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Editorial on the Research Topic

Rehabilitation robotics: Challenges in design, control, and real

applications

Introduction

In the last decade, research focused on rehabilitation robotics has progressed from

proposing restricted or rigid solutions in a clinical setting to portable devices compliant

with the user and also adapted to the their requirements, based on their disability and

the rehabilitation training program. Novel techniques have inspired the evolution of

rehabilitation devices from hard and bulky to soft, lightweight, and fully wearable. For

example, biologically inspired actuators have relaxed the constraint of having to rely

on rigid supports, as the skeletal system can be used to that end. Furthermore, the use

of synergies havehas led to a reduction of in the number of actuators and improved

their control. Moreover, the latest advances in modeling and simulation have allowed

for assessing and compensating for fatigue, as well as simulating the use of assistive

devices out of a clinical environment. All these research achievements have enabled a new

generation of portable rehabilitation devices. In the present Frontiers Research Topic,

novel techniques for the design, simulation, sensing, and control of rehabilitation devices

are presented for rehabilitation devices such as powered exoskeletons, neuroprostheses,

and equipment for moving the rehabilitation environment out of the clinical setting.
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Challenges in design, control, and
real applications

A key challenge in rehabilitation robotics is to create devices

that facilitate positive neuroplasticity in the intact moving

human in vivo. That is, robots that provide as-least-as-needed

assistance to neuromuscular targets while promoting voluntary

execution of functional movements. In this context, the robot

must be transparent and intuitive to prevent an increase of

cognitive loads during the rehabilitation process. This objective

is not easy to accomplish, as there are many challenges to

overcome and many approaches to tackle. Examples of that,

among others, are include the simulation of the human-machine

interaction, the design and control of the rehabilitation device,

the validation in a clinical environment, or the adaptation of

the neuromusculoskeletal system to the rehabilitation process.

Based on them, we present the contributions to this Research

Topic according to the aforementioned challenges, although

they are usually found intertwined in this research field.

Simulation

Simulation-based studies in rehabilitation robotics provide

a time- and cost-effective approach to preview real world

scenarios. In this sense, Febrer-Nafría et al. simulate crutch-

orthosis-assisted walking to choose the optimal active orthosis

controller parameters for a specific subject. Their findings

improve the traditional trial-and-error approach to select the

best maximum knee flexion angle. The simulation provides

optimal values to achieve a more balanced assisted gait pattern,

making the process fully personalized to the patients’ needs and

less time-consuming. Cuerva et al. show a predictive simulation

study to improve control in power-assisted wheelchairs. Their

work investigates the advantages and disadvantages of an

impedance control strategy, which that is more natural and

effective than other alternatives. They employed predictive

simulations of locomotion with power-assisted wheelchairs in

different scenarios by using a realistic physiological model of

the user’s musculoskeletal system and its interaction with the

wheelchair. Their results confirm this control strategy as the

most useful, but their simulations also found a waste of energy

during the propulsion cycle.

Design

The personalisedpersonalized design of rehabilitation

devices has been a challenge for researchers worldwide. Design

requirements are different depending on the body segment

part to be treated. In addition, these design specifications may

change depending on the neuromuscular impairment. For

example, assisting a patient with spinal cord injury (SCI) is

not the same as helping a patient who has suffered a stroke.

In addition, the designed device must be focused on the user’s

needs. It also must consider the evolution of the rehabilitation

process, which may imply adaptations in the structure of the

device or its control. In this Research Topic, Laffranchi et al.

present the TWIN, a modular exoskeleton for SCI subjects. In

their work, users’ needs drove an iterative process to improve

the system’s design and construction. Sensing and control

approaches are also presented. Supervised tests in a clinical

setting demonstrated a stable gait pattern for rehabilitation,

improving cost effectiveness. Regarding the upper limbs,

Secciani et al. propose an original mechatronic design of a hand

exoskeleton for both home assistance and telerehabilitation.

It uses a real-time intention detection algorithm, but can also

perform exercises preset by therapists in remotely supervised or

unsupervised rehabilitation sessions. Surface electromyography

(sEMG) signals are used to detect the user’s intention, leading

to a customizable, compliant, and comfortable design. In

the opposite direction, Rätz et al. establish their design of a

robotic hand by a set of clinical, anatomical, and mechanical

requirements established before the development of the device.

This novel clinical-driven robotic hand rehabilitation device

is capable of fine haptic rendering, offering an effortless setup

that supports physiological full flexion/extension of the fingers

while providing high mechanical transparency. Lastly, Shi

et al. develop a cable-driven three-degree-of-freedom wrist

rehabilitation exoskeleton actuated by the distributed active

semi-active (DASA) system. The proposed design has a larger

workspace than current wrist rehabilitation training robots, able

to cover a broader range of the activities of daily living, with

an improved cable-driven design able to increase the effective

torque and reduce the parasitic force.

Control

Control strategies are quite significant to achieveimportant

in achieving proper rehabilitation. In some cases, the

rehabilitation routine imposes a pre-defined trajectory to

be followed and, therefore, the control strategy must account for

it. In others, the primary purpose is to regain neuroplasticity,

and, thus, the patient’s intention imposes control actions, and

establishes how the system acts to achieve a proper trajectory.

In this sense, Dalla Gasperina et al. present a cooperative

control framework that promotes compliant motion and

implements a variety of high-level rehabilitation modalities,

including six actuation modes: passive, corrective, weight

counterbalance, resistive, transparent, and hypergravity. The

purpose is to change the haptic behavior perceived by a human

when interacting with the rehabilitation robot by tuning

different impedance control parameters. That variety of physical

human-robot interactions helps the user to accomplish the task
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while exploiting physiological muscular activation patterns.

Moving on to the work presented by Copaci et al., a new

classifier for sEMG signals is presented. The algorithm is based

on a Bayesian Neural Network in parallel with an Artificial

Neural Network, which the results of which are connected

in series with a Layer Recurrent Network. By doing so, the

accuracy of the hand gesture recognition based on sEMG signals

is improved. The authors’ main purpose is to prove that the

device control algorithm fits the patient’s features and needs.

The authors demonstrate that the proposed classifier could

achieve high accuracy in hand gesture recognition. Last in

this section, Castro et al. present a new approach for a 3D-

printed hand prosthesis commanded by a simple sEMG system

aided by a fully embedded computer vision system. The results

show high percentages of accuracy, sensitivity, and specificity

for grasping objects from neutral and pronated palmar grasp,

tripod pinch, key grasp, and index finger extension gesture.

This study shows that using a vision system is a promising

alternative to traditional methods, as the pattern of grasping

and manipulating objects is better defined.

Validation

The assessment or validation of the designed prototype is a

valuable step in developing rehabilitation devices before clinical

testing. It allows the implementation of possible improvements

before evaluating their actual effect on the target population.

In this sense, Godfrey et al. present the first poly-articulated,

electrically-actuated, and body-controlled artificial hand, called

SoftHand Pro-Hybrid,; and compared its performance against

the Hand Pro-Hybrid benchmark. Their results on a limited

number of subjects to assess prototype’s functionality, with

and without limb loss, confirm the possibility of using hybrid

solutions as a valid alternative to myoelectric control, especially

in situations requiring high versatility of the device. Finally,

the work by Sierra et al. present the assessment of the AGoRA

Smart Walker in daily living scenarios with older adults with

Parkinson’s disease. This kind of device represents a valuable tool

for assisting people with gait motor deficits. The actuators of the

AGoRA SmartWalker adapt their assistance level to the subject’s

demands, improving the rehabilitation process. The authors also

compared the performance of using their device by between

two groups of older adults with different physical and cognitive

characteristics (Parkinson’s disease vs. other conditions).

Clinical testing

A final step in assessing rehabilitation devices is their

evaluation in a clinical setting. In this way, it is possible to

evaluate the effects of the assistive device on a suitable target

population. In this Research Topic, Chen et al. present a

prospective, multi-center, and cross-over trial to evaluate the

AIi-robot’s safety, walking efficiency, donning and doffing time

cost, and user satisfaction. They conclude that subjects with

paraplegia below T6 level could ambulate safely and efficiently

with that device, although its use should be learned under the

guidance of experienced medical personnel. Marín-Méndez et

al. present data from a two-arm, single-blinded, randomized,

and controlled clinical trial. The objective was to evaluate the

efficiency of a therapeutic massage robot (ADAMO) in reducing

non-specific low back pain. Their main finding is that the

ADAMO robot is at least as efficient as a regular treatment in

reducing low back pain. However, it may be more beneficial for

specific patients, such as those with who are overweight. Lastly,

Koyama et al. present a prospective study for the Wearable

Power-Assist Locomotor (WPAL). This device has been updated

seven times, from the first validated prototype in 2005 to the

latest in 2020. This study includes updated results from previous

reports from July 2007 to December 2020 for 1785 different

subjects. These results confirm that theWPAL improves walking

independence for a wide range of spinal cord injury levels, and

that further refinement of the WPAL will enable its long-term

use at home.

Adaptation strategies for future research
in gait neuroprosthetics

To close this Research Topic, Koelewijn et al. expose an

overview of research directions regarding interfaces with the

peripheral and central nervous systems, and the requirements

of interface- computing architectures. Their work guides the

research on modular and adaptable interfaces that can assist

as needed and process all data recorded in real-time while

accounting for signal variations among subjects. Furthermore,

biomechanical models and simulation techniques are pointed

out to predict motion and interactions between the human

and the rehabilitation device. This work summarizes the main

challenges in designing and using neuroprosthetic devices.

Conclusions and future perspective

The design of rehabilitation devices results from tight

cooperation between engineers, industrial designers, physical

therapists, physiatrists, and patients. Therefore, a lot of

effort is required to achieve transparent and clinically

efficient neuroprostheses and rehabilitation robots that assist

neurological patients as needed. From the publications in this

Research Topic, we foresee that biomechanical modeling and

simulation will be increasingly used to optimize the design of

such devices and study human-device interaction, as it allows

virtual testing in different scenarios. Moreover, the design

of efficient control strategies, and the development of data
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acquisition and processing techniques will lead to adequate

and timed actuation to improve rehabilitation routines. The

reduction in the dimensions and energy requirements of the

actuation units will also lead to portable devices and increase

the rehabilitation process at home. Lastly, the information

gathered from biosignals or the possibility to interact with the

neuromusculoskeletal system, such as in functional electrical

stimulation or spinal cord stimulation, will make possible a

new generation of rehabilitation devices able to overcome the

current challenges faced in the rehabilitation of subjects with

motor disabilities.
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A Cable-Driven Three-DOF Wrist
Rehabilitation Exoskeleton With
Improved Performance
Ke Shi, Aiguo Song*, Ye Li, Huijun Li, Dapeng Chen and Lifeng Zhu

School of Instrument Science and Engineering, Southeast University, Nanjing, China

This paper developed a cable-driven three-degree-of-freedom (DOF) wrist rehabilitation

exoskeleton actuated by the distributed active semi-active (DASA) system. Compared

with the conventional cable-driven robots, the workspace of this robot is increased greatly

by adding the rotating compensation mechanism and by optimizing the distribution of the

cable attachment points. In themeanwhile, the efficiency of the cable tension is improved,

and the parasitic force (the force acting on the joint along the limb) is reduced. Besides,

in order to reduce the effects of compliant elements (e.g., cables or Bowden cables)

between the actuators and output, and to improve the force bandwidth, we designed

the DASA system composed of one geared DC motor and four magnetorheological (MR)

clutches, which has low output inertia. A fast unbinding strategy is presented to ensure

safety in abnormal conditions. A passive training algorithm and an assist-as-needed

(AAN) algorithm were implemented to control the exoskeleton. Several experiments

were conducted on both healthy and impaired subjects to test the performance and

effectiveness of the proposed system for rehabilitation. The results show that the system

can meet the needs of rehabilitation training for workspace and force-feedback, and

provide efficient active and passive training.

Keywords: cable-driven robot, rehabilitation robot, mechanism design, distributed drive system, human-robot

interaction

INTRODUCTION

Many people suffer from movement disorders and reduced muscle strength, which are resulted
in neural diseases (Stroke Center). They have difficulties in performing activities of daily living
(ADLs). Studies have shown that rehabilitation training can promote brain damage or redundant
nerves to re-learn and restore function (Bayona et al., 2005; Donatelli, 2012; Hatem et al., 2016).
In recent years, researchers have developed a variety of different types of robots for post-stroke
rehabilitation training. Many related clinical trials based on these robots have been carried out, and
the results verified the effectiveness of robot-assisted rehabilitation (Reinkensmeyer et al., 2000;
Lum et al., 2002; Kwakkel et al., 2008). The robot is very suitable for repetitive stroke rehabilitation
training and has the advantages of high precision.

The flexible movement of the wrist is indispensable for daily life, especially some delicate
movements like drinking and eating. The size of the wrist is much smaller than the shoulder and
elbow joint. However, it still has a large workspace, including three DOFs of flexion/extension
(FE), radial/ulnar deviation (RU), and pronation/supination (PS). In this paper, the forearm PS
is considered as one DOF of the wrist. The required range of motion and torque range of ADLs
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FIGURE 1 | The definition of the parasitic force: Ow is the center of the wrist

joint, Oh is the center of the hand, A1−4 are four cable attachments of the

forearm module, B1−4 are four cable attachments of the hand ring, T1−4 is the

cable tension, and Fp is the parasitic force.

are shown in Table 3 (Perry et al., 2007; Gupta et al., 2008). To
meet the workspace and output force/torque requirements of
rehabilitation training in a small space, some robots use a parallel
mechanism to achieve weight reduction while maintaining
structural rigidity (French et al., 2014; Bian et al., 2017). However,
to avoid interference with the movement of the forearm, the
workspace of the wrist robot is limited. Some robots use a series
spherical mechanism to reduce interference with the arm, which
increases the workspace and has sound effects, such as Pehlivan
et al. (2014) and Buongiorno et al. (2018). But its structure is
relatively complicated. In particular, wrist motion is not just a
simple spherical joint motion, but with a certain wrist center
shift (Schiele and van der Helm, 2006; Rijnveld and Krebs, 2007).
Moreover, some errors are inevitable in the process of wearing
the robot. These reasons may lead to misalignment between the
center of the human joint and the robot joint during training,
resulting in potential physical injury and low recovery training
efficiency (Cempini et al., 2013). Existing robots often adapt to
changes in the joint center through complex mechanisms, which
increases the complexity of themechanism to a certain extent and
reduces stability (Omarkulov et al., 2016; Su et al., 2019). Also,
for the rigid robots discussed above, the negative influence of
the inertia on the force-feedback performance cannot be ignored,
especially in PS.

The cable-driven rehabilitation training robot has attracted
extensive research due to its lightweight, simple structure, low
inertia, high flexibility, and excellent adaptability. It should
be noted that the cable-driven robot is divided into cable-
transmitted like (Veneman et al., 2005; Alamdari and Krovi,

2015), cable-driven like (Mustafa et al., 2006; Mao and Agrawal,
2012), but only the cable-driven robot was discussed in
this paper because the cable-transmitted robots are similar
to the rigid exoskeletons, which have a rigid structure to
interact with the users. Although many different cable-driven
exoskeletons have been proposed (Mustafa et al., 2006; Chen
et al., 2015; Cui et al., 2017), their performances are still not
good enough to support flexible wrist rehabilitation. Because
of the inherent characteristic that the cable only generates
tension along its direction, existing cable-driven exoskeletons
cannot efficiently match the wrist motion in any rehabilitation
training. By analyzing the engineering requirements, we aim
to improve the cable-driven design in terms of the following
three points:

– Larger workspace. The sufficient joint movement range and
DOFs are essential design criteria for the rehabilitation
exoskeleton (Riener, 2007). Limited by cable-driven form, the
workspace of typical cable-driven design is relatively small so
that it cannot match the workspace of the complete ADLs
training. Moreover, unlike rigid robots, cable-driven robots
will be uncontrollable when it is out of the feasible workspace.
This disadvantage causes potential danger, especially for
patients with weak motor capacity, so the trajectory out of the
feasible workspace must be avoided. The large workspace can
ensure that the tension is always controllable.

– Higher cable tension efficiency. The inherent characteristics of
the cable may exert a parasitic force on the limb. As shown in
Figure 1, the parasitic force is the force generated by the robot
along the limb, which is challenging to eliminate in existing
cable-driven exoskeletons. The cable tension efficiency is
defined as the magnitude of the torque acting on the wrist
joint generated by the same tension. The greater the torque,
the higher the tension efficiency. At the same time, the
smaller parasitic force acting on the joint, the training is
more comfortable.

– Higher bandwidth. The previous research has confirmed the
importance of the force bandwidth to the rehabilitation robot
(Manna and Dubey, 2018). However, because the application
of traditional electromechanical actuators introduces high
intrinsic inertia, the compliant element (cables or Bowden
cables) between the actuators and the output component of the
robot lowers the natural frequency of the system, thus limiting
its dynamic performance (Viau et al., 2017).

Therefore, this paper proposed a cable-driven three-DOF wrist
rehabilitation exoskeleton with optimized performance, the SEU-
WRE. As shown in Figure 2A, the cable-driven system is
adopted, and the overall structure is straightforward. The main
structure is made of nylon material by 3D printing, and the
weight except the driven system is 350 g (the grip portion is only
50 g). The inertia is pretty low in all three DOFs. To improve the
first two disadvantages, the rotating compensation mechanism
on the forearm module is designed, and the distribution of the
cable attachments can be adaptively changed, optimizing the
workspace of the cable-driven robot and the tension efficiency
of the cable. The workspace meets the training requirements of
ADLs completely, and the cable can generate sufficient torque
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FIGURE 2 | (A) close-up of the robot on a healthy subject, (B) the exploded

view of the robot: A1−4 are four cable attachments of the forearm module, and

B1−4 are four cable attachments of the hand ring.

output during training within limited tension. At the same time,
the parasitic force is reduced.

Routing the cables via the Bowden cable reduces the structural
complexity and size worn by the users. For optimizing the force
performance and reducing the influence of the elastic elements
of the cable-drive system, the DASA system based on MRs is
adopted. Viau et al. (2017) applied this kind of drive system on a
cable-drivenmanipulator, and it exhibits excellent force-feedback
performance. In this paper, the structure of this drive system is
optimized for the rehabilitation exoskeleton to improve the force
bandwidth and the tension control.

Regarding safety, the advantage of rigid robots is that their
joints can be mechanically limited, but they usually have to
be tightly fixed to the limb, which cannot unbind quickly in
abnormal conditions. For SEU-WRE, two safetymodes have been
set up to improve safety. One is used for the protection during
the training process when it exceeds the pre-set movement range,
or the cable tension is abnormal. The other is used to achieve

fast unbinding, based on the DASA drive system with high back-
drivability and the nature of the cable-driven system, which is
difficult for rigid robots. The performance comparison of several
typical robots is shown in Table 1.

Section System Concept introduces the structural design of
SEU-WRE; section System Analysis and Optimization carries
out the robot dynamics analysis, workspace optimization and
tension efficiency analysis; section Control Algorithm presented
the passive and active training algorithms to test the performance
and effectiveness of the proposed system for rehabilitation;
section Experiments and Analysis carries out the related
experiments including one healthy and two impaired subjects,
and analyzes the experimental results; finally, section Conclusion
summarizes and discusses this paper.

SYSTEM CONCEPT

Mechanical Design of the Robot
The cable-driven robot is typical to use at least n+1 up to 2n
cables to drive nDOFs, or to act as a cable by external forces such
as gravity (Mustafa and Agrawal, 2012). Since the cable can only
provide a pulling force in the direction of the cable, even if the
redundant cables are used, the workspace of the robot is usually
quite limited. In particular, when the cable pulls the limb to
move, the relative position of each cable attachment changes, and
the cable configuration changes, affecting the tension efficiency,
further limiting its workspace and increasing the parasitic force.
For instance, in FE and RU DOFs of the wrist joint, the
cable attachment distribution can be optimized to satisfy the
ADLs space as much as possible and provide enough torque
applied to the wrist for rehabilitation. But no matter what kind
of cable configuration, without prejudice to the compactness
requirements of the overall structure, it is challenging to meet
the motion space requirements for the forearm PS. In particular,
when the cable-driven wrist robot drives the wrist to rotate in
PS, the configuration of the cables changes, and the tension
efficiency of the cable in this DOF gradually decreases until
a singularity occurs and no torque is supplied. Moreover, for
the PS, interference between the cables and between the cable
and the limb is not easy to avoid, so how to deal with the
PS movement is an essential problem for the three-DOF joint
exoskeleton. Based on this consideration, this paper proposed a
dynamic change strategy of the cable configuration, that is, by
adding a rotating compensation mechanism, the inner and outer
rings of the forearm module can be relatively rotated, and the
fixed cable attachments can be dynamically adjusted according
to the current wrist posture. Thereby the cable configuration can
be changed in real-time, increasing the workspace and improving
the cable tension efficiency.

As shown in Figure 2B, it is an exploded view of this robot
without cables and Bowden cables. The outer ring is fixed with
a bracket or any other upper limb rehabilitation robot, which
can be combined with the wrist robot. And the inner ring can
be driven by a cable wound on it to rotate relative to the outer
ring. The inner side of the outer ring is provided with a plurality
of miniature bearings for keeping the rotation of the inner ring
stable. When the inner and outer rings rotate relative to each
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TABLE 1 | The performance comparison of several typical exoskeleton.

Rigid parallel Rigid serial Existing cable-driven SEU-WRE

Typical Example MAHI EXO-II (French et al., 2014) RiceWrist-S (Pehlivan et al., 2014) CDWRR (Chen et al., 2015) /

Workspace Low High Low High

Torque Medium High Low Medium

Inertia Medium Low High High

Joint alignment Low Medium High High

Force-feedback performance Medium Medium Medium High

Safety Medium Medium Low Medium

Rough comparison and classification are shown in the table. “Low” indicates poor performance, and “High” indicates relatively good performance. The force-feedback performance is

determined by the inertia and drive performance (back-drivability and system friction, etc.). The safety analysis is presented in section Introduction and Safety Modes.

other, the cable attachments on the four extension arms of the
inner ring also rotate at the same time to complete dynamic
adaptation. The inner ring rotation is controlled by position-
based mode and always follows the Z-axis rotation of the hand
ring, so the cables configuration never changes due to the forearm
PS movement. The four cables are respectively connected to the
four cable attachments B1−4 on the hand ring through A1−4 on
the four extension arms, generating different tensions, and the
hand ring is controlled to drive the limb movement or provide
the force-feedback. The relationship between the output of the
MR clutch and the input current can be fitted. However, there is
still the hysteresis of the MR and many other disturbances (e.g.,
the unmodeled friction of the Bowden cables) in the system that
cannot be accurately predicted, so a tension sensor is added to
each cable to establish the tension close-loop. Inside the inner
ring, there is a non-slip silicone inside the airbag to assist the
forearm to be located on the central axis of the inner ring as much
as possible, and to provide certain axial friction duringmovement
to reduce the axial displacement of the arm due to parasitic
force. At the same time, the hand posture and the rotation angle
of the inner rings are collected by two inertial measurement
units (IMU). The robot forearm module is connected to the
hand ring through four cables, and there is no rigid connecting
device. For the rotating compensation mechanism, although the
connection between the inner ring and the outer ring is rigid,
and the position control is adopted, the PS rotation is controlled
directly by four cables. So three DOFs of the wrist are still driven
by the flexible cable. This is crucial because the flexibility of the
cable, the inertia of PS and the human-robot interaction through
the tension control play an important role in the safety and
comfort of rehabilitation training. Moreover, the force-feedback
bandwidth generated by this motor is far from satisfactory. Only
by directly applying the force to the wrist through the cable
can the better dynamic performance be ensured. The motor-
driven rotating compensation mechanism is only used to ensure
sufficient speed tracking, adapt to the hand posture so that the
cable configuration can be adjusted in real-time to meet the
requirement of cable-driven strategy.

The structure is simple and easy to wear. Before training, if the
patient’s ability is poor, the forearm module can be taken off the
base and put on the arm, and the inner diameter is large enough

to pass through easily. The hand only needs to wear the hand ring,
and the tension cables will firmly fix it on the hand.

MR-DASA Drive System
As mentioned in section Introduction, cable-driven robots
have many advantages. However, much like SEA (series elastic
actuator), the compliant elements between the actuators having
high inherent inertia and the output lowers the natural frequency
of the system, the dynamic performance is limited. Compared
to the conventional motor, the use of an MR clutch can weaken
this effect, since its low output inertia. Therefore, the MR is
used for this cable-driven robot, which can improve the force-
feedback performance and is very suitable for human-robot
interaction, including the rehabilitation robot (Viau et al., 2017).
MR is a passive clutch that only provides damping and cannot
provide active output. Therefore, the DASA system is utilized to
actuate the cable-driven robot, and the geared DC motor with
high power-density is used as the power source of the DASA
system, which is shown in Figure 3A. The conventional electric
drive system is shown in Figure 3B, the direct-drive or geared
motor are usually used as the tension generators, which has poor
dynamic performance due to the high output inertia.

As shown in Figure 4, the lower layer includes the actuator
system for the rotating compensation mechanism, composed of
the Z-axis motor (MAXON RE40) and the tensioning module.
After transmission through the cables, the maximum speed of
the rotating compensation mechanism is 80 rpm. The other
side of the lower layer is composed of the main power module
(24V/60W), data acquisition card (NI6060), and switching
circuit. The control program of this system runs on the PC. The
upper layer is the DASA system, including the power motor and
four MR-Cable units, which are placed in parallel. When the
system works, the power source motor keeps rotating to drive
MRs to rotate in slippage. The MR distributes the mechanical
power provided by the motor and generates the required torque
to the cable reel. The MR clutch pulls the cable through the cable
reel, and the cables drive the hand ring and the outer ring through
the Bowden cable.When in slippage, theMR clutch decouples the
dynamic behavior of the power source motor from the output,
resulting in actuators with high force resolution as actuator has
low reflected inertia and negligible non-linear effects. The MR
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FIGURE 3 | The schematic of two different drive systems: (A) the DASA

system based on MRs, (B) the conventional electric motor drive system.

clutch is made in our laboratory. The performance of the MR
clutch and the DC motor is shown in Table 2.

SYSTEM ANALYSIS AND OPTIMIZATION

System Dynamics Analysis
The dynamic equations of motion for this wrist exoskeleton
are derived using the Lagrangian method. The generalized
coordinates q1, q2, and q3 represent wrist FE, RU, and PS,
respectively. The dynamic modeling for this three-DOF robot is
presented as follows:

D
(

q
)

q̈+ C
(

q, q̇
)

q̇+ g
(

q
)

= J(q)TT(t) (1)

where D denotes the inertia matrix, C denotes Coriolis and
centrifugal term, and G denotes the gravity term of both
device and the human limb, q represents the joint angle,
and J(q) is the Jacobian matrix relating cable tensions to
joint moments, and T(t) is the vector of cable tensions. Due
to the characteristic of cables, the tension must be kept for
system control. The cable tension planner has been proposed
in many related researches. Usually, the tension planner can be
expressed as:

AT = τ (2)

FIGURE 4 | The power box: (A) the upper layer, (B) the bottom layer, (C) the

exploded view of the MR-Cable unit, (D) the MR clutch assembly.

TABLE 2 | Performance of the drive system.

Parameter Value

MR maximal torque 1.2 nm

MR maximal current 1 A

MR outer diameter 42 mm

MR Width 38 mm

Power motor max speed 700 rpm

Power motor max torque 4 Nm

Z-axis motor max speed 180 rpm

Z-axis motor max power 48 W

whereA= J(q)T in (1), τ is the torque that is required at the joints
to drive the arm. Because the number of cables is more than the
number of DOFs, the solution of (2) can be written as:
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FIGURE 5 | (A) anatomy of the wrist joint and the coordinate frames, (B) the

optimization process of the workspace.

T = T + N(A)m (3)

where T = [t1; t2; t3; t4] is the minimum norm solution of (2)
which is given by:

T = AT(AAT)
−1

τ (4)

N(A) = [n1; n2; n3; n4] is a null space matrix of A and m is an
arbitrary value, assuming A is full rank. Considering constraints
of the tension, the planner can be expressed as:

[

N(A)
−N(A)

]

m ≥

[

Tmin − T

−Tmax + T

]

(5)

Finally, the optimal solution of cable tensions can be found as
the following:

min

4
∑

i=1

(ti + nim) (6)

s.t. Tmin ≤ T + N (A)m ≤ Tmax

Tmax is the upper bound of tension, which is set as 42N in this
paper, and Tmin is the lower bound, which is 1.5N.

To calculate the cable tension efficiency and solve the cable
tension in unknown conditions for robot control, maximum
torque in assigned direction within the limitation of cable tension
can be given by (6), that is, in the cable tension range, if there is
no solution for the given torque, the maximum torque that can
be generated in the same direction is generated.

[

N (A)

−N (A)

]

m2 ≥

[

Tmin

−Tmax

]

+

[

−T

T

]

m1 (7)

max

4
∑

i=1

ti

s.t. Tmin ≤ Tm1 + N (A)m2 ≤ Tmax

Workspace Optimization and Analysis
Research on the cable-driven exoskeleton robot shows that the
distribution of the cable attachments, the diameter of each
component, and the angle of inclination of the fixed brackets
have a significant impact on the workspace (Mustafa et al., 2006;
Mustafa and Agrawal, 2012; Shao et al., 2014). Regarding the
optimization of the distribution of the cable attachments, many
researchers have done related research, including particle swarm
algorithms (Bryson et al., 2016), which are used to explore the
optimal solution. Cable-driven robot workspace optimization is
a complex problem with many variables. Therefore, to simplify
the optimization process, some parameter ranges are usually
constrained. Figure 5A shows the anatomy of the wrist joint
and the coordinate frames. Considering the actual situation, the
following constraints are imposed:

1) When optimizing the workspace, we neglect PS and the wrist
joint is regarded as a spherical joint. The range of human joint
is show in Table 3. Considering the approximate symmetry of
its motion, we assume that the forearm cable attachment plane
is perpendicular to the forearm;

2) The diameter of each component of the wrist rehabilitation
training robot also has a significant influence on the
optimization, mainly R1 (the radius of the hand ring) and
R2 (the radius of the inner ring extension arm). Through the
preliminary the study of Shao et al. (2014), the excessive R1/R2
value, will lead to lower tension efficiency, that is, increased
parasitic force. In order to ensure that the cable does not
interfere with the hand during the movement, the R1 value
is 38mm, to avoid the interference between the trunk and the
inner ring, to ensure compact, the R2 value is 75mm, and the
cable attachments are distributed on the ring;
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TABLE 3 | The workspace and tension efficiency comparison of four cable-driven robot.

Workspace

Human SEU-WRE CDWRR NTU CAREX-7

Orientation

workspace

Xw Max [−33, +19] ADLs [−33, +19] [−40, +40] [−35, +19] [−40, +40] [−30, +20]

Yw Max [−73, +71] ADLs [−60, +54] [−75, +75] [−38, +38] [−35, +40] [−45, +30]

Zw Max [−86, +71] ADLs [−85, +70] [−90, +90] [−18, +60] [−50, +20] [−50, +35]

Tension efficiency in the joint angle range of ADLs

Human SEU-WRE CDWRR NTU CAREX-7

X(◦) X+/–

(Nm)

Y(◦) X+/–

(Nm)

Z(◦) X+/–

(Nm)

35 5.2/4 −70 3.9/3.9 −90 6.2/4.4

20 5.6/4.4 −35 5.2/4.5 −45 6.1/4.8

0 5.7/4.7 0 6.2/4.7 0 6/5.1

15 5.3/4.6 35 6.3/4.7 45 6.2/4.7

25 4.9/4.5 70 4.5/4.5 90 6.5/4.2

ADLs: 0.35Nm Avg = 2.9408 Avg-A = 3.0247 Avg = 2.8226 Avg-B = 3.5331 Avg = 1.7285 Avg-N = 3.4142 Avg = 1.3775 Avg-C = 3.5043

Max = 4.9538 Max-A = 4.9538 Max = 7.1970 Max-B = 4.9538 Max = 4.8606 Max-N = 4.9538 Max = 2.9111 Max-C = 4.9538

Max: 19.8Nm Min = 1.4020 Min-A = 1.5689 Min = 0.0148 Min-B = 1.8204 Min = 0.0035 Min-N = 2.4569 Min = 0.0024 Min-C = 2.8804

X(◦) Y+/–

(Nm)

Y(◦) Y+/–

(Nm)

Z(◦) Y+/–

(Nm)

−35 8.3/5 −70 6.8/3.4 −90 10.2/5.5

−20 8.7/5.1 −35 7.5/5.4 −45 10/5.8

0 9/5.2 0 9/5.9 0 9.5/6.3

15 8.6/5.1 35 11.4/5 45 9/6.4

25 8.2/5 70 7/4.1 90 8.5/5.9

ADLs: 0.35Nm Avg = 5.7219 Avg-A = 6.5226 Avg = 1.8461 Avg-B = 6.7920 Avg = 2.3310 Avg-N = 6.5510 Avg = 1.4961 Avg-C = 6.4604

Max = 11.4369 Max-A = 11.4369 Max = 4.5151 Max-B = 10.5180 Max = 6.3025 Max-N = 10.6207 Max = 2.6033 Max-C = 10.0733

Max: 20.8Nm Min = 1.2776 Min-A = 1.8204 Min = 0.0043 Min-B = 3.0704 Min = 0.0011 Min-N = 3.2893 Min = 0.0049 Min-C = 2.6518

(Continued)
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3) The rotating compensation mechanism is adopted, so that
the distribution of the cable attachments can be dynamically
changed. Hence, it is not necessary to set the PS movement
range as ±90◦ in the calculation. The motor that drives the
rotating compensation mechanism can quickly respond to the
movement of the wrist PS and compensate the rotating angle.
So the PS range is set in±20◦ as an optimization condition to
cope with the motor response delay;

4) During the optimization process, point A1−4 is calculated
by 2.5◦ step along the radius of 75 mm, and point B1−4 is
calculated by 2.5◦ step along the radius of 38mm. Each point is
constrained to a certain range to avoid repeated combinations;

5) Regarding the wearing error and individual differences, the
H2 length (the wrist joint center to the forearm cable
attachment plane) and the H1 length (the wrist joint center to
the hand ring cable attachment plane) are set as 1± 1 cm and
14 ± 2 cm, respectively. It allows the error within the range
to be generated while training and still can ensure that the
workspace is effective.

The optimization process is shown in Figure 5B. Finally, 128 sets
of feasible solutions can be obtained after optimization, and the
final cable attachment distribution will be selected according to
the cable tension efficiency introduced in the next section.

As shown in Table 3, the top part is a comparison of the
workspace of four cable-driven robots, which are SEU-WRE,
CDWRR (Chen et al., 2015), NTU (Mustafa et al., 2006),
and CAREX-7 (Cui et al., 2017). The hand is approximately
equivalent to a 14-cm-long rod. One end is fixed at the center
of the wrist joint, and the three-DOF rotation axis coincides
with the rotation axis of the wrist joint. When calculating, the
spatial position of the other end of the rod corresponding to the
feasible joint angle is printed as a visual display of the feasible
workspace. The red point is the feasible workspace for each
robot, and the green point is the human joint workspace for
the corresponding. It can be seen that SEU-WRE can completely
cover the human wrist joint workspace. In contrast, the other
three robots have a great gap in the workspace and the human
joint space, and there is also a certain gap with the ADLs space.
Insufficient workspace makes it necessary to pre-calculate the
trajectory during the rehabilitation training. Otherwise, it will
cause unpredictable errors and danger in the movement beyond
the workspace.

Tension Efficiency Analysis
In this paper, the cable tension efficiency is defined as the
magnitude of the torque acting on the wrist generated by the
same tension conditions. The greater the torque, the higher the
tension efficiency. At the same time, the smaller the parasitic
force acting on the joint, the higher the comfort of training. The
workspace priority strategy is adopted. Under the premise of
satisfying the workspace of the human joint, the tension efficiency
of each cable attachment distribution is analyzed, and the set with
the highest tension efficiency is selected as the final solution.

As shown in the bottom part of Table 3, the tension efficiency
analysis is performed for each robot. CDWRR, NTU, and SEU-
WRE are independent wrist rehabilitation robots or upper-limb
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robots with detachable design. The wrist joints can be analyzed
independently. But, the cables are routed from the proximal cuffs
to the distal cuffs in CAREX. It is difficult to analyze directly, so
the wrist structure of CAREX is equivalent to an independent
structure, and the tension efficiency analysis is performed.

Based on the maximum torque in the assigned direction
algorithm, as expressed in (7), the maximum joint torque that
can be generated in the workspace is analyzed. Table 3 lists the
torque in the positive direction of three DOFs to compare cable
tension efficiency. For the column of human joint torque, the
research shows that the joint torque is different under different
joint angles (LaDelfa and Potvin, 2017; Su et al., 2019). Therefore,
the wrist joint torque of several discrete joint angles is selected as
the human joint value. Among them, the torque of FE and RU
is affected by the angle of three DOFs, and the PS joint moment
is only affected by the PS angle. Moreover, studies have shown
that there is a big difference between the daily joint torque and
the maximum joint torque of the human body. This is a concern
when developing the force-feedback function of the wrist joint
robot (mainly for healthy people), that is, the force-feedback
needs to have a broad range of stiffness variation. In SEU-
WRE, CDWRR, NTU, and CAREX-7 columns, the maximum
positive torque of each DOF is shown when the cable tension
is limited to a specific range. To ensure the consistency of the
comparison, the minimum tension of each robot is limited at
5 N. But the maximum depends on the number of cables, that
is, the maximum cable tension of the 4-cable-driven robots is
45 N, and the 6-cable-driven robots is 30 N. Table 3 shows the
maximum, minimum, and average joint torque output of the
four robots in their workspace, and the joint torque output of
the SEU-WRE in the human ADLs, CDWRR, NTU, CAREX
workspace to ensure the comprehensiveness of the comparison.
In the visual processing of the joint torque, for the clear display,
five Z-axis joint angle values are selected, and 100 X/Y-axis
joint angle values are chosen in the range. But in the actual
numerical calculation, 500 values of each joint are chosen to
ensure the accuracy of the calculation. As can be seen from
Table 3, SEU-WRE has a significant advantage in the generation
of any joint torque, that is, it has exceptionally high cable tension
efficiency, which means that the parasitic force generated during
the rehabilitation process is smaller and the training is more
comfortable and safe. The maximum torque generated is still
different from the maximum output of the human joint torque,
because the cable tension necessarily needs to be limited based on
safety and comfort.

It is not difficult to find that SEU-WRE has significant
advantages in both aspects. It is due to that the rotating
compensation mechanism is used, dynamically changing the
cable attachments distribution and greatly increasing the
workspace and tension efficiency. This is very important for
rehabilitation training.

CONTROL ALGORITHM

MR-Cable Tension Control Algorithm
The system uses the Bowden cable as a transmission to reduce
overly complex cable routing. Many studies on the Bowden cable

transmission have shown that the Bowden cable inner sleeve
and the passing cable can cause friction, including coulomb
friction, viscous friction stiction, and stick-slip (Letier et al., 2006;
Palli and Melchiorri, 2006). In order to reduce the influence of
friction, according to the previous research, this paper chooses
a 1∗7 multi-strand steel cable with a diameter of 1 mm. Both
the cable shell and the Bowden cable inner sleeve are made of
PTFE material to minimize the viscous friction. The Bowden
cable inner sleeve is selected from the longitudinal construction
of flat-band steel to reduce the effect of its elasticity on the system.
The diameter of the Bowden cable is 5 mm.

Even if the above material is used, the stiction can be
eliminated, but Coulomb friction still exists. According to the
model proposed in (Palli and Melchiorri, 2006), the feedforward
compensation of the friction is achieved. Although the current-
to-torque relationship of the MR clutches can be fitted by the
model, when the cable tension control is performed, the open-
loop control is not directly adopted, but the cable tension sensor
is used. A closed-loop tension control model was established to
compensate for the effects of the unmodeled friction and the MR
hysteresis. The control block diagram is shown in Figure 6, in
which the reel velocity is used to distinguish the direction of the
friction force. Through experimental measurement, even if the
dynamic adaptive structure rotates between ±90◦, the Bowden
cable friction efficiency does not change significantly, so the
friction coefficient µ is set as a constant.

Passive and Active Training Algorithm
The passive training can help patients to move their weak limb
in the desired trajectory, which incorporates the stretching of
muscles and connective tissues to regain their movement ability
by provoking the motor plasticity (Alamdari and Krovi, 2015).
The existing cable-driven exoskeleton robots do not mention
related training methods. In this paper, the projected PID control
algorithm proposed in the literature (Viau et al., 2015) is used
to design a mirror training algorithm that can be applied in
the three-DOF rehabilitation training robot. In order to perform
the force control with friction compensation and enhance safety
in rehabilitation training, the open-loop tension control in this
algorithm is replaced with the closed-loop control described
in section MR-Cable Tension Control Algorithm. Although the
force control bandwidth will be reduced, it fully meets the needs
of rehabilitation training. The experiment shown in section MR
Performance Experiment confirmed this.

The active training is an important part of the rehabilitation
training process, including resistive training and assistive
training (Proietti et al., 2016). Through the set training strategy,
the patient is assisted by the robot to complete the training and
strengthen the motor function. The AAN algorithm is used on
this robot to verify its active training function:

r = q̇− q̇d + 3(q− qd) (8)

where 3 is a positive-definite matrix that determines the weight
of position errors relative to velocity errors. Because the weight
of the hand ring is only 50 g, the inertia and Coriolis terms are
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FIGURE 6 | The MR-Cable tension control block diagram.

ignored. The controller can then be written:

τr = g
(

q
)

− KDr (9)

where KD is a positive-definite gain matrix. The controller
functions as a PD controller, where KD and KD3 serve as the
derivative and proportional gains, respectively.

In order to provide appropriate challenges to the subjects and
strengthen the rehabilitation training, KD is updated according
to r, which represents the patient’s performance.

KD,i+1 = (1+ αi)KD,i (10)

αi+1 = αnorm
ri − r∗

r∗
(11)

αnorm is a constant nominal change rate, ri is the current task’s
error, and r∗ is themaximum allowable average trajectory error. If
ri is bigger than r∗, the algorithm dictates that the subject cannot
provide enough error performance, and hence, the feedback gain
increases for the next task.

Safety Modes
Safety is an essential requirement in rehabilitation training. As
shown in Figure 7, there are three work modes of SEU-WRE to
avoid injury when abnormal conditions occur:

1. Normal Work Mode: The tension of each cable can be
controlled, and the required torque is provided according to
the rehabilitation training algorithm.

2. Safe Mode I: When the patient exceeds the set training area
or the interaction force is abnormal, the MRs of the DASA
system can be powered off by software or hardware switches,
and the rotation speed of the power motor is reduced. At this
time, although the power motor continues to rotate, because
the MRs have no current input, the tension is the minimal
value which is generated by the inherent damping of the MRs.
The measured minimum tension is about 1.2N. When the
condition becomes normal, the robot can return to Normal
Work Mode directly.

FIGURE 7 | Three work modes for safety.

3. Safety Mode II: When an emergency situation occurs, and the
training needs to be stopped, the whole DASA system can be
powered off through the emergency switch. At this time, the
powermotor stops rotating, the cable will not be tensioned any
more, and can be pulled arbitrarily. At this time, the patient
does not interact with the robot, and the hand ring can also be
quickly taken off, avoiding the potential damage caused by the
robot system friction and inertia.

Safety Mode II is similar to the wearing state before starting
training, and it can be switched to Safety Mode I, then to Normal
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Work Mode. Both Safe Mode I and Normal Work Mode can
be directly switched to Safe Mode II. These safety work modes,
especially Safety Mode II are difficult to be achieved in the rigid
robots, even the OpenWrist, which is convenient to wear (Pezent
et al., 2017).

EXPERIMENTS AND ANALYSIS

MR Performance Experiment
To demonstrate the performance of the MR clutches and MR-
Cable system, the following sets of experiments were carried out.
The MR performance test platform is shown in Figure 8A. The
motor drives the MR clutch to rotate by the coupling, and the
force gauge at the end of the linkage measures and records the
output of MR with a given current or step signal input. The MR-
Cable system test platform is presented in Figure 8B, the end
of one cable is connected to the fixed base and the tension is
measured and recorded by the tension sensor.

Figure 8C shows the MR current-torque curve. It can be seen
that there is a certain hysteresis between the ramp up and down.
In this paper, a second-order polynomial function was used to fit
the current-to-torque relationship, and only 50% of its maximum
output was used to provide sufficient tension in theDASA system.
Figure 8D shows the MR step response curve. It can be seen that
theMR clutch has a high step response speed. Combined with the
low output inertia of the MR clutch, the MR-Cable system has a
high dynamic performance.

As shown in Figure 8E, for the MR-Cable closed-loop force
control Bode diagram, the input was a sinusoidal signal with
amplitude 30 N, the frequency growth step is 2.5 Hz, the gain
and phase of each point were recorded. To explore the effect of
different bending conditions on the force-feedback bandwidth,
the robot system was placed in the normal work state, and the
Cable-1 (A1-B1) was selected as the test sample (the remaining
three cables have the same characteristics). The Z-axis was kept
at 0◦. The bandwidth of this system is about 35 Hz at −3 dB and
is fully superior to the human force bandwidth that is between 5
and 10 Hz (Shimoga, 1992).

Passive Training Experiment
Because the patient has limited ability in speed and range of
movement, in order to fully verify the passive training functions,
including tracking speed, accuracy, workspace, and parasitic
force, one healthy subject S1 (26 years old, male) was selected
to participate in the experiment. The subject wore the motion
capture glove in the left hand and the wrist rehabilitation robot
in the right hand. The right hand was in a relaxed state as
the affected hand and provided some impedance, simulating the
patient’s muscle stiffness. The subject’s left hand moved at a
comfortable speed within the maximum reachable range as much
as possible. The right hand followed the left hand movement
driven by the exoskeleton. The joint angles were recorded, and
the equivalent end position error of the 14 cm rod was also
calculated. The simultaneous angle tracking performance of all
three DOF and position error is shown in Figure 9.

It can be seen that the right hand can follow the left hand
well, even if there was impedance interference. The Z-axis

FIGURE 8 | (A) the MR performance test platform, (B) the MR-Cable system

performance test platform, (C) the MR current-torque curve, (D) the MR step

response curve, (E) the MR-Cable closed-loop force control Bode diagram.

curve (M-Angle) demonstrates that the adaptive structure can
follow the hand movement well, to change the cable attachment
distribution in real-time and ensure cable tension. The passive
training control algorithm can be implemented well. The cable
tension curve and the parasitic force curve during the training
were also recorded. It can be seen that for passive training,
the required cable tension was small, and the parasitic force
did not exceed 20 N, which can fully meet the safety and
comfort training requirements. During the experiment, the cable
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FIGURE 9 | The passive training experiment: (A) the tracking error, (B) the

tension, parasitic force, and actual assistive torque curve. D/A/E/M-Angle

represent the desired angle, the actual angle, the tracking error of the angle,

and the angle of the Z-axis, respectively. E-Position means the tracking error of

the position. The red area in (A) is the infeasible area of CDWRR.

tension controller performs well. But due to the characteristics
of the MR and the friction characteristics of the Bowden cable,
the actual cable tension curve had a certain continuous small

FIGURE 10 | The actual workspace in experiment.

jitter with the amplitude ±0.4 N, but did not affect tracking of
tension command. In the meanwhile, CDWRR with the highest
performance of the existing cable-driven robots was selected for
workspace comparison. It can be seen that CDWRR cannot cover
the normal wrist joint space, which will have a limitation on the
setting of clinical rehabilitation tasks.

In passive training mode, the subject S1 was driven by the
robot and the reachable range is demonstrated in Figure 10. The
actual workspace is similar to the simulated results.

Active Training Experiment
A healthy subject S1 (26 years old, male) and two stroke patients
S2 (45 years old, male, Fugl-Meyer Arm score = 52) and S3 (51
years old, male, Fugl-Meyer Arm score = 20) participated in
the experiment to verify the performance of the active training.
In the experiment, the subject wore the robot on the affected
side, and performed FE (−50◦∼ + 50◦) movement for the first
experiment and PS (−60◦∼ + 60◦) movement for the second
experiment according to the visual indication of the display.
As shown in Figures 11A,B, the blue circle is the target, the
small white circle is the guide cursor, and the yellow ring is
the current position. When one DOF training was performed,
the feedback gain KD of the other two DOFs was set high (0.5
Nm∗s/rad) to constrain their movement. The subjects conducted
pre-experiments before the formal experiment to familiarize
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FIGURE 11 | (A,C,E) show the visual interface, adaptive KD and average error for FE experiment, respectively; (B,D,F) show the visual interface, adaptive KD and

average error for PS experiment, respectively; (G,H) demonstrate the average tension and max parasitic force in task no. 15–30 of S3, respectively. The red bar is the

average value of SER-WRE in the large range, the green bar is its average value in the small range, and the blue bar is the average value of CDWRR in the small range.

themselves with the operation of the system. Each task was about
5 s, and one experiment consisted of 30 tasks. r and KD of
each task were recorded, and the target error was set as 0.01
rad/s. CDWRR was selected to compare the tension efficiency
with SEU-WRE. FE (−30◦∼ + 30◦) and PS (−10◦∼ + 50◦)
were defined as the small range, and FE (−50◦∼+50◦) and
PS (−60◦∼+60◦) were defined as the large range. Due to the
large movement range exceeded its maximum range, the average
cable tension and parasitic force of CDWRR in small range
were calculated for comparison. In the meanwhile, the data of
SEU-WRE in small and large range were calculated, respectively.

It can be seen from the results that with the assistance of
this robot, no matter the health or the patient reached the set
error target after several tasks, and the error fluctuated around
the target value. KD was continuously adjusted according to the
subjects’ performance. Since the set error target was pretty small,
even healthy subjects must be assisted to reach the target. It
can be seen from Figure 11 that three subjects showed similar
fluctuations in the FE and PS experiments. The assistance for
S2 was smaller than for S3, but the assistance fluctuation was
larger. It was because that S2 had good movement ability but it
was unstable. Especially, S2 had poor movement accuray, so that
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FIGURE 12 | The healthy subject performs a safety mode test. The damping coefficient BD is 1 Nm·s/rad. The subject actively exceeds the safe range near the 9th s,

and then returns to the safe range. Near the 12th s, the drive system is powered off and the robot enters Safety Mode II. Then, the drive system is powered on near

the 15th s, the robot returns to Normal Work Mode. The blue and red regions are Safe Mode I and Safe Mode II, respectively.

the robot needed to provide more assistance to help him correct
the wrong movement. The ability of S3 was weak, so the required
assistance was high, but the overall change was stable.

For comparison of the tension efficiency, in the experiment
of S3, the average value of r, cable tension, and parasitic force in
the small range and large range of tasks 15–30 were recorded,
respectively. In these 16 tasks, the average assistive torque
provided by the robot did not show the siginificant difference
in both large and small range. In FE, the average tension was
lower in the small range than in the large range, that was, in
the small movement range, the tension efficiency was higher.
Comparing with CDWRR, it was obvious that SEU-WRE can
provide higher tension efficiency and lower parasitic force. In PS,
the average cable tension was similar in the small and large range.
Because of the rotating compensation mechanism, PS movement
did not change the configuration of the cables, and SEU-WRE
also provided higher efficiency compared with CDWRR. In the
experiment, all subjects indicated that they did not feel the
abnormal effect of the parasitic force. The therapist believed that
this robot is simple to operate without adjustment for individual

differences and it has enough DOFs and workspace to meet the
requirements of a variety of rehabilitaion training tasks.

Safety and Comfort Experiment
To verify the safety mode proposed in this paper, one healthy
subject were selected for the experiment. The FE safety range was
set in (−20◦∼ + 20◦), and the resistive training was performed
in this range. The controller can then be written:

τr = g
(

q
)

−BDq̇ (12)

BD is the damping coefficient. As shown in Figure 12, when the
subject exceeded the boundary, the cable tension dropped to a
minimum, but the cables still remained tense. At this time, the
subject’s hand canmove freely without obvious interference. Even
if the tension sensor or IMU fails, this mode is also effective. Then
the subject actively moved to the safe range, and the robot quickly
changed to the Normal Work Mode to provide the required
assistance. When it is controlled by the software, the tension
switch is not hard. Then the drive system was powered off, and

Frontiers in Neurorobotics | www.frontiersin.org 14 April 2021 | Volume 15 | Article 66406222

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Shi et al. Cable-Driven Exoskeleton for Upper-Limb Rehabilitation

the robot entered Safe Mode II. After the cables were pulled out
with a very small force, the tension of all cables became zero.
The cables slacked, and the subject can move freely without any
interaction with the robot. The hand ring was easy to be taken off.
After powering on the drive system, the system returned to Safe
Mode I and to Normal Work Mode.

CONCLUSION

This paper proposed a cable-driven three-DOF wrist
rehabilitation training robot with high-bandwidth force-
feedback function. The addition of the Z-axis rotation adaptive
mechanism increases the robot workspace and tension efficiency,
which is critical to the safety and comfort of rehabilitation
and force-feedback. By combining the MR clutches with the
geared motor, the decoupling of the output characteristics of
the motor can be realized. The power system has the advantages
of good safety and high force bandwidth compared to the
conventional actuator. Several experiments were carried out to
verify that this robot system can provide high-bandwidth force-
feedback, accurate tracking performance, and safe human-robot
interaction. Compared with the previous cable-driven robots,
the proposed design has the larger workspace that can cover
the ADLs range, and has higher tension efficiency, which can
increase the effective torque and reduce the parasitic force. At
the same time, it still has the characteristic of the flexibility, low
inertia, free alignment.

However, due to the unidirectional tension characteristic of
the cable, although the parasitic force is reduced, it cannot be
eliminated completely. If this device is used for the patient with
high muscle tone, the parasitic force could be large. In addition,
the initial length of the cable and the length of the limb are

measured manually, and it is not convenient in the clinic. In the
next work, these parameters including the wrist joint center shift
can be self-identified using the length of the redunctant cables.
The clinical experiments are also in progress.
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Non-specific low back pain (NSLBP) affects many people and represents a high cost for

health care. Manual pressure release of myofascial trigger points is used to treat NSLBP

and is very effective but difficult to standardize since it is provided by different therapists,

which also suffer musculoskeletal complications from this highly repetitive activity. A

robot designed for this purpose may help in reducing these problems. Here, we present

data from a two-arm, single-blinded, randomized controlled clinical trial evaluating the

efficiency of a therapeutic massage robot (ADAMO) in reducing NSLBP (clinicaltrials.gov,

registration number: NCT04882748). Forty-four patients were randomly distributed into

the two arms of the study (robot vs. control). A physician filled the Oswestry disability

index (ODI) before starting the treatment and at the end of it, in a blind fashion. In addition,

patients filled a visual analogue scale (VAS) after each of the 10 treatment sessions. The

ODI and the VAS were analyzed as the primary and secondary outcome measures. Both

treatments (robot and control) resulted in a significantly lower ODI (p< 0.05). On the other

hand, robot-treated patients significantly reduced their VAS levels (p = 0.0001) whereas

control treatment did not reach statistical significance. Patients of both sexes obtained

similar benefits from either treatment. Overweight patients (body mass index ≥ 25kg/m2)

in the robot arm benefited more from the treatment (p= 0.008) than patients with normal

weight. In conclusion, the ADAMO robot is, at least, as efficient as regular treatment in

reducing low back pain, and may be more beneficial for specific patients, such as those

with excessive weight.

