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In response to stress, cells can activate a myriad of signalling pathways to bring about a 
specific cellular outcome, including cell cycle arrest, DNA repair, senescence and apoptosis. 
This response is pivotal for tumour suppression as all of these outcomes result in restriction 
of the growth and/or elimination of damaged and pre-malignant cells. Thus, a large number 
of anti-cancer agents target specific components of stress response signalling pathways with 
the aim of causing tumour regression by stimulating cell death. However, the efficacy of these 
agents is often impaired due to mutations in genes that are involved in these stress-responsive 
signalling pathways and instead the oncogenic potential of a cell is increased leading to the 
initiation and/or progression of tumourigenesis. Moreover, these genetic defects can increase 
or contribute to resistance to chemotherapeutic agents and/or radiotherapy. Modulating 
the outcome of cellular stress responses towards cell death in tumour cells without affecting 
surrounding normal cells is thus one of the ultimate aims in the development of new cancer 
therapeutics. To achieve this aim, a detailed understanding of cellular stress response  
pathways and their aberrations in cancer is required.

This Research topic aims to reflect the broadness and complexity of this important area of 
cancer research. 
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In response to stress, cells activate so-called checkpoints – complex
signaling pathways that induce a plethora of cellular outcomes.
Checkpoints primarily initiate cell cycle arrest to provide the cell
with time to repair the damage. However, if the damage is too
severe then cells can permanently arrest the cell cycle (senescence)
or trigger cell death, thereby preventing the transmission of genetic
defects. These responses are pivotal for tumor suppression as all
of these outcomes result in restriction of the growth and/or elimi-
nation of damaged and pre-malignant cells. Thus, a large number
of anti-cancer agents target specific components of stress response
signaling pathways with the aim of causing tumor regression by
stimulating cell death or at least stopping cell growth. However,
the efficacy of these agents is often impaired by mutations in
genes that are involved in stress-responsive signaling pathways.
Moreover, these cancer-specific genetic defects often contribute to
resistance against chemotherapeutic agents and/or radiotherapy.
Modulating the outcome of cellular stress responses toward cell
death in tumor cells without affecting surrounding normal cells
is thus one of the ultimate aims in the development of new can-
cer therapeutics. To achieve this aim, a detailed understanding of
cellular stress response pathways and their aberrations in cancer is
required.

The Research Topic titled “Molecular mechanisms of cellular
stress responses in cancer and their therapeutic implications” fea-
tures 11 articles that reflect the broadness and complexity of the
processes induced by cellular stress. It begins with reviews on four
different proteins/protein families that are critical for cellular stress
responses and as such are important for both cancer development
and the response to cytotoxic therapies.

Knippschild and colleagues discuss the complex functions of
the casein kinase 1 (CK1) family and describe in depth how mem-
bers of this family regulate signaling cascades that are relevant for
the pathogenesis of inflammatory and proliferative diseases and,
beyond this, for neurodegenerative disorders as well. They also
summarize current knowledge on therapeutic modulation of CK1
activity and existing inhibitors (1).

In addition to phosphorylation, other post-translational mod-
ifications are an effective means to modify the activity of cellular
proteins and hence respond to stress signals. Polonio-Valon et al.
focus on the peptidyl-prolyl cis/trans isomerase Pin1, an enzyme
that can induce conformational changes in its substrate proteins.
In their article, they highlight the interactions of Pin1 with key
proteins relevant to cancer and cancer therapy and discuss how
Pin1 specifies cell fate decision in response to DNA damage (2).

One of the key proteins in cellular stress signaling is the tumor
suppressor p53 and any collection of articles dealing with stress
responses would be incomplete without an article on p53. Mueller
and colleagues give a brief overview on the extensive literature on
p53 and its family members, p63 and p73 with a specific focus on
therapeutic implications (3).

Parker et al. discuss another well known protein family, the
tubulins and their interacting partners. Tubulins are the building
blocks of microtubules and therefore responsible for cell move-
ment, intracellular trafficking, and cell division. They are also the
target of a specific class of chemotherapeutics. As this article points
out, microtubules and associated proteins play an important role
in a range of cellular stress responses (4).

Understanding cellular processes that are differentially reg-
ulated in cancerous versus normal cells is a prerequisite for
exploiting them therapeutically. Three articles focus on this aspect.

A hallmark of cancer as a proliferative disorder is the increased
number of cell divisions and a high mitotic index. Mitotic cells
respond differently to stress signals than interphase cells due to
their condensed chromosomes. Burgess and colleagues review the
pathways and outcomes activated by mitotic cells in response to
stress and describe how this influences efficacy of chemotherapeu-
tic drugs, especially those in the anti-mitotic class (5).

Abnormal DNA content is another common hallmark of cancer
cells that has been recognized for a long time. In their hypothesis
and theory article, Coward and Harding summarize evidence that
links the acquisition of multiple chromosome copies (polyploidy)
to tumor evolution and chemotherapy resistance. They argue that
these polyploid cells themselves are critical drug targets (6).

Double-strand breaks are also prevalent in many cancer cells
due to their increased proliferation and impaired DNA repair
programs. Jekimovs et al. review the two DNA repair pathways
activated by DNA double-strand-breaks and discuss the successes
and failures of pre-clinical and clinical trials aiming to modulate
these pathways (7).

Finally, four articles highlight some of the many factors that
influence the success of cancer therapy with cytotoxic agents.

One of the most challenging problems is tumor heterogeneity, a
topic discussed by Renovanz and Kim who argue that there is much
to learn to be able to treat cancer patients more effectively (8).

Tumor hypoxia is another problematic aspect in many solid
tumors as this has been linked to resistance against radiation and
chemotherapy. In their original research article, Ontikatze and
colleagues characterize a specific drug, dihydroartemisinin, that
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may be instrumental in overcoming therapy resistance of hypoxic
tumors (9).

Hormones can also affect the response to cytotoxic agents and
this seems particularly obvious for estrogen. Caldon describes
the complicated relationship of estrogen and DNA damage sig-
naling in breast cancer and proposes that estrogen receptor sig-
naling suppresses effective DNA repair and apoptosis in favor of
proliferation (10).

Breast cancer is also the focus of the original article by Quante
and colleagues who report new insights into the process leading
to hyperplastic lesions in the mammary gland obtained from the
analysis of a transgenic mouse model (11).

This collection of articles highlights some of the advances made
in understanding the molecular mechanisms of cellular stress
responses and the implications of this for cancer biology. Research
in this field has already enabled improved clinical outcomes for
cancer patients and we are hopeful that with continued investi-
gation of this topic more discoveries will be translated into even
better cancer treatments.
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Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play
major regulatory roles in many cellular processes including DNA-processing and repair,
proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentia-
tion. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic
spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint.
Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and
signal integration molecules. In line with this notion, CK1 is tightly connected to the regu-
lation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1
for accurate cell division and regulation of tumor suppressor functions, it is not surprising
that mutations and alterations in the expression and/or activity of CK1 isoforms are often
detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast
carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore,
scientific effort has enormously increased (i) to understand the regulation of CK1 and its
involvement in tumorigenesis- and tumor progression-related signal transduction pathways
and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts.
In this review, we summarize the current knowledge regarding CK1 regulation, function,
and interaction with cellular proteins playing central roles in cellular stress-responses and
carcinogenesis.

Keywords: casein kinase 1, cellular stress, centrosome, p53, signal transduction, tumorigenesis, inhibitor, disease

THE CK1 FAMILY
Members of the CK1 (formerly named casein kinase 1) family
were among the first kinases described in literature (1). Although
the milk protein component casein is not a physiological sub-
strate for CK1, it reflects its preference for serine or threonine
residues N-terminally flanked by already phosphorylated amino
acid residues or acidic amino acids (2–7). Seven distinct genes
encoding mammalian CK1 isoforms α,β,γ1,γ2,γ3, δ, and ε as well
as various post-transcriptionally processed splice variants (tran-
scription variants; TV) have been characterized (except for β all
are expressed in humans). The closest relatives to the CK1 family
are tau tubulin kinases 1 and 2 (TTBK1/2) and the vaccinia-related
kinases 1–3 (VRK1-3) (Figure 1A). All CK1 isoforms are highly
conserved within their kinase domains (51–98% identical) while
the highly related isoforms CK1δ and ε display the highest homol-
ogy. However, CK1 family members differ significantly in length
and primary structure of their regulatory non-catalytic C-terminal
domains, resulting in molecular weights ranging from 32 kDa
(CK1α) to 52.2 kDa (CK1γ3) (Figure 1B) (5, 8–16). Meanwhile,
CK1 homologous proteins have also been isolated from yeast,
basidiomycetes, plants, algae, and protozoa (9, 15, 17–23). Since
recognition motifs for CK1 are found on most cellular proteins,
more than 140 in vitro and in vivo substrates have been reported
thus far (see CK1 Substrate Specificity and Table 1). Therefore, in

a cellular context a tight regulation of CK1 activity and expression
is indispensable. Known general mechanisms for CK1 regulation
include (i) phosphorylation by inhibitory autophosphorylation
and/or (ii) phosphorylation by other cellular protein kinases, and
(iii) interaction with cellular proteins or subcellular sequestration
(see Regulation of CK1 Activity). Based on the broad spectrum of
target proteins, CK1 family members are involved in modulating a
variety of cellular functions: in immune response and inflamma-
tion (see CK1 in Immune Response and Inflammation), in spindle
and centrosome-associated processes (see Interaction of CK1 with
Centrosomes, Tubulin, and Microtubule-Associated Proteins),
in DNA damage-related signal transduction (see CK1 in DNA
Damage-Related Signal Transduction), in circadian rhythm (see
CK1 in Circadian Rhythm and its Connections to Stress Response),
and in apoptosis (see CK1-Signaling in Apoptotic Pathways). Con-
sequently, a deregulation or dysfunction of CK1 in pathways
responsible for regulation of growth, proliferation, and apoptosis
may result in pathological conditions (see CK1 and the Wnt Path-
way, CK1 in the Hedgehog Pathway to CK1 in the Hippo Pathway),
such as tumorigenesis (see CK1-Related Tumorigenic Functions
and CK1 in Metastatic Processes) or neurological diseases. There-
fore, interest in CK1 isoforms as new drug targets has enormously
increased within the last 15 years and led to development of several
CK1-specific inhibitors (see CK1-Specific Inhibitors).
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FIGURE 1 | Structural presentation of CK1δ. (A) Phylogenetic relation
between CK1 isoforms of Homo sapiens (CK1α, γ1–3, δ, and ε) and other
members of the human CK1 family (TTBK1–2, VRK1–3). (B) Schematic
alignment of human CK1 isoforms α, γ1–3, δ, and ε. Their molecular weight
varies between 32 (CK1α) and 52.2 kDa (CK1γ3). In case transcription
variants have been reported for one isoform, the molecular weight is given
as range from the smallest to the largest variant. All CK1 isoforms are highly
conserved within their kinase domains (light green box, 286 aa), but differ
within their variable N- (4–40 aa) and C-terminal (39–122 aa) non-catalytic
domains (dark green boxes) [according to Knippschild et al. (333)]. Ribbon
(C) and surface (D) diagram of the molecular structure of CK1δ (PDB code
4HGT) modeled in complex with Mg2+-ATP at a resolution of 1.80 Å. The
nomenclature is adapted from Xu et al. (24) and Longenecker et al. (25).
Until today, crystal structures of human CK1 isoforms γ1 (PDB code
2CMW), γ2 (2C47), γ3 (2CHL, 2IZR, 2IZS, 2IZT, 2IZU, 4HGL, 4HGS, 4G16,
4G17), δ (4KB8, 4KBA, 4KBC, 4KBK, 4HNF, 3UYS, 3UYT, 3UZP), and ε (4HNI,

4HOK) are accessible as well. For reasons of clarity, we focused on CK1δ

exemplarily, due to its superior relevance. The catalytic domain folds into
two lobes primarily containing strands (N-terminal), respectively helices
(C-terminal) forming a catalytic cleft between that represents the ATP
binding pocket as well as a substrate binding site. KHD indicates the kinesin
homology domain within L-9D. DD refers to a putative dimerization domain
containing various amino acids of β1, β2, β5, L-5B, β7, and αB, whereas NLS
displays a putative nuclear localization signal sequence at the junction
between L-EF and αF. A tungstate molecule binding site identifies a specific
phosphate moiety binding motif (W1). The active site contains a deep
hydrophobic pocket (HPI) and a spacious hydrophobic region (HRII) (25–28).
All modeling and docking studies were performed using Schrödinger
software (Maestro, version 9.3, Schrödinger, LLC, New York, NY, 2012; Glide,
version 5.8, Schrödinger, LLC, New York, NY, 2012). The illustration of
modeling results was generated by the PyMOL Molecular Graphics System
(Version 1.5.0.4, LLC) (29).

CK1 STRUCTURE AND DOMAINS
As a member of the superfamily of serine/threonine-specific
kinases, CK1 represents the typical bi-lobal structure, which
includes a smaller N-terminal lobe, primarily consisting of β-
sheets, and a larger, mainly α-helical C-terminal lobe. The two
lobes are connected by a hinge region forming a catalytic cleft for
substrate and ATP binding (Figures 1C,D) (24, 25). In comparison
to the general structural features of protein kinases, a prominent
α-helix (αA-helix) within the N-terminal region is crucial for con-
formational regulation of kinase activity. A conserved glycine-rich
loop (P-loop, bridging strands β1 and β2) forms the ceiling of the
ATP active site and contributes to coordination of the γ-phosphate

moiety of ATP (30). Contributing to structure-based inhibitor
design, another loop (L-78) in close proximity to the hinge region
has been demonstrated to trigger CK1 inhibitor selectivity (31).
Within the C-terminal region, a specific phosphate moiety binding
motif (W1) has been identified affording recognition of phospho-
rylated protein substrates and is further believed to be involved
in CK1 regulatory interactions (9, 24, 25). In addition, a kinesin
homology domain (KHD) within the T-loop (L-9D) and a puta-
tive dimerization domain (DD, containing various amino acids of
strands β1, β2, β5, hinge region, β7, and αB) can be found inside
the catalytic domain of CK1δ (Figures 1C and 2) (26, 32–34). The
KHD is thought to support the interaction of CK1 isoforms with
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Table 1 | Reported substrates for CK1 family members and reported in vitro and in vivo substrates of CK1 family members of several species.

Functional groups CK1 substrates

Cytoskeleton-associated

proteins, adhesion factors,

and scaffolding proteins

Myosin (56), troponin (56), ankyrin (57), spektrin 3 (58), filamin (59), vinculin (59), neurofilamentary proteins (60, 61),

dynein (62), α-/β-tubulin (32), microtubule-associated protein (MAP) 1A (63), MAP 4 (32), stathmin (32), tau (32, 64),

keratin 17 (65), desmolein (65), annexin II (65), centaurin-α (p42IP4) (66, 67), neural cell-adhesion molecule (NCAM)

(68), E-cadherin (69), RhoB (70), myelin basic protein (MBP) (55), kinesin-like protein 10A (KLP10A) (71), lectin L-29

(72), galectin-3 (73), end binding 1 (EB1) (74), Sid4 (75), connexin-43 (76), metastasis suppressor 1 (MTSS1) (77), and

Hsp79 and Hsp90 (78)

Receptors β-Subunit of the insulin-receptor (79), TNFα-receptor (80), muscarin M3-receptor (81), Ste2p (α-factor-receptor) (82),

Ste3p (α-factor-receptor) (83), platelet derived growth factor (PDGF) receptor (84), retinoid X receptor (RXR) (85), low

density lipoprotein-related receptor protein (LRP) 6 (86, 87), type I interferon receptor (IFNAR1) (88), estrogen

receptor α (ERα), amplified in breast cancer 1 (AIB1) (89), calmodulin (CaM) (90), and Ror2 (91)

Membrane transporters Erythrocytes anion transporter (92), uracil permease (Saccharomyces cerevisiae) (93), translocase of the outer

mitochondrial membrane 22 (Tom22) (94), and α-T663-hENaC (95)

DNA-/RNA-associated

proteins

Non-histone chromatin proteins (96), RNA polymerase I and II (97), topoisomerase IIα (98), Star-poly(A) polymerase

(Star-PAP) (99), Rec8 (100), DNA methyl-transferase (Dnmt1) (101), TAR DNA-binding protein of 43 kDa (TDP-43) (102),

DEAD-box RNA helicase DDX3 (103), Ubiquitin-like, with PHD, and RING finger domains 1 (UHRF1) (104)

Ribosome-related proteins 15 kDa (105), 20 kDa (105), 35 kDa (105), L4 (65), L8 (65), L13 (65), ribosomal protein S6 (rpS6) (106), and ENP1/BYSL

and LTV1 (107)

Transcription and splice

factors

p53 (108), cyclic AMP responsive element modulator (CREM) (109), Swi6 (110), nuclear factor of activated T-cells

(NFAT) (111), serine/arginine-rich (SR) proteins (112), T-cell factor (Tcf) 3 (113), brain and muscle Arnt-like protein (BMAL)

1 (114), cryptochrome 1 (CRY) (114), β-catenin (115, 116), armadillo (117), SMAD 1–3 and 5 (118), osmotic response

element-binding protein (OREBP) (119), cubitus interruptus (Ci) (120), forkhead box G1 (FoxG1) (121), SNAIL (122),

tafazzin (TAZ) (123), yes-associated protein (YAP) (124), proliferator-activated receptor γ co-activator 1α (PGC-1α) (125),

Drosophila Myc (d-Myc) (126), cyclic AMP response element-binding protein (CREB) (127), Sre1N (yeast sterol

regulatory element-binding protein homolog) (128), and NFκB (nuclear factor “kappa-light-chain-enhancer” of

activated B-cells) subunit p65 (129)

Translation factors Initiation factors (IF) 4B (130), 4E(5, 6, 130, 131)

Viral proteins Simian virus 40 large T-antigen (SV40 T-Ag) (132), hepatitis C virus non-structural 5A (NS5A) (133), human

cytomegalovirus ppUL44 (134), Poa semilatent hordeivirus triple gene block 1 (TGB1) (135), Kaposi sarcoma-associated

herpesvirus latency associated nuclear antigen (LANA) (136), and yellow fever virus methyl-transferase (137)

Kinases and phosphatases Cyclin-dependent kinase 5 (Cdk5) (138), protein kinase C (PKC) (139), protein kinase D2 (PKD2) (140), cell division

cycle 25 (Cdc25) (141–143), and PH domain and leucine rich repeat protein phosphatase 1 (PHLPP1) (144)

Inhibitors and modulators Inhibitor 2 of PPA 1 (145, 146), dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32) (147), disheveled

(148), mammalian period circadian protein (mPER) (149), adenomatous polyposis coli (APC) (150), Bid (151), protein

kinase C potentiated myosin phosphatase inhibitor of 17 kDa (CPI-17) (152), nm23-H1 (153), 14-3-3 proteins (154),

MDM2 (155), MDMX (156), FREQUENCY (FRQ) (157), WHITE COLLAR-1 (WC-1) (158), CARD containing MAGUK

protein (CARMA1)/caspase recruitment domain (CARD11) (159), SLR1 (160), endogenous meiotic inhibitor 2 (Emi2)

(161), Chk1-activating domain (CKAD) of claspin (162), PER2 (163), protein S (164), Rap guanine nucleotide exchange

factor 2 (RAPGEF2) (165), and Sprouty2 (SPRY2) (166)

Enzymes (miscellaneous) Acetyl-CoA carboxylase (167), glycogen synthase (168, 169), yeast endoprotease Ssy5 (170), and neural precursor cell

expressed developmentally down-regulated protein 4 (Nedd4) (171)

Vesicle- and

trafficking-associated proteins

SV2 (172), β3A- and β3B-subunit of the AP-3 complex (173), snapin (174), and ceramide transfer protein (CERT) (175)

Receptor-associated proteins Fas-associated death domain (FADD) (176), receptor interacting protein 1 (RIP1) (177)

Factors of neuro-degenerative

diseases

Presenilin-2 (178), tau (64), β-secretase (179), parkin (180), and α-synuclein (181)

Metastatic tumor antigens Metastatic tumor antigen 1, short form (MTA1s) (182)
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FIGURE 2 | Phosphorylation sites located in the C-terminal domain of
CK1δ. (A) Alignment of the rat CK1δ C-terminal sequence with the human
CK1δ transcription variants 1 and 2 C-terminal sequences (accession
numbers L07578, NM001893, and NM139062, respectively) generated by
using the program ClustalW (36, 37), showing conserved amino acids
(gray) and obvious differences in the C-terminal domain beyond amino acid

399. (B) Domain structure of rat CK1δ (NLS: nuclear localization signal,
KHD: kinesin homology domain). (C) Phosphorylation sites in the
C-terminal regulatory domains of CK1δ rat and human transcription
variants 1 and 2, that have so far been confirmed experimentally (38–53).
Kinases identified for phosphorylation of the C-terminal domain are shown
for rat CK1δ (38, 39).

components of the cytoskeleton as this domain has been shown
to be necessary for the interaction of kinesins with microtubules
(MT) (26, 32–34). Furthermore, a putative nuclear localization
signal sequence (NLS) at the junction between L-EF and αF has
been reported to affect substrate binding (Figure 1C). The present
NLS however seems to be not sufficient for nuclear localization of
CK1δ because only CK1αL variants, carrying an additional NLS in
the L-exon, are able to localize to the nucleus (35).The L-9D loop
represents the homolog of the so-called activation-loop identified
in other protein kinases and may therefore play a role in CK1

regulation. Moreover, loops L-9D and L-EF may be of importance
in substrate recognition (Figure 1C) (24–27). The ATP active site
itself mainly consists of a deep hydrophobic pocket (HPI, selectiv-
ity pocket) lined by the gatekeeper (Met-82 in CK1δ) and a second
spacious hydrophobic region (HRII) adjacent to the hinge region
as well as sugar and phosphate binding domains (Figure 1D) (31).

CK1 SUBSTRATE SPECIFICITY
Belonging to the group of acidotropic protein kinases, CK1 fam-
ily members mainly recognize substrates containing acidic or
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phosphorylated amino acid residues. The canonical consensus
sequence for CK1 protein kinases is represented by the motif
pSer/Thr-X-X-(X)-Ser/Thr whereas pSer/Thr indicates a phos-
phorylated serine or threonine residue. However, CK1 not only
relies on phospho-primed motifs since the phospho-serine or
phospho-threonine can also be replaced by an agglomeration of
negatively charged acidic amino acids (2–7). In addition, non-
canonical consensus sequences for CK1 family members have
been described such as the SLS motif, found in β-catenin and
nuclear factor of activated T-cells (NFAT), or the motif Lys/Arg-
X-Lys/Arg-X-X-Ser/Thr occurring in sulfatide and cholesterol-3-
sulfate (SCS) binding proteins (54, 55). Generally, substrate recog-
nition motifs for CK1 protein kinases are massively distributed on
cellular proteins. At present, more than 140 in vitro and in vivo
substrates for CK1 isoforms have been reported, underlining its
pleiotropic character (Table 1).

REGULATION OF CK1 ACTIVITY
Although members of the CK1 family are ubiquitously expressed,
their expression levels differ depending on tissue and cell type
(34, 183, 184). Certain factors seem to change the expression
and activity of CK1, such as stimulation with insulin (185) or
gastrin (140), viral transformation (186), treatment with topoi-
somerase inhibitors or other small molecules like calotropin
(187), γ-irradiation (188), or altered membrane concentrations
of phosphatidylinositol-4,5-bisphosphate (PIP2) (172). At the
protein level, certain mechanisms regulating CK1 activity have
been identified: structure-related regulation, subcellular local-
ization, interaction with other proteins, and post-translational
modifications.

In X-ray crystallography, CK1δ was found to form dimers. In
the dimeric form, the adenine binding domain is occupied by the
specific intramolecular contacts of the dimerization domain. As a
consequence, ATP is excluded from the active center of the kinase.
Therefore, formation of homodimers could possibly have a neg-
ative regulatory effect on CK1δ kinase activity in vivo (26). This
hypothesis is supported by further observations: the expression
of a mutant CK1δ with impaired kinase activity lead to down-
regulation of endogenous CK1δ activity in a dominant-negative
way in simian virus 40 (SV40)-transformed cell lines as well as to
changes in mammary tumorigenesis in WAP-mutCK1δ/WAP-T
bi-transgenic mice (189, 190).

Appropriate sequestration of CK1 proteins to particular cellular
compartments is crucial for access to their pool of substrates (21,
191, 192). As an example, in Saccharomyces cerevisiae kinase activ-
ity of C-terminal deletion mutants of membrane-bound YCK1
and YCK2 could only be rescued by replacing the nuclear localiza-
tion signal of the CK1 homolog Hrr25 with a prenylation motif,
which is required for plasma membrane localization. Conversely,
loss of Hrr25 function after deletion of its NLS could only be
rescued by replacing the prenylation motif in YCK1 and YCK2
with a NLS. These observations led to the conclusion that merely
partial cellular overlap of these three isoforms is not enough
to rescue the deletion phenotype (192). In experiments using a
CK1δ kinase-dead mutant, it has been shown that not only the
existence of the kinase domain, but also the catalytic activity of
the protein is essential for its appropriate subcellular localization

(193). Additionally, a study designed to identify binding part-
ners, which recruit CK1 to Alzheimer’s disease (AD) ubiquitinated
lesions identified a dysbindin structural homolog that interacts
with CK1γ, δ, and ε, and in the case of CK1δ it has been shown to
be a concentration-dependent inhibitor (194).

It is very common to find certain motifs in proteins that act
as scaffolds, which direct the proper positioning of protein com-
plexes. It has also been suggested that such scaffolds additionally
exert complex allosteric control of their partners thereby regulat-
ing their activity [reviewed in Cheong andVirshup (195) and Good
et al. (196)]. In general, proteins that function as scaffolds tether
members of signaling pathways into complexes thereby increasing
the interaction efficiency between partner molecules (196, 197).
In the case of CK1, these scaffolds have an important regula-
tory role because they might change the affinity of CK1 isoforms
for their substrates as well as the rate of phosphorylation and
activation of CK1 kinase activity over the basal level (196, 198).
In fact, protein scaffolds have been already found to exert sub-
stantial control over different kinase-mediated signaling pathways
[reviewed in Brown et al. (199)], though they are not limited to the
coordination of kinase cascades (196). Examples for such protein
scaffolds include the centrosomal and Golgi N-kinase anchoring
protein (CG-NAP), also known as A-kinase anchoring protein 450
(AKAP450) (191) and the DEAD-box RNA helicase DDX3, which
has been previously identified as scaffolding adaptor that directly
activates the kinase IκB (200). AKAP450 specifically interacts with
CK1δ and ε and recruits them to the centrosome, where they can
exert centrosome-specific functions coupled to the cell cycle. This
interaction is confirmed by the ability of AKAP450 to re-localize
CK1δ at the plasma membrane, when it itself is attached to the
membrane (191). Recently, it has been suggested that the inter-
action of CK1δ with AKAP450 is necessary to mediate primary
ciliogenesis (201). In addition, evidence is increasing that in Wnt-
signaling CK1 activity depends on DDX3 as a co-factor. DDX3
directly interacts with CK1ε in a Wnt-dependent manner, and
promotes phosphorylation of Disheveled (DVL) (103). DDX3 can
therefore be seen as regulatory subunit of CK1 isoforms with the
potential to increase the activity of CK1α, γ2, δ, and ε by up to five
orders of magnitude (103). Since CK1 isoforms have been shown
to phosphorylate DDX3, it could be speculated that CK1 isoforms
might also play a role in regulating the functions of DDX3 (103).

Finally, CK1 activity can furthermore be regulated by post-
translational modifications, mainly represented by reversible
phosphorylation either through autophosphorylation or site-
specific phosphorylation mediated by cellular kinases. Within
the regulatory C-terminal domains of CK1δ and ε, sequences
with the motif pSer/Thr-X-X-Y (Y: any amino acid except ser-
ine or threonine) can be generated by autophosphorylation events
and can consecutively act as pseudo-substrates blocking the cat-
alytic center of the kinase (202–205). By using CK1δ truncation
mutants, Ser-318, Thr-323, Ser-328, Thr-329, Ser-331, and Thr-
337 were detected as candidate sites for intramolecular autophos-
phorylation. Although not all of them influenced kinase activity,
truncation of the C-terminal part up to amino acid (aa) 317
significantly enhanced activity of CK1δ (204). For CK1ε amino
acid residues Ser-323, Thr-325, Thr-334, Thr-337, Ser-368, Ser-
405, Thr-407, and Ser-408 within the C-terminal domain are

Frontiers in Oncology | Molecular and Cellular Oncology May 2014 | Volume 4 | Article 96 | 10

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Knippschild et al. CK1 in cellular stress response and cancer

considered to be potential autophosphorylation sites (203). C-
terminal inhibitory autophosphorylation could also be demon-
strated for CK1γ1-3 as well as for CK1α and its splice variants
CK1αL and CK1αS (16, 206).

Apart from intramolecular autophosphorylation, CK1 iso-
forms are also phosphorylated by other kinases. In the case
of CK1δ, phosphorylation by PKA (cAMP-dependent protein
kinase), Akt (protein kinase B), CLK2 (CDC-like kinase 2), pro-
tein kinase C isoform α (PKCα), and Chk1 (checkpoint kinase 1)
has been demonstrated (38, 39) (Figure 2). PKA could be fur-
ther characterized as a major CK1δ C-terminal targeting kinase
predominantly phosphorylating Ser-370 both in vitro and in vivo.
Mutation of Ser-370 to alanine increased kinase activity in vitro
and enhanced formation of an ectopic dorsal axis during embry-
onic development of Xenopus laevis (39). More recently, Chk1 has
been demonstrated to phosphorylate CK1δ at serine residues 328,
331, and 370, as well as threonine residue 397. Mutations at these
sites proved to significantly increase kinase activity (38). Moreover,
several residues in the C-terminal domain of CK1δ were found in
a phosphorylated state in large-scale mass spectrometry analyses.
However, the kinases responsible for the detected phosphorylation
events were not specified (Figure 2 and references therein).

Generally, dephosphorylation of CK1 by serine/threonine-
specific protein phosphatases or low levels of H2O2 result in an
increase of kinase activity (202, 203, 207). Proteolytic cleavage of
the C-terminal domain also results in multiple increase of CK1
kinase activity in vitro (28, 202, 204). In addition, neddylation of
CK1α seems to be involved in CK1 regulation (208).

CK1 IN STRESS-RELATED CELLULAR FUNCTIONS
In response to stress situations like mechanical damage, toxin
exposure, or environmental stress exposure, cells experience a
variety of molecular changes, which are generally referred to as
cellular stress response. The purpose of these changes is to pro-
tect the cell against conditions, which may cause acute damage,
but also to build some kind of resistance toward long term unfa-
vorable conditions. In response to extreme temperature or toxic
substances, expression of heat shock proteins (Hsp) is transcrip-
tionally increased. Most of these proteins belong to a group of
proteins, which are involved in the (un-)folding of other pro-
teins (209). A quite recent report links phosphorylation events
mediated by CK1, CK2, and GSK3β to the regulation of Hsp70
and Hsp90. In more detail, phosphorylation of Hsp70 and Hsp90,
mediated by these kinases, plays an important role in regulating
their binding to co-chaperones like HOP (protein folding activ-
ity) and CHIP (ubiquitin ligase activity). In highly proliferative
cells, phosphorylated Hsp70 and 90 form complexes with HOP
whereas CHIP-binding is prevented by phosphorylation of Hsp70
and 90. Therefore, CK1, CK2, and GSK3β together with the action
of phosphatases might be involved in complex regulation of the
C-terminal phosphorylation of Hsp70 and Hsp90 and their bind-
ing to co-chaperones (78). Moreover, apart from environmental
or external stress conditions, cells may also be challenged by stress
originating from pathological conditions as in the case of inflam-
matory or proliferative diseases. A detailed presentation of CK1
isoforms in regulating cellular stress response can be found in the
following chapters.

CK1 IN IMMUNE RESPONSE AND INFLAMMATION
By analyzing lymphatic tissues of BALB/c mice, remarkable
immunoreactivity of CK1δ and ε in granulocytic and megakary-
otic cells as well as in a subpopulation of lymphocytes has been
detected (183, 184, 210). Mitogenic activation of T-lymphocytes
was accompanied by a significant increase in both CK1δ protein
levels and kinase activity (210).

So far, several mechanisms have been reported by which CK1
isoforms might be involved in regulating lymphocyte activa-
tion and granulocyte physiology. Transcriptional activators of the
NFAT family of proteins play a major role in T-cell activation.
Their translocation to the nucleus can be blocked by phosphory-
lation of numerous sites present in the NFAT regulatory domain
(211). Some of these are phosphorylated by various CK1 isoforms
(rat liver CK1 and Danio rerio CK1α) with high efficiency. In a
two-phase phosphorylation mechanism, first phosphorylation of
the non-canonical site Ser-177 is initiated by CK1 binding to a
cluster of acidic residues within the sequence of aa 173–218. This
event enhances the subsequent phosphorylation of downstream
residues in a hierarchical manner (212). In contrast, Okamura and
colleagues reported NFAT1 to be phosphorylated by CK1 within
the serine-rich region SRR-1 (aa 149–183) after binding of CK1 to
a N-terminal motif between aa 1–98 (213).

Upon T-cell receptor engagement dynamic association of CK1α

to the CBM (CARMA/BCL10/MALT1) complex has been shown.
This complex acts as an NFκB (nuclear factor “kappa-light-chain-
enhancer” of activated B cells) activating platform containing the
scaffold protein CARMA1, the adaptor protein BCL10, and the
paracaspase MALT1. Here, CK1α complex association is linked to
NFκB activation, increased cytokine production, and lymphocyte
proliferation. However, CK1α was found to be a bi-functional reg-
ulator of NFκB signaling since phosphorylation and subsequent
inactivation of CARMA1 leads to termination of receptor-induced
NFκB activation (159). Just recently, CK1γ1 has been demon-
strated to be a negative regulator in innate immunity by directly
phosphorylating the NFκB subunit p65 following RIG-I pathway
stimulation after RNA virus infection. This phosphorylation event
is sufficient to target p65 for its degradation (129). Following
immune receptor engagement a signal transduction platform is
assembled around the T-cell receptor. This specialized cell–cell
junction is known as the immunological synapse whose forma-
tion also leads to remodeling of the actin cytoskeleton and to
repositioning of the centrosome to the immunological synapse
(214). Herein, the polarization process is supported by CK1δ phos-
phorylating the microtubule plus-end-binding protein 1 (EB1).
Formation of CK1δ–EB1 complexes is associated with increased
speed of microtubule growth and most likely also with subsequent
centrosome translocation in activated T-cells (74).

In granulocytes as well as in solid tumors cell survival is signif-
icantly promoted by the transcriptional activator HIF-1 (hypoxia-
inducible factor-1), which is able to respond to changes in cellular
oxygen levels. HIF-1 is continuously produced and marked for
degradation by a hydroxylation step involving oxygen-dependent
hydroxylases. Under hypoxic conditions, the continuous destruc-
tion of HIF-1 is blocked (215). Additionally, HIF-1 expression
and activity can be regulated by oxygen-independent mecha-
nisms resulting in phosphorylation of critical residues in HIF-1
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regulatory domains. CK1δ has been identified as one of these
kinases able to phosphorylate Ser-247 in the PAS-B (Per-ARNT-
Sim-B) domain of HIF-1α. This modification has no effect on
HIF-1α stability but affects the formation of the transcriptionally
active HIF-1α-ARNT heterodimer, which is seen as an obligatory
step prior to DNA binding (216). Therefore, active CK1δ can be
seen as negative regulator of HIF-1-mediated cell survival.

Additionally, for the highly CK1δ homologous isoform CK1ε,
a major role for transcriptional regulation in granulocytes has
been suggested. Along with human granulocytic differentiation, a
down-regulation of CK1ε has been observed. Here, active CK1ε

was shown to interact with and to stabilize SOCS3 (suppressor
of cytokine signaling 3) leading to attenuation of STAT3. Con-
sequently, overexpression of CK1ε inhibited granulocyte-colony-
stimulating factor (G-CSF) induced differentiation of myeloid
progenitor cells (217).

INTERACTION OF CK1 WITH CENTROSOMES, TUBULIN, AND
MICROTUBULE-ASSOCIATED PROTEINS
Members of the CK1 family represent central components in the
regulation of several cellular functions linked to cell cycle pro-
gression, spindle-dynamics, and chromosome segregation. CK1α

has been shown to be located at the centrosome, microtubule
asters, and the kinetochore (218–220). In addition, CK1δ espe-
cially associates with the spindle apparatus during mitosis and
directly modulates MT by phosphorylation of α-, β-, and γ-
tubulin, thereby exerting stress-induced functions at the spindle
apparatus and the centrosome (221, 222). Recently, knockdown of
CK1δ by siRNA was reported to inhibit microtubule nucleation at
the Golgi apparatus (201). Furthermore, homologs of CK1, such
as casein kinase 1-like 6 (CKL6), associate with cortical MT in vivo
and phosphorylate tubulin in vitro (223).

In addition to the direct interaction of CK1 with MT,
their polymerization and stability can also be regulated by
CK1-mediated phosphorylation of microtubule-associated pro-
teins (MAPs) (224). CK1δ regulates microtubule- and spindle-
dynamics in response to genotoxic stress in order to maintain
genomic stability by site-specific phosphorylation of tubulin,
stathmin, and the MAPs MAP4, MAP1A, and tau (32, 63, 219,
225–227) as well as the phosphorylation of Sid4 that delays cytoki-
nesis (75). An abnormal hyperphosphorylation of tau by CK1δ

can lead to microtubule destabilization and is associated with the
pathogenesis of AD (220, 225, 227).

Recent studies provide evidence that CK1 influences dynein-
dependent transport along MT. For instance, CK1ε phosphorylates
dynein intermediate chain (DIC) of the motor protein dynein
thereby activating minus-end directed transport of membrane
organelles along MT and regulating dynein activity by phospho-
rylation of the DIC component IC138 (Figure 3) (62, 228).

A particular interesting role of centrosome-associated CK1 has
been proposed in regulating cell cycle progression by interaction
with the Wnt pathway and p53 (Figure 3). CK1δ is associated
to the centrosome and related to Wnt3-dependent neurite out-
growth. In this context, phosphorylation of DVL by centrosome-
associated CK1δ facilitates neurite formation (32, 193, 229). CK1δ

co-localizes with DVL2 at basal bodies and gradually accumulates
at centrosomes when cells proceed through the cell cycle (230). The

hypothesis of CK1 fulfilling regulatory roles at the centrosome is
further underlined by the already discussed findings that CK1δ

and ε are anchored at the centrosome through interaction with
AKAP450 (see Regulation of CK1 Activity) (191) and that CK1δ

phosphorylates EB1, which is relevant for centrosome position-
ing during T-cell activation (see CK1 in Immune Response and
Inflammation) (74). Remarkably, further studies revealed that a
subpopulation of p53 is located at the centrosome in order to pre-
vent genomic instability. Therefore, the coordinated function of
both CK1 and p53 could ensure the integrity of the centrosome
and thereby maintain genomic stability (231–233).

CK1 IN DNA DAMAGE-RELATED SIGNAL TRANSDUCTION
CK1 family members can be considered as central components
within the regulation of several cellular functions linked to DNA-
processing or DNA damage [reviewed in Knippschild et al. (219)].
In context of DNA damage-associated signal transduction, p53
is activated initiating the activation of pathways ensuring cen-
trosome integrity and genomic stability. This signaling network
essentially involves coordinated action of CK1 and p53 (187,
231–233).

CK1α, δ, and ε are able to phosphorylate certain N-terminal
target sites of p53 (Ser-6, Ser-9, Ser-15, Thr-18, and Ser-20)
(187, 234–237). By phosphorylation of p53 (mostly at Ser-15
and Thr-18) CK1δ and ε decrease p53 binding affinity to its
cellular counterpart Mouse double-minute 2 homolog (MDM2)
resulting in increased levels of MDM2-released, active p53 (234,
238, 239). Conversely, phosphorylation of MDM2 at several ser-
ine residues within its central acidic domain (Ser-240, Ser-242,
Ser-246, and Ser-383) results in increased MDM2-p53-binding
and subsequent degradation of p53 under non-stress condi-
tions. Phosphorylation of Ser-118 and Ser-121 by CK1δ, how-
ever, can mark MDM2 for SCF/β-TrCP (Skp1, Cullins, F-box/β-
transducin repeat containing E3 ubiquitin protein ligase) binding
and ubiquitination, finally leading to proteasomal degradation
of MDM2 (Figure 4) (155, 239–241). Under normal condi-
tions, CK1α has furthermore been suggested to be a key player
promoting p53 inhibition and degradation by MDM2. There-
fore, CK1α is physically interacting with MDM2 resulting in p53
degradation. Inhibition or depletion of CK1α as well as inhi-
bition of CK1α-MDM2 association leads to p53 stabilization
(208, 242). For the MDM2 homolog MDMX, phosphorylation
of Ser-289 by CK1α has been confirmed resulting in increased
binding to p53 and subsequent inhibition of p53 transcriptional
function (156).

Among the target genes activated by p53 following geno-
toxic stress also transcription of CK1δ can be induced (187).
Given the previously discussed fact that p53 can be activated by
CK1δ-mediated phosphorylation in this network, an autoregula-
tory feedback loop between CK1δ and p53 has been suggested
(Figure 4).

Apart from DNA damage, p53 activation can also be induced
by hypoxia. Herein, p53 levels are stabilized via HIF-1α and
its positive regulatory effect on ATM/ATR (ataxia telangiectasia-
mutated/ataxia telangiectasia and Rad3-related) (243, 244). As
discussed previously, HIF-1α represents a substrate for CK1
and its transcriptional activity can be negatively regulated by
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FIGURE 3 | Centrosome-associated functions of CK1. For
dynein-dependent transport along microtubules (MT), CK1ε

phosphorylates the dynein intermediate chain (DIC) of dynein, likely
IC138, thereby activating minus-end directed transport of membrane
organelles along MT (62, 228). CK1δ and CK1ε are associated with the
centrosome mediated through interaction with the scaffold protein
AKAP450 (A-kinase anchor protein 450) (191, 193, 203). Both

isoforms are related to Wnt-signaling and neurite outgrowth by
phosphorylation of DVL (229, 230). In addition, CK1δ phosphorylates
the end binding protein 1 (EB1), which is relevant for centrosome
positioning during T-cell activation (74). Furthermore, a subpopulation
of p53 in coordinated function with CK1 at the centrosome could
ensure the integrity of the centrosome and thereby maintain genomic
stability (231–233).

CK1δ-mediated phosphorylation (216). However, since this modi-
fication has no effect on HIF-1α protein stability, the precise role of
CK1δ-mediated HIF-1α phosphorylation in regulating ATM/ATR-
and p53-specific functions under hypoxic conditions remains to
be characterized.

More recent work suggested that interferon (IFN)-related sig-
naling is able to activate p53 as a response to loss of epigenetic gene
silencing (246). Among other critically involved epigenetic regula-
tors, UHRF1 (ubiquitin-like, with PHD and RING finger domains
1) regulates the maintenance of DNA methylation during DNA
replication (247). The stability of UHRF1 is regulated by protea-
somal degradation including a priming step by CK1δ-mediated
phosphorylation of Ser-108 thereby creating a recognition site for
the SCF/β-TrCP ubiquitin ligase (104). Consequences of this neg-
ative regulatory connection between CK1δ and UHRF1 may also

include the loss of stable DNA methylation and IFN-dependent
activation of p53.

DNA/RNA virus infection has been described as a further
mechanism resulting in p53 activation. This effect might be
mediated via IFN-related p53 accumulation (245) but also via
CK1-dependent signaling. In this context, CK1α-mediated phos-
phorylation of p53 at Ser-20 is induced after infection of T-cells
with human Herpes virus 6B (HHV-6B). This phosphorylation
event stabilizes the binding of p53 to the transcriptional co-
activator p300. Therefore, CK1α takes part in gene regulation
following virus infection induced p53 activation (236). Also infec-
tion with SV40 interferes with the p53 signaling network. SV40
large T-antigen (T-Ag) inactivates p53-dependent transcriptional
activation whereas the oncogenic properties of T-Ag are enhanced
by CK1-mediated phosphorylation (189, 190, 248). Moreover,
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FIGURE 4 | CK1 isoforms in DNA damage-induced signal transduction.
After induction of DNA damage (situation A) p53 and Chk1/2 are activated by
ATR/ATM-mediated phosphorylation while the p53-regulatory component
MDM2 is inhibited. The activation of Chk1 is supported by claspin whereas
Chk1/claspin-binding is promoted by CK1γ1-mediated phosphorylation of
claspin (162). The CK1 isoforms α, δ, and ε are able to activate p53 by
site-specific phosphorylation (187, 234, 235, 237). Activated p53 in turn
induces the expression of target genes like Bax (leading to apoptosis), p21
(leading to cell cycle arrest), and also CK1δ (autoregulatory feedback loop)
(187). MDM2-mediated degradation of p53 can be activated via interaction
with and phosphorylation by CK1α, but also through phosphorylation by CK1δ

or ε leading to enhanced binding of MDM2 to p53. CK1δ-mediated
phosphorylation of Ser-118 and Ser-121 however marks MDM2 for
proteasomal degradation (155, 239–241). In case Chk1/2 gets activated after
DNA damage the phosphatase Cdc25, normally initiating cell cycle
progression, is blocked by inhibitory phosphorylation and subsequent
degradation. In the regulation of Cdc25 inhibition and degradation also CK1
isoforms α and ε are involved (141, 143). Signaling mediated by p53 can also
be initiated by hypoxia (via CK1δ-regulated HIF-1α; situation B) (216, 243, 244)
or DNA/RNA virus infection (via IFN and/or CK1α-related signal transduction;
situation C) (236, 245). Depicted phosphorylation events refer to reported
CK1-specific target sites.

as a consequence of SV40 infection/transformation, MDM2 is
metabolically stabilized, post-translationally altered, and able to
build trimeric complexes with T-Ag and p53 as well as com-
plexes with free p53 thereby inhibiting proteasomal degradation
of p53 (249).

Abnormalities in p53 are also related to phenotypes of pre-
mature aging. Recently, a mechanistic connection between the
proteasome activator REGγ, CK1δ, and p53 has been demon-
strated using a mouse model for premature aging. In this pathway,
CK1δ is degraded after direct binding to REGγ. Subsequently,
degradation of MDM2 is disturbed due to the lack of CK1δ and
p53 levels decrease. These findings provide new insights to the
conversely discussed anti- and pro-aging effects of p53 (250).

Obviously,CK1 family members are involved in p53-related sig-
nal transduction in response to cellular stress conditions in numer-
ous ways (Figure 4). However, in most cases upstream regulators
and the mechanism of CK1 activity regulation in these pathways
still remain unknown. Another component in DNA damage-
initiated signal transduction, being targeted by CK1 isoforms, is
the protein phosphatase Cdc25A (cell division cycle 25A). Acti-
vation of cyclin-dependent kinases (Cdks) by dephosphorylation

mediated by Cdc25 is required for cell cycle progression from
G1 to S phase (251). Among phosphorylation by other cellular
kinases, site-specific phosphorylation of Cdc25A by CK1α and ε

at residues Ser-79 and Ser-82 targets Cdc25A for degradation via
the ubiquitin-proteasome pathway (141, 143). This CK1-regulated
degradation of Cdc25A supports DNA damage-induced cell cycle
arrest, which is mediated via inhibition of Cdks by p53 and p21
(252). Since CK1 isoforms are involved in both, the degradation
of Cdc25A as well as of p53, CK1 family members might act in a
synergistic way to initiate cell cycle arrest.

In addition, CK1γ1 is related to DNA damage signaling by
catalyzing the phosphorylation of claspin, an adaptor protein crit-
ically involved in ATR-mediated activation of Chk1. In this context,
CK1γ1-mediated phosphorylation of claspin enhances its binding
to Chk1 (162). Chk1 in turn has been identified as a cellular kinase
phosphorylating CK1δ leading to decreased CK1δ-specific activity
(38). The significance of this observation for the p53/MDM2/CK1-
signaling network remains to be determined. However, given the
information that Chk1 is down-regulated by p53 activation the
Chk1/CK1δ/p53-interconnection might be involved in fine-tuning
the negative regulatory effect of p53 on Chk1 (253).
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In hematopoietic cells, the physical interaction of CK1ε with
PTEN (phosphatase and tensin homolog) has been proposed to
modulate cell survival. Normally, constitutively active Akt kinase
or Akt activated by the upstream phosphatidylinositol 3-kinase
(PI3K) leads to the inhibition of p53 and p53-induced apopto-
sis, thereby providing a resistance mechanism for genotoxic stress
(254, 255). However, in case PTEN is stimulated as shown for the
interaction of PTEN with CK1ε, PI3K-mediated Akt activation
is inhibited. Subsequent inhibition of p53 via active Akt is cir-
cumvented and the cells’ sensitivity toward genotoxic stress can be
restored (256).

In the context of Akt signaling, CK1α was reported to affect
DEPTOR, an inhibitor of the mTOR (mammalian Target of
Rapamycin) kinase, which regulates cell growth, proliferation,
and survival [reviewed in Sarbassov et al. (257)]. Phosphoryla-
tion of DEPTOR by CK1α leads to βTrCP-mediated proteasomal
degradation of DEPTOR resulting in activation of mTOR sig-
naling, which is consistent with DEPTOR down-regulation and
mTOR activation found in many cancers (258). Therefore, CK1α

might provide a therapeutic target for the treatment of cancers
characterized by low DEPTOR levels and activation of mTOR
signaling, leading to increasing DEPTOR levels, and inhibition
of mTOR signaling. Paradoxically, DEPTOR is overexpressed in
multiple myeloma, which is necessary for PI3K-mediated acti-
vation of Akt and thereby inhibition of p53 and p53-induced
apoptosis (259, 260).

Under conditions of genotoxic stress rapid changes in
connexin-43 (Cx43) leading to alterations in gap junction-
dependent intercellular communication have been observed in
corneal endothelial cells associated with stabilization of gap junc-
tion communication (261). Earlier reports already showed phos-
phorylation of Cx43 by CK1δ, which stimulates the incorporation
of Cx43 into gap junction plaques and which therefore most likely
also takes part in long term cellular adaptations in response to
genotoxic stress (76).

Further DNA-associated proteins being modulated by CK1
isoforms are topoisomerases. For topoisomerase IIα, phosphory-
lation of Ser-1106 by CK1δ and ε has been demonstrated (98). This
phosphorylation event is linked to enhanced DNA-cleavage activ-
ity of topoisomerase IIα via the stabilization of topoisomerase-
DNA cleavable complexes after etoposide treatment (98).

CK1 IN CIRCADIAN RHYTHM AND ITS CONNECTIONS TO STRESS
RESPONSE
In almost every higher organism, an autonomous timer is known
and referred to as the circadian clock. This timer consists of a signal
transduction pathway to integrate external signals for time adjust-
ment, a molecular oscillator generating the circadian signal, and
a signal transduction pathway controlling the circadian period-
icity of certain biological processes. Therefore, circadian proteins
are closely connected to key regulators of the cell cycle, oxidative
stress, and carcinogenesis. Basically, in the mammalian circadian
clock the positive regulators CLOCK and brain and muscle ARNT-
like protein (BMAL1) as well as the negative regulators PERIOD
(PER) and CRYPTOCHROME (CRY) form an oscillating system
controlling their own expression levels (Figure 5) [reviewed in
more detail in Kelleher et al. (262)].

Linking circadian rhythm to cell cycle control, the heterodimer
CLOCK/BMAL1 transcriptionally controls the expression of cell
cycle regulators. PER1 interacts with ATM and Chk2 (264),
whereas TIM, the mammalian homolog of Drosophila timeless
protein, interacts with Chk1, ATR, and the ATR-related protein
ATRIP (265). Furthermore, BMAL1 was identified to be neces-
sary for p53-dependent growth arrest in response to DNA damage
(266). Within the metabolism of reactive oxygen species (ROS)
circadian proteins also seem to be involved, since the circadian
clock could offer reliable control of daily variation in antioxidant
response necessary to counteract increased oxidative stress. This
connection is reasonable and important as oxidative stress is linked
to the pathogenesis of cardiovascular diseases, atherosclerosis, and
cancer (267). As an example, BMAL1 deficiency leads to chronic
oxidative stress and an accelerated aging phenotype in mice (268).
Conversely, activity of the circadian clock itself can be regulated
by components of ROS metabolism (269). Finally, the circadian
clock is also linked to the development of cancer. For PER2 mutant
mice increased formation of radiation-induced lymphomas was
reported and the frequency (FRQ) of intestinal and colonic polyps
was increased in APCmin/+PER2m/m mice compared to APCmin/+

littermates (270).
In order to control the circadian rhythm involved, regulating

components are subject to post-translational modifications like
reversible phosphorylation (271). In general, CK1 isoforms δ and
ε are able to phosphorylate and regulate the clock proteins BMAL1
and CRY and can modulate the expression of the period length
modulator prohibitin 2 (PHB2) (114, 263). CK1δ is seen as an
important regulator in circadian rhythm but also the involvement
of other CK1 isoforms has been detected. CK1δ and ε are able
to influence the length of the circadian period by regulating the
stability and subcellular localization of PER (Figure 5) (149, 163,
272, 273). Phosphorylation of PER1 by CK1ε masks the nuclear
localization signal of PER1 by conformational changes and marks
PER for proteasomal degradation (149). CK1δ and ε interact with
PER/CRY complexes thereby promoting nuclear localization of
PER/CRY complexes (149, 274). In a high-throughput compound
screening also CK1α was found to stimulate the degradation of
PER1. In this screen, the protein kinases CK1α, CK1δ, and ERK2
were identified as targets for the compound longdaysin. However,
CK1α binding affinity to PER1 is much weaker than for CK1δ or
ε (275). The same is true for CK1γ (276). Thus, CK1δ and ε can
be regarded as redundant for PER phosphorylation and essential
for nuclear accumulation of PER (277). Inhibition of CK1δ and ε

by the pan-CK1δ/ε inhibitor PF-670462 led to remarkably length-
ened circadian rhythms (in vivo locomotor activity) and molecular
oscillations (in vitro in the suprachiasmatic nucleus and periph-
eral tissue slices). These observations could not be made using the
CK1ε-specific inhibitor PF-4800567 (278). PF-4800567 effectively
blocked CK1ε-mediated nuclear localization of PER3 and degra-
dation of PER2 but only showed minimal effect on the circadian
clock in cycling Rat1 fibroblasts (273). The CK1ε tau mutation,
however, which was discovered in the Syrian hamster as the first
mammalian circadian mutation, was characterized as a gain of
function mutation resulting in clock acceleration. In mice express-
ing the CK1ε tau mutation increased phosphorylation of PER1 and
2 can be detected leading to increased degradation of nuclear and
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FIGURE 5 | CK1 in circadian rhythm regulation. By binding of the
BMAL1/CLOCK heterodimer to the E-box, transcription of E-box-containing
genes is initiated (1) (here shown for PER1-3, CRY1 and 2, and REV-ERBα),
the transcripts are translated in the cytoplasm (2). Degradation of cytoplasmic
PERs is triggered mainly by CK1δ and ε, but also by isoforms α and γ (3), while
PER degradation is inhibited by binding of CRYs to PERs (4). Subsequently,
complexes of CRY/PER and CK1δ/ε translocate to the nucleus (5). In the
nucleus the CRY/PER complex represses the transcriptional activation of

BMAL1/CLOCK target genes (6). CRYs and PERs finally shuttle back to the
cytoplasm for proteasomal degradation (7). Repression of BMAL1 expression
by REV-ERBα represents a second negative feedback loop (8). Together, these
feedback loops are able to generate cyclic expression of BMAL1 and
E-box-containing genes [for review see Knippschild et al. (219) and Cheong
and Virshup (195)]. CK1δ and ε differentially effect expression of the period
length modulator PHB2. Whereas CK1δ is able to promote PHB2
transcription, its expression is reduced by CK1ε (9) (8, 263).

cytoplasmic PER and acceleration of the mammalian clock (279,
280). Um and colleagues discovered, that the circadian period of
Rat1 fibroblasts treated with the diabetes drug metformin was
shortened by 1 h. By metformin treatment, AMP-activated kinase
(AMPK) is activated, which phosphorylates CK1ε at Ser-389 lead-
ing to increased activity of CK1ε and subsequent degradation of
Per2 (281). A higher level regulator of CK1ε activity in circadian
rhythm is protein phosphatase 5 (PP5), which can raise the activity
of CK1ε by dephosphorylation. As a consequence, phosphoryla-
tion by CK1ε and subsequent degradation of PER is also increased
(282). Recently, CK1δ (but not CK1ε) has been shown to be crucial
for the circadian timing mechanism in zebrafish (283).

Presented observations point to PER proteins as multikinase
targets, which can be multiply phosphorylated and thereby regu-
lated. Herein, the balance between phosphorylation and dephos-
phorylation by phosphatases is of certain importance. In cells
deficient for CK1δ and ε, phosphorylation of PER is disturbed and
PER proteins remain cytoplasmic. In case protein phosphatase 1
(PP1) is disrupted, phosphorylation of PER is accelerated. This
effect is specific to PP1 and in contrast to previous Drosophila
studies cannot be observed for PP2A (276).

CK1-SIGNALING IN APOPTOTIC PATHWAYS
For several CK1 isoforms, an involvement in the regulation of
apoptotic signal transduction has been described. CK1α, δ, and
ε are components of Fas-mediated apoptosis and induce an acti-
vation of initiator caspase 8. Here the pro-apoptotic protein Bid,
which belongs to the Bcl-2 family, is of major interest. Amino acids
Ser-64 and Ser-66 of Bid are supposed to be major targets for CK1-
mediated phosphorylation while Thr-58 is targeted by CK2. Only
unphosphorylated Bid can be processed by caspase 8-mediated
proteolysis and can participate in cytochrome c-mediated apop-
tosis. Accordingly, inhibition of CK1 and CK2 induces accelerated
Fas-triggered apoptosis by blocking inhibitory phosphorylation
of Bid. Vice versa an overexpression of CK1ε and CK2 leads to
a decreased number of apoptotic cells due to increased phos-
phorylation of Bid, blocking its caspase 8-mediated processing.
Therefore, phosphorylation of Bid by CK1δ and ε and CK2 can
inhibit Fas-mediated apoptosis (151).

Moreover, CK1 (isolated from pig spleen) can phosphory-
late the p75 neurotrophin receptor, thereby negatively regulating
p75-mediated apoptosis (284). CK1α is involved in apoptosis by
interaction and phosphorylation of retinoid X receptor (RXR), a
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class of retinoic acid receptors regulating cell survival by build-
ing heterodimers with NGF1B (nerve growth factor 1B), IGFBP-3
(insulin-like growth factor binding protein 3), and β-catenin. In
this case, CK1 activity inhibits the induction of apoptosis by RXR
agonists (85, 285–287).

Furthermore, CK1α is able to phosphorylate FADD (Fas-
associated protein with death domain) at Ser-194 in vitro as well as
in vivo and is supposed to be involved in regulating non-apoptotic
functions of FADD like cell cycle interaction, sensitivity toward
chemotherapeutics, and nuclear localization (176, 288). In ery-
throcytes, CK1α modulates cytosolic calcium activity and thereby
regulates programed cell death (289).

PARTICIPATION OF CK1 IN THE DEVELOPMENT OF CANCER
During animal development, a precise coordination of cell pat-
terning events is required to ensure appropriate organ architecture
and size. Several developmental pathways control growth, prolifer-
ation, and apoptosis by strict regulation, which can result in patho-
logical conditions when dysregulated. The Wnt (Wingless/Int-1),
Hh (Hedgehog), and Hippo signaling pathways are important in
tissue development, growth, and homeostasis (290–293). Aberrant
activation of these pathways as well as mutations of components
of these pathways has been linked to various cancer entities (294–
298). Due to the contribution of CK1 family members in pathways
associated with growth and development, the following sections
concentrate on the current knowledge of CK1 participation and
regulation in the Wnt, Hh, and Hippo signaling pathways.

CK1 AND THE WNT PATHWAY
Components of the Wnt-signaling pathway are involved in many
developmental processes including dorsal axis formation, tissue

patterning, and establishment of cell polarity (299–302). In addi-
tion, Wnt/β-catenin-mediated signaling plays an important regu-
latory role in cell proliferation processes in both, embryonic and
mature organisms. Mutations in Wnt pathway components have
been found in various human cancers, including cancers of the
skin, liver, brain, and colon (291, 303–312).

