α1, α2 ) =
(1.00,1.00)

No 21.1668 0 0.9221 0

(0.10,1.00) No 18.3728 −13.2 0.7709 −16.4

Yes 21.0186 −0.7 0.9156 −0.7

(0.40,1.00) No 21.4631 1.1 0.9350 3.3

Yes 22.2040 5.3 0.9608 6.5

(0.70,1.00) No 21.3996 1.1 0.9525 2.3

Yes 22.3098 5.4 0.9820 6.2

(1.30,1.00) No 21.3785 1 0.9433 2.4

Yes 22.3098 5.4 0.9793 6.2

(1.60,1.00) No 21.4631 1.4 0.9571 3.8

Yes 22.3310 5.5 0.9839 6.7

(1.90,1.00) No 18.6268 −12 0.7866 −14.7

Yes 21.1456 −0.1 0.9219 −0.02

(1.00,0.10) No 18.2458 −13.8 0.7561 −18

Yes 20.9551 −1 0.9092 −1.4

(1.00,0.40) No 21.5055 1.6 0.9405 2

Yes 22.3098 5.4 0.9756 5.8

(1.00,0.70) No 21.2515 0.4 0.9249 0.3

Yes 22.2251 5 0.9700 5.2

(1.00,1.30) No 21.2303 0.3 0.9267 0.5

Yes 22.2251 5 0.9581 3.9

(1.00,1.60) No 21.4843 1.5 0.9433 2.3

Yes 22.3098 5.4 0.9765 5.9

(1.00,1.90) No 18.7115 −11.6 0.7912 −14.2

Yes 21.1732 0.03 0.9212 −0.1

Fusing

(0.40,1.00)

and

(1.60,1.00)

Yes 22.0770 4.3 0.9802 6.3

Some better results are shown in bold. In the second column, “No” means un-fused

image, and “Yes” means fused image. We also show the percentages of relative

improvements on Test PSNR and Test SSIM of FrScatNets of various fractional orders

(α1, α2) over the conventional ScatNets (the first row), respectively.

same as those in Liu et al. (2016). Note that FrScatNets reduce to
conventional ScatNets when α1 = α2 = 1. The PSNR and SSIM
of the generated images from FrScatNets on the CIFAR-10 and
CelebA datasets are shown in Tables 4, 5.

Generally, as shown in Table 4, best results are not obtained
using FrScatNets with (α1, α2) = (1, 1), which means that
FrScatNets with some fractional order choice of (α1, α2) obtain
better embeddings than the conventional ScatNets. For example,
both the PSNR and SSIM results are very good the FrScatNets
with (α1, α2) = (0.4, 1.00) were used and whose Test PSNR and
Test SSIM increased by 4.2 and 1.9%, respectively, compared with
those of the ScatNets.

For the CelebA dataset, as shown in Table 5, both the PSNR
and SSIM scores in the test set are also very good when
FrScatNets with (α1, α2) = (1.6, 1) are used. Indeed, Test PSNR
and Test SSIM increased by 1.4 and 3.8%, respectively, compared
with those of the ScatNets.
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FIGURE 4 | Generative images on CIFAR-10 dataset using FrScatNet embeddings. (A) Original training images; (B) generative training images using FrScatNets with

(α1, α2 ) = (0.4, 1); (C) generative training images using FrScatNets with (α1, α2) = (1, 1); (D) fused training image using FrScatNets with (α1, α2 ) = (0.4, 1 and (α1, α2)

= (1, 1); (E) original testing images; (F) generative testing images using FrScatNets with (α1, α2 ) = (0.4, 1); (G) generative testing images using FrScatNets with (α1,

α2) = (1, 1); (H) fused testing image using FrScatNets with (α1, α2 ) = (0.4, 1) and (α1, α2) = (1, 1).

The generative images on the CIFAR-10 dataset using
FrScatNets with (α1, α2) = (0.4, 1) and (α1, α2) = (1, 1) are
shown in Figure 4. The generative images on the CelebA dataset
using FrScatNets with (α1, α2)= (1.6, 1) and (α1, α2)= (1, 1) are
shown in https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

Image Generative Results With Image
Fusion
In this subsection, we explore the impact of image fusion on the
quality of the generated images using the framework of GFRSNs
shown in Figure 2.

Since conventional GSNs are a good baseline for the
framework of GFRSNs with different fractional orders (α1, α2),
as an example, we consider the case in which the generative
images from FrScatNets with different fractional orders (α1,
α2), where α1 and α2 are not simultaneously equal to 1.00, are
fused with the generative images from conventional ScatNets,
in other words, FrScatNets with fractional orders (α1, α2)
= (1, 1). Since the fractional parameters can have multiple
choices, naturally, we hope to explore the effect of image fusion
under different fractional parameters. All the fused images are
achieved using the average method shown in Equation (17),
and we choose λ = 0.5. The PSNR and SSIM results of

fused images on the CIFAR-10 dataset are shown in Table 4,
and those on the CelebA dataset are shown in Table 5. Note
that the results are shown in the row where the “Fusion
or not?” column is “Yes” in Tables 4, 5. As can be seen
from the two tables, the results of PSNR and SSIM for the
fused images are generally better than those for the unfused
images from FrScatNets with different fractional orders (α1, α2),
where α1 and α2 are not 1 at the same time. For example,
when the generative images from FrScatNets with (α1, α2) =
(0.4, 1) are fused with the generative images from ScatNets,
the Test PSNR and Test SSIM are increased from 18.828
and 0.8514 to 18.9869 and.897, respectively, on the CIFAR-
10 dataset. The results are also better than those of ScatNet-
based GFRSRNs, whose Test PSNR and Test SSIM are 18.1
and 0.8352, respectively. When the generative images from
FrScatNets with (α1, α2) = (1.6, 1) are fused with the generative
images from ScatNets, the test PSNR and test SSIM are increased
from 21.4632 and 0.9571 to 22.337 and 0.9839, respectively,
on the CelebA dataset. The results are also better than those
of ScatNet-based GFRSRNs, whose test PSNR and test SSIM
are 21.1668 and 0.944, respectively. The fused images on the
CIFAR-10 dataset are shown in Figures 4D,H and those on
the CelebA dataset are shown in https://mmlab.ie.cuhk.edu.hk/
projects/CelebA.html, respectively.
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We also consider the generative images from FrScatNets with
fractional orders (0.4, 1) and (1.6, 1), and the results are shown
in the last row of Tables 4, 5, respectively. As can be seen from
the two tables, the test PSNR and test SSIM are better than the
fusion results of fractional orders (1.6, 1) and (1, 1) on both the
CIFAR-10 and CelebA datasets.

The Deformation Property of the Proposed
GFRSNs
In this section, we evaluate the deformation property of the
proposed GFRSNs as generally done in GANs. Specifically, given
two images x1 and x2, we modify β to get the interpolated images:

xβ = G ((1− β) z1 + βz2) , forz1 = 8(x1) and z2 = 8(x2) ,

(18)

where 8(.) denotes the fixed embedding, that is, the fractional
scattering transform and Gaussianization process. The results are
shown in https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

As Angles and Mallat (2018) point out, the Lipschitz
continuity to deformations of the scattering network resulting in
the continuous deformation from one image to another image.
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html shows that
the proposed GFRSNs improve the capability to extract
information while maintaining the deformation properties when
compared with GSNs. On the other hand, we reproduce the
morphing properties of GANs without learning a discriminator.

Besides, we should note that the generated images have
strong similarities with those in the training set and, thus,
lead to some unrealistic results; this is partially due to the
autoencoder architecture of our model. Although under the
autoencoder architecture, regarding the generative model as an
inverse problem of FrScatNets, can eliminate our need to train
an encoder or a discriminator, however, within this supervised
paradigm, the generalization ability of the model may be limited
to some extent. Therefore, when we try to recover images from
unknown images, the results of the model will generate images
that are similar to ones in the training set.

Comparison Results With GANs
In this section, we compared the results of the proposed GFRSNs
with GANs on the CelebA dataset.

Comparison Results With DCGAN and PGAN

We compare the visual results of the proposed GFRSNs with
those of the DCGAN (Radford et al., 2016) and progressive
GAN (PGAN)2 (Karras et al., 2018), as shown in https://
mmlab.ie.cuhk.edu.hk/projects/CelebA.html, from which we can
see that DCGAN produces a certain degree of distortion.
On the contrary, the proposed GFRSNs and PGAN do not
show this kind of problem. PGAN generates more image
details than the proposed GFRSNs, and we think that the
reasons are:

(1) The proposed GFRSNs still belong to the autoencoder
architecture, which is generally inferior to that of the

2https://github.com/facebookresearch/pytorch_GAN_zoo

GANs in terms of image generation quality. However, the
autoencoder has its own merits; for example, it can obtain
an image code (or a latent vector), which is very helpful for
downstream tasks such as image classification. In contrast,
the GANs cannot generate this latent vector.

(2) The proposed GFRSNs use learning-free FrScatNets instead
of CNNs in the encoder stage, which significantly reduces
the parameters (for example, reducing the parameters by
half compared with DCGAN). However, it also has a certain
impact on image generation performance.

(3) The proposed GFRSNs can maintain the structure of the face
but show smoothed results to a certain extent. The reason for
this is, maybe, the choice of L1 loss.

(4) PGAN uses a more advanced low-resolution to high-
resolution generation paradigm, which is more effective than
the generator used in GFRSNs.

Note that we choose DCGAN as one of the compared methods,
since we use the same generator architecture as the DCGAN.
The reason we choose PGAN rather than the more recent
BigGAN (Brock et al., 2019) as the other compared method is
that the two models achieved similar results without additional
class information.

Comparison Results With CycleGAN

We compare the objective evaluation criteria (PSNR and SSIM)
with CycleGAN3 (Zhu et al., 2017) on the CelebA dataset. Note
that SSIM and PSNR are not suitable for evaluating the quality
of GANs, since GANs, generally, generate images directly from
Gaussian white noise. That is, we do not have real images
corresponding to the generated images, but real images are
needed to calculate the PSNR and SSIM scores.

The reason we choose CycleGAN as the compared method is
that it can be seen as a special kind of autoencoder model and,
hence, can be used to calculate the PSNR and SSIM scores. The
structure of CycleGAN is shown in https://mmlab.ie.cuhk.edu.
hk/projects/CelebA.html. As in the experiment of GFRSNs, we
choose 65,536 training images and 16,384 testing images. For the
training process, we divide the training set into two subsets of the
same size, namely, A and B, to meet the unique circular training
process. By training CycleGAN through 32,768 images in domain
A and 32,768 images in domain B, we can calculate Train PSNR
and Train SSIM. For the testing process, we also divide the testing
set into two subsets of the same size, namely, A and B, to meet the
unique circular training process. By training CycleGAN through
8,192 images in domain A and 8,192 images in domain B, we
can calculate Test PSNR and Test SSIM. It can be known from
the experimental process that in order to calculate the PSNR and
SSIM values of the training data set and the testing data set, there
are several characteristics when using CycleGAN:

(1) The training and testing processes are performed separately;
that is, the trained generator of CycleGAN is not used in the
testing process, since CycleGAN performs the task of image-
to-image translation or style transfer (Gatys et al., 2016). In

3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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TABLE 6 | Quantitative results of CycleGAN and the proposed GFRSNs with

fractional orders α1 = 0.4, α2 = 1 on the CelebA dataset.

Train PSNR TestPSNR Train SSIM Test SSIM

Cycle GAN 30.8059 32.6890 0.9824 0.9822

Ours 27.9721 21.4631 0.9629 0.9350

order to get the Test PSNR and Test SSIM of the testing
images, we still need to train CycleGAN with the testing
images. For example, as is shown in https://mmlab.ie.cuhk.
edu.hk/projects/CelebA.html, the generator GAB takes an
image from domain A, and then tries to do an image-to-
image translation, so that the output will be a fake image with
a style similar to domain B. However, there is only one style
of images in the CelebA dataset; therefore, the generator will
learn the same image as the input. That is, it is unfair to use
the PSNR or SSIM score to measure the quality of CycleGAN
to some extent, since CycleGAN trains the testing images.

(2) In CycleGAN, the role of the generator is not focused on
generating images from noise. On the contrary, the generator
takes their effort to the task of image-to-image translation.
When the style of two subsets is the same, this kind of
image-to-image method will undoubtedly lead to pixel-level
alignment and, hence, failure of pixel error-based metrics,
such as PSNR and SSIM. That is, the PSNR and SSIM scores
can be seen as the upper bound of other methods.

The results of the comparison of PSNR and SSIM scores of the
proposed GFRSNs with CycleGAN are shown in Table 6, from
which we can see that the result of GFRSNs is worse than that of
CycleGAN, especially on the testing set. This is not surprising,
because CycleGAN implements style transfer between training
data and testing data, while GFRSNs implements reconstruction
from FrScatNet features to images. The PSNR and SSIM scores
of CycleGAN can be seen as the upper bound of GFRSNs; that is,
the proposed GFRSNs still have a lot of room for improvement.

CONCLUSIONS

This study proposes generative fractional scattering networks
(GFRSNs), which use fractional wavelet scattering networks
(FrScatNets) as encoder to obtain features (or FrScatNet
embeddings) and deconvolutional neural networks as decoder
to generate an image. Additionally, this study develops a new
feature-map fusion (FMF) method to reduce the dimensionality
of FrScatNet embeddings. The impact of image fusion is also
discussed in this study. The experimental results on the CIFAR-
10 and CelebA datasets show that the proposed GFRSNs can
lead to better generated images than the original GSNs in the
testing dataset. Compared with GANs, the proposed GFRSNs

lack details of the generated image because of the essence of the
autoencoder structure; however, the proposed GFRSNs have the
following merits:

(1) They can obtain an image code (or a latent vector),
which is very helpful for downstream tasks such as
image classification.

(2) They use learning-free FrScatNets instead of CNNs in the
encoder stage, which significantly reduces the parameters.

(3) They may have a potentially good performance in the
differential privacy (DP) learning framework, since Tramer
and Boneh (2021) show that ScatNet outperforms deep
CNNs in differential private classifiers. We studied the image
generation performance of GFRSNs under the framework
of differential privacy learning. Appendix A gives some
preliminary results.
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Industry 4.0 has been a hot topic in recent years. The process of integrating

Cyber-Physical Systems (CPS), Artificial Intelligence (AI), and Internet of Things (IoT)

technology, will become the trend in future construction of smart factories. In the

past, smart factories were developed around the concept of the Flexible Manufacturing

System (FMS). Most parts of the quality management process still needed to be

implemented by Automated Optical Inspection (AOI) methods which required human

resources and time to perform second stage testing. Screening standards also resulted

in the elimination of about 30% of the products. In this study, we sort and analyze

several Region-based Convolutional Neural Network (R-CNN) and YOLO models that

are currently more advanced and widely used, analyze the methods and development

problems of the various models, and propose a suitable real-time image recognition

model and architecture suitable for Integrated Circuit Board (ICB) in manufacturing

process. The goal of the first stage of this study is to collect and use different types

of ICBs as model training data sets, and establish a preliminary image recognition model

that can classify and predict different types of ICBs based on different feature points. The

second stage explores image augmentation fusion and optimization methods. The data

augmentation method used in this study can reach an average accuracy of 96.53%.

In the final stage, there is discussion of the applicability of the model to detect and

recognize the ICB directionality in <1 s with a 98% accuracy rate to meet the real-time

requirements of smart manufacturing. Accurate and instant object image recognition

in the smart manufacturing process can save manpower required for testing, improve

equipment effectiveness, and increase both the production capacity and the yield rate of

the production line. The proposed model improves the overall manufacturing process.

Keywords: smart manufacturing, Internet of Things, deep learning, YOLO, object recognition

INTRODUCTION

Smart manufacturing is based on smart factories involving artificial intelligence (AI), the Internet
of Things (IoT), big data, and other technical tools. Smart manufacturing is the general term
referring to an advanced manufacturing process and a system capable of perceiving information
intuitively, making decisions automatically, and executing manufacturing processes automatically
(Wang et al., 2018). In addition, it reports the current status of each device through the process
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of mechanical automation. Statistics and summarizing data
can help us understand the device’s condition or estimate
its usable period. Moreover, smart manufacturing combines
machines and deep learning technology to improve product
quality and reduce costs. Consequently, the machinery has
attained better production efficiency and adaptive maintenance
time within the effective period. Providing better or more flexible
services to customers is part of smart manufacturing’s pursuit
of true intelligence. Smart manufacturing is the focus of recent
Industry 4.0 topics related to research and development or
industry promotion. However, there are several issues in the
implementation of smart manufacturing. Before the topic of
smart manufacturing was formally proposed, the core concept
in the background of automated manufacturing was the flexible
manufacturing system (FMS) (Kimemia and Gershwin, 1983;
Bihi et al., 2018). FMS hoped to establish a flexible and automated
manufacturing engineering system in response to all predictable
or unpredictable changes in the industry. However, this goal
can only be achieved with the assistance of other technologies
or systems (Yadav and Jayswal, 2018). In a process related
to quality management inspection, although automated optical
inspection (AOI) is applied, the screening standards are too
high, and approximately 30% of the products are eliminated
(Mukhopadhyay et al., 2019; Kovrigin and Vasiliev, 2020; Diering
and Kacprzak, 2021). Moreover, this method requires a massive
workforce and time to perform inspection in the second stage. In
addition, only through the operator’s correct implementation of
various standard inspection procedures can it guarantee accurate
manufacturing quality management. Therefore, a large number
of professional employees undergo long-term training, increasing
the labor cost. Smart manufacturing should include automated
perception at its core and find a way to attain automated
intelligence ultimately. In the process, various technologies and
methods, such as intelligent image recognition and intelligent
data analysis, can help achieve automatic identification and
prediction. Auxiliary decision-making can also be used to
perform automated execution in the environment, though it will
be challenging.

As AI image recognition becomes more and more mature
nowadays, the combination of deep learning with classic
computer vision has become a trend. Today, most mainstream
technology for image recognition applications uses convolutional
neural networks (CNNs). Since the re-emergence of deep
learning in 2012, scholars and experts have proposed several new
methods to solve the problems encountered by neural networks
in the past. The shortcomings of CNNs in the past have also been
reduced (Khan et al., 2020). In recent years, the characteristics
of graphics processing units have also been fully utilized to
accelerate the calculation of deep learning algorithms; therefore,
the algorithm’s efficiency has dramatically improved. The most
crucial technological turning point in image recognition is the
development of the region-based convolutional neural networks
(R-CNN) algorithm. This technology first solved the problem of
the insufficient dataset, and later, the related models introduced
also performed well in terms of performance and recognition
accuracy (Bharati and Pramanik, 2020). Based on it, the Faster
R-CNN algorithm was developed, which allows the calculation

speed of the algorithm to reach a different level of sophistication.
As a result, image recognition technology is getting closer and
closer to the goals of achieving both high speed and high
precision (Gavrilescu et al., 2018; Maity et al., 2021).

Nowadays, several cases of the combination of computer
vision with deep learning of the IoT have been implemented,
and many positive feedbacks have been obtained in academic
research and real-life applications (Wang et al., 2020; Xu et al.,
2020; Lian et al., 2021). Accurate image recognition technology
helps classify product types, confirm product integrity in an
actual field, and helps establish a smart manufacturing field.
The method proposed in this study is based on the R-CNN-
related model of the deep learning method. The integrated
circuit board (ICB) image is selected as the dataset to complete
the image recognition model. The first stage aims to acquire
different types of ICB images for model training. Thus, we first
constructed the initial phase of image recognition so that the
model can understand the characteristics of different types of
ICBs and their details. In the second stage, a camera is used
for real-time identification of the smart manufacturing field by
collecting real-time images and returning the data to the server
for data analysis, thereby solving the FMS’s quality management
inspection and monitoring. This study has three main objectives:
(1) to establish an image recognition model that is suitable for
use in the smart manufacturing field; (2) to explore the image
augmentation fusion and optimization method of the model so
that the model can learn more image features to improve the
accuracy of image recognition; and (3) to solve the problem of
over screening in automatic optical inspection and introduce
the model into practical applications to test the directionality of
ICB images.

LITERATURE REVIEWS

R-CNN and SPP-Net
There are three main problems to be solved by region-based
convolutional neural networks (R-CNN), which involve (1)
accuracy of object recognition; (2) whether more feature values
can be obtained; and (3) solving the problem of insufficient
dataset. Compared with previous CNNs, R-CNN proposes
a method for selecting region proposals of selective search
(Girshick et al., 2014) to increase its dataset and find critical
features. Previously, when solving dataset problems, the data
augmentation method mentioned in “ImageNet Classification
with Deep Convolutional Neural Networks” was first considered
(Krizhevsky et al., 2012). Notably, the R-CNN region proposal’s
concept also aims at this problem (Girshick et al., 2014). In R-
CNN, the input of selective search (Girshick et al., 2014) is an
image, and the output is the possible position of the object.
The principle is to initialize a similar empty set in advance,
calculate the similarity of all adjacent intervals, store it in the
empty set, find the region with the highest degree of similarity,
and return it to the final total set. The region in the total set is
the object’s bounding box, and the similarity is judged based on
color, texture, size, and shape, and iteratively combining similar
regions to form objects. R-CNN obtains many region proposal
images through the selective search method, but still needs to use
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the same image size as the input of the entire neural network
because the fully connective layer in CNN must maintain the
exact dimensions in operation, and the operation parameters also
need to consider the upper-layer relationship. However, spatial
pyramid pooling network (SPP-Net) addressed this issue: by
adding a layer of SPP before building the fully connective layer.
The function and principle of SPP are that the data process is
performed before regular data input to comply with the fully
connective layer problemsmentioned above. SPP replaces the last
pooling layer before the fully connective layer, and to adapt to
the feature maps of different resolutions, the layer is defined as a
scalable pooling layer so that a fixed ratio can be used through
SPP. This way of converting and maintaining the input of the
fully connective layer is a breakthrough in this part (He et al.,
2014).

Fast R-CNN and Faster R-CNN
The core problem with R-CNN is that it generates a large
number of region proposal images through selective search.
When pre-processing data, we still have to refer to the data
augmentation method by AlexNet (Krizhevsky et al., 2012) to
make modifications, which may lead to the loss of features of
the original region proposal. In addition, if each region proposal
image is put into training, the vast computational waste caused
by repeated feature extraction will make the model inefficient.
With SPP-Net, it is still time-consuming to train all the images,
so Fast R-CNN was created. Fast R-CNN is a unified version of
R-CNN and SPP-Net. Fast R-CNN proposed RollPooling (region
of interest pooling), which uses the idea of SPP-Net to do the
conversion work into the fully connective layer based on the
input image. First, the original image is convolved to generate
a feature map corresponding to RollPooling. Then the image
trained in the region proposals is directly given the convolution
value of the region proposal image through RollPooling to do
MaxPooling. The most significant advantage of RollPooling is
the increase of massive processing speed. Besides, regardless of
the size of the given feature map, the dimensions of the output
data can be kept uniform (Girshick, 2015). The key problem Fast
R-CNN (Girshick, 2015) wants to solve is calculating the image
of the region proposals. Hence, an improved Faster R-CNN
was developed to solve the issue of repetitive region proposals
directly. It does not abandon the selective search (Girshick
et al., 2014) method but finds region proposals with features
more efficiently. Therefore, the concept of RPN (region proposal
network) is proposed in the Faster R-CNN architecture. The
core concept of RPN is not to find the region proposals from
the original image but to find the region proposals through the
convolved feature map of the original image as input. The RPN
extracts region proposals through a sliding window, and each
sliding window generates nine different size of windows (anchor
box). After removing the corresponding nine window features,
the extra part is discarded, and the anchor box with an overlap
area value >0.7 as the foreground is calculated. The overlapping
area is set to the background, the most suitable region proposals
feature map is found, and the concept of RollPooling is combined
to train the model. This method is very similar to Fast R-CNN
in terms of results and has dramatically improved the speed. It

is also one of the most commonly used models in R-CNN (Ren
et al., 2016).

YOLO
After introducing Faster-RCNN (Ren et al., 2016), You Only
Look Once (YOLO) (Redmon et al., 2016) and ordinary R-CNN
were introduced in the same year with different architectures.
The past versions of R-CNN, from selective search (Girshick
et al., 2014) to RPN, were all intended to increase training and
reduce energy consumption. Although the development of RPN
enables sharing of convolution values, YOLO uses an end-to-end
method for object detection using an entire image as the input
of the neural network to predict the coordinate position of the
bounding box directly. YOLOv1 is fast in calculation and can be
applied to real-time fields, but the prediction of the position is
not accurate enough, and the performance of small object fields is
poor. In addition, for object images’ recognition, it is impossible
to distinguish between the foreground and background of the
object effectively. Interestingly, YOLOv2 (Redmon and Farhadi,
2016) imported the anchor box to increase accuracy. The original
YOLOv1 version divides the image into 7 × 7 grids, and
each grid predicts two bounding boxes, which is better than
importing 1,000 pre-selected regions into the anchor box. The
fully connective layer was removed and changed to a fully
convolutional network, and dropout was removed to optimize
the overall speed and accuracy of YOLOv3 (Redmon and Farhadi,
2018). The maximum input of the image can reach 608 × 608
pixels, and many optimizations have been made. For example,
residual neural network (ResNet) and feature pyramid network
(FPN) are used to improve the detection of small objects; the
darknet53 network is applied; the detection threshold of YOLO
model can be adjusted in the training process according to
the threshold parameter in its network architecture. Faster R-
CNN’s architecture RetinaNet is built using ResNet. Comparing
YOLOv3 with ResNet, it can be observed that YOLOv3 can
achieve the same results in a relatively short time. The mentioned
FPN architecture uses three boxes of different sizes. The
model can learn the image characteristics of different blocks
through these three scales to improve YOLO’s shortcomings in
small object prediction (Redmon and Farhadi, 2018). YOLOv4
(Bochkovskiy et al., 2020) has improved the previous version
in many aspects. The author uses the Mosaic method, which
used random scaling and cropping to mix and stitch 4 kinds of
pictures from the original datasets, to enrich the data set and
enhance the stability of the model for small target detection. For
stability, the network uses CSPDarknet53, which is composed of
darknet53 and CSPNet (Wang et al., 2019), which greatly reduces
equipment requirements and computing speed. The author also
drew on the PANet (Path Aggregation Network) (Liu et al., 2018)
used in the field of image segmentation, integrates PAN on the
basis of the FPN architecture, and adds SPP (Spatial pyramid
pooling) to improve the ability of feature extraction.

MATERIALS AND METHODS

Nowadays, in implementing smart manufacturing, intelligence
should be implemented to achieve the most effective results to
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FIGURE 1 | Image recognition and object detection model for ICB.

complete the quality management part of FMS effectively. In
the field of traditional non-intelligent manufacturing, several
problems are encountered. (1) Although the current automatic
optical inspection method can achieve accurate inspection, its
parameter setting is too strict, resulting in a pass rate of ∼70%.
It is still necessary to employ field operators to complete the
second inspection stage to ensure the yield. (2) In traditional
manual monitoring, the biggest problem is that people may suffer
from mistakes due to inattention or fatigue, which affects the
quality of some parts. (3) In the field of smart manufacturing,
the inspection process should give high accuracy in real-time.
Therefore, we must find a suitable image recognition model to
apply here. The deep learning image recognition method allows
the selected model to learn the item’s features by using the
features provided in the dataset. Consequently, accurate image
recognition in the manufacturing system can be attained, and
the integrity and quality inspection of ICBs can be completed
through precise image recognition. This study aims to build
an image recognition model of ICBs so that various types of
ICBs can be classified in this model according to the system
architecture flow of this study, such as Figure 1. In the image
recognition and object detection model for ICB, the first stage
is to collect part of the dataset and establish the image database
standard that can be used based on the R-CNN method. Then,
the collected images are cropped, feature labeled, and matrixed.
Later, the dataset is divided into training data and test data. Next,
an R-CNN is constructed to train the image recognition model.
Finally, the image of the test data is mapped to the recognition
model to generate the result. The results are respectively sent to
the user and the server end for data analysis applications.

ICB Data Collection
The training data in this study has five types of ICB images,
and 100 images are collected based on these five types. The ICB
images used in this studymust contain identifiable features under
specified conditions. First, training the model for collecting

images is standardized to better sample the image features in
the data collection part. While collecting images, two methods
of data collection can be used. In both scenarios, the ICB that
needs to be picturedmust be placed in the center of the image and
then divided into near and far for feature collection. Moreover,
in the collection process, the background is changed to be used
for image recognition under different backgrounds. The focus of
long-range shooting has covered the entire ICB. On the contrary,
the focus of short-range shooting is mainly on the integrity and
clarity of the internal structure of the ICB. Both methods must
sample the different angle characteristics of the ICB during the
shooting process. At least 100 samples of each category must be
tested, and the final data collection shall be based on the five types
of ICBs.

Pre-process
To successfully import the dataset into the model’s training
process, pre-processing must be done. The purpose of data pre-
processing is to keep the input data in a consistent form, such as
fixed image size or labeling so that it fits within the processing
range of the R-CNN model before entering the model training
process. The pre-processing of the data here includes three steps:
the first step is to cut each ICB dataset into the size of 1,024 ×
1,024 pixels without losing key details of the board. Only then
can the dataset be easily imported into the model. The second
step is to mark the image area through the open-source software
Labellmg. Labellmg is the most commonly used software for
labeling images. For our classification, we can mark the features
in the image by selecting the box. The third step is to carry
out matrix work. The image recognition model is different from
humans. Humans capture features through images viewed by
their eyes. Machines, on the other hand, use a data matrix to
understand the key features in blocks in two-dimensional images
and then use this matrix in the model for the application.

To train the YOLO model more effectively, pre-processing
must be carried out for the first stage of data collection. The
purpose is to make the model more focused on learning features
with organization and clarity when learning images. In this stage,
we must first set a fixed image size to mark the learning features
of the model and then, convert the marked features into a matrix
to train the neural network model. The steps are as follows:

• Image cutting: Use ImageSplitter, an online image cutting
tool on the Internet, to fix the image size to capture
the characteristics of each image and define the fixed size
as 1,024× 1,024 pixels.

• Data label matrix: Use the open-source software Labellmg to
label images and feature matrix for training the model to
correspond to the features that this study hopes to learn to
complete the full model training.

Model Selection
There have been many studies comparing model suitability for
smart manufacturing. In this study, YOLO is selected as the
model. In the past, when recognizing R-CNN in images, most
of them used the model architecture of Faster-RCNN for image
recognition. Indeed, the accuracy of Faster-RCNN is still the
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FIGURE 2 | YOLOv3_Darknet53 network (Redmon and Farhadi, 2018).

highest, but to deal with the field of smart manufacturing, real-
time recognition of images is vital. YOLO has a faster real-
time response speed with an accuracy of results close to Faster-
RCNN. Therefore, this study uses YOLO as the R-CNNmodel of
the architecture. Figure 2 shows YOLO’s network configuration
diagram (Redmon and Farhadi, 2018). YOLO is a multi-level R-
CNN, where the first layer defines the dimensions of the input
parameters and the output layer performs classification actions
according to its final output results. Thus, the hidden layer
between the input and output layers is the main structure of
this R-CNN. The activation function used after each CNN layer
is Leaky ReLU, and Residual refers to the ResNet architecture,
which replaces the activation function covering the two-layer
CNN. The functions and tasks of each layer are as follows:

• Input layer: After an ICB image is cut into the input size of
the model, the learning features are marked. Then the parts
are converted into a matrix pattern that the machine can
understand, thereby becoming the model’s input data.

• Convolution layer: The ICB image is two-dimensional in
this study, so a two-dimensional convolutional layer is used.
The convolutional layer can parameterize the image of the
ICB through the size of its image, the kernel size, and the
feature factor.

• Leaky ReLU layer: This derivation of ReLU uses the function
in the neural network node to increase the non-linear
characteristics of the entire neural network function and define

TABLE 1 | Comparison table based on YOLO model.

Model Advantages Disadvantages

YOLOv3 Benchmark Benchmark

YOLOv3_tiny Fast training and lightweight

architecture

The number of model layers

is low, and it is difficult to

reach the maximum value

YOLOv3_voc Low confidence threshold

and small input image

Features are relatively easy

to lose focus

YOLOv3_spp Can be used with the

multi-scale conversion of

eigenvalues

Features are easily

compressed during

conversion

the node’s output so that it is suitable for solving the dying
ReLU problem.

• Residual layer: Its original name is the residual network
(ResNet) and its core is residual block. To solve the problem
of an unexpected increase in the error rate during training,
some of the weight parameters may tend to zero or become
zero during the regular conversion of each layer, and the error
rate will increase when the best solution is ignored.

• Average pooling layer: This layer replaces the fully connective
layer used at the end of the general neural network. The
most significant disadvantage of the fully connective layer
is that the number of parameters is too large, resulting in
overfitting. Therefore, the average pooling layer replaces the
weighted connection layer to directly give each feature its
sense to prevent the overfitting problem caused by the fully
connected layer.

• Softmax layer: The Softmax layer multiplies the weight matrix,
adds the characteristic error to generate the Softmax function,
and applies it to the output of the average pooling layer.

• Classification layer: The classification layer obtains the output
of the previous Softmax layer and classifies the input data
according to the final output.

This study is built on four models based on YOLOv3, namely,
YOLOv3, YOLOv3_tiny, YOLOv3_voc, and YOLOv3_spp. The
comparison of these four models is shown in Table 1.

• YOLOv3: It is the third version of the initial model of
YOLO, which adds the model architecture of Darknet53 and a
multi-scale method to verify the feature map. The multi-scale
approach helps the model learn the detailed features of the
image through three different sizes, which is a breakthrough
for YOLOv3. In addition, it can use images up to 608× 608 as
input data (Redmon and Farhadi, 2018).

• YOLOv3-tiny: There are 19 layers of CNN, which is a part of
the gap compared with the 75 layers of the original version.
Its advantage is that it has better applications for devices with
limited computing resources and fast training.

• YOLOv3-voc: It is an improvement of YOLOv3. The original
input of YOLOv3 is 608 × 608, and YOLOv3-voc is 416 ×
416, which is the same as that of YOLOv3-tiny. This method
focuses on retaining the convolutional layer, reducing the
image size to improve the training speed, and reducing its
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FIGURE 3 | Research flow chart.

ignore thresh (the threshold value that the overlapped block
of the predicted labeled area and the overlapped labeled area
must exceed) for training.

• YOLOv3-spp: The purpose of adding the SPP to YOLOv 3 is
to convert the selected feature maps to the same size using the
SPP fixed-scale conversion method to achieve a more accurate
learning feature model training (Huang and Wang, 2019).

Model Adjustment
YOLO’s overall training process includes classification design,
training dataset cutting, test dataset cutting, naming of each
category, and parameter settings in order. These five items
are YOLO’s current framework, and the selection and setting
of the datasets and models are used to complete the image
recognition work. In this process, the related settings of model
adjustment are introduced as follows: Classes: identify target
types; Train: training dataset settings; Valid: verify dataset
settings; Names: specify the name of the target type; and Backup:
store model parameters. During the model training process,
YOLO trains the recognition model based on the training
data. After repeated iterative training, the image recognition
and object detection results are generated according to the
model parameters and the classification settings. This result has
the characteristics of the relevant image data in the learning
process. Finally, the membership classification is marked when
an output is achieved, and the overall recognition accuracy
is returned. The parameter setting values when using the
learning model in this study are as follows. (1) Batch: 16
(refers to the number of batches that have passed to update
the parameters once); (2) Subdivisions: 4 (if the memory is
insufficient, the batch will be divided into sub-batches); (3)
Width: 608 (the width of the input image data); (4) Height: 608
(the height of the input image data); and (5) Momentum: 0.9
(in neural networks, it is a variant of the stochastic gradient
descent. It replaces the gradient with a momentum, which is

an aggregate of gradients); (6) Decay: 0.0005 (parameter weight
attenuation setting to prevent overfitting); and (7) Learning rate:
0.001 (initial learning rate). The study process includes data
collection, pre-processing methods, experimental environment,
model establishment, discussion, evaluation, and analysis to
verify the proposed R-CNN image recognition model design
method applied to the smart manufacturing field. Figure 3 shows
the flow chart of the study.

EXPERIMENTS

Evaluation Metrics
(1)MeanAverage Precision (mAP): As shown in equation (2), the
accuracy of all classifications is averaged (an average is calculated
by estimating the prediction and actual accuracy). The basic
accuracy calculated is as follows:

TP(ICB1), True Positive in ICB1: The classification result
of the current model is correct, and the overlap between the
predicted labeled area and the actual labeled area is high enough.

FP(ICB1), False Positive in ICB1: The classification result
of the current model is incorrect, or the overlap between
the predicted labeled area and the actual labeled area is not
high enough.

From this, the accuracy of classification ICB1 can be calculated
from the following equation (1):

Precision (ICB1) =
TP(ICB1)

TP (ICB1)+FP(ICB1)
(1)

Therefore, the mAP of each category is calculated from equation
(2) (take N categories as an example):

mAP =
Precision (ICB1)+ . . . + Precision(ICBN)

N
(2)
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FIGURE 4 | ICB type table and image labeling.

(2) Recall: The ratio of the number of correctly identified
categories in the prediction result to the target in the test data,
calculated from equation (3).

Recall (ICB1) =
TP(ICB1)

TP (ICB1)+FN(ICB1)
(3)

TP(ICB1), True Positive in ICB1: The classification result of the
current model is correct, and the overlap between the predicted
labeled area and the actual labeled area is high enough.

FN(ICB1), False Negative in ICB1: It means that the current
model test set is not classified in the pre-set classification, and the
recognition model classifies it as one of the classifications.

Experimental Designs
This study uses the evaluation indicators of the YOLO image
recognition model to compare the image recognition results of
four different models of YOLO and enhance the difference in
the size of the training data through the image augmentation
fusion method. The following three aspects are used to evaluate
the performance of the proposed method.

• Models comparison and evaluation: This study identifies four
different models based on YOLOv3 and use fixed parameters
to train the model. In addition, five different types of ICB
images are used; each type has 100 images, with 80 of them
used for training and 20 for verification. Thus, the total dataset
contains 400 training images and 100 verification images.
Finally, an additional 60 images are used as a test.

• Data augmentation: In this stage, each classification’s original
ICB images are used for data augmentation methods.

The amplification parameters used are rotation_range,
width_shift_range, height_shift_range, shear_range,
zoom_range, horizontal_flip, vertical_flip, and fill_mode.
The 100 original images of each classification are processed
by the data augmentation method to generate 500 images,
and then 400 images per classification are used as the
model’s training data. The remaining 100 images are used as
verification data. There are a total of 1,600 training images
and 400 verification images. Finally, the same 60 test data are
used to discuss the analysis of the data augmentation method
for the model feature training and learning.

• ICB directionality inspection: This stage of the experiment
checks the core image of the integrated circuit board to see
whether the chip is installed incorrectly. Type 5 of the ICBs
is used to perform this test. The whole experiment uses 88
training images 22 verification images, and 50 test images.
These images contain both correct and incorrect integrated
circuit images (incorrect images are ICBs with wrong core
directionality). The images are inspected to see whether the
model can correctly check the core installation error of the
ICB. This experimental model uses the best model discussed
in the 1st and 2nd experiments for training.

Training Dataset
As shown in Figure 4, this study collects 100 images of each
of the five types of ICB, and the data must be labeled during
YOLO training. After labeling each image, the image is set to the
learning format of the YOLO model on the Darknet platform
corresponding to its classification. Images of each format are
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TABLE 2 | Experiment 1-various YOLO models result comparison table.

Model Average

iteration time

Average error Average training

accuracy

Training recall

rate

Average test

accuracy

Test recall rate Maximum average

accuracy

YOLOv3 0.94 0.05 98.87% 98% 91.39% 88% 91.39%

YOLOv3-tiny 0.18 0.203 98.82% 99% 91.63% 87% 91.73%

YOLOv3-voc 0.72 0.036 99% 100% 91.66% 90% 91.9%

YOLOv3-spp 0.98 0.057 98.47% 99% 87.86% 87% 88.68%

FIGURE 5 | YOLOv3 average error rate and average accuracy rate.

divided into training and verification data to complete the
preliminary model training settings.

Experimental Results
Models Comparison and Evaluation

During the model training process, we use the YOLOv3 model
with the parameters that have been set, and the training iteration
target is 10,000. During the training, the values are stored
as train_log_loss.txt file to help us understand each iteration’s
error value and average error, the current learning rate, the
number of training images, and the training time. The entire
training set includes 500 ICB images, which are classified into five
categories, of which 100 ICB images are used as the training phase
verification of the overall model, and the number of training
iterations is 10,000. Then, using the trained model parameters,
the current classification status of each classification and the
generation of mAP and recall of the model are calculated through
the additional 60 images of test data. In this stage, the four
models YOLOv3, YOLOv3-tiny, YOLOv3-voc, and YOLOv3-spp
are presented in sequence from Case 1 to Case 4, respectively,
showing the training process and the accuracy during training
and the final test accuracy. Experimental discussion in Table 2

shows that the YOLOv3-voc model is significantly better than
the other three in 10,000 iterations. Experiment 1 shows that the
YOLOv3-voc model is the best, and its overall average error is
0.036, and its maximum average accuracy is 91.9%.

Case 1: YOLOv3
The model used in Case 1 is the YOLOv3 model. As shown in
Table 2; Figure 5, the average iteration time is 0.94 s, and the

average error rate is 0.05. Therefore, the average accuracy rate
in the training phase can reach 98.87%, and the recall rate can
reach 98%. During the test phase, 60 ICB images are used as test
data. As a result, the average accuracy rate in the test phase can
reach 91.39%, and the recall rate can reach 88% due to the overall
model performance.