Keywords: low back pain, robot, therapeutic massage, body mass index, overweight, perceived pain

INTRODUCTION

Low back pain is defined as a musculoskeletal syndrome, or group of symptoms, whose main
characteristic is the pain, which is focalized in the lumbar area of the spine. The diagnosis is rather
easy since symptoms are very evident. When this pain cannot be attributed to a known cause
(traumatism, systemic diseases, nerve root compression, etc), it is called non-specific low back pain
(NSLBP) (Maher et al., 2017), which may represent 90–95% of all cases of back pain (Bardin et al.,
2017).
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NSLBP cannot be considered a benign pathology. On the
contrary, it is responsible for a high index of work absenteeism
and early retirement (Ekman et al., 2005; Hoy et al., 2014).
This syndrome affects 70–80% of the population of developed
countries at some stage during their lifetime, representing the
main cause of motility restriction, long-term incapacity, and
reduction in the quality of life. In Europe, it has an associated cost
of between 1.7 and 2.1% of the gross domestic product (Lambeek
et al., 2011), while in the US it costs about $ 100 billion a year
(Dieleman et al., 2016).

The treatment for this pathology has been collected in several
clinical practice guidelines, with little differences among them
(Oliveira et al., 2018). All of them recommend: (i) maintaining
physical activity as far as the pain allows; (ii) pharmacological
treatment (analgesics, non-steroidal anti-inflammatories, muscle
relaxants); and (iii) non-pharmacological measures (local heat,
cognitive-behavior therapy, spinal manipulation, rehabilitation
programs). Rehabilitation therapy, including different exercises,
such as stretches, back workshops, and aquatic exercises, among
others, provides excellent results in managing chronic back pain
(Searle et al., 2015). In addition, manual pressure release of
myofascial trigger points constitutes the most common practice
to treat back pain and is very effective in the short term,
although it may not address the underlying causes (Dayanir
et al., 2020). These trigger points are hyperirritable zones located
in a taut band of skeletal muscle that generate pain with
compression, distension, overload, or contraction of the tissue,
which usually responds with a referred pain (Moraska et al.,
2017).

Pain evaluation is a fundamental requisite in the outcome
assessment of any pain intervention. It is well-known that
psychological and psychosocial factors may substantially
influence pain perception, so different scales have been
developed to measure the intensity of perceived pain in patients.
The most extended ones are the visual analogue scale (VAS) and
the Oswestry disability index (ODI) (Haefeli and Elfering, 2006;
Mehra et al., 2008).

The main problem in measuring and reporting manual
massage practices is that the massage is applied by different
therapists, with different strength and intensity, which may vary
from session to session (Farber and Wieland, 2016). The use of
massaging robotic devices should solve all these problems and
several prototypes have been proposed (Wang et al., 2018; Li
et al., 2020).

In this study, we will test the efficiency of the new
ADAMO robot system (https://adamorobot.com/), produced
and distributed by Future Sense, Inc (Spain). ADAMO bases its
operation on a computer program that controls the manipulator
robot, which, by means of cameras installed at the end of its
arm, must find in each session the points of treatment in the
patient previously defined by the health professional and apply
the necessary pressure. This pressure is generated by means of a
compressed air nozzle integrated in a handpiece installed at the
end of the robot arm (Figure 1).

The objective of our study was to measure the efficiency
of adding the ADAMO robot to the current protocol of non-
pharmacological measures in reducing NSLBP.

MATERIALS AND METHODS

This was a two-arm, single-blinded, randomized controlled trial.
The study was approved by the local ethics committee (Comité de
Ética de Investigación conMedicamentos de La Rioja, CEImLAR,
protocol P.S 7) and registered at clinicaltrials.gov (registration
number: NCT04882748). The study follows all tenets of the
Declaration of Helsinki and was conducted at the Rehabilitation
Service, High Resolution Center San Millán, in Logroño (Spain)
between October 2020 and February 2021.

Subjects
Patients of both sexes that arrived to the Rehabilitation Service
seeking treatment for NSLBP were included in the trial if
they were suffering from NSLBP, had between 18 and 60
years of age, and they signed the informed consent form.
Participants were excluded if they fulfilled any of the following
criteria: pregnancy, impossibility of staying in a prone position,
previous pathologies (spinal surgery, cancer, rheumatic diseases,
cardiopaties, respiratory compromise, etc), allergies and/or
skin affectations.

Sample size was calculated based on data published by Patti
et al. (2016). In that study, the pain of patients suffering from
NSLBP was measured with the ODI. On their first visit, patients
exhibited a pain rate of 13.7± 5.0, which after several sessions of
Pilates exercises became 6.5 ± 4.0. Power was set as 80% for an
alpha of 5% and attrition of 20%, resulting in 22 patients per study
arm, in order to reach a significant relief at the end of treatment.

Intervention
For each patient, the intervention period lasted for five weeks,
with one-h exercise sessions twice a week (10 sessions). Before
starting treatment, clinical characteristics of the patient were
collected (age, sex, body mass index, previous treatments, etc).
Then, patients were assessed with anODI questionnaire and were
randomly allocated to one of the two arms of the study: robot and
control (Figure 2). Allocation was achieved with the help of an
online resource that provides randomized lists (https://pinetools.
com/es/aleatorizar-lista).

In the robot arm, a physiotherapist with more than
15 years of experience identified the trigger points in the
patient, programmed the robot, and applied robot-controlled
air pressure massage for 10min. The ADAMO robot applies
an air current to the trigger points on the back of the patient,
guided by cameras and computer programs (https://adamorobot.
com/) (Figure 1). Then, thermotherapy and rehabilitation
exercises were provided, as is the standard treatment for
NSLBP at the Rehabilitation Service (High Resolution Center
San Millán).

In the control arm, patients were laid down on the robot
platform. Physiotherapists identified the trigger points
and the robot was connected, providing the expected
background noise and vibration, but the air pressure was
not applied. Thermotherapy and rehabilitation exercises were
also applied.

At the end of each session, the physiotherapist
applied the VAS questionnaire (not blinded). At the
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FIGURE 1 | Representative photographs of the ADAMO device showing the robotic arm with the terminal handpiece (A), and detail of the handpiece (B) indicating

the location of the thermal camera (a), the air heater (b), the cross selection laser (c), the air nozzle (d), the distance sensor (e), and the 3D camera (f). The black tube

carries compressed air.

FIGURE 2 | Consort flow diagram of participants through the study.

end of the 10 sessions, the patient went back to the
physician’s office to complete the second and final
ODI questionnaire (the physician was blinded to
the treatment).

Outcome Measures
The primary outcome for this study was pain-related disability
as tested by the Oswestry disability index (ODI). This is a
questionnaire which gives a subjective percentage score of level
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of function (disability) in activities of daily living in those
rehabilitating from low back pain. Possible scores go from 0 to
50, being 0 no pain and 50 the highest possible pain (Mehra et al.,
2008). The secondary outcome was perceived pain as assessed
by the visual analogue scale (VAS), which is a unidimensional
measure of pain intensity. The patients are presented with a
horizontal line of face pictograms. The patients mark on the line
the point that they feel represents their perception of their current
state, which may rank from 0 (best, no pain) to 10 (worst pain)
(Haefeli and Elfering, 2006).

Data Analysis
Categorical variables were compared using chi-square test.
Normal distribution of all datasets was determined by the
Shapiro-Wilk test. Since none of the datasets followed a normal
distribution, only non-parametric tests were used. The temporal
variation in VAS was analyzed with the Kruskal-Wallis test,
followed by the Dunns post-hoc test. The variation on ODI and
VAS questionnaires was compared between the two experimental
groups with the Mann-Whitney’s U test. p values lower than 0.05
were considered statistically significant. All these analyses were
carried out with SPSS 17.0.

RESULTS

Forty-nine potential participants were approached and asked to
participate in the study. Of these, three were excluded for not
meeting inclusion criteria (age > 60) and two other candidates
declined to participate. At the end, 44 patients were randomized
into the two arms of the study, and one patient from each arm
was lost during the trial. Finally, we obtained complete data from
21 patients in each arm (Figure 2).

Of the 42 patients, 14 were men and 28 women with a median
age of 52 years and a median bodymass index (BMI) of 27 kg/m2.
At the beginning of the trial, they presented a median score of 15
in the ODI and 6 in the VAS. After allocation into the two arms
of the study, the baseline characteristics of both populations were
similar (Table 1).

After 10 sessions, patients filled out another ODI
questionnaire. All patients experienced a significant relief
in the disability index in both arms of the trial (Figure 3A). In
the control treatment, patients went from 15 (9–19) to 10 (6–15)
(p= 0.009). In the robot treatment group, patients went from 15
(11–20.5) to 11 (5.5–15.5) (p = 0.036). No significant differences
were found between the groups in their final ODI (p = 0.58).
When analyzing pain perception through the VAS questionnaire,
patients in the control treatment arm did not express a significant
relief of their symptoms (p = 0.13). On the other hand, patients
treated by the robot experienced a significant relief after their
10th session (p = 0.0001), going from an initial VAS of 6 (6–7.5)
to 3.6 (2–4). There was no significant difference in VAS final
values between both treatments (p= 0.94) (Figure 3B).

Then, we investigated whether the sex of the patients had any
influence in their treatment. For theODI values, both women and
men experienced a significant amelioration of their symptoms
due to the treatment (Figure 4A). Regarding the VAS, women
reported a significant relief for their symptoms both in the

control (p = 0.038) and in the robot (p = 0.005) arms. Among
men, the control treatment did not reach statistical significance
(p = 0.36) but men treated with the robot experienced a very
significant relief (p = 0.008), going from 6 (6–8) to 2 (1–4)
(Figure 4B).

Another variable we wanted to measure was the influence
of the patient’s body composition, as measured by the body
mass index (BMI). According to metabolic guidelines (Kahan
and Manson, 2019), patients with BMI ≥ 25 kg/m2 are
considered overweight. Clinical characteristics of these patients
are summarized in Table 2. Interestingly, the best results
were obtained among overweight people, both with the ODI
(Figure 5A) and the VAS (Figure 5B) indexes. When analyzing
the VAS data, only overweight patients treated with the robot
experienced a significant relief of their symptoms (p = 0.001),
going from 6 (6–8) to 4 (2–5).

All individual participant data are available in
Supplementary Material.

DISCUSSION

The aim of this randomized controlled trial was to evaluate
the effectiveness of adding a robot-mediated massage to the
usual treatment to alleviate NSLBP, consisting of thermotherapy
and rehabilitation exercises. Both treatments were significantly
beneficial for the patients and had similar effects for the
primary outcome (ODI), reducing disability symptoms. On the
other hand, only the robot was able to reduce perceived pain,
as measured by the VAS. Interestingly, overweight patients
experienced more significant relief than patients of normal
weight, and this difference was more striking in the patients
treated by the robot.

Obesity is a leading preventable cause of death and disease
worldwide. The prevalence of obesity was 42.4% in the US in
2018. Obesity-related conditions include heart disease, stroke,
type 2 diabetes, and certain types of cancer (CDC, 2021). The
medical costs for people who have obesity was US$ 1,429 higher
than those of normal weight (Finkelstein et al., 2009). In addition,
the excessive weight generates undue stress to the joints and
musculoskeletal system (Viester et al., 2013), making these people
more prone to seek physical therapy treatments. Furthermore,
overweight patients pose additional problems to physiotherapists
that may not reach properly their trigger points during manual
treatment. Our finding that robotic massage is more efficient than
control treatment for overweight patients may indicate that the
constant air pressure provided by the robot adds more relief to
these patients.

The use of robotic devices to perform therapeutic massages
has been previously reported (Wang et al., 2018; Li et al., 2020).
The main difference of the ADAMO robot with other versions is
that the massage is produced by a directed current of compressed
air with constant intensity. This avoids direct contact with
the skin, which reduces potential cross-contamination among
patients and simplifies decontamination procedures. Another
difference is that previous devices are based in multipurpose
robotic arms that have been programmed to perform massages,
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TABLE 1 | Clinical characteristics of patients.

Total Control arm Robot arm p value*

n 42 21 21 1.0χ

Sex, female (%) 28 (66.6%) 12 (57.1%) 16 (76.2%) 0.29χ

Age (years) 52 (46.75;57) 48.5 (46;57) 54 (51;58.25) 0.063†

BMI (kg/m2 ) 27.0 (23.7–29.5) 27.3 (24.5–32.3) 26.1 (22.7–28.1) 0.14†

ODI baseline 15 (10–20) 15 (9–19) 15 (11–20.5) 0.34†

ODI post-treatment 10 (6–15) 10 (6–15) 11 (5.5–15.5) 0.58†

VAS baseline 6 (4–6.5) 5 (4–6) 6 (6–7.5) 0.15†

VAS post-treatment 4 (2–6) 3.6 (2–6) 3.6 (2–4) 0.94†

BMI, body mass index; ODI, oswestry disability index; VAS, visual analogue scale.

Continuous variables are presented as median and interquartile interval.

*Tests used in each case: χChi square;
†
Mann-Whitney’s U test.

FIGURE 3 | Comparison of the ODI (A) and VAS (B) scales before and after the treatment in both arms of the study. ODI values are expressed as box plots, which

represent the interquartile range with the median as a horizontal line. Whiskers encompass the maximum and minimum values of the population. *p < 0.05, **p <

0.01, compared to initial ODI. VAS values are represented as the median (Q1–Q3) for each time point. ***p < 0.001, compared to initial VAS.

whereas the ADAMO robot has been specifically designed for this
single purpose.

The mechanism by which pressure and massage can diminish
pain has been described. Cutaneous pressure receptors are
located in the deep layers of the skin and are, mainly, the
Ruffini and Pacini corpuscles (Munger and Ide, 1988). Both
are connected to thick Aβ nerve fibers, which are those with
the highest conduction velocity. These nerve fibers, for the
most part, do not stablish synapses in the posterior horn of
the spinal cord but continue to higher structures. Nevertheless,
these fibers emit collateral branches toward the posterior horn
where they contact pain inhibitory interneurons. Taking into
account the different conduction velocity of the pain-carrying
fibers (fibers C and Aδ, very slow) and of the fibers activated
by pressure (Aβ, very fast), the latter produce an activation of
the inhibitory interneurons and block the transmission of the
nociceptive stimulus to the higher nervous centers (Garcia et al.,
2021). This is in agreement with the gate control theory, which
proposes that the nociceptive sensory information transmitted

to the brain relies on an interplay between the inputs from
nociceptive and non-nociceptive primary afferent fibers. Both
inputs are normally under strong inhibitory control in the spinal
cord. Under healthy conditions, pre-synaptic inhibition activated
by non-nociceptive fibers modulates the afferent input from
nociceptive fibers onto spinal cord neurons, while postsynaptic
inhibition controls the excitability of dorsal horn neurons, and
silences the non-nociceptive information flow to nociceptive-
specific projection neurons (Guo and Hu, 2014). However, in
addition to this mechanism, it is likely that pressure on the
skin may block the release of algogenic substances (substance
P, bradykinin, histamine) through resident skin cells (Schmelz,
2011). On the other hand, it cannot be ruled out that the pressure
stimulus acts on the release of neurotransmitters related to pain
in the posterior horn of the spinal cord (Yam et al., 2018) and on
blocking the activation of the microglia responsible for central
algetic sensitization and neuropathic pain (Chen et al., 2018).
The pressure elicited by the robot seems to be very efficient
in activating cutaneous receptors and fast fibers. Future studies
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FIGURE 4 | Comparison of the ODI (A) and VAS (B) scales, before and after the treatment in both arms of the study, taking into consideration the sex of the patients.

Values are expressed as box plots, which represent the interquartile range with the median as a horizontal line. Whiskers encompass the maximum and minimum

values of the population. *p < 0.05, **p < 0.01, compared to initial test.

TABLE 2 | Clinical characteristics of patients divided by BMI.

BMI<25 BMI≥25

Total Control arm Robot arm Total Control arm Robot arm

n 15 7 8 27 14 13

Sex, female (%) 10 (66%) 3 (42.8%) 7 (87.5%) 18 (66.6%) 9 (64.2%) 9 (69.2%)

Age (years) 51 (47–58) 51 (48–53.7) 50 (43.7–53.7) 54 (47–57) 48.5 (46–57) 54.5 (50–59.5)

ODI baseline 11 (10–25) 10 (8–25) 11 (11–21.6) 17 (10.5–20.5) 16.5 (10.5–18.7) 20 (13–21)

ODI post-treatment 6.5 (5–10.75) 7 (5–8.5) 5 (5–13.5) 11 (8–15) 12 (8–15) 11 (9–15.5)

VAS baseline 6 (4–6.5) 4 (2–6) 6 (5–7) 6 (4–7) 6 (4–6.5) 6 (6–7.5)

VAS post-treatment 4 (2–6) 2 (2–6) 4 (4–4) 4 (2–6) 4 (2.5–6) 4 (2–5)

BMI, body mass index; ODI, oswestry disability index; VAS, visual analogue scale.

FIGURE 5 | Comparison of the ODI (A) and VAS (B) scales, before and after the treatment in both arms of the study, taking into consideration the BMI of the patients.

Values are expressed as box plots, which represent the interquartile range with the median as a horizontal line. Whiskers encompass the maximum and minimum

values of the population. *p < 0.05, **p < 0.01, compared to initial test.
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must demonstrate whether the use of the robot influences the
release of algogenic substances.

Addition of robot massage has shown a significant
improvement in the treatment of specific patients, as well
as a broader feeling of well-being (VAS score) in all patients.
Nevertheless, larger effects could be expected from this
technology. First, in this study, the air pressure that was applied
by the robot arm was always constant. Perhaps patients would
benefit from different pressures depending on their specific
pathology or body type. Also, a single patient may receive
different pressures in specific trigger points, depending on their
thickness. Second, in this study, a trained therapist identified the
trigger points. We are working on a routine that would allow the
robot to identify the trigger points by itself, thus liberating a lot
of extra time for the therapist. Of course, the efficiency of the
robot in locating the trigger points will need to be validated with
a clinical trial.

There is evidence that, despite receiving proper training in
therapy postures and self-care, a high proportion of massage
therapists suffer from upper extremity pain and discomfort as a
result of delivering therapy treatments. The most affected areas
are the wrist and the thumb, followed by the low back, neck,
and shoulders (Albert et al., 2008). As expected, the intensity
of the pain and discomfort experienced by the therapist is
directly related with the number of patients per day and the
intensity of the massage (Vieira et al., 2016). Therapeutic robots
may be very useful in reducing the most damaging aspects
of physical therapy, since they may substitute the therapist in
performing the actual massage. Furthermore, a single therapist
may coordinate several robots simultaneously, thus increasing
the number of treated patients and reducing physical therapy
waiting lists.

In conclusion, we have shown that the addition
of massage performed by the ADAMO robot to
regular non-pharmacological therapeutic protocols is
at least as efficient as the control treatment, while
demonstrating more efficiency in the treatment of specific
patients, such as those with excessive weight. The use
of massaging robots may increase the reporting and

reproducibility of physical therapy protocols among
different hospitals.
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For decades, powered exoskeletons have been considered for possible employment in

rehabilitation and personal use. Yet, these devices are still far from addressing the needs

of users. Here, we introduce TWIN, a novel modular lower limb exoskeleton for personal

use of spinal-cord injury (SCI) subjects. This system was designed according to a set

of user requirements (lightweight and autonomous portability, quick and autonomous

donning and setup, stability when standing/walking, cost effectiveness, long battery

life, comfort, safety) which emerged during participatory investigations that organically

involved patients, engineers, designers, physiatrists, and physical therapists from two

major rehabilitation centers in Italy. As a result of this user-centered process, TWIN’s

design is based on a variety of small mechatronic modules which are meant to be easily

assembled and donned on or off by the user in full autonomy. This paper presents

the development of TWIN, an exoskeleton for personal use of SCI users, and the

application of user-centered design methods that are typically adopted in medical device

industry, for its development. We can state that this approach revealed to be extremely

effective and insightful to direct and continuously adapt design goals and activities

toward the addressment of user needs, which led to the development of an exoskeleton

with modular mechatronics and novel lateral quick release systems. Additionally, this

work includes the preliminary assessment of this exoskeleton, which involved healthy

volunteers and a complete SCI patient. Tests validated the mechatronics of TWIN and

emphasized its high potential in terms of system usability for its intended use. These

tests followed procedures defined in existing standards in usability engineering and were

part of the formative evaluation of TWIN as a premise to the summative evaluation of its

usability as medical device.

Keywords: exoskeleton, mechatronics, healthcare robotics, user-centered design, wearable robotics
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INTRODUCTION

Spinal cord injury (SCI) is a particularly critical condition which
often leads to permanent disability, use of wheelchair, and
several secondary clinical complications. These complications
inevitably impact on physical, mental, social and economic
conditions of SCI patients (WHO, 2013). As a consequence,
traditional therapy based on manually assisted mobilization of
the patients has been introduced to prevent, or even cure, many
complications. Nevertheless, this approach presents a series of
difficulties: the therapist has often to perform the treatment
in awkward positions, experiencing early fatigue, which may
result in poor therapeutic outcome (Foulds et al., 2014).
Furthermore, traditional assisted gait retraining of incomplete
subjects is often critical, given the large number of joints
to be simultaneously managed and to the consequent poor
repeatability and reproducibility (Foulds et al., 2014).

In this scenario, exoskeletons are a valid tool that can easily
overcome the mentioned limitations: they can intensify the
training, allow the patient to autonomously walk over ground, for
longer duration, and reproduce rhythmically correct movement
patterns. Motivated by this, researchers have been developing a
vast range of robotic exoskeletons for SCI patients. The current
leading products are Rewalk (Esquenazi et al., 2012), Ekso
(Milia et al., 2016), and Indego (Farris et al., 2014), which have
demonstrated their effectiveness in the prevention of secondary
complications, patient’s health and improvement of the quality of
life in several clinical studies.

However, these devices are typically adopted in the clinical
context. Others, such as the MINDWALKER (Wang et al.,
2015) and the Symbitron (Meijneke et al., 2021), are examples
of striking research devices, which are however far from
effectively and autonomously being used for independent
training. Unfortunately, as the health benefits resulting from
exercising largely depend on its frequency of execution, duration,
and continuity (Foulds et al., 2014), SCI patients should be able
to autonomously use the exoskeleton as a personal device to
keep the training frequency high and hence fully benefit from the
efficacy of exoskeleton-based therapy.

Nevertheless, current exoskeletons suffer from poor usability

(Lajeunesse et al., 2016), which is the main cause that prevents
them from being exploited to solve problems of everyday

life. Poor usability is the consequence of the lack of several

crucial points which are common in most current devices: they
are frequently indicated as difficult to be worn autonomously
(Gorgey, 2018), mainly due to the considerable weight, size,
and “monolithic” structure, which creates difficulties in donning-
doffing, transportation and general device handling (Fritz et al.,
2019). Moreover, even among the most prominent commercial
exoskeletons, surprisingly only the Parker Indego exoskeleton has
made an attempt to solve these issues by improving usability
contextualized into personal use. Indeed, it is the only available
device that can be disassembled without the need of tools for ease
of transportation, and which claims wheelchair compatibility.
The latter point is essential as the vast majority of SCI patients
use the wheelchair as primary mobility aid (Berkowitz et al.,
1998). As high usability is an essential prerequisite to increase the

effective adoption of exoskeletons as personal devices in everyday
life, their design approach should be completely revised, from
traditional technology-centered engineering design processes, to
user-centered methods which guarantee the direct addressment
of user needs (Masia and Vitiello, 2020).

In this work, we present a novel lower limb exoskeleton
named TWIN, for personal utilization of SCI patients, that was
developed to address SCI patients’ needs directly by means
of user-centered design. This process initially involved the
final users, which indeed confirmed autonomous usage, that
is strictly correlated to usability, as top priority among a set
of critical features. This information was then employed for
drafting the general architecture layout of the exoskeleton and the
requirements of the device to guide its development. Following
these procedures (based on medical device design practices), the
TWIN exoskeleton was hence conceived to maximize usability,
by facilitating donning, transportation, and general device
handling. We indeed believe that enabling autonomous usage of
these devices can increase the frequency of exoskeleton-based
training which is necessary for the successful outcome of the
training program (Foulds et al., 2014). Moreover, its structural
elements come in different sizes to accommodate the anatomy
of the specific patient and are compatible with wheelchair use.
Preliminary evaluation was carried out on healthy subjects and
an SCI patient to validate the mechatronic viability of the
device alongside its ergonomics, considering safety, comfort, and
other aspects of usability that must be assessed far before the
clinical trials.

USER NEEDS AND DESIGN
REQUIREMENTS

The design process that enabled the user-centered development
of TWIN followed two consecutive phases as listed below:

1. An “exploratory phase” was characterized by the investigation
of the user needs to establish a set of user-centered design
requirements (Martin et al., 2006; Chandran et al., 2020).

2. A “formative phase” which was designed based on the
international standard IEC 62366-1:2015 on the application of
usability engineering to medical devices (Scherer and Gouveia
Filho, 2019). This phase sustained the participatory evaluation
processes adopted to progressively improve the system
usability, iteration by iteration (Simonsen and Hertzum,
2010).

This process can be summarized in the conceptual scheme
shown in Figure 1. After completion of the exploratory phase,
the formative phase which follows includes iterations where the
design of the device and its subsystems are continuously assessed
and updated to comply with the set user requirements. The
formative phase may also update the design requirements of
the device to comply with possible additional request emerged
during the above-mentioned participatory evaluation.

Considering the literature in wearable robotics, the
most characteristic trait of our approach is the adoption of
methodologies typically exploited in industrial contexts which
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User Requirements Update

Questionnaires

Focus Group

User

Requirements

Exploring the Users’ Needs
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FIGURE 1 | The design process employed in TWIN consisted of two main stages: the exploratory and formative phases, which directly involved users and the

stakeholders.

TABLE 1 | Occurrence of lesion based on type and level.

Type Level

Complete Incomplete Not specified Cervical Dorsal Lumbar Not specified

69% 27% 4% 22% 68% 6% 2%

target at achieving the development of systems with high
technology readiness level (TRL), and according to users’ needs.
Indeed, the TWIN exoskeleton was considered a medical device
in all its development phases. Consequently, we adopted the
perspective of user research and the international standards of
usability engineering for medical devices (Privitera et al., 2017;
Bitkina et al., 2020). This choice constitutes one of the original
contributions provided by this manuscript to the domain of
wearable robotics research.

Exploratory Phase: Analysis of User Needs
As part of the exploratory phase, we first conducted a
preliminary series of studies based on questionnaires and
focus groups involving patients, aimed at understanding their
primary needs and requirements (Shah and Robinson, 2008).
This information was then translated into requirements
for new device concepts and control strategies that
were taken into account for the implementation of the
TWIN exoskeleton.

This investigation was conducted in collaboration with the
Centro Protesi INAIL (i.e., the Italian National Institute for
Insurance against Accidents at Work) in Vigorso di Budrio
(Italy) and with the ISTUD foundation. The study comprised a
questionnaire and three focus groups that took place in three
SCI centers assisting SCI patients. Data collection was performed
between June and October 2014 and inclusion criteria were: age
>18 years; at least 6 months from spinal unit hospitalization;

no related psychopathological comorbidity. Included subjects
granted the authorization to treat personal data, in accord
with national laws (D.Lvo. 196/2003) and GDPR regulation.
The questionnaire was made available electronically on different
platforms and web resources that are usually accessed by spinal
patients and was advertised in many hospitals and spinal units.
Questions regarded: (1) socio-demographic information; (2) SCI
information; (3) domestic life; (4)work/school; (5) free time, hobby,
and sport; (6) health condition and quality of life; (7) autonomy
in everyday life and transfers (autonomy in domestic and non-
domestic duties, and autonomy with respect to different ways of
travelling); (8) standing (habits, perception of standing benefits,
opinions related to strength, and limits of available orthoses); (9)
exoskeleton (impressions of available devices, of their utility and
utilization, preferences, and interest for a possible new device).
We collected 107 questionnaires. The interviewed population was
composed by 79% males with average age of 44 years, confirming
the results of a previous study on the Italian population (Pagliacci
et al., 2003). Table 1 summarizes the type and level of lesions of
the interviewed patients.

We also performed focus groups, in which a moderator
stimulated the discussion between a group of selected patients
and collected their response, impressions, and feelings toward
the covered topics. A co-creation session followed, where subjects
were asked to brainstorm and provide potential use case scenarios
and design inputs. Focus groups were organized in three Italian
spinal cord centers: Montecatone Rehabilitation Institute (Imola,
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priority (dark gray bars).

17 people−14 males); Unità Spinale Unipolare of Careggi
hospital (Florence, 7 people−6 males); Unità Spinale Unipolare
of Alesini hospital (Rome, 8 male people).

The data analysis that followed focused on the aspects that
were significant to the development of the exoskeleton device,
to draft conclusions which could in turn be useful for the
following design phases. Therefore, we aimed at understanding:
(1) main adversities encountered during daily life, (2) opinion
and perception of SCI subjects on the benefits obtained by
adopting a standing posture, and (3) opinion on the use
of exoskeletons.

Regarding adversities encountered in personal life, collected
data reported shared difficulties in traveling and commuting,
mostly related to architectonic barriers, both during travel and
at destination. Indeed, many people complained about the lack
of autonomy during commuting, which is often by car and
affected by the difficulties of transferring from wheelchair to
car and vice versa. Only 58% of the interviewed people found
this transfer easy to perform, while others rely on external
help. It must also be noted that traveling and visiting friends
were indicated as the free time activities mostly affected by
the injury.

We observed the attitude toward the standing posture and
found that 58% of the interviewed subjects used devices for
standing that are not orthoses, on average 3 days per week for
around 90min per session. Only 8% used a knee-ankle-foot
orthosis (KAFO) and they all judged the device very useful.
Around 29% of the participants declared that they did use
KAFO for some time but then they abandoned the device for
diverse reasons, such as fatigue, time issue, difficulty of use, etc.
However, almost the totality of the sample (93%) believed in the
beneficial effects of standing on rehabilitation and for improving
health condition and thus demonstrated a positive attitude
toward the development of a device truly designed around their
needs. Addressing issues related to the features of exoskeleton,
92% of people with incomplete lesion and 74% of subjects
with complete lesions demonstrated interest in them, and they
indicated lightweight and portability as the top priority, followed

by battery life (>2 h), low noise, and aesthetics (Figure 2A). With
respect to battery life, given that a typical exoskeleton session
performed by an expert user lasts about 1 h, we decided to set
2 h as the lower bound, so as to allow the use of the device for 1–2
training sessions.

Regarding device wearing features, the highest priority was
represented by the possibility of being worn and removed quickly
and autonomously, also from/to the wheelchair or the car, and to
be used both indoor and outdoor (Figure 2B). Finally, on usage
features, the interviewed sample stated that standing without
arm support and stability, are more important than speed or the
possibility of access stairs (Figure 2C). Overall, what emerged
were specific suggestions for an effective application of robotics
to people with SCI. Their feedback could be summarized in two
main key needs, i.e., the device should be used autonomously
and should be practical to facilitate its employment during its
daily usage. Based on the results reported in Figure 2 and on the
feedback given during the focus groups, the main user-driven
requirements for the development of the TWIN exoskeleton
were drafted.

As expected, the first two requirements are directly linked to
autonomy and have therefore been prioritized. Stability during
use is directly linked to the safety of the device, whereas cost
effectiveness, although not reported in Figure 2, has been added
because all the subjects verbally complained about the current
cost of these machines during focus groups. Finally, from the
focus groups, we had insight that long battery life is required to
make the subjects feel safe and autonomous during the session.
These requirements were then employed to draft conceptual
layouts of the machine in cooperation with industrial designers,
so as to co-develop the device to address usability as well as
technical issues. These aspects were all taken into account for
the design of the TWIN exoskeleton. Another priority that is not
listed in the requirements was represented by the possibility of
reaching a standing posture with free hands, but the practical
implementation of this point required solutions that were in
contrast with most of the other priorities and was thus left for
future developments.
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This preliminary study triggered the development of TWIN
and its formative assessment.

Formative Phase: Iterative Improvements
of the Device
The international standard IEC 62366-1:2015 and its related
technical report IEC 62366-2:2016 (Kendler and Strochlic, 2015)
indicate methods to be used for the formative evaluation phase
to assess the usability of medical devices. This evaluation
must be carried out starting from the most preliminary design
iterations throughout to the final prototype so as to guarantee
that usability is considered during the whole design process.
Accordingly, the role of the formative evaluation is to guide
the iterative and participatory design and development of the
system for progressively resolving its most critical usability
issues. The standard IEC 62366-1:2015 defines how formative
evaluation can exploit a heterogenous set of techniques to collect
individual feedback, including qualitative observations expressed
(spontaneously or partially guided by a user researcher) by a
limited number of subjects for checking major usability problems
of each preliminary prototype. These subjects can include both
final users and stakeholders—e.g., caregivers and orthopedic
technicians who, according to their own expertise, heuristically
predict critical flaws in systems usability (Bitkina et al., 2020).

The standard IEC 62366-1:2015 also establishes that, after
completion of the formative evaluation, the design process
will be concluded with a summative assessment, which is
defined as the validation of the system on usability and safety
aspects before its certification and release. Differently from
the formative assessment, the summative assessment typically
requires a comprehensive (especially quantitative and objective)
test of the ultimate iteration of the system, possibly with the
involvement of numerous users. Before proceeding with the
summative assessment, clinical trials are currently performed on
the device for the advanced stages of the formative phase.

In order to improve the methodological rigor of our formative
assessment, its advanced sub-phases will focus on the correlation
of subjective and objective indices to obtain consistent measures
of exoskeleton usability. First of all, the protocol will include
standardized questionnaires on perceived (subjective) usability:
the System Usability Scale (Brooke, 1996) to investigate the
caregivers’ (which will manage the GUI of the TWIN software)
perspective; the NASA-TLX (Hart and Staveland, 1988) for
deepening our understanding of the patients’ cognitive load in
using the device. The questionnaire scores of the users will be
analyzed according to (objective) motor and physiological data
collected during the exoskeleton usage (and exploited to assess
the user’s effort, for instance) (Kozlowski et al., 2015). We plan
to analyse observable patients’ behaviors during autonomous
donning/doffing and in the execution of training. Such a
multimodal approach is just a demonstration of our plans in
matching the subjective and the objective measures for showing
a final, and comprehensive, estimation of system usability which
will be carried out in the near future.

This paper focuses on the first 36 months of exploratory
and formative phases of TWIN. Initially, 10 healthy volunteers

TABLE 2 | Requirements of the TWIN exoskeleton.

# Requirement

1 Lightweight and autonomous portability

2 Quick and autonomous donning and setup

3 Stability when standing/walking

4 Cost effectiveness

5 Long battery life (>2 h)

6 Comfort

7 Safety

participated to the tests. They had no neurological or muscular
diseases. Once the TWIN device underwent a first series of
iterative improvements and was assessed to be ready for user
trials, a second stage involved one 31-year-old SCI patient with
a complete D5 lesion and experience in the use of lower limb
exoskeletons. All the participants gave written and informed
consent before their inclusion in the study. The tests respected
the standards of the Declaration of Helsinki (rev. 2013) and were
formally approved by the ethics evaluation committee Comitato
Etico Interaziendale Bologna-Imola of the Pharmaceutical
Department U.O.C. Farmacia Ospedale Maggiore, Bologna, Italy
(Protocol number: CP-POR1-01 ver.01).

During the sessions of the formative phase, the evaluation
was carried out in empty areas, under the supervision of
qualified personnel to ensure the safety of the subjects. Both
subjects and supervisors were instructed on how to use the
exoskeleton. During exoskeleton sessions, which consisted in
walking tasks, the users were invited to freely express their
opinions on the experience, following semi-structured interviews
too. Meanwhile, objective observations (e.g., asymmetries in
posture of legs skin irritation in contacts points, user’s tendency
to self-rotate) were collected to integrate and confirm the insights
offered by the subjects’ opinions.

According to the reports, the participants especially focused
on issues related to comfort, leading to e.g., structural
refinements of the braces (as described later in section Braces).
They also paid special attention to safety: for example, this made
the developers improve the gait patterns via software to approach
a more stable trajectory (as explained in section Control System).
These evaluation sessions resulted in the spontaneous emergence
of comfort and safety as additional requirements, which were
set along with those listed in the previous section. Hence, they
were added to the preliminary list of five requirements addressed
previously and were included in the development process to be
taken into consideration for further revisions of the device.

Table 2 presents the full list of requirements set for the
development of the Twin exoskeleton.

MECHATRONIC DESIGN OF THE TWIN
LOWER LIMB EXOSKELETON

The whole development process was guided by the exploratory
and formative processes described in the previous section. It
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indeed featured a continuous exchange of information between
developers and end users (i.e., patients and clinicians) to
incrementally and iteratively validate the design choices and the
exoskeleton’s components (e.g., structure, braces, control) once
they were implemented.

The user-centered design approach adopted in this
work was not focused on the betterment of exoskeleton
performance in the conventional sense: our goal was to
develop novel device concepts which could enable new use-case
scenarios for the improvement of usability-related aspects of
the device.

Concept Layout Design and Iterative
Co-creation Process
Based on the user-centered requirements outlined in Table 2, a
concept study was carried out to define possible layouts of the
exoskeleton to guide the mechatronic design. Requirements #1,
2 have a few implications: (1) the device must be donned on
and off by the subject quickly and autonomously (2) it should
be meant for a joint use in combination with the wheelchair,

and (3) it should be compatible with personal transportation
vehicles (Figure 2B). Notably, the only existing commercial
exoskeleton that deals with these issues is the Parker Hannafin’s
Indego. It indeed presents a modular structure made of five
modules (waist, R/L thigh, and R/L shank-foot) which is meant
to be autonomously assembled or disassembled by the user
and to facilitate transportation and donning operations. The
modularity concept has therefore been integrated within this
device which effectively represents a step ahead toward usability
in the context of personal use: this exoskeleton is therefore
considered as the reference gold standard for this work. Inspired
by the design concept of the Indego exoskeleton, we developed
TWIN by adopting the idea of a modular structure which could
be autonomously assembled and by extremizing modularity
with the goal of further impacting on user’s autonomy. Indeed,
the modules which compose the TWIN exoskeleton have been
increased to a number of 9. These are: waist, R/L hip motor,
R/L thigh link, R/L knee motor, R/L shank link, and foot. We
decided to minimize the number of overall actuators (hip and
knee motors only) to comply with requirements #1 and #4. One
of the advantages of high modularity is that the exoskeleton can
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be quickly disassembled by the user into small sub-units, so as to
facilitate its management and transportation. Indeed, we decided
to design a concept layout which allowed to divide the modules
into two main groups. The first group includes the heavy,
cumbersome and costly parts (i.e., motor modules and batteries),
whereas lighter, inexpensive and “tailored” components can be
classified into the second group (links and braces). This choice
aims to bring direct benefits to both the production cost and
usability perspectives and further differentiates our work from
the Indego exoskeleton. Thanks to TWIN’s design, the patient
can wear the modules that less hinder the degree of movement
and autonomy, i.e., the links and braces, before, after, or between
exoskeleton sessions, Figures 3A–D. This brings a number of
usability-related benefits:

1) it minimizes the number of needed donning operations
between sessions (only motors and batteries need to be
assembled to start a session);

2) it greatly simplifies transportation of the device by allowing
the user to carry only the motor and battery modules in a
hand luggage;

3) it facilitates compatibility with the wheelchair and
personal vehicles.

Furthermore, given the high number of modules, we strategically
decided to make the motor units to be mountable laterally to
further facilitate donning and assembling operations. From the
usability perspective, we argue that this method is to be preferred
with respect to “in-line” mounting such as that employed in the
Indego exoskeleton. Indeed, the latter forces the user to perform a
specific donning sequence and may result awkward as it requires
additional axial space to be mounted, as shown schematically in
Figure 3E. Instead, our approach facilitates donning and it allows
the user to choose the mounting sequence that can best adapt to
the specific context, Figures 3A–D. This is another step toward
usability, which further differentiates TWIN with respect to the
Indego exoskeleton.

From the production cost perspective, the extremization of
modularity directly implies saving because the “tailored” parts,
i.e., braces and links, which need to be produced in various
sizes, are physically separated from the high cost components,
i.e., batteries and motors. This facilitates economy of scale in
the production of the costly modules and is therefore agreeable
with Requirement #4. On the other hand, requirements #3 and #5
were not directly related to the physical layout of the exoskeleton,
and were instead implemented through appropriate control, and
electrical dimensioning, respectively.

Finally, the two requirements emerged in the formative phase,
i.e., #6 and #7 on comfort and safety, have been be considered in
all aspects of the design, ranging from e.g., the development of
the braces to the implementation of the gait patterns as explained
in the following sections.

System Overview and Architecture
Based on the requirements defined inTable 2, the anthropometry
of the European population, direct comparison with other
existing exoskeletons, and engineering constraints, TWIN’s
specifications were broken down and set accordingly with

TABLE 3 | User-driven specifications of the TWIN exoskeleton.

Type Value

Target walking speed 1.5 km/h

Max patient’s weight 110 kg

Target weight 20 kg

Battery autonomy (continuous usage) 3 h

Min-max sizes 5th to 95th percentile

the parameters in Table 3. The target walking speed was not
prioritized accordingly with the results shown in Figure 2. Its
target weight has been set to be realistically achieved using off the
shelf mechatronic components. In fact, as the full weight of lower
limb exoskeletons for SCI might result rather high for enabling
the user to perform the operations required in autonomous use,
we decided that the structure of TWIN should have been “broken
down” into a number of modules, each featuring much smaller
mass than that of the full device. Furthermore, the weight of
the exoskeleton is supported by the structure of the device itself
through the soles. Therefore, the user won’t bear the weight
of the exoskeleton during use. We hence focused on providing
an answer to weight issues highlighted by requirement #1 by
extremizing the modularity of the device, so as to allow the
user to handle small and light modules that could easily be
managed individually.

The four actuation modules can be easily donned on and off
by means of lateral quick release connectors placed on both ends
of each actuation module, which implement the key concepts
explained in the previous section to facilitate the implementation
of requirements #1 and #2. The novel quick release system has
been custom designed and is a crucial component as it opens
up to new use-case scenarios in the field of personal use of
lower limb exoskeletons. Still, the design of this subsystem is a
major technical challenge that implies critical electromechanical
design which must ensure the transmission of both the structural
mechanical load and function of electrical connector. Indeed,
this component is subject to high values of stress when the
exoskeleton is in use, which need to be borne by the mechanical
structure, and at the same time it needs to provide continuity
in delivering voltage supply and safely stream data throughout
the whole structure. Regarding the control of gait parameters,
they can be set using a mobile device-based GUI, whereas each
step is triggered by means of an Inertial Measurement Unit
(IMU)—based system. The actuation guarantees a maximum
walking speed of 1.5 km/h on patients weighing up to 110 kg.
Structural parts (pelvis, femur, tibia) and braces of different
sizes are provided to adapt the device to the anatomy of the
patient. The battery pack is located at the back of the device and
guarantees up to 3 h of continuous operation. The full device
weighs 23 kg and is shown in Figure 4.

Finally, a custom motherboard located in the battery pack
area behind the back of the user is employed as central control
unit (CCU) to coordinate the actuation units and provide
measurements and diagnostics. Particularly, a Xilinx XC7020
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A B

FIGURE 4 | (A) TWIN’s modular structure and lateral mounting of the modules,

(B) The TWIN lower limb exoskeleton in walking mode worn by a subject. The

person wearing the exoskeleton gave permission for the use of her image.

Zync-7000 series system on chip (SOC) executes the high-
level control.

Regarding the autonomy of the battery, this specification has
been set to be sufficiently high, allowing to perform 1–2 walking
session with some degree of reserve. Finally, the exoskeleton
can be worn and support patients’ weight so as to cover the
vast majority of the European population, in the range 5th-
95th percentile.

Quick Release System
The challenge was to develop a mechanism system with
lateral release which could bear the complex, multi axial,
force-torque load imposed on the structure, at the same
time guaranteeing patient safety, high structural stiffness to
comply with requirement #3, power supply and data streaming
continuity. Despite the fact that “in-line” coupling layout (e.g.,
Indego style) might seem preferrable because it copes well with
both axial load and bending moments, this choice has again
been discarded to prioritize device usability and ease of donning
(requirement #2) through lateral mounting. The lateral quick
release system was specifically designed to require little manual
effort for the patient during use, at the same time ensuring high
mechanical and electrical safety, following the IEC 60601medical
electrical devices safety standard (IEC, 2020).

Mechanics

The mechanism is shown in Figures 5A,B: the male component
is composed of a large pin that features three further small
radial pins equally spaced by a 120◦ angle, whereas the female

counterpart is made by a hollow cylindrical shaped part that
was machined to present three helical-shaped grooves. When
the male part enters its counterpart, the three radial pins get
engaged into the three corresponding grooves machined on the
female component by means of manual application of torque on
the handle in the clockwise direction. Given the helical shape of
the grooves in the female part, when the user applies torque in
the clockwise direction, the male part of this system, which is
located to each extremity of any of the motor modules, slides
along its axis until the mechanical end-stop is reached, when the
pin reaches the end of the groove machined on the female part,
Figure 5B. The groove profile, in its final part, transitions from
helical to straight, to ensure the stability of the male part when
engaged within the female, Figure 5B. Furthermore, three spring
plungers have been radially arranged on the female component.

These get engaged with three corresponding holes machined
on the main pin of the male component when the handle
reaches its end stop, with the dual function of providing acoustic
feedback to the user on the successful locking of the system
and to additionally ensure mechanical locking safety, Figure 5.
Indeed, when the plungers are engaged, they lock the male
part in its end stop position to avoid accidental disengagement.
Hence, to unlock this part, it is necessary to pass a certain
torque threshold value which can be regulated by appropriate
preload of the plungers’ springs which was set to 7Nm. Please
note that, although the torques applied to the structure during
exoskeleton use are significantly higher than the required level to
unlock the quick disconnect system, the shape coupling profiles
of this component, Figure 5, decouple the structural loading
from the torque loading of the handle. As a result, the male
and female components are stressed in traction/compression
mode. The main male pin and its counterpart are both
machined using 41CrAlMo7 hardened steel, while additional
gas nitriding treatment has been performed on the surfaces.
This allows to increase Vickers hardness to a value of HV1150,
which guarantees very high wear-resistance performances and
reduced friction. FEM simulation was also performed on the
main components of this critical system to validate their
design. The load scenario used in this simulation replicated
that measured by a motorized dummy exoskeleton which was
equipped with force/torque sensors (please refer to section
Structure and Actuation Unit for more details on this device).
To obtain this data, a healthy subject simulating leg impairment
wore the exoskeleton while position controlled to perform
the walking patterns described in our previous work (Vassallo
et al., 2020). The worst-case load scenario is summarized in
Table 4, where the Y axis represents longitudinal axis of the
lower limb, the Z axis is the medio-lateral axis and the X axis
completes the triad.

Results from this simulation confirm that the critical
components, i.e., the main male pin and its counterpart, are
able to withstand the load, reaching a peak stress of 441 MPa,
which allows validation of the design, taking into account a safety
factor of about 2. The male quick disconnect halves are placed
on both ends of the actuation modules, whereas their receptacles
are placed at the ends of the structural parts described in section
Structure and Actuation Unit.
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FIGURE 5 | The quick release electromechanical connector. (A) General assembly and main components of the mechanism. (B) Detail of the female component. (C)

The floating electrical connector board. The floating connector and its frame (Floating shape coupling) are fixed to the board. An air gap is left between the board’s

fixation holes to implement a floating area of 2mm in both the vertical and horizontal directions.

Electrical Connections

Given that requirement #2 expressed the need of performing
quick donning and setup, we decided to develop an embedded
quick release that could incorporate electrical connections
(voltage supply and CAN communication) as well, so as to
allow to achieve both mechanical and electrical connection
in one simple step. This solution additionally favors usability
by eliminating any external cabling which could possibly
result in entanglements with external objects during use.
From the technological perspective, though, this constitutes a
further challenge. Indeed, ensuring stable electrical continuity
over a connector that is subject to considerable mechanical
stress is particularly challenging, especially in this case where
compactness is paramount and where the applied load is a
combination of multi-axial forces and torques. To solve this
issue, we designed a system which mechanically decouples the
electrical connection from the structural parts of the connector.
Indeed, the female electrical connector was mounted on a
“floating board,” which is able to freely move on its plane up to
2mm on both horizontal and vertical directions. This range of
movement is so small that it does not pose robustness problems
if all the cable routing and soldering of the terminations are
made appropriately. This was achieved by means of a specific
loose fit between the floating board and the structural frame,
Figure 5C. This prevents unwanted stress to be generated by
deformation of the mechanical structure when under stress.
The centring between male and female electrical connectors is
guaranteed by the custom-made connector frames which allowed
shape coupling as shown in Figure 5. The electromechanical

TABLE 4 | Load configuration used for the FEM simulation.

Load X Y Z Total

Force (N) 250 −300 290 486

Torque (Nm) 56 19 −45 74

design choices adopted in the development of the quick release
system, have permitted to obtain the highest safety of this
critical component, which additionally allowed TWIN to obtain
compliance to IEC 60601 standards.

Actuator Sizing
The dimensioning of the actuators and battery unit of the
TWIN exoskeleton was based on the specifications set in Table 3.
Given that the walking pattern of exoskeletons for this type
of application is significantly different with respect to healthy
subjects’ physiological gait velocity/torque profiles, we decided
not to use human biomechanical gait data as reference values
for the design as they would result unrealistic and require
significantly higher mechanical power than needed. Indeed,
motion patterns replicated by exoskeletons are rather different
compared to those of healthy subjects. To obtain more realistic
data, we therefore developed and used a custom-made “dummy”
motorized lower limb exoskeleton that was fully sensorized for
the purpose of recording the load applied to the exoskeleton
actuators and structure during position-controlled walking,
standing and sitting and use them for appropriate actuators
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FIGURE 6 | Torque-velocity characteristic of the actuator modules of the hip and the knee joints, transposed for a 110 kg patient weight. (A) Trajectory references and

tracked positions. (B) Measured torques. (C) Torque/speed plots and mechatronic limits of the actuation system.

dimensioning. A classical robotic trajectory was set as reference
for the position-controlled system, Figure 6A (T1 as explained
in Vassallo et al., 2020), and a healthy male subject, 60 kg,
wore the exoskeleton performing a few steps simulating full
leg impairment.

The recorded joint-space velocity-torque profiles of the knee
and the hip, Figures 6B,C, were then scaled up to respect
the patient’s weight and walking speed specs set in Table 3,
so as to properly size the motor-gearbox modules accordingly
to worst-case conditions. This data was later processed by
a dynamic model of the actuator module to determine an
appropriate combination of motor and gearbox, which could
respect the required velocity, torque and power values. A torque-
velocity graph that reports the results of these simulations is
shown in Figure 6C. All the results in Figure 6 show that
an appropriate combination to be used for the actuation of
the hip and knee is composed of the brushless motor Maxon
EC90 and the Harmonic Drive CSD-25-100-2A-GR-BB 100:1
gearbox. The motors employed for the knee and hip had
different nominal voltages, 24 and 36V, respectively, to meet
the different torque/speed requirements of these two joints.
Each motor is controlled by a custom-made board which
features a PWM controlled three phase Mosfet bridge inverter,
which compensates the variable input voltage with the motor
control algorithm.

Battery Units and Electronic Architecture
Regarding the battery unit, referring to requirement #5 and
the specified target value set in Table 3, we assumed an
exoskeleton’s battery life of 3 h. Assuming the device operating
in typical conditions, i.e., walking at the set target speed as
defined in Table 3 performed by an average european weight
wearer (70.8 kg, Walpole et al., 2012), we computed the average
power consumption required by the TWIN Exoskeleton to
compute the task, which was about 59W. Hence, it results that
battery pack charge should be at least 177 Wh. This value,
combined to a nominal voltage that is compatible with the
chosen motors and a peak power output that can deal with
the worst case operative conditions (subject weighing 110 kg
walking at 1.5 km/h), defined the main target values for the

battery unit. We therefore designed a battery unit made by
a combination of two Accutronics CMX820P Li-ion battery
packs, which can deliver a total energy of 189.4 Wh and a
peak power output of 482W, with a nominal voltage of 28.8V
and maximum current peak of 15A, which are compatible
with our requirements. The batteries are mounted in a docking
system that allows to change batteries when needed to simplify
cabling and ease of replacement. Each pack is monitored
by an internal BMS which to the motherboard via SMBus.
The BMS includes safety, diagnostics, and communication
functionalities. The two battery packs are paralleled by an or-
ing ideal diode circuitry, and the current delivered to each leg
is measured via shunt current monitors.” Furthermore, these
battery units are IEC62133 certified and can therefore assure
safety of the TWIN exoskeleton accordingly with the IEC60601-
1 norms.

The electronics architecture of the TWIN exoskeleton is
presented in the Supplementary Figure 1. The main component
of this system is the custom main motherboard (named SMEX
in the diagram) which is based on a Xilinx Zynq-7000 SOC
running a Linux OS. The SOC interfaces to a variety of sensors;
including two independent IMUs, doubled for redundancy and
cross checking, a battery voltage sensor and two separate leg
current sensors, used for monitoring, logging, and diagnostic
purposes. The custom SMEX motherboard also implements
several communication peripherals, including Ethernet, Wi-Fi,
and Bluetooth for diagnostics and interface to host devices (PC or
tablet), two separate CAN Bus lines (one for each leg) for internal
communication to the motor boards, and one SMBus line for the
communication to the battery packs. The SMEX motherboard
exchanges CAN bus packets with the motor control boards.
Particularly, the SMEX sends to the motor control boards the
reference set-points, according to the selected control strategy,
while the motor control boards sends messages back regarding
joint absolute position, status, and motor current readings. Each
active joint features a custom motor control board, including
a PWM controlled three phase Mosfet bridge inverter, to drive
BLDC or PMSM motors from 18 to 60 VDC, up to 35A motor
current. The motor current is monitored via low-side shunt
current monitors.
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FIGURE 7 | (A) The main structural parts of TWIN. From the top, batteries, and backpack, Central Control Unit (CCU); W-S, W-M, and W-L are three waists sizes

(small, medium, large); RHU/LHU are right and left hip motor unit; RF1,…, RF5 and LF1,…, LF5 are right and left femur sizes; RKU/LKU are right and left knee motor

unit; RT-S, RT-M, RT-L, LT-S, LT-M, LT-L are right and left tibia sizes; AFOs are located inside the shoes, ranging from 38 to 46 EU shoe size. (B) The actuation module

used for actuating the exoskeleton. A Maxon EC90 flat motor is coupled to a 100:1 CSD Harmonic Drive gear. Two quick disconnect systems are located at both

proximal and distal link extremities.