In the canonical Wnt/β-catenin signaling pathway, all CK1
family members are involved. However, this involvement is quite
complex. So far, positive as well as negative regulatory functions
have been described. In absence of the Wnt ligand CK1α inter-
acts with and phosphorylates Axin, adenomatous polyposis coli
(APC), and β-catenin (at Ser-45), thereby priming β-catenin for
further phosphorylation by GSK3β and subsequent degradation
(195, 313) (Figure 6A). After binding of Wnt ligand to Frizzled
(Fzd) the Wnt co-receptor LRP5/6 is phosphorylated either by
membrane-bound CK1γ (positive regulation) (86) or by CK1ε

(negative regulation) (314). Phosphorylated LRP5/6 then recruits
Axin and the β-catenin destruction complex to the membrane
and inhibits GSK3β. Wnt-activated CK1δ and CK1ε phosphorylate
Axin as well as the scaffold protein DVL at multiple sites and can
introduce a conformational change to the β-catenin destruction
complex followed by dissociation of several components, thereby
preventing β-catenin from being phosphorylated and degraded
(148,195). Recently,RNA helicase DDX3 was identified as a regula-
tory subunit of CK1ε in Wnt-signaling. Wnt-activation promotes
recruitment of DDX3 to CK1ε and binding directly stimulates
kinase activity, promoting phosphorylation of DVL, finally lead-
ing to stabilization of β-catenin (103). Accumulated β-catenin then
translocates to the nucleus to activate the expression of TCF/LEF
(T cell factor/lymphoid enhancing factor)-triggered target genes
(Figure 6B) (291). CK1ε is also involved in the formation of an

FIGURE 6 | CK1 in Wnt-signaling. (A) In the absence of the Wnt ligand,
β-catenin is progressively phosphorylated by CK1α and GSK3 (1), recruited
to β-TrCP for ubiquitination (2), and thereby primed for proteasome-
dependent degradation (3). (B) After binding of Wnt to Frizzled and LRP5/6
(1), LRP5/6 is phosphorylated by CK1γ (positive regulation) and CK1ε

(negative regulation) (2). It then recruits Axin and the β-catenin destruction
complex to the membrane and inhibits GSK3 (3, 4). Wnt-activated CK1δ and
ε phosphorylate Disheveled (DVL) and Axin (5), induce a conformational

change in the β-catenin destruction complex and initiate the dissociation of
various components (6). CK1ε cooperates with DDX3 in phosphorylating
DVL (7). Also, TCF3 can be phosphorylated by CK1δ and ε thereby increasing
its binding to β-catenin followed by the nuclear translocation of TCF3/β-
catenin (8). The non-canonical Wnt pathway is positively regulated by CK1δ-
and ε-dependent release of Rap1 from Sipa1L1 inhibition (9). The Rho/JNK
signaling cascade is activated after phosphorylation of DVL (10) [adapted
from Cheong and Virshup (195)].
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active transcription complex by phosphorylating TCF3 thereby
mediating its activation and binding to β-catenin (113).

CK1ε is associated with a positive regulatory function by join-
ing the Wnt multi-protein complex to phosphorylate DVL, which
in turn gets activated and inhibits GSK3β, finally resulting in
stabilization of β-catenin (148).

Signaling in the non-canonical Wnt pathway is positively regu-
lated by CK1δ and ε, which release Rap1 from Sipa1L1 inhibition.
Subsequent to phosphorylation of DVL the Rho/JNK signaling
cascade can be activated (Figure 6B) [reviewed in Cheong and
Virshup (195)].

CK1 IN THE HEDGEHOG PATHWAY
The Hh signaling pathway regulates a variety of processes dur-
ing embryonic development such as differentiation, prolifera-
tion, and organogenesis (290). In the adult organism, Hh sig-
naling is significantly reduced but plays a critical role in regu-
lating epithelial maintenance and regeneration of organs, which
undergo constant renewal; among them, epithelia of internal
organs and brain (315). Therefore, mutations or dysregulation
of components of this pathway are associated with tumorigenesis
and cancer development, including basal cell carcinomas, medul-
loblastomas, gliomas, gastrointestinal tumors, prostate cancer, and
hematological malignancies (315–318).

In mammals, major components of the Hh pathway are repre-
sented by the three Hh homologous ligands Sonic hedgehog (Shh),
Indian hedgehog (Ihh), and Desert hedgehog (Dhh), the negative
regulatory 12-pass membrane receptor Patched (PTCH), the pos-
itive regulatory 7-pass membrane protein smoothened (SMO),
the glioma-associated oncogene (GLI) transcription factors GLI1,
GLI2, GLI3, a multi-protein complex consisting of intraflagellar
transport proteins, protein kinase A (PKA), GSK3, CK1, and sup-
pressor of fused (SUFU) (319). In absence of Hh ligands, PTCH
inhibits the localization of SMO to the cilia cell surface and
represses SMO activity, thereby suppressing signal transmission
via the GLI transcription factors into the nucleus. PKA, GSK3β,
and CK1 phosphorylate the GLI transcription factors leading to
their proteolytic processing into the repressor forms, which cannot
activate target gene transcription (Figure 7A) (320, 321). Hh sig-
nal transduction is initiated upon binding of a Hh ligand to PTCH,
thereby releasing SMO from PTCH-mediated inhibition, leading
to its accumulation on cilia cell surface and consequent activation
and release of the GLI transcription factors from the multi-protein
complex. Activated GLIs then translocate to the nucleus, where
they induce transcription of Hh target genes (Figure 7B) (319).

In 2002, Price and Kalderon postulated a negative regulatory
role of CK1 in Hh signaling in Drosophila melanogaster (322).
They demonstrated that CK1δ- and GSK3-mediated phosphory-
lation of Ci-155 (full-length Cubitus interruptus, the Drosophila
homolog of GLI2 and GLI3) at PKA primed sites is required for the
partial proteolysis of the transcription factors, thereby preventing
Hh target gene transcription [reviewed in Price (323)]. The PKA,
GSK3,and CK1 sites are conserved in Ci,GLI2,and GLI3,which are
all similarly processed and may play similar roles in Drosophila and
vertebrates (324–327). Furthermore, Wang and Li demonstrated,
that CK1 and GSK3 phosphorylation sites are needed to process
GLI3 (327). CK1 has also been implicated in positive regulation

of SMO. Chen and co-workers demonstrated that mammalian
SMO is activated via multiple phosphorylation events mediated
by CK1α and G protein coupled receptor kinase 2 (GRK2), thereby
inducing its cilia accumulation and active conformation (328).

CK1 IN THE HIPPO PATHWAY
During development, the evolutionary conserved Hippo pathway
contributes to several processes, which restrict organ size by con-
trolling cell proliferation and apoptosis [reviewed in Zhao et al.
(124)]. Consequently, pathway deregulation can trigger tumori-
genesis and occurs in a broad range of human cancers. Abnor-
mal Hippo activity is associated with cancer cell proliferation,
enhanced cell survival, and maintenance of a stem cell phenotype
[reviewed in Harvey et al. (329)].

The mammalian Hippo pathway is initiated by various growth
suppressive signals like cell contact inhibition. The upstream
kinases mammalian STE20-like protein kinase 1/2 (MST1/2),
together with the scaffold proteins vertebrate homolog of
Drosophila Salvador (WW45) and MOB kinase activator 1A/B
(MOB1A/B) phosphorylate the large tumor suppressor 1 and 2
(LATS1/2). LATS1/2-dependent phosphorylation of the transcrip-
tional co-activator Yes-associated protein (YAP) and its paralog
Tafazzin (TAZ) then leads to YAP/TAZ inhibition by spatial sep-
aration from its nuclear target transcription factors TEAD (TEA
domain) and SMAD (SMA/mothers against decapentaplegic) and
additionally by phosphodegron-mediated degradation, prevent-
ing Hippo target gene transcription (Figure 8A) (330, 331).

Zhao and co-workers as well as Liu and co-workers identified
CK1δ and ε as new temporal regulators of the Hippo pathway.
YAP is phosphorylated by LATS on Ser-381 and this phosphory-
lation provides the priming signal for CK1δ or ε to phosphorylate
a phosphodegron in YAP, which in turn recruits β-TrCP lead-
ing to YAP ubiquitination and degradation (124). Furthermore,
TAZ phosphorylation at Ser-311 by LATS also leads to subse-
quent CK1ε-mediated phosphorylation of a phosphodegron in
TAZ and consequently to its degradation (123). Xu and co-workers
recently postulated the interaction of the Hippo and Wnt pathway
via CK1ε. Herein, the Hippo upstream kinase MST1 is able to
suppress the Wnt/β-catenin pathway by directly binding CK1ε,
thereby preventing phosphorylation of DVL (Figure 8B) (332).

CK1-RELATED TUMORIGENIC FUNCTIONS
The important role of CK1 family members within various sig-
naling pathways is furthermore supported by reports linking CK1
isoforms to modulation of key regulatory proteins such as p53,
MDM2, and β-catenin, which act as signal integration molecules
in stress situations and generally can be seen as a key regula-
tory connection to tumorigenesis [for more detailed review see
Knippschild et al. (219, 333), and Cheong and Virshup (195)].
Considering the importance of signals mediated by CK1δ and ε

to finally ensure genome stability, it is obvious that mutations
leading to changes in the activity or expression levels of CK1 iso-
forms or mutations of CK1-specific target sites in its substrates
can contribute to the development of cancer (Table 2). Foldynová-
Trantírková and co-workers provided evidence that mutations in
CK1ε, which are frequently found in breast cancer, lead to loss of
function in the Wnt/β-catenin pathway but result in activation of
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Knippschild et al. CK1 in cellular stress response and cancer

FIGURE 7 | CK1 in Hh signaling. (A) In absence of Hh ligand, PTCH localizes
in the cilium and inhibits surface trafficking and cilia localization of SMO. GLI
proteins are phosphorylated by PKA, GSK3β, and CK1, which lead to
proteasome-dependent cleavage of GLI into a N-terminally truncated form,
generating the repressor forms GLI2R and GLI3R. GLI2/3R translocate to the
nucleus and inhibit translation of Hh target genes. Furthermore, SUFU

prevents GLI from activating Hh target genes, by binding it in the cytoplasm
and the nucleus. (B) In response to Hh, SMO is activated by GRK2 and
CK1α-dependent phosphorylation and enters the primary cilium. Activated
SMO orchestrates a signaling cascade, eventually resulting in the dissociation
of the SUFU-GLI complex and the translocation of full-length GLI2/3 to the
nucleus, where Hh target gene expression is induced.

the Wnt/Rac1/JNK and Wnt/Ca2+ pathway, consequently leading
to increased migratory capacity and decreased cell-adhesion (334).
A mutation within the C-terminal region of CK1δ detected in an
adenomatous colorectal polyp leads to a higher oncogenic poten-
tial and promotes the development of adenomas in the intestinal
mucosa (335). Furthermore, conditional knock-out of CK1α in the
intestinal epithelium leads to activation of p53 and Wnt-signaling,
while in p53 deficient gut, loss of heterozygosity of the CK1α gene
causes a highly invasive carcinoma, indicating that CK1α acts as a
tumor suppressor when p53 is inactivated (336).

In 1981, Elias and co-workers already reported an increased
nuclear CK1 kinase activity in AML patients (186). Until now,
several reports link altered CK1 expression and/or activity to
cancer. Reduced CK1α protein and mRNA expression levels in pri-
mary melanomas and melanoma metastases compared to benign
melanocytic lesions or early-stage melanomas have been detected.
In the same study, reduced CK1α expression was also observed
in lymphomas, ovarian, breast, and colon carcinomas, compared

with the respective benign tissue (337). In renal cell carcinoma
elevated CK1γ3 expression and activity levels have been described
(338), whereas in choriocarcinomas strong expression levels of
CK1δ were detected (222). Changes in the immunoreactivity of
CK1δ have been observed in breast carcinomas, depending on
the grade of tumor differentiation. High-grade ductal carcinomas
in situ (DCIS) as well as invasive poorly differentiated carcinomas
show reduced CK1δ immunostaining, whereas well differentiated
carcinomas and low grade DCIS show strong staining of tumor
cells (219). Regarding CK1ε, Fuja and co-workers observed similar
correlations between tumor differentiation and immunohistolog-
ical staining (341). Expression of CK1ε is also down-regulated in
mammary cancers in SV40-transgenic mice expressing SV40 T-Ag
(184). A recent study suggests that CK1ε is overexpressed in breast
tumors and acts as a pivotal regulator of mRNA translation and cell
proliferation. CK1ε phosphorylates the negative-acting factor 4E-
BP1 (eukaryotic translation initiation factor 4E binding protein
1), thereby preventing its inhibitory function on the translation
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Knippschild et al. CK1 in cellular stress response and cancer

FIGURE 8 | CK1 in Hippo signaling in vertebrates. (A) In absence of growth
suppressive signals YAP/TAZ promotes tissue growth and differentiation by
regulating the activity of different transcription factors in the nucleus,
including SMADs and TEADs. (B) Cell-density activated pathway regulation is
controlled by multiple upstream branches by activating the core kinase
cassette that represses YAP/TAZ driven gene transcription, either by
degradation of TAP/TAZ or by forming physical complexes, preventing its
nuclear access. Initially, MST1/2 is activated by various components and
phosphorylates LATS1/2 (1), which in turn phosphorylates TAP/TAZ on Ser-311

or Ser-381 (2a). This phosphorylation primes YAP/TAZ for further
phosphorylation by CK1δ/ε (3a) and consequent recruitment of and
ubiquitination by β-TrCP (4a), priming YAP/TAZ for degradation (5a). However,
LATS1/2 driven phosphorylation of TAP/TAZ on Ser-127 (2b) leads to the
formation of 14-3-3-YAP/TAZ complexes, which accumulate in the cytoplasm
preventing YAP/TAZ access to the nucleus (3b). Hippo pathway regulates
Wnt/β-catenin signaling by inhibition of DVL, either by MST1/2-mediated
prevention of CK1ε-dependent phosphorylation of DVL, or by direct inhibition
of DVL by YAP/TAZ. ABCP: apicobasal cell polarity protein.

initiation complex elF4E (eukaryotic initiation factor 4E) and con-
sequently leading to dysregulated mRNA translation and breast
cancer cell growth (342). Elevated protein levels of CK1δ and ε

were also observed in single tumor cells of grade 3 tumors of ductal
pancreatic carcinomas and inhibition of CK1δ and ε by the CK1-
specific inhibitor IC261 reduced pancreatic tumor cell growth
in xenografts (339). In contrast, Relles and co-workers detected
reduced expression levels in pancreatic ductal adenocarcinomas
(340). CK1ε expression is increased in adenoid cystic carcinomas
of the salivary gland (343), in epithelial ovarian cancer (344), in
tumors of brain, head and neck, renal, bladder, lung, prostate,
and salivary gland, in leukemia, melanoma, and seminoma (345).
Toyoshima and co-workers found that CK1ε expression is signifi-
cantly correlated with MYCN amplification in neuroblastoma and
poor prognosis. In addition, CK1ε expression has been associ-
ated with c-MYC in several other tumors such as colon, lung, and
breast cancer (346). In a recent study, Lin and co-workers demon-
strated that loss of cytoplasmatic CK1ε expression correlates with
poor survival rates in oral squamous cell carcinoma (347). Järas
and co-workers recently found that CK1α is essential for AML

cell survival and treatment with the CK1-specific inhibitor D4476
results in highly selective killing of leukemia stem cells by reducing
Rsp6 (radial spoke protein 6) phosphorylation and activation of
p53 (Table 4) (348).

In summary, the data reported so far provide evidence that
CK1 isoforms exhibit oncogenic features by promoting prolifer-
ation, genome instability, and inhibition of apoptotic processes.
This assumption is also supported by the fact that CK1 isoforms
are often overexpressed in tumors and that overexpression of
CK1ε correlates with poor survival as shown for patients with
ovarian cancer (344). However, this finding cannot be general-
ized and might depend on additional factors, as in the case of
oral squamous cell carcinoma loss of CK1ε expression correlates
with poor survival rates (347). In addition, the functions of CK1α

in tumorigenesis are manifold making it difficult to classify it as
oncogene or tumor suppressor. In AML CK1α seems to exhibit
oncogenic features (348), whereas in intestinal epithelium loss of
heterozygosity of the CK1α gene causes a highly invasive carci-
noma, indicating that CK1α acts as a tumor suppressor when p53
is inactivated (336).
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Knippschild et al. CK1 in cellular stress response and cancer

Table 2 | CK1 isoforms in different tumor entities.

Isoform Characteristic feature Tumor entity Reference

CK1α Low/absent expression Primary/metastatic melanoma, lymphomas, ovarian, breast, and colon carcinomas (337)

CK1γ3 Altered activity/expression Renal cell carcinoma (338)

CK1δ Increased expression levels Choriocarcinomas (222)

CK1δ Reduced immunostaining Poorly differentiated breast carcinomas and DCIS (219)

CK1δ/ε Elevated protein levels High-grade ductal pancreatic carcinomas (339)

CK1ε Reduced expression levels Pancreatic ductal adenocarcinoma (340)

CK1ε Increased immunoreactivity Mammary DCIS (184, 341)

Decreased immunoreactivity Invasive mammary carcinoma

CK1ε Overexpression Breast cancer (342)

CK1ε High gene expression Adenoid cystic carcinoma of the salivary gland (343)

CK1ε Overexpression Epithelial ovarian cancer (344)

CK1ε Overexpression Tumors of brain, head and neck, renal, bladder, lung, prostate, salivary gland,

leukemia, melanoma, and seminoma

(345)

CK1ε Overexpression MYC-driven cancers (neuroblastoma, colon, lung, and breast cancer) (346)

CK1ε Loss of cytoplasmic expression Poor prognosis in oral cancer patients (347)

CK1 IN METASTATIC PROCESSES
In many cases, CK1 family members can also be involved in the
regulation of metastatic processes. However, their potential to
promote or suppress metastasis seems to depend not on the spe-
cific isoform but on their position in cellular signal transduction
and the cellular context. Phosphorylation of nm23-H1 by CK1δ

and ε has been shown to induce complex formation of nm23-H1
with a cellular partner called h-prune. Both proteins are linked
to proliferative disorders and the nm23-H1-h-prune complex for-
mation has even been proposed to positively influence cell motility
(349). With this link of CK1 kinase activity to nm23-H1-h-prune
complex formation an obvious role for CK1 in the mediation of
metastasis has been established (153).

Quite recently, the stability of metastasis-related proteins has
been shown to be regulated by CK1δ-mediated phosphorylation.
First, the epigenetic sensor UHRF1 is critically involved in the
maintenance of DNA methylation patterns during DNA replica-
tion and can be linked to carcinogenesis and metastasis if dys-
regulated (350, 351). Second, as mentioned before, proteasomal
degradation of UHRF1 is regulated by CK1δ-mediated phospho-
rylation (104). Similar findings have been reported for metastasis
suppressor 1 (MTSS1, also known as MIM, missing in metastasis),
an anti-metastatic protein whose degradation also is triggered by
CK1δ-mediated phosphorylation at Ser-322, thereby inducing its
interaction with SCF/β-TrCP (77, 352).

Furthermore, current reports demonstrate the involvement
of CK1α in regulating the stability of metastasis-associated
factors. When cell motility is induced the Rap guanine
exchange factor (RAPGEF2) is phosphorylated by IKKβ and
CK1α, initiating SCF/β-TrCP-mediated degradation. RAPGEF2
degradation-failure leads to inhibition of hepatocyte growth
factor (HGF)-induced cell migration and expression of non-
degradable RAPGEF2 suppressed metastasis of human breast
cancer cells (165).

In canonical Wnt-signaling, CK1α has been positioned to be
a tumor suppressor and cancer cells may activate proliferative
processes via the Wnt/β-catenin pathway by suppressing CK1α

expression. In the absence of CK1α, p53 is critically involved
in controlling invasiveness as shown in a model for colon can-
cer (336). Re-expression of CK1α in metastatic melanoma cells
reduced growth in vitro and metastasis formation in vivo (337).
Consistent with these findings phosphorylation of β-catenin at
Ser-45 by CK1α via activation by Wnt-5a has been shown to
increase complex formation of β-catenin with E-cadherin thereby
maintaining intercellular adhesion. Loss of Wnt-5a is thought to
be associated with initial metastatic de-adhesion events (353, 354).
Conversely, E-cadherin-mediated cell–cell contacts can be nega-
tively regulated by CK1ε-mediated phosphorylation of E-cadherin
at Ser-846 (69). In this context also, the Zn-finger transcription
factor Snail is important as it can promote epithelial to mesenchy-
mal transition (EMT) by down-regulating E-cadherin expression
(355). Herein, CK1ε primes Snail for GSK3β-mediated phos-
phorylation, which marks Snail for degradation. Therefore, loss
of CK1ε kinase activity prevents GSK3β-mediated phosphoryla-
tion and degradation of Snail supporting EMT and metastatic
processes (122).

CK1-SPECIFIC INHIBITORS
Due to the obvious involvement of CK1 isoforms in the pathogen-
esis of inflammatory and proliferative diseases and its contribution
to the development of neuro-degenerative disorders, CK1 family
members are attracting more and more attention as drug tar-
gets in regard to therapeutic applications. So far, several highly
potent CK1-specific small molecule inhibitors have been iden-
tified (Table 3) and some have already been characterized for
their therapeutic potential in animal models (Table 4). Most of
these compounds are ATP-competitive type I inhibitors raising
the problem of comparability of their effectiveness since their IC50
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Knippschild et al. CK1 in cellular stress response and cancer

Table 3 | CK1-specific small molecule inhibitors.

Inhibitor Structure IC50 (µM) ATP (µM) Reference

CKI-7 CK1: 6 100 (356, 357)

IC261 CK1δ/ε: 2.5 100 (357, 358)

D4476 CK1δ: 0.3 100 (357)

Peifer-17 CK1δ: 0.005; CK1ε: 0.073 100 (31)

Peifer-18 CK1δ: 0.011; CK1ε: 0.447 100 (31)

PF-670462 CK1δ: 0.013; CK1ε: 0.080 10 (273, 359)

PF-4800567 CK1δ: 0.711; CK1ε: 0.032 10 (273)

(Continued)
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Knippschild et al. CK1 in cellular stress response and cancer

Table 3 | Continued

.
Inhibitor Structure IC50 (µM) ATP (µM) Reference

(R)-DRF053 CK1δ/ε: 0.014 15 (360)

4,5,6,7-Tetrabromo-2-mercaptobenzimidazole CK1: 2.2 20 (361)

1,4-Diaminoanthra-quinone CK1δ: 0.3 Not reported (362)

1-Hydroxy-4-aminoanthra-quinone CK1δ: 0.6 Not reported (362)

(−)-Matairenisol CK1: 10 10 (363)

Lamellarin 3 CK1δ/ε: 0.41 15 (364)

Lamellarin 6 CK1δ/ε: 0.8 15 (364)

SB-202190 CK1δ: 0.6 50 (365)

(Continued)
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Table 3 | Continued

.
Inhibitor Structure IC50 (µM) ATP (µM) Reference

SR-3029 CK1δ: 0.044 10 (366)

SR-2890 CK1δ: 0.004 10 (366)

Bischof-5 CK1δ: 0.04; CK1ε: 0.199 10 (367)

Bischof-6 CK1δ: 0.042; CK1ε: 0.033 10 (367)

Hua-1h CK1γ: 0.018 Not reported (368)

Yang-2 CK1: 0.078 Not reported (369)

CK01 similar to PF-670462 Not reported Not reported (370)

MRT00033659 CK1δ: 0.8935 20 (371)

TG0003 CK1δ: 0.4; CK1ε: 0.55 Not reported (277, 372)

Salado-34 CK1δ: 0.01 10 (373)
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Knippschild et al. CK1 in cellular stress response and cancer

Table 4 | Effects of CK1-specific inhibitors in selected animal models.

Process Inhibitor Model Effects Reference

Circadian rhythm PF-670462 Rat Inhibition of CK1δ/ε yields perturbation of oscillator function leading to phase

delays in circadian rhythms

(359)

PF-670462 Rat Chronic treatment with the CK1δ/ε specific inhibitor PF-670462 yields

cumulative phase delays in circadian rhythms

(374)

PF-670462 Monkey Inhibition of CK1δ/ε produces phase shifts in circadian rhythms of Cynomolgus

monkeys

(375)

PF-670462;

PF-4800567

Mouse Whereas PF-670462 causes a significant phase delay in animal models of

circadian rhythm, CK1ε-specific PF-4800567 only shows a minimal effect on

the circadian clock

(273)

CK01 Mouse Chronic administration of CK01 leads to a reversal of the anxiety-related

behavior, and partial reversal of the depression-related phenotypes of the

Clock mutant mouse

(370)

PF-670462;

PF-4800567

Mouse Selective inhibition of CK1δ acts as a potent in vivo regulator of the circadian

clock and may represent a mechanism for entrainment of disrupted or

desynchronized circadian rhythms

(278)

PF-670462;

PF-4800567

Zebrafish The use of a pan-CK1δ/ε inhibitor and a CK1ε-selective inhibitor revealed that

activity of CK1δ is crucial for the functioning of the circadian timing mechanism

in zebrafish at multiple levels

(283)

Drug use disorder PF-670462 Rat Inhibition of CK1δ/ε in the nucleus accumbens with the selective inhibitor

PF-670462 blocks amphetamine-induced locomotion by regulating of the

AMPA receptor phosphorylation

(376)

Sensitivity to opioids PF-4800567 Mouse Co-administration of the CK1ε specific inhibitor of PF-4800567 increased the

locomotor stimulant response to methamphetamine and fentanyl

(377)

Alcoholism PF-670462 Rat The inhibition of CK1δ/ε with systemic PF-670462 injections dose-dependently

prevented the alcohol deprivation effect

(378)

Cancer IC261 Mouse Inhibition of CK1 isoforms by IC261 influences the growth of induced

pancreatic tumors in SCID mice

(339)

IC261 Mouse IC261 treatment blocks MYCN amplified neuroblastoma tumor growth in vivo (346)

D4476 Mouse Inhibition of CK1α activity leads to reduced Rps6 phosphorylation and

activation of p53, resulting in selective elimination of leukemia cells

(348)

Spinal inflammatory

pain transmission

IC261; TG003 Mouse Both compounds decreased the frequency of spontaneous excitatory

postsynaptic currents (sEPSCs) in inflammatory pain models

(379)

values have been determined at different ATP concentrations (see
Table 3).

CKI-7 (N -(2-aminoethyl)-5-chloroisoquinoline-8-sulfonami
de), was the first ATP-competitive inhibitor being described
to show selectivity toward CK1 (356). Later, IC261 (3-[(2,4,6-
trimethoxyphenyl)-methylidenyl]-indolin-2-one) and D4476 (4-
[4-(2,3-dihydro-benzo)[1,4]dioxin-6-yl)-5-pyridin-2-yl-1H -imi
dazol-2-yl]-benzamide) have been described as more potent and
selective inhibitors, which also bind to the ATP binding pocket
of CK1 (357, 358). Several effects reported for IC261-treated
cells may however not be related to the selective inhibition of
CK1 (380, 381). IC261 is also able to bind MT thereby inhibit-
ing their polymerization similar to the spindle poison colchicine

(380). Nevertheless, IC261 inhibits site-specific phosphorylation
of p53 and Bid thereby inducing apoptosis in so-called type II
cells (151, 187). Furthermore, its therapeutic potential has been
demonstrated in xenotransplantation models for pancreatic can-
cer and neuroblastoma tumors (339, 346) (Table 4). However, it is
still questionable whether the described anti-tumorigenic effects
of IC261 are all mediated through selective inhibition of CK1δ

and ε.
Two very potent and selective inhibitors for CK1δ and ε have

been developed by Pfizer Global Research and Development: while
PF-670462 possesses only poor isoform selectivity compound
PF-4800567 shows a 22-fold stronger inhibition of CK1ε than
CK1δ (273, 359). Furthermore, PF-4800567 demonstrated in vivo
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Knippschild et al. CK1 in cellular stress response and cancer

FIGURE 9 | CK1 in neuro-degenerative diseases. It has generally been
accepted that overexpression of CK1 plays an important role in
neuro-degenerative diseases, especially in tauopathies, such as Alzheimer’s
disease (AD). CK1δ is known to be up-regulated up to 30-fold on mRNA level
in hippocampal regions of Alzheimer‘s disease (AD) brains (383). CK1δ plays
a critical role in formation of neurofibrillary tangles through phosphorylation
of tau at amino acids Ser-202/Thr-205 and Ser-396/Ser-404 (responsible for
binding to tubulin) in human embryonic kidney 293 cells, thereby leading to a
release of tau from MT and to destablilization of MT. Phosphorylation of
these sites could be inhibited by the CK1-specific inhibitor IC261 (227). It is
further known, that CK1 is associated to paired helical filaments in AD (384)
and to tau-containing neurofibrillary tangles, in AD, Down syndrome,

progressive supranuclear palsy, Parkinsonism–dementia complex and
pallido-ponto-nigral degeneration (383, 385). The overexpression of
constitutively active CK1ε, proposed to be involved in processing of amyloid
precursor protein (APP) on γ-secretase level, results in an increase of
amyloid-beta (Aβ) production, which is attenuated by use of CK1-specific
inhibitors (386). In addition, Höttecke et al. (381) could show that the
inhibition of γ-secretase by one of these inhibitors does not depend on
CK1δ. An in silico analysis further revealed multiple CK1 consensus
phosphorylation sites in the intracellular regions of APP, β-secretase, and
γ-secretase subunits. Conversely, Aβ seems to influence CK1 activity (387).
sAPPα/β: secreted amyloid precursor protein α/β; AICD: amyloid precursor
protein intracellular domain.

potency by altering the circadian clock in cycling Rat1 fibroblasts
and in a mouse model for circadian rhythm (273). Recently, the
use of PF-670462 (and the similar compound CK01) proofed to
be beneficial in the treatments of bipolar disorder (370), addic-
tive behavior (378), and in perturbed circadian behavior (278),
respectively.

By using structure-based virtual screening Cozza and co-
workers identified two amino-anthraquinone analogs as CK1δ-
specific inhibitors (362). Furthermore, several roscovitine-
derivatives, among them (R)-DRF053, have been shown to inhibit
both CK1 and CDK family members (360). In 2009, imidazole-
(compounds 17 and 18) and isoxazole-derivatives have been found

to be highly potent inhibitors for CK1δ and ε (31). Furthermore, a
2-phenylamino-6-cyano-1H -benzimidazole derivate (compound
1h) was identified as CK1γ-specific inhibitor with excellent selec-
tivity, cellular potency, and acceptable pharmacokinetic properties
(368). A new lead compound (a N 6-phenyl-1H -pyrazolo[3,4-
d]pyrimidine-3,6-diamine derivative), which inhibits CK1 with
an IC50 value of 0.078 µM was discovered by Yang and colleagues
(369). By using a pyrazolo-pyridine analog as CK1/Chk1 dual-
specific inhibitor the p53 pathway could be stabilized and reacti-
vated (MRT00033659) (371). Benzimidazole-based CK1-specific
inhibitors were reported by several recent studies (Table 3)
[SR-3029 and SR-2890 (366), Bischof-5 and Bischof-6 (367),
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and Hua-1h (368)]. Furthermore, N -(benzothiazolyl)-2-phenyl-
acetamides have been characterized as inhibitors for CK1δ-
mediated phosphorylation of TDP-43 and may offer new ther-
apeutic possibilities for the treatment of amyotrophic lateral scle-
rosis (ALS) (373). Quite recently, also the Clk-specific inhibitor
TG003 was used to inhibit CK1 isoforms in a mouse model for
mechanical allodynia and thermal hyperalgesia (Table 4) (379).

The potential of CK1-specific inhibitors for the treatment of
neuro-degenerative diseases, like AD and Parkinson’s disease, have
been recently reviewed in detail by Perez and colleagues (382).
The involvement of CK1 isoforms in the pathogenesis of AD is
illustrated in Figure 9.

As an alternative to small molecule inhibitors lacking appropri-
ate ADME (absorption, distribution, metabolism, and excretion)
properties or showing unfavorable side effects synthetic peptides
can also be used, which copy naturally occurring motifs that
specifically influence the activity of the kinase or its interaction
with cellular binding partners (388). Lately, small CK1α-derived
peptides were used as Biologic tools to block CK1α binding to
MDM2. At least, one peptide was identified to block the CK1α-
MDM2 interaction (but not CK1α kinase activity) thus leading to
decreased CK1α-MDM2-mediated degradation of p53 (208).

FINAL REMARKS
Summarizing the findings cumulated within many years regard-
ing CK1 and its cellular functions, CK1 isoforms can be seen as
central players in the regulation of numerous physiological cel-
lular processes. Respecting this involvement in important cellular
signal transduction pathways, it is reasonable that dysregulation
of CK1 isoforms has been linked to the incidence of inflam-
matory and proliferative diseases but also to neuro-degenerative
disorders. A summary of CK1-associated functions in neuro-
degenerative diseases can be found in Figure 9 and its associated
figure legend. If potent CK1 (isoform)-specific inhibitors were
available new therapeutic possibilities for personalized medicine
could be provided. However, the development of isoform-selective
compounds available for in vivo application still remains chal-
lenging and inhibitor development should include not only con-
ventional small molecule design, but also novel peptide inhibitor
approaches.
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The peptidyl–prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed
Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphory-
lation marks and implementing conformational changes in its substrates. Accordingly, Pin1
has been linked to numerous phosphorylation-controlled signaling pathways and cellular
processes such as cell cycle progression, proliferation, and differentiation. In addition, Pin1
plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA
damage is balanced by DNA repair, cells confronted with massive genotoxic stress are
eliminated by the induction of programed cell death or cellular senescence. In this review,
we summarize and discuss the current knowledge on how Pin1 specifies cell fate through
regulating key players of the apoptotic and the repair branch of the DNA-damage response.

Keywords: pin1, apoptosis, DNA repair, p53, p73, HIPK2, CtIP

INTRODUCTION
Proline residues bear the unique intrinsic feature of being able
to convert between two distinct conformational states in a pro-
tein. Since the dihedral angle (ω) of the proline bond is large, a
switch can introduce significant changes in total protein struc-
ture (1, 2). The interconversion between the two isomeric cis
and trans states of peptide bonds preceding the amino acid
proline can be catalyzed by peptidyl–prolyl cis/trans isomerases
(PPIases) (3).

Three distinct families of PPIases that can facilitate prolyl iso-
merization have been identified so far. Among those are the family
of Cyclophilins (Cyp), FK506-binding proteins (FKBPs), and the
parvulins (4–7). Both Cyp and FKBPs have strong implications
in immune responses due to their function as receptors for the
immunosuppressive drugs cyclosporin A and FK506, respectively
(4, 8, 9). The family of parvulins consists of the PPIase NIMA-
interacting 1 (Pin1) and the more distantly related subgroup of
proteins Par14 (Pin4) and Par17, which are both encoded within a
single locus in the human genome (10, 11). In contrast to Pin1, the
biological functions of Par14 and Par17 remain currently largely
obscure. In the following section, we will introduce Pin1, which
shows a unique feature among the PPIase protein family members,
as it recognizes its client proteins in a phosphorylation-specific
manner.

Abbreviations: ASPP, apoptosis stimulating protein of p53; ATM, ataxia telang-
iectasia mutated; ATR, ataxia telangiectasia related; CDK, cyclin-dependent kinase;
ChIP, chromatin immunoprecipitation; Chk2, checkpoint kinase 2; DSB, double-
strand breaks; DYRK2, dual-specificity regulated kinase 2; HIPK2, homeodomain-
interacting protein kinase 2; HR, homologous recombination; iASSP, inhibitory
member of the ASPP family; JNK, c-Jun N-terminal kinase; MEF, mouse embryonic
fibroblast; NHEJ, Non-homologous end-joining; PPIase, peptidyl–prolyl isomerase;
Siah-1, seven in absentia homolog 1; TRF1, telomeric repeat binding factor 1.

PHOSPHO-SPECIFIC ISOMERASE Pin1
Pin1 is a small enzyme consisting of 163 amino acids. It con-
tains a WW protein interaction domain, which recognizes short
proline-rich motifs at its N-terminus, and a C-terminal PPIase
domain. The enzymatic conversion of peptide bonds between cis
and trans conformation is dependent on the phosphorylation state
of the Ser/Thr–Pro motif, which is the target sequence of Pin1 (12–
14). In contrast to other known PPIases, Pin1 has the unique prop-
erty of recognizing phosphorylation-specific motifs for isomer-
ization. This feature links occurrence of specific phosphorylation-
marks sites to conformational changes of its client proteins by
cis/trans isomerization of the phospho-Ser/Thr–Pro bond (15)
(Figure 1). Ser/Thr phosphorylation is a key mechanism of signal
transduction and the most frequent post-translational modifica-
tion in the cell. Phosphorylation at serine and threonine residues
accounts for around 96% of all protein phosphorylation in the cell
as revealed by global mass spectrometry analysis (16). Although
phosphorylation has been shown to be sufficient for inducing
conformational changes per se (17, 18), Pin1-catalyzed isomeriza-
tion of phospho-Serine/Threonine residues represents a central
mechanism in signaling and acts as a trigger to alter protein
conformation (19–23).

Many Ser/Thr–Pro-directed kinases are predominantly local-
ized in the nucleus (24) and play a major role in cell cycle regulation
and cellular stress responses. This is evident from the well-studied
functions of some representatives of this subgroup of kinases,
such as cyclin-dependent kinases (CDKs), Jun-N-terminal protein
kinases (JNKs), polo-like kinases (PLKs), and glycogen synthase
kinase 3 (GSK-3). Accordingly, Pin1 also predominantly localizes
to the nucleus, where it exerts its versatile signaling functions in
regulating mitosis and mediating stress responses (14, 15, 25).

In this review, we are going to focus on the role of Pin1 in DNA-
damage signaling. Excellent comprehensive reviews covering the
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FIGURE 1 | Pin1 isomerase induces cis/trans conformational
change of substrates containing pSer/Thr–Pro motifs.
Ser/Thr–Pro-directed kinases phosphorylate diverse substrates thereby
creating a putative binding site for the foldase Pin1, which catalyzes
cis/trans isomerization of the previously phosphorylated protein in a

subsequent step. Isomerization can regulate different functions of the
substrate, such as stability, interaction, and activity. Pro-directed
phosphatases, such as PP2A can dephosphorylate the pSer/Thr–Pro
isomer [depicted substrate has been downloaded from PDB database;
Protein-ID: 2FEJ (111)].

function of Pin1 in mitosis, Alzheimer disease, immune response,
proliferation control, and cancer biology have been published
recently (19, 22, 26–31) and are recommended to those readers
interested in obtaining a global view on Pin1 function. In the fol-
lowing sections, we attempt to summarize the current knowledge
about the function of Pin1 in DNA damage-induced cell fate with
a focus on its role in the cell death response and DNA repair.

Pin1 AND p53
The tumor suppressor p53 is mutated in more than 50% of
human cancer (32) and cancer cells expressing wild-type p53
commonly functionally inactivate p53 by other means including
overexpression of the p53-degrading E3 ubiquitin ligases MDM2
(33). In response to genotoxic stress such as UV, ionizing irradia-
tion (IR), or chemotherapeutic drug treatment, p53 is stabilized,
activated, and drives transcription of target genes leading to cell
cycle arrest, senescence, or apoptosis, mostly depending on the
strength of the insult and the cellular background (34). Acti-
vation of p53 upon genotoxic stress is largely determined by
post-translational modifications, including site-specific phospho-
rylation and acetylation. Notably, p53 is phosphorylated by a
set of stress-activated, proline-directed protein kinases such as
p38, homeodomain-interacting protein kinase-2 (HIPK2), and
DYRK2 (35–39). Pin1 binds to phosphorylated Ser/Thr–Pro sites
on p53 upon genotoxic stress. In particular, phosphorylation at
Ser33, Ser46, Thr81, and Ser315 has been shown to mediate the
interaction of p53 and Pin1 (40–42). Subsequent conformational
changes driven by Pin1 are crucial for the functional activation
and stabilization of p53 upon DNA damage, which is achieved,
at least in part, due to impaired interaction with the E3 ubiq-
uitin ligase MDM2. Since MDM2 is a direct target gene of p53
(43), the Pin1-mediated accumulation of p53 is additionally regu-
lated by a transcription-dependent increase of MDM2 (41). In
line with these observations, cell cycle checkpoint function is
impaired in Pin1-deficient MEFs as shown by higher re-entry
into S-phase upon DNA damage. Overall, these studies demon-
strate that Pin1 is important for the timely accumulation and

the functional activation of p53 resulting in cell cycle arrest or
apoptosis (Figure 2).

An important activation mark of p53 is the phosphorylation of
p53 at Ser20, which is under control of checkpoint kinase 2 (Chk2)
(44, 45). Phosphorylation of p53 at Ser20 impairs the interaction
of p53 with its E3 ubiquitin ligase MDM2 (46, 47). Mutation of
p53 Pro82 that precedes the phosphorylation site at Thr81 results
in impairment of DNA damage-induced phosphorylation of p53
at Ser20 (48). Notably, genotoxic stress has also been shown to
result in JNK-mediated phosphorylation of p53 at Thr81, which is
important for JNK-dependent p53 transcriptional activation and
apoptosis (49). Mechanistically, Pro82 mutation results in reduc-
tion of the DNA damage-induced interaction of Chk2 and p53.
Exogenous expression of Pin1 enhances the interaction of Chk2
and p53 upon DNA damage and Ser20 phosphorylation is strongly
impaired in Pin1-deficient MEFs. These findings indicate that
Pin1-mediated isomerization of the Thr81–Pro82 bond is impor-
tant for the binding of Chk2 to p53 and for DNA damage-induced
phosphorylation of p53 at Ser20. In conclusion, this mechanism
provides a model of how Pin1 facilitates Chk2-mediated p53 phos-
phorylation at Ser20, and as a functional consequence, leads to the
disruption of the p53–MDM2 complex (48, 50).

Since Pin1 has a potent role in the activation of p53, one might
wonder whether Pin1 is also able to trigger the activation of mutant
p53. Somatic mutations in the TP53 gene are frequent in many
cancer types and have a huge impact on the clinical outcome of
those cancers (51, 52). Pin1 is frequently overexpressed in can-
cer and mediates proliferative signals through client proteins such
as Cyclin D1 (53, 54). TP53 R172H mutation corresponds to the
hot-spot mutation 175 in human cancers and has been linked
to gain of function mechanisms associated with tumor progres-
sion, resembling Li–Fraumeni syndrome. In fact, TP53 missense
mutations exhibit enhanced oncogenic potential beyond the loss
of physiological p53 functions (52, 55).

Comparison between mice harboring a mono-allelic mutant
p53R172H or p53 KO mice in a Pin1 wild-type or Pin1-deficient
background revealed that absence of Pin1 results in a reduced
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FIGURE 2 | Role of Pin1 in DNA damage-induced apoptosis and DNA
repair pathways. Upon DNA damage ATM loosens the HIPK2–Siah1
complex by phosphorylation of Siah1, thereby allowing HIPK2
autophosphorylation. Phosphorylated HIPK2 recruits Pin1, which in turn
changes HIPK2 conformation and potentiates disruption of the HIPK2–Siah1
complex. HIPK2 gets stabilized and phosphorylates p53 Ser46 to induce
apoptosis. Moreover, p53 and Pin1 form a complex which further unleashes
p53 apoptotic functions by changing p53 conformation and facilitating
acetylation of p53 by the acetyltransferase CBP and loading of p53 on
pro-apoptotic target gene promotors. At the same time, prolyl-isomerization
of p53 Ser46–Pro47 by Pin1 leads to increased monoubiquitination of p53,
which in turn triggers the translocation of cytosolic p53 to mitochondria,

thereby initiating mitochondrial outer membrane permeabilization (MOMP)
and intrinsic apoptosis release of cytochrome c into the cytoplasm. In a
parallel signaling branch, ATM activates other kinases, such as c-Abl and p38,
which leads to phosphorylation of p73. Recruitment and Pin1 binding leads to
association with the acetyltransferase p300 and stimulates acetylation, which
enhances transcriptional activity of p73 toward apoptotic genes. Beyond its
function in apoptosis, Pin1 plays also a crucial role in double-strand break
(DSB) repair. During S/G2 phase CtIP promotes end resection of DNA lesions.
Phosphorylation of CtIP by CDK2 and most likely other kinases leads to Pin1
binding and isomerization of CtIP, which promotes its ubiquitylation and
proteasomal degradation, thereby counteracting DSB end resection in favor
of NHEJ.

tumor frequency and a decreased incidence of hematopoietic can-
cers. Most importantly, cancers of epithelial origin were completely
absent in p53R172H; Pin1 KO mice (56). Interestingly, mutant p53
appears to be constitutively phosphorylated on Ser46 and Ser33
in breast cancer cell lines, which is potentiated upon oncogenic
RasG12V induced signaling, thus creating permanent target sites
for Pin1. Furthermore, mutant p53 exhibits a highly metastatic
phenotype that is dependent on Pin1, since Pin1-depletion results
in strongly reduced migration and invasion capacity in vitro and
in vivo. Inversely, Pin1 overexpression potentiated migration in
a mutant p53-dependent manner. Moreover, Ser46 phosphoryla-
tion appears to be critical for the migration phenotype observed
in breast cancer cell lines bearing mutant p53. Most importantly,
both Pin1 and mutant p53 synergize in the positive regulation
of a set of genes that are relevant for migration and invasion.
Furthermore, the oncogenic functions of mutant p53 are further
enhanced by augmenting p63 transcription in a Pin1-dependent
fashion, thereby reprograming gene expression in breast cancer

cells. Overall survival appears to be drastically diminished in breast
cancer cases bearing p53 missense mutation and Pin1 overexpres-
sion, which suggests that p53 status in combination with Pin1
expression level can be used as an independent prognostic marker
for poor clinical outcome.

Pin1 AND p73
The p73 protein is a member of the p53 protein family. Similar to
its homolog p53, p73 harbors tumor suppressive functions such as
growth suppression, apoptosis, DNA repair, senescence, and dif-
ferentiation. DNA-damage induced by chemotherapeutic drugs
such as Doxorubicin or Cisplatin also activate p73 (in the absence
of p53), which exerts transcription-dependent and independent
functions (57–60). Apart from being implicated in cytotoxic stress-
mediated cell cycle arrest or apoptosis, p73 also plays a pivotal role
in development, especially in that of the neuronal system (61).

Interestingly, it has been demonstrated that DNA damage-
induced p53-dependent apoptosis requires functional p63 and p73
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(62). Along these lines, Pin1 is not only essential for proper activa-
tion of p53, but it is also required for p73’s pro-apoptotic function
(63). Pin1-depletion leads to defective induction of apoptosis and
p73 accumulation upon Cisplatin administration. Accordingly,
Pin1 controls p73 turnover in unstressed cells and upon cytotoxic
stress and is required for proper activation of p73 target genes
such as Bax and PIG3, as revealed in cell lines lacking p53 expres-
sion (63). In contrast to p53, Pin1 interacts with p73 even without
any indication of cellular stress, implying that p73 is constitutively
phosphorylated at Pin1 binding sites. Nevertheless, treatment with
Doxorubicin and Cisplatin enhances binding of Pin1 to p73 via
Ser412, Thr442, and Thr482 target sites, which is partly due to
activation of p73 by c-Abl and p38 kinase (63). In fact, Pin1
is required for the c-Abl induced p73 activation and accumula-
tion upon cytotoxic stress and p300-mediated p73 acetylation is
strongly impaired in Pin1-deficient cells, since Pin1-mediated iso-
merization regulates p300–p73 binding (63). In conclusion, these
data support the indispensable role of Pin1 activity to synergis-
tically drive p53 and p73-mediated apoptosis under given stress
conditions (as shown in Figure 2).

Pin1 AND iASPP
p53 activity needs to be tightly regulated in unstressed cells to pre-
vent an unscheduled activation of the apoptotic response. To this
end, p53 is sustained at low levels under physiological conditions,
which is achieved by constant proteasomal degradation of p53
mediated by the E3 ubiquitin ligase MDM2. On the other hand,
also association with iASPP inhibits p53 by preventing its binding
to promoters of pro-apoptotic target genes (64). ChIP experiments
revealed that under genotoxic stress conditions, Pin1-depletion
results in decreased binding of p53 to p21 and Bax promoters.
Upon genotoxic stress, Pin1 is directly associated with p53 on chro-
matin mainly via its binding sites Ser33, Ser46, Thr81, and Ser315.
In fact, Pin1 activates p53-mediated transcription in a direct man-
ner by potentiating the binding of the acetyltransferase p300 and
subsequent acetylation of p53 at Lys373 and Lys382. Moreover,
Pin1 also enhances the binding of p300 on p53-occupied pro-
moters, which results in transcriptional activation. In addition,
Thr81–Pro82 also appears to be a critical binding site for Pin1 and
is required for proper acetylation of p53. The Thr81 residue lies
within the Proline-rich domain of p53, which mediates binding
of the p53 inhibitor iASPP. iASPP has been shown to regulate the
transcriptional activity of p53 and is also pivotal for the stabi-
lization of p53 in response to genotoxic stress (64). Intriguingly,
Pin1 regulates the dissociation of the iASPP–p53 complex upon
cytotoxic stress and thereby unmasks p53 transcriptional activ-
ity. Notably, dissociation of iASPP from p53 is dependent on
stress-induced Ser46 phosphorylation but not on Pin1 stimulated
acetylation of p53. Taken together, these findings indicate that
Pin1 regulates p53 activity at different levels: (1) Pin1 controls
p53 stabilization, (2) Pin1 is required for p53 binding to its tar-
get promoters, (3) Pin1 associates with chromatin and promotes
p300-mediated acetylation of p53, and (4) Pin1 initiates the dis-
sociation of p53 from its inhibitor iASPP. As described in the next
chapter, Pin1 is also essential for stabilization of the p53 Ser46
kinase HIPK2. By facilitating efficient p53 Ser46 phosphorylation,
Pin1 may regulate its own complex formation with p53 and drive
the apoptotic response.

Pin1 AND THE p53 Ser46 KINASE HIPK2
Homeodomain-interacting protein kinase-2 is a central activator
of the apoptotic cell death in development and in response to cel-
lular stress and also acts as a tumor suppressor targeted by cellular
and viral oncogenes (37, 38, 65–70). HIPK2 triggers apoptosis
induction upon various types of DNA damage including UV radi-
ation, ionizing radiation, and chemotherapeutic drug treatment
through catalyzing phosphorylation of p53 at Serine 46, a phos-
phorylation mark, which drives expression of pro-apoptotic target
genes (37, 68, 71–73). In addition, HIPK2 also activates the apop-
totic response independent of p53 by regulating the JNK pathway
and by targeting the anti-apoptotic transcriptional repressor CtBP
for degradation (74, 75). In healthy cells and cells recovering
from sublethal DNA damage, HIPK2 is kept inactive through
proteasome-dependent degradation mediated by the ubiquitin lig-
ases MDM2, WSB1, and Siah-1 (76–79). In the wake of DNA dam-
age, HIPK2 is stabilized by a mechanism involving the checkpoint
kinases ATM and ATR, which facilitate dissociation of the HIPK2–
Siah-1 complex by phosphorylation of Siah-1 at Ser19 (77).

Interestingly, HIPK2 stabilization upon DNA damage also
requires Pin1 activity (80). It has been recognized that HIPK2
autophosphorylates at multiple sites, which influences its kinase
activity (81, 82). In particular, autophosphorylation in trans at
Thr880/Ser882 through an intermolecular mechanism activates
its kinase activity and apoptotic function upon genotoxic stress.
Thr880/Ser882 autophosphorylation takes place at an early phase
of HIPK2 activation and decreases when HIPK2 is fully stabi-
lized. Furthermore, pThr880/pSer882 is followed by Pro residues
and thus represent bona fide Pin1 binding sites. In fact, Pin1
binds HIPK2 through this phospho-motif and alters the con-
formation of the autophosphorylated HIPK2 isoform and medi-
ates stabilization by inhibiting its proteasomal degradation. Loss
of Pin1 by genetic deletion or RNA interference results in a
lack of DNA damage-induced HIPK2 stabilization and apopto-
sis induction (80) (as shown in Figure 2). Interestingly, HIPK2
autophosphorylation appears to be evolutionary conserved and
is also detected on the zebrafish HIPK2 protein, and induction
of apoptosis in zebrafish embryos by ionizing radiation (IR) is
regulated by the autophosphorylation of HIPK2. Finally, Pin1 is
essential for IR-induced cell death in zebrafish embryos and in
human cancer cells, highlighting a fundamental role in the DNA
damage-triggered apoptotic response (80). Taken together, these
findings support a major role of Pin1 in DNA damage-activated
apoptosis signaling.

Pin1 AND HUNTINGTIN
It has recently been shown, that mutant huntingtin (mHtt) is able
to induce p53-dependent apoptosis via a Pin1-mediated mecha-
nism (83). Activation and accumulation of p53 has been observed
in Huntington disease and recapitulated in transgenic mouse
models (84). mHtt, which bears an elongated segment of polyg-
lutamine, is able to trigger the DNA-damage response (DDR) and
induce the accumulation and phosphorylation of p53 at Ser46
and Ser15 (83, 85). In fact, Ser46 is critical and sufficient for
the induction of apoptosis upon mHtt generated cellular stress.
Interestingly, the other Pin1 binding sites identified in previous
studies (40–42) are dispensable in mHtt-triggered neuronal death.
p53 Ser46 is a Ser/Thr–Pro target site for Pin1 and expression of
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mHtt can stimulate the interaction of p53 and Pin1. As previously
mentioned, isomerization of Ser46–Pro47 bond has been demon-
strated to be a prerequisite for the dissociation of the inhibitor
iASPP from p53 in order to fully activate p53 transcriptional
activity (86). In accordance with these previous findings, disrup-
tion of the iASPP–p53 complex is also critical in mHtt-mediated
p53 activation. Moreover, Pin1 is necessary for the transcrip-
tional activity of p53 and PUMA-mediated apoptosis induction in
mHtt-stimulated cells and neurons derived from a mHtt-knock-
in mouse model (83). Furthermore, it has been shown that Ser46
phosphorylation upon mHtt expression is synergistically mediated
by HIPK2 and PKC δ (Figure 2). These findings provide an unex-
pected link between neurodegenerative disease and the apoptotic
DDR mediated by HIPK2 and Pin1.

Pin1 AND MITOCHONDRIAL APOPTOSIS SIGNALING
p53 can regulate apoptosis by transcription-dependent and
-independent mechanisms. Recent studies have demonstrated that
the interplay of the nuclear and cytoplasmic functions of p53
is crucial for shaping its full apoptotic activity (87). The mito-
chondrial pathway is predominantly activated in response to IR
or other types of cytotoxic stress and is therefore exploited in
cancer therapy by ionizing-IR or chemotherapeutic drugs such as
doxorubicin. Remarkably, p53 has been demonstrated to modu-
late Bcl-2 family members that regulate apoptosis by controlling
mitochondrial permeability (88, 89). Upon cytotoxic stresses, p53
is partially localized at the mitochondrion and has been demon-
strated to induce mitochondrial outer membrane permeabiliza-
tion (MOMP) (90). In fact, the cytosolic apoptotic function of
p53 is rapidly induced upon cytotoxic stress and precedes its
transcription-dependent functions. Pin1 has also been linked to
the regulation of cytosolic functions of p53. In this context, Pin1
potentiates mitochondrial damage induced by p53 and triggers
apoptosis by releasing cytochrome c from the mitochondria (91).
These effects require Pin1–p53 binding, since mutation of target
sites on p53 diminished mitochondrial damage and induction of
apoptosis when compared to wild-type p53. In addition, Pin1
is important for the efficient translocation of cytosolic p53 to
mitochondria upon treatment with the chemotherapeutic drugs
Doxorubicin and Etoposide. Mechanistically, Pin1 binds cytosolic
fractions of p53 mainly via its target site at Ser46–Pro47. Ser46
is a target site for the protein kinase HIPK2 that has been shown
to increase p53-dependent apoptosis (37, 38). Indeed, HIPK2 is
able to cooperate with Pin1 to induce mitochondrial apoptosis
and increases the fraction of p53 bound to mitochondria, which
is dependent on the catalytic activity of the kinase and presence
of Pin1 (91). These results show that HIPK2 is not only critical
for the nuclear, transcription-dependent function of p53 but –
in cooperation with Pin1 – also regulates activation of p53 at
mitochondria.

Pin1 AND TELOMERES
Telomeres are chromatin structures capping the ends of chromo-
somes in order to shield the free DNA ends from degradation
and damage. Erosion of telomeres below a critical length has been
linked to chromosome end fusion and premature aging (92–95).
Dysfunctional telomeres are considered as a permanent source of

DNA damage leading to the activation of p53 (96). To avoid detec-
tion of chromosome ends as aberrant DNA structures, telomeres
are organized in a higher order duplex lariat structure, the T-loop,
and sequestered by a specialized macromolecular shelterin protein
complex. The telomeric repeat binding factor 1 (TRF1) is part of
the shelterin complex and is essential for telomere function. Pin1
has been shown to regulate TRF1 function on telomeres by directly
binding to TRF1 through the phospho-Thr149–Pro150 motif (97),
which is phosphorylated by CDKs during mitosis. Furthermore,
Pin1 negatively regulates TRF1 stability, which requires its PPI-
ase activity and leads to increased binding of TRF1 to telomeres
(97). Strikingly, TRF1 stability is increased not only upon Pin1-
depletion in human cells, but also in vivo as determined in the
Pin1 KO mouse model. TRF1 has previously been shown to reg-
ulate telomere length (98, 99). Remarkably, Pin1 inhibition leads
to progressive telomere shortening through a TRF1-dependent
mechanism in human cells and in splenocytes derived from Pin1
KO mice (97). Accordingly, Pin1 nullizygous animals show pre-
mature aging phenotypes such as reduced bone radio-density
and thinner dermal and epidermal layers along with further hall-
marks of accelerated aging (54, 100, 101). Of note, the widely used
telomerase-deficient mouse models, which are frequently used to
study aging by telomere-erosion require five to six generations to
develop efficient telomere shortening and premature aging pheno-
types. The fact that Pin1 KO mice show massive telomere erosion
and a severe aging phenotype even in the first generation suggests
that active resection takes place at the telomere in the absence
of Pin1. The molecular basis of this interesting phenotype still
remains to be elucidated.

ROLE OF Pin1 IN DNA DOUBLE-STRAND REPAIR: THE
Pin1–CtIP LINK
DNA damage is one of the major factors driving genomic insta-
bility and carcinogenesis in multicellular organisms. Numerous
factors lead to the activation of the DDR, including ionizing
radiation, chemotherapeutic drug treatment, and strong hyper-
proliferative signals as induced by oncogene expression (102).
Proper cellular response to DNA damage is needed to suppress
carcinogenesis, and this involves a set of gene products that elicit
cell cycle arrest, DNA repair, premature senescence, or apopto-
sis, in accordance with the damage inflicted. The maintenance
of genome integrity is accomplished by an elaborate signaling
network termed DDR. A major mechanism underlying the cel-
lular response to DNA damage is protein-phosphorylation (103).
Accordingly, the master checkpoint kinases ATM, ATR, and DNA-
PK play a central role in coordination of the DDR. Double-strand
breaks (DSBs) are considered to be a particularly deleterious form
of DNA lesion that needs to be repaired by the cell to facilitate cell
survival and proliferation.

Two main pathways orchestrate the DNA repair process
of DSBs, namely homologous recombination (HR) and non-
homologous end-joining (NHEJ). HR represents a highly accu-
rate, error-free repair mechanism, whereas NHEJ is more error-
prone. In mammalian cells, DSBs produced for instance by IR
are mostly repaired by NHEJ, however, when DNA replication
is impeded this leads to stalled replication fork collapses and
resulting DSBs are resolved by the HR pathway (104). The NHEJ
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pathway operates mainly in the G0/G1 phase of the cell cycle by
joining DSB ends, whereas HR employs the sister homolog as
the template for repair and thereby is restricted to late S and G2

phase (105).
A recent study demonstrated that Pin1 plays an important

role in the DNA repair pathway (106, 107). Using a proteomics
approach, the authors elegantly isolated a set of novel Pin1 bind-
ing proteins, among them a couple of factors known to play a role
in DNA repair including MDC1, 53BP1, BRCA1, and CtIP (106).
They focused on the Pin1–CtIP link and demonstrated that deple-
tion of Pin1 by RNAi leads to an increased DNA-end resection
and decreased NHEJ frequency. In good accordance with these
findings, Pin1 overexpression strongly diminished HR frequency.
The authors also provided insight in the mechanism by show-
ing that Pin1-depletion leads to aberrant hyper-phosphorylation
of the single-strand DNA binding protein RPA2, which serves
as a surrogate marker for DNA-end resection (106). The DNA
repair protein CtIP is a key regulator of DNA-end resection at
DSBs and is essential for the recruitment of additional key factors
to the DSBs in S/G2 phase (108–110). Interestingly, the authors
found that the Ser/Thr–Pro-directed kinase CDK2 phosphory-
lates CtIP on Thr315 and Ser276 and thereby facilitates complex
formation with Pin1, which subsequently mediated isomeriza-
tion of CtIP. The resulting altered protein conformation impacts
on the stability of CtIP and promotes its polyubiquitylation and
proteasomal degradation (Figure 2). This regulatory principle
facilitates timing of DNA-end resection at break sites during
late S/G2 phase. Of note, since Pin1 overexpression is frequently
observed in cancer, this mechanism is presumably involved in
the increased genomic instability observed in human cancer cells.
Taken together, Pin1 obviously plays a critical role in coordinating
DNA repair pathway choice by suppressing HR and promoting the
NHEJ pathway.

CONCLUSION AND POTENTIAL FUTURE ASPECTS
The identification of Pin1 and the clarification of its under-
lying enzymology have greatly put forward our knowledge on
mechanisms of signal transduction. The intense research activ-
ities on Pin1 during the last years generated fascinating novel
insight in the function and regulation of this remarkable enzyme
and its role in cell signaling and disease. Pin1 provides a highly
sophisticated, elegant means to translate pSer/pThr–Pro phospho-
rylation marks into conformational changes and thus in altered
protein function. Since Ser/Thr–Pro phosphorylation is the most
abundant post-translational modification in mammalian cells, it
appears not very surprising that Pin1 emerged as a central spec-
ifier in signal transduction. Despite these facts, however, there
is still much to be learned about the biochemistry and biology
of Pin1.

For example, numerous Pin1 substrates including p53, HIPK2,
and CtIP harbor several pSer/pThr–Pro sites, which critically con-
tribute to Pin1 binding. This raises a number of questions: how
is the exact stoichiometry of the Pin1–substrate complexes? Does
Pin1 isomerize all pSer/pThr–Pro bonds in its substrates or only a
subset? In addition, it is currently unclear whether Pin1 also cross-
talks to phosphatases. The timed removal of the pSer/pThr–Pro
marks by a given phosphatase would contribute to lock a substrate

in a particular conformational state by preventing a backward
isomerization reaction.

Even though there is evidence that Pin1 is subject to regu-
lation by post-translational modifications including phosphory-
lation and SUMOylation, it currently remains unclear whether
Pin1 function is also regulated in response to DNA damage.
Such regulation might facilitate functional dissection of the DNA
damage-associated functions and the cell growth regulatory and
mitotic activities.