Case 2: YOLOv3-tiny
The model used in Case 2 is the YOLOv3-tiny model. As shown
in Table 2; Figure 6, the average iteration time is 0.18 s, and the
average error rate is 0.203. Therefore, the average accuracy rate
in the training phase can reach 98.82%, and the recall rate can
reach 99%. During the test phase, 60 ICB images are used as test
data. As a result, the average accuracy rate in the test phase can
reach 91.63%, and the recall rate can reach 87% due to the overall
model performance.

Case 3: YOLOv3-voc
The model used in Case 3 is the YOLOv3-voc model. As shown
in Table 2; Figure 7, the average iteration time is 0.72 s, and the
average error rate is 0.036. Therefore, the average accuracy rate
in the training phase can reach 99%, and the recall rate can reach
100%. During the test phase, 60 ICB images are used as test data.
As a result, the average accuracy rate in the test phase can reach
91.66%, and the recall rate can reach 90% due to the overall
model performance.

Case 4: YOLOv3-spp
The model used in Case 4 is the YOLOv3-spp model. As shown
in Table 2; Figure 8, the average iteration time is 0.98 s, and the
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FIGURE 6 | YOLOv3_tiny average error rate and average accuracy rate.

FIGURE 7 | YOLOv3_voc average error rate and average accuracy rate.

FIGURE 8 | YOLOv3_spp average error rate and average accuracy rate.

average error rate is 0.057. Therefore, the average accuracy rate
in the training phase can reach 98.47%, and the recall rate can
reach 99%. During the test phase, 60 ICB images are used as test
data. As a result, the average accuracy rate in the test phase can
reach 87.86%, and the recall rate can reach 87% due to the overall
model performance.

Data Augmentation

In this stage of the experiment, the impact of the amount of
data on training is discussed in advance, so data augmentation
methods are used to increase the dataset. The result of
a single image using the data augmentation method is
shown in Figure 9, and the image generated by the data
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FIGURE 9 | Results of data augmentation methods.

TABLE 3 | Experiment 2-various YOLO models result comparison table (after data augmentation).

Model Average

iteration time

Average error Average training

accuracy

Training recall

rate

Average test

accuracy

Test recall rate Maximum average

accuracy

YOLOv3 0.67 0.105 99.62% 99% 91.14% 92% 94.86%

YOLOv3-tiny 0.20 0.251 99.55% 97% 93.56% 90% 94.87%

YOLOv3-voc 0.71 0.06 99.8% 100% 94.72% 95% 96.53%

YOLOv3-spp 0.66 0.079 97.07% 97% 92.22% 95% 94.58%

augmentation method still requires data pre-processing
and labeling.

In this stage of the experiment, as shown in Table 3, the
performance of the YOLOv3-voc model at the number of
iterations of 10,000 is significantly better than the other three.
The experimental result of experiment 2 is that the YOLOv3-voc
model is the best. It has an average error value of 0.06, and the
highest average accuracy rate can reach 96.53%.

Comparing the results from the YOLOv3-voc model of
experiment 1 and experiment 2, listed in Tables 2, 3, respectively,
it is found that using data augmentation methods to allow the
model to learn more image features can significantly improve its
average accuracy and recall rate.

ICB Directionality Inspection

A total of 160 images of type-5 integrated circuit board model
(ICB5) are used in this experiment stage. In the experiment,
the images are divided into 88 for training datasets, 22 for
verification datasets, and 50 for test datasets; all datasets contain
both correct and incorrect integrated circuit images. The model
used is the YOLOv3_voc model, and the model is trained
to 10,000 iterations. The identification results are shown in

Figure 10, showing the correct identification and three kinds
of incorrect identification. Correct: The direction of the ICB
recognition image is correct; Error type 1: The direction of
the ICB recognition image shows type one error; Error type
2: The direction of the ICB recognition image shows type two
error; Error type 3: The ICB recognition image direction shows
type three error; None: Cannot identify the direction of the
ICB identification image. For the result, among the 50 test
images, only one image is currently not recognized. The original
trainingmodel and actual prediction results are shown inTable 4,
showing a correct rate of 98%, which is more than 90% required
for general applications. Furthermore, the recognition time for
each image is no more than one s, which is practical for smart
manufacturing fields that require real-time recognition.

SUMMARY

The experiment in this study is divided into four stages. In the
first stage, we must execute the pre-processing of the dataset
to complete the learning goal and then generate a complete
training process. The second stage focuses on the four models
under YOLOv3 to explore more suitable model for smart
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FIGURE 10 | Directionality classification and inspection of integrated circuit image (correct, error type 1, error type 2, and error type 3).

TABLE 4 | Confusion matrix of ICB Image directionality recognition results.

Original

predict

Correct Error 1 Error 2 Error 3 None

Correct 30 0 0 0 0

Error 1 0 6 0 0 0

Error 2 0 0 7 0 0

Error 3 0 0 0 6 0

None 0 0 0 1 0

manufacturing. In the third stage, the influence of the image
augmentation fusion method on the identification results of the
model is discussed based on the comparison results of the second
stage. Finally, the fourth stage discusses the application of its
model in the actual field. The results of the experiment show the
following conclusions:

YOLOv3 Model Selection
In the experimental part of this study, because we hoped to apply
the model to smart manufacturing and because the advantage of
YOLO is the speed of image recognition, so we hoped to choose
a model with excellent training cost and actual recognition
results. After comparing YOLOv3, YOLOv3-tiny, YOLOv3-voc,
YOLOv3-spp under the third version of YOLO, the experimental

results show that YOLOv3-voc is the best choice, which can reach
the highest 96.53% accuracy rate and 94.72% average accuracy
rate during test stage under the experimental conditions, the
performance is quite good. Although the second-place YOLOv3-
tiny model also has an average accuracy of 93.56, the difference
in training time to reach the same level is quite large, so the final
selection of the model is YOLOv3-voc. Of course, if we further
optimize various parameters or lengthen the overall training
time, it is possible to obtain higher accuracy.

Effectiveness of Data Augmentation
Methods
In the second model comparison, this study applied a data
augmentation method to the dataset to increase the data size and
learn more features. Among them, data augmentation methods
include angle flipping, focus scaling, and image cropping. As
a result, the size of the dataset increased from 100 images to
400 images. Thus, the original average accuracy rose from 91.66
to 94.72%, which proved that the model has a higher grasp
of the image characteristics of the ICB after using the image
augmentation fusion method.

Application of Directional Inspection of the
Integrated Circuit Board
This study focuses on the actual image recognition of the
ICB. We used the brand image of the ICB as the inspection
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target to determine the correctness of its installation
direction. After experimental testing, a total of 160 images
were used to complete the training test. In the last 50
test images, the detection accuracy rate reached 98%,
exceeding the 90% threshold in general actual application
environment, proving that the model could be used for
application testing.

Discussion on the Number of Iterations of
the YOLOv3_Tiny Model
This study also had a separate discussion on the YOLOv3_tiny
model. The training cost of the model and the experimental
data of the YOLOv3_tiny model are discussed in the
first few subsections. Compared with other models, the
training time is shorter due to its lightweight architecture.
Although a high level of average test accuracy can be
achieved through multiple training iterations, the overall
time cost is still slightly higher than YOLOv3_voc.
Nevertheless, its advantage is that the equipment is
relatively standard, and it is easy to train a good model for
application quickly.

CONCLUSIONS

Smart manufacturing must cover functions such as automated
information perception, automated decision-making, and
automated execution. What drives these automated processes
rely on data and every piece of this data comes from various
sensors, and image recognition is one of the methods that can
be used. Moreover, based on the deep learning architecture,
the work can be completed by the trained model. The results
prove that YOLO’s model can achieve the lowest model
training cost in an automated environment that requires image
recognition speed and excellent image recognition results
using the ICB image under the pre-processing method of
this study. Thus, the model is quite suitable for application
in the smart manufacturing field, effectively achieving
automatic perception.

This study also discusses several YOLO models. Among
them, YOLOv3_voc has the best performance, with the highest
accuracy rate of 91.9%. When combined with the pre-processing
in experiment 2 of this study using the image data augmentation
fusion method, the highest accuracy can reach 96.53, 4.5%
higher than the original model without the data augmentation
method. In the final experiment, the image of the ICB was
used and the directional inspection accuracy could reach 98%,
which met the 90% threshold required in general application.
In addition, given the real-time nature of the production site,
this study takes <1 s to identify each image, which can be a
good candidate for application with real-time requirements. This
proves the feasibility and accuracy of R-CNN in the field of
smart manufacturing.

Regarding the research limitations in this study, since it is
impossible to collect all different ICB image data, the ICB image
data sources in this study are only specific to five different types of

webcams. In addition, in terms of model selection, the YOLOv3
model was used in this study in consideration of both machine
performance and accuracy. In the future, more innovativemodels
andmore various ICB image data can be used in this architecture.
In addition, to optimize the parameters of this model for
the future development of this study, the biggest problem is
actually the availability of data. Although the R-CNN can achieve
excellent image recognition results, it requires many data behind
it and must be labeled as learning features. To achieve the
ultimate automatic perception, automatic correction is needed.
The automatic correction introduced in image recognition
provides new data that can be imported into the dataset of
the model for learning. If it could be improved, the results of
the learning are believed to be more prominent. Another part
is about the method of image pre-processing. Although this
study uses image data augmentation fusion methods, it may be
possible to import binary image processing to increase data in
the future.

Finally, we hope the model can be applied to smart
manufacturing as practical application to make overall
learning adjustments. There will be some problems in
the actual field, such as the effect of light that may
cause reflections when the ICB image is automatically
detected, resulting in unrecognizable results. Therefore,
it may be necessary to sample the characteristics of the
ICB itself and some other features to assist the image
recognition process.
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Multi-modal image fusion integrates different images of the same scene collected

by different sensors into one image, making the fused image recognizable by the

computer and perceived by human vision easily. The traditional tensor decomposition

is an approximate decomposition method and has been applied to image fusion. In

this way, the image details may be lost in the process of fusion image reconstruction.

To preserve the fine information of the images, an image fusion method based on

tensor matrix product decomposition is proposed to fuse multi-modal images in

this article. First, each source image is initialized into a separate third-order tensor.

Then, the tensor is decomposed into a matrix product form by using singular value

decomposition (SVD), and the Sigmoid function is used to fuse the features extracted

in the decomposition process. Finally, the fused image is reconstructed by multiplying

all the fused tensor components. Since the algorithm is based on a series of singular

value decomposition, a stable closed solution can be obtained and the calculation is

also simple. The experimental results show that the fusion image quality obtained by

this algorithm is superior to other algorithms in both objective evaluation metrics and

subjective evaluation.

Keywords: multi-modal, image fusion, tensor, matrix product state, singular value decomposition

1. INTRODUCTION

The purpose of image fusion is to synthesize multiple images of the same scene into a fusion image
containing part or all information of each source image (Zhang, 2004). The fused image contains
more information than each source image, thus, it is more suitable for machine processing and
human visual perception. Image fusion has a wide range of applications in many fields, such as
computer vision, remote sensing, medical imaging, and video surveillance (Goshtasby andNikolov,
2007). The same type of sensors acquire information in a similar way, so the single-modal image
fusion cannot provide information of the same scene from different aspects. On the contrary,
multi-modal image fusion (Ma et al., 2019) realizes the complementarity of different features of
the same scene through fusing the images collected by different types of sensors and generates an
informative image for subsequent processing. As typical multi-modal images, infrared and visible
images, CT and MRI images can provide distinctive features and complementary information, that
is, infrared images can capture thermal radiation signal and visible images can capture reflected
light signal; CT is mainly used for signal acquisition of sclerous tissue (e.g., bones), and MRI is
mainly used for signal acquisition of soft tissue. Therefore, multi-modal image fusion has a wide
range of applications in engineering practice.

To realize image fusion, many scholars have proposed a large number of fusion algorithms in
recent years. In general, the fusion methods can be divided into two categories: the spatial-domain
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methods and the transform-domain methods. The typical
methods in the first category include the weighted average
method and principal component analysis (PCA) method (Yu
et al., 2011) and so on. They fuse the gray values of image
pixels directly. Although the direct operation on the pixels has
low complexity, the fusion process is less robust to noise, and

FIGURE 1 | The matrix product state (MPS) form of X.

FIGURE 2 | The graphical representation of the sliding window technology.

FIGURE 3 | An example for visualizing the process of decomposition and fusion.

the results cannot meet the needs of the application in most
cases. To overcome this shortcoming, a fusion method based on
transform is proposed (Burt and Adelson, 1983; Haribabu and
Bindu, 2017; Li et al., 2019). In general, the transform-based
methods obtain the transformed coefficients of an image using a
certain set of base functions, then fuse these coefficients through
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certain fusion rules, and finally obtain the final fused image
through the corresponding inverse transform. For example,
Burt and Adelson (1983) formed a laplacian pyramid (LP)
by desampling and filtering source images, and then designed
different fusion strategies at each layer. Finally, the fused image
is obtained by applying the inverse transform on the fusion
coefficients. Haribabu and Bindu (2017) first decomposed the
source images by using discrete wavelet transform (DWT) and
fused the coefficients with predefined fusion rules, and then
obtained the final image by applying the inverse discrete wavelet
transform on fused coefficients. Because the transform-based
method employs the average weighted fusion rules for the low-
frequency components which carry the most energy of the image,
there will be something wrong with the contrast loss of the final
fused image.

In addition to traditional spatial-domain and transform-
domainmethods, sparse representation (SR) has been extensively
used in image fusion in recent years (Yang and Li, 2010; Jiang
and Wang, 2014; Liu et al., 2016; Zhang and Levine, 2016).
The SR method assumes that the signal to be processed satisfies
y ∈ Rn, then y = Dx, where D ∈ Rn×m(n << m) is an
overcomplete dictionary, and n is the dimensions of the signal
andm is the number of atoms in the dictionaryDwhich is formed
by a set of image subblocks, x is the sparse coefficients vector.
The fused image is reconstructed by means of fusing the sparse
coefficients. Although the SR-based method has achieved many
results in the field of image fusion, some detailed information will
be lost in the reconstructed image (e.g., the edges and textures

tend to be smoothed), which limits the ability of the SR to
express images (Yang and Li, 2010). To solve this problem, some
scholars proposed some improved algorithms (Jiang and Wang,
2014; Liu et al., 2016). For instance, Jiang and Wang (2014)
used morphological component analysis (MCA) to represent the
source imagesmore effectively. TheMCAmethod first applied SR
to separate the source images into two parts: cartoon and texture,
then different fusion rules were designed to fuse these two parts
respectively. Finally, a fused image with rich information was
obtained, and more characteristic features of the source images
were preserved.

As an extension of the vector and matrix, the tensor (Kolda
and Bader, 2009) plays an important role in the high-dimensional
data processing. In the field of computer science and technology,
a tensor is a multi-dimensional array. It can be extended to
some common data types, for example, a zero-order tensor can
be defined as a constant, the tensor of order 1 is defined as a
vector, the tensor of order 2 is defined as a matrix, the tensor
of order 3 and the tensor of order N (N ≥ 3) is called high-
order tensor. In essence, tensor decomposition is a high-order
generalization of matrix decomposition, which is mainly applied
to dimensionality reduction, sparse data filling, and implicit
relationship mining. The information processing method based
on tensor is more suitable for the processing of high-dimensional
data and the extraction of feature information than vector and
matrix, therefore, some relevant applications have been emerged
in recent years (Bengua et al., 2015, 2017a,b; Zhang et al., 2016).
In view of the excellent performance of tensors in representing

FIGURE 4 | Fusion flowchart based on MPS.
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high-dimensional data and feature extraction, a tensor-based
high-order singular value decomposition method (HOSVD)
(Liang et al., 2012) was applied to image fusion and achieved
good results. In this method, the source image is initialized into
a tensor which is subsequently decomposed into several sub-
tensors by using a sliding window technique. Then, the HOSVD
is applied on each sub-tensors to extract the corresponding
features which are fused by employing certain fusion rules.

Since HOSVD is an approximate decomposition method, it
will lead to the loss of information in the process of image
fusion. At the same time, the calculation process is large and
a stable closed-form solution cannot be obtained. To avoid

loss of detailed information, a novel method based on matrix
product state (MPS) is proposed to fuse the multi-modal images.
Compared with HOSVD, MPS achieves the improvement
of HOSVD and achieves the purpose of acquisition image
information accurately. Moreover, being different from SR who
linearly represents images by using atoms in an overcomplete
dictionary, MPS decomposes image tensor into MPS. The
main difference is that SR is approximate decomposition, while
MPS is accurate decomposition. Therefore, in terms of signal
reconstruction, MPS has better performance in signal expression.
The main contributions of the article are outlined as follows:
(i) Considering that image fusion depends more on local

FIGURE 5 | The output fused images in patch size experiment. (A) original image (infrared image); (B) original image (visible image); (C) patch of size 2× 2; (D) patch

of size 4× 4; (E) patch of size 6× 6; (F) patch of size 8× 8; (G) patch of size 10× 10; (H) patch of size 12× 12; (I) patch of size 14× 14; (J) patch of size 16× 16;

(K) patch of size 18× 18; (L) patch of size 20× 20.
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information of the source images and dividing the image into
blocks can get more details of each pixel, the two source images
are first divided into several sub-image blocks, and then the
corresponding sub-image blocks are initialized into sub-tensors;
(ii) We perform the MPS on each sub-tensor separately to
obtain the corresponding core matrixes. The core matrixes are
fused using the fusion rule based on the sigmoid function
which incorporates the conventional choose-max strategy and
the weighted average strategy. This fusion strategy can preserve
the features of the multi-modal source images and reduce the
loss of contrast to the greatest extent; (iii) Due to the application
of MPS, the computational complexity of image fusion based

TABLE 1 | The influence of patch size.

Patch size SD MI SSIM QG QP

2× 2 63.9385 0.9289 0.6683 0.6543 0.7358

4× 4 64.3397 0.8837 0.6680 0.6589 0.7677

6× 6 64.5772 0.8810 0.6679 0.6658 0.7819

8× 8 64.7225 0.8850 0.6678 0.6710 0.7893

10× 10 64.8229 0.8835 0.6681 0.6738 0.7903

12× 12 64.9079 0.8867 0.6686 0.6760 0.7900

14× 14 64.9586 0.8846 0.6695 0.6783 0.7907

16× 16 65.0244 0.8811 0.6699 0.6813 0.7915

18× 18 66.0479 0.8765 0.6543 0.6663 0.7574

20× 20 66.1362 0.9043 0.6532 0.6679 0.7573

Bold values mean maximum value of the same metrices in the same group of comparative

experiments.

on tensor is reduced dramatically. Hence, MPS decomposition
is realized by computing a series of sub-tensors with maximum
order 3. Moreover, a stable closed-form solution can also be
obtained in the proposed algorithm.

The rest of the article is organized as follows. Section 2
introduces the theory of matrix product decomposition. In
section 3, the algorithm principle and the fusion steps are
detailly discussed. Subsequently, the results of the experiments
are presented in section 4. Finally, some conclusions are drawn
in section 5.

2. MPS FOR TENSOR

2.1. Tensor
Tensor is a generalization of the vector. A vector is a kind of
tensor with order 1. For simplicity and accuracy of the following

TABLE 2 | The influence of step size.

Step size SD MI SSIM QG QP

1 65.0244 0.8811 0.6699 0.6813 0.7915

2 65.0206 0.8832 0.6697 0.6809 0.7910

4 65.0283 0.8905 0.6690 0.6775 0.7888

6 65.0316 0.9087 0.6673 0.6751 0.7835

8 65.0304 0.9223 0.6666 0.6753 0.7811

10 64.1665 0.9461 0.6630 0.6778 0.7752

Bold values mean maximum value of the same metrices in the same group of comparative

experiments.

FIGURE 6 | The output fused images in step size experiment. (A) original image (infrared image); (B) original image (visible image); (C) step size = 1; (D) step size = 2;

(E) step size = 4; (F) step size = 6; (G) step size = 8; (H) step size = 10.
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expressions, first, we introduce some notations about tensors.
The tensor of order 0 is a constant, represented by lowercase letter
x; the tensor of order 1 is a vector represented by a bold lowercase
letter x; the tensor of order 2 is a matrix represented by a bold
capital letter X; the tensor of order 3 is a tensor represented by
bold capital letters in italics X. In this way, a tensor of order N
and the size of each dimension are I1 × I2 × · · · × IN can be
expressed asX ∈ RI1×I2×···×IN , where Ii corresponds to the length
of the i-th dimension. In general, we use xi1 · · · xiN to represent
the (i1, · · · , iN)-th element of X.

2.2. MPS for Tensor
The MPS decomposition (Perez-Garcia et al., 2006; Schollwock,
2011; Schuch et al., 2011; Sanz et al., 2016) aims to decompose

TABLE 3 | Computation times of different algorithms.

Methods Times (s)

DWT 0.1796

LP 0.3812

SR 6.4527

DTCWT − SR 3.8822

VGG 2.5067

MPS 1.8357

an N-dimensional tensor X into the corresponding left-right
orthogonal factor matrix and a core matrix. First, all the
dimensions of an N-dimensional tensor X are rearranged, which
lets the dimension K corresponding to the number of images
to be fused, for example, if the number of source images is
equal to 2, then K = 2. Additionally, the tensor X satisfies X ∈
RI1×···×In−1×K×In×···×IN , I1 ≥ · · · ≥ In−1, In ≤ · · · ≤ IN , then the
elements in the tensorX can be expressed in the form ofMPS, and
the schematic diagram of MPS form of X is shown in Figure 1:

xi1···k···iN = x
(k)
i1···in···iN ≈ L

(1)
i1

· · · L(n−1)
in−1

C
(n)
k
R
(n+1)
in

· · ·R(N+1)
iN

.
(1)

L
(j)
ij

and R
(j)
i(j−1)

mentioned in the above formula are called left-

right orthogonal factor matrix with size δj−1 × δj, where δ0 =
δN+1 = 1, and they are all orthogonal:

Ij
∑

ij=1

(L
(j)
ij
)TL

(j)
ij

= I, (j = 1, · · · , n− 1) (2)

and

Ij−1
∑

ij−1=1

R
(j)
ij−1

(R
(j)
ij−1

)T = I, (j = n+ 1, · · · ,N + 1), (3)

where I is an identity matrix, Cn
k
is called core matrix.

FIGURE 7 | Comparison experimental results of infrared and visible images. (A) original figure (infrared image); (B) original figure (visible image); (C) discrete wavelet

transform (DWT); (D) laplacian pyramid (LP); (E) sparse representation (SR); (F) Dual-tree complex wavelet transform-sparse representation (DTCWT-SR); (G) VGG;

(H) Matrix product state (MPS).
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A tensor X can be decomposed into the form of (1) through
two series of SVD decomposition. The process includes a left-
to-right sweep and a right-to-left sweep. We summarize it in
Algorithm 1.

Algorithm 1: Feature Extraction based on MPS

Input:

X ∈ RI1×···×In−1×K×···×IN

Main Procedure:

1: SetW(1) = X(1);
2: for j = 0, 1, . . . , n− 1 do
3: W(j) = USV;
4: Reshape U(j) toU;

5: L
(j)
ij

= U(:, ij, :);

6: end for

7: Reshape V(n−1) toWN ∈ R(1n−1K···IN )×IN ;
8: for j = N,N − 1, . . . , n do

9: W(j) = USV;
10: Reshape V(j) to V;

11: R
(j+1)
ij−1

= V(:, ij−1, :);

12: end for

13: Reshape U(n)into C ∈ R(In−1K···IN )×IN ;
14: Set Cn

k
= C(:, k, :).

Output:

Core Matrix: Cn
k
∈ R1n−1×1n , k = 1, · · · ,K;

Left Factor Matrix: L
(j)
ij
(ij = 1, · · · , Ij, j = 1, · · · , n− 1);

Right Factor Matrix: R
(j)
i(j−1)

(i(j−1) = 1, · · · , I(j−1), j = n +
1, · · · ,N + 1)

3. IMAGE FUSION BASED ON MPS

In this section, the whole process of image fusion will be
described. The source images which have been reconstructed into
tensors are decomposed into a series of sub-tensors by using
the sliding window technology. The graphical representation of
the sliding window technology is shown in Figure 2. Then MPS
is applied to the decomposed sub-tensors to obtain the core
matrixes, and the sigmoid function is used for the fusion of each
pair of core matrixes to obtain the fused core matrixes.

The specific theoretical concepts of decomposition and fusion
are described in sections 3.1, 3.2, respectively, and the overall
process of image fusion proposed in this article is described in
section 3.3.

3.1. Tensor Decomposition by MPS
For the two source images A and B with sizes of M × N, we
use them to construct a tensor X with dimension M × N × 2.
Taking into account the importance of local information of the

FIGURE 8 | Comparison experimental results of infrared and visible images. (A) original image (infrared image); (B) original image (visible image); (C) DWT; (D) LP;

(E) SR; (F) DTCWT-SR; (G) VGG; (H) MPS.

Frontiers in Neurorobotics | www.frontiersin.org 7 November 2021 | Volume 15 | Article 76225285

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Lu et al. Image Fusion

source image, a sliding window technology is used to decompose
it into several sub-tensors F with dimensionM × N × 2, and the
sliding step p used should satisfy p ≤ min{M,N}; the sub-tensor
F is obtained by the Algorithm 2, as follows. In Algorithm 2,
the fix((M − patch size)/stepsize) represents the nearest integer
to (M − patch size)/stepsize and fix((N − patch size)/stepsize)
represents the nearest integer to (N − patch size)/stepsize. Then,
MPS is applied to each of the sub-tensors.

Algorithm 2: The Sub-tensor obtained by Sliding Window
Technology

Input:

X ∈ RM×N×2

Main Procedure:

1: for i = 1, 1+ stepsize, . . . , 1+ stepsize× fix(
M−patch size

stepsize ) do

2: for j = 1, 1+ stepsize, . . . , 1+ stepsize×fix(
N−patch size

stepsize ) do

3: F = X(i : i+ patch size− 1, j+ patch size− 1, :);
4: end for

5: end for

Output:

sub-tensor: F ∈ RM×N×2;

3.2. Design of Fusion Rule
We introduce the sigmoid function as the fusion rule of the
characteristic coefficients, the fusion coefficient of each core
matrix can be defined as follows:

ei(l) =
M̄

∑

m=1

N̄
∑

n=1

|Ci(m, n, l)| l = 1, 2 (4)

where the subscript i indicates the number of each sub-image,
and l is the label of the corresponding source image.

For ei(l) obtained in the previous section, the fusion rule is
selected by comparing the values of ei(1) and ei(2). When ei(1)
is much less or much more than ei(2), we use the Max rule,
and when the relationship between ei(1) and ei(2) satisfy the
other relation, we use weighted fusion to fuse the corresponding
coefficient matrix and then get the final fusion coefficient matrix.
The function is as follows:

Di =
1

1+ exp(−kln( ei(1)
ei(2)

))

×Ci(:, :, 1)+
exp(−kln( ei(1)

ei(2)
))

1+ exp(−kln( ei(1)
ei(2)

))
× Ci(:, :, 2) (5)

FIGURE 9 | Comparison experimental results of infrared and visible images. (A) original image (infrared image); (B) original image (visible image); (C) DWT; (D) LP;

(E) SR; (F) DTCWT-SR; (G) VGG; (H) MPS.
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where k is the shrinkage factor of the mentioned sigmoid
function. After Di is obtained, each of the fused sub-image
blocks Fi can be reconstructed by the inverse operations of MPS.
Then the sub-image blocks Fi is used to obtain the final fused
image G.

To make the process of decomposition and fusion more
concrete, the first group of the experiment images is used as an
example to make a flowchart as shown in Figure 3:

3.3. The Process of Image Fusion Based on
MPS
The process of image fusion based on MPS can be divided into
the seven steps as follows

1. Input two source images;
2. Reconstructed the two source images into a third-order

tensor, and the sub-tensors are extracted by sliding window
technology;

3. Matrix product state decomposition is used on sub-tensors to
obtain left and right factor matrixes and core matrixes;

4. Compare the vectors representing source image 1 and source
image 2 in the core matrixes obtained in step 3, and obtain the
fused matrixes by corresponding their quantitative relations
to different situations of the sigmoid function, and then
construct it as sub-tensors;

5. Multiply the fused sub-tensors by left and right factor tensors
to obtain sub-images;

6. Sub-images addition;
7. Output fused image.

The specific flowchart is shown in Figure 4.

4. EXPERIMENTS

4.1. Objective Evaluation Metrics
1. Standard deviation (SD)

SD is defined as follows:

SD =

√

√

√

√

1

H ×W

H
∑

x=1

W
∑

y=1

(F(x, y)− µ)2, (6)

where µ is the average value of the fused image, H andW are
the length and width of the image, respectively. SD is mainly
used to measure the contrast of the fused image.

2. Mutual information (MI)
Mutual information is defined as follows:

MI =
L

∑

x=1

L
∑

y=1

hR,F(i, j)log2
hR,F(i, j)

hR(i)+ hF(j)
, (7)

where hR,F(i, j) is the normalized joint distribution gray
histogram between the source image R and the fused image

FIGURE 10 | Comparison experimental results of infrared and visible images. (A) original image (infrared image); (B) original image (visible image); (C) DWT; (D) LP;

(E) SR; (F) DTCWT-SR; (G) VGG; (H) MPS.
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F, hR(i) and hF(j) are the normalized marginal distribution
histogram of the two source images, respectively, L is the
number of gray levels.

3. Structural similarity (SSIM)
Structural similarity is defined as follows:

SSIM(x, y) = (
2µxµy + c1

µ2
x + µ2

y + 1
)α(

2σxσy + c1

σ 2
x + σ 2

y + 1
)β (

σxy + c3

σxσy + c3
)γ ,

(8)
where µx and µy are the average value of x and y. The middle
term represents the similarity of contrast, σx and σy is the
SD of x and y. The right term characterizes the structural
similarity, and σxy is the covariance of x and y. The c1, c2,
and c3 are three constants, and the parameters α, β , and γ ,
respectively, adjust the contribution of the three terms. SSIM
can calculate the similarity between the fused image and the
source image. Its value which is between 0 and 1 is closer to 1,
the more similar the two images are. The average value of the
fused image and the two source images A and B is taken as the
final evaluation metric, namely

SSIM =
1

2
(SSIMA + SSIMB). (9)

4. Gradient based fusion metric (QG)
QG is defined as follows:

QG =
∑H

x=1

∑W
y=1(QAF(x, y)wA (x, y)+ QBF(x, y)wB (x, y))
∑H

x=1

∑W
y=1(wA (x, y)+ wB (x, y))

,

(10)
where QAF(x, y) = QAFg (x, y)QAFα

(x, y), at each pixel
(x, y),QAFg (x, y) and QAFα

(x, y) denote the edge strength and
orientation preservation values. QBF(x, y) is defined as the
same as QAF(x, y). The weighting factors wA (x, y) and wB (x, y)
indicate the significance of QAF(x, y) and QBF(x, y). QG is an
important fusion image quality evaluation method computing
the amount of gradient information that is injected into the
fused image from the source image.

5. Phase congruency based fusion metric (QP)
The QP is defined as follows:

QP = (Pp)
α(PM)β (Pm)

γ , (11)

where p,M, andm refer to phase congruency, maximum, and
minimum moments. The parameters α, β , and γ are set to 1
in this article. For more detailed information on parameters,
please refer to the article Hong (2000).QP measures the extent
that the salient features in the source image are preserved.

FIGURE 11 | Comparison experimental results of infrared and visible images. (A) original image (infrared image); (B) original image (visible image); (C) DWT; (D) LP;

(E) SR; (F) DTCWT-SR; (G) VGG; (H) MPS.
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4.2. Study of Patch Size and Step Size
Considering the sliding window technology is used, we will first
study the respective influence of the size of the sub-image block
and the step size of the sliding window on the performance of
the fusion image experimentally. In the following statement we
use patch size and step size to call the two factors briefly. To
obtain the optimal patch size and step size, we will use a pair
of infrared and visible images as source images, as shown in
Figures 5A,B. In the experiment of patch size, the patch size is set
to 2×2, 4×4, 6×6, 8×8, 10×10, 12×12, 14×14, 16×16, 18×18,
and 20 × 20 with the step size fixed to 1 and shrinkage factor
fixed to 200. In the experiment of step size, the step size is set
to 1, 2, 4, 6, 8, and 10 with the patch size fixed to 16 × 16 and
the shrinkage factor fixed to 200. The experimental results based
on the objective evaluation metrics are shown in Tables 1, 2. The
output fused images are shown in Figures 5, 6.

It can be seen clearly from Table 1, in most cases, that the
best results can be obtained when the size of the sub-image block
is 16 × 16. According to simple analysis, when the sub-image
block is too small, the image characteristics cannot be effectively
represented. Additionally, it can be seen from Table 2 that when
the step size is 1, the best result can be obtained. According to
simple analysis, when the step size is too large, local information
of the image may be lost or cannot be displayed well. Therefore,
the in following experiments, the patch size was set to 16 × 16,
and the step size was set to 1.

4.3. Computation Complexity
The computation time of each group of experimental images
is recorded when different fusion algorithms are used.
Experimental results show that the complexity of the proposed
algorithm is lower than other algorithms. The results are shown
in Table 3 as follows:

All the codes are performed under MATLAB R2014a running
on computer equipment with an Intel i7-7700K CPU (4.2
GHz) and 16 GB of RAM. As can be seen from the table,
compared with SR and Dual-tree complex wavelet transform-
sparse representation (DTCWT-SR), the running of the proposed
algorithm is faster. In general, the computational complexity of
the proposed algorithm is reduced.

4.4. Experimental Results and Discussion
In this section, the effectiveness of the proposedmethod is further
verified by comparing the experimental results of this algorithm
with other fusion methods. The comparison methods used are
DWT (Haribabu and Bindu, 2017) and LP (Burt and Adelson,
1983), SR-based methods (Liu et al., 2016), VGG-Net (Hui et al.,
2018), and DTCWT-SR (Singh et al., 2012). In addition to the
infrared and visible images used in the previous section, CT and
MRI medical images are also used for contrast experiments. The
performance of each algorithm is evaluated by calculating the
evaluation metrics based on the fusion results. In the experiment,
all the experimental source image size is 256×256, the fixed patch

FIGURE 12 | Comparison experimental results of CT and MRI images. (A) original image (CT); (B) original image (MRI); (C) DWT; (D) LP; (E) SR; (F) DTCWT-SR; (G)

VGG; (H) MPS.
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FIGURE 13 | Comparison experimental results of CT and MRI images. (A) original image (CT); (B) original image (MRI); (C) DWT; (D) LP; (E) SR; (F) DTCWT-SR; (G)

VGG; (H) MPS.

FIGURE 14 | Comparison experimental results of CT and MRI images. (A) original image (CT); (B) original image (MRI); (C) DWT; (D) LP; (E) SR; (F) DTCWT-SR; (G)

VGG; (H) MPS.
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FIGURE 15 | Comparison experimental results of CT and MRI images. (A) original image (CT); (B) original image (MRI); (C) DWT; (D) LP; (E) SR; (F) DTCWT-SR; (G)

VGG; (H) MPS.

size is 16 × 16, the step size is 1, and the shrinkage factor k is
200. The proposed method and several comparison algorithms
are applied to nine pairs of source images. The experimental
results are shown in Figures 7–15, respectively. The objective
evaluation metrics values of the nine pairs of images are shown
in Tables 4, 5.

It can be seen from the table that in most cases, the algorithm
proposed in this article can achieve optimal results, especially for
CT and MRI images, the various metrics of the results of MPS
are much higher than other methods. For infrared and visible
images, the method in this article can also achieve optimal results
under more than half of the evaluation metrics. These results
show that the proposed method is better than other methods for
multi-modal image fusion. This advantage mainly benefits from
two aspects: (i) The sliding window method is adopted to divide
the image into several sub-images, so the local information of
the image can be captured well; (ii) MPS method is an accurate
decomposition and reconstruction method, so in the process
of image fusion, there will be no loss of information due to
the solution.

Further analysis of the experimental results shows that: (i)
On the whole, VGG-Net has the worst performance in all cases.
Compared with other comparison methods, there is a big gap
in various evaluation metrics. This is because the information
captured is insufficient in the layer-by-layer feature extraction
of the source image, and when the details of the fusion image

are weighted by the final weight graph, the contrast of the initial
detail part of the fusion image is reduced; (ii) Among the two
multi-scale methods used, DWT fusion method performs poorly.
This is because the DWT method is based on Haar wavelet
to achieve fusion, which can only capture image features in
horizontal and vertical directions but cannot capture more basic
features of the image; LP method is better than the DWTmethod
because the Laplacian pyramid generates only one band-pass
component at each scale, which reduces the possibility of being
affected by noise; (iii) The results obtained by SR method are
better than other multi-scale methods in most cases but not
as good as the proposed method. This is because the signal
representation ability of SR is better than that of multi-scale
transformation, and errors will occur in the process of signal
reconstruction, which is unavoidable for the SR method. The
method proposed in this article can effectively avoid this problem
by non-destructive tensor reconstruction. In addition, the “max-
L1” rule of direct fusion in the spatial domain will lead to spatial
inconsistency, which affects the performance of the SR method;
(iv) DTCWT-SR is an method that multi-scale method combined
with SR method. By comparing the objective evaluation metrics,
the fusion performance of the algorithm is better than SR in some
aspects, but it is still poor compared with MPS.

In addition to objective evaluation, the performance of
the algorithm in this article is also discussed through some
visual comparisons of the fused images. In general, the
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TABLE 4 | Comparison of objective evaluation metrics of infrared and visible images.

Figure Metrics DWT LP SR DTCWT-SR VGG MPS

SD 57.3495 59.1760 55.0023 65.0175 49.1788 65.0244

MI 0.3915 0.3981 0.7197 0.5625 0.4373 0.8811

Figures 7A,B SSIM 0.6308 0.6481 0.6602 0.6025 0.6266 0.6699

QG 0.6573 0.6990 0.7014 0.6874 0.5975 0.6813

QP 0.6769 0.7765 0.7392 0.7586 0.7139 0.7916

SD 37.3080 39.6529 38.5454 41.7521 32.5971 42.1726

MI 0.5262 0.5779 0.6457 0.5969 0.6614 0.9720

Figures 8A,B SSIM 0.7674 0.7688 0.8170 0.8013 0.7603 0.8017

QG 0.5558 0.6168 0.5753 0.6094 0.5995 0.6748

QP 0.6769 0.7764 0.6895 0.7632 0.7659 0.8349

SD 31.6360 35.0567 35.3218 36.0795 23.3351 35.0392

MI 0.3357 0.4055 0.4509 0.3861 0.4190 0.9292

Figures 9A,B SSIM 0.5701 0.6088 0.5350 0.4449 0.4284 0.6157

QG 0.5755 0.6560 0.4487 0.5945 0.5352 0.7249

QP 0.4050 0.5384 0.2579 0.5002 0.5816 0.7004

SD 28.3593 29.2224 28.5693 29.7191 22.83747 29.8865

MI 0.2238 0.2356 0.2720 0.2582 0.2604 0.7066

Figures 10A,B SSIM 0.6288 0.7088 0.6331 0.4864 0.5494 0.6926

QG 0.3999 0.4835 0.3304 0.4211 0.3482 0.5204

QP 0.1892 0.2996 0.1220 0.2577 0.2541 0.3927

SD 23.9236 25.6275 31.2000 39.5077 29.1652 31.7625

MI 0.1528 0.1573 0.2883 0.4184 0.3954 0.6704

Figures 11A,B SSIM 0.4223 0.4544 0.4624 0.4025 0.4351 0.4911

QG 0.4217 0.5184 0.3987 0.5021 0.3749 0.5204

QP 0.2256 0.3745 0.1827 0.3612 0.2683 0.4304

Bold values mean maximum value of the same metrices in the same group of comparative experiments.

proposed method achieves the best visual effect among all the
fusion images.

The fusion results of infrared-visible images are shown in
Figures 7–11. It can be seen from the figure that the method
proposed in this article has good adaptability, and the fusion
images are obtained to retain the information of the infrared
and visible images, respectively. In Figure 7, both the multi-
scale fusion method and SR show varying degrees of artificial
traces at the junction between the trees and the sky in the upper
left corner, while DTCWT-SR and VGG-Net resulted in severe
contrast loss. In Figure 8, the white squares in infrared picture
are dimming in varying degrees in DWT, LP, SR, DTCWT-SR,
and VGG-Net methods, and the leaf luster in the visible image is
not well-displayed in the VGG-Net method. In Figure 9, DWT
and SR show the phenomenon of information loss. LP, DTCWT-
SR, and VGG can get relatively complete fusion images, but the
brightness is weaker than MPS. The clarity of the billboard in
the upper left corner of the fused image is better in the MPS
method. In Figure 10, the fused images obtained by DWT and SR
show some small black blocks, that is information loss, while the
human shape brightness on the right side of the images obtained
by LP, DTCWT-SR, and VGG method is low. The reason for
these shortcomings is the fusion rules used in the fusion process

all have a certain degree of weighting on the source image. Our
fusion rules based on the sigmoid function can well avoid these
shortcomings, that is, in the image, whose colors are only black
and white, the weight of the white part of the image will be much
larger than that of the black part, thus, evolving into the Choose-
max rule. In Figure 11, compared with the other five comparison
methods, it can be seen that the human figure on the right and the
branch on the lower right corner of the fusion image obtained by
MPS have the highest resolution.

Figures 12–15 are the fusion results of CT and MRI medical
images. It can be seen from the experimental results that the
DWT method cannot to be applied to the fusion of medical
images, and the other four methods can obtain a complete
image. In Figure 12, LP, DTCWT-SR, and VGG-Net methods
have no loss in details, but the sharpness of the light and dark
junction is insufficient, the edge is blurred, and the contrast is
lost. However, the bottom of the fused image obtained by the
SR method is fractured, indicating that there is information loss.
In Figure 13, the spine in the lower right corner and the jaw in
the lower left corner of the image obtained by MPS were more
clear than the other five methods, the brain vein was also clearer,
and the contrast was higher than the other five methods. In
Figure 14, the fused images obtained by LP and SRmethods were
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TABLE 5 | Comparison of objective evaluation metrics of CT and MRI images.