Regarding the available sensing, each joint contains a fast-shaft
quadrature encoder (6,400 pulses per revolution), used for
motion control, three phase hall-sensors used for commutation,
and a custom slow shaft absolute potentiometer, that is used
for calibration purposes and redundancy. The reference joint
trajectories are treated as setpoints that are tracked by using a
PI controller.

Structure and Actuation Unit
The structure of the TWIN exoskeleton is largely made by welded
Al7075 T6 aluminum alloy profiles. This choice was made to
keep the overall structural weight low as well as to minimize
costs as outlined by requirement #4. Four main structural parts
can be identified. These are: (1) waist; (2) femur; (3) tibia; (4)
foot, Figure 7A. The waist was designed so as to replicate a “C-
shape” profile which accommodates the proportions outlined in
Dreyfuss (1993). Three sizes of waist have been designed to cover
the set anthropometry requirements (Dreyfuss, 1993). This part
is also responsible for housing the battery pack and CCU, that
are located at the back of the device in separate modules that
can be disconnected separately thanks to a custom-made dock
that is rigidly fixed to the waist module. This allows ease of
battery replacement. The femur modules are located between
the hip and the knee motors and are composed of a straight
link that employs a rectangular shaped Al7075 T6 aluminum
alloy profile which ends on both sides with receptacles of the

quick disconnect system. A total of six sizes of this link have
been manufactured to accommodate the anatomical variation
among the population with sufficient precision. Indeed, given
that the gap between one size and the next is 2 cm, a maximum
misalignment of 1 cm can manifest between the motor and the
physiological joint1.

The tibia comes in one size that is able to fit the different
patient lengths thanks to a regulation system that was designed
for the purpose. The upper end mounts a quick disconnect
receptacle that is employed to connect this segment to the knee
motor module. The lower end of this segment connects to
the foot.

The foot comprises a passive elastic ankle joint, which
is then connected on its lower end to a custom carbon
fiber-based footsole. Passive elasticity is implemented using a
simple mechanism made of linear compression springs placed
antagonistically which can be preloaded by means of two socket
screws. These screws can also be employed to set the ankle
joint’s equilibrium point, as well as its stroke, to accommodate
its configuration to each patient’s need, Figure 7A. The ankle
mechanism design was inspired by that implemented in the
ReWalk exoskeleton.

1This of course holds true for measurements of the user limb lengths that are

performed correctly by the clinician/physiotherapist.
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The structure has been dimensioned using the force/torque
data recorded in the dummy exoskeleton in the experiments
explained in section Actuator Sizing, employing a safety factor
of 2.5. Finally, these calculations have been validated by means of
FEM simulations.

Regarding the actuation unit, the Maxon EC90—Harmonic
Drive CSD-25-100-2A-GR-BB 100:1 gearbox assembly is
implemented as shown in Figure 7B. The proximal link
is connected to the motor’s frame whereas the distal link
is connected to the Harmonic drive’s output shaft.

Braces
The interface between the patient and the machine stands
as a critical aspect of exoskeleton development. Hence, they
should converge on a variety of aspects such as: ergonomics,
comfort, safety, anthropometry, and aesthetics while maintaining
biomechanical and functional requirements. Although comfort
did not emerge directly from the initial user need analysis
phase, we implicitly took this aspect as priority during the
formative phase as highlighted in section Formative Phase:
Iterative Improvements of the Device where we discuss about
the role of their contribution within the formative assessment of
usability. Indeed, the delicate skin of SCI patients can be easily
damaged by the generation of unwanted forces or pressures on
the contact points. This holds true also if the user wears the braces
over their own clothes as the avoidance of these unwanted effects
depends on a combination of good structural design (mostly to
avoid pressure concentrations in the orthogonal direction) as well
as on a good choice of materials to avoid chafing effects of the
brace or cloth against the user’s skin. Hence, the braces must
guarantee a safe and comfortable interfacing with the wearer
(Requirements #6 and #7, Table 2) so as to in turn accommodate
safe and stable walk as outlined by requirement #3. TWIN is
currently equipped with a pair of thigh and shank braces for each
leg and a waist brace as the uppermost connection to the patient,
for a total of five human-machine interfaces Figure 8.

All braces employ Velcro R©-based straps to achieve correct
tightening during donning procedure. The inner region in
contact with the patient is made of spandex material, which
ensures biocompatibility and reduces shear forces on patient skin,
main causes of skin lesions. The outer region is made using
denim for durability. The waist brace is composed of a central
portion which is directly connected to the structure by means
of bolts and two lateral bands wrapped around the patient and
can be tightened on the front. This brace additionally hosts a
pair of stiff wings that are hinged on the waist structure and
can rotate on the transverse plane: this additional DOF helps to
accommodate lateral weight-shifting on the support leg during
gait, while providing maximum patient-exoskeleton connection
of tilting movements in the sagittal plane, achieving higher
controllability of the machine’s step trigger (please see section
Control System). Finally, this brace houses a coccyx support
connected to the waist structure, which avoids excessive lumbar
hyper-lordotic postures. A semirigid shell, which can tilt in the
transversal and sagittal plane, is placed on top of the coccyx
support inside the brace to allow rotations of the sacrococcygeal
region to avoid generation of shear stress on the patient’s skin

Thigh Brace

Shank Brace

Waist Brace

FIGURE 8 | The brace modules—The waist (top), femur (middle), and tibial

(bottom) braces and their DOFs.

(Figure 8—top right). The frontal portion of the brace acts as a
thoracic stabilizer preventing the patient from collapsing, which
is critical for SCI patients with higher level of injury. Each
thigh can partially rotate (see Figure 8—middle right) around
the femur, which ease donning/doffing procedures. The shank
brace is composed of a hinged semirigid plate which hosts the
patient tibia and can tilt in the sagittal plane. The medio-lateral
position of the brace can be adjusted to account for different
postures or deformities in the knee joint by means of a leadscrew
mechanism (see Figure 8—bottom right). This mechanism is
inspired by that employed in the ReWalk exoskeleton shank
brace design.

CONTROL SYSTEM

As the patients targeted in this work are complete SCI, we
opted for a position control-based scheme to provide full support
to the patients during use. The identification of predefined
gait trajectories to be employed on lower limb exoskeletons is
typically obtained by fitting mathematical curves to temporal
sequences of desired joint angles that are often inspired by
biological gait patterns. In contrast to this, in Vassallo et al.
(2020) we proposed predefined gait trajectories for the TWIN
lower-limb exoskeleton, generated in Cartesian space, by using
a basis function interpolation method which was designed so as
to maximize stable walk as outlined by requirement #3. Such
approach allows to guarantee the length and clearance of each
step, despite the variation of tibia and femur lengths. Thanks
to this, the trajectories are fully parametrizable to better fit user
needs. In any of the gait patterns, steps are triggered by reaching
a set of two torso inclination thresholds. Torso inclination
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angles were measured by the IMU sensor located in backpack of
the device.

Computing the Reference Trajectory
The kinematic model of the TWIN exoskeleton is shown in
Figure 9A. It has been developed based on Denavit-Hartenberg
convention, considering the bilateral actuations of the knee and
hip as q1, q3 and q2, q4, respectively. Conversely, the tibia and
femur links length, and hip-COM distance, are defined as lT , lF ,
and lH . These lengths are fixed and do not change during the
whole session with a patient. We define θT as the tilt angle of the
torso with respect to the frontal plane, β the flexion angle of the
support ankle, and θF the orientation of the swing ankle. Given
the absence of sensors on the ankle joints, β cannot be measured.
Therefore, we estimate its value, that is comprised between two
values βmin and βmax, which are set according to the patient’s
need during the setup phase by using the regulation screws as
explained in Section Structure and Actuation Unit.

The Design of the Gait Pattern
The gait pattern is generated by an interpolation approach,
consisting in multiplying basis functions, normalized in
amplitude and over time, and depend on the desired step length
L and height H. The reference trajectories are represented
in the Cartesian space by the following Equations: (1)
xF (t) = x0F + L fx (t), (2) zF (t) = z0F +H fz (t), (3) x0T + L gx (t),
where (xF , zF) represent the swing foot coordinates, and xT
the torso ones. x0F , z

0
F , x

0
T represent the foot coordinates at the

beginning of the step. The basis functions fx, fz define the walking
shape while gx is a 6th order polynomial. These functions are
normalized and assume a value which can range from 0 to 1. A
more detailed description of the definition of the basis function
is given in Vassallo et al. (2020). Given the reference trajectory
in the Cartesian space xF , zF , xT , we compute the joint angles
based on the following assumptions: (i) θT = β + q1 + q2 with
{β∈ R, βmin ≤ β ≤ βflex}, (ii) θT(t) = 0, ∀t ∈ [0, tS] where tS
is the step duration.

q1 = sin−1

(

xT −
(

lT sin (β) + lH sin(θT)
)

lF

)

− β (1)

q2 = θT − q1 − β (2)

q3 = cos−1

(

a2x + a2z − l2F − l2T
2lF lT

)

(3)

q4 = tan−1

(

zF − zT

xF − xT

)

− tan−1

(

lT sin(q3)

lF + lT cos(q3)

)

(4)

A representation of the gait pattern is shown in Figures 9B,D.
Particularly, Figure 9B shows the basis functions, that are
employed to compute the joint angle trajectories shown
in Figure 9C. Figure 9D shows the corresponding cartesian
representation of the foot trajectory on the sagittal plane.

An overview of the described control system is shown in
Figure 9E: the basis function fx, fz , the desired step length L,
the clearance H, and the step duration tS are inputted to the
high-level control, which in turn extrapolates time-continuous
reference trajectories in the Cartesian space. Then, the inverse

kinematics equations of the system allow to compute the related
joint angles q1(t), q2(t), q3(t), q4 (t) based on the specific
exoskeleton dimensions lH , lF , lT . Finally, the reference joint
positions are sent to the four motors via the CAN-bus. At the
motor-board level, the local low-level control transforms these
inputs into a PWM’s duty-cycle value, which is returned by the
PI controller, to drive the motor.

The development of the gait pattern was made to comply
the following aspects: (1) stability and safety, which was priority
according to requirement #3 and requirement #7, (2) similarity
with those employed in existing exoskeletons, (3) experience
gained in pilot trials. The resulting trajectory is characterized
by a marked clearance and an emphasized heel-strike to comply
with requirement #3. In fact, in humans, the heel-strike to toe-off
movement has an important role, widely studied in literature: the
foot arches compliance reduces metabolic energy consumption
during locomotion, help balance and, consequently, improve
stability (Stearne et al., 2016). Most importantly, this approach
is also beneficial to the safety of the patient because it is meant
to avoid the potential hazard caused by accidental stumbling
(requirements #3 and #7).

Trigger
The trigger scheme’s function is to initiate steps based on the
intention of the user by elaborating signals coming from the IMU
sensor located in the CCU compartment. The pitch P and roll R
angles are defined as the tilt of the waist unit with respect to the
frontal and sagittal planes, respectively. When these angles both
pass the threshold values Pt and Rt_Left, or Rt_Right, the step trigger
is activated. These parameters can be set according to patient
needs. This functionality can be observed in the plots shown in
Figure 10B.

MECHATRONICS SYSTEM EVALUATION

The validation of the device’s mechatronics as well as a
preliminary evaluation of the ergonomics and the feasibility of
the designed gait trajectories have been carried out by testing the
device on healthy subjects and on one SCI subject, as discussed in
section Formative Phase: Iterative Improvements of the Device as
part of a formative assessment of usability which focused, in this
case, on the efficacy and the efficiency of the advanced prototype
of TWINwhich is the result of the first 36months of development
and formative phase. The subjects were asked to perform straight
walk from a starting to a final point located 10m away at their
preferred speed. Figure 10A reports a sequence of images of the
patient, while the plots of IMU data, position, torque, and of
an extract of two steps are reported in Figure 10B. This task
was freely repeated by the subject in each session—after 30min
the trials were stopped in order to monitor the conditions of
the participant (especially on potentially sore areas—coccyx and
tibia). The joints’ torque, speed, as well as the IMU data were
recorded during trials with the patient and were used to assess
and validate the mechatronic design. Figure 10B shows the trend
of lateral and frontal inclination of the exoskeleton, as well as the
angular positions and torques of the joints, while the step trigger
times are denoted by the vertical dotted lines.
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A B C D

E

FIGURE 9 | (A) The kinematic model of TWIN. (B) The basis functions fx and fz are represented by the continuous and dashed lines, respectively. (C) Reference joint

trajectories, in position control, during a stride. (D) Cartesian trajectory of the swing foot during a step. In (C) and (D) plots, the step is ∼0.8m long with a peak height

of ∼0.20m. (E) Conceptual block scheme showing the control architecture of the TWIN lower-exoskeleton.

DISCUSSION

Thorough effort was dedicated during the whole development
phase to satisfy the user-centered requirements set in the
initial field research reported in Table 2 (system portability,
donning and setting autonomy, standing/walking stability, cost
effectiveness, long battery life) and in the formative process
(comfort, safety). These requirements involved significant
implications to the mechatronics of the device according to a
strict adoption of quality management system formedical devices

(i.e., ISO 13485:2016), and in function of its usability, as defined
by IEC 62366-1:2015. Consequently, the safety of the device

(Requirement #7) was tested according to the IEC 60601 safety
standards, while other usability-related aspects, like comfort,

were assessed by means of a periodical analysis of feedback from

both expert clinicians and users. Furthermore, a preliminary
clinical evaluation was conducted on one SCI subject for a first
field test of the whole system, while TWIN’s distinctive features
with respect to both commercial and research exoskeletons have
been considered in the evaluation. These investigations enriched
the formative assessment itself by exploiting user research to
iteratively improve the different prototype versions of the TWIN

system as required by the standards of IEC for the usability
engineering of medical devices.

Regarding comfort, i.e., Requirement #6, the SCI user verbally
expressed high appreciation of our bracing system compared to
the exoskeleton he daily uses at home, i.e., ReWalk. The user also
did not report any skin injuries in the points of contact with the
exoskeleton and no signs of lesion in the critically stressed areas
(tibial tuberosity and sacrococcygeal). Similar positive feedback
was also given by clinicians, which confirmed its suitability to
operate on the delicate skin of SCI subjects. Of course, this
cannot be considered as definitive validation but is in fact taken
as an initial positive result to feed further iterations of the
formative assessment.

Another significant outcome of the clinical test on the SCI
subject is that TWIN’s trajectory patterns facilitate the stability of
the user due to its emphasized heel strike, as explained in detail
in our previous work (Vassallo et al., 2020) and this is agreeable
with respect to usability too.

Finally, from the mechatronic perspective, plots from the
clinical trial on the SCI patient (Figure 10) demonstrate that
the system can track the trajectory imposed by the CCU for
straight walking at 0.35 m/s. At the same time, the delivered
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FIGURE 10 | (A) Walking sequence of the SCI subject performing straight walk in controlled environment. (B) (Top) Roll and pitch angles as recorded from the IMU,

and corresponding thresholds, (Middle) reference and recorded angular joint positions, (Bottom) torques delivered by the joints. The dotted vertical lines denote the

step trigger. A pause of 0.15 s between the trigger detection and the actuation of the motors was intently set to signal the patient a step was about to be performed.

torques are below the nominal torque of the Harmonic drive and
well below the peak torque value of 110Nm. Furthermore, the
values of delivered current are within the continuous operation
limits of the motors and do not generate heat during functioning,
meaning that the actuators operate in their nominal range. This
safe operating condition, which is well-below the mechatronic
operational limits of the exoskeleton, occurs because the device
was operating under the following conditions: (1) the user was
an expert exoskeleton user and knew how to use the machine
with confidence, (2) the walking speed was about one third of
the maximum allowable speed, (3) the task was performed by a
user weighing 63% of the maximum allowable weight. Although
further trials will be needed to validate this design, e.g., on
patients with higher weight, and at higher walking speed, the
obtained results are a clear indication that themechatronic design
is reasonably sized.

Furthermore, comparing TWIN with the state of the art,
and focusing specifically on the requirements initially outlined
in Table 2, we can state that Indego is the exoskeleton which
best managed to address Requirements #1 and #2 (Lightweight
and autonomous portability, Quick and autonomous donning,
respectively), among existing commercial and research devices.
In order to improve these characteristics, TWIN introduced
a novel design primarily addressed to maximize autonomous
use by developing a structure characterized by a higher
number of modules with respect to the Indego exoskeleton,
coupled with an unconventional lateral mounting solution.
These features can greatly facilitate donning and allow the
user to mount the modules according to the sequence that

can best adapt to the context. In addition, although we
slightly exceeded the target weight (TWIN weighs 23 kg),
high modularity allows users to keep the lightest (9.8 kg,
i.e., 43% of the total weight) and most comfortable modules
donned on when the exoskeleton is not in use, accordingly
with the considerations made in sections Concept Layout
Design and Iterative Co-Creation Process. We hence argue
that this solution considerably simplifies autonomy of use
and transportation, with the goal of facilitating independent
domestic usage that is paramount to guarantee high frequency
of use and therefore maximize the benefit provided by the
exoskeleton training.

Regarding other requirements, most commercial
exoskeletons, such as the Ekso, ReWalk, Indego, to name a
few, present battery life that is lower than the target imposed by
Requirement #5. Hence, TWIN also offers advantages in terms
of battery life, allowing the user to make longer exoskeleton
sessions, hence facilitating intensive training.

Regarding Requirement #3, all the cited exoskeletons, to the
best of our knowledge, can guarantee stability when standing,
whereas a dedicated comparative study would be needed to draft
conclusions on walking stability. Nevertheless, we argue that,
compared to the “traditional” patterns adopted by e.g., ReWalk or
TWIICE, the trajectory designed for TWINmay bring additional
benefits related to stability because of its emphasized heel-strike
which also facilitates stumble-free walking patterns (Vassallo
et al., 2020).

Furthermore, considering all existing exoskeletons, there
is still room for improvement on requirement #4, i.e., cost
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effectiveness. Indeed, although exoskeleton companies are
striving to keep low costs, the current market price of these
devices make them hardly affordable to the average user.
Regarding TWIN, the strategic choice to adopt standard and low-
cost components in the device design will allow to set a highly
competitive target price in TWIN, which will be close to that of
the most inexpensive commercial lower limb exoskeletons.

To provide a general overview of the differences of
TWIN’s design concept and related priorities we can state
that other designs might endow a stable standing/walking, cost
effectiveness, long battery life, high comfort, high safety, (i.e.,
req. #3–7). However, most of these priorities are not jointly
considered in a “holistic” way and, in most cases, are not
meant to directly tackle autonomous portability and, related to
this, quick and autonomous donning and setup (req. #1, 2).
An exception can be made for the Indego exoskeleton which
adopted a similar modular design strategy to that of TWIN,
as explained in section Concept Layout Design and Iterative
Co-Creation Process.

Finally, we argue that the employed user-centered approach
very much fits the development of healthcare robots such
as exoskeletons. Indeed, we experienced great effectiveness
to plan and continuously adapt design goals and activities
toward the satisfaction of user needs. In addition to this,
the employed approach has demonstrated to provide a vast
number of insights that drove technological as well as
design choices.

CONCLUSIONS

This work presented the design of TWIN, a novel lower
limb exoskeleton for personal use of SCI subjects, and the
user-centered design approach adopted for its development.
This device is the result of a joint effort coming from
a tight cooperation between engineers, industrial designers,
physical therapists, physiatrists, and SCI patients, which jointly
cooperated in an iterative development process, which started
with the definition of a set of five user-centered design principles,
that were subsequently integrated by two other requirements
that emerged during the formative processes. An initial concept
layout analysis was presented to show how this device was
conceived to maximize usability. The consequent advantages
and novelty of the proposed solution, which is mainly based
on high modularity and lateral mounting, were highlighted,
especially considering the state of the art. A series of iterative
tests were implemented as part of the formative evaluation
of TWIN, following the requirements established worldwide
by IEC 62366-1:2015 for the usability engineering of medical
devices. Moreover, preliminary results showed that the device
mechatronics is capable of delivering the torque/speed profiles
required for a typical exoskeleton session. Overall, the device
was assessed positively by the SCI subject and expert clinicians,
from both the comfort/ergonomics perspective and feasibility of
the walking pattern. From this initial assessment and discussions
with users and experts in the field, we claim that the successful
design of personal aids must rely on detailed analyses of the needs

and the lifestyle of users. Indeed, user-centered design techniques
require the implementation of careful analyses of users’ need
before the design of any prototype. Similarly, the formative
assessment needs to be executed since the very beginning and
throughout the whole development process. We believe this can
only be achieved by means of a rigorous application of user-
centered design and co-development approaches, as presented in
this work.

Future work on TWIN will include the summative assessment
of the device and its clinical evaluation on a larger subject
population. In this future study, specific focus will be devoted to
the quantitative evaluation of usability.
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Robotic devices are being employed in more and more sectors to enhance, streamline,

and augment the outcomes of a wide variety of human activities. Wearable robots arise

indeed as of-vital-importance tools for telerehabilitation or home assistance targeting

people affected by motor disabilities. In particular, the field of “Robotics for Medicine

and Healthcare” is attracting growing interest. The development of such devices is a

primarily addressed topic since the increasing number of people in need of rehabilitation

or assistive therapies (due to population aging) growingly weighs on the healthcare

systems of the nation. Besides, the necessity to move to clinics represents an additional

logistic burden for patients and their families. Among the various body parts, the hand

is specially investigated since it most ensures the independence of an individual, and

thus, the restoration of its dexterity is considered a high priority. In this study, the

authors present the development of a fully wearable, portable, and tailor-made hand

exoskeleton designed for both home assistance and telerehabilitation. Its purpose is

either to assist patients during activities of daily living by running a real-time intention

detection algorithm or to be used for remotely supervised or unsupervised rehabilitation

sessions by performing exercises preset by therapists. Throughout the mechatronic

design process, special attention has been paid to the complete wearability and comfort

of the system to produce a user-friendly device capable of assisting people in their daily

life or enabling recorded home rehabilitation sessions allowing the therapist to monitor

the state evolution of the patient. Such a hand exoskeleton system has been designed,

manufactured, and preliminarily tested on a subject affected by spinal muscular atrophy,

and some results are reported at the end of the article.

Keywords: wearable robot, hand exoskeleton, telerehabilitation, home assistance, mechatronics design, robotics

1. INTRODUCTION

The demographic, economic, social, technological, environmental, and political factors (DESTEP
factors) of the last decades of the twentieth century and the first years of the twenty-first century
have paved the way to the advent of Robotics for Medicine and Healthcare (Butter et al., 2008).
These factors have driven a breakneck growth of robotic systems formedical purposes—equipment,
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treatment, and rehabilitation. The most significant innovation
and development areas are prevention and diagnostics,
professional care support, surgery, assistance, and rehabilitation
for disabled or chronically ill patients. WHO estimates that
over 1 billion people live with disabilities1. Such a number is
bound to rise because of population aging and the significant
increase in chronic disorders (non-communicable diseases), for
which, according to WHO2, almost 15 million people die every
year, and many others lose their mobility functions. Upper-
limb functions loss is one of the most impairing disabilities
caused by diseases or traumas, and their recovery is seen as a
rehabilitation priority (Anderson, 2004; Huang et al., 2017).
For this reason, upper-limb devices, hand ones particularly,
have exceptional attention in the field of Robotics for Medicine
and Healthcare (Duruoz, 2016), which is arising as a powerful
tool to overcome some primary limits of the standard Assistive
Technology (AT).

Over the years, many different devices have been developed to
recover hand functions and restore the life quality of impaired
people. Some of these are already commercially available, e.g.,
HandyRehab from Zunosaki3, exomotion© from HKK Bionics4,
Carbonhand from Bioservo Technologies5, or Neomano from
neofect6. Despite their significant variability, such devices have
in common some requirements (Sarac et al., 2019), such as: (i)
being correctly coupled with the assisted hand; (ii) ensuring user
safety and comfort; (iii) being effective in force transmission; and
(iv) being as affordable and available as possible. A wide range
of Hand Exoskeleton Systems (HESs), achieving at least one of
these requirements, are suggested in the literature and can be
distinguished according to different aspects, typically the aim, the
assisted movements, mechanical design, actuation, and control
systems (Troncossi et al., 2016; Meng et al., 2017; Sarac et al.,
2019; Desplenter et al., 2020).

Concerning the aim, such devices can have mainly
rehabilitative (Dovat et al., 2008; Tong et al., 2010; Ho et al.,
2011; Lambercy et al., 2013; Cempini et al., 2014; Polygerinos
et al., 2015; Diez et al., 2018; Putzu et al., 2018; Wang et al., 2018;
Bouteraa et al., 2019) and assistive (In et al., 2015; Randazzo et al.,
2017; Yun et al., 2017; Cappello et al., 2018; Hadi et al., 2018; Yu
et al., 2019; Dittli et al., 2020; Yurkewich et al., 2020) purposes.
Exoskeletons or end-effector rehabilitation robots are used for
treatments—typically in clinical settings—to recover from the
loss of motor functions (Maciejasz et al., 2014; Zhang et al.,
2018). They are designed for repetitive training during therapies
and, thus, to perform specific movements and exert high
forces. Most of these have no dimension limitations since their
portability is not mandatory, even if it is still preferable, e.g., the
already commercially available Gloreha from Idrogenet7 (Milia

1https://www.who.int/health-topics/disability (accessed August 31, 2021).
2https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

(accessed August 31, 2021).
3https://handyrehab.com (accessed August 31, 2021).
4https://www.hkk-bionics.de/en/exomotion-en (accessed August 31, 2021).
5https://www.bioservo.com/healthcare/carbonhand (accessed August 31, 2021).
6https://www.neofect.com/us/neomano (accessed August 31, 2021).
7https://www.gloreha.com/?lang=it (Accessed August 31, 2021).

et al., 2019) or InMotion R© ARM from Bionick8. Their clinical
outcomes are considered highly dependent on the mechanical
design, the interaction with the patient, the adopted training
mode, its duration and intensity, and the patient state (Huang
et al., 2017; Zhang et al., 2018; Rodgers et al., 2019). Assistive
devices are designed instead to help the users in the Activities
of Daily Living (ADLs) (Sarac et al., 2019), e.g., holding a bottle
of water or opening a door, by responding to their intentions.
Therefore, they shall be comfortable to wear, lightweight, less
bulky as possible while still exerting enough force to assist the
wearer effectively. Moreover, they shall not force the hand in
wrong poses and preserve the sense of touch. At the best of their
capabilities, assistive HESs should allow movements as a healthy
hand could make alone.

Recently, such a distinction is no longer clear-cut. Indeed,
more wearable and portable devices make possible rehabilitation
therapy in different environments from the clinical one (e.g., at
home), reducing the burden on therapists or in-patient facilities
(Huang et al., 2017). Besides, devices designed for assistance or
at-home rehabilitation (Lambercy et al., 2013; Polygerinos et al.,
2015; Randazzo et al., 2017; Cappello et al., 2018; Putzu et al.,
2018; Wang et al., 2018; Bouteraa et al., 2019; Dittli et al., 2020;
Yurkewich et al., 2020) can always be available for the patient,
who may find it stimulating and motivating to perform these
therapies in a home setting by playing a computer game or during
typical ADLs (Butter et al., 2008; Maciejasz et al., 2014). Despite
the significant results achieved, robot-assisted and home-based
therapy effectiveness remains an open research topic (Maciejasz
et al., 2014; Huang et al., 2017; Duret et al., 2019).

More designing aspects can also distinguish HESs. Regarding
the assisted movements, the number of driven fingers—usually
defining the number of independent motors, unless passive
couplings between fingers are used—the Degrees Of Freedom
(DOFs), and the interactions between hand and exoskeleton may
differ. In particular, HESs can have a single interaction point on
each finger, in the case of single-phalanx mechanisms (Dovat
et al., 2008), or more than one, in multi-phalanx configurations
(Tong et al., 2010; Ho et al., 2011; Lambercy et al., 2013; Cempini
et al., 2014; Yun et al., 2017; Diez et al., 2018; Wang et al., 2018;
Bouteraa et al., 2019; Dittli et al., 2020).

Also, different mechanical designs are commonly classified
according to the strategies for placing the device on the hand and
fingers, e.g., on the palm (Bouzit et al., 2002; Putzu et al., 2018),
the back, as most of the presented solutions, or even involving
the finger sides (Lambercy et al., 2013; Cempini et al., 2014; Yu
et al., 2019). In addition, they can be rigid or soft exoskeletons.
The first ones (Bouzit et al., 2002; Tong et al., 2010; Ho et al., 2011;
Lambercy et al., 2013; Cempini et al., 2014; Yun et al., 2017; Diez
et al., 2018; Wang et al., 2018; Bouteraa et al., 2019) are made of
metal or plastic, transmit motion through rigid kinematic chains,
and usually exert higher force than soft ones (Chiaradia et al.,
2018; Chu and Patterson, 2018). Indeed, on the other side, these
are made of flexible materials (In et al., 2015; Polygerinos et al.,
2015; Randazzo et al., 2017; Cappello et al., 2018; Hadi et al., 2018;
Putzu et al., 2018; Yu et al., 2019; Dittli et al., 2020; Yurkewich

8https://www.bioniklabs.com/products/inmotion-arm (accessed August 31, 2021).
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TABLE 1 | The table shows the comparison between some of the most interesting assistive and rehabilitative hand exoskeletons at the current state of the art.

Devices Actuated fingers Wearability Exerted force [N] Mass [g] Intention detection method

Ho et al. (2011) All / / 500 sEMG

In et al. (2015) Index, middle Yes (*) 9–12 194 Wrist motion

Polygerinos et al. (2015) All Yes (*) 8 285 Force, position

Randazzo et al. (2017) All Yes (*) 5 50 EEG activity

Yun et al. (2017) Thumb, Index, Midlle Yes (*) / 319 sEMG

Diez et al. (2018) All No 12,5 / Force, position

Hadi et al. (2018) All / 8 300 /

Rose and O’alley (2018) All Yes (*) 40 220 sEMG

Wang et al. (2018) All / / 420 sEMG, voice control

Bouteraa et al. (2019) All Yes / 388 sEMG

Yu et al. (2019) All No 22 300 /

Dittli et al. (2020) All except for the thumb Yes (*) / 113 sEMG

Yurkewich et al. (2020) All Yes / 377 sEMG

Carbonhand Thumb, middle, ring Yes (*) 5–8 85 Force

exomotion® All Yes (*) / / Impulses of an active muscle

HandyRehab All Yes / 380 sEMG

Neomano Thumb, index, middle Yes (*) 20 105 /

(*) some of the parts of the HES—e.g., the power supply or actuation system —are dislocated from the hand.

et al., 2020) and are smaller and lighter than rigid ones. Recently,
first hybrid solutions have been studied (Rose and O’alley, 2018)
aiming to exploit the strengths of both.

Hand Exoskeleton Systems also depend on the actuation
system, which can be electrical (Tong et al., 2010; Ho et al., 2011;
Lambercy et al., 2013; Cempini et al., 2014; Randazzo et al., 2017;
Yun et al., 2017; Diez et al., 2018; Wang et al., 2018; Bouteraa
et al., 2019; Dittli et al., 2020; Yurkewich et al., 2020), pneumatic
(Bouzit et al., 2002; Cappello et al., 2018; Putzu et al., 2018),
hydraulic (Polygerinos et al., 2015), or realized through different
working principles, e.g., using shape memory alloy actuators
(Hadi et al., 2018).

Finally, exoskeletons differ in the employed method and
sensors for finger pose tracking during operation, e.g., optical,
flex, magnetic sensors, or finger exerted forces measuring. Such
devices might also be passive or active, and they might be
distinguished in the way of detecting the user intentions near
correctly as possible, e.g., using surface ElectroMyoGraphic
(sEMG) signals (Ho et al., 2011; Meng et al., 2017; Yun et al.,
2017; Rose and O’alley, 2018; Wang et al., 2018; Bouteraa et al.,
2019; Dittli et al., 2020; Yurkewich et al., 2020).

Although many alternatives exist in the literature, not all of
them are fully wearable and portable solutions. It is reasonable
to state that the more compact, light weight, and standalone the
device, the better the wearability. Furthermore, preserving the
user freedom of movement and comfort is crucial for these tools
to be handy. Indeed, these are critical features that profoundly
affect such device characterization (Desplenter et al., 2020),
allowing them to broaden their application fields. A solution
that concentrates its components as much as possible on the
assisted limb is preferable concerning wearability and portability
to those that displace some units (e.g., actuation or power supply)
to other body parts, limiting freedom of motion (Desplenter

et al., 2020) [e.g., in a waist belt (Polygerinos et al., 2015), in
the arm (In et al., 2015), in the back (Rose and O’alley, 2018;
Dittli et al., 2020), and in the chest (Randazzo et al., 2017)]. For
instance, forces exerted by soft structures might be increased by
exploiting pneumatic or hydraulic actuators. However, these also
augment the overall device weight, requiring different placement
typically for both the actuators and control units (Polygerinos
et al., 2015), thus limiting the user mobility. Significantly, a fully
wearable and portable device can help the patient in ADLs and
make available rehabilitation training in most places of daily
life and thus also at home (Chu and Patterson, 2018; Wang
et al., 2018). Depending on the patient state, this might prevent
the constant therapist presence, who would nevertheless have
to assess the rehabilitation progress periodically and guide the
following training. It might reduce both the device and treatment
cost and facilitate repetitive training (Huang et al., 2017).

Table 1 summarizes some characteristics (of interest for the
focus of the discussion proposed in this study) of the leading
current state-of-the-art assistive and portable rehabilitation
devices and some also commercially available: the actuated
fingers, wearability, exerted forces, weight on the hand, and
intention detection method.

The research activities of the Mechatronics and Dynamic
Modeling Laboratory (MDM Lab) at the Department of
Industrial Engineering (DIEF) at the University of Florence
(UNIFI) have been focusing on wearable devices since 2013.
The research team has developed several versions of a HES
(Secciani et al., 2018), whose primary purpose is to assist users
in ADLs. More strict requirements for the assistance aim led
to this choice. However, such a device can also be used for
rehabilitative purposes. Indeed, some preliminary tests on the
patient with the HES have been carried out in a clinical setting,
like a rehabilitation session, proving the device effectiveness
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in assisting the user in ADLs (Secciani et al., 2019). Despite
promising results, the developed prototypes all presented gaps
that did not allow them to be fully wearable solutions.

Conversely, the version (Secciani et al., 2021), presented in
detail here, embodies the evolution of the previous designs to
overcome such wearability limits. It is essential to point out
that no performance improvements have been implemented
from the last version, but instead, they remain similar, mainly
because of exploiting the same actuator and kinematic structure.
For these reasons, the main contribution of the work reported
in this study relies on the innovative mechatronic design that
results in a fully wearable and portable robotic device for
assisting impaired hands. In contrast to most other state-of-
the-art devices, it is particularly noteworthy that the solution
presented here eliminates components dislocation, maximizing
the exoskeleton wearability. Action research arm test (ARAT) has
been performed to prove the HES capabilities and evaluate its
redesign pros and cons.

This study is organized as described below. In section 2, the
main strengths and flaws of the previous prototypes will be
highlighted, laying the foundations for the further development
presented in this study. Section 3 will present the changes made
to solve the mentioned problems. In section 4, ARAT and its
results will be presented. The strengths and flaws of the achieved
solution will be discussed in detail in Section 5, based on the
conducted tests. Finally, section 6 will conclude the this study.

2. THE PREVIOUS PROTOTYPES:
STRENGTHS AND FLAWS

This research activity has always aimed to develop an easily
wearable, small, lightweight, safe, and low-cost robotic device
for users with impaired hands. The HES prototype presented in
detail in this study results from the evolution of three previous
versions (Secciani et al., 2018). The overall architecture key points
have had no changes: It has always been based on single-phalanx,
single-DOF, rigid, and cable-driven finger mechanisms, acting
on all the finger, except for the thumb. Each mechanism end-
effectors are on the matching fingers distal phalanx. In addition,
these mechanisms have been designed: (i) to be 3D-printed
in Acrylonitrile Butadiene Styrene (ABS)—chosen due to its
mechanical characteristics and its lightness—; (ii) to withstand
forces up to 15 N on the contact point of each matching finger,
which has been proved to be a reasonable value for typical
manipulation tasks of ADLs (Riddle et al., 2020).

The last of the previous prototypes (the third one), shown in
Figure 1, has been developed focusing on patient needs, aiming
to have a portable, wearable, and easily customizable device for
assistive and rehabilitative purposes.

The single-DOF and single-phalanx finger-handling
mechanism—made lighter and less bulky without influencing the
already validated kinematic model (Conti et al., 2016)—allows
reproducing the complex hand kinematics using a more compact
device than most of the other state-of-the-art rigid mechanisms
(Lambercy et al., 2013; Yun et al., 2017; Diez et al., 2018; Bouteraa
et al., 2019). For this reason, no other cumbersome components

FIGURE 1 | The figure shows the last version of the exoskeleton prototype

before the changes proposed below in this paper (Secciani et al., 2021).

Specifically, the following components can be seen: (i) four planar finger

mechanisms on the left; (ii) a magnetic encoder, placed upon the mechanism

joint above the index finger MCP one; (iii) two sEMG sensors, the two red

boards on the bottom, and cables for data transmission; (iv) a micro-controller

on a green printed circuit board, in the middle top of the figure; (v) a

servomotor, the black component below the micro-controller.

have been added. Only a second passive DOF per finger has been
added to allow ab/adduction movements, enabling the auto-
alignment between fingers and their corresponding mechanisms.
An optimization procedure (Bianchi et al., 2018) has been
employed so that its final geometry results to be effectively tailor-
made on the patient anatomy. Customization and ab/adduction
movements improve ergonomics and user comfort, avoiding
constraining feelings and helping the fingers more efficiently
arrange during object grasping. Such considerations allow
complying with some of the crucial requirements cited in section
1 (Sarac et al., 2019).

The exploitation of a single servomotor (HS-5495BH High-
Torque Servo from Hitec), unlike the solutions in Table 1, is
another vital topic to be considered in depth. On one side,
this choice positively impacts the mechanical and electronic
hardware architecture since the system weight is unavoidably
lower by reducing its components. Also, the control code is
more straightforward, not managing the synchronized motion
of more actuators. As an inevitable drawback, the independent
motion of the fingers is not allowed. However, being the finger-
handling mechanisms cable-driven, the grasp shape results to
be deformable to different object shapes. Indeed, the patient
can perform irregular grasps since the fingers can adapt—
while remaining within their own Range Of Motion—to the
objects thanks to the cable flexibility. Nevertheless, independently
controlled fingers make a significant difference only with tasks
involving the tip and tripod grasps, not frequently used in
essential ADLs (Montagnani et al., 2016).

By powering the servomotor with 7.4 V, it can output a
maximum torque of 0.735 Nm and a maximum angular speed of
6.67 rad/s; such performances have been preliminary considered
and then verified suitable to exert the forces the exoskeleton
has been designed for (15 N as mentioned above), which are
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comparable, if not better, to the ones of the listed solutions in
Table 1.

All the electronic components have been chosen to have a
lighter, cheaper, and more intuitive device. An Arduino Nano
controller board, a Bluetooth module, and a driver have been
integrated on a custom Printed Circuit Board (PCB) (Secciani
et al., 2019) and then placed on the user hand back. A
magnetic encoder collects the angular position and velocity of
the mechanism joint—to which it is applied—placed right above
the index finger MCP joint, not preventing any hand function.
The mechanism kinematics is solved as a function of this
mechanism joint angular coordinate, which depends on the index
finger’s MCP joint flexion/extension angle. Such measurements
are consistent also with the other fingers since they are all
moved simultaneously by the HES. Two MyoWareTM Muscle
Sensors from Advancer Technologies (United States), low-
powered devices, have been chosen to collect epidermal EMG
signals, namely sEMG signals. They can detect, interpret, and
measure bioelectric signals from muscle activity. Such sensors
incorporate the housing for two monopolar snap electrodes
into a small breakout board (20.8 × 52.3 mm2). Despite this,
the MyoWare behaves as a single bipolar sensor capable of
generating two distinct differential output types. Specifically, they
represent a good trade-off between the high cost of many of these
sensors and problems connected with the dedicated software for
managing them.

The strategy proposed (Secciani et al., 2019) for controlling
this device enables intuitive management of its motion. Indeed,
it is based on the user intention classification starting from
myoelectric readings. The user muscular activity is measured
50 times per second, and it is translated into a command for
the actuator to follow the captured intention. Such commands
can be “hand opening,” “hand closing,” and “resting.” It is
worth noting that the forearm muscle closeness and sEMG
signal nature and noise level require high computational power
machines to classify user movements accurately. Classifying just
three elementary intentions has resulted in a reasonable trade-off
between complexity and usability. The first two intentions imply
an effective system motion, while the third represents a security
state for which the device remains in its current position. The
motor velocity is set to perform a complete opening gesture in
about 1 s; the same applies to complete closure.

A custom Graphical User Interface (GUI) has been developed
to (i) collect sEMG signals training datasets by recording them,
(ii) manually draw two polygons around the points that identify
the opening and closing gesture, (iii) upload the classifier
parameters to the micro-controller board, and (iv) save the
polygons vertices coordinates (Secciani et al., 2020). By doing
so, opening or closing intentions are classified according to the
polygon the corresponding points belong to. Those points that
belong to both the polygons or none of them are classified as a
rest intention.

Another GUI has been developed for an intermediate training
phase for both the classifier and user. A 3D hand model
is displayed, and it moves according to the user intention
classification. The interface allows controlling the complete hand
opening and closing, and the intermediate positions, helping the

user to get used to the HES and classifier. From the user point of
view, straightforward device managing is one of the main goals
of this version.

At this point of the study, the HES is customizable on the
patient hand, compliant with it, and intuitive, thanks to the
user intention detection method. Nevertheless, some flaws have
remained, especially non-full device wearability and portability.
During a preliminary testing phase, some criticisms in cable
management and dressing the electromyographic sensors have
arisen and impose severe limitations on the device use. Such
tests have been carried out in the laboratory and only on healthy
subjects to assess the new integrated electronics. The subjects
were required to wear the MyoWareTM sensors on the forearm
and trigger the servomotor motion with muscle contractions. It
was observed that wrist movements could occasionally produce
excessive tensions in cables connecting the sEMG sensors to
the microcontroller (see Figure 1). Besides, these cables elasticity
caused small shifts between the sensor and user skin. These
displacements compromised the signal acquisition and were then
translated into the so-called “motion artifacts,” which resulted in
erroneous intention classifications. Therefore, cables represented
a hindrance and another annoyance for the patient, preventing
the HES from complete portability.

Also, the connection between the hand and exoskeleton
represented a crucial issue to be solved. Such an interface was
produced by sewing the device to a sports glove and then
fixing it to the limb with additional Velcro bands, as in Tong
et al. (2010), Ho et al. (2011), Lambercy et al. (2013), Rose
and O’alley (2018), and Wang et al. (2018). However, on one
side, elasticity of both these systems ensured high-grade coupling
safety because of their intrinsic compliance with any possible
displacement. On the other side, the same feature could cause
an inconsistency between the exoskeleton actual trajectories
and the fingers ones it has been designed for. Indeed, the
exoskeleton motion may produce a change in its relative position
to the back of the hand, not ensuring the same movements
reliable repeatability.

Finally, the lack of an on-board power supply system, as also
in In et al. (2015), Polygerinos et al. (2015), Randazzo et al.
(2017), Diez et al. (2018), Rose and O’alley (2018), Yu et al.
(2019), and Dittli et al. (2020) or in exomotion R©, Carbonhand
and Neomano devices among the commercially available ones, as
visible in Table 1, prevented the device from being fully wearable
and portable. Being an exoskeleton intended for assistive use, as
already mentioned, this point was one of the most limiting since
it forced the user to be connected to a power supply away from
the hand.

3. THE NEW ARCHITECTURE

This section will present the changes made to overcome the
above-mentioned issues and develop a fully wearable device.
Specifically, the renewed sEMG technology, the improved
ergonomics of the interface between the hand and exoskeleton,
and the revamped mechatronic architecture are presented.
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FIGURE 2 | The figure shows the sEMG bracelet, developed to reduced the

disturbances coming from the sensor wires, with its central unit and the other

two smaller ones containing the sEMG sensors.

3.1. Surface Electromyography Technology
Among the several commercially available sensors, which are
usually exploited to interpret the myoelectric activity (Rechy-
Ramirez and Hu, 2015), sEMG sensors have also been employed
in this new device version due to their capability of detecting
electromyographic signal directly through the skin, as a
completely non-invasive technique. Some preliminary tests have
been carried out (Secciani et al., 2019), proving that the device
effectively assists patients with muscular (rather than neuronal)
deficits in ADLs. Indeed, as long as the user can emit controlled
myoelectric signals—even if weak—the system can sample them,
classify them, and then replace the musculoskeletal system. For
these reasons, such a HES can be used in all cases, acute or
chronic, in which the disability does not compromise the user
ability to associate a motion intention with a specific muscle
activation voluntarily. For this kind of application, the sEMG
sensors chosen are usually placed on the antagonist muscle bands
responsible for the fingers and wrist flexion/extension, which are
on the extensor digitorum and flexor digitorum muscles. A first
tentative bracelet for sEMG signals collection has been designed
to overcome cable issues presented in section 2 and mitigate
the disturbances introduced. It has been thought to be worn
on the forearm. The result is shown in Figure 2. As visible,
the sEMG bracelet consists of three cases that are 3D-printed
in ABS. The central unit, the biggest one, has been thought to
house the microcontroller, the Bluetooth module, and a single-
cell 500 mAh Li-ion battery, while the other two hold only the
sEMG sensors. Each wire between the central unit and the two
sensor housings has a different function following its color: The
red one is the 3.3 V line, the black one represents the ground
line, sEMG signals flow in the yellow wire, while the white one
represents the reference potential. Thus, the long cables, shown
in Figure 1, connecting the sensors directly to the exoskeleton
actuation system, have been removed. The servomotor command
signals are now processed on-board and then sent to it thanks to
the micro-controller on the exoskeleton over a Bluetooth bridge.
The resulting total weight of the bracelet is around 80 g.

FIGURE 3 | The figure shows the 3D-printed anatomical splint with the slide

and the holes for mounting the two HES modules.

3.2. Ergonomics
The connection between the hand and exoskeleton has been
improved to make the device more comfortable for the wearer,
avoiding the issues mentioned above about motion accuracy. It
has been achieved by exploiting an anatomical wrist splint, which
provides a sufficient rigid interface base with the forearm. A
splint is meant as a device that increases, improves, or controls
an impaired function of an injured segment, e.g., such a tool is
usually used to support a broken bone and keep it in a fixed
position or during rehabilitation treatments. It is commonly
made of a thermoplastic material mouldable at relatively low
temperatures (about 75◦), customized andmodeled by a therapist
directly on the patient anatomy. Its main features are being
lightweight, resistant, easy to wear and remove, washable, and
continuously adaptable to the evolving patient needs. However,
such a thermoformed splint does not have a support base to
anchor the exoskeleton. So, a ROMER arm equipped with a
3D laser scanner—a completely portable coordinate measuring
machine—has been used to acquire the splint surfaces and
produce a considerable number of point clouds to create a 3D
CAD model. After collecting sufficient data, the point clouds
have been cleaned and smoothed using Polyworks and Geomagic
Design X software. After that, the points have been triangulated,
aligned, and finally merged in one only surface. The splint
3D CAD model is rebuilt starting from this optimized surface,
and, by doing so, its lower surface shape accurately reproduces
the forearm anatomy. Then, such a model has been modified
as shown in Figure 3: The fingers module housing, in which
there are four threaded holes for the screws employed for their
attachment, and a magnetic slide for fixing the motor box
has been designed. Finally, the splint has been 3D-printed in
PolyLactic Acid (PLA), resulting in a thickness of 2 mm and a
weight of only 42 g. A stable interface between the hand and
HES is then provided by connecting it with the exoskeleton.
The connection, removable whenever needed, is achieved by
exploiting four screws for the finger mechanisms module, the
slide, and two other screws to fix the motor box to the new
splint. Among the possible functionalities of a splint, this tool
employed as a part of the new prototype and presented in this
study (see Figure 3) can be identified as an integrative splint—
since it allows to compensate compromised limb functions—and
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FIGURE 4 | The figure shows the two blocks of the HES modular structure: on

the left, the fingers’ mechanisms module, and on the right, the motor and

control one.

one for protected mobilization—since it aims to improve specific
muscle activity. Indeed, on one side, it enables to stiffen the wrist
articulation so that the interaction forces between the hand and
exoskeleton are spread throughout the forearm, concentrating
the HES action on the fingers and giving better stability to the
system. On the other side, it also provides rigid support for the
thumb to keep its first phalanx in a semi-opposition state to
the palm, thus facilitating object grasping by mitigating tendon
retraction. Finally, even in this case, the HES can be fixed on the
hand using Velcro bands, providing the interface with a bit of
compliance for improved wearer comfort.

3.3. Overall Architecture and Power Supply
System
The last and most significant changes have been made to the
overall mechatronic structure, revamping the power supply
and transmission system to achieve the complete portability of
the device.

The first crucial difference of this new HES version is the
whole systemmodular structure, which is now essentially divided
into two blocks, shown in Figure 4: The one including the motor
and control box is placed on the hand back, while the one
that houses all the finger mechanisms is located right above
the fingers.

Such a structure has been designed to minimize downtime
for maintenance, whether it is programmed or not. While the
back module may be subjected to sporadic changes, e.g., a smaller
one may be required for a pediatric exoskeleton (Bianchi et al.,
2019), the front one will be more subject to replacements due to
a mobility recovery or, on the contrary, a pathology evolution.
Indeed, the finger trajectories may change, and thus, their
mechanisms geometry might need to be revised. So, the fingers
module is connected with the 3D-printed splint thanks to four
screws, easily removable. In addition, as visible in Figure 4, four
slots are realized in this module to help regulate its position and
match each mechanism with its corresponding finger correctly.
The two modules total mass on the hand is 415 g.

Another variation to the previous version is about the power
supply system (see Figure 5). It is now incorporated into the
electronics case, and thus, it is no longer part of external

FIGURE 5 | The figure shows an exploded view of the new motor box and the

three layers that compose it: on the left, the inner layer, including the

transmission system, actuator, and control electronics; on the centre, the

middle one containing the batteries, and, on the right, the outer one, including

the switch button.

equipment but directly integrated on the hand back. This module
has been modified to contain the following components: the
actuator, transmission system, control electronics, batteries, and
a switch button. All these elements are disposed on three different
layers, as shown in Figure 5: The actuator, transmission system,
and control electronics are into the inner one; the batteries on
the middle; and the switch button on the outer one. The layer on
the middle is the last externally accessible to let the user change
the batteries. Such a new power supply system consists of two
rechargeable 3.7 V lithium-ion batteries with 2,600 mAh capacity
serially connected.

Third, also the actuation system has been subject to change.
Motors have been reduced from four (on the first HES prototype)
to one, resulting in an unavoidable redesign of the finger
mechanismsmotion transmission and, thus, the overall actuation
module. Indeed, a specific cable-driven transmission has been
developed: Four pulleys with different diameters, depending
on the fingers dimensions, have been designed and embedded
to a single secondary shaft to obtain the same angular speed
for all the fingers. Instead of cable that wraps and unwinds
around the pulley integral with the motor shaft, a toothed belt
drive is now used so that the motor sets in motion the shaft
to which the four pulleys are integral. This adjustment allows
obtaining the same angular velocity for all the fingers as for the
previous versions, even though their trajectories involve different
cable lengths.

Finally, it is worth highlighting that, as in the previous
versions, additional force sensing or actuators, e.g., Series
Elastic Actuators (SEA) (Yun et al., 2017) or Force Sensitive
Resistor (FSR), have not been exploited to avoid additional
components that increase overall complexity, dimensions, and
weight, thus limiting the portability and wearability. For this
reason, the proposed HES operates only in position and
speed control modes, while force control mode has not been
currently implemented.
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3.4. Hand Exoskeleton System
Development and Use
So far, the changes to overcome the primary limits of the
previous version and achieve a fully wearable and portable
device have been presented. This subsection summarizes instead
the main steps required to actually develop such a customized
hand exoskeleton. Firstly, the metacarpal bones and phalanges
lengths are required to solve the hand kinematics and find the
trajectory of the desired fingers. Such trajectories becomes then
the inputs for the optimization procedure that will calculate
the link dimensions of each finger mechanism. Finger-handling
mechanisms are hence customized on the patient anatomy and
follow the corresponding desired trajectory as accurately as
possible. Once the 3D parametric model of the whole HES has
been updated in the CAD software, all the components can
be 3D-printed and then assembled. While finger mechanisms
change from patient to patient, the actuation and control box
usually remains the same, and this is why the system is designed
to be split into two principal parts as described in subsection 3.3.
In parallel, an anatomical splint is developed starting from a 3D
scan of the user limb and then 3D-printed. The splint becomes
the main interface with the hand, and the whole system is rigidly
fixed to it. Elastic rings are used to fix the device to the fingers,
while the splint is fixed to the hand and forearm with velcro
bands. Finally, to control the HES motion, the user has to wear
the sEMG bracelet and perform a preliminary phase of system
training. Such step consists of a repetition of elementary muscle
contractions (i.e., opening, closing, and resisting) to match with
a specific exoskeleton action (i.e., pulling cables, releasing cables,
and idling). Once the classifier is properly trained, the HES is
ready to be used.

The kinds of patient for whom the exoskeleton is suited for
are all those who can arbitrarily contract the muscles, as it is
the only way to control the motion. Besides, the device, in its
current status, is capable of assisting only people with hand
opening impairments.

4. TEST AND RESULTS

Experimental tests have been carried out to assess the new
redesigned HES capabilities. The tested exoskeleton is tailor-
made for a patient’s hand, who has followed this research from
the beginning. The subject is affected by SpinalMuscular Atrophy
(SMA) type II since birth. Such a disease damaged muscular
extensors of both his hands, causing their opening impairment
due to tendon retroactions, and therefore, now hands are closed
like fists. The tests have been performed to evaluate the HES
actual effectiveness for the pilot study patient and whether
improvements have been made after redesigning it, as presented
in section 3. Specifically, they are used to understand whether
the new HES exploitation can improve the patient assistance in
ADLs, enabling him to grasp objects more effectively than when
the device is not worn, if he has some advantages or disadvantages
in using it, its new strengths, and remaining flaws. ARAT
(De Weerdt and Harrison, 1985; Yozbatiran et al., 2008) has
been conducted for such experimental sessions since it evaluates

TABLE 2 | The table shows the ARAT items.