Beyond its impact on CtIP function, Pin1 has been found to
interact with numerous additional factors implicated in DNA
repair (106, 107) suggesting a currently unexplored broader
function of Pin1 in coordinating DNA repair.

Finally, Pin1 appears to play important roles both in onco-
genic and tumor suppressive signaling pathways. To exploit Pin1
function in diseases such as cancer it will be a major effort in the
future to dissect the molecular determinants in order to design
small molecules for specific interference with its oncogenic and
mitotic functions, but to conserve its pro-apoptotic activities,
which are necessary for the efficacy of genotoxic stress-inducing
cancer therapies.
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p53 is an important tumor suppressor gene, which is stimulated by cellular stress like
ionizing radiation, hypoxia, carcinogens, and oxidative stress. Upon activation, p53 leads
to cell-cycle arrest and promotes DNA repair or induces apoptosis via several pathways.
p63 and p73 are structural homologs of p53 that can act similarly to the protein and
also hold functions distinct from p53. Today more than 40 different isoforms of the p53
family members are known. They result from transcription via different promoters and
alternative splicing. Some isoforms have carcinogenic properties and mediate resistance
to chemotherapy. Therefore, expression patterns of the p53 family genes can offer prog-
nostic information in several malignant tumors. Furthermore, the p53 family constitutes
a potential target for cancer therapy. Small molecules (e.g., Nutlins, RITA, PRIMA-1, and
MIRA-1 among others) have been objects of intense research interest in recent years.
They restore pro-apoptotic wild-type p53 function and were shown to break chemothera-
peutic resistance. Due to p53 family interactions small molecules also influence p63 and
p73 activity. Thus, the members of the p53 family are key players in the cellular stress
response in cancer and are expected to grow in importance as therapeutic targets.

Keywords: p53, p63, p73, cellular stress, cancer, chemosensitivity, apoptosis

INTRODUCTION
Human cells are constantly exposed to external and internal stres-
sors, which cause damage to the integrity of the cell and to its
genome. In order to guarantee the survival of the organism, cells
have developed numerous strategies to adapt to stressors. In this
review, we would like to discuss the influence of cellular stress on
tumor development as well as strategies in cancer therapy target-
ing pathways involved in cell-cycle control and apoptosis. Special
emphasis is put on the members of the p53 family.

CELLULAR STRESS RESPONSE IN CANCER DEVELOPMENT
The development of cancer is a multistep process that involves a
series of mutations in the progenitor cell (1). It enables clonal pro-
liferation, uncontrolled growth, and finally invasion (2, 3). Cellular
stress can be caused by a multitude of external or internal influ-
ences such as ultraviolet radiation (4–6), ionizing radiation (7),
hypoxia (8), carcinogens (e.g., aflatoxin) (9, 10), cigarette smoke
(11), oxidative stress (12–14), and oncogene activation (15). This
can lead to DNA damage and, in consequence, to malignant trans-
formation of the cell. In order to restore its integrity, the cell
disposes of a number of damage control mechanisms. These mech-
anisms are older than the human species and can already be found
1 billion years ago in descendants of choanoflagellates and the
early metazoan sea anemone (16). Human tumor protein p53,
often described as the “guardian of the genome,” and its target
genes play key roles in cell-cycle control and induction of apopto-
sis. In its capacity as tumor suppressor protein, p53 is not only able
to act as transcription factor for genes of pro-apoptotic effector
proteins but it is also involved in transcription-independent cellu-
lar signaling leading directly to cell death via pathways originating
from the mitochondria or the cytosol (17–19). Furthermore, p53
induces transcription of DNA repair enzymes, thereby promoting

cell survival (20–22). This shows the functional dichotomy of p53.
To date, the exact mechanisms deciding about death or survival of
the damaged cell still remain to be elucidated. Under physiological
conditions, cellular p53 levels are low and the protein has a rela-
tively short-half-life of 20 min. Upon DNA damage, p53 levels rise
primarily through stabilization of the protein (23).

While p53 has been known for more than three decades, two
further members of the p53 family, p63 and p73, have been dis-
covered more recently. The three genes exhibit a high degree of
homology and there is increasing evidence that they have risen
from the triplication of a common ancestral gene (24, 25). All three
genes consist of important structural elements including a DNA-
binding domain (DBD), an oligomerization domain (OD), and a
transactivation domain (TAD) (26). p63 (27, 28) and p73 (29) have
been shown to induce apoptosis similarly to p53 via activation of
several of its downstream target genes (30–32). Yet, both family
members also exhibit functions distinct from p53 (Figure 1).

While p63 is crucially involved in craniofacial, limb, and skin
development (33), p73 plays an important role during neuro-
genesis (34). Multiple isoforms of the p53 family members are
generated using different promoters and alternative splicing. They
can carry out contrary functions. Whereas some isoforms have
oncogenic potential, others can act as tumor suppressors (35).
However, many isoforms seem to have both capacities depending
on the entity of the cell they are expressed in and the tissue context.
To date, regulation and interactions of the three members of the
p53 family are still under investigation.

APOPTOSIS
Malignant tumors often exhibit defects in apoptosis signal-
ing pathways, resulting in tumor cell survival. Therefore,
understanding the exact mechanisms of apoptosis can provide

www.frontiersin.org October 2014 | Volume 4 | Article 285 | 47

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00285/abstract
http://www.frontiersin.org/people/u/159682
http://www.frontiersin.org/people/u/155216
http://www.frontiersin.org/people/u/188887
mailto:martina.mueller-schilling@ukr.de
mailto:martina.mueller-schilling@ukr.de
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pflaum et al. p53 family and cellular stress

FIGURE 1 | Functions of p53 and its homologs p63 and p73 and their target genes.

new strategies for the development of anti-cancer treatments. The
extrinsic apoptosis signaling pathway is initiated by ligands such
as TNFα, CD95L, and TRAIL binding to death receptors (36–38).
The best characterized members of the death receptor family are
TNFR1, CD95, DR3, TRAIL-R1 (CD4), TRAIL-R2 (CD5), and
DR6 (39, 40).

Death receptor signaling leads to activation of caspases. Cas-
pases are cysteinyl aspartate proteinases, which are synthesized
as inactive zymogens and, upon stimulation, are initialized by
autolytic cleavage (41). Initiator caspases, such as caspase 8 und
9, form signaling complexes, which activate downstream effector
caspases, including caspase 3 and 7, through proteolytic cleav-
age (41, 42). Effector caspases cannot self-activate but process a

multitude of cellular substrates during cell death (43). The intrin-
sic apoptosis signaling pathway originates in the mitochondria and
is part of the cellular stress response. It is regulated by proteins of
the Bcl-2 family. Pro-apoptotic members of the protein family
include Bax, Bak, and their subclass of BH-3 only proteins such as
BAD, BID, BIM, Hrk, PUMA, BMF, and Noxa, whereas A1, Bcl-2,
Bcl-w, Bcl-XL, and Mcl-1 are among the anti-apoptotic members
(44). The anti-apoptotic Bcl-2 proteins exert their function by sta-
bilizing the outer mitochondrial membrane (45). Upon cellular
stress, Bid and Bim mediate homo-oligomerization of Bax and
Bak, which leads to the release of cytochrome c from the mito-
chondrial intermembrane space (46). By binding Bcl-2 proteins
Bad, Noxa, and PUMA lead to inhibition of the proteins (44).
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Being released into the cytosol, cytochrome c forms a complex
with APAF-1 and pro-caspase 9. After cleavage, caspase 9 activates
effector caspase 3 (44).

p53 AND ITS ISOFORMS
p53 is encoded by the TP53 gene on the short arm of chromosome
17 and has a molecular mass of 43.7 kDa (25). It spans 19,200 bp
including 11 exons (Figure 2). There are three known promoters
within the p53 gene: two sites upstream of exon 1 producing full-
length p53 and one internal site within intron 4 leading to tran-
scription of amino-terminally truncated ∆133p53 (47). ∆40p53
isoforms, which have lost a part of the N-terminal TAD, can be
obtained by alternative splicing of exon 2 and alternative initia-
tion of translation at ATG40 (24), while ∆160p53 isoforms, which
lack the first 159 residues, arise from translational initiation at
ATG160 (48). Alternative splicing of intron 9 generates additional
three isoforms, full-length p53, p53β, and p53γ (24). Both 53β and
p53γ lack the OD (24). To date, a total of 12 p53 isoforms have
been described: p53, p53β, p53γ, ∆40p53α, ∆40p53β, ∆40p53γ,
∆133p53α, ∆133p53β, ∆133p53γ, ∆160p53α, ∆160p53β, and
∆160p53γ (49, 50). While some p53 isoforms exert functions
similar to full-length p53, others have antagonizing proper-
ties. ∆133p53, for example, inhibits p53-mediated apoptosis and
causes cell-cycle arrest at the G2/M checkpoint (47, 50). ∆40p53
isoforms control the development of pluripotent embryonic stem
cells into differentiated somatic cells by modulating IGF-1-R levels
(51). Very little is known about the clinical role of p53 isoforms
and further investigation is needed to determine if they could
prove valuable as targets for anti-cancer therapy.

Human p53 protein consists of several domains. The central
DNA-binding domain (DBD) (core domain) is shared by most
p53 isoforms and binds to response elements of target genes. A
large number of p53 mutations occur within this region of the
gene (52). The N-terminal transcription–activation domain (TA)
is the binding-site for positive (e.g., p300/CBP, TAFII40/60) or
negative regulators (e.g., MDM2 and MDMX) of p53 gene tran-
scription (53). The C-terminal oligomerization (CTD) domain
is subject to alternative splicing and post-translational modifica-
tion. The CTD has been shown to influence DNA binding and
transcriptional activity of the p53 family members (54).

p53 REGULATES CELL-CYCLE, INDUCES APOPTOSIS, AND PROMOTES
CELL DIFFERENTIATION
p53 controls a large number of genes mediating G2/M and G1
cell-cycle arrest, DNA damage recognition, DNA repair, apoptosis,

and senescence (25) (Figure 1). Absence of one parental copy
of p53 through germline mutation of TP53, a condition called
Li–Fraumeni syndrome, leads to development of several tumors,
particularly sarcomas and cancers of the breast, brain, and adrenal
glands (55, 56). Even in young individuals suffering from this con-
dition multiple malignant tumors may develop. p53 knock-out
mice have been shown to be prone to development of various
types of malignancies demonstrating the important role of p53
in cancer biology (57). When initiated during the cellular stress
response, p53 activates transcription of p21, a cyclin-dependent
kinase inhibitor. p21 blocks CDK-1 and -2 leading to cell-cycle
arrest at G1 and S phase (58). Since p53 counteracts cell growth
and development, it is crucial that p53 function is strictly regu-
lated. The E3 ubiquitin ligase MDM2 blocks p53’s transcriptional
activity by binding to the N-terminal TA domain of the protein (59,
60). MDM2 is also capable of inducing the ubiquitin-mediated
proteasomal degradation of the tumor suppressor protein (61, 62).
In return, p53 positively regulates expression of MDM2. Thereby,
it creates an auto-regulatory loop that controls the level of active
p53 in the cell (63–65). During the cellular stress response, MDM2
is inhibited by different regulator proteins leading to accumulation
of p53 in the cell (66).

Another important upstream regulator of p53 activity is
p14ARF, a protein transcribed from an alternate reading frame
of the CDKN2A gene locus that also encodes for the tumor
suppressor p16INK4a (67, 68). p14ARF is part of the cell’s
response to oncogenic activation (69–73). It acts as an inhibitor
of MDM2-medited degradation of p53 (74). Therefore, ARF-
deficient mice are prone to developing tumors of various entities
(75). In a negative feedback loop, ARF promotes degradation of
its activator E2F-1 and is suppressed by its downstream target
p53 (76, 77).

Primarily, p53 is a transcription factor. It is involved in the
intrinsic and extrinsic apoptosis signaling pathways by initiat-
ing transcription of functional proteins such as PUMA, Bax, Bid,
CD95, and TRAIL-R2 (78). Yet, transcription-independent func-
tions have been described. In the cytosol, p53 induces cell death
by forming inhibitory complexes with Bcl-XL and Bcl-2, which
leads to the permeabilization of the mitochondrial membrane and
cytochrome c release (79, 80). Furthermore, cytosolic p53 can acti-
vate pro-apoptotic proteins such as Bax and Bak through direct
protein–protein interaction (18, 81, 82).

Recently, it was observed that p53 also plays an important
role in stem cell biology. In embryonic stem cells, p53 guaran-
tees genetic stability via induction of differentiation (83) while

FIGURE 2 | Architecture of the human p53 gene structure: alternative
splicing (α, β, γ), alternative promoters (P1, P1′, P2), transactivation
domain (TAD), DNA-binding domain (DBD), and oligomerization domain

(OD) are indicated. The P1 promoter generates full-length-proteins with a
transactivation domain (TAD), whereas the P1′- and P2 promoters generate
proteins lacking the TAD.
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limiting generation of induced pluripotent stem cells and tightly
controls reprogramming (84). The cancer stem cell (CSC) hypoth-
esis suggests that every tumor holds a pool of CSCs capable of
renewal. They are essential for sustenance and growth of the tumor
and respond poorly to conventional chemotherapy (85). CSCs
result from either dedifferentiation of somatic cells or mutations
in existing stem or progenitor cells (84). Targeting CSCs via acti-
vation of p53-linked pathways could trigger cell differentiation.
In consequence, malignant cells would be more susceptible to
DNA damaging agents and their capacity of self-renewal would
be reduced.

In 1997, the cloning of p73 as a new p53 family member was
reported, this was followed by the discovery of p63 – the third
member of the p53 family (54, 86–89). The protein architec-
ture is highly conserved among the three members of the p53
family (30). The highest degree of sequence homology has been
described for the DNA-binding core domain (30). In contrast, the
C-terminal domains are diverse and subject to alternative splic-
ing and post-translational modification. Sauer et al. demonstrated
that the C-terminal domains influence DNA binding and tran-
scriptional activity (54) and suggested that the diversity of the
C-terminal domains of the p53 family influences cell fate deci-
sions and cellular responses that are regulated by the p53 family
members (90).

p63 AND ITS ISOFORMS
The p53 homolog p63 contains three promoters that are known
to encode three types of isoforms (91). The first promoter has
only recently been discovered by Beyer et al. In response to DNA
damage, it leads to activation of human male germ-cell-encoded
TAp63 protein, which is specifically expressed in testes and pro-
tects the genomic integrity of the male germline (91, 92). The
second promoter mediates transcription of TA isoforms, which
contain a N-terminal TAD (22% identical with the TAD of p53)
followed by a DBD (60% identical with the DBD of p53), an OD
(38% identical with the OD of p53), and the sterile alpha motif
(SAM) (30). In contrast, there is no SAM in the p53 gene. The third
promoter is located between exon 3 and 4. Loss of exons 2 and 3
and incorporation of exon 3′ through the third promoter results
in different ∆N isoforms (93). Additionally, alternative splicing at
the 3′-terminus leads to the generation of five isoforms (α, β, γ, δ,
and ε) and contributes to the variety of proteins (93) Premature
transcriptional termination in exon 10 generates isoform ε (94)
(Figure 3).

TAp63 is predominantly expressed in oocytes, although it has
also been identified in other tissues like epidermis. In TAp63
knock-out mice, a phenotype with ulcers, hair defects, and reduced
wound healing can be observed (95).

When first discovered,∆N isoforms were thought to exclusively
repress transcription. But, ∆N isoforms gain their transcriptional
activity from two additional TADs within the residue, one located
between the OD and the SAM domain and another located in
proximity to the proline-rich domain (96, 97). Therefore, they
do not only repress functions of the TA isoforms by inhibiting
transcription of TA dependent genes but also transactivate their
own target genes (98). ∆N63 is found in epidermal cells, in par-
ticular (99). Knock-out mice with down-regulated ∆Np63 show
severe skin wounds as well as delayed wound healing (100). ∆Np63
expression can be found in multiple tumors, particularly in those
with unfavorable prognosis (101). Of importance for clinical use
is the fact that ∆Np63α expression is a prognostic marker for
poor response to cisplatin chemotherapy in HNSCC (102). How-
ever, categorizing ∆Np63 isoforms as proto-oncogenes and TAp63
isoforms as tumor suppressors would be far too simple (103).
For instance, diffuse large human B-cell lymphomas do not show
enhanced expression of ∆Np63 protein, but overexpression of
TAp63 (104, 105).

p63 function is regulated by post-translational modifications
that influence p63 protein stability. For example, E3 ligases like
Pirh2 and ITCH lead to polyubiquitination and subsequent pro-
teasomal degradation of the protein (106). RNA-binding proteins
such as RNPC1, HuR, or PCB1 control stability of p63 by bind-
ing AU-, CU-, or U-rich elements in 5′ or 3′ UTRs of p63 mRNA
(107–109).

p63 and p53 have common and distinct downstream tar-
get genes (110), thereby sharing functions in cell-cycle control
and apoptosis (Figure 1). TAp63 causes G1 cell-cycle arrest
through transcriptional up-regulation of p21 and p57/Kip2 (111).
Furthermore, p63 induces apoptosis via the extrinsic and the
intrinsic apoptosis signaling pathway by enhanced expression of
Bax, RAD9, DAP3, APAF-1, CD95, TNF-R, or TRAIL-R death
receptors (27).

In addition, p63 assumes defined functions within the cell dis-
tinct from those of p53. In oocytes, DNA damage directly induces
phosphorylation of p63, which leads to oocyte death (112, 113).
p63 knock-out mice show a phenotype that is lethal soon after
birth. They suffer from significant epithelial abnormalities, con-
cerning skin, glands, teeth, and hair follicles (114). Their limbs are

FIGURE 3 | Architecture of the human p63 gene structure: alternative splicing (α, β, γ, δ, ε), alternative promoters (P1, P2, P3), transactivation domain
(TAD), DNA-binding domain (DBD), oligomerization domain (OD), and sterile alpha motif domain (SAM) are indicated.
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truncated and craniofacial anomalies are characteristic (93, 115).
Human heterozygous mutations of p63 result in dysplasia of hair,
teeth, digits, sweat glands, and nails (93). Therefore, p63 is essen-
tial for epithelial development. Furthermore, in a recent study,
D’Aguanno et al. suggested that p63 might be involved in cancer
cell metabolism. Colon CSCs showed a higher glycolytic activ-
ity when expressing TAp63 instead of ∆Np63 (116). Consistent
with these observations, Giacobbe et al. reported that TAp63 iso-
forms can enhance expression of the mitochondrial glutaminase 2
(GLS2) gene, both in primary cells and in tumor cell lines (117).

Loss of function mutations of p63 are extremely rare in malig-
nancies in contrast to p53 mutations (30) and controversial pheno-
types have been described. Development of spontaneous tumors
could be found as well as no increase in tumor disposition (111,
118–120). However, alterations in p63 expression patterns play
an important role in tumorigenesis (121). In addition, mice het-
erozygous for mutations in both p53 and p63 (p53+/−; p63+/−)
show higher tumor burden in comparison to mice heterozygous
for p53 only (118). Knock-down of p63 (p63−/−) can lead to
loss of p53 and thereby to cancer development (118). In fact,
mice lacking p53 and p63 show increased Ras-mediated sarcoma
development (111) and are prone to malignant transformations of
embryonic fibroblasts (122). Furthermore, TAp63 has been shown
to play an important role in tumor dissemination. Interactions of
TGFβ, Ras, and mutant p53 induce formation of a ternary com-
plex of mutant p53, Smads, and the p63 protein, which opposes
the anti-metastatic function of p53 (123, 124). TAp63 leads to
overexpression of metastasis suppressor genes or microRNAs like
DICER1, mir-130b, and integrin recycling genes (116). Mutant p53
can reduce Dicer expression via inhibition of TAp63, thus enabling
tumor metastasis (125). The p63 gene controls transcription of the
miR-200 family, which regulate CSCs and epithelial–mesenchymal
transition (126). ∆Np63α induces miR-205 transcription and reg-
ulates epithelial–mesenchymal transition in human bladder can-
cer cells (127). Therefore, controlling p63 could be a promising
approach to control or prevent metastasis in cancer.

p73 AND ITS ISOFORMS
The p73 gene consists of 15 exons and is located on chromosome
1p36. Like p63, p73 has several TA isoforms containing a specific

TAD and ∆N isoforms lacking it (Figure 4). The first promoter,
located on exon 1, can induce transcription of several truncated
∆Np73 isoforms. They are either lacking exon 2 or exon 2 and
exon 3 (∆Ex2p73 and ∆Ex2/3p73). In variant ∆N’p73, exon 3 is
substituted by exon 3′. The TAD of p73 is 30% identical to p53.
The consecutive p73 DBD shares 63% and the OD 38% identity
with p53 (30). The OD is followed by the SAM domain, which
is crucial for activating the molecule via tetramerization. At least
seven different 3′ terminal splicing variants are known (α, β, γ, δ,
ε, ζ, η) (128). Different cell types just express a selection of p73
isoforms (129). Splice variants α and β are rarely expressed in
malignant cells (130). Expression of γ, δ, ∈, and θ isoforms has
been described in acute myeloid leukemia (AML) and in chronic
myeloid leukemia (CML) (131).

There are several molecular mechanisms that regulate p73
function on transcriptional, post-translational, and protein level
(32). Enhancers of p73 transcription are p300 (132), E2F-1 (133),
CREB-binding protein (CBP) (134), YAP (135), and MM1 (my
modulator 1) (136), while MDM2 (137) and c-myc (136) inhibit
p73 transcriptional activity. On the post-translational level, p73
activity is reduced by sumoylation by PIAS-1 (138), deacetyla-
tion by SIRT (139), threonine phosphorylation by CDK2/CDK-1
(140), neddylation by NEDD8 (141), and conjugation and ubiqui-
tination by Itch (142). In contrast, acetylation by p300 and pCAF
(143) or phosphorylation by c-Abl (144), p38MAPk or PKCδ (145)
stimulate p73 activity. The RING finger E3 ubiquitin ligase PIR2
selectively ubiquitinates ∆Np73 variants (146). ASPP proteins
are also able to regulate p73 function via their poly-C-binding
domain (147).

Functions of p73 are diverse. Similarly to its family mem-
bers p73 plays an important role at different regulatory check-
points of the cell-cycle. TAp73 induces G1 cell-cycle arrest via
enhanced expression of p21 and p57/Kip2 (148). Furthermore,
TAp73 represses genes relevant in G2/M-phase like CDC25B and
CDC25C (149), Cyclin B1 (150), and Cyclin B2 (149). p73 binds
to FLASH and leads to cell-cycle arrest in S-phase (151). As
known from p53, DNA damage stimulates p73 to induce apoptosis
involving endoplasmic reticulum (ER) stress (152).

Neuronal differentiation is regarded as innate p73 function that
is not shared with p53. Phenotype studies of genetically modified

FIGURE 4 | Architecture of the human p73 gene structure: alternative
splicing (α, β, γ, δ, ε, ζ, η), alternative promoters (P1, P2),
transactivation domain (TAD), DNA-binding domain (DBD),
oligomerization domain (OD), and sterile alpha motif domain (SAM)
are indicated. The P1 promoter generates full-length-proteins with a

transactivation domain (TAD), whereas the P2 promoter generates proteins
lacking the TAD. Alternative splicing of exon 2 produces Ex2p73 proteins
that contain part of the TAD, alternative splicing of exon 2 and 3 produces
Ex2/3p73 proteins that have completely lost the TAD. Alternative splicing of
exon 3′ generates ∆N′p73.

www.frontiersin.org October 2014 | Volume 4 | Article 285 | 51

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pflaum et al. p53 family and cellular stress

mice support this thesis. Most p73 knock-out mice die within
the first 4 weeks after birth. They show hippocampal dysgenesis,
hydrocephalus ex vacuo, atypical social and reproductive behav-
ior, and often suffer from chronic infections (34). Heterozygous
mice develop an Alzheimer’s disease-like phenotype with impaired
motor and cognitive functions (153, 154). Autopsy revealed accu-
mulation of phosphor-tau positive filaments in the brain and in
atrophic neurons (153). TAp73 knock-out mice develop a less
severe phenotype characterized by malformations of the hip-
pocampal dentate gyrus (155), whereas ∆Np73 knock-out mice
present with reduced neuronal density in the motor cortex, loss of
vomeronasal neurons, and Cajal–Retzius cells, as well as choroid
plexus atrophy (156, 157). Latest research revealed that TAp73
is a transcriptional activator of the p75 neurotrophin receptor
(p75NTR), which plays an important role during neurogenesis.
TAp73 knock-out mice show reduced levels of p75NTR and suf-
fer from peripheral nerve defect, including myelin thickness and
thermal sensitivity (158).

Similarly to p63, p73 executes a set of important functions
in tumor metabolism. TAp73 induces the expression of glucose-
6-phosphate dehydrogenase (G6PD), which is essential for the
oxidative pentose phosphate pathway (159). Cox4il is another p73
target gene relevant in metabolism. Deletion of TAp73 leads to
impairment of oxidative phosphorylation via Cox4il. As a result,
levels of reactive oxygen species in cells accumulate (160).

p73 is rarely mutated in human cancer (<1%), but overex-
pression of p73 can be found in several malignancies, for exam-
ple, in hepatocellular carcinoma (29, 161, 162), neuroblastoma
(163), lung cancer (164), prostate cancer (165, 166), urothe-
lial cancer (167), colorectal carcinoma (168), and breast cancer
(>40%) (169). Seventy percent of TAp73 knock-out mice or mice
heterozygous for p73 suffer from malignant tumors. Colorectal
and breast cancer predominantly show an increase in ∆Np73
(170). Overexpression of both, TA and ∆N isoforms, has been
detected in thyroid cancer and in chronic B-cell leukemia (171),
whereas diminished p73 expression has been reported for pancre-
atic malignancies (172). p73 heterozygous mice (p73+/−) have
an increased probability for the development of spontaneous
tumors such as lung adenocarcinoma, lymphomas of the thyme,
and hemangiosarcoma (118). Mice heterozygous for mutations in
both p53 and p73 (p53+/−; p73+/−) develop a severe disease
pattern due to a severe tumor burden and more aggressive tumor
dissemination (118).

p53 FAMILY AS A TARGET OF SMALL MOLECULES
Large-scale genome sequencing has shown that over half of human
malignancies exhibit point mutations in the p53 gene impairing
p53 function. Most p53 mutations are missense point mutations
located within the DBD. Many of them lead to destabilization of
folding of the domain at physiological temperatures and inter-
fere with its DNA-binding ability (173). Certain mutations lead
to a gain-of-function of p53 and result in oncogenicity (52, 174,
175). In many other tumors p53, though intact, is inactive fol-
lowing enhanced degradation or reduced activation (176). Loss
of wild-type p53 function or gain-of-function is often associ-
ated with aggressive tumor growth, poor prognosis, and resistance
to chemotherapy. Restoration of p53 function in mice suffering

from lymphomas or sarcomas has been shown to induce tumor
regression (177, 178). Therefore, restoring wild-type function of
p53 holds great promise as a future strategy for cancer treatment.

SMALL MOLECULES TARGETING WILD-TYPE p53
To date, a number of small molecules have been identified, which
are able to restore wild-type p53 function to cancer cells (Figure 5).
The first small molecule inhibitors, which target p53/MDM2-
interaction, are Nutlins. Nutlins are a family of three (Nutlin-
1, Nutlin-2, Nutlin-3) cis-imidazoline analogs. They occupy the
deep hydrophobic pocket of MDM2 that mediates p53 interaction
(179). Hence, Nutlins prevent p53 degradation and lead to p53
accumulation and stabilization. There is evidence that Nutlins do
not only enhance p53 function but also upregulate p73 in different
in vitro and in vivo settings (180). Nutlin-3a has even proven effec-
tive at inducing apoptosis in p53-deficient colorectal carcinoma
cells and hepatocellular carcinoma cell lines via activation of p73
(181, 182). A number of preclinical studies, mostly using Nutlin-3
as a therapeutic agent, have been carried out focusing especially on
hematological malignancies like AML (183, 184), ALL (185), and
B-CLL (186, 187). However, Nutlins are also able to induce apop-
tosis in other cell lines including ovarian cancer (188), sarcoma
(189, 190), as well as glioblastoma (191). Yet, effectiveness of Nut-
lin therapy ultimately presumes the presence of wild-type p53 and
latest findings suggest that it strongly depends on the epigenetic
profile of p53 target genes (190, 192). Moreover, Michaelis et al.
and Aziz et al. reported on several different cancer cell lines that
developed de novo p53 mutations and became resistant toward
Nutlin-3 mediated apoptosis (193, 194).

Another small molecule that inhibits p53/MDM2 interaction
is RITA (reactivation of p53 and induction of tumor cell apopto-
sis). RITA binds p53 and thereby induces conformational changes
within the molecule that prevent MDM2 association (195, 196).
In a human head and neck cancer cell line (HNC), RITA was able
to restore p53 function contributing to cytotoxicity of cisplatin
therapy and leading to apoptosis in vitro and in vivo (197). The
anti-tumoral effect of RITA was also observed in neuroblastoma
cell lines (198).

Rational design led to construction of the spiro-oxindole
MI-219, which is a highly specific small molecule inhibitor of
p53/HDM2-interaction (199). Later, it was discovered that MI-219
does not only induce dissociation of the two molecules but also
leads to auto-ubiquitination and degradation of HDM2 (200). MI-
219 has been shown to activate p53-dependent pathways, which
initiated cell-cycle arrest and apoptosis in a number of cancer cell
lines, whereas primary cells remained unaffected by these p53-
mediated effects (199). In a preclinical trial, the pharmacological
properties of MI-219 were tested and dosages were predicted for
use in phase I clinical studies (201).

As an alternative to interfering with p53/MDM2-interaction,
degradation of p53 can be prevented by inhibiting the E3 ligase
activity of MDM2, and therefore, preventing ubiquitination of
p53 (202). A series of 5-deazaflavin derivatives, named HDM2
ligase inhibitor 98 class (HLI98), which bind the C-terminal
RING-domain of MDM2, were identified (203–205). Later, it was
shown that the nitro group of the molecules is not needed to
convey inhibitory function, which led to the synthesis of novel

Frontiers in Oncology | Molecular and Cellular Oncology October 2014 | Volume 4 | Article 285 | 52

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pflaum et al. p53 family and cellular stress

FIGURE 5 | Wild-type p53 as a target of small molecules: Nutlins,
HLI98, and RITA compensate MDM2 inhibition of p53 via inhibition
of MDM2. Tenovins have been identified as SIRT 1 and SIRT 2

inhibitors that indirectly activate p53. Activated p53 induces
transcription of genes regulating cell-cycle arrest and apoptosis,
resulting in tumor suppression.

5-deazaflavin derivatives named MDP compounds (206). While
HLI98 and MDP compounds demonstrate an interesting proof of
concept, there are still obstacles to overcome in terms of chemi-
cal properties such as solubility as well as selectivity for MDM2
(206). Another important question, which needs further atten-
tion, is whether inhibition of MDM2 function leads to induction
of MDM2 formation via the p53 feedback loop.

The tryptamine JNJ-26854165 (Serdemetan) effectively pre-
vents p53/HDM2 from binding to the proteasome, thereby
inhibiting degradation of p53 (207). In acute myeloid and lym-
phoid leukemia cells, JNJ-26854165 induces apoptosis via p53

by transcription-dependent and -independent pathways (207).
A phase I clinical trial assessing safety and dosage of Serdemetan in
advance stage and refractory solid tumors showed good bioavail-
ability of the substance and p53 levels in skin biopsies increased.
Forty percent of patients showed stable disease, yet in some
patients QTc prolongation was observed as an adverse effect
(208). However, increased MDM2 levels could render substances
like Nutlins, RITA, MDP compounds, and JNJ-26854165 less
efficient (209).

SIRT1, a nicotinamide adenine dinucleotide-dependent class
III histone deacetylase, deacetylates p53 at Lys382, thereby
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reducing its activity (210). Hence, blocking SIRT function is a
new strategy of restoring p53 function independent of MDM2
(211). Two small molecules, tenovin 1 and the more water-soluble
tenovin 6, which block SIRT1 and SIRT2 function efficiently, were
discovered by Lain et al. (212). Tenovin 1 was shown to induce
apoptosis in cutaneous T-cell lymphoma cells (213). Interestingly,
following tenovin 6 treatments cell death was observed in five
different colon cancer cell lines independent of their p53 sta-
tus (214). Also, tenovin 6 activated autophagy-lysosomal pathway
genes in chronic lymphocytic leukemia cells without affecting p53
pathways (215). Both findings point toward additional cellular
mechanisms mediating the anti-tumor effect of tenovins.

SMALL MOLECULES TARGETING MUTANT p53
In tumors that harbor p53 mutations, which often lead to loss
of its DNA-binding function, targets for small molecules other
than MDM2 are needed. An increasing number of p53 muta-
tions have been described so far. Nevertheless, most mutations
cause unfolding of the DBD rendering it unable to bind to tar-
get genes for transactivation (216, 217). Therefore, a number
of small molecules aiming at restoring and stabilizing the orig-
inal DBD conformation have been developed (Figure 6). Bykov
et al. identified two small molecules by screening a library of low-
molecular-weight compounds for substances, which are able to
restore wild-type function of mutant p53: PRIMA-1 and MIRA-1
(218, 219). PRIMA-1 (p53 reactivation and induction of massive
apoptosis) is a pro-drug (220). The molecule effectively induces
apoptosis in bladder cancer cell lines (221). Later, PRIMA-1MET

(APR-246), a compound that bears great structural similarities to
PRIMA-1, but has higher activity than its predecessor, was discov-
ered (222). Interestingly, PRIMA-1MET can not only restore the
pro-apoptotic function of p53 but also of mutant TAp63γ and of
TAp73β, while exerting little effect on TAp73α (223). Furthermore,
PRIMA-1MET is involved in activating downstream target genes of
the p53 family (223–225).

PRIMA-1MET alone and PRIMA-1MET in combination with
chemotherapeutic drugs are effective at inducing tumor cell apop-
tosis in vivo (221, 222, 225). Also, a phase one clinical trial using
PRIMA-1MET (APR-246) in advanced prostate cancer and hema-
tological malignancies, as well as a phase Ib/II clinical trial using
this compound in addition to carboplatin in recurrent high-grade
serous ovarian cancer are under way and will offer more insight
into the effectiveness and practicability of mutant p53 reacti-
vation (National Cancer Institute: Safety Study of APR-246 in
patients with refractory hematologic cancer or prostate cancer;
p53 suppressor activation in recurrent high-grade serous ovarian
cancer, a Phase Ib/II study of systemic carboplatin combination
chemotherapy with or without APR-246).

MIRA-1 (mutant p53 reactivation and induction of rapid apop-
tosis) is a maleimide-derived molecule and has no structural
similarity with PRIMA-1, but it is equally able to restore p53 func-
tion leading to cell death via apoptosis with even higher potency
than PRIMA-1 (219). By reestablishing its DNA-binding capacity
and transcriptional transactivation through p53, MIRA-1 leads to
programed cell death in multiple myeloma in vitro and in a mouse
model (226). To date, little is known about the molecular mech-
anisms and safety of MIRA-1 treatment and further research is
needed before clinical evaluation.

Although PRIMA-1 and MIRA-1 seem to have stabilizing effect
on a great variety of p53 mutants, they are not able to restore
normal protein configuration to the Phe176 mutant (218). This
shows the necessity to test p53 status and to identify the underly-
ing p53 mutations before small molecule treatment (220). In fact,
approaches have been made to target distinct mutations. Rational
drug design led to the identification of the compound PhiKan083,
which stabilizes the Cys 220 p53 mutant and prolongs its half-life,
but does not rescue any other p53 mutant (227). PhiKan083 fits
into a groove in the defective molecule and induces refolding of
the protein (227). In consequence, the melting point of the mutant
increases and denaturation is slowed down (227).

FIGURE 6 | Mutant p53 as a target of small molecules: PRIMA-1, MIRA-1, and RETRA bind to mutant p53 and restore wild-type p53 function. Moreover,
they block mutant p53-induced inhibition of TAp73. These activities result in tumor suppression.
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CP-31398 was discovered by screening a library of more than
100,000 synthetic compounds for substances that effectively sta-
bilize p53 conformation (228). Initially, CP-31398 was thought
to prevent unfolding of wild-type and mutant p53 and increase
levels of wild-type p53 by blocking ubiquitination and degradation
(229). Yet, further research revealed that it yields a number of p53-
independent functions, which mediate its cytotoxic effects (230).
In a mouse model of urothelial cancer of the bladder CP-31398
effectively reduced tumor growth and invasion (231).

However, increased p53 activity bares risks for non-cancerous
cells that might also be subject to apoptosis and further research
is needed to find the adequate dose-response relationship, specific
to the compound used (209). In an attempt to identify mole-
cules, which restore p53’s transcriptional activity exclusively in
cancer cells holding p53 mutations, reactivation of transcriptional
reporter activity (RETRA) was identified by screening compounds
from a chemical library (232). Further analysis revealed that
RETRA, rather than restoring a functional p53 molecule, leads to
an increase in TAp73 levels and to its release from a blocking com-
plex with mutant p53 (232). As mentioned above, p73 can activate
various target genes of p53 involved in cell-cycle arrest and apopto-
sis, thereby mediating tumor cell death (232). In vivo, in a xenograft
mouse model, tumor growth could be decelerated by intraperi-
toneal injection of RETRA (232). Although still in the very early
stages of development, RETRA opens up new perspectives for p63-
and 73-based cancer treatment options.

Moreover, restoring p53 apoptotic function and modulation
of p63 and p73 expression is often essential for sensitivity toward
chemotherapeutic drugs or radiation, as lack of p53 and unfa-
vorable expression patterns of p63 and p73 can lead to resis-
tance toward treatment in different malignant tumors (233–235).
Reconstitution of p53 function or activation of certain p63 and
p73 isoforms might allow reducing the dose of cytotoxic drugs
while still maintaining their anti-tumor effects. Simultaneously,
this would permit to protect normal tissues from side effects of
chemotherapy.

However, restoration of wild-type p53 might not be beneficial
in all types of tumors. Jackson et al. showed that doxorubicin lead
to cell-cycle arrest and senescence instead of cell death in breast
cancer expressing wild-type p53, thereby promoting tumor cell
survival and resistance to chemotherapy (236). This shows the
necessity to elucidate which p53-dependent pathways are favored
in certain malignancies before considering small molecule treat-
ment. Novel treatment approaches could lead to the development
of substances that selectively activate p53-mediated apoptosis
signaling pathways.

CONCLUSION
The p53 family plays a central role in cancer development and
treatment response. Whereas p53 is often mutated in tumors, p63
and p73 function is preserved, yet altered by different expres-
sion patterns of their TA and ∆N isoforms. Increasingly, these
expression patterns are evaluated to estimate prognosis and adapt
anti-cancer therapy. Nevertheless, the molecular mechanisms reg-
ulating the interplay between the different isoforms of the p53
family are only partly understood and are focus of current research.
Identifying compounds that interfere with oncogenic signaling

induced by certain p63 and p73 isoforms could be a novel approach
in anti-cancer therapy.

An increasing number of compounds that re-establish pro-
apoptotic p53 function in cancer cells have emerged over the
past decade. A variety of small molecules, which aim at increasing
p53 function in cancers expressing wild-type p53, have been dis-
covered. Among them are Nutlins, which are already undergoing
clinical evaluation, RITA, tenovins, and many others.

In tumors with underlying p53 mutation restoring wild-type
activity of p53 has proven more difficult, but nevertheless feasible.
PRIMA-1 and MIRA-1 are effective at inducing apoptosis via p53
in tumors that exhibit a great variety of p53 mutations. Yet, there
are other small molecules, like PhiKan083, which are more specific
and restore wild-type configuration of specific mutants only.

A number of in vivo studies and clinical trials have shown syn-
ergistic effects of small molecule treatment and chemotherapeutic
drugs in a variety of malignancies. Especially cancer cells,which are
resistant to chemotherapy due to impaired p53 function, become
more susceptible to treatment.

Taking the approaches of p53 reactivation further, there might
be new possibilities of targeting CSCs, which are often insuscepti-
ble to chemotherapy. Induction of p53 in these cells could lead to
activation of pro-apoptotic pathways via differentiation.
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Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers,
and are involved in cell movement, intracellular trafficking, and mitosis. In the context of
cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding
chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic
arrest and cell death. Importantly, changes in microtubule stability and the expression
of different tubulin isotypes as well as altered post-translational modifications have been
reported for a range of cancers. These changes have been correlated with poor prog-
nosis and chemotherapy resistance in solid and hematological cancers. However, the
mechanisms underlying these observations have remained poorly understood. Emerging
evidence suggests that tubulins and microtubule-associated proteins may play a role in
a range of cellular stress responses, thus conferring survival advantage to cancer cells.
This review will focus on the importance of the microtubule–protein network in regulating
critical cellular processes in response to stress. Understanding the role of microtubules in
this context may offer novel therapeutic approaches for the treatment of cancer.

Keywords: microtubules, tubulin, post-translational modifications, microtubule-associated proteins, stress
response

INTRODUCTION
Microtubules, together with microfilaments and intermediate fil-
aments, form the cell cytoskeleton. The microtubule network is
recognized for its role in regulating cell growth and movement as
well as key signaling events, which modulate fundamental cellu-
lar processes. Emerging evidence also suggests that it is critically
involved in cell stress responses. This review will focus on the role
of microtubules in this context in cancer.

Microtubules are composed of α- and β-tubulin heterodimers
that associate to form hollow cylindrical structures (1) (Figure 1).
They are highly dynamic, and are constantly lengthening and
shortening throughout all phases of the cell cycle. During inter-
phase, microtubules are nucleated at the centrosome (minus end)
and radiate toward the cell periphery (plus end). Interphase micro-
tubules are involved in the maintenance of cell shape and in
the trafficking of proteins and organelles (1). Motor proteins
translocate cell components on microtubule tracks, and protein–
protein interactions with other adaptor proteins co-ordinate this
process. Tubulin heterodimers also exist in soluble form in cells,
and protein interactions with this tubulin population regulate
microtubule behavior.

The addition and removal of soluble tubulin heterodimers to
dynamic microtubule ends is a highly regulated process (Figure 1).
Tubulin dimers are nucleotide binding proteins, with β-tubulin
also possessing GTPase activity. The manner in which tubu-
lin heterodimers are orientated in microtubules gives rise to a
polar molecule that differs in both structure and kinetics at each
end of the microtubule. The dynamics of tubulin addition and
release are much slower at the minus end of the microtubule,
which terminates with α-tubulin proteins, compared with the
plus end of the microtubule, which terminates with β-tubulin

proteins. The addition of a tubulin heterodimer to a micro-
tubule activates the GTPase activity of β-tubulin, locking the
β-tubulins in the microtubule in a GDP-bound state. The β-
tubulins exposed to the solvent at the end of the microtubule
form a GTP cap that is important in preventing microtubule
depolymerization. Therefore, the binding of GTP at the micro-
tubule plus end imparts structural and kinetic polarity to micro-
tubules and is an important regulator of microtubule stability.
It is believed that the polymerized and soluble tubulin pools
interact with different signaling networks, however, the dynamic
exchange of tubulin subunits between these pools makes it diffi-
cult to distinguish the functional roles of soluble and polymerized
tubulin experimentally. The reader is referred to several excellent
reviews for more detailed information on microtubule structure
and dynamics (1, 2).

During mitosis,microtubules form the spindle to enable correct
chromosomal segregation (3). Tubulin-binding agents (TBAs; e.g.,
taxanes, vinca alkaloids, epothilones, and eribulin) are important
chemotherapeutic drugs that suppress spindle dynamics, causing
subsequent mitotic arrest and cell death in rapidly dividing cells
(3). Recent evidence suggests that the induction of cell stress in
interphase cells also contributes significantly to TBA-mediated cell
death (4–6), highlighting the importance of tubulin in cell stress
responses in cancer.

In humans, microtubules are composed of combinations of
eight α-tubulin isotypes and seven β-tubulin isotypes, with
the different tubulin isotypes possessing specific tissue and
developmental distributions (7) (Table 1). The members of
the tubulin family share a high degree of structural homol-
ogy and are distinguished from one another by highly diver-
gent sequences at their carboxy-terminal (C-terminal) tail (8).
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FIGURE 1 | Microtubules are dynamic structures that interact with
diverse proteins. (A) Microtubules form a dynamic network and are
constantly lengthening and shortening. In interphase [(A), left],
microtubules are anchored at the centrosome (minus end) and radiate
toward the cell periphery (plus end). The microtubule network undergoes
dramatic remodeling throughout the cell cycle, from interphase and
through mitosis [(A), right]. Green: α-tubulin, blue: DAPI. Images
courtesy of Dr. Sela Po’uha. (B) Heterodimers of α- and β-tubulin
associate to form microtubules. The dynamic addition and removal of

tubulin heterodimers is faster at microtubule plus ends than at
microtubule minus ends. Both endogenous factors and TBAs regulate
and influence microtubule dynamics. A variety of proteins involved in
cellular homeostatic mechanisms and stress responses also interact
with tubulins either in their soluble or polymerized forms. Post-
translational modifications on tubulins influence these interactions.
Adapted with permission from Macmillan Publishers Ltd: Nature
Reviews Molecular Cell Biology [Ref. (9)], Copyright 2011 and Nature
Reviews Cancer [Ref. (15)], Copyright 2010.

Table 1 |Tubulin isotypes present in humans [Adapted with

permission from Macmillan Publishers Ltd: Nature Reviews Cancer

(Ref. (15)) Copyright 2010 and Elsevier (Ref. (233)) Copyright 2009].

Tubulin isotype Gene name Accession number

α-TUBULIN

α1A-Tubulin TUBA1A NP_006000

α1B-Tubulin TUBA1B AAC31959

α1C-Tubulin TUBA1C Q9BQE3

α3C-Tubulin TUBA3C Q13748

α3E-Tubulin TUBA3E NP_997195

α4A-Tubulin TUBA4A NP_005991

α8-Tubulin TUBA8 Q9NY65

α-Like 3-Tubulin TUBAL3 NP_079079

β-TUBULIN

βI-Tubulin TUBB NM_178014

βII-Tubulin TUBB2A, TUBB2B NM_001069; NM_178012

βIII-Tubulin TUBB3 NM_006086

βIVa-Tubulin TUBB4 NM_006087

βIVb-Tubulin TUBB2C NM_006088

βV-Tubulin TUBB6 NM_032525

βVI-Tubulin TUBB1 NM_030773

The authors direct readers to comprehensive reviews (233) for further information

on tubulin isotype structure.

The C-terminal tails of tubulin are also thought to mediate
protein–protein interactions and act as sites of post-translational
modifications to confer unique functionality to each iso-
type (9).

TUBULIN ALTERATIONS IN CANCER
Diverse changes in the microtubule network have been identi-
fied and characterized in a wide variety of cancers, including
altered expression of tubulin isotypes, alterations in tubulin post-
translational modifications, and changes in the expression of
microtubule-associated proteins (MAPs) (Table 2). Despite evi-
dence from in vitro studies associating tubulin mutations with
resistance to TBAs (10–13), tubulin mutations are not clini-
cally prevalent and their importance in disease progression and
chemotherapy resistance is controversial (14). Microtubule alter-
ations are thought to influence cellular responses to chemother-
apeutic and microenvironmental stressors, thereby contributing
to broad spectrum chemotherapy resistance, tumor development,
and cell survival.

CHANGES IN TUBULIN ISOTYPE COMPOSITION
Altered tubulin isotype expression is the most widely charac-
terized microtubule alteration reported in cancer and has been
observed in both solid and hematological tumors. These changes
are often associated with chemotherapy resistance and poor
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Table 2 | Clinical studies of tubulin alterations in cancer.

Microtubule

alteration

Observation Effect Cancer Reference

Altered isotype expression High βI-tubulin Poor response to docetaxel

treatment

Breast cancer (234)

High βIII-tubulin expression Poor survival, poor outcome for

surgical resection or TBA response;

correlates with subtype

Non-small cell lung cancer

(NSCLC)

(21, 31, 108,

235–238)

Correlates with poor survival, poor

response to platinum and taxane

treatment, advanced stage, or

aggressive disease

Ovarian cancer (13, 16, 35,

239–242)

Favorable response to taxane

treatment

Ovarian (clear cell

adenocarcinoma)

(243)

Poor response to taxane treatment Breast cancer (234, 244)

Correlates with disease stage Pancreatic ductal

adenocarcinoma

(17)

Correlates with disease stage Glioblastoma (101)

Localized to invasive edge Colorectal cancer (245)

Poor response to taxane/platinum

treatment

Uterine serous carcinoma (246)

Poor response to taxane treatment Gastric cancer (247)

Aggressive disease, patient

outcome

Prostate cancer (36, 248, 249)

Low βII-tubulin expression Correlates with poor response to

taxane treatment or advanced stage

disease

Breast and ovarian cancer (239, 250)

High βIVa-tubulin expression Poor response to taxol treatment Ovarian cancer (240)

High βV-tubulin expression Favorable response to taxane

treatment

NSCLC (251)

High α1b-tubulin expression Histological grade Hepatocellular carcinoma (252)

High γ-tubulin expression Poorly differentiated Medulloblastoma (253)

Altered post-translational

modification

High ∆2α-tubulin Poor response to vinca alkaloid

treatment

Advanced NSCLC (238)

High detyrosinated tubulin Disease aggressiveness Breast cancer (48)

Active tyrosination cycle Favorable patient outcome Neuroblastoma (50)

prognosis (Table 2) [reviewed in Ref. (15)]. Compared with α-
tubulin isotypes, β-tubulin isotypes have received more atten-
tion in this context, largely due to the availability of isotype-
specific antibodies, and the fact that TBAs bind to the β-tubulin
subunit to exert their toxic effect. Furthermore, βIII-tubulin is
the most comprehensively examined isotype across a variety of
cancers.

Elevated βIII-tubulin levels are associated with poor progno-
sis in a host of different epithelial cancers. In addition to TBA

resistance, βIII-tubulin levels influence sensitivity to non-tubulin-
targeted agents [reviewed in Ref. (15)]. The clinical observations
are supported by numerous in vitro studies where altered βIII-
tubulin levels confer resistance to a broad spectrum of drug classes
in solid and hematological tumors [reviewed in Ref. (15)]. Cou-
pled with evidence that βIII-tubulin is also involved in tumor
development and disease aggressiveness (16–18), these results
suggest that βIII-tubulin may be acting as a survival factor in
cancer.
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Altered levels of βII-, βIVa-, βIVb-, and βV-tubulins have also
been associated with resistance to TBAs in a number of drug
resistant cancer cell types (19–26). However, the clinical rele-
vance of these specific tubulin isotypes is limited and requires
further investigation. Moreover, the involvement of tubulin iso-
types in disease progression is complex, and depends on both
the treatment regime and disease stage (27). Additional complex-
ity may be conferred by interactions between different isotypes,
since the overexpression of specific β-tubulin isotypes, such as βI,
βII, and βIVb, does not affect TBA resistance in Chinese Hamster
Ovary cells (28, 29). For βIII-tubulin the results have been con-
flicting. Overexpression of βIII-tubulin failed to confer resistance
to TBAs in prostate cancer (28, 29). In contrast, overexpressing
this isotype in Chinese Hamster Ovary cells conferred resistance
to paclitaxel (30).

In cancer, alterations in the tubulin isotype composition have
been detected at both the gene and protein level and result from
increased gene transcription and enhanced mRNA stability (24).
However, tubulin mRNA levels do not always reflect protein
expression due to the complexity of post-translational mecha-
nisms that control tubulin expression (24, 31). For instance, the
tumor suppressor miR-100 and the miR-200 family of microRNAs
(24, 32, 33) as well as epigenetic mechanisms (34, 35) are impli-
cated in coordinating β-tubulin isotype expression. Therefore,
dysregulation of miRNA networks and epigenetic mechanisms in
cancer may also contribute to aberrant tubulin isotype expression
in cancer. Recent evidence showing an association between ele-
vated βIII-tubulin expression and PTEN deletions in prostate
cancer also suggest that changes in the levels of this isotype may
result from PTEN-mediated genetic reprograming (36).

Cell stress influences the tubulin isotype composition. For
example, βIII-tubulin expression can be induced (24, 37) or
decreased (16) by chemotherapy treatment. The induction of βIII-
tubulin has been observed in response to vinca alkaloid treatment
in breast cancer cells through an activator protein-1 (AP-1) site on
the βIII-tubulin promoter (38), while its induction in hypoxic and
hypoglycemic conditions in ovarian cancer cells is mediated by
hypoxia-inducible factor (HIF) 1α and Hu antigen (HuR), respec-
tively, at the 3′ untranslated region (UTR) (39, 40). The latter
mechanism is a regulatory feature commonly utilized by proteins
involved in cell stress, and enables rapid changes in protein levels
(41). However, it is to be noted that the regulation of βIII-tubulin
levels in cell stress responses may depend upon the basal expression
of the protein and may also be cell type specific.

Initially, differences in the drug binding affinity and structural
characteristics of microtubules composed of different β-tubulin
isotypes were thought to explain correlations between aberrant
tubulin isotype compositions and resistance to TBAs. However,
recent observations correlating changes in isotype expression with
tumor development and resistance to non-TBA agents have chal-
lenged the simplicity of this model. With increased recognition
of the importance of cell stress responses in chemotherapy effi-
cacy, isotype-mediated modulation of these responses may con-
tribute to chemotherapy resistance. In particular, cellular home-
ostasis relies on a dynamic microtubule network and may be per-
turbed by alterations in microtubule stability and dynamics. The
microtubule isotype composition does affect microtubule stability,

with consequences for TBA sensitivity (7, 23, 42). Stable micro-
tubules play an important role in cellular trafficking and their role
in multiple stress responses are discussed below. Chemotherapy
agents that do not bind to tubulin can also affect microtubule
stability by unknown mechanisms (43), and this may represent a
mechanism common to chemotherapy agents of different classes.

The tubulin isotype composition can also influence micro-
tubule dynamics. In non-small cell lung cancer (NSCLC) cells,
suppression of βIII-tubulin using RNA interference technology
decreases microtubule dynamics in the presence of TBAs, but
has no effect under basal conditions (44). These observations
suggest that changes in isotype composition may influence micro-
tubule dynamics in the presence of chemotherapeutic stressors
but not under basal conditions; however, a direct causal relation-
ship between isotype expression, microtubule dynamics, and cell
survival in response to these and other stressors has not been
established. In general, the importance of microtubule dynamics
in homeostatic cell signaling suggests that cell stress responses, and
not just spindle dynamics, may be impacted by aberrant isotype
expression in cancer, thus offering an additional determinant of
chemosensitivity.

TUBULIN POST-TRANSLATIONAL MODIFICATIONS
Tubulins are subject to diverse post-translational modifications
(PTMs) [reviewed in Ref. (9)]. The majority of tubulin PTMs are
highly heterogeneous, and little is understood about the regulation
and impact of these modifications. Post-translational modifica-
tions are thought to regulate protein–protein interactions with
the microtubule cytoskeleton, thereby affecting signaling events
within the cell. The majority of these modifications are localized to
the tubulin C-terminus and potentially impart specific functions
to the different tubulin isotypes.

Removal and addition of the α-tubulin C-terminal tyrosine
occurs cyclically in cells. Tyrosine addition and removal are cat-
alyzed by tubulin tyrosine ligase (TTL), and carboxypeptidases,
respectively (9). Highly dynamic microtubules are more likely to
be detyrosinated, due to the kinetic balance between higher TTL
and carboxypeptidase activities on the soluble and polymerized
tubulin pools, respectively (45). While traditionally viewed as an
intrinsic hallmark of stable microtubules, the detyrosination motif
alters motor protein recruitment to microtubules, thereby stabi-
lizing microtubules and influencing trafficking functions within
the cell (46).

Tyrosination modifications of α-tubulin are known to be criti-
cal for differentiation, cell cycle progression, organelle trafficking,
and vesicular transport (9). Altered levels of tyrosination modifica-
tions and the enzymes responsible for them have been detected in
a range of cancers and are associated with more aggressive disease
(47–50). For instance, loss of TTL induces mesenchymal transition
in breast cancer cells, which may contribute to increased metastatic
potential and altered cell stress responses (51).

Increased acetylation of α-tubulin on Lys40 has also been
observed in tumor cells (52). Elevated HDAC6 expression, one
of several regulators of tubulin acetylation, is associated with
better prognosis in breast cancer (53). Sirtuin-2 is also respon-
sible for tubulin deacetylation (54) and has been linked with
the regulation of autophagy in response to stress [reviewed in
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Ref. (55)]. HDAC6 does influence microtubule stability (56),
however, whether acetylation itself influences microtubule sta-
bility remains uncertain. Acetylated tubulin is implicated in
intracellular trafficking (57), endoplasmic reticulum (ER) local-
ization, and ER–mitochondria interactions (58), as well as
the regulation of microtubule dynamics (59). The involve-
ment of α-tubulin acetylation in a broad range of cell func-
tions may reflect its importance in the maintenance of cellular
homeostasis.

Other post-translational modifications have been detected in
prostate and hepatic cancers. Removal of the final two residues of
the βIVb-tubulin C-terminal tail was identified in higher stage liver
cancer and in a mouse model of hepatic carcinoma (60). Polyg-
lutamylated α-tubulins (47) and the polyglutamylation enzyme
TTL-like 12 are elevated in prostate cancer and correlate with more
aggressive disease (61).

Overall, despite a lack of clarity surrounding the mechanis-
tic details of the function of tubulin PTMs, mounting evidence
points to their role in fundamental cell processes. The diverse
PTM alterations observed in a range of cancers are likely to perturb
homeostatic processes, thereby contributing to stress response sig-
naling. Detailed spatiotemporal mapping of tubulin PTMs and
proteomic studies investigating their role in signaling networks
are required to elucidate the influence of tubulin PTMs on cellular
stress responses.

MICROTUBULE-ASSOCIATED PROTEINS
A wide variety of proteins are known to interact with tubulins.
Interactions between tubulin and MAPs influence microtubule
stability and dynamics, and are known to affect chemotherapy sen-
sitivity and tumor growth in cancer [reviewed in Ref. (62)]. Aber-
rant expression of primarily neuronal MAPs (e.g., Tau, MAP2)
has been detected in non-neuronal cancer tissue. For example, tau
overexpression is correlated with poor outcome in breast cancer,
and this protein may influence taxane sensitivity by decreasing the
affinity of the drug for β-tubulin (63). Altered MAP2 expression
is also associated with taxane resistance (22, 64), with differential
effects in primary and metastatic melanoma (65).

Increased MAP4 expression and altered expression of multi-
ple MAP4 isoforms have been detected in TBA-resistant leukemia
and NSCLC cells in vitro (10, 11, 66). In addition, changes in
stathmin, survivin, BRCA1, CLIP170, and VHL expression have
all been associated with chemotherapy resistance and disease pro-
gression (62, 67). For instance, stathmin was recently shown to
play an important role in regulating neuroblastoma cell migration
and invasion (68). Moreover, silencing its expression using RNAi
gene-silencing technology significantly reduced lung metastases in
a clinically relevant orthotopic neuroblastoma mouse model (68).
The overexpression of kinesins also influences chemotherapy sen-
sitivity and disease progression through mitotic and non-mitotic
mechanisms [reviewed in Ref. (69)]. A recent study has shown
that kinesins interact differentially and specifically with tubulin
isotypes and tubulin post-translational modifications (70). In this
way, changes in tubulin isotype expression and post-translational
modifications seen in cancer may also influence motor protein
function and the numerous basic processes that depend upon these
interactions.

The effect of MAPs on cell function in cancer is complex,
with interactions between individual MAPs influencing survival
and metastases. Progress toward understanding the functional
consequences of these proteins and their signaling networks in
cancer relies upon more comprehensive characterization of the
interactions between tubulins and MAPs, and the influence of
tubulin isotypes and PTMs on these interactions.

MICROTUBULE CYTOSKELETON IN STRESS RESPONSES
Microtubules influence homeostatic mechanisms and cell stress
responses by regulating intracellular trafficking, acting as a scaffold
for the co-localization and sequestration of stress response pro-
teins, transmitting stress signals through cytoskeletal remodeling
and modulating the induction of cell death pathways. Examples
of their role in these processes are described below.

MICROTUBULES AND CELLULAR SIGNALING
While microtubules possess distinct functions in particular stress
responses, the microtubule network also influences common sig-
naling pathways engaged by a variety of cellular stresses. Stress
response signaling requires trafficking of proteins and organelles
throughout the cell and modulation of the microtubule network
is expected to influence signal transduction events. For example,
TBAs differentially suppress microtubule-mediated intracellular
transport in neuronal cells (71).

In addition to general effects on signal transduction, micro-
tubules regulate mitogen activated protein kinase (MAPK) sig-
naling. The MAPK superfamily includes extracellular regulated
kinases (ERK), c-Jun N-terminal protein kinase (JNK), and p38
families and is critically involved in mediating the initiation and
execution of a range of cellular stress responses [reviewed in Ref.
(72)]. MAPK proteins interact extensively with the microtubule
network, with one-third of the total MAPKs associating with
microtubules through kinesin motor proteins (73). Interactions
between microtubules and these signaling proteins can regulate
and co-ordinate widespread cellular stress signaling events.

The JNK signaling pathway is induced by a wide range of envi-
ronmental stressors (72) and TBAs activate this pathway in the
induction of apoptosis (74–76). In particular, JNK signaling is
required for the execution of apoptosis in response to ER stress
and autophagy (77). JNK co-ordinates cytoskeletal architecture in
normal cells and JNK1 regulates microtubule dynamics (78, 79).
JNK1 also phosphorylates MAP1 and MAP2 to alter their distri-
bution and microtubule architecture (79). In this context, JNK,
the heavy chain kinesin family-5B protein and βIII-tubulin form
a complex, raising the possibility that alterations in β-tubulin iso-
type composition may affect JNK pathway activation and cell death
responses.