Figure Metrics DWT LP SR DTCWT-SR VGG MPS

SD 56.2694 60.5508 59.2485 72.1939 49.4054 73.6843

MI 0.6266 0.6713 0.7032 0.7449 0.6849 1.0761

Figures 12A,B SSIM 0.6846 0.7114 0.7088 0.6631 0.5067 0.7318

QG 0.6618 0.6706 0.6818 0.6728 0.3410 0.7696

QP 0.3756 0.4625 0.2952 0.3945 0.5255 0.6941

SD 75.3185 77.7486 80.6627 82.7177 68.0464 86.4508

MI 0.4175 0.4496 0.6142 0.4336 0.5063 0.7824

Figures 13A,B SSIM 0.5358 0.5861 0.5921 0.5969 0.5787 0.6041

QG 0.4343 0.5262 0.5425 0.4216 0.4322 0.5806

QP 0.2928 0.4069 0.3859 0.3193 0.3986 0.5129

SD 45.5362 53.7899 55.2056 53.5713 37.3261 59.2069

MI 0.4510 0.4551 0.8655 0.3547 0.6078 1.1221

Figures 14A,B SSIM 0.3849 0.4403 0.4937 0.5016 0.3702 0.5057

QG 0.6453 0.6430 0.8465 0.8056 0.6750 0.9191

QP 0.2833 0.5291 0.5418 0.5613 0.5755 0.5769

SD 62.0558 66.6555 65.3679 69.7711 55.0330 72.7695

MI 0.6098 0.6060 0.7530 0.4336 0.6993 0.9532

Figures 15A,B SSIM 0.5962 0.6136 0.6569 0.6410 0.5476 0.6756

QG 0.5955 0.5743 0.6552 0.3626 0.3392 0.7100

QP 0.2531 0.4005 0.3128 0.2664 0.3675 0.6454

Bold values mean maximum value of the same metrices in the same group of comparative experiments.

fractured at the lower right corner. Although DTCWT-SR and
VGG methods obtained relatively complete fusion images, there
is a certain degree of contrast loss. In Figure 15, LP, DTCWT-SR,
and VGG-Net methods have some contrast loss, especially in the
middle part, at the same time, the image obtained by the SR
method presents spatial dislocation at both sides of the eyeball
and a certain degree of distortion appears at the position of white
connection of the two images. The SR method also has similar
shortcomings in this regard, please refer to the lower right corner
of the image.

5. CONCLUSION

In this article, we propose a method based on MPS for multi-
modal image fusion. First, the source images are initialized into
a three-dimensional tensor, and then the tensor is decomposed
into several sub-tensors by using a sliding window to obtain
the corresponding features. The core matrix is fused by the
fusion rule based on the sigmoid function, and the fused
image is obtained by multiplying the left-right factor matrix.
In this article, we use a sliding window to avoid blocking
effects, and fully consider the local information of the source
images by dividing the source image into a set of sub-images.
The experimental results show that the proposed algorithm is
feasible and effective for image fusion. Being different from
the average fusion rule of the multi-scale method and the
“Max-L1” fusion rule of the SR method, the fusion rule based
on the sigmoid function used in the article is more effective,
but it also makes the fusion process more complicated of

the proposed method. Future study will focus on further
exploring a more effective fusion rule to improve the fusion
results.
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The graph neural network (GNN) has been widely used for graph data representation.

However, the existing researches only consider the ideal balanced dataset, and the

imbalanced dataset is rarely considered. Traditional methods such as resampling,

reweighting, and synthetic samples that deal with imbalanced datasets are no longer

applicable in GNN. This study proposes an ensemble model called Boosting-GNN, which

uses GNNs as the base classifiers during boosting. In Boosting-GNN, higher weights are

set for the training samples that are not correctly classified by the previous classifiers,

thus achieving higher classification accuracy and better reliability. Besides, transfer

learning is used to reduce computational cost and increase fitting ability. Experimental

results indicate that the proposed Boosting-GNN model achieves better performance

than graph convolutional network (GCN), GraphSAGE, graph attention network (GAT),

simplifying graph convolutional networks (SGC), multi-scale graph convolution networks

(N-GCN), and most advanced reweighting and resampling methods on synthetic

imbalanced datasets, with an average performance improvement of 4.5%.

Keywords: graph neural network, imbalanced datasets, ensemble learning, adaboost, node classification

1. INTRODUCTION

Convolutional neural networks (CNNs) have been widely used in image recognition (Russakovsky
et al., 2015; He et al., 2016), object detection (Lin et al., 2014), speech recognition (Yu et al., 2016),
visual coding and decoding (Huang et al., 2021a,b). However, traditional CNNs can only handle
data in the Euclidean space. It cannot effectively address graphs that are prevalent in real life. Graph
neural networks (GNNs) can effectively construct deep learning models on graphs. In addition to
homogeneous graphs, heterogeneous GNN (Wang et al., 2019; Li et al., 2021; Peng et al., 2021) can
effectively handle more comprehensive information and semantically richer heterogeneous graphs.

The graph convolutional network (GCN) (Kipf and Welling, 2016) has achieved remarkable
success in multiple graph data-related tasks, including recommendation systems (Chen et al.,
2020; Yu and Qin, 2020), molecular recognition (Zitnik and Leskovec, 2017), traffic forecast
(Bai et al., 2020), and point cloud segmentation (Li et al., 2019). GCN is based on the
neighborhood aggregation scheme, which generates node embedding by combining information
from neighborhoods. GCN achieves superior performance in solving node classification problems
compared with conventional methods, but it is adversely affected by datasets imbalance. However,
existing studies on GCNs all aim at balanced datasets, and the problem of imbalanced datasets have
not been considered.
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In the field of machine learning, the processing of imbalanced
data sets is always challenging (Carlson et al., 2010; Taherkhani
et al., 2020). The data distribution of an imbalanced dataset
makes the fitting ability of the model insufficient because it is
difficult for the model to learn useful information from unevenly
distributed datasets (Japkowicz and Stephen, 2002). A balanced
dataset consists of almost the same number of training samples
in each class. In reality, it is impractical to obtain the same
number of training samples for different classes because the
data in different classes are generally not uniformly distributed
(Japkowicz and Stephen, 2002; Han et al., 2005). The imbalance
of the training dataset is caused by many possible factors, such
as deviation sampling and measurement errors. Samples may be
collected from narrow geographical areas in a specific time period
and in different areas at different times, exhibiting a completely
different sample distribution. The datasets widely used in deep
learning research, e.g., IMAGENET large scale visual recognition
challenge (ImageNet ILSVRC 2012) (Russakovsky et al., 2015),
microsoft common objects in context (MS COCO) (Lin et al.,
2014), and Places Database (Zhou et al., 2018), balanced datasets,
where the amount of data in different classes is basically the
same. Recently, more and more imbalanced datasets reflecting
real-world data characteristics have been built and released, e.g.,
iNaturalist (Cui et al., 2018), a dataset for large vocabulary
instance segmentation (LVIS) (Gupta et al., 2019), and a large-
scale retail product checkout dataset (RPC) (Wei et al., 2019). It
is difficult for traditional pattern recognition methods to achieve
excellent results on imbalanced datasets, somethods that can deal
with imbalanced datasets efficiently are urgently needed.

For imbalanced datasets, additional processing is needed
to reduce the adverse effects (Japkowicz and Stephen, 2002).
The existing machine learning methods mainly rely on
resampling, data synthesis, and reweighting. 1) Resampling
samples the original data by undersampling and oversampling.
Undersampling removes part of data in the majority class so
that the majority class can match with the minority class in
terms of the amount of data. Oversampling copies the data in
the minority class. 2) Data synthesis, i.e., synthetic minority
oversampling technique (SMOTE) (Chawla et al., 2002) and its
improved version (Han et al., 2005; Ramentol et al., 2011; Douzas
and Bação, 2019) as well as other synthesis methods (He et al.,
2008), synthesize the new sample artificially by analyzing the
samples in the minority class. 3) Reweighting assigns different
weights to different samples in the loss function to improve the
model’s performance of the model on imbalanced datasets.

In the GNN, the existing processing methods for imbalanced
datasets in machine learning are not applicable. 1) The data
distribution problem of imbalanced datasets cannot be overcome
by resampling. The use of oversampling may introduce many
repeated samples to the model, which reduces the training speed
and leads to overfitting easily. In the case of undersampling,
valuable samples that are important to feature learning may
be discarded, making it difficult for the model to learn the
actual data distribution. 2) The use of the data synthesis
method or oversampling method loses the relationship between
the newly generated samples and the original samples in

the GNN, which affects the aggregation process of nodes.
3) Reweighting, e.g., Focal Loss (Lin et al., 2017), and CB
Focal Loss (Cui et al., 2019), can solve the problem of the
imbalanced dataset in GCN to some extent, but it does not
consider the relationship between training samples, and fails
to achieve satisfactory performance in dealing with imbalanced
datasets.

Ensemble learning methods are more effective in improving
the classification performance of imbalanced data than data
sampling techniques (Khoshgoftaar et al., 2015). It is challenging
for a single model to classify rare and few samples on an
imbalanced dataset accurately, thus, the overall performance is
limited. Ensemble learning is a process of aggregating multiple
base classifiers to improve the generalization ability of classifiers.
Briefly, ensemble learning uses multiple weak classifiers to make
classification on the dataset. In traditional machine learning,
ensemble learning is used to improve the classification accuracy
of multi-class imbalanced data (Chawla et al., 2003; Seiffert et al.,
2010; Galar et al., 2013; Blaszczynski and Stefanowski, 2015;
Nanni et al., 2015; Hai-xiang et al., 2016). In CNNs, some models
adopt ensemble learning to deal with imbalanced datasets.
Enhanced-random-feature-subspace-based ensemble CNN (Lv
et al., 2021) adaptively resamples the training set in iterations
to get multiple classifiers and forms a cascade ensemble model.
AdaBoost-CNN (Taherkhani et al., 2020) integrates AdaBoost
with a CNN to improve accuracy on imbalanced data.

Inspired by ensemble learning, an ensemble GNN classifier
that can deal with the imbalanced dataset is proposed in this
study. The adaptive boosting (AdaBoost) algorithm is combined
with GNN to train the GNN classifier by serialization, and
the samples are reweighted according to the calculation results.
Based on this, the proposed classifier improved the classification
performance on the imbalanced dataset. The main contributions
of this study are as follows:

• This article uses the ensemble learning to study the imbalanced
dataset problem in GNN for the first time. An Boosting-GNN
model is proposed to deal with imbalanced datasets in semi-
supervised nodes classification. A transfer learning strategy is
also applied to speed up the training of the Boosting-GNN
model.

• Four imbalanced datasets are constructed to evaluate the
performance of the Boosting-GNN. Boosting-GNN uses GCN,
GAT, and GraphSAGE as base classifiers, improving the
classification accuracy on imbalanced datasets.

• The robustness of Boosting-GNN under feature noise
perturbations is discussed, and it is discovered that ensemble
learning can significantly improve the robustness of GNNs.

The rest of this article is organized as follows. Section 2
introduces the related work of dealing with imbalanced data
sets and the application of ensemble learning in deep learning.
In section 3, the principle of the proposed Boosting-GNN is
discussed. Then, four datasets and a proposed method for
performance evaluation are described, and the experimental
results are discussed in section 4. Finally, section 5 concludes the
article.
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2. RELATED WORKS

Due to the prevalence of imbalanced data in practical
applications, the problem of imbalanced data sets has attracted
more and more attention. Recent researches are mainly
conducted in the following four directions:

2.1. Resampling
Resampling can be specifically divided into two types: 1)
Oversampling by copying data in minority classes (Buda et al.,
2018; Byrd and Lipton, 2019). After oversampling, some samples
are repeated in the dataset, leading to a less robust model
and worse generalization performance on imbalanced data. 2)
Undersampling by selecting data in the majority classes (Buda
et al., 2018; Byrd and Lipton, 2019). Undersampling may cause
information loss in majority classes. The model only learns a
part of the overall pattern, leading to underfitting (Shen and Lin,
2016). K-means and stratified random sampling (KSS) (Zhou
et al., 2020) performs undersampling after K-means clustering
for majority classes, and achieves good results.

2.2. Synthetic Samples
The data synthesis methods generate samples similar to samples
of minority classes in the original set. The representative method
is SMOTE (Chawla et al., 2002), and the operations of this
method are as follows. For each sample in a small sample set, an
arbitrary sample is selected from its K-nearest neighbors. Then, a
random point on the line between the sample and the selected
sample is taken as a new sample. However, the overlapping
degree will be increased by synthesizing the same number of
new samples for each minority class. The Borderline-SMOTE
(Han et al., 2005) synthesizes new samples similar to the samples
on the classification boundary. Preprocessing method combining
SMOTE and RST (SMOTE-RSB*) (Ramentol et al., 2011) exploits
the synthetic minority oversampling technique and the editing
technique based on the rough set theory. Geometric SMOTE
(G-SMOTE) (Douzas and Bação, 2019) generates a synthesized
sample for each of the selected instances in a geometric region
of the input space. Adaptive synthetic sampling (ADASYN)
(He et al., 2008) algorithm synthesizes different number of new
samples for different minority classes samples.

2.3. Reweighting
Reweighting typically assigns different weights to different
samples in the loss function. In general, reweighting assigns large
weights to training samples in minority classes (Wang et al.,
2017). Besides, finer control of loss can be achieved at the sample
level. For example, Focal Loss (Lin et al., 2017) designed a weight
adjustment scheme to improve the classification performance of
imbalanced dataset. CB Focal Loss (Cui et al., 2019) introduced
a weight factor inversely proportional to the number of effective
samples to rebalance the loss, reaching the most advanced level
in the imbalanced dataset.

2.4. Ensemble Classifiers
Ensemble classifiers are more effective than sampling methods to
deal with the imbalance problem (Khoshgoftaar et al., 2015). In
GNN models, AdaGCN (Sun et al., 2021) integrates Adaboost
and GCN layers to get deeper network models. Different

from AdaGCN, Boosting-GNN uses GNN as a sub-classifier of
Boosting algorithm to improve the performance on imbalanced
datasets. To our knowledge, we are the first to use ensemble
learning to solve the classification on graph imbalanced datasets.

In addition, there are transfer learning, domain adaptation,
and other methods to deal with imbalance problems. Themethod
based on transfer learning solves the problem by transferring the
characteristics learned from majority classes to minority classes
(Yin et al., 2019). Domain adaptive method processes different
types of data and learns how to reweight adaptively (Zou et al.,
2018). These methods are beyond the scope of this article.

3. THE PROPOSED METHOD

3.1. GCN Model
Given an input undirected graph G = {V , E}, where V and E ,
respectively, denote the set of N nodes and the set of e edges. The
corresponding adjacency matrix A ∈ R

N×N is an N × N sparse
matrix. The entry (i, j) in the adjacencymatrix is equal to 1 if there
is an edge between i and j, and 0, otherwise. The degree matrix D
is a diagonal matrix where each entry on the diagonal indicates
the degree of a vertex, which can be computed as di =

∑

j aij.

Each node is associated with an F-dimensional feature vector,
and X ∈ R

N×F denotes the feature matrix for all nodes. GCN
model of semi-supervised classification has two layers (Kipf and
Welling, 2016), and every layer computes the transformation:

H(l+1) = σ (Z(l+1)),Z(l+1) = ÃH(l)W(l) (1)

where Ã is normalized adjacency obtained by Ã = D− 1
2AD− 1

2 .
W(l) is the trainable weights of the layer. σ (·) denotes an
activation function (usually ReLU), andH(l) ∈ R

N×dl is the input
activation matrix of the łth hidden layer, where each row is a
dl-dimensional vector for node representation. The initial node
representations are the original input features:

H(0) = X (2)

A two-layer GCNmodel can be defined in terms of vertex features
X and Â as:

GCN2−layer(Â,X; θ) = softmax(Â · σ (ÂXW(0))W(1)) (3)

The GCN is trained by the back propagation learning algorithm.
The last layer uses the softmax function for classification, the
cross-entropy loss over all labeled examples are evaluated:

L = −
∑

|YL|

∑

i∈YL

loss(yi, z
L
i ) (4)

Formally, given a dataset with n entities (X,Y) =
{(

xi, yi
)}N

i=1
,

where xi represents the word embedding for entity i, and
yi ∈ {1, · · · · ··,C} represents the label for xi. Multiple weak
classifiers are combined with AdaBoost algorithm to make a
single strong classifier.
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3.2. Proposed Algorithm
Since ensemble learning is an effective method to deal
with imbalanced datasets, Boosting-GNN adopts the Adaboost
algorithm proposed by Hastie et al. (2009) to design an ensemble
strategy for GCNs, which can train the GCNs sequentially. In
Boosting-GNN, the weight of each training sample is assigned
according to the degree to which the sample was not correctly
trained in the previous classifier.

3.2.1. Aggregation
Boosting-GNN aggregates GNN through the Adaboost algorithm
to improve the performance on imbalanced datasets. First, the
overall formula of Boosting-GNN can be expressed as:

FM(x) =
M
∑

m=1

αm ∗ Gm(x; θm) (5)

where FM(x) is the ensemble classifier obtained afterM rounds of
training, and x denotes samples. A new GNN classifierGm(x; θm)
is trained in each round, and θm is the optimal parameter learned
by the base classifier. The weight of the classifier αm denotes the
importance of classifier, and it could be obtained according to the
error of the classifier. Based on (5), Formula (6) can be obtained:

Fm(x) = Fm−1(x)+ αm ∗ Gm(x; θm) (6)

Fm−1(x) is the weighted aggregation of the previously trained
base classifier. In each iteration, a new base classifier Gm(x; θm)
and its weights αm are solved. Boosting-GNN uses an exponential
loss function:

L(y, F(x)) = e−y∗F(x) (7)

According to the meaning of the loss function, if the classification
is correct, the exponent part is a negative number, otherwise, it is
a positive number. As for training the base classifier, the training
dataset is T =

{

(xi, yi)
N
i=1

}

, xi is the feature vector of the ith node;
yi is the category label of the ith node, and yi ∈ {1, . . . ,C}, where
C is the total number of classes.

3.2.2. Reweight Samples
Assume that during the first training, the samples are evenly
distributed and all weights are the same. The data weights are
initialized by D1 =

{

w1
1,w

1
2, . . . ,w

1
N

}

, where w1
i = 1/N, i =

1, . . . ,N, and N is the number of samples. Training M networks
in sequence on the training set, the expected loss εm at the mth
iteration is:

εm =
∑

yi 6=Gm(xi;θm)
wm
i =

N
∑

i=1

wm
i I(yi 6= Gm(xi; θm)) (8)

where I is the indicator function. When the input is true, the
function value is 1; otherwise, the function value is 0. εm is
the sum of the weights of all misclassified samples. αm can be
treated as a hyper-parameter to be tuned manually, or as a model
parameter to be optimized automatically. In our model, to keep
it simple, αm is assigned according to εm.

αm =
1

2
ln

1− εm

εm
(9)

αm decreases as εm increases. The first GNN is trained on all
the training samples with the same weight of 1/N, indicating
the same importance for all samples. After the M estimators
are trained, the output of GNN can be obtained, which is a
C-dimensional vector. The vector contains the predicted values
of C classes, which indicate the confidence of belonging to the
corresponding class. For the mth GNN input sample xi, the
output vector is pm(xi). p

m
k
(xi) is the kth element of pm(xi), where

k = 1, 2, · · ·,C.

wm+1
i = wm

i e
(

−a C−1
C yi log(pm(xi))

)

(10)

wm
i is the weight of the ith training sample of the mth GNN. yi

is the one-hot label vector encoded according to the ith training
sample. Formula (10) is obtained based on Adaboost’s Samme.r
algorithm (Hastie et al., 2009), which is used to update the weight
of the sample. If the output vector of the misclassified sample is
not related to the output label, a large value is obtained for the
exponential term, and the misclassified sample will be assigned
a larger weight in the next GNN classifier. Similarly, a correctly
classified sample will be assigned a smaller weight in the next
GNN classifier. In summary, the weight vector D is updated so
that the weight of the correctly classified samples is reduced and
the weight of the misclassified samples is increased.

After the weights of all training samples for the current GNN
are updated, they are normalized by the sum of weights of
all samples. When the classifier Fm(x) is trained, the weight
distribution of the training dataset is updated for the next
iteration. When the subsequent GNN-based classifier is trained,
the GNN training does not start from a random initial condition.
Instead, the parameters learned from the previous GNN are
transferred to the (m + 1)th GNN, so GNN is fine-tuned based
on the previous GNN parameters. The use of transfer learning
can reduced the number of training epochs and make the model
fit faster.

Moreover, due to the change of weight, the subsequent GNN
focuses on untrained samples. The subsequent GNN performs
training from scratch on a small number of training samples,
which easily causes overfit. For a large number of training
samples, the expected label output pm(xi) by the GNN after
training has a strong correlation with the real label yi. For the
subsequent GNN classifier, the trained samples have a smaller
weight than the sample without previous GNN training.

3.2.3. Testing With Boosting-GNN
After training the M base classifiers, Equation (11) can be used
to predict the category of the input sample. The outputs of M
base classifiers are summed. In the summed probability vector,
the category with the highest confidence is regarded as the
predicted category.

Q(x) = argmax
k

M
∑

m=1

hmk (x) (11)

hm
k
is the classification result of the kth sample made by the mth

basis classifier, k = 1, 2, · · ·,C, which can be calculated from the
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FIGURE 1 | Schematic of the proposed Boosting-GNN.

Equation (12).

hmk = (C − 1) ·

(

log
(

pmk (x)
)

−
1

C

C
∑

i=1

log
(

pmi (x)
)

)

(12)

Where pmi (x) is the kth element of the output vector of the mth
GCN classifier for the input x. Figure 1 shows the schematic
of the proposed Boosting-GNN. The first GNN is first trained
with the initial weight D1. Then, based on the output of the first
GNN, the data weight D2 used to update the second GNN are
obtained. In addition, the parameters learned from the first GNN
are transferred to the second GNN. After the mth base classifier
is trained in order, all base classifiers are aggregated to obtain the
final Boosting-GNN classifier.

The pseudo-code for an Boosting-GNN is exhibited in
Algorithm 1. In each iteration of sequential learning, the
classifiers are first trained with corresponding training data and
weights. Then, according to the training results of the classifiers,
the data weights are updated for the next iteration. Both
operations are performed untilM base classifiers are trained.

4. EXPERIMENTS AND ANALYSIS

4.1. Experimental Settings
The proposed ensemble model is evaluated on three well-known
citation network datasets prepared by Kipf and Welling (2016):
Cora, Citeseer, and Pubmed (Sen et al., 2008). These datasets are
chosen because they are available online and are used by our
baselines. In addition, experiments are also conducted on the
Never-Ending Language Learning (NELL) dataset (Carlson et al.,
2010). As a bipartite graph dataset extracted from a knowledge
graph, NELL has a larger scale than the citation datasets, and it
has 210 node classes.

4.1.1. Citation Networks
The nodes in the citation datasets represent articles in different
fields, and the labels of nodes represent the corresponding journal
where the articles were published. The edges between two nodes
represent the reference relationship between articles. If an edge

Algorithm 1 Framework of the Boosting-GNN algorithm.

Input: Training set T =
{

(x1, y1), . . . , (xN , yN)
}

;
Output: Ensemble of classifiers FM(x);
1: Initialization: w1

i = 1/N for all 1 ≤ i ≤ N
2: form = 1, 2, · · · ,N do;
3: ifm = 1 then
4: Train GNN classifier with weighted sample set

{T,D1};
5: else

6: Transfer the learning parameters of the (m − 1)th
GNN to themth GNN classifier;

7: Train the mth GNN classifier with weighted sample
set;

8: end if

9: Calculate the output category estimated for the C classes
of themth GNN classifier pm

k
(x), where k = 1, 2, · · · ,C;

10: Calculate the training error εm of the mth classifier
according to (8);

11: Assign the weight αm to the classifier based on εm using
(9);

12: Update the sample weight Dm+1 according to p
m
k
(x), and

normalize the sample weight Dm+1;
13: end for

TABLE 1 | Datasets used for experiments.

Dataset Cora Citeseer Pubmed NELL

Vertices 2,708 3,327 19,717 65,755

Edges 5,429 4,732 44,338 266,144

Classes 7 6 3 210

Features 1,433 3,703 500 5,414

exists between the nodes, there is a reference relationship between
the articles. Each node has a one-hot vector corresponding to the
keywords of the article. The task of categorization is to classify the
domain of unlabeled articles based on a subset of tagged nodes
and references to all articles.

4.1.2. Never-Ending Language Learning
The pre-processing schemes described in Yang et al. (2016) are
adopted in this study. Each relationship is represented as a triplet

(e1, r, e2), where e1, r, and e2, respectively, represent the head
entity, the relationship, and the tail entity. Each entity E is
regraded as a node in the graph, and each relationship r consists
of two nodes r1 and r2 in the graph. For each (e1, r, e2), two edges

(e1, r1) and (e2, r2) are added to the graph. A binary, symmetric
adjacency matrix from this graph is constructed by setting entries
Aij = 1, if one or more edges are present between nodes i and j
(Kipf andWelling, 2016). All entity nodes are described by sparse
feature vectors with the dimension of 5,414. Table 1 summarizes
the statistics of these datasets.
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FIGURE 2 | Visualization of synthetic imbalanced datasets. (A) shows the classical Cora training set. (B) shows the training set when s is fetched 15. (C) shows the

training set when s is fetched 5. The mean degrees of the nodes in (A–C) are 0.30, 0.30, 0.37 respectively.

4.1.3. Synthetic Imbalanced Datasets
Different synthetic imbalanced datasets are constructed based on
the datasets mentioned above. According to the Pareto Principle
that 80% of the consequences come from 20% of the causes,
one of the classes is randomly selected as the majority category
for simplicity. The remaining classes are regraded as minority
classes. In Kipf and Welling (2016), 20 samples of each class
were selected as the training set, and to keep the number of
training samples broadly consistent, the datasets are described in
Equation (13).

ni =
{

30 i = c
s i 6= c

(13)

ni is the number of samples in category i, c is the randomly
selected category, C is the number of classes in the dataset,
and s is the number of samples in the minority category. By
changing s, the number of minority category samples is altered,
thus changing the degree of imbalance in the training set. For
example, in the Cora dataset, there are seven classes of samples.
So, the number of samples in one class is fixed to 30, and the
number of samples in the other six classes is changed. Each
time the training is conducted, a certain number of samples are
randomly selected to form the training set. The test set is divided
following the method in Kipf and Welling (2016) to evaluate the
performance of different models.

Synthetic imbalanced datasets are constructed by node
dropping. Given the graph G, node dropping will randomly
discard vertices along with their connections until the number
of different classes of nodes matches the setting. In node
dropping, the dropping probability of each node follows a
uniform distribution. We visualize the synthetic datasets in
Figure 2 and use different colors to represent different categories
of nodes. Due to the sparsity of the adjacency matrix of the graph
data set, imbalanced sampling of the graph data does not reduce
the average degree of the nodes. Although disconnect parts of
the graph, missing part of vertices does not affect the semantic
meaning of G.

4.1.4. Parameter Settings
In Boosting-GNN, five GNN base classifiers are used. Boosting-
GNN, respectively, uses GCN, GraphSAGE, and GAT as the
base classifiers. All networks are composed of two layers, and

all models are trained for a maximum of 100 epochs (training
iterations) using Adam optimizer. For Cora, Citeseer, and
Pubmed datasets, the number of hidden units is 16, and L2
regularization is 5e-4. For NELL, the number of hidden units is
128, and L2 regularization is 1e-5.

The following sets of hyperparameters are used for Boosting-
GNN: For Boosting-GCN, the activation function is ReLU. The
learning rates on Cora, Citeseer, Pubmed, and NELL are 1e-
2, 1e-2, 1e-2, 5e-3, respectively. For Boosting-GraphSAGE, the
activation function is ReLU. The sampled sizes (S1 = 25, S2 =
10) is used for each layer. The learning rates on Cora, Citeseer,
Pubmed, and NELL are 1e-3, 1e-3, 5e-4, 1e-4, respectively. For
Boosting-GAT, the first-layer activation function is ELU and
the second-layer activation function is softmax. The number of
attention heads K is 8. The learning rates on Cora, Citeseer,
Pubmed and NELL are 1e-3, 1e-3, 1e-3, 5e-4, respectively.

For GCN, GraphSAGE, GAT, SGC, N-GCN, and other
algorithms, the models are trained for a total of 500 epochs. The
highest accuracy is taken as the result of a single experiment,
and the mean accuracy of 10 runs with random sample split
initializations is taken as the final result. A different random seed
is used for every run (i.e., removing different nodes), but the 10
random seeds are the same acrossmodels. All the experiments are
conducted on a machine equipped with two NVIDIA Tesla V100
GPU (32 GB memory), 20-core Intel Xeon CPU (2.20 GHz), and
192 GB of RAM.

4.2. Baseline Methods
The performance of the proposed method is evaluated and
compared to that of three groups of methods:

4.2.1. GCN Methods
In experiments, our Boosting-GNN model is compared with the
following representative baselines:

• Graph convolutional network (Kipf and Welling, 2016)
produces node embedding vectors by truncating the
Chebyshev polynomial to the first-order neighborhoods.

• GAT (Velickovic et al., 2018) generates node embedding
vectors for each node by introducing an attention mechanism
when computing node and its neighboring nodes.
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TABLE 2 | Summary of results in terms of classification accuracy (in percentage).

Model Cora Citeseer Pubmed NELL

GCN 65.6 ± 0.8 62.2 ± 0.5 71.8 ± 0.6 68.5 ± 1.4

GraphSAGE 66.3 ± 0.8 59.7 ± 0.6 69.7 ± 0.6 69.6 ± 1.3

GAT 67.4 ± 0.7 60.3 ± 0.6 66.2 ± 0.7 70.3 ± 1.6

N-GCN 67.3 ± 0.6 65.4 ± 0.3 72.3 ± 0.3 73.3 ± 1.2

SGC 69.7 ± 0.8 59.4 ± 0.5 66.9 ± 0.5 67.1 ± 1.4

GCN-FL 67.8 ± 1.2 65.1 ± 0.8 72.4 ± 0.8 71.2 ± 1.2

GraphSAGE-FL 66.5 ± 1.2 59.5 ± 0.8 69.7 ± 1.3 72.1 ± 1.1

GAT-FL 67.4 ± 1.3 61.3 ± 0.7 69.2 ± 1.2 72.6 ± 1.0

GCN-CB 70.6 ± 0.9 65.1 ± 0.6 72.3 ± 0.8 72.9 ± 1.4

GraphSAGE-CB 66.3 ± 0.9 59.7 ± 0.9 70.1 ± 0.9 69.8 ± 1.4

GAT-CB 67.6 ± 1.0 60.3 ± 1.0 69.3 ± 0.9 73.4 ± 1.5

GCN-RS 70.4 ± 1.0 61.8 ± 1.1 70.4 ± 1.1 68.9 ± 2.1

Boosting-GCN 73.2 ± 0.7 65.7 ± 0.7 73.1 ± 0.7 74.9 ± 1.0

Boosting-GraphSAGE 72.4 ± 1.0 63.2 ± 1.0 70.4 ± 1.1 75.3 ± 1.2

Boosting-GAT 73.5 ± 0.5 64.3 ± 0.8 69.7 ± 0.7 75.5 ± 1.0

The highest performance of models is highlighted in boldface.

• GraphSAGE (Hamilton et al., 2017) generates the embedding
vector of the target vertex by learning a function that
aggregates neighboring vertices. The default settings of
sampled sizes (S1 = 25, S2 = 10) is used for each layer in
GraphSAGE.

• SGC (Wu et al., 2019) reduces model complexity by
eliminating the non-linearity between GCN layers,
transforming a non-linear GCN into a simple linear model
that is more efficient than GCNs and other GNN models for
many tasks.

• N-GCN (Abu-El-Haija et al., 2019) obtains the feature
representation of nodes by convolving in the neighborhood of
nodes at different scales and then fusing all the convolution
results. These methods can be regarded as ensemble models.

4.2.2. Resampling Method
The KSS (Zhou et al., 2020) method is used for performance
comparison. KSS is a kind of K-means clustering method based
on undersampling and achieves state-of-the-art performance on
an imbalanced medical dataset.

4.2.3. Reweighting Method
Boosting-GNN is compared with GCN, GraphSAGE, and GAT.
These classic models use Focal Loss (Lin et al., 2017) and CB-
Focal (Cui et al., 2019), and achieve good classification accuracy
on imbalanced datasets.

4.3. Node Classification Accuracy
Our method is implemented in Keras. For the other methods, the
code from the Github pages introduced in the original articles
is used. For synthetic imbalanced datasets, s is set to 10. The
classification accuracy of GCN, GraphSAGE, GAT, SGC, N-GCN,
and Boosting-GNN method is listed in Table 2.

Results in Table 2 show that Boosting-GNN outperforms
the classic GNN models and state-of-the-art methods for
processing imbalanced datasets. The N-GCN obtains a feature
representation of the nodes by convolving around the nodes at
different scales and then fusing all the convolution results, which
can slightly improve the classification compared to the GCN.
Resampling method and Reweighting method can improve the
accuracy of GNN on imbalanced datasets, but the improvement
is very limited. Since RS is not suitable for graph data, RE
is slightly better than RS. Boosting-GNN can significantly
improve the classification accuracy of GNN, with an average
increase of 6.6, 3.7, 1.8, and 5.8% compared with the original
GNN model in Cora, Citeseer, Pubmed, and NELL datasets,
respectively.

Implementation details are as follows: Following the method
in Kipf and Welling (2016), 500 nodes are used as the
validation set and 1,000 nodes as the test set. Besides, for a fair
performance comparison, the same training procedure is used for
all the models.

4.4. Effect of Different Levels of Imbalance
in the Training Data
The level of imbalance in the training data is changed by
gradually increasing s from 1 to 10. The evaluation results of
Boosting-GNN, GCN, GraphSAGE, and GAT are compared,
which are shown in Figure 3.

Results in Figure 3 show that classification accuracy of
different models varies with s. The shadows indicate the range
of fluctuations in the experimental results. When s is relatively
small, the degree of imbalance in the training data is large. In
this case, the classification accuracy of Boosting-GNN is higher
than that of GCN, GraphSAGE, and GAT. As s decreases, the
performance advantage of Boosting-GNN increases gradually.
Experimental results show that when the sample imbalance is
large, aggregation can significantly reduce the adverse effects
caused by sample imbalance and improve the classification
accuracy. On the Cora dataset, the accuracy of Boosting-GCN,
Boosting-GraphSAGE, Boosting-GAT exceeds that of GCN,
GraphSAGE, and GAT by 10.3, 8.0, and 6.1% respectively at
most.

4.5. Impact of Numbers of Base Classifiers
The number of base classifiers is changed to evaluate the
classification accuracy on imbalanced datasets with different base
classifiers. We compare the classification results of Boosting-
GCN and GCN, and the experimental results are listed in
Table 3.

The experimental results show that aggregation can
contribute to performance improvements. As the number
of base classifiers increases, the performance improvement is
more and more significant. As the number of base classifiers
increases from 3 to 11, the number of base classifiers is
odd. The data of Cora, Pubmed, and Citeseer are verified,
and the division of train set and test set is the same as
that of Section 4.3. Ten experiments are conducted, and
each base classifier are trained with 100 epochs and 200
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FIGURE 3 | The classification accuracy of Boosting-GNN, graph convolutional network (GCN), GraphSAGE, and GAT on imbalanced datasets.

TABLE 3 | Results of Boosting-GCN with varying numbers of base classifiers in terms of accuracy (in percentage).

Numbers of base classifiers
epoch:100 epoch:200

Cora Citeseer Pubmed Cora Citeseer Pubmed

3 75.7 ± 2.4 65.5 ± 2.5 63.9 ± 2.4 75.4 ± 2.1 65.6 ± 1.1 72.0 ± 0.8

5 73.2 ± 0.7 65.7 ± 0.7 73.1±0.7 75.6 ± 2.3 65.9 ± 0.5 73.1 ± 1.1

7 73.5 ± 1.4 64.5 ± 0.5 73.5 ± 1.4 74.1 ± 2.7 64.7 ± 0.4 73.5 ± 0.8

9 72.0 ± 0.5 63.6 ± 0.5 72.0 ± 0.5 73.9 ± 2.0 64.2 ± 0.3 72.6 ± 1.1

11 73.0 ± 0.7 64.5 ± 0.6 73.0 ± 0.7 74.1 ± 2.3 65.1 ± 0.3 71.5 ± 0.7

The highest performance of models is highlighted in boldface.

epochs. The training samples are randomly selected for each
experiment.

To sum up, when the number of base classifiers is
small, the classification accuracy increases with the number
of base classifiers. When the number of base classifiers
reaches a certain degree, the accuracy decreases due to
overfitting.

4.6. Tolerance to Feature Noise
The proposed method is tested under feature noise perturbations
by removing node features randomly (Abu-El-Haija et al.,
2019). This test is practical, because, in the Citation
networks datasets, features could be missing as the authors

article might forget to include relevant terms in the article
abstract. By removing different features from a node, the
performance of Boosting-GNN, GCN, GraghSAGE, and GAT is
compared.

Figure 4 shows the performance of different methods when
features are removed. As the number of removed features
is increased, Boosting-GNN achieves better performance than
GCN, GraghSAGE, and GAT. The greater the proportion
of features removed, the greater the performance advantage
of Boosting-GNN over other models. This suggests that
our approach can restore the deleted features to some
extent by pulling in the features directly from nearby and
distant neighbors.
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FIGURE 4 | Classification accuracy for the Cora dataset. The features are removed randomly, and the result of 10 runs is averaged. A different random seed is used

for every run (i.e., removing different features from each node), but the same 10 random seeds are used across models.

FIGURE 5 | Classification results of Boosting-GCN and M-GCN with different base classifiers. (A) Cora, (B) Citeseer, and (C) Pubmed.

4.7. Why Ensemble Method Useful?
This section analyzes why the ensemble learning approach works
on imbalanced datasets and the advantages of Boosting-GNN
over traditional GNN. The process of ensemble learning can be
divided into two steps:

1) Generatingmultiple base classifiers for integration. Ourmodel
could adjust the weight of samples, adopt specific strategies
to reconstruct the dataset, and assign smaller weights to
the determined samples and larger weights to the uncertain
samples. It makes subsequent base classifiers focus more
on samples that are difficult to be classified. In general,
the samples of minority classes in imbalanced datasets are
more likely to be misclassified. By changing the weights of
these samples, subsequent base classifiers can focus more on
these samples.

2) Combining the results of the base classifiers. The weight of the
classifier is obtained according to the error of the classifier.
The base classifier with high classification accuracy has greater
weight and a greater influence on the final combined classifier.
In contrast, the base classifier with low classification accuracy
has less weight and impact on the final combined classifier.

We independently trained M GCNs using the same strategy
described in Equation (11) and named this method M-GCN.
We compare Boosting-GNN with M-GCN, which is trained

according to the hard voting frameworks. Using the synthetic
imbalanced datasets in Section 4.3, we changedM and conducted
several experiments. Ten runs with different random seeds were
conducted to calculate the mean and SD. The experimental
results are shown in Figure 5, and the classification results of
GCN are represented by dotted lines. By effectively setting the
number of base classifiers, Boosting-GCN significantly improves
classification accuracy compared with M-GCN and GCN.

Next, in order to study the misclassification of samples, we
observed the confusion matrix. To increase the imbalance, s
is set to 5. The last class is selected as the majority class,
and the other classes are selected as the minority classes
for convenience. Ten experiments are conducted, and the
confusion matrix of the average experimental results is shown
in Figure 6. Compared with the confusion matrix of the
classification performed by GCN, Boosting-GCN achieves a
better classification performance.

Due to the sample imbalance, the classifier tends to divide the
samples into the majority class, which is reflected by the fact that
the last column of the confusionmatrix usually has themaximum
value (with the brightest color). Compared with GNN, Boosting-
GNN improves the performance to a certain extent, especially on
the Cora dataset. Based on the aggregation of base estimators, the
values on the diagonal of the confusion matrix increase, and the
values in the last column of the confusion matrix decrease.
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FIGURE 6 | Confusion matrix for the Cora, Pubmed, and Citeseer datasets with 30 labeled nodes for majority class and five labeled nodes for the minority class. (A)

Boosting-GCN on Cora. (B) Boosting-GCN on Citeseer. (C) Boosting-GCN on Pubmed. (D) GCN on Cora. (E) GCN on Citeseer. (F) GCN on Pubmed.

TABLE 4 | Comparison of running time when using different number of GCN base

classifiers.

Method 5-classifier 7-classifier 9-classifier

M-GCN 28.76 s 39.52 s 51.04 s

Boosting-GCN-t 10.44 s 13.43 s 18.03 s

Boosting-GCN-w/o 18.36 s 27.64 s 34.83 s

We use Cora and train each base classifier for 100 epochs.

In summary, Boosting-GNN integrates multiple GNN
classifiers to reduce the effect of overfitting to a certain degree.
Moreover, Boosting-GNN reduces the deviation caused by
a single classifier and achieves better robustness. Boosting-
GNN is an improvement of traditional GNN and makes
AdaBoost compatible with GNN. Boosting-GNN achieves higher
classification accuracy than a single GNN on imbalanced datasets
with the same number of learning epochs.