Grasp

G1 Block, wood, 10 cm cube (most difficult)

G2 Block, wood, 2,5 cm cube (easiest)

G3 Block, wood, 5 cm cube

G4 Block, wood, 7,5 cm cube

G5 Ball (Cricket), 7,5 cm diameter

G6 Stone 10 x 2,5 x 1 cm

Grip

GR1 Pour water from glass to glass (most difficult)

GR2 Tube 2,25 cm (easiest)

GR3 Tube 1 x 16 cm

GR4 Washer (3,5 cm diameter) over bolt

Pinch

P1 Ball bearing, 6 mm, 3rd finger and thumb (most difficult)

P2 Marble, 1,5 cm, index finger and thumb (easiest)

P3 Ball bearing 2nd finger and thumb

P4 Ball bearing 1st finger and thumb

P5 Marble 3rd finger and thumb

P6 Marble 2nd finger and thumb

Gross

movements

GM1 Place hand behind head

GM2 Place hand on top of head

GM3 Hand to mouth

The first column includes the four subgroups. In the second one, there are direct identifiers

to each task: letters indicate the corresponding subgroup, while numbers show the order

in which the tasks are proposed to the subject. The third column describes the activity

explicitly to perform.

grasp, grip, pinch, and gross arm movements, usual in daily life
activities (Duruöz, 2014). It is a functional evaluation test that
assesses the upper limb functions. The test takes approximately
5–15 min to administer and requires standardized equipment:
various sized blocks of wood, cricket ball, stone, glasses, tubes,
washer and bolt, ball bearing, and marble. Standard protocol
requires the patient to be seated in a chair facing a table, with
the head in a neutral position and feet on the floor. The test
is organized into four subgroups corresponding to the four
different motions evaluated, with 19 items presented. Each item
must be grasped and lifted on a 37-cm-high shelf above the table
facing the subject.

The patient performance is rated on a 4-point scale, ranging
from 0 (no movement possible) to 3 (movement correctly
performed). The maximum obtainable score for ARAT is 57.
Each item in the four subgroups has a well-standardized
presentation order: First, the patient is asked to manipulate the
most challenging object of the considered subgroup. If the task
is correctly performed, enabling a total score, he is credited
with having scored 3 on all the remaining subtest items without
performing them. However, if the patient fails the first task
and scores less than 3, the most manageable object is tested. If
unlikely the patient scores 0, the remaining subtest is credited
with 0, and the evaluation proceeds to the following subgroup. If
otherwise, the patient scores more than 0, all items in the subtest
should be assessed. The standard protocol indicates that each task
might run up to 60 s if the patient does not complete it before.
Specifically, the items in each subgroup are shown in Table 2.
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TABLE 3 | The table shows the scores obtained during the three sessions of ARAT.

Sessions G1 G2 G3 G4 G5 G6 GR1 GR2 GR3 GR4 P1 P2 P3 P4 P5 P6 GM1 GM2 GM3 Total score

Without HES 2 2 2 2 1 2 2 2 2 2 0 2 2 2 0 2 3 3 3 36

With HES 2 2 2 2 2 2 0 2 2 0 0 2 0 2 0 0 3 3 3 29

With HES 2 2 2 2 2 2 0 2 2 0 0 2 0 2 0 0 3 3 3 29

FIGURE 6 | The figure shows a histogram concerning the results of the ARAT carried out. While activities are reported in the horizontal axis, the time (in seconds)

needed for each one corresponds to the height of the column, readable in the vertical axis.

For this case study, experimental tests have been carried out
in a clinical environment, and the patient was seated in his
wheelchair facing the table. The tests have been repeated three
times. In the first session, the patient carried out the test without
wearing the HES, while he had to wear it during the second and
third ones. The second session has been conducted considering
a motor speed of 4,000 counts/s, enabling a complete closing
in 1.2 s. The same applies to the complete opening. The third
session has been instead performed at a 50%-increased motor
speed (6,000 counts/s, allowing a complete closing/opening in 0.8
s) after finding that it did not cause discomfort to the patient.

After carrying out the first session and taking the time to
perform each ARAT task, a physiotherapist helped the patient
donning the sEMGbracelet andHES on the right upper limb. The
two sEMG sensors have to be placed as described in subsection
3.1. The donning phase and sensor placement required about
5 min since particular attention must be paid to avoid painful
movements and find the correct spot for sensors. In such a case,
it has been necessary to consider the wrist muscular activity

due to the difficulty of providing strong finger extension signals
without heavy fatigue. The first GUI presented in section 2 has
been exploited to collect sEMG signals training datasets, draw
the corresponding opening and closing gestures polygons, and
upload the classifier to distinguish each intention. Instead, the
second one is employed to have an intermediate training phase
for the patient wearing the HES. Then, the interfaces have been
closed, and the other two sessions started. Table 3 shows the
scores the physiotherapist gave to each task. It is possible to
understand that the patient has no arm-motion impairments,
having scored 3 points for gross movements (GM1, GM2, and
GM3) wearing the HES or not. Instead, in all the other tasks,
more or fewer difficulties have been found. Thus, significantly,
the results concerning only the first three subgroups (G, GR,
and P) are also shown in terms of time thanks to a histogram
(see Figure 6), and they are reported for all three sessions. The
histogram indicates the time (in the vertical axis) recorded to
complete each task (specified instead in the horizontal axis)
during different session settings. Specifically, the blue column
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FIGURE 7 | The figure shows some pictures taken during the test: (i) on the top-left, the cricket ball grasping (G5) performed without the HES, (ii) on the top-right, the

same task performed with the HES, (iii) on the bottom-left, the wooden block grasping (G1) is shown, while (iv) on the bottom-right, the alloy tube gripping (GR2) is

visible.

height shows the time taken to complete the task without the
HES, the red column height the time taken wearing the HES with
a motor speed of 4,000 counts/s, while the green one refers to
the session in which the motor speed is increased up to 6,000
counts/s. Sixty seconds has have been awarded to the tasks the
patient failed to complete.

The histogram shows that the times taken for grasping
activities during the first and third sessions are comparable.
Instead, longer times have been recorded during the second one.
Besides, the HES exploitation allowed better-grasping objects.
For instance, Figure 7 shows the 7.5-cm-diameter cricket ball
grasping (G5) without the HES (on the top-left) and wearing it
(on the top-right). It is possible to observe that without the HES,
the patient has adjusted his grasping according to the movements
he can perform. On the contrary, the HES enabled the patient to
fully open the hand and grasp the ball correctly and effectively.
The same happened for the 10-cm-cube wooden block grasping
(G1), visible in Figure 7 bottom-left.

More difficulties have been found among grip movements
wearing the HES on glasses (GR1) and washer (GR4)
manipulation. Significantly, the washer is highly challenging
to grip for the patient also without the HES due to its shallow
thickness. Conversely, alloy tubes grips (GR2 and GR3) have
been performed without the HES and wearing it, as visible in
Figure 7 bottom-right. The time taken on the second and third
sessions is more than the one on the first, but also now, the
HES enabled the patient to have a more correct and effective
hand grip.

Finally, from Figure 6, it is possible to observe that the patient
has found more impairments on pinch movements both with
and without the HES. Indeed, he could not perform two out

TABLE 4 | The table compares the overall lengths and heights of the first, and the

one proposed here prototypes finger mechanisms.

Fingers
First HES New HES

Length [mm] Height [mm] Length [mm] Height [mm]

Index 98,42 35 85,61 35,13

Middle 107,6 48 95,44 39,17

Ring 100 36 87,31 35,84

Small 74 27 71,91 29,51

of six pinch tasks during the first session, but he failed four
out of six tasks during the second and third. The augmented
velocity on the third session enabled times comparable with
those recorded without the HES, even if they are still greater.
The worsening performances are due to the overall dimensions
of the finger-handling mechanisms, which, although they have
been reduced compared to the first prototype ones, as visible in
Table 4, still prevent movements in confined spaces, e.g., when
the patient hand approaches the table to pinch small-size items on
it. Specifically, he did not fail the task in which index and thumb
fingers had to interact. Instead, when the patient had to pinch
items with the middle or ring finger and thumb, such impairment
did not allow him to complete the tasks.

5. DISCUSSION

In this section, the new exoskeleton prototype strengths and
weaknesses will now be discussed. The main focus of this
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study was the renewal of the system architecture to achieve a
fully wearable, portable, comfortable, and tailor-made robotic
device for home assistance in ADLs and telerehabilitation. The
experimental tests presented in section 4 proved that such an
aim had been correctly pursued. Indeed, the redesigned HES is
now fully wearable and portable, and so it was for the patient
throughout the tests—which lasted about 3 h, including the
starting training phase and some resting breaks. The patient
could perform all the sessions without much discomfort, even if
he still fails some tasks. Such failures are primarily due to the
HES overall dimensions that prevent tasks in confined spaces.
Besides, the patient needs a more extended training period with
theHES to get used to it and how the device detects his intentions.
Specifically, the redesigned device enables the user to open the
hand starting from a fist and then perform the grasps correctly.
It also allows the patient to hold the item due to its force
effectiveness until he wants to release it, and a hand opening
intention detected from the sEMG sensors causes the cables to
wind up.

Below, direct references to the three subsections above will be
made to discuss the improvements presented on each.

sEMG technology (subsection 3.1)-The exploitation of
sEMG sensors enables the HES control system to collect and
interpret signals from muscular activity in a completely non-
invasive way. Various solutions from Table 1 exploit sEMG
signals to detect the user intention (Ho et al., 2011; Yun et al.,
2017; Rose and O’alley, 2018; Wang et al., 2018; Bouteraa
et al., 2019; Dittli et al., 2020; Yurkewich et al., 2020), but only
in Rose and O’alley (2018) and Yurkewich et al. (2020) and
HandyRehab a bracelet, are exploited to collect such signals. The
sEMG bracelet proposed in this study represents one more step
toward an entirely intuitive device, free from cumbersome cables
and external equipment. The advantages of such a solution are
not limited to the disturbance reduction, which is achieved by
physically decoupling the acquisition system from the wrist and
exploiting a Bluetooth bridge for data transmission. Indeed, it has
also been proved to help lighten the microcontroller workload on
the exoskeleton, which is no longer slowed down by the sEMG
signals sampling, preprocessing, and classification. It is worth
highlighting that the Bluetooth bridge avoids cables presence and
enables the system to stream sEMG data to any external platform
for development and monitoring purposes, even remotely. The
experimental tests conducted (and presented in the previous
section) have proved that the bracelet improved the HES, being
comfortably portable and effortlessly wearable, mitigating the
patient feeling of constraint on the forearm due to cables.

Ergonomics (subsection 3.2)-An ergonomic mechanical
design of a wearable assistive and rehabilitative device should
guarantee kinematic compatibility with the user fingers and a
comfortable mechanical-physical interface (Chiri et al., 2012).
The new prototype ergonomics have been increased thanks to a
tailor-made PLA splint that provides a high-stability kinematic
coupling with the user limb. This feature allows the mechanisms
to follow the desired finger trajectory correctly with decent
repeatability. This aspect is extremely crucial to prevent the
exoskeleton from forcing the hand into wrong and painful
poses. Specifically, the splint avoids the poor stability that was

due to the glove elasticity and ensures a better distribution
of efforts on the hand and forearm. Before starting tests, 1-
mm-thick Neoprene adhesive strips have been added to the
splint inner surface and edges to reduce direct contact with
the skin and the consequent skin redness and irritation. Only
a commercially available solution, the exomotion R©, exploits the
Reverse Engineering to achieve a glove and an arm splint
designed for the patient, to the best of the authors’ knowledge.
Its plaster casts are used in this case to mold a glove, which has to
be scanned and then rebuilt. Instead, for many solutions, a simple
platform to hold all the components is designed (Lambercy et al.,
2013; Diez et al., 2018; Wang et al., 2018; Dittli et al., 2020). Only
occasionally, it is curved according to the natural hand profile
but still not tailor-made on the specific patient hand (Tong et al.,
2010; Ho et al., 2011).

Although improved over previous versions, the ergonomics of
the device still have plenty of room for improvement. Firstly, the
splint might be improved by exploiting a reticular structure with
variable stiffness, making it more breathable and fitting to the
hand. Second, the development of a donning/doffing system to let
the patient autonomously wear the exoskeleton would be crucial.
To the best of the authors’ knowledge, there are no devices that
include such a system in the literature. In its current state, this
solution is only a first step toward a system fully compliant
with the hand, which can provide ergonomic support to fix the
exoskeleton. Also, the splint makes the HES donning/doffing
phase easier, reducing the time the therapist spent on this
procedure while guaranteeing noteworthy kinematic stability.

Overall architecture and power supply system (subsection

3.3)-The most significant innovation of this new architecture
compared to the current state-of-the-art wearable robots—at
least to the best of the authors’ knowledge—is undoubtedly owed
to this aspect. The exoskeleton is now standalone and entirely
wearable. The modular structure is differently proposed in some
other devices (In et al., 2015; Polygerinos et al., 2015; Randazzo
et al., 2017; Hadi et al., 2018; Rose and O’alley, 2018; Yu et al.,
2019; Dittli et al., 2020), also in the commercially available ones,
to enable some components dislocation and lightening the device
on the hand back, against complete wearability and portability.
The proposed solution makes faster and more streamlined the
HES design process, its embodiment, its assembly, and its
regulation on the hand, while not foreclosing the complete
wearability and portability features instead. Besides, such a
structure reduces the maintenance times since only the modules
eventually needed can be replaced.

Toothed belt exploitation between the motor and secondary
shaft makes the motion transmission more accurate and stable,
preventing unexpected cable unwinding, which could cause
errors during hand opening or closing. The total encapsulation
of the power supply system and the electronics (including the one
for processing sEMG signals) prevents the device from exposing
delicate components—which otherwise should have to be placed
along the upper-limb—resulting in a smaller and electrically safer
design, thus not constraining the patient movements. Indeed,
these changes allow achieving the following overall dimensions
of the module on the hand back: 80 mm in width, 72.5 mm in
length, and 70.6 mm in height. In addition, the new mechanisms
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FIGURE 8 | The figure shows the new architecture of the wearable HES

developed at the MDM Lab.

bulkiness is smaller than that of the previous prototype, as visible
in Table 4, by streamlining the structure. It is worth noting
that all the length sizes have been reduced, having removed
some components. Instead, the heights have remained relatively
similar to the previous one. However, such a solution results
also in a worse masses distribution. Indeed, about 460 g is
now concentrated on the hand back. It may sometimes produce
a slight unintentional outwards hand twisting, owed to the
gravity center position, which is too high to the hand. Thus,
such a distribution makes the exoskeleton hard to be worn
by the patient for a long time to have continuous assistance
in ADLs. Instead, it could be more easily used for shorter
rehabilitation exercises.

Finally, the three layers of the actuation box case improve the
device usability and safety, enabling the wearer to change the
exhausted batteries straightforwardly.

Table 1 reports some of the most significant state-of-the-
art devices. It is worth noting that only a few of them are
fully wearable, i.e., without any components dislocated from
the hand, as Bouteraa et al. (2019) and Yurkewich et al.
(2020) and HandyRehab. Unlike (Bouteraa et al., 2019), the
new HES design eliminates cables and exploits a wireless bridge
for sEMG signals transmission, as in Yurkewich et al. (2020)
and HandyRehab. Compared to the commercially available
HandyRehab the proposed HES is specifically tailored to the
patient hand, and its finger-handling mechanisms result more
streamlined. Finally, it is worth comparing the new prototype
with My-HERO presented in Yurkewich et al. (2020). They have
been designed for similar purposes but with different methods.
Indeed, the proposed HES is based on rigid structures, whileMy-
HERO is based on a soft one. The choice of using soft elements
certainly reduces the weight and encumbrance of the system:My-
HERO results, in fact, lighter and slimmer than the proposed
exoskeleton. On the other side though, exploiting mechanical
components increases the overall weight but generally ensure also

greater kinematic accuracy and force effectiveness. Besides, the
proposed design ensures that the palm and the lower surface
of the fingers are mostly component-free; feature that, unlike
the glove exploited in My-HERO, preserves the sense of touch.
Finally, while My-HERO needs to establish and maintain a
connection with a PC, the proposed system classifies the user
intention internally, hence boosting the system portability and
the user freedom of movement.

Overall, the novelty of this study lies in proposing a
design that, differently from other state-of-the-art solutions,
collects most of the primary crucial characteristics of assistive
and rehabilitative devices (i.e., wearability, portability,
safety, comfort, compliance, customization, force, and cost
effectiveness). Nonetheless, the authors are well aware of the
wide room for improvements left, in particular, regarding
component miniaturization, thumb actuation, and independent
finger movement.

6. CONCLUSIONS AND FUTURE
PERSPECTIVES

The overall newHESmechatronic design, proposed in this article
and shown in Figure 8, presents innovative and noteworthy
aspects compared to the current state-of-the-art wearable robots
for hand disabilities. The proposed solution has several strengths,
of which some are inherited from the previous prototypes. The
rigid mechanisms geometry and new splint-based interface are
tailored to the patient hand and forearm to be as compliant
as possible with its anatomy and natural movements, and
thus comfortable for the patient. A single actuator exploitation
considerably lightens the whole system, while using a toothed
belt provides better stability to the motion transmission and
acts as mechanical friction in emergency cases. Also, spaces
inside the module on the hand back have been exploited to
the best, which, along with not using any more cables for
data transmission, prevent an annoying feeling of constraint
on the forearm and increase safety. The sEMG-based intention
recognition technique represents a highly intuitive way of
managing the system motion. Besides, the new data transmission
protocol allows for straightforward monitoring of the system
status using any Bluetooth-compatible devices and thus also
remotely rehabilitation treatments by performing tasks preset
by the therapist. So, the new HES results to be customizable,
compliant and comfortable for the patient. Its components
placement does not add impairments to the user motions, also
ensuring safety. The device is force effective, intuitive, and fully
wearable and portable. Finally, the HES is affordable since it costs
about 550ǫ, compact since it does not exceed a standard hand
size, and lightweight since it weighs less than 550 g. Therefore,
the primary requirements listed in section 1 have been met. The
proposed enhancements allow to achieve a solution that results
in helpful for the pilot study patient mainly in grasp movements,
still having some difficulties in grip ones, depending on the item
shape and sizes, especially in pinch movements. Also, it can be
helpful in rehabilitation sessions. Concerning this point, it is
worth noting that the possibility that the patient individually
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wears, uses, and removes the device depends on its conditions.
If the patient cannot don the device alone, as in this study, the
therapist presence is mandatory at home and in clinics.

Complete wearability and portability, safety, comfort,
compliance, force effectiveness, customization, intuitiveness,
and affordability are features encapsulated in this device, based
on rigid mechanisms—unlike other soft solutions—and this
represents the true novelty of the study.

Nevertheless, some flaws have still been and will be under
investigation in the short-term future. Firstly, the cable-driven
actuation needs to be replaced since, even if it can adapt well
to the hand’s complex kinematics, it allows active actuation only
when opening. Such a solution is enough for the pilot study
patient, but in enlarging the subjects that can use it, active
actuation also during closing may be required. In addition,
it sometimes presents a problematic reversal of motion—also
happened during the experimental tests—mainly when too much
cable has been unwound, thus requiring specific maintenance
work to restart the HES. Second, the lack of a thumb-handling
mechanism still limits usability since its opposition is crucial
to achieving good dexterity in object handling. Intending to
produce a complete device, the development of a thumb
mechanism is now under investigation. Third, bearing in mind
the mentioned considerations, the fingers’ independent motion
might be challenging to implement but crucial to allow different
hand gestures, such as precision manipulation or pinching, and
further improve ergonomics. Finally, the space on the hand
back has been optimized, but the weight distribution worsens,
especially for assistance purposes. Besides, the finger mechanism
dimensions still prevent the HES use in confined spaces, e.g.,
turning a handle or pinching small items, as also happened
during the ARAT.

Both component miniaturization and masses redistribution
will undoubtedly improve the device usability, ergonomics,
and comfort for all these reasons. Also, unlocking the wrist
articulation might be considered by changing the HES support
base and hand connection system. All these enhancements

represent the core of the present and future research activities of
the group.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

NS: conceptualization, writing, supervision, and
experimentation. CB and FG: writing, supervision, and
experimentation. MP, FV, YV, and AR: conceptualization and
supervision. FB: conceptualization. MB: conceptualization and
experimentation. All authors contributed to the article and
approved the submitted version.

FUNDING

This work has been supported byDonCarlo Gnocchi Foundation
(Italy) and three research projects: the “HOLD” project funded
by the University of Florence, the “HERMES” project funded by
Fondazione CR Firenze, and the “BMIFOCUS” project funded by
the Tuscany Region (POR FESR 2014–2020).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2021.750385/full#supplementary-material

REFERENCES

Anderson, K. D. (2004). Targeting recovery: priorities of the spinal cord-injured

population. J. Neurotrauma. 21, 1371–1383. doi: 10.1089/neu.2004.21.1371

Bianchi, M., Fanelli, F., Meli, E., Ridolfi, A., Vannetti, F., Bianchini, M., et al. (2018).

Optimization-based scaling procedure for the design of fully portable hand

exoskeletons.Meccanica 53, 3157–3175. doi: 10.1007/s11012-018-0858-7

Bianchi, M., Secciani, N., Ridolfi, A., Vannetti, F., and Pasquini, G. (2019).

Kinematics-based strategy for the design of a pediatric hand exoskeleton

prototype.Mech. Mach. Sci. 68, 501–508. doi: 10.1007/978-3-030-03320-0_55

Bouteraa, Y., Abdallah, I. B., and Elmogy, A. M. (2019). Training of hand

rehabilitation using low cost exoskeleton and vision-based game interface. J.

Intell. Rob. Syst. 96, 31–47. doi: 10.1007/s10846-018-0966-6

Bouzit, M., Burdea, G., Popescu, G., and Boian, R. (2002). The rutgers master ii-

new design force-feedback glove. IEEE/ASME Trans. Mechatron. 7, 256–263.

doi: 10.1109/TMECH.2002.1011262

Butter, M., Rensma, A., Boxsel van, J., Kalisingh, S., Schoone, M., Leis, M., et al.

(2008). Robotics for healthcare: Final report. European Commission EC. http://

www.ehealthnews.eu/images/stories/robotics-final-report.pdf

Cappello, L., Meyer, J. T., Galloway, K. C., Peisner, J. D., Granberry, R.,

Wagner, D. A., et al. (2018). Assisting hand function after spinal cord

injury with a fabric-based soft robotic glove. J. Neuroeng. Rehabil. 15, 1–10.

doi: 10.1186/s12984-018-0391-x

Cempini, M., Cortese, M., and Vitiello, N. (2014). A powered finger-

thumb wearable hand exoskeleton with self-aligning joint axes.

IEEE/ASME Trans. Mechatron. 20, 705–716. doi: 10.1109/TMECH.2014.23

15528

Chiaradia, D., Xiloyannis, M., Solazzi, M., Masia, L., and Frisoli, A. (2018).

“Comparison of a soft exosuit and a rigid exoskeleton in an assistive

task,” in International Symposium on Wearable Robotics. Pisa: Springer,

415–419.

Chiri, A., Cempini, M., De Rossi, S. M. M., Lenzi, T., Giovacchini, F., Vitiello,

N., et al. (2012). On the design of ergonomic wearable robotic devices for

motion assistance and rehabilitation. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.

2012:6124–6127. doi: 10.1109/EMBC.2012.6347391

Chu, C.-Y., and Patterson, R. M. (2018). Soft robotic devices for hand

rehabilitation and assistance: a narrative review. J. Neuroeng Rehabil. 15, 9.

doi: 10.1186/s12984-018-0350-6

Frontiers in Neurorobotics | www.frontiersin.org 13 October 2021 | Volume 15 | Article 75038562

https://www.frontiersin.org/articles/10.3389/fnbot.2021.750385/full#supplementary-material
https://doi.org/10.1089/neu.2004.21.1371
https://doi.org/10.1007/s11012-018-0858-7
https://doi.org/10.1007/978-3-030-03320-0_55
https://doi.org/10.1007/s10846-018-0966-6
https://doi.org/10.1109/TMECH.2002.1011262
http://www.ehealthnews.eu/images/stories/robotics-final-report.pdf
http://www.ehealthnews.eu/images/stories/robotics-final-report.pdf
https://doi.org/10.1186/s12984-018-0391-x
https://doi.org/10.1109/TMECH.2014.2315528
https://doi.org/10.1109/EMBC.2012.6347391
https://doi.org/10.1186/s12984-018-0350-6
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Secciani et al. An Original Hand Exoskeleton Design

Conti, R., Meli, E., and Ridolfi, A. (2016). A novel kinematic

architecture for portable hand exoskeletons. Mechatronics 35, 192–207.

doi: 10.1016/j.mechatronics.2016.03.002

De Weerdt, W., and Harrison, M. (1985). Measuring recovery of arm-hand

function in stroke patients: a comparison of the brunnstrom-fugl-meyer

test and the action research arm test. Physiotherapy Can. 37, 65–70.

doi: 10.3138/ptc.37.2.065

Desplenter, T., Zhou, Y., Edmonds, B. P., Lidka, M., Goldman, A., and Trejos,

A. L. (2020). Rehabilitative and assistive wearable mechatronic upper-limb

devices: a review. J. Rehabil. Assist. Technol. Eng. 7:2055668320917870.

doi: 10.1177/2055668320917870

Diez, J. A., Blanco, A., Catalán, J. M., Badesa, F. J., Lledó, L. D., and

Garcia-Aracil, N. (2018). Hand exoskeleton for rehabilitation therapies with

integrated optical force sensor. Adv. Mech. Eng. 10, 1687814017753881.

doi: 10.1177/1687814017753881

Dittli, J., Hofmann, U., Bützer, T., Lambercy, O., and Gassert, R. (2020). Remote

actuation systems for fully wearable assistive devices: requirements, selection,

and optimization for out-of-the-lab application of a hand exoskeleton. Front.

Rob. AI 7:187. doi: 10.3389/frobt.2020.596185

Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Leong, T. C.,

et al. (2008). Handcare: a cable-actuated rehabilitation system to train hand

function after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 582–591.

doi: 10.1109/TNSRE.2008.2010347

Duret, C., Grosmaire, A.-G., and Krebs, H. I. (2019). Robot-assisted therapy in

upper extremity hemiparesis: overview of an evidence-based approach. Front.

Neurol. 10:412. doi: 10.3389/fneur.2019.00412

Duruöz, M. T. (2014). “Assessment of hand functions,” in Hand Function New

York, NY: Springer, 41–51.

Duruoz, M. T. (2016). Hand Function. New York, NY: Springer.

Hadi, A., Alipour, K., Kazeminasab, S., and Elahinia, M. (2018). Asr

glove: a wearable glove for hand assistance and rehabilitation using

shape memory alloys. J. Intell. Mater Syst. Struct. 29, 1575–1585.

doi: 10.1177/1045389X17742729

Ho, N., Tong, K., Hu, X., Fung, K., Wei, X., Rong, W., et al. (2011). “An emg-

driven exoskeleton hand robotic training device on chronic stroke subjects: task

training system for stroke rehabilitation,” in 2011 IEEE International Conference

on Rehabilitation Robotics (Zurich: IEEE), 1–5.

Huang, X., Naghdy, F., Naghdy, G., Du, H., and Todd, C. (2017). Robot-assisted

post-stroke motion rehabilitation in upper extremities: a survey. Int. J. Disabil.

Hum. Dev. 16, 233–247. doi: 10.1515/ijdhd-2016-0035

In, H., Kang, B. B., Sin, M., and Cho, K.-J. (2015). Exo-glove: a wearable robot for

the hand with a soft tendon routing system. IEEE Rob. Autom. Mag. 22, 97–105.

doi: 10.1109/MRA.2014.2362863

Lambercy, O., Schröder, D., Zwicker, S., and Gassert, R. (2013). “Design of a thumb

exoskeleton for hand rehabilitation,” in Proceedings of the 7th International

Convention on Rehabilitation Engineering and Assistive Technology (Singapore:

Singapore Therapeutic, Assistive and Rehabilitative Technologies (START)

Centre), 41.

Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., and Leonhardt, S.

(2014). A survey on robotic devices for upper limb rehabilitation. J. Neuroeng.

Rehabil. 11, 1–29. doi: 10.1186/1743-0003-11-3

Meng, Q., Meng, Q., Yu, H., and Wei, X. (2017). “A survey on semg control

strategies of wearable hand exoskeleton for rehabilitation,” in 2017 2nd Asia-

Pacific Conference on Intelligent Robot Systems (ACIRS) (Wuhan: IEEE),

165–169.

Milia, P., Peccini, M. C., De Salvo, F., Sfaldaroli, A., Grelli, C., Lucchesi, G., et al.

(2019). Rehabilitation with robotic glove (gloreha) in poststroke patients.Digit.

Med. 5, 62. doi: 10.4103/digm.digm_3_19

Montagnani, F., Controzzi, M., and Cipriani, C. (2016). Independent long fingers

are not essential for a grasping hand. Sci. Rep. 6:35545. doi: 10.1038/srep35545

Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J., and Walsh, C. J. (2015).

Soft robotic glove for combined assistance and at-home rehabilitation. Rob.

Auton. Syst. 73, 135–143. doi: 10.1016/j.robot.2014.08.014

Putzu, F., Abrar, T., and Althoefer, K. (2018). “Development of a soft inflatable

structure with variable stiffness for hand rehabilitation,” in Computer/Robot

Assisted Surgery (CRAS), Vol, 8 (London), 2.

Randazzo, L., Iturrate, I., Perdikis, S., and Millán, J., d. R. (2017). mano: a wearable

hand exoskeleton for activities of daily living and neurorehabilitation. IEEE

Rob. Autom. Lett. 3, 500–507. doi: 10.1109/LRA.2017.2771329

Rechy-Ramirez, E. J., and Hu, H. (2015). Bio-signal based control

in assistive robots: a survey. Digit. Commun. Netw. 1, 85–101.

doi: 10.1016/j.dcan.2015.02.004

Riddle, M., MacDermid, J., Robinson, S., Szekeres, M., Ferreira, L., and Lalone, E.

(2020). Evaluation of individual finger forces during activities of daily living in

healthy individuals and those with hand arthritis. J. Hand Ther. 33, 188–197.

doi: 10.1016/j.jht.2020.04.002

Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson,

N., et al. (2019). Robot assisted training for the upper limb after stroke

(ratuls): a multicentre randomised controlled trial. Lancet 394, 51–62.

doi: 10.1016/S0140-6736(19)31055-4

Rose, C. G., and O’Malley, M. K. (2018). Hybrid rigid-soft hand exoskeleton

to assist functional dexterity. IEEE Rob. Autom. Lett. 4, 73–80.

doi: 10.1109/LRA.2018.2878931

Sarac, M., Solazzi, M., and Frisoli, A. (2019). Design requirements of generic

hand exoskeletons and survey of hand exoskeletons for rehabilitation, assistive,

or haptic use. IEEE Trans. Haptics. 12, 400–413. doi: 10.1109/TOH.2019.

2924881

Secciani, N., Bianchi, M., Meschini, A., Ridolfi, A., Volpe, Y., Governi, L., et al.

(2018). Assistive hand exoskeletons: the prototypes evolution at the university

of florence.Mech. Mach. Sci. 68, 307–315. doi: 10.1007/978-3-030-03320-0_33

Secciani, N., Bianchi, Ridolfi, A., and Allotta, B. (2019). Assessment of a

hand exoskeleton control strategy based on user’s intentions classification

starting from surface emg signals. Biosyst. Biorobot. 22, 440–444.

doi: 10.1007/978-3-030-01887-0_85

Secciani, N., Pagliai, M., Buonamici, F., Vannetti, F., Volpe, Y., and Ridolfi,

A. (2021). A novel architecture for a fully wearable assistive hand

exoskeleton system.Mech. Mach. Sci. 91, 120–127. doi: 10.1007/978-3-030-558

07-9_14

Secciani, N., Topini, A., Ridolfi, A., Meli, E., and Allotta, B. (2020). A novel

point-in-polygon-based semg classifier for hand exoskeleton systems. IEEE

Trans. Neural Syst. Rehabil. Eng. 28, 3158–3166. doi: 10.1109/TNSRE.2020.

3044113

Tong, K., Ho, S., Pang, P., Hu, X., Tam, W., Fung, K., et al. (2010). “An

intention driven hand functions task training robotic system,” in 2010 Annual

International Conference of the IEEE Engineering in Medicine and Biology

(Buenos Aires: IEEE), 3406–3409.

Troncossi, M., Mozaffari-Foumashi, M., and Parenti-Castelli, V. (2016). An

original classification of rehabilitation hand exoskeletons. J. Robot. Mech. Eng.

Res 1, 17–29. doi: 10.24218/jrmer.2016.18

Wang, D., Meng, Q., Meng, Q., Li, X., and Yu, H. (2018). Design and

development of a portable exoskeleton for hand rehabilitation. IEEE

Trans. Neural Syst. Rehabil. Eng. 26, 2376–2386. doi: 10.1109/TNSRE.2018.

2878778

Yozbatiran, N., Der-Yeghiaian, L., and Cramer, S. C. (2008). A standardized

approach to performing the action research arm test. Neurorehabil. Neural

Repair. 22, 78–90. doi: 10.1177/1545968307305353

Yu, S., Perez, H., Barkas, J., Mohamed,M., Eldaly, M., Huang, T.-H., et al. (2019). A

soft high force hand exoskeleton for rehabilitation and assistance of spinal cord

injury and stroke individuals. Front. Biomed. Devices 41037:V001T09A011.

doi: 10.1115/DMD2019-3268

Yun, Y., Dancausse, S., Esmatloo, P., Serrato, A., Merring, C. A., Agarwal,

P., et al. (2017). “Maestro: an emg-driven assistive hand exoskeleton

for spinal cord injury patients,” in 2017 IEEE International Conference

on Robotics and Automation (ICRA) (Singapore: IEEE), 2904–2910.

doi: 10.1109/ICRA.2017.7989337

Yurkewich, A., Kozak, I. J., Ivanovic, A., Rossos, D., Wang, R. H., Hebert,

D., et al. (2020). Myoelectric untethered robotic glove enhances hand

function and performance on daily living tasks after stroke. J. Rehabil.

Assist. Technol. Eng. 7:2055668320964050. doi: 10.1177/2055668320

964050

Zhang, K., Chen, X., Liu, F., Tang, H., Wang, J., and Wen, W. (2018).

System framework of robotics in upper limb rehabilitation on poststroke

Frontiers in Neurorobotics | www.frontiersin.org 14 October 2021 | Volume 15 | Article 75038563

https://doi.org/10.1016/j.mechatronics.2016.03.002
https://doi.org/10.3138/ptc.37.2.065
https://doi.org/10.1177/2055668320917870
https://doi.org/10.1177/1687814017753881
https://doi.org/10.3389/frobt.2020.596185
https://doi.org/10.1109/TNSRE.2008.2010347
https://doi.org/10.3389/fneur.2019.00412
https://doi.org/10.1177/1045389X17742729
https://doi.org/10.1515/ijdhd-2016-0035
https://doi.org/10.1109/MRA.2014.2362863
https://doi.org/10.1186/1743-0003-11-3
https://doi.org/10.4103/digm.digm_3_19
https://doi.org/10.1038/srep35545
https://doi.org/10.1016/j.robot.2014.08.014
https://doi.org/10.1109/LRA.2017.2771329
https://doi.org/10.1016/j.dcan.2015.02.004
https://doi.org/10.1016/j.jht.2020.04.002
https://doi.org/10.1016/S0140-6736(19)31055-4
https://doi.org/10.1109/LRA.2018.2878931
https://doi.org/10.1109/TOH.2019.2924881
https://doi.org/10.1007/978-3-030-03320-0_33
https://doi.org/10.1007/978-3-030-01887-0_85
https://doi.org/10.1007/978-3-030-55807-9_14
https://doi.org/10.1109/TNSRE.2020.3044113
https://doi.org/10.24218/jrmer.2016.18
https://doi.org/10.1109/TNSRE.2018.2878778
https://doi.org/10.1177/1545968307305353
https://doi.org/10.1115/DMD2019-3268
https://doi.org/10.1109/ICRA.2017.7989337
https://doi.org/10.1177/2055668320964050
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Secciani et al. An Original Hand Exoskeleton Design

motor recovery. Behav. Neurol. 2018:6737056. doi: 10.1155/2018/

6737056

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the author

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Secciani, Brogi, Pagliai, Buonamici, Gerli, Vannetti, Bianchini,

Volpe and Ridolfi. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 15 October 2021 | Volume 15 | Article 75038564

https://doi.org/10.1155/2018/6737056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


ORIGINAL RESEARCH
published: 05 November 2021

doi: 10.3389/fnbot.2021.683253

Frontiers in Neurorobotics | www.frontiersin.org 1 November 2021 | Volume 15 | Article 683253

Edited by:

Josep M. Font-Llagunes,

Universitat Politecnica de Catalunya,

Spain

Reviewed by:

Amit N. Pujari,

University of Hertfordshire,

United Kingdom

Alejandro Zacarías,

Instituto Politécnico Nacional (IPN),

Mexico

Strahinja Dosen,

Aalborg University, Denmark

*Correspondence:

Manuel G. Catalano

manuel.catalano@iit.it

Received: 20 March 2021

Accepted: 06 October 2021

Published: 05 November 2021

Citation:

Godfrey SB, Piazza C, Felici F,

Grioli G, Bicchi A and Catalano MG

(2021) Usability Assessment of Body

Controlled Electric Hand Prostheses:

A Pilot Study.

Front. Neurorobot. 15:683253.

doi: 10.3389/fnbot.2021.683253

Usability Assessment of Body
Controlled Electric Hand Prostheses:
A Pilot Study
Sasha B. Godfrey 1,2, Cristina Piazza 3, Federica Felici 1, Giorgio Grioli 1, Antonio Bicchi 1,4

and Manuel G. Catalano 1,2*

1 Soft Robotics for Human Cooperation and Rehabilitation, Center for Robotics and Intelligent Systems, Istituto Italiano di

Tecnologia, Genoa, Italy, 2 Assistive and Restorative Technology Laboratory, Rehabilitation Medicine Research Center, Mayo

Clinic, Rochester, MN, United States, 3Department of Informatics and Munich Institute of Robotics and Machine Intelligence,

Technical University of Munich, Munich, Germany, 4Centro “E. Piaggio” and Dipartimento di Ingegneria Informatica,

University of Pisa, Pisa, Italy

Poly-articulated hands, actuated by multiple motors and controlled by surface

myoelectric technologies, represent the most advanced aids among commercial

prostheses. However, simple hook-like body-powered solutions are still preferred for

their robustness and control reliability, especially for challenging environments (such as

those encountered in manual work or developing countries). This study presents the

mechatronic implementation and the usability assessment of the SoftHand Pro-Hybrid,

a family of poly-articulated, electrically-actuated, and body-controlled artificial hands,

which combines the main advantages of both body-powered and myoelectric systems in

a single device. An assessment of the proposed system is performed with individuals with

and without limb loss, using as a benchmark the SoftHand Pro, which shares the same

soft mechanical architecture, but is controlled using surface electromyographic sensors.

Results indicate comparable task performance between the two control methods and

suggest the potential of the SoftHand Pro-Hybrid configurations as a viable alternative

to myoelectric control, especially in work and demanding environments.

Keywords: prosthetic hand, myoelectric control, body-powered prostheses, prosthetic control, soft robotics

1. INTRODUCTION

Upper limb loss is disproportionately found in developing countries with trauma and war as the
most common causes (World Health Organization, 2004). While disease is also a frequent cause,
upper limb loss globally tends to affect a younger, working-age population (van der Sluis et al.,
2009). It is therefore important that prosthetic solutions take this population into account by being
economically accessible and robust to strenuous use or hostile environments. However, a 1985
study found that 75% of persons with amputation (upper, lower, and multiple) change occupation
group when they return to the work-force post-amputation, moving from machining, processing,
fabrication, and construction to service, clerical, and sales (Millstein et al., 1986). Additionally,
only 21% returned to their pre-amputation job and more than half noted negative repercussions on
career potential following amputation (Millstein et al., 1986). A recent literature review (Darter
et al., 2018) found that data on returning to work post-amputation varies greatly (48–89% of
individuals) but that returning to one’s previous position continues to be rare and less frequent
for manual rather than office work.
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Active prosthetic solutions are either body-powered or
electric. Most of the former are controlled using a shoulder
harness that encompasses one or both shoulders (figure-of-nine
or figure-of-eight, respectively) depending on the amputation(s),
see Figure 1. Most of the latter are myoelectrical controlled, that
is using muscle signals in the residual limb. Myoelectric devices
are typically anthropomorphic in appearance if not in structure:
most devices have a hand-shaped glove or shell covering a tri-
digit structure. The newest devices, however, have five fingers and
multiple motors to enable various postures. While the former is
relatively simple to control, they provide only a single, rigid, C-
shaped grasp. The latter, in contrast, offer more grasp modalities
but place a higher cognitive burden on the user (Kuiken et al.,
2016). Along with control complexity, weight tends to increase
with myoelectric prosthetic complexity, due in part to the use
of multiple motors (Belter et al., 2013), and robustness tends
to decrease. In contrast, body-powered prostheses are most
typically split-hook models and thus are not anthropomorphic.
Some specific domains show better performance by one type of
prosthesis over the other (Carey et al., 2017), e.g., myoelectric
hands tend to be more accepted for low-intensity work, while
their drawbacks, in general, render them less desirable for
use in manual tasks in home and work environments and in
resource-poor areas, which represent tough testing grounds for
a prosthetic system. Conversely, body-powered hooks are the
most used aids in such contexts. As such, many prosthesis users
have more than one prosthetic device, choosing between them
based on activity or setting, for example preferring one for work
environments and another for social situations (Millstein et al.,
1986; Dakpa and Heger, 1997).

Each type has its advantages and disadvantages, and although
commercial and research innovations tend toward highly-
sophisticated myoelectric devices, many individuals continue to
use body-powered systems (Biddiss and Chau, 2007b; Østlie
et al., 2012), which have seen only minor improvements in the
last century (Hashim et al., 2018). Sophisticated myoelectric
technologies may be difficult to control or lack reliability and
may not provide adequate support across all activities of daily
living. The latter aspect is also highlighted by the outcomes
of international competitions such as the Cybathlon - Powered
Arm Prosthetic Race (Riener, 2016). In both editions (Cybathlon
2016 and Cybathlon 2020) approaches aiming at simple body-
powered designs proved notable benefits and outperformed all
myoelectric prostheses in the competition. This is not to say that
one prosthesis type is superior to another. There is insufficient
evidence to draw such a conclusion and ultimately the user must
decide based on need, access, and other personal factors (Carey
et al., 2015). Indeed, Østlie et al. (2012) surveyed 181 prosthesis
users and found roughly 30% used a body-powered device as
their primary prosthesis and roughly 34% used a myoelectric
device. Of those users listing a secondary device, roughly 36%
used a body-powered device and 27% a myoelectric one.

Looking more closely at these advantages and disadvantages,
body-powered prostheses tend to bemore robust and lighter than
their myoelectric counterparts, with different materials available
(aluminium, steel, etc.) to balance robustness and weight to
suit the needs of the user. Furthermore, the shoulder harness

provides a straight-forward and easy-to-use control method with
limited sensory feedback (Brown et al., 2017), at the cost of
applying pressure to the axilla, which can cause discomfort or
even damage to the brachial plexus over time (Fryer, 1992).
Users of myoelectric devices tend to rely on visual feedback to
guide movements; however, the sound of the motor is also used
to inform prosthetic control (Antfolk et al., 2013). In terms of
comfort, myoelectric systems require a rigid interface between
the socket and the residual limb to ensure adequate contact
with surface electromyographic sensors (sEMG), while body-
powered systems can employmore comfortable soft socket liners,
and the contact area with the residual limb can be significantly
increased. Moreover, performance of sEMG drops severely when
impurities, such as dirt or sweat, interpose between the sEMG
and the underlying skin; this problem can be mitigated at least
in part with the use of solutions such as linear transducers,
switches, and other biomechanical control methods (Childress,
1992; Muzumdar, 2004). Body-powered prosthesis function does
not suffer from these aspects.

This work explores the concept of a “hybrid” configuration
that aims to feature robust and intuitive control in a prosthesis
that is both resilient to harsh environments, highly functional,
and anthropomorphic, thanks to the combination of the main
advantages of both body-powered and myoelectric systems in
a single device. As presented in Figure 1, a myoelectric hand
prosthesis requires three main additional components compared
to a body-powered prosthesis: a motor to actuate the device,
an electronic board to control it, and a battery to power it,
all generally located within the hand and socket. The approach
proposed has the advantage of enabling multiple solutions
through the placement of the electro-mechanical components
in three possible locations: on the hand, in the socket, or on
the body of the user. Considering different solutions among
these, the designer can thus create a class of devices suitable for
different applications.

Although current commercial prostheses are rigid, novel
trends in robotic research are moving the state of the art of
artificial hands in a different direction, which includes soft
materials and structures and simpler actuation mechanisms
(Piazza et al., 2019). Soft robotics may present a particular
advantage in challenging environments by naturally being more
robust to collisions and similar mis-use (Negrello et al., 2020).
In Godfrey et al. (2018), we proposed the SoftHand Pro,
a myoelectric prosthetic device whose movement is based
on neuroscientific principles of hand joint coordination, or
synergies, in line with the proposal above. Despite good results
in terms of grasping capabilities, ease of use, and user acceptance
(Godfrey et al., 2018), the SoftHand Pro maintains those
drawbacks directly related to the use of sEMG sensors (e.g.,
sensitivity to dirt and dust, socket interface, costs). Moreover,
functionality of myoelectric solutions is dependent on many
constraints, not only connected with the technology itself but
also related to clinical aspects (i.e., insufficient muscle activation
in the residual limb). For these reasons, in Piazza et al.
(2017), we presented the concept of the SoftHand Pro-Hybrid
(SHPH), to combine the easy-to-use control of a body-powered
prosthesis with the power available from an electric terminal
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FIGURE 1 | The typical set-up of a body-powered prosthesis (using a figure-of-nine harness) is shown on the left and a typical myoelectric prosthesis on the right. The

input and terminal device components highlighted in the inset are combined in hybrid systems. Main components: EE, Prosthetic Device; S, Socket; RS, Rigid Socket;

SL, Soft Socket Liners; B, Cable Control System; EMG, Surface Electromyographic Sensors; M, Motors; EL, Electronic Boards; BT, Battery Pack; PB, Power Button;

ET, Electrical Transmission Cable; MT, Flexible Transmission Shaft.

device. As introduced in the detailed analysis of Piazza et al.
(2017), considering all possible combinations of components
and locations, 8 potential solutions were isolated (refer to
Table 1, for details), and one of them was briefly evaluated with
only one amputee subject (an expert user of a body-powered
hook). The work presented in Piazza et al. (2017) sketches the
main ideas behind the platform and shows the main technical
advantages of such an approach: simple control of the prosthetic
hand while retaining high grip power and providing a high
level of robustness, adaptivity, and resilience. However, it does
not provide any clinical assessment of the platform or any
information about the mechatronic designs that can be used to
build all the possible solutions.

The work presented herein has as its main goal to assess
the usability of a hybrid system with multiple subjects (not
expert body-powered users), through the adoption of standard
clinical tests, and make a comparison with a system, based on
the same architecture and used as a benchmark, but activated
by conventional myoelectric control (the SoftHand Pro). Given
the lack of literature on specific tests to assess prostheses in
work and challenging environments, we selected the ACMC
test and the System Usability Scale (SUS) as our main outcome
measures. The former because it takes in consideration several
aspects of manipulation (e.g., the releasing or the holding
phase) in the context of, but independent from, everyday tasks,
and the latter because it is a standard questionnaire used to
evaluate technological devices. The results of this investigation

suggest that hybrid solutions can be a valid alternative to
myoelectric control, e.g., in situations that require high grip
power, grasp versatility and resilience or depending on user
preferences. Specifically, hybrid solutions may be more suitable
for working activities and challenging environments, where the
use of sEMG sensors, that can be sensitive to sweat or socket
alignment, increase the overall complexity. The study extends
the work in Piazza et al. (2017) exploring the usability of
two of the solutions presented in that work. Furthermore, it
provides a first insight into the possibility of using the SoftHand
architecture to make a direct comparison between myoelectric
and body-power control modes. Indeed, few studies address
this topic (Edelstein and Berger, 1993; Carey et al., 2009),
which is of great relevance to understanding which control
modes are best suited to a user or use-case. In the opinion
of the authors,these types of comparisons could help advance
the research field and warrant deeper investigation in future
work. To achieve these goals, we proceed as follows. Sections
2.1, 2.2, and 2.3 present the mechanical implementation of the
hybrid andmyoelectric solutions, while section 2.4 discusses pros
and cons of each layout, with respect to a set of specifications
and indications that comes from a detailed analysis of surveys
and studies available in the state of art. Then, sections 2.5
and 2.6 present the assessments selected for this analysis and
the protocol performed with individuals with and without
limb loss. Results are presented in section 3 and discussed
in section 4.

Frontiers in Neurorobotics | www.frontiersin.org 3 November 2021 | Volume 15 | Article 68325367

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Godfrey et al. Body Controlled Electric Hand Prostheses

TABLE 1 | Summary of hybrid component locations for 8 feasible solutions

(Piazza et al., 2017) and, for reference, myoelectric solution (BM) component

location (Godfrey et al., 2018).

SOL HAND SOCKET EXT BOX

A

B

C

D

E

F

G

H

BM -

2. MATERIALS AND METHODS

2.1. SoftHand Architecture
The mechanical structure of the terminal devices considered in
this work is based on the architecture of the Pisa/IIT SoftHand
(Catalano et al., 2014), from which both the myoelectrically
controlled and the hybrid body controlled prosthetic hands are
derived. The architecture presents an anthropomorphic shape
with 19 DoFs. Each finger consists of a group of rolling joints
connected by elastic ligaments. The elastic bands, fixed on either
side of the joint, make the system soft and safe and allow the
hand to automatically return to its correct configuration, i.e., after
severe dislocations. The transmission system uses one tendon
that runs through the entire hand in two levels of pulleys,
giving adaptivity to the overall system without a differential
gear mechanism. The soft robotic mechanical design gives the
hand an overall robustness with the capability of adapting its
closure to the shape of objects. Phalanges and structural parts
of the palm are crafted using high-performance thermoplastic
materials (nylon reinforced with 35% of glass fibres), and are
produced using injection molding techniques, enabling a sizable
reduction of weight and costs. Such technological solutions allow
the possibility of working in harsh and dangerous environments
(for more details please refer to Piazza et al., 2017; Godfrey et al.,
2018; Mura et al., 2018; Negrello et al., 2020). As an example of
these capabilities, photo-sequence in Figure 10 shows one of the
subjects enrolled in this study performing a grasping task in an
underwater setting.

2.2. Body Controlled SoftHand: Concept
and Development
The hybrid solutions adopt the structural architecture described
in section 2.1 and integrate a Hosmer body-powered wrist
to interface with the socket, enabling prono-supination
movements through manual wrist rotation. The idea of a

hybrid configuration can be realized in different ways. In our
approach, the hybrid system uses an electromechanical lever to
translate inputs from a shoulder harness to motor control. The
electromechanical lever consists of a linear mechanism and spur
gear. The position is read by a single encoder that transmits
signals to the motor through the electronic board to command
hand opening/closing.

The amount of shoulder excursion required to correctly
operate the SHPH (i.e., to yield full opening/closure and switch
between control modalities) is modifiable to balance comfort,
ease-of-use, sensitivity, and resolution. The benefits of this
mechanism are visible already in Piazza et al. (2017). These values
were adjusted for each study subject at the start of each trial and, if
needed, fine-tuned during the training period. Additionally, the
user can use the lever to switch between two modes, voluntary-
opening (VO) and voluntary-closing (VC), (Sensinger et al.,
2015) by compressing the end-stroke spring on the remote or
mounted lever through additional shoulder rotation. The ability
to switch between modes allows users to employ whichever they
were most comfortable with, both in general and, if desired, on
a task-by-task basis; for example, using VO for carrying robust
and/or heavy objects and VC for handling more fragile objects
or for precision grasping. The other components can be grouped
into three modules, each one embedding a mechanical subsystem
as shown in Figure 2:

1. Actuation Group, which includes the motor and a position
sensor. In our implementation, a DCX 22S + GPX 83:1Maxon
motor is used, combined with an Austrian Microsystem
Magnetic Encoder.

2. Electronic Board, equipped with a Cypress PSOC micro-
controller and a daisy chain RS485 Bus and several i/o
connections. The board can communicate with magnetic
sensors through the SSR protocol. The custom electronic
board is derived from Della Santina et al. (2017);

3. Battery Pack, used to power the hand (in our implementation,
an off-the-shelf battery from Parrot AirDrone 2.0 with a
capacity of 1,500 mAh).

The technical specifications of the components included in the
three modules are reported in Table 2; these can be used to
evaluate all eight proposed solutions. All eight solutions are
practicable and can be adapted to different situations, activities
or to meet user needs.

This concept becomes clearer if we apply a multi-variate
Pareto analysis (Hwang and Yoon, 2012) to the different
configurations following specific criteria. Using this method,
it is possible to highlight how each configuration measures
against the different criteria, which ideally should be selected
and customized with the user. To give a more clear example
of this concept, we choose four criteria considering the critical
factors motivating device abandonment and leading consumer
design priorities, as stated in the literature. From Cordella et al.
(2016) it is evident how comfort, function and appearance
of the prosthesis are the aspects with the highest priority for
users and common to all device types. In particular (Biddiss
et al., 2007) highlights how, for body-powered systems, harness
comfort and weight reduction are among the main problems
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FIGURE 2 | CAD model of the three main mechanical subsystems: (A) the actuation group, (B) the electronic, and (C) the battery pack. The hybrid devices use an

input lever (D) to translate the shoulder movement into hand commands.

TABLE 2 | Technical specifications of the three mechanical subsystems.