While TBAs generally activate JNK signaling to initiate apop-
tosis [reviewed in Ref. (80)], microtubule stabilizing and destabi-
lizing agents differentially influence downstream signaling events,
suggesting that microtubule stability regulates JNK signaling (81).
Compared with etoposide and doxorubicin, vinblastine uniquely
causes c-Jun phosphorylation, AP-1 activation, ERK inactiva-
tion, and p53 downregulation (81). Microtubule destabilizing and
stabilizing agents initiate apoptosis via JNK signaling through
AP-1 dependent and AP-1 independent mechanisms, respectively
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(82). The AP-1 dependent pathway leads to positive feedback of
c-Jun levels and sustained JNK signaling (82), suggesting that
microtubule–JNK interactions may constitute a feedback loop for
the amplification and damping of signaling pathways to regulate
stress response kinetics.

Extracellular regulated kinase also interacts with microtubules
and phosphorylates MAPs to regulate their activity (83, 84).
MAPK-mediated MAP phosphorylation is implicated in hypoxic
stress responses (85). Differential induction of ERK signaling
by TBAs may also mediate downstream effects independently of
apoptosis induction (86).

It is well established that microtubules are involved in the
translocation of messenger proteins between different cell com-
partments to enable efficient signal transduction. However,
increasing evidence supports a role for microtubule dynamics,
tubulin isotypes, and MAPs in specifically regulating the course,
amplitude, and kinetics of MAPK signaling.

p53 AND MICROTUBULES
p53 is a key mediator of cellular stress responses and its activity
heavily depends on microtubules (87). p53 is translocated to the
nucleus along microtubule tracks by dynein proteins in a complex
with heat shock protein 90 (Hsp90) and Hsp90 immunophilins
(87–89). The binding of Hsp90 to p53 inhibits MDM2-mediated
degradation of the protein by the ubiquitin–proteasome sys-
tem (90).

Microtubule dynamics regulate p53 levels. p53 levels and its
nuclear accumulation are increased by TBA treatment at doses that
suppress microtubule dynamics but do not disrupt the structure
of the microtubule network (87, 91). MAP1B also associates with
p53, decreasing its activity and inhibiting doxorubicin-induced
apoptosis in neuroblastoma cells (92). p53 signaling can influence
microtubule dynamics and remodeling, as well as the expression
of tubulin isotypes and MAPs (93). Taken together, by regulating
p53 levels and translocation, microtubules significantly impact
p53-mediated stress response signaling.

HYPOXIA
Rapid cell proliferation and poor vascular development leads to
hypoxic regions within solid tumors. Hypoxia-inducible factor 1
(HIF1) is considered to be the master regulator of cellular adap-
tation to hypoxia and is upregulated in a large proportion of solid
cancers (94).

In the absence of oxygen, HIF1α heterodimerizes to the con-
stitutively active β subunit to initiate transcriptional changes
[reviewed in Ref. (95)]. HIF1α stabilization is regulated by
enzyme-mediated hydroxylation, which enables recognition of
HIF1α for ubiquitinylation and degradation by proteins such as
the von Hippel–Lindau (VHL) protein (96). Low oxygen levels
inactivate the hydroxylases, leading to stabilization and nuclear
translocation of the α subunit where the HIF1 heterodimer binds
to hypoxia responsive elements in target gene promoters (95).

Dramatic microtubule remodeling occurs under hypoxic con-
ditions. Decreased microtubule polymerization has been observed
in response to anoxic conditions (0–2% O2) (85, 97), while
increased microtubule polymerization has been observed in
physiological hypoxia (3% O2) (98). Enhanced microtubule

polymerization under these conditions is coupled with increased
tubulin detyrosination and glycogen synthase kinase 3β (GSK3β)
inhibition (98), while phosphorylation of the MAPs dynein light
chain tctex-type 1 (DYNLT1), MAP4, and stathmin have each been
associated with microtubule depolymerization (85). Discrepancies
between these observations may be due to the differential effects
of anoxia compared with physiological hypoxia, or alternatively
may reflect the role of the GSK3β pathway and MAP interac-
tions on microtubule remodeling (98). Hypoxic activation of the
p38/MAPK pathway contributes to phosphorylation of MAP4 and
stathmin (85). Microtubule remodeling in response to hypoxia
may impact metastatic processes with increased microtubule poly-
merization influencing integrin trafficking and invasion in breast
cancer cells (98).

MAP4 protects against microtubule disruption during hypoxia
by enhancing tubulin polymerization and concomitant upreg-
ulation of tubulin expression (97). It also maintains ATP pro-
duction under hypoxic conditions and prevents mitochondrial
permeabilization (97). The non-phosphorylated form of DYNLT1
also protects against microtubule disruption and mitochondr-
ial permeabilization and maintains the cellular energy status
in hypoxia, with phosphorylation of DYNLT1 potentiating cell
death through mitochondrial permeabilization (99). DYNLT1-
mediated interactions between tubulin and Voltage Dependent
Anion Channels (VDACs) may facilitate cross-talk between the
microtubule cytoskeleton, intrinsic apoptotic pathway, and mito-
chondrial quality control system to influence cell survival in
hypoxia (97).

Hypoxic adaptation may also be regulated by specific tubu-
lin isotypes in cancer cells. For instance, βIII-tubulin (encoded
by the TUBB3 gene) is induced under hypoxic conditions by
direct binding of HIF1α to the E box motif within its 3′UTR (39).
Hypoxic upregulation of this isotype appears to be cell type spe-
cific, depends on the epigenetic status of the TUBB3 3′UTR and is
also influenced by the basal βIII-tubulin expression level (26, 39).
The expression of this tubulin isotype is also regulated by HuR
(40), which is involved in HIF1α stabilization (100). High βIII-
tubulin expression is also detected in close proximity to necrotic
tumor regions, further supporting a role for this protein in hypoxic
adaptation (101).

Hypoxia-inducible factor 1α degradation is dependent on the
short isoform of VHL, while the long isoform is a known regula-
tor of microtubule dynamics (102). In renal cell carcinoma, where
VHL mutations result in upregulated HIF expression, there is a
loss of microtubule–HIF coupling, suggesting that VHL may be
responsible for microtubule-mediated regulation of HIF signal-
ing (103). However, the mechanisms underlying this observation
and the functional consequences of this regulatory process are
uncertain.

Hypoxia-inducible factor 1 activity depends upon its ability
to translocate to the nucleus, and microtubules act as tracks
for dynein-mediated HIF1 translocation (103). Suppression of
microtubule dynamics decreases HIF1α levels by increasing HIF1α

mRNA association with inactive ribosomal subunits and by tar-
geting this mRNA to P-body components (104). Suppression
of microtubule dynamics and HIF nuclear translocation pre-
vents VEGF-mediated hypoxic adaptation in prostate and breast

www.frontiersin.org June 2014 | Volume 4 | Article 153 | 67

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parker et al. Microtubules and cellular stress

cancer cells and decreases angiogenesis in a murine ortho-
topic breast tumor model (94). However in this study, micro-
tubule dynamics regulated HIF1α levels to the same extent in
both normoxic and hypoxic conditions; therefore, this mecha-
nism may not be responsible for regulating HIF1α levels specif-
ically in response to hypoxia. Recent evidence suggests that
hypoxic adaptation also depends upon microtubule-mediated
perinuclear mitochondrial clustering (105), and highlights the
importance of organelle localization in cellular adaptation to
hypoxia.

Overall, the hypoxic response is associated with dramatic
microtubule remodeling, and altered MAP signaling to main-
tain bioenergetics and organelle function under hypoxic condi-
tions. The microtubule network also regulates hypoxic adaptation
by affecting HIF1α signaling and organelle localization, placing
microtubules as a central player in the hypoxic stress response.
While current evidence suggests that β-tubulins may function in
an isotype-specific manner in this context, a more comprehensive
analysis of the contributions of each individual isotype to hypoxic
adaptation is required.

OXIDATIVE STRESS
Aberrant oxidative stress signaling has been reported in many
cancers. The upregulation of enzymes responsible for redox home-
ostasis, metabolic reprograming, and exposure to extracellular
inducers of intracellular oxidative species all contribute to aberrant
oxidative conditions in cancer [reviewed in Ref. (106)]. Markers of
oxidative stress correlate with chemotherapy response and upreg-
ulation of redox enzymes, such as glutathione peroxidases, have
been observed in the acquisition of chemotherapy resistance and
genomic instability [reviewed in Ref. (106)].

Tubulins interact with mediators of the oxidative stress
response, with direct interactions between βIII-tubulin and
glutathione S-transferase µ4 observed in ovarian cancer cells
(107). βIII-tubulin and the DNA damage repair enzyme exci-
sion repair cross-complementation group-1 (ERCC1) act together
to influence patient response to taxane and paclitaxel combina-
tion treatment (108); however, the mechanisms underlying this
co-operative effect are unknown.

Specific tubulin isotypes may also alter oxidative stress
responses by acting as redox switches (109). In particular,
ser/ala124, which is a cysteine in βIII-, βV- and βVI-tubulins,
and cys239, which is a serine in βIII-, βV-, and βVI-tubulins,
have been specifically identified as potential sensors of oxidative
stress (109). Cys239 is readily oxidized and its oxidation inhibits
microtubule assembly and stability (109). Therefore, alterations in
tubulin isotype composition may influence microtubule stability
in an oxidative environment to maintain microtubule integrity and
cell survival in these adverse conditions. Moreover, oxidative stress
influences tubulin post-translational modifications. Nitrotyrosine
is a common byproduct of nitrosyl radical production in oxida-
tive stress and can be incorporated into microtubules through
the tyrosination/detyrosination cycle (110). While nitrotyrosine
incorporation does not affect microtubule assembly, architecture,
or cell viability (111), it does increase the stability of neuronal
microtubules (112). Furthermore, elevated levels of nitrosylated
α-tubulins correlate with disease stage in gliomas (113).

Oxidative stress is also induced by TBAs, suggesting an
involvement of microtubules in oxidative stress responses, and
is an important mechanism of action for platinum-based
chemotherapeutic agents (114). Paclitaxel treatment induces reac-
tive oxygen species through activation of the JNK pathway in
melanoma cells (115). TBA treatment also influences NADPH oxi-
dase activity, increases ROS levels and induces bystander effects in
breast cancer cells (116). This effect may be mediated by changes
in microtubule dynamics and stability, with these factors regulat-
ing Rac1 translocation and subsequently, NADPH oxidase activity
(117, 118).

Studies in neurons and endothelial cells indicate that the micro-
tubule cytoskeleton undergoes remodeling in response to oxidative
stress (119). Oxidative stress induces microtubule depolymer-
ization, and increases the pool of soluble tubulin (120, 121).
4-Hydroxy-2-nonenal (4-HNE), a secondary product of lipid per-
oxidation and marker of oxidative stress, also causes microtubule
depolymerization, together with tubulin crosslinking (122, 123).
This depolymerization may be caused by preferential reaction of 4-
HNE with soluble tubulin, thereby disrupting the soluble/polymer
fractionation of tubulin subunits and subsequent microtubule
assembly (124). Interactions between microtubules and MAPs
protect microtubules from depolymerization in response to oxida-
tive stress (122, 125), and alters cellular trafficking in oxidative
conditions (126).

Collectively, there is growing evidence supporting a role for
tubulin isotypes and the microtubule network in both sensing and
responding to oxidative stress in cancer through direct structural
changes and protein–protein interactions. This is supported by
observations in neuronal models, however, the specific roles of
tubulin isotypes and their accessory proteins in oxidative stress
responses remain to be clarified.

METABOLIC STRESS
Metabolic stress occurs in cancer as a result of uncontrolled cell
proliferation in the absence of adequate nutrients [reviewed in Ref.
(127)]. Microtubules and tubulins are involved in responding to
metabolic stress by sensing and modulating metabolic processes
to maintain cellular energy levels. The microtubule network is
hypothesized to play a critical role in the regulation of cellular
metabolism (128).

Early studies suggested that microtubules may act as a sensor of
the energy state of the cell (129) with ATP depletion causing insta-
bility of detyrosinated microtubule plus ends (130, 131). AMPK is
a major sensor for the metabolic state of the cell and affects micro-
tubule dynamics by phosphorylation of CLIP170 (132). CLIP170
alters paclitaxel sensitivity in breast cancer cells by enhancing the
binding of the drug to tubulin (67). In neuronal cells, activation
of AMPK in metabolic stress prevents growth of axonal micro-
tubules (133), further supporting a role for microtubules in early
metabolic stress signaling events. The main neuronal tubulin, βII-
tubulin, was also identified as a downstream target of AMPK in
murine brain extracts (134).

Metabolic modulation of microtubule dynamics and tubu-
lin post-translational modifications may allow for rapid and
widespread stress responses. For example, nutrient starvation
induces hyperacetylation of tubulin, which may act in concert with
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AMPK to induce autophagy in response to decreased ATP levels
(77), thereby engaging multiple stress response pathways through
microtubule-related signaling.

METABOLIC REGULATION
Tubulins and microtubules have been suspected to function as a
key modulator of mitochondrial metabolism for some time (128).
Recent studies have demonstrated that tubulin is capable of inter-
acting with, and blocking the VDAC, thereby regulating ATP and
metabolite compartmentalization and contributing to the War-
burg effect (135–138). This interaction is mediated by the tubulin
C-terminal tail (135), raising the possibility that post-translational
modifications and different tubulin isotypes may differentially reg-
ulate VDAC dynamics to influence metabolic reprograming in
cancer.

Tubulins, and in particular βIII-tubulin, associate with enzymes
of the tricarboxylic acid cycle and glycolysis (107). In vitro studies
in reduced systems showed that tubulin interacts with a variety
of glycolytic enzymes including pyruvate kinase, phosphofruc-
tokinase, aldolase, hexokinase, GAPDH, and lactate dehydroge-
nase (139–144). Interactions with some of these enzymes may be
isotype-specific, by interacting with the α-tubulin C-terminal tail
(142) rather than the tubulin body (140).

Preferential interactions between glycolytic enzymes and either
the soluble or polymerized tubulin pool may also influence meta-
bolic activity and microtubule dynamics (139, 141, 144). GAPDH
activity is differentially regulated by its interaction with either the
soluble or polymerized tubulins (143), and this interaction influ-
ences microtubule dynamics (145). Interactions between meta-
bolic enzymes and tubulins may therefore mediate bi-directional
signaling events to sense and respond to metabolic stress. Indeed,
mathematical modeling of metabolic pathways and tubulin’s mod-
ulation of enzyme activity suggest that glycolytic flux is regu-
lated by microtubule polymer levels (146), however, the mech-
anisms by which the microtubule network influences metabolic
homeostasis and the importance of the soluble and polymerized
tubulin fractions in these functions remain to be characterized
experimentally.

The association between GAPDH and microtubules may also
influence cellular trafficking, with a recent study finding that ATP
generated from vesicular GAPDH activity fuels the energy con-
sumption of motor proteins during vesicular transport (147).
Furthermore, GAPDH is known to mediate membrane fusion,
and its association with microtubules may co-regulate membrane
trafficking during glycolytic stress (148). The presence of GAPDH
on microtubules allows the recruitment of Rab2 protein to reg-
ulate membrane and ER–Golgi trafficking independently of its
catalytic activity (145, 149). Given the importance of ER–Golgi
trafficking in protein glycosylation, the interaction of GAPDH
with microtubules may function as a point of communication
between metabolic and protein modification pathways under a
range of stresses. For example, in neuronal cells, GAPDH binds
tubulin through the neuronal MAP1B protein but is relocalized
upon oxidative stress (150).

Specific interactions between tubulin isotypes and glycolytic
enzymes support the pro-survival effect of altered tubulin isotypes
in cancer. Pyruvate kinase interacts with tubulin via the tubulin

C-terminal tail and depolymerizes stabilized microtubules (140,
151). In particular, βIII-tubulin interacts with the mitochondrial-
localized pyruvate kinase M2 (107), which is associated with the
Warburg effect. Feedback from metabolic products also influences
the association of pyruvate kinase with microtubules, as well
as microtubule stability (151), further supporting a role for the
microtubule cytoskeleton in the regulation of metabolic flux.
Altered metabolic activity also influences microtubule architec-
ture (152), raising the possibility that the microtubule system may
communicate with metabolic networks in a bi-directional manner.

βIII-tubulin has been specifically implicated in glucose stress
responses. Treatment of ovarian cancer cells with tunicamycin
or wortmannin to block protein glycosylation and PI3K signal-
ing, respectively, upregulates βIII-tubulin and alters the post-
translational modifications of non-mitochondrial tubulins in cell
lines with low basal βIII-tubulin expression (107). βIII-tubulin
induction and decreased βI-tubulin expression have also been
observed for ovarian cancer cells under glucose starvation (40).
Upregulation of βIII-tubulin in these conditions correlates with
HuR binding to the βIII-tubulin 3′UTR (40). This function of HuR
is independent of its role in the nuclear export of mRNA; how-
ever, whether HuR is involved in the stabilization of βIII-tubulin
mRNA under hypoglycemic conditions was not investigated. Cor-
relations between increased HuR, βIII-tubulin expression, and
poor survival in ovarian cancer samples further support a role
for this mechanism in influencing cancer progression and patient
outcome (40).

The current evidence strongly supports a role for the micro-
tubules in regulating metabolic activity and metabolic reprogram-
ing in response to nutrient starvation. However, the mechanistic
details underpinning these observations is lacking and the impor-
tance of specific tubulin isotypes, tubulin post-translational mod-
ifications, and associated proteins in regulating metabolic stress
responses requires further characterization.

AUTOPHAGY
Macroautophagy (hereafter referred to as autophagy) can be
induced in cells in response to diverse stresses, including meta-
bolic and ER stress [reviewed in Ref. (153)]. Autophagy is a
catabolic process that enables isolation and recycling of protein
and organelle components by sequestering them into vacuoles
for subsequent lysosomal degradation (154). It is also an impor-
tant quality control process, allowing for the removal of damaged
organelles and proteins, and protects cells from oxidative stress
damage (155). Autophagic activity can support cells during ATP
depletion, and thus is intrinsically linked with metabolic stress
responses (154).

Recent evidence supports a role for autophagy in the survival
and treatment sensitivity of cancer cells, and several recent reviews
have been devoted to this topic (156–158). Microtubules have
been known to play a critical role in autophagic flux for several
decades (159), however our understanding of their importance in
autophagy initiation, trafficking, and lysosomal fusion has been
furthered in recent years.

Evidence for a microtubule role in autophagy regulation
comes from the alteration of autophagic flux upon treatment
with TBAs in vitro (160–163). Disruption of autophagic flux by
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TBAs is important in the mechanism of action of, and resis-
tance to, TBAs in cancer (4, 164). The influence of TBAs on
autophagy may be mediated by inhibition of Akt/mammalian
target of rapamycin (mTOR) signaling (165), or suppression of
microtubule dynamics, and additional studies are required to
characterize this mechanism.

Microtubule-associated protein-1 light chain 3 (MAP1LC3,
also referred to as LC3), a critical member of the autophagy
network, interacts directly with tubulin in both its free and
phosphatidylethanolamine-conjugated form (77, 160). LC3 also
interacts with microtubules through MAP1 proteins (166–168).
The promotion of autophagy by MAP1S reduces genomic
instability to suppress tumor development in hepatocarcinoma,
and MAP1S may also co-ordinate mitochondrial dynamics and
autophagy (155, 167). Other autophagy proteins also associate
with microtubules, including ULK1, Beclin-1, WIPI1, autophagy
related (Atg) protein 5, and Atg12, which are thought to be prin-
cipally involved in autophagosome formation (77, 169, 170). In
neuronal models derived from neuroblastoma cells, autophagy
inhibition is associated with decreased β-tubulin levels and sup-
pressed neurite outgrowth (171). However, links between altered
tubulin expression and autophagy have not yet been reported in
non-neuronal cancer cells.

Autophagy initiation involves activation of the master regu-
lator mTOR and the formation of the mTOR-containing com-
plexes. mTOR activity is regulated by lysosomal localization (172),
with mTOR associating specifically with peripheral lysosomes
(173). Peripherally localized mTOR is sensitive to nutrient star-
vation, which causes it to be released from lysosomes to form the
mTORC1 complex and initiate autophagy (172). Microtubules
control the peripheral localization of lysosomes, and therefore
ensure the sensitivity of mTOR to nutrient starvation (172). Spa-
tial partitioning of the microtubule-interacting kinesins KIF2A
and KIF1B between peripheral or perinuclear lysosomes also
influences mTOR activation and the initiation of autophagy (173).

Microtubules act as scaffolds and sequester proteins to regulate
autophagy. Activating molecule in BECN1-regulated autophagy
1 (AMBRA1) acts as a linker protein between microtubules and
the PI3K signaling complex responsible for autophagy induction
(169). Starvation induces phosphorylation of AMBRA1 by ULK1,
releasing the Beclin-1-PI3K complex from microtubules to the
ER to initiate autophagosome formation (169). Beclin-1–Bcl-2
complexes are also sequestered on microtubules during periods
of high nutrient availability. JNK1-mediated phosphorylation of
Bcl-2 in response to nutrient starvation causes dissociation of
Beclin-1 from this complex to initiate autophagosome signaling
and influence apoptosis (174). Microtubules are also involved in
the transport of several proteins whose localization is required for
autophagosome formation (175).

Tubulin post-translational modifications also regulate autophagy
initiation, as tubulin hyperacetylation occurs before autophago-
some formation in response to nutrient starvation (77). Acety-
lation modifications signal kinesin recruitment to microtubules,
with subsequent JNK activation, and release of Beclin-1 from
Beclin-1–Bcl-2 complexes to initiate autophagy (77). There-
fore, tubulins serve as interacting partners in the regulation of
autophagy initiation.

During autophagy initiation autophagosome membranes are
produced from existing intracellular membranes and micro-
tubules are well positioned to act as carriers of these mem-
brane components from existing organelles to sites of phagophor
nucleation. Recent studies have shown that LC3 enrichment and
autophagosome formation occur at contact sites between Parkin-
tagged mitochondria and the ER (176). Microtubules mediate
translocation of both these organelles (177, 178) and may crit-
ically regulate their co-localization to initiate autophagosome
formation.

The role of microtubules in autophagosome formation is differ-
entially regulated in basal and starvation conditions. Microtubule
dynamics are required for autophagosome formation in response
to nutrient starvation (77, 162) but not under basal conditions
(162, 179, 180).

Once formed, autophagosomes are transported along micro-
tubules in both anterograde and retrograde directions (77), where
they are fused with lysosomes. The role of microtubules in medi-
ating the fusion of autophagosomes with lysosomes remains con-
troversial. Microtubule dynamics do not affect the co-localization
and fusion of autophagosomes and lysosomes (162), which can
occur in the absence of microtubules (160). However, Kimura et al.
argue that more efficient fusion is enabled by active transport along
microtubule (181). These contrary observations may be explained
by the influence of pharmacological or RNA interference-based
modulators on lysosomal behavior in addition to their effects
on microtubule cytoskeleton. However, studies using tools that
more selectively target the autophagy machinery are required
to clarify the importance of microtubules in autophagosome–
lysosome fusion in autophagy, and the mechanisms regulating
these processes.

Overall, microtubules regulate autophagy through scaffolding
functions and in the intracellular trafficking of autophagy compo-
nents. While precise mechanistic details remain elusive, it is likely
that tubulin alterations seen in cancer would influence autophagic
function and the ability of cells to cope with microenvironmental
and chemotherapeutic stressors that cause nutrient starvation and
cellular damage.

PROTEIN FOLDING STRESS
Misfolded proteins may arise from protein damage, inadequate
chaperone activity, and malfunction of protein processing systems.
The ER is responsible for ensuring correct folding of membra-
nous and secretory proteins and this organelle is highly sensitive
to cellular conditions. Slight changes in any number of parame-
ters can lead to accumulation of unfolded proteins in the ER
lumen and initiation of the unfolded protein response (UPR)
[reviewed in Ref. (182)]. The UPR involves the induction of the
ER-associated degradation machinery that allows transport of
unfolded proteins to cytoplasmic proteasomal systems, suppres-
sion of translation, and upregulation of chaperones in a concerted
effort to reduce the burden of misfolded proteins (182). Initiation
of the UPR leads to amelioration of ER stress, or the initiation
of cell death (182). The UPR is upregulated in many cancers and
is an important contributor to tumor development and main-
tenance (182–184). ER stress sensitizes cells to a broad range
of chemotherapeutics including topoisomerase inhibitors (185),
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temozolomide (186), platinum-based agents (187, 188), and TBAs
(189).

Glucose regulated protein 78 (GRP78) is a member of the heat
shock protein 70 (Hsp70) family and a master regulator of the
ER stress response (190). Alterations in GRP78 expression and
localization have been linked with tumor aggressiveness, migra-
tion, and invasion as well as chemoresistance, where it acts as a
pro-survival factor (182). Taxanes and vinca alkaloids induce ER
stress through upregulation of GRP78 in breast cancer cells (5).
ER stress is also associated with JNK activation and apoptosis,
which are inhibited upon GRP78 knockdown (5, 191). GRP78
interacts with βIII-tubulin (107), however, the functional con-
sequences of this association are unknown. These observations
suggest an intrinsic link between the microtubule cytoskeleton
and the initiation of ER stress responses.

Tubulin-binding agent treatment also initiates mechanisms to
repress translation and ameliorate misfolded protein accumula-
tion. Treatment of cervical cancer cells with TBAs induces P-body
formation, which are cytoplasmic regions where mRNA transla-
tion is inhibited (104). P-body targeting of miRNA and mRNA is
also an important regulator of numerous stress responses, includ-
ing the regulation of HIF1α levels in normoxic and hypoxic con-
ditions (192). Microtubule dynamics are also critically involved in
the association of mRNA with stress granules (193), which also
regulate mRNA processing in response to stress (194).

Expansion of the ER network occurs during the UPR (195),
where it acts to relieve ER stress (196). Microtubules are critically
involved in regulating ER morphology, trafficking, and expansion
of the organelle to the periphery of the cell by direct attach-
ment of the ER to microtubules (197). Microtubule dynamics
are tightly co-regulated with ER dynamics, which are suppressed
by microtubule depolymerizing agents (178, 198). ER movement
can occur by attachment to the microtubule plus ends (198), or
kinesin-mediated ER sliding along microtubules (58, 199). While
the former mechanism occurs on highly dynamic microtubules,
ER sliding occurs on acetylated microtubules (58). Therefore,
tubulin post-translational modifications may act as important
regulators of ER expansion during the UPR. Mitochondria are
also localized to acetylated microtubules, with this PTM poten-
tially facilitating functional ER–mitochondrial interactions with
diverse consequences for the cell, including autophagy induction
(58, 176). Therefore, the microtubule network may co-ordinate
whole cell reprograming in response to localized ER stress.

In neuronal neuroblastoma models, collapse of the microtubule
network and evolution of ubiquitinated protein aggregates at the
centrosome were observed in parallel with the initiation of ER
stress (200). While this suggests that maintenance of a functional
ER network relies heavily upon the microtubule cytoskeleton, sim-
ilar observations are yet to be reported in non-neuronal cancer
cells.

These observations suggest an intrinsic link between ER home-
ostasis, the initiation of ER stress responses and the microtubule
network; however, the mechanisms co-regulating these systems
remain elusive. Improved understanding of the role of micro-
tubules in ER function, and the importance of this organelle in
tumor development and cell survival may reveal strategies for more
effective use of existing treatments in cancer.

TUBULIN AND MOLECULAR CHAPERONES OUTSIDE OF THE ER
Other chaperones outside of the ER system also interact with
microtubules (201). The small heat shock protein (Hsp) α

B-crystallin regulates microtubule dynamics (202) and tubulin
polymerization (203) by associating with microtubules through
interactions with MAPs (204). The association between α B-
crystallin and tubulin may also prevent the aggregation of
misfolded tubulin (202).

Heat shock protein 27 (Hsp27) associates with microtubules
(205) and alters the microtubule structure by promoting micro-
tubule nucleation distant to the centrosome (206). TBAs induce
Hsp27 phosphorylation through the p38 signaling pathway in
MCF-7 cells, with microtubule stabilizers and destabilizers induc-
ing different phosphorylation patterns on this protein (207).
However, the functional consequences of these phosphorylation
sites are unclear. Hsp70 also associates with tubulin by interact-
ing with the tubulin C-terminal tail, and this interaction may
be mediated by MAP1B (208, 209). In particular, βIII-tubulin
has been found to associate with mitochondria-localized Hsp70
(107). Hsp70 expression is induced by vinblastine treatment in
melanoma cells (210). Furthermore, crosstalk between Hsp70 and
oxidative stress enzymes (211) suggests that interactions between
the microtubule network and these proteins could have profound
implications for a variety of stress responses.

The Hsp90 family is the main cytosolic chaperones in basal
and stressed conditions, where they mediate maturation of folded
proteins (212). Hsp90 client proteins are diverse and include
oncoproteins that promote survival in response to environmen-
tal stress [reviewed in Ref. (213)]. Hsp90 proteins have been
found to associate with tubulin; however, this occurs in an ATP-
independent manner, suggesting that tubulin–Hsp90 associations
are not related to global tubulin re-folding or the targeting of tubu-
lins to proteasome machinery (214, 215). The binding of Hsp90
to tubulins may instead ensure correct folding of nascent tubulin
peptides, and prevent the formation of tubulin aggregates during
cellular stress (214). The association between these proteins may
also reflect the role of Hsp90 as a molecular chaperone for proteins
translocating on microtubules (216).

Heat shock protein 90 recruitment to microtubules depends
on acetylated tubulins, with HeLa cells having higher levels of
acetylated tubulin and Hsp90 recruitment to microtubules com-
pared with non-tumoral RPE1 cells (52). Tubulin acetylation is
also associated with recruitment of the Hsp90 client proteins
Akt and p53 to microtubules, with significant implications for
downstream signaling events and chemosensitivity (52). Whether
tubulin hyperacetylation is a widespread feature of cancers, or
is specific to these cell types, is unclear, but these observations
suggest that tubulin post-translational modifications may impact
upon protein folding stress in cancer. Overall, interactions between
tubulins and Hsp90 may act as an important link between tubulin
PTMs, protein folding, and stress response signaling.

MITOCHONDRIAL FUNCTION
As integrators of cell state and mediators of apoptotic sig-
naling, mitochondria play a critical role in determining cell
fate in response to stress. There is growing evidence that
tubulin, microtubules, and the microtubule network regulate
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mitochondrial function in cancer (217). Microtubules are involved
in mitochondrial trafficking and degradation, with these processes
influencing microtubule stability and tubulin degradation (218).
Tubulin is an integral component of mitochondrial membranes
(136, 137, 219), and these membranes are enriched with βIII-
tubulin (107, 137, 217). Mitochondria-associated βIII-tubulin is
distinguished from the cytoplasmic tubulin pool by distinct post-
translational modifications (107). Interactions between tubulin
and VDAC discussed above, also support a role for tubulins in
mitochondrial function.

Tubulin-binding agents are known to affect mitochondrial
stress (115). Microtubule stabilizing and destabilizing TBAs cause
changes in the mitochondrial membrane potential, which is criti-
cal for the maintenance of respiration and regulation of apoptosis
(135, 220). It is currently unclear whether these effects are inde-
pendent of the tubulin-targeted activity of these agents. Neverthe-
less, higher levels of soluble tubulin are associated with a lower
mitochondrial membrane potential in cancer cells but not in non-
transformed primary cells (220). Therefore, modulation of mito-
chondrial function by tubulin and microtubules may influence cell
stress responses and cell survival signaling in cancer.

CELL DEATH SIGNALING
Failure of cellular stress responses to alleviate cellular dysfunction
can result in the induction of cell death. Emerging evidence sup-
ports a role for tubulins and microtubules in the execution of cell
death in response to stress. For instance, tubulins interact with reg-
ulators of mitochondrial membrane permeability and apoptosis.
Interactions between tubulin, VDAC, and p53 (discussed above)
may influence the mitochondrial permeability transition and reg-
ulate apoptosis induction (221). This is supported by evidence that
TBAs mediate their apoptotic effects by directly compromising the
mitochondrial outer membrane integrity (222), whether through
interactions with their traditional target, tubulin, or with B-cell
Lymphoma/Leukemia-2 (Bcl-2) (223).

Crosstalk between microtubules and apoptotic networks is also
suggested by Bcl-2 involvement in TBA-mediated cell death. In
leukemic cell lines, the overexpression of Bcl-2 suppresses the
apoptotic response of TBAs independently of G2/M arrest and
structural microtubule alterations (224–226). High Bcl-xL levels
are protective against taxol-induced cell stress (225). These effects
may be explained by direct interactions between Bcl-2 and tubulin
(217, 227). Bcl-2 interacting mediator of cell death (Bim) is also
sequestered on microtubules by binding to the dynein light chain,
thereby preventing initiation of apoptotic signaling (227, 228).
Once released from microtubules, Bim translocates to mitochon-
dria, and interacts with Bcl-2, Bcl-xL, or Bax to promote apoptosis
(228). Biophysical studies have also indicated that BH3-domain
proteins, of which Bim is a member, can interact with tubulin
through this domain (227). The pro-survival factors semaphorin
6A and survivin also associate with microtubules (107, 229, 230)
with the latter affecting microtubule dynamics (229). Semaphorin
6A interacts directly with βIII-tubulin in ovarian cancer cell lines
and its expression correlates with resistance to a broad range of
chemotherapy agents (230). By interacting with apoptotic pro-
teins, tubulin alterations may have a pro-survival effect by reducing
the apoptotic potential of cancer cells.

Manipulation of the soluble and polymerized tubulin frac-
tions may also modulate apoptotic potential. Bak associates with
the polymerized fraction while Bid preferentially associates with
the soluble fraction (227). This interaction is mediated by the β-
tubulin C-terminal tail region (227), suggesting that tubulins may
modulate apoptotic potential in an isotype-specific manner. How-
ever, this interaction, its tubulin isotype specificity and functional
consequences are yet to be validated in the more complex cell
environment.

Tubulin-binding agents are known to induce Bcl-2 phosphory-
lation,a state that inhibits the anti-apoptotic activity of this protein
(231), suggesting that Bcl-2 activity may be regulated by micro-
tubule integrity. However, Bcl-2 phosphorylation is elevated in
cells undergoing G2/M arrest and this observation may reflect the
action of TBAs on the cell cycle checkpoint, rather than apoptotic
signaling (232).

Direct and indirect interactions between tubulins, apoptotic
proteins, and mitochondria suggest that the microtubule network
communicates with the apoptotic machinery to regulate the exe-
cution of the final stages of cell death signaling. While the precise
mechanistic details of this cross-talk remain elusive, the current
evidence supports a role for isotype-specific regulation of cell
death by tubulins.

CONCLUSION
Tubulins, microtubules, and their interacting partners are increas-
ingly recognized as central players in the maintenance of cell
homeostasis and execution of cell stress responses. Emerging
evidence suggests that the modulation of tubulin isotype com-
position, post-translational modifications and the expression of
MAPs seen in cancer influence diverse cellular functions to
promote cell survival under metabolic, protein, oxidative, and
hypoxic stress. Microtubules and tubulins influence protein sig-
naling networks through molecule and organelle transport, act
as scaffolds for protein–protein interactions, modulate enzyme
activity, and sequester stress response mediators. Developing a
detailed spatiotemporal knowledge of the specific function of
tubulin isotypes, their post translation modifications and the
proteins they associate with presents a major challenge, and
is a necessary foundation for understanding the role of the
microtubule network in the regulation and execution of stress
responses.

By influencing a variety of cell stress responses, microtubules
are well positioned to act as coordinators of cell function in
response to stress. Furthermore, crosstalk between different stress
response signaling events means that microtubule involvement in
this context may have profound implications on diverse cellular
functions (Figure 2).

Improved understanding of the role of tubulins and micro-
tubules in cell stress responses in cancer has appreciable clini-
cal benefits. The identification of signaling pathways influenced
by the microtubule cytoskeleton may offer a source of novel
anticancer treatments. A firmer grasp on the role of the micro-
tubule cytoskeleton in cell stress responses, and in particular in
chemotherapeutic stress, should also enable more effective use of
existing treatments. By profiling tubulin and microtubule aberra-
tions in tumors, chemotherapeutic combinations known to induce
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FIGURE 2 | Microtubules regulate and co-ordinate diverse cellular stress
responses in cancer cells. Alterations in the expression of tubulin isotypes,
tubulin post-translational modifications, and the interaction of microtubules
with MAPs seen in cancer affect a wide range of homeostatic mechanisms in

response to cellular stress. Microtubules may function to co-ordinate stress
responses across the cell, resulting in enhanced cell survival in the harsh
tumor microenvironment, resistance to chemotherapy treatment, and the
development of more aggressive disease; MT, microtubules.

particular stress states could be selected to exploit altered stress
response signaling in cancers. Through these avenues, a thor-
ough understanding of the role of the microtubule cytoskeleton in
stress responses has the potential to lead to larger therapeutic win-
dows, reduced chemotherapy resistance, and more effective cancer
treatment with reduced side effects.
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The final stage of cell division (mitosis), involves the compaction of the duplicated genome
into chromatid pairs. Each pair is captured by microtubules emanating from opposite spindle
poles, aligned at the metaphase plate, and then faithfully segregated to form two identical
daughter cells. Chromatids that are not correctly attached to the spindle are detected by the
constitutively active spindle assembly checkpoint (SAC). Any stress that prevents correct
bipolar spindle attachment, blocks the satisfaction of the SAC, and induces a prolonged
mitotic arrest, providing the cell time to obtain attachment and complete segregation cor-
rectly. Unfortunately, during mitosis repairing damage is not generally possible due to the
compaction of DNA into chromosomes, and subsequent suppression of gene transcription
and translation. Therefore, in the presence of significant damage cell death is instigated
to ensure that genomic stability is maintained. While most stresses lead to an arrest in
mitosis, some promote premature mitotic exit, allowing cells to bypass mitotic cell death.
This mini-review will focus on the effects and outcomes that common stresses have on
mitosis, and how this impacts on the efficacy of mitotic chemotherapies.

Keywords: mitosis, SAC, spindle, kinetochore, checkpoint, metaphase, DNA damage, Cdk1

INTRODUCTION
The cell cycle is driven by the activity of the cyclin dependent
kinases (Cdk), and their associated regulatory cyclin subunits.
Each cell cycle phase is dependent on the sequential activation
and deactivation of unique cyclin and Cdk complexes, with mito-
sis dependent on cyclin B bound with Cdk1 (1). To ensure the
cell division process occurs with absolute fidelity, cells have devel-
oped numerous cell cycle checkpoints that delay progression in the
presence of a wide variety of cellular and environmental stresses.
During interphase (G1, S, and G2) stress activates checkpoints,
which block cell cycle progression by increasing the translation
of Cdk inhibitory proteins and activation of checkpoint kinases
(Chk) that phosphorylate and inhibit Cdk (2). However, in mito-
sis the situation is reversed, the spindle assembly checkpoint (SAC)
is on by default, which maintains high Cdk activity, thereby pre-
venting cells from exiting mitosis. The primary role of the SAC is
to block the activity of the anaphase promoting complex (APC),
an E3 ubiquitin ligase responsible for targeting cyclin B1 (and
many other key mitotic proteins) for degradation by the protea-
some (3). This inhibition is achieved by the recruitment of several
SAC proteins to the kinetochores, a protein structure located on
the centromere of each chromosome (Figure 1). This localization
allows the formation of the mitotic checkpoint complex (MCC)
consisting of Cdc20, Mad2, Bub3, and BubR1, which then binds
to and potently inhibits the APC, blocking degradation and pre-
venting cells from entering anaphase (4). Once each kinetochore is
attached to the mitotic spindle, the SAC proteins are displaced, and
Cdc20 is released, allowing the APC to target proteins for degra-
dation. However, the SAC arrest can be overcome by premature
degradation of cyclin B1 (5), or direct inhibition of Cdk1 activity
(6, 7) (Figure 1). This process is referred to as mitotic slippage
and results in aberrant segregation of chromosomes and failure of

abscission during cytokinesis, which can drive polyploidy, chro-
mosome instability, and cancer formation (8). Therefore, dur-
ing mitosis it is critical that interphase checkpoint pathways are
turned off to prevent the deleterious effects of premature Cdk1
inactivation.

INHIBITION OF INTERPHASE CHECKPOINTS
The inhibition of interphase checkpoints is achieved primarily by
inhibition of transcription (9) and down regulation of the major-
ity (60–80%) of protein translation (10). In addition, Cdk1 and
other mitotic kinases phosphorylate and disable key effectors of
interphase checkpoint pathways, providing a feedback loop that
restricts this inhibition to mitosis (11).

Transcription
The inhibition of transcription is a critical mechanism for pre-
venting the upregulation of Cdk inhibitor proteins, such as p21.
The expression of p21 is strongly upregulated during interphase
in response to a variety of cellular stresses. For example, dur-
ing interphase, DNA single and double strand breaks induced
by exposure to ultraviolet light (UV) or ionizing radiation (IR)
respectively, results in the recruitment and activation of ataxia-
telangiectasia mutated and related (ATM and ATR) kinases to the
sites of damage. ATM/ATR then activate p53, which in concert
with the transcription factor Sp1, increases p21 expression (12,
13). However, during mitosis the majority of proteins involved
in transcription are removed from the DNA, inhibiting the pro-
duction of new mRNA (14, 15). Surprisingly, transcription fac-
tors and other structural proteins can still gain access to the
highly compacted chromosome structure (16), and are actively
removed by mitotic kinases (17). For example, Cdk1 phosphory-
lates Sp1 and CUX1 resulting in their dissociation from chromatin
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FIGURE 1 |The spindle assembly checkpoint and cell fate. During
mitosis, the constitutively active spindle assembly checkpoint (SAC) delays
anaphase until all chromosomes are attached to the mitotic spindle. Any
stress that prevents satisfaction of the SAC results in a prolonged mitotic
arrest, which often leads to cell death. However, the SAC can be over-come
by the release of Cdc20 from the mitotic checkpoint complex (MCC) or by
direct inhibition of Cdk1. This mitotic slippage can result in polyploidy,
increased cell survival, and provides a potential mechanism for escaping
mitotic cell death.

during mitosis (18, 19), thereby preventing upregulation of
p21 (20).

Phosphorylation
During interphase, stress often triggers a kinase phosphorylation
cascade,which culminates in the inhibitory phosphorylation of the
interphase Cdk. To ensure that Cdk1 is not inhibited during mito-
sis, these checkpoint kinases (Chk) must be inhibited. Surprisingly,
Cdk1 itself disables many of these, for example, it phosphorylates
Chk1/2 preventing activation by ATM/ATR (21). Furthermore,
Cdk1 phosphorylation of the DNA damage signaling and repair
proteins 53BP1 and BRCA1, blocks their recruitment to sites of
DNA damage (22). In addition, many of these interphase Chks
are repurposed and required for normal progression through
mitosis. For example, Chk2 localizes to kinetochores during mito-
sis, stabilizing MPS1 and phosphorylating Aurora B (23). Active
Aurora B then phosphorylates ATM (24), which then phospho-
rylates γ-H2AX and Bub1 at kinetochores (24), promoting the
accumulation of Mad2 and Cdc20 (25). Consequently, ATM activ-
ity is required to ensure correct centrosome and mitotic spindle
formation (26, 27).

Translation
The translation of mRNA into proteins is actively inhibited during
mitosis (10). During interphase, the majority of mRNA is guided
to ribosomes by cap-dependent translation, however as cells enter
mitosis this process is repressed (9) by phosphorylation of cap-
binding proteins (28). As a result, translation switches from the
cap-dependent system to mRNA that contains an internal riboso-
mal entry site (IRES) (29). The mRNA of several important mitotic
proteins contain IRES sites (30, 31), which ensures their contin-
ued translation during mitosis. In addition, the mRNA of critical
mitotic factors such as cyclin B, are restricted temporally to mitosis,
and locally at the mitotic spindle, by polyadenylation (32, 33).

SAC AND THE RESPONSE TO STRESS IN MITOSIS
Any stress that directly or indirectly prevents the satisfaction of
the SAC prevents cells from progressing past metaphase. How-
ever, some stresses are able to deactivate the SAC and induce

mitotic slippage, therefore bypassing mitotic cell death. Interest-
ingly, mitotic slippage has been suggested as a possible mechanism
for resistance to mitotic chemotherapies, in particular the micro-
tubule poison Taxol (34). Therefore, understanding exactly how
common environmental and cellular stresses affect mitosis is criti-
cal for understanding how and why some cancer cells are sensitive
and others are resistant to this important class of chemotherapies.

DNA damage
Attempting to repair DNA during mitosis is highly dangerous for
cells and can result in the fusion of telomeres, failed separation
of chromatids during anaphase, and the promotion of genomic
instability and cancer (22). Therefore, some have suggested that
the primary mitotic response to DNA damage is to mark sites of
damage (with γ-H2AX), but not to arrest in mitosis (35). Instead,
damaged cells are allowed to exit to the next G1 phase where repair
or death can be triggered (36). However, many cells do arrest for
varying amounts of time in response to an array of DNA damaging
stresses. The length of arrest roughly correlates with the level of
damage, with higher levels that disrupt kinetochore–microtubule
function being more efficient at blocking mitotic exit in a SAC
dependent manner (37). Furthermore, a prolonged arrest can itself
damage telomeres (38), suggesting that mitotic cells damage their
DNA on purpose. The point of this self inflicted damage is still
unclear, but it may act as a backup pathway, ensuring even minor
mitotic DNA damage is fully detected in the following G1 thereby
preventing defects being passed on to subsequent generations.

DNA decatenation. During replication in interphase, sister chro-
matid pairs become interwound, and must be untangled prior to
metaphase by decatenation, a process that requires topoisomerase
II (Topo II). In addition, DNA decatenation is also required for
correct chromatid and telomere separation during anaphase (39).
Inhibition of Topo II during mitosis produces different mitotic
responses, which are dependent on the inhibitor used, and specif-
ically if DNA damage is produced. For example, doxorubicin
creates significant levels of DNA damage (γ-H2AX foci), and con-
sequently cells arrest in metaphase for up to 9 h (40). In contrast,
ICRF-193 generally produces mild damage, and results in cells
only delaying in mitosis for 1–2 h (37, 41) although ultrafine DNA
bridges are formed during anaphase causing cells to fail abscission
and form polyploid cells (41, 42). In all cases, the arrest during
mitosis is dependent on the SAC, and is likely due to direct damage
of kinetochore structure preventing stable microtubule attach-
ments (Figure 2). For example, the delay induced by ICRF-193
requires inhibition of the APC by Mad2, but surprisingly Mad2
does not accumulate at kinetochores (35, 43). This may explain
why this delay is short lived. Unfortunately, the inhibition of Topo
II prior to mitosis blocks cells in G2 phase (44), consequently its
use in combination with mitotic chemotherapies such as Taxol is
often counter-intuitive as cells never enter mitosis and are resistant
to Taxol induced death (45, 46).

Double strand breaks. Extensive double strand breaks during
mitosis produce a strong SAC dependent arrest with cells delay-
ing for more than 5 h over the normal 30–60 min transit time
(37). Furthermore, extensive DNA damage has also been shown
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FIGURE 2 | Common stresses and their effects on mitosis andTaxol
response. A variety of stresses affect mitosis by acting directly or indirectly
on the SAC. Stresses that maintain the SAC and/or increase microtubule
stability often synergize (green line) with Taxol. In contrast, stresses that
inhibit the MCC and/or disrupt microtubule formation commonly antagonize
(red line) Taxol induced mitotic arrest and promote mitotic slippage.

to inhibit the activity of Polo like kinase 1 (Plk1) (47), a mitotic
kinase that plays a key role in mediating attachments between
the kinetochore and mitotic spindle (48). This inhibition occurs
independently of ATM (49), primarily through PP2A mediated
dephosphorylation of Plk1 (50), and likely strengthens the mitotic
arrest induced by extensive double strand breaks by preventing
satisfaction of the SAC (Figure 2). Consequently, combining DNA
damaging agents with Taxol, especially in p53 mutant cancer cells
with dysfunctional interphase DNA damage checkpoints (51),
may greatly enhance the amount of damage produced and pro-
mote a prolonged mitotic arrest resulting in increased levels of cell
death. Accordingly, Taxol is commonly used in combination with
platinum-based chemotherapeutics as a first line treatment for
ovarian cancer (52), and is being trialed in combination with DNA
damaging agents in several other cancer types including small cell
lung cancer, melanoma, and pancreatic cancer (53–55).

Chromatin structure. Disruption of the mitotic chromosome
architecture also produces a temporary mitotic delay. Treatment
with histone deacetylase inhibitors (HDACi) prevents correct
chromosome condensation and increases the access of transcrip-
tion factors to the DNA, disrupting correct kinetochore formation
(56). This delays the correct capture and alignment of chromo-
somes by the mitotic spindle, leading to SAC-dependent mitotic
arrest (44, 57). However, if this damage is too severe, SAC pro-
teins fail to remain at kinetochores, leading to silencing of the SAC
and premature exit (slippage) from mitosis (58, 59). Interestingly,
although HDACi have been highly successful in treatment of lym-
phoma, they have not been as successful with solid tumors, which
could be due to SAC dysfunction (e.g., BubR1 mutation) in these
cancers and an increased rate of mitotic slippage.

Hypoxia and oxidative stress
Reduced oxygen supply especially within the core of solid tumors
results in a hypoxic environment within the tumor mass. Hypoxia
is a poor prognostic factor, and correlates with resistance to

radiation and many chemotherapeutic agents (60). Exposure to
hypoxia during mitosis results in the rapid disruption and desta-
bilization of microtubules (61), which delays mitotic progression.
However, this arrest is unstable and cyclin B levels decrease rapidly
(62), in turn inactivating Cdk1, and promoting mitotic slippage,
providing an explanation for why hypoxia induces tetraploidiza-
tion in melanoma (63). However, hypoxia induces a wide variety
of intracellular responses including formation of reactive oxygen
species (ROS), and a switch to anaerobic glycolysis resulting in
decreased levels of ATP. The effects of hypoxia on mitosis are most
likely due to the increased formation of ROS. In support, exposing
mitotic cells to hydrogen peroxide (H2O2) to mimic ROS, induces
mitotic slippage and the formation of hypertetraploid cells (64).
The mechanism for this slippage is yet to be full elucidated, how-
ever, in yeast, H2O2 exposure depletes the SAC protein BubR1
from kinetochores, silencing the SAC allowing cells to exit mitosis
prematurely (65). In addition, H2O2 also depolymerizes micro-
tubules (66), which results in need for higher doses of Taxol to
stabilize microtubules and induce cell death (67). These effects
may explain why hypoxia reduces toxicity to Taxol in cancer cells
(Figure 2). Consequently, reducing ROS with antioxidants has
long been proposed as a co-treatment to enhance the effects of
Taxol, with some limited success (68). The inconsistent results are
likely due to the specific antioxidant used. For example, the pop-
ular dietary antioxidants Resveratrol and Fisetin (found in red
wine), inhibit Cdks, induce a G2 arrest and prevent entry into
mitosis (69, 70), providing an explanation for why they antago-
nize Taxol (71, 72). Therefore, finding methods that specifically
reduce ROS without off target effects will be critical for the future
success of co-treatment regimes.

ATP depletion
Hypoxia can also cause depletion of ATP pools, however the
mitotic effects of ATP depletion are opposite to that of hypoxia
and oxidative stress. Specific depletion of ATP pools with DNP,
Azide, or AMP-PNP, results a rapid prolonged mitotic arrest in
mammalian cells (73). ATP is needed for microtubule disassem-
bly (74), and therefore depletion of ATP stabilizes microtubules
(75). In addition, depletion of ATP activates AMP-activated pro-
tein kinase, which phosphorylates myosin regulatory light chain,
and promotes astral microtubule growth (76) (Figure 2). Sur-
prisingly, depletion of ATP also depletes Mad2 and BubR1 from
kinetochores, with both proteins accumulating at spindle poles,
however this does not appear to affect their ability to bind Cdc20
and inhibit the APC (77–79). Taken together, this area has signifi-
cant potential for future novel therapeutic approaches, with some
metabolic inhibitors already showing synergy with Taxol (80).

Thermal shock
Heat-shock (hyperthermia) has been commonly used as adjunc-
tive cancer therapy to augment radiotherapy and chemotherapy,
with varying levels of success (81). The initial mitotic response
to acute (42°C) heat-shock is to arrest in mitosis (82). This
delay is most likely SAC dependent due to effects on micro-
tubules and centrosomes, which become permanently disorga-
nized and destabilized upon exposure to heat (83). In addition,
heat can increase the binding of the heat-shock transcription
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factor 2 (HSF2) to DNA during mitosis (84). HSF2 binding
attracts PP2A, which dephosphorylates condensin, thereby reduc-
ing the compaction of the chromosomes (85), and acting sim-
ilar to HDACi treatment (Figure 2). Consequently, the mitotic
delay is only temporary, and cells rapidly reform a nuclear enve-
lope around chromosomes, and undergo mitotic slippage (86,
87), even in the presence of Taxol (88). Hyperthermia has been
shown to both antagonize (89) and synergize (88) with Taxol,
with the outcome dependent on the functionality of the apoptotic
pathway (90, 91).

Interestingly, like hyperthermia, cold-shock (hypothermia)
has also shown some success in synergizing with radiotherapy
and a variety of chemotherapeutics (92, 93). Exposure to cold
induces a transient mitotic delay in cells, however cells eventu-
ally complete mitosis and segregate their chromosomes normally
(94). Hypothermia reversibly destabilizes non-kinetochore micro-
tubules (95, 96), but this still allows chromosomes to be captured
by kinetochore microtubules and positioned at the metaphase
plate (94). However, a reduction in microtubule dynamics and
loss of astral microtubules results in reduced tension at kineto-
chores leading to the retention of Bub1 and BubR1 at kinetochores
and a SAC-dependent mitotic delay (97). The ability of cells to
recover from hypothermia and complete mitosis may explain why
cold-shock can reduce the number of mitotic defects induced by
chemotherapies (98), and minimize side effects (e.g., hair loss) of
Taxol in cancer patients (99). However, given that the delay is tran-
sient and reversible, it also explains why co-treatment regimes have
not shown any significant synergy and are unlikely to be useful for
enhancing the killing of cancer cells.

Mechanical stress
As cells enter mitosis they transform their architecture to create a
spherical shape, which is driven by changes in the actin cytoskele-
ton (100), and by regulation of osmotic pressure (101). The small
GTPase RhoA is critical for cortical retraction during mitotic cell
rounding (102). During early prophase RhoA promotes remod-
eling of the actin cytoskeleton, increasing the mechanical stiff-
ness of the cell (103). Cell rounding is achieved by combining
RhoA-mediated cellular rigidity with increased hydrostatic pres-
sure inside the cell. This occurs by increasing intracellular sodium
levels resulting in an influx of water (101). Failure to round up,
and/or disruption of the RhoA pathway prevents mitotic exit in a
SAC-dependent manner by inducing spindle pole fragmentation
(104), disruption of astral microtubule organization and spin-
dle function (105, 106) (Figure 2). Interestingly, placing cells in
hypertonic solution (preventing water influx) stably arrests cells
in mitosis and was originally used in the 1970s as a method for
enriching mammalian cells in mitosis (107). After several hours
most arrested cells die, although some escape via mitotic slippage
to form polyploid cells (108). Interestingly, in yeast, hypertonic
stress can promote activation of Cdc14 phosphatase (109), which
then dephosphorylates Cdk substrates driving cells out of mito-
sis, suggesting that phosphatases can drive slippage. However, in
humans the role of Cdc14 is not conserved (110), and PP2A
appears to be the primary phosphatase responsible for remov-
ing mitotic Cdk1 phosphorylations (111, 112). If PP2A is directly
activated in response to hypertonic stress it could promote mitotic

slippage in human cells, providing a rational for future research
focusing on the effectiveness of PP2A inhibitors in combination
with mitotic chemotherapies.

Exposure of mitotic cells to hypotonic conditions increases
water influx, rising internal pressure and a swelling of mitotic
cell size, with weak hypotonic solutions arresting cells in pro-
metaphase (113). However, unlike hypertonic stress, this arrest
is far less stable and cells rapidly undergo mitotic slippage, char-
acterized by chromosome decondensation, disrupted kinetochore
and spindle structure, and reformation of the nuclear envelope
around un-segregated chromosomes (114, 115), which all pro-
mote chromosome aberrations and polyploidy (116). The effects
of hypotonic stress in combination with Taxol have not been stud-
ied in detail, however, hypotonic solutions can increase the uptake
of chemotherapies in cells (117), and have shown some promise
in enhancing response to platinum-based treatments (118). Con-
sequently, it is likely that similar to hyperthermia, local hypotonic
conditions could be used to enhance Taxol response in tumors
with a functional apoptotic pathway.

CONCLUSION/PERSPECTIVES
In summary, the ability of cells to arrest during mitosis in response
cellular and environmental stresses is dependent on the presence
of a functional SAC, the correct suppression of transcription and
translation, and critically the maintenance of Cdk1 activity. Stress
that prevents the satisfaction of the SAC results in a mitotic arrest,
while those stresses that disrupt Cdk1 activity or directly disable
the SAC force cells to prematurely exit mitosis. Future research on
the role mitotic phosphatases, such as PP2A, play in stress response
and slippage will be critical for fully elucidating the mechanisms of
how a specific cancer will response or can be sensitized to mitotic
chemotherapies such as Taxol.
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Tumor evolution presents a formidable obstacle that currently prevents the development
of truly curative treatments for cancer. In this perspective, we advocate for the hypothesis
that tumor cells with significantly elevated genomic content (polyploid tumor cells) facilitate
rapid tumor evolution and the acquisition of therapy resistance in multiple incurable cancers.
We appeal to studies conducted in yeast, cancer models, and cancer patients, which all con-
verge on the hypothesis that polyploidy enables large phenotypic leaps, providing access to
many different therapy-resistant phenotypes. We develop a flow-cytometry based method
for quantifying the prevalence of polyploid tumor cells, and show the frequency of these
cells in patient tumors may be higher than is generally appreciated.We then present recent
studies identifying promising new therapeutic strategies that could be used to specifically
target polyploid tumor cells in cancer patients.We argue that these therapeutic approaches
should be incorporated into new treatment strategies aimed at blocking tumor evolution
by killing the highly evolvable, therapy-resistant polyploid cell subpopulations, thus helping
to maintain patient tumors in a drug sensitive state.

Keywords: polyploidy, hyperdiploidy, tumor evolution, therapy resistance, tumor initiation, cancer stem cell,
aneuploidy, chromosomal instability

COMING TO TERMS WITH CANCER AS A RAPIDLY EVOLVING
SYSTEM
It has long been appreciated that cancer is an evolutionary system
(1). In this paradigm, individual cancer cells are the reproduc-
tive units within a tumor, with those cells that acquire a survival
advantage through random genetic change being selected through
multiple rounds of clonal expansion, during which they acquire
further alterations that eventually combine to produce malignant
phenotypes (1). The ability of a tumor to evolve solutions to selec-
tion pressures is a function of the selectable heritable variation that
is present within the tumor, be it internal stressors such as low
oxygen tumor micro-environments, or external stressors such as
anti-cancer therapies (2–8). The paradigm of selectable heritable
variation at the cellular level being a critical driver of cancer biol-
ogy has been captured by the term tumor heterogeneity, and the
emerging consensus is that tumor heterogeneity remains a fun-
damental obstacle preventing the development of truly curative
anti-cancer therapies (2–8).

The introduction of efficacious targeted therapies highlighted
the central role of evolution in cancer therapy failure. Patients with
leukemia and lung cancer treated with specific inhibitors target-
ing oncogenic receptor tyrosine kinase (RTK) activity, eventually
exhibit disease progression driven by point mutations within the
oncogenic RTK that renders the tumor resistant to further ther-
apy (9–11). Retrospective analysis revealed rare therapy-resistant
mutants present in tumors prior to treatment initiation (12),
confirming that in some cases targeted therapy selected for resis-
tant clones that were already present within the tumor system.
Melanoma offers a compelling case study of tumor evolution

during targeted therapy. The identification of oncogenic muta-
tions within the B-Raf kinase led to the development of specific
inhibitors that initially display phenomenal clinical efficacy (13–
16), which is swiftly followed by disease recurrence driven by
rapidly evolving therapy resistance [reviewed in Ref. (17)].

Immunological based therapies are also vulnerable to therapy-
resistance driven by tumor evolution, as revealed during a vaccine
strategy trialed in adult patients with Glioblastoma. The vac-
cine therapy invokes a patient immune response that specifically
targets the truncated, oncogenic EGFRvIII variant of the EGF
receptor (18). The EGFRvIII variant is present in approximately
one-third of Glioblastoma patients (19) and is an ideal target
for anti-tumor immunotherapy because the constitutive activ-
ity of the EGFRvIII contributes to tumorigenicity, invasion and
therapy resistance [reviewed in Ref. (18)]. Although the vaccine
significantly increased overall survival time in treated patients
whose tumors expressed the EGFRvIII receptor, disease recur-
rence occurred in all patients with most recurrent tumors losing
EGFRvIII expression (18). EGFRvIII expression is typically het-
erogeneous in Glioblastoma tumors, and is only observed in a
sub-population of tumor cells and rarely in the entire tumor
(20, 21). The most plausible hypothesis is that the vaccine led to
the immune-clearance of EGFRvIII expressing cells from patient
tumors, but in the majority of cases it was the presence of
viable EGFRvIII negative cells within the tumor that allowed
immunological escape and rapid disease recurrence.

These and many other studies all converge on the hypothesis
that long-term cancer patient survival requires the development of
therapeutic strategies that actively suppress tumor evolution (2–8,
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Box 1 Definitions.

Polyploidy: An alteration of chromosomal number that is a multiple of the normal diploid (2n) complement.

Tetraploidy: A specific form of polyploidy that is a doubling of the normal diploid complement (i.e., 4n).