4.8. Analysis of Training Time
In this section, we conduct a time-consuming analysis of the
experiment. We measure the training time on an NVIDIA Tesla
V100 GPU. The time required to train the original GCN model
for 100 epochs is 6.11s. The time consumed by M-GCN and
Boosting-GCN is shown in the Table 4. Boosting-GCN-t and

Boosting-GCN-w/o denote Boosting-GCNwith transfer learning
and Boosting-GCN without migration learning, respectively.

Compared to GCN, Boosting-GCN consumes exponentially
more time. However, Boosting-GCN reduces the training time
by about 50% compared to M-GCN. The application of transfer
learning can significantly reduce the time consumed, and models
can achieve similar accuracy.

5. CONCLUSION

A multi-class AdaBoost for GNN, called Boosting-GNN, is

proposed in this article. In Boosting-GNN, several GNNs are

used as base estimators, which are trained sequentially. Also,

the errors of a previous GNN are used to update the weights

of samples for the next GNN to improve performance. The

weights of training samples are incorporated in to the cross-
entropy error function in the GNN back propagation learning

algorithm. The appliance of transfer learning can significantly
reduce the time consumed for computation. The performance
of the proposed Boosting-GNN for processing imbalanced data
is tested. The experimental results show that Boosting-GNN
achieves better performance than state-of-the-arts on synthetic
imbalanced datasets, with an average performance improvement
of 4.5%.
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Deep neural networks (DNNs) are proven vulnerable to attack against adversarial

examples. Black-box transfer attacks pose a massive threat to AI applications without

accessing target models. At present, the most effective black-box attack methods

mainly adopt data enhancement methods, such as input transformation. Previous data

enhancement frameworks only work on input transformations that satisfy accuracy or

loss invariance. However, it does not work for other transformations that do not meet

the above conditions, such as the transformation which will lose information. To solve

this problem, we propose a new noise data enhancement framework (NDEF), which only

transforms adversarial perturbation to avoid the above issues effectively. In addition, we

introduce random erasing under this framework to prevent the over-fitting of adversarial

examples. Experimental results show that the black-box attack success rate of our

method Random Erasing Iterative Fast Gradient Sign Method (REI-FGSM) is 4.2% higher

than DI-FGSM in six models on average and 6.6% higher than DI-FGSM in three defense

models. REI-FGSM can combine with other methods to achieve excellent performance.

The attack performance of SI-FGSM can be improved by 22.9% on average when

combined with REI-FGSM. Besides, our combined version with DI-TI-MI-FGSM, i.e.,

DI-TI-MI-REI-FGSM can achieve an average attack success rate of 97.0% against

three ensemble adversarial training models, which is greater than the current gradient

iterative attack method. We also introduce Gaussian blur to prove the compatibility of

our framework.

Keywords: adversarial examples, black-box attack, transfer-based attack, data enhancement, transferability

1. INTRODUCTION

In recent years, the data-driven deep neural network (DNNs) has developed rapidly due to its
excellent performance. It has made outstanding achievements in image classification (He et al.,
2016; Szegedy et al., 2017), target detection (Redmon and Farhadi, 2018; Bochkovskiy et al., 2020),
face recognition (Deng et al., 2019), automatic driving (Bojarski et al., 2016), natural language
processing (Gehring et al., 2017; Vaswani et al., 2017) and so on. Unfortunately, the current deep
learningmodel has been proved to be not robust, and they are vulnerable to adversarial examples. In
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the field of computer vision, adversarial examples are specially
tailored to the target model, which can make the model
misclassified but are visually similar to the original sample.
Subsequently, with the development of adversarial attack and
defense, its attack range is gradually expanded to speech
recognition model (Carlini and Wagner, 2018), reinforcement
learning model (Behzadan and Munir, 2017), graph neural
network (Dai et al., 2018), etc.

The adversarial attack was first proposed by Szeged (Szegedy
et al., 2013), and they use the L-BFGS optimization algorithm
to find adversarial examples. Later, DeepFool (Moosavi-Dezfooli
et al., 2016; Carlini and Wagner, 2017) and other optimization-
based algorithms are proposed, but they focus on meeting
established optimization goals in white-box attacks. However,
these optimization-based methods take too much time and have
poor transferability in black-box attacks. A black-box attack
refers to the attack that attacker cannot know the network
structure, parameters, and other information of the attacked
model. Black-box attacks can be divided into three categories:
scores-based, decision-based, and transfer-based attacks. In this
paper, we discuss the more difficult black-box transfer attacks.
Papernot et al. (2016) find that adversarial examples generated
by one model can attack another model. The transferability of
adversarial examples is similar to the generalization of model
training. The latter is to train a robust model to classify the
samples correctly, and the former is to train a robust sample
so that it can successfully attack various models. Tramér et al.
(2017) show that using the integrated model can train robust
adversarial examples with stronger attack performance. However,
simply adding pre-models requires a lot of storage space and time
cost; hence researchers turn their attention to data enhancement,
such as Dong et al. (2019), Lin et al. (2019), and Xie et al. (2019).
These works essentially make use of the translation invariance,
resize invariance, scaling invariance, and other properties of
convolutional neural network (CNN), but when it exceeds a
certain transformation range, the above properties will not hold,
and the method based on data enhancement will fail. Based on
this problem, we propose a NDEF, which solves the problem
of limited change range. Specifically, we only perform input
transformations against adversarial perturbations instead of the
entire image. This avoids the trouble of misclassification of
the original image in a wide range of changes. In addition,
inspired from Zhong et al. (2020), we introduce a new
data enhancement method in this framework, namely random
erasing, which can effectively avoid the adversarial examples
falling into an over-fitting state. Experiments show that the
average success rate of our method is 4.2% higher than DI-
FGSM and 2.5% higher than SI-FGSM on average, and DI-TI-
MI-FGSM combined with our method can achieve an average
attack success rate of 97.0% against three ensemble adversarial
training models.

Our main contributions are summarized as follows.

• We propose a noise data enhancement framework
(NDEF), which effectively solves the problem that some
transformations, such as random erasing and Gaussian blur,
that do not satisfy accuracy invariance cannot work in the

previous framework. These input transformation methods
can work in our framework.
• We introduce random erasing as an input transform into the

gradient iterative attack for the first time and call it Random
Erasing Iterative Fast Gradient SignMethod (REI-FGSM). The
experimental results show that the attack success rate of our
method is 4.2% higher than DI-FGSM and 2.5% higher than
SI-FGSM on average. Ourmethod can be combined with other
gradient iteration methods. DI-TI-MI-REI-FGSM can achieve
an average attack success rate of 97.0% against three ensemble
adversarial training models, which is greater than the current
gradient iterative attack method.

2. RELATED WORK

2.1. Adversarial Attack
Szegedy et al. first produce adversarial examples using box
constraint algorithm L-BFGS. However, this method requires
huge costs; hence (Goodfellow et al., 2015) propose a FGSM
to generate adversarial examples. This method belongs to the
one-step iterative attack method, aiming to find the direction
of maximizing the loss function. Subsequently, Kurakin et al.
(2016) propose a multistep iterative attack method I-FGSM
based on FGSM, which can ensure that the adversarial examples
can find the direction of the maximum loss function in each
iteration. I-FGSM can achieve excellent performance in white
box attack, but the attack performance of black-box is poor. This
is because I-FGSM is easy to fall into over-fitting on the substitute
model. Therefore, many works begin to study how to improve
the transferability of adversarial examples. At present, black-box
transfer attacks can be divided into four categories, i.e., based on
gradient information mining, based on data enhancement, based
on model enhancement, and intermediate-layers attack.

2.1.1. Gradient Information Mining Methods
Gradient information mining methods refer to various methods
that attackers deal with gradient after gradient back-iteration
to adjust the current gradient, propagation. Dong et al. (2018)
propose MI-FGSM, which uses the momentum in the gradient
iteration process to stabilize the gradient direction and escape
from the local extremum. Similar to MI-FGSM, NI-FGSM (Lin
et al., 2019) escapes local extremum faster by introducing
Nesterov acceleration gradient. Wang and He (2021) propose
variance tuning MI-FGSM, as VMI-FGSM, which uses the
gradient variance of the previous iteration to adjust the current
gradient, stabilize the update direction, and avoid poor local
optimization in the iteration process. Wu et al. (2018) use
Gaussian noise to simulate local fluctuations in substitute models
to improve transferability. Gao et al. (2020) find that increasing
the step size can increase the transferability, but it can lead to
gradient overflow; hence, they propose PI-FGSM, which uses
pre-trained convolution kernels to project the proposed overflow
information to the surrounding area to improve transferability.
Wu et al. (2020a) use the skip structure of the residual network
to improve the transferability. Specifically, the gradient of the
residual network is decomposed, and the attenuation parameter
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is introduced to reduce the gradient from the residual block
and pay more attention to the gradient information flow from
the bottom.

2.1.2. Data Enhancement Methods
Data enhancement methods are methods that an attacker
performs a series of transformations on a sample before entering
a model to enhance transferability. DI-FGSM (Xie et al.,
2019) improves the transferability of adversarial examples by
introducing random resizing and random padding for input
in the gradient iteration process. Using the scale invariance of
CNN, SI-FGSM (Lin et al., 2019) introduces scale transformation
in the gradient iteration process to improve the transferability
of adversarial examples. TI-FGSM (Dong et al., 2019) uses
the translation invariance of CNN and replaces the translation
operation with pre-trained convolution to save substantial time
and space costs. Zou et al. (2020) find that TI-FGSM can be
regarded as a Gaussian blur, and the information of normal
image will be lost by the Gaussian blur, while the vertical
and horizontal stripes can alleviate this phenomenon. They
further find that the larger the scaling ratio of DI-FGSM
will generate more stripes, which will make the mitigation
effect better. Based on this, they propose resized-diverse-inputs
methods, which can effectively improve transferability. Wu et al.
(2021) train an adversarial transformation network to replace
previous transformation algorithms. Specifically, they first train

an adversarial transformation network using the maximum
and minimum, which can effectively correct the adversarial
examples while keeping the original samples unchanged. Then
they combine adversarial transformation networks with the
target model and attack them. The previous work is to perturb a
single image. Wang et al. (2021a) propose Admix Attack Method
(AAM), which integrates some information of other categories of
images into the original category to enhance transferability.

2.1.3. Model Enhancement Methods
Model enhancement methods refer to the methods by which
an attacker improves transferability by model integration or
transformation. Liu et al. (2017) propose a model-ensemble
attackmethod that can effectively attack robust black-boxmodels
for adversarial training. Li et al. (2020) erode the dropout layer
and skip the connection layer of the model to obtain rich network
models at low cost and then improve transferability through
vertical integration.

2.1.4. Intermediate-Layers Attack Methods
Intermediate-layers attack methods launch attacks by using
information from the network middle layer instead of the logit
layer. Inkawhich et al. (2020) use the Euclidean distance to
reduce the discrepancy between the intermediate source and
target features to achieve target attacks, but this pixel-wise
Euclidean distance would impose a spatial-consistency constraint

FIGURE 1 | The first line shows the average classification accuracy (%) and average loss value under normal model and defense model with different area ratios by

random erasing. The second line shows the average classification accuracy (%) and average loss value under normal model and defense model with different kernel

sizes by Gaussian blur. The results are averaged over 1,000 images.
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on them. To solve this problem, Gao et al. (2021) propose
Pair-wise Alignment Attack (PAA) and Global-wise Alignment
Attack (GAA), which use statistic alignment. Specifically, PAA
uses maximum mean discrepancy (MMD) to estimate the
difference between the intermediate source and target features,
while GAA uses mean and variance to achieve this goal.
Inkawhich et al. (2020) propose Feature Distribution Attack
(FDA), which first trains a binary network to extract the
feature distribution of classes and layers. Then they maximize
the probability of specific classes in the auxiliary network
to accomplish target attack. Wu et al. (2020b) find that the
attention regions of different models are almost the same.
Based on this, they propose an Attention-guided Transfer Attack
(ATA) method, and add the attention region loss into the loss
function to make the attention region change more to enhance
transferability. Wang et al. (2021b) propose Feature Importance-
aware Attack (FIA), which uses a random transformation
to destroy the key features that determine the decisions of
different models, and then gradient aggregation is carried out to
improve transferability.

2.2. Adversarial Defense
Adversarial training is currently considered to be the strongest
method defending adversarial examples, which add adversarial
examples during model training. These works (Szegedy et al.,
2013; Goodfellow et al., 2015) first mention adversarial training.

Subsequently, Madry et al. (2019) analyze adversarial training
from the perspective of robust optimization for the first
time, propose a min-max framework, and use the adversarial
examples generated by Project Gradient Descent (PGD) to
achieve the approximate solution of the framework. Input
transformation is another common defense method. Madry et al.
(2019) find that JPEG compression can effectively suppress
small perturbation adversarial examples. Xie et al. (2017)
mitigates the impact of attacks by random resizing and random
padding. In recent years, some works (Raghunathan et al.,
2018; Fischer et al., 2020) has begun to focus on certified
defense methods.

3. METHODS

3.1. Problem Definition
3.1.1. Adversarial Example
Suppose x is a clean sample, ytrue is the corresponding real label.
For a trained DNN F1, it can correctly classify samples x as labels
ytrue. By adding a small perturbation δ to the original sample, the
adversarial examples x + δ can make the DNN F1 misclassified.
The generation of the small perturbation is generally obtained
by maximizing the loss function J(x, ytrue, θ), where θ represents
the network structure parameters, and the loss function generally
selects the cross entropy loss function.

FIGURE 2 | The attack success rate (%) on seven models, the adversarial examples are crafted by REI-FGSM on Inc-v3 model with different area ratios. The attack

success rate (%) on seven models, the adversarial examples are crafted by random erasing and Gaussian blur on Inc-v3 model with different area ratios and kernel

size in the original framework.
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3.1.2. Black-Box Transfer Attack
Assuming DNNs F1 and F2 perform the same task, which both
can correctly classify clean samples x as labels ytrue, we denote θ1
θ2 are the network parameters of F1 and F2 respectively. In the
black-box attack background, only the parameters F1 are known,
and the parameters F2 are unknown. The goal of black-box attack
is that the adversarial examples generated by the existing network
structure information θ1 can make misclassification on F2, i.e.,
F2(x

adv) 6= ytrue.

3.2. Classical Attack Methods
In this section, we will briefly review the classic adversarial
attack algorithms.

Fast Gradient Sign Method: Goodfellow et al. (2015) believe
that the linear nature of the neural network leads to the
generation of adversarial examples, and propose an FGSM for the
first time. The purpose of this method is to find the direction of
the maximum loss function. The formula is as follows :

xadv = x+ ε · sign(∇xL(x, ytrue, θ)) (1)

Iterative FGSM (I-FGSM): Kurakin et al. (2016) propose an
iterative version of FGSM, i.e., I-FGSM. Compared with FGSM,
I-FGSM can more accurately maximize the loss function. The
formula is as follows:

x
adv

0 = x (2)

x
adv

t+1 = Clipε
x{x

adv
t + α · sign(∇xL(xadvt , ytrue, θ))} (3)

where α represents the gradient iteration step size, and Clipε
x

means that the adversarial examples xadv is limited to the norm
ball l∞ of the original sample.

Momentum I-FGSM (MI-FGSM): Dong et al. (2018)
introduce momentum into the gradient iteration process to
stabilize the gradient update direction and escape from the
local extremum. The formula is as follows:

gt+1 = µ · gt +
∇xJ(xadvt , ytrue)

∥

∥

∥
∇xJ(xadvt , ytrue)

∥

∥

∥

1

(4)

xadvt+1 = Clipε
x{x

adv
t + α · sign(gt+1)} (5)

where µ represents the attenuation factor.
Diverse Input Iterative FGSM (DI-FGSM): Xie et al.

(2019) improve the transferability of adversarial examples by
introducing input transformation. The method is as follows:

xadvt+1 = Clipε
x{x

adv
t + α · sign(∇xadvt

J(D(xadvt , p), ytrue))} (6)

where D represents the input transformation, and p represents
the transformation probability.

Translation-Invariant Attack Method (TI-FGSM): Dong
et al. use the translation invariance of CNN and replace
translation operations with convolution kernels to improve the
transferability of adversarial examples.

FIGURE 3 | The framework of our methods.
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3.3. Motivation
It is difficult to obtain good transferability by simply maximizing
the loss function, such as the classical algorithm I-FGSM, because
the adversarial examples generated by these methods are very
easy to fall into overfitting on the substitute model in the gradient
iteration process. Studies (Dong et al., 2019; Lin et al., 2019;
Xie et al., 2019) have shown that the input transformation of
the whole image can increase the transferability of adversarial
examples. The precondition of this method is that the input
transformation must satisfy certain precision invariance or loss
invariance (Lin et al., 2019; Liu and Li, 2020). However, for some

data enhancement methods that may lose some information,
too large a transformation scale makes them unable to adapt
to the above framework. We give an intuitive example by
random erasing and Gaussian blur. Specifically, for random
erasing, we randomly generate matrices with different area
ratios from 0.01,0.03,0.05,0.08,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, and
0.9 and set the pixel value in the matrix to 0. For Gaussian
blur, we use different kernel sizes from 3,5,9,15,21,31,41, and
51 to blur the original sample. As shown in Figure 1, the first
line is the classification accuracy and loss value after random
erasing, and the second line is the classification accuracy and

FIGURE 4 | The attack success rate (%) on seven models, the adversarial examples are crafted by Random Erasing Iterative Fast Gradient Sign Method (REI-FGSM)

on Inc-v3 model with different area ratios.
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loss value after Gaussian blur. It can be seen that when the
area ratio is greater than 0.2 and the kernel size is greater than
9, the classification accuracy of CNN decreases significantly.
Then, in the original framework, we test the attack success
rate of random erasing and Gaussian blur under different
transformation scales. As shown in Figure 2, the experimental
results show that when the area ratio is greater than 0.05,
the black-box attack success rate decreases. When the area
rate is greater than 0.4, the black-box attack success rate
decreases significantly. For Gaussian blur, when the Gaussian
kernel is greater than 9, the black box attack rate decreases
cliff-like. The experimental results show that the previous
framework does not apply to some data enhancement methods
with too large transformation scale. Based on this problem,
we propose a noise data enhancement framework. Since our
framework only transforms against perturbation, the structure
information of the original sample will not be destroyed,

which can maintain the accuracy invariance. In addition,
the transformation of adversarial perturbation can hinder the
generation of adversarial examples and prevent over-fitting.
Our framework is a supplement to the previous framework,
which can mine the potential of some transformation methods
without accuracy invariance in transfer attack methods. In this
paper, we mainly introduce random erasing. As far as we know,
it is the first time that random erasing has been introduced
into a transfer attack as an input transformation. Random
erasing is an effective data enhancement method. Specifically,
the rectangular region of the image is randomly selected, and
the pixels are erased or replaced by other values. The generation
of adversarial examples with occlusion levels will reduce the
risk of overfitting and make the adversarial examples robust to
occlusion. In addition, in order to verify that our framework
can also be compatible with other methods, we briefly introduce
Gaussian blur.

TABLE 1 | The attack success rate (%) of seven models, the leftmost column represents the number of erased matrices whose erased area ratio is 0.1, adversarial

examples crafted by REI-FGSM on Inc-v3 model (“*” indicate the white box attack).

Area_number Inc-v3 Inc-v4 Res-152 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

1 100.0* 51.8 34.1 46.5 14.4 13.7 7.8

3 100.0* 62.2 43.7 56.3 17.2 17.2 9.0

5 100.0* 67.2 48.9 60.7 22.2 17.5 9.6

8 100.0* 69.2 51.7 65.4 23.0 21.1 10.8

10 100.0* 67.9 52.3 65.7 22.5 21.5 10.3

15 100.0* 66.4 50.3 62.7 23.9 22.5 10.9

20 99.9* 64.5 48.6 59.8 21.9 21.9 10.8

The bold value represents the highest success rate for different attack methods under the same experimental conditions.

FIGURE 5 | Comparison of multi-matrix erasing (top) and single-matrix erasing (bottom).
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Algorithm 1: REI-FGSM

Input : An original image x, normalized to [−1, 1] and
corresponding true labels ytrue; maximum
perturbation value ε; iteration rounds T;
adversarial perturbation δt , input image sizeW,
H; lower bound θL, upper bound θH of mask
matrix area ratio; number of matrices K.

Output: An adversarial example xadv.
1 a = ε

T ;

2 Initialize xadv0 = x;
3 Random initialization adversarial perturbation δ0;
4 for t← 0 to T − 1 do
5 Replicate adversarial perturbation δt and get

adversarial perturbationδt
∗;

6 Get the area ratio of random masking matrix
θe = Rand(θL, θH);

7 Get the area of random masking matrix
Se =W ∗ H ∗ θe;

8 for i← 0 to K − 1 do
9 if random(1) > 0.5 then
10 Get the aspect ratio of the jthmatrix

ϕe = Rand(θe, 1);
11 else:
12 Get the aspect ratio of the jthmatrix

ϕe = Rand(1, 1
θe
);

13 Get the jthmatrix length Hj = Floor(
√

Se
ϕj
);

14 Get the jthmatrix widthWj = Floor(
√

Se ∗ ϕj);

15 Get the horizontal ordinate of starting pixels of jth
matrix Xj = Rand(0, (H −Hj));

16 Get the ordinate of starting pixels of jthmatrix
Yj = Rand(0, (W −Wj));

17 Set 0 for region [Xj +Hj,Yj +Wj] in δt
∗;

18 end

19 Calculate gradient ∇δt J((x+ δ∗t ), y
true);

20 Update adversarial perturbation
δt=δt+α · sign(∇δt J((x+ δ∗t ), y

true));
21 Clip the adversarial perturbation δt = Clip(δt ,−ε, ε);

22 Get adversarial examples xadvt = x+ δt ;
23 Clip the adversarial examples

xadvt = Clip(xadvt ,−1, 1);
24 Get adversarial perturbation δt = xadvt − x;

25 end

26 Return xadvt = x+ δt ;

3.4. Framework
As far as we know, the current data-enhanced attack methods
generally have to satisfy the invariance property as follows:

argmax((FLogit(x)) = argmax(FLogit(T(x))) (7)

Meanwhile, input transformation destroys the structure of the
adversarial example to remove or weaken its attack performance,
which can effectively enhance the diversity of model output. This

Algorithm 2: GBI-FGSM

Input : An original image x, normalized to [−1, 1] and
corresponding true labels ytrue; maximum
perturbation value ε; iteration rounds T;
adversarial perturbation δt ; the kernel size k;
Output: An adversarial example xadv.

Output: An adversarial example xadv.
1 a = ε

T ;

2 Initialize xadv0 = x;
3 Random initialization adversarial perturbation δ0;
4 for t← 0 to T − 1 do
5 Replicate adversarial perturbation δt and get

adversarial perturbation δt
∗;

6 Gaussian blur for adversarial perturbation and

update δ∗t = Gaussianblur
(

δ∗t , k
)

;
7 Calculate gradient ∇δt J((x+ δ∗t ), y

true);
8 Update adversarial perturbation

δt=δt+α · sign(∇δt J((x+ δ∗t ), y
true));

9 Clip the adversarial perturbation δt = Clip(δt ,−ε, ε);

10 Get adversarial examples xadvt = x+ δt ;
11 Clip the adversarial examples

xadvt = Clip(xadvt ,−1, 1);
12 Get adversarial perturbation δt = xadvt − x;

13 end

14 Return xadvt = x+ δt ;

can be described as the following formula:

FLogit(x
adv) 6= FLogit(T(x

adv)) (8)

where T(·) represents a certain transformation and FLogit
represents the logit output of the model. Lin et al. (2019)
and Liu and Li (2020) interpret that model augmentation can
be achieved by loss-preserving transformation and accuracy-
maintained transformation. However, some transformations that
do not meet the CNN invariant characteristics will fail in
this framework. In order to make these transformations also
play their performance, in this paper, we propose a new data
enhancement framework, only aimed at adversarial perturbation,
and we replace FLogit(T(x + δ)) with FLogit(x + T(δ)), so that the
original sample will not be disturbed.

Meanwhile, the input transformation will affect the adversarial
perturbation, thus affecting the logit output of the model. The
formula is shown below.

FLogit(x+ T(δ)) 6= FLogit(x+ δ) (9)

We use M to represent the model space for the same task; F
is a model in this space. Since the adversarial perturbation is
interfered by the input transformation, the logit output of F
changes. We can find another model F∗ in this space to make
its logit output approximate to the logit output of F. The formula
is shown below.

F∗Logit(x+ δ) ≈ FLogit(x+ T(δ)) (10)
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TABLE 2 | The success rate(%) of non-targeted attacks of seven models.

Model Attacks Inc-v3 Inc-v4 Res-152 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3

I-FGSM 100.0* 29.6 19.4 20.3 11.7 12.1 5.5

DI-FGSM 99.8* 54.2 32.1 43.6 15.0 16.2 7.1

SI-FGSM 100.0* 50.5 38.0 44.9 21.6 21.7 10.0

REI-FGSM 99.7* 56.5 39.6 48.8 23.8 21.4 11.3

Inc-v4

I-FGSM 43.3 100.0* 25.5 25.3 11.8 13.0 6.6

DI-FGSM 66.6 100.0* 39.8 50.4 14.7 17.7 8.4

SI-FGSM 69.9 100.0* 48.1 55.3 26.9 26.5 14.9

REI-FGSM 72.1 99.8* 46.7 56.2 23.8 23.5 14.0

Res-152

I-FGSM 30.7 24.7 99.5* 16.9 13.0 13.3 6.7

DI-FGSM 60.0 56.5 99.2* 49.3 21.6 21.1 12.9

SI-FGSM 43.0 36.3 99.7* 30.6 20.5 19.2 11.6

REI-FGSM 49.7 45.2 99.0* 40.1 25.9 25.0 16.3

IncRes-v2

I-FGSM 48.2 38.3 25.5 100.0* 13.7 13.3 8.2

DI-FGSM 70.2 66.1 47.9 99.2* 19.3 20.2 12.7

SI-FGSM 71.5 58.4 49.8 100.0* 30.6 28.8 22.5

REI-FGSM 72.9 66.8 51.1 99.2* 30.3 28.3 22.5

The top row models are substitute models, and we use them to generate adversarial examples by I-FGSM, DI-FGSM, SI-FGSM, and REI-FGSM (“*” indicates the white-box attack).

The bold value represents the highest success rate for different attack methods under the same experimental conditions.

In other words, we use the above framework to change the
logit output of the substitute model during each iteration to
achieve model augmentation. Our frame diagram is shown in
Figure 3. Specifically, we copy the adversarial perturbation, one
for storing the previous adversarial perturbation information,
and one for data enhancement. Here, we introduce random
erasing.We study single matrix erasing andmulti-matrix erasing,
respectively. Specifically, we select randomly the area ratio within
a finite interval in each iteration, then select randomly the aspect
ratio within the interval confirmed by the area ratio, finally,
initialize the starting point of the matrix randomly. The pixels of
the matrix can be set to 0, or other values. In this paper, we set the
pixel of the erased matrix to 0. The specific algorithm is shown in
Algorithm 1. In addition, our framework can also be combined
with previous methods for the whole image enhancement.

To further verify that our framework can be combined
with other algorithms, we introduce Gaussian blur (Gedraite
and Hadad, 2011) and call it the Gaussian Blur Iterative
FGSM (GBI-FGSM). We prove that using Gaussian blur on
the previous framework is not very good, while Gaussian
blur in our framework can get relatively good performance,
especially on defense models. This is because Gaussian blur
in the original framework will lose a large number of original
sample information, but our framework can effectively prevent
this. We call the operation of Gaussian blurGaussianblur (·). Our
algorithm is shown in Algorithm 2.

4. EXPERIMENT

Dataset: Following previous works (Dong et al., 2018; Lin et al.,
2019; Xie et al., 2019), we select the NIPS2017 competition

dataset. This dataset extracted 1,000 natural images from the
ImageNet dataset and adjusted their size to 299× 299× 3.

Network: We selected seven models as our experimental
models, including four models under natural training, i.e.,
Inception-v3 (Inc-v3) (Szegedy et al., 2016), Inception-v4 (Inc-
v4) InceptionResnet-v2 (IncRes-v2) (Szegedy et al., 2017),
Resnet-v2- 152 (Res-152) (He et al., 2016), and three ensemble
adversarial training model (Tramér et al., 2017), i.e., ens3-adv-
Inception-v3 (Inc-v3ens3), ens4-adv-Inception-v3 (Inc-v3ens4),
and ens-adv-Inception-ResNet-v2 (IncRes-v2ens).

Experimental details: In our experiment, we compare I-
FGSM, DI-FGSM, MI-FGSM, SI-FGSM, TI-FGSM, PI-FGSM,
and their combined versions, i.e., DI-TI-MI-FGSM, REI-TI-MI-
FGSM, andDI-TI-MI-REI-FGSM in the scenario of non-targeted
attacks. In our experiment, we set the number of gradient
iterations T to 10, the step size α to 1.6, and max perturbation
ε to 16. For MI-FGSM, we set the delay factor µ = 1.0; for
TI-BIM, we set the kernel size k = 15; for DI-FGSM, we set
the conversion probability p = 0.7; for SI-FGSM, the number
of the scale copies m is set to 5; and for PI-FGSM, we set the
amplification factor β = 10.

4.1. The Number and Area of Erasing
Matrix
In this section, we discuss the attack performance of the number
and area of erasing matrices. Specifically, we choose Inc-v3 as a
substitute model to generate adversarial examples and test the
results under the other six models with the variable-controlled
methods. According to the work by Xie et al. (2021), we set
T = 50, a = 1.6, and ε = 16.
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TABLE 3 | The success rate(%) of non-targeted attacks of seven models.

Model Attacks Inc-v3 Inc-v4 Res-152 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3

MI-FGSM 100.0* 55.5 45.3 51.8 22.4 21.0 10.8

MI-REI-FSGM 99.9 64.1 51.9 60.5 26.0 24.7 13.0

PI-FGSM 100.0* 58.6 46.9 50.3 31.4 31.8 20.1

PI-REI-FGSM 100.0* 64.4 51.5 57.5 34.3 32.4 21.7

SI-FGSM 100.0* 50.5 38.0 44.9 21.6 21.7 10.0

SI-REI-FGSM 99.4* 78.0 65.0 74.8 44.8 45.1 26.4

Inc-v4

MI-FGSM 71.0 100.0* 51.5 58.4 24.1 23.1 14.0

MI-REI-FSGM 78.0 100.0* 57.7 65.2 28.8 27.6 16.9

PI-FGSM 71.6 100.0* 50.2 54.4 35.4 35.2 25.0

PI-REI-FGSM 76.0 99.9* 54.9 63.4 37.3 37.9 26.3

SI-FGSM 69.9 100.0* 48.1 55.3 26.9 26.5 14.9

SI-REI-FGSM 86.6 98.9* 73.2 78.5 54.0 50.5 36.1

Res-152

MI-FGSM 57.5 51.2 99.2* 47.0 27.1 24.8 15.6

MI-REI-FSGM 60.3 55.9 99.2* 52.6 30.9 30.0 18.8

PI-FGSM 63.6 54.5 99.7* 50.8 37.5 36.9 26.7

PI-REI-FGSM 66.1 59.4 99.3* 54.8 41.0 40.4 29.4

SI-FGSM 43.0 36.3 99.7* 30.6 20.5 19.2 11.6

SI-REI-FGSM 61.8 58.1 97.9* 54.4 40.5 38.1 27.8

IncRes-v2

MI-FGSM 77.7 67.0 58 100.0* 31.6 28.1 20.7

MI-REI-FSGM 81.6 74.9 64.3 99.7* 38.4 33.9 24.3

PI-FGSM 76.3 69.4 59.0 100.0* 40.8 39.1 32.0

PI-REI-FGSM 80.6 73.9 66.1 99.8* 45.4 43.5 36.1

SI-FGSM 71.5 58.4 49.8 100.0* 30.6 28.8 22.5

SI-REI-FGSM 84.8 80.7 76.3 98.6* 61.5 54.9 48.2

The top row models are substitute models, and we use them to generate adversarial examples by MI-FGSM, PI-FGSM, SI-FGSM, and thier combination with REI-FGSM, (“*” indicates

the white box attack). The bold value represents the highest success rate for different attack methods under the same experimental conditions.

4.1.1. Area of Erasing Matrix
Here, we discuss the attack performance under the erasing of
a single matrix with different erasing area ratios. As shown in
Figure 4, with the increase of erasing area, the black-box attack
success rate of the three normal models first increases and then
remains basically unchanged or slightly decreases, while the
attack success rate of the three defense models basically continues
to rise. When the erasure area ratio is 0.9, our method can still
maintain a high attack success rate, while the attack success rate
of the previous framework will decrease very low, indicating the
effectiveness of our method. In the normal training model, the
attack performance is the best when the erasing area ratio is of
0.5, and in the ensemble adversarial training model, the attack
performance is the best when the erasing area ratio is 0.8.

4.1.2. Numer of Erasing Matrix
In this subsection, we discuss the attack performance under
different number of erasing matrices with erasing area ratio 0.1.
As shown in Table 1, with the increase of the number of matrices,
the success rate of black-box attack begins to increase. When

TABLE 4 | The success rate(%) of non-targeted attacks of three ensemble

adversarial training models.

Model Attacks Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Ensemble

DI-TI-MI-FGSM 94.8 94.5 88.5

REI-TI-MI-FGSM 94.8 94.5 89.9

DI-TI-MI-REI-FGSM 97.6 97.3 96.2

The adversarial examples are crafted by DI-TI-MI-FGSM, REI-TI-MI-FGSM, and DI-TI-MI-

REI-FGSM on four normal models. The bold value represents the highest success rate for

different attack methods under the same experimental conditions.

the number of matrices is 8, the attack on the normal model is
the best, and when the number of matrices is 15, the attack on
the ensemble adversarial training model is the best. Even if the
total erasing area ratio has exceeded 1.0, it can still maintain a
high attack success rate, because the initial point of the matrix is
randomly selected, and some matrices will overlap so that it does
not cover all regions. As shown in Figure 5, multiple matrices
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FIGURE 6 | Comparison of GBI-FGSM-F (left) and GBI-FGSM (right).

erasing can transform more shapes than single matrix erasing.
We find that when the total area is certain, using more small
matrices can achieve better attack results. When the total matrix
area is 0.8, the attack success rate of multi-matrix is 2.3% higher
than that of a single matrix, and the best attack of multi-matrix is
4.8% higher than that of a single matrix.

4.2. Attack Single Model
In this section, we compare our algorithm with the I-FGSM
and data enhancement methods, such as DI-FGSM, SI-FGSM.
We also test the experimental results of REI-FGSM combined
with MI-FGSM, PI-FGSM and SI-FGSM. The experimental
parameters follow the original paper. For REI-FGSM, we set the
θL = θH = 0.1 and the number of matrices K = 8. When
combining with PI-FGSM and SI-FGSM, we set θL = θH = 0.3
and K = 3 for REI-FGSM. When combining with MI-FGSM,
we set θL = θH = 0.1 and K = 8 for REI-FGSM. As shown in
Table 2, the experimental results show that the attack success rate
of our method is 17.3% higher than the I-FGSM on average, 4.2%
higher than theDI-FGSM and 2.5% than SI-FGSM. In the defense
model, our method is 6.6% higher than DI-FGSM. As shown in
Table 3, the attack performance of MI-FGSM can be improved
by 5.2% on average when combined with REI-FGSM, the attack
performance of SI-FGSM can be improved by 22.9% on average
when combined with REI-FGSM, and the attack performance of
PI-FGSM can be improved by 4.0% on average when combined
with REI-FGSM. To sum up, we can find that our method can
combine with the above classical methods to achieve greater

performance, especially with SI-FGSM, which can increase by an
average of 22.9%.

4.3. Attack Ensemble Model
In this section, we use DI-TI-MI-FGSM, REI-TI-MI-FGSM, and
DI-TI-MI-REI-FGSM to attack four normal models, and test the
success rate of the black-box attack on three ensemble adversarial
training models. Following the work (Xie et al., 2021), we set
T = 50, a = 3.2 and ε = 16. For REI-FGSM, we set the
θL = θH = 0.01 and the number of matrices K = 30. As shown
in Table 4, REI-TI-MI-FGSM achieves an average attack success
rate of 93.1% on three defense models, which is 0.5% higher
thanDI-TI-MI-FGSM. The average attack performance of DI-TI-
MI-REI-FGSM can reach 97.0%, which is 4.4% higher than that
of DI-TI-MI-FGSM. As far as we know, DI-TI-MI-REI-FGSM
achieves the best performance of the current attackmethod based
on gradient iteration.

4.4. Compatibility of the Attack Framework
In order to verify the compatibility of our framework, Gaussian
blur (Gedraite and Hadad, 2011) is introduced into our
framework. We make use of Gaussian blur attack inc-v3 model
in the original framework and our framework, respectively,
called GBI-FGSM-F and GBI-FGSM. We take the kernel size
as 3,5,9,15,21,31,41, and 51 and compare it with the baseline I-
FGSM. As shown in Figure 6, with the increase of kernel size,
the attack success rate of GBI-FGSM-F decreases significantly,
but GBI-FGSM can still maintain a high attack success rate.
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Although the attack success rate of GBI-FGSM on the normal
model will decrease, the attack success rate on the ensemble
adversarial training will increase. We believe that a large degree
of disruption for adversarial perturbation during the gradient
iteration may result in more robust adversarial examples against
defense models. When the kernel size is 51, the attack success rate
of GBI-FGSM on the three defense models can reach an average
of 25.0%.

5. CONCLUSION

Previous data enhancement frameworks only work on input
transformations that satisfy accuracy or loss invariance. However,
it does not work for other transformations that do not
meet the above conditions, such as the transformation which
will lose information. In this paper, we propose a data
enhancement framework only for adversarial perturbation,
which can effectively solve the above problems. In addition, we
introduce random erasing as an input transformation into the
generation of adversarial examples for the first time. Compared
with the methods based on data enhancement, such as DI-
FGSM and SI-FGSM, the attack success rate of REI-FGSM
can be improved by 4.2% and 2.5% on average, respectively.

DI-TI-MI-REI-FGSM can achieve an average attack success rate
of 97.0% on the ensemble adversarial training models, which
is better than the current gradient-based iterative method. In
addition, we also briefly introduce Gaussian blur to illustrate the
compatibility of our framework.
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This article proposes a bottom-up visual saliency model that uses the wavelet transform

to conduct multiscale analysis and computation in the frequency domain. First, we

compute the multiscale magnitude spectra by performing a wavelet transform to

decompose the magnitude spectrum of the discrete cosine coefficients of an input

image. Next, we obtain multiple saliency maps of different spatial scales through an

inverse transformation from the frequency domain to the spatial domain, which utilizes

the discrete cosine magnitude spectra after multiscale wavelet decomposition. Then, we

employ an evaluation function to automatically select the two best multiscale saliency

maps. A final saliency map is generated via an adaptive integration of the two selected

multiscale saliency maps. The proposed model is fast, efficient, and can simultaneously

detect salient regions or objects of different sizes. It outperforms state-of-the-art bottom-

up saliency approaches in the experiments of psychophysical consistency, eye fixation

prediction, and saliency detection for natural images. In addition, the proposed model

is applied to automatic ship detection in optical satellite images. Ship detection tests

on satellite data of visual optical spectrum not only demonstrate our saliency model’s

effectiveness in detecting small and large salient targets but also verify its robustness

against various sea background disturbances.

Keywords: visual saliency, selective visual attention, wavelet transform, multiscale saliency map, ship detection

INTRODUCTION

In the human neural system, a mechanism called selective visual attention has been evolved to
facilitate our visual perception to rapidly locate the most important regions in a cluttered scene.
Such important regions are said to be perceptually salient because they attract great visual attention.
Typically, visual attention is either driven by fast, pre-attentive, bottom-up visual saliency or
controlled by slow, task-dependent, top-down cues (Itti et al., 1998; Itti and Koch, 2001; Wolfe
and Horowitz, 2004, 2017).

This article is primarily concerned with the automatic detection of bottom-up visual saliency,
which has attracted extensive studies by both psychologist and computer vision researchers in the
area of robotics, cognitive science, and neuroscience (Borji and Itti, 2013). Just like a bottom-up
visual attention mechanism that can rapidly locate salient objects in the human visual pathway, a
computational saliency model has the ability to detect the perceptually salient regions in cluttered
scenes, which is very useful for object detection, image segmentation, intelligent compression,
human fixation prediction, and many more.
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One pioneer work concerning the computational modeling of
bottom-up visual attention was introduced by Itti et al. (1998)
and Itti and Koch (2001). It stimulates the neural mechanism
of the human early vision system and has explicit biological
rationality. Itti’s model (denoted IT) generates a saliency map of
the scene under view by modeling the center-surround contrast
of intensity, color, and orientation, which is expected to indicate
salient regions and predict human fixations. However, since
the model is designed conforming to the neuronal architecture
of a vision system, it is computationally complex and suffers
from over-parameterization. Recently, a kind of algorithm has
been designed for salient foreground segmentation. Achanta
and Suesstrunk (2010) compute saliency maps by use of the
Euclidean distance in the Commission International Eclairage
(CIE) LAB space between a given position’s value and the
maximum symmetric surround mean value of its neighboring
area (denoted MSS). Cheng et al. (2015) used a histogram-
based contrast (HC) to measure the saliency values of input
images. Liu and Yang (2019) exploited color volume and color
difference for salient region detection. These algorithms can
output fine-resolution saliency maps that highlight large-scale
foreground regions. However, since these kinds of algorithms are
not biologically motivated, they cannot be used as a model of
bottom-up visual attention with psychophysical consistency and
often fail to detect salient objects in cluttered scenes.