Motor Group Electronic Battery Pack

Weights 130 g 15 g 202 g

Dimensions d = 22 mm, l = 80 mm 60 × 30 × 12 mm 94 × 66 × 37 mm

experienced by the users. Moreover, it is also important to take
into account characteristics specific to the user, such as the
level of limb loss (Biddiss and Chau, 2007a), a factor which
is strictly connected to the design of the socket and to the
placement of the device electro-mechanical components. Starting
from these considerations, the following criteria were selected for
this study:

1. Shoulder torque, directly related to system weight and
placement (Cordella et al., 2016). It is calculated considering
the linear distance from the shoulder to the component
using standard anthropometric measurements (average data
between male and female) from McConville et al. (1980);
Dempster (1955) and the weights of each component. We
are not considering the weight of the terminal device and
socket because, for our analysis, it will be the same in all
the configurations. This criterion relates both to function as
well as comfort. If the shoulder torque is excessively high,
the hand will be more difficult to operate, as it will require
more strength. Additionally, shoulder torque contributes to
repetitive use strain and injury, typically to the brachial plexus,
as mentioned above (Fryer, 1992);

2. Number of elements to wear, an important consideration in
terms of comfort (Cordella et al., 2016) as well as appearance.
Wearing multiple components can render the system more
bulky and less aesthetically pleasing as well as potentially
making the system more challenging to don and doff. The
elements considered in this analysis are hand, socket and an
external box. Note: as the hand and socket are necessary for all
solutions, this criterion refers primarily to the external box;

3. Cable length, to connect each subsystem (both electric and
driving cables) and calculated considering the distance the
cables traverse across the arm and/or back following standard

TABLE 3 | Data of shoulder torque, components to wear, cable length, and total

volume criteria for each hybrid configuration and benchmark.

SOL Shoulder

torque (Nm)

Comp. to

wear

Cable

length (m)

Total vol.

(cm3)

A 199.650 2 1.250 229.548

B 108.750 3 2.100 0

C 195.150 2 0.950 251.148

D 156.150 2 0.950 555.254

E 65.250 3 1.800 325.706

F 151.500 3 1.550 0

G 90.900 3 1.550 304.106

H 0 3 1.550 0

BM 199.650 2 1.250 229.548

FIGURE 3 | Results of the Pareto analysis applied to the 8 hybrid

configurations (preliminary presented in Piazza et al., 2017), considering 4

indices: (1) the shoulder torque, (2) the number of elements to wear, (3) the

cable length and (4) the total volume occupied by the components included in

the socket. NB: values for the benchmark are presented by the dashed,

magenta line labeled “BM”.

anthropometric measurements from McConville et al. (1980);
Dempster (1955). As discussed above, comfort in term of
cables is highlighted as an important aspect for body-powered
users (Biddiss et al., 2007). In addition to comfort, cabling can
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FIGURE 4 | Schematic placement (A–C; Benchmark, Compact, and Hardy Configurations, respectively) of the components of the configurations tested in this study

on the hand, socket, and waist of the user and pictures (D–F) of the physical devices used. EE, Prosthetic Device; S, Socket; RS, Rigid Socket; SL, Soft Socket

Liners; B, Cable Control System; EMG, Surface Electromyographic Sensors; M, Motors; EL, Electronic Boards; BT, Battery Pack; PB, Power Button; BT, Battery

Pack; ET, Electrical Transmission Cable; MT, Flexible Transmission Shaft; F8, Figure-of-eight Harness; F9, Figure-of-nine Harness.

affect function in terms of mechanical feasibility, as some of
the user’s shoulder effort is lost along the flexible transmission
shaft. Additionally, cabling may affect both appearance and
aesthetics depending on cable routing and the user’s ability to
hide cables under clothing, if desired;

4. Total volume occupied by the components included in
the socket, calculated considering the volume of each
electromechanical subsystem for each case. This aspect should
not be underestimated as it relates to limb length (important
for function and aesthetics) and device feasibility, depending
on residual limb length and especially in the case of users with
distal amputation (Biddiss and Chau, 2007a).

The metrics for each criterion for the hybrid configurations
are shown in Table 3, while the results of the analysis are
presented in Figure 3. For each criterion, a smaller number
is preferable. The goal of the Pareto analysis is to find the
ideal solution considering multiple criteria, thus configurations
were considered that minimized the most criteria. It should be
noted that the most criteria minimized by any configuration
were two; no configuration minimized three or four criteria.
From the analysis, Configurations C and D minimized both
“Components toWear” and “Cable Length”, while Configuration
H minimizes “Shoulder Torque” and “Total Volume”. Solutions
where all components are integrated into the hand and socket
(Configuration A, C, and D) provide the advantage of being

less cumbersome and supplying the components with at least
limited protection against environmental factors such as dust or
liquid. These solutions, however, depend on the length of the
residual limb. For longer limb lengths, more components can
be placed on the body (such as Configurations F-H), providing
additional protection against environmental factors, possibly
even rendering the system waterproof at the level of the hand
or arm. Finally, for scenarios requiring increased grasp strength,
solutions such as those in Configurations G or H could be
used with more powerful motors. Considering the results of
the analysis and the features of the configurations themselves,
we chose to develop two different solutions. Configurations
C and D minimize the same two criteria, as mentioned
above. Configuration D creates 25% less shoulder torque while
Configuration C requires less than half the total volume. As
mentioned earlier, total volume is an essential aspect of device
feasibility, usability, and acceptance and thus Configuration C
was chosen over D. Configuration C was developed alongside
Configuration H, as they provide very different theoretical
advantages to the user.

2.3. Myolectrically Controlled SoftHand
The myoelectrically controlled SoftHand Pro, used as a
benchmark, adopts the structural architecture described in
section 2.1, and is actuated by a DCX 22S + GPX 83:1 Maxon
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FIGURE 5 | Top: Flow-chart of the experimental protocol. Bottom: Intact-limb subjects practicing with everyday objects (left) and testing the two Hybrid

Configurations during tasks of daily living as part of a standardized clinical test: SHPH-C, ACMC “packing” task (middle) and SHPH-H, ACMC “setting the table” task

(right).

motor (as in the hybrid configurations) mounted on the dorsal
side of the hand. This hand shares the same electronic board
of the hybrid hands, but can read and elaborate EMG signals
provided by a pair of sensors (13E200=60, OttobockGmbH,
Germany). Different standard controllers are available in the
board; the one adopted in this study is based on an integral
control of myoelectric signals which command the reference
velocity of the motor (for more details see Godfrey et al., 2018).
Finally, the hand is equipped with a standard Ottobock Quick
Disconnect Wrist, enabling wrist prono-supination movements
throughmanual wrist rotation, comparable to the Hosmer device
used for the hybrid configurations.

2.4. Experimental Setup
Among the eight possible hybrid solutions (please refer to
Table 1), the solutions which best fit the selected criteria for
our analysis (extracted from the literature) were solutions C
and H. These two solutions were dubbed the Compact and
Hardy Configurations, solutions C and H, respectively. The
SoftHand Pro (Godfrey et al., 2018), was used as a benchmark. An
overview of the three solutions used in the experimental section
is presented in Figure 4, highlighting the main components:

• Benchmark Configuration, myoelectrically controlled using 2
surface EMG sensors included directly in the socket. Motor
and electronics are embedded directly in the palm of the hand.

• Compact Configuration, this hybrid configuration uses a
figure-of-nine harness as input control. The motor is
embedded in the hand, while the electronics, lever, and battery
are integrated in the socket/forearm of the user.

• Hardy Configuration displaces all three electromechanical
components to the waist. In this hybrid configuration, the

TABLE 4 | Demographics of subjects with limb loss.

Subj. Age

(yrs)

Sex Time since

amputation

Main prosthesis

(Alt)

BP exper.

level

MP exper.

level

LL1 37 F 37 years Cosmetic Low High

LL2 23 F 22 years None (MP) None Med

LL3 41 M 7 years BP (MP) Low High

MP, myoelectric prosthesis; BP, body-powered prosthesis.

actuation lever is connected to a figure-of-eight harness. A
steel Bowden cable goes from the motor group to the hand-
winding system, to operate hand opening and closing.

Broadly speaking, the Compact Configuration has the main

components embedded in the hand and socket, which makes
the system more integrated but increases the weight of the

distal part and reduces resistance to liquids. In the Hardy

solution, the electromechanical components are placed on the
body of the user, which makes the whole system bulkier and
less aesthetically pleasing but can be very effective for work
environments because the total weight of the system is distributed
along the body of the user and the terminal device is capable of
interacting with dangerous environmental factors such as dust or
liquids (see Figure 10). The Benchmark Configuration, similar
to the Compact one, has the electromechanical components
distributed in the hand and socket. This configuration is
myoelectrically controlled so no cables are passing along the
body of the user. However, the sEMG sensors are sensitive to
environmental factors (i.e., liquid, dust, etc.) or impurities (i.e.,
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FIGURE 6 | Results of limb-intact subjects on the ACMC, BBT, and SUS for each configuration presented individually, color-coded by subject, in the top row and in

group form in the bottom row. Group results are presented as bar plot, the black bar denotes the standard deviation.

TABLE 5 | Limb-intact subject results.

Solution C Solution H

Mean ± standard deviation Mean ± standard deviation

ACMC 49± 5.73 47± 6.45

BBT 9.6± 3.34 9.1± 2.08

SUS 77.8± 6.89 72.5± 5.01

dirt or sweat), which decreases the suitability of this system in
working environments.

2.5. Assessment Tools
The hybrid configurations were validated with standard clinical
and technology assessments (ACMC, BBT, SUS) to evaluate
the strengths and weaknesses of the proposed solutions. The
Assessment of Capacity for Myoelectric Control (ACMC) is a
standard observational clinical test able to assess the ability to
control a prosthetic hand in a daily living task (Hermansson
et al., 2005). The rater may choose one among six validated
tasks for the testee to perform, which reproduce hobbies or
activities of daily living. The tasks were designed to feature
similar types of movements in different contexts and to be
interchangeable. Each item is an observable prosthetic hand
movement on its own or in relation to other body parts
and is scored from zero (incapable) to three (extremely
capable). An algorithm (accessible online) is used to convert
the raw score to ACMC logits, ranging from 0 to 100 with
100 representing ideal performance and prosthetic control.
Among the different outcomemeasures available in the literature,
the ACMC is unique, to the authors’ knowledge, in breaking
down tasks or actions into sub-movements of grasping, holding,

TABLE 6 | Limb loss subject results.

LL1 LL2 LL3

BM C H BM C H BM C H

ACMC 55.4 56.3 51.9 53.7 50.3 47 56.3 53.7 48.7

BBT - 9 8 - 6 3 - 10 11

SUS 90 52.5 37.5 85 75 62.5 80 72.5 60

The results of the three subjects with limb loss are presented as raw data.

releasing, and repetitive movements (see Table 8). Many tests
were considered when designing the protocol, including the AM-
ULA (Resnik et al., 2013) and the SHAP (Light et al., 2002). The
former is rated by an experienced rater, usually an occupational
or physical therapist, on the ability to perform a set of 18
ADLs and the quality of that performance, including smoothness
of movements, speed, appropriateness and precision of grasp,
etc. The latter is scored by time to completion of various
tasks including grasping different light and heavy forms and
completing ADLs; the rating is given by an algorithm that
compares these times to a benchmark of able-bodied individuals.
To enable comparison to a benchmark set of data, the SHAP
protocol must be adhered to strictly, sometimes impeding a
testee’s typical way of approaching a particular task. While all
three tests have strengths and weaknesses, ultimately, the ACMC
was chosen as our primary outcome measure because, at this
stage of device development, it allowed a better understanding of
the detailed movement stages required to complete a task rather
than task completion itself and focused specifically on control
capacity. The Box and Blocks Test (BBT) is a standard clinical
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FIGURE 7 | Results from subjects with limb loss testing the two hybrid configurations in comparison with the benchmark. Box and Blocks data of the benchmark are

extracted from Godfrey et al. (2018).

TABLE 7 | Limb loss subjects average results.

Median

BM

Median C Median H Mean BM Mean C Mean H

ACMC 55.4 53.7 48.7 55.1 53.4 49.2

BBT 11⋄ 9 8 9.6⋄ 8.3 7.3

SUS 85 72.5 60 85 66.6 53.3

⋄Data extracted from Godfrey et al. (2018).

test to evaluate unilateral gross manual dexterity (Desrosiers
et al., 1994). In the BBT, subjects are asked to move as many
blocks as possible in 1 min from one compartment of a box
to the other, with a vertical divider between them. The number
of blocks carried over the partition is used to score the test.
BBT was designed to measure hand performance in patients
with neuromuscular disorders; it is often also used in prosthetic
evaluations and is valid in this context (Resnik and Borgia, 2012).
The SystemUsability Scale (SUS) is a simple, effective, and widely
exploited tool for measuring the usability of a device (Brooke,
1996); it does not serve a diagnostic function nor is it limited
to clinical applications. It is a 10-item questionnaire with five
response options, ranging from “strongly agree” to “strongly
disagree”. The subject’s scores for each question are converted to
a new number between 0 and 4 based on whether the question
was framed in a positive light (e.g., “I think that I would like to
use this system frequently.”) or a negative one (e.g., “I found the
system unnecessarily complex.”). The ten ratings are then added
together and multiplied by 2.5 to convert the original cumulative
score of 0–40 to 0–100.

2.6. Experimental Protocol
The research was performed under the oversight of the local
ethics committee (Comitato Etico di Area Vasta Nord Ovest,
CEAVNO), protocol number 1072. Informed Consent was
obtained from all subjects. An open, crossover, experimental
study was performed. The study was composed of two phases,
one for each population, performed first with limb-intact subjects
and subsequently with subjects with limb loss. The protocol was
identical for both subject populations. Experiments with limb-
intact subjects were performed first, to provide a preliminary
evaluation of the usability of the two SHPH configurations, which
had never undergone testing before. Then, tests with subjects

with limb loss followed, aimed at verifying limb-intact results
and highlighting the advantages and disadvantages of the tested
devices in comparison with a standard myoelectric configuration
(SHP). Limb-intact subjects wore a forearm adapter that placed
the SHPH under their natural hand. Furthermore, these subjects
wore an arm brace (Innovator X Post-Op Elbow, Ossur)
that restricted pronation/supination to more closely mimic the
limitation or absence of this DOF in subjects with limb loss (see
Figure 5). The latter subjects wore the SHP and SHPH on their
typical socket or a socket made specifically for this study by a
certified prosthetist.

Inclusion criteria for limb-intact subjects were 18 − 80
years of age, with normal motor and cognitive function, right-
handedness, and able to understand the experimental procedures
and give informed consent. For subjects with limb loss, inclusion
criteria were 18–80 years of age, transradial difference, ability
to understand the experimental procedures and give informed
consent. Ten subjects matching the inclusion criteria, 7 males
and 3 females, ranging from 25 to 32 years old, were included
in the limb-intact group. The limb loss group comprised 3
subjects, 2 females and 1 male all with left transradial difference.
Demographic information for the subjects with limb loss can be
found in Table 4.

The set of assessments was built within the International
Classification of Functioning, Disability and Health (ICF)
framework. For each configuration, the experimental session
consisted of brief training followed by functional testing and
self-administered questionnaires on usability and pleasantness of
the device tested. Configurations were presented in a pseudo-
random order. In training, subjects partook in 30 min of
grasping and manipulation practice, with objects of daily-living
of different shapes, weights, and softness. To the authors’
knowledge, standard tests of hand function that replicate work
tasks and/or a work environment have not been developed. The
performance evaluation was thus composed of the Assessment
of Capacity for Myoelectric Control (ACMC) test and the Box
and Blocks Test (BBT). For the ACMC, four tasks among six
were chosen: setting the table, packing a suitcase, preparing a
dessert, and organizing the mail. The order of the four tasks of
the ACMC were also pseudo-randomized. The randomization of
the ACMC tasks and prosthetic configurations was adjusted to
ensure a balance between the order of configurations, order of
tasks, and the number of times a particular configuration was
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FIGURE 8 | Average results of the three tested configurations for each ACMC item. The full list of items is reported in Table 8.

matched with a particular task. Among the authors, we have four
trained and certified raters, two of whom co-scored the test. The
devices were also rated using the System Usability Scale (SUS).
During all procedures, comments by subjects on tests and devices
were gathered. Rest periods were included as needed both within
and between sessions. Overall, the entire measurement session
lasted about 2 h.

3. RESULTS

3.1. Limb-Intact Subjects
Following training, in which subjects practised both control
modes (voluntary-open and voluntary-close, VO and VC,
respectively) and how to switch between them, subjects
were free to choose with which control mode to start the
ACMC test. Out of 20 trials (2 ACMC tests across 10
subjects) only in 1 instance, or 5%, did the subject opt to
start in VO. They were allowed to switch as many times
as desired during the test; the number of times subjects
switched volitionally was not recorded. We requested that
subjects announce when they accidentally switched between
voluntary-open and voluntary-close control modes. The Hardy
Configuration had a higher average accidental switch rate than

the Compact Configuration (1.9± 2.1 and 0.8± 0.9 switches per
ACMC test, respectively).

Plots showing the results of the three tests across limb-
intact subjects are presented in Figure 6. Group results for
these subjects are presented in Table 5. Immediately evident
from both sets of charts is the extent to which the results of
the two configurations overlap. The Compact Configuration,
however, appears to perform slightly better on all three tests.
The distribution of the results passes the Shapiro-Wilk Test for
normality and thus means were compared using a student’s t-test
and no significant differences were found between Compact and
Hardy configurations. Additionally, the difference between the
SHPH-C and SHPH-H in the ACMC does not exceed the value
of “minimum detectable change” of 2.5 logits.

3.2. Subjects With Limb Loss
Individual results from testing with subjects with limb loss
can be found in Table 6 and Figure 7, while group results are
presented in Table 7. As described in section 2, our primary
objective outcome measure was the ACMC. All results fall into
the same category of clinical interpretation and are classified as
“Generally Capable,” which comprises scores between 46.7 and
57.1 logits. Furthermore, theminimumdetectable change (MDC)
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TABLE 8 | Description of the 22 items evaluated by ACMC.

A GRIPPING

1 With Support

2 Power Grip Without Support

3 Precision Grip Without Support

4 Appropriate Force

5 In Different Positions

6 Timing

7 Coordinating Both Hands

8 Without Visual Feedback

9 Appropriate Force Without Visual Feedback

B RE-ADJUSTING GRIP

1 Repetitive Grip and Release

2 Repetitive Grip and Release Without Visual Feedback

C HOLDING

1 With Support

2 Without Support

3 In Motion

4 Without Visual Feedback

5 In Motion, Without Visual Feedback

D RELEASING

1 With Support

2 Without Support

3 In Different Positions

4 Timing

5 Coordinating Both Hands

6 Without Visual Feedback

for assessments performed by the same rater is 2.5 logits. In
a pair-wise, within-subject comparison of the scores, most fall
outside of this range, except for LL1 SHPH-C and SHP. Between
subjects, pair-wise comparisons are less than the MDC for the
SHP (LL1 and LL3, and LL1 and LL2) and the SHPH-H (LL2
and LL3). Taking this into consideration, subjects LL2 and LL3
exhibited the most control capacity with the SHP followed by the
SHPH-C and finally the SHPH-H. LL1 performed equivalently
with the SHPH-C and the SHP and less well with the SHPH-
H. Figure 8 shows the breakdown of the scores of the ACMC
for the three subjects with limb loss. Please note: the test is not
designed to be evaluated based on individual items; however,
these are presented to provide a more complete picture of the
comparison between control modes. The items in each category
increase in difficulty (along the x-axis); this increase is reflected in
the overall decrease in scores along this axis. Across the 66 items
(22 items per test and three subjects), SHPH-H control capacity
was rated lower than that with the SHPH-C 32% of the time,
equal 59% of the time, and superior 9% of the time. Capacity
of control of the SHPH-C was more similar to that of the SHP,
with control rated inferior, equal, and superior 20, 70, and 10%
of the time, respectively. Images of two subjects with limb loss

performing various activities from the ACMC tasks with each
SHPH Configuration can be found in Figure 9.

The SUS was used as a primary subjective outcome measure,
while the BBT was a secondary outcome measure in evaluating
the SHPH configurations and SHP. On the SUS, the benchmark
achieved the highest scores for all three subjects, followed by the
SHPH-C and then the SHPH-H. Results were more mixed for
the BBT. Comparing the two SHPH configurations: LL1 and LL3
moved nearly the same number of blocks across configurations
(9 and 8 blocks for LL1 and 10 and 11 blocks for LL2 for SHPH-C
and SHPH-H, respectively). Both of these subjects were near the
mean for the SHP (9.6) found in a previous study with 9 subjects
with limb loss (Godfrey et al., 2018). Subject LL2 was markedly
below this value, performing better with the SHPH-C than the
SHPH-H (6 and 3 blocks, respectively).

Anecdotally, we asked subjects to report which configuration
among the two SHPH they preferred overall and additionally
asked which configuration’s control they preferred. Note: the
Compact Configuration used the figure-of-nine harness (single
shoulder), while the Hardy Configuration used the figure-of-
eight harness (double shoulder). Two subjects (1 and 3) preferred
the Hardy Configuration in terms of control and two subjects
(1 and 2) preferred the Compact Configuration overall. All
subjects chose to start in VO mode for both configurations.
Finally, subjects had 1, 4, and 2 involuntary switches with the
Compact Configuration compared with 1, 2, and 0 with the
Hardy Configuration.

4. DISCUSSION

The SHPH-C and SHPH-H were preliminarily validated
with intact-limb subjects before testing with subjects with
limb loss. Among these subjects, the Compact Configuration
slightly outperformed the Hardy Configuration on all three
outcome measures (ACMC, BBT, SUS), but not significantly so.
Additionally, it is worth noting the clustering of SUS scores, in
particular for the Compact Configuration. These scores approach
the upper limit of the SUS, and the clustering could suggest
either a ceiling effect of the measure or simply agreement
among those who rated the configurations more positively. The
Compact configuration has more weight distal to the torso but
is less cumbersome in terms of donning and wearing (using
a figure-of-nine harness and socket, with nothing else worn
on the body). One of the limitations of the study was that
the Hardy Configuration was noticeably slower than the other
configurations due to friction in the Bowden cable limiting
transmission of motion from the motor to the hand. It is difficult
to infer the impact of this issue: one might expect a significantly
slower hand to show drastically decreased performance in the
BBT, while this was not the case. Slower movement, especially
among subjects with limited training could have resulted in
more precise movements as they allowed the subject more
time to adjust the grasp and hand position during closure.
This phenomenon could be reflected in the BBT results for
the Hardy Configuration compared to the Compact: the slower
hand could mask some of the variability seen between subjects
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FIGURE 9 | (A–J) are still images of the various activities performed in the ACMC “packing” task, while (K–T) are taken from the ACMC “setting the table” task. The

subject is using the Compact Configuration in the packing task and the Hardy Configuration in the setting the table task.

with the Compact Configuration. This decreased speed could
nevertheless have been a contributing factor in the less-favorable
subjective ratings.

In the comparison between myoelectrical- and body-
controlled electric devices, the main objective outcome measure
of this study, the ACMC, showed subjects with limb loss were able
to perform at the “Generally Capable” level with all three devices
tested. These subjects had more experience with myoelectric
control compared to body-powered and all had some exposure
to the SHP in the past. Despite this advantage, they were able to
reach the same clinical level with the SHPH after limited training,
and in one instance (LL1, SHPH-C) reach a score equivalent

to that with the SHP. The limb-intact group shows a much
wider range of results on the ACMC, with control of the SHPH-
C being rated “Somewhat Capable” 4 times (5 times for the
SHPH-H), 5 times “Generally Capable” (4 times for the SHPH-
H), and 1 time “Extremely Capable” for each configuration.
The notable difference in the range of scores between the limb-
intact and limb-loss groups is reasonable given the different
levels of exposure to prosthetic technology. It is to be expected
that longer-term users could leverage their experience, both with
other prostheses and control methods as well as with the SHP,
to perform reasonably well on the ACMC while the limb-intact
group would acquire mastery of the prosthesis and its control at
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FIGURE 10 | Still images from various work tasks performed by a subject with limb-loss using the Hardy Configuration. From top to bottom the tasks are: hammering

a nail (A–E), wiping down a work surface (F–J), retrieving an item in water (K–O), and planting seeds (P–T).

different rates. As mentioned earlier, the ACMC individual item
scores should be examined with care as the test is designed to be
taken as a whole. These data can still provide interesting insight:
for example, it is reasonable to infer that subjects’ performance,
in particular in challenging tasks such as grasping or holding
without visual feedback and/or in motion, relates not only to
the subject’s capacity in performing a particular task but also
to their confidence in that capacity. It is worth noting that
all three subjects reached the maximum across all “Holding”
items with the SHP but only one subject did with the SHPH-H
and none with the SHPH-C. This could be due to the limited
exposure to body-powered prosthesis control and a resultant
lack of confidence in using it. Furthermore, the individual items

show that the slightly lower performance with the SHPH-H in
comparison with the SHPH-C is not due to a major decrease in
performance in any one specific category but rather to a slight
underperformance across the range of items. Additionally, to
our knowledge, there are no standardized tests that replicate a
work environment. As the SHPH class of devices was designed
in large part for work environments and manual tasks, one of the
subjects with limb-loss performed several relevant tasks following
study completion. Still images from these tasks are presented in
Figure 10 and consist of hammering a nail, submerging the hand
in water to retrieve an item, wiping down a work surface, and
planting seeds. These tasks were chosen because they require
high forces and/or recreate environments and tasks that are
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typically challenging for prostheses, including exposure to dirt
and immersion in water. Videos of the subject completing the
various tasks are available as a multimedia attachment to the
present work. While not the result of a standard test, these
successful attempts support the idea that the SHPH could be a
high-functioning prosthetic device in these environments. In the
future, this aspect will be explored more in-depth.

In future studies, one could study the trade-off in comfort
between distal weight, that over the long-term would likely
induce fatigue, and simplicity of donning and wearing by
providing subjects with limb loss longer exposure to the
Compact and Hardy Configurations. To minimize the likelihood
of a training effect, beyond randomizing the order, similar
comparisons in the future could lengthen the training session
prior to testing the first configuration or use a proxy to increase
training time. For example, future SHPH tests could include
an initial training session with the myoelectrical controlled
SHP to familiarize the subject with the terminal device and/or
a standard body-powered prosthesis to better internalize the
control scheme. Since both configurations performed similarly
well on the objective outcome measures, future work will also
focus on improving the mechanical implementation of the Hardy
Configuration. In particular, as mentioned above, optimizing the
speed of the terminal device, streamlining donning, and adjusting
the configuration to be less bulky would likely improve device
performance and acceptance.

5. CONCLUSIONS

In this work, we presented and assessed two different prototypes
of the SoftHand Pro-Hybrid that integrate the use of soft robotic
technologies with non-EMG based controls. In a preliminary
validation with subjects without limb loss, both Configurations
performed well, with the Compact Configuration slightly
outperforming the Hardy in both objective and subjective tests.
We then tested both of these Configurations with three subjects
with limb loss and compared these results to the myoelectrically
controlled SHP, used as a benchmark. This group had similar
results with the Compact slightly outperforming the Hardy
configuration on the ACMC and the benchmark outperforming
both in two out of three subjects. Across configurations,
however, all three subjects were rated as “Generally Capable”
on the ACMC with all three configurations. Despite the limited
number of subjects, this pilot study suggests the reliability of
the SHPH configurations and the possibility to use hybrid
solutions as a valid alternative to myoelectric control, especially
in challenging environments. Improvements in the speed of the
Hardy Configuration may improve both subjective and objective
evaluations. Additionally, it is possible that further exposure to

and more intensive training with the SHPH configurations could
help improve performance. Encouraging results also open new
avenues for the design of a different class of prosthetic device (i.e.,
partial hands) based on a similar hybrid method.
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The constant growth of the population with mobility impairments, such as older adults

and people suffering from neurological pathologies like Parkinson’s disease (PD), has

encouraged the development of multiple devices for gait assistance. Robotic walkers

have emerged, improving physical stability and balance and providing cognitive aid in

rehabilitation scenarios. Different studies evaluated human gait behavior with passive

and active walkers to understand such rehabilitation processes. However, there is no

evidence in the literature of studies with robotic walkers in daily living scenarios with

older adults with Parkinson’s disease. This study presents the assessment of the AGoRA

Smart Walker using Ramps Tests and Timed Up and Go Test (TUGT). Ten older adults

participated in the study, four had PD, and the remaining six had underlying conditions

and fractures. Each of them underwent a physical assessment (i.e., Senior Fitness, hip,

and knee strength tests) and then interacted with the AGoRA SW. Kinematic and physical

interaction data were collected through the AGoRA walker’s sensory interface. It was

found that for lower limb strength tests, older adults with PD had increases of at least 15%

in all parameters assessed. For the Sit to Stand Test, the Parkinson’s group evidenced

an increase of 23%, while for the Chair Sit and Reach Test (CSRT), this same group was

only 0.04 m away from reaching the target. For the Ramp Up Test (RUT), the subjects

had to make a greater effort, and significant differences (p-value = 0.04) were evidenced

in the force they applied to the device. For the Ramp Down Test (RDT), the Parkinson’s

group exhibited a decrease in torque, and there were statistically significant differences

(p-value= 0.01) due to the increase in the complexity of the task. In the Timed Up and Go

Test (TUGT), the subjects presented significant differences in torque (p-value of 0.05) but

not in force (p-value of 0.22) due to the effect of the admittance controller implemented

in the study. Finally, the results suggested that the walker, represents a valuable tool for

assisting people with gait motor deficits in tasks that demanded more physical effort

adapting its behavior to the specific needs of each user.

Keywords: smart walker, Parkinson’s disease, daily living activities, senior fitness, timed up and go, older adults

81

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.742281
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.742281&domain=pdf&date_stamp=2021-12-14
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:carlos.cifuentes@escuelaing.edu.co
https://doi.org/10.3389/fnbot.2021.742281
https://www.frontiersin.org/articles/10.3389/fnbot.2021.742281/full


Sierra M. et al. Robotic Walker in Daily Living

1. INTRODUCTION

Human gait is a locomotion process in which the human
body moves forward, alternating support in both lower limbs
(Vaughan, 2003). Different musculoskeletal and neurological
pathologies considerably affect balance and stability during this
process (Mrozowski et al., 2007; Sammer et al., 2012; Pirker
and Katzenschlager, 2017). In particular, stroke and spinal
cord injuries are strongly related to locomotion disorders and
significantly affect people’s motor skills (Gheno et al., 2012;
Cifuentes and Frizera, 2016). Parkinson’s disease (PD) is another
brain disorder that disrupts these capabilities (World Health
Organization, 2006). The gradual decline of cognitive faculties
(Nieuwboer et al., 2001; Buchman et al., 2011; Belghali et al.,
2017) and the neuromuscular system in the older adults (Gheno
et al., 2012; Poewe et al., 2017) are also associated with these
pathologies. Besides, it is worth highlighting that PD is the second
most common neuro-degenerative disorder affecting between 2
and 3% of the population aged 65 or older (Poewe et al., 2017).

The WHO estimates that the proportion of the population
with mobility difficulties has been slowly and substantially rising,
reaching 15% of the global population nowadays (World Health
Organization, 2015).The United Nations also states that the
world’s population of older people will double in the next 3
decades, increasing from 9.3% in 2020 to 16% in 2050 (United
Nations, 2020). Thus, mobility problems are common in older
people and individuals with functional and cognitive disorders
(Brown and Flood, 2013; Pedersen et al., 2014; Mikolajczyk et al.,
2018). Several assistive devices have been developed to improve
impaired locomotion abilities (Cifuentes and Múnera, 2022).

Concretely, mobility assistive devices help people overcome
and compensate for physical disabilities by sustaining or
improving their functioning and independence in clinical and
daily situations (Van der Loos et al., 2016). One such device is
traditional walkers with basic and low-cost mechanical systems,
as well as, partial body weight support and stabilization.
Nevertheless, such walkers compromise the balance and energy
costs of the user, not to mention that fall prevention and overall
safety are not very efficient (Neto et al., 2015; Sierra et al.,
2022a). Another limitation of conventional devices is that they do
not fully and correctly address cognitive and sensory assistance,
which is of great importance for people with physical limitations
(Mitzner et al., 2014; Jenkins and Draper, 2015; Geravand et al.,
2016). Therefore, Smart Walkers (SWs) emerged, integrating
robotic technologies to mitigate these drawbacks.

Smart Walkers are a potential tool for gait training and
assistance due to their simple mechanical structures and multiple
interaction interfaces (Scheidegger et al., 2019; Aristizabal-
Aristizabal et al., 2022; Cifuentes and Múnera, 2022). The main
functionalities of these devices include autonomous navigation
systems (Papageorgiou et al., 2016), safety and obstacle avoidance
modules (Sierra et al., 2018), biomechanical monitoring (Caetano
et al., 2016; Alves et al., 2017; Sierra et al., 2021), user
intention detection mechanisms (Lacey and Rodriguez-Losada,
2008), path-following modules (Sierra et al., 2022b), and people
detection systems (Sierra et al., 2019). Also, these strategies
provide a natural and safe interaction with the user in dynamic

and complex environments (Neto et al., 2015). Therefore, they
are often referred to as Human-Robot Interaction Interfaces
(HRI) and Human-Robot-Environment Interaction Interfaces
(HREI) (Sierra et al., 2019).

Several case studies report the effects of robotic walkers. As
presented in Chugo et al. (2009), Jun et al. (2011), Yoon et al.
(2012), andWerner et al. (2020), the efficacy and user satisfaction
with sit-to-stand assistance systems provided by the walker is
evaluated. These studies analyze how the device impacts the
stability and balance of the subjects when the task is combined
with a brief walk. Although relevant results are presented in terms
of improved performance during the tests, there is no evidence of
studies where the difficulty of the tests is increased with the aim
of both physically and cognitively stimulating the user (i.e., more
extended gait tasks and turns before the subject sits down). On
the other hand, other studies have also been presented where the
effect of the walker on the gait pattern of the subjects in scenarios
that emulate daily activities (Wang et al., 2014; Lindemann et al.,
2016, 2017; Costamagna et al., 2019; Mundt et al., 2019).

Studies involving subjects suffering from neurologica diseases
have been also reported (Martins et al., 2015; Bayon et al.,
2016; Moreira et al., 2019). Regarding subjects with Parkinson’s
disease, some studies focused on interaction strategies to improve
the experience during the task (Mou et al., 2012; Zhang et al.,
2018). These kinds of studies evaluated the level of assistance
provided by the device and how it influenced the speed, cadence,
and stability of the users (Cubo et al., 2003; Kegelmeyer et al.,
2013; Wu et al., 2020). However, exploration of the kinematic
effects of robotic walkers in this population remains scarce. In
particular, there is insufficient evidence of the validation of these
devices in more dynamic environments that emulate daily tasks.
Furthermore, at the time of the writing of this manuscript, no
studies compare the performance of people with PD with other
focal groups with different physical and neurological conditions.

In this sense, the main contribution of this study is the
comparison of the kinematic performance of a group of older
adults with PD vs. a group of older adults withmetabolic diseases,
joint diseases, and fractures. This assessment was conducted
when the older adults were interacting with the AGoRA SW in
tests such as Up Ramps, Down Ramps, and Timed Up and Go.
Besides, it presents and analyzes how the robotic device helps
to compensate for the limitation of the subjects in the tasks that
demanded more physical effort. Additionally, this study analyzes
how the physical conditions of the subjects and the interaction
strategy of the walker influence the results obtained. For this
purpose, the Senior Fitness Test (SFT), lower limb strength
tests, and a human-robot interaction strategy were necessary for
this study.

2. MATERIALS AND METHODS

This section describes the robotic platform used during the study
and the interaction strategy proposed to provide an appropriate
level of assistance to the user. Moreover, this part details the tests
performed and the experimental setup, and the data collected in
each of them.
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2.1. Robotic Platform Description
The Pioneer LX research platform (Omron Adept Technologies,
Pleasanton, CA, USA) referred to as the AGoRA SW was used
for this study. As presented in Sierra et al. (2019), this device
was adapted to emulate the structural frame of a conventional
assistive walker by attaching two forearm support handlebars to
the main deck of the platform (refer to Figure 1).

This platform equips an onboard computer running a Linux
operating system distribution compatible with the Robotic
Operating System (ROS) framework.Moreover, features different
sensors, actuators, and processing units such as (1) twomotorized
wheels and two caster wheels that provide propulsion and
stability to the walker; (2) two encoders and an inertial
measurement unit (IMU) to estimate the position and orientation
of the device; (3) a 2D light detection and ranging (LiDAR)
sensor (S300 Expert, SICK, Waldkirch, Germany) to sense the
environment and detect obstacles; (4) two ultrasonic plates to
detect objects at low hight; (5) two triaxial load cells (MTA400,
FUTEK, Irvine, CA, USA) to estimate the user’s navigation
commands; (6) an HD camera (LifeCam Studio, Microsoft,
Redmond, WA, USA) for human detection; and (7) a 2D
laser rangefinder (Hokuyo URG-04LX-UG01, Osaka, Japan) to
estimate the user’s gait parameters (Sierra et al., 2019).

2.2. System Operation
In this study, the architecture described in Figure 2 was
implemented. The overall system is composed of two main

modules: (1) a signal processing module, which is in charge
of filtering the signals from the force sensors and generating
the corresponding resulting forces and torques, and (2) an
admittance controller, which converts the user’s movement
intention to speed commands to provide an appropriate level of
assistance when they interact with the SW.

2.2.1. Signal Processing Module
As presented in (Sierra et al., 2019) between the SW force sensors
and the user’s handlebar points, there is a vertical misalignment
(refer to Figure 1). Supported by previous studies (Sierra et al.,
2019, 2021), this implies that the resulting forces along the y-
axis and z-axis read by the sensors will combine the forces
along the y-axis and z-axis at the support points. However, it
is possible to estimate that the forces along the y-axis provide
essential information related to the user’s motion intention.
Similarly, the forces along the z-axis are a directly proportional
estimation of the user’s support on the device. At the same
time, the forces along the x-axis are discarded, since they do not
provide relevant information (Sierra et al., 2019). These signals
are contaminated with some noise sources, related to the natural
oscillatory pattern of gait (Brodie et al., 2015) and vibrations
associated with irregularities in the floor (Sierra et al., 2019),
which implies that these signals require additional filtering and
conditioning treatment to remove such artifacts.

Hence, the same filtering strategy presented in Sierra et al.
(2019) is implemented in this study, which mainly consists of

FIGURE 1 | AGoRA Smart Walker (SW) description.
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FIGURE 2 | Description of the system architecture implemented in this study.

four steps: (1) averaging the force signals along the z-axis, which
contain information related to the oscillatory movements of the
user’s trunks, then (2) a band-pass filter is applied to remove all
high-frequency components (1-2Hz cutoff frequencies), then (3)
the resulting signal cadence is estimated, thanks to the weighted
fourier linear combiner filter (Frizera et al., 2010), and finally (4)
the oscillatory components of the forces along the y-axis of each
sensor are removed by introducing the cadence into a fourier
linear combiner filter (Frizera Neto et al., 2010).

After performing this process, it is possible to estimate the
force (F) and the resulting torque (t) and, thus, have an indicator
that provides relevant information of the physical interaction
between the SW and the user. Equations (1) and (2) describe how
the signals are finally obtained:

EF = EF′LY + EF′RY , (1)

Eτ =

(

EF′LY − EF′RY

)

∗
d

2
. (2)

EF′LY and EF′RY are the filtered force signals from both handlebars,
and d is the separation between the load cells of the device, which
for this case is 0.3 m. It is essential to highlight that the force
provides information about the user’s intention when starting
to walk, while the torque supplies information about the user’s
intention when turning.

2.2.2. Interaction Strategy
Admittance controllers, widely used in SWs, are dynamic models
that allow the robotic device to respond efficiently to the user’s
motion intentions (Jiménez et al., 2019). This sort of strategy
allows to virtually modify the mechanical impedance of the
walker, allowing to emulate different levels of assistance (Jiménez
et al., 2019; Sierra et al., 2021, 2022b). With these controllers,
it is possible to generate speed commands according to the
user’s exerted force and torque. Depending on the controller’s
constants, the SW can resemble lightweight device or a heavy
device (Sierra et al., 2021). Thus, the purpose of these strategies is
to provide users with feelings of easiness and naturalness during
physical interaction with the robotic walker.

This study implements two admittance controllers to generate
linear and angular velocities from the force and torque signals
applied by the user on the handlebars. The controllers model
the SW as a first-order mass-damper system and the outputs are
linear (v) and angular (ω) velocities, as described in Equations (3)
and (4):

L(s) =
v(s)

F(s)
=

1
m

s+
bl
m

, (3)

A(s) =
ω(s)

τ (s)
=

1
J

s+ ba
J

, (4)

where m is the walker’s virtual mass, J is the virtual moment of
inertia of the walker, and bl and ba are damping constants. These
equations describe the transfer function of each controller. L(s)
stands for Linear System, and A(s) stands for Angular System. It
was necessary to adjust the values of the controller parameters to
achieve an appropriate SW behavior. For this purpose, the virtual
mass (m), inertia (J), and damping constants (bl and ba) were
adjusted after several experimental tests with healthy subjects
(Sierra et al., 2021). In particular, the following values were used:
m = 0.5 kg, bl = 4 N.s/m, J = 2.1 kg.m2/rad, and
ba = 2 N.m.s/rad.

Regardingmass and inertia, low values were required since the
AGoRA walker is a heavy robotic platform (70.2 kg). The inertia
value was designed to be at least two times the virtual mass to
ensure balance and stability during walking.

2.3. Experimental Protocol
This section describes the implemented experimental protocol
to assess the interaction between the users and the AGoRA SW
during the proposed tests. Additionally, it presents the physical
assessment tests that were performed on each of them.

2.3.1. Session Environment
This study took place at the Innovation and Technological
Development Center (ITDC) of the Technological University of
Pereira. The tests were performed jointly with physiotherapists
and professors from the Areandina University Foundation.
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2.3.2. Participant Recruitment
• Inclusion criteria: Adults over 65 years of age who present

some type of physical or cognitive condition that will
significantly affect their gait cycle.

• Exclusion criteria: Subjects who did not present pathologies
associated with alterations of normal gait parameters were
excluded from the study.

A group of subjects that were actively attending a rehabilitation
program was formally recruited to participate in the clinical
study. The ethics committee previously approved the study, and
all participants read and signed the written informed consent.
The group was conformed by ten subjects (5 men, 5 women, 69.5
± 8.44 y.o, 1.61 ± 0.08 m, 66.35 ± 14.93 kg), 4 of them had PD
and, the remaining 6 had metabolic and joint diseases, and some
had previous fractures. Table 1 describes the demographic data
of the participants.

2.3.3. Session Procedure
Before starting the tests, participants had to fill out an informed
consent form to ensure that they had voluntarily expressed their
intention to participate in the research. Participants only had to
attend one session (i.e., a total of 10 sessions were conducted.),
which was divided into two stages: (1) physical validation tests
and (2) tests with the robotic walker. The participant had 1 h
of rest between each of these to prevent them from becoming
fatigued or experiencing any kind of muscular load.

The first stage aimed at determining the physical condition
of the subjects. Several tests evaluated their levels of resistance,
strength, and flexibility. Specifically, a digital dynamometer
(microFET2, Hoggan Scientific, USA) was used to measure the
force exerted by both the hip and the knee. Measurements with
this type of device have been shown to be valid and reliable

TABLE 1 | Summary of demographic data of the volunteers who participated in

the clinical study.

Subject Group Gender Age Weight

[kg]

Height

[m]

IMC Pathology

1

PK

Male 70 83 1.73 28 Parkinson

2 Male 71 59 1.66 22 Parkinson

3 Male 70 82 1.70 28 Parkinson

4 Female 70 57 1.63 22 Parkinson

5

MJF

Female 68 74 1.55 31
Arterial Hypertension

Osteoarthritis

6 Female 67 57 1.58 23
Hypothyroidism

Osteoporosis

7 Female 71 61 1.53 26
High Blood Pressure

Osteoporosis

8 Male 72 70 1.64 26
Epicondylitis

Osteoporosis

9 Female 67 50 1.47 23 Triple Ankle Fracture

10 Male 69 70 1.62 27 Tibial Plate Fracture

Parkinson group (PK) is the group suffering from PD and, MJF is the group of older adults

with metabolic, joint diseases, and fractures.

(Kawaguchi and Babcock, 2010). In the case of the hip, for the
assessment of flexor and extensor strength, participants were
placed supine with the hip flexed at approximately 90◦. Abductor
and adductor strength were measured while participants were
lying on their side with 0◦ of hip flexion/extension. Additionally,
for knee extensor and flexor strength, participants were required
to be seated with approximately 90◦ hip and 90◦ knee
flexion (Mintken et al., 2007; Stevens-Lapsley et al., 2010).
Participants performed a series of maximal voluntary isometric
contractions (MVIC) preceded by two submaximal warm-up
contractions. All participants received visual targets and solid
verbal encouragement during each MVIC to assist in obtaining
maximal effort. All MVICs were performed by allowing the
patient to increase the force to maximal capacity gradually; the
maximal effort was maintained for 3–5 s. Patients were allowed
30-s rest periods between repetitions.

Furthermore, the physical capabilities and functional skills of
the participants were assessed using the SFT (Rikli and Jones,
2013; Hesseberg et al., 2015). The following tests were performed:

• Sit to Stand Test (SST): This test consisted of counting the
number of times the participant stood up from a chair with
his arms crossed on his chest for 30 s. The purpose of this test
was to evaluate the strength and resistance of the subjects’ legs.

• Arm Curl Test (ACT): This test consisted of counting how
many times the participant managed to bend the forearm with
a weight (5 pounds for women, 8 pounds for men) for 30 s.
This test aimed to measure the strength and resistance of the
subjects in their upper limbs.

• Chair Sit and Reach Test (CSRT): This test consisted of
measuring the distance the participant was missing to reach
the toe (minus score) or beyond the toe (plus score). While
sitting on the edge of a chair, one leg should be bent and the
foot flat on the floor, while the other leg was extended straight
in front of the hip with the heel on the floor and the foot ankle
90◦. The person leaned forward at the hip while sliding the
hands along the extended leg (the position was held for 3 s).
The purpose of this test was to evaluate the flexibility of the
lower limbs of the subjects.

• Back Scratch Test (BST): This test consisted of measuring the
distance between (or overlap of) the middle fingers behind
the back when attempting to touch the middle fingers of both
hands together behind the back. Such a test was intended
to measure the overall range of movement of the subjects’
shoulders.

• Six Minutes Walking Test (6MWT): This test is used as an
endurance test and is often used as a general indicator of
overall physical performance and mobility in older adults
(Heerink et al., 2009). In this sense, the participants were
instructed to walk over a flat hallway without running or
jogging, and they were allowed to stop and rest during the
test. Considering the test duration, a walking circuit was used,
where the subject had to make a U-turn every 30 m. For this
test, it was necessary to instrument the user with the G-WALK
sensor (BTS G-Sensor, BTS Bioengineering, USA) to extract
average speed and cadence parameters (BTS Bioengineering,
2019).
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In both cases (i.e., lower limb strength tests and SFT), each
participant had to perform three repetitions, except in the
6MWT, because of the time and distance covered by the user,
only one repetition is sufficient (Rikli and Jones, 2013). These
measurements were averaged and reported.

The second stage of the study compared the kinematic
performance of both groups when they interacted with the
AGoRA SW in everyday scenarios. The following tests were
proposed:

• Ramps: The subjects were asked to walk up (RUT) and down
(RDT) a ramp with the AGoRAWalker. Each user had to walk
three times on the ramp-up and then three times on the ramp
down (refer to Figure 3).

• Timed Up and Go test (TUGT): This is a clinical assessment
test widely used to assess balance and walking ability in elderly
populations (Heerink et al., 2009). A modified version of
this test was used to be suitable during walker-assisted gait.
Specifically, the subjects were asked to rise from a chair, walk
at their usual pace a distance of 3 m, make a U-turn around
a cone, walk back to the chair, and sit down (Heerink et al.,
2009). Due to the use of the walker, users had to make a final
turn before reaching the chair (refer to Figure 3).

Finally, data were acquired through the sensory interface of the
AGoRA Walker. Specifically, the interaction force and torque,
walker speeds, and trial duration were recorded. Moreover, to
estimate additional parameters of the subject, the G-WALK
sensor was used (BTS Bioengineering, 2019). This device
supplied the most relevant parameters related to each trial, such
as the subject’s speed, cadence, gait cycle duration, and the
number of cycles.

Figure 4 summarizes the procedure and tests that were
performed to evaluate this study.

2.3.4. Statistical Analysis
Descriptive statistics were used to report the results of the study.
The significance level of all tests was set at 0.05. To determine
the distribution of the information collected, the Shapiro-Wilk
normality test was performed. To evaluate statistically significant
differences, two types of tests were performed. In the case of
parametric data, the non-paired t-test was performed. Regarding
non-parametric data, Mann-Whitney tests were performed.

2.4. Ethics Statement
The University Research Ethics Committee approved this
experimental protocol. Participants were informed of the scope
and purpose of the experiment, and as explained above,
their written informed consent was obtained before the study.
Additionally, participants were free to leave the study whenever
they chose to do so.

3. RESULTS

Five hundred forty-six trials divided into 10 sessions were
performed. Kinematic and interaction parameters were
measured, such as users’ gait spatio-temporal parameters, the
interaction force and torque, trial average duration, and walking
distance. This section describes the results obtained during
the study.

3.1. Physical Condition Assessment
Results
The data provided by the digital dynamometer were used to
estimate the condition of the participants’ lower limbs. Table 2
summarizes the strength values for the hip and knee of each
group (i.e., PK and MJF). The dominant side of both groups was
the right side, allowing a direct comparison between them.

FIGURE 3 | Illustration of experimental setups of the daily living activities part. (A) Ramps test setup. (B) Timed Up and Go test (TUGT) setup.
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FIGURE 4 | Summary of the protocol and experimental tests performed by the older adults to evaluate their performance within the study.

TABLE 2 | Force data obtained from the lower limb strength of the participants.

Join Parameter Side PK MJF p-value

Hip

Flexion [N]
Right 198.10 ± 20.64* 147.13 ± 27.73* 0.02

Left 166.94 ± 67.34* 142.27 ± 29.19* 0.04

Extension [N]
Right 139.60 ± 19.05* 128.40 ± 37.76 0.01

Left 127.98 ± 24.35* 126.62 ± 53.41 0.05

Abduction [N]
Right 127.89 ± 27.21* 108.03 ± 18.22* <0.01

Left 126.33 ± 17.77* 98.69 ± 23.85* 0.04

Adduction [N]
Right 118.20 ± 2.71* 95.81 ± 45.28 <0.01

Left 117.46 ± 29.41* 92.94 ± 40.11* <0.01

Knee

Flexion [N]
Right 147.71 ± 25.63* 118.81 ± 29.96* 0.03

Left 147.03 ± 25.63* 95.62 ± 31.12* 0.05

Extension [N]
Right 185.83 ± 13.38* 166.53 ± 93.40* 0.04

Left 185.44 ± 41.06* 155.83 ± 74.65* <0.01

Asterisks indicate the data have a normal distribution. P-values in bold indicate significant

differences between groups.

Regarding hip flexion and extension, Table 2 shows how the
group of older adults with Parkinson presented better results.
The MJF group presented a reduction of 25.7% (right limb) and
17.34% (left limb) compared to the PK group during flexion
tests. Besides, significant differences were found between both
groups (p-value of 0.02). In extension, the strength values in
both the right and left were more remarkable for the PK group.
Although this parameter presented significant differences, there
is not a great discrepancy in the strength measurements for the
left hemisphere since the Parkinson group presented a mean of
127.98 N and the group of older adults presented a mean of
126.62 N.

Concerning the movements of abduction and adduction, both
parameters presented statistically significant differences. On the
right side, the PK group showed an increase compared to the
MJF group of 18.38% in abduction, while in adduction, such

TABLE 3 | Senior Fitness Test (SFT) results.

Test PK MJF p-value

SST [repetitions] 11 ± 1.63* 10 ± 2.61* 0.02

ACT [repetitions] 13 ± 2.16* 14 ± 4.38* 0.74

CSRT [m] −0.12 ± 0.09* 0.04 ± 0.02* 0.03

BST [m] −0.20 ± 0.04* 0.09 ± 0.06* 0.06

6MWT [m] 395.4 ± 190.28* 383.2 ± 157.36* 0.53

P-values in bold indicate significant differences between groups. Asterisks indicate a

normal distribution of the data.

an increase was 23.37%. The difference between the groups was
considerably more significant for the left side since, for both
parameters, the increase exceeded 25%.

Table 2 presents the results obtained in the flexion and
extension measurements of the participants. The MJF group
presented a mean value of 118.81 N vs. a 137.71 N by the
PK group in flexion for the right hemisphere, representing an
increase of 15.90%. This behavior did not change for the left side,
as the PK group exhibited a 43.31% increase. Regarding joint
extension, the MJF group presented in each case lower results.
Also, significant differences were found in the two parameters.

On the other hand, Table 3 presents the results obtained from
the SFTs. It can be observed that for the ACT and BST, which
evaluated the upper body condition of the subjects, there were
no significant differences (p-values of 0.74 and 0.06, respectively).
This behavior was maintained for the 6MWT (p-value of 0.53),
which was used as a general indicator of the older adults’ overall
physical performance and mobility. The remaining tests, which
evaluated the lower body condition of the subjects, presented
statistically significant differences.

For SST, although there were statistically significant
differences, the PK group was only one repetition above
the MJF group. Likewise, the group with metabolic and joint
diseases showed greater flexibility in the lower limb (CSRT, refer
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FIGURE 5 | Illustration of the results obtained for the SFT. • indicates that there were significant differences between the groups evaluated. (A) Sit to Stand Test (SST).

(B) Arm Curl Test (ACT). (C) Chair Sit and Reach Test (CSRT). (D) Back Scratch Test (BST). (E) Six Minutes Walking Test (6MWT).

TABLE 4 | Results obtained for the Ramp Up Test (RUT).

RUT PK MJF p-value

SW speed [m/s] 0.71 ± 0.07 0.61 ± 0.07 <0.01

User speed [m/s] 0.70 ± 0.07* 0.61 ± 0.07* <0.01

Cadence [steps/min] 86.46 ± 3.28* 83.10 ± 5.28* 0.02

Cycle Duration [s] 1.39 ± 0.05* 1.45 ± 0.09* 0.04

No. Cycles 35.36 ± 4.36* 39.10 ± 4.77* 0.01

Trial Duration [s] 49.01 ± 5.34 56.70 ± 7.24* <0.01

Max frc_y [N] 7.35 ± 0.88* 9.70 ± 1.05 0.04

Mean frc_y [N] 2.40 ± 0.28* 2.76 ± 0.28* 0.04

Max. trq_z [N.m] 4.44 ± 0.93* 4.86 ± 0.99 0.09

Mean trq_z [N.m] 0.01 ± 0.48* 0.03 ± 0.29* 0.27

The p-values in bold indicate significant differences between the two groups, whereas the

asterisks indicate that the data have a normal distribution.

to Table 3) as they were 0.04 m ahead of the toe, while the PK
group was 0.12 m short of the target. Also, there were significant
differences between the two groups. In addition to the above,
to illustrate the behavior of these results, Figure 5 shows their
distribution in a bar chart with the SD.