Aneuploidy: An alteration of chromosome number that is not a multiple of the diploid (2n) complement.

Hyperdiploidy: Having a chromosome number that is more than the diploid (2n) complement.

Around 90% of all solid tumors are aneuploid, and most aneuploidy tumors exhibit chromosomal gains and are therefore hyperdiploid (85).
Many cancers have complex karyotypes [see for example Ref. (62)]. In this perspective, we have focused on subpopulations of cancer cells
that have elevated genomic content relative to the tumor bulk, as a source of cells capable of rapid evolution. In the strict sense, these
cells are grossly hyperdiploid relative to healthy, untransformed cells. However, we refer to them here simply as polyploid tumor cells (or
pseudo-polyploid tumor cells) for the following reasons. (1) We are comparing these cells to the tumor bulk, and grossly hyperdiploid tumor
sub-population of cells are typically polyploid (or close to polyploid) relative to the dominant aneuploid tumor karyotype, (2) many of the
cited cell biology studies refer to this tumor cell sub-population as polyploid. We ask the reader to keep in mind that the “tumor polyploid
cells” are in reality a genetically heterogeneous sub-population, which is composed of a variety of complex cancer karyotypes that are
approximately polyploid relative to the dominant, aneuploid tumor cell population.

22). In this perspective, we propose that tumor cells containing an
elevated genomic content (as described in Box 1) are key players in
tumor evolution, and are therefore important therapeutic targets
in preventing the acquisition of therapy resistance during treat-
ment. We begin by summarizing seminal work conducted in yeast
that characterizes how chromosomal gains facilitate rapid evolu-
tion under a wide variety of selection pressures. Next, we review
recent work conducted in cancer, which show that chromosomal
gains also underpin tumor initiation and the acquisition of therapy
resistance in cancer patients. We then present an updated model
of tumor evolution that highlights the central role of increasing
ploidy in cancer initiation and disease progression.

We finish the perspective showcasing recent studies that identify
anti-polyploid compounds that we hope will provide a foundation
for the development of efficacious chemopreventative and evolu-
tionary suppressing cancer therapies of the future. Our goal is
to focus research efforts on the development and translation of
such novel anti-polyploid therapies to prevent and treat incurable
cancers.

HYPERDIPLOIDY AND POLYPLOIDY FACILITATES RAPID
EVOLUTION: LESSONS FROM YEAST THAT ARE RELEVANT
TO CANCER
HOW INCREASING GENOME SIZE FACILITATES RAPID EVOLUTION IN
YEAST
Serious systemic fungal infections continue to endanger patients
with immunocompromised immune systems (23, 24). Anti-fungal
azole drugs are the most commonly used therapy against superfi-
cial and systemic fungal infections due to their efficacy and safety
(23). Fluconazole is a widely used azole that is orally and intra-
venously available and effective against Candida infections, and is
used clinically to treat oropharyngeal and esophageal Candidas
in HIV patients, invasive candidiasis, as well as fungal infec-
tions in the urinary tract and central nervous system (23). Prior
to the HIV pandemic, fluconazole resistance was rare. However,
the widespread use of fluconazole to treat HIV/AIDS patients
has increased the incidence of fluconazole-resistant Candida iso-
lates (25). Generally, resistance develops after administration of
sub-optimal doses of fluconazole over long periods of time, but
in 1992, Bossche et al. isolated a resistant Candida strain in a

patient after only 9 days of fluconazole treatment (26), revealing
circumstances under which the evolution of fluconazole therapy-
resistance occurs astonishingly quickly. In a follow-up study exam-
ining the mechanisms underlying the rapidly acquired fluconazole
resistance, it was found that the resistant strain expressed more
cytochrome P-450 14α-lanosterol demethylase (the target for azole
antifungals) due to duplication of the entire chromosome contain-
ing the CYPO51 gene (27). Subsequent studies have confirmed
that chromosome duplication is an effective and widely utilized
mechanism to evolve drug-resistance in fungal infections (28–31).

Increasing chromosome numbers also provides fitness advan-
tages in other contexts. A powerful example of rapid adaptation
through increasing genomic content was provided by Rancati et al.
(32) when they experimentally perturbed cytokinesis by deleting
the MYO1 gene in the yeast Saccharomyces cerevisiae, and then
selected for mutant strains that had evolved a solution to MYO1
deletion to restore functional cytokinesis. Strikingly, they found
that most of the evolved strains, including the 10 fittest isolates,
displayed an increase in DNA content. Further, diploid strains
evolved much faster than haploid strains. Together, these data
suggest that polyploidization facilitated the rapid evolution of
cytokinesis rescue, a finding reminiscent of the rapid evolution
of therapy-resistance driven by polyploidy described in immuno-
compromised patients treated with anti-fungal therapies described
above.

Hyperosmotic stress occurs when an organism is exposed to
higher solute concentration outside the cell, leading to water
loss and subsequent increases in intracellular ion and metabo-
lite concentrations [reviewed in Ref. (33)]. Hyperosmotic stress
is a common environmental stressor, and yeast have evolved a
hyperosmotic stress response that is mediated by the high osmo-
larity glycerol (HOG) pathway, which activates genes involved in
salt tolerance and adaptation (34). Wagner and colleagues investi-
gated how yeast could evolve adaptations to hyperosmolarity stress
in long-term evolution experiments, where three replicate Sac-
charomyces cerevisiae yeast populations were exposed to high-salt
conditions for 300 generations (33). All three populations evolved
a faster growth rate under high-salt conditions after selection
compared to their ancestral cultures (33). DNA content analy-
sis revealed that all three evolved lines had an increase in ploidy,
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suggesting that evolutionary adaptation to hyperosmotic stress is
also facilitated through increasing genome size (33).

The Evolution Canyon originated in Israel 3–5 million years
ago, and contains diverse micro-environments and has experi-
enced minimal human disturbance, providing an excellent natural
site to study evolutionary adaptations of many organisms (35).
Chang et al. isolated and phenotypically characterized 14 diploid
yeast strains collected from different micro-environments present
within the Evolutionary Canyon (35). One of these strains was
highly resistant to the metal copper. Strikingly, Chang et al. found
that the copper-tolerant phenotype was the product of large-scale
chromosomal rearrangements that increased the copy number of
the CUP1 and CUP2, major genes involved in copper regulation
(35). Additional copper-tolerance gene expression was up regu-
lated by increased CUP2 copy number, showing that the increase
in gene dosage both directly and indirectly contributes to the evo-
lution of copper-tolerance. Surprisingly, when the tolerant strains
were cultured in the absence of copper, a wild-type chromosome
reappeared and was fixed within 300 generations. These findings
reveal that “large-scale chromosomal rearrangements provide not
only fast arising but also readily reversible sources of variation
during early stages of adaptive evolution” (35).

Collectively, these studies reveal increasing chromosome con-
tent as a mechanism that facilitates the rapid evolution of yeast
across many different selection pressures and environments.
These include the rapid acquisition of therapy resistance in
patients, rapid adaptation during experimental evolution, and the
successful adaptation to selection pressures present in nature.

HOW INCREASING GENOME SIZE CHANGES YEAST PHENOTYPES
One important mechanism for rapid adaptation provided by chro-
mosomal gain is increased gene expression due to elevated gene
dosage. Multiple studies have confirmed that messenger RNA lev-
els scale with chromosome copy number in aneuploid systems.
Hughes et al. conducted expression profiling of yeast strains with
characterized aneuploidy and showed that increased genomic con-
tent data “precisely mirrored the expression data in this region”
(36), revealing that gene duplication leads to a commensurate
increase in messenger expression (36). The second important
finding from this study was that under experimental selection,
large-scale gene duplications were shown to be the dominant
adaptive response to loss-of-function deletions (36), providing
early support for the hypothesis that increasing genomic content
facilitates rapid adaptation.

In a later study, examining the effects of extra chromosomes on
cell physiology and cell division in yeast, Torres et al. observed an
approximate doubling of gene expression in duplicated chromo-
somes, with greater than 90% the amplified genes being expressed
at a higher level (37). These data indicate that most genes are
expressed in proportion to their gene copy number, and gene
amplification results in a roughly proportional increase in gene
expression (37).

The classic evolution study by Rancati et al. confirmed that on
average there is a stoichiometric relationship between gene copy
number and gene expression level, with gene expression levels
from chromosomes roughly scaling with chromosome copy num-
ber (32). However, they noted that some gene expression levels

deviated significantly from this trend, identifying outlier genes
whose expression changed more than three standard deviations
away from the stoichiometric trend (32). Further evidence suggests
that the majority of outlier expression is caused by the increased
expression of transcription factors (or their upstream regulators)
caused by chromosomal copy number increase (32). Similarly,
expression of the copper resistance gene CUP2 due to increase
in gene dosage causes the expression of downstream genes, several
of which also enhance resistance to copper (35). This reveals how a
simple linear change in gene expression can generate a non-linear
adaptive response through pathway amplification (35).

Changes in yeast chromosome numbers also increase protein
expression levels in yeast cells. Pavelka et al. generated a panel of
stable aneuploidy yeast strains to directly address this question
(38). They found that chromosomal copy number changes in gen-
eral caused proportional changes in gene expression and protein
expression levels (38). Further, they found that yeast strains with
similar karyotypes tend to display similar changes in global protein
expression patterns (38). Interestingly, the Authors also identified
outliers in gene and protein expression, however only a small frac-
tion of the gene expression outliers overlapped with the protein
expression outliers (38), revealing that gene dosage changes are
likely to have complex effects on cellular phenotypes. The Authors
applied a variety of selection pressures on euploid parent controls
and aneuploid strains, revealing that aneuploid strains grew better
under selection by generating rapid phenotypic variation, show-
ing that aneuploidy that can provide fitness gains under diverse
selection pressures (38).

Together, the data sets summarized above show that increasing
DNA content modifies both gene and protein expression, in linear
and non-linear ways, allowing cell populations to rapidly explore
a wide range of heritable phenotypes. Thus, increasing ploidy
enables yeast cells to experience large phenotypic leaps, which in
turn facilitates rapid evolution to novel selection pressures (39).

HOW INCREASED GENOMIC CONTENT BUFFERS CELLS AGAINST
DELETERIOUS MUTATIONS
The mutator hypothesis proposes that mutations that increase
genomic instability (the mutator phenotype) drives tumorigen-
esis by allowing cells to rapidly acquire the necessary number of
mutations required for cellular transformation (40). The mutator
phenotype was first proposed by Loeb to explain how tumors can
accumulate the number of mutations necessary for tumorigenesis
despite the extremely high accuracy with which mammalian cells
replicate the genome (41, 42). One primary criticism of the muta-
tor hypothesis is that most mutations are deleterious and therefore
the mutator phenotype will accelerate the accumulation of muta-
tions that reduce fitness, leading to negative clonal selection [(3)
and references therein]. Although experimental and theoretical
counters to this criticism have been provided [recently reviewed
in Ref. (43)], one potentially important phenomenon that has
been overlooked in this debate is the role of genome amplifica-
tion in buffering eukaryotic cells against the effects of deleterious
mutations.

Using adaptation to different laboratory environments as their
selection pressure, Thompson et al. (44) compared the relative
fitness of mismatch repair defective (mutator) strains of yeast
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within haploid and diploid yeast genetic backgrounds, with strik-
ing results. In the diploid genetic background, mutators displayed
an advantage over non-mutators, and mutators that “win” adapta-
tion experiments were on average fitter than non-mutator winners
(44). In contrast mutators in the haploid background displayed
no advantage when competed against haploid non-mutators and
the haploid mutator winners were less fit than the haploid non-
mutator controls (44). The most parsimonious explanation for
this result is that most deleterious mutations are recessive, and
are therefore buffered in the diploid yeast strain. Haploid yeast
must bear the cost of deleterious mutations in full, which gives
haploid yeast less time to accumulate beneficial mutations before
the cumulative effects of deleterious mutations eliminates them
from the population. An additional important observation from
this study was the type of mutations that occurred with haploid
versus diploid populations. The diploid mutators displayed a gen-
eralist class of beneficial mutation that provided a large selective
advantage across a range of selection pressures (44). In contrast,
haploid mutators displayed beneficial mutations whose advantage
was limited to the specific stress they were selected under (44).

These results suggest two intriguing hypotheses. First, increases
in ploidy may act co-operatively with a mutator phenotype by
reducing the effect of deleterious mutations. Second, increased
ploidy enables a mutator phenotype to generate “generalist” bene-
ficial mutations that confer selective advantage across a wide range
of stressors.

HOW ELEVATED PLOIDY DRIVES THE EVOLUTION OF CANCER
ANEUPLOIDY AND TUMORIGENESIS
The vast majority of cancers are aneuploidy, with around 90%
of solid tumors and 75% of hematopoietic cancers having abnor-
mal chromosome numbers (45). The high incidence of aneuploidy
in cancer cells inspired Boveri over 100 years ago to propose the
hypothesis that aneuploidy causes cancer (46). Consistent with this
hypothesis, aneuploidy has been shown to precede transformation
in a variety of cancers (47–54), and several studies provide both
experimental and theoretical support for a fundamental role of
aneuploidy during tumor initiation (55–59). Duesberg and col-
leagues have proposed that aneuploidy generates cancer causing
karyotypes that are selected during the evolutionary process of
tumor initiation and transformation (60–62). However, these ideas
have been contested, in part because the aneuploidy model of
tumor initiation is thought to downplay the established role of
oncogenes in the process of transformation (63–65). Recent stud-
ies examining the role of polyploidy in tumor initiation may
help incorporate the oncogenes and aneuploidy tumor initiation
models into a single paradigm.

EVIDENCE SUPPORTING TETRAPLOID CELLS BEING THE CELL OF
ORIGIN IN TUMOR INITIATION
Experimental evidence directly linking tetraploidy with tumor ini-
tiation was provided when Fujiwara et al. created a tetraploid
cell population in p53-null mouse mammary epithelial cells (66).
Tetraploid cells displayed a high level of tumorigenesis when
injected into nude mice, in contrast to the diploid p53-null con-
trols, which did not form tumors (66). Subsequent studies per-
turbing the mitotic spindle led to accumulation of tetraploid cells

and a higher incidence of tumor formation, further supporting a
central role of tetraploidy in tumor initiation (67, 68).

Tetraploidy potentially provides multiple beneficial functions
during tumor initiation. First, a large body of evidence supports
the hypothesis that tetraploidy acts as a gateway karyotype by
inducing chromosomal instability (CIN), which leads to aneu-
ploidy and the evolution of a transformed phenotype [reviewed
in Ref. (69)]. Using several experimental models of telomere crisis,
Davoli and de Lange recently demonstrated that endoreplication
and mitotic failure created tetraploid cells during telomere crisis
(70). Importantly, the resulting tetraploid cells displayed enhanced
tumorigenic capacity relative to diploid controls in soft agar and
mouse implantation assays (70). Finally, Davoli and de Lange
then showed tumors that are initiated by tetraploid cells evolve
more complex aneuploidy karyotypes in vivo, showing tetraploidy
functions as a gateway mutation to aneuploidy (70).

Lv and colleagues used the spontaneous transformation of pri-
mary ovarian epithelial cells to provide compelling evidence for
the role of tetraploidy as a gateway karyotype during tumori-
genesis (71). Lv et al. generated primary cultures of mouse
ovarian surface epithelial cells (MOSECs), which they contin-
ually subcultured for over 30 passages (71). Following ploidy
status during culture revealed that the diploid cells underwent
an intermediate tetraploid phase, and then evolved into aneuploid
(near-tetraploid) cells (71). Tetraploidy was caused by cytokine-
sis failure in diploid cells, with the tetraploid cells subsequently
experiencing chromosome mis-segregation during bipolar and
multipolar mitosis to generate aneuploid progeny (71). When the
lines were re-injected into mice, only late passage aneuploid cells
formed tumors (71), showing that spontaneous transformation
during long-term passaging likely involves a diploid–tetraploid–
aneuploid transition caused by defects in mitosis.

Two recent studies have provided compelling support for the
hypothesis that genome doubling facilitates the acquisition of a
transformed phenotype in tumor initiation in human cancers.
Examining neuroblastomas, Lundberg et al. combined karyotypic
analyses of tumors with mathematical modeling and concluded
that the loss of chromosomes from a tetraploid precursor cell was
the most parsimonious hypothesis explaining the chromosomal
numerical alterations present in neuroblastoma tumors (72). This
conclusion was supported experimentally when it was shown that
neuroblastoma lines displayed a high frequency of polyploidiza-
tion events, and that clonal cultures with elevated genomic content
generated aneuploid progeny with high frequency (72). Altogether
these data suggest that polyploidy is a gateway cell state that
facilitates the generation of aneuploidy and increases karyotypic
complexity in neuroblastoma tumors (72).

More recently, Swanton and colleagues (73) systematically
addressed the role of tetraploidy in colorectal cancer evolution
(73). Colorectal cancers that had undergone genome doubling
(i.e., tetraploid) displayed a significantly higher incidence of
genomic instability than those cancers that began as diploids, with
tetraploidization appearing to be an early event in the majority
of colorectal cancers (73). Tetraploid clones were isolated from
colorectal cancer lines, and these displayed a higher incidence of
segregation errors during anaphase and increased chromosomal
structural abnormalities relative to their cognate, diploid controls
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(73). Strikingly, daughter cells derived from diploid clones that
had undergone a segregation error during mitosis frequently died
or underwent cell-cycle arrest, whereas daughter generated from
tetraploid clones after segregation error died much less frequently
and continued to proliferate (73). These data provide direct exper-
imental support for the hypothesis that tetraploidy endows tumor
precursor cells with an elevated tolerance to CIN, facilitating
the generation of aneuploidy and the evolution of a complex
karyotype (74). Consistent with this model, genome doubling is
associated with poor prognosis, being significantly associated with
disease relapse (73).

In addition to increasing tolerance to aneuploidy and facili-
tating the evolution of a transformed karyotype, tetraploidy also
helps overcome oncogene induced senescence. Aberrant activa-
tion of oncogenes such as Ras, Raf, or PI3-kinase triggers cellular
senescence, which functions as a tumor suppressor by permanently
restricting the proliferative capacity of cells (75–77). Activation
of DNA-damage response pathways plays an important role dur-
ing oncogene induced senescence (78–80), as does activation of
p53 pathways (76, 81–83). Exploring how malignant cells over-
come the senescent barrier, Zheng et al. used a mouse model of
tumorigenesis discovered that cells that overcame tumorigenesis
barriers to drive long-term proliferation in culture all displayed
near-polyploid levels of aneuploidy (84). These near-polyploid
cells overexpressed DNA repair genes to reduce the DNA-damage
response, as well as methylating p53 promoter regions to silence
p53 expression (84). These results indicate that polyploid cells
may be able to overcome the oncogene induced senescence by
increasing DNA repair activity and epigenetic reprograming of
p53 expression (84).

Altogether, these studies show that tetraploidy functions as
a gateway phenotype that cooperates with oncogenes to induce
cellular transformation in three ways. First, tetraploidy helps over-
come oncogene induced senescence. Second, tetraploidy facilitates
the acquisition of oncogenic karyotypes and phenotypes by induc-
ing CIN leading to aneuploidy. Third tetraploidy buffers pre-
malignant cells against the deleterious effects of chromosomal
loss. Collectively, these findings go some way to explaining why the
majority of human tumors contain a hyperdiploid karyotype (85).

POLYPLOIDY TUMOR CELLS AND THE EVOLUTION OF
CANCER THERAPY RESISTANCE
HOW POLYPLOIDY OVERCOMES THERAPY-INDUCED SENESCENCE
Cancer cells can survive chemotherapy and radiotherapy by enter-
ing a reversible senescent state, called therapy-induced senescence
(TIS), which is a senescent-like phenotype that displays many of
the features of the normal physiological senescence phenotype
(86). Even transformed cells lacking functional p53 and retinoblas-
toma protein (Rb) pathways retain the capacity to undergo TIS
(87). TIS has been observed in vivo using both xenograft and
transgenic cancer models (88, 89). Senescence markers have been
observed from breast and lung cancer patient tumor specimens
treated with chemotherapy, supporting the hypothesis that TIS is
a clinically relevant cell fate in human cancer patients treated with
cytotoxic therapies (90, 91).

Unfortunately TIS is not permanent, with rare cells being able
to bypass TIS to re-enter the cell cycle and re-initiate tumor growth

(90). One way cells overcome TIS is through the over-expression
of the mitotic kinase CDK1, which phosphorylates the protein
survivin to promote TIS escape and subsequent survival of can-
cer cells (92). In a follow-up study, Wang and colleagues went
on to show that over-expression of CDK1 induced the forma-
tion of polyploid cells during TIS, and that these CDK expressing
polyploid cells represent an important transition state through
which escape from TIS preferentially occurs (92). Intriguingly,
Wang et al. also reported that non-small cell lung cancer patients
expressing markers of TIS following neo-adjuvant therapy had a
significantly worse prognosis than patients who did not express
TIS markers (92). Altogether, these data support a model whereby
TIS provides an escape mechanism for tumor cells to avoid the
toxic effects of chemotherapy to drive disease recurrence (92).
Moreover, polyploid tumor cells are far more likely to overcome
the TIS barrier, and polyploidy-mediated TIS escape represents an
important new therapy-resistance mechanism in cancer patients
undergoing a variety of chemotherapy regimes (92).

HOW POLYPLOIDY INDUCES INFREQUENT CELL CYCLE
Infrequent cell cycle is a well-established resistance mechanism
against cytotoxic insult. Normal quiescent (G0) hematopoietic
stem cells (HSCs) are resistant to the anti-proliferative chemother-
apeutic agent 5-fluoro-uracil (5-FU) (93, 94), and become sensi-
tive to 5-FU treatment when they are forced into a proliferative
state by treatment with IFNα (95). Healthy HSCs can be pro-
tected from the effects of irradiation by increasing the proportion
of HSCs in G0 through a variety of treatments in vivo (96–
98). In cancer, the chemoprotective effect of cell-cycle-mediated
drug-resistance is well-established (99). For example, Schmidt and
colleagues demonstrated that colon adenocarcinoma cells arrested
in G1 by over-expression of p27Kip1 are significantly more resistant
to a variety of chemotherapeutic agents, including temozolomide
(100). Using a mouse xenograft model, Naumov et al. showed
that the DNA intercalating compound doxorubicin (DXR) effec-
tively reduced the metastatic tumor burden but spared non-cycling
tumor cells, which persisted during therapy and subsequently
developed into metastases after DXR therapy was discontinued
(101). More recently, label-retention has been used to pheno-
typically identify infrequently dividing cells that are resistant to
chemotherapy from a variety of tumor types (102–105). Stud-
ies examining the cancer stem-cell phenotype have also shown
that quiescence provides protection against cell death induced
by DNA-damage agents (106, 107) and chemotherapy (108).
Recently, a landmark study by Kreso et al. revealed how chemother-
apy selects for minor, infrequently cycling subpopulations using
lineage tracking in mouse models of cancer evolution (109). Col-
lectively these studies provide strong support the hypothesis that
infrequent cell cycle as a fundamental mechanism that contributes
to the evolution of therapy resistance in cancer patients.

Recently, we identified a genetically diverse, polyploid tumor
cell sub-population in Glioblastoma patients that is able to ini-
tiate and maintain tumor growth in vivo, and is resistant to
cytotoxic therapy (110). Proliferation markers revealed that the
polyploid tumor cell sub-population contain approximately three
times more quiescent cells than the bulk near-diploid tumor
population (110). Infrequently cycling cells retain the dye CFSE,
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and CFSE label-retention has been used to enrich for therapy-
resistant, tumor-initiating cells in several tumor types [reviewed
in Ref. (111)]. Polyploid tumor cells accumulate within the label-
retaining sub-population of cells, providing a functional confir-
mation of their infrequent cell cycle (110). Altogether, these data
show that increasing chromosome numbers provides a mechanism
to generate infrequently cycling tumor cells, providing a general
resistance mechanism against cytotoxic chemotherapy treatments
designed to target actively cycling cells (110).

Why do polyploid tumor cells cycle less frequently? Seminal
studies conducted in yeast show that increased transcription and
translation caused by elevated genomic content causes cell-cycle
delays during G1 (37). Murine embryonic fibroblasts (MEFs) con-
taining extra chromosome copies also cycle less frequently (112,
113), likely due to changes in transcription and translation (85).
In addition, polyploid tumor cells have a twofold larger cell vol-
ume compared to their diploid counterparts (110). Cell growth,
cell size, and cell division are co-regulated to ensure cells are large
enough to divide at mitosis (114). Studies in yeast reveal a size
requirement for G1-S transition, with smaller cells delaying in G1

until a sufficient size was reached to maintain viable progeny after
cell division (115, 116). Complementary studies in animal cells
show that mammalian cells also delay in G1 to allow an appro-
priate cell size to be achieved (117, 118). A plausible hypothesis
that combines both these observations is that the larger polyploid
tumor cells arrest during G0/G1 to allow for a sufficient growth to
occur before committing to division, which is hampered due to the
increased transcription and translational demands placed on poly-
ploid tumor cells by their elevated and unbalanced chromosomal
copy number.

Thus increased ploidy provides a general resistance mecha-
nism (that of infrequent cell cycle) to tumor cells, which are
well-positioned to contribute to the rapid evolution of patient
tumors during conventional chemotherapy and radiotherapy
regimes.

THE ROLE OF GIANT POLYPLOID CELLS IN THERAPY RESISTANCE AND
TUMOR REPOPULATION AFTER THERAPY
Giant polyploid cells are formed if DNA replication is uncoupled
from mitosis (119). This process has been termed the endocycle
and is a characteristic of p53-null cells (120), which is further
increased by exposure to radiation (121). It was thought that the
process of endocycles was irreversible and the resulting giant poly-
ploid cells represent a reproductive dead end (122). However two
back-to-back manuscripts suggested that giant polyploid cells may
provide an escape mechanism from severe genotoxic damage. The
first study followed p53-null cells after genotoxic insult, noting that
after delaying at G2/M for several days the cells enter endoreplica-
tion cycles that generate giant polyploid cells (123). Although the
majority of giant polyploid cells die, a small subset survive that are
able to produce viable progeny cells as determined using sensitive
clonogenic assays (123). Viable giant polyploid cells appear to fol-
low a defined path of chromosome re-organization that involves
reconstructing nuclei into polyploidy “bouquets,” which subse-
quently return to an interphase state and separate into secondary
nuclei (124). These secondary nuclei give rise to secondary cells in
a manner reminiscent of the life-cycles of protozoa (124).

Looking at two forms of transformation, carcinogen-induced
transformation of p53+/+ cell lines and spontaneous transforma-
tion of p53−/− cell lines Sundaram et al. reported a transformation
process that involved giant polyploid cell intermediates (125).
Here, the giant polyploid cells undergo a novel type of cell divi-
sion that involves nuclear budding within the giant polyploid
cells followed by intracellular cytokinesis to produce mononuclear
daughter cells that bud off the parental giant polyploid mother
cells (125). These mononuclear daughter cells are transformed,
displaying anchorage-independent growth (a classical hallmark
of cellular transformation) (125). A series of follow-up studies
provided strong support for the hypothesis that a subset giant
polyploid cells undergo some form of reductive division to pro-
duce small cells with near-diploid chromosomes that are prolif-
erative and competent to re-initiate tumor growth (reviewed in
Ref. (126)]. Interestingly, irradiated giant polyploid cells activate
key meiotic genes that are involved in metaphase arrest, genetic
recombination, and reductive divisions that occur during meio-
sis, indicating that giant polyploidy reductive divisions are likely
“meiosis-like” in nature (127–130).

Puig et al. undertook a systematic study using xenograft in vivo
models and in vitro approaches to characterize the role of giant
polyploid cells in therapy response to cisplatin (131). Cisplatin
treated tumors initially undergo shrinkage, and are increasingly
populated with giant non-proliferating tumor cells that main-
tain DNA synthesis (131). After several weeks of latency tumor
growth recurs, driven by a small fraction of proliferating cells
(131). Cells treated in vitro using clinically relevant cisplatin doses
also generate giant polyploid cells, a subset of which are able
to generate colonies of rapidly cycling small diploid cells. This
recapitulated the in vivo disease recurrence and suggested that
giant polyploid cells are active contributors to disease progres-
sion after therapy (131). Intriguingly, the proliferative diploid cells
generated from giant polyploidy cells have altered karyotypes and
display increased resistance to cytotoxic drugs (131), suggesting
for the first time that giant polyploid cells actively contribute to
the evolution of therapy resistance.

Very recent work studying ovarian cancer has underscored the
importance of giant polyploid cells in cancer disease progression
and therapy resistance (132). Zhang et al. purified giant polyploid
cells from established ovarian cancer lines and patient tumors,
and confirmed that these cells can initiate tumors in vivo and
are resistant to cisplatin cytotoxic therapy (132). Like previous
studies, Zhang et al. confirmed that giant polyploidy cells cycle
infrequently and generate smaller near-diploid progeny through
budding and bursting mechanisms (132). In this way, giant poly-
ploid cells are posited to function in a manner analogous to spores
in lower organisms, surviving harsh conditions to facilitate rapid
repopulation after stressful conditions have subsided (132, 133).

POLYPLOIDY, EMT, AND THE CANCER STEM-CELL PHENOTYPE
Cells with a primitive, undifferentiated phenotype tend to cycle
infrequently and display enhanced DNA repair, making them dif-
ficult to kill using cytotoxic and genotoxic therapies that preferen-
tially target actively cycling cells (134–136). The underlying drivers
leading to the generation of a primitive phenotype in patient
tumors remain incompletely understood. It has been reported
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that the frequency of CSC’s increases after treatment with geno-
toxic therapies (137–139). Salmina et al. tested the hypothesis
whether polyploidy, which allows cells to survive cytotoxic therapy
to continue proliferation, is also capable of endowing cells with a
primitive cell phenotype (140). They found that irradiated giant
polyploidy cells caused up regulation of the self-renewal stem-
cell genes OCT4 and NANOG, and that the NANOG, OCT4, and
SOX2 proteins were concentrated onto nuclear foci in giant poly-
ploidy cells (140). The giant polyploid cells resisted apoptosis,
overcame TIS, and transmitted the NANOG-OCT4-SOX2 self-
renewal program to their progeny (140). Subsequently Lagadec
et al. reported that ionizing radiation reprogramed differenti-
ated breast cancer cells toward an undifferentiated CSC state
(141). Strikingly, CSC reprograming only occurred within poly-
ploidy subpopulations, and involved re-expression of the tran-
scription factors OCT4, NANOG, sex determining region Y-box 2
and Klf4 (141). More recently, Zhang et al. demonstrated that
ovarian cancer giant polyploid cells displayed the CSC prop-
erties of CD44+/CD133+ expression, generation of spheroids
under serum-free culture conditions, increased tumorigenicity,
and elevated therapy resistance (132).

Cancer cells can also undergo epithelial to mesenchymal tran-
sition (EMT), where the cancer cells activate an evolutionarily
conserved trans-differentiation program that is used during mor-
phogenesis to convert differentiated epithelial cells into migratory
mesenchymal cells [reviewed in Ref. (142)]. Cancer cells under-
going EMT not only adopt an invasive cell phenotype that can
drive metastasis, but may also enter a drug refractory state due
to epigenetic reprograming (142). Recent work has revealed that
polyploidy facilitates EMT, with Zhang et al. showing that giant
polyploid tumor cells gain a mesenchymal phenotype (132) that
correlates with increased expression levels of EMT transcriptional
factors (143). These data suggest that polyploidy can facilitate
EMT, providing access to cell phenotype that is both invasive and
resistant to a variety of therapies.

Together, these studies provide compelling support for the
hypothesis that polyploidy drives the acquisition of undifferen-
tiated, primitive cellular phenotypes in human cancer. These cell
phenotypes can potentially increase therapy resistance, provide an
elevated tumor initiation capacity, and increase both the invasive
and metastatic potential of tumor cells.

PLOIDY-INDUCED ESCAPE FROM TARGETED ANTI-CANCER THERAPIES
Strong evidence supporting the role of polyploidy in evolving
solutions to targeted therapy has come from mouse models of
cancer. A defective spindle assembly checkpoint (SAC) results in
“mitotic slippage,” where cells exit mitosis without undergoing
anaphase or cytokinesis to produce a tetraploid cell [reviewed in
Ref. (69)]. As essential component of the SAC is Mad2, and Mad2
over-expression commonly occurs in many human cancers and
is associated with poor prognosis [reviewed in Ref. (68)]. Over-
expression of Mad2 increases the frequency of mitotic slippage and
tetraploidy (68, 69), and promotes tumorigenesis in mice (69).
In a doxycycline-inducible K-Ras model of cancer, Sotillo and
colleagues explored how Mad2 over-expression determined the
tumors ability to escape inhibition of the primary oncogenic dri-
ver K-Ras (144). In these experiments, Sotillo et al. allowed K-Ras

tumors to form in the presence or absence of Mad2, revealing
that the presence of Mad2 expression increased the aggressiveness
of the K-Ras tumor, as indicated by increased invasion, elevated
proliferative index, and a significant decrease in overall survival
(144). When doxycycline was removed, K-Ras and Mad2 expres-
sion was lost, leading to tumor regression in all animals. K-Ras
only tumors recurred rarely, however the tumors expressing both
K-Ras and Mad2 displayed a marked increase in recurrence rate,
driven by activation of a variety of compensating transforming
pathways (144). This finding supports the hypothesis that CIN
increases the probability of disease relapse during targeted therapy
by facilitating alternate pathway activation that allows tumor cells
to avoid the effects of targeted therapy (144). Further, this study
highlights how aneuploidy and oncogenes can act synergistically
during tumor initiation and cancer evolution.

The proteasome inhibitor, bortezomib, has forged new hori-
zons in the treatment of multiple myeloma (MM) (145). Although
efficacious, bortezomib is non-curative for MM because patients
eventually evolve therapy resistance. However, the underlying
resistance mechanisms remain poorly understood (146). To begin
to characterize resistance mechanisms, Balsas et al. generated
bortezomib-resistant MM lines that displayed five to sixfold
increased resistance to bortezomib (147). Unexpectedly, the target
of bortezomib (PSMβ5, the β5 subunit of the proteasome) was
not mutated, but was instead significantly overexpressed at both
the mRNA and protein levels within resistant cells (147). In addi-
tion, the bortezomib-resistant cells had evolved a near-tetraploid
genomic content, which also displayed cross-resistance to other
chemically unrelated proteasome inhibitors (147). Together, these
data provide direct support for the hypothesis that, as for yeast,
increasing genomic content allows cancer cells to circumvent
targeted therapy through over-expression of the therapy target.

An interesting and unwelcome twist to the use of targeted
therapy came from study of Sharma et al. (148). When Sharma
et al. treated several breast cancer lines with the tyrosine kinase
inhibitor BMS-777607, they noted that the surviving cell popula-
tion displayed elevated levels of polyploidy due to an increase in
the incidence of failed cytokinesis caused by off-target inhibition
of Aurora kinase B (148). They tested the surviving polyploidy cells
for sensitivity toward a range of chemotherapeutics (doxorubicin,
bleomycin, cisplatin, methotrexate, and paclitaxel), and found that
the therapy-induced polyploidy cells were resistant to all classes of
chemotherapies tested (148). This finding is reminiscent of an evo-
lutionary study undertaken in yeast, where transiently targeting
the function of Hsp90 protein led the chromosomal gains and the
rapid evolution of therapy-resistance toward unrelated cytotoxic
compounds (149).

Together these studies reveal that tumor cell polyploidy gener-
ates resistance toward targeted therapy. Of concern is the finding
that treating tumor cells with targeted therapies can elevate levels
of polyploidy in tumor cell populations, which then increases the
risk of developing multi-drug-resistance within clinical settings.

MEASURING THE PREVALENCE OF POLYPLOID TUMOR CELLS IN
CANCER
How many polyploid cells are there in patient tumors? Quan-
titation of polyploidy in patient cell lines and primary tumors
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is challenging due to the infrequent cell cycle of polyploid
tumor cells. Cancer cell biologists have traditionally used a flow-
cytometry approach, where they estimate the frequency of poly-
ploidy by measuring the number of cells with greater than 4n DNA
content. However, this approach can only detect polyploid cells
that are actively cycling, because most of the polyploid tumor cells
are tetraploid or near-tetraploid, and therefore remain indistin-
guishable from the G2/M cells of the “diploid” tumor population.
More sophisticated metaphase analyses [for example those in Ref.
(62)] are also likely to underestimate the frequency of polyploid
tumor cells, because their infrequent cell cycle means they will
be under-represented using a metaphase-dependent karyotypic
analysis.

Flow-cytometry screens can utilize the expression of Cyclin-B1
to discriminate between the cycling tumor “diploid” cells that are
transitioning through the G2/M phase of the cell cycle, from the
polyploid tumor cells in that are in the G0/G1 phase of the cell
cycle (Figure 1). The advantage of this assay is that it allows the
assessment of large populations of cells (in this example, 100,000
single cells for each patient line were analyzed), and the inclusion
of a control line in the same tube means that the ploidy levels
of tumor cells relative to control cells can be estimated within
the same assay under identical staining conditions, eliminating
the confounding effects of cell number variation between tubes
[Figure 1; Ref. (110)]. Here, we use the prodrug carboxyfluores-
cein diacetate succinimidyl ester (CFSE), which is converted by
cellular esterase activity into a fluorescent compound covalently
bound to proteins and retained within the cells (150). CFSE stain-
ing clearly delineates the CFSE-stained control from the unstained
test cell populations, and the control and test cell populations are
readily identified using standard flow-cytometry gating strategies
(110). CFSE-stained control lines can be either healthy diploid cells
to provide a more accurate estimate of DNA content [(110) and
shown in Figure 1], or alternatively untreated tumor cells can be
used to directly compare the effect of drug treatments on the preva-
lence of polyploidy during compound screening or pre-clinical
testing. Because control cells are stained with CFSE immediately
before fixation (110), the staining process has no effect on cell
ploidy or viability and is therefore unlikely to generate Type I or
Type II errors during compound screening.

Using this method, we assessed the prevalence of polyploidy
in 10 low-passage primary patient glioblastoma lines (Figure 1),
cultured under tumorsphere conditions, a culture method that
preserves the genotype, and phenotype of the original tumor
(151). In 10 primary patient tumor lines, the lowest frequency
of tumor cell polyploidy was 1 in 20 cells (i.e., 5% of the total
tumor cell population were polyploid). To put this into context,
it is estimated that a 1 g solid tumor contains 108–109 tumor
cells (74, 152). If the lowest polyploid estimate of 5% is applied,
then between 5 and 50 million rapidly evolving, therapy-resistant
polyploid tumor cells will be present in brain cancer patients that
have tumor volumes of 1 cm3.

AN INTEGRATED MODEL EXPLAINING HOW INCREASED
GENOMIC CONTENT FACILITATES CANCER EVOLUTION
From the perspective of cancer as an evolutionary disease, we argue
that the studies summarized above provide sufficient grounds for

FIGURE 1 | An improved flow-cytometry assay for measuring the
prevalence of polyploidy in tumors cell populations. (A) Tumor cell
samples are spiked with carboxyfluorescein diacetate succinimidylester
(CFSE) stained primary neonatal foreskin fibroblasts (NFF) diploid control.
The CFSE-negative tumor cells shown in blue are readily gated from the
CFSE-high NFF diploid controls, shown in red. (B) DNA content of the
Glioblastoma tumor cells (blue histogram) overlayed onto the NFF diploid
control histogram, shown in red. Most Glioblastoma cell lines that we have
studied are aneuploid with a slightly hyperdiploid DNA content, and contain
a small sub-population of cells that are near-tetraploid with respect to the
tumor bulk population (i.e., pseudo-polyploid). (C) A typical polyploidy
flow-cytometry assessment utilized by many cancer cell biologists, who
use the proportion of live single cells with greater than 4n DNA (shown
within the red gate) as being representative of the total pseudo-polyploid
population. In this example, 4.5% of the total cells are classed as
pseudo-polyploid. (D) The same tumor sample assessed for
pseudo-polyploidy using Cyclin-B1 staining to discriminate between the
G2/M (the Cyclin-B1 high cells with a 4n DNA content) population of the
pseudo-diploid bulk, from the pseudo-diploid G0/G1 population (the
Cyclin-B1 low cells with a 4n DNA content). The pseudo-polyploid gate
(shown in red) identifies both the cycling and the non-cycling
pseudo-polyploid tumor cells, which make up approximately 22% of the
total tumor cell population. (E)Ten low-passage primary patient glioblastoma
cell lines, grown under serum-free tumorsphere conditions, assessed for
pseudo-polyploidy using the Cyclin-B1 gating strategy from (D). In eight
lines, the dominant cell population was aneuploidy with a near-diploid DNA
content, with a sub-population of pseudo-polyploid cells that made up
5–38% of the total cell population. In contrast, two glioblastoma lines were
pre-dominantly pseudo-polyploid (65 and 78%), with a small of near-diploid
sub-population. Detailed staining protocols are provided in Ref. (110).

the development of an updated model of cancer that highlights
a central role of polyploidy during tumorigenesis and disease
progression (Figure 2). The hallmarks of cancer outlined by
Hanahan and Weinberg (153) clearly highlight the selection pres-
sures that must be overcome on the journey from pre-malignant
lesion to full-blown cancer. The early selection pressures include
apoptosis, senescence and terminal differentiation. We argue that
pre-malignant polyploid cells are more likely to overcome these
barriers than diploid pre-malignant cells. Polyploidy enables epi-
genetic silencing of p53 (84), reducing the probability of apoptosis
and weakening the senescence barrier. Polyploidy also rewires the
DNA-damage response (84), further subverting the senescence
barrier and increasing the probability of pre-malignant polyploid
cells re-entering the cell cycle (84). The vast majority of cells
are terminally differentiated. Differentiated pre-malignant cells
must somehow overcome the terminal differentiation program,
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FIGURE 2 | An integrated model of tumor evolution highlighting
potential roles of polyploidy during cellular transformation. Here, we
present a simplified view of disease progression, highlighting the role of
polyploidy in overcoming selection pressures to drive the evolution of
cellular transformation. The fist selections pressures pre-malignant lesions
must overcome are those of apoptosis, senescence and terminal
differentiation. Polyploidy enables adaptation to these barriers by silencing
p53 remove p53-dependent pro-apoptotic and senescence signaling,
rewiring the DNA-damage response to suppress p53-independent
senescence programs, and enabling acquisition of primitive stem-cell
phenotypes. Once a proliferative state is reached, polyploidy increases the

acquisition of transforming mutations by increasing chromosomal
instability and buffering the proliferative cells against the effects of
deleterious mutations. Polyploidy also increases glycolysis, enabling
survival in low oxygen environments, and enables EMT and the generation
of invasive and metastatic phenotypes. Polyploid cells provide multiple
mechanisms of therapy resistance, buffer the cancer genome against
deleterious mutation resulting from genotoxic therapies, and generate
primitive tumor-initiating phenotypes that are capable of driving disease
recurrence. Throughout this process, tumor heterogeneity and karyotypic
complexity increases, which in turn increase the heterogeneity and
evolutionary capacity of the tumor.

revert to an undifferentiated phenotype, and reclaim the unlim-
ited proliferative capacity of multi-potent stem cells (154). We
now know that polyploidy facilitates acquisition of a primitive,
stem cell like phenotype (132, 140, 141), although the underlying
mechanisms remain incompletely uncharacterized.

Once pre-malignant cells circumvent these initial selection
pressures to generate a proliferative phenotype, they must then
acquire further transforming mutations to overcome subsequent
selection pressures such as immune-surveillance, metabolic stres-
sors, and the effects of deleterious mutation (154). Polyploidy is
likely to facilitate the rapid acquisition of new transforming muta-
tions in two ways. First, elevated ploidy reduces the lethality of
deleterious mutations and chromosome loss (44, 73, 74). Second,
polyploidy increases CIN (70, 71, 73, 141, 155, 156), which elevates
karyotypic variation within the tumor cell population through
large-scale genetic change (74). Hence, polyploidy enables both
CIN and mutator phenotypes, thereby greatly increasing the speed
at which proliferating tumor precursor cells can acquire the port-
folio of mutations and the oncogenic karyotypes necessary for
full-blown transformation (3, 61). In addition, polyploidy can help
overcome metabolic stress by contributing to metabolic repro-
graming, invasion, and metastasis. Polyploid tumor cells display
elevated levels of anaerobic glycolysis (110, 157) and are highly
resistant to oxygen deprivation (132). Polyploid tumor cells also
increase the expression of metastasis-related proteins (143), which
may enable the acquisition of metastatic phenotypes by driving
EMT (132).

Once disease presents and treatment commences, polyploid,
and hyperdiploid cells remain key players driving the ongoing evo-
lution of the patient disease. Elevated ploidy provides cells with
multiple therapy-resistance mechanisms including infrequent cell
cycle (110, 132), acquisition of primitive, therapy-resistant cell
phenotypes (132, 158), over-expression of therapeutic targets

leading to resistance (147), alternate pathway activation lead-
ing to therapy escape (144), as well as facilitating acquisition of
the dreaded multi-drug resistant phenotype (148, 149). Polyploid
tumor cells are created by cytotoxic and targeted therapies (149,
158–160), therefore the frequency of tumor cells with elevated
ploidy is likely to significantly increase during therapy. Further,
many front-line therapies are genotoxic mutagens. In this scenario,
the therapy itself imparts a mutator phenotype onto the tumor,
with polyploidy functioning as a genetic buffer to reduce the effects
of deleterious mutations, increasing the probability of beneficial
mutations surviving within the polyploidy sub-population to drive
disease recurrence.

The adaptive capacity inherent to polyploidy cells means that
even a small sub-population of surviving polyploid tumor cells are
able to drive disease recurrence (39,161). The capacity of polyploid
tumor cells to repopulate post-therapy is likely to be significantly
enhanced due to the ploidy-driven acquisition of a primitive cell
phenotype with an elevated tumor-initiating capacity (132, 141),
combined with a greatly reduced competition for resources due
to the competing non-resistant tumor cells being killed off during
therapy (162).

For these reasons, we predict that polyploid tumor cells play
an integral role in disease recurrence and the acquisition of
a therapy-resistant, increasingly malignant disease in patients
during therapy.

NEW THERAPEUTIC STRATEGIES THAT TARGET POLYPLOIDY
AND HYPERDIPLOID TUMOR CELL SUBPOPULATIONS
Experiments in yeast and cancer model systems have shown that
the presence of polyploidy generates points of fragility within
cellular systems that can be targeted using specific therapeutics
(163–168). These studies provide the critical proof-of-principle
that polyploidy is in fact a druggable phenotype. However,
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the strategies proposed in these pioneering studies target stress
responses or mitotic machinery, which poses the risk of increas-
ing polyploidy in surviving cells (148, 149). Fortunately, recent
studies have identified new avenues for therapy development that
could be used in conjunction with established therapies to inhibit
the formation of polyploidy tumor cells and decrease the adaptive
capacity of tumors in vivo.

TARGETING METABOLISM TO ATTACK POLYPLOIDY AND
HYPERDIPLOID TUMOR CELLS
Cell size scales linearly with DNA content in Eukaryotes (169–
172). Cancer polyploid cells are proportionally larger than the
euploid bulk population (110, 147), with giant polyploid cells
being much larger than the euploid population (124). One poten-
tial consequence of large genome size and increased cell volume
is a heightened metabolic demand, as bigger cells require more
energy to grow to a sufficient cell volume to allow for cell doubling
(117, 118). Further, the increased mRNA and protein expression
caused by increased ploidy also demands more energy consump-
tion (37). Consistent with increased genome size cell volume, and
elevated transcription and translation, we noted polyploid tumor
cells displayed a higher metabolic rate than the euploid control
population (110).

The large cell size and increased metabolism of polyploid tumor
cells may represent a point of fragility specific to the polyploid
sub-population that could be exploited therapeutically. To test
this hypothesis, we treated parental euploid and polyploid clonal
cultures with the 2-deoxy-d-glucose, an established inhibitor of
glycolysis (173–176). We found that the brain tumor polyploid
cells were significantly more sensitive to the effects of glycolysis
inhibition then the euploid parent control (110).

Critically, this increased dependence of polyploidy cells on gly-
colysis has been reported across several types of cancer. In acute
myeloid leukemia (AML), Liu et al. demonstrated that target-
ing aurora kinases with specific inhibitors increased the preva-
lence of polyploidy in AML cells, and that AML polyploidy cells
displayed increased glycolysis as measured by increased glucose
uptake and lactic acid production (157). AML polyploidy cells
were sensitive to the effects of 2-DG, suggesting that targeting
metabolism may preferentially kill polyploidy tumor cells (157).
mTOR is a conserved serine/threonine kinase that links cell sig-
nal transduction with cell metabolism and growth (177). Specific
mTOR inhibitors promoted apoptosis and autophagy in poly-
ploidy tumor cells and increased the efficacy of Aurora kinase
inhibitors, confirming tumor metabolism as a viable point of ther-
apeutic intervention against AML polyploidy tumor cells (157).
Using breast cancer cells, Sharma et al. used the tyrosine kinase
inhibitor BMS-777607 to induce polyploidization in breast cancer
lines, and confirmed that therapy-induced polyploidy cells were
resistant to the effects of a variety of chemotherapies (148). They
then performed drug screens looking for additional inhibitors that
specifically targeted polyploidy tumor cells, and identified that an
inhibition of mTOR signaling prevented the formation of therapy-
induced polyploidy and maintained the sensitivity of breast cancer
cells toward the effects of chemotherapies (148). These results
indicate that reducing polyploidy tumor cell formation by tar-
geting metabolism may delay the evolution of therapy resistance

(148). More recently, the same group revealed that BMS-777607
induced polyploidization in pancreatic cancer cells, which dis-
played pan-resistance to a range of chemotherapeutic compounds
(160). Targeting metabolism using mTOR inhibitors reduced the
formation of therapy-resistant polyploidy cells and synergized
with BMS-770607, showing that for pancreatic tumor cells target-
ing tumor metabolism prevents the emergence of therapy-resistant
polyploidy tumor cells (160).

Together, these results support the hypothesis that in brain,
breast, leukemia, and pancreatic cancers, polyploid tumor cells
have a commensurately higher metabolic requirement than
euploid tumor cells, and that inhibiting metabolism is an effective
therapeutic strategy to specifically target polyploid tumor cells to
maintain tumors in a drug sensitive state.

STIMULATING AMP KINASE ACTIVITY USING RESVERATROL AND
ASPIRIN
Lissa et al. used an elegant high-throughput screening to screen
a compound library for drugs that preferentially kill tetraploid
cells, identifying resveratrol as an anti-tetraploid therapeutic agent
(178). Resveratrol is an anti-fungal agent naturally occurring in
grapes that has been reported to reduce tumor formation in a
genetic mouse model of intestinal carcinoma when administered
orally (179). Resveratrol stimulates AMPK activation by inhibit-
ing phosphodiesterase 4 (PDE-4), allowing cAMP accumulation
in cells and subsequent activation of protein kinase A (PKA) (180).
Consistent with this being the primary mode of tetraploid killing,
resveratrol treatment activated AMPK in tetraploid cells (180).
Activation of AMPK using a separate PDE-4 inhibitor or over-
expression of AMPK selectively killed tetraploid cells, whereas PKA
inhibitors specifically blocked resveratrol killing (178). Aspirin
(acetyl salicylate) and it is more active derivative salicylate also
activate AMPK, and consistent with other AMPK activators were
shown to selectively kill tetraploid cells (178). Using the mouse
intestinal carcinoma cancer model, the Authors then confirmed
that oral administration of either resveratrol or aspirin reduced
the frequency of tetraploid intestinal epithelial cells (178), con-
firming that resveratrol and aspirin preferentially kill tetraploid
cells in vivo using clinically relevant therapeutic doses (178).

Together, these data show that activating AMPK using the nat-
ural products resveratrol and aspirin can be used to specifically tar-
get tetraploid tumor cells in vitro and in vivo,potentially explaining
the cancer-preventing effects of these two compounds reported
using mouse models of tumor initiation (181). These findings
support the exciting hypothesis that targeting tetraploid malig-
nant precursor cells may become an effective chemopreventative
strategy for humans.

CONCLUSION AND FUTURE DIRECTIONS
Cancer evolution has been intensely studied in recent years
using cutting edge genomic approaches (182–185), and novel
therapeutic strategies aimed at delaying tumor evolution are
being developed using increasingly sophisticated and predictive
computational models of tumor evolution (162, 186–189). Here,
we have presented a complementary approach, which consists of
identifying and therapeutically targeting the polyploid tumor cell
subpopulations that are likely to facilitate rapid evolution. We have
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based our argument on evidence derived from yeast and cancer
model systems, as well as from primary patient tumor samples, all
of which support the hypothesis that polyploidy facilitates rapid
evolution and the acquisition of therapy-resistant phenotypes in
cancer patients.

We have also presented recent studies that identify promising
new anti-polyploid therapeutic approaches, which could poten-
tially be used to target polyploid tumor cells in cancer patients. We
predict that the therapies stemming from these pioneering studies
will be successfully translated and incorporated into novel anti-
evolution therapies designed using systems biology approaches,
which will significantly increase cancer patient lifespan by slow-
ing the emergence of therapy resistance, as well as being used as
chemopreventative agents to reduce the incidence of cancer.
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The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists
to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s
genetic material and can lead to genomic instability, apoptosis, or senescence. Incor-
rectly repaired DNA DSBs have the potential to produce chromosomal translocations and
genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer
due to unregulated growth and errors in repair opens up a potential therapeutic window in
the treatment of cancers.The cellular response to DNA DSBs is comprised of two pathways
to ensure DNA breaks are repaired: homologous recombination and non-homologous end
joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA
repair pathways has shown promise as a cancer therapy for patients, either as a monother-
apy or in combination with genotoxic drugs. From the beginning, there have been a number
of chemotherapeutic compounds that have yielded successful responses in the clinic, a
number that have failed (CGK-733 and iniparib), and a number of promising targets for
future studies identified.This review looks in detail at how the cell responds to these DNA
DSBs and investigates the chemotherapeutic avenues that have been and are currently
being explored to target this repair process.

Keywords: DNA damage repair, chemotherapeutic compounds, DNA damage response, cancer, radiosensitize,
radioprotective, DNA double-strand break

INTRODUCTION
Genomic stability at a cellular level requires precise, tightly coor-
dinated pathways to detect DNA damage and either repair the
damage or, if the damage is too great, ensure the cell dies via apop-
tosis or enters senescence. Organisms have evolved complex DNA
damage response (DDR) pathways to respond to insults to the
DNA either from endogenous (cellular metabolic pathways, reac-
tive oxygen species, and errors in DNA replication) or exogenous
sources [environmental factors including ionizing radiation (IR)
and ultra violet radiation].

Cellular DNA damage that is not repaired correctly can
lead to genomic instability, apoptosis, or senescence, which can
greatly affect the organism’s development and aging process and
in addition can predispose the organism to immunodeficiency,
neurological disorders, and cancer.

DDR AND REPAIR PATHWAYS
Following the initial work on the DDR in yeast, investigations into
the DDR in mammals have yielded a highly conserved and elab-
orate process. This process mainly controls DNA repair (ensuring
genomic stability) and cell cycle checkpoints, however it has also
been shown to be involved in circadian rhythms (1), insulin
signaling (2), and telomere maintenance (3).

The DDR pathway encompasses a set of tightly coordinated
processes: detection of DNA damage, a protein cascade to enhance

the signal, the accumulation of repair factors at the site of damage,
and physical repair of the damage. The DDR also induces cell cycle
checkpoints to ensure the damaged cells do not continue dividing
until the DNA damage is repaired. To ensure genomic stability, the
DDR must be able to recognize all types of DNA structural alter-
ations, including nicks, gaps, stalled replication, and double-strand
breaks (DSBs).

Depending on the type of DNA lesion, there are a num-
ber of DNA repair pathways available for the cell to repair the
alteration, including homologous recombination (HR) and non-
homologous end joining (NHEJ) for DNA DSBs; and mismatch
repair (MMR), nucleotide excision repair (NER), and base excision
repair (BER) for single DNA strand damage.

Highlighting the importance of the DDR, mutations in a num-
ber of repair proteins lead to human syndromes, which include
multiple cancers, immunodeficiency, and genomic instability phe-
notypes. Ataxia telangiectasia mutated (ATM), a protein involved
in the DDR is mutated in the syndrome ataxia telangiectasia (AT)
(4). AT is a cancer-prone syndrome that also includes progressive
cerebellar ataxia, telangiectasia’s of the conjunctivae, and immun-
odeficiency. Consistent with ATM’s role in the DDR, AT patients
presented a high level of sensitivity to radiation (5). Nijmegen
breakage syndrome (NBS) is another syndrome where the key
cause of the disease is a mutation in a protein involved in the
DDR, NBS1. NBS1 is involved in the detection of DSBs as part
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of a complex of proteins including Mre11 and Rad50. NBS is
a cancer-prone syndrome that is also characterized by progres-
sive microcephaly, short stature, and progressive ovarian failure in
females (6).

Current chemotherapeutic compounds development is largely
focused in targeting proteins specific to pathways important to
the development, growth, and progression of cancer. DSBs are
the most deleterious lesion to cells, where unrepaired DSBs can
lead to cell death and incorrectly repaired DSBs have the potential
to produce chromosomal translocations and genomic instability,
potentially leading to cancer. Targeting the repair proteins involved
in the repair of DSBs with chemotherapeutic compounds has
the potential for cancer therapies in conjunction with radiation
therapy or as a monotherapy.

CHEMOTHERAPEUTIC COMPOUNDS
Double-strand breaks are highly cytotoxic and this fact is exploited
in conventional cancer treatment, with radiation therapy and
chemotherapeutic drugs treatments generating vast amounts of
DSBs. These include chemotherapeutic drugs that induce DNA
cross-links or function as topoisomerase inhibitors, inducing the
generation of DSB’s in all cells. However, cancer cells are much
more susceptible to these drugs, as they are rapidly dividing and
often have inactivated components of their DNA repair machinery
and deregulated cell cycle checkpoints (7).

However, these chemotherapeutic drugs will also target nor-
mal proliferating cells that are dividing as part of their nor-
mal processes. These naturally regenerating tissues include bone
marrow, gastrointestinal tract, liver, and hair follicles. The for-
mation of secondary hematologic and solid tumors after DNA-
damaging therapies is a potential issue for patients undergoing
treatment (8).

A number of chemotherapeutic compounds are used in
conjunction with radiotherapy or in combination with other
chemotherapeutic agents to produce a synergistic effect. The use of
radiosensitizing agents that increase the cytotoxic effects of radi-
ation on cancer cells and radioprotective agents that decrease the
adverse effects of radiation on normal cells (by increasing their
radioresistance) is common. The use of radiosensitizing agents
can greatly enhance the efficacy of radiotherapy and genotoxic
drugs. Recently, chemotherapeutic compounds have been studied
that may also be useful as a monotherapy, where the chemothera-
peutic compound achieves what is termed as “synthetic lethality.”
Synthetic lethality exploits the fact that many cancer cells acquire
defects in DNA repair pathways and become dependent on a com-
pensatory mechanism in order to survive (9, 10). Inhibition of the
complementary DNA repair pathway selectively kills cancer cells
that have a defect in a particular DNA repair pathway.

The safety, tolerability,pharmacokinetics, and efficacy of poten-
tial chemotherapeutic compounds have to be carefully validated
before they may enter clinical trials to determine the benefits for
cancer therapy. This means there is a significant delay between the
initial discovery of a potential chemotherapeutic compound in the
laboratory, to an actual clinical outcome for patients, however this
delay ensures patient safety.

This review will focus on the pathways responsible for the repair
of DSBs, namely HR and NHEJ, and the current chemotherapeutic

compounds that are being investigated that target these repair
pathways.

THE DDR TARGETS AND CHEMOTHERAPEUTIC COMPOUNDS
DNA DSBs are considered the most cytotoxic of DNA lesions. Cells
are estimated to accumulate around 50 endogenous DSBs per day,
mostly induced by reactive oxygen species (11). In response to
DSBs, the DDR utilizes two main pathways to repair the damage.
During late S-phase and the G2 phase, cells have a sister chro-
matid available as a template for targeted HR, which allows for
error-free repair of the DNA damage. However, DSBs that occur
when there is no sister chromatid available are repaired via NHEJ,
which is more error-prone than HR. NHEJ is also active in S and
G2 phases of the cell cycle and remains the predominant pathway
by which cells repair DSBs. In NHEJ, the two ends of the break are
joined together (ligated), though this can involve resection with
the consequent loss of genetic material (12). Cancer therapy agents
induce DSBs including IR and topoisomerase II poisons, and also
indirectly via single-stranded DNA (ssDNA) lesions which induce
replication forks collapse, leading to DSB formation (13).

HOMOLOGOUS RECOMBINATION AND CHEMOTHERAPEUTIC
COMPOUNDS TARGETS
Following the induction of a DSB, the Mre11/Rad50/NBS1 (MRN)
complex is recruited to the break site by human single-stranded
binding protein 1 (hSSB1) (14–16). MRN binds to the DNA sur-
rounding the lesion and resects the DNA around the break in a
5′–3′ dependent direction. This acts as a signal to recruit other
DDR proteins. This resection by the MRN complex is stimulated
in the early stages of HR by an interaction with CtIP (17, 18).
Following initiation of resection by Mre11, Exo1 performs more
extensive resection to expose long stretches of ssDNA (19–21).
Replication protein A (RPA), a ssDNA binding heteromeric com-
plex, binds to the exposed ssDNA and is retained at the lesion
site by BRCA1 (22). The binding of RPA to the ssDNA substrate
ensures that secondary structures are not formed in the DNA and
protects the ssDNA from nucleases. RPA is displaced from the
DNA by the recombinase Rad51, which is loaded by BRCA2. Rad51
forms a nucleoprotein filament along the ssDNA and functions to
allow strand invasion of the sister chromatid (23). Once the DSB
is resolved, the DNA is ligated together, completing the process
of HR (24). There are a number of key proteins involved in HR
that are currently therapeutic targets or have been identified as
potential targets (see Figure 1).