Another kind of bottom-up saliency model is computed
in the frequency domain. These frequency-domain models are
not explicitly motivated by a biological mechanism, but they
are computationally simple and have good consistency with
psychophysics. As a pioneer saliency work of frequency domain,
Hou and Zhang (2007) designed a saliency model by use
of the Fourier spectral residual (SR) computation. Yu et al.
(2009) proposed the pulsed functions of the discrete cosine
transform (PCT) to compute visual saliency. Guo and Zhang
(2010) introduced a spatiotemporal saliency approach by using
a so-called phase spectrum of quaternion Fourier transform
(PQFT). Li et al. (2013) compute visual saliency via a scale-space
analysis in the hypercomplex Fourier transform (HFT) domain.
After that, Yu and Yang (2017) proposed a visual saliency
model by using the binary spectrum of Walsh–Hadamard
transform (BSWHT).

As for why the frequency domain models can calculate
visual saliency, our previous works (Yu et al., 2011a,b) have
demonstrated the biological rationality of frequency-domain
approaches. These works have verified that whitening or
flattening the principal components or the cosine transform
coefficients simulates the suppression of the same visual features
(iso-feature suppression) in the spatial domain. The iso-feature
suppression is just the biological mechanism of bottom-up visual
saliency generated in the primary visual cortex (V1) (Zhaoping,
2002; Zhaoping and Peter, 2006). However, due to the excessive
suppression of low-frequency components in the image by
whitening the principal components, existing frequency-domain
models are easy to detect small salient targets, but they have poor
ability to highlight large-scale salient regions.

To make the frequency domain model have better detection
ability for both large and small salient targets, in this article,

we propose a bottom-up visual saliency model based on
multiscale analysis and computation in the frequency domain.
The proposed model performs multiscale wavelet analysis and
computation in the cosine transform domain. It can generate
multiscale saliency maps of the scene under view. Unlike the
spatial domain approaches, our model computes in the frequency
domain, which significantly reduces computational cost for
a saliency algorithm. Moreover, the multiscale computation
of visual saliency also has biological plausibility because the
receptive fields of visual neurons in the primary visual cortex
(V1) have various ranges of center-surround mechanism (Itti
and Koch, 2001; Zhaoping, 2002; Zhaoping and Peter, 2006).
As compared with the existing frequency domain approaches,
our model has a better ability to detect small salient objects and
meanwhile highlight large-scale salient regions.

Ship target detection in optical satellite images is important
in monitoring commercial fishery, oil pollution, vessels traffic,
and other marine activities. However, there remain challenges
with the ship detection algorithm for its application in a
marine surveillance system. One challenge is the existence of
sea clutters and heterogeneous regions, which poses difficulties
for discriminating ship targets from various background
disturbances. Another challenge is that a marine surveillance
system needs fast algorithms because it needs to analyze and
process large amounts of data in real-time. In this work, we
apply our multiscale saliency model to detect the ship signatures
in the optical satellite images. It may meet the demands of a
marine surveillance system and can detect ships of different sizes
accurately. Tests over the Maritime SATellite Imagery (MASATI)
dataset prove the robustness and effectiveness of our model when
it is applied to ship detection in optical satellite images.

The rest of this article is organized as follows. Section
Proposed Model describes the proposed bottom-up visual
saliency model based on multiscale analysis and computation
in the frequency domain and explains its biological plausibility.
Section Experimental Validation presents our model’s
experiments on psychophysical patterns, eye fixation prediction,
and saliency detection for natural images. In section Applications
to Ship Detection in Optical Satellite Images, we apply the
proposed saliency model to automatic ship detection in optical
satellite images. Finally, this article is concluded in section
Conclusion and Discussion.

PROPOSED MODEL

This section begins by introducing the proposed model of
bottom-up visual saliency step by step, and then gives a complete
flow of the model from the input image to a final saliency map.

Visual Feature Channels
Several works (Treisman and Gelade, 1980; Zhaoping, 2002;
Zhaoping and Peter, 2006) have verified that the interaction and
integration of the low-level visual features can produce a bottom-
up saliency map in the primary visual cortex (V1). To begin
with, we will compute these low-level visual feature maps before
integrating them as a whole. For a given image M (e.g., resized
to 128 × 128 px), we use r, g, and b to denote the red, green,
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and blue color channels of the image, respectively. According to
Itti et al.’s (1998) general-tuned color model, one intensity and
three general-tuned color feature channels I, R, G, and B are
calculated as

I =
r+g+b

3
(1a)

R = r −
g+b

2
(1b)

G = g −
r+b

2
(1c)

B = b−
r+g

2
(1d)

Note that the general-tuned red, green, and blue channels R, G,
and B are set to zero at locations with a negative value.

In the primary visual cortex (V1) of the human brain, similar
neurons have lateral inhibition, that is, excited neurons will
inhibit the surrounding similar neurons so that the unique targets
in the visual scene are highlighted and become the salient targets
obtained by the visual attentionmechanism (Zhaoping and Peter,
2006). Referring to the lateral inhibition process, we can consider
that a red flower in the green grass is salient. If the color feature
energy is considered as the sum of the pixels of the color feature
channel, then the green feature channel has the largest energy in
the scene. Conforming to the characteristics of selective visual
attention, our model adjusts the weight of each color feature
channel to reduce the weight factor of the feature channel with
large energy. In this article, the weight factors of each feature
channel in the visual saliency map are defined as







ωM = max(M)
√

∑128
i=1

∑128
j=1 M

, if
∑128

i=1

∑128
j=1 M 6= 0

ωM = max(M), if
∑128

i=1

∑128
j=1 M = 0

(2)

where M denotes any one of the general-tuned feature channels
I, R, G, and B, whereas i and j are the horizontal and vertical
coordinates of the corresponding channel.

Multiscale Saliency Computation in the
Frequency Domain
After calculating the visual feature channels of the input image,
we perform multiscale saliency computation and analysis in the
frequency domain. Given a visual feature channelM, we use the
discrete cosine transform (DCT) to transform each visual feature
channel of the image into a frequency domain:

F = DCT(M) (3)

where “DCT(·)” denotes a 2-dimensional discrete cosine
transform, and F is the DCT coefficients matrix of the input
visual feature channel. Next, the magnitude matrix AM and
the sign matrix SM of the DCT coefficients matrix F are
computed as

{

AM = abs(F)
SM = sign(F)

(4)

where the notation “abs(·)” is an absolute value function, and
the notation “sign(·)” denotes a signum function. For most input
images, the magnitude values of low-frequency coefficients are
much greater than those of high-frequency coefficients since the
natural images have a strong statistical correlation in the visual
space. Our previous works (Yu et al., 2011a,b) have verified that
whitening or flattening the principal components or the cosine
transform coefficients simulates the suppression of the same
visual features (iso-feature suppression) in the spatial domain.
The iso-feature suppression is just the biological mechanism
of bottom-up visual saliency generated in the primary visual
cortex (V1) (Zhaoping, 2002; Zhaoping and Peter, 2006). Most
frequency domain-based models (e.g., Yu et al., 2009, 2011a,b;
Guo and Zhang, 2010; Yu and Yang, 2017) can detect relatively
small salient objects by setting the values of the magnitude
matrix to one. For salient objects with very large sizes, they
often highlight the contour of a large object because whitening
(flattening) the magnitude matrix will lose some important low-
frequency information.

To make the frequency domain model have better detection
ability for both large and small salient targets, in this work,
we propose a bottom-up visual saliency model based on
multiscale analysis and computation in the frequency domain.
The proposed model not only detect small salient objects but
also highlight the whole body of those salient objects with
very large size. We consider utilizing the wavelet transform to
perform multiscale modulation on the magnitude matrix of the
DCT coefficients.

Wavelet transform is widely used in image decomposition and
reconstruction, which can decompose an image into multiscale
components. In this article, we employ wavelet transform to
decompose the magnitude matrix of each visual feature channel
and suppress the low-frequency components of the magnitude
matrix to a certain extent. Since the salient targets have different
sizes in the image, the retention degree of the values in the
required magnitude matrix is different. Therefore, we perform
multiscale decomposition and reconstruction of the magnitude
matrix of each feature channel, and construct a multiscale
reconstruction magnitude matrix set

{

A′
M,N

}

, where M is the
feature channel set, andN denotes the decomposition scale. This
process ensures that the optimal reconstructed magnitude matrix
of the input image can be retained. In the j-scale space, the Mallat
decomposition formula of the low-frequency subband is


























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










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=
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i,l
=
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(5)

and the corresponding reconstruction formula is

Bss
j

k,m
=

∑

i,l

[Bss
j−1

i,l
h(k− 2i)h(m− 2l)+ Bds

j−1

i,l
g(k− 2i)h(m− 2l)

+Bsd
j−1

i,l
h(k− 2i)g(m− 2l)+ Bdd

j−1

i,l
g(k− 2i)g(m− 2l)] (6)
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where h and g denote low-pass and high-pass filtering,
respectively. As has been noted before, the suppression
of cosine transform coefficients of an image is equivalent
to the suppression of the same visual features (iso-feature
suppression) in the spatial domain. Therefore, through such a
multiscale decomposition and reconstruction operation upon the
magnitude coefficients in the DCT domain, our model simulates
the cortical center-surround or iso-feature suppression of various
scales in the spatial domain. For this reason, our model can
compute the multiscale saliency information simultaneously,
which is very helpful to detect salient objects of different sizes.

To recover the multiscale channel conspicuity maps in the
visual space, we perform an inverse DCT on the reconstructed
magnitude matrix and the corresponding sign matrix SM as

FM,N = abs(IDCT(SM · A′
M,N )) (7)

where FM,N denotes the N -scale conspicuity map for a
given channel M, and “IDCT(·)” is the inverse discrete cosine
transform. Afterward, we utilize the obtained one intensity and
three-color conspicuity maps at the N -scale to compute the
saliency map:

SN = 8 ∗ (ωI · FI,N + ωR · FR,N + ωG · FG,N + ωB · FB,N )(8)

where ωI , ωR, ωG, and ωB denote the weight factors of
corresponding feature channels I, R, G, and B, which are
calculated by using Equation (2). The notation 8 denotes a 2-
dimensional Gaussian low-pass filter. The notation SN is the
N -scale saliency map of the input image.

Final Saliency Map
To generate the optimal visual saliency map from the multiscale
saliency maps {SN }, we introduce an evaluation function to
evaluate the multiscale saliency maps. More often than not, the
more complete the salient region in multiple saliency maps of
the same scene, the better the saliency map with less background
interference. The evaluation function is defined as the noise
coefficient of the saliency map multiplied by the information
entropy, where the noise coefficient is the sum of the product of
the pixels corresponding to the background interference matrix
and the saliency map matrix. According to the visual attention
characteristics that the central area of the image is more likely
to become the salient region, the background interference matrix
is constructed as a gradient matrix with the same resolution as
the saliency map, with a maximum value of 1 and a minimum
value of 0. Information entropy is often used as the quantitative
standard for evaluating images. In this work, we use information
entropy to characterize the degree of confusion of a saliency
map. The greater the entropy, the more chaotic the saliency map,
that is, the more background interference. Therefore, for a given
saliency map S, the corresponding evaluation function H can be
defined as

H = E
∑

x

∑

y

S(x, y)K(x, y) (9)

where E is the information entropy of the saliency map S,
and K denotes the background interference matrix. x, y are the

horizontal and vertical coordinates of a matrix. According to the
definition of the evaluation function, the smaller the function
value, the better the saliency map.

To improve the adaptability of the model in this article,
two saliency maps with the lowest value of the evaluation
function are selected. Next, the evaluation function values of
the corresponding saliency map are exchanged as coefficients to
construct the fusion map, and the fusion map is used as the final
saliency map § after central bias optimization. This calculation
process is formulated as

§ = ψ · (H2S1 +H1S2) (10)

where ψ is the central bias matrix. S1 denotes the saliency map
with the smallest evaluation function value, whereas H1 is the
corresponding evaluation function value of S1. When there is
little difference in the values of the evaluation function, the two
saliency maps generate the final saliency map close to their mean
value. When the difference of H1 and H2 is large, S2 has a weak
effect on the generation of the final saliency map.

To sum up, the proposed computational model from input
imageM to final saliency map § is as follows:

Step 1. Compute one intensity and three general-tuned color
feature channels I, R, G, and B by using Equation (1), and
calculate the weight factor ωM for each feature channel by using
Equation (2).

Step 2. Perform a DCT transformation on each feature
channel, and calculate the magnitude matrix AM and the sign
matrix SM of the DCT coefficients by using Equations (3)
and (4).

Step 3. Perform multiscale wavelet transform on all feature
channels to obtain the multiscale reconstruction magnitude
matrix set

{

A′
M,N

}

by using Equations (5) and (6).
Step 4. Performing an inverse DCT transformation on the

magnitude matrix A′
M,N and the corresponding sign matrix

SM to compute the N -scale conspicuity map FM,N by using
Equation (7).

Step 5. Performing a weighted summation of the conspicuity
map of all four feature channels to compute theN -scale saliency
map SN by using Equation (8).

Step 6. Compute the evaluation function value of the N -scale
saliency map SN by using Equation (9).

Step 7. The two saliency maps with the smallest value of the
evaluation function are selected to generate a final saliency map
§ by using Equation (10).

The complete flow of the proposed model is illustrated in
Figure 1. We initially resize the input image to a suitable scale
and decompose it into the general-tuned intensity, red, green,
and blue feature channels. Each of the four general-tuned feature
channels is subjected to a DCT. Next, we use a multiscale wavelet
transform to decompose the DCT magnitude spectrum of each
channel and then obtain the decomposed multiscale magnitude
spectra for every single channel. Afterward, the decomposed
magnitude coefficients are subjected to an inverse DCT so that
the six multiscale conspicuity maps of each feature channel
can be generated. Then, for each scale, we integrate the four
conspicuity maps to form a saliency map. Finally, a final saliency
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FIGURE 1 | An illustration of our model for saliency detection. (A) Input image. (B) Four general-tuned visual channels. (C) Discrete cosine transform (DCT) magnitude

spectra and corresponding signum spectra. (D) Wavelet decomposed multiscale magnitude spectra for every single channel. (E) Six multiscale conspicuity maps for

every single channel. (F) Six multiscale saliency maps after channel-wise integration. (G) A final saliency map after scale-wise combination.

map is obtained by combining the two multiscale saliency maps
with the smallest H-value. Note that the saliency map is a
topographically arranged map that represents the visual saliency
of a corresponding visual scene. It can be seen from Figure 1 that
the salient objects are the strawberries, which pop out from the
background in the final saliency map.

It is worth noting again that the flattening modulation of
image frequency domain coefficients approximately simulates the
suppression of the same visual features (iso-feature suppression)
in the spatial domain. Such a mechanism of iso-feature
suppression generates bottom-up visual saliency in the primary
visual cortex (V1). In this work, we employ multiscale frequency
domain modulation by using a multiscale wavelet transform
on the magnitude coefficients in the DCT domain. This
calculation process is equivalent to flattening the frequency
domain coefficients in different degrees (see Figure 1D), rather
than in a single way, to calculate the multiscale visual saliency
(see Figure 1F) in the spatial domain.

EXPERIMENTAL VALIDATION

In this section, we compare our model with eight bottom-
up saliency approaches: Itti’s model (IT) (Itti et al., 1998),
maximum symmetric surround mean value (MSS) (Achanta and
Suesstrunk, 2010), histogram-based contrast (HC) (Cheng et al.,

2015), spectral residual (SR) (Hou and Zhang, 2007), pulsed
cosine transform (PCT) (Yu et al., 2009), PQFT (Guo and Zhang,
2010), hypercomplex Fourier transform (HFT) (Li et al., 2013),
and binary spectrum of Walsh-Hadamard transform (BSWHT)
(Yu and Yang, 2017). All saliency approaches are conducted
on psychophysical pattern tests, human eye fixation prediction,
and saliency detection for natural images. The experiments
provide an objective evaluation as well as a visual comparison
of all saliency maps. Moreover, we give a comparison of the
computational time cost of all saliency approaches.

In the experiments of human eye fixation prediction and
natural image saliency detection. We will employ three popular
objective evaluation metrics: the precision-recall (P-R) curve
(Davis and Goadrich, 2006), the receiver operating characteristic
(ROC) curve (Tatler et al., 2005), and the area under the curve
(AUC). For each saliency map, several binary maps are generated
by segmenting the saliency map with a threshold τ varying from
0 to 255. We can obtain the true positive (TP), the false positive
(FP), the false negative (FN), and the true negative (TN) by
comparing a binary map with the ground truth (GT) map. Then,
the Recall and the Precision metrics for a binary map can be
calculated as

{

Recall = TP
TP+FN

Precision = TP
TP+FP

(11)
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FIGURE 2 | Test on psychophysical patterns for all 9 saliency approaches.

TABLE 1 | The receiver operating characteristic (ROC)- area under the curve (AUC) scores of all nine saliency methods.

Method Ours SR PQFT PCT HFT BSWHT MSS HC IT

All fixations 0.7889 0.6228 0.7570 0.7605 0.7653 0.7761 0.6558 0.5766 0.5365

First fixations 0.8252 0.6274 0.7696 0.7723 0.7902 0.7913 0.6698 0.5850 0.5444

The P-R curve can be plotted with the averaged Precision vs.
Recall values overall saliency maps generated from a saliency
approach.Moreover, we compute the true positive rate (TPR) and
the false positive rate (FPR) according to the following formulas:

{

TPR = TP
TP+FN

FPR = FP
FP+TN

(12)

The ROC curve can be plotted with the averaged TPR vs. FPR
values overall saliency maps generated from a saliency approach.
Then we compute the area under the ROC curve that is denoted
as a ROC-AUC score. Note that most published articles use these
three metrics to evaluate a saliency map’s ability to predict eye
fixations or detect salient regions.

Psychophysical Consistency
Psychophysical patterns have been widely used in attention
selection tests not only to explore the mechanism of bottom-
up attention but also to evaluate the saliency models (e.g., Itti
et al., 1998; Hou and Zhang, 2007; Yu et al., 2009, 2011a,b; Guo
and Zhang, 2010; Li et al., 2013). Figure 2 shows the saliency

maps of all saliency approaches on seven psychophysical patterns
(including salient targets of unique color, orientation, shape,
missing feature, or conjunction feature). It can be seen that IT,
MSS, and HC fail to detect (highlight) the salient targets with
distinctive orientation or shape. SR cannot detect color saliency
since it only computes in an intensity channel. As frequency-
domain approaches, PQFT, PCT, HFT, BSWHT, and our method

(denoted as “Ours”) can successfully detect salient objects with
distinctive orientation ormissing features (the 5th pattern). It can

be noticed that PCT and our method can find all salient objects

with distinctive colors; whereas PQFT and HFT cannot highlight
the color pop-out in the 1st pattern. In this test, PCT and our
method are the best performers, which are highly consistent with
human perception in these psychophysical patterns.

It is worth stating that this article proposes a visual saliency
method based on frequency domain calculation. At present, all
frequency-domain visual saliency methods do not calculate pixel
by pixel, and the output saliency map does not have a clear
and accurate object contour. Before outputting the final saliency
map, these frequency-domain methods need to do low-pass
filtering to obtain an applicable and smooth visual saliency map.
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FIGURE 3 | Qualitative analysis of the saliency maps for eye fixation prediction.

Nevertheless, the advantages of frequency-domain methods are
also obvious. They can indicate the salient positions and regions
in the visual scene, and can better predict the gaze or fixations
driven by a human’s bottom-up attention mechanism.

Eye Fixation Prediction
In this subsection, we validate the proposed saliency maps by use
of the dataset of 120 color images from an urban environment
and corresponding human eye fixation data from 20 subjects
provided by Bruce and Tsotsos (2009). These images consist of

indoor and outdoor scenes, of which some have very salient
items, and others have no particular regions of salience.

To quantify the consistency of a particular saliency map with
a set of fixations of the image, wey employ the ROC-AUC score
as an objective evaluation metric. It is worth noting that the
ROC-AUC score is sensitive to the number of fixations that are
used in the calculation. Former fixations are more likely to be
driven by the bottom-upmanner, whereas later fixations aremore
likely to be influenced by top-down cues. In this test, we calculate
the ROC-AUC scores for each image by using all fixations and
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FIGURE 4 | Visual comparison of all saliency approaches on ECSSD dataset.

repeating the process but using only the first two fixation points.
Table 1 lists the ROC-AUC score averaged over all 120 images for
each saliency approach. As can be seen, our method obtains the
highest ROC-AUC scores in both tests and therefore has the best
capability for predicting eye fixations.

Figure 3 gives the saliency maps for six representative images
from the data set, which provides a qualitative comparison of
all saliency methods. We generate corresponding ground truth
images by using a Gaussian filter to perform convolution on the
fixation map for all subjects. Some of these images have small
salient objects, and others have large-scale regions of interest.
Analyzing the qualitative results, we can see that our method
shows more resemblance to the ground truth than the other 8
saliency approaches. The regions highlighted by our proposed
method overlap to a surprisingly large extent with those image
regions looked at by humans in free viewing. Good performance
concerning color pop-out is also observed with our method as
compared to other approaches. MSS, HC, and IT can obtain fine
resolution saliency maps, but they are more likely to focus on
large-scale structures and therebymiss some small salient objects.

Saliency Detection for Natural Images
In this subsection, we compare our method with 8 other saliency
approaches on the Extended Complex Scene Saliency Dataset
(ECSSD) dataset (Shi et al., 2016) that includes 1,000 natural
images and corresponding GT images. Figure 4 gives the saliency
maps for eight sample images from the ECSSD dataset, which

provide a visual comparison of all saliency methods. It can be
seen that MSS, HC, and IT can obtain high-resolution saliency
maps, but they suffer from cluttered backgrounds. PQFT, PCT,
HFT, and BSWHT can detect small salient objects effectively, but
sometimes they fail to highlight the whole salient objects with
relatively large size. Note that our proposed method can enhance
the salient regions and meanwhile suppress background clutters
heavily. Moreover, since our method computes visual salience
in a multiscale manner, it can detect both small and large scale
salient regions simultaneously.

To evaluate the detection accuracy objectively, we plot the P-R

curves and the ROC curves for all saliency approaches as shown

in Figures 5A,B. Note that a high ROC or P-R curve indicates

the saliency maps have a high resemblance with the GT images.
As can be seen, our method and HFT obtain comparatively high
curves as compared to other saliency approaches. Nevertheless,
it can be noticed that our method is slightly better than HFT.
Table 2 lists the ROC-AUC score averaged over all 1,000 images
for each saliency method. As expected, our method obtains the
highest ROC-AUC score. This means that our method achieves
the best performance in this saliency detection test.

It should be noted that this article mainly studies the
computation of bottom-up visual saliency. Bottom-up attention
or saliency studies mostly use psychophysical patterns (section
Psychophysical Consistency) and Bruce and Tsotsos’s eye fixation
prediction dataset (section Eye Fixation Prediction). These two
datasets were created specifically for the bottom-up attention
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FIGURE 5 | (A) P-R curves on the ECSSD dataset. (B) ROC curves on the ECSSD dataset.

TABLE 2 | The ROC-AUC scores of all nine saliency methods.

Method Ours SR PQFT PCT HFT BSWHT DN MSS HC IT

AUC 0.7990 0.5805 0.6681 0.6813 0.7895 0.6954 0.6333 0.7091 0.6755 0.5493

tests. For more testing, we conducted tests on the ECSSD dataset
in this section. The ECSSD dataset is particularly used for
foreground region segmentation methods. They are not only
purely bottom-up but also need more top-down calculations.
Nevertheless, our method still achieves good performance in
this test.

Computational Time Cost
Computational speed is an important metric to evaluate
the performance of a saliency model. We also record the
computational time cost per image from the ECSSD dataset
in a standard desktop computer environment. Table 3 gives
each method’s Matlab runtime measurements averaged over the
data set. It can be seen that the traditional frequency-domain
models (SR, PQFT, PCT, and BSWHT) are relatively faster than
other methods. As a multiscale frequency domain calculation
model of visual saliency, our method needs about 10 times the
computational cost of the traditional frequency-domain model.
Nevertheless, it has about the same computational cost as HFT
and MSS and is still faster than HC and IT. Note that all saliency
methods are implemented on such a computer platform as Intel
i7-8650U 1.90GHz CPU, and 16GB of memory.

APPLICATIONS TO SHIP DETECTION IN
OPTICAL SATELLITE IMAGES

In this section, we apply the proposed method to detect
ship signatures in optical satellite images. To validate the
effectiveness of our method, we conduct experiments by use of

real optical satellite images from the MASATI dataset (Antonio-
Javier et al., 2018). All tests in this section are run on a
Windows platform (Microsoft Incorporation, US). The computer
is equipped with a quad-core Intel 2.9 GHz CPU and 32 GB of
memory (Intel Incorporation, US). All the program codes are
implemented in the MATLAB (MathWorks Incorporation, US)
R2017b environment.

Saliency-Based Ship Detection in Optical
Satellite Images
Automatic ship detection in optical satellite images has attracted
intensive investigations (Bi et al., 2012; Jubelin and Khenchaf,
2014; Qi et al., 2015; Zou and Shi, 2016; Li et al., 2020). It
plays a crucial role in a maritime surveillance system. Some
studies perform ship detection by using synthetic aperture radar
(SAR) (Crisp, 2004; Yu et al., 2011a). However, strong speckles
(caused by the coherence of backscattered signals) pose great
difficulties for an automatic ship detection system. Compared
with the SAR data, optical satellite images can provide more
detailed characteristics of ship signatures.

More often than not, automatic ship detection will encounter
two challenges. First, a marine surveillance system needs fast
algorithms since it has to deal with a large amount of data in
real-time. Second, lots of background disturbances always exist
in the optical satellite images. Conventional target detectors use
a constant false alarm rate (CFAR) which automatically adapts to
the statistical distribution of sea clutters and targets of interest
(Chen and Reed, 1987; Reed and Yu, 1990; Yu and Reed, 1993).
However, if the signature of a target has similar intensities as its
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TABLE 3 | Computational time cost per image for all saliency methods over the ECSSD dataset.

Method Ours SR PQFT PCT HFT BSWHT MSS HC IT

Time(s) 0.1272 0.0109 0.0163 0.0147 0.1183 0.0102 0.0934 0.3349 0.2224

surroundings, the CFAR detector cannot discriminate the targets
from their background clutters. It should be noticed that human
vision is superior to existing techniques in observing a slick in the
surrounding sea, and some vessels undetected by conventional
algorithms are visible to the eye. Motivated by this fact, we
employ our proposed saliency method to perform ship detection
in optical satellite images.

Since ships are visually salient and will become dominant
locations in a saliency map, a constant threshold value can be
employed to discriminate the ship targets from sea backgrounds.
However, a constant threshold will produce false alarms when
no ship target appears in the scene under view. Therefore, we
consider designing an adaptive threshold to detect the ship
targets. The threshold value is computed by using the saliency
values of the given saliency map:

Ts = α(µs + 2σs) (13)

where µs and σs are, respectively, the mean value and the
standard deviation of the final saliency map, and α is an
empirically tuned parameter. Note that a small α may lead to
false alarms although it can detect ship targets; whereas a large
α is likely to miss some ship signatures although it avoids false
alarms. Through lots of experiments, we find that the detection
results are reasonable when the parameter α = 4.

An important note about our method’s application to ship
detection in optical satellite images is that the saliency map
should be computed at full resolution. This is different from
the salience computation for a natural image. Note that great
disparities may exist in the size of various ships, and our method
can detect both small and large salient objects simultaneously
when the saliency map is computed at a high resolution.
Therefore, to obtain high-resolution saliency maps with well-
defined boundaries of targets, we directly use full-resolution
optical satellite images to compute their saliency maps. This
computation process can be considered as a human looking at
the scenes at a fine resolution in a very careful manner.

Test on the MASATI Dataset
We conduct our method over the MASATI dataset that contains
6,212 satellite images in the visible spectrum. The dataset was
collected fromMicrosoft Bing Maps (Antonio-Javier et al., 2018),
of which each image has been manually labeled according to
various classes. Since our tests only concern ship detection
from sea backgrounds, we choose three sub-classes: ship, multi,
and detail to test our multiscale saliency-based ship detection
method. The ship sub-class represents images where a single
ship appears within the image. The multi sub-class describes
other images in which two or more instances of ships appear
within them. In both sub-classes, the ships have lengths between
4 and 10 pixels. The detail sub-class are images with large-scale

ships within a length between 20 and 100 pixels. The images
were captured in RGB, and the average image size has a spatial
resolution of around 512× 512 pixels. The dataset was compiled
between March and September of 2016 from different regions
in Europe, Africa, Asia, the Mediterranean Sea, and the Atlantic
and Pacific Oceans. We cannot provide simultaneous ground
truths at present; nevertheless, the referred targets can be visually
interpreted from these optical satellite images. Some typical test
results are shown in Figures 6, 7.

Figure 6 shows six sample images with a single ship target
from the ship and the detail sub-classes of the MASATI dataset.
The images contain disturbances of ship wakes, sea waves,
clutters, and heterogeneities, which will cause challenges for a
ship detection task. The 2nd−10th rows of Figure 6 present
the saliency maps of 7 comparison saliency approaches, the
detection results of CFAR, and the saliency maps and detection
results of our method, respectively. It can be seen that PQFT,
PCT, BSWHT, HC, and IT cannot suppress the background
disturbances effectively, particularly for the images with small
ships. Although PQFT, BSWHT, MSS, HC, and IT can detect
large ships, they fail to uniformly highlight the whole salient
regions for these large-scale targets. It seems that HFT finds
both small and large targets in this test, but it highlights some
heterogeneous regions in the 3rd image. The CFAR method fails
to detect small ship targets whereas it causes false alarms even
though it works at a low false alarm rate. It should be noted
that both small and large ship locations in our saliency maps
can pop out relative to the clutter backgrounds and therefore are
successfully detected by our method.

Figure 7 shows six sample images with multiple ship targets

from the multi and the detail sub-classes of the MASATI

dataset. This test is somewhat difficult because the sample

images comprise strong disturbances including reefs, ship wakes,

cloudlets, heterogeneities and clutters of seawater, etc. Moreover,
there may exist a huge disparity in the size of the ships in a
scene (5th and 6th images). The 2nd−10th rows of Figure 7
present the saliency maps of 7 comparison approaches, the
detection results of CFAR, the saliency maps, and the detection
results of our method, respectively. Since PQFT, PCT, and
BSWHT only compute visual saliency on a single scale, they
cannot effectively suppress the background disturbances for these
cluttered scenes. Note that HC, MSS, and IT compute visual
salience in the spatial domain. They cannot suppress the cloudlets
or other disturbances effectively. The CFAR detector inherently
has numerous false alarms and cannot discriminate ships from
these false alarms. It can be seen that our method highlights the
ships and meanwhile suppresses the background disturbances
in the saliency maps. Since our method can compute multiscale
visual saliency, it accurately finds both small and large ship targets
in this difficult test.
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FIGURE 6 | A visual comparison of the saliency maps obtained by all eight approaches, as well as the detection results of CFAR and our method for the MASATI

images with a single ship target.

CONCLUSION AND DISCUSSION

This article investigates automatic detection of bottom-up
visual saliency from the perspective of multiscale analysis

and computation in the frequency domain. We manifested
that multiscale saliency information can be computed by
performing multiscale wavelet decomposition and computation
upon the magnitude coefficients in the frequency domain.
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FIGURE 7 | A visual comparison of the saliency maps obtained by all eight approaches, as well as the detection results of CFAR and our method for the MASATI

images with multiple ships.

The proposed model simulates the multiscale cortical center-
surround suppression and has biological plausibility. The model
is fast and can provide multiscale saliency maps, which
are important for detecting salient objects of different sizes.

Experiments over psychophysical patterns and natural image
datasets showed that the proposed model outperforms state-
of-the-art saliency approaches when evaluated by the ability to
predict human fixations, and by the objective metrics of the
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P-R curves and the ROC-AUC scores. The applications to ship
detection in optical satellite images proved that the proposed
multiscale visual saliency model is very effective in detecting both
small and large ship targets simultaneously from the surrounding
sea and robust against various background disturbances.

The main contribution of this article is to extend the
traditional frequency-domain visual saliency model to multiscale
saliency calculation. The traditional visual saliency model uses
single-scale frequency domain calculation, while our new model
uses multiscale frequency domain calculation. The multiscale
visual saliency calculation is realized by decomposing the
frequency domain coefficients of the input image by multiscale
wavelet transform. The traditional frequency-domain calculation
model has good detection ability for small targets, but weak
detection ability for large targets. The advantage of our multiscale
saliency calculation model is that it can calculate large-scale and
small-scale saliency targets at the same time.

The limitation of this work is that it is only concerned
with the detection of bottom-up visual saliency. It has not
considered top-down influences such as some cues for selecting
suitable scales of salience, or some cues for object recognition
depending on a given vision task. Future work will focus

on a task-dependent attention selection system. It is possible
to add top-down influences for developing more intelligent
vision systems to accomplish various visual search tasks in
engineering applications.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This work was supported by the National Natural
Science Foundation of China (62166048 and 61263048),
and by the Applied Basic Research Project of Yunnan
Province (2018FB102).

REFERENCES

Achanta, R., and Suesstrunk, S. (2010). “Saliency detection using maximum

symmetric surround,” in International Conference on Image Processing (Hong

Kong), 2653–2656. doi: 10.1109/ICIP.2010.5652636

Antonio-Javier, G., Antonio, P., and Pablo, G. (2018). Automatic ship classification

from optical aerial images with convolutional neural networks. Remote Sens.

10:511. doi: 10.3390/rs10040511

Bi, F., Zhu, B., Gao, L., and, Bian,M. (2012). A visual search inspired computational

model for ship detection in optical satellite images. IEEE Geosci. Remote Sens.

Lett. 9, 749–753. doi: 10.1109/LGRS.2011.2180695

Borji, A., and Itti, L. (2013). State-of-the-art in visual attention modeling.

IEEE Trans. Pattern Anal. Mach. Intell. 35, 185–206. doi: 10.1109/TPAMI.

2012.89

Bruce, N., and Tsotsos, J. (2009). Saliency, attention, and visual search: an

information theoretic approach. J. Vis. 9, 1–24. doi: 10.1167/9.3.5

Chen, J. Y., and Reed, I. S. (1987). A detection algorithm for optical

targets in clutter. IEEE Trans. Aerosp. Electron. Syst. 23, 46–59.

doi: 10.1109/TAES.1987.313335

Cheng, M. M., Mitra, N. J., Huang, X., Torr, P. H. S., and Hu, S. M. (2015). “Global

contrast based salient region detection,” in IEEE Trans. Pattern Anal. Mach.

Intell. 37, 569–582. doi: 10.1109/TPAMI.2014.2345401

Crisp, D. J. (2004). The State-of-the-Art in Ship Detection in Synthetic Aperture

Radar Imagery. Edinburgh, SA: Australian Government Department of

Defence Defence Science and Technology Organisation, DSTO-RR-0272.

Davis, J., and Goadrich, M. (2006). “The relationship between precision-

recall and ROC curves,” in Proceedings of the 23rd International

Conference on Machine Learning, Vol. 6 (Pittsburgh, PA: ACM), 233–240.

doi: 10.1145/1143844.1143874

Guo, C., and Zhang, L. (2010). A novel multiresolution spatiotemporal saliency

detection model and its applications in image and video compression.

IEEE Trans. Image Process. 19, 185–198. doi: 10.1109/TIP.2009.20

30969

Hou, X., and Zhang, L. (2007). “Saliency detection: a spectral residual approach,”

in 2007 IEEE Conference on Computer Vision and Pattern Recognition

(Minneapolis, MN), 1–8. doi: 10.1109/CVPR.2007.383267

Itti, L., and Koch, C. (2001). Computational modelling of visual attention.Nat. Rev.

Neurosci. 2, 194–203. doi: 10.1038/35058500

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention

for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259.

doi: 10.1109/34.730558

Jubelin, G., and Khenchaf, A. (2014). “Multiscale algorithm for ship detection

in mid, high and very high resolution optical,” in 2014 IEEE Geoscience

and Remote Sensing Symposium (Quebec City, QC: IGARSS), 2289–2292.

doi: 10.1109/IGARSS.2014.6946927

Li, J., Levine, M. D., An, X., Xu, X., and He, H. (2013). Visual saliency based on

scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach.

Intell. 35, 996–1010. doi: 10.1109/TPAMI.2012.147

Li, L., Zhou, Z., Wang, B., Miao, L., and Zong, H. (2020). A novel CNN-based

method for accurate ship detection in HR optical remote sensing images

via rotated bounding box. IEEE Trans. Geosci. Remote Sens. 59, 686–699.

doi: 10.1109/TGRS.2020.2995477

Liu, G., and Yang, J. (2019). Exploiting color volume and color difference

for salient region detection. IEEE Trans. Image Process. 28, 6–16.

doi: 10.1109/TIP.2018.2847422

Qi, S., Ma, J., Lin, J., Li, Y., and Tian, J. (2015). Unsupervised ship detection based

on saliency and S-HOG descriptor from optical satellite images. IEEE Geosci.

Remote Sens. Lett. 12, 1451–1455. doi: 10.1109/LGRS.2015.2408355

Reed, I. S., and Yu, X. (1990). Adaptive multiple-band CFAR detection of an optical

pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal

Process. 38, 1760–1770. doi: 10.1109/29.60107

Shi, J., Yan, Q., Xu, L., and Jia, J. (2016). Hierarchical image saliency detection

on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38, 717–729.

doi: 10.1109/TPAMI.2015.2465960

Tatler, B., Baddeley, R., and Gilchrist, I. (2005). Visual correlates of

fixation selection: effects of scale and time. Vis. Res. 45, 643–659.

doi: 10.1016/j.visres.2004.09.017

Treisman, A. M., and Gelade, G. (1980). A feature-integration theory

of attention. Cogn. Psychol. 12, 97–136. doi: 10.1016/0010-0285(80)

90005-5

Wolfe, J. M., and Horowitz, T. S. (2004). What attributes guide the deployment

of visual attention and how do they do it? Nat. Rev. Neurosci. 5, 495–501.

doi: 10.1038/nrn1411

Wolfe, J. M., and Horowitz, T. S. (2017). Five factors that guide attention

in visual search. Nat. Hum. Behav. 1:0058. doi: 10.1038/s41562-

017-0058

Frontiers in Neurorobotics | www.frontiersin.org 13 January 2022 | Volume 15 | Article 767299132

https://doi.org/10.1109/ICIP.2010.5652636
https://doi.org/10.3390/rs10040511
https://doi.org/10.1109/LGRS.2011.2180695
https://doi.org/10.1109/TPAMI.2012.89
https://doi.org/10.1167/9.3.5
https://doi.org/10.1109/TAES.1987.313335
https://doi.org/10.1109/TPAMI.2014.2345401
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1109/TIP.2009.2030969
https://doi.org/10.1109/CVPR.2007.383267
https://doi.org/10.1038/35058500
https://doi.org/10.1109/34.730558
https://doi.org/10.1109/IGARSS.2014.6946927
https://doi.org/10.1109/TPAMI.2012.147
https://doi.org/10.1109/TGRS.2020.2995477
https://doi.org/10.1109/TIP.2018.2847422
https://doi.org/10.1109/LGRS.2015.2408355
https://doi.org/10.1109/29.60107
https://doi.org/10.1109/TPAMI.2015.2465960
https://doi.org/10.1016/j.visres.2004.09.017
https://doi.org/10.1016/0010-0285(80)90005-5
https://doi.org/10.1038/nrn1411
https://doi.org/10.1038/s41562-017-0058
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Yu et al. Visual Saliency via Multiscale Analysis

Yu, X., and Reed, I. S. (1993). Comparative performance analysis of

adaptive multispectral detectors. IEEE Trans. Signal Process. 41, 2639–2656.

doi: 10.1109/78.229895

Yu, Y., Wang, B., and Zhang, L. (2009). “Pulse discrete cosine transform for

saliency-based visual attention,” in 2009 IEEE 8th International Conference on

Development and Learning (Shanghai), 1–6.

Yu, Y., Wang, B., and Zhang, L. (2011a). Hebbian-based neural networks

for bottom-up visual attention and its applications to ship detection in

SAR images. Neurocomputing 74, 2008–2017. doi: 10.1016/j.neucom.201

0.06.026

Yu, Y., Wang, B., and Zhang, L. (2011b). Bottom-up attention: pulsed PCA

transform and pulsed cosine transform. Cogn. Neurodyn. 5, 321–332.

doi: 10.1007/s11571-011-9155-z

Yu, Y., and Yang, J. (2017). Visual saliency using binary spectrum of Walsh–

Hadamard transform and its applications to ship detection in multispectral

imagery. Neural Process. Lett. 45, 759–776. doi: 10.1007/s11063-01

6-9507-0

Zhaoping, L. (2002). A saliency map in primary visual cortex. Trends Cogn. Sci. 6,

9–16. doi: 10.1016/S1364-6613(00)01817-9

Zhaoping, L., and Peter, D. (2006). Pre-attentive visual selection. Neural Netw. 19,

1437–1439. doi: 10.1016/j.neunet.2006.09.003

Zou, Z., and Shi, Z. (2016). Ship detection in spaceborne optical image

with SVD networks. IEEE Trans. Geosci. Remote Sens. 54, 5832–5845.

doi: 10.1109/TGRS.2016.2572736

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Yu, Qian and Wu. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 January 2022 | Volume 15 | Article 767299133

https://doi.org/10.1109/78.229895
https://doi.org/10.1016/j.neucom.2010.06.026
https://doi.org/10.1007/s11571-011-9155-z
https://doi.org/10.1007/s11063-016-9507-0
https://doi.org/10.1016/S1364-6613(00)01817-9
https://doi.org/10.1016/j.neunet.2006.09.003
https://doi.org/10.1109/TGRS.2016.2572736
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


ORIGINAL RESEARCH
published: 21 January 2022

doi: 10.3389/fnbot.2021.785808

Frontiers in Neurorobotics | www.frontiersin.org 1 January 2022 | Volume 15 | Article 785808

Edited by:

Xin Jin,

Yunnan University, China

Reviewed by:

Durai Raj Vincent P.M,

VIT University, India

Yanan Guo,

Beijing Information Science and

Technology University, China

*Correspondence:

Bin Yan

ybspace@hotmail.com

Received: 29 September 2021

Accepted: 23 November 2021

Published: 21 January 2022

Citation:

Yang S, Qiao K, Qin R, Xie P, Shi S,

Liang N, Wang L, Chen J, Hu G and

Yan B (2022) ShapeEditor: A

StyleGAN Encoder for Stable and

High Fidelity Face Swapping.