3.2. Kinematic and Physical Interaction
Results
Several indicators were estimated using the data collected by
the force sensors of the walker and the G-WALK sensor. To
characterize the users’ gait, parameters such as gait speed,
cadence, average gait cycle duration, and the number of gait
cycles were calculated. To evaluate the physical interaction
between the participant and the walker, the mean force in the
y-axis and z-axis were estimated, as well as, the maximum values.

TABLE 5 | Results obtained in the Ramp Down Test (RDT).

RDT PK MJF p-value

SW speed [m/s] 0.62 ± 0.07 0.56 ± 0.10 0.03

User speed [m/s] 0.62 ± 0.07* 0.56 ± 0.10 0.05

Cadence [steps/min] 104.67 ± 6.64* 96.78 ± 11.09* <0.01

Cycle Duration [s] 1.15 ± 0.07* 1.35 ± 0.13* <0.01

No. Cycles 45.24 ± 8.77* 48.77 ± 9.84 <0.01

Trial Duration [s] 51.62 ± 6.89* 60.13 ± 19.05 0.04

Max frc_y [N] 6.66 ± 0.65* 9.09 ± 0.83* 0.02

Mean frc_y [N] 2.19 ± 0.21* 4.73 ± 0.40* <0.01

Max. trq_z [N.m] 7.20 ± 0.94* 9.05 ± 0.92* 0.03

Mean trq_z [N.m] 1.55 ± 0.14 1.91 ± 0.28 <0.01

Asterisks indicate that the data followed a normal distribution. Bolded p-values indicate

that there were statistically significant differences between groups.

Table 4 shows the kinematic and physical interaction data in
the RUT, exceptthe parameters related to the torque in the z-axis,
the remaining ones presented statistically significant differences.
In terms of user and device speed, the PK group exhibited
better results. Nevertheless, for cadence, cycle time, number of
cycles, test duration, and the force impressed to the walker on
the axis, the MJF group presented higher values supporting the
previous results. However, for the y-axis force, very similar results
were obtained.

Further, as shown in Table 5, the kinematic and physical
interaction parameters presented significant differences in their
totality. For the speed of the walker and the user, the PK
group showed better results. For the parameters related to the
subject’s cycles, cadence, and trial duration, the MJF group
presented values below the remaining older adults. However,
for user-generated force and torque, the MJF group exhibited
considerably higher results.
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Regarding the TUGT, Table 6 summarizes the obtained
results. Due to the nature of the test, since the user’s speed is
measured even before the user starts to move forward with the

TABLE 6 | Results obtained for the Timed Up and Go Test (TUGT).

TUGT PK MJF p-value

SW speed [m/s] 0.36 ± 0.09 0.32 ± 0.06 <0.01

User speed [m/s] 0.32 ± 0.08 0.29 ± 0.06 <0.01

Cadence [steps/min] 105.72 ± 13.87* 110.61 ± 29.58* 0.04

Cycle Duration [s] 1.17 ± 0.15* 1.13 ± 0.29 0.05

No. Cycles 38.82 ± 5.16* 36.59 ± 10.21* 0.02

Trial Duration [s] 32.33 ± 3.82* 42.50 ± 7.34* <0.01

Max frc_y [N] 6.65 ± 0.67 6.68 ± 1.16* 0.74

Mean frc_y [N] 1.24 ± 0.27* 1.57 ± 0.31* 0.22

Max. trq_z [N.m] 5.51 ± 0.80* 6.07 ± 1.25 0.03

Mean trq_z [N.m] 0.27 ± 0.54 0.13 ± 0.85 0.05

The bold parameters indicate significant differences between the two groups, whereas

the asterisks indicate that the data have a normal distribution.

walker (i.e., in the standing and sitting stage), the parameters
related to these speeds presented slight differences. In contrast
to the previous tests, the cadence of the MJF group is higher than
that of the PK group. Thus, the cycle length and the number of
cycles of the group with PD are also higher. However, the PK
group managed to finish the test in less time (32.33 s) than the
other group (42.50 s). On the other hand, for the y-axis strength,
both groups presented very similar results, adding that there were
no significant differences. For the z-axis torque, which provides
information on the user’s support on the device, the PK group
presented lower values.

Figure 6 summarizes the parameters evaluated for the three
proposed tests. Figures 7–9 show the walker speed, force, and
torque behavior. For these illustrations, the data from all
participants were averaged and the SD was used.

4. DISCUSSION

In this study, there were no cases of misunderstanding of the
behavior and operation of the AGoRA SW, and no cases of
collisions were reported. Besides, it is essential to highlight that

FIGURE 6 | Illustration of the kinematic and physical interaction data obtained for the three tests. Where RUT is Ramp Up Test, RDT is Ramp Down Test, TUGT is

Timed Up and Go Test, Parkinson group (PK) corresponds to the group of older adults with Parkinson’s disease (PD) and MJF the group with metabolic and joint

diseases and fractures. • indicates that there were significant differences between the groups evaluated. (A) User Speed. (B) SW Speed. (C) Cadence. (D) Cycle

Duration. (E) No. Cycles. (F) Trial Duration. (G) Max frc_y. (H) Mean frc_y. (I) Max trq_z. (J) Mean trq_z.

Frontiers in Neurorobotics | www.frontiersin.org 9 December 2021 | Volume 15 | Article 74228189

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Sierra M. et al. Robotic Walker in Daily Living

FIGURE 7 | The behavior of the results obtained for walker speed. PK stands

for older adults with Parkinson’s disease and MJF stands for a group of older

adults with base, joint and fracture diseases. (A) Ramp Up Test. (B) Ramp

Down Test. (C) Timed Up and Go.

FIGURE 8 | The behavior of the results obtained for force. PK stands for older

adults with PD and MJF stands for a group of older adults with base, joint, and

fracture diseases. (A) RUT. (B) RDT. (C) TUGT.

the sample size of this study is considered small. However,
studies of similar samples have been reported with this type of
devices, as well as, with older adults with Parkinson’s and other
diseases (Mou et al., 2012; Zhang et al., 2018; Mundt et al., 2019).
According to the results presented in the previous section, it was

FIGURE 9 | The behavior of the results obtained for torque. PK stands for

older adults with PD and MJF stands for a group of older adults with base,

joint, and fracture diseases. The areas highlighted in gray represent the times

when the turns were presented and the area highlighted in black represents

the time when the subjects were leaning on the device to stand up and initiate

the test. (A) RUT. (B) RDT. (C) TUGT.

observed that the physical condition of the subjects significantly
influences the participants’ performance using the device.

4.1. Physical Condition Assessment
The results shown in Table 2 indicate that the adults with PD
were in better condition. For the hip strength, there was a
considerable reduction in the MJF group compared to the PPK.
Although PK group was expected to have lower hip strength
(Inkster et al., 2003; Skinner et al., 2019), our results are
supported by the fact that there are joint disorders (such as
osteoarthritis and osteoporosis), which in advanced stages, affect
and weaken the hip extensor and flexor muscles (Jerez-Mayorga
et al., 2019). In Rydevik et al. (2010) and Judd et al. (2014),
similar results were obtained, where a group of older adults with
osteoarthritis exhibited a 10–25% deficit in hip muscle strength.

In terms of knee flexion and extension, the average deficit in
this joint is less than that in the hip for the PK group. Moreover,
the PK group flexion-extension outcomes were considerably
higher than the MJF group. Such an increase was of more than
40% and statistically significant differences were found for the left
limb flexion, mainly due to an older adult who had a fracture
of the tibial plate in the MJF group. As presented in Gaston
et al. (2005), when these types of fractures have not been given
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sufficient time for recovery, significant impairment of muscle
movement and function can occur.

For the SFTs, the results presented in Table 3 were relevant to
determining the participants’ overall functional capacity, agility,
dynamic balance, aerobic endurance, and upper and lower
extremity muscular strength. The PK group exhibited better
results in the Sit to Stand Test SST and significant differences
were found (refer to Figure 5). These results are related to those
previously obtained in the strength tests since the older adults
in the MJF group showed a considerable reduction. Similarly, in
Zijlstra et al. (2012) it is shown how Parkinson patients exhibit
acceptable performance in this type of test.

Upper limb strength and endurance is another fitness
parameter that was measured with the ACT. As shown in
Figure 5, despite the slight increase in the number of repetitions
in the test by MJF, there were no significant differences. Some
older adults in this group who had osteoporosis and epicondylitis
may have influenced the obtained results. Epicondylitis is an
injury characterized by pain in the external aspect of the elbow,
in the region of the epicondyle (Walz et al., 2010). Whereas,
osteoporosis is a bone disease characterized by a decrease in the
density of bone tissue and resulting in an exaggerated fragility
of the bones (on Osteoporosis et al., 2001). In this sense, very
similar results to those shown in Adamo et al. (2015) were
obtained, indicating that participants with these pathologies
show a significant deficit, compromising their physical abilities.

There was not much discrepancy in the mean values obtained
for the CSRT results. However, significant differences were found
in this parameter (refer to Figure 5). As in the previous test, this
one presents values below normal. Additionally, these results are
supported by the fact that older adults with Parkinson’s present
a direct relationship between the degree of stiffness their body
experiences, generated by the disorder and the passing of years
(Inkster et al., 2003).

In the opposite case, the MJF group presented better results
for the BST, despite not showing significant differences (refer to
Figure 5). Regarding the 6MWT the results were as expected.
Even though, the PK group covered a slightly greater distance,
there were no significant differences (refer to Figure 5). This last
could be related to the fact that adults with PD cannot maintain a
constant pace whenmaking very long trips. As presented in Falvo
and Earhart (2009), the Parkinson’s group obtains similar results
because of the subjects’ impaired balance and predisposition to
falls. For this reason and as presented in Mou et al. (2012),
Zhang et al. (2018), and Wu et al. (2020), devices such as SWs
can help reduce the risk factors for falls and help to maintain
constant kinematic parameters such as speed and cadence of the
participant in very long distances.

4.2. Kinematic and Physical Interaction
As for the Ramp Up Test (RUT), the PK group presented
better results concerning user speed (refer to Figure 6), walker
speed (refer to Figures 6, 7), and cadence (refer to Figure 6).
In contrast, the MJF group obtained higher values in the
cycle time, the number of cycles, and test duration (refer to
Figure 6), meaning an inferior performance. This type of test

involve muscles such as the glutes, hamstrings, and quadriceps
(Lindemann et al., 2017), thus the flexion-extension results of the
PK group support their better performance in the RUT. These
results can also be seen in the force exerted by the users (refer
to Figure 8), due to the considerable effort that the older adults
in the MJF group had to make. This significant increase is also
supported by the low performance in the hip and knee strength
tests by this group. Given the weakened lower limbs in the MJF
group, the participants felt the need to rely on the device to
compensate for this deficit. However, there were no significant
differences in the torque values as shown in Figures 6, 9, which is
consistent with the nature of the test (i.e., the majority of the test
with straight sections).

These results might classify the AGoRA SW as a potential
tool for gait retraining and rehabilitation. Considering the
participant’s effort and the natural deterioration of their lower
limbs, the implemented admittance controller could be adjusted
to emulate a lighter or heavier platform according to the
requirements of the subject.

Regarding the Ramp Down Test (RDT), the PK group also
obtained better results. When comparing the behavior of the
kinematic and physical interaction parameters during both ramp
tests, similar results were observed in terms of user and walker
speed (refer to Figures 6, 7). Slight changes were obtained in
cadence, gait cycle time, and the number of cycles. These results
are supported by the fact that uphill walking resulted in slower
speeds because of the natural effort of the test. In addition,
the peak force and torque (refer top Figures 8, 9, respectively)
exerted by the users were considerably higher in the downhill
ramp tests. Because the device exhibited higher moments of
inertia during the downhill tests, subjects required greater efforts
to perform the mid-ramp turn. These results are supported by
the ACT (refer to Table 3), since adults with PD presented a 7.1%
reduction in this test, indicating the natural deterioration of the
lower limbs. For this reason, and unlike the previous test, there
are significant differences in the torque generated in the z-axis.
Similar results were obtained in Lindemann et al. (2017). In this
study, they highlight how a SW reduces under-performance in
subjects’ gait and shows how the kinematic parameters (cadence,
speed, cycles) are substantially reduced in the downhill tests.

Finally, during the TUGT, users were asked to lean on the
device to stand out of the chair. To prevent the admittance
controller from generating velocities, the device motors were
remotely deactivated. This leaning event was observed as an
initial spike in the force and torque signal. As seen in Figures 6,
8, the force signals did not exhibit many discrepancies, and
there was no evidence of significant differences. Regarding
the torque, it is essential to highlight that the MJF group
showed higher values (refer to Figures 6, 9). These findings
suggest that users saw in the intelligent walker a possibility to
compensate for this deficit in the musculature (Judd et al., 2014).
Moreover, compared to the previous tests, which required more
physical effort from the subjects, the TUGT showed lower force
(refer to Figure 6) and torque (Figure 6) values. This indicates
the efficiency and usefulness of the admittance controller in
emulating a lighter platform.
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5. CONCLUSIONS AND FUTURE WORK

This study presented the assessment of the AGoRA SW in
daily life scenarios with two groups of older adults. One
group had PD and the other group had underlying diseases,
joint diseases, and fractures. Physical validation tests were
performed and relevant results were found in the relationship
between this condition and the performance in tests with the
walker. One of the main findings of this study is related to
the relationship between users’ pathologies and their physical
condition. As previously discussed, PD is a brain disorder
that causes progressive cognitive and motor deterioration
producing tremors, rigidity and difficulty in walking, balance,
and coordination. However, it was found that pathologies such
as osteoarthritis in advanced stages can further affect the physical
condition of the subjects and their performance in activities of
daily living.

Interesting results related to the kinematic and interaction
parameters during the RUT were found. Although the RUT
demands that the user has to apply a more significant effort even
to the point of opposing the movement intention, it could induce
muscle training during rehabilitation processes. In addition, this
test could be complemented by adjusting the level of assistance
of the AGoRA SW to meet the specific needs of each user. More
resistive assistance levels induce slower gait patterns compared
to studies reported in the literature. This could be interpreted as
a safety strategy, as slower gait patterns could help users avoid
collisions and stumbling while walking. In addition, the strength
data collected during the RUT provided information on potential
muscle training applications. Furthermore, as evidenced in the
TUGT, the AGoRA SW can guarantee a natural and adequate
interaction in scenarios where no significant effort is required
from the users. This can be evidenced in the force values, as
there were slight discrepancies but no significant differences. This
indicates that despite the participant’s physical condition and
pathology, the AGoRA walker can assist efficiently.

One of the main limitations of this study is that it lacks EMG
information that provides insights related to the participant’s
physical interaction and evolution with this technique in the
different tests. As mentioned before, another limitation of this
research is the sample size. However, this study is the first
approach to comparing the performance of two groups of older
adults with different physical and cognitive characteristics.

Finally, future study will be focused on evaluating at AGoRA
SW with a bigger group of participants. The MJF group will
include older adults with other pathologies that significantly
affect their gait patterns. Besides, standardized scales will be
included to determine the stage of the disease and how this

may influence the results. Future studies will also include
biomechanical analyses.
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Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users,

who experience severe limitations in mobility without an assistive device. Our goal

is to develop assistive devices that collaborate with and are tailored to their users,

while allowing them to use as much of their existing capabilities as possible. Currently,

personalization of devices is challenging, and technological advances are required to

achieve this goal. Therefore, this paper presents an overview of challenges and research

directions regarding an interface with the peripheral nervous system, an interface with

the central nervous system, and the requirements of interface computing architectures.

The interface should be modular and adaptable, such that it can provide assistance

where it is needed. Novel data processing technology should be developed to allow for

real-time processing while accounting for signal variations in the human. Personalized

biomechanical models and simulation techniques should be developed to predict

assisted walkingmotions and interactions between the user and the device. Furthermore,

the advantages of interfacing with both the brain and the spinal cord or the periphery

should be further explored. Technological advances of interface computing architecture

should focus on learning on the chip to achieve further personalization. Furthermore,
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energy consumption should be low to allow for longer use of the neuroprosthesis.

In-memory processing combined with resistive random access memory is a promising

technology for both. This paper discusses the aforementioned aspects to highlight new

directions for future research in gait neuroprosthetics.

Keywords: neuroprosthesis, resistive randomaccessmemory, neural interface, personalized devices, perspective,

embedded artificial intelligence

1. INTRODUCTION

Gait neuroprostheses aim to restore function in persons with
paralysis caused by various injuries, diseases, or dysfunctions
in the central or peripheral nervous system, e.g., a stroke,
cerebral palsy (CP) or a spinal cord injury (SCI). Interfaces
with the brain, spinal cord or the periphery are appropriate
(Figure 1), whereas the type and location of the interface is highly
dependent on the user’s abilities and remaining possibilities for
voluntary control. Development of gait neuroprostheses should
focus on user-friendliness, and aim to maximize speed and
safety, while minimizing fall risk. Furthermore, systems should
be portable and easy-to-use to achieve their adoption in real-
life environments.

Despite some individual success using interfaces with the
brain (e.g., Ajiboye et al. 2017), spinal cord (e.g., Wagner et al.
2018), and periphery (e.g., Nandor et al. 2021), widespread
application of neuroprostheses is still limited. One of the
main challenges are differences between and within individuals.
Between individuals, there is significant heterogeneity in the
target population, which requires personalization of stimulation,
stimulus timing and intensity, and the possible extent of
additional motorized assistance. With “personalization,” we
mean that every patient is provided with an individualized
neuroprosthesis. This personalization can be done on the
hardware and software level. It can be achieved offline through
modeling and simulation, or online through adaptation of the
stimulation scheme to the patient’s current abilities. Personalizing
the intervention is currently a time intensive process of trial and
error by a human expert. Automation of this process with expert
systems that can learn the optimal combinations of muscular
and motor activation for a given individual would increase
accessibility of gait neuroprostheses (Seel et al., 2016). Over
time, due to fatiguing or improved function after rehabilitation,
individuals might benefit from different stimulation patterns,
which requires stimulation to be adaptive (Del-Ama et al., 2014).

The development of adaptive interfaces and personalized
devices requires an interdisciplinary approach involving
clinicians, neuroscientists, engineers, and computer scientists.
The effectiveness of gait neuroprostheses can be quantitatively
assessed by measuring the gait speed, where desired gait
speeds suitable for community use are between 0.8 and 1.2
m/s (Robinett and Vondran, 1988; Lapointe et al., 2001), or
by measuring the metabolic energy expenditure while using
the device (Asselin et al., 2015; Evans et al., 2015; Miller et al.,
2016). Other acceptable metrics could be gait outcomes such as
kinematics or symmetry (Hayes et al., 2020). Furthermore, limits
for comfortable and tolerable stimulation should be defined

FIGURE 1 | Overview of the different organs involved in gait and their

communication structure (left). The right side shows examples of prostheses

that interface with these organs, specifically the brain (top), spinal cord (bottom

left), or periphery (bottom right).

for each user. Figure 2 provides an overview of the different
aims and future directions that are described in this paper.
Movement analyses and simulations are required to understand
pathological gait patterns and to tailor assistance, while the
design should also be modular and user friendly. Artificial
intelligence (AI) would allow control algorithms to be adapted
to each individual user, and potentially over the course of
rehabilitation. Furthermore, AI has the potential to process data,
e.g., electroencephalography and electromyography, accurately
in real-time, which is challenging due to the noisiness of these
measurements. Adoption of AI in gait neuroprostheses requires
development of new software and hardware for efficient on-chip
learning, which should also focus on low energy consumption to
allow for daily use of the device.

In this perspective paper, the organizers, speakers, and authors
of the mini symposium “Adaptation Strategies for Personalized
Gait Neuroprosthetics” which was held during the 10th

International IEEE/EMBS Conference on Neural Engineering
(NER) in May 2021, summarize and extend their contributions
and discussions to point out directions for future research.
The workshop comprised talks and discussion from experts
working on assistive and rehabilitative neuroprostheses and
exoskeletons. This perspective covers three topics: interfacing
with the periphery, interfacing with the central nervous system,
and requirements of interface computing architectures. We
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FIGURE 2 | Overview of the topics of this perspective on gait

neuroprostheses. We discuss requirements and future directions for interfaces

with the periphery and the central nervous system (brain and spinal cord), as

well as for the computer architecture.

discuss and provide a perspective on current research and
future directions.

2. INTERFACING WITH THE PERIPHERY

Interfacing with the peripheral nervous system is a promising
method to address specific functional deficits (Wilson
et al., 2019). Through user-specific stimulation via surface,
percutaneous, or implanted electrodes, muscles can perform a
majority of the work for particular tasks. By implementing hybrid
actuation approaches combining neural stimulation of affected
muscles with robotic assistance, lower extremity function can
be restored for patients with gait impairments, who can still
drive the main features of the walking cycle by their healthy or
preserved muscles. By bringing together neuroprosthetic and
wearable robotic approaches, those hybrid concepts combine
physiologic benefits by activating the other paralyzed and
paretic lower limb muscles through neural stimulation, reducing
the demand on external robotic assistance, and augmenting
volitional and programmed movements to enhance safety,
stability, and endurance.

Neuromechanical simulations of such neuromuscular,
biomechanical, and mechanical interactions can be used to
optimize the performance of users, hardware design (e.g., reduce
size, weight or energy consumption), and controller design
(e.g., seamless motor/muscle actuation and appropriate sensory
feedback) (Alonso et al., 2012; Crago et al., 2014; García-Vallejo
et al., 2016; Uchida et al., 2016; Sreenivasa et al., 2017; Michaud
et al., 2019; Sauder et al., 2019). Dynamic simulations of the
system composed of the human and the neuroprosthesis can
predict the combined human-neuroprosthesis response, allow

for device and control customization to maximize walking
ability, and improve our understanding of the interaction
between human and device for new movement conditions.
We advocate to extend computational neuromusculoskeletal
models to encompass paralysis-related muscular constraints
(Alonso et al., 2012; García-Vallejo et al., 2016) and auxiliary
assistive devices (e.g., crutches/walker, orthoses, exoskeletons,
etc.) (Febrer-Nafría et al., 2020, 2021) to achieve subject-specific
model-based optimization of the device and its control. Then,
such simulations might reveal insights into biomechanical effects
such as altered recruitment, reduced force production due
to atrophy, fatigue effects, or abnormal synergies (Shin et al.,
2018). However, creating a personalized neuromusculoskeletal
model of a patient is still challenging, since the exact underlying
neurological problems of a patient are difficult to extract,
and simulations cannot include the variability in muscle
responses over time. Experimental validation of simulated
clinical outcomes is therefore required (De Groote and Falisse,
2021; Fregly, 2021). Furthermore, even though simulations
can provide insight into the required stimulation pattern, the
stimulation needs to be adjusted in practice due to the variability
in muscle response.

To adapt to the individual user, modular and adjustable
hardware and control solutions can be implemented on a joint-
need basis, and adapted to different anthropometrics, available
muscles and their capabilities, as well as the neurological
conditions (Del-Ama et al., 2014; Makowski et al., 2021; Nandor
et al., 2021). Control in particular requires an adaptive approach
that continuously updates muscle stimulation and electric motor
actuation, and potentially prioritizes muscle activity through
commanding motors in a trajectory-free ballistic paradigm while
monitoring and managing muscle fatigue. To achieve seamless
integration of auxiliary assistive devices, control strategies might
rely on sensors onboard the human and the machine to measure
user-device interaction (Lancini et al., 2016; Ugurlu et al., 2020)
and should favor low impedances so the user’s muscles can
backdrive the device (Foglyano et al., 2016; Beckerle et al., 2017).
Wearable kinematic sensing based on inertial measurement units
is expected to provide equivalent performance to marker-based
approaches. To this end, recent works propose to integrate
inertial measurement units into musculoskeletal modeling
workflows (Dorschky et al., 2019, 2020; Al Borno et al., 2021;
Guidolin et al., 2021). Beyond this, sensory data from the limbs
and muscles could be used to improve control and increase
muscle perfomance by improved fatigue management compared
to current methods based on muscle activity estimation
(Alibeji et al., 2017; Mohamad et al., 2017).

3. INTERFACING WITH THE CENTRAL
NERVOUS SYSTEM

Neural interfacing technologies connected to the CNS, the spinal
cord (Wagner et al., 2018) and the brain (Ajiboye et al., 2017)
have shown promising results, achieving restoration of control
of extremities. While myographic control can provide more
reliable and versatile assistance, there is increasing evidence that
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only stimulation at the CNS level can trigger motor recovery
(Soekadar et al., 2015; Cervera et al., 2018). Moreover, when
there is no voluntary control of the periphery, an interface
to the central nervous system might be the only remaining
approach to restore movement or communication (Birbaumer
et al., 2014). Most neural interfaces focus on either the brain or
the spinal cord, but recently, pioneering studies also investigate
combinations, either of the brain and the spinal cord, or the brain
and the periphery (Dixon et al., 2016; Shulga et al., 2021).

For the spinal cord, a key goal is to interface with specific
motor circuitries responsible for locomotion. Commonly,
invasive interfaces are used (Hochberg et al., 2006, 2012;
Wagner et al., 2018), which require complex setups to infer
neural information of movement intention. Noninvasive
approaches, which combine high-density electromyography,
blind source separation and neuromechanical modeling,
could offer an inexpensive alternative. Although high-density
electromyography records spatiotemporal myoelectric activity
at the periphery level, it underlies interfering information from
spinal neural cells (i.e., alpha motor neurons). Blind source
separation (Holobar et al., 2009; Negro et al., 2016) enables
separating the interfering activity from neural sources, thereby
retrieving the activity of actual motor neuron pools. In turn,
the decoded neural firing events can be employed to drive
comprehensive neuromusculoskeletal models (Sartori et al.,
2016, 2017). Such an interface allows for the activity of actual
motor neuron pools to be decoded by separating the interference
activity from the neural source. This technique is currently used
for characterizing motor neurons during voluntary contractions
(Farina and Holobar, 2016) and reflex movements (Yavuz
et al., 2015) in healthy and impaired (Holobar et al., 2012)
individuals. Moreover, other applications include studying the
neuromechanical response to external devices (Farina et al., 2014;
Gogeascoechea et al., 2020). This technique can therefore extend
current open-loop rehabilitation techniques into closed-loop
neuro-modulative approaches. However, its use is mostly limited
to isometric contractions or slow dynamic contractions, mainly
due to computational challenges related to the assumption
that motor units are stationary and real-time implementation
of the method. Both model-free AI (e.g., machine and deep
learning techniques) (Chen et al., 2020; Clarke et al., 2020)
and model-based techniques (e.g., data-driven mechanistic
modeling) (Sartori and Sawicki, 2021) are explored to enable
real-time implementation, which would allow mechanical and
neural adaptations to exoskeleton training and neurostimulation
to be predicted.

Besides providing intuitive and seamless assistive control, an
important goal at the level of the brain is to promote neuroplastic
changes and foster functional connectivity between central
motoneurons and inactive and/or silent peripheral motoneurons
(Donati et al., 2016). By decoding movement intention and gait
characteristics in real time, invasive and non-invasive brain-
computer interfaces can directly infer the user’s intention to
move, optimizing rehabilitation outcomes (Soekadar et al., 2015;
Mrachacz-Kersting et al., 2016). Non-invasive brain-computer
interfaces can assess large-scale brain oscillatory activity directly,
through electroencephalography ormagnetoencephalography, or

indirectly, by measuring the brain’s energy expenditure (Liew
et al., 2016; Soekadar et al., 2021). Invasive brain-computer
interfaces typically exploit the user’s ability to train the electrical
activity in their brain, which is recorded by electrocorticography
or multielectrode arrays (Hochberg et al., 2012; Ajiboye et al.,
2017). The future of individualized brain-computer interfaces
interventions relies on advanced algorithms for automated
detection of brain states and self-adapting neurofeedback,
as well as on hybrid neural interfaces, integrating different
biosignals, e.g., electroencephalography, electromyography, or
electrooculography, to allow for a more robust and safe control
in real-life applications (Witkowski et al., 2014; Soekadar
et al., 2016). To enable a broad adoption of brain-computer
interfaces in real-life environments for clinics and home use,
portable and easy-to-use systems need to be designed, requiring
comfortable electroencephalography-headsets that minimize
preparation time and allow self-applicability. Furthermore, new
machine learning approaches are needed to optimize calibration
time without inflating the number of sensors.

Instead of focusing on interfacing solely with either the brain,
central nervous system, or periphery, the next generation of
gait neuroprostheses for movement rehabilitation may aim to
develop an interface on multiple levels. The advantage is that
the paired activation of pre- and post-synaptic motoneurons
at the level of the spinal cord is crucial for facilitating the re-
wiring of functional connections after spinal cord injury (Dixon
et al., 2016; Shulga et al., 2021). Motor cortex activity can also
be used to control spinal cord stimulation (Capogrosso et al.,
2016) instead of external control using a mobile app (Wagner
et al., 2018). Adapting the parameters of peripheral stimulation
to the ongoing neural activity has also proven to play a key
role in fostering neuroplastic reorganization (Mrachacz-Kersting
et al., 2016; Bonizzato et al., 2018). Therefore, we envision
the implementation of brain-computer interfaces that allow for
personalized adaptive modulation of brain activity and alpha
motor circuitries.

4. INTERFACE WITH THE EMBEDDED
COMPUTER ARCHITECTURE

The main requirements for interface computing architectures
of gait neuroprosthetics are that the system is personalizable
and adaptable, it should consume as little energy as possible,
such that the system can be used optimally for at least a
full day, and data processing should happen in real-time.
Embedded AI for neuroprosthetics is a promising approach
to achieve these requirements, as it has the potential to be
real-time, while the computing technology and electronics are
attached to the body or even implanted inside the body.
The importance of a corresponding computer architecture in
neuroprosthesis has been emphasized (Vassanelli and Mahmud,
2016; Ielmini and Wong, 2018), specifically to develop a
suitable neuronal architecture to interface with the brain.
However, no implementations exist so far, and therefore the
further development and prototyping of concepts is of utmost
importance (Mikhaylov et al., 2020). To achieve personalization

Frontiers in Neurorobotics | www.frontiersin.org 4 December 2021 | Volume 15 | Article 75051998

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Koelewijn et al. Perspective on Personalized Gait Neuroprosthetics

and adaptability, a main challenge is to perform online learning
on the embedded AI. In contrast, today’s embedded AI only
allow inference, while networks are trained offline. This training
is computationally intensive and consumes much energy. To
achieve low energy consumption and real-time processing for
training as well as inference on the chip, the embedded AI should
be implemented as low-energy circuits.

An important step to achieve low energy consumption in
embedded AI is to use in-memory processing, i.e., operations
on data are performed analogously or digitally directly in
the memory. Low-energy consumption is inherent for analog
processing, since no digital conversion is required, while
specialized hardware architectures without a central processing
unit can greatly decrease energy consumption since long data
paths are avoided. Using non-volatile storage ensures that no
information is lost when power is switched off, what can
be done when no data processing is required, e.g., when a
person wearing a neuroprosthetics stops and does not walk.
Accordingly, reloading weights after activation is not required.
Many international groups currently study applications of non-
volatile memory for neural networks and enhanced computing
technologies, e.g., utilizing such memory as synaptic elements for
artificial neural networks (Hu et al., 2018; Zhang et al., 2020).

Resistive random access memory (ReRAM) has compared
to other non-volatile memory technologies, like e.g., Phase
Change Memories, the advantage (Ielmini and Wong, 2018)
to further decrease energy consumption, due to a unique
combination of multi-level programming and a high density
of integration (Milo et al., 2019). Furthermore, ReRAMs
are potentially compatible with the most commonly used
chip technology, complementary metal–oxide–semiconductor
process manufacturing. Multi-level programming means that
multiple bits can be stored on one ReRAM device. Therefore,
weights and matrix multiplications of a neural network can
be stored inside one ReRAM cell, and a neural network can
be implemented by saving all network weights directly on the
chip (Perez et al., 2020). As a result, external memory access
is avoided, which can lower the energy consumption drastically
(Knödtel et al., 2020). The high-density integration on the chip
allows for the ReRAM cells to be closely attached to digital
computation units, which decreases energy consumption by
avoiding long data paths on the chip. The use of ReRAM
technology yielded a 95% reduction in energy consumption for
the classification of bio-signals for atrial fibrillation compared
to a traditional approach (Pechmann et al., 2021). Therefore,
ReRAM technology is a promising candidate for realization of
personalized gait neuroprostheses relying on artificial neural
networks in digital (e.g., as ReRAM storage for weights) and
analog in-memory processing (e.g., as an in-memory processing
element itself).

However, several challenges exist for ReRAM technology
to be implemented on a neuroprosthesis. Currently, storage
of up to three bits on each ReRAM cell is possible (Milo
et al., 2021). However, energy consumption for reading out
information increases when more bits are stored on a cell. This

trade-off between energy consumption for read out and energy
saving from in-memory processing should be further investigated
to minimize overall energy consumption. Furthermore, storage
elements using ReRAM technology have a larger device-to-device
variability than traditional storage elements, which use volatile
technology. In particular, this device-to-device variability is a
problem for multi-bit storing (Fritscher et al., 2021b), which
is desired for embedded AI. Also the variability of switching
parameters and energy overheads of analog-to-digital and digital-
to-analog conversion is still a challenge for the reliable use
of ReRAMs as well as their comparatively low endurance, i.e.,
the number of allowable switching cycles of the ReRAM cells.
This is particularly challgengin for neuroprotheses, which have
higher time series data analysis requirements than e.g., a ReRAM
based analysator for detecting atrial fibrillation. To achieve
this, new research should address special training methods that
account for tolerable fluctuations by using learning techniques
such as noisy training or dropout layers (Fritscher et al.,
2021a).

5. SUMMARY AND CONCLUSION

Neuroprostheses can potentially restore function through
external activation of the central or peripheral nervous system.
We have presented our perspective on current challenges of
and future directions in the development of neuroprostheses
in stimulation of the peripheral and central nervous systems,
and outlined technical approaches to appropriate computer
architectures, as also summarized in Figure 2. A paramount
challenge is to restore mobility by effectively combining
neuroprosthetic and wearable robotic approaches and to align
neuroprostheses to the individual user’s needs and capabilities.

To this end, predictive simulations of the human-machine
system in dynamic tasks appear to be a promising approach
to customize design and control. Still, predictive simulations
can only provide rough representations of a paralysis and its
highly individual constraints, which cannot yet be covered by
recent neuromuscular modeling approaches, which, in turn,
hampers user-specific control and stimulation. We suggest
that future work should focus on improving neuromechanical
simulations of user-device interaction based on experimental
data, e.g., obtaining muscle parameters on the bench and
in real applications, and aim at prioritizing muscle activity
over robotic assistance. Combining a deeper understanding
of neuromechanical dynamics, particularly muscle-group
excitation through the central nervous system, with multimodal
sensor networks distributed across the human and the device
could foster model-based monitoring and management of
muscle fatigue.

For the central nervous system, real-time data processing,
ease of use of systems, and combining interfacing at multiple
levels are important future directions. Real-time data
processing is required to extract useful information from
noisy measurements of brain or spinal cord activity in a useful
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way. AI is a promising approach to enable this real-time
data processing, while also allowing for personalization, and
limiting the number of sensors required, improving ease of
use. Portable and easy-to-use systems should be designed
to allow for the adoption of neuroprostheses in real-life.
Furthermore, the combination of stimulation at the brain and
the spinal cord or the periphery should be further explored,
since these combinations were shown to have benefits over
stimulation at only one of these levels, and thereby improve
rehabilitation outcomes.

Regarding technological advances of the interface to
the computing architecture, a main current challenge is to
achieve low-energy electronics, real-time data processing,
and learning on the chip. Embedded AI has the potential
to process data in real-time, and allows for learning and
inference on the chip. To achieve low-energy consumption,the
embedded AI should use in-memory processing combined
with ReRAM technology. To allow the use of ReRAM
technology in gait neuroprostheses, we need further research
in combining ReRAM technology as multi-bit storage cells
with complementary metal–oxide–semiconductor process
manufacturing, the commonly-used chip technology.
Furthermore, the functionality of the ReRAM cells should
be expanded to improve reliability and mitigate the effect its
device-to-device variability.

In conclusion, a close cooperation between computer
architects, electrical engineers, material scientist, medical
experts, and biomechanical experts is required to
design appropriate neuroprostheses that are tailored
to the user’s need, adaptable, easy-to-use, and consume
little energy.
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Neurorehabilitation research suggests that not only high training intensity, but also

somatosensory information plays a fundamental role in the recovery of stroke patients.

Yet, there is currently a lack of easy-to-use robotic solutions for sensorimotor hand

rehabilitation. We addressed this shortcoming by developing a novel clinical-driven

robotic hand rehabilitation device, which is capable of fine haptic rendering, and that

supports physiological full flexion/extension of the fingers while offering an effortless

setup. Our palmar design, based on a parallelogram coupled to a principal revolute

joint, introduces the following novelties: (1) While allowing for an effortless installation

of the user’s hand, it offers large range of motion of the fingers (full extension to 180◦

flexion). (2) The kinematic design ensures that all fingers are supported through the full

range of motion and that the little finger does not lose contact with the finger support in

extension. (3) We took into consideration that a handle is usually comfortably grasped

such that its longitudinal axis runs obliquely from the metacarpophalangeal joint of the

index finger to the base of the hypothenar eminence. (4) The fingertip path was optimized

to guarantee physiologically correct finger movements for a large variety of hand sizes.

Moreover, the device possesses a high mechanical transparency, which was achieved

using a backdrivable cable transmission. The transparency was further improved with the

implementation of friction and gravity compensation. In a test with six healthy participants,

the root mean square of the human-robot interaction force was found to remain as

low as 1.37N in a dynamic task. With its clinical-driven design and easy-to-use setup,

our robotic device for hand sensorimotor rehabilitation has the potential for high clinical

acceptance, applicability and effectiveness.

Keywords: robotic hand rehabilitation, clinical acceptability, neurorehabilitation, sensorimotor, haptics, clinical-

driven, grasp, transparency
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1. INTRODUCTION

With about 17 million people worldwide that experience a stroke
each year, stroke remains a major cause of disability (Feigin
et al., 2014). Up to 75% of stroke survivors suffer from long-
term arm and hand impairments (Lai et al., 2002), which leads
to a severe impact on patients’ capability of performing activities
of daily living and compromises their autonomy (Mercier et al.,
2001; Hunter and Crome, 2002). To maximize recovery, clinical
evidence suggests that patients should embark in active (Lotze,
2003), long (Kwakkel et al., 2004; Nielsen et al., 2015), high-
intensity (Tollár et al., 2021), and repetitive functional task-
specific practice (French et al., 2016). Sensory training is also
highly recommended (Turville et al., 2019), as several studies
have associated somatosensory impairment at baseline with
poorer motor function and recovery after stroke (Meyer et al.,
2014; Rowe et al., 2017). However, in practice, high-intensity
therapy is labor-intensive, and training duration can be limited
by the endurance and availability of the therapists, possibly
reducing therapy outcomes. Furthermore, most of the current
therapies target primarily improving motor functions, neglecting
the sensory aspects of neurorehabilitation (Bolognini et al., 2016;
Gassert and Dietz, 2018; Handelzalts et al., 2021).

The ideal neurorehabilitation training could be provided by
robotic devices as robots can deliver high-intensity training
in a motivating and engaging virtual environment (Brütsch
et al., 2010; Lo et al., 2010; Gassert and Dietz, 2018;
Bernardoni et al., 2019). However, despite the increasing number
of robotic devices developed in the recent years for hand
rehabilitation, the majority of these solutions has never been
tested in clinical settings. One of the main obstacles listed for
their poor clinical acceptance is high complexity—e.g., long
setup times and overabundant functionalities (Balasubramanian
et al., 2010). Furthermore, recent meta-analyses concluded
that traditional robotic training yields similar or even inferior
outcomes to conventional therapy, especially in activities of
daily living (Bertani et al., 2017; Veerbeek et al., 2017).
This is not surprising, since current rehabilitation robots
only provide general assistance to perform rather artificial
movements that are far from being functional. Current robot-
aided interventions rely on abstract visual feedback while somatic
(i.e., tactile and proprioceptive) feedback is underutilized.
However, the perception of forces from the interaction with
virtual environments conveys essential information for fine
motor control and learning, e.g., during object grasping and
manipulation (Huang et al., 2007; Danion et al., 2012; Özen et al.,
2021). Thus, robots that enhance somatic information through
haptic rendering—i.e., the provision of simulated interactive
forces with virtual objects—might promote functional gains by
leveraging practice in an enriched multisensory environment
(Gassert and Dietz, 2018).

To evaluate the current state of the art on robotic hand

rehabilitation, we performed an in-depth literature research and

compared the found hand rehabilitation devices based on degrees

of freedom (DoF), range of motion (RoM), available force, setup,
and haptic rendering capabilities (see comparison table of hand
rehabilitation devices in the Supplementary Material). Actuated

hand rehabilitation devices can be distinguished in wearable
exoskeletons, soft robotic gloves, grounded end-effectors, and
grounded exoskeletons. The distinction between grounded
exoskeletons and end-effector devices can be ambiguous in the
case of hand rehabilitation devices, yet it is generally accepted
that exoskeletons exert a high degree of control over individual
joints and limb segments (Gassert and Dietz, 2018).

Wearable exoskeletons are usually mounted dorsally and often
provide a large range of finger motion through sophisticated
mechanisms that ensure coincident centres of rotation with
the anatomical finger joints (Sarac et al., 2019). While some
exoskeletons are principally designed to allow patients to perform
rehabilitation exercises (e.g., Ho et al., 2011; Pu et al., 2020),
others focus on assisting in activities of daily living (e.g.,
Hasegawa et al., 2008; Gasser et al., 2017; Hong et al., 2019).
Because wearable exoskeletons tend to be cumbersome to install
(Aggogeri et al., 2019), there has been an increasing effort to
develop self-aligning (e.g., Zhang et al., 2014; Cempini et al.,
2015; Leonardis et al., 2015; Sarac et al., 2016) as well as highly
portable and mechanically simple exoskeletons [e.g., Tenoexo
(Bützer et al., 2020), Mano (Randazzo et al., 2018)] to improve
usability and ease of setup.

Similar to mechanically simple exoskeletons, soft-robotic
gloves appear to be a promising alternative to complex
exoskeletons for grasping assistance. They are often actuated
by cables [e.g., CADEX (Kim and Park, 2018), Graspy Glove
(Popov et al., 2017), CHAD (Huang et al., 2020), (Xu et al., 2020;
Alnajjar et al., 2021)] or soft pneumatic actuators (e.g., Yap et al.,
2016), which results in lightweight designs. Furthermore, they
generally exhibit an excellent range of motion. The donning of
soft robotic gloves has been facilitated by an open palm in the
Glorea (Borboni et al., 2016) or a zipper on the palmar side of
the glove in the BiomHED (Lee et al., 2014). Nevertheless, they
require an advanced level of dexterity and finger mobility from
the patients to be setup easily (Sarac et al., 2019).

While exoskeletons as well as soft robotic gloves create
opportunities to integrate rehabilitation in activities of daily
living, the vast majority of them is difficult to setup for patients
suffering from compromised finger mobility due to spasticity
or hypertonia (Tsai et al., 2019), which greatly limits the
potential for interventions with these devices. Although a few
wearable exoskeletons or soft robotic gloves are capable of
haptic rendering [e.g., (Li et al., 2011; Sandoval-Gonzalez et al.,
2016; Decker and Kim, 2017), CyberForce (CyberGlove Systems,
USA), see Supplementary Material for further details], most
of them do not yield this functionality. Due to their design,
exoskeletons often allow to provide tactile sensory information
by directly interacting with physical objects during exercises
(e.g., Wang et al., 2018). Yet, the richness of sensory stimulation
is limited to the properties of the physically available objects
during therapy. Soft robotic gloves, on the other hand, generally
have the disadvantage that the fingertips are covered, which
might attenuate sensations from real-world object handling.
Dedicated haptic devices, however, are able to provide rich
sensory information with adjustable intensity, and importantly,
can adapt continuously to the patients’ specific needs and
performance.
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Several end-effector devices have been specifically developed
to provide haptic feedback. The HIRO-III (Hioki et al., 2011)
is a haptic interface that resembles a robotic hand with fingers
that interact individually with the subject’s fingertips. The
underactuated orthosis of Sooraj et al., employs a three-bar
linkage mechanism to individually actuate the fingertips and
offers a large range of motion (Sooraj et al., 2013). Frisoli et al.
proposed a high-fidelity haptic interface for thumb and index
finger of the hand (Frisoli et al., 2007) with potential application
in sensorimotor rehabilitation. The ReHapticKnob is a two DoF
device (i.e., grasping and pronosupination) specifically designed
to have excellent haptic rendering capabilities (Metzger et al.,
2011). However, similar to the cable-driven HandCARE robot
(Dovat et al., 2008) or the commercially available Amadeo R©

(TyroMotion, Austria), the fingertips are attached to a linear
axis and do not move along a physiological (i.e., spiral-shaped)
finger path. The reachMAN2 is a haptic device for reach
and grasp training with a palmar handle—i.e., the handle is
largely in contact with the palmar side of the hand. The
Alpha-Prototype II (Masia et al., 2007) is a palmar robotic
handle with an axially symmetrical design capable of high-
quality haptic rendering. It is—similar to other palmar end-
effector devices [e.g., (Just et al., 2019), InMotion R© Arm/Hand
(Bionik Labs, Canada)]—relatively simple to setup. However,
current palmar devices generally suffer from a limited range of
motion.

When it comes to grounded hand exoskeletons, Ueki et al.
developed a device for hand and wrist rehabilitation that
controls 18 DoF (Ueki et al., 2012) employing dedicated linkage
mechanisms for each finger. The HEXORR, developed by
Schabowsky et al. (2010), is a grounded robotic exoskeleton
which implements simultaneous movements of index to little
finger with a large range of motion. The FINGER exoskeleton
(Taheri et al., 2014) is highly backdrivable and can be used
for proprioceptive training of two fingers. The hand module
Manovo R© Power (Hocoma, Switzerland) offers one DoF (i.e.,
coupled finger and thumb motion), uses straps for an easy setup,
but provides only limited finger flexion. Finally, The Gentle/G
hand module (Loureiro and Harwin, 2007) provides basic haptic
rendering and allows to interact with virtual environments. It is
equipped with a hinge mechanism that allows to open the hand
fixations for a quick setup.

Based on the reviewed studies, there is a clear need for
a new actuated hand rehabilitation device that is easy to
setup while allowing for a large range of finger motion,
and that provides physical assistance as well as somatic
sensations to practice meaningful functional tasks in an engaging
virtual environment. To address the unsatisfied needs in
robotic sensorimotor rehabilitation, we aimed at developing
a novel clinical-driven robotic hand rehabilitation device that
is capable of high quality haptic rendering and that supports
physiological full flexion/extension of the fingers while offering
an effortless setup.

To maximize acceptance and usability of our novel device,
we conducted a survey with 33 participants (therapists, nurses,
and physicians working in neurorehabilitation) to gather clinical
requirements (Rätz et al., 2021). The results from this survey

FIGURE 1 | Prototype of the clinical-driven Palmar RehabilitatIon DEvice

(PRIDE).

confirmed that a simple and short setup is essential for the
clinical acceptability and applicability of robotic devices in
rehabilitation. Furthermore, finger extensions were reported
as crucial movements to be trained. To fulfill these clinical
requirements, we combined novel optimization methods that
incorporate not only mechanical considerations (i.e., simple
setup, fine haptic capabilities, accommodating diverse hand
sizes), but importantly, also anatomical considerations (i.e., large
physiological range of motion, different lengths of individual
fingers, ergonomic grasp). Here, we present the resulting optimal
design, the Palmar RehabilitatIon DEvice (PRIDE) (Figure 1),
which introduces the following novelties:

1. A large range of motion (from 180◦ flexion to full extension)
of the fingers, while allowing for an effortless installation of
the patient’s hand. This is achieved by designing the handle to
have a compact cylindrical shape during the setup phase.

2. Our kinematic design ensures that all fingers are supported
through the full range of motion and that the little finger does
not lose contact with the handle during extension.

3. In our design, we took into consideration that the human
hand usually grasps a cylindrical object in a way that it is
not orthogonal to the longitudinal axis of the hand. Instead,
it runs obliquely from the metacarpophalangeal joint of the
index finger to the base of the hypothenar eminence.

4. The end-effector path was optimized to guarantee
physiologically correct finger movements for a large variety of
hand sizes.

In the upcoming sections, we present the requirements as well
as the mechanical design and control of our prototype. First, the
requirements are established based on clinical needs, anatomical
constraints, and mechanical considerations. A kinematic design
that satisfies all the requirements is then proposed and optimized
based on anthropometric data. The mechanical realization and
the control thereof are then described, including friction and
gravity compensation to enhance transparency. Finally, we
present results from a preliminary test with healthy participants
to characterize the device’s haptic capabilities.
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FIGURE 2 | Clinical requirements. Importance of practicing various upper-limb movements in stroke rehabilitation according to our survey with 33 participants

(therapists, nurses, and physicians working in neurorehabilitation) from the University Hospital Bern, Switzerland and Reha Rheinfelden, Switzerland.

2. METHODS

2.1. Requirements
2.1.1. Clinical Requirements
Prior to the novel device development, we conducted a survey
with 33 clinical professionals (therapists, nurses, and physicians
working in neurorehabilitation) from the University Hospital
Bern, Switzerland and Reha Rheinfelden, Switzerland, to gather
the clinical requirements for a robotic device targeting sensory-
motor rehabilitation of the upper-limbs (Rätz et al., 2021). We
found that grasping, eating, and personal hygiene are amongst
themost important activities of daily living to be exercised. Finger
and wrist extensions were reported as relevant movements to be
trained. In subsequent on-site discussions with therapists during
the device development, we further particularized full finger
extensions as a crucial clinical requirement. Moreover, the results
of our survey indicated a higher relevance of training the index
finger compared to middle, ring and small finger (Figure 2).
Importantly, the majority of the clinicians would like to spend
less than 10 min (median of 5 min) to set up the robotic device.
A complete list of the survey results can be found in Rätz et al.
(2021).

2.1.2. Anatomical Requirements

Finger Model and Interjoint Couplings
To support physiological finger movements, we first need to
understand the path that is described by a finger in a grasping
motion. To this end, a kinematic model of the fingers is
required. We utilized the three DoF kinematic model depicted
in Figure 3. The metacarpophalangeal (MCP; θ1), proximal
interphalangeal (PIP; θ2) and distal interphalangeal (DIP; θ3)

FIGURE 3 | Schematic representation of the index finger kinematics.

joints were considered as one DoF hinge joints. The angle θ0
denotes the initial angle of the MCP joint. The abduction and
adduction of the fingers were assumed to be zero. Further, all
joints axes were assumed to be parallel to ẑMCP, which constrains
the finger movements to be within the xy-plane (Figure 3). The
finger tip angle w.r.t. to the metacarpal bone is denoted as ϕF .
The fingertip position coordinates xF and yF as well as ϕF are
computed by Equation (1), whereby c01 is the short form of
cos(θ0 + θ1), etc.

xF = l1c01 + l2c012 + l3c0123 − l4s0123

yF = l1s01 + l2s012 + l3s0123 + l4c0123

ϕF =

3
∑

i=0

θi

(1)
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FIGURE 4 | Angular relationship between PIP and MCP joints (A) and the corresponding interjoint coupling (rate of change) (B) according to literature.

We assumed that consecutive finger joint positions can be
described as a function of the preceding finger joints. These
interjoint couplings n12 and n23 were defined as follows:

θ2 = n12θ1

θ3 = n23θ2 = n12n23θ1
(2)

It is generally accepted that there is an approximately constant
anatomical coupling between the DIP and PIP joints that lies
in the range of n23 ∈ [0.65, 0.75] for the index finger (Hahn
et al., 1995; Cobos et al., 2007; Mentzel et al., 2011) while
the movements of the MCP and PIP joints are independent
to each other. It is, for example, possible to fully flex the PIP
joint while extending the MCP joint and vice-versa. The typical
relation of the MCP and PIP joint angles n12 during grasping for
healthy individuals has been subject to investigation and has been
described as linear (Kuch and Huang, 1995; Cobos et al., 2007;
Zhang et al., 2018), quadratic (Taheri et al., 2014), cubic (Jo et al.,
2017), or even quartic (Yang et al., 2016) (Figures 4A,B). Based
on this large and inconsistent variety of identified MCP-PIP
interjoint couplings, we argue that a constant coupling between
MCP and PIP joint angles can be assumed, which results in a
physiologically correct and comfortable grasping motion. For the
development of our prototype, the value of this constant coupling
was chosen to be in the range of n12 ∈ [1.25, 1.75]. This allows
to reduce the three DoF finger model in Equation (1) to a one
DoF model.

Cylindrical Grasping
When holding a cylindrical object using full palmar prehension,
the longitudinal axis of the cylindrical object usually runs
obliquely from the MCP joint of the index finger to the base of
the hypothenar eminence (Napier, 1956). We refer to the angle
of this longitudinal axis relative to the transverse axis of the
hand in Figure 5A as cylinder angle, as introduced by Buchholz

(Buchholz, 1992). A wide range of cylinder angles, from 10◦ to
30◦, has been reported in literature (Kapandji, 1982; Buchholz,
1992).

If a straight line is traced in the coronal plane through the
center of the distal segment of the index finger and the center
of the distal segment of the little finger (Figure 5B), the angle
between this line and the transverse axis of the hand happens
to be similar to the cylinder angle ψ . Importantly, this is also
the case if the same line is traced when the hand is closed
(Figure 5A). The straight line connecting the centers of the
distal segments of index and little finger appears to be parallel
to the longitudinal axis of a cylindrical object in a cylindrical
grasp with flexed (Figure 5A) or extended (prior to grasping,
Figure 5B) fingers. This is due to a combination of several factors:
First, the length of each finger is different, with the little finger
being the shortest. Second, the MCP joint of each finger has a
different proximodistal position with the MCP joint of the little
finger being the most proximal (Vergara et al., 2018). Third, as
described by Kapandji (Kapandji, 1982), the last three fingers—
i.e., middle finger, ring finger and little finger—not only move
in the sagittal plane when flexed, but in an oblique plane latero-
medially, with the small finger moving in the most oblique
plane. Last, the increased functional range of motion of the
MCP joints of ring and little finger (Hayashi and Shimizu, 2013)
bring their fingertips in a more proximal position in a cylindrical
grasp.

Because of the apparent resemblance of the cylinder angle
and the angle deduced from the line through the fingertips
of index and little finger, we assume these angles to be
equivalent and denote them both by ψ as indicated in
Figure 5B. To enable a natural cylindrical grasp, we require our
kinematic design to respect this angle, which we assumed to
be ψ = 25◦ based on estimations of the fingertip positions
of index and little finger using (Garrett, 1970a,b; Vergara et al.,
2018).
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FIGURE 5 | Cylinder angle. (A) The hand encloses the cylindrical object with the cylinder angle. (B) Illustration of the cylinder angle in the open hand as well as the line

connecting the fingertips from index to little finger.