THE MRN COMPLEX
Human single-stranded binding protein 1 serves as the primary
sensor of DSBs and is also involved in the early steps of HR through
the recruitment of the MRN complex (14–16). Once recruited,
the MRN complex specifically functions in the resection of DNA
ends, activates the ATM kinase, and subsequently activates the cell
cycle checkpoints (25). The human syndromes that result from
mutations in each component in the MRN complex highlight
the requirement of the MRN complex for the maintenance of
genomic stability: NBS (26), AT-like disorder (AT-LD) (27), and
NBS-like NBS disorder (28) result from NBS1, Mre11, and Rad50
mutations, respectively. The MRN complex is also indispensible in
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FIGURE 1 | DNA double-strand break repair via homologous
recombination. During S and G2 phases of the cell cycle, DSBs can be
repaired via HR using a sister chromatid. Targeting of these proteins
involved in HR with chemotherapeutic compounds shows promise in the
clinical setting. See text for details.

development, as null-mutations of these genes cause embryonic
lethality in mice (29–31).

A study using a forward genetic screen identified a specific
small molecule inhibitor of the MRN complex, dubbed Mirin.
Mirin inhibits MRN-dependent ATM activation and disrupts the
endonuclease activity of Mre11, which leads to the failure of the
G2/M checkpoint and HR repair (32). More recently, Mirin was
also shown to effect DSB repair via NHEJ (33). Despite the promise

shown in early studies, at the time of writing this review, Mirin has
not progressed to assessment in the clinic.

The use of retroviral gene therapy using recombinant ade-
novirus with mutant forms of the individual proteins in the
MRN complex has shown promising results in vitro and in vivo.
In human head and neck squamous cell carcinoma cell lines,
expression of adenoviral mutant NBS1 significantly increases
cisplatin-induced DSBs and cytotoxicity. This suggests that tumor
chemosensitization occurred through the increase of DSBs, as
the MRN complex was not able to detect the breaks (34). A
novel dominant-negative adenoviral vector containing a mutant
Rad50 gene significantly down regulated MRN expression and
markedly disrupted MRN function in human squamous cell car-
cinoma cells. A combination of cisplatin and mutant Rad50 gene
therapy produced significant tumor cytotoxicity in vitro, with a
corresponding increase in DNA damage and telomere shorten-
ing. In cisplatin-resistant human squamous cell cancer xenografts,
this combination therapy caused dramatic tumor regression with
increased apoptosis (35). Further studies have shown this method
is effective in vivo, however clinical trials using this method of
radiosensitizing have not progressed at present.

Telomelysin is a type 5-adenovirus in which the genes have
been modified to be able to selectively replicate in cancer cells. The
replication of telomelysin is controlled by the human telomerase
reverse transcriptase promoter and has been shown to be effec-
tive in sensitizing cells to IR (36). The radiosensitivity was due to
inhibition of the MRN complex in vivo (37). It was found that the
expression of the adenoviral E1B55 kDa protein lead to the degra-
dation of the MRN complex (38). A Phase I clinical trial studying
telomelysin demonstrated it was effective in various solid tumors
and was well tolerated without any adverse effects to patients (39).
A Phase I/II trial for the effects of telomelysin on esophageal can-
cer has commenced in Japan and a Phase I/II clinical trial on liver
cancer is planned in the near future.

Resveratrol is a naturally occurring polyphenol that is present
in more than 72 plant species. Resveratrol has been shown to arrest
the cell cycle (40), promote cellular differentiation (41), and induce
apoptosis (42). However, the precise mechanism for these effects
remains to be elucidated. A recent gene expression analysis of
breast cancer cells treated with resveratrol identified decreased
expression of Mre11 and NBS1, key components of the MRN
complex. A number of other proteins involved in HR were also
down regulated, including BRCA2 and Rad51, whereas Rad52 was
up-regulated (43). This suggests resveratrol may function through
a number of mechanisms including the MRN complex. In vivo
studies showing positive, neutral, as well as negative outcomes
depending on dose, administration method, and cancer type (44).
There have been 76 clinical trials using resveratrol listed at clini-
caltrials.gov. Further studies need to be performed to determine
if resveratrol can be used for human cancer prevention or therapy
and also determine the exact mechanism of the radiosensitizing
properties of resveratrol.

ATAXIA TELANGIECTASIA MUTATED
As discussed above, the MRN complex is responsible for the activa-
tion of ATM, a major kinase in the DDR. ATM is a member of the
phosphoinositide 3-kinase-related kinase (PIKK) family, which
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also includes ataxia telangiectasia and Rad3-related (ATR) and
DNA-dependent protein kinase catalytic subunit (DNA-PKcs).
The MRN complex activates ATM in response to DSBs by recruit-
ing it to the sites of damage (45). Activated ATM is responsible
for the induction of the G1/S, intra-S, and G2/M checkpoints, via
the phosphorylation of a number of down-stream effector kinases
and transcription factors, including p53 and p21 (46). The acti-
vation of the cell cycle checkpoints is critical in the DDR to allow
for DNA repair to occur before the cell divides ensuring genomic
stability.

A study showed that ATM is responsible for hundreds of phos-
phorylation events in the cell in response to DNA damage, high-
lighting the key role this kinase plays in the DDR (47). ATM is
also required for the full activation of Akt (also known as protein
kinase B) in response to insulin in the cytoplasm (48). ATM has
also shown to be involved in the regulation of the expression and
stability of ribonucleotide reductase and the mitochondrial home-
ostasis through the control of mitochondrial DNA (mtDNA) copy
number dynamics and expression (49). This link with ATM and
the regulation of mtDNA may be involved in the resistance of
genotoxic stress, highlighted by the potential role of the nuclear
co-activators peroxisome proliferator-activated receptor gamma
co-activator-1β in DNA damage repair (50). These key roles in the
DDR have ensured that ATM has been a prime candidate for inhi-
bition in cancer treatment and further investigations into synthetic
lethality for AT patients may show promise.

Caffeine and wortmannin were the first ATM inhibitors identi-
fied in the lab and were shown to increase sensitivity to radiation
and chemotherapeutic compounds (51, 52). Both caffeine and
wortmannin were later shown to be non-specific inhibitors of
ATM and also inhibited the other PIKK, ATR, and DNA-PKcs
and the potency of these drugs rendered them unsuitable for use
in a clinical setting.

The flavonoid quercetin was identified as an inhibitor of phos-
phoinositide 3-kinase (PI3K) with an IC50 of 3.8 µM (53). Analogs
of quercetin were synthesized and investigated for their inhibi-
tion of PI3K, which led to the discovery of LY294002, an ATP-
competitive inhibitor (54). LY294002 was later found to also
inhibit ATM (55) and DNA-PKcs (56). However, in the high doses
required to inhibit these proteins (>10 µM), LY294002 targeted
several unrelated proteins including calcium channels and the
estrogen receptor (57, 58).

Despite its lack of specificity, LY294002 was used as a research
tool to identify more specific PIKK inhibitors. A study screen-
ing a drug-library based on LY294002 identified KU-55933, a
small molecule ATP-competitive inhibitor, which was specific to
ATM (55). KU-55933 is a potent inhibitor of ATM with an IC50

of 0.013 µM and is highly specific to ATM compared to other
PI3K and PIKK’s. This compound effectively sensitized tumor
cells to radiation and DSBs inducing chemotherapeutic com-
pounds, such as camptothecin and etoposide, and initial work
has shown this compound may be used as a potential clinical
treatment (55).

KU-60019, an improved analog of KU-55933 has been shown to
inhibit ATM with an IC50 of 0.0063 µM and also inhibits migration
and effectively radiosensitizes human glioma cells (59). Further
studies on KU-60019 are currently being performed, specifically

as a radiosensitizer with standard chemotherapy regimes on
glioblastoma in preparation for clinical trials (60).

Another ATM specific inhibitor, CP466722, was identified in a
targeted compound library screen, looking for inhibitors of ATM-
dependent phosphorylation events in vitro. In vivo treatment with
CP466722 resulted in transient inhibition of ATM and sensitized
cells to IR however, upon removal, ATM kinase activity and the
subsequent phosphorylation of down-stream targets was com-
pletely restored (61). The clinical implications of this transient
inhibition of ATM, requires further study.

KU59403 is the latest of the ATM inhibitors that have been
studied and one that shows the most promise for clinical trials
in patients. KU59403 increased the cytotoxicity of the topoiso-
merase I and II poisons camptothecin, etoposide, and doxorubicin,
in vitro, in a non-p53-dependent manner. Importantly,upon injec-
tion, KU59403 was seen to be distributed to tissues in mice at
concentrations required to inhibit ATM activity, these were shown
to be maintained for at least 4 h in colon cancer tumor xenografts
and enhanced the anti-tumor activity of topoisomerase poisons.
This chemosensitization was both dose and schedule-dependent
and provided the first proof-of-principle pre-clinical data to sup-
port future clinical development of ATM inhibitors (62). However,
at present, there are no reports of ATM inhibitors in use in clinical
trials.

It should be noted that CGK-733, a small molecule that was ini-
tially reported to inhibit both ATM and ATR kinase activities and
block checkpoint signaling with great selectivity,was later retracted
(63). Further studies were completed showing that CGK-733 has
no specific inhibitory effect on ATM or ATR (64). Unfortunately,
the compound is still being marketed as an ATM/ATR inhibitor.

hSSB1/2
Human single-stranded binding protein 1 is required for the acti-
vation of ATM through the recruitment of the MRN complex
to the break site (14–16). Until the identification of hSSB1 and
hSSB2, as a DNA single strand-binding proteins, RPA was the only
known eukaryote member of the single strand-binding protein
family (SSB) to be involved in DNA repair (14). As mentioned
above, hSSB1 is required for the efficient recruitment of the MRN
complex to sites of DSBs and for the efficient initiation of ATM-
dependent signaling (15, 16). hSSB1 binds directly to the MRN
complex through NBS1 and functions to also stimulate its nuclease
activity. Identification of specific chemotherapeutic compounds
to target hSSB1 and hSSB2 will enable the sensitization of cancer
cells to radiotherapy and these are currently being explored by our
laboratory and by industry.

Chk1/2
The checkpoint kinases, Chk1 and Chk2, are critical for cell cycle
activation following the induction of DSBs and serve to main-
tain the genomic integrity of cells (65). This cell cycle check-
point activation is achieved through maintaining or augmenting
the inhibitory phosphorylation of the cyclin-dependent kinases
(CDKs) by inhibiting the CDC25 phosphatases. Specifically, phos-
phorylation of CDC25A is required for the initiation of the S-phase
checkpoint and phosphorylation of CDC25C for the G2/M check-
point (66). Both Chk1 and Chk2 are also required for the activation
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or inhibition of a number of other cell cycle checkpoint proteins
and tumor suppressor proteins, including p53 (67).

Of these checkpoint kinases, Chk1 is critical for the induction
of HR, as inhibition of Chk1 in vitro lead to persistent unrepaired
DSBs and cell death (68). Rad51 was also shown to be recruited to
DSBs at replication forks in a Chk1-dependent manner, therefore
Chk1 is essential for HR at stalled replication forks. Highlighting
this critical role, Chk1 null mice were found to be embryonically
lethal (69). Due to its critical role in HR, this review will focus on
Chk1 inhibitors only, however a number of these Chk1 inhibitors
are also known to target Chk2.

UCN-01, a staurosporine inhibitor was the first inhibitor iden-
tified for both Chk1 and Chk2 and treatment with this compound
lead to G2/M checkpoint deficiencies in IR-treated p53-deficient
tumor cells (70). However, due to the broad spectrum of targets
for UCN-01, including protein kinase C, CDK, and CDK2, the use
of UCN-01 presented challenges in the clinical setting (71). Since
the discovery of UCN-01, increasingly specific inhibitors for Chk1
have been identified.

XL-844,also known as EXEL-9844, is a potent,ATP-competitive
inhibitor of Chk1 and Chk2. In vitro, XL-844 showed limited
ability as a monotherapy but substantially enhanced gemcitabine-
induced cell killing. XL-844 increased the gemcitabine-induced
DNA damage, blocked CDC25A phosphorylation, abrogated the
gemcitabine-induced S-phase checkpoint, and induced premature
mitotic entry. Interestingly, XL-844 also induced phosphoryla-
tion of Chk1 (72). However, a further in vitro study showed that,
in response to IR, Chk2, rather than Chk1 appeared to be acti-
vated by irradiation and this activation was suppressed by XL-844
(73). A Phase I clinical trial of XL-844 as a monotherapy or in
conjunction with gemcitabine in patients with advanced malig-
nancies was discontinued before completion (clinicaltrials.gov –
NCT00475917).

AZD7762 is a potent ATP-competitive checkpoint kinase
inhibitor that was identified via a compound library screen using
Chk1. AZD7762 was found to inhibit both Chk1 and Chk2 with
in vitro and in vivo studies confirming the abrogation of the
checkpoint response to gemcitabine (74). In vivo studies involv-
ing human breast cancer xenografts in mice demonstrated that
AZD7762, in combination with irinotecan, improved host sur-
vival and reduced tumor growth selectively in p53 mutant tumors
(75). A Phase I clinical trial to evaluate the safety, tolerability, and
pharmacokinetics of AZD7762, as a monotherapy or in conjunc-
tion with gemcitabine, in patients with advanced solid malignan-
cies has just been completed, however no published data have
been released as yet (clinicaltrials.gov – NCT00413686). However,
interestingly two Phase I trial of AZD7762 in conjunction with
irinotecan (clinicaltrials.gov – NCT00473616) and gemcitabine
(clinicaltrials.gov – NCT00937664) were terminated early. Trial
NCT00937664 was terminated due to incidence of cardiac toxic-
ities reported in the overall Phase I development program (76).
This result may affect further clinical development of AZD7762.

PF-00477736 is a potent, selective ATP-competitive small mol-
ecule inhibitor of Chk1 and was shown to abrogate cell cycle arrest
induced by DNA damage and enhanced the cytotoxicity of clini-
cally important chemotherapeutic agents, including gemcitabine
and carboplatin both in vitro and in vivo in mouse xenografts (77).

In combination with docetaxel, PF-00477736 was found to abro-
gate the DNA damage checkpoints and resulted in sensitization
to docetaxel (78). The only clinical trial to date with PF-00477736
looked at the effects in combination with gemcitabine in advanced
solid tumors, however this study was prematurely terminated
(clinicaltrials.gov – NCT00437203).

SCH900776, also known as MK-8776, was identified as a highly
potent Chk1 inhibitor using a high-content, cell-based screen for
γ-H2AX induction (γ-H2AX is a surrogate marker for double-
strand DNA breaks). SCH900776 also enhanced the anti-tumor
effects of gemcitabine in vivo (79). SCH900776 was also shown
to inhibit CDC25C degradation, abrogates S-phase arrest, and
induces DNA damage (80). When SCH900776 was combined
with low concentrations of hydroxyurea, both p53-deficient and
p53-proficient cell lines were sensitive to the combination (81). It
was also demonstrated, in vitro, that some cell lines were highly
sensitive to SCH900776 alone. In vivo models with a human pan-
creas tumor xenografts mouse model combined SCH900776 with
gemcitabine, this showed a significantly delayed tumor growth
compared to either drug alone (82). A Phase I clinical trial was
undertaken using SCH900776 in combination with cytarabine in
patients with acute leukemia. This trial indicated that SCH900776
was tolerated by patients and progressed to a Phase II clinical trial
(83). A randomized Phase II clinical trial is currently recruiting
to study how well cytarabine, with or without SCH900776, works
in treating adult patients with relapsed acute myeloid leukemia
(clinicaltrials.gov – NCT01870596).

LY2603618, a pyrazinyl-urea compound, was identified as a
Chk1 inhibitor via in vitro kinase assays. LY2603618 is currently
being investigated in a number of Phase I and II clinical tri-
als and pre-clinical data on their effects in vitro and in vivo
have been recently released. LY2603618 was shown in vitro to
produce a cellular phenotype similar to that reported for deple-
tion of Chk1 by siRNA and impaired DNA synthesis, elevated
H2AX phosphorylation, which is indicative of DNA damage,
and caused premature entry into mitosis. In vivo treatment of
human mutant p53 lung cancer cell xenografts in mice, with
gemcitabine, resulted in a stimulation of Chk1 kinase activity
that was inhibited by co-administration of LY2603618 (84). In
a Phase 1 dose escalation clinical trial of LY2603618 combined
with pemetrexed, 9 out of 31 patients achieved stable disease
and 1 pancreatic cancer patient had a partial response (85). Two
other clinical trials have been completed using LY2603618, in
conjunction with gemcitabine, in patients with pancreatic can-
cer (clinicaltrials.gov – NCT00839332); and an open-label study
in patients with advanced and/or metastatic solid tumors (clin-
icaltrials.gov – NCT01296568), however no results have been
published on these clinical trials. There are currently two active
clinical trials currently underway studying LY2603618: the first is
studying the safety and tolerability of LY2603618 in combination
with gemcitabine in patients with solid advanced or metasta-
tic tumors (clinicaltrials.gov – NCT01341457) and the second is
investigating the safe dose of LY2603618 that can be combined
with pemetrexed and cisplatin and to test if this triplet offers a
significant improvement in progression-free survival in partici-
pants with Stage IV non-squamous non-small cell lung cancer
(clinicaltrials.gov – NCT01139775).
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LY2606368 has been identified as a Chk1 inhibitor by Eli Lilly
and a Phase I clinical trial is currently recruiting to investigate the
effects of LY2606368 in patients with advanced solid tumors (clin-
icaltrials.gov – NCT01115790), however no pre-clinical data are
available for this inhibitor.

Two recently identified Chk1 inhibitors, GDC-0425 and GDC-
0575, are currently undergoing clinical trials, however again no
pre-clinical data are available. Both compounds are currently
being evaluated for the safety, tolerability, and pharmacokinetics
administered as a monotherapy or in combination with gemc-
itabine in patients with refractory solid tumors or lymphoma:
GDC-0425 (clinicaltrials.gov – NCT01359696); and GDC-0575
(clinicaltrials.gov – NCT01564251).

SAR-020106 is a novel, selective, and potent ATP-competitive
inhibitor of Chk1. SAR-020106 has been shown to abrogate the
etoposide-induced G2 arrest and significantly enhances the cell
killing of gemcitabine in vitro and in a p53-dependent fashion.
In vivo, it was found that irinotecan, gemcitabine, and radiation
activity was enhanced by SAR-020106 with minimal toxicity (86,
87). Whilst SAR-020106 has not undergone any clinical trials at
present, this pre-clinical data suggest it is a prime candidate for
investigation in p53-defective tumors.

p53
The tumor suppressor protein p53 is a transcriptional regulator of
a number of genes involved in DNA repair, cell cycle progression,
and apoptosis. Highlighting this function, p53 was found to be
mutated in approximately 50% of cancers (88). p53 is activated in
response to DNA damage by phosphorylation by the ATM, ATR,
Chk2, and Chk1 kinases and these phosphorylation events allow
for the stabilization of p53 and activate its transcriptional func-
tions allowing the regulation of a number of genes responsible for
cell cycle progression and apoptosis (89).

Initial work on p53-mutated cancers has investigated restor-
ing the function of p53, thus leading to effective apoptosis in
response to the chemotherapy. Two main mechanisms have been
investigated – restoring p53 to cancer cells using a recombinant
adenovirus encoding p53 or using small compounds or short
peptides to restore the activity of p53.

Pre-clinical in vitro and in vivo studies of adenovirus-mediated
p53 (Ad-p53) cancer gene therapy showed promising results with
advexin (90), gendicine (91), and SCH-58500 (92). Initial clinical
trials with these Ad-p53 vectors showed that administration was a
safe, feasible, and effective strategy against many types of cancers,
however, the anti-tumor efficacy has been limited in some cancer
patients. These Ad-p53 vectors have also been used in combi-
nation with conventional DNA-damaging treatments, indicating
the induction of the apoptotic pathway via Ad-p53 can restore
the sensitivity to radiation and chemotherapy in some resistant
tumors.

However, issues exist with the low transduction of p53 into
cancer cells via these Ad-p53 vectors, to overcome this replica-
tion, competent oncolytic adenoviruses have been developed. The
CRAd-p53 vector has been used where the promoters of cancer-
related genes are used to regulate virus expression in a tumor-
dependent manner. Recent work has focused on AdDelta24-p53
(93), SG600-p53 (94), and OBP-700 (95). Initial in vitro and in vivo

studies have shown these CRAd-p53 vectors are a safe and effective
therapy for inducing anti-tumor effects and have been shown to
induce higher p53 expression and stronger anti-tumor effects than
the Ad-53 vectors, highlighting their potential in future clinical
trials.

A number of small compounds and peptides have been shown
to be effective in restoring the function of p53 in tumor cells,
including CP-31398 (96), PRIMA-1 (97), CDB3 (98), peptide 46
(99), and SCH529074 (100). These small compounds and pep-
tides act to stabilize p53 in its active biological conformation, thus
restoring its transcriptional activity. Initial in vitro work on these
small compounds and peptides have shown promising results and
further in vivo studies are required to determine their efficacy
before clinical trials can commence.

REPLICATION PROTEIN A
Due to its key role in DNA replication and repair, via HR and
NER, RPA has been the subject of a number of studies to identify
potential inhibitors. RPA is over-expressed in a number of cancers,
including colon (101), esophageal (102), and breast (103). RPA is
a heterotrimeric protein, consisting of RPA1 (p70), RPA2 (p32),
and RPA3 (p14) subunits. RPA protects ssDNA from nucleolytic
attack, prevents DNA hairpin formation, and blocks DNA rean-
nealing by binding directly to the ssDNA through four OB-folds.
After DNA damage, RPA coats ssDNA and enhances the capacity
of Rad51 oligomer formation at sites of damage (104).

Initial work has investigated the disruption of the DNA binding
capacity of RPA and also inhibition of its protein partner inter-
actions using small molecule inhibitors. Selective inhibition of
both the protein binding and DNA binding capacity of RPA has
the potential to inhibit the DDR and to sensitize cancer cells to
DNA-damaging agents.

TDRL-505, a novel small molecule inhibitor, has recently been
shown to inhibit the RPA–DNA interaction, thereby preventing
cell cycle progression, induces cytotoxicity, and increases the effi-
cacy of the chemotherapeutic DNA-damaging agent, cisplatin,
in vitro (105). TDRL-505 inhibits the DNA binding capacity of
RPA by blocking the OB-folds of RPA1. Further studies need to
be completed in mouse models to determine the efficacy of this
compound.

Isobornyl derivatives have also been shown to be RPA inhibitors
in a screen of the National Cancer Institute library, with CheSS19
shown to interact irreversibly with the OB-folds of RPA1 (106).
MCI13E, a haloester modified form of CheSS19, decreased cell
viability and induced apoptosis, showing synergistic effects with
cisplatin in lung cancer cells (107). However, this compound did
not affect the DNA binding capacity of RPA, but instead may act
through the alkylation of cysteine residues of RPA. Further stud-
ies, both in vitro and in vivo are required to fully understand the
mechanisms of RPA inhibition by MCI13E prior to clinical studies
being undertaken.

The initiation of the DDR by RPA is also mediated by protein–
protein interactions involving the N-terminal domain of the p70
subunit with partner proteins, including the MRN complex (108),
Rad51 (109), and BRCA2 (110). Inhibition of these interactions
increases sensitivity toward DNA damage and replication stress
and may therefore be a potential strategy for cancer drug discovery.
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Combining RPA inhibition with radiation therapy could lead
to increased cytotoxicity in tumor cells via inhibition of DNA
DSB repair via NHEJ or HR, both of which have been shown to
require RPA.

Rad51
Rad51 plays an important role in maintaining genome stability
through the HR pathway in response to DNA damage. This is high-
lighted by the fact that Rad51 knockout mice show early embryonic
lethality (111). Rad51 is a DNA recombinase and polymerizes onto
resected DNA ends to form a nucleoprotein filament that promote
strand invasion and exchange between homologous DNA duplexes
(112). It is suggested the improper regulation of Rad51 may affect
tumorigenesis, as Rad51 has been shown to be over-expressed
in a number of cancer phenotypes, including esophageal, pan-
creatic, lung, leukemia, and head and neck cancers. Conversely,
Rad51 is also under-expressed in a number of cancer cells. This
variable expression of Rad51 has been shown to promote the resis-
tance of tumors to chemotherapy (113). Using antisense RNA or
RNAi to deplete the levels of Rad51 in vitro has been shown to
sensitize tumor cells to chemotherapy agents, including cisplatin
(114). These effects of Rad51 depletion demonstrate the potential
of Rad51 inhibitors in cancer therapy.

The first identification of a Rad51 inhibitor was a small peptide,
homologous to the BRC-motif of the BRCA2 protein, which was
found to bind Rad51, thereby preventing its DNA binding capacity
(115). This peptide inhibited the formation of Rad51 nuclear foci
and disrupted HR in vitro. Using an in silico approach on the BRC
domains of BRCA2, a chimeric peptide with an efficiency 10 times
higher than the original peptide was identified (116). This new
peptide inhibited Rad51 DNA binding and DNA strand exchange
activity however, although these peptides are currently being used
as a research tool they have not yet found clinical applicability.
Further investigation of peptides and peptidomimics inhibiting
Rad51 function may elucidate novel inhibitors targeting the HR
pathway in tumors. However, this approach still holds drawbacks
mainly due to the pharmacokinetics of peptide-based inhibitors
and administration of these agents may not be optimal in a clinical
setting.

More recently, a DNA strand exchange assay was performed
and used to identify Rad51 inhibitors by high-throughput screen-
ing of the NIH small molecule repository. This study identified 17
potential inhibitors, of which 3 were studied further. Compound
B02 was identified that specifically inhibited human Rad51 with
two other compounds, A03 and A10, which inhibited both Rad51
and RecA, but not the structurally unrelated Rad54 protein. B02
directly interacts with Rad51 and disrupts its binding to DNA and
nucleoprotein filament formation. The interaction of B02 with
Rad51 disrupted DSB-induced HR and enhanced the sensitivity
of cells to cisplatin (117). Further work on these compounds, both
in vitro and in vivo, are required before they can be introduced
into clinical trials.

A small molecule inhibitor to Rad51 was recently identified
through a high-throughput screen of a library of 10,000 small
molecules (118). The molecule RI-1 covalently binds to Rad51,
thereby inhibiting its ability to form filaments on ssDNA. RI-1
inhibits the nuclear foci of Rad51 at sites of DNA damage and

sensitizes various cancer cell types to cross-linking chemother-
apy, but did not affect Rad51 protein levels. There are limits to
the development of RI-1 in pre-clinical in vivo models due to its
short half-life in tissue culture media and aqueous buffers. RI-2,
a homolog of RI-1, was created that mitigated these effects (119).
RI-2 was shown to bind Rad51 and inhibit the nuclear foci of
Rad51 at sites of DNA damage. RI-2 is currently the subject of
further in vitro and in vivo studies and is being used to identify
third generation analogs that inhibit the function of Rad51.

A further screen using a yeast-2 hybrid system identified a
phenylsulfonyl indolyl isoquinoline compound, IBR2, as a Rad51
inhibitor. IBR2 functions to block Rad51 multimerization, acceler-
ating proteasome-mediated Rad51 protein degradation, and thus
impairing IR-induced Rad51 foci formation in the nucleus and
HR activity. IBR2 inhibited cancer cell growth and induced apop-
tosis (120). A synergistic cell-killing effect was produced with a
combination of IBR2 and imatinib in vitro. In vivo studies involv-
ing breast cancer xenografts in nude mice showed significantly
inhibited tumor growth with no apparent secondary physiological
abnormalities. Further studies on the effects of IBR2 are required
before moving into a clinical trial.

BRCA1/2
The breast cancer susceptibility proteins, BRCA1 and BRCA2, have
a key role in efficient HR response to DSBs. Mutations in these
genes greatly increase the susceptibility to cancer, especially breast,
ovarian, and prostate. Mutations in the BRCA genes are responsi-
ble for the increased risk of breast cancer, specifically 59–87 and
38–80% for BRCA1 and BRCA2 mutations respectively. BRCA1
functions in both checkpoint activation and also in the early steps
of HR, by controlling DNA resection (121). BRCA2 functions in
Rad51 transport and loading (122). Both BRCA1 and BRCA2 are
required for normal embryonic development in mice (123, 124).

Direct inhibition of BRCA1 and BRCA2 in tumors is generally
problematic due to the wide expression of these proteins in most
tissues and inhibition may lead to other issues, including cancer
development in healthy tissue. One approach is the possible up
regulation of the BRCA1 and BRCA2 proteins, however there is
no data to suggest that up regulation blocks tumorigenesis.

POLY ADP-RIBOSE POLYMERASE 1
Most of the work in the BRCA therapeutic research area has
focused on tumors that are known to have mutations in BRCA1
or BRCA2. Using synthetic lethality, these studies have focused
on disrupting complimentary pathways to repair DNA damage,
with the most interesting results coming from poly ADP-ribose
polymerase 1 (PARP1) inhibitors. PARP1 is involved in DNA
repair, replication, transcriptional regulation, chromatin modifi-
cation, and apoptosis (125, 126). In regards to DNA repair, PARP1
is involved in BER which repairs DNA damage due to reactive
oxygen species and alkylation (127). Inhibition of this pathway,
taken together with a loss of HR due to BRCA mutations, cre-
ates a synthetic lethality, which can be exacerbated when used in
conjunction with chemotherapy agents.

However, PARP1 inhibition and the subsequent synthetic
lethality can be used on other cancers that do not have muta-
tions in BRCA1 or BRCA2 but that have a defect in the HR
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pathway, including mutations in ATM, Chk2, Rad51, and NBS1.
However, NHEJ could compensate for the loss of HR in these
cells. Further studies have identified that PARP1 normally func-
tions to promote HR by suppressing various components of the
NHEJ pathway (128). Inhibition of PARP1 would therefore lead
to increased NHEJ, a more error-prone repair mechanism than
HR, this would increase chromosome instability in response to
chemotherapy and during S-phase of the cell cycle at stalled DNA
replication forks.

Poly ADP-ribose polymerase catalyzes the cleavage of NAD+ to
nuclear acceptor proteins, leading to the formation of ADP-ribose
polymers, realizing nicotinamide in the process. Nicotinamide was
the first PARP inhibitor identified, although it was not potent
(129). Analogs of nicotinamide, including 3-aminobenzamide,
were the first generation of PARP inhibitors (130).

The first clinical trial targeting PARP1 in BRCA populations
was with the oral drug olaparib, also known as AZD2281, as
a monotherapy (131). Olaparib achieved encouraging response
rates of 41 and 33% in patients with BRCA1 or BRCA2 muta-
tions, respectively. Olaparib was also used in a combined therapy
with carboplatin in vivo and showed a profound decrease in
tumor growth and increase in patient survival (132). A Phase
II trial with olaparib was conducted on patients with advanced
BRCA1/2 mutant breast cancers (133) and ovarian cancers (134).
Both of these studies showed a dose-dependent effect of ola-
parib. Currently, there is a Phase III olaparib trial being under-
taken by AstraZeneca. This trial aims to determine the benefit, by
progression-free survival, of olaparib as a maintenance monother-
apy, in BRCA mutated ovarian cancer patients,who are in complete
or partial response following platinum-based chemotherapy.

Another PARP inhibitor is veliparib. An in vivo study of veli-
parib, also known as ABT-888, confirmed the PARP inhibitory
effects in paired tumor biopsies and peripheral mononuclear cells
(135). A number of Phase I trials have been conducted with veli-
parib in combination, including topotecan (136) amongst others.
Many of these trials have shown promising results, however myelo-
suppression, where bone marrow activity is decreased, has been
shown as the most common adverse event observed.

Iniparib, also known as BSI-201, was the first PARP inhibitor to
undergo Phase III clinical trials after showing promising results
in randomized Phase II trials in patients with triple-negative
breast cancer (137). The results of the subsequent Phase III clin-
ical trial were not as expected, missing the co-primary endpoints
of overall survival and progression-free survival. However, very
little pre-clinical data on the effects of iniparib were published
before clinical trials began and iniparib was shown not be related
to other PARP inhibition and showed very low PARP inhibition
in vitro (138, 139).

Rucaparib, also known as AG014699, was used in a Phase
I clinical trial in combination with temozolomide (140). Ruca-
parib was well tolerated in patients and showed promising results
for assumed HR-deficient tumors (based on tumor type). Ruca-
parib was also used as a monotherapy in a Phase I/II clinical
trial with patients with solid tumors. Rucaparib was well tol-
erated in this trial and showed promising results (clinicaltri-
als.gov – NCT01482715). A subsequent Phase II clinical trial,
with patients with melanoma, was conducted in combination

with temozolomide, and showed an objective response rate
with 17.4 and 36% of patients remaining progression-free after
6 months (141).

A therapeutic index-based strategy was used to identify CEP-
8983, a novel 4-methoxy-carbazole inhibitor of PARP1 and PARP2
(enzyme IC50 values of 20 and 6 nmol/L, respectively). CEP-8983
was found to cause significant sensitization of chemotherapy-
resistant tumor cell lines to the effects of temozolomide and
camptothecin in vitro. Administration of CEP-8983, delivered
orally in the form of CEP-9722, attenuated in vivo PARP activ-
ity and resulted in significant chemosensitization of temozolomide
and irinotecan in chemotherapy-resistant tumor xenografts (142).
A Phase I clinical trial with CEP-9722, used as a monotherapy
or in conjunction with temozolomide, was recently completed
with patients with advanced solid tumors (clinicaltrials.gov –
NCT00920595). A Phase I/II clinical trial using CEP-9722 on solid
tumors is currently underway (clinicaltrials.gov – NCT01311713).

MK-4827, also known as niraparib, is a novel 2-phenyl-
2H-indazole-7-carboxamide PARP inhibitor that displayed anti-
proliferation activities against BRCA1- and BRCA2-deficient can-
cer cells in vitro. MK-4827 was found to be well tolerated in vivo
and demonstrated efficacy as a single agent in a xenograft model of
BRCA1-deficient cancer (143). A Phase I clinical trial of patients
with solid tumors using MK-4827 was shown to have favorable
pharmacokinetics, inhibited PARP activity effectively, is well toler-
ated and has anti-tumor activity in carriers of BRCA1 and BRCA2
mutations and patients with sporadic cancers (144).

BMN 673, an inhibitor of PARP catalytic activity, has exhib-
ited selective anti-tumor activity at much lower concentrations
(IC50 = 0.57 nM) than the earlier generation of PARP inhibitors,
including olaparib, rucaparib, and veliparib. BMN 673 is read-
ily orally bioavailable and in vivo studies with xenograft tumors
carry defects in BRCA1/2 or PTEN were sensitive to BMN 673.
Synergistic effects were observed when BMN 673 was combined
with temozolomide, SN38, or platinum drugs (145). A number of
pre-clinical studies and Phase 1, Phase II, and Phase III clinical
trials utilizing BMN 673 as a monotherapy or in conjunction with
various drugs, are currently underway.

It is important to note that not all breast cancer patients with
BRCA mutations responded to PARP inhibition (131) and a sub-
stantial number of patients with advanced BRCA1-mutant cancers
are resistant to these agents. Further studies on PARP inhibitors,
along with the current clinical trials, are needed to assess the effi-
cacy of PARP inhibition in BRCA mutant and other HR-defective
cancers in conjunction with chemotherapy or as a monotherapy.

A list of all chemotherapeutic compounds targeting the HR
pathway is provided in Table 1.

NON-HOMOLOGOUS END JOINING AND
CHEMOTHERAPEUTIC COMPOUNDS TARGETS
CLASSICAL-NHEJ
The classical-NHEJ (C-NHEJ) pathway is the major pathway of
DSB repair [reviewed in Ref. (146)], estimated to rapidly repair up
to 85% of IR-induced DSBs (147). In straightforward terms, this
pathway involves simply ligating the two DNA ends back together.
Due to the resection of DNA overhangs surrounding the DSB,
NHEJ is sometimes considered the error-prone pathway of DNA
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Table 1 | Chemotherapeutic compounds targeting the homologous

recombination DNA repair pathway.

Compound Class Clinical

phase

Combination

Mirin MRN complex – –

Adenoviral mutant

NBS1

NBS1 – Cisplatin

Adenoviral mutant

Rad50

Rad50 – Cisplatin

Telomelysin MRN complex I/II Monotherapy

Resveratrol MRN complex – –

Caffeine PIKK – –

Wortmannin PIKK – –

Quercetin PI3K – –

LY294002 ATM and DNA-PKcs – –

KU-55933 ATM – –

KU-60019 ATM – –

CP466722 ATM – –

KU59403 ATM – –

UCN-01 Chk1 and Chk2 I Monotherapy or

topotecan or

cisplatin

XL-844 Chk1 and Chk2 I Monotherapy or

gemcitabine

AZD7762 Chk1 and Chk2 I Monotherapy or

gemcitabine or

irinotecan

PF-00477736 Chk1 I Gemcitabine

SCH900776 Chk1 I/II Monotherapy or

cytarabine or

gemcitabine

LY2603618 Chk1 I/II Gemcitabine or

pemetrexed and

cisplatin

LY2606368 Chk1 I Monotherapy

GDC-0425 Chk1 I Monotherapy or

gemcitabine

GDC-0575 Chk1 I Monotherapy or

gemcitabine

SAR-020106 Chk1 – –

Advexin p53 I/II Monotherapy and

chemotherapy

drugs

SCH-58500 p53 I/II Monotherapy and

chemotherapy

drugs

AdDelta24-p53 p53 – –

SG600-p53 p53 – –

(Continued)

Compound Class Clinical

phase

Combination

OBP-700 p53 – –

CP-31398 Stabilizes p53 – –

PRIMA-1 Stabilizes p53 – –

CDB3 Stabilizes p53 – –

Peptide 46 Stabilizes p53 – –

SCH529074 Stabilizes p53 – –

TDRL-505 RPA – –

CheSS19 RPA – –

MCI13E RPA – –

B02 Rad51 – –

A03 Rad51 and RecA – –

AI-10 Rad51 and RecA – –

RI-1 Rad51 – –

RI-2 Rad51 – –

IBR2 Rad51 – –

3-Aminobenzamide PARP1 – –

Olaparib PARP1 I/II/III Monotherapy

Veliparib PARP1 I Topotecan or

carboplatin or

doxorubicin or

irinotecan

Rucaparib PARP1 I/II Monotherapy or

temozolomide

CEP-9722 PARP1 and PARP2 I/II Monotherapy or

temozolomide

MK-4827 PARP1 I Monotherapy or

temozolomide

BMN 673 PARP1 and PARP2 I/II/III Monotherapy or

temozolomide or

irinotecan

DSB repair. NHEJ is active in all stages of the cell cycle, with activity
peaking in G0 and G1 (12). The major proteins involved in NHEJ
include the DNA-PKcs and the Ku70/80 heterodimer. Other core
NHEJ proteins include artemis, XRCC4-XLF, and ligase IV. DNA-
PKcs and Ku70/80 initially bind to the two ends of the DSB. The
DNA ends are then processed by artemis, ligated by ligase IV and
stabilized by XRCC4 and XLF.

There are a number of key proteins involved in NHEJ that are
targets of chemotherapeutic compounds (see Figure 2).

DNA-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT
The DNA-PK holoenzyme plays a major role in NHEJ and is
involved in tethering the DNA ends at DSBs, allowing recruit-
ment of other repair proteins. It also has serine/threonine kinase
activity and can phosphorylate down-stream DNA repair proteins,
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FIGURE 2 | DNA double-strand break repair via non-homologous end
joining. DSBs can be repaired via NHEJ throughout the cell cycle. Targeting
of these proteins involved in NHEJ with chemotherapeutic compounds
shows promise in the clinical setting. See text for details.

leading to their activation. DNA-PKcs has been reported to be
up-regulated in tumors or radiation-resistant cell lines, indicat-
ing that it is likely to have a role in tumor growth and survival
(148, 149). In addition, B-cell chronic lymphocytic leukemia cells
have been shown to escape apoptosis via the NHEJ pathway (150).
Moreover, DNA-PKcs mutations have been detected in colorectal
cancer cells (151). In light of the above and due to its pivotal role in
NHEJ, DNA-PKcs is a protein of interest in developing new cancer
treatments [reviewed in Ref. (152)].

Several inhibitors of DNA-PKcs have been identified, the most
efficient of which target the ATP-binding pocket of the DNA-PKcs
kinase domain (153). Compound library studies have identified
several specific inhibitors of DNA-PKcs, but their development as
cancer therapies has been restricted by weak pharmacokinetics.

Wortmannin, a metabolite of the fungus Penicillium funiculo-
sum was one of the first DNA-PKcs inhibitors and has been widely
used to study DNA-PKcs experimentally. This drug was used in
the first studies that showed that inhibition of DNA-PKcs inhib-
ited DNA DSB repair and enhanced the tumor-killing properties
of agents that induce DNA damage, such as etoposide and IR.
Although it can efficiently inhibit DNA-PKcs at an IC50 of 5 nM,
its poor solubility, lack of specificity, and in vivo toxicity, have
ensured that wortmannin has little clinical application (154).

As discussed earlier, another non-specific DNA-PKcs inhibitor
utilized in several studies is LY294002, the morpholine deriva-
tive of the plant flavonoid quercetin. This inhibitor binds the
kinase domain of DNA-PKcs with an IC50 of 1.4 µM (154). Like
wortmannin, the clinical use of this inhibitor is limited by its
lack of specificity and in vivo toxicity. In addition, LY294002
also displays rapid metabolic clearance in 1 h. Despite its limita-
tions, LY294002 has proved useful as a foundation for biochemical
modification, leading to several, more specific, clinically viable
compounds (155).

An example of a compound developed from LY294002 is
NU7026, which possesses 50-fold more selective inhibition of
DNA-PKcs than other PI3Ks, with an IC50 of 0.23 µM against
DNA-PKcs (156). This compound was found to enhance the
tumor growth inhibition of several chemotherapy drugs, includ-
ing daunorubicin, idarubicin, doxorubicin, and etoposide (157).
However, due to metabolic instability, it is unlikely that high
enough concentrations of NU7026 could be achieved in tumors to
allow treatment in conjunction with chemotherapy or radiation
treatment. Like other DNA-PK inhibitors, NU7026 also displays
poor solubility in saline solutions (158).

Another DNA-PKcs inhibitor that resulted from the modifica-
tion of LY294002 is NU7441, which strongly inhibits DNA-PKcs
and has an IC50 of 0.3 µM. Treatment of cells with this drug led
to an increase in HR and the persistence of IR- and doxorubicin-
induced DSBs (159). Cellular treatment with NU7441 was also
shown to delay the repair of IR- and etoposide-induced DSBs, in
turn enhancing the tumor cell-killing properties of these treat-
ments (160). In animal models, xenograft studies showed that
NU7441 could increase the tumor growth inhibition of etopo-
side twofold with no increased toxicity. NU7441 has recently been
shown to inhibit the multidrug-resistance 1 (MDR1) protein, in
addition to DNA-PK, which may increase its therapeutic potential
when combined with MDR substrates (161).

Two other inhibitors of DNA-PK have also been shown to sen-
sitize cells to DNA-damaging agents, SU11752 and OK-1035 (162,
163). Unfortunately, both compounds displayed weak pharma-
cokinetic properties making them unsuitable for further clinical
development.

Another agent, NK314 was already used in the clinic as a topoi-
somerase II alpha (TIIa) inhibitor and was also found to promote
the degradation of DNA-PKcs, leading to defective DNA DSB
repair. DNA-PKcs is highly expressed in adult T-cell leukemia–
lymphoma (ATL), so NK314 may potentially be used as a dual
targeting anticancer agent for treatment of ATL (164). A clinical
trial for the use of NK314 in ATL patients is currently underway.

CC-115 is a DNA-PKcs inhibitor that is also undergoing early
clinical evaluation. CC-115 is a dual inhibitor for DNA-PKcs and
mTOR and the first clinical trial aims to assess its safety and
action in patients with advanced solid tumors and hematologic
malignancies that are unresponsive to standard therapies.

In summary, due to the role DNA-PKcs plays in DNA DSB
repair via C-NHEJ and its overexpression in many cancers it
was implicated as a suitable target for inhibition. Although sev-
eral DNA-PKcs inhibitors have reached the pre-clinical evaluation
stage, their use in patients have been limited by inadequate phar-
macokinetics; as they are generally metabolically unstable, a high
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cellular concentration is unable to be achieved and therefore
they are not clinically viable to potentiate other forms of can-
cer therapy. The use of antibody and oligonucleotide approaches
to target DNA-PKcs may overcome the pharmacokinetic restric-
tions of small molecule inhibitors. However, there is still hope for
this area of treatment as the crystallographic structure of DNA-
PKcs was recently reported, allowing more efficient small molecule
inhibitors of DNA-PKcs to be developed (165, 166). Computer-
modeled compound design will allow targeting of the DNA-
PK auto-phosphorylation sites or the DNA-PK/Ku80 interface,
which are predicted to be more efficient than current DNA-PKcs
inhibitors.

Ku70/Ku80
The levels of the regulatory subunit of the DNA-PKcs holoen-
zyme, Ku70/80, like DNA-PKcs, are also increased in many tumors,
which suggests that tumors may rely on Ku70/80 for survival (149).
Indeed, it was shown that depletion of Ku70 or Ku80 using shRNA
inhibited the growth of pancreatic tumor cells (167). Ku70- or
80-depletion also sensitized pancreatic cells to IR, suggesting that
it may be a potential target for inhibition in cancer therapy in
the future, although to date specific inhibitors have not been
identified.

DNA LIGASE IV
DNA ligase IV is an ATP-dependent DNA ligase that catalyzes the
ligation step in NHEJ. Together with XRCC4 and XLF, DNA ligase
IV forms a functional complex that is central to NHEJ (168–171).
All DNA ligases catalyze the formation of the DNA phosphodi-
ester bond in a three-step process. The initial hydrolysis of ATP
leads to the covalent linkage of an AMP moiety to a specific lysine
residue within the active site of DNA ligase and the subsequent
release of pyrophosphate. A DNA adenylate intermediate is formed
through the transfer of the AMP moiety from the adenylated lig-
ase to the 5′ terminus of a DNA nick with a 5′ phosphate and 3′

hydroxyl terminus. Finally, the non-adenylated DNA ligase inter-
acts with the DNA adenylate and the termini are linked together
via a phosphodiester bond, with the final release of AMP (172).

Inhibiting the activity of DNA ligase IV has become an attrac-
tive approach to increase the sensitization of cancer cells to DNA
damage. As DNA ligation is required during DNA repair and
replication, cells deficient in DNA ligases have been shown to be
sensitive to a variety of DNA-damaging agents (173). To date, there
are two described DNA ligase IV inhibitors, L189 and SCR7.

A computer-aided drug design approach, based on the struc-
ture of human DNA ligase I complexed with nicked DNA, was
performed to identify low molecular weight inhibitors of DNA
ligases that specifically abrogate functional interactions between
the ligase and nicked DNA (174). L189 was 1 of a 192 potential
candidate inhibitors chosen from this rational approach. L189 was
further characterized in vitro, and shown to inhibit DNA ligase I,
III, and IV in DNA joining assays using purified protein and in
DNA replication, BER, and NHEJ in cell extract assays. Specifi-
cally, L189 inhibited the ligase reaction by >90%, however, only
had a minimal effect on T4 DNA ligase. In cell culture, L189 was
found to be cytotoxic, using colony-forming assays. Furthermore,
L189 significantly increased the cytotoxicity of the DNA-damaging

agents MMS and IR in three cancer cell lines (breast, cervical, and
colon) but not in a normal breast epithelial cell line. Hence, in vitro
data suggest that L189 is a potential lead compound for the devel-
opment of chemotherapeutics (174). However, in vivo data and
subsequent clinical trials are required to further substantiate these
results.

SCR7 is a L189 derivative that was identified by an in silico
docking approach, as a specific inhibitor of DNA ligase IV. SCR7
disrupts the sealing of DSBs by ligase IV by interfering with its
binding to DNA. In vitro, SCR7 inhibits NHEJ in a ligase IV-
dependent manner, leading to the accumulation of DSBs and
subsequent cytotoxicity. SCR7 was used on four different mouse
models to determine tumor progression. Three of the four mouse
models were responsive and SCR7 was found to significantly
reduce tumor progression and increase lifespan, relative to the
control. SCR7 slowed the progression of the tumor by activating
the p53-mediated apoptotic pathway and hence increasing lifes-
pan. Additionally, when SCR7 was co-administered with IR and
etoposide in mouse models, it significantly increased the sensitivity
of tumors (175). This study demonstrates that inhibitors of DNA
repair, in combination with existing chemo and radiotherapy, may
lead to a better efficacy of treatment.

XRCC4
The initial step in NHEJ is the recognition and binding of the
Ku70/80 heterodimer to the DSB (176). After Ku70/80 is bound
to DSB ends, it recruits other NHEJ factors such as XRCC4 to the
site of damage (177). Ku70 and XRCC4 directly interact with each
other and XRCC4 may act as a flexible tether between Ku70/80
and DNA ligase IV (176). XRCC4 has no known enzymatic activ-
ity, but may function as an additional NHEJ scaffolding protein,
responsible for the recruitment of other NHEJ factors to the site
of the damage (177).

In mice, XRCC4 deficiency has been shown to cause late embry-
onic lethality (178) and mouse Xrcc4 was found to stimulate
adenylation of DNA ligase IV in vitro, the first chemical step in
DNA ligation (179).

Since XRCC4 plays a central role in the repair of DSB by NHEJ
(177), the presence of active XRCC4 in cells may decrease DSB-
mediated apoptosis in cancer cells during radiotherapy. Therefore,
the use of potent XRCC4 inhibitors has the potential to enhance
radiotherapy outcomes in patients.

Salvianolic acid B, lithospermic acid, and 2-O-feruloyl tartaric
acid were identified as potent agents for interrupting XRCC4-
mediated DNA repair, from a screen involving 20,000 compounds
from the traditional Chinese medicine (TCM) database (180). The
compounds were modeled for their binding affinities to the DNA
ligase IV binding region on XRCC4 and for all three inhibitors,
the protein–ligand interactions were focused at Lys188 on chain A
and Lys187 on chain B of XRCC4. From this study, salvianolic acid
B, lithospermic acid, and 2-O-feruloyl tartaric acid are potential
enhancers of radiotherapy and furthermore, may have character-
ized the key binding elements for inhibiting XRCC4 activity (180).
While this study is promising, the efficacy of these inhibitors has
yet to be tested using in vitro and in vivo models.

Inhibiting the XRCC4/DNA ligase IV complex formation could
also provide a novel strategy for inhibiting NHEJ. The minimal
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inhibitory fragment of the XRCC4-interacting region (XIR) capa-
ble of abolishing XRCC4/XIR complex was recently identified
(181). The key interfaces of ligase IV necessary for interaction
with XRCC4 were identified by the development a competitive
displacement assay using ESI-MS/MS. The results suggest that by
targeting the interface of helix 2 of DNA ligase IV, modulators that
inhibit the XRCC4/DNA ligase IV complex may be identified. In
addition, adjuvant compounds to further block the XRCC4/DNA
ligase IV complex may be discovered by further targeting helix 1
and the loop regions of the helix–loop–helix clamp, which offer a
secondary target surface (181). While this study has the potential
to identify inhibitors of XRCC4, to date, inhibitors that have been
tested in vivo and in clinical trials have not been described.

XCRCC4-LIKE FACTOR
XCRCC4-like factor/cernunnos (XLF/cer) is a recently discov-
ered XRCC4 interaction partner. XLF directly interacts with the
XRCC4-ligase IV complex both in vitro and in vivo. Further-
more, siRNA knockdown of XLF in mammalian cells gives rise
to radiosensitivity and impaired NHEJ and the re-introduction of
wild-type XLF into defective cells corrects the observed defects
(171). Data suggest that following DSBs, XLF accumulates at
DNA damage sites via constitutive interaction of the XRCC4 head
domains and XLF globular head domains in the XRCC4–DNA
ligase IV complex and dependent components of the DNA-PK
complex. Following this, XLF stimulates the ligation of comple-
mentary and non-complementary DNA ends via XRCC4 and DNA
ligase IV. XLF in summary ensures the accuracy of the joining of
DSBs during NHEJ and V(D)J recombination (182).

While there are no inhibitors of XLF in current use, inhibitors
that abrogate the formation of the XRCC4/XLF/DNA ligase IV
functional complex that is central to NHEJ may provide a novel
strategy to improve radiotherapy outcomes in patients.

p53-BINDING PROTEIN 1
p53-binding protein 1 (53BP1) is a human BRCT protein that was
initially identified by a yeast 2-hybrid screen as a p53-interacting
protein (183). 53BP1 binds to p53 and enhances p53-mediated
transcriptional activation. 53BP1 is a central regulator of DNA
DSB repair and functions to promote the end joining of distal
DNA ends induced during V(D)J and class switch recombination.
Additionally, 53BP1 is involved in the fusion of unprotected telom-
eres (184, 185). 53BP1 is an ATM substrate that forms nuclear
foci in response to DNA damage (186) and promotes NHEJ while
preventing HR. Recent evidence suggests that 53BP1 recruitment
requires the direct recognition of a DSB-specific histone code and
the choice of NHEJ vs. HR is dependent on BRCA1 (185).

The identification of specific chemotherapeutic compounds
targeting 53BP1 and thereby sensitizing cancer cells to radiother-
apy is an approach that requires further investigation.

ALTERNATIVE NHEJ
Recent studies have identified another DSB repair pathway, termed
alternative NHEJ (A-NHEJ). This pathway comprises another
simple end joining process that is normally suppressed by the
C-NHEJ pathway and only operates when C-NHEJ and HR path-
ways are compromised. Therefore,A-NHEJ is generally considered

a backup repair pathway and is implicated to be highly error-
prone (187). It has been suggested that A-NHEJ may actually
be comprised of several pathways due to the functional diver-
sity of the A-NHEJ proteins identified so far. However, it has also
been suggested that A-NHEJ results from the initiation and failure
of C-NHEJ or HR, resulting in C-NHEJ or HR proteins already
being present at the DSB. When the initiation of A-NHEJ follows
unsuccessful C-NHEJ, C-NHEJ factors are already at the DSB, but
instead of DNA ligase IV performing the ligation step, this is per-
formed by DNA ligase 3 or 1 (188–190). It has also been suggested
that A-NHEJ may also function to join DNA ends that have been
processed by HR factors such as the MRN complex, CTIP, and
BRCA1 (190–192). The A-NHEJ pathway has been implicated as
enabling tumor cells that have disrupted HR or C-NHEJ pathways
to survive, making it an attractive target for inhibition.

DNA LIGASE 3α
A recent study demonstrated that KRAS mutated leukemic cells
have increased levels of components of the A-NHEJ pathway,
including DNA ligase 3α, PARP1, and XRCC1 and that these
cells rely on the A-NHEJ for survival (193). In addition, it was
also shown that depletion of DNA ligase 3α using RNAi sen-
sitized the KRAS-mutant leukemic cells to chemotherapy. This
suggests that targeting the A-NHEJ pathway may be a promising
avenue for inducing synthetic lethality in combination with DNA-
damaging agents in cells bearing KRAS mutations, for which there
is currently no reliable treatment.

A list of all chemotherapeutic compounds targeting the NHEJ
pathway is provided at Table 2.

CONCLUSION
Human solid tumors have frequently been found to have pro-
nounced genetic and gene expression heterogeneity, of both can-
cerous and the normal cells within the tumor. This diversity of cell
populations within the tumor may explain why cancer is so resis-
tant to therapy, including more targeted therapeutic approaches.
The increased proliferation of cancer cells also places stress on
the genome, with the fastest growing cell populations having
an advantage in the environment. To increase growth rates and

Table 2 | Chemotherapeutic compounds targeting the

non-homologous end joining DNA repair pathway.

Compound Class Clinical

phase

Combination

Wortmannin DNA-PKcs and other PIKKs – –

LY294002 DNA-PKcs – –

NU7026 DNA-PKcs – –

NU7441 DNA-PKcs – –

SU11752 DNA-PKcs – –

OK-1035 DNA-PKcs – –

NK314 DNA-PKcs and

topoisomerase II alpha

I Monotherapy

CC-115 DNA-PKcs and mTOR I Monotherapy

L189 DNA ligase IV – –

SCR7 DNA ligase IV – –

Frontiers in Oncology | Molecular and Cellular Oncology April 2014 | Volume 4 | Article 86 | 114

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jekimovs et al. Chemotherapeutics and DNA-double-strand-break repair pathways

remove normal restrictions on growth, cancer cells evolve to have
defects in the DNA repair pathways and in checkpoint signaling
and apoptosis. As a result of these defects and increased metabolic
activity, cancer cells are genomically unstable with the most aggres-
sive cancers showing the most genetic instability. However, this
instability differentiates the cancer cells from normal cells, poten-
tially opening up therapeutic windows. The DSB repair pathway
is the most promising of these therapeutic windows, as defects
in this pathway are commonly associated with diseases such as
cancer.

The disruption of the DSB repair mechanisms HR and NHEJ,
via chemotherapeutic compounds used as either a monotherapy
or in conjunction with radiotherapy, has shown promise in the
clinical setting for the treatment of various cancers. The targeting
of these processes can be further exploited as further investigations
into the HR and NHEJ pathway lead to the identification of new
potential targets. However, complete inhibition of HR and NHEJ
for any extended time period is likely to be lethal to all divid-
ing cells, therefore targeted or temporary inhibition is likely to be
useful in conjunction with radiotherapy. Also, complete inhibi-
tion of NHEJ may lead to further genomic instability in normal
cells, as it is the only pathway for repairing DSBs in non-dividing
cells.

Further investigation into synthetic lethality, beyond the identi-
fied PARP/BRCA lethality, may lead to additional avenues to be tar-
geted and exploited by the use of chemotherapeutic compounds.
Promising targets to expand on PARP inhibition using synthetic
lethality are other proteins involved in the HR pathway, includ-
ing cancers with mutations in ATM, p53, Chk2, Rad51, and NBS1.
Inhibition of other proteins involved in the DDR response has also
shown promise when combined with BRCA mutations. In vitro
depletion of Rad52 in BRCA2-deficient cells showed synthetic
lethality when compared with BRCA2-competent cells (194).
Recently, synthetic-lethal relationships in chromatin-regulating
genes have been identified, including chromatin remodeling fac-
tors (195) and methyltransferases (196). The concept of synthetic
lethality could allow the exploitation of differences between tumor
cells and normal cells that have previously been considered to be
intractable and it has been shown to be a promising means of
selectively killing tumor cells.

Whilst there have been a number of good and promising results
using chemotherapeutic compounds, there have been a number
of failed studies. Ensuring that there are sufficient investigations
completed both in vitro and in vivo confirming the specificity and
pharmacokinetics of these chemotherapeutic compounds before
introduction in the clinical setting is critical. As the response
to chemotherapeutic compounds becomes more predictable and
with the identification of specific tumor biomarkers, this will allow
for targeted, more efficient cancer treatments. Inhibition of these
DSB repair proteins holds great promise for the future of cancer
therapy in the future.
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Cancer is one of the most urgent health
issues of today. According to WHO, the
number of cancer cases is expected to
increase by 75% in the next two decades (1).
Despite some remarkable achievements in
the fields of cancer prevention and early
detection, the goal of developing effective
anti-cancer therapies still remains unmet.
Tumor recurrence due to treatment resis-
tance is the most common cause of death
from cancer. Delineating cellular and mole-
cular mechanisms underlying tumor recur-
rence is of prime importance for the ability
to improve the efficacy of existing thera-
pies and develop new strategies to cancer
treatment.

The aim of any anti-cancer treatment
is to selectively kill cancer cells by tar-
geting key biological properties essential
for the maintenance of tumorigenicity and
malignant progression (2). Currently, cyto-
toxic therapies are still a mainstay of cancer
treatment that relies heavily on radiation
treatment and chemotherapy. Even though
cytotoxic treatments can be effective in
some types of cancers, the clinical experi-
ence accumulated over the past few decades
indicates that conventional cytotoxic ther-
apy may not suffice to achieve a satisfactory
level of the therapeutic efficacy. A con-
ceptual framework for cytotoxic therapies
derives from the observation that there is
a direct relationship between proliferation
rate and cytotoxic sensitivity, implying that
rapidly dividing cancer cells rather than
largely quiescent normal cells should be
preferentially targeted by cytotoxic agents.
However, proliferation rates of tumor cells
can vary in a broad range between and
within tumors. This is thought to be one

of the reasons for insufficient efficacy of
cytotoxic therapies (3). Furthermore, can-
cer cells can neutralize the effects of cyto-
toxic treatments by utilizing a plethora of
often overlapping mechanisms that include
aberrant DNA repair and cell death path-
ways, drug efflux, hypoxia-induced apop-
tosis resistance and invasion, alterations
in drug metabolism, unfolded protein
response, and autophagy [reviewed in Ref.
(4, 5)].

A newer type of anti-cancer therapy
generally called molecularly targeted ther-
apy relies on rationally designed agents to
target, with a high degree of specificity,
well-defined molecules or pathways that
operate in cancer cells to maintain their
malignant potential. Although both cyto-
toxic and molecularly targeted therapeu-
tic approaches generally exploit differences
between neoplastic and normal cells, only
targeted therapies enable the so-called pre-
cision medicine. Recent advances in the
field of molecular profiling have opened up
a real possibility to make better informed
treatment decisions based on the data from
personalized tumor profiling [reviewed in
Ref. (6, 7)]. However, despite some remark-
able successes of targeted therapies (8, 9),
their utility in advanced cancers has so far
been limited due to an almost inevitable
tumor recurrence even after successful ini-
tial response [reviewed in Ref. (6, 10, 11)].
The escape mechanisms underlying the
inherent and acquired resistance to tar-
geted therapies include feedback activa-
tion of signaling pathways with redundant
functions (12), co-occurrence of muta-
tions in other genes involved in synergis-
tic interactions with the target gene (13),

or emergence of subclones with secondary
mutations coding for resistant versions of
drug targets (14). Global profiling of cancer
genomes has enabled the stratification of
major cellular pathways involved in the
development of therapeutic resistance in
different types of cancer. Providing a mole-
cular explanation of the limited efficacy of
targeted monotherapies, cancer genomics
studies reveal a high degree of functional
redundancy between oncogenic driving
events [reviewed in Ref. (7, 15)].