Front. Neurorobot. 15:785808.

doi: 10.3389/fnbot.2021.785808

ShapeEditor: A StyleGAN Encoder for
Stable and High Fidelity Face
Swapping
Shuai Yang, Kai Qiao, Ruoxi Qin, Pengfei Xie, Shuhao Shi, Ningning Liang, Linyuan Wang,

Jian Chen, Guoen Hu and Bin Yan*

Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategy Support Force

Information Engineering University, Zhengzhou, China

With the continuous development of deep-learning technology, ever more advanced

face-swapping methods are being proposed. Recently, face-swapping methods based

on generative adversarial networks (GANs) have realized many-to-many face exchanges

with few samples, which advances the development of this field. However, the images

generated by previous GAN-based methods often show instability. The fundamental

reason is that the GAN in these frameworks is difficult to converge to the distribution

of face space in training completely. To solve this problem, we propose a novel

face-swapping method based on pretrained StyleGAN generator with a stronger ability

of high-quality face image generation. The critical issue is how to control StyleGAN to

generate swapped images accurately. We design the control strategy of the generator

based on the idea of encoding and decoding and propose an encoder called ShapeEditor

to complete this task. ShapeEditor is a two-step encoder used to generate a set of

coding vectors that integrate the identity and attribute of the input faces. In the first step,

we extract the identity vector of the source image and the attribute vector of the target

image; in the second step, we map the concatenation of the identity vector and attribute

vector onto the potential internal space of StyleGAN. Extensive experiments on the test

dataset show that the results of the proposed method are not only superior in clarity and

authenticity than other state-of-the-art methods but also sufficiently integrate identity

and attribute.

Keywords: face swapping, generative adversarial network, disentanglement, style transfer, deepfake

1. INTRODUCTION

As one of the main contents of deepfake, face swapping declares to the world today that seeing
is not always believing. Face swapping refers to transferring the identity of a source image to the
face of another target image while keeping unchanged the illumination, head posture, expression,
dress, background, and other attribute information of the target image. Face swapping has received
widespread attention since its birth, catering to the affluent needs of social life, such as hairstyle
simulation, film and television shooting, privacy protection, and so on (Ross and Othman, 2010).

Face swapping is accompanied not only by its interesting and operational application prospects
but also by various challenges between reality and vision. The early face-swapping methods (Bitouk
et al., 2008; Korshunova et al., 2017) require many images of source and target characters to
provide sufficient facial information. Otherwise, the models would not have a suitable reference
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basis to produce good results. Some three-dimensional-based
(3D-based) methods (Olszewski et al., 2017; Nirkin et al., 2018;
Sun et al., 2018) make use of the advantage of fitting 3D
face models to deal with the problems of large angle and
small samples. At the same time, due to the limited accuracy
of 3D face models, it is impossible to generate works with
better details and higher fidelity. Recently, with the continuous
tapping of the potential of generative adversarial networks
(GANs) (Nandhini Abirami et al., 2021), some face-swapping
methods based on GANs (Bao et al., 2018; Natsume et al.,
2018a,b; Li et al., 2019; Nirkin et al., 2019) can achieve a
good fusion of identity and attribute information with only a
small number of samples, reflecting the effect of great creativity.
Unfortunately, the surprising creativity of these methods does
not offset the adverse impacts of their frequent artifacts and
low-resolution limitation.

On another track, the most advanced face image generation
methods have generated facial images with high resolution
and realistic texture. Most notably, StyleGAN (Karras et al.,
2019) can randomly generate a variety of clear faces with
a resolution of up to 1024 × 1024. StyleGAN has three
potential spaces: initial potential space Z , intermediate potential
space W , and extended potential space W+. (Abdal et al.,
2019) proved that the concatenation of 18 different 512-
dimensional vectors is the easiest way to embed an image
and obtain a reasonable result. On this basis, various works
(Gu et al., 2020; Härkönen et al., 2020; Richardson et al.,
2020; Zhu et al., 2020) explore in detail the StyleGAN
potential vector space: some (Shen and Zhou, 2020; Shen
et al., 2020; Tewari et al., 2020) find a linear direction to
control the change of a single facial attribute, some (Nitzan
et al., 2020) control facial expression and posture in the
original StyleGAN image domain, and others (Richardson et al.,
2020; Wang et al., 2021) deal well with the difficult task of
facial super-resolution.

In contrast with other face-swapping methods, the first
criterion we pursue is that the images after face swapping
have both higher clarity and better authenticity. We propose a
many-to-many face-swapping method based on the pretrained
StyleGAN model (Karras et al., 2019), which strives to ensure
the clarity and fidelity of the results while fusing identity
and attribute information. Given the inherent ability of the
pretrained StyleGAN model to generate random high-quality
face images, the difficulty of this task is how to accurately render
the corresponding latent vectors. To achieve this goal, we first
designed an encoder, ShapeEditor, to find the corresponding
codes in the W+ vector space. The workflow of the encoder was
divided into two stages, the first being the respective extraction
of identity and attribute codes, and the second being to map
the combination of two-channel codes into the potential input
vector domain of the pretrained model. Moreover, we designed
a set of loss functions with a strong monitoring ability to
urge ShapeEditor to update parameters to learn to map step
by step onto the latent space of StyleGAN. As verification,
we made numerous qualitative and quantitative experimental
comparisons with the existing face-swapping methods, which
show the unique advantages of the proposed method.

2. RELATED WORKS

Recently, the GAN-based face-swapping methods have shown
better performance, thus attracting more extensive research and
attention. Although integrate attributes and identity information
well, these methods generally have the common problem of poor
clarity and authenticity. On the other hand, as GAN with better
image quality has been proposed, many works are devoted to
manipulating GAN’s semantic space to generate clear and stable
images. We creatively combine the advantages of the above two
fields to improve the performance of face swapping, and make
possible the more complex control of GAN’s potential space.

2.1. GAN-Based Face Swapping
Olszewski et al. (2017) fit the 3D face model of the source face
and used a conditional generator of the coder-decoder structure
to infer the converted face texture. Too simple generator network
structure and training strategy make this method unable to
separate identity and attribute information to further complete
many-to-many identity exchange. Sun et al. (2018) trained a
convolutional neural network to regress the parameters of a
3D model of the input face, replaced the identity parameters,
and combined the region around the head to generate a
realistic face-swapped image. Limited to the accuracy of the
model reconstruction, 3D-based face-swapping methods are
unsatisfactory in terms of attribute and identity fidelity. Face
Swapping GAN (FSGAN) (Nirkin et al., 2019) used sparse
landmarks to track facial expression, and designed GANs with
different functions for the three stages of face swapping. This
method realized subject agnostic face swapping, while being
limited by the resolution of the input image and the complexity of
expression. Bao et al. (2018) implemented this task using a more
concise coder-decoder architecture, in which two independent
coders separate the identity and attributes of human faces. This
method used an asymmetric training strategy to promote a
large number of unlabeled faces to contribute to the training.
Following the basic network framework and asymmetric training
strategy of Bao et al. (2018), FaceShifter (Li et al., 2019) has
done meaningful work on embedding multi-level information
in the generator and handling occlusion more robustly. The
generator leverages denormalizations for feature integration in
multiple feature levels, showing a better representation of identity
and attribute. However, the clarity and stability of the image
generated by FaceShifter are not always ideal. As shown in
Figure 1, the eyebrows of the result in the first line appear
ghosting, and the nose of the result in the second line appear
artifact. These examples show that the most advanced GAN-
based face-swapping method is still insufficient in authenticity.

2.2. The Potential and Challenge of
Pretrained GAN Manipulation
While a lot of works have been done on how to control GAN
to perform complex image operations, such as face swapping,
others focus on improving the quality of images. Through
carefully designed style-based network structure and layer-by-
layer training, StyleGAN (Karras et al., 2019) realized high-
definition and high-quality face image generation. With the help
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FIGURE 1 | Some abnormal results generated by FaceShifter (Li et al., 2019).

of pretrained StyleGAN, image quality is easier to be improved.
The manipulation of StyleGAN is a difficult task, and most
early works are limited to understanding and reproducing the
potential space of GAN. The inversion task of StyleGAN is to find
the potential vector that best matches the given image. Abdal et al.
(2019) took several minutes to embed a face into the StyleGAN
image domain. Richardson et al. (2020), Zhu et al. (2020), and Gu
et al. (2020) tried to improve efficiency using encoder structure,
but the inversion results of wild images in their methods are
unsatisfactory. Later, some more complex works appeared, such
as changing individual attributes (smile, age, facial angle, etc.)
(Härkönen et al., 2020; Shen and Zhou, 2020; Shen et al., 2020),
establishing relationship between 3D semantic parameters and
genuine facial expressions (Tewari et al., 2020), and super-
resolution of low-quality facial images (Wang et al., 2021). To
the best of our knowledge, there is no face-swapping method
based on StyleGAN. This task requires more complex semantic
manipulation, and the current controllers are not competent.
Nitzan et al. (2020) did closely related work to control expression
through latent space mapping. However, working in theW space
led to the failure of embedding wild images into potential space.
In addition, the single vector of the attribute is too plain to carry
the information of background, posture, expression, etc.

2.3. The Inheritance and Transcendence
We propose a StyleGAN encoder, called ShapeEditor, for
stable and high-fidelity face swapping. As the combination of
face swapping and pretrained GAN manipulation, ShapeEditor
inherits and surpasses the latest ideas in the two fields.

We use an asymmetric training strategy similar to that in
FaceShifter (Li et al., 2019) to realize the training process without
labeled data, so as to ensure solid constraints and reduce data
processing costs. Moreover, the well-designed coder-decoder
structure of our framework can firmly guarantee image quality,
which is the weakest aspect of FaceShifter. Inspired by SPADE
(Park et al., 2019) and AdaIN (Huang and Belongie, 2017), the
FaceShifter generator designs AAD layer-level denormalization
for feature integration in multiple feature levels. By comparison,
the internal mapper of ShapeEditor is composed of lightweight

Multilayer Perceptrons (MLP) to generate feature vectors
embedded in StyleGANW+ space, which reduces the burden of
model training.

Our method and Nitzan et al. (2020) both use the decoupling
framework to extract attribute and identity code through
attribute extractor and identity extractor, respectively. The codes
are then mapped into the latent space of the employed pretrained
generator. Our key difference is that we select W+ potential
space as the mapping space, which is the premise of realizing
the complex semantic operation of face swapping. In addition,
in order to recover the attribute information more finely, we use
multi-level feature mapping instead of a single output as attribute
code like Nitzan et al. (2020) did. The ablation study proves that
our pertinent designs make a significant contribution to better
semantic manipulation.

3. METHODS

Our method requires two images as input: Iattr and Iid. We expect
the output of the model to reflect the identity of Iid and the facial
expression, head posture, hairstyle, lighting, and other attribute
information of Iattr. Therefore, the main challenge of this work is
to obtain the StyleGAN potential vectors that are consistent with
the W+ spatial distribution and better integrate attributes and
identity. To solve this problem, we designed a two-step coding
process. As shown in Figure 2A, the entire mapping process is
divided into two phases: ID-ATTR encoding and latent-space
encoding. In the first stage, Eid extracts the identity vector of
Iid, and Eattr extracts the attribute vector of Iattr. As shown in
Figure 2B, inspired by pSp (Richardson et al., 2020), Eattr consists
of a pyramid-shaped three-layer feature map extraction structure
and a set of convolutional mappers (CM). In the second stage,
we input the concatenation of Eid(Iid) and Eattr(Iattr) into the
multilayer perceptron (MLP) of each layer and map the vectors
containing identity and attribute information directly to theW+
potential vector space. In summary, the whole image conversion
process can be represented as

Iout = G
(

MLP
(

[Eid(Iid),Eattr(Iattr)]
)

)

, (1)
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FIGURE 2 | The overall structure and data flow of the proposed model. (A) is the flow of our method. (B) is the structure of Eattr. (C) is the structure of Multilayer

Perceptron (MLP).

where G(·) is the pretrained StyleGAN model, MLP(·) is
the multilayer perceptron, and [·, ·] is the concatenation of
two vectors.

3.1. Network Architecture
Eid is pretrained ArcFace (Deng et al., 2019) model. We use
ResNet-IR (Deng et al., 2019) for Feature Extractor (FE), in
which the feature output layers are 27, 30, and 44. The CM
is a fully convolutional network that compresses the tensor of
8 × 8 × 512 dimensions into 1 × 1 × 512 dimensions through
three convolution operations with a step size of two. As shown
in Figure 2C, MLP is a five-layer fully connected network. The
StyleGAN generator is a pretrainedmodel trained on FlickrFaces-
HQ (FFHQ) (Karras et al., 2019).

Wemainly use convolution to reduce the dimensions of image
encoding and use deconvolution to decodeW+ vectors. Eattr and
Eid achieve the data-dimension reduction from image to vector

through convolution and other network operations. The identity
vector and attribute vector dimensions are both 1 × 512. The
splicing of identity and attribute vectors is then input into a set
of MLP to convert the face style and map the low-dimensional
information to W+ space. The deconvolution process is mainly
reflected in StyleGAN, which changes from vectors inW+ space
to images. Note that we do not change any structure of StyleGAN
but hope to use its powerful image-generation capabilities to
make our face-changing images more stable and clear.

3.2. Training and Loss Functions
The advanced face-recognition model accurately identifies the
face, so we believe that it can extract face-feature information
and take the feature vector extracted by the pretrained ArcFace
(Deng et al., 2019) as the identity information. To ensure that the
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Algorithm 1 Training ShapeEditor using gradient descent.

Input:

Iattr : Image containing attribute information
Iid : Image containing identity information
P : Identity-attribute image pair space

Functions:

Encoder ShapeEditor:P→W+

Generator G:W+→ I

Loss← Lid : Calculate the identity loss between Iid and Iout.
Loss← Lattr : Calculate the attribute loss between Iattr and

Iout.
Loss ← Lrec : Calculate the reconstruction loss between

Iid(Iattr) and Iout.
Output:

I : Image space
W+ : Potential vector space of StyleGAN
Iout : Synthesized face-swapping image

1: for number of training iterations do:
2: for Iid, Iattr randomly selected in training dataset do:
3: Generate theW+ space vector using [Iid, Iattr]
4: ShapeEditor:P→W+

5: Generate the face-swapping image Iout using theW+
space vector

6: G:W+→ I

7: Calculate the identity loss Lid, the attribute loss Lattr,
and the reconstruction loss Lrec

8: Update ShapeEditor with loss
9: end
10: end.

identity of Iout is consistent with Iid, we introduce the identity loss

Lid = ‖Eid(Iid)− Eid(Iout)‖2, (2)

where Eid(·) is the pretrained ArcFace model.
Similarly, we adopt certain restrictions to ensure that the

attribute information of Iout is consistent with that of Iattr. Given
that the three-layer feature map extraction structure should
gradually have the ability to extract attribute information with
the training process, we define the attribute loss function as

Lattr = ‖P(Iattr)− P(Iout)‖22, (3)

where P(·) is the extraction structure.
Note that the attribute information of Iattr and the identity

information of Iid should not only exist in Iout but should also be
well integrated. Based on this idea, we define the reconstruction
loss as

Lrec =

{

‖Iout − Iid‖2 + ‖F(Iout)− F(Iid)‖2 if Iid = Iattr

0 otherwise,
(4)

where F(·) is the perceptual feature extractor in the loss of learned
perceptual image patch similarity (Zhang et al., 2018), which

extracts the perceptual information of the image at the high-
dimensional level. L2 loss measures the difference between the
two images at the pixel level. Note that Lrec has a positive value
only when Iid and Iattr are the same because only in this case
should Iout and Iid (or Iattr) be so consistent that they are exactly
the same; otherwise, we cannot expect a similar comparison
between the two images. Overall, our total training loss is the
weighted sum of all the losses mentioned above:

Ltotal = λidLid + λattrLattr + λrecLrec. (5)

Based on the loss functions and model structure proposed above,
we train the ShapeEditor encoder according to Algorithm 1.

4. EXPERIMENTS

Implementation Details:We use the FFHQ (Karras et al., 2019)
dataset as the training set, and the value of loss weights is set to
λid = 0.5, λattr = 0.1, λrec = 1. The ratio of the training data with
Iid = Iattr to that with Iid 6= Iattr is set to 2 : 1. During the training,
the network parameters of Eid and the StyleGAN generator
remain unchanged, and the weights of the rest are updated with
iterations. To compare with other methods, we train the model
with images of 256 × 256 resolution in this section. This model
was trained on a single NVIDIA TITAN RTX for about 2 days
with a Ranger optimizer (Richardson et al., 2020), with a batch
size set to eight and a learning rate set to 0.0001.

4.1. Qualitative Comparison With Previous
Methods
We compare the proposed method with FSGAN (Nirkin et al.,
2019), FaceShifter (Li et al., 2019; Nitzan et al., 2020) on the
CelebAMask-HQ (Lee et al., 2020) test dataset. Figure 3 shows, as
expected because the proposed method is based on a pretrained
StyleGAN (Karras et al., 2019) with high-quality face-generation
capabilities, that all the generation results (Figure 3, column 6)
are stable and clear enough that there are no errors such as
artifacts and abnormal illumination.

Almost every output image (Figure 3, column 3) of FSGAN
(Nirkin et al., 2019) shows unnatural lighting transition and
lack of facial details, the abnormal region of the face is caused
by directly extracting and filling the internal area of the face
(Figure 3, row 3, column 4), which is completely avoided in the
proposed method.

Because there is no pretrained model as the backbone, it is
difficult for FaceShifter (Li et al., 2019) to avoid facial blur, some
results even show facial illumination confusion (Figure 3, row
3, column 4) and eye ghosting (Figure 3, row 7, column 4),
showing that its authenticity is significantly inferior to that of the
proposed method.

Similar to the proposed method, Nitzan et al. (2020) use
StyleGAN (Karras et al., 2019) as the backbone. However, it
cannot accurately integrate identity and attribute information
because of its simple encoder structure and the constraint of W
potential space. Therefore, although it can generate high-quality
images (Figure 3, column 6), it is not as good as the proposed
method for fusing semantic information, which is reflected in the
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FIGURE 3 | Qualitative comparison with FSGAN (Nirkin et al., 2019), FaceShifter (Li et al., 2019; Nitzan et al., 2020) on the CelebAMask-HQ (Lee et al., 2020)

test dataset.

attributes of the target image, such as hairstyle and background,
that are not contained.

In addition to the excellent performance in terms of
authenticity and fidelity, the proposed method also deals with
extreme lighting conditions (Figure 3, row 2, column 6) and even
keeps the sense of age (Figure 3, row 3, column 6). Thanks to
that, we use the facial recognition module to extract the identity
vector instead of directly using the pixels in the facial area.
We can extract the identity information very well even if the
source image has facial occlusion (Figure 3, row 4, column 6).
The proposed model understands whether its output should have
glasses (Figure 3, column 6, rows 5 and 6), which is embedded
in the potential space of the pretrained StyleGAN model (Karras
et al., 2019).

4.2. Quantitative Comparison With
Previous Methods
As mentioned in the section 2.3, our method mainly inherits
the ideas of latent space manipulation of pretrained models
and GAN-based face swapping. To show the advantages, we
compare the proposed method with other related. In the
field of latent space manipulation, Nitzan et al. (2020) is the
most similar to our work, which is about controlling facial
attributes with StyleGAN. In the field of GAN-based face
swapping, DeepFakes (Rössler et al., 2019), FSGAN (Nirkin
et al., 2019), and FaceShifter (Li et al., 2019) occupy earlier
positions and have achieved remarkable face exchange. To show
the robustness of our method, we compare the proposed method
with them quantitatively.
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TABLE 1 | Quantitative comparison with Nitzan et al. (2020). Our method performs better in most indicators.

Method
Identity Error ↓ Pose Error ↓ Expression Error ↓ Mood Consistency ↑

Avg. Std. Avg. Std. Avg. Std. Acc. (%)

Nitzan et al. (2020) 0.97 0.30 5.99 7.16 10.13 5.38 65.35

Ours 1.30 0.33 3.82 6.88 5.93 3.63 75.38

Bold values represent the best. ↑ represents that the larger the value, the better. ↓ represents that the smaller the value, the better.

4.2.1. Comparison With Nitzan et al.

Our method and Nitzan et al. (2020) both make use of the image
generation ability of pretrained StyleGAN, and make efforts to
achieve adequate control of the human face. But we are different
in the choice of mapping space and framework design. To show
the significance of our improvement in semantic control, we
quantitatively compare our method with Nitzan et al. (2020) in
terms of identity, pose, expression, and mood consistency on
CelebAMask-HQ (Lee et al., 2020) dataset.

The face swapping model not only needs to ensure the
image quality but also needs to fuse the identity and attribute
information to the greatest extent. We propose four indicators
to measure these aspects. To calculate the identity information
in the test stage, we use another advanced method called
CurricularFace (Huang et al., 2020) as the face-recognition
module to extract the identity vectors of source faces and
face-swapping results, then use L2 distance to calculate the
difference between them to get the identity error. To ensure
that the conversion results are consistent with the target image
in attribute, we use 3DDFA-V2 (Guo et al., 2020) to estimate
the key face points and the head angle. For normalization, we
use the two-dimensional (2D) coordinate information instead of
3D coordinate information to reduce the error impact of key-
point estimation as much as possible, and calculate the average
position of key points in each image, and then obtain the relative
position of each point so as to establish a unified expression
coordinate system. Based on the above, we take the difference
between the target image and the resulting image in angle as pose
error, in key face points as expression error. In addition to pose
and expression, mood embodies the high-level semantics of face
attribute. Inspired by Abirami and Vincent (2021), we use the
emotion recognitionmodel (Zhao et al., 2021) to detect the ability
of face-swapping methods to transmit emotional information.
Specifically, we recognize the moods of the swapped images and
calculate the consistency of the mood recognition results before
and after face exchange.

We randomly extract images from the CelebAMask-HQ
dataset as source faces and take the remaining images as target
faces to form one-to-one corresponding face combinations as
the test dataset. As shown in Table 1, our method is superior
to Nitzan et al. (2020) in pose error, expression error, and
mood consistency, which shows our advantages in attribute
information transfer. Our identity error is slightly higher than
Nitzan, that is because face swapping brings more changes in
head area than expression manipulation. Our advantages in most
indicators demonstrate that we have realized better work in latent
space manipulation.

TABLE 2 | Quantitative assessment with DeepFakes (Rössler et al., 2019),

FSGAN (Nirkin et al., 2019), and FaceShifter (Li et al., 2019).

DeepFakes FSGAN FaceShifter Ours

Identity Error ↓
Avg. 1.35 1.51 0.96 1.30

Std. 0.32 0.45 0.31 0.33

Pose Error ↓
Avg. 3.79 2.81 3.04 3.82

Std. 1.99 4.41 6.70 6.88

Expression Error ↓
Avg. 8.82 5.03 4.53 5.93

Std. 3.30 2.17 2.83 3.63

Mood Consistency ↑ Acc. (%) 39.80 72.77 77.94 75.38

SSIM ↓
Avg. 0.81 0.95 0.96 0.75

Std. 0.09 0.03 0.03 0.08

PSNR ↓
Avg. 20.54 23.76 28.17 20.22

Std. 2.60 2.30 1.92 1.62

FDR ↓

Tsd.=0.01 91.42 76.59 37.67 15.18

Tsd.=0.05 83.83 48.99 11.66 2.67

Tsd.=0.1 77.45 35.86 6.05 1.09

Tsd.=0.2 70.86 24.22 2.86 0.32

Tsd. represents the threshold, which is set to judge whether samples are forged or not.

Bold values represent the best. ↑ represents that the larger the value, the better. ↓
represents that the smaller the value, the better.

4.2.2. Comparison With Face Swapping Methods

To comprehensively show the face-swapping ability of our
method, we conduct quantitative comparisons in transformation
consistency and image quality with DeepFakes, FSGAN, and
FaceShifter. Our work, FSGAN, and FaceShifter rely on a single
reference or few references and are many-to-many approaches.
At the same time, DeepFakes have to be supported by multi-
images or videos to transfer faces in to two specific identities.
Therefore, in order to ensure the effectiveness and efficiency
of comparison, we extract DeepFakes conversion results from
Rössler et al. (2019) dataset. The calculations of identity error,
pose error, expression error, and mood consistency is the same
as in section 4.2.1, which represent transformation consistency
evaluation. Following the work of Yao et al. (2020), we employ
peak signal-to-noise ratio (PSNR) (Huynh-Thu and Ghanbari,
2008) and structural similarity index (SSIM) (Wang et al., 2004)
tomeasure the image reconstruction similarity between the target
face and swapped face. Last but not least, to evaluate the clarity
and authenticity of images, we use Li and Lyu (2018), which can
effectively capture the artifacts in the forged images, to identify
fake faces according to the resolution of the generated images.
Specifically, we calculate the Forgery Detection Rate (FDR) of
the output images. In the analysis of section 4.1, we know
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FIGURE 4 | Qualitative ablation study on different variants. Our original model performs better than others.

that the problems of low-quality images are mainly reflected in
insufficient resolution and abnormal artifact areas. Therefore, the
method of Li and Lyu (2018) can evaluate the quality of face
images to a certain extent.

Table 2 lists the comparison results of different face-swapping
methods. Notably, our method performs best in SSIM, indicating
that our method retains the brightness, contrast, and structure of
the original images to the greatest extent. Besides, our method
outperforms others in PSNR, which demonstrates that our
method can better preserve the global similarity than others.
Also, our method has the least scores in FDR under different
thresholds, which implies that our method can generate images
with more sufficient resolution and less abnormal artifact areas.
Finally, it is worth noting that our method has the second-best
or the same level scores in identity error, pose error, expression
error, and mood consistency, indicating that our method is
comparable to others in identity and attribute, while being
superior to them in terms of image quality and stability.

4.3. Ablation Study
To verify the effectiveness of each component of the proposed
method, we do the ablation study by evaluating the following
degenerate models of our method:

• Random StyleGAN. Using randomly initialized StyleGAN
instead of pretrained generator.

• Single attribute vector. This variant uses a single output layer
of Feature Extractor (FE), while the original uses multi-layer
attribute information.

• W space. UsingW potential space instead ofW+.
• Random Eid. Using randomly initialized Eid instead of

pretrained face recognition model, with weight updating.

We report the qualitative results of the variants of our method
in Figure 4. We can see that our original model has better face-
swapping results. The results of Random StyleGAN are too vague

TABLE 3 | Quantitative ablation study on different variants for face swapping.

Single attribute vector W space Random Eid Ours

Identity Error ↓
Avg. 1.29 1.33 1.37 1.29

Std. 0.32 0.33 0.34 0.33

Pose Error ↓
Avg. 3.94 4.53 4.05 3.64

Std. 5.59 5.74 5.75 5.55

Expression Error ↓
Avg. 6.63 7.43 6.48 5.96

Std. 3.45 4.20 3.87 3.22

PSNR ↓
Avg. 19.38 18.42 19.94 20.22

Std. 1.51 1.58 1.59 1.62

SSIM ↓
Avg. 0.73 0.70 0.74 0.75

Std. 0.08 0.09 0.07 0.08

Bold values represent the best. ↓ represents that the smaller the value, the better.

to recognize, indicating that the pretrained StyleGAN can help
to generate clear and vivid faces. The results of Single attribute
vector lose details of hair, wrinkles, and beard compared with
ours, showing that multi-layer FE can deliver more attribute
information. The results ofW space leak identity information and
add unnecessary details like glasses, showing that W+ potential
space can more strictly embed wild faces into StyleGAN semantic
space. The results of Random Eid leak identity information, which
implies that using pretrained identity recognition model is of
great significance.

Table 3 shows the quantitative results of the variants of our
method on the randomly selected data from Lee et al. (2020)
dataset. With the help of W+ space and pretrained Eid, ours
and Single attribute vector obtain lower identity error. The results
of W space are much inferior compared to ours in pose error
and expression error, revealing the importance of the reasonable
space choice. Also, we can see that W space performs best in
PSNR and SSIM, that is because face swapping inW space tends
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FIGURE 5 | Shortcomings of the proposed model. The problem in panel (A) is that the background of the conversion result is blurred. The problem in panel (B) is that

the swapped face lacks Asian characteristics.

to map a wild face to a most similar face in the StyleGAN face
domain, which is a more natural result with better image quality.
Thanks to the help of StyleGAN, everymodel inTable 3 surpasses
the existing face-swapping methods in PSNR and SSIM.

4.4. Discussion
The core of the proposed model is to use StyleGAN as the
face decoder, which reduces the burden of face spatial feature
learning and dramatically reduces the possibility of artifacts
in the conversion results. However, the proposed method also
has some defects. As shown in Figure 5A, the letters in the
background of the target image become blurred in the resulting
image, which shows that the proposed model is not good at
restoring the background. Although the pretrained model we
use learns the potential features of face space, it does not learn
well how to separate the head from the background. To deal
with this problem, we will separate the head and background
in the next step through image segmentation and then combine
the background of the target image with the head of the
resulting image. At the same time, Figure 5B shows that the
resulting image lacks Asian characteristics similar to those in
the source image, which reflects the problem of insufficient
potential vectors in the StyleGAN face space and is caused
by the relative lack of Asian faces in the training dataset.
Therefore, adding more types of faces to the pretrained model
and selecting a better-pretrained model should also be a focus in
future work.

5. CONCLUSION

This article proposes a new face-swapping framework that
includes ShapeEditor and a pretrained StyleGAN model. The
pretrained model gives the proposed framework the potential
to generate clear and realistic faces. The ShapeEditor encoder
effectively extracts and integrates the attribute and identity
information of the input images, then accurately maps them
onto the W+ space, thus controlling StyleGAN to output
the appropriate results. Extensive experiments show that the
proposed method performs better than existing frameworks in
terms of clarity and authenticity, with sufficiently integrating
identity and attribute.
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The imbalance problem is widespread in real-world applications. When training a

classifier on the imbalance datasets, the classifier is hard to learn an appropriate

decision boundary, which causes unsatisfying classification performance. To deal with the

imbalance problem, various ensemble algorithms are proposed. However, conventional

ensemble algorithms do not consider exploring an effective feature space to further

improve the performance. In addition, they treat the base classifiers equally and ignore

the different contributions of each base classifier to the ensemble result. In order to

address these problems, we propose a novel ensemble algorithm that combines effective

data transformation and an adaptive weighted voting scheme. First, we utilize modified

metric learning to obtain an effective feature space based on imbalanced data. Next, the

base classifiers are assigned different weights adaptively. The experiments on multiple

imbalanced datasets, including images and biomedical datasets verify the superiority of

our proposed ensemble algorithm.

Keywords: imbalance learning, metric learning, information fusion, classification, ensemble learning

1. INTRODUCTION

Many applications face imbalance problems (Farrand et al., 2020; Khushi et al., 2021; Zhang et al.,
2021). The imbalance problem is caused by the difference in the number of samples in each
class. When the classifiers are trained on imbalanced datasets, the classifiers tend to favor the
majority class and predict more samples to be the majority class. Therefore, the minority class
samples can not be correctly classified, which is called the imbalance problem. The imbalance
problem is widespread in the applications, so more and more researchers focus on dealing with
the imbalance problem.

To solve the imbalance problem, researchers have proposed various methods from different
perspectives. Cost-sensitive method (Elkan, 2001) is a typical one. The cost-sensitive method
assigns different classification losses to each class. The minority class has a higher classification
loss than the majority class, such that the classifiers pay more attention to the minority class
and get a correct result. Resampling is another typical method. Resampling methods remove
or synthesize samples from the original data to balance the number of samples in each class,
including undersampling, oversampling, and hybrid sampling. Undersampling (He and Garcia,
2009) method removes the majority class samples by some informed rules. Undersampling can
produce a more clear decision boundary while the information of the excluded samples is lost.

On the other hand, the oversampling method proposes to generate the synthesis of minority
class samples until the data is balanced. The synthesis samples may lie in the overlapped area and
make the distribution worsen. To overcome the disadvantages, the hybrid sampling is investigated.
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FIGURE 1 | The overall framework of ensemble algorithm.

As a two-stage strategy, hybrid sampling method combines
undersampling and oversampling (I., 1976; Han et al.,
2005). Other researchers combine the clustering method
with oversampling (Barua et al., 2011).

Ensemble learning is widely used in solving the imbalance
problem. Ensemble learning trains different classifiers and gets
the result by integrated voting, which contains boosting and
bagging (Ho, 1998; Skurichina and Duin, 2002; Chawla et al.,
2003; Wang and Yao, 2009; Chen et al., 2010). Ensemble learning
plays an essential role in the imbalance classification tasks (Bi and
Zhang, 2018).

Nevertheless, the traditional imbalance algorithms have
the following problems. Most algorithms do not consider
mapping the imbalance data to another feature space for better
classification performance. In addition, the importance of base
classifiers is different, so it is inappropriate to treat the voting
weight of base classifiers equally.

Metric learning is a hot topic in machine learning, which has
been utilized in practical applications (Cao et al., 2019; Bai et al.,
2021). Metric learning learns a feature space that is more effective
than the original space. Euclidean distance is a commonmeasure.
However, Euclidean distance can not reflect the relationship
correctly in the overlapped area. Consequently, some researchers
capture the distance between samples by finding a transformation
that can increase the distance between dissimilar samples and
reduce the distance of similar samples (Köstinger et al., 2012).
When training on the imbalance datasets, metric learning also
suffers from imbalance problems (Gautheron et al., 2019). It
needs to be modified before training on the imbalance datasets.

In this article, we propose an ensemble learning framework
that combines metric learning and resampling. The metric
learning is employed by building a feature space from the
imbalanced dataset. The classifier is trained on the balanced
datasets after oversampling on the feature space to reduce the

impact of imbalance. Finally, the classifier is integrated by
adaptive weighted voting.

The contributions of the article are as follows:
1) An imbalanced version of the largemargin nearest neighbor

(LMNN) algorithm is proposed to alleviate the influence of
imbalanced data distribution and learn a robust feature space.

2) An GA-based weighting scheme is designed to adaptively
optimize the importance of different classifiers.

3) Extensive experiments are conducted on various
imbalanced datasets to verify the effectiveness of the proposed
approach.

The main framework is as follows: Section 2 introduces the
related work about resampling, ensemble learning, and metric
learning; Section 3 discusses the proposed ensemble framework
in detail; Section 4 shows the experiments about our proposed
methods and discusses the result of the experiments. Section 5
draws the conclusion and future study.

2. RELATED WORK

The resampling method contains undersampling and
oversampling. To get a balanced dataset, undersamplingmethods
remove the majority of samples randomly or by informed rules.
Tomek link (Batista et al., 2004) removes samples that are of a
different class from the neighbor. Undersampling can reduce the
imbalance problem, while it may suffer from information loss.
When the number of samples in each class is quite different,
most of the majority of class samples are removed. Hence, the
information of the majority of class is lost severely. On the other
hand, oversampling proposes to generate synthesis minority
class samples to balance the dataset. SMOTE (Chawla et al.,
2002) propose to generate samples by interpolating between
a given sample and its neighbors. The synthesis sample x∗i is
generated as follows:

x∗i = xi + (xn − xi) ∗ r (1)

In which xn is the neighbor of sample xi and r is a random
value between [0, 1]. Adaptive Synthetic sampling approach
(ADASYN) (He et al., 2008) makes different samples generate
different numbers of synthetic samples. Some methods combine
oversampling with clustering to overcome the problem that
synthesized samples are located in the overlapped area. Majority
Weighted Minority Oversampling Technique (MWMOTE)
(Barua et al., 2014) generates minority samples within the
cluster. Additionally, geometric-SMOTE (Douzas and Bacao,
2019) proposes a universal method that can be used in
most oversampling methods. Mahalanobis Distance-based Over-
sampling technique (MDO) (Abdi and Hashemi, 2016) and its
variant (Yang et al., 2018) propose to generate samples in the
principal component space.

Euclidean distance is a traditional measure to reflect the
similarity between samples. However, dissimilar samples may be
closer to the similar samples in the overlapped area, which is
inefficient to apply Euclidean distance. Metric learning learns a
feature space that can reflect the relationship between samples
more correctly. In the feature space, similar samples are closer
while dissimilar samples are separated apart. To achieve this
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FIGURE 2 | The diagram of proposed data transformation. After the data transformation, the similar neighbors are closer, while the dissimilar neighbor samples are

pushed and hold a certain distance to the anchor sample. (A) Before data transformation. (B) After data transformation.

goal, many metric learning algorithms have been proposed.
LMNN (Weinberger and Saul, 2009) minimizes the distance
between the anchor sample and its neighbors of the same
class. At the same time, the anchor sample maintains a margin
with neighbors of a different class. Information-theoretic metric
learning (ITML) (Davis et al., 2007) makes distribution on the
feature space similar to the Gaussian distribution. Some methods
utilize metric learning on imbalanced datasets. Imbalance metric
learning (IML) (Gautheron et al., 2019) modified LMNN by
assigning different weights to sample pairs. Distance Metric by
Balancing KL-divergence (DMBK) (Feng et al., 2019) balances
the divergence of each class on the feature space. Iterative metric
learning (Wang et al., 2018) learns a feature space for the area
near each testing data.

Ensemble learning integrates classifiers to improve
the robustness and performance of classification results.
EasyEnsemble (Liu et al., 2009) trains several classifiers on the
subset, which contains part of majority class samples and whole
minority class samples. BalanceCascade (Liu et al., 2009) splits
the majority class samples as several subsets and trains AdaBoost
classifiers based on the subsets. Yang et al. (2021) proposes an
ensemble framework based on subspace feature space ensemble
and metric learning.

3. PROPOSED METHODOLOGY

In this section, we propose an ensemble framework combining
metric learning with oversampling. Figure 1 shows the overall
framework of our proposed algorithm. First, the metric learning
methods based on the imbalance problem(denoted as ImLMNN)
are applied for getting a better feature space L. The data X
is transformed by mapping matrix L and gets the mapped
data X∗. Then, the feature space Si is constructed. Next, the
oversampling method is employed for getting a balance training
dataset S∗i . Finally, different classifiers are applied in balance

TABLE 1 | The attributes of datasets.

IR Samples Features

climate 10.74 540 18

libras_move 14.00 360 90

ecoli2 5.46 90 7

glass_0_1_2_3_vs_4_5_6 3.20 214 9

yeast3 8.10 1484 8

cleveland_0_vs_4 12.31 173 13

winequality_red_4 29.17 1599 11

ecoli1 3.36 336 7

datasets and voting for the result. The pseudo-code is shown in
the Algorithm 1.

We aim at finding a feature space that can better describe the
sample relationship to improve the performance of classifiers.
LMNN transforms data to a latent feature space, in which similar
samples are closer while dissimilar samples are separated apart.
The loss function of LMNN is as follows:

f (L) = fpush(L)+ fpull(L) (2)

where

fpull(L) =
∑

i,j

∥

∥L
(

xi − xj
)∥

∥

2
(3)

fpush(L) =
∑

i,j

∑

l

(

1− yil
)

[

1+
∥

∥L
(

xi − xj
)∥

∥

2 − ‖L (xi − xl)‖2
]

+

(4)
The loss function of LMNN contains fpush(L) and fpull(L).
fpull(L) reduces the distance between the anchor and its
similar neighbors, while fpush(L) penalizes the distance between
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TABLE 2 | Comparisons between imbalance learning algorithm and our proposed method in terms of AUC.

SMOTE RandomForest RUSboost Balance bagging LMNN ensemble ImLMNN ensemble

climate 0.8785 ± 0.0092 0.5353 ± 0.0188 0.7462 ± 0.0245 0.8496 ± 0.0206 0.8787 ± 0.0162 0.8796 ± 0.021

libras_move 0.8741 ± 0.0227 0.8133 ± 0.025 0.8015 ± 0.06 0.8544 ± 0.0153 0.8146 ± 0.0286 0.8975 ± 0.0144

ecoli2 0.8671 ± 0.0121 0.813 ± 0.0113 0.8252 ± 0.0504 0.8678 ± 0.0138 0.8537 ± 0.0102 0.873 ± 0.0086

glass_0_1_2_3_vs_4_5_6 0.8945 ± 0.0172 0.876 ± 0.0129 0.8441 ± 0.039 0.8804 ± 0.0251 0.827 ± 0.0295 0.9064 ± 0.0173

yeast3 0.8278 ± 0.8278 0.7348 ± 0.0219 0.8163 ± 0.0258 0.8256 ± 0.0273 0.8381 ± 0.0163 0.8395 ± 0.0125

cleveland_0_vs_4 0.8919 ± 0.0103 0.6367 ± 0.088 0.7547 ± 0.05 0.848 ± 0.0405 0.8871 ± 0.0236 0.8955 ± 0.0419

winequality_red_4 0.6667 ± 0.0175 0.5291 ± 0.0093 0.5919 ± 0.0323 0.6515 ± 0.6515 0.6615 ± 0.0111 0.6776 ± 0.0116

ecoli1 0.8715 ± 0.0208 0.8461 ± 0.0297 0.7868 ± 0.0464 0.8756 ± 0.0228 0.8786 ± 0.0062 0.8804 ± 0.0117

AVERAGE_AUC 0.8465 0.723 0.7708 0.8316 0.8299 0.8562

The bold value means the best result among the compared algorithms.