2.1.3. Design Requirements

Easy Setup
After stroke, patients often suffer from spasticity (Urban et al.,
2010), leading to involuntary chronic joint flexion. This presents
an insuperable barrier for the usage of devices that require
finger extension during setup. Thus, to facilitate the admission
of patients with spasticity into robotic rehabilitation, it would
be advantageous to perform the patients’ setup with their hands
being closed. We, therefore, aimed at designing a device that
possesses a compact, cylindrical-shaped geometry during setup,
which allows to slide the patient’s closed fist on the device.

The simultaneous clinical requirement of being able to
practice full finger extension movements and the design
requirement of a compact handle to facilitate the setup, impose
the need of a large range of motion of the fingers. We determined
a fingertip full flexion angle ϕF of 180

◦ as a reasonable value for a
closed hand and ϕF of 0◦ at fingers full extension. This choice
represents a compromise between compactness of the handle
during setup, full finger extension, and mechanical feasibility.

Fingertip Forces During Grasping
Including all digits, the human hand is capable of approximately
500N grasping force (100N for the thumb during a key
grasp) (Hasser, 1995; Rickert, 2010). Wiker et al. report that
a value of 15% of the maximum voluntary finger contraction,
corresponding to 75N in the fingertips, is an upper bound for
the comfortable long-term use of a haptic interface (Wiker et al.,
1989). A lower bound can be deducted from the peak force
that is required to extend moderately spastic/hypertonic fingers.
In literature, values ranging from approximately 15N (Kamper
et al., 2006) to 25N, (15N for the thumb) (Nycz et al., 2018)
are reported. Thus, a minimum continuous fingertip force of
FF,min = 30N was considered as an adequate value for the
development of our haptic device. The force during practice was
decided to be applied on the last segment of the fingers, which
corresponds to natural grasping. This would further promote

sensory stimulation at the fingertips where the highest density of
cutaneous mechanoreceptors is located (Vallbo and Johansson,
1984).

Accounting for Different Hand Sizes
In order to increase the clinical practicability of our solution, we
aimed to design a device that could be used by patients with
a variety of hand proportions, i.e., from the 5th percentile of
women’s hand size to the 95th percentile of men’s hand size.
Exhaustive measurements of hand proportions are reported in
the NASA Man-System Integration Standards (NASA, 1995), in
the studies of Garrett (1970a,b) and by Vergara et al. (2018).
Buchholz et al. represent the length of each finger segment as
a percentage of the total hand length (Buchholz et al., 1992).
Their estimations agree with the findings of Van Der Hulst
et al. (2012). For our development, we utilized the values
reported by Garrett and Buchholz et al., and we assumed that
all the proportions of finger segments scale linearly with the
hand size.

Enhanced Transparency
Haptic interactions can be finely rendered without the need
of adding expensive/bulky force sensors by employing open-
loop impedance control (Hatzfeld and Kern, 2014). Yet, this
requires that our mechanical design is inherently transparent,
i.e., possesses low static friction, low backlash, and high
backdrivability. A highly backdrivable design also has the
advantage of being inherently safe in case of a power cut-off.
Cable-driven transmissions could be good candidates to achieve
high transparency and are already successfully employed inmany
haptic devices (e.g., Mali and Munih, 2006; Pezent et al., 2017;
Buongiorno et al., 2018).

2.2. Mechanical Design
In our solution, we employ a palmar design—i.e., the main
area of contact between the device and the hand is between
the handle and the palm (Figure 1). While the metacarpal
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FIGURE 6 | Schematic representation of the kinematics of the device.

bones of the hand are fixed on the handle using straps, the
fingertips are attached to an end-effector, which moves the
fingertips along a specific path. In this paper, we refer to the
end-effector as the part of our device which interacts with
the user’s fingertips. While a large part of the distal finger
segments might touch the end-effector, the contact point between
a fingertip and the end-effector is defined to be in the center
of the palmar side of the distal finger segment (Figure 3). After
finding an adequate kinematic architecture for our device based
on clinical, anatomical and design requirements, the synthesis
of the mechanical design parameters was performed utilizing
an optimization approach (see section Optimization of Design
Parameters). The key idea of this optimization was to find the
position of hands of different sizes on the device such that their
respective fingertip paths overlap when performing a cylindrical
grasp.

Motivated by the results of our survey, which highlights
the relevance of training natural index finger movements (Rätz
et al., 2021), the kinematic design was realized focusing on
the index fingertip path. When performing a cylindrical grasp,
the fingertips approximately describe a spiral around the MCP
joints, which consists of a rotary movement around a principal
revolute axis with a successively decreasing momentary radius.
To accomplish that the robot end-effector follows this spiral-like
movement, a parallelogram coupled to a principal revolute joint
was chosen (Figure 6). Within this design, the parallelogram
moves as a function of the rotation α of the principal revolute
joint, and hence, requires only one actuator. Furthermore,
this solution uses solely revolute bearings, which typically
possess lower friction values and require less maintenance than

linear bearings because their races are less exposed and can
be more easily protected from dust than the rails of linear
bearings.

To achieve a natural cylindrical grasp, the cylinder angle ψ
(Figure 5) was introduced into the system design. We found that
a remarkably natural grasping motion can be obtained when
the orientation of the handle’s longitudinal axis (corresponding
to the orientation of a straight line connecting the centers of
the fingertips of index and little finger as shown in Figure 5) is
invariant to the world frame during the entire range of motion.
In particular, this allows the small finger to stay in contact with
the end-effector and avoids that it slides off the end-effector
during the entire range of motion. Thus, we tilted the entire
mechanism forwards, including the principal (actuated) revolute
joint, with an angle ψ (Figure 6) w.r.t. the transverse axis of the
hand. The fingertip support (end-effector) was then designed to
be parallel to this tilted principal axis of rotation in order to
keep its orientation during the entire range of motion. Note that
the tilted parallelogram would result in a vertical movement of
the end-effector. To reduce this undesired vertical movement to
the minimum, the parallelogram was inclined backwards in the
opposite direction by an angle γ (Figure 6). This angle γ will
be subject to the optimization of the design parameters after the
derivation of the kinematics.

The kinematics of the robot end-effector were derived using
homogeneous transformation matrices A

BT, representing frame
{B} in frame {A}. The frame {MCP} is attached to the MCP
joint of the index finger, while frame {EE} is attached to the
end-effector. The short forms Dx, Dy, Dz and Rx, Ry, Rz denote
a local translation or rotation respectively (Craig, 2005). The
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kinematic chain is schematically represented in Figure 6 and
mathematically described by Equations (3) to (9).

MCP
0T = Dx(x0)Dy(y0)Ry(ψ)Rz(α0)

0
1T = Rz(α)

1
2T = Dx(d1)Ry(−γ )Rz(−β0)

2
3T = Rz(−β)Dx(b)Rz(β)

3
4T = Rz(β0)Dy(−d2)Ry(γ )Rz(−α0)

(3)

MCP
4T = MCP

0T
0
1T

1
2T

2
3T

3
4T =

[

x̂4 ŷ4 ẑ4 p4
0 0 0 1

]

(4)

x̂EE =
ŷ4 × ẑMCP

‖ŷ4 × ẑMCP‖
(5)

ŷEE = ẑMCP × x̂EE (6)

ẑEE = ẑMCP (7)

pEE = p4 (8)

MCP
EET =

[

x̂EE ŷEE ẑMCP pEE
0 0 0 1

]

(9)

The matrix MCP
0T describes the transformation from the MCP

joint frame {MCP} to the frame {0}. The local z-axis vector ẑ0 is
coincident with the axis of the principal revolute joint. Actuating
this joint by introducing a rotation of α leads to frame {1}. The
following transformation 1

2T places the frame {2} on the first
revolute joint of the parallelogram. The next transformation, 23T,
describes the translation from the input to the output of the
parallelogram. The 3

4T is a transformation that places frame {4}
into the end-effector position, whereby ẑ4 is always parallel to
the principal revolute axis ẑ0. The final transformation MCP

EET,
which expresses the transformation from the MCP joint to the
end-effector, is obtained by constructing x̂EE and ŷEE and utilizing
the position vector pEE obtained from Equation (8). The vectors
x̂EE and ŷEE (Equations 5 and 6) are computed such that x̂EE
represents the end-effector orientation and are based on the
anatomical constraint that the fingertip always moves in the xy-
plane of the MCP joint frame {MCP}. The angle α0 + α denotes
the angle of the principal axis of rotation, while the angle β0+β is
the angular opening of the parallelogram. The angle α describes
the rotation introduced by the actuator (α ≥ 0◦). The initial
angles α0 and β0 are constant design parameters that need to be
optimized. The parallelogram opening angle β was chosen to be
proportional to the angle α (with fixed ratio nαβ , Equation 10) to
avoid a too complex mechanical design.

β = nαβα (10)

FIGURE 7 | End-effector and MCP joint positions.

The end-effector position coordinates xEE, yEE and zEE are
obtained from pEE (Figure 7). The end-effector angle ϕEE,
corresponds to the angle between x̂EE and x̂MCP and is
computed by Equation (11). For the upcoming synthesis of the
mechanical design parameters, this angle was bounded to ϕEE ∈

[−90◦, 270◦).

ϕEE = sign((x̂EE × x̂MCP) · ẑMCP) arccos(x̂EE · x̂MCP) (11)

2.3. Optimization of the Design Parameters
Once the the kinematic architecture was decided, we searched
for the most suitable set of design parameters by performing
an optimization. This optimization step aims to find the
optimal position of hands of different sizes on the handle
such that their respective fingertip paths overlap. By achieving
this, it suffices for the device to track only one common
fingertip path, independently of finger sizes. This allowed
us to engineer our device without any adjustable moving
parts which would have resulted in complicated adjustment
mechanisms. Instead, different hand sizes are accommodated
by the use of size-specific handles, which can be exchanged
within seconds. Four different index finger sizes (small,
small-medium, medium-large, large) were considered in the
optimization, the smallest being the 5th percentile of women
and the largest being the 95th percentile of men, according to
anthropometric databases. The two intermediate finger sizes were
linearly interpolated.

The optimization step required the definition of an adequate
cost function whose minimization would result in optimal design
parameters. The cost function was defined with two goals
in mind:

1. Find interjoint couplings n12 and n23 as well as MCP joint
positions (x0, y0) and initial MCP angles θ0 for various hand
sizes, such that the overlap of the resulting fingertip paths of
different hand sizes is maximized.
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2. Find mechanical design parameters (linkage lengths and
orientations) such that the robot end-effector closely tracks
these overlapping fingertip paths.

In the synthesis of mechanical linkage systems via optimization,
the target path is usually known. A common technique is
to define the so-called precision points that discretize the

target path. These are points along the target path—often at a
regular interval—through which the end-effector of the linkage

mechanism is supposed to move. In the optimization step,
the mechanical design parameters are optimized such that the

position difference between the end-effector and these precision

points is minimal (Goulet et al., 2016). However, in our case, the
target path was not known prior to the optimization. Instead, we

needed to simultaneously find the end-effector path as well as a
fingertip path for each hand size.

Nevertheless, we had to discretize the still unknown paths.

The number of discrete points along the end-effector path was
selected to be n = 10. A specific point on this path is referred to

by the index j. The number of hand sizes that were included in

the optimization is m = 4 and a specific finger size is referred to
by i. In the upcoming equations, superscripts are used to denote

the discretization step j and hand size i.
To make sure that the fingertip and end-effector paths are

optimized along the entire range of motion of the fingers,
the optimization variables 1θ (i) were introduced. Because the
optimal start and end points of the finger paths may slightly differ
for each hand size, a hand-size-specific, constant discretization
step size was required, defined by 1θ (i) > 0. Without
this variable, the optimization algorithm might only consider
arbitrary, unequally spaced sections of the paths. To allow for a
slightly different starting point of the fingertip path of each hand
size, the variable θ0 ∈ [−5◦, 5◦] was introduced in Equation (1).

The problem formulation is stated in Equation (12) with
the optimization variable vector x = [u, v,α]T . The design
parameters are constrained to be within the lower bound xL and
the upper bound xU .

min
x

6
∑

k=1

fk(x)

s.t. xL ≤ x ≤ xU

(12)

Each entry in x corresponds to a set of design parameters.
The mechanical design parameters are included in v =

[d1, d2, b,α0,β0, γ , nαβ ], where each element is a scalar. The
rotation around the principal axis α is 1 × mn, with m denoting
the number of considered hand sizes (m = 4) and n the number
of discretized points along the end-effector path (n = 10). The
design parameters related to the finger kinematics are included
in u = [x0, y0, θ0, n12, n23,1θ], i.e., the MCP positions (x0,
y0), initial MCP joint angles θ0, interjoint couplings n12 and
n23 and 1θ (Figure 4). The upper and lower bounds xL and
xU were either defined by anatomical constraints (e.g., n12 ∈

[1.25, 1.75] and n23 ∈ [0.65, 0.75]) or they were defined such
that a reasonable search space for the global optimization was

achieved that excludes mechanically infeasible solutions (e.g.,
very long linkage lengths).

The angle θ
(i,j)
1 which is needed to compute the fingertip

coordinates x
(i,j)
F and y

(i,j)
F as well as ϕ

(i,j)
F using Equation (1) is

computed in Equation (13). All elements in u are 1 × m, except
θ0, which is 1 × (m − 1) (the initial MCP joint angle θ0 of the
smallest finger is 0 to avoid redundant optimization variables).

θ
(i,j)
1 = j1θ (i) + θ

(i)
0 (13)

The cost function in Equation (12) consists of a weighted sum
of six individual cost functions, each contributing to a specific
meaningful goal. Each individual cost function is weighted by
specific weights wϕ ,wz ,wϕ,end,wend,wstart , and wη.

• f1(x): This is the fundamental cost function that drives the end-
effector path (xEE, yEE,ϕEE) to overlay with the fingertip paths
(xF , yF ,ϕF) for each point in the path (j ∈ {1, n}) and each
hand size (i ∈ {1,m}).

f1(x) =
1

mn

m
∑

i=1

n
∑

j=1

(x
(i,j)
EE − x

(i,j)
F )2 + (y

(i,j)
EE − y

(i,j)
F )2 + wϕ (ϕ

(i,j)
EE − ϕ

(i,j)
F )2

(14)

• f2(x): This individual cost function ensures that there is
minimal variation in the z-direction (zEE) along the end-
effector entire movement.

f2(x) = wz
1

m(n− 1)

m
∑

i=1

n−1
∑

j=1

(z
(i,j+1)
EE − z

(i,j)
EE )2 (15)

• f3(x): This ensures that the angles at the last point (j = n) of the
fingertip path (ϕF) and the end-effector path (ϕEE) are close to
ϕend = 180◦.

f3(x) = wϕ,end
1

m

m
∑

i=1

(ϕ
(i,n)
EE − ϕend)

2 + (ϕ
(i,n)
F − ϕend)

2 (16)

• f4(x): This individual cost function enforces that the last
position (j = n) of the finger paths (xF , yF) from different hand
sizes (i ∈ {1,m}) coincide when the fingers are fully flexed.

f4(x) = wend
1

1−m

m−1
∑

i=1

(x
(i+1,n)
F − x

(i,n)
F )2 + (y

(i+1,n)
F − y

(i,n)
F )2

(17)
• f5(x): This individual cost function reinforces that the

robot end-effector and each corresponding fingertip position
coincide at the initial point of the paths (j = 1). Without
this term, the differences between the start of the fingertip
paths and the start of the end-effector path tend to be rather
large in the x-direction. This is especially undesired because in
full extension (quasi-aligned in x-direction, depending on θ0),
the fingers are in a singular configuration (or quasi-singular,
depending on θ0) with respect to the x-direction.

f5(x) = wstart
1

m

m
∑

i=1

(x
(i,1)
EE − x

(i,1)
F )2 + (y

(i,1)
EE − y

(i,1)
F )2 (18)
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• f6(x): This term minimizes the difference between the largest
and smallest mechanical advantage along the range of motion.
The mechanical advantage η of the mechanism describes the
relation between the input torque at the principal revolute axis
τα and the end-effector force orthogonal to the fingertip FEE
(see Figure 7). It is computed by using the Jacobian in the end-
effector frame EEJ (Equation 19) and varies as a function of
the rotation α of the principal axis. Note that the end-effector
force FEE is always pointing in y-direction of the {EE} frame
(see Figure 6). Therefore, the y-component of EEJ is extracted
in Equation (20) to compute the mechanical advantage.

EEJ = MCP
EER

T ∂pEE
∂α

(19)

η(α) =
∂yEE

∂α
=

FEE

τα
= −

1
[

0 1 0
]

EEJ
(20)

The addition of this individual cost function is important as
variations in themechanical advantage of amechanismmodify
its dynamic behavior and, consequently, its haptic rendering
capabilities. Therefore, we want to minimize variations of the
mechanical advantage to promote consistent haptic rendering
along the entire range of motion of the device.

f6(x) = wη
(

max(η)−min(η)
)2

(21)

Due to the non-convex nature of the cost function, a global
optimization algorithm was required. The differential evolution
algorithm was selected, which was first proposed by Storn and
Price (2002) and that has already been successfully applied
for the synthesis of mechanical linkage systems (Acharyya and
Mandal, 2009; Peñuñuri et al., 2011). The implementation of
the “best1bin” strategy in the Python package SciPy (Virtanen
et al., 2020) was employed with a relative convergence tolerance
of 0.005.

2.4. Further Transparency Enhancements:
Friction and Gravity Compensation
We aimed at developing a device that is transparent by
design. Nevertheless, undesired friction, Coriolis, centrifugal, and
gravitational forces could still lower the transparency of a haptic
device (Hatzfeld and Kern, 2014), which could possibly also limit
self-initiated hand movements, especially in patients who suffer
from severe hand paresis. To prevent these disturbing torques
from hampering our hand device transparency, we modeled,
identified, and compensated the friction and gravitational
disturbance forces. Because the gravitational forces and friction
cannot be distinguished as seen from the motor, they were
modeled and identified simultaneously. The Coriolis and
centrifugal forces were neglected in the proposed model, as our
solution has low inertias and the target operational speed is
relatively low—we estimated a required maximum speed of α̇ =
500 ◦/s based on grasping speeds of stroke patients from Lang
et al. (2005) and taking into account the varying mechanical
advantage of our device.

We modeled the viscous and Coulomb friction and
gravitational forces, τ̃dist , following Equation (22), with the
parameters to be identified a0, a1, a2, and a3.

τ̃dist = a0sin(α + a1)+ a2α̇ + a3sign(α̇) (22)

To identify the model parameters, we employed an empirically
tuned PI velocity controller to track trapezoidal velocity profiles
with target velocities α̇ = 5, 10, 15,... 150 ◦/s. The start and the
end of the constant velocity plateaus were always located at the
same positions by adjusting the acceleration phase (i.e., α = 20◦,
and α = 160◦, respectively). The required torques to sustain the
constant velocities—i.e., the output of the PI controller—as well
as the velocity and position were recorded at 1 kHz. The proposed
model in Equation (22) was fitted to the recorded values bymeans
of a least squares optimization using the trust region reflective
algorithm in Python (Virtanen et al., 2020).

We implemented the disturbance torque compensation using
Equation (23), with the sinusoidal term accounting for the
gravitational torque, the second term accounting for viscous
friction, and the last one for Coulomb friction.

τcomp = a0sin(α + a1)+ a2α̇filt + b0a3tanh(b1α̇filt) (23)

Note that the sign function in Equation (22) was replaced by a
hyperbolic tangent function in Equation (23) to obtain a smooth
transition around zero speed. A new parameter b1 was included
in the hyperbolic tangent such that the output of the function
reaches 0.95 at a speed of ± 5◦/s. We also added a second
parameter (b0 = 0.6) to slightly reduce the compensation of
the Coulomb friction and ensure that the device remains passive
(Schabowsky et al., 2010). The velocity α̇filt was computed by
backwards differentiation of α which was obtained from the
encoder and subsequent filtering with a first-order Butterworth
low pass filter (cut-off frequency fc = 16Hz).

2.5. Evaluation of the Haptic Capabilities of
PRIDE
A common measure of transparency is the human-robot
interaction force in free space (i.e., in the absence of any
rendered interaction with virtual objects), which should be
minimal (Bernstein et al., 2005; Van Dijk et al., 2013; Just
et al., 2018). To benchmark the transparency of the device,
six right-handed participants (1 female, 5 male, aged 22 to 36
years, with hand sizes: 1 small, 2 small-medium, 3 medium-
large and 1 large) without any known hand impairments were
asked to perform finger flexion and extension movements with
their right hand installed on the device. Ethical review and
approval was not required for the study on human participants
in accordance with the local legislation and institutional
requirements. The participants provided their written informed
consent to participate in this study.

The participants, who were naive to the device/task, were
asked to open and close their hands repeatedly in a natural
and comfortable manner without reaching the mechanical end-
stops of the device. Our goal was to evaluate the transparency of
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the prototype by measuring the interaction forces during these
movements with and without gravity and friction compensation.
We equipped the device with a handle corresponding to
the participants’ individual hand sizes. To obtain comparable
measurements, a certain movement frequency was imposed.
This was achieved by presenting rhythmic auditive cues to the
participants. A metronome was used to present cues with 20, 40,
and 60 beats per minute (BPM). The participants were instructed
that one movement (flexion or extension) should last one beat.
To help the participants with the timing—especially in the 20
BPM condition—we introduced two intermediate beats with a
different pitch.

For each movement frequency (i.e., 20, 40, and 60 BPM)
and condition (i.e., with and without gravity and friction
compensation), participants performed 12 flexion and extension
movements, which we refer to as one sequence. The interaction
force between the fingers and the fingertip support was
measured with a force sensor (TAL 221, SparkFun Electronics,
USA) and recorded at ≈ 80Hz (OpenScale with custom
firmware, SparkFun Electronics, USA). The root mean square
(RMS) of the interaction forces was computed for each
sequence of 12 movements. To evaluate the effectiveness
of the friction and gravity compensation, the differences
in the RMS of the interaction force were evaluated by
a two-way repeated measures ANOVA with gravity and
friction compensation (on/off) and BMP (20/40/60 BPM) as
within-subject factors.

To demonstrate the device’s capability to render interaction
forces with virtual tangible objects, a virtual wall was also
implemented and evaluated in a second benchmark experiment
with one healthy participant. Virtual walls are usually represented
by either a force derived from a linear virtual spring and
damper or by a torque derived from a rotational virtual
spring and damper in the end-effector space. In the context
of grasping, a virtual wall based on a linear spring and
damping, orthogonal to the fingertips would be the obvious
choice. However, the orientation of the end-effector force of
our device FEE (and opposing fingertip force FF) depends
on α. Consequently, to represent a meaningful virtual wall,
based on a linear virtual spring and damper, it was needed
to linearize the movement of the end-effector along ŷEE.
The penetration depth of the fingers into the virtual wall
should be relatively small, and therefore, the penetration depth
1yEE can be computed employing the following linearization
Equation (24):

1yEE ≈
∂yEE

∂α
1α =

1

η
1α (24)

where 1α is the penetration depth in the joint space of
the primary axis and η is the mechanical advantage. The
momentary linear speed of the end-effector ẏEE is computed
using Equation (25):

ẏEE =
1

η
α̇filt (25)

The interaction force between the fingers and the virtual wall Fwall
is then computed with Equation (26) with K and B being the
desired virtual spring and damping values.

Fwall =

{

K1yEE + BẏEE if 1yEE > 0

0 else
(26)

This force is then transferred to a motor torque τmot using
Equation (27). The friction and gravity compensation torque
τcomp was added in Equation (27) for an accurate rendering of
the virtual wall. The term nmot,α represents a transmission ratio
which translates the motor torque to the torque at the principal
axis of rotation, i.e., τα = τmotnmot,α .

τmot =
1

nmot,α

1

η
Fwall + τcomp (27)

To evaluate the haptic capabilities of the device, a virtual wall
was rendered at different positions and the stability regions were
evaluated by one additional participant (male, age 29, medium-
large hand size). For a given virtual damping B, the virtual spring
constant K was manually varied in steps of ±2N/mm until the
maximum value of K, which did not introduce any perceivable
oscillations, was found. The stability of the wall was judged
according to the criteria proposed by Colgate and Brown (Colgate
and Brown, 1994). Contrary to the interaction force evaluation of
the device transparency, the test person in this second evaluation
was familiarized with the device and the notion of virtual wall
stability prior to the evaluation.

3. RESULTS

3.1. Optimized Design Parameters
The resulting optimal end-effector path as well as the path of the
contact point of the corresponding index finger of each hand size
(i.e., four different sizes from small to large) were obtained upon
convergence of the differential evolution algorithm after 2425
iterations (Figure 8). Furthermore, the correspondingMCP joint
positions, which were found for each hand size, are indicated
in Figure 8 with crosses. The deviation of the end-effector path
compared to the fingertip paths measured as the mean Euclidean
distance between the end-effector points and the corresponding
fingertip contact points (for all hand sizes and all discretization
steps) remained small (1.14mm).

The angular deviation of the fingertip angle ϕF with respect
to the device end-effector angle ϕEE is represented in Figure 9A

as a function of α. The mean deviation across finger sizes and full
range of motion is only 3.78◦. The largest deviations are observed
as the finger reach full extension (i.e., ≈ 9◦ for the two smallest
hand sizes for α = 0◦). Nevertheless, the observed deviations are
within an acceptable range as it would anyway not be possible
to drastically constrain the fingertip angle on the device in a
comfortable manner. Due to this certain angular compliance
from the fingertip fixation, the obtained angular deviations are
not noticeable when using the device.

In the optimization, the difference between the fingertip
z-position and the end-effector z-position was not included.
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FIGURE 8 | Optimized end-effector path (solid line) and optimized positions of fingers at the discretized finger paths. The optimal location of the MCP joint is displayed

for the different hand sizes as crosses. The small cross represents the location of the principle axis of rotation of the device. For a subset of the optimized finger

positions, the finger segments are illustrated.

Instead, the mean z-position of the end-effector can simply
be considered during the mechanical design as a constant
offset. However, the variation of the z-position of the end-
effector (in direction of ẑEE) was desired to be zero because

the fingertips move in the xy-plane of {MCP}, and has
consequently, been minimized in the optimization. The end-

effector vertical variation after optimization remains small
along the complete end-effector path with a mean deviation

of 0.380mm (Figure 9B). The peak-to-peak vertical variation
is less than 1.5mm, which is not perceptible when using

the device.
The mechanical advantage (Figure 9C) depends on α and

ranges from η = 25.4N/Nm to η = 61.4N/Nm. This results in
a change of mechanical advantage along the full range of motion
by a factor of 2.42. While η remains low for small values of α, it
increases above α ≈ 50◦.

3.2. Hardware and Mechanical Realization
The main structure of the resulting robotic hand module design
includes a parallelogramwith onemain arm and a set of bearings,
which can be mechanically solicited in any direction. A second

light-weight armwith small bearings, which only transmits forces
along its longitudinal axis, completes the parallelogram structure
(Figure 10A). The parallelogram in the prototype was displaced
w.r.t. to its original location within the xy-plane of frame {2}.
This shift of the parallelogram does not modify the kinematic
chain because the corresponding offsets were added between
frame {3} and the end-effector frame. However, the shift allows
to adapt the mechanical design in order to avoid collisions
between the mechanical structure and the user’s forearm during
finger flexion. Because these offsets would have been redundant
in the optimization, they were added during the design of the
actual prototype.

The PRIDE prototype was manufactured using a combination
of 3D printed parts. Carbon-reinforced polylactic acid (PLA) was
employed for structural parts and standard PLA for parts that
are touched during use (Figure 10). Square aluminium profiles
were employed for structural support. For each of the four hand
sizes, a specific handle was designed such that it locates a hand of
the corresponding size according to the size-specific MCP joint
offsets x0 and y0, which were obtained from the optimization. To
design ergonomic handles and to consider the different depths
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FIGURE 9 | Optimized design parameters. (A) Angular deviation of each optimized finger path with respect to the optimized end-effector path as a function of α. (B)

End-effector z-position with offset (dashed line) and variation of the z-position (solid line) as a function of α. Note that the offset (mean of z-position) was taken into

account during the mechanical design. (C) The mechanical advantage η increases with α.

and breaths of fingers for different hand sizes, anthropometric
data from Vergara et al. (2018) was consulted. In each handle,
we integrated a cushioned strap which allows to attach the
metacarpal bones of the hand. To constrain wrist movements,
a wrist rest with two cushioned straps was designed. Finally, to
allow the fingers to execute extension movements (Figure 11),
a fingertip fixation with a quick-release mechanism was added
on the dorsal side of the fingers. All of these fixations were
designed to promote a fast and effortless setup as demonstrated
in Figure 12.

The actuation of the principal axis is performed by a capstan
transmission to reduce the needed motor torque (Figure 10B). A
capstan transmission satisfies all listed mechanical requirements
in terms of transparency, i.e., it is backlash-free, highly
backdrivable, and has low friction. A drive pulley with 7mm
diameter, actuated by a brushed DC motor (RE30, Maxon Motor

AG, Switzerland) that includes an encoder with 1,000 ticks per
revolution (4,000 in quadrature) drives a large output drum

(see Figure 10). The requirement on the minimum force on
the fingertips (FF,min = 30N) and the minimal mechanical
advantage resulted in a output drum of diameter 156mm. The
motor is driven by a custom controller board based on the
ones employed in the Sigma.7 haptic device (Force Dimension,
Switzerland) and controlled with an update rate of 1 kHz from a
PC with a Linux operating system.

The parallelogram is designed to move with a constant
mechanical coupling nαβ w.r.t to the position of the principal
axis α. To retain the low-backlash and high backdrivability
of the cable actuation, this coupling was also designed
using a cable transmission. The shifting of the parallelogram
(Figure 10A) causes the principal axis and the revolute axes
of the parallelogram to be skew. A cable transmission is,
therefore, also a good solution to easily couple these skew
axes of rotation. Small idler pulleys were used to guide the
cables from a stationary pulley in frame {0} (whose axis

is aligned with ẑ0) to a pulley driving the parallelogram.
They were arranged so that they need minimal space (see
Figures 10C,D).

3.3. Transparency and Virtual Wall Tests
The transparency test revealed a RMS human-robot interaction
force of 2.96N before the compensation of disturbance forces.
The addition of gravity and friction compensation reduced
this value to 1.37N for all movement frequencies—i.e., BPM—
combined (Table 1). The results of the repeated measures
ANOVA revealed a statistically significant main effect of the
compensation (p < 0.001) and a non-significant effect of BPM
(p = 0.055) as well as interaction effect (p = 0.094). Hence, the
effectiveness of the gravity and friction compensation to enhance
transparency was confirmed. Figure 13 shows the interaction
forces for each participant as a function of the end-effector
position α.

The stability regions—i.e., the areas beneath the plotted
points—resulting from the interaction with virtual walls at
different positions (α = 60◦, 90◦ and 120◦) are depicted in
Figure 14. Note that as the wall position increases—i.e., for larger
α—the stable region becomes larger.

4. DISCUSSION

In this article, we present PRIDE (Palmar RehabilitatIon DEvice),
a novel device for sensorimotor hand rehabilitation based on
clinical and anatomical requirements gathered from interviews
and questionnaires with clinical personnel. Clinicians reported
that special attention should be paid to high usability and
effortless setup and that the device should support the practice of
finger flexion/extension (Rätz et al., 2021). This is in agreement
with the findings of Lang et al., who report that poor grasping
performance post-stroke is related to a lack of adequate finger
extension ability (Lang et al., 2009). Further requirements were
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FIGURE 10 | Technical details of the prototype: (A) View from below showing the shifted parallelogram. (B) Actuation of the principal axis of rotation through a

capstan transmission. (C) Actuation of the parallelogram, including idler pulley for cable guidance. (D) Cable tensioning mechanisms.

FIGURE 11 | Hand movement sequence from full finger extension to 180◦ flexion for a hand of size medium-large.
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FIGURE 12 | Setup sequence: a hand with flexed fingers can easily be slid onto the handle. Then, within a few seconds, the wrist and hand straps can be tightened

and the fingertip fixation can be adjusted.

TABLE 1 | RMS of human-robot interaction forces (N) during continuous finger

flexion and extension movements at different frequencies.

Compensation
BPM

20 40 60 Combined

Off 3.02 (0.52) 2.90 (0.64) 2.96 (0.71) 2.96 (0.62)

On 1.55 (0.49) 1.36 (0.48) 1.20 (0.47) 1.37 (0.50)

The values inside the brackets denote the standard deviation.

established based on anatomical considerations—e.g., different
lengths of the individual fingers within a hand—as well as
ergonomic aspects in cylindrical grasping. The need for a
device with high-quality haptic rendering capabilities to provide
sensorimotor neurorehabilitation added further mechanical
requirements, e.g., high backdrivability, low backlash, and
high transparency.

A novel kinematic design based on a novel architecture
with only one actuator was developed to meet the gathered
clinical, anatomical, and design requirements. To accommodate
patients with different hand sizes, our device accurately tracks
and supports the fingertip paths of hands of various sizes.
To achieve this, we performed an optimization based on
anthropometric data from hands of different sizes and anatomical
considerations (e.g., constant interjoint coupling) to determine
the device mechanical design parameters. In a feasibility test with
seven healthy young participants with different hand sizes, the
specific functionalities of the device were demonstrated, namely,
physiological finger movements with large range of motion,
quick setup, high transparency, and fine haptic rendering.
In the following subsections, we discuss the novelties of our
hand rehabilitation haptic device, the study limitations, and
future work.

4.1. Our Palmar Device Allows for an
Effortless Installation of the Patient’s Hand
While Offering Large Physiological Finger
Flexion/Extension Motions
The rapidly growing number of published works on
hand rehabilitation shows that a great number of hand
rehabilitation devices have been developed for research
and commercial purposes [see our comparison table in the
Supplementary Material and (Bos et al., 2016; Gassert and
Dietz, 2018)]. Our literature research on hand rehabilitation
devices resulted in a total of 54 devices, both commercial [e.g.,
Amadeo R© (TyroMotion, Austria), Manovo R© Power (Hocoma,
Switzerland)] or research prototypes (e.g., Taheri et al., 2014;
Zhu et al., 2014; Cheng et al., 2018). Nevertheless, only a few of
these devices were developed with strong focus on high usability
and easy setup (e.g., Masia et al., 2007; Yap et al., 2016; Randazzo
et al., 2018; Bützer et al., 2020). While hand exoskeletons are
inherently difficult to setup in patients suffering from spasticity
due to their complexity (Aggogeri et al., 2019), grounded end-
effector devices generally compromise the range of finger motion
(e.g., Masia et al., 2007; Zhu et al., 2014; Just et al., 2019) and/or
are not able to guarantee physiological movements of the fingers
(e.g., Dovat et al., 2008; Hioki et al., 2011; Metzger et al., 2011).

To maximize the clinical applicability and acceptance
of our novel device, we collaborated closely with clinical
personnel. We began our development by conducting a
survey with 33 healthcare professionals while we continuously
integrated feedback from therapists in several prototype
iterations. The repeatedly mentioned need for an effortless
and rapid patient setup from our clinical partners, led us to
the development of a palmar device with a compact handle
geometry. This allows to install even a clenched hand on
the device by sliding it onto the handle, similar to Just
et al. (2019). The reported need for intensive training of

Frontiers in Neurorobotics | www.frontiersin.org 15 December 2021 | Volume 15 | Article 748196117

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rätz et al. Clinical-Driven Robotic Hand Rehabilitation Device

FIGURE 13 | Results from the transparency test. Interaction forces recorded from the six participants during finger flexion and extension movements at 60 BPM.

FIGURE 14 | Results from the virtual wall test. The K-B plot shows the stability

regions for the rendering of a virtual wall located at different positions.

finger extension movements motivated us to develop a design
that supports finger movements from full flexion up to full
extension. Thus, in a minimally actuated device, we could
fulfill two important clinical requirements: a quick effortless
setup and training of physiological full finger flexion/extension
movements.

4.2. The Kinematic Solution Ensures That
All Fingers Are Supported Through the Full
Range of Motion and That the Little Finger
Does Not Lose Contact in Finger Extension
To accommodate for the different lengths of the individual
fingers of a given hand, the contact points of the fingers with
the robot end-effector were defined to lie on a line which was
rotated by an angle ψ = 25◦ relative to the transverse axis
of the hand. This was especially important to not loose contact
between the little finger and the robot end-effector during finger
extension due to its generally shorter length w.r.t. the other
fingers. Keeping the orientation of the longitudinal axis of the
end-effector invariant during the entire range of finger motion,
resulted in a remarkably natural grasping motion. Our resulting
novel kinematic design is—to the best of our knowledge—the
first palmar device for sensorimotor hand rehabilitation which
supports physiological movements for index, middle, ring and
little finger over a range of motion as large as ϕF ∈ [0◦, 180◦].

4.3. Our Design Allows for a Natural
Cylindrical Grasp
We took into consideration that cylindrical objects are usually
grasped such that the longitudinal axis of the object runs
obliquely from the MCP joint of the index finger to the base
of the hypothenar eminence by rotating the cylindrical handle
forwards by ψ = 25◦ w.r.t to ẑMCP. In combination with the
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aforementioned invariant orientation of the longitudinal axis of
the end-effector, we ensured that the fingertip of the little finger
is more proximal than the fingertip of the index finger through
the entire range of motion (see Figure 11) which results in a
natural, functional cylindrical grasp. To better understand this, it
should be noted that the MCP joint of the little finger is generally
located in a more proximal and more palmar position than the
MCP of the index finger. Further, Hayashi et al., report a higher
functional range of motion of the MCP joints of ring and little
finger compared to index and middle finger during power grasps
(Hayashi and Shimizu, 2013). These findings may explain why
the fingertip of the little finger is not only more proximal in full
extension—as one might expect due to the shorter length—but
along the full motion of a cylindrical grasp up to full flexion.

Yet, even though we achieved a natural cylindrical grasp by
tilting the handle and the end-effector, it comes with a drawback:
Apart from full finger extension or flexion, the effective finger
force applied at the end-effector also has a vertical component
along ẑEE, which is not considered in FF—i.e., the finger force FF
is applied with a certain, position-dependent angle (maximum
value of 25◦ at α = 90◦) relative to the end-effector. This could
potentially result in slipping or sensations of tangential forces on
the fingertips.

4.4. The Device Guarantees Physiologically
Correct Finger Movements for a Large
Variety of Hand Sizes
Due to the achieved large range of motion, our device needed
some kind of adjustment for different hand sizes. This is contrary
to other palmar devices with a smaller range of motion like
the handle of Just et al. (2019) or Alpha-Prototype II (Masia
et al., 2007), which do not require any adjustments for different
finger sizes (see comparison table in Supplementary Material).
Nonetheless, based on the clinicians’ feedback, we aimed to
avoid any adjustments of the moving parts of the device because
they would have resulted in a drastical increase of complexity
and long setup times (e.g., Schabowsky et al., 2010; Cheng
et al., 2018; Marconi et al., 2019). Instead, we engineered
several handles—that can be exchanged within a few seconds—
to position hands of different sizes such that their respective
fingertip paths overlap. These engineered handles allow to
position the MCP joints of different hand sizes in optimal
locations to grant the device end-effector to track only one
common fingertip path, independently of the hand size. To
achieve this goal, constant interjoint couplings were considered,
which, even if it is a simplification of the biomechanical
functioning of the hand, results in physiological movements
of the fingers. Intermediate meetings with therapists confirmed
that exchangeable handles are appreciated and valued as a
considerable advantage compared to adjustment of the device
itself. Furthermore, the exchangeability facilitates the cleaning
and disinfection of the device, which leads again to shorter
setup times.

The synthesis of the mechanical design was performed
utilizing a differential evolution optimization algorithm (Storn
and Price, 2002) due to the non-convex nature of the problem.

Four representative hand sizes, from small to large according
to anthropometric databases (Garrett, 1970a,b; Buchholz et al.,
1992; Vergara et al., 2018), were included. The goal was to
simultaneously find mechanical design parameters as well as the
common fingertip path for various hand sizes. A cost function,
consisting of a set of individually weighted functions, was
developed to find suitable design parameters. Having too many
weights in a cost function can potentially lead to cumbersome
and inefficient trial and error tuning of the weights (Yang, 2014).
However, each of the utilized individual functions has an intuitive
meaning, which allowed us to define the weights with relative
ease. This cost function could also have been partially replaced
by non-linear constraints. Yet, it would have been challenging to
define and justify the bounds of these constraints.

Using this optimization approach, we found design
parameters with a mean Cartesian position and angular
difference between the optimized points of the finger paths
and the end-effector path of 1.14mm, respectively 3.77◦. The
higher angular deviations compared to the Cartesian position
deviations are desired and can be explained by the attribution
of the weights in the cost function, as an angular deviation of
3◦ was equally penalized as a 1mm Cartesian deviation in our
defined cost function.

With our chosen kinematic design, a certain vertical
movement of the end-effector can not be eliminated completely,
but we were able to reduce it enough (peak-to-peak less than
1.5mm) to not be perceptible nor uncomfortable. It has to be
noted though, that an even more appropriate movement of
the end-effector could possibly be found by actively including
the kinematics of all four fingers in the design optimization.
However, this would have needed a reliable database for all MCP,
PIP, and DIP joint positions and orientations of different hand
sizes, as the joint axes of the middle, ring, and little fingers are
not parallel to the transverse axis of the hand (Kapandji, 1982).

4.5. PRIDE Allows for High-Quality Haptic
Rendering
The large intrinsic mechanical advantage of our design, in
combination with the selected capstan cable transmission, allows
to achieve high grasping forces without the need for additional
gearing to increase the motor torque. As a result, the mechanical
transmission is highly backdrivable and transparent. Even though
no force sensors were utilized for the control of our novel
device, the RMS of the user-robot interaction forces reached
a maximum of only 2.96N during a highly dynamic task.
We further significantly reduced these undesirable interaction
forces to a maximum of 1.37N, by modeling, identifying, and
compensating the friction and gravitational disturbance forces.
These residual forces are on a similar level as other haptic devices
for hand rehabilitation, e.g., Metzger et al. declare interaction
forces of 1.5N for the ReHapticKnob (Metzger et al., 2012),
Schabowsky et al. report approximately 2N (with an assumed
finger length of 100mm) for the HEXORR (Schabowsky et al.,
2010), and Endo et al. report an impressive 0.1N per finger for
the HIRO III haptic interface (Endo et al., 2011). Unfortunately,
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the interaction force has not been systematically reported in any
of the other reviewed devices.

The friction compensation could be further ameliorated
by improving the speed resolution of our device or by
implementing a more sophisticated speed estimation algorithm,
e.g., by using first-order adaptive windowing (Janabi-Sharifi
et al., 2000) or a Kalman filter (Taheri et al., 2014). The gravity
compensation torque estimation could also be improved by
using a more accurate model instead of the suggested sinusoidal
approximation, e.g., by taking into account all moving parts of
the kinematic chain. Finally, bearings with less static friction
could be used, or a force sensor could be permanently integrated
into the handle to perform closed-loop impedance control, at the
expense of a more costly solution.

The measured K-B plot demonstrated the excellent haptic
rendering capabilities of our device as the achieved stability
regions are comparable to other devices which were specifically
built for high-fidelity haptic hand rehabilitation. For the
ReHapticKnob, maximum values of K = 50N/mm, respectively
B = 0.25Ns/mm were reported (Metzger et al., 2012). The ETH
Mike achieves values of K = 8N/mm and B = 0.04Ns/mm
(assuming a lever-arm of 100mm). In Figure 14, it is apparent
that the stability region depends on the position of the virtual
wall and increases with the position. This can be explained
by the varying mechanical advantage, which has two effects.
First, it modifies the device inertias and, especially, the reflected
inertia of the motor. Second, it also inherently improves the
speed resolution as the fingers are more flexed. That said, the
fundamental drawbacks of K-B plots should also be noted. The
stability of a virtual wall depends on the user interaction—i.e., the
admittance of the user’s hand. Besides, even though Colgate and
Brown provide a definition for the stability of a virtual wall, the
wall might be perceived slightly different across different users
(Colgate and Brown, 1994).

4.6. Study Limitations
Our design procedure suffers from some limitations. First, we
did not investigate how more complex interjoint relations (e.g.,
polynomial) would have affected the mechanical design of the
device. By altering the spiral-like movement of the fingertips, this
could potentially have resulted in a different end-effector path
with lower variation of the mechanical advantage. Furthermore,
for our standardized handle sizes, we assumed hand breadths and
finger thicknesses to scale proportionally to hand lengths. This
might result in inadequate handles, and therefore, suboptimal
hand positioning for certain hands. Finally, the choice of 3D
printing as manufacturing process, although enabling us to
iterate numerous times after feedback from therapists, might
have limited the rigidity of the device due to the characteristics
of the employed 3D printing materials. Albeit no deflection is
visible during normal usage, the (potentially) low stiffness of our
3D printed parts could result in an inaccurate representation
of the virtual wall rigidity K because any deflection of the end-
effector caused by deformations of the parts cannot be sensed by
the motor encoder.

The device benchmarking also suffers from a couple of
limitations. First, for the performed robot-user interaction force

measurements, we assumed that all interactions forces occur
orthogonal to the longitudinal direction of the fingertip in the
xy-plane of the end-effector frame. However, especially if the
participant’s hand was flexed, it is likely that also tangential
forces in the direction of x̂EE were transmitted to the end-
effector. This could have influenced the force measurements
and might explain the observed between-subjects variance,
especially in hand-flexed poses. Secondly, the sample size in
the interaction force evaluation was rather small. However,
given the highly significant main effect observed in the two-
way repeated measures ANOVA, it is unlikely that larger
sample sizes and/or any other statistical test (e.g., non-
parametric) would have shown a non-significant effect of the
friction compensation.

Finally, it is currently possible—for a healthy participant—
to actively pull the fingertips out of the fingertip fixation.
Although it did not occur by accident during the experiments,
participants pointed out that this could be a design limitation.
The fingertips are constraint by the palmar end-effector contact
surface and the dorsal quick-release finger fixation. This allows
for an optimal transmission of the forces that occur during
a grasp, but does only slightly restrict movements along
the longitudinal fingertip axis. Currently, the cushioning of
the dorsal fixation does not account for different diameters
of the individual fingers, which results in non-uniform
pressure on the fingertips and consequently a suboptimal
fingertip fixation.

4.7. Future Work
While our prototype is functional, it could be further improved
with future work. The compact handle geometry introduced
a challenging aspect to the design of the handle: Without a
thumb rest, the thumb could easily collide with the fingertips
of the fingers attached to the end-effector. This is particularly
problematic if the thumb is flexed while the end-effector is in
extension. During the movement of the end-effector back to
flexion, the thumb could get pinched, which must be strictly
prevented. The integration of a thumb rest, which prevents
this issue, makes the design of the different handles notably
challenging. In future developments, this thumb rest should be
addressed and improved. Ideally, the device should be extended
by an active or passive mechanism which allows the thumb to
move into opposition and/or flexion to practice precision grasp.
At the same time, the dorsal fixation of the fingertips could be
further ameliorated to rule out any involuntary release of the
fingertips, i.e., by extending it to the proximal direction and
by improving the cushioning. Future work also includes the
development of a solution for training the left hand. A mirrored
version will be built to allow for training left and right hands or
to perform bi-manual tasks.

Finally, the novel device was designed with high usability and
low setup times in mind. Although preliminary tests with healthy
participants confirmed that the setup is quick and only takes a
few seconds, its usability needs to be evaluated with brain-injured
patients with different spasticity levels. In future experiments
with brain-injured patients, we will further evaluate the clinical
practicability of the design.

Frontiers in Neurorobotics | www.frontiersin.org 18 December 2021 | Volume 15 | Article 748196120

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rätz et al. Clinical-Driven Robotic Hand Rehabilitation Device

5. CONCLUSION

In this paper, we presented a novel robotic device for
sensorimotor hand rehabilitation. The design is strongly
motivated by a set of clinical, anatomical, and mechanical
requirements that we established prior to the development. After
carrying out the design synthesis via an optimization approach,
a functional prototype was built and its haptic capabilities
demonstrated in a preliminary test with seven participants. With
the clinical-driven design, our robotic hand rehabilitation device
has the potential to enable sensorimotor hand rehabilitation for
patients with various levels of hand impairment. Moreover, we
hope that our design approach will raise the awareness of clinical
acceptance and applicability in future research and development
of hand rehabilitation devices.
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Background: Appropriate training modalities for post-stroke upper-limb rehabilitation

are key features for effective recovery after the acute event. This study presents a

cooperative control framework that promotes compliant motion and implements a variety

of high-level rehabilitation modalities with a unified low-level explicit impedance control

law. The core idea is that we can change the haptic behavior perceived by a human when

interacting with the rehabilitation robot by tuning three impedance control parameters.

Methods: The presented control law is based on an impedance controller with

direct torque measurement, provided with positive-feedback compensation terms

for disturbances rejection and gravity compensation. We developed an elbow

flexion-extension experimental setup as a platform to validate the performance of

the proposed controller to promote the desired high-level behavior. The controller

was first characterized through experimental trials regarding joint transparency, torque,

and impedance tracking accuracy. Then, to validate if the controller could effectively

render different physical human-robot interaction according to the selected rehabilitation

modalities, we conducted tests on 14 healthy volunteers and measured their muscular

voluntary effort through surface electromyography (sEMG). The experiments consisted

of one degree-of-freedom elbow flexion/extension movements, executed under six

high-level modalities, characterized by different levels of (i) corrective assistance, (ii)

weight counterbalance assistance, and (iii) resistance.

Results: The unified controller demonstrated suitability to promote good transparency

and render both compliant and stiff behavior at the joint. We demonstrated through

electromyographic monitoring that a proper combination of stiffness, damping, and

weight assistance could induce different user participation levels, render different

physical human-robot interaction, and potentially promote different rehabilitation training

modalities.

Conclusion: We proved that the proposed control framework could render a wide

variety of physical human-robot interaction, helping the user to accomplish the task while

125

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.734130
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.734130&domain=pdf&date_stamp=2022-01-18
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:stefano.dallagasperina@polimi.it
https://orcid.org/0000-0002-3466-8397
https://orcid.org/0000-0001-9957-2786
https://doi.org/10.3389/fnbot.2021.734130
https://www.frontiersin.org/articles/10.3389/fnbot.2021.734130/full


Dalla Gasperina et al. Compliant Controller for Neurorehabilitation

exploiting physiological muscular activation patterns. The reported results confirmed

that the control scheme could induce different levels of the subject’s participation,

potentially applicable to the clinical practice to adapt the rehabilitation treatment to the

subject’s progress. Further investigation is needed to validate the presented approach to

neurological patients.

Keywords: neurorehabilitation, human robotics, compliant control, impedance control, electromyography,

physical human-robot interaction

1. INTRODUCTION

Worldwide, stroke is a leading cause of death and permanent
disability (Johnson et al., 2016). Although the global mortality of
stroke has decreased in the past decades, the incidence and the
effects of the disease are expected to increase (Gorelick, 2019).
Consequently, the burden of stroke is still likely to produce
long-term impairment, limitations during activities of daily
living, and compromise the social participation of most stroke
survivors. In most cases, rehabilitation treatment is required
for an effective recovery, besides partial spontaneous recovery.
Indeed, physical therapy fosters the motor relearning process
during post-stroke rehabilitation. Nevertheless, only 5–20% of
people with initial upper limb impairment after stroke completely
recover lost functionalities (French et al., 2016). In the past years,
the literature proposed upper limb robot-assisted rehabilitation
as a method to stimulate motor relearning through repetitive,
high-intensity, and task-oriented functional training (Winstein
et al., 2016; Duret et al., 2019). Since the 90s, several upper-
limb robotic devices have been designed, but only a few of them
effectively reached the market, probably due to controversial
results obtained in clinical trials (Ambrosini et al., 2019).

Recent systematic reviews show that robotic rehabilitation
could produce better, or at least equivalent, outcomes than
conventional therapy in both the International Classification
of Functioning, Disability and Health (ICF) Body and Activity
domains (Veerbeek et al., 2017; Mehrholz et al., 2018, 2020).
Moreover, given that traditional passive mobilization limits
neuroplasticity, a more customizable and adaptable control
approach, facilitating subject’s engagement andmotivation, could
lead to better effectiveness of the treatment (Marchal-Crespo
and Reinkensmeyer, 2009). Thus, the effectiveness of the robotic
rehabilitation therapy strongly depends on the capability of
the system to guide natural coordinated motion, promote
physiological muscular contraction, and induce the patient to
cooperate as much as possible. This is why a key component
of effective robot-mediated therapy is a good cooperative and
adaptable control solution, which can be tailored to the single
user being able to follow his/her progress.

With this study, we first analyze the robot-mediated
rehabilitation modalities proposed in the literature. We
investigate the availability of low-level control strategies that
can be exploited to promote the desired haptics and physical
human-robot interaction. Finally, we present the description of
a low-level unified controller for upper-limb rehabilitation that
is capable of assisting patients in a compliant manner and that

promotes most of the robot-mediated training modalities used
in clinics.

The fundamental concept of the proposed approach relies on
the availability of a unified compliant controller, which could
change the level of assistance and resistance according to the
patient’s performances and contribution, toward the paradigms
of personalization and continuity of care. The core idea is that
by tuning three control parameters, we can change the perceived
haptics of the test-bed when interacting with the human arm.We
validated this concept by monitoring surface EMG while asking
(healthy) subjects to modulate their volitional contribution to
correctly fulfill the required task.

1.1. Structure of the Study
This study is structured as follows. Section 2 defines the
rehabilitation training modalities used in upper-limb robot-
assisted therapy and their low-level control implementation
challenges. The core idea of this study is presented in section 3,
which explains how high-level modalities have been integrated
with a low-level unified compliant controller. Section 4 presents
the experimental design implemented to test the controller, and
the results are exposed in section 5. Finally, sections 6 and 7 draw
the discussion and conclusion of the Chapter.