New generation sequencing method-
ologies while enabling to identify genomic
alterations associated with different types
of cancer with an unprecedented com-
pleteness also revealed the high degree of
genetic diversity existing not only between
different types of cancer but also between
individual tumors of the same histo-
type [reviewed in Ref. (16, 17)]. A broad
range of phenomena encompassed in the
term “tumor heterogeneity” include (epi)
genetic, phenotypic, and gene expression
pattern diversity across different types of
cancer, between different tumors of the
same histotype (interpatient heterogene-
ity), between different tumors from the
same patient (primary tumor or metasta-
sis), or within the same tumor (intratumor
heterogeneity). Intratumor heterogeneity
manifests in spatial and temporal pat-
terns of genetic, phenotypic, and func-
tional diversity (18). There is a grow-
ing evidence of intratumor heterogene-
ity in different types of cancers including
breast cancer (19), renal carcinomas (20,
21), and glioblastomas (22). Mechanisms
underlying intratumor heterogeneity can
be broadly divided into those that are
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powered by genomic instability or non-
mutational mechanisms. The latter include
stochastic variations in cellular responses
between genetically identical tumor cells,
modulation of cellular responses by tumor
microenvironment,and/or phenotypic and
functional plasticity contributed by can-
cer stem cells (CSCs) [reviewed in Ref.
(17, 23)]. Genomic instability defined as
progressive mutagenic process accompany-
ing neoplastic growth is the major mech-
anism of generating new mutations. Less
well-characterized mechanisms include
genome doubling (24) and rare cataclysmic
genomic rearrangements resulting in mas-
sive genomic rearrangements (25). Accord-
ing to the clonal evolution model, persis-
tent changes in tumor genomes generate
genetically and functionally distinct clones
that may occupy different geographic ter-
ritories within the tumor. There are many
lines of evidence for the spatial patterns of
intratumor heterogeneity in advanced can-
cers. In glioblastomas (glioblastoma multi-
forme, GBM), distinct patterns of genomic
alterations and gene expression signatures
can be found in different regions within
the same tumor (22). Strikingly, molecular
signatures that were previously thought to
be associated with clinically distinct sub-
types of GBM (26, 27) were found to
co-exist within the same tumor (22). Sim-
ilarly, more than 60% of all somatic muta-
tions identified through a multi-region
genetic analysis in renal carcinoma were
found spatially separated within the same
tumor and not detectable in every tumor
region analyzed (20). These findings indi-
cate that different sampling strategies can
strongly impact the interpretation of mol-
ecular profiling data obtained with single
tumor samples and emphasize the need
for suitable methodologies that would take
into account the spatiotemporal patterns of
intratumor heterogeneity.

These considerations are of particular
relevance in the context of the CSC hypoth-
esis, which postulates that CSCs constitute
only a minor fraction of tumor cells capa-
ble of initiating tumor growth [reviewed in
Ref. (1, 28)]. In light of the findings that dif-
ferent types of tumor cells can be geograph-
ically separated within the tumor (20,22), it
is possible that CSCs may be unevenly dis-
tributed throughout the tumor. It should
be noted that in many studies, the tumori-
genic potential is compared between CSCs

and non-CSC tumor cells isolated from
a single tumor region. Thus, the rela-
tive proportion of CSCs may vary not
only between different tumor types (CSC-
derived malignancies vs. non-CSC tumors)
but also within the tumors that comply
with the CSC paradigm, depending on the
tumor region analyzed. The CSC hypoth-
esis postulates that CSC is the only type
of tumor cells (in CSC-derived tumors)
that possesses the propensity to initiate and
maintain tumor growth (29, 30). However,
in the light of consideration that a single
tumor region may not be representative
of the whole tumor (20, 22), it cannot be
excluded that highly tumorigenic non-CSC
may have been missed in analyses using
single tumor specimens. In such a case,
the conclusion that non-CSCs have gen-
erally lower tumorigenicity compared to
CSCs would have been misleading due to
a sampling bias.

The fact that genetically (and function-
ally) heterogeneous types of cancer cells
can be separated spatially within a tumor
raises several important questions con-
cerning the identity of tumor clones that
are capable of escaping from anti-cancer
treatments and repopulating the tumor.
There is some evidence that exposure to
therapy may influence the dynamics of
clonal repopulation and lead to the alterna-
tion of clonal dominance as a consequence
of treatment. For example,by applying next
generation sequencing to compare somatic
mutations in matched pairs of de novo
and recurrent AMLs, it was established
that a minor AML clone underrepresented
in the primary tumor became dominant
in recurrent tumors as a consequence of
chemotherapy (31). Similarly, cytogenet-
ics and gene expression analyses in a series
of sequential samples of multiple myeloma
from the same patient treated with different
chemotherapy regimens have revealed that
tumor relapse was associated with the pref-
erential outgrowth of a minor clone (32).
In the emerging scenario, the dominance
of clone A in untreated tumors can be lost
during anti-cancer therapy (provided that
clone A fulfils the criteria for the target cell)
whereas clone B lacking the molecular tar-
get can become dominant even if it was
underrepresented in untreated tumors.

The realization that intratumor hetero-
geneity poses one of the major challenges
to overcome resistance to anti-cancer

therapy raises a number of questions:
are there common molecular denomi-
nators underlying resistance to different
types of therapy? Is there an interaction
between different populations of cancer
cells residing in the same or different geo-
graphic regions of the same tumor? What
is the impact of different types of anti-
cancer therapy in the emergence of resis-
tant clones? To address these issues, there
is a need of suitable methodologies that
would take into account the spatiotempo-
ral patterns of intratumoral diversity. It
has been proposed that multiple sampling
analyses of multiple regions from matched
pairs of untreated and recurrent tumors
would be required to assess the impacts
of intratumoral diversity on the develop-
ment of resistance to anti-cancer therapies
(22). Such an approach may have limited
applicability in those tumors for which
serial sampling is difficult to achieve. For
example, serial tumor sampling in post-
operated GBM is likely to be a challenge
considering that repeat surgery, as a treat-
ment option, is possible only for 15–45%
of patients depending on age, neurologic
performance, and extent of resection dur-
ing the first operation (33). Considering
that multisampling is a much more realis-
tic task during the first surgery, a combined
approach based on establishing heteroge-
neous primary cultures from multisampled
untreated tumors and selecting from them
therapy-resistant clones in vitro might be
more feasible. Such an approach has the
advantage of reducing the variability in
treatment conditions and dissecting the
effects of single and combined treatments.
By comparing treatment responses in dif-
ferent types of cancer cells from the same
tumor should allow to improve predictions
on the efficacy of a particular treatment
scheme in a particular tumor.

It should be noted that the degree
of intratumoral heterogeneity may not
necessarily reflect an enhanced malignant
potential. It is believed that a considerable
portion of new mutations arising in the
course of tumor evolution are passenger
mutations (7). In such a case, the num-
ber of clinically relevant oncogenic driver
mutations may still be within the range
attackable by combinatorial treatment reg-
imens using different therapies applied
either simultaneously or sequentially. Also,
the growing realization that tumor growth
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before, during, or after treatment can be
driven by molecularly distinct populations
of cells (31, 32) may have important impli-
cations for the rational design of combina-
torial therapy regimens that would match
the dynamically changing cellular and mol-
ecular composition of the tumor. Unfor-
tunately, increased toxicity poses a general
problem impeding the benefits of com-
bined therapies. In this regard, alternating
targeted therapies using agents with non-
overlapping toxicity profiles may provide
a means to achieve additive anti-tumor
effects without increasing overall toxicity.
The efficacy of alternating therapies guided
by “real-time” molecular assessments has
been demonstrated for metastatic lung
tumor originating from adenocarcinoma
of the tongue (34). In this study, a clinical
benefit could be reached by applying alter-
nating treatments with different therapeu-
tic agents whose effectiveness was inferred
by comparing whole-genome and RNA
profiles of untreated and recurrent tumors.

The emerging scenario of recurrent
tumor growth reveals key roles of intra-
tumoral heterogeneity in intrinsic and
acquired resistance to cytotoxic and
targeted therapies. Understanding spa-
tiotemporal patterns and dynamics of
intratumoral heterogeneity before and
during therapy is crucial for the ability to
design individual-tailored treatment regi-
mens best suited to a particular molecular
context.
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Tumor hypoxia is one main biological factor that drives resistance to chemotherapy
and radiotherapy. To develop a novel strategy for overcoming hypoxia-induced therapy
resistance, we examined the anti-neoplastic activity of the reactive oxygen donor dihy-
droartemisinin (DHA) in human colon cancer cell lines in normoxia and severe hypoxia. In
addition, we analyzed the involvement of the intrinsic apoptosis pathway for DHA-mediated
cytotoxicity in HCT116 cells in short-term and long-term in vitro assays. When applied at
lower concentrations (≤25 µM), DHA induced apoptosis in Colo205, HCT15, and HCT116
cells, whereas necrotic cell death was increased when cells were treated with higher DHA
concentrations (50 µM). However, no preference for DHA-induced apoptosis or necrosis
could be detected between the treatment under normoxic or hypoxic conditions. More-
over, DHA potently reduced clonogenic survival of HCT116 cells in normoxia and hypoxia.
Treatment of HCT116 cells with 25 µM DHA resulted in activation of Bax under normoxic
and hypoxic conditions. Interestingly, cytochrome c release from the mitochondria and
caspase-activation were observed only under normoxic conditions, whereas, under hypoxic
conditions DHA induced a caspase-independent apoptosis-like cell death. However, under
both conditions, generation of reactive oxygen species was an important mediator of DHA-
induced toxicity. Further molecular analysis suggests that DHA-mediated cell death involves
different sets of pro-apoptotic Bcl-2 family members. The pronounced cytotoxic activity of
DHA in severe hypoxia as well as normoxia offers new perspectives for targeting the
hypoxic tumor cell fraction to improve treatment outcome for cancer patients.

Keywords: therapy resistance, hypoxia, dihydroartemisinin, apoptosis, autophagy, Bim, Puma, BNIP3

INTRODUCTION
Tumor cell resistance to classical chemotherapy and radiotherapy
remains a major obstacle in the treatment of solid human tumors
(1). Genetic or epigenetic alterations in the tumor cells that affect
cellular death and survival signaling can allow the tumor cells to
escape the cytotoxic action of standard genotoxic therapies and
molecularly targeted agents. Moreover, specific conditions within
the tumor microenvironment and the intimate dialog between
tumor cells and their surrounding stroma by soluble growth- and
survival-promoting factors provide a multitude of mechanisms for
therapy resistance. Therefore, current research activities focus on
the identification of drugs that are active under adverse environ-
mental conditions to counteract environment-mediated resistance
to therapies.

Tumor hypoxia is a common characteristic of solid human
tumors and is mostly associated with poor prognosis (2). Tumor

Abbreviations: Acc, N -acetylcysteine; CCCP, protonophore carbonyl cyanide m-
chlorophenylhydrazone; DHA, dihydroartemisinin; ∆Ψm, mitochondrial trans-
membrane potential; Hx, hypoxia; LC3B, light chain 3B; Nx, normoxia;
PARP, poly (ADP-ribose) polymerase; PE, plating efficiency; ROS, reactive oxy-
gen species; TMRE, tetramethylrhodamine ethyl ester perchlorate; zVAD-fmk,
benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone.

hypoxia plays a central role in tumor progression and is one main
biological factor that drives therapy resistance at multiple levels:
reduced availability of molecular oxygen during acute hypoxia
reduces the burst of reactive oxygen species (ROS) induced by
genotoxic treatments, e.g., radiotherapy, and thus hampers the
manifestation of DNA-damage and the generation of pro-death
signals. Moreover, acute hypoxia also profoundly reorganizes
cell signaling to increase the death threshold [overview in Ref.
(3)]. Finally, chronic intermittent tumor hypoxia promotes selec-
tion of hypoxia-tolerant cells that are characterized by dimin-
ished apoptotic potential, increased therapy resistance, and worse
prognosis (4–6).

At present, researchers follow diverse approaches to overcome
hypoxia-mediated therapy resistance: (i) reduce the hypoxic frac-
tion of the tumor by increasing the blood oxygen tension, (ii)
specifically kill hypoxic cells by using bioreductive drugs, and (iii)
reduce the tolerance of hypoxic cells by using signal transduction
inhibitors targeting pathways that are essential for the survival of
hypoxic cells (2, 7).

Here, we propose a novel strategy to overcome therapy resis-
tance under conditions of acute hypoxia by using the cyclic
endoperoxide dihydroartemisinin (DHA). DHA belongs to a
family of compounds derived from the natural sesquiterpene
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lactone artemisinin (Coartem®/Riamet®) that are known to gen-
erate ROS-like superoxide anions and hydroxyl radicals as well
as carbon-centered radicals upon activation of their endoper-
oxide bridge in the presence of ferrous iron (8). Artemisinin
and DHA are already in clinical use for antimalaria treatment
(9). However, both drugs also exert potent anti-neoplastic effects
on human tumor cells in preclinical in vitro and in vivo inves-
tigations (10–12). Earlier studies revealed that the generation
of ROS and carbon-centered radicals is critical for the toxic
effects of artemisinin and derivatives on malaria parasites (13,
14). These reactive molecules also contribute to the potent anti-
cancer activity of these compounds through alkylation of essential
proteins and induction of oxidative damage to membrane lipids
and DNA and subsequent ROS-dependent apoptosis that includes
the activation of pro-apoptotic Bcl-2 family member Bax, and
caspase-activation (11, 15, 16).

Though anti-neoplastic activity of artemisinin and derivatives
is well-documented for standard treatment conditions in nor-
moxia, the potential of these drugs to kill cancer cells under
conditions of acute hypoxia and the involved molecular path-
ways have not yet been studied. On the basis of their potential to
generate ROS and further reactive molecular species, we hypoth-
esized that treatment with compounds of the Artemisinin drug
family may be a promising approach to efficiently attack hypoxic
cancer cells and overcome therapy resistance induced by acute
hypoxia. To verify our hypothesis,we compared the anti-neoplastic
activity of DHA under normoxic and hypoxic conditions using
three different colorectal cancer cell lines as experimental model.
We demonstrate for the first time that DHA is a hypoxia-active
drug that efficiently kills colon cancer cells even in presence of
very low oxygen levels. When treated at lower DHA concentra-
tions (≤25 µM), colon cancer cells mainly underwent apopto-
sis, whereas necrosis was increased when higher doses of DHA
(50 µM) were applied.

Further molecular analysis of DHA-mediated cytotoxicity in
HCT116 cells revealed that DHA induced the canonical mito-
chondrial apoptosis pathway that includes the activation of
Bax, cytochrome c release from mitochondria into the cytosol,
caspase-activation, dissipation of the mitochondrial transmem-
brane potential (∆Ψm) and DNA-fragmentation. Although Bax-
activation occurred to similar extent when HCT116 cells were
treated under normoxic conditions, release of cytochrome c
and caspase-activation were almost abrogated. However, a high
amount of cells with fragmented or condensed DNA was observed
even in the absence of caspase-activation suggesting the induc-
tion of caspase-independent apoptotic cell death by DHA in
severely hypoxic cancer cells. Moreover, under both conditions
DHA-induced ROS production mediated the cytotoxic effect
since blocking the ROS production resulted in reduced DNA-
fragmentation. In addition, hypoxic HCT116 cells induced a
different set of regulatory BH3-only proteins in response to
DHA compared to normoxic cells suggesting that different
BH3-only proteins might contribute to the canonical and non-
canonical apoptosis in normoxia and hypoxia by inhibiting anti-
apoptotic Bcl-2 family members and facilitating the activation of
the Bax.

MATERIALS AND METHODS
CHEMICALS AND DRUGS
Dihydroartemisinin [(3,5,6,8,9,10,12R,12aR)-decahydro-3,6,9-
trimethyl-3,12-epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin-10-
ol, C15H24O5)] and propidium iodide (PI) were obtained
from Sigma-Aldrich (Deisenhofen, Germany). Hoechst 33342
was purchased from Calbiochem (Bad Soden, Germany). The
pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-
fluoromethylketone (zVAD-fmk) was obtained from Bachem
(Bubendorf, Switzerland). Tetramethylrhodamine ethyl ester per-
chlorate (TMRE) and dihydroethidium (DHE) were from Molec-
ular Probes (MoBiTec, Goettingen, Germany).

Antibodies specific for full length and cleaved poly (ADP-
ribose) polymerase (PARP), caspase-3, light chain 3B (LC3B),
Bax, Bak, Bcl-xL, and Puma were obtained from Cell Signal-
ing (Frankfurt, Germany). Bcl-2 antibody was purchased from
Santa Cruz Biotechnology (Heidelberg, Germany), Bim antibody
was purchased from Epitomics (Biomol, Hamburg, Germany).
The antibody specifically recognizing the active conformation of
Bax (Bax NT) was from Upstate (Hamburg, Germany). More-
over, we used antibodies specific for Noxa (Calbiochem, Darm-
stadt, Germany), cytochrome c (Pharmingen, Hamburg, Ger-
many), or β-actin (Sigma-Aldrich, Deisenhofen, Germany) as
well as HRP-conjugated and Cy2-conjugated secondary antibodies
(Amersham-Biosciences, Freiburg, Germany).

All other chemicals and drugs were from Sigma-Aldrich if not
otherwise specified.

CELL CULTURE
Colon cancer cell lines HCT15, Colo205, and HCT116 were
obtained from ATCC (Bethesda, MD, USA). Morphology and phe-
notype of the distinct cell lines were routinely tested before and
during data acquisition.

Cells were grown in RPMI 1640 medium supplemented with
10% (v/v) fetal calf serum (Gibco Life Technologies, Eggenstein,
Germany) and maintained in a humidified incubator at 37°C and
5% CO2 (normoxic conditions). Hypoxic cells were grown in a
humidified hypoxia work station (In vivo 400,Ruskinn Technology
Ltd., IUL Instruments GmbH, Königswinter, Germany) at 37°C,
0.2% O2, and 5% CO2.

DRUG TREATMENT
Cells were treated 24 h after seeding with 0–50 µM DHA. For
treatment under hypoxic conditions, cells were transferred to the
hypoxic chamber 2 h before drug treatment. For all experiments,
0.1% ethanol was used as solvent control.

QUANTIFICATION OF CELL VIABILITY AND CELL PROLIFERATION
The number of living cells was determined upon staining of the
cells with the vital dye trypan blue. For this, cells were harvested
with Trypsin-EDTA, re-suspended in fresh medium, diluted with
trypan blue, and counted employing a Neubauer chamber.

In addition, metabolic activity of the cells was determined
as an indirect measure of cell viability using the WST-1 pro-
liferation assay according to the manufacturer’s instructions
(Roche Applied Science, Mannheim, Germany). Reduction of the
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water-soluble tetrazolium salt WST-1 to formazan was determined
using an ELISA reader (Bio-Tek, Bad Friedrichshall, Germany; 480
and 680 nm).

COLONY FORMATION ASSAY
For this long-term assay, 200–1600 cells/well were plated in 6-well
plates, incubated in normoxia for 24 h, and then treated with DHA
in normoxia or severe hypoxia. Plates seeded for treatment under
hypoxic conditions were transferred into the hypoxic chamber
2 h prior to DHA treatment until 24 h after treatment and subse-
quently incubated in normoxia. Plates were incubated for a total
of 10 days to allow growth of single colonies. Cells were then fixed
in 3.7% formaldehyde and 70% ethanol and subsequently stained
with 0.05% Coomassie Brilliant Blue. Colonies (≥50 cells/colony)
were counted under the microscope at fivefold magnification. The
survival curves were established by plotting the log of the surviv-
ing fraction against the treatment dose. Fitting of the curves was
performed using Excel software.

ANALYSIS OF APOPTOTIC AND NECROTIC CELL DEATH BY
FLUORESCENCE MICROSCOPY
Changes in nuclear morphology indicative for apoptosis and
necrosis were analyzed by fluorescence microscopy (Zeiss Axiovert
200,Carl Zeiss,Göttingen,Germany; G365/FT395/LP420 filter set)
upon cell staining with 1.5 µM Hoechst 33342 and 2.5 µg/ml PI.
Apoptotic and necrotic cells were quantified by counting the rela-
tive amount of fragmented blue or red nuclei (early or late apop-
tosis, respectively) and non-fragmented red nuclei (necrosis). At
least 100 cells were quantified in three independent fields per well.

FLOW CYTOMETRY ANALYSES
For quantification of apoptotic DNA-fragmentation (sub-G1 pop-
ulation), cells were incubated for 60 min with a staining solu-
tion containing 0.1% (w/v) sodium citrate, 50 µg/ml PI, and
0.05% (v/v) Triton X-100 (v/v) and subsequently analyzed by
flow cytometry (FACS Calibur, Becton Dickinson, Heidelberg,
Germany; FL-2).

Dissipation of the ∆Ψm was measured using the ∆Ψm-
specific dye TMRE (FL-2) as described elsewhere (17).
To ensure a complete dissipation of ∆Ψm, cells were
treated with 100 µM protonophore carbonyl cyanide m-
chlorophenylhydrazone (CCCP) before incubation with TMRE.

To quantify ROS production, cells were stained for 15 min at
37°C with 5 µM of the ROS-sensitive dye DHE (Molecular Probes,
MoBiTec, Göttingen, Germany) and washed subsequently once
with PBS. ROS-positive cells were detected by flow cytometry (FL-
2). Treatment with 250 µM H2O2 (2 h) was used as positive control
for ROS formation. As additional control, cells were pretreated
with 2 mM N -acetylcysteine (Acc) to block ROS formation.

Activation of Bax was determined using the activation-specific
anti-Bax NT antibody. In brief, cells were fixed for 20 min on ice
in 2.5% (w/v) PFA/PBS, washed in 1% (v/v) FCS/PBS, permeabi-
lized for 30 min on ice with 0.1% (v/v) Triton X-100/PBS, washed
with PBS, and then incubated for 15 min at room temperature
(RT) with a blocking solution (10% FCS/PBS). Cells were stained
for 30 min with the activation-specific anti-Bax NT antibody
or the respective isotype control, washed, incubated for 30 min

with a cy2-conjugated anti-rabbit secondary antibody (Amer-
sham, Freiburg, Germany), washed again, and then suspended in
blocking buffer for flow cytometric analysis (FL-1).

RELEASE OF CYTOCHROME C
Cells were plated on cover slips, washed with PBS, and fixed
for 15 min with 3% (v/v) paraformaldehyde in PBS at RT. Sub-
sequently, cells were permeabilized for 10 min with 0.2% (v/v)
Triton X-100 in PBS, washed with PBS, blocked for 30 min in 1%
(v/v) fetal calf serum, and subsequently incubated for 1 h at RT
with the anti-cytochrome c primary antibody (Pharmingen, Bec-
ton Dickinson). After repeated washing, cells were incubated for
45 min at RT in the dark with the secondary Cy2-conjugated anti-
mouse antibody (Amersham, Freiburg, Germany). Finally, the
cover slips were mounted with Fluorescence Mounting Medium
(Dako, Hamburg, Germany). Cytochrome c release was visualized
by fluorescence microscopy using a Zeiss Axiovert 200 microscope
equipped with an Apotome with an 63× oil objective and GFP fil-
ter set (Carl Zeiss, Jena, Germany). Analysis of green fluorescence
and overlay were performed with AxioVision software (Carl Zeiss,
Jena, Germany).

WESTERN BLOT ANALYSIS
Cells were lysed for 10 min at 99°C in 62.5 mM Tris-HCl (pH
6.8), 2% (w/v) SDS, 10% (v/v) glycerol, 50 mM dithiothreitol, and
0.01% (w/v) bromophenol blue. Proteins were separated by SDS-
PAGE and blotted onto PVDF-membranes (Roth, Karlsruhe, Ger-
many). After blocking with 5% (w/v) non-fat dry milk,membranes
were incubated at 4°C over night with the respective primary anti-
body (1:20,000 for β-actin, 1:1000 for all other antibodies). After
washing, the membranes were incubated for 1 h at RT with the sec-
ondary antibody (anti-IgG-HRP 1:2000, Amersham-Biosciences,
Freiburg, Germany), washed again, and developed using enhanced
chemiluminescence staining (ECL western blotting analysis sys-
tem, Amersham-Biosciences, Freiburg, Germany). We indicated
that protein levels were quantified by densitometry using ImageJ
software (ImageJ 1.40g, NIH, USA). The respective protein levels
were normalized to β-actin levels.

STATISTICS
Data represent mean values of at least three independent experi-
ments± standard deviation (SD). Specific values represent nor-
malization to respective solvent controls [% treated cells−%
solvent control]. Data analysis was performed by two-tail unpaired
t -test (Prism5™ software, GraphPad Inc., La Jolla, CA, USA)
or two-way ANOVA test using parametric methods and employ-
ing Bonferroni multiple comparison post-test where appropriate.
P-values ≤0.05 were considered as significant.

RESULTS
DIHYDROARTEMISININ EXERTS POTENT ANTI-NEOPLASTIC EFFECTS
UNDER NORMOXIC AND HYPOXIC CONDITIONS
To characterize the anti-neoplastic potential of DHA in severely
hypoxic cancer cells, we first compared tumor cell survival after
treatment with DHA under normoxic and under severely hypoxic
conditions. For this, we treated three different human colon cancer
cells (HCT15, Colo205, and HCT116 cells) with 0–80 µM DHA
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for 48 h in the presence of normal (21% O2) or greatly reduced
oxygen tensions (0.2% O2). DHA significantly reduced the num-
ber of viable HCT15, HCT116, and Colo 205 colon cancer cells in
a concentration-dependent manner under normoxic (Figure 1,
upper panel) as well as under hypoxic conditions (Figure 1,
lower panel). The response of the three cell lines to DHA dif-
fered slightly depending on the drug concentration and the oxygen
levels. Whereas HCT15 cells turned out to be highly sensitive in
normoxia and hypoxia with almost 50% reduction in the num-
ber of viable cells upon treatment with 10 µM DHA under both
conditions, the sensitivity of HCT116 cells was higher in hypoxia
(almost 50% reduction in the number of viable cells with 10 µM
DHA compared to 20% in normoxia). In contrast, the number
of viable cells decreased only by around 20% in Colo205 upon
treatment with 10 µM DHA under both, normoxic and hypoxic
conditions. Nevertheless, the results indicate that DHA is highly
active in normoxic and hypoxic colorectal cancer cells.

To characterize the mechanism of cytotoxicity more closely,
the mode of cell death induced by DHA was analyzed. For this

purpose, the three colon cancer cell lines were treated with 0–
50 µM DHA under normoxic and hypoxic conditions. Forty-eight
hours later, the cells were co-stained with the membrane perme-
able DNA dye Hoechst 33342 and PI, a DNA dye that cannot
enter cells with intact plasma membrane integrity, to distinguish
between apoptotic and necrotic cell death (Figure 2A). PI-negative
and PI-positive cells with condensed DNA were mainly observed
after treatment with 25 µM DHA under normoxia or hypoxia indi-
cating that at this applied concentration the dominant mode of cell
death was apoptosis (Figures 2B–D, left panels). In contrast, treat-
ment with 50 µM DHA yielded elevated levels of PI-positive cells
without DNA condensation suggesting that necrotic cell death
was increased in response to treatment with higher DHA con-
centrations (Figures 2B–D, right panels). However, the impact
of normoxia or hypoxia on DHA-induced necrosis is not clear.
Whereas DHA-induced necrosis was much higher in normoxic
than in hypoxic HCT15 and HCT116 cells, Colo205 cells showed
more necrosis upon DHA treatment in hypoxia compared to
normoxia.

FIGURE 1 | DHA exerts potent anti-neoplastic effects on colon cancer
cells in normoxia and severe hypoxia. HCT15, Colo205, and HCT116 colon
cancer cells were treated for 48 h with various concentrations of DHA
(0–80 µM) under normoxic (21% O2; black bars) or severely hypoxic
conditions (0.2% O2; white bars) as indicated. Cell proliferation and survival
were monitored 48 h after treatment by using the WST-1 assay that
quantifies the metabolic activity of viable cells. Ethanol (0.1%) was used as

solvent control. DHA reduces the number of viable HCT15, HCT116, and
Colo 205 cells in a concentration-dependent manner in normoxia (upper
panel) and hypoxia (lower panel). DHA displays almost similar anti-neoplastic
activity in normoxia and hypoxia. Data represent means±SD (n=3). Values
were normalized to the ethanol control. P -values were calculated applying
unpaired two-tailed t -test. *P < 0.05; **P < 0.01; ***P < 0.001. Nx,
normoxia; Hx, hypoxia.
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FIGURE 2 | DHA induces apoptotic and necrotic cell death in colon
cancer cells in normoxia and hypoxia. HCT15, Colo 205, and HCT116 cells
were treated for 24 h with solvent (Ethanol, 0 µM DHA) or DHA (25, 50 µM)
under normoxic (21% O2; black bars) or under severely hypoxic conditions
(0.2% O2; white bars). To visualize apoptotic and necrotic cell death, cells
were stained with Hoechst (blue) and PI (red) and submitted to fluorescence
microscopy 24 h post treatment. (A) Representative fluorescence microscopy
pictures from one of three independent experiments are shown. Scale bar
corresponds to 100 µm. Pictures were taken using 10-fold magnification.
(B–D) At concentrations of 25 µM and below, DHA preferentially induced
apoptosis, whereas at 50 µM DHA necrosis became more prominent. The

percentage of apoptotic and necrotic cells in (B) HCT15 cells, (C) Colo 205
cells, and (D) HCT116 cells was quantified by counting the fraction of cells
with normal, apoptotic, and necrotic nuclei using fluorescence microscopy
(DAPI channel). At least 100 cells per field were quantified from three
independent areas per condition. Data represent means from three
independent experiments±SD. Statistical analysis was performed according
to unpaired two-tailed t -test. *P < 0.05; **, ##P < 0.01, ***, ###P < 0.001.
*Indicates the significance between the solvent treated control cells and
DHA-treated cells either in normoxia or hypoxia, # indicates the significance
between normoxic and hypoxic cells treated with the same concentration
of DHA.
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Taken together, our results indicate that DHA displays cyto-
toxic activity in colon cancer cells under normoxic and hypoxic
conditions.

EFFECT OF DIHYDROARTEMISININ ON SHORT-TERM AND LONG-TERM
CELL VIABILITY IN HCT116 CELLS
Although DHA induced cell death in colon cancer cells, the drug
also might affect the cell proliferation rate. Thus, we analyzed
the amount of viable HCT116 cells in a short-term assay mea-
suring the number of viable cells 48 h after treatment with DHA
(Figure 3A) as well as in a long-term assay measuring the surviv-
ing fraction in response to DHA (Figure 3B) under normoxic or
hypoxic conditions. Under normoxia, the number of living cells
was significantly reduced 48 h after treatment with 12.5 or 25 µM
DHA. In hypoxia, the number of living cells was already slightly
decreased without treatment and was further lowered by treatment
with DHA, however, not to the same extent as under normoxic
conditions. On the other hand, the long-term assay showed that the
number of surviving cells able to regrow and form a colony declines
with increasing DHA concentration. Surprisingly, DHA treatment
reduced the surviving fraction even slightly more efficiently under
hypoxic conditions when compared to normoxic conditions. Our
results indicate that the long-term toxicity of DHA is slightly
improved under hypoxia as compared to normoxia, though the
number of surviving cells was slightly higher after short-term
treatment under hypoxic conditions. The results suggest that DHA
exerts pronounced long-term anti-neoplastic effects that enhance
clonogenic cell death particularly under hypoxic conditions.

DEPRIVATION OF OXYGEN RESULTS IN A SWITCH FROM
CASPASE-DEPENDENT APOPTOSIS TO CASPASE-INDEPENDENT
APOPTOSIS IN RESPONSE TO DIHYDROARTEMISININ
Earlier investigations in Jurkat T-lymphoma cells had demon-
strated that, under standard normoxic culture conditions, DHA

activates the intrinsic apoptosis pathway to trigger ROS-dependent
cell death (11). Intrinsic apoptosis is characterized by the acti-
vation of the Bcl-2 effector proteins Bax and/or Bak which,
in turn, induce the permeabilization of the outer mitochon-
drial membrane and cytochrome c release from the mito-
chondrial intermembrane space into the cytosol, which acts
as a co-factor to activate the caspase cascade [for review see
Ref. (18)]. This ultimately results in dissipation of the ∆Ψm
and DNA-fragmentation. To gain insight into the regulation
of DHA-induced cell death in HCT116 cells under normoxic
and hypoxic conditions, we compared the canonical steps of
the intrinsic apoptosis pathway in HCT116 cells in response to
DHA at 21 and 0.2% O2 (Figure 4). In normoxia, DHA read-
ily induced Bax-activation (Figure 4A), cytochrome c release
into the cytosol (Figure 4B), and cleavage of caspase-3 and
of the caspase-3 substrate PARP (Figure 4C), dissipation of
∆Ψm (Figure 4F), and DNA-fragmentation (Figure 4G), respec-
tively. Though Bax-activation was detected to a similar extent
upon DHA treatment under hypoxic conditions, cytochrome c
release into the cytosol, caspase-3 activation, and PARP-cleavage
were abrogated under these conditions. In addition, blocking
caspase-activation by co-treatment with pan-caspase inhibitor
zVAD-fmk and DHA under normoxia prevented cleavage of
caspase-3 and PARP (Figure 4D) as well as DNA-fragmentation
(Figure 4E), suggesting that the canonical apoptosis pathway is
activated in response to treatment with DHA under normoxic
conditions.

Interestingly, mitochondrial dissipation (Figure 4F) and DNA-
fragmentation (Figure 4G) were only slightly reduced in hypoxic
cells in response to treatment with 25 µM DHA when com-
pared to treatment under normoxic conditions. Thus, our results
suggest that, in response to DHA, a caspase-independent apop-
totic cell death occurred when cells were treated under hypoxic
conditions.

FIGURE 3 | DHA reduces cell survival and eradicates clonogenic
tumor cells in normoxia and hypoxia. (A) HCT116 cell were treated
with DHA (12.5, 25 µM) or with ethanol (solvent control, 0 µM DHA).
Forty-eight hours later, living cells were counted using trypan blue
exclusion dye. P -values were calculated applying unpaired two-tailed
t -test; *P < 0.05. DHA significantly reduced the number of viable cells
under normoxic conditions, but only slightly decreased the number of
viable cells under hypoxic conditions. (B) HCT116 cells were plated for

colony formation assay, treated 24 h later for 24 h with 0–20 µM DHA
under normoxic (21% O2) or hypoxic conditions (0.2% O2) and
subsequently further incubated at 21% O2 for additional 10 days. Values
were normalized to the plating efficiency of the cells treated with
ethanol (0 µM DHA). Data show the surviving fractions (SF) from three
independent experiments (means±SD). DHA-induced eradication of
clonogenic tumor cells was slightly better under hypoxic than under
normoxic conditions.
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FIGURE 4 | DHA induces caspase-dependent apoptosis in normoxia
but a caspase-independent apoptotic cell death in hypoxia. HCT116
cells were treated for 12–48 h under normoxic and hypoxic conditions
with solvent control (0 µM), 12.5 or 25 µM DHA as indicated.
(A) DHA-induced Bax-activation is similar in normoxia and hypoxia.
Bax-activation was monitored by flow cytometry 12 h after treatment
using an activation-specific anti-Bax antibody. (B) DHA induces significant
release of cytochrome c only in normoxia. Cytochrome c release was
visualized 12 h after DHA treatment by immunofluorescence (Zeiss Cell
Observer fluorescence microscope with Apotome; Axiocam MRm
camera; GFP filter). Scale bar corresponds to 10 µm. Data show
representative pictures from three independent experiments.
(C,D) Activation of caspase-3 and cleavage of caspase-3 substrate PARP
were analyzed by western blotting at 24 h after treatment with DHA. Data

are representative blots out of three independent experiments.
(C) DHA-induced caspase-activation is abrogated in hypoxia. Caspase-3
activation (D) and DNA-fragmentation (E) can be blocked by co-treatment
with the pan-caspase inhibitor zVAD-fmk under normoxic conditions.
DHA induces depolarization of the mitochondrial membrane potential
[∆Ψm, (F)] and DNA-fragmentation [sub-G1, (G)] in normoxia and
hypoxia. Depolarization of ∆Ψm (F) and DNA-fragmentation (G) were
determined at 24 h after treatment by flow cytometry. (A,E–G) Data
represent means±SD from at least three independent experiments.
P -values were calculated applying unpaired two-tailed t -test; *P < 0.05;
**, ##P < 0.01; ***P < 0.001. *Indicates the significance between the
solvent-treated control cells and DHA-treated cells either in normoxia or
hypoxia, # indicates the significance between normoxic and hypoxic cells
treated with the same concentration of DHA.
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DIHYDROARTEMISININ-INDUCED ROS PRODUCTION CONTRIBUTES TO
THE CYTOTOXIC EFFECTS UNDER NORMOXIC AND HYPOXIC
CONDITIONS
Earlier reports including own data pointed to ROS-dependent
induction of apoptosis by DHA and related compounds (11,
15, 16). Therefore, we next examined whether treatment with
DHA would increase cellular ROS levels in HCT116 cells and
whether DHA-induced apoptosis was ROS-dependent. As shown
in Figure 5A, the amount of ROS-positive cells increased in
response to treatment with DHA in a concentration-dependent
manner under both, normoxic and hypoxic conditions. How-
ever, ROS production was significantly lower when treatment was
performed in severe hypoxia. Moreover, pre-treatment with the
radical scavenger Acc not only decreased DHA-induced ROS pro-
duction (Figure 5A), but concurrently decreased DHA-induced
DNA-fragmentation under normoxic and hypoxic conditions
(Figure 5B). These observations demonstrate that the induction of
ROS is essential for the cytotoxic action of DHA in both treatment
conditions.

NORMOXIC AND HYPOXIC HCT116 CELLS UP-REGULATE DIFFERENT
SETS OF BH3-ONLY PROTEINS UNDER NORMOXIC AND HYPOXIC
CONDITIONS
Since activation of Bax seems to be an important step during
DHA-induced cell death under normoxic and hypoxic conditions,
a western blot analysis was performed to examine whether a change
in the expression of other Bcl-2 family members could contribute
to apoptosis induction (Figure 6). HCT116 cells express higher
levels of Bax than the closely related Bak as well as higher levels
of the anti-apoptotic Bcl-xL than the closely related protective

Bcl-2. However, the expression of these four proteins was not
affected by DHA. In contrast, treatment with DHA resulted in
slightly increased levels of the anti-apoptotic Mcl-1, although
Mcl-1 levels were lower when cells were cultured in hypoxic con-
dition as compared to normoxic conditions. Interestingly, the
pro-apoptotic BH3-only protein Noxa showed similar regulation
like its interacting partner Mcl-1.

In contrast, levels of the BH3-only proteins Bim and Puma were
only elevated in response to treatment with DHA when treatment
was performed under normoxic conditions. Instead, expression
of the BH3-only protein BNIP3 was up-regulated when HCT116
cells were exposed to severe hypoxia and its levels further increased
after DHA treatment though BNIP3 was not detected in normoxia.

Taken together, our data suggest that different sets of BH3-only
proteins are up-regulated in response to DHA under normoxic
and hypoxic conditions.

BNIP3 is known to interact with Bcl-2 thereby counteracting
Bcl-2’s anti-apoptotic activity or preventing Bcl-2 from binding
to Beclin-1. The former interaction results in apoptosis induc-
tion whereas the latter one results in autophagy induction. In
addition, autophagy-associated cell death might also contribute
to clonogenic cell death. Therefore, we examined the induction
of autophagy by analyzing LC3B processing to a 14 kDa form in
HCT116 cells. Interestingly, an increase of the 14 kDa LC3B band
was observed under normoxic conditions when BNIP3 expres-
sion was hardly detectable. In contrast, under hypoxic condi-
tions, no increase of processed LC3B could be detected although
BNIP3 levels were dramatically increased. Thus, our results sug-
gest that BNIP3 does not regulate autophagy but rather apoptosis
in hypoxic HCT116 cells.

FIGURE 5 | ROS are important mediators of DHA-induced cytotoxicity in
both, normoxia and hypoxia. (A,B) HCT116 cells were pre-incubated for
30 min in the absence or presence of the radical scavenger N -acetylcystein
(Acc; 2 mM) and then treated for 24 h (A) or 48 h (B) with DHA (0–25 µM)
under normoxic and hypoxic conditions as indicated. (A) DHA induces ROS
under normoxic and hypoxic conditions in a concentration-dependent manner.
Treatment with 250 µM H2O2 for 2 h was applied as a positive control for ROS
formation. Pre-treatment with the ROS scavenger N -acetylcystein (Acc) was
used to intercept and neutralize ROS. ROS formation was detected by flow

cytometry upon loading of the cells with the oxidation-sensitive dye DHE.
(B) DHA-induced DNA-fragmentation is ROS-dependent in normoxia and
hypoxia. DNA-fragmentation (sub-G1) was analyzed by flow cytometry after
staining the cells with PI. Data represent means±SD from three
independent experiments. P -values were calculated applying unpaired
two-tailed t -test. *, #P < 0.05; **, ##P < 0.01; ***P < 0.001. *Indicates the
significance between the solvent-treated control cells and DHA-treated cells
either in normoxia or hypoxia, # indicates the significance between normoxic
and hypoxic cells treated with the same concentration of DHA.
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FIGURE 6 | BH3-only proteins Bim, Puma, Noxa, and BNIP3 are
differentially regulated in response DHA in normoxia and hypoxia.
HCT116 cells were treated with 0, 12.5, or 25 µM DHA under normoxic or
under hypoxic conditions as indicated. Twenty-four hours later, whole cell
lysates were made. Levels of anti-apoptotic and pro-apoptotic proteins of
the Bcl-2 family were analyzed by western blot. Induction of autophagy was
accessed by western blot using an antibody against LC3B and a
subsequent analysis of processed LC3B form (LC3B II, 14 kDa). Levels of
anti-apoptotic Bcl-2 and Bcl-xL and pro-apoptotic Bax and Bak did not
change in response to treatment with DHA under normoxic and hypoxic
conditions. Levels of BH3-only protein Noxa were increased in response to
DHA in normoxia as well as in hypoxia. Levels of Bim and Puma were only
increased by DHA in normoxia, whereas levels of BNIP3 were elevated by
DHA only in hypoxia. Induction of autophagy in response to DHA was
observed only under normoxic conditions. Protein levels were analyzed by
densitometry and normalized to β-actin levels. Relative protein levels are
shown below the respective blots. Data show representative blots from at
least two independent experiments.

DISCUSSION
Hypoxia is a major biological factor that limits the success of anti-
cancer treatment. Here, we demonstrate for the first time that the
anti-neoplastic cyclic endoperoxide DHA is a hypoxia-active anti-
cancer drug that efficiently eradicates colon cancer cells not only
under normoxic conditions but also when treatment is performed
in a severely hypoxic microenvironment.

ANTI-NEOPLASTIC ACTIVITY IN NORMOXIA AND HYPOXIA
Under normoxic conditions, DHA potently induced cell death,
particularly apoptosis, in colon cancer cells whereas necrotic cell
death was only induced to a substantial extent when rather high
drug concentrations were used.

The main mode of DHA-induced cell death in colon cancer
cells under hypoxic conditions also resembled apoptosis. This
assumption is based on the findings that dissipation of the mito-
chondrial membrane potential as well as DNA-fragmentation were
still observed in severe hypoxia, though caspase-3 activation was
greatly reduced. This is reminiscent of a caspase-independent
apoptosis with DNA-fragmentation that was described before
(19). In this context, previous publications suggested a translo-
cation of apoptosis-inducing factor (AIF) and endonuclease G
(EndoG) from mitochondria to the nucleus, where both proteins
are able to initiate DNA-degradation independent of caspase-
activation (20, 21). The pronounced sensitivity to DHA-induced
apoptosis observed in short-term assays strongly correlated with
efficient eradication of clonogenic HCT116 cells in long-term
colony formation assays. Notably, the drug displayed even slightly
higher activity in HCT116 cells treated under severely hypoxic
conditions.

POTENTIAL OF DHA IN ANTI-CANCER THERAPIES
A hypoxic microenvironment renders cancer cells resistant to
most standard anti-cancer therapies and, thus, constitutes a major
obstacle in the treatment of cancer patients (2). The molecu-
lar mechanisms leading to the increased resistance of hypoxic
cancer cells to standard chemotherapeutic drugs or ionizing radi-
ation are not fully understood. However, previous publications
have demonstrated that hypoxic tumor cells stabilize the hypoxia-
inducing factor-1α (HIF-1α) leading to the HIF-1α-dependent cell
protection, increased transcription of vascular endothelial factor
(VEGF), and tumor vessel formation (3, 22). There is increas-
ing evidence that DHA interferes with HIF-1α activation, VEGF
expression, and angiogenesis. On the one hand, DHA treatment
reduced hypoxia-induced HIF-1α activation and VEGF expres-
sion in multiple myeloma and C6 rat glioma cells resulting in
reduced tumor cell growth and angiogenesis, respectively (23, 24).
On the other hand, DHA enhanced the toxicity of cisplatinum
in lung adenocarcinoma cells in vivo and this effect was accom-
panied by reduced expression of HIF-1α and VEGF and reduced
tumor microvessel density (25). Interestingly, this anti-angiogenic
effect of DHA was attributed to growth inhibition of endothelial
cells and depended on the level of tissue oxygenation and the drug
concentration (26). Thus, the anti-angiogenic effects described
above differ from our findings where DHA was almost similarly
active under normoxic and hypoxic conditions in all three colon
cancer cell lines examined (see Figure 1). The pronounced activ-
ity of DHA in severe hypoxia suggests that the drug has a great
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advantage over many standard anti-cancer drugs and radiotherapy
whose cytotoxic effects strongly rely on adequate oxygen tensions
as well as on intact cell death pathways (7, 27).

Moreover, although not yet examined in clinical trials, DHA is
able to improve treatment efficacy in combination with ionizing
radiation or cisplatin in preclinical models (25, 28, 29) and thus
shows great potential as anti-neoplastic drug.

Of note, drug concentrations used in the present study corre-
spond to DHA plasma levels achievable in humans. Upon repeated
intravenous application of 8 mg/kg artesunate, peak plasma con-
centrations up to 5.8 mg/l (around 20 µM) of its principal active
metabolite DHA were measured in healthy volunteers (30).

GENERATION OF ROS IN RESPONSE TO DHA
Up to now, preclinical studies about the anti-neoplastic activity of
artemisinin and derivatives had been mostly restricted to exper-
iments conducted in normoxia. These studies demonstrated that
the cytotoxic action of these compounds involves the formation of
ROS and membrane oxidation upstream of apoptosis-associated
changes in mitochondrial function (11, 31, 32). Moreover, chronic
treatment of LN-229 glioblastoma cells with artesunate led to a
continuous increase in ROS and in oxidative DNA-damage result-
ing in continuously increasing DNA double-strand breaks and
finally tumor cell death (16).

Our present data show for the first time that DHA can induce
ROS formation in hypoxia, though at slightly reduced levels. The
generated ROS were important mediators of DHA-induced cyto-
toxicity under normoxic as well as under hypoxic conditions since
blocking ROS formation by Acc resulted in abrogation cell death
under normoxic or hypoxic conditions. Although DHA-induced
oxidative DNA-damage and the resulting DNA-damage response
have not been studied here, it is highly likely that treatment with
DHA under normoxic as well as under hypoxic conditions will
also result in the generation of DNA double-strand breaks and,
finally, in cell death due to the inability of the cells to repair the
damaged DNA.

Taken together, our novel data indicate that the generation of
ROS is a hallmark of DHA-induced cell death under normoxic as
well as under hypoxic conditions.

ROLE OF BCL-2 FAMILY MEMBERS FOR THE REGULATION OF
DHA-INDUCED CLONOGENIC DEATH IN HYPOXIA
The effector proteins of the Bcl-2 protein family, Bax and Bak, are
essential for apoptosis induction. Both of them become activated
in response to many apoptotic stimuli (11, 33–35). In addition,
up-regulation of Bax levels was detected in response to cere-
bral ischemia or following exposure to ionizing radiation in a
p53-dependent way (36–38). Although the levels of pro-apoptotic
proteins Bax and Bak were not changed in response to treatment
with DHA, their activation might be essential for DHA-induced
cell death. Indeed, Bax was activated in most HCT116 cells after
treatment with DHA under normoxia and hypoxia. Thus, the
results suggest, that at least Bax might be a very important media-
tor of DHA-induced cytotoxicity under normoxic as well as under
hypoxic conditions.

Furthermore, anti-apoptotic proteins of the Bcl-2 family par-
ticipate in the regulation of the balance between apoptosis and

autophagy in response to cell stress, including hypoxia (39, 40).
They associate either with Bax or Bak to prevent outer mito-
chondrial membrane permeabilization and apoptosis induction
or with Beclin-1 preventing this molecule from induction of
autophagy (18, 41–45). Both, apoptosis and autophagy could
contribute to clonogenic cell death induced by DHA. However,
Bcl-2 or Bcl-xL levels did not change in response to DHA treat-
ment under normoxic or hypoxic conditions. Only Mcl-1 levels
were decreased when cells were grown under hypoxia. Treat-
ment with DHA slightly increased Mcl-1 levels under hypoxia,
but had no effect under normoxia. Yet, the three protective pro-
teins can be released from a complex formed with Bax/Bak or
Beclin-1 by a competitive interaction with BH3-only proteins such
as Bim, Puma, Noxa, and BNIP3. Interestingly, Noxa levels were
increased in response to DHA under normoxia as well as hypoxia.
In contrast, Bim and Puma levels were up-regulated only under
normoxic conditions, whereas BNIP3 levels were increased only
under hypoxic conditions after treatment with DHA. Further-
more, previous publications have shown that BNIP3 up-regulation
was observed preferentially in hypoxic cells and was often asso-
ciated with autophagy induction due to the release of Beclin-
1 from interaction with Bcl-2 or Bcl-xL by replacement (46).
However, BNIP3 is also able to induce apoptosis by binding to
Bcl-2 and Bcl-xL (47). Surprisingly, autophagy induction as mea-
sured by LC3B processing was detected only in normoxic cells
in response to DHA treatment in the absence of BNIP3. In con-
trast, under hypoxia, when BNIP3 levels were greatly increased,
processing of LC3B could not be detected. Thus, our data sug-
gest that BNIP3 regulates rather apoptosis than autophagy under
hypoxic conditions. However, up-regulation of the BH3-only
proteins, Bim and Puma could result in an enhanced inter-
action with Bcl-2 and Bcl-xL to induce both, autophagy and
apoptosis, under normoxic conditions. Taken together, our data
clearly demonstrate a differential expression of BH3-only proteins
under normoxic and hypoxic conditions in response to treatment
with DHA in HCT116 colon cancer cells to induce cancer cell
death.

Given that we did not analyze the protein complexes in more
detail, we cannot state whether the discussed BH3-only proteins
associate with the anti-apoptotic Bcl-2 members to release Beclin-
1 and induce autophagy or to activate Bax and Bak to induce
apoptosis. A further analysis of Bcl-2, Bcl-xL, and Mcl-1 as well as
their interacting partners will clarify the molecular mechanisms
by which DHA induces apoptosis and autophagy under normoxic
and hypoxic conditions.

CONCLUSION
In contrast to many genotoxic drugs and radiotherapy, which are
generally less efficient in hypoxic tumor cells, DHA exerts pro-
nounced anti-neoplastic effects under severely hypoxic conditions.
While the canonical intrinsic apoptosis pathway seemed to be pre-
dominantly activated by DHA in oxygenated cells, DHA induced
a caspase-independent apoptosis-like cell death in severe hypoxia.
Since DHA targets normoxic as well as hypoxic cells with equal
potency, the drug might be a promising tool to improve treat-
ment outcome, particularly in hypoxic human tumors resistant to
conventional therapies.
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Estrogen is necessary for the normal growth and development of breast tissue, but high
levels of estrogen are a major risk factor for breast cancer. One mechanism by which estro-
gen could contribute to breast cancer is via the induction of DNA damage.This perspective
discusses the mechanisms by which estrogen alters the DNA damage response (DDR)
and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1,
BRCA1, and p53 and the feedback on estrogen receptor signaling from these proteins.
We put forward the hypothesis that estrogen receptor signaling converges to suppress
effective DNA repair and apoptosis in favor of proliferation. This is important in hormone-
dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as
well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or
altered in estrogen responsive breast cancer, which will further change the processing of
DNA damage. Finally, the action of estrogen signaling on DNA damage is also relevant to
the therapeutic setting as the suppression of a DDR by estrogen has the potential to alter
the response of cancers to anti-hormone treatment or chemotherapy that induces DNA
damage.

Keywords: estrogen receptor, DNA damage response, breast cancer, p53, BRCA1, DNA repair, tamoxifen, DDR

DNA DAMAGE INDUCED BY ESTROGEN
Lifetime exposure to estrogen is a major risk factor for breast can-
cer. Elevated serum levels of estrogen are associated with a 2–2.5×
greater risk of breast cancer development (1) and high levels of
estrogen in the breast of postmenopausal women are associated
with increased cancer risk (2). Estrogen signaling drives prolifer-
ation in the 60–70% of breast cancers that express the estrogen
receptor, and adjuvant anti-estrogen therapy is prescribed to the
majority of these patients to prevent breast cancer recurrence.

Estrogen signals through its two receptors, estrogen receptor
α (ERα) and estrogen receptor β (ERβ). Only ERα is essential
for breast development and activates pro-proliferative signaling in
the normal breast and breast cancer, whereas ERβ generally antag-
onizes ERα in the breast (3). Upon estrogen binding ERα acts
by parallel pathways to alter gene expression. ERα translocates
to the nucleus to activate gene targets directly or in coopera-
tion with co-activator proteins, or it can transactivate growth
receptors to boost receptor tyrosine kinase signaling. These path-
ways converge to promote growth and proliferation and suppress
apoptosis (3).

Despite the risks associated with estrogen exposure the exact
mechanisms by which estrogen contributes to the initiation and
progression of breast cancer remains elusive. However, a major
mechanism is potentially the induction of DNA damage as estro-
gen treatment leads to double stranded DNA breaks and genomic
instability (1, 4, 5). Early breast cancer lesions exhibit chromoso-
mal instability and aneuploidy (6), and in rat models this is linked
to estrogen exposure (7). Estrogen can induce DNA damage via the
production of oxidative metabolites that cause DNA adducts, or

other oxidative DNA damage, and this is supported by in vitro and
animal model studies (1). The second explanation for estrogen-
induced DNA damage is that hyperactivated estrogen signaling
provokes excessive proliferation when pathways become dysregu-
lated, and this theory has strong support from in vitro modeling
and gene signatures in breast cancer (3). Excessive proliferation
promotes DNA damage accumulation due to insufficient timely
repair leading to replication fork stalling and possibly even double
stranded DNA breaks (8). It is likely that both carcinogenic estro-
gen metabolites and deregulated estrogen signaling contribute to
estrogen-induced DNA damage. In this perspective a third possi-
bility is raised, that estrogen signaling suppresses the DNA damage
response and DNA repair to allow the accumulation of genomic
change conducive to tumorigenesis.

DNA DAMAGE RESPONSE AND DNA REPAIR PATHWAYS
ALTERED BY ESTROGEN SIGNALING
DNA damage is recognized and processed by series of pathways
called the “DNA damage response (DDR)”. The DDR assesses the
scope and severity of DNA damage to initiate cell cycle arrest,
senescence, repair, or in the case of irreparable damage, apoptosis.
If repair is activated then a number of different repair mechanisms
can be engaged [reviewed in Ref. (9)]. Small lesions of damaged
or incorrectly inserted nucleotides are repaired by base excision
repair (BER), nucleotide excision repair (NER), or mismatch
repair (MMR). The more catastrophic double stranded breaks are
repaired via non-homologous end-joining (NHEJ) or homolo-
gous recombination (HR). Small distorting lesions are extremely
common so the pathways that repair these defects (BER, NER, and
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MMR) are also activated by constant genome surveillance, and
repair is coupled to transcription and DNA replication.

The DDR signals through three main effector kinases, ATM,
ATR, and DNA-PK. ATM and DNA-PK recognize double stranded
breaks whereas ATR responds to single stranded regions that occur
at stalled replication forks and double stranded break overhangs.
The signaling pathways downstream of ATM, ATR, and DNA-PK
involve a myriad of proteins, however there are a number of key
effector proteins that include CHK1, CHK2, BRCA1, 53BP1, and
MDC1 which signal to DNA repair coordinators such as BRCA2,
PALB2 and to cell cycle checkpoints and the apoptotic machinery.
The major tumor suppressor protein, p53, is activated down-
stream of ATM/ATR, and acts as a genome guardian to determine
whether cells should arrest or apoptose. There is significant cross-
talk between the various pathways depending on the nature and
severity of the DNA damage.

The DDR is important to estrogen carcinogenesis as it dic-
tates how estrogen-mediated damage is processed by breast cells.
In prior genome wide studies of estrogen action, the major reg-
ulatory nodes of the ERα transcriptional program have included
proliferation, growth, and apoptosis, but not the DDR or DNA
repair (3). However, there is a growing body of literature, which
identifies estrogen signaling as regulating key effector DDR pro-
teins such as ATM, ATR, p53, BRCA1, and BRCA2, as well as direct
interactions with the DNA repair machinery. This is significant
not only for estrogen carcinogenesis, but also for the processing
of any genotoxic insults by estrogen-responsive tissues. Described
below are the most important interactions between ERα, the DDR,
and DNA repair pathways (Figure 1). ERβ is not discussed in this
perspective, but it should be noted that ERβ has opposing effects
to ERα in many contexts (10), and this is also true of regulation of
the DDR and DNA repair (11–13).

REGULATION OF EFFECTOR KINASES ATM, ATR, AND DNA-PK
ATM and ATR are key initiators of the DDR, and both are neg-
atively regulated by ERα. ERα downregulates transcription of
ATM via the activation of miR-18a and miR-106a (11). The
ATR/CHK1 signal transduction cascade is suppressed by ERα-
transactivated AKT phosphorylation of TOPBP1 to prevent an
interaction with ATR at sites of DNA damage (15). AKT also
phosphorylates CHK1 to prevent its interaction with co-activator
CLASPIN (15). The downregulation of ATM and ATR by ERα

interferes with the induction of cell cycle checkpoints so that cells
continue to progress through the cell cycle after DNA damage,
and DNA repair is delayed or not engaged (15, 16). Estrogen activ-
ity does not, however, preclude activation of the DDR. γ-H2Aχ

foci form in response to estrogen-induced DNA damage, and the
co-localization of Rad51 to these foci suggests the activation of
HR (4).

While ERα negatively regulates both ATM and ATR, it is possible
that ERα positively regulates DNA-PK mediated repair based on
recent findings of DNA-PK regulation by the androgen receptor
(AR). AR regulation of DNA-PK catalytic subunit (DNA-PKcs)
promotes the repair of DNA double stranded breaks and resis-
tance to DNA damage and DNA-PKcs likewise potentiates the
function of AR (17). Like AR, ERα is in a complex with DNA-
PK (18) and ERα is stabilized and its transcriptional function

potentiated by DNA-PK (19), and by analogy to AR, ERα may
also transactivate DNA-PK.

If ERα does positively regulate DNA-PK, ERα may suppress
DNA repair processes of higher fidelity (ATM- and ATR-mediated)
in preference for DNA-PK-mediated NHEJ. This is consistent with
observations of ERα activity leading to the accumulation of DNA
damage (1) as it would sustain proliferation by not engaging the
ATM/ATR pathways, while promoting DNA-PK-mediated NHEJ
to maintain genome integrity. Toillon et al. found that estrogen
treatment of irradiated breast cancer cells led to their sustained
proliferation without any increase in p53 activation or apoptosis
(20). This is consistent with a failure to activate ATM or ATR but
the repair of DNA by DNA-PK mediated NHEJ.

BRCA1
BRCA1 is a downstream effector of the DDR that is recruited to
sites of DNA damage, functions directly in HR, but also influ-
ences cell cycle arrest and other DNA repair pathways. There is
strong evidence that BRCA1 limits estrogen-mediated tumorigen-
esis: Brca1 knockout mice show an enhanced proliferative response
to estrogen treatment and accelerated development of preneoplas-
tic mammary lesions (21), and the reduction of serum estrogen
levels by oophorectomy protects carriers of the BRCA1 mutation
against breast cancer (22). Indeed, BRCA1 has a negative effect
on ERα, through direct binding to inhibit ERα-mediated gene
transcription (23, 24), downregulation of ERα co-activator, p300
(25), reduced cross-talk from growth factor signaling (26), and
potentially monoubiquitination (25, 27). These effects are antag-
onized by cyclin D1, a direct transcriptional target of ERα that is
instrumental in estrogen-induced proliferation (28).