Algorithm 1 : Imbalance Ensemble Framework.

Input: Training set X = (x1, x2, . . . , xn)
Parameter: Number of subspace N
Procedure:

1: Obtain the feature space L by ImLMNN;
2: Map the data by learned feature space L and get the mapped

dataset X∗;
3: for i in 1,..., N do

4: Extract part of features by a threshold M and get the
subspace Si;

5: Apply SMOTE oversampling method on subspace Si and
get the balanced subset S∗i ;

6: Classify on subset S∗i and get predict result y∗i ;
7: end for

8: Vote for result by adaptive weightW = [w1,w2, ...,wN];

Output: The final result Y =
(

y1
final

, y2
final

, . . . , yn
final

)

.

dissimilar samples. [z]+ = max(z, 0) is the hinge loss. yil = 1
when xi and xl belong to the same class, otherwise yil = 0.

However, the LMNN algorithm is inappropriate directly to
apply in imbalanced datasets. To solve this problem, we assign
different weights to samples. The weight wi of sample xi is as
follows:

wi =
δi

|Nc| ∗ d
(

xi,Xc

) (5)

The loss of samples is divided by the number of samples Nc

in the corresponding class, such that the impact caused by the
imbalance problem is alleviated. To emphasize the samples near
decision boundaries, we compute the sum of the density of
majority class δin and minority class δip as density δi. The density

δi is defined as follows:

δi = δin + δip (6)

δin =
1

1
k

k
∑

j=1
dij

, δip =
1

1
h

h
∑

j=1
dij

(7)

δin and δip describe the aggregation of samples in neighboring
areas about majority class and minority class. k and h are
the number of neighbor samples in calculating δin and δip,

respectively. When the density δic is large, the samples in class c
are close to xi. Therefore, a large sum of density δi reflects that
sample xi is close to samples of bothmajority andminority classes
or in the inner of class with high density.

Outliers and noises are also in the border area. To alleviate
the influence of outliers and noises, we divide sample weight by
d(xi, X̄c) which is the distance between sample xi and the center
of class c. The center of class c is defined as:

Xc =
∑

{i|yi=c}
xi. (8)

Therefore, the overall objective function of the data
transformation algorithm is:

f (L) =
∑

i,j

wi

∥

∥L
(

xi − xj
)∥

∥

2

+
∑

i,j

∑

i

wi

(

1− yil
)

[

1+
∥

∥L
(

xi − xj
)∥

∥

2 − ‖L (xi − xl)‖2
]

+

(9)

The diagram of data transformation is shown in Figure 2. Similar
to LMNN, Equation (9) contains fpull which pulls similar samples
closer and fpush which push dissimilar samples separate apart.
In addition, each sample has a different weight to deal with the
imbalance problem.

After the data transformation, we extract M features to build
the subspace Si:

Si = [f 1i , f
2
i , ..., f

M
i ] (10)

The feature is extracted N times to generate N subspace. In
the subspace, the dataset is still imbalanced, which affects the
classifier’s performance. To solve this problem, oversampling is
utilized in each feature subspace. Specifically, the subset is S∗i =
Si∪Syni. The Syni is the synthesis minority data that is generated
by SMOTE on feature subspace Si and helps to form a new
balanced subset S∗i with the original subspace.

The classifier ci is trained on the balance subset S∗i and
votes for obtaining the result. However, the performance of each
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FIGURE 3 | The Fashion-mnist dataset.

TABLE 3 | Comparisons between imbalance learning algorithm and our proposed method in terms of AUC.

SMOTE RandomForest RUSboost Balance bagging LMNN ensemble ImLMNN ensemble

Fashion-mnist 0.9384 ± 0.0018 0.9523 ± 0.0025 0.9414 ± 0.006 0.9561 ± 0.0043 0.9543 ± 0.0044 0.9610 ± 0.0012

The bold value means the best result among the compared algorithms.

FIGURE 4 | Effect of the number of subspaces on the performance of ensemble on six datasets.

classifier is different. The contribution of each classifier in voting
should be determined by the classification result, rather than
being treated equally. Therefore, we utilize the weight assign
process to progressively vote. In detail, the GA algorithm is
applied to obtain the weight of each classifier adaptively. The
detailed description is shown as Algorithm 2.

First, the initial genes G = (g1, g2, ...gn) is generated as the
weight of the classifier, in which n is the number of subspace and
gi is the weight of classifier i. Next, the GA algorithm finds the
n individual and does crossover and mutation. Given two parent

genes gi = [p1i , p
2
i , ..., p

S
i ] and gj = [p1j , p

2
j , ..., p

S
j ] with length S, the

crossover method exchanges part of features in genes. Suppose
the exchange occurs at position α (α ∈ [1, S]), then the genes
after the exchange are:

g∗i = [p1i , p
2
i , ..., p

α
j , ..., p

S
i ]

g∗j = [p1j , p
2
j , ..., p

α
i , ..., p

S
j ]

(11)
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Algorithm 2 : Adaptive weight Procedure.

Input: Classifier set C = (c1, c2, . . . , cn)
Parameter:Number of genes n, Population size of genes np, Max
iteration N
Initialize: genes G =

(

g1, g2, . . . , gn
)

Procedure:

1: while not converge do
2: Select genes as parent randomly;
3: Do crossover and mutation on parent genes to generate

nchild child genes by Eq. (11) and Eq. (12);
4: for i in 1,...,n do

5: Calculates the fitness of gene Fparenti;
6: end for

7: for j in 1,...,nchild do
8: Calculates the fitness of gene Fchildj;
9: end for

10: if Fchildh >Fparentl then
11: replace parent gene gl by child gene gh;
12: end if

13: Until N Converge

14: end while

Output: The optimal genes G∗ =
(

g∗1 , g
∗
2 , . . . , g

∗
n

)

.

The mutation may occur in each position of genes. Suppose the
mutation happens in position γ (γ ∈ [1, S]) of gene gk, then we
have:

g∗k = [p1k, p
2
k, ..., p

γ

k
, ..., pSk] (12)

in which p
γ

k
is a random value. After crossover and mutation,

the child’s genes are generated. We calculate the fitness of parent
genes Fparentl (l ∈ [1, n]) and child genes Fchildh (h ∈ [1, nchild]).
The fitness is set as AUC value. Finally, the parent genes are
replaced by child genes with higher fitness values. When the
iteration is over, the optimal classifier weight G∗ = (g∗1 , g

∗
2 , ..., g

∗
n)

is obtained.
We can get the final result by weighted voting integration. The

result of classifier ci is denoted as yi. Then, the final result is

yfinal =
∑

N

g∗i yi (13)

4. EXPERIMENT

In this section, we show the experiments about the proposed
ensemble framework and compare the algorithm on various
datasets from UCI (Dua and Graff, 2017) and KEEL (Alcala-Fdez
et al., 2010). Our algorithm is also applied in the Fashion-mnist
image dataset. Finally, we analyze the effect of parameters on our
proposed algorithm.

4.1. Datasets
To evaluate the performance of our algorithm, we choose eight
datasets from UCI and KEEL with different attributes, such
as imbalance ratio (IR), number of samples, and features. The
attributes are shown in Table 1 in detail.

4.2. Evaluation Criteria
Accuracy is the typical criterion to evaluate the performance of
the algorithm. However, due to the imbalance problem, accuracy
is inappropriate for imbalance learning. AUC (Fawcett, 2004)
is the area under the receiver operating characteristic curve,
which is not sensitive to the imbalance data, and it is widely
used in imbalance learning. In the experiments, we use AUC as
evaluation criteria.

4.3. Comparison With Other Algorithms
To show the superiority, several algorithms and imbalance
ensemble frameworks are compared with our algorithm.
Specifically, we choose RandomForest, RUSboost, and
BalanceBagging as the baseline. In addition, SMOTE algorithm
is also chosen. The baseline algorithms are shown as follows:

1. SMOTE: A typical oversampling method. It generates samples
by interpolating between samples and their neighbors.

2. RandomForest: An ensemble framework that uses bagging to
build subsets for tree classifiers. The number of trees we set is
15.

3. RUSboost: A hybrid method that combines sampling with
boosting. The number of iterations is 15.

4. BalanceBagging: A variant of Bagging that is applied sampling
in each bootstrap. The number of subspaces we set is 15.

For our proposed algorithm, the number of subspaces is 15,
and the ratio of extracted features is 0.7. To show the ablation
experiment, we compare the LMNN ensemble, which replaces
our proposed data transformation algorithm ImLMNN with the
original LMNN algorithm. We choose linear SVM as the base
classifier. The algorithms run five times and calculate average
AUC as evaluation criteria. The 5-fold cross-validation is also
applied. The result of the experiment is shown in Table 2.

From Table 2, we can see that our algorithm has the
highest average AUC on given datasets, which is superior to
other compared algorithms. Compared with other algorithms,
the proposed algorithm has at least a 1% improvement in
average AUC. Also, compared with the ensemble algorithm that
applied the original LMNN algorithm as data transformation,
our proposed method has a near 3% improvement in
average AUC. Our method takes data transformation in the
imbalanced datasets into account, which is superior to other
compared algorithms.

4.4. Comparison With Different Algorithms
on Image Dataset
Our algorithm is applied in the image dataset and compared with
other algorithms. Figure 3 shows part of samples in the Fashion-
mnist dataset. Fashion-mnist is a famous image dataset that has
784 features and 60,000 samples. The dataset has 10 classes.
To build the imbalanced dataset, we choose the T-shirt class as
the majority class and the pullover class as the minority class.
The majority and minority class samples are 3,000 and 600,
respectively, which means the imbalance ratio is 5:1. Considering
that the feature size is similar to the number of samples, we
set the feature extraction ratio to 0.1. Table 3 shows the result
of the experiment.
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We can see that our method also has the best performance
in the Fashion-mnist dataset. The reason is that our proposed
method can deal with the imbalance problem in the image
dataset.

4.5. The Effect of Parameter
In this section, we show the impact of the parameter
in our algorithm. The number of subspaces influences the
performance of our ensemble framework. We set the number
of subspace to [5,10,15,20]. The parameter experiment result is
shown in Figure 4.

For Cleveland_0_vs_4, ecoli2, and winequality_red_4
datasets, the AUC is improved when the value of subspace is
increased. However, when the number of subspaces exceeds a
specific number, the AUC decreases as the subspace increases.
The reason is that the increasing value of subspaces improves the
diversity of subspace, while the excessive subspaces introduce
redundant information and are harmful to the algorithm’s
performance. For other datasets, the trend of AUC is diverse
due to the uncertainty of the GA algorithm. Considering the
algorithm result on the overall dataset, the proposed number of
the subspace is 15.

5. CONCLUSION AND FUTURE WORK

In this article, we propose an ensemble framework to deal
with imbalanced datasets. We explore an effective feature space
to improve the performance of the subsequent procedure. In
addition, we propose an adaptive integrated voting process
to assign weights for classifiers. The experiments on various

real-world imbalanced datasets, including the imbalanced
image dataset, show the superiority of the proposed ensemble
framework. Finally, we show the experiment to explore the effect
of the parameter.

Future study contains several points: (1) Various
methods can transform data into other feature spaces,
so choosing appropriate methods should be considered.
(2) A more effective adaptive weight process should be
explored to assign weight based on the performance of the
base classifiers.
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High-dynamic-range (HDR) image has a wide range of applications, but its access is

limited. Multi-exposure image fusion techniques have been widely concerned because

they can obtain images similar to HDR images. In order to solve the detail loss of

multi-exposure image fusion (MEF) in image reconstruction process, exposure moderate

evaluation and relative brightness are used as joint weight functions. On the basis of the

existing Laplacian pyramid fusion algorithm, the improved weight function can capture

the more accurate image details, thereby making the fused image more detailed. In 20

sets of multi-exposure image sequences, six multi-exposure image fusion methods are

compared in both subjective and objective aspects. Both qualitative and quantitative

performance analysis of experimental results confirm that the proposed multi-scale

decomposition image fusion method can produce high-quality HDR images.

Keywords: high dynamic range image, multi-scale decomposition, multi-exposure images, image fusion,

Laplacian pyramid (LP)

1. INTRODUCTION

Due to the limited dynamic range of imaging equipment, it is impossible for existing imaging
equipment to capture all the details in one scene with a single exposure. Therefore, underexposure
or overexposure often occurs in daily shooting, which seriously affects the visualization of images
and the display of key information. High-dynamic-range (HDR) imaging techniques overcome this
limitation, but most of currently used standard monitors use low dynamic range (LDR) (Ma et al.,
2015a). So, a tone mapping process is required to compress the dynamic range of HDR images
for display after acquiring HDR images. Multi-exposure image fusion (MEF) methods use a cost-
effective way to solve the dynamic range mismatch between HDR imaging and LDR display. Source
image sequences with different exposure levels are taken as input and the brightness information
in accordance with the human visual system (Ma et al., 2017) is fused with them to generate HDR
images with rich information and sensitive perception.

In recent years, many MEF algorithms have been developed. Like multi-source image fusion
(Jin et al., 2021a), MEF algorithms are usually divided into four categories (Liu et al., 2020):
spatial domain methods, transform domain methods, the combination of spatial domain and
transform domain methods and deep learning methods (Jin et al., 2021b). This article mainly
studies the MEF method in spatial domain,these methods mainly focus on providing the weighted
sum of the input exposures image to obtain the fused image. Different MEF methods use different
techniques to obtain the suitable weight map. Li et al. (2013) obtained the corresponding base and
detail layers by decomposing the source image in two scales, and then processed them separately
to obtain the final fusion image. Liu and Wang (2015) applied dense scale invariant feature
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transform (SIFT) (Liu et al., 2016) to obtain both contrast
and spatial consistency weights based on local gradient
information. Mertens et al. (2010) applied multi-resolution
exposure sequences to Laplacian pyramid-based image fusion.
The weighted average value was first calculated from the
weighted values determined by contrast, saturation and good
exposure, and then applied to obtain the pyramid coefficients.
Finally, image fusion was achieved by reconstructing the
obtained pyramid coefficients. Shen et al. (2014) proposed an
exposure fusion method based on hybrid exposure weights and
an improved Laplacian pyramid. This method considers the
gradient vectors between different exposure source images, and
uses an improved Laplacian pyramid to decompose input signals
into both base and detail layers. Shen et al. (2011) proposed
a probability model of MEF. According to the two quality
indicators of both local contrast and color consistency of source
image sequences, the generalized random walk framework was
first used to calculate the optimal probability set. Then, the
obtained probability set was used as the corresponding weights
to realize image Fusion. Fei et al. (2017) applied an image
smoothing algorithm based on weighted least squares to MEF
for achieving detail extraction of HDR scenes. The extracted
detail information was used in the multi-scale exposure fusion
algorithm to achieve image fusion. So, fused images with rich
colors and detailed information can be obtained. Li and Kang
(2012) proposed a fusion method based on weighted sum. Firstly,
three image features composed of local contrast, brightness and
color differences are measured to estimate the weight, and then
the weight map is optimized by recursive filter. Zhang and
Cham (2012) proposed a simple and effective method, which
uses gradient information to complete multi exposure image
synthesis in static and dynamic scenes. Given multiple images
with different exposures, the proposed method can seamlessly
synthesize them under the guidance of gradient based quality
evaluation, so as to produce a pleasant tone mapped high
dynamic range image. Ma et al. (2017) proposed a method based
on image structure block decomposition, which represents the
image block with average intensity, signal intensity and signal
structure, and then uses the intensity and exposure factor of
the image block for weighted fusion, which can be used for
both static scene fusion and dynamic scene fusion. Moriyama
et al. (2019) proposed to use the light conversion method of
preserving hue and saturation to generate a new multi exposure
image for fusion, realize brightness conversion based on local
color correction, and obtain the fused image by weighted average
(weight is calculated by saturation). Wang and Zhao (2020)
proposed using the super-pixel segmentation method to divide
the input image into non overlapping image blocks composed
of pixels with similar visual attributes, decompose the image
block into three independent components: signal intensity, image
structure and intensity, and then fuse the three components
respectively according to the characteristics of human visual
system and the exposure level of the input image. Qi et al.
(2020) used the exposure quality a priori to select the reference
image, used the reference image to solve the ghosting problem
in the dynamic scene in the structural consistency test, and then
decomposed the image by using the guidance filter, and proposed

a fusion method combining spatial domain scale decomposition,
image block structure decomposition and moderate exposure
evaluation. Li et al. (2020) proposed a multi exposure image
fusion algorithm based on improved pyramid transform. The
algorithm improves the local contrast information of the image
by using the adaptive histogram equalization algorithm, and
calculates the image fusion weight coefficient with good contrast
information, image entropy and exposure. Hayat and Imran
(2019) proposed a ghosting free multi exposure image fusion
technology based on dense sift descriptor and guided filter.
Ulucan et al. (2020) proposed a new, simple and effective still
image exposure fusion method. This technique uses weight map
extraction based on linear embedding and watershed masking.
Xu et al. (2021). Proposed a new multi exposure image fusion
method based on tensor product and tensor singular value
decomposition. A new fusion strategy is designed by using tensor
product and t-svd. The luminance and chrominance channels
are fused respectively to maintain color consistency. Finally, the
chrominance and luminance channels are fused to obtain the
fused image.

Both multi-scale decomposition method and fusion strategy
of multi-scale coefficients determine the performance of the
image fusion framework based on multi-scale decomposition.
Pyramid transformation is a commonly used multi-scale
decomposition method. Due to different scales and resolutions,
the corresponding decomposition layer has different image
feature information. In addition, the weight function design of
feature extraction plays a decisive role in the final fusion result.
Therefore, this article, proposes a fast and effective image fusion
method based on improved weight function. The fusion weight
map is calculated through the evaluation of exposure moderation
and relative brightness. Combined with pyramid multi-scale
decomposition, images with different resolutions are fused to
generate the required high dynamic range image.

The rest of this article is organized as follows. The second
section describes the overall process of the fusion algorithm; The
third section is a detailed explanation of the weight function; The
fourth section describes the process of image Gaussian pyramid
decomposition and Laplace pyramid decomposition; The fifth
section is the experimental results and analysis; The sixth section
is the summary of this article.

2. WORKFLOW OF IMAGE FUSION
ALGORITHM

MEF aims to generate an image containing the best pixel
information from a series of images with different exposure
levels. The pixel-based MEF performs weighted image fusion
as follows.

FI(x, y) =
N

∑

n=1

Wn(x, y)In(x, y) (1)

where FI represents the fusion image, (x, y) represents pixel
coordinates, N represents the number of images, In represents
the pixel intensity of the nth image, and Wn represents the
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FIGURE 1 | The workflow of the proposed image fusion based on improved weight function.

pixel weight of the nth image. The workflow of the proposed
image fusion based on improved weight function is shown
in Figure 1. Equation (7), Equation (8) and other symbols in
Figure 1 correspond to the formula below, indicating that the
operation corresponding to the equation has been performed.
The symbol before Equation (12) in Figure 1 represents the
multiplication sign.

3. WEIGHT FUNCTION

As the core part of the proposed image fusion method, a
reasonable weight function is designed based on the appropriate
evaluation of exposure levels (Shen-yu et al., 2015). Gray value,
as an important measure of image visible information, usually
determines the fusion weight based on the distance between
image gray and 0.5, but this single index will cause the loss of
information of the fused image and some areas of the image
are dark. Using the Evaluation of Moderate Exposure, the fusion
weight is determined by the gray mean value of the multi
exposure image at a certain point and the distance from 0.5
to retain more image information. Additionally, the relative
brightness is applied to measure the corresponding weight.

3.1. Evaluation of Moderate Exposure
In the evaluation process, the brightness and darkness changes
of different pixels obtained by the limited sampling of a scene
are analyzed, and each image pixel value in the scene under the
optimal moderate exposure is estimated. The differences between
the pixel values of each input image and the corresponding
optimal pixel values are compared to evaluate moderate
exposure. The evaluation value can be directly used as the
corresponding weight value for image fusion. For N images with
different exposures from the same scene, In(x, y) represents the

pixel value at the coordinate (x, y) of the nth image, and the
evaluation indicator of moderate exposure is the sum of weights
used to obtain the fused image.

W1,n(x, y) = exp{−
(In(x, y)− µ(x, y))2

2δ2
} (2)

µ(x, y) = (1− β) ∗ 0.5+ β ∗ I(x, y) (3)

I(x, y) =
1

N

N
∑

n=1

In(x, y) (4)

In Equation (2), µ(x, y) represents the optimal pixel value of the
pixel at the coordinate (x, y) of the image, which is estimated
by Equation (3). On one hand, the value of µ(x, y) should be
around 0.5, which can ensure ideal human visual experience.
On the other hand, in order to reflect the real-world light-
dark contrast information, it is necessary to approximate the
brightness information from the limited sampling of the scene.
Therefore, the average value of each pixel in the images with
different exposures is calculated by Equation (4). µ(x, y) is the
weighted sum of 0.5 and this average value. The weight factor β

is a balance parameter between detail information and light-dark
contrast information.

3.2. Relative Brightness
The evaluation indicator of moderate exposure cannot well
capture the information from dark areas of long-exposure images
or bright areas of short-exposure images. Therefore, the relative
brightness proposed by Lee et al. (2018) is added as another
weight indicator. Specifically, when the overall image is bright
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(long exposure), the relatively dark areas are given greater
weights. Conversely, when the overall image is dark (short
exposure), the relatively bright areas are given greater weights.
The average pixel intensity of the nth image is denoted as mn.
When In(x, y) is close to 1 − mn, the corresponding weight
should be relatively large. Therefore, the relative brightness can
be expressed as follows.

W2,n(x, y) = exp{−
(In(x, y)− (1−mn))

2

2δn
2

} (5)

In addition, when the adjacent exposed images and the input
images have relatively large differences, the different objects in the
two images are often in a good exposure state. Therefore, when
the average brightness mn of the nth image considerably differs
from the average brightness mn−1,mn+1 of adjacent images, a
larger δn value is given.α is a constant with a value of 0.75. δn
controls the weight according to the different mn values of the
image, which can be expressed as follows.

δn =







2α ∗ (mn+1 −mn), n = 1
α ∗ (mn+1 −mn−1), 1 < n < N
2α ∗ (mn −mn−1), n = N

(6)

Therefore, the final weight function can be expressed as follows.

Wn(x, y) = W1,n(x, y) ∗W2,n(x, y) (7)

4. MULTI-SCALE IMAGE DECOMPOSITION

Because the pixels of the image are closely related, it is more
reliable to use a wider range of pixels to calculate the fusion
weight. In addition, in the real world, objects have different
structures at different scales. This shows that if you observe
the same object from different scales, you will get different
results. Therefore, in the case of multi-scale decomposition, using
the image pyramid to calculate the result image will get better
fusion results.

Gaussian pyramid decomposition is first performed on
the weight map and the multi-exposure image sequences.
Then the Laplacian pyramid decomposition is applied to the
multi-exposure image sequences. After the Gaussian pyramid
and Laplacian pyramid of the image are fused between the
corresponding layers, the upper layer image of the fused pyramid
is up-sampled, and the up-sampled image is added to the lower
layer image to obtain an image with the equal size of the image to
be fused.

4.1. Gaussian Pyramid Decomposition
The Gaussian pyramid obtains a series of down-sampled images
through Gaussian smoothing and sub-sampling. Gaussian kernel
is first used to convolve the image of the l layer, and then all even

rows and columns are deleted to obtain the image of the l + 1
pyramid layer. The decomposition algorithm is shown as follows.

Gl(x, y) =
2

∑

m=−2

2
∑

n=−2
w(m, n)Gl−1(2x+m, 2y+ n)

(0 ≤ l ≤ Lev − 1, 0 ≤ x ≤ Cl − 1, 0 ≤ y ≤ Rl − 1)

(8)

where Gl is the image of the lth layer of the Gaussian Pyramid,
Cl, Rl is the total number of rows and columns of the lth layer
image, w(m, n) is the value of themth row and nth column of the
Gaussian filter template, Lev represents the number of Gaussian
pyramid layers, and the maximum decomposable number of
layers is log2[min(C0,R0)].

4.2. Laplace Pyramid Decomposition
The Gaussian pyramid obtained by Gaussian convolution and
downsampling often loses detailed image information. Therefore,
Mertens et al. (2010) introduced Laplacian pyramid to restore
detailed image information. The image of each layer of Gaussian
pyramid subtracts the predicted image obtained after the
upsampling and Gaussian convolution of the upper layer image
to obtain a series of difference images, which are the Laplacian
decomposition images. First, the upsampling process is expressed
as follows

expand(̂Gl(x, y)) = 4

2
∑

m=−2

2
∑

n=−2

̂Gl(
(x+m)

2
,
(y+ n)

2
)w(m, n)

(9)

̂Gl(
(x+m)

2
,
(y+ n)

2
) =

{

Gl(
(x+m)

2 ,
(y+n)
2 ), (x+m)

2 ,
(y+n)
2 ) ∈ z

0, else

(10)

where Z represents an integer, expand(̂Gl(x, y)) indicates that an
upsampling operation is performed on the lth layer of Gaussian
pyramid. As shown in Equation (11), the image Gl of the lth layer
of Gaussian pyramid subtracts expand(̂Gl(x, y)) to obtain the lth
layer image Ll containing detailed information.

Ll =
{

Gl − expand(̂Gl(x, y)), 0 ≤ l ≤ Lev − 1
GLev , l = Lev

(11)

The Laplace decomposition process of the image is shown in
Figure 2. In this article, the number of layers of image pyramid
is 7.

4.3. Image Fusion and Reconstruction
According to the above process, the Gaussian pyramid of the
weighted image and the Laplacian pyramid of multi-exposure
image sequences are first obtained, and then fused between the
corresponding layers.

FIl =
N

∑

k=1

Wk,lLk,l, 0 ≤ l ≤Lev − 1 (12)
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FIGURE 2 | The Laplace decomposition process of the image.

FIl represents the fused image data of the lth layer. Wk,l

represents the lth layer data of the kth weighted image. Lk,l
represents the lth layer data of the Laplacian pyramid of the
kth multi-exposure image. Lev represents the total number of
pyramid layers. N represents the number of images. The upper
layer image of the fused pyramid is first upsampled, and then
expanded and added to the lower layer image to obtain an image
with the equal size of the image to be fused as follows.

H =
0

∑

l=Lev−2

FIl + up(FIl+1) (13)

where FIl represents the lth layer image of the fused pyramid,
up represents upsampling, Lev represents the number of pyramid
levels, and H represents the final fusion image. The overall
workflow of the proposed method is shown in Algorithm 1.

5. EXPERIMENTAL RESULTS AND
ANALYSIS

20 sets of multi-exposure image sequences, involving
Arno,Balloons,Cave,ChineseGarden, etc., are applied to
comparative experiments. The proposed method is subjectively
and objectively compared with six existing MEF methods,
including MESPD (Li et al., 2021), GD-MEF (Zhang and Cham,
2012), Fmmr (Li and Kang, 2012), DSIFT (Liu and Wang, 2015),
GFF (Li et al., 2013), SPD-MEF (Ma et al., 2017) and PMEF (Qi
et al., 2020). All experiments were performed in the matlab2019
environment on an Intel I7 9750H@2.60Ghz laptop with 8.00GB
RAM. The relevant parameters are set to δ = 0.2, β = 0.5 and
α = 0.75.

5.1. Subjective Comparison
Firstly, experiments are carried out on the “Arno” scene, and the
fusion results of different algorithms are shown in Figure 3. It
is not difficult to see that when dsift processes the clouds in the
right sky, it is generally dark and can not capture the details of the
clouds well. The GFF and SPD algorithms, when dealing with the
bridge, have the problems of low brightness, resulting in the loss
of detail information and poor visual effect. GD, PMEF and the
algorithm proposed in this article can maintain the uniformity of

Algorithm 1 | Multi-exposure image fusion algorithm based on
improved weight function.

Input LDR image sequences Ik k = 1, 2, . . .N, N is the total number of

images, l represents the number of decomposition layers, (x, y)is the pixel

position

Output the fused image

1 Calculation of image fusion weights:

2 for each k ∈ [1,N] do

3 W(1,k)(x, y) = exp(−(Ik(x, y)− µk(x, y))
2/2δ2)

4 W(2,k)(x, y) = exp(−(Ik(x, y)− (1−mk))
2/2δ2n)

5 Wk(x, y) = W(1,k)(x, y)W(2,k)(x, y)

6 end for

7 Gaussian pyramid decomposition of source image sequences and weight

map:

8 for each k ∈ [1,N] do

9 for each l ∈ [0, Lev − 1] do

10 Wk,l(x, y) =
∑2

m=−2

∑2
n=−2 w(m, n)Wk,l(2x+m, 2y+ n)

11 Gk,l(x, y) =
∑2

m=−2

∑2
n=−2 w(m, n)Ik,l−1(2x+m, 2y+ n)

12 end for

13 end for

14 Laplace Pyramid decomposition of source image sequences:

15 for each k ∈ [1,N] do

16 for each l ∈ [0, Lev − 1] do

17 ̂Gl((x + m)/2, (y + n)/2) =
{

Gl(
(x+m)

2 ,
(y+n)
2 ), (x+m)

2 ,
(y+n)
2 ∈ z

0, else

18 expand(̂Gl(x, y)) = 4
2
∑

m=−2

2
∑

n=−2

̂Gl((x+m)/2, (y+ n)/2)w(m, n)

19 Ll =
{

Gl − expand(̂Gl(x, y)), 0 ≤ l ≤ Lev − 1

GLev , l = Lev
20 end for

21 end for

22 Image fusion reconstruction:

23 for each k ∈ [1,N] do

24 FIl =
∑N

k=1Wk,lLk,l, 0 ≤ l ≤ Lev − 1

25 end for

26 The fused image: H =
∑0

l=Lev−2 FIl + up(FIl+1)

the overall brightness of the image while retaining more details,
and the visual effect is excellent.

The experimental results of “Balloons” scene are shown in
Figure 4. The fusion results of GD, Fmmr and PMEF are dark.
The details of clouds at the sunset are well captured, which
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FIGURE 3 | Comparison of Arno scene experiment results of different methods.

FIGURE 4 | Comparison of Ballons scene experiment results of different methods.

means the details of the overexposed image areas can be well
captured. But the overall scene is dark, resulting in the detail
loss of underexposed image areas. The image fused by GFF has
a slight halo on the edge of the hot air balloon. Additionally, part
of the sky is dark and the image color is slightly distorted. The
sunset area of the image fused by SPD is abnormal. In addition,
the image color is seriously distorted, which seriously affects the
overall performance of the fused image. When comparing the
enlarged details, MESPD, GD, Fmmr, SPD, and PMEF have low
brightness, poor visibility and serious loss of details in this area.

In the experimental results of the “Kluki” scene, as shown
in Figure 5, the saturation of SPD and PMEF is too high,
resulting in some distortion of the color of the resulting image,
and poor retention of the details of the clouds in the sky;
Other algorithms retain the details of the clouds, and the visual
effect is good. In contrast, the fusion results obtained by the
proposed method and DSIFT consider the details of the bright
and dark areas of the scene. So, the corresponding colors are
real, the contrast is clear, and the visual performance of the
fused images is good. From the enlarged details of the trees
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FIGURE 5 | Comparison of kluki scene experiment results of different methods.

FIGURE 6 | Information entropy comparison of seven fusion methods.

on the left, dsift, SPD, and PMEF have the problems of low
brightness and high saturation, resulting in poor retention effect
of details.

5.2. Objective Evaluation Indicator Analysis
This article uses both structural similarity index (SSIM) and
image information entropy for objective evaluation. As shown
in Figure 6 and Tables 1, 2, the results confirm that the propose
method achieves good performance in both subjective and
objective evaluations. The abscissa in Figure 6 represents the

value of information entropy, and the abscissa in Figure 7

represents the value of structural similarity; In addition, the
ordinates of the two figures are the same: 1-20 represents
different multi exposure sequences, and 21 represents the
average value.

1) Image information entropy indicator comparison
Image information entropy is one of the important factors

that determine the final effect of image fusion. The larger the
information entropy, the more detailed information contained in
the experimental result graph; On the contrary, the smaller the
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TABLE 1 | Information entropy comparison of seven fusion methods.

Methods MESPD GD Fmmr DSIFT GFF SPD PMEF Proposed

1. Arno 7.679 7.258 7.175 7.581 7.343 7.490 7.498 7.424

2. Balloons 7.752 7.113 7.264 7.773 7.435 7.676 7.113 7.703

3. Cave 7.577 7.463 7.488 7.396 7.551 7.572 7.463 7.579

4. ChineseGarden 7.248 7.762 7.598 7.852 7.704 7.728 7.762 7.752

5. Church 7.601 7.565 7.693 7.838 7.744 7.774 7.565 7.737

6. Farmhouse 7.356 7.251 7.214 7.237 7.162 7.176 7.251 7.424

7. House 7.687 7.408 7.360 7.659 7.609 7.755 7.408 7.697

8. Kluki 7.312 7.603 7.620 7.696 7.618 7.801 7.603 7.809

9. Lamp 7.705 7.195 7.343 7.535 7.452 7.642 7.195 7.657

10. Landscape 7.720 7.655 7.303 7.322 6.938 7.460 7.655 7.305

11. Laurenziana 7.469 7.751 7.423 7.840 7.717 7.786 7.751 7.805

12. Lighthouse 7.458 7.384 7.413 7.292 7.167 7.645 7.384 7.283

13. MadisonCapitol 7.637 7.576 7.705 7.678 7.586 7.787 7.576 7.809

14. Mask 7.190 7.623 7.610 7.811 7.580 7.738 7.623 7.735

15. Office 7.728 7.473 7.236 7.236 7.473 7.507 7.473 7.387

16. Ostrow 7.694 7.382 7.105 7.122 7.356 7.460 7.382 7.342

17. Room 7.254 7.701 7.681 7.424 7.729 7.608 7.701 7.687

18. Set 7.639 7.394 7.092 7.347 7.255 7.438 7.394 7.150

19. Tower 7.672 7.576 7.579 7.675 7.657 7.646 7.576 7.676

20. Venice 7.584 7.701 7.430 7.513 7.571 7.861 7.701 7.387

21. Average 7.548 7.492 7.438 7.526 7.493 7.633 7.526 7.567

The bold value indicates the highest objective evaluation index value in this group of experiments.

TABLE 2 | Comparison of MEF-SSIM indexes of seven fusion methods.

Methods MESPD GD fmmr DSIFT GFF SPD PMEF Proposed

1. Arno 0.975 0.958 0.965 0.989 0.969 0.980 0.98 0.987

2. Balloons 0.959 0.893 0.945 0.968 0.948 0.965 0.965 0.970

3. Cave 0.984 0.964 0.961 0.972 0.978 0.948 0.969 0.980

4. ChineseGarden 0.987 0.982 0.982 0.993 0.984 0.985 0.986 0.989

5. Church 0.985 0.978 0.979 0.991 0.992 0.993 0.986 0.991

6. Farmhouse 0.970 0.971 0.977 0.976 0.985 0.984 0.977 0.978

7. House 0.972 0.865 0.926 0.964 0.957 0.898 0.941 0.953

8. Kluki 0.967 0.952 0.965 0.981 0.968 0.971 0.965 0.970

9. Lamp 0.968 0.972 0.972 0.973 0.942 0.993 0.983 0.965

10. Landscape 0.984 0.851 0.931 0.960 0.929 0.954 0.955 0.983

11. Laurenziana 0.98 0.982 0.976 0.989 0.987 0.990 0.982 0.986

12. Lighthouse 0.979 0.964 0.953 0.965 0.950 0.970 0.968 0.975

13. MadisonCapitol 0.980 0.932 0.918 0.973 0.968 0.977 0.973 0.980

14. Mask 0.987 0.975 0.982 0.992 0.979 0.988 0.981 0.990

15. Office 0.896 0.968 0.957 0.971 0.967 0.967 0.973 0.988

16. Ostrow 0.965 0.967 0.973 0.974 0.986 0.978 0.972 0.976

17. Room 0.976 0.975 0.973 0.990 0.960 0.988 0.984 0.980

18. Set 0.983 0.922 0.924 0.954 0.943 0.934 0.947 0.984

19. Tower 0.980 0.954 0.952 0.972 0.954 0.940 0.935 0.985

20. Venice 0.975 0.962 0.966 0.981 0.971 0.982 0.975 0.969

21. Average 0.973 0.949 0.959 0.976 0.966 0.969 0.970 0.979

The bold value indicates the highest objective evaluation index value in this group of experiments.

information entropy, the less detailed information contained in
the experimental result graph. The evaluation results are shown
in Figure 6 and Table 1. The multi exposure fusion algorithm

under multi-scale decomposition is slightly lower than the SPD
algorithm based on image block decomposition and better than
other algorithms. This is because the SPD algorithm based on
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image block decomposition avoids the partial loss of information
caused by up and down sampling in multi-scale decomposition,
and its entropy is better than the multi exposure fusion algorithm
under multi-scale decomposition. The calculation formula of
image entropy is as follows.

H =
255
∑

i=0

Pi log pi (14)

Pi represents the proportion of pixels with gray value i in
the image.

2) MEF-SSIM comparison
This article uses the MEF quality evaluation model

(Ma et al., 2015b) for evaluation. The proposed method is
objectively compared with six existing MEF method. Natural
images usually contain object information of different scales.
Multi-scale can ensure the correlation between the pixels
of different scales and optimize image fusion. Structural
similarity as an index is used to measure the similarity
of two images. As shown in Figure 7 and Table 2, the
MEF method under multi-scale decomposition achieves
the best SSIM.

From the perspective of image composition, structural
information is defined as an attribute that reflects the structure
of objects in the scene independent of brightness and contrast.
Additionally, model distortion is treated as a combination of
three different factors, brightness, contrast, and structure. The
mean is used as an estimate of brightness. The standard deviation
is used as an estimate of contrast. The covariance is used as a
measure of structural similarity. All the definitions are shown
as follows.

SSIM(x, y) = [L(x, y)]α · [C(x, y)]β · [S(x, y)]γ (15)

L(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(16)

C(x, y) =
2δxδy + c2

δ2x + δ2y + c2
(17)

S(x, y) =
δxy + c3

δxδy + c3
(18)

L(x, y), C(x, y), and S(x, y) are the comparison results of image
brightness, contrast, and structure, respectively. µx and µy are
the mean values of image pixels. δx and δy are the standard
deviations of image pixel values. δx,y is the covariance of x and
y. c1, c2, and c3 are constants to avoid system errors when the
denominator is 0. α, β , γ used to adjust the weight of each
component, usually α=β=γ=1. The structural similarity index
is used for different scales, and the final image quality score is
obtained through Formula (19).

MEF − SSIM =
∑L

l=1
[SSIMl]

βl (19)

where L is the total number of scales and βl is the weight assigned
to the lth scale.

TABLE 3 | Ablation experiment of weight function.

Weight function Evaluation of

moderate

Exposure relative

brightness

Proposed

Entroy 7.513 7.525 7.567

MEF-SSIM 0.966 0.970 0.979

The bold value indicates the highest objective evaluation index value in this group

of experiments.

FIGURE 7 | Comparison of MEF-SSIM indexes of seven fusion methods.
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TABLE 4 | Comparison of image fusion efficiency of seven fusion methods.

Methods MESPD GD fmmr DSIFT GFF SPD PMEF Proposed

Average time(s) 4.974 0.983 1.090 1.569 0.691 1.361 2.814 0.327

The bold value indicates the highest objective evaluation index value in this group of experiments.

5.3. Ablation Experiment of Weight
Function
In order to prove that the weight function of two different feature
indexes, moderate exposure evaluation and relative brightness,
can make the multi exposure image fusion get better results. The
following ablation experiments were carried out in this article.
As shown in Table 3, the objective evaluation index of the fused
image obtained by the improved weight function in this article
performs well.

5.4. Comparison and Analysis of
Computational Efficiency
As shown in Table 4, The computational efficiency of the
multi exposure fusion algorithm based on the improved
weight function is better than the comparison algorithm. In
the multi-exposure fusion algorithm based on the improved
weight function, although the Laplace image pyramid is
used, in the continuous down sampling, the amount of
calculation increases only a little due to the doubling of the
number of pixels. In addition, because the weight calculation
method of this algorithm is simple and easy to calculate, it
does not need additional time. Therefore, the computational
efficiency of this algorithm is obviously better than other
comparison algorithms.

6. CONCLUSION

In this article, the weight function is improved, and the
weight map is calculated by using the evaluation of moderate
exposure and relative brightness. Pyramid-based multi-scale
decomposition is used to fuse images with different resolutions
to generate the final HDR image. The proposed method can
effectively capture the rich image details and solve the issues
such as splicing traces and border discontinuities in the fused
image, avoiding the generation of artifacts. Both MEF-SSIM and
image information entropy are used to evaluate the performance
of image fusion. Experimental results confirm that the proposed
method achieves good image fusion performance.
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The task of sketch face recognition refers to matching cross-modality facial images from

sketch to photo, which is widely applied in the criminal investigation area. Existing works

aim to bridge the cross-modality gap by inter-modality feature alignment approaches,

however, the small sample problem has received much less attention, resulting in

limited performance. In this paper, an effective Cross Task Modality Alignment Network

(CTMAN) is proposed for sketch face recognition. To address the small sample problem,

a meta learning training episode strategy is first introduced to mimic few-shot tasks.

Based on the episode strategy, a two-stream network termed modality alignment

embedding learning is used to capture more modality-specific and modality-sharable

features, meanwhile, two cross task memory mechanisms are proposed to collect

sufficient negative features to further improve the feature learning. Finally, a cross task

modality alignment loss is proposed to capture modality-related information of cross task

features for more effective training. Extensive experiments are conducted to validate the

superiority of the CTMAN, which significantly outperforms state-of-the-art methods on

the UoM-SGFSv2 set A, set B, CUFSF, and PRIP-VSGC dataset.