While BRCA1 suppresses ERα, ERα regulation of BRCA1
enhances BRCA1 function. Estrogen promotes transcription of
BRCA1 via binding of an ERα/p300 complex (29), and stimu-
lates the formation of a complex between ERα, CBP, and BRCA1
that facilitates double stranded break repair (30). Surprisingly,
BRCA1 induces the transcription of ESR1 which encodes ERα,
and the positive feedback between BRCA1 and ERα provides a
rational explanation for why many BRCA1 negative cancers are
ERα negative (31).

p53
Estrogen receptor α and p53 have a bi-directional relationship
affecting both expression and function. The TP53 gene is tran-
scriptionally activated by ERα (32, 33) and downstream of ERα-
target, c-MYC (34), and ERα stabilizes the p53 protein (35).
Despite ERα inducing higher levels of p53 it may not be active:
in breast cancer cell lines estrogen induces cytoplasmic redistrib-
ution of p53 to reduce its transcriptional function (12, 36). ERα

alters the p53 transcriptional program to reverse transcriptional
activation and repression by p53, including downregulation of
the p53-mediated apoptotic response induced by DNA damage
(37). ERα represses p53-mediated transcription either through
the recruitment of co-repressors (38) or via independent targeting
and repression of p53 target gene sets (39). A separate subset of
target genes for p53 activation is enhanced by ERα activity (37).

p53 and ERα exist in complex with MDM2, and this com-
plex modulates the activity of p53 and ERα. MDM2 is a negative
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FIGURE 1 | Key effectors of the DNA damage response and DNA
repair that intersect with estrogen receptor α signaling. The DNA
damage response (DDR) is a series of pathways that recognize and
process DNA damage. After DNA damage recognition, signals are
transduced and amplified through kinase activation (ATM, ATR, DNA-PK,
CHK1, and CHK2) to downstream effectors (e.g., p53 and BRCA1) that
facilitate DNA repair, apoptosis, and cell cycle arrest. Estrogen receptor α

(ERα) exists in complex with multiple members of the DDR and DNA

repair pathways (e.g., DNA-PK, BRCA1, p53, and MDM2). These
protein:protein interactions are denoted by ERα represented as a hexagon.
This includes c-Abl, a multi-functional regulator of the DDR and its
downstream pathways (14). ERα also transcriptionally regulates or is
regulated by other members of these pathways (e.g., ATM, ATR, CHK1,
BRCA2, and DNA damage checkpoint protein Rad17), denoted by red
lines. ERα signaling antagonizes two major endpoints of DDR action:
apoptosis and cell cycle arrest (red lines).

feedback regulator of p53 (40), whereas MDM2 positively reg-
ulates ERα transcriptional activity, most probably through direct
MDM2:ERα interaction (41, 42). Conversely, the MDM2/p53/ERα

ternary complex downregulates the activity of ERα by monoubiq-
uitination, probably via the ubiquitin ligase activity of MDM2
(43). MDM2 may also downregulate ERα independently of p53
(43). In the presence of cellular stress, including UV-mediated
DNA damage, p53 dissociates from MDM2 and this is associated
with an increase in ERα levels and block of the estrogen-dependent
downregulation of ERα (43). Paradoxically, while ERα represses

p53-mediated transcription, ERα also protects p53 from repres-
sion by MDM2 (40), and estrogen treatment is necessary for a p53
response to be mounted in the mouse mammary gland against
ionizing radiation (44).

p53 upregulates the expression of ESR1, but alters the transcrip-
tional functions of ERα. p53 induction of ESR1 occurs following
DNA damage such as irradiation (45). Like ERα modulation of
p53 function, p53 alters the transcriptional program of ERα to
repress certain estrogen responsive genes such as BRCA2, c-JUN,
and BCL2 (37, 46). Indeed it appears that the combination of ERα
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and p53 induces a distinct transcriptional program compared to
either ERα or p53 alone (47).

Overall this body of work suggests that estrogen and ERα upreg-
ulate but sequester p53, such that the DDR and DNA repair are
suppressed in the presence of active estrogen signaling, but there
is still some safeguard via p53. When estrogen treated breast can-
cer cells are irradiated there is partial activation of p53 and its
downstream pathways, but the pro-proliferative effects of estrogen
override any checkpoint-mediated cell cycle arrest (20). Con-
versely, in mouse models, p53 provides protection from lymph
node hyperplasia and ductal carcinoma in situ (DCIS) induced by
deregulated estrogen signaling (48).

DNA REPAIR MACHINERY
Estrogen receptor α interacts directly with DNA repair proteins
with varying impact on DNA repair mechanisms and ERα func-
tion. This includes FEN1, MPG, APE1, and TDG of the BER
pathway (49, 50), O(6)-methylguanine-DNA methyltransferase,
which corrects mutagenic DNA lesion O(6)-methylguanine back
to guanine (51), NHEJ repair proteins Ku70 and Ku86 in the con-
text of gene transcription (18) and MSH2 of the MMR pathway
(52). The binding of ERα to MPG enhances BER (53), while estro-
gen treatment upregulates or downregulates NER, depending on
cell type (54, 55). The binding of repair proteins has different
outcomes on ERα: MPG inhibits ERα-induced transcription and
transactivation of signaling pathways (53), MSH2 and TDG trans-
activate ERα (50, 52), and the binding of FEN1 and APE1 to ERα

has distinct effects on different ERα target genes (56, 57).
Estrogen receptor α interacts with other core DNA damage

processing proteins, although the consequence for DNA repair or
ERα action is unknown. Estrogen treatment upregulates BRCA2
(58) of the HR pathway, and through phosphorylation protects
BRCA2 from degradation (59). ERα also directly interacts with
DNA repair signaling and processing protein PARP-1 in the con-
text of ERα-mediated gene transcription (18), which potentially
affects ERα-regulated gene networks.

CELL CYCLE CHECKPOINTS AND APOPTOSIS
One of the most important functions of the DDR is to halt pro-
liferation via the activation of cell cycle checkpoints or induce
apoptosis. The effector proteins of these responses are not only
targets of the DDR but as a set are antagonized by pro-proliferative
ERα signaling. The DDR induces a G1/S phase arrest downstream
of ATR via CDC25A inhibition of cyclin A/E/CDK2 complexes,
and downstream of p53 via p21 inhibition of cyclin D/CDK4/6 and
cyclin E/CDK2 complexes. A G2/M arrest is induced downstream
of Chk1/Chk2 via activation of CDC25 phosphatases to inhibit
cyclin B/Cdk1 complexes (60). ERα antagonizes cell cycle arrest
by upregulating CCND1 (cyclin D1), CCNE2 (cyclin E2), and
CDC25A, and downregulating CIP1 (p21) downstream of c-MYC
(61–63). Likewise, p53 induces apoptosis by induction of FAS-R,
BAX, PUMA, and NOXA (64), but ERα induces an anti-apoptotic
signal including upregulation of BCL2 (65).

Consequently, active ERα signaling will antagonize the anti-
proliferative and pro-apoptotic signals of the DRR. The outcome
will be dictated by the strength of each signal, but ERα signaling
is able to sustain proliferation in situations where otherwise DNA

damage would have induced a cell cycle arrest and apoptosis (15,
20, 66).

DISRUPTION OF DDR AND DNA REPAIR PATHWAYS IN
BREAST CANCER, AND THEIR ASSOCIATION WITH ERα

STATUS AND PROGNOSIS
DNA damage pathways are altered in breast cancer by mutation,
changes in expression, amplification, and methylation, and as a
class the DDR and DNA repair proteins are frequently altered in
cancer and associated with poor prognosis. A survey of the liter-
ature shows that DDR pathways differ significantly between ERα

positive and ERα negative breast cancer (Table 1). At least part
of this change may be due to loss of ERα signaling, and certainly
changes to p53, ATM, and TIMELESS (which functions in the
ATR pathway) are consistent with the loss of ERα regulation of
these genes/proteins. However, given that changes to DNA dam-
age processing are a hallmark of cancer that contributes to tumor
initiation, some of the changes no doubt precede loss of ERα,
and may in fact contribute to its loss. This is exemplified in can-
cers with low BRCA1 and ERα, and BRCA1 loss is hypothesized
to lead to ERα downregulation in breast cancer (31). Neverthe-
less, the presence or absence of DDR/DNA repair proteins will
affect DNA repair in hormone-responsive cancers and the bi-
directional regulation of the DDR/DNA repair and ERα. Likewise,
the loss of ERα will affect the DDR/DNA repair in ERα negative
cancers.

PERSPECTIVES
Estrogen receptor signaling is not typically thought to influence
DNA repair as the literature has focused on its classic nodes of
action of proliferation, growth, and apoptosis. The evidence, how-
ever, is overwhelming that ERα signaling has an impact on DNA
damage processing through its regulation of ATM, ATR, DNA-PK,
p53, BRCA1, BRCA2, and the DNA repair machinery. Given that
estrogen can cause DNA damage, this raises a vital question of how
estrogen receptor signaling processes the DNA damage caused by
estrogen action. For example, does it dampen damage responses
in favor of continuing proliferation, or does it act as a sentinel
against DNA damage? Overall, estrogen receptor activity appears
to downplay the response to DNA damage while simultaneously
promoting proliferation. Consequently sustained ERα signaling
may be permissive of the accumulation of genomic change from
low level DNA damage that contributes to tumor initiation. Some
of the major effectors of the DDR (e.g., p53 and BRCA1) do have
negative feedback on the estrogen receptor, as does active DNA
repair. Thus in the face of serious DNA damage ERα signaling is
downregulated to protect the cell from continuing proliferation,
and potentially allow full engagement in the DDR.

Several critical experiments will clarify whether active ERα

signaling overrides the DDR. These include co-treatment with
estrogen and different DNA damaging agents to determine the
extent to which the DDR is activated and how ERα promoter
binding is affected by DNA damage. This should incorporate the
titration of doses of DNA damage to determine if there is a tip-
ping point between sustained proliferation due to ERα action,
and engagement of the DDR and DNA repair. Since ERα has
cross-talk with both BRCA1 and p53, the combinatorial effects
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Table 1 | DNA damage response and DNA repair genes altered in breast cancer and relationship to ERα status.

Gene/

protein

Interaction with ERα Alteration and relationship to

ERα status in breast cancer

Prognosis Reference

ATM ERα downregulates miR-18a and

miR-106a to downregulate ATM protein

expression, and miR-18a directly binds to

the ATM-3′-UTR

ATM protein is higher in ER

negative breast cancers

High ATM protein is correlated with

recurrence in breast cancer

(11, 16, 67)

ATR ATR is functionally downregulated by ERα

transactivated AKT signaling, which

suppresses the DNA damage induced

association between ATR:TOPBP1

– – (15)

BRCA1 The BRCA1:Oct1 complex directly binds

the ESR1 promoter to drive ERα

transcription; BRCA1 suppresses

ERα-mediated transcription through direct

binding and co-activators; ERα promotes

BRCA1 transcription via an ERα/p300

transcriptional complex

Low BRCA1/BRCA1 (by

mutation, methylation, or low

mRNA) is associated with ER

negative breast cancers

Oophorectomy (resulting in reduced

estrogen levels) is protective against

breast cancer in BRCA1 familial breast

cancers

(22–26, 29,

31)

BRCA2 BRCA2 is upregulated by estrogen

treatment, possibly as an indirect target

rather than via ERα

BRCA2 is higher in ER negative

breast cancers

High BRCA2 predicts poor

disease-free survival

(68, 69)

c-ABL c-ABL enhances estrogen receptor ERα

transcriptional activity through its ERα

stabilization by phosphorylation

Expression of c-ABL and ERα are

not correlated

Co-expression of c-ABL and ERα is

associated with advanced tumor stage

and lymph node involvement

(70, 71)

CHEK2 – CHEK2 mutated breast cancers

tend to be ERα positive

In ER positive breast cancers, CHEK2

mutation is associated with increased

risk of death and second breast

cancers, but not in ER negative cancers

(72, 73)

CHK1 CHK1 is phosphorylated via ERα

transactivated AKT signaling, which

suppresses the DNA damage induced

CLASPIN:CHK1 interaction

CHK1 mRNA and protein are

highly expressed in ER negative

CHK1 not prognostic for outcome

metastasis in breast cancer

(15, 74)

CLASPIN CHK1 is phosphorylated via ERα

transactivated AKT signaling, which

suppresses the DNA damage induced

CLASPIN:CHK1 interaction

CLASPIN mRNA and CLASPIN

protein are highly expressed in

ER negative breast cancers

CLASPIN mRNA is not prognostic for

metastasis

(15, 74)

DNA-PK The DNA-PK:ERα protein complex

increases ERα phosphorylation and

reduces ERα turnover. The DNA-PK:ERα

complex binds to ERα responsive gene

promoters, an effect that is not

dependent on DNA damage

– – (19)

FANCD2 – FANCD2 protein is higher in ER

negative breast cancers

– (75)

MDM2 MDM2 interacts with ERα in a ternary

complex with p53. MDM2 positively

regulates ERα transcriptional activity, but

downregulates overall activity through

ERα monoubiquitination

High MDM2 protein is correlated

with ER positive breast cancers

Low MDM2 protein is correlated with

high nuclear grade and lymph node

involvement

(41–43, 76)

(Continued)
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Table 1 | Continued

Gene/

protein

Interaction with ERα Alteration and relationship to

ERα status in breast cancer

Prognosis Reference

p53 ERα upregulates TP53 and stabilizes p53,

but generally suppresses p53

transcriptional function. p53 upregulates

ESR1, but also modulates ERα induced

transcription

p53 is generally wild-type and

expressed in ER positive breast

cancer

TP53 mutation or p53 mutated gene

signature is prognostic for poor

disease-free survival

(12, 32, 33,

35–39,

45–47, 77)

PCNA PCNA interacts directly with ERα to

modulate its transcriptional function in

normally proliferating cells

– – (78)

RAD17 RAD17 mRNA is upregulated by estrogen

in an ERα dependent manner

RAD17 mRNA often high in

breast cancer; high RAD17

protein correlated with ER

negative; RAD17 sometimes lost

in ER negative, but due to loss of

5q11 locus

High RAD17 mRNA prognostic of

increased lymph node metastasis

(79–81)

TIMELESS TIMELESS is upregulated by estrogen,

probably via ERα, and downregulated by

anti-estrogens

TIMELESS mRNA is high in ER+

patients who have relapsed for

endocrine therapy

High levels of TIMELESS mRNA

prognostic of poor relapse-free survival

for ER+ breast cancers

(82)

TOPBP1 TOPBP1 is regulated downstream of ERα

transactivated AKT signaling, which

suppresses the DNA damage induced

association between ATR:TOPBP1

TOPBP1 expression has no

relationship to ERα status

Low TOPBP1 mRNA and high TOPBP1

protein are both associated with

increased breast cancer grade

(15, 83, 84)

–, no relationship reported.

should be considered by simultaneously activating ERα signaling
and treating with DNA damage in the context of BRCA1 and p53
ablation. Finally, it is a priority to investigate the effect of ERα on
its binding partners DNA-PK, PCNA, and PARP-1 in the context
of DNA damage.

The role of ERα in modulating DNA damage has important
clinical implications. Anti-estrogen treatment is the mainstay of
adjuvant therapy for breast cancer, but the most common therapy,
Tamoxifen, is itself a source of DNA damage (85), and this dam-
age has been detected in patients and is implicated in endometrial
cancer (86). Tamoxifen has agonist effects through ERα in the
endometrium (87) so it is interesting to speculate that Tamox-
ifen therapy induces DNA damage and disturbs a balance between
estrogen signaling and the DDR in the endometrium to detri-
mental effect. Chemotherapies and radiation therapy induce DNA
damage, so ERα may suppress the DDR to reduce the efficacy of
these treatments. Indeed, patients with ER positive breast can-
cers have significantly lower response rates to chemotherapy than
those with ER negative cancers (88), and in vitro studies suggest
this is dependent on ERα action (89–91). Co-administration of
anti-estrogens and radiation therapy or chemotherapy appears
to enhance therapy cytotoxicity and a likely explanation is that
anti-estrogen treatment prevents pro-proliferative bypass of cyto-
toxicity by estrogen (66, 90). Conversely, estrogen receptor action
is needed for sustained p53 expression to allow the induction
of apoptosis by chemotherapeutic doxorubicin (92), and good
prognosis ERα positive breast cancers generally express p53.

Consequently, the pro-apoptotic arm of the DDR appears com-
promised in some circumstances by the complete inhibition of
ERα signaling. Further understanding of the cross-talk between
ERα and DNA damage processing will provide crucial informa-
tion to guide drug, radiation therapy, and hormone combination
treatment of breast cancer patients.
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WAP-T1 transgenic mice express SV40-TAg under control of the whey acidic protein (WAP)
promoter, which directs activity of this strong viral oncogene to luminal cells of the mam-
mary gland. Resting uniparous WAP-T1 glands develop hyperplasia composed of TAg
positive cells prior to appearance of advanced tumor stages. We show that cells in hyper-
plasia display markers of alveolar differentiation, suggesting thatTAg targets differentiating
cells of the alveolar compartment.The glands show significant expression of Elf5 and milk
genes (Lalba, Csn2, and Wap).TAg expressing cells largely co-stain with antibodies to Elf5,
lack the epithelial marker Sca1, and are hormone receptor negative. High expression levels
of Elf5 but not of milk genes are also seen in resting glands of normal BALB/c mice. This
indicates that expression of Elf5 in restingWAP-T1 glands is not specifically induced byTAg.
CK6a positive luminal cells lackTAg.These cells co-express the markers prominin-1, CK6a,
and Sca1, and are positive for hormone receptors.These hormone sensitive cells localize to
ducts and seem not to be targeted byTAg. Despite reaching an advanced stage in alveolar
differentiation, the cells in hyperplasia do not exit the cell cycle. Thus, expression of TAg
in conjunction with regular morphogenetic processes of alveologenesis seem to provide
the basis for a hormone independent, unscheduled proliferation of differentiating cells in
resting glands of WAP-T1 transgenic mice, leading to the formation of hyperplastic lesions.

Keywords: SV40-TAg, hyperplasia, alveologenesis, mammary gland, tumorigenesis

INTRODUCTION
Breast cancer, a progressive disease of mammary gland epithe-
lia, is marked by consecutive appearance of different alterations,
namely hyperplastic lesions, carcinoma in situ, and invasive, malig-
nant adenocarcinomas. The mutational signature of human breast
cancer supports the view of a direct evolutionary relationship
between pre-neoplastic and malignant lesions (1–5). Mutations
that inactivate functions of tumor suppressor proteins and thereby
decrease genomic stability seem to be basic to initiation of breast
cancer. Transgenic mouse strains were developed to mimic this
process at an experimental level and to decipher the mechanisms
initiating breast cancer and promoting progression to malignant
stages. Major questions concern the cell types targeted by onco-
genes in these models as this might determine the phenotype of
tumor cells appearing at advanced stages. Here, we asked whether
non-malignant, hyperplastic lesions appearing in resting glands of
WAP-T1 transgenic mice (6) reflect selection of a distinct epithelial
cell type or whether these lesions already display a heterogeneous
cell composition as is seen in advanced tumor stages.

WAP-T1 mice express SV40-T-antigen (TAg) under control of
the whey acidic protein (WAP) promoter, which directs activity

Abbreviations: CSN2, casein; ER, estrogen receptor; IF, immunofluorescence;
LALBA, lactalbumin; n.s., not significant; PR, progesterone receptor; SV40, Simian
virus 40; Tag, T-antigen; WAP, whey acidic protein.

of this strong viral oncogene specifically to epithelial cells of the
gland. The transgene encodes both, the large (LT) and small (t)
T-antigen. They cooperate to inactivate the tumor suppressor pro-
teins RB and p53, alter expression of cell cycle regulating genes,
promote unscheduled transition through G1/S, and impair DNA-
damage response mechanisms, events that are known to decrease
genomic stability (7–9).

The WAP promoter responds to lactotrophic hormones and
thus is inactive in glands of virgin mice, active during lactation in
differentiated luminal epithelial cells of the lobulo-alveolar com-
plex, and at a lower level also active in the resting gland during
estrous cycle (10–14). In accordance, epithelial cells of glands in
virgin mice lack TAg whereas differentiated epithelial cells of the
lactating gland show high levels of this protein. TAg positive cells
of the lactating gland disappear with regression of lobulo-alveolar
structures during involution (15–17). Sections of resting glands
derived from uniparous mice show re-appearance of T-antigen
positive epithelial cells at about 30 days post-weaning (p.w.). They
constitute small hyperplastic lesions, which gradually increase in
size and completely pervade the gland at 100 days p.w. Similar
to human breast cancer, these hyperplastic lesions develop prior
to appearance of carcinoma in situ and advanced tumor stages
WAP-T1 (2–6). Malignant tumors develop late at low frequency in
glands of WAP-T1 mice. They reveal a gene expression profile that
recapitulates the phenotype of aggressive human cancers (18).
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The data suggest that carcinogenesis in resting glands of WAP-
T1 is largely delayed or halted at the stage of hyperplastic lesions.
The cellular composition of hyperplasia and the status of TAg
expressing epithelial cells in these lesions compared to lactating
glands and advanced tumor stages are not defined. It was spec-
ulated that TAg expression in WAP-T1 selects for certain epithe-
lial cell types. A gene expression analysis showed that WAP-T1
tumor samples are enriched in transcription factors relevant for
embryonic stem cell maintenance. It led one to assume that TAg
expression may favor survival and proliferation of cells displaying
features of epithelial stem or progenitor cells (19). But not only
stem or progenitor cells but also cells at advanced stages of differ-
entiation have been proposed to generate hyperplastic lesions in
transgenic mouse models (20–24).

Epithelia of the mouse mammary gland reveal a complex com-
position, marked by stem and progenitor cells, terminally differ-
entiated cells, and regulatory units, such as hormone sensing cells
(25). They rapidly change composition and functional status of the
layer in dependence of developmental stages and environmental
signals. This raises the question whether oncogenic activity of TAg
in WAP-T1 mice at the early stage of hyperplasia randomly targets
epithelial cells or promotes selection of a distinct cell type. Gene
expression analysis of advanced WAP-T1 tumors identified at least
two different tumor entities, which completely differ in marker
expression: (i) low grade tumors, exhibiting a basal-like and mor-
phologically differentiated phenotype with loss of chromosomes
2 and 19 and (ii) high grade tumors marked by strong expression
of the Met gene and by co-expression of keratin 8/18, keratin 6,
and the mesenchymal marker vimentin (26). But, a heterogeneous
cell composition of advanced tumors does not necessarily contra-
dict the idea that TAg selects for a distinct epithelial cell type.
Data obtained with a tumor cell line derived from WAP-T1 glands
showed that tumor cells are equipped with phenotypic plasticity,
which for instance allows these cells to acquire a mesenchymal
or an epithelial phenotype depending on the tumor environment
(27).

Our data show that hyperplasia in resting glands of WAP-T1
mice are uniformly composed of cells differentiating along the
alveolar lineage. The results suggest that expression of the viral
oncogene in luminal epithelial cells pre-disposed to alveologene-
sis induces unscheduled proliferation of differentiating cells and
thereby causes formation of hyperplasia.

MATERIALS AND METHODS
MICE
Inbred BALB/c and the transgenic WAP-SV40 early region mouse
line T1 (6) were housed under SPF conditions in accordance
with official regulations for care and use of laboratory animals
(UKCCCR Guidelines for the Welfare of Animals in Experimental
Neoplasia) and approved by Hamburg’s Authority for Health (Nr.
24/96).

PREPARATION OF MOUSE MAMMARY GLANDS AND ISOLATION OF
LUMINAL CELL SUBPOPULATIONS
Mammary glands were collected at indicated time points from
virgin mice, lactating mice, and uniparous mice of the BALB/c or
WAP-T1 strains, respectively. Lymph nodes and tumors sometimes

present at late stages in WAP-T1 mice were removed. Mammary
glands to be used for RNA extraction were snap-frozen in liquid
nitrogen. Glands intended for immunofluorescence were embed-
ded in Shandon Cryomatrix (Thermo Scientific) and frozen at
−80°C. To extract cells for subsequent FACS-sorting all mammary
glands from one mouse were pooled in L15 Medium (Sigma-
Aldrich), transferred to a sterile Petri dish and minced with
scalpels. The organoid suspension was digested in serum-free L15
Medium with 3 mg/ml Collagenase Type I (Life Technologies) and
1.5 mg/ml trypsin (Sigma-Aldrich) for 1 h at 37°C. Cells were col-
lected by centrifugation at 300× g for 5 min and washed once in
L15+ 10% fetal calf serum (FCS). Red blood cells were lysed by
two rounds of incubation with red blood cell lysis buffer (Sigma-
Aldrich) and after two washes with PBS/0.02% EDTA cells were
incubated for 15 min at 37°C in SMEM Medium (Life Technolo-
gies). Cells were collected by centrifugation and incubated for
2 min at 37°C in 2 ml of 0.25% trypsin/0.2% EDTA in HANKS
balanced salt solution (Sigma-Aldrich); Cells were resuspended in
5 ml L15 medium, 400 U/ml Dnase I (Sigma-Aldrich) were added,
and the cells were incubated for another 5 min at 37°C before
the reaction was stopped by addition of 5 ml L15+ 10% FCS. To
obtain a single cell suspension, the cells were passed through a
30 µm filter (Miltenyi Biotech). Lineage depletion was performed
using a mouse Lineage Cell Depletion Kit (Miltenyi Biotech),
which selects for CD5, CD45R (B220), CD11b, Gr-1 (Ly-6G/C),
7-4, and Ter-119 positive cells and permits subsequent isolation of
Sca1 positive cells.

FACS-SORTING
After lineage depletion cells extracted from mammary glands
were stained with FITC hamster anti-mouse CD61 (BD Bio-
sciences; 1 µg/106 cells), PE hamster anti-mouse/rat CD29 (BioLe-
gend; 0.4 µg/106 cells), and AlexaFluor647 rat anti-mouse Ly-6A/E
(Sca1) (BioLegend; 0.5 µg/106 cells). Respective isotype controls
were included. The cells were sorted on a FACS Aria (BD Bio-
sciences). After sorting, aliquots of cells for immunofluorescence
were plated on poly-lysine coated cover slips. Cells for RNA
extraction were collected by centrifugation.

Sizes of subpopulations were derived from independent FACS
experiments (BALB/c n= 10; WAP-T1 n= 23). In each experi-
ment, the percentage of total cells was determined for each subpop-
ulation and mean values± SEM were calculated from all experi-
ments. Statistical significance was assessed using Student’s t -test
and p-values <0.05 were considered as statistically significant.

RNA EXTRACTION AND QUANTITATIVE REAL TIME PCR
Total RNA was purified using peqGOLD TriFast (Peqlab) accord-
ing to the manufacturer’s protocol. FACS-sorted cells were lysed
directly in TRIfast, frozen mouse tissue was carefully cut into
small pieces on dry ice, transferred to a lysing matrix tube (MP
Biomedicals), and lysed in TRIfast by two cycles of 5 s in a
FastPrep instrument (MP Biomedicals). DNA was removed by
DNAse I digestion (QIAGEN) followed by another round of RNA
extraction using TRIfast. Reverse transcription was performed
with the High Capacity RT kit (Applied Biosystems) accord-
ing to the manufacturer’s protocol. PCR was performed using
the Power SYBR Green PCR Master Mix (Applied Biosystems)
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in a standard program (10 min 95°C; 15 s 95°C, 1 min 60°C; 40
cycles) running in an ABI 7900HT Fast Thermal Cycler (Applied
Biosystems). PCR reactions for each sample were repeated in trip-
licates. The integrity of the amplified products was confirmed
by melting-curve analysis. PCR primers (Table S1 in Supple-
mentary Material) were designed using the Primer3 web tool
(http://biotools.umassmed.edu/bioapps/primer3_www.cgi). PCR
efficiency was measured for each primer pair using serial dilutions
of cDNA. 18S rRNA or HSC70 were used as endogenous controls
and relative quantitation of transcript levels was performed based
on the 2−ddCt method.

For the gene expression analysis in whole mammary glands
(Figure 5), 10 BALB/c and 10 WAP-T1 mammary glands from
five mice each were analyzed and fold changes relative to a BALB/c
mammary gland were calculated. Mean values and SEM were
calculated from the 10 single values for BALB/c and WAP-T1
mice. Statistical significance was assessed using Student’s t -test
and p-values <0.05 were considered statistically significant.

For the gene expression analysis in sorted subpopulations
(Figures 6C, 7 and 9) data was derived from at least three
independent sorting experiments (Figure 6C: BALB/c and T1
n= 5; Figures 7 and 9: BALB/c n= 4, T1 n= 5, BALB/c vir and
T1 vir n= 3). Fold changes relative to BALB/c subpopulations
(Figure 6C: CD29hi; Figures 7 and 9: CD61+Sca+) were cal-
culated and data from single experiments were summarized as
mean values± SEM. Statistical significance was assessed using Stu-
dent’s t -test and p-values <0.05 were considered as statistically
significant.

IMMUNOHISTOCHEMISTRY
Tissue specimens were fixed overnight with 4% formaldehyde and
1% acetic acid, and stored in 4% formaldehyde at 4°C. Fixed tissue
was embedded in Paraplast X-TRA (Sherwood Medical). Deparaf-
finated sections were stained with H&E (Sigma) according to stan-
dard laboratory protocols. For labeling with antibodies deparaf-
finated sections were treated with an antigen retrieval solution
(Citra Plus, Biogenex). Sections were blocked with normal serum
for 1 h at room temperature and stained with primary antibodies
at appropriate dilutions overnight at 4°C. Bound antibodies were
detected using alkaline phosphatase-, respectively peroxidase-
labeled anti Ig detection systems (Envision, DakoCytomation).
Alkaline phospatase activity was visualized using naphthol AS-BI-
phosphate and New Fuchsin (Fuchsin plus substrate-chromogene,
DakoCytomation) as substrate; peroxidase activity was identified
using diaminobenzidine (DAB) as substrate. Sections were coun-
terstained with hemalum and embedded in Mowiol. Photographs
were taken with a LEICA DMI6000B.

For preparation of cryosections glands embedded in cryoma-
trix were sectioned in a LEICA CM 3050 cryotome at −30°C.
Sections were attached to glass cover slips and stored at −20°C.
Sections attached to glass coverslips were incubated with −20°C
acetone for 10 min, acetone was evaporated at room tempera-
ture for 5 min, and sections were rehydrated in PBS for 10 min
at room temperature. Staining was done at room temperature in
a dark chamber. Sections were blocked with 5% normal serum
for 45 min, incubated with the primary antibody for 1 h, washed
with PBS three times for 10 min each, stained with fluorochrome

labeled secondary antibody for 1 h, and washed again with PBS
three times 10 min each. Nuclei were visualized by counterstaining
with DAPI or DRAQ5. Stained sections were embedded in Mowiol.
Photographs were taken with a Zeiss LSM 501 confocal micro-
scope or with epifluorescence microscopes (LEICA DMI6000B
and LEICA DMRA).

ANTIBODIES
Primary antibodies directed to SV40-TAg were derived from
guinea pig or rabbit. Commercial antibodies used were CK6a
(PRB-169P-100, Covance), CK8/18 (AcrisBP5007), CK14 (Acris
BP5009), Mcm2 (N-19 sc-9839, Santa Cruz), Ki67 (H-300, sc-
15402, Santa Cruz), ELF5 (N-20, sc9645, Santa Cruz), PR (C-18
sc-538, Santa Cruz), ER (M-20 sc542, Santa Cruz), CD 133 (clone
13A4, eBioscience 14-1331-82), Ly-6A/E (Sca1) (BioLegend), and
phospho-histone H3 (Ser10) (Cell Signaling 9701). Antibodies
conjugated with Alexa Fluor dyes (Alexa 488, Alexa 555, Alexa
633) (Molecular Probes) were used as secondary antibodies.

RESULTS
RESTING UNIPAROUS WAP-T1 GLANDS SHOW FEATURES OF
ALVEOLOGENESIS
Immunohistochemical studies performed on paraffin sections of
resting uniparous WAP-T1 glands showed local clusters of TAg
positive luminal epithelial cells in ducts (Figure 1A). These clus-
ters were often associated with processes of side bud formation
(Figure 1B, arrow) Condensing chromatin in individual TAg pos-
itive cells (see Figure 1C, arrows) suggested mitotic activity in these
lesions. Reaction of individual TAg positive cells with antibodies
to phospho-histone H3, a marker of condensing chromosomes in
mitosis, corroborates this suggestion (Figure 1D). The data suggest
that TAg expressing cells are involved in morphogenetic processes
inducing lobulo-alveolar structures.

To characterize TAg positive cells in relation to functional stages
of luminal epithelia we performed an IF double labeling study
with antibodies to Sca1 and SV40-TAg on cryosections of WAP-
T1 glands. Sca1 is a GPI-anchored protein that was originally
identified in hematopoietic stem cells. In the mouse mammary
gland, it was reported to mark luminal epithelial cells in ducts and
bipotent luminal progenitor cells of the lobulo-alveolar compart-
ment, but not terminally differentiated alveolar cells (28–30). In
our labeling study, we included glands from virgin mice, lactating
mice, and uniparous mice (120 days p.w.). As shown in Figure 2A,
luminal epithelia of virgin WAP-T1 glands contained Sca1 posi-
tive and negative cells, but were generally devoid of TAg. Luminal
epithelia of lactating glands were TAg positive but Sca1 nega-
tive (Figure 2B). In similar, cells in hyperplastic lesions of resting
uniparous WAP-T1 glands which stained positively for TAg were
also Sca1 negative (Figures 2C,D). Sca1 positive epithelial cells in
glands were confined to luminal epithelia of ducts and did not stain
with antibodies to TAg. These findings suggest that TAg expression
is confined to Sca1 negative luminal epithelial cells.

To substantiate a relationship of TAg expression with alveolo-
genesis, we assayed resting uniparous WAP-T1 glands (120 days
p.w.) for expression of ELF5, a transcription factor known as mas-
ter regulator of alveologenesis (31). Immunofluorescence staining
on cryosections demonstrated that TAg positive cells co-expressed
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Quante et al. Hyperplasia in WAP-T1 mice

FIGURE 1 | SV40-TAg positive epithelial cells cluster at sites of bud
formation. (A–C) TAg labeling on sections of paraffin embedded WAP-T1
glands isolated 60 days post-weaning (p.w.); alkaline phosphatase (A,B) or
peroxidase (C) conjugated antibodies were used as secondary antibodies;
TAg expressing cells cluster at sites of bud formation [arrows in (A,B)];
individual TAg positive epithelial cells show condensing chromatin [arrows in
(C)]; (D) IF double labeling with antibodies to TAg (green) and
phospho-histone H3 (blue) on cryosections of resting uniparous WAP-T1
glands; phospho-histone H3 staining points to mitotic activity in WAP-T1
hyperplastic lesions. Bars: (A)=50 µm; (B)=15 µm; (C,D)=10 µm.

ELF5 (Figure 3). But, expression of TAg and ELF5 in epithelia of
hyperplasia did not totally overlap. A proportion of TAg positive
cells showed only weak staining or was ELF5 negative (Figure 3).

The data suggest that TAg and Sca1 mark different func-
tional entities of cells in luminal epithelia of WAP-T1 glands:
TAg+/Sca1− cells representing the differentiating lobulo-alveolar
compartment, and TAg−/Sca1+ identifying cells of the ductal
epithelium.

To determine whether TAg expressing cells in hyperplasia of
WAP-T1 glands proliferate, we labeled cryosections with antibod-
ies to Mcm2 and to Ki67, both of which are nuclear markers
that are expressed in cycling cells. Mcm2 is a member of the
licensing protein family, which facilitates coordinated transition
from G1 into S-phase and is down-regulated, when cells exit the
cell cycle (32). Human mammary gland epithelia show Mcm2
in nuclei of differentiating but not in terminally differentiated
cells (33). Ki67 is expressed in G1, S, G2, and M-phase of the
cell cycle but is absent from cells resting in G0. Thus, Ki67 is

FIGURE 2 |TAg is expressed in Sca1 negative luminal epithelial cells.
(A,B) IF double labeling with antibodies to Sca1(green) and TAg (red) on
cryosections of WAP-T1 glands; staining of DNA with DAPI (blue);
(A) luminal epithelia in virgin WAP-T1 glands are TAg negative and reveal a
heterogenous Sca1 staining pattern; (B) luminal epithelia in lactating
WAP-T1 glands are TAg positive and Sca1 negative; (C,D) TAg positive cells
in epithelial compartments of resting uniparous WAP-T1 glands (120 days
p.w.) are also Sca1 negative. Bars: (A–C)=50 µm; (D)=5 µm.

used to identify the proliferating cell compartment in tissue (34).
Hyperplasia in resting uniparous WAP-T1 glands exhibited promi-
nent Mcm2 staining as shown by immunoperoxidase labeling on
paraffin sections (Figure 4A). IF double labeling on cryosections
revealed coincident labeling of TAg and Mcm2 in epithelial cells
(Figure 4B). TAg positive cells also co-stained with antibodies
to Ki67 (Figure 4C). These results indicate that TAg expressing
epithelial cells that accumulate in hyperplasia of resting WAP-T1
glands do not exit the cell cycle.

RESTING UNIPAROUS WAP-T1 GLANDS SHOW LACTOGENIC ACTIVITY
Next, we asked whether formation of lobulo-alveolar structures in
resting WAP-T1 glands correlated with lactogenic activity, which is
marked by expression of the milk genes WAP, Csn2 (beta-casein),
and Lalba (lactalbumin). For comparison, we included in our
analysis one gland from each, a lactating WAP-T1 mouse, a BALB/c
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Quante et al. Hyperplasia in WAP-T1 mice

FIGURE 3 |TAg positive cells in hyperplasia co-stain with antibodies to
ELF5. IF double labeling on cryosections of resting uniparous WAP-T1
glands (120 days p.w.) with antibodies to TAg (green) and ELF5 (red);
staining of DNA with DAPI; individual TAg positive cells lack ELF staining
signal. Bar=50 µm.

virgin mouse, and a WAP-T1 virgin mouse. qRT-PCR analysis per-
formed with whole glands (summarized in Figure 5) revealed high
expression levels of ELF5 and milk genes in glands of lactating
WAP-T1 mouse (T1 Lak, Figures 5A–D), and low levels in glands
from virgin mice (T1vir and BALB/c vir, Figures 5A–D). Resting
glands of WAP-T1 (T1 120 pw) showed prominent Elf5 expres-
sion (Figure 5A), clearly exceeding the level in resting BALB/c
glands (BALBc 120 pw, Figure 5A) by 1.7-fold (p < 0.01). Milk
gene expression was detectable in all glands, but showed clear dif-
ferences between WAP-T1 and BALB/c. While Csn2 expression
was only slightly (~twofold, n.s.) upregulated in resting WAP-T1
glands compared to resting BALB/c glands (see BALB/c 120 pw and
T1 120 pw in Figure 5B), Lalba and Wap expression levels were
increased 40- and 10-fold, respectively (p < 0.001 and p < 1.00E-
05) (Figures 5C,D). These data suggest enhanced alveologenesis
in resting uniparous WAP-T1 glands.

TAg EXPRESSING CELLS REACH AN ADVANCED STAGE IN ALVEOLAR
DIFFERENTIATION
Based on our in situ analysis, we asked if we could use Sca1 as
marker to isolate luminal cell populations from WAP-T1 glands
in order to define their status by RT-PCR. Single cell populations
obtained after proteolytic digestion of glands and lineage deple-
tion were fractionated into subpopulations applying fluorescent
activated cell sorting. A first approach, trying to isolate the bulk
of epithelial cells directly by use of CD24 did not reveal clear sub-
populations in samples from WAP-T1 glands. Thus, we selected
CD29 as marker to separate luminal (CD29low) from basal epithe-
lial cell populations (CD29high). The CD29low population was then
fractionated into Sca1+ and Sca1− subpopulations. In addition,
we included CD61 as marker in our sorting strategy (Figure 6A).
CD61 was described to mark luminal progenitor cells, endowed

with the potential to differentiate into alveolar or ductal cells
(35).Our sorting strategy is similar to that previously described
by Shehata et al. (36), who also used Sca1 to isolate luminal cell
subpopulations. But in difference to our approach they isolated
epithelial cells directly by use of Epcam and substituted CD61 for
CD49b.

Sorting yielded four different luminal subpopulations
(Figure 6B), which were assayed for gene expression
by qRT-PCR: the subpopulations CD29low/CD61+/Sca1+

and CD29low/CD61−/Sca1+, which we expected to be
enriched with TAg negative cells, and the subpopulations
CD29low/CD61+/Sca1− and CD29low/CD61−/Sca1−, which we
expected to be enriched with TAg positive cells differentiating
along the alveolar lineage. qRT-PCR (Figure 6C) verified that
cells expressing the myoepithelial marker CK14 clearly separated
with the CD29hi subpopulation. Thus, basal epithelial cells were
separated efficiently from luminal cell subpopulations in this
approach. In accordance, immunofluorescence staining showed
CK14 positive cells only in CD29hi subpopulations (data not
shown). The relative proportion of CD61+ cells in samples iso-
lated from resting glands of BALB/c and WAP-T1 mice was rather
identical (Figure 6D). But compared to BALB/c, the propor-
tion of CD61−/Sca1+ cells was significantly decreased (15.6 vs.
27.9%, p < 0.05) and that of CD61−/Sca1− cells was significantly
increased (54.2 vs. 39.2%, p < 0.05) in WAP-T1 samples. This sug-
gests a relative shift in population sizes to differentiating alveolar
cells in WAP-T1 glands.

qRT-PCR analysis of TAg expression in luminal cell sub-
populations isolated from resting uniparous WAP-T1 glands
(T1 in Figure 7D) showed high and nearly identical levels in
the Sca1 negative subpopulations CD29low/CD61+/Sca1− (fur-
ther named CD61+/Sca1−) and CD29low/CD61−/Sca1− (fur-
ther named CD61−/Sca1−). TAg levels were fourfold lower in
the Sca1 positive subpopulations CD29low/CD61+/Sca1+ (fur-
ther named CD61+/Sca1+) and CD29low/CD61−/Sca1+ (further
named CD61−/Sca1+). Sca1 negative subpopulations from rest-
ing WAP-T1 glands also displayed high expression levels of Elf5,
Wap, and Lalba (T1 in Figures 7A–C). Expression levels of these
genes were significantly lower in Sca1+ subpopulations.

Then, we asked if ELF5 and milk gene expression observed
in Sca− subpopulations from resting WAP-T1 glands (T1 in
Figures 7A–C) is also detectable in luminal cell subpopulations
from resting BALB/c glands. qRT-PCR analysis revealed signifi-
cant expression of Elf5, Lalba, and Wap in Sca1− subpopulations
from BALB/c but only basal expression levels in Sca1+ subpop-
ulations (BALB/c in Figures 7A–C). Remarkably, Elf5 expres-
sion (Figure 7A) in the Sca1−/CD61+ subpopulation reached
the same high level as in WAP-T1, but was decreased 2.5-fold
(p < 0.01) in the Sca1−/CD61− subpopulation compared to WAP-
T1. This indicates that Elf5 expression in differentiating alveolar
cells of BALB/c does not reach the same high level as in WAP-T1.
Overall expression levels of milk genes (Figures 7B,C) in Sca1−

subpopulations from BALB/c were low compared to WAP-T1:
Lalba expression was reduced by ~twofold (n.s.) in CD61+/Sca1−

and ~10-fold (p < 0.01) in CD61−/Sca1− subpopulations; Wap
expression was reduced ~70- and 100-fold (p < 0.05 and p < 0.01),
respectively.
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Quante et al. Hyperplasia in WAP-T1 mice

FIGURE 4 |TAg positive luminal epithelial cells co-stain with
antibodies to proliferation markers. (A) Immunoperoxidase labeling
with Mcm2 antibodies on sections of paraffin embedded resting
uniparous WAP-T1 glands (60 days p.w.) shows strong nuclear
staining of epithelia in hyperplasia; in ductal epithelia only individual

cells stain positively for Mcm2 (arrows); (B,C) IF double labeling on
cryosections from resting uniparous WAP-T1 glands (120 days p.w.)
shows coincident labeling of TAg (red) and Mcm2 (green)
(B), respectively TAg (red) and Ki67 (green) (C); DNA staining with
DRAQ5 (blue) Bars: (A,B)=20 µm.

The data indicate that alveolar differentiation marked by Elf5
also takes place in resting uniparous BALB/c glands and thus is
not a specific feature of resting uniparous WAP-T1 glands. But,
ELF5 expression in subpopulations enriched with differentiated
alveolar cells (CD61−/Sca1−) was significantly higher in WAP-T1
than in BALB/c mice. Furthermore, Sca1 negative subpopulations
from WAP-T, but not from BALB/c showed significant expression
of milk genes. This suggests that alveolar cells in resting uniparous
WAP-T1 glands (120 days p.w.) reach a more advanced stage of
differentiation marked by enhanced lactogenic activity.

TAg DOES NOT TARGET CK6a POSITIVE LUMINAL EPITHELIAL CELLS
Luminal epithelia of the mouse mammary gland contain CK6a
positive cells, which were repeatedly discussed to represent puta-
tive progenitor cells of the ductal and alveolar lineage (20, 37).
Furthermore, they were described as potential targets of activated
oncogenes in transgenic mice giving rise to mammary gland

tumors (22, 23). High grade tumors in WAP-T1 mice showed sig-
nificant expression of CK6 as assayed by gene expression analysis
(26). Thus, we asked whether TAg targets CK6a positive cells in
resting uniparous WAP-T1 glands.

IF studies on cryosections of resting uniparous WAP-T1 glands
indicated that CK6a positive cells are present in luminal epithelia
of ducts, but absent from hyperplasia composed of TAg positive
cells (Figure 8A).There was no evidence for CK6a positive cells
co-expressing TAg. In ducts, Ck6a positive luminal cells were often
seen in close proximity to TAg expressing cells (Figure 8B). These
data suggest that TAg does not target CK6a positive cells.

TAg EXPRESSING CELLS ARE ESTROGEN AND PROGESTERONE
RECEPTOR NEGATIVE
It is well-known that proliferation and differentiation of luminal
epithelia into lobulo-alveolar structures are under control of
hormone receptors (38–41). Thus, we asked whether high
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Quante et al. Hyperplasia in WAP-T1 mice

FIGURE 5 | qRT-PCR analysis of ELF5 and milk gene expression in
whole glands. ELF5 (A) and milk genes (CSN2, LALBA, WAP ) (B–D) are
expressed in resting glands (120 days p.w.) from BALB/c and WAP-T1
mice (n= 10 from five mice); ELF5, (A), LALBA (C), and WAP (D) levels

are significantly higher in WAP-T1 than in BALB/c glands; individual
glands from lactating WAP-T1 mice (T1 Lak), WAP-T1 virgin mice (T1Vir),
and BALB/c virgin mice (Balbc vir) are included for comparison; data
presented as mean±SEM.

TAg levels in luminal cell subpopulations derived from rest-
ing uniparous WAP-T1 glands correlated with high expression
of either the estrogen (Esr1) or progesterone receptor (Pgr).
qRT-PCR analysis showed prominent Esr1 expression in Sca1+

subpopulations and a ~sevenfold lower expression in Sca1−

subpopulations from WAP-T1 (T1 in Figures 9A,B). A simi-
lar pattern was observed in subpopulations from resting uni-
parous BALB/c glands (BALB/c in Figures 9A,B). But, com-
pared to WAP-T1, Esr1 receptor expression was significantly
higher (1.6-fold, p < 0.01 for CD61+/Sca1+; twofold, p < 0.01 for
CD61−/Sca1+). Interestingly, WAP-T1 subpopulations with high
Esr1 levels showed low expression of TAg, Elf5, and milk genes
(compare with Figure 7), suggesting that TAg and estrogen recep-
tor mark different cells. In accordance by immunofluorescence, we
found no overlap between estrogen receptor (ER) and TAg staining
in luminal epithelia of glands (see Figure 10A).

Pgr expression levels in luminal cell subpopulations from
BALB/c glands generally exceeded those in subpopulations from
WAP-T1 glands (BALB/c and T1 in Figure 9B). Pgr levels were

most prominent in subpopulations enriched in CD61−/Sca1+

cells with a tendency to be higher (~twofold, n.s.) in BALB/c com-
pared to WAP-T1. Sca1− subpopulations of BALB/c and WAP-T1
mice exhibited strongly reduced expression levels of Pgr. Thus,
Pgr expression also shows a negative correlation with expression
of TAg, Elf5, and milk genes as observed for Esr1. In situ, proges-
terone (PR) positive cells were present in luminal epithelia of ducts
and generally showed no overlapping staining with antibodies to
TAg (Figures 10B,B′). Taken together, these data indicate that TAg
expressing luminal epithelial cells are estrogen and progesterone
receptor negative.

HORMONE RECEPTOR POSITIVE CELLS LOCALIZE TO DUCTAL
EPITHELIA AND EXPRESS CK6a, PROMININ-1, AND Sca1
Previous studies of others on adult virgin mice showed that
estrogen and progesterone receptor expression are confined to
“hormone sensing cells” located in the ductal epithelium; these
cells were shown to express prominin-1 (CD133) and Sca1 and
revealed a relatively differentiated phenotype (42). In line with
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FIGURE 6 | Sorting strategy for isolation of luminal epithelial cell
populations. After lineage depletion, basal, myoepithelial cells (CD29+) were
separated from luminal epithelial cells (CD29lo/−). Luminal epithelial cells were
separated into undifferentiated (CD61+) and differentiated (CD61−)
subpopulations and further separated into Sca1− and Sca1+ subpopulations
(A,B). (C) CK14, a marker of myoepithelial cells, is enriched in the basal

CD29hi subpopulation (n=5). (D) Sizes of subpopulations from BALB/c
(n=10) and WAP-T1 (n=23) mice as percent total cells; data presented as
mean±SEM. Population size of the CD61−/Sca1+ population was
significantly decreased in WAP-T1 mice compared to BALB/c (15.6 vs. 27.9%,
p < 0.05) while CD61−/Sca1− population size was significantly increased (54.2
vs. 39.2%, p < 0.05).

these data,our qRT-PCR analysis showed high expression of Prom1
specifically in the CD61−/Sca+ subpopulation both, from WAP-
T1 and BALB/c, and this population also exhibited high expres-
sion levels of Esr1 and Pgr (BALB/c and T1 in Figures 9C,D).
Krt6a expression was also most prominent in this subpopula-
tion. Therefore, we asked whether CK6a and prominin-1 localized
to identical epithelial cells. IF studies performed on cryosec-
tions of resting uniparous WAP-T1 glands demonstrated that
CD133 (prominin-1) and CK6a antibodies marked the same
cells in luminal epithelia of ducts (Figure 11A). CD133 positive
cells were also positive for the estrogen (Figure 11B), respec-
tively progesterone receptor (Figure 11C), but definitely neg-
ative for TAg. Our data indicate that CK6a, prominin-1, and

Sca1 are common markers of hormone receptor positive cells
in luminal epithelia of ducts. These cells proved to be absent
from hyperplasia in resting uniparous WAP-T1 glands, but in
ducts they often localized in close proximity to TAg expressing
cells.

RESTING GLANDS OF AGED WAP-T1 VIRGIN MICE ARE NOT
SENSITIZED TO ALVEOLOGENESIS
At this point, we asked whether WAP-T1 specific changes seen in
resting glands of parous animals are already pre-determined at
the virgin stage. We assumed that significant alterations should
accumulate with time and thus be most prominent in aged vir-
gin mice. Therefore, we extended our gene expression analysis to
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Quante et al. Hyperplasia in WAP-T1 mice

FIGURE 7 | qRT-PCR analysis of ELF5, milk gene (LALBA,WAP), and
TAg expression in luminal epithelial cell subpopulations from
resting (120 days p.w.) glands of uniparous mice (BALB/c,T1) and
glands from virgin mice (BALB/c vir,T1 vir). ELF5 (A), LALBA
(B), WAP (C), and TAg (D) expression are most prominent in Sca1

negative cells; note equivalent ELF5 levels in undifferentiated
(CD61+Sca1−) cells of BALB/c and T1, but different levels in differentiated
(CD61−Sca1−) cells from both mouse strains; virgin mice show only
basal expression of ELF5 and milk genes (BALB/c n=4, T1 n=5, BALB/c
vir n=3, T1 vir n=3); ata presented as mean±SEM.

FIGURE 8 |TAg does not target CK6a positive luminal epithelial cells in
resting uniparous WAP-T1 glands. IF double labeling with antibodies to
CK6a (green) and TAg (red) on cryosections from resting uniparous WAP-T1
glands (120 days p.w.); DNA staining with DRAQ5 (blue); TAg positive
lesions lack CK6a positive cells (A); CK6a and TAg mark different luminal
epithelial cells in ductal compartments (A,B). Bars: (A)=30 µm; (B)=5 µm.

aged WAP-T1 and BALB/c virgin mice and isolated luminal cell
subpopulations at 160 days post-partum (p.p.). We combined the
qRT-PCR results shown in Figures 7 and 9 with the data obtained

with resting glands. qRT-PCR of aged virgin mice showed low
and nearly identical Elf5 levels in Sca1− subpopulations of both
strains (see BALB/c vir and T1 vir in Figure 7A).The milk genes
Wap and Lalba were barely expressed (see BALB/c vir and T1 vir
in Figure 7B). Esr1 and Pgr levels in luminal cell subpopulations
of aged virgins were virtually identical in both mouse strains (see
BALB/c vir and T1 vir in Figures 9A,B) and similar to the level in
resting (120 days p.w.) glands of normal BALB/c mice (see BALB/c
in Figures 9A,B). They reached the highest levels in CD61−/Sca1+

subpopulations, and like in resting glands these populations also
showed highest expression of Prom1 and Krt6a (BALB/c vir and
T1 vir in Figures 9C,D).

These results demonstrate that glands of aged virgin mice
display a hormone receptor status similar to that of resting
glands. However, pathways leading to expression of ELF5 and
milk genes seem not to be active at the virgin stage in both
mouse strains. Therefore, changes observed in resting uniparous
WAP-T1 glands are not already pre-determined in virgin mice.
The data indicate that passage through pregnancy, lactation, and
involution sensitizes luminal cell populations in resting glands of
parous BALB/c and WAP-T1 mice to pathways of alveologenesis.

DISCUSSION
Our data show that hyperplasia composed of TAg expressing
epithelial cells in resting uniparous WAP-T1 glands display fea-
tures of lobulo-alveolar cells. The cells not only express ELF5, a
transcription factor known to specify secretory alveolar cell fate
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FIGURE 9 | qRT-PCR analysis of hormone receptor, prominin-1, and
Ck6a expression in luminal cell subpopulations. Expression of the
estrogen receptor (ESR1) (A) and progesterone receptor (PGR) (B) in the
CD61−Sca1+ ductal cell subpopulation coincides with expression of

prominin-1 (PROM1) (C) and CK6a (KRT6A) (D); subpopulations from
virgin mice (BALB/c vir n=3; T1vir n=3); subpopulations from uniparous
mice 120 days p.w. (BALB/c n=4; T1 n=5); data presented as
mean±SEM.

of CD61+ precursors in the mature alveolar epithelium (43, 44),
but are secretory as indicated by expression of milk genes. This
suggests they reach an advanced stage in alveolar differentiation.

As shown by immunofluorescence, TAg positive cells in lac-
tating WAP-T1 glands and in hyperplasia of resting uniparous
WAP-T1 glands did not express Sca1; Sca1 positive cells were
clearly confined to ductal epithelia. It suggests that Sca1 is a marker
which separates ductal cells from cells with an alveolar cell fate in
the mouse mammary gland. In accordance, ELF5 and milk gene
expression clearly separated with Sca1 negative subpopulations in
our RT-PCR analysis.

TAg was expressed at a high level not only in CD61−/Sca1−,
but also in CD61+/Sca1− cells. This led us to assume that TAg
targets luminal epithelial cells early during alveolar differentia-
tion. Possibly, TAg expression is initiated with the onset of ELF5
expression, as this master regulator of alveologenesis was shown
to induce WAP expression (43). Additional markers are needed to
precisely decipher alveolar differentiation of luminal cells in rela-
tion to TAg expression. Progress is being made in this area as a
recent study identified hitherto unknown epithelial cell lineages
that regulate spatial placement of tertiary branches as well as for-
mation of alveolar clusters in ducts of mammary glands (45). It
would be interesting to see if the onset of TAg expression coincides
with early priming to the alveolar lineage.

Elf5 expression was not only seen in resting uniparous WAP-T1
glands, but also in resting uniparous BALB/c glands. We show that
CD61+/Sca1− subpopulations from WAP-T1 and BALB/c glands

exhibited nearly identical, high levels of Elf5. Thus, alveologenesis
seen in resting WAP-T1 glands is not specifically induced by
TAg. Alveolar differentiation and formation of lobulo-alveolar
structures are initiated regularly in rodent mammary glands dur-
ing estrous cycle (46). Normally, these structures regress during
diestrus. Thus, we assume that development of hyperplasia in
WAP-T1 mice is initiated by mechanisms normally inducing tran-
sient alveologenesis in parous mice. Considering that ELF5 induces
the Wap promoter (43), it is conceivable that ELF5 sustains TAg
expression in differentiating alveolar cells. Although the cells show
lactogenic activity, they seem not to reach a terminal stage of alve-
olar differentiation, as they stay in cell cycle which is indicated by
positive reaction with antibodies to Mcm2 and Ki67. Both of these
markers are not expressed in differentiated cells (33, 34).

It has been well-established that differentiation into alveolar,
secretory active cells is regulated by a complex regulatory network
comprising hormone receptors and transcription factors (43, 44,
47, 48). Apparently, estrogen (ER) and progesterone receptor (PR)
positive cells compose a hormone sensing compartment within
the luminal epithelium of ducts that induces differentiation and
proliferation of hormone receptor negative cells through paracrine
mechanisms. In addition, proliferation of hormone sensitive cells
seems to be stimulated directly by progesterone and estrogen (42,
49). Recently, a relatively differentiated subpopulation of luminal
cells has been identified in glands of adult virgin mice displaying
the markers CD24high/Sca1+/prominin-1+(CD133)/CK18+ and
expressing estrogen, progesterone, and prolactin receptors. These
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FIGURE 10 |TAg positive epithelia in resting uniparous WAP-T1 glands
are negative for estrogen receptor (ER) and progesterone receptor
(PR). (A–B′): IF double labeling on cryosections from resting uniparous
WAP-T1 glands; (A) Double labeling with antibodies to estrogen receptor
(ER) (green) and TAg (red); staining of DNA with DAPI (blue); ER positive
cells are TAg negative [arrows in (A)]; (B,B′): double labeling with antibodies
to progesterone receptor (PR) (green) and TAg (red); DNA staining with
DAPI (blue); note the high number of PR positive but TAg negative cells in
epithelia of ducts; no coincident labeling of PR [arrows in (B)] and TAg. Bars:
(A)=20 µm; (B,B′)=50 µm.

cells represent little stem cell activity and show no proliferative
activity, suggesting they constitute a hormone sensitive compart-
ment (42). Here, we demonstrate for WAP-T1 glands that these
cells localize to luminal epithelia of ducts, are TAg negative, but
in close proximity to TAg positive cells. Furthermore, we show for
the first time that ductal cells positive for hormone receptors and
prominin-1 (CD133) are identical with those expressing cytok-
eratin CK6a. CK6a has been discussed to mark a population of
luminal mammary progenitor cells (30, 50, 51), which lack repop-
ulation activity (37). A progenitor cell function is compatible with

FIGURE 11 | CK6a marks CD133 (prominin-1) and hormone receptor
positive cells in luminal epithelia of WAP-T1 glands. (A–C) IF double
labeling on cryosections of resting uniparous WAP-T1 glands (120 days
p.w.); DNA staining with DAPI (blue); (A) Coincident staining of luminal
epithelial cells in ducts with antibodies to CD133 (green) and CK6 (red);
(B) Coincident labeling of luminal cells with antibodies to CD133 (green)
and estrogen receptor (red); (C) Coincident staining of luminal epithelial
cells with antibodies to CD133 and progesterone receptor (PR); note the
cap-like staining of CD133 at the luminal side of epithelial cells in
(A–C). Bars: (A)=20 µm; (B,C)=50 µm.

changes in the relative proportion of cells during mammary gland
development. These cells are found at significant quantity in mam-
mary ducts of virgin mice, reduced in number during pregnancy,
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apparently absent from epithelia of lactating glands, and reappear
in resting glands after involution (37).

Our qRT-PCR data further corroborate a relationship between
expression of CK6a, prominin-1, and hormone receptor genes.
Prom1 and Krt6a expression were prominent in the same Sca1
positive subpopulation of luminal cells. This subpopulation also
proved to be unique with regard to expression of the progesterone
receptor, a hormone receptor known to drive mammary secre-
tory differentiation via induction of ELF5 in luminal progenitors
(47). Thus, we speculate that CK6a+/prominin+/Sca1+/ER+/PR+

luminal cells have a unique function in induction of TAg and ELF5
leading to the formation of TAg positive, estrogen, and proges-
terone receptor negative hyperplasia. Crossing of WAP-T1 mice
with conditional progesterone receptor knock-out mice would be
an interesting approach to investigate this hypothesis by testing for
the requirement of this hormone receptor for tumor formation.

Features described here for WAP-T1 mice may also apply
to other transgenic mouse models of mammary carcinogene-
sis that display hyperplasia with an alveolar phenotype. Similar
to WAP-T1, C3(1)/SV40-T transgenic mice showed TAg expres-
sion in terminal duct lobular units (TDLU), an increased number
of TDLU proliferative lesions and side ducts, and at later stages
expansion of cells into the ductal lumen with multistage progres-
sion to carcinoma (52). Mice transgenic for the polyomavirus mid-
dle T-antigen (PyV-mT) under control of the MMTV promoter
showed focal pre-malignant lesions and an enhanced number of
abortive side buds with lumen that was positive for milk proteins
(WAP and OPN) (53). Mice transgenic for Wnt-1, Int-2, Cyclin D,
or TGFα under control of mammary specific promoters (MMTV,
WAP, ß-lactoglobulin) also developed alveolar hyperplasia (54–
56). In MMTV-neu transgenic mice, parity induced epithelial cells
endowed with the potential to differentiate into alveolar or duc-
tal cells were identified as targets for induction of tumorigenesis
(24). Thus, hormone dependent activation of an oncogene in dif-
ferentiating luminal epithelial cells of the mammary gland could
generally be a crucial step to induction of aberrant proliferative
activity leading to the formation of hyperplastic lesions.
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