Keywords: sketch face recognition, cross-modality gap, small sample problem, image retrieval, feature alignment

1. INTRODUCTION

Face recognition plays an important role in law enforcement agencies (Lin et al., 2018). However,
there are many cases where police cannot capture photos of a suspect, but eyewitnesses can help
forensics draw a facial sketch. Sketch face recognition is the process of matching facial sketches to
photos (Méndez-Vázquez et al., 2019); it has wide application in the criminal investigation area
(Wang and Tang, 2009).

Sketch face recognition is challenging due to the largemodality gap between photos and sketches
and small sample problem. Photos depict the real-life environment. They have bothmacro edge and
micro texture information. Sketches are usually hand-drawn (Wang and Tang, 2009) by forensic
artists or composited (Galea and Farrugia, 2018) via computer software programs like EFIT-V
and IdentiKit. They primarily contain macro edge information with minimal texture information.
Moreover, due to the privacy protection problem and the time-consuming efforts of sketch drawing,
amount of the paired sketch-photo data is limited, resulting in limited sketch face recognition
performance. As a result, reducing the modality gap as much as possible has been important target
in few shot sketch face recognition.
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Several research studies have been devoted to reducing the
modality gap, where it was divided into intra-modality (Gao
et al., 2008b; Zhang et al., 2015) and inter-modality methods
(Fan et al., 2020; Peng et al., 2021). For intra-modality methods,
they aim to reduce the domain gap by transforming a sketch
(photo) to a photo (sketch) first, and then using traditional
homogeneous face recognition methods to match the resultant
photos with the original photos. However, such methods usually
contain undesirable artifacts (Zhang et al., 2015). Inter-modality
methods aim to extract modality-invariant features to obtain
promising performance. However, for small sample problem,
these features usually are not optimal. Although several few-shot
methods (Jiang et al., 2018; Dhillon et al., 2019) have achieved
comparable performance on several benchmark datasets, they are
not designed for sketch face recognition specifically and ignore an
unavoidable fact that there exist modality shifts between sketch
and photo domain.

In this paper, a Cross Task Modality Alignment Network
(CTMAN) is proposed for sketch face recognition to address the
above problem. Inspired by few-shot learning methods (Jiang
et al., 2018), we introduced a meta learning training episode
strategy to alleviate the small sample problem, several different
tasks are built by the training episode strategy, then modality
related query set and support set are designed to incorporate
modality information. Based on these tasks, a two-stream
network termed modality alignment embedding learning (MAE)
is used to extract discriminative modality alignment features.
Since mining important negative samples are important for few
shot learning (Robinson et al., 2021), two cross task memory
mechanisms are further proposed to obtain the cross task support
set, thus the cross task support set can collect more sufficient
hard negative features crossing different tasks (episodes), and
the cross task modality alignment losses are computed over the
cross task support set to enhance the discrimination of feature
representations. Finally, by computing the distance between the
query set and cross task support set, a cross task modality
alignment loss is proposed to further guide the MAE to learn
modality related features. Similar to Matching Networks (Xu
et al., 2021) and Prototypical Networks (Snell et al., 2017), our
proposed method can be seen as a form of meta-learning, in
the sense that we compute the cross task domain alignment
loss dynamically from new training tasks (episodes). The main
difference between training episode strategy for few-shot learning
and batch learning for traditional deep learning methods is that
the label of identity in a different batch is fixed and in different
episode is flexible.

Note that CTMAN is different from other sketch face
recognition schemes, such as Domain Alignment Embedding
Network (DAEN) (Guo et al., 2021). The main differences
between the CTMAN and the DAEN are as follows: (1) CTMAN
uses a two-stream network to extract discriminative modality
alignment feature, the two-stream network consists of a ResNet50
backbone, the non-local blocks and the generalized mean (GeM)
pooling layers. DAEN uses a traditional one-stream ResNet18
network to extract discriminative feature; (2) CTMAN proposes
a cross task memory mechanism and cross task support feature
set to collect more sufficient hard negative features by crossing

different tasks and compute the cross task modality alignment
losses over the query feature set and cross task support feature set.
DAEN computes the modality alignment losses over the query
feature set and support feature set.

Our major contributions can be summarized as follows:
by utilizing the cross task information, we propose a
CTMAN method to extract modality alignment discriminative
representation under the small sample settings, achieving the
competitive sketch face recognition performance. Furthermore,
we design a cross task memory mechanism to obtain the updated
cross task support set to collect more sufficient hard negative
features by crossing different tasks. On the one hand, through
manipulation of enqueue and dequeue, cross task memory
mechanism can collect more sufficient hard negative features by
crossing different tasks. On the other hand, by combining these
hard negative features, the cross task support feature set is built
for computing the cross task modality alignment losses to further
enhance the discrimination of feature representations. The cross
task modality alignment losses are computed over the query
sketch feature set and cross task support feature set, they enhance
feature representations by mining the modality relations between
the sketch domain and photo domain. Extensive experimental
results show that our proposed CTMAN outperforms the state-
of-the-art methods on three benchmark datasets. Especially, on
UoM-SGFSv2 set A and set B, our model achieves a significant
improvement of 8.51 and 11.9% Rank-1, respectively, which
greatly accelerates the sketch face recognition research.

The rest is arranged as follows. Previously related researches
are briefly reviewed in Section 2. In Section 3, the CTMAN is
introduced in detail. In Section 4, the experimental results on the
UoM-SGFSv2 Set A, Set B, and CUFSF datasets are fully analyzed,
and Section 5 concludes.

2. RELATED WORK

In this section, related sketch face recognition methods are
reviewed. Since few-shot learning methods are related to our
proposed method, these methods are also reviewed.

Sketch face recognition methods can be broadly divided
into inter-modality and intra-modality methods. Eigen-
transformation (Galea and Farrugia, 2015), Bayesian framework
(Wang et al., 2017a), and Generative Adversarial Network (GAN)
(Wang et al., 2017b) are representative intra-modality methods.
Under the assumption that sketches and the corresponding
photos are reasonably similar in appearance, the Eigen-
transformation (Galea and Farrugia, 2015) used a linear
combination of photos (or sketches) to synthesize whole images.
Wang et al. (2017a) proposed a Bayesian framework to consider
relationships among neighboring patch images for neighbor
selection. With the development of GAN, many methods utilize
GAN to transform a sketch into a photo. For example, Wan
and Lee (2019) proposed a residual dense U-Net generator
and a multitask discriminator for sketch face generation and
recognition simultaneously. However, these methods do not
emphasize inter-personal differences, causing performance
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reduction when data samples are limited, moreover, these
methods are computationally expensive (Zhang et al., 2015).

Traditional inter-modality methods include the local binary
pattern (LBP) (Bhatt et al., 2010), histogram of averaged
orientation gradients (HAOG) (Galoogahi and Sim, 2012), and
logGabor-MLBP-SROCC (LGMS) method (Galea and Farrugia,
2016). Bhatt et al. (2010) used extended uniform circular LBP
descriptors to characterize sketches and photos. The HAOG
(Galoogahi and Sim, 2012) is a gradient orientation based face
descriptor, it was proposed to reduce the modality difference by
the fact that gradient orientations of macro edge information
are more modality invariant than micro texture information. By
utilizingmultiscale LBP and log-Gabor filters, Galea and Farrugia
(2016) proposed LGMSmethod to extract local and global texture
representations for sketch face recognition. Recently, many
works attempt to address the cross-modal matching problem
by deep learning methods benefiting from the development of
deep learning (Mittal et al., 2015; Peng et al., 2019, 2021; Fan
et al., 2020). Mittal et al. (2015) proposed a deep belief model to
learn a feature of photos and then fine-tuned it for sketch face
recognition. By introducing a soft face parsing approach, Peng
et al. (2021) proposed a soft semantic representation method
to extract contour level and soft semantic level deep features.
They also proposed a deep local feature learning approach
to learn compact and discriminant local information directly
from original facial patches. Fan et al. (2020) presented a
Siamese graph convolution network by building cross-modal
graphs for face sketch recognition. However, the success of these
deep learning approaches neglects the small sample problem to
some extent.

By using a 3-D morphable model to synthesize both photos
and sketches to augment the training data, Galea and Farrugia
(2018) utilized a fine-tuned VGG-Face network and a triplet
loss to determine the identity in a query sketch by comparing
it to a gallery set. Guo et al. (2021) designed a training episode
strategy to alleviate the small sample problem and proposed
a domain alignment embedding loss to guide the network to
learn discriminative features. Recently, few-shot learning has
become appealing choice to deal with a small sample problem.
Metric based meta-learning method and hard samples mining
method are representative methods for few-shot learning. Metric
based meta-learning method raises the learning level from data
level to task level, and it learns the embedding from newly
labeled tasks instead of the whole training dataset in each
episode. Vinyals et al. (2016) proposed a matching network
by using an attention mechanism to predict the class of query
sets from labeled support sets. Wang J. et al. (2018) proposed
a Siamese network by minimizing a pairwise similarity metric
between within-class samples. By regarding each image as a
graph node, Garcia and Bruna (2017) designed a Graph Neural
Network to learn the information transmission task in an
end-to-end manner. For the hard samples mining technique,
Zhong et al. (2019) utilized the instance invariance technique
in domain adaptation to construct positive exemplar memory.
Wang et al. (2019) proposed a cross batch memory to provide
a rich set of negative samples by using a dynamic queue of mini-
batches. Robinson et al. (2021) developed an efficient and easy

to implement sampling technique for selecting hard negative
samples with few computational overheads. Although the
above hard samples mining methods have achieved competitive
performance on several representative small sample dataset, they
do not consider the modality gap between sketch images and
photo images.

3. PROPOSED METHOD

In this section, we detail the proposed CTMAN. Several training
episodes are randomly selected from the training set to mimic
few shot tasks, and modality related query set and support set
are designed to incorporate domain information inmeta learning
training episode strategy stage. In each training episode, we use
a MAE network to extract discriminative features to obtain the
modality alignment query feature set and support feature set. On
the basis of the support feature set, to further alleviate the small
sample problem, we propose two cross task memory mechanism
to obtain the cross task support set to collect sufficient hard
negative features crossing different tasks. Finally, a cross task
modality alignment loss is computed over the query feature set
and cross task support feature set and a modality alignment loss
is computed over the query feature set, and support feature set.
Figure 1 shows the proposed CTMAN in one training episode.

3.1. Meta Learning Episode Training
Strategy
Due to the privacy protection problems and the time consuming
efforts of sketch drawing, amount of the paired sketch-photo data
is limited. Inspired by the few shot learning methods (Vinyals
et al., 2016; Snell et al., 2017; Jiang et al., 2018; Guo et al.,
2021), a meta learning training episode strategy is introduced to
incorporate modality information by sampling image pairs and
classes from the training set.

Given a training set Dtr = {S, P} =
{(s1, y1), · · · , (sN , yN), (p1, y1), · · · , (pN , yN)}, where
P = {(pi, yi)}Ni=1 are photo images and S = {(si, yi)}Ni=1 are
sketch images, N is the number of subjects, yi is the class label,
si and pi(i = 1 :N) share same label yi. The meta learning
training episode classes B = {t1, . . . , tb} ⊂ {1, · · · ,N} is
randomly selected to form the meta learning training episode or
task Dt = {(st1, yt1, 1), · · · , (stb, y

t
b
, b), (pt1, y

t
1, 1), · · · , (ptb, y

t
b
, b)},

where st
k
= sik , p

t
k
= pik , y

t
k
= yik , k = 1, · · · , b, yt

k
is original

label corresponding to st
k
and pt

k
, and k is the current label

corresponding to st
k
and pt

k
in the current training episode. For

each training epoch, the meta learning training episode Dt will
be randomly formulated T times (D1, · · · ,DT) to mimic the
few-shot task.

In each training episode Dt , a query set Qt =
{(st1, 1), · · · , (stb, b), (p

t
1, 1), · · · , (ptb, b)} is builded. For

sti ∈ Qt ,i = 1, · · · , b, the corresponding photo support
set is builded by Stp = {(pt1, yt1, 1), · · · , (ptb, y

t
b
, b)}. For

pti ∈ Qt , the corresponding sketch support set is builded
by Sis = {(st1, yt1, 1), · · · , (stb, y

t
b
, b)}.
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FIGURE 1 | Cross task modality alignment network (CTMAN) for sketch face recognition. In each training episode, CTMAN first embeds sketch and photo images

into feature space by modality alignment embedding (MAE) network to obtain query feature set Qf and support feature set (Sfs and Sfp). Then, it proposes two cross

task memory mechanism Mp and Ms to obtain the cross task support feature set (Ŝfs and Ŝfp). Finally, a cross task modality alignment loss (LCPDL + LCSDL) is

computed on the query feature set and cross task support feature set, a modality alignment loss (LPDL + LSDL) is computed on the query feature set and the support

feature set, and the final loss is computed over the cross task modality alignment loss and modality alignment loss.

3.2. Modality Alignment Embedding
Learning
Since two-stream network structure has been widely used in
cross-modality person re-identification and achieved comparable
performance (Ye et al., 2020), here we introduce a two-stream
feature extraction network structure (Ye et al., 2021) termed
MAE network F(·) = [Fs(·), Fp(·)] for sketch face recognition to
capture more modality-specific and modality-sharable features.
The overall structure of MAE for sketch face recognition is
illustrated in Figure 2. The structure of ResNet50 (He et al., 2016)
pre-trained on ImageNet is adopted as a backbone for MAE, and
the fully connected layer is removed. The MAE contains two
blocks, the first block is designed specifically for two modalities
in order to capture modality-specific information while the
remaining blocks are shared to learn modality-sharable features.
The first block contains a convolutional layer, a batchnorm layer,
a relu layer, and a maxpooling layer. The remaining blocks
contain 4 residual modules and 4 non-local attention blocks
(Wang et al., 2017c), each residual module follows a non-local
attention blocks, the final non-local attention block follows a
pooling layer, the output of the pooling layer is adopted for
computing loss function in the training and inference stage. Since
sketch face recognition is a cross modal fine-grained instance
retrieval, the widely-used max-pooling or average pooling cannot
capture the domain-specific discriminative features (Ye et al.,

2021), here we adopt a GeM pooling (Radenovic et al., 2017) for
the pooling layer.

In each training episode Dt , a query set Qt , a photo
support set Stp, and sketch support set Sts are given.
F(·) = [Fs(·), Fp(·)] embeds them to the query feature set
Qf = {(Fs(st1), 1), · · · , (Fs(stb), b), (Fp(p

t
1), 1), · · · , (Fp(ptb), b)} =

{(f ts1, 1), · · · , (f tsb, b), (f
t
p1, 1), · · · , (f tpb, b)}, photo support

feature set Sfp = {(Fp(pt1), yt1, 1), · · · , (Fp(ptb), y
t
b
, b)} =

{(f tp1, yt1, 1), · · · , (f tpb, y
t
b
, b)}, and sketch support feature set Sfs =

{(Fs(st1), yt1, 1), · · · , (Fs(stb), y
t
b
, b)} = {(f ts1, yt1, 1), · · · , (f tsb, y

t
b
, b)},

respectively.

3.3. Cross Task Modality Memory
Mechanism
Mining important negative samples are important for few shot
learning (Robinson et al., 2021) and metric learning (Wang
et al., 2019), for collecting sufficient informative negative pairs
from each episode, inspired by Wang et al. (2019), through the
manipulation of enqueue and dequeue. We propose a cross task
photo memory mechanism Mp and a cross task sketch memory
mechanism Ms to record the deep features of recent episodes,
allowing the model to collect sufficient hard negative pairs across
multiple tasks. By computing the mean value of within class
sample of the Mp and Ms, a cross task photo support feature set
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FIGURE 2 | The overall structure of MAE for sketch face recognition.

Ŝfp and a cross task sketch support feature set Ŝfs are obtained for
computing the cross task modality alignment losses to enhance
the discrimination of feature representations.

Suppose M is the memory size of Mp and b < M, the

Mp = {(f p1, y1), · · · , (f pM , yM)} and Ŝfp are builded and updated

as follows: in the first m episode, the MAE is warmed up first
to reach a local optimal field, Mp = {(f p1, y1), · · · , (f pM , yM) =
{(fmp1 , ym1 ), · · · , (fmpb , y

m
b
), (0, 0), · · · , (0, 0)}, Ŝfp = Sfp =

{(fmp1 , ym1 , 1), · · · , (fmpb , y
m
b
, b)}. Then, for the following task, the

features and original labels of the current task ofMp are enqueued
and entities of the earliest task are dequeued. For example, for
the (m + 1)th episode, if 2b ≤ M, the Mp is updated by Mp =
{(fmp1 , ym1 ), · · · , (fmpb , y

m
b
), (fm+1

p1 , ym+1
1 ), · · · , (fm+1

pb
, ym+1

b
), (0, 0),

· · · , (0, 0)}, else if 2b − M = k ≥ 0, Mp =
{(fm

p(k+1)
, ym

k+1
), · · · , (fm

pb
, ym

b
), (fm+1

p1 , ym+1
1 ), · · · , (fm+1

pb
, ym+1

b
)}.

The Ŝfp is updated by Ŝfp =
{(f̂m+1

p1 , ym+1
1 , 1), · · · , (f̂m+1

pb
, ym+1

b
, b)}, for each f̂m+1

pi with

label ym+1
i , suppose there exist qi with-in class feature in Mp

selected by label ym+1
i , then f̂ tpi is computed by

f̂m+1
pi =

1

qi + 1
(

∑

yn=ym+1
i ,f pn 6=fm+1

pi

f pn + fm+1
pi ). (1)

Likewise, a cross task sketch memory mechanism Ms =
{(f s1, y1), · · · , (f sM , yM)} and a cross task sketch support feature

set Ŝfs = {(f̂ ts1, yt1, 1), · · · , (f̂ tsb, y
t
b
, b)} can be builded in a similar

way, suppose there exist hi with-in class feature inMp selected by

label yti , f̂
t
si is computed by

f̂ tsi =
1

hi + 1
(

∑

yn=yti ,f sn 6=f tsi

f sn + f tsi). (2)

3.4. Cross Task Modality Alignment Loss
Based on the above meta learning training episode strategy and
cross task modality memory mechanism, a cross task modality
alignment loss is proposed and a modality alignment loss is
used to guide the F(·) to learn discriminative modality alignment
features. In each training episode, the query feature set Qf =
{(f ts1, 1), · · · , (f tsb, b), (f

t
p1, 1), · · · , (f tpb, b)}, photo support feature

set Sfp = {f tp1, yt1, 1), · · · , f tpb, y
t
b
, b), and sketch support feature

set Sfs = {f ts1, yt1, 1), · · · , f tsb, y
t
b
, b) are extracted by the MAE

learning F(·) first. Then, the cross task photo support feature set

Ŝfp = {(f̂ tp1, yt1, 1), · · · , (f̂ tpb, y
t
b
, b)} and cross task sketch support

feature set Ŝfs = {(f̂ ts1, yt1, 1), · · · , (f̂ tsb, y
t
b
, b)} are builded by cross

task modality memory mechanism.
For a sketch feature f tsi in query feature set Qf , its probability

distribution over the cross task photo support set Ŝfp can be
formulated by a softmax function over b cross task photo
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features:

P(k|f tsi) =
exp(−||f tsi − f̂ t

pk
||)

∑b
j=1 exp(−||f tsi − f̂ tpj||)

, (3)

where ||·|| is the Frobenius norm, P(k|f tsi) refers to the probability
of sti belonging to the class k.

By summarizing the probability P(k|f tsi), i = 1, · · · , b on the
Qf , the cross task sketch modality embedding loss is denoted as
follows:

LCSDL =
1

b

b
∑

i=1

− log P(k|f tsi), (4)

Similarly, the cross task photo modality embedding loss LCPDL is
denoted as follows:

LCPDL =
1

b

b
∑

i=1

− log P(k|f tpi) =
1

b

b
∑

i=1

− log(
exp(−||f tpi − f̂ tsk||)

∑b
j=1 exp(−||f tpi − f̂ tsj||)

), (5)

Combine Equations (4) and (5), the cross task modality
alignment loss is computed by the sum of the cross task
sketch domain embedding loss and the cross task photo domain
embedding loss:

LCDL =
1

2
(LCPDL + LCSDL)

=
1

2b
(

b
∑

i=1

− log P(k|f tpi)+
b

∑

i=1

− log P(k|f tsi)).
(6)

To further extract discriminative modality alignment features,
the probability distribution of Qf over the photo support set Sfp
and sketch support set Sfs are also computed as follows:

P1(k|f tsi) =
exp(−||f tsi − f t

pk
||)

∑b
j=1 exp(−||f tsi − f tpj||)

, (7)

P1(k|f tpi) =
exp(−||f tpi − f t

sk
||)

∑b
j=1 exp(−||f tpi − f tsj||)

, (8)

Finally, the modality alignment loss is computed by the sum of
the sketch domain embedding loss LPDL and the photo domain
embedding loss LSDL:

LDL = LPDL + LSDL =
1

2b
(

b
∑

i=1

− log P1(k|f tpi)+
b

∑

i=1

− log P1(k|f tsi)), (9)

Combine Equations (6) and (9), the final loss is computed by
the weight sum of the cross task modality alignment loss and the
modality alignment loss:

L =
1

2
(LDL + λLCDL)

=
1

2b
(

b
∑

i=1

− log P1(k|f tpi)+
b

∑

i=1

− log P1(k|f tsi))

+
λ

2b
(

b
∑

i=1

− log P(k|f tpi)+
b

∑

i=1

− log P(k|f tsi)).

(10)

where λ is the trade-off parameter.

3.5. Learning and Inference
For each episode, we update the parameter of MAE by the solving
following optimization problem:

min
w

L =
1

2
(LDL + λLCDL). (11)

The detailed process of loss computation is provided in
Algorithm 1, which can be optimized with back-propagation
algorithm. As for inference, after extracting the probe feature
set and gallery feature set from the well-trained MAE network
F(·) = [Fs(·), Fp(·)], for each sketch feature Fs(s

e) in probe
feature set, we compute Euclidean metric among the Fs(s

e) and
the gallery feature set {Fp(p1), · · · , Fp(pn)} , the corresponding
nearest gallery sample pei is the matched photo image.

Algorithm 1: Loss computation of CTMAN.

Input: training episode Dt = {(st1, yt1, 1), · · · , (stb, y
t
b
, b),

(pt1, y
t
1, 1), · · · , (ptb, y

t
b
, b)}.

1 Build a query set Qt , a photo support setStp, and a sketch

support set Sts by Section 3.1;
2 Build a query feature set Qf , a photo support feature setSfp,

and a sketch support feature set Sfs by Section 3.2;

3 Build a cross task photo support feature set Ŝfp and a cross

task sketch support feature set Ŝfs by Section 3.2;

4 Compute the cross task modality alignment loss LCDL and
modality alignment loss LDL by Equation (6) and
Equation (9), respectively;

5 Compute L by Equation (11) ;
Output: L.

4. EXPERIMENT

The proposed CTMAN is evaluated through extensive
experiments on the UoM-SGFSv2 dataset (Galea and Farrugia,
2018) and the CUHK Face Sketch FERET Database (CUFSF)
dataset (Mittal et al., 2015). Extensive ablation analysis is
conducted to verify effectiveness of each contribution of the
CTMAN. Finally, the proposed method is compared with other
most recent competing methods on sketch face accuracy.
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TABLE 1 | Experiment setup, UoM-SGFS set A* is UoM-SGFS set A, MEDS -II,

FEI, and LFW, and UoM-SGFS set B* is UoM-SGFS set B, MEDS -II, FEI, and

LFW.

Setup Training set Test set Train/pairs Probe Gallery

name

S1 UoM-SGFSv2 set A UoM-SGFS set A* 450 150 150+1521

S2 UoM-SGFSv2 set B UoM-SGFS set B* 450 150 150+1521

S3 CUFSF CUFSF 500 694 694

S4 PRIP-VSGC PRIP-VSGC 48 75 75

4.1. Dataset
The UoM-SGFSv2 database (Galea and Farrugia, 2018) consists
of 600 paired sketch and photo samples. The 600 photos come
from the Color-FERET database (Rallings et al., 1998), for each
of the 600 photos, two viewed sketches were drawn by computer.
One viewed sketch was drawn using EFIT-V software manually
operated by an artist, and the other was further edited utilizing
the Image editing software, thus, the other is closer in appearance
to the photos. The UoM-SGFSv2 set A consists of 600 photos,
and the 600 sketches is drawn using the EFIT-V software, and

the UoM-SGFSv2 set B consists of the 600 photos and the other
600 sketches. The CUFSF dataset contains 1,194 subjects, each
subject has one photo image with illumination changes coming
from the FERET database (Rallings et al., 1998) and one sketch
image created by an artist. This database is challenging due to the
different illumination conditions of the photo images and several
exaggerations of the sketch images. The PRIP-VSGC dataset
contains 123 subjects, each subject has one photo that comes
from the AR dataset (Martinez and Benavente, 1998), and one
sketch created by an Asian artist by utilizing the Identi-Kit tool.

Based on the above three datasets, four experimental setup are
performed. S1 setup and S2 setup are based on the UoM-SGFSv2
set A and B, respectively, and the partition protocols in Galea
and Farrugia (2018) are followed. The training set consists of 450
randomly selected subjects, and the test set contains the rest 150
subjects. When tested, the 150 sketch images form the probe set
and 150 photo images form the gallery set, to mimic the mug-
shot galleries, the gallery set is further extended to 1,521 subjects.
These 1,521 subjects include 199 subjects from the FEI dataset1,

1Available at: http://fei.edu.br/~cet/facedatabase.html.

FIGURE 3 | Examples of cropped images from the UoM-SGFSv2 dataset, the top, middle, and bottom row are photo images, sketch images from set A and set B,

respectively.
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FIGURE 4 | Examples of cropped images from the CUFSF dataset, the top and bottom row are photo and sketch images, respectively.

509 subjects from the MEDS-II dataset2, and 813 subjects from
the LFW dataset.3 The S3 setup is based on the CUFSF dataset
and follows the protocols by Mittal et al. (2015). The training
set consists of 500 randomly selected subjects, and the test set
contains rest 694 subjects. When tested, the 694 sketch images
form the probe set and 694 photo images form the gallery set. All
approaches are calculated over 5 train/test set splits. The S4 setup
is based on the PRIP-VSGC dataset and follows the protocols
by Mittal et al. (2015). The training set consists of 45 randomly
selected subjects, and the test set contains the rest 75 subjects.
All approaches are calculated over 5 train/test set splits. Table 1
details four experimental setups.

4.2. Implementation Details
Sketch and photo images are aligned, cropped, and reshaped to
256×256 by using the MTCNN (Zhang et al., 2016). Figures 3, 4
depict representative cropped images from the UoM-SGFSv2 and

2Available at: http://www.nist.gov/itl/iad/ig/sd32.cfm.
3Available at: http://vis-www.cs.umass.edu/lfw/.

TABLE 2 | Results of the CTMAN, w/o GeM, w/o CTM, w/o CTM&MLS, and

baseline on the S1 setup.

Methods Rank-1 (%) Rank-10 (%) Rank-50 (%)

CTMAN 78.67 96.00 99.20

w/o GeM 74.53 96.00 99.33

w/o CTM 76.67 95.60 99.33

w/o CTM&MLS 57.47 87.47 95.73

baseline 54.93 86.93 95.33

CUFSF dataset. Representative data augmentation techniques
including random cropping, filling, horizontal flipping, and
normalization are employed in the training stage. Specifically,
we first pad the images on all sides with the 10 value, next
crop the given image at a random location to 256 × 256, then
horizontally flip the images randomly with a probability of 0.5,
finally normalize the images with mean value of (0.5, 0.5, 0.5)
and SD value of (0.5, 0.5, 0.5). Adam optimizer (Kingma and
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Ba, 2014) with (β1,β2) = (0.5, 0.999) is utilized to optimize the
MAE learning network, the learning rate is set to 0.0001. The total

TABLE 3 | Results of the CTMAN, w/o GeM, w/o CTM, w/o CTM&MLS, and

baseline on the S2 setup.

Methods Rank-1 (%) Rank-10 (%) Rank-50 (%)

CTMAN 85.73 98.13 99.33

w/o GeM 82.13 98.13 99.60

w/o CTM 85.33 98.00 98.93

w/o CTM&MLS 70.80 93.07 97.60

baseline 69.20 93.07 98.00

TABLE 4 | Results of the CTMAN, w/o GeM, w/o CTM, w/o CTM&MLS, and

baseline on the S3 setup.

Methods Rank-1 (%) Rank-10 (%) Rank-50 (%)

CTMAN 90.06 98.70 99.39

w/o GeM 85.85 98.65 99.34

w/o CTM 89.25 98.73 99.36

w/o CTM&MLS 83.86 97.90 99.34

baseline 80.66 97.35 99.45

training episode is set to 60, the training episode T is set to 100,
the training episode classes b is set to 28, and the memory sizeM
is set to 512. The trade-off parameter λ is set to 0.5 empirically.
The firstm episode is set to 30.

4.3. Results and Analysis
4.3.1. Ablation Study

To verify the effectiveness of each component of the proposed
CTMAN, we compare CTMAN with w/o GeM, w/o CTM, w/o
CTM&MLS, and baseline approach. To verify the effectiveness
of the GeM pooling layer, for w/o GeM, the GeM pooling
layer is replaced by the traditional maxpooling layer. To verify
the effectiveness of the cross task memory mechanisms, for
w/o CTM, in each training episode, the cross task modality
alignment loss computed by the cross task support feature set
is removed, and the loss function is set to Equation (9). To
verify the effectiveness of the meta learning training episode
strategy, for w/o CTM&MLS, on the basis of w/o CTM, the meta
learning training episode strategy and corresponding loss are
further removed, it uses the traditional batch training process,
and extracts features by MAE learning, then a batch norm layer
and linear layer transform the feature into a vector of class logits,
the loss is set to cross-entropy loss, the batch size is set to 28,

FIGURE 5 | The top five matching photos of CTMAN, w/o CTM, w/o CTM&MLS, and baseline on the S1 setup, images in red box are the groundtruth.
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FIGURE 6 | The top five matching photos of CTMAN, w/o CTM, w/o CTM&MLS, and baseline on the S2 setup, images in red box are the groundtruth.

and the epoch is set to 60. For the baseline, on the basis of w/o
CTM&MLS, the MAE learning is further removed, it extracts
features by the ResNet50 network pretrained on ImageNet. Note
that each method uses the same parameter settings and partition
protocols to make experiments fair.

Tables 2–4 show the performance of the CTMAN, w/o GeM,
w/o CTM, w/o CTM&MLS, and baseline on the S1, S2, and
S3 setup. Figures 5–7 visualize the top five matching photos
of CTMAN, w/o CTM, w/o CTM&MLS and baseline on the
S1, S2, and S3 setup, respectively, images in red box are the
groundtruth. As shown in Figures 5–7, we visualize the effect
of the four approaches to evaluate our CTMAN’s recognition
performance intuitively. For each figure, the first line shows
the matching results for the proposed method, the second line
depicts the results of the w/o CTM, the third line depicts the
results of the w/o CTM&MLS, and the final line depicts the
result of the baseline. Results show that all methods are lower
on the more difficult S1 setup than the S2 setup, and our
CTMAN outperforms the w/o GeM, w/o CTM, w/o CTM&MLS,
and baseline in three datasets, demonstrating the effectiveness
of each contribution of the CTMAN. Compared to baseline,
w/o CTM&MLS gains higher performance, illustrating the
effectiveness of theMAE learning. Compared to w/o CTM&MLS,
w/o CTM gains higher accuracy, illustrating the effectiveness of
the meta learning training episode strategy. Compared to w/o

CTM, CTMAN gains better performance, demonstrating the
effectiveness of the cross task memory mechanism. Compared
to w/o GeM, CTMAN gains higher accuracy, illustrating the
effectiveness of the GeM pooling layer.

4.3.2. Comparison to the State-of-the-Art Methods

For the first two setup, performance of the CTMAN with the
CTMAN*, CTMAN-ResNet18, PCA (Turk, 1991), ET(+PCA)
(Tang and Wang, 2004), EP(+PCA) (Galea and Farrugia, 2015),
LLE(+PCA) (Chang et al., 2004), CBR (Hu et al., 2013), D-RS
(Klare and Jain, 2015), CBR+D-RS (Klare and Jain, 2015), LGMS
(Galea and Farrugia, 2016), HAOG (Galoogahi and Sim, 2012),
VGG-Face (Parkhi et al., 2015), DEEPS (Galea and Farrugia,
2018), Xu’s (Xu et al., 2021), DLFace (Peng et al., 2019), SSR (Peng
et al., 2021), and DAEN (Guo et al., 2021) methods are reported
in Tables 5, 6. The performance of these compared approaches
is directly from Galea and Farrugia (2018), Xu et al. (2021),
Peng et al. (2019), Peng et al. (2021), and Guo et al. (2021).
The extended gallery set in Galea and Farrugia (2018) consists
of part images of the FEI, MEDS-II, Multi-PIE (Gross et al.,
2010), and FRGC v2.04 datasets, these images are frontal and
have high quality. Our extended gallery set (Galea and Farrugia,
2018) consists of part images of the FEI, MEDS-II, and LFW

4http://www.nist.gov/itl/iad/ig/frgc.cfm.
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FIGURE 7 | The top five matching photos of CTMAN, w/o CTM, w/o CTM&MLS, and baseline on the S3 setup, images in red box are the groundtruth.

datasets, images of the LFW dataset are captured under the
unconstrained environment, they may not be the best replaced
images for the Multi-PIE and FRGC datasets. Since images of
FRGC and Multi-PIE are not available, Peng et al. (2019) extend
the gallery set by 1,180 photos of the XM2VTS dataset (Messer,
1999), 3,098 photos of CAS-PEAL dataset (Gao et al., 2008a),
and 3,000 photos of LFW dataset, here we further extend the
gallery set in Section 4.1 to 2,277 subjects, the 2,277 subjects
include 150 test subjects, 1,521 subjects from the former extend
gallery set in Section 4.1 (199 subjects from the FEI dataset,
509 subjects from the MEDS-II dataset, and 813 subjects from
the LFW dataset), 188 subjects from the CUHK dataset (Wang
and Tang, 2009), 123 subjects from the AR dataset (Martinez
and Benavente, 1998), 295 subjects from the XM2VTS dataset
(Messer, 1999), selected photos in CUHK, AR, and XM2VTS
datasets are taken from the constrained environment. Figure 8
shows several cropped images in the following datasets: (top row)

sketch in UoM-SGFSv2, photo in UoM-SGFSv2, FEI, MEDS-
II, LFW, (last row) Multi-PIE, FRGC v2.0, CUHK, AR, and
XM2VTS. As shown in Figure 8, selected photos in CUHK, AR,
and XM2VTS datasets are frontal and have neutral expressions
and with minimal shadows and occlusions, these images may be
the better replacement for the Multi-PIE and FRGC datasets.

The CTMAN* means CTMAN tested on the extended gallery
set with 2,277 photos. For CTMAN-ResNet18, it replaces the
ResNet50 backbone of the CTMAN by ResNet18 backbone. The
VGG-Face and PCA are traditional face recognition methods,
ET(+PCA), EP(+PCA), and LLE(+PCA) are intra-modality
methods, the LGMS, HAOG, DEEPS, Xu’s, DLFace, SSR, and
DAEN are inter-modality methods. As shown in Tables 5,
6, the proposed CTMAN achieves the best performance, it
outperforms the second 8% and 12% on rank-1, suggesting
the superior performance of CTMAN in the challenging UoM-
SGFSv2 dataset. Compared to the UoM-SGFSv2 set B, the
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FIGURE 8 | Examples of cropped images in the following datasets: (top row) sketch in UoM-SGFSv2, photo in UoM-SGFSv2, FEI, MEDS-II, LFW , (last row) Multi-PIE,

FRGC v2.0, CUHK, AR, and XM2VTS.

TABLE 5 | Comparison experiment results on the S1 setup.

Type Methods Rank-1 Rank-10 Rank-50

(%) (%) (%)

Face recognition methods VGG-Face 9.33 31.07 59.73

PCA 2.80 8.40 17.73

Intra-modality methods ET+PCA 8.40 30.00 54.53

EP+PCA 12.53 35.60 62.80

LLE+PCA 6.93 24.67 43.60

Inter-modality methods LGMS 21.87 51.20 72.40

CBR 5.73 18.80 43.33

D-RS 22.13 49.33 69.87

D-RS+CBR 25.87 56.00 76.27

HAOG 13.60 37.33 52.67

DEEPS 31.60 66.13 86.00

Xu’s 62.00 92.30 -

DLFace 64.80 92.13 -

SSR 70.16 94.60 -

DAEN 68.53 92.40 97.47

Proposed CTMAN-ResNet18 76.67 96.53 98.93

CTMAN* 77.60 96.00 99.07

CTMAN 78.67 96.00 99.20

accuracy of all approaches are lower on the challenging UoM-
SGFSv2 set A. Performance of the inter-modality methods is
generally better than the intra-modality methods on the UoM-
SGFSv2 set A and B because the performance of intra-modality

TABLE 6 | Comparison experiment results on the S2 setup.

Type Methods Rank-1 Rank-10 Rank-50

(%) (%) (%)

Face recognition methods VGG-Face 16.13 48.00 72.80

Intra-modality methods ET+PCA 12.13 39.07 63.47

EP+PCA 15.20 48.27 70.00

LLE+PCA 10.53 31.60 53.53

Inter-modality methods LGMS 21.87 51.2 72.40

CBR 7.60 25.47 48.27

D-RS 40.80 70.80 86.40

D-RS+CBR 42.93 75.87 90.13

HAOG 21.60 42.27 57.07

DEEPS 52.17 82.67 94.00

Xu’s 76.00 95.8 -

DLFace 72.53 94.8 -

SSR 73.83 95.10 -

DAEN 74.00 95.20 99.07

Proposed CTMAN* 85.60 98.13 99.20

CTMAN 85.73 98.13 99.33

The CTMAN* means CTMAN tested on the extended gallery set with 2277 photos.

is a traditional simple method and depends on the quality of
the generated image heavily, resulting in degradation of the
performance. Despite the VGG-Face method achieving state-of-
the-art performance for traditional face recognition, it generally
yields poor performance for sketch face recognition in the lower
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TABLE 7 | Comparison experiment results on the S3 setup.

Type Methods Rank-1 (%)

Intra-modality methods MWF 74.00

Fast-RSLCR 75.94

Wan’s 70.00

Inter-modality methods Transfer deep feature learning 72.38

CMML 75.94

CDFL 81.30

CMTDML 83.86

Proposed CTMAN 90.06

TABLE 8 | Comparison experiment results on S4 setup.

Type Methods Rank-10%

traditional methods SSD 45.30

Attribute 53.10

deep learning methods Transfer Learning 52.00

DAEN 63.20

proposed CTMAN 65.33

ranks, demonstrating the challenging modality gap between
photos and sketches. In each batch, training sketch and photo
images are randomly selected from the training set, they may
not be paired. Instead, we randomly select sketch and photo
images paired in each episode. Furthermore, the batch size and
epoch used in the two methods were different, these differences
may cause the performance gap. Compared to CTMAN,
CTMAN* shows comparable performance and outperforms
other compared methods, demonstrating the robustness of the
CTMAN. CTMAN-ResNet18 outperforms DAEN by a large
margin, demonstrating the effectiveness of the proposedmethod.

For the third setup, the performance of the CTMAN with the
MWF (Zhou et al., 2012), Fast-RSLCR (Wang N. et al., 2018),
Wan’s (Wan and Lee, 2019), CMML (Mignon and Jurie, 2012),
CDFL (Jin et al., 2015), Transfer Deep Feature Learning (Wan
et al., 2019), and CMTDML (Feng et al., 2019) methods are
reported in Table 7. Performance of these compared approaches
are directly from Feng et al. (2019). Fast RSLCR, MWF, Wan’s
are intra-modality methods while CDFL, CMML, Transfer
Deep Feature Learning, and CMTDML are representative inter-
modality method. As shown in Table 7, the proposed CTMAN
achieves the highest performance, it outperforms the second by
nearly 6% on rank-1, which shows the robustness of CTMAN on
the CUFSF dataset.

For the fourth setup, the performance of the CTMAN with
the SSD (Mittal et al., 2014), Attribute (Mittal et al., 2017),
Transfer Learning (Mittal et al., 2015), and DAEN (Guo et al.,
2021) methods are reported in Table 8. The performance of these
compared approaches are directly fromMittal et al. (2015), Mittal
et al. (2017), and Guo et al. (2021). The SSD and Attribute
are traditional methods, whereas Transfer Learning and DAEN
are deep learning methods. As shown in Table 8, the proposed

CTMAN achieves the highest performance, it outperforms the
second by nearly 2% on rank-1, which shows the effectiveness of
CTMAN on the PRIP-VSGC dataset.

5. CONCLUSION

In this paper, the CTMAN is proposed for sketch face
recognition. By introducing a meta learning training episode
strategy, a MAE learning and proposing a cross task memory
mechanism, a query feature set, two support feature set and
two cross task support feature set and have been extracted
to incorporate modal information as well as mimic few-shot
tasks, then a cross task modality alignment loss and a modality
alignment loss have computed on the above feature set to
guide the network to learn discriminative features. Extensive
experiments have been conducted on the UoM-SGFSv2, CUFSF,
and PRIP-VSGC datasets. Ablation studies have illustrated
the effectiveness of the meta training episode strategy, MAE
learning, cross task memory mechanism, and cross task modality
alignment loss. Comparisons with extensive inter-model and
intra-model sketch face recognition approaches have validated
the superiority of the CTMAN.
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