2. RELATED STUDY AND NOVEL
CONTRIBUTION

2.1. Robot-Mediated Rehabilitation
Robot-mediated rehabilitation has been largely investigated since
the 1990s. The literature agrees that the goal of robots should be
to induce motor plasticity in subjects undergoing rehabilitation
treatment and, therefore, to improve their motor recovery
(Huang and Krakauer, 2009). Therefore, robot-mediated control
algorithms were designed and developed, taking inspiration from
motor learning and neurophysiological aspects (Krakauer, 2006;
Reinkensmeyer et al., 2016; Iandolo et al., 2019). Consequently,
different high-level training modalities were proposed to
promote motor recovery at different stages of the disease. Such
modalities are in turn embodied by low-level controllers that are
capable of shaping the physical human-robot interaction (pHRI)
according to the residual capabilities of the user, i.e., the aim of
researchers is to design controllers that minimize the interaction
forces between the robot and the human while motivating the
subject and guaranteeing the completion of the rehabilitation
task. In other words, the robot should cooperate with the patient
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along with the rehabilitation treatment as a therapist would
do, changing the levels of assistance, resistance, and motion
correction based on the progression of the motor recovery.
Over the past decade, several reviews on exoskeletal control for
robot-assisted rehabilitation have been proposed in the literature.
However, the researchers proposed several taxonomies and
categorizations at various levels of abstraction (Marchal-Crespo
and Reinkensmeyer, 2009; Basteris et al., 2014; Meng et al., 2015;
Gull et al., 2020). In this study, we will use the term “training
modalities” for “high-level” desired rehabilitation behaviors and
the term “control strategies” for their “low-level” control scheme
implementation. Generally, the training modalities for upper-
limb rehabilitation are characterized by three main features: (i)
corrective assistance, which implies that, given a pre-defined task,
the system also corrects the movement when the subject moves
away from the desired trajectory; (ii) weight counterbalance
assistance, which refers to the ability of the robot to support
and compensate the weight and the dynamics of the impaired
limb; and (iii) resistance, which relates to training strategies that
make the movement more difficult to perform, thus engaging
the subject and stimulating the motor control learning process
(Basteris et al., 2014; Proietti et al., 2016). When describing the
cooperation between robot and human, in this study, we propose
a terminology that describes the expected subject’s behavior
during interaction. For example, “Passive mode” will refer to
subject-passive/robot-active training.

On top of these general definitions, it can be observed
that one of the most critical areas in rehabilitation robotics
is implementing the desired high-level modalities within the
robot’s hardware.

2.2. The Role of Compliant Control in
Neurorehabilitation
Our concept relies on the concept of compliant and cooperative
motion, i.e., the robot should behave transparently with respect to
human activity, and eventually enhance user-driven movements.
Compliant motion, by definition refers to the capability of
the robotic system to generate movement and, simultaneously,
undergo movement if external forces are applied. Typically,
the perceived compliance can be implemented either through
mechanical compliance, for example by using soft joints instead
of rigid joints, or through compliant controllers (Calanca
et al., 2016; Keemink et al., 2018). Moreover, these approaches
intrinsically improve back-drivability and safety during human-
robot interaction (Vallery et al., 2008).

From a low-level point of view, achieving compliant motion
is a fundamental, yet challenging, task in rehabilitation robotics.
In fact, if achieving the rigid behavior of the robot can be
considered a trivial task, obtaining its opposite can be challenging
since the low-level controller should reject the disturbances
introduced by the robot hardware. At the same time, one of the
key characteristics of themotor recovery process is not to limit, in
any way, any intention of movement coming from the user and,
possibly, of guiding the subject’s voluntary movements toward
the correct task execution. Compliant motion in rehabilitation

robotics can, thus, be addressed as a compromise between good
trajectory tracking and minimization of interaction forces.

Usually, rehabilitation robots and exoskeletons are provided
with high-ratio transmission gearboxes that are kinematically
inefficient, and that can introduce static and viscous friction. In
this scenario, the perceived compliance cannot be guaranteed
by the back-drivability of the motor itself. Still, it can be
implemented by adding an elastic element in series with the
actuation unit, i.e., series elastic actuators (SEA) (Crea et al., 2016;
Calanca et al., 2017; Chen et al., 2019; Wu et al., 2019) or with
compliant controllers that add virtual springs and dampers to
shape the virtual mechanical impedance at the joint.

In the literature, several low-level controllers have been
proposed to achieve compliant motion, and in turn, to
implement the previously described training modalities. Among
all, impedance control is one of the most common approaches,
and it has been demonstrated to be a very efficient solution
for neurorehabilitation (Mehdi and Boubaker, 2012). The
impedance control belongs to those control schemes that
permit a compliant pHRI. It implements dynamic control
that relates force/torque and position: a torque/force output
is generated from a position input. In particular, impedance
control is characterized by a nested loop architecture. An inner
torque-feedback loop implements the transparent behavior and
promotes mechanical compliance (i.e., it “softens” the control).
An outer position-feedback loop corrects for trajectory tracking
errors by applying forces or torques aimed at the completion of
the task (i.e., it “stiffens” the control). Furthermore, two different
variants of the impedance control can be identified. When the
actuation unit is inherently back-drivable, the torque control can
be implemented through an open-loop current control loop (i.e.,
implicit impedance). In the other cases, a load-cell or an elastic
element is exploited in series as a feedback signal for the closed-
loop torque control loop (i.e., explicit impedance) (Calanca et al.,
2016; Schumacher et al., 2019).

2.3. Available Control Strategies for
Upper-Limb Exoskeletons
Regarding the rehabilitation domain, both impedance controllers
in joint-space (Pehlivan et al., 2015; Just et al., 2017; Kim
et al., 2017) and the Cartesian-space have been developed
(Krebs et al., 2003; Frisoli et al., 2009; Ruiz et al., 2009;
Mao and Agrawal, 2012). In joint-space impedance, the virtual
mechanical elements are implemented in the joint-space with
torsional spring and damper. The compliant behavior is given
independently at each joint of the robot. Instead, with the
Cartesian-space controller, virtual linear springs and dampers
are connected to the robot end-effector in three-dimensional
directions. Each direction is responsible for one of the three
dimensions of the impedance ellipsoid computed at the robot
end-effector. For example, in Kim et al. (2017), the baseline
low-level control strategy of the Harmony robot, which is a
bimanual upper-body exoskeleton for post-stroke rehabilitation,
is based on a SEA-based joint-space impedance control that
promotes the coordinated motion of the shoulder, through the
assistance of the scapulohumeral rhythm (Kim and Deshpande,
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2015). Specifically, for each joint, the deformation of the elastic
element is used to estimate the generated torque at the joint axis.
Then, an outer position-feedback is added to correct for task
deviation. The dynamic model of the exoskeleton is formulated
with a recursive Euler-Newton algorithm, and a feedforward
term is added to compensate for gravity, friction, and dynamic
torques. Similarly, the ARMin exoskeleton (Nef et al., 2007;
Guidali et al., 2011; Just et al., 2017) is another example of
an upper-limb exoskeleton for post-stroke rehabilitation based
on a Proportional-Derivative (PD) position-feedback control
that supports both the arm weight and provides assistance to
the movement by virtually constraining the motion through
stiffness/damping guidance. On top of this controller, the
authors included online adaptive compensation algorithms to
compensate for friction, elastic elements, and gravity terms (Just
et al., 2018, 2020). On the other side, Frisoli et al. (2009)
developed a Cartesian-space impedance-controlled exoskeleton
to discriminate the end-effector reference trajectory from
its orthogonal trajectory. In detail, two concurrent low-level
impedance controllers act along the tangential and orthogonal
directions of the trajectory, providing different virtual stiffness
levels along with such directions and promoting a virtual tunnel
that follows the Cartesian-space desired trajectory. Further
evolution of impedance-based controllers involves the adaptation
of the assistance according to the performances of the subject
(Pehlivan et al., 2015; Perez-Ibarra et al., 2015; Pérez-Ibarra
et al., 2019). Proietti et al. (2015) developed an exoskeleton
controller based on adaptive techniques that can actively
modulate the stiffness of the robotic device in function of the
subject’s activity. Instead, Pneu-WREX researchers developed
a model-based adaptive control that learns from the patient’s
ability and provides support in completing movement while
guaranteeing mechanical compliance (Wolbrecht et al., 2008).
They implemented a Cartesian-space impedance control law, to
which they added a feedforward term characterized by a non-
linear sliding mode control scheme. The assistance-as-needed
adaptation was achieved by adding a learning factor, which
iteratively corrects the feedforward contribution, and a force
decay, which reduces the support when the subject is able to
perform the movement correctly.

This study identifies a compliant control framework that
implements multiple high-level human-robot interaction
modalities with a unique low-level explicit impedance
control law. A similar compliant controller has already been
implemented in other robots for neurorehabilitation (de Oliveira
et al., 2019). Researchers already proposed that a mixture of
assistance, correction, and resistance with impedance control
laws could be used to gradually increase the amount of expected
voluntary muscle activity. However, the generalization and
validation of these approaches through the assessment of human
volitional activity is still lacking.

To this aim, we employ an impedance-based controller to
render different human-robot interaction modalities, and we
demonstrate that the proposed controller can induce different
levels of subject participation. We validate this approach by
measuring the muscular voluntary effort of healthy volunteers
through surface electromyographic (sEMG) monitoring. The

experiments consist of elbow flexion/extension tasks executed
under six different assistance and resistance levels by 14 healthy
participants, who are instructed to self-tune their volitional
contribution according to the effort needed to fulfill the
tracking task.

3. UNIFIED COMPLIANT CONTROL
FRAMEWORK

In this section, we introduce a compliant control framework
based on an explicit impedance control law, capable of fulfilling
different requirements and features, such as favoring good
transparency of the joint, compensating for the weight of the
robot and the supported limb, assisting the motion along the
desired trajectory, recovering from task deviations, or even
challenging the user by applying resistance or increased gravity
to the motion.

The controller relies on the concepts of compliant control
and, in particular, impedance control. The overall scheme of
the proposed controller is presented in Figure 1. The idea
is to employ a control architecture based on multiple nested
control loops.

The outer impedance loop implements the virtual mechanical
impedance I(s), which is in charge of correcting for deviations
from the desired angular position and providing the anti-gravity
compensation of the robot-human system. Namely, the outer
loop provides the force-field assistance toward the completion of
the task. We expect this assistance to be adaptable according to
the desired training mode.

The inner torque loop F(s) is in charge of controlling the
torque output at the load axis. It is aimed at promoting compliant
behavior (i.e., mainly rejecting friction) and guaranteeing high-
fidelity torque control. The inner torque control loop is employed
to obtain an “explicit” feedback signal of the torque generated by
the motor that rejects friction disturbances.

While the inner torque loop is supposed to be fast enough to
neglect its dynamics, and its control parameters are kept fixed to
exhibit stability, the outer loops (e.g., impedance loop and gravity
compensation term) are characterized by adjustable parameters,
to be adapted according to the desired pHRI.

In this study, we consider an exemplary single-degree-of-
freedom joint, shown in Figure 2, as a platform to validate the
controller and its functionalities as it interacts with the human
arm. The actuation chain is composed of an electric motor
coupled with a high-ratio transmission gearbox. The unit is also
provided with an incremental encoder that measures the joint
angle, and a reaction torsional load-cell provides torque feedback
at the output load axis. The dynamics of the one degree-of-
freedom actuation system is as follows:

τl = (τm − Jmθ̈m − ηmθ̇m − τfg)N + τext (1)

where θm is the motor displacement, τm and τl, respectively,
represent the motor torque and the load torque measured at the
load-cell, and τext is the externally applied torque. The generated
motor torque τm is converted in the acceleration of the rotor (θ̈m)
with inertia Jm in the dissipation of the motor damping ηm and
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FIGURE 1 | Block diagram of the unified controller scheme based on explicit impedance control law. Inner torque control F (s) is in red and outer impedance control

I(s) is in blue. Dotted lines represent positive-feedback compensations.

FIGURE 2 | Actuation chain model. The actuation chain consists of an electric

motor provided with an angular encoder, a transmission gearbox, a torsional

torque sensor and an aluminum bar load. The motor driver acquires input

signals from the actuation chain and commands torque set-points to the

electric motor.

friction τfg of the transmission gearbox. The resulting torque is
then amplified by the gear ratio N and transferred to the output
axis (θl of Figure 2).

3.1. Torque Control (Inner Loop)
The inner torque loop of an impedance controller can be
implemented both as an open-loop (i.e., implicit impedance)
or a closed-loop (i.e., explicit impedance) torque controller. In
literature, Hogan first presented an implicit impedance controller
that exploits an open-loop torque controller based on motor
current control (Hogan, 1985, 1989). However, it requires
inherent back-drivability, that can only be achieved with the
low-ratio transmission or direct-drive actuators (Calanca et al.,
2016). Several other approaches are available to compensate for
undesired gearbox inefficiency. Model-based force estimation
(Wolbrecht et al., 2008) or disturbance observer-based control

schemes (Just et al., 2018) are common solutions. More often,
torque sensors can be used to explicitly measure the actual
generated torque and/or the subject’s applied effort to be used
as feedback in a closed-loop formulation (Focchi et al., 2016;
Masud et al., 2018). In our study, since we consider high-ratio
transmissions and the open-loop formulation would require
a good friction model to achieve high-fidelity torque control,
we opted for torque-controlled joints that are provided with
torsional load-cells at each joint. In fact, torque-controlled
robots are capable of producing very low impedance, which
is essential to encourage users’ voluntary contribution. In this
form, the inner torque control F(s) is in charge of making sure
that the measured torque output (τl) follows the outer loop
control variable (τr). From the reference torque level to be
actuated (τr), the inner torque loop estimates the target torque of
the actuator (τm) through a Proportional-Integrative-Derivative
(PID) controller, with feedback from the torsional load-cell (τl),
that in the Laplace form is (2):

F(s) = Kp + Ki/s+ Kds (2)

To compensate for static and viscous friction introduced by high-
ratio gearboxes, an additional feedforward friction compensation
(τ̂fg ), modeled as in Wit et al. (1998), has been added at the
inner loop level, as shown in Figure 1. The compensation can be
divided into Coulomb friction and velocity-dependent friction:

τ̂fg = τc tanh(θ̇/θ̇c)+ fvθ̇ (3)

where τc is the Coulomb friction torque, θ̇ is the measured joint
velocity, θ̇c is the Coulomb joint velocity threshold, and fv is
the viscous friction coefficient. The hyperbolic tangent function
ensures the Coulomb term to be continuous and smooth across
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FIGURE 3 | Impedance model at the elbow joint. The unified controller

implements virtual stiffness and damping (in red) at the elbow joint. The elbow

joint is rendered as a second-order system mass-spring-damper. The

equilibrium point of the spring continuously changes according to the desired

trajectory (θ ).

θ̇ = 0 in order to avoid undesired oscillations. The τ̂fg term is
summed up to the torque PID control signal and fed as input to
the actuator current control. The actual torque actuated at the
load axis is then measured by the load-cell (τl) and fed back to
the PID controller to track the reference torque (τr).

According to Calanca et al. (2016), the inner torque loop
dynamics should not influence the outer loop. Thus, the inner
loop is usually implemented at a higher control frequency. In
our study, as previously stated, the torque loop is supposed to
be fast enough to neglect its dynamics with respect to the outer
impedance loop. Consequently, the torque control loop should
be considered an ideal torque source and only serves as a baseline
for the impedance control loop.

As suggested by Focchi et al. (2016), the parameters tuning
of the explicit inner torque loop strongly influences the stability
of the system. We decided to empirically tailor the inner
controller to exhibit stable behavior throughout the full range
of achievable impedance at the outer loop. For this reason and
to avoid unstable conditions, the inner loop is operated with
fixed parameters, which are considered constant regardless of the
desired high-level mode.

3.2. Impedance Control (Outer Loop)
The impedance control can be regarded as an outer position
loop that takes a reference in terms of angular position (i.e., θr)
and, by means of a virtual mechanical impedance, produces a
reference torque (i.e., τr) that in turn is fed to the inner torque
loop. The total reference torque can be seen as composed of two
contributions, as in Equation (4). The feedback impedance-based
term, namely τimp, corrects for tracking errors and dampens
undesired oscillations. The feedforward term τcomp compensates
for the dynamic model of the robot and the weight of the wearer’s
limb.

τr = τimp + τcomp (4)

Instead, themeasured torque at the load axis consists of the actual
torque generated by the robotic system and can be broken down
into four main components, as shown in Equation (5):

τl = τcomp + τimp + τext + τres (5)

where τcomp and τimp represent the actuation torques
commanded to the motor, τext indicates the external torque
that the user exerts to the joint, and τres represents the
residual disturbance torque that the inner torque controller can
not reject.

3.2.1. Feedback Impedance-Based Term
To derive the feedback impedance-based term (i.e., τimp),
considering a first order impedance, the transfer function I(s)
between the reference target (θs) and the impedance-based
torque term (τimp) is characterized by two parameters:
virtual spring (Ks) and virtual damper (Dd), and it
can be implemented in the well-known form Equation
(6):

I(s) = Ks + sDd (6)

that in the time domain becomes Equation (7):

τimp = Ks(θd − θ)+ Dd(θ̇d − θ̇) (7)

where τimp is the desired impedance control torque that is used
as a set-point by the inner torque loop, while θd and θ are,
respectively, the desired and measured joint angle positions.

The virtual stiffness, by means of the virtual spring constant
Ks, pulls the joint link toward its desired configuration (i.e.,
the spring corrects for deviations from its equilibrium point,
which is continuously adapted to follow the desired angular
trajectory). At the same time, the virtual damper (Dd) dissipates
the spring energy and damps oscillations. Overall, the role
of these parameters is to render, as shown in Figure 3

for the elbow joint, a second-order system by virtualizing
a spring-damper component within the impedance control
law. When dealing with robotic rehabilitation, the desired
angular velocity might not be available, especially when the
task trajectory is updated in real-time to follow the subject’s
intention of movement. In such cases, we can neglect the
reference velocity term (θ̇d) in the previous (Equation 7). In
this way, the damping term is related to the absolute velocity
instead of the error velocity. The virtual damper is fixed to
the ground frame, resulting in always-resistive damping of
the system.

3.2.2. Feedforward Weight and Dynamics

Compensation Term
A feedforward torque reference term that accounts for the
dynamics of the robot and for weight of the arm is added at the
impedance control level.

For the sake of simplicity, in this section, we consider
the general single-degree-of-freedom joint shown in
Figure 3, which can be reduced to a rigid pendulum
system. The torque acting at the load axis can be described
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with the dynamic equation of the system, which includes
both the robot and the human, as follows Equation
(8):

τ = Jlθ̈ + flθ̇ + G(θ) (8)

where Jl is the inertia moment, fl is the viscous friction at the
load axis, and G represents gravitational torques for both the link
and the forearm. Compensating for the inertial component of
the dynamic model requires the estimation of inertia moments
and the computation of the acceleration by twice-differentiating
the encoder position. These operations can raise many difficulties
and undesired uncertainties that are in turn fed to the controller
as positive-feedback terms. Inertia compensation can, thus, make
the system non-passive and can jeopardize the coupled stability of
the human-exoskeleton system (Kim et al., 2014). Additionally,
in robotic rehabilitation, the desired arm movements are usually
slow, leading to neglectable effects due to the dynamic terms of
Equation (8). For these reasons, in our study, we only compensate
for gravitational and viscous frictional torques.

We, therefore, introduce the simplified compensation term:

τcomp = f̂lθ̇ + Ĝlink(θ)+ Ĝwc(θ) (9)

where f̂l is the estimated viscous friction coefficient, Ĝlink

represents the weight compensation term for the robot
components, and ˆGwc represents the weight compensation of the
human component. The weight compensation term for the robot
can be modeled as in Equation (10):

Ĝlink(θ) = mgl cos θ (10)

wherem is the robot link mass, l its center-of-mass distance, and
g is the gravitational acceleration.

As for the gravitational compensation term of the human
(Ĝwc), we need to make explicit reference to the single-degree-
of-freedom joint used as a demonstrative example (Figure 3).
Of course, this can be generalized to any joint of interest. We
have included vertical forces applied at the centers of mass of
the forearm and hand. The position of the center of mass and
the weight of the limbs can be derived from the anthropometric
tables presented in Winter (2009). The level of weight assistance
can be regulated by means of a weighting factor (ranging from 0
to 100%) that accounts for misalignment and uncertainties in the
anthropometric data as in Equation (11):

Ĝwc(θ) = Wf (mf lf +mhlh)g cos θ (11)

where Wf is the weighting factor, mf and mh are the masses
of forearm and hand, while lf and lh are their centers of mass.
With this dynamic compensation, only inertial, centrifugal, and
residual frictional torques are to be overcome if the user wants to
perform a voluntary movement (i.e., they are not included in the
compensation term).

The feedforward compensation torque formulation can
be obviously generalized if an n-degree-of-freedom robot is
concerned. In such cases, the dynamics compensation terms can
also include Coriolis and centrifugal torques. Such feedforward

compensation can be computed from centralized inverse
dynamics algorithms, such as closed-form solutions or more
computationally efficient recursive Euler-Newton approaches
(Moubarak et al., 2010; Ragonesi et al., 2013; Kim et al., 2017;
Just et al., 2020).

3.3. Human-Robot Interaction Modalities
In this study, we took inspiration from literature control
modalities for robot-mediated therapy, and we selected six high-
level human-robot interaction modalities, ranging from passive
mobilization to challenging modalities. In this section, we first
describe the motor learning rationale and the desired high-level
behavior for each mode. Then, we propose a match between
the high-level behavior and a set of control parameters that can
render the desired behavior. The claim regards the adjustment
of stiffness, damping, and weight-compensation assistance to
render different pHRI levels. We underline that the parameters
are adapted only at the higher level as the torque control loop
serves as an internal loop to promote compliant behavior and
improve the torque tracking accuracy.

Passive Mode (P)
The Pmode should be exploited during the preliminary stages of
the rehabilitation process. The robot helps the patient to track
a predefined trajectory to improve the limb range of motion
and reduce muscular atrophy or tendon retractions (Masiero
et al., 2007). When the system is operated in P mode, the
robot performs the movement without accounting for the user’s
intentional activity. Stiffness Ks and damping Dd control gains
are greater than in other modes, rendering a stiffer behavior of
the joint, and the torque feedforward term (τcomp) is used to
compensate for the user’s arm weight. However, in this mode,
the trajectory tracking is not as accurate as in position control, as
the impedance control intrinsically introduces a tolerance dead-
band. Nevertheless, this is not a critical aspect for rehabilitation
robots since the crucial feature is to limit the interaction forces
with the human limb.

Corrective Mode (C)
Correctivemodalities are used when patients have some voluntary
muscular contractions, but the generated strength is not sufficient
to perform complete and functional movements. The robot
provides assistance when the participant is not capable of
fulfilling the task, and generates a force-field to push the arm
toward the desired path (Basteris et al., 2014). In this mode,
subjects generate the minimum effort needed to accomplish the
desired task. The user is actively involved in the movement,
and the robot partially assists the motion. The C mode is
implemented with impedance-based assistance. Lower values for
both virtual stiffness and damping are used with respect to the P,
rendering a more compliant and softer behavior of the robot, i.e.,
the user is allowed to deviate from the trajectory.

Weight Counterbalance Mode (W)
The W mode can be applied to perceive a microgravity
environment. This effect is obtained through the
counterbalancing assistance term that is computed according to
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the configuration of the user’s arm. In this mode, the subject is
wholly involved in the task, and if the voluntary activity is not
sufficient to fulfill the exercise, the robot does not apply for any
corrective assistance. Indeed, the controller is not programmed
to follow a predefined exercise task. At low-level, the virtual
stiffness is removed, and a low damping value is used to avoid
undesired oscillations and dampen the motion.

Transparent Mode (T)
In T mode, the user performs the task, and the robot follows
the movement without assisting (nor resisting) the movement.
In other words, this mode enables the robot to be dynamically
transparent to users’ voluntary movements, by compensating the
exoskeleton weight at each configuration along with the task.
Regarding its implementation, the low impedance behavior is
achieved by means of a null-torque controller provided only with
the compensation for the robot weight. Neither assistance nor
resistance is provided.

Resistive Mode (R)
The R mode has been introduced to further engage the patient
along with his/her progression, i.e., when most of the motor
functionalities have been (hopefully) relearned, but the subject
still has to gain some muscular tone. In fact, robots with
torque-controlled joints can also realize an aquatic therapy-like
environment by providing weight support and allowing user-
driven free motions with or without viscous resistance (Kong
et al., 2010; Song et al., 2014). To implement such behavior,
this mode adds a viscous-like resistance to the movement while
compensating for the robot dynamics. No impedance-based
assistance is present, and the controller resists the movement
by applying a viscous frictional torque, which is inversely
proportional to the movement velocity.

Hypergravity Mode (H)
TheH mode amplifies the effect of gravity during the movement.
This mode can be used to challenge the subject during the
exercise and to focus the training on postural anti-gravity
muscles. In particular, instead of counterbalancing the limb
weight, the controller adds additional virtual weight, applied at
the centers of mass of the limb, that gives the feeling of doing the
task with weight, or, in other words, of doing the exercise in a
hyper-gravity environment.

Overall, qualitative guidelines suggest that high-impedance
implementation should be used to stiffen the control law,
imposing the subject’s movement along the task trajectory.
Contrarily, low-impedance gains should be exploited to render
more compliant and softer behavior of the robot, i.e., the
controller promotes voluntary movements, and the user is
allowed to deviate from the trajectory. Finally, we usually
increased the damping not only to reduce overshoots and
oscillations but also to introduce a baseline kinematic error,
which should engage the user when following the desired
trajectory. However, a trade-off in the impedance parameters is
needed to induce a physiological muscular activation aimed at
completing the task in an assisted-as-needed fashion. Regarding
the weight counterbalance, the mathematical model does not

TABLE 1 | The proposed parameters used with the unified compliant controller to

render the selected high-level human-robot interaction modalities.

Human-robot

interaction modalities

Weight (Wf ) Stiffness (Ks) Damping (Dd )

(%) (Nm/rad) (Nms/rad)

Passive P 75 50.0 10.0

Corrective C 0 5.0 1.0

Weight counterbalance W 75 0.0 0.1

Transparent T 0 0.0 0.1

Resistive R 0 0.0 3.5

Hypergravity H –100 0.0 0.5

Ks and Dd relate to the impedance-based term. The Wf parameter corresponds to the

weighting factor for the feedforward compensation of Equation (11) and it was manually

tuned to 75% to avoid overcompensating for the user’s arm weight.

always entail a real experience of weight relief for the end-user.
As a consequence, we adapted the level of anti-gravity support
by means of the weighting factor Wf , which was tuned to 75%.
Indeed, in the implementation of anti-gravity exoskeletons, a
100% compensation could hinder the user during anti-gravity
movements, and it is suggested to compensate for a fraction of
the full dynamics (Näf et al., 2018).

To define the quantitative values of stiffness, damping
and weight assistance for each mode, we separately ran
some preliminary tests on two healthy subjects, which were
not recruited for the rehabilitation modalities assessment to
avoid bias. The parameters of the controller were empirically
determined according to the perceived behavior.

Table 1 shows the parameters that we used for the
human-robot interaction modalities validation, as described in
section 3.3.

4. METHODS

To assess the validity of the proposed control framework and its
ability to promote different human-robot interaction modalities,
we considered a typical actuation joint for a general upper-
limb exoskeleton, and we used it as a platform to test and
verify the performances of the proposed controller. As previously
explained, the controller is first characterized regardless of
the volitional human activity, then the perceived pHRI is
assessed on elbow flexion/extension movements throughout the
proposed modalities. In detail, the validation of the control
framework is presented in two different steps: i) assessment of the
performances of the control loops 4.2, and ii) electromyographic
validation of the unified compliant control operating in the
proposed rehabilitation modalities 4.3.

4.1. Experimental Set-Up
The actuation is provided by a brushless DC motor (EC-45
flat, Maxon Motor AG, Switzerland), coupled with a planetary
gearhead with a transmission ratio of 156:1 (GP-42-C, Maxon
Motor AG, Switzerland). The electric motor provides a nominal
torque of about 120 mNm. Thus, given the ratio and the
efficiency of the transmission, the gear motor is able to provide
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at the load side a maximum constant torque of about 15 Nm
and a peak torque of about 18.5 Nm. An incremental encoder
reads the rotor position with a resolution of 2,048 counts per
revolution, leading to a resolution of 0.001◦ at the load side.
Finally, a reaction torsional load-cell (TRT-200, Transducer
Techniques, CA, USA) is connected to the gearbox output shaft
to sense the torque acting on the joint of the robot. With the
aim of testing the control in the interaction with the human
motion, we designed a one-degree-of-freedom robotic system
to provide assistance to the elbow during flexion-extension
tasks, similar to the one presented by Lobo-Prat et al. (2016).
In particular, the rotational axis of the system is aligned with
the user’s elbow joint. An aluminum bar is attached to the
load-cell and is fixed to the user’s forearm by means of an
ergonomic arm cuff. The arm cuff is equipped with padded
fabric which minimizes interaction forces between the rigid
shell and the arm. Adhesive strips are used to fix it to the
arm cuff. The user’s elbow rests over a soft foam surface,
and the arm cuff position can be adjusted according to the
forearm length to improve the comfort and alignment of the
rotation axis. The unified controller described in section 3 is
implemented in a real-time control system, based on Linux
patched with PREEMPT RT, and runs at a cycle time of 1 ms.
The control hardware architecture shown in Figure 4 relies on
the EtherCAT field-bus, which guarantees good performances on
distributed networks, and assures a reliable, deterministic, stable,
and low-latency communication between the control unit and
the connected hardware. In particular, the motor driver (Mini
Torque Driver, Esmacat, US) is connected to the control system
via the EtherCAT communication, and a real-time C++ master
application, based on the Simple Open-Source EtherCAT Master
(SOEM) library, is implemented to handle the communication
with the motor and sensors. The real-time control unit also
implements the outer impedance/position loop at 1 kHz, the
feedforward compensations, and the trajectory generation. The
low-level torque control is instead implemented in the motor
driver at 5 kHz.

The experimental set-up and its connection are described in
Figure 5B, while its final realization is shown in Figure 5A. The
main features of the presented experimental set-up are reported
in Table 2.

4.2. Actuation and Control Characterization
The characterization of the controller was conducted on a single
healthy subject as its performances are to be assessed regardless
of the subject’s performance and involvement.

First, we assessed the capability of the system to promote
physical human-robot transparency, defined in literature as
to how good the robot is at rejecting torque disturbances
and at limiting resistance during subjects’ voluntary motion
(Zanotto et al., 2013). To validate the need of employing the
inner torque closed-loop and consequently to assess the ability
of the unified compliant controller to improve transparency,
open-loop (current-based) null-torque control was compared to
closed-loop (loadcell-based) null-torque control. To this aim,
we asked a healthy subject to perform movements spanning
the whole available range of motion (i.e., 0◦ to +90◦) with

FIGURE 4 | Control framework block diagram. The inner torque loop is

implemented in the motor driver. The outer impedance loop is implemented in

the real-time control unit. Configuration files are used to personalize the

controller parameters. The user can select the rehabilitation mode through a

simple user interface.

the elbow one-degree-of-freedom test-bed at various velocities
ranging from –1.0 to 1.0 rad/s in two conditions: i) back-
driving movements operating the joint with no active control.
In this condition, the inner loop is disabled and the mechanical
backdrivability of the joint is sensed; ii) back-driving movements
operating the joint in closed-loop null-torque control: The
inner torque control follows a null torque reference. We
measured the torque output from the torque sensor, while
the position and velocity of the joint axis were obtained
from the embedded incremental encoder. We computed the
maximum residual resistive torques, which should be lower for
better transparency.

Second, to assess the accuracy of the torque control, we
analyzed the frequency response of the inner closed-loop.
We set the drive system at its mechanical end-stop, and
we commanded sinusoidal torque profiles to the actuator
torque control at different frequencies, ranging from 0.5 to
4 Hz. We evaluated the differences between the commanded
torque and the measured torque curves using Root Mean
Squared Error (RMSE) and Peak Error (PE) values, which
are measures of the accuracy of the torque-control loop and
both should be as small as possible. Finally, we computed
the Pearson correlation coefficients to evaluate torque fidelity
at each frequency, which should be greater than 90% for
high similarity levels (Mukaka, 2012). At last, we investigated
the performance of the impedance control, and we estimated
the accuracy of the rendered torsional impedance values that
the system was able to generate. The robot was commanded
in impedance at the vertical equilibrium point (θ = 0◦),
and external torques were exerted to the joint-link system.
The experiment was repeated at different stiffness/damping
values. The displacement from the equilibrium point (in
radians) at stiffness values of 5, 10, 20, and 40 Nm/rad has
been evaluated and related to the measured torque output.
One should verify that the experimental stiffness matches the
commanded one.
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FIGURE 5 | Experimental setup. (A) The subject is attached to the elbow-joint system at the forearm. The elbow leans on the table over a soft foam surface. Surface

electrodes are placed at the biceps and triceps brachii (long head). (B) The actuation drive system is connected to the real-time control unit with EtherCAT. Visual

feedback is provided to the user to help follow the desired trajectory.

TABLE 2 | The main features and specifications of the developed experimental

set-up.

Specifications Value

Nominal torque 15 Nm

Max. Peak torque 18.5 Nm

Max. Velocity 4.4 rad/s

Gearbox ratio (N) 156:1

Range-of-motion 0◦ +110◦

Torque control frequency 5 kHz

Impedance control frequency 1 kHz

Performances of the torque control and impedance control loops are discussed in section

5.1.

4.3. Human-Robot Interaction Modalities
Validation
The testing protocol was performed on healthy subjects, and it
was approved by the ethical committee of Politecnico di Milano.

The protocol involved the execution of elbow
flexion/extension tasks with the elbow-joint developed set-
up (Section 4.1). The system was connected to the dominant arm
of the user, and the user performed elbow flexion and extension

movements following the six implemented rehabilitation
strategies. Their sequence was randomized to avoid learning or
fatigue effects, that could have biased the results. For each mode,
the user performed 15 elbow flexion/extension repetitions.
The user was instructed to perform the movements following
visual feedback (Figure 5A). The visual interface showed
the movement to be tracked and the actual position of the
joint. The desired movement speed was kept the same across
all modalities.

The goal of the task was to correctly track a
moving trajectory, and the performance was the
resultant of the sum of the contribution of the torque
provided by the human and the motor. In this view,
healthy subjects can modulate their contribution to
the movement. Thus, we have been able to monitor
different human contribution levels while keeping the task
performance constant.

As proposed in Hogan (1984), the movement of the human
arm, when coupled with a robot, can be described by a minimum
jerk trajectory. In this study, we defined the nominal trajectory by
means of a symmetric fifth order β-function (Krebs et al., 1999)
as in Equation 12. The nominal trajectory starts with the forearm
lying on the table (i.e., 0◦), then the flexion/extension movement
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is performed in about 8 s as in Figure 6A.

θr(t) = P0 + P1(t − P2)
P3 (P4 − t)P5 , P2 ≤ t ≤ P4 (12)

P1 =
A0

P4−P2
2

(P3+P5)
(13)

where the Pn parameters are used to configure the desired
trajectory. P0 represents the initial position offset, P2 and
P4 are the start and the stop time, P3 and P5 are the
interpolators’ orders for the raising and falling phases, and P1 is
related to movement amplitude A0 by means of Equation (13).
Figure 6B shows the desired β-function trajectory for the elbow
flexion/extension movement.

4.3.1. Outcome Measures
We recorded the kinematic and dynamic data from the robot
sensors. Commanded and measured angular position, velocity
and torques were sampled at a frequency of 1 kHz. Torque
data were low-pass filtered with a Butterworth filter of the
third order and a cut-off frequency of 20 Hz. To investigate
how subjects adapted their motion control to various assistance
(or resistance) levels, and to posit if the experiments were
comparable, we assessed the kinematics variability. In particular,
to evaluate if the subjects performed comparable trajectories
across all modalities and, as a consequence, if we could posit that
all the subjects performed the same movements, we computed
the RMSE between the commanded and the measured angular
position across all repetitions, subjects, and modalities.

To validate the implemented control strategies and to
investigate how they affect the user’s behavior, we also registered
the muscular activity. In particular, we recorded the biceps and
triceps (long head) muscles, as shown in Figure 5B. The sEMG
signal was recorded at a frequency of 1 kHz with a wireless
EMG reader (Sessantaquattro, OTbioelettronica, Italy). EMG
signals were pre-processed following a standard approach that
includes high-pass filtering with a third-order Butterworth filter
at 10 Hz, rectification, and low-pass filtering with a third-order
Butterworth filter at 4 Hz (Gandolla et al., 2018). We normalized
signals for each participant with respect to 80% of the maximum
contraction during the whole experimental session, preventing
normalization by spurious EMG spikes (Ricamato and Hidler,
2005). We computed the integrated EMG (iEMG) as a marker
of voluntary muscle drive as the area under the curve of the
normalized EMG signal (Androwis et al., 2018).

4.3.2. Statistical Analysis
Outcome measures were collected for each subject and for each
control mode. All output indices were computed separately for
the flexion and extension movements. Results are expressed as
medians and inter quartile ranges (IQR) [25th - 75th percentiles].
Given the reduced sample size, the Friedman test was performed
to detect possible significant changes in the RMSE and iEMG
indices across different control strategies. Post-hoc comparisons
with Bonferroni correction were used to identify statistically
significant differences between the six modalities. All statistical
analyses have been performed inMATLAB (version R2020b) and
IBM SPSS Statistics (version 27).

5. RESULTS

5.1. Actuation and Control
Characterization Results
As for the capability of the compliant controller to promote
physical human-robot transparency, results demonstrated that
the closed-loop torque controller reduced the residual frictional
torques, from 2.0 to 0.3 Nm. As shown in Figures 7A,B,
when the robot is operated in closed-loop null-torque control,
better transparency is achieved within a range of –1.0–1.0
rad/s, which are typical maximum velocities for a rehabilitation
exercise (Neilson, 1972). The maximum residual resistive torques
during back-driving movements were perceived as negligible
by the user that was performing the experiment. This result
confirms that employing a loadcell-based torque control loop
permits to achieve higher transparency of the joint and better
torque tracking.

To measure the torque control accuracy, we performed
sinusoidal torque profiles, as shown in Figure 8. The differences
between the commanded torque and the measured torque curves
were computed to assess the accuracy of the inner closed-loop
torque control. Results showed torque output RMSE of 0.12, 0.30,
0.33, and 0.49 Nm, respectively, for 0.5, 1.0, 2.0, and 4.0 Hz.
The maximum (PE) of about 0.90 Nm was obtained at 4.0 Hz
in correspondence to sudden changes (i.e., at the inversion of
velocity). Pearson correlation coefficients resulted equal to 99.62
(f = 0.5 Hz), 98.06 (f = 1 Hz), 97.55 (f = 2 Hz), and 94.71% (f =
4 Hz), demonstrating a high-fidelity torque control.

As for the performances of the impedance controller, Figure 9
shows the relationship between the generated torque output (in
Nm) and the displacement from the equilibrium point (in rad)
at stiffness values of 5, 10, 20, and 40 Nm/rad. Notably, the fitted
values from the experimental data demonstrate a good stiffness
accuracy, resulting in an average relative error of 3.3± 0.3% with
respect to desired values.

5.2. Human-Robot Interaction Modalities
Validation Results
We assessed the capability of the controller to implement the
proposed high-level modalities by measuring the perceived pHRI
through the monitoring of the voluntary muscular effort of
healthy participants. We recruited 14 healthy volunteers, with a
median age of 25 years, [24-27] IQR.

5.2.1. Kinematics Variability Assessment
The results of the trajectory tracking RMSE of the elbow
joint reported that the overall average tracking error was 3.38
± 1.29 degrees, and the maximum detected RMSE was 5.73
degrees (about 0.1 radians). The Friedman test rejected the null
hypothesis that data came from the same distribution (p <

0.0001). The post-hoc analysis revealed that only RMSE data of
the P mode significantly differed from all the other groups (p
< 0.01). As expected, since we are using an impedance control
logic, which does not guarantee an accurate position tracking,
and since no effort was required from the user, in P mode, we
can notice higher errors, but the trajectory variability is minimal.
Finally, in W mode, by which the controller does not correct for
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A B

FIGURE 6 | Elbow flexion/extension movements. (A) Sketch representation of the elbow flexion/extension task exercise. (B) Trajectory β-function computed with

P0 = P2 = 0, P4 = 8, A0 = 90◦, and P3 = P5 = 5. Black lines represent elbow flexion phase, while blue lines represent elbow extension phase.

A B

FIGURE 7 | Backdriving movements during free-motion at velocities ranging from -1.0 to 1.0 rad/s. The residual torque represents the difference between

commanded (null) and measured torques. (A) With the open-loop null-torque control, no active disturbance rejection is enabled. Residual torques are up to 2.0 Nm.

(B) With the closed-loop null-torque control, the inner torque loop is enabled. Residual torques range from about -0.3 to 0.3 Nm.

trajectory deviation, the tracking RMSE was slightly higher than
in the other modalities.

5.2.2. Electromyographic Monitoring
In Figure 10, we present the average envelope profiles of
muscular contraction (biceps and triceps brachii), and the torque
output for each of the presented high-level modalities.

Furthermore, the iEMG results are reported in Figure 11 for
each high-level mode. The Friedman test revealed significant
differences among training modalities for the iEMG index for

the four conditions analyzed (i.e., biceps and triceps contraction
during elbow flexion and extension phases) (p < 0.0001).
Therefore, we performed further analysis to separately compare
each rehabilitation mode with the others. The results of the
post-hoc analysis are shown in Tables 3, 4.

Passive Mode (P)
In P mode, the robot entirely performs the movement, and the
subjects were asked to simulate the “passive” behavior by relaxing
their muscles along the movement, and by not counteracting to
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FIGURE 8 | Sinusoidal torque response at different frequencies (0.5, 1.0, 2.0, and 4.0 Hz). The experiment demonstrates good torque tracking of the inner torque

loop. The light red line represents the commanded torque, while the bold blue line refers to the load-cell measured torque.

FIGURE 9 | Experimental torsional stiffness. The joint is controlled in

impedance at the equilibrium point (θ = 0◦). The user exerts external forces to

the joint. Torque and angle deviation are measured and compared at different

virtual stiffnesses. For the commanded values of 5, 10, 20, and 40 Nm/rad,

the measured experimental stiffnesses are 5.14, 10.38, 20.67, and 41.26

Nm/rad, respectively.

residual trajectory errors. As expected, the normalized activation
of biceps and triceps was minimal, which confirmed the user’s
“passive” behavior (Figure 10). Considering the biceps activation
during the flexion phase, we found a significant difference (i.e.,

p < 0.05) for all modalities except W mode. Instead, triceps
contraction during the extension phase resulted in significant
difference withW, R, and H modes (Table 3).

Corrective Mode (C)
When in Cmode, the activation of the biceps was not statistically
different with respect to the T mode (p= 1), while it was different
from the others. The triceps activation plot shows no significant
muscular activity during movement in favor of gravity. In fact,
the triceps iEMG was not significantly different from the Pmode
where all the muscles are relaxed (p = 0.055). The C mode
also demonstrates similarity to the T mode, by which the user
substantially uses the contribution gravity in the extension phase,
and therefore, the triceps activation is almost null.

Weight Counterbalance Mode (W)
The trials performed in W mode showed that the biceps
contracted during the lifting phase, and the triceps during the
descending phase. Triceps contraction during the extension
phase was slightly higher than in C mode, as the user could
not exploit the effect of gravity to complete the movement and
had to contract the antagonist muscles to counteract the robot
weight counterbalance.

Transparent Mode (T)
Averagely, the users contracted the biceps during the elbow
flexion phase and continued to contract during the elbow
extension phase to slow down the downward movement.
Since the movement was performed against gravity, the triceps
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FIGURE 10 | Experimental results for all the presented rehabilitation modalities. Each row represents a different mode. Subplots show biceps and triceps normalized

EMG, and measured interaction torque, generated at the output joint axis. Bold blue lines represent mean values, while gray areas refer to SD ranges.
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muscle was not significantly activated. We can also observe
that both biceps and triceps activation profiles of the T mode
are substantially similar to C mode (Figure 10). This result is
confirmed by the iEMG (p > 0.05).

Resistive Mode (R)
In R mode, we can observe high biceps contraction during
the elbow flexion phase and triceps contraction during the
elbow extension. The activation of the biceps during the elbow
flexion was significantly higher than all modalities (p < 0.05),
except the H mode. During the elbow extension phase, we
observed triceps contraction significantly greater than all the
other training modes.

Hypergravity Mode (H)
The H mode involved especially the biceps muscles. Indeed,
in Figure 10, we can observe a great muscular contraction of
the biceps during both elbow flexion and extension. The biceps
iEMG index during the elbow flexion phase was significantly
different from all modalities (p ≤ 0.05), except from the R
one (p = 1), where the users were contracting the biceps
to overcome the resistance offered by the robot. During the
elbow extension, instead, we observed biceps muscular activation
significantly higher than all the other training modalities
(p ≤ 0.001).

5.2.3. Torque Output Results
Regarding the torque output results presented in Figure 10, the
right plots show the torque output generated by the elbow-joint
system to the users’ arm interface. In P mode, the measured
torque consisted of the torque generated by the motor to
complete the task. Such torque is equal to the inverse-dynamic
torque needed to passively move the human-robot system along
the desired trajectory, besides residual torques that are not
rejected by the torque controller. In C mode, the measured
torque mainly corresponds to the impedance-based torque
employed to correct path deviations. Since the participants
were well-performing in the task, the torque variability is
limited, and it corresponds to the anti-gravity torque of the
elbow test-bed, similar to T mode. In W mode, the system
compensates for arm weight, which varies according to the
wearer’s characteristics. This explains the greater variability and
the greater amplitude of torque profiles. In T mode, instead,
the robot only compensates its weight, with no trajectory
correction. Accordingly, the measured torque profiles show a
smaller variance, and the trend goes with the cosine of the
joint position, as described in Equation (10). The R mode
shows that torque trends are inversely proportional to the task
velocity, demonstrating a viscous frictional behavior. Finally,
a visual inspection shows that in H mode, the torque output
was opposite to the P mode. In fact, the assistance in P mode
was pushing the arm in the opposite direction with respect to
the H mode, in which the torque output is aligned with the
gravity direction.

6. DISCUSSION

The literature proposed several high-level training modalities
for effective post-stroke rehabilitation treatment. However, their
implementation strongly depends on the developed robotic
systems. For example, the Harmony exoskeleton exploits an
explicit SEA-based impedance controller (Kim et al., 2017), which
is similar to our approach, while other exoskeletons, such as
ARMin, use instead implicit impedance controllers to promote
rehabilitation exercises (Nef et al., 2007; Khan et al., 2015).
However, the generalization of these approaches to a large variety
of human-robot interaction modalities, their integration in a
unified low-level compliant controller, and the validation of the
perceived pHRI through the assessment of the voluntary human
effort have not been investigated yet.

We developed a compliant controller based on impedance
control and implemented it on a test-bed for the elbow
flexion/extension. This study aims at validating the proposed
unified control framework through two sets of experiments.
We first characterized the controller performances. Then, we
evaluated the muscular engagement of healthy subjects by
operating the robot in six high-level training modalities.

6.1. Actuation and Control Characterization
As a first step, we identified a suitable actuation configuration
that could be exploited to create a compliant joint for upper-
limb rehabilitation robots.We used actuators along with load-cell
feedback to provide high-fidelity torque control. In this way, low-
impedance behavior can be achieved, and the robot can behave
compliantly with respect to the subject, encouraging residual
voluntary movements. On top of this configuration, we proposed
a generalized explicit impedance-based control law, which
includes positive-feedback terms for friction compensation and
arm weight counterbalance. We tested the unified controller
performances with an elbow flexion-extension test-bed. The
experimental results showed that the developed set-up, combined
with the proposed low-level controller, exhibited very low
impedance at the joint level, imposing negligible resistive torques
(less than 0.3Nm) on the user’s free-motionmovements. Notably,
since the impedance-based corrective term of the unified
controller is superimposed to the T control mode, achieving a
baseline dynamic transparent behavior was a fundamental step to
implement compliant rehabilitation strategies. We can conclude
that the inner-loop is expected not to influence the high-level
behavior, and it can be considered an ideal torque source.

Due to the developed controller’s inner explicit torque
feedback control, most of the disturbance torques introduced
by the high-ratio gearbox could be reject, without the need
for accurate model-based compensation. With these results,
we demonstrated that the proposed approach was effective in
implementing different virtual stiffness and damping values, that
were performed by the robot with good accuracy.

6.2. Human-Robot Interaction Modalities
Validation
With the developed system, we proposed a set of parameters
that could implement various levels of pHRI. Specifically, we
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TABLE 3 | P-values results of the post-hoc analysis comparing integrated EMG (iEMG) index among training modalities during elbow flexion movement.

Muscular contraction during elbow flexion phase

Biceps P C W T R H

P −

C <0.001 ↑ −

W 0.101 <0.001 ↓ −

T <0.001 ↑ 1 0.002 ↑ −

R <0.001 ↑ <0.001 ↑ <0.001 ↑ 0.001 ↑ −

H <0.001 ↑ <0.001 ↑ <0.001 ↑ <0.001 ↑ 1 −

Triceps P C W T R H

P −

C 0.055 −

W 0.620 0.831 −

T 0.101 0.081 1.000 −

R 0.003 ↑ 0.014 ↑ 0.002 ↑ 0.002 ↑ −

H 0.005 ↑ 0.011 ↑ <0.001 ↑ 0.001 ↑ 1.000 −

Bold values indicate significant differences between muscular contraction obtained with row and column modalities. Up and down arrows are used to specify if the mode represented

in the selected row has significantly higher (↑) or lower (↓) muscular contraction than the mode represented in the respective column of the table.

TABLE 4 | P-values results of the post-hoc analysis comparing iEMG index among training modalities during elbow extension movement.

Muscular contraction during elbow extension phase

Biceps P C W T R H

P −

C 1.000 −

W 1.000 1.000 −

T 0.004 ↑ 1.000 0.013 ↑ −

R 0.043 ↑ 1.000 0.125 1.000 −

H <0.001 ↑ <0.001 ↑ <0.001 ↑ <0.001 ↑ <0.001 ↑ −

Triceps P C W T R H

P −

C 0.272 −

W 0.101 1.000 −

T 0.226 1.000 1.000 −

R <0.001 ↑ 0.002 ↑ <0.001 ↑ 0.006 ↑ −

H 0.013 ↑ 0.011 ↑ 0.229 0.004 ↑ 0.009 ↑ −

Bold values indicate significant differences between muscular contraction obtained with row and column modalities. Up and down arrows are used to specify if the mode represented

in the selected row has significantly higher (↑) or lower (↓) muscular contraction than the mode represented in the respective column of the table.

combined assistance, correction, and resistance to promote
a collaborative controller that implements different high-level
training modalities. All the previously presented discrete robot-
mediated training strategies can be viewed as different points of
a continuum of corrective assistance, counterbalance assistance,
and resistance. We underline that this study aims not to define
a single set of parameters but to test the hypothesis that the
parameter space—if properly explored—can be exploited to
move across different rehabilitation scenarios. In particular, we
included and tested six rehabilitation modalities, as described in
section 3.3.

In this study, we evaluated the capability of the proposed
framework to realize a wide range of pHRI by measuring the

voluntary muscular activity of healthy subjects in a controlled
and replicable experimental protocol. We compared the biceps
and triceps muscular activity of 14 healthy subjects under the
identified rehabilitation modalities. At the same time, the angular
position followed by users and the torque output generated by the
elbow-joint system were measured.

The kinematics experimental results demonstrated that the
subjects could keep full control of the robotic link while
performing elbow flexion/extension tasks. Consequently, the
results confirm two crucial hypotheses. First, participants’
kinematics performances did not show significant difference
across the presented training modalities. Second, all the subjects
were able to follow the desired trajectory within the maximum
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FIGURE 11 | Biceps and triceps brachii iEMG during elbow flexion and extension phases. P, Passive mode; C, Corrective; W, Weight counterbalance; T, Transparent;

R, Resistive; H, Hypergravity.

tolerance of about 0.1 radians (about 5.73 degrees). For these
reasons, we posit that, under all tested conditions, all subjects
could fulfill the required motor tasks in terms of trajectory
tracking, range of movement and timing, no matter the level
of assistance/resistance provided. Thus, we could compare
the electromyographic data across modalities. We observed
trajectory tracking to be less accurate than in a position controlled
system (especially for the Pmode). In fact, the impedance control
scheme, due to the pure spring-damper correction, introduces
bias offset errors to the trajectory tracking control problem that
are not negligible. Contrarily, a position control scheme would
reject such errors, but it would not provide compliant behavior
with the human arm. Furthermore, in applications by which the
robot is coupled with a fragile human arm, achieving precise
positioning is not a critical aspect, but it is more important
to avoid high interaction torques that can be uncomfortable or
potentially hazardous to the wearer.

As desired, we observed that the different human-robot
interaction modalities implemented with the unified controller
induced different muscular activation patterns, both in biceps
and triceps brachii, according to the selected training mode. The
interactionmodalities ranged from a full robot action with almost
null muscular contribution (P mode), to training paradigms
where the robot resists and challenges the users, requiring them
an extra muscular effort to accomplish the task (R andH modes).

The T mode was considered the baseline reference since it
describes the behavior by which neither assistance nor resistance

is provided to the user during the task. In fact, the muscular
effort registered in T mode corresponds to the natural free task
execution. During elbow-flexion, we observed a medium biceps
contraction, while the triceps were characterized by a slight co-
contraction. During the extension phase, instead, a modulated
contraction of the biceps is used to control the downward motion
provided by gravity, while the triceps were again not significantly
activated, given that the movement was performed in favor
of gravity.

We also observed that both C and W modes promoted
similar biceps contractions that are significantly higher with
respect to Pmode. However, when the weight counterbalance was
active (i.e.,W mode), the triceps experienced greater contraction
with respect to the other training modalities. Therefore, these
results indicate that such modalities induced the physiological
contraction of biceps muscles, and that the controller was
inducing slightly greater motor antagonistic activation when
weight counterbalance assistance was present. Comparing results
obtained in T mode with the C mode, we could interestingly
observe that the activation profiles in the two modalities were
comparable, despite the C mode allowing a reduced effort and
avoid any fail in task execution, providing assistance whether the
user is not capable of completing the task or is too slow.

We can also observe that, given that the participants were
performing controlled movements (i.e., healthy subjects followed
a trajectory pre-defined in position and velocity) with comparable
performances, the controller was able to induce muscular
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patterns in the C and W modes that are not significantly
different from the baseline T mode. We can also verify that
the torque output in these modalities almost followed the
robot weight counterbalance torque (i.e., T mode) and that the
residual dynamic torque to complete the tasks was generated by
users’ voluntary contraction. Therefore, we can derive that the
proposed control system could correctly implement the assist-as-
needed paradigm, helping the user to accomplish the task while
inducing the physiological muscular activation pattern.

Instead, in R and H modes, the statistical analysis confirmed
that, for both biceps and triceps, significant greater muscular
contraction levels were reached with respect to other modalities.
In particular, the H mode can be regarded as equivalent to gym-
like exercises. In fact, the robot trained the biceps along with
the whole movement, during both elbow flexion and extension
movements, as if the user was performing the task with payload
weights. On the contrary, in R mode, the robot trained both
muscles during the task: the biceps contracted during the flexion
phase, and the triceps during the extension phase.

These results demonstrated that the proposed unified
controller could provide low-impedance and high-impedance
correction, low-resistance and high-resistance behavior,
rendering different levels of pHRI and inducing different levels
of muscular contraction and subject’s involvement.

6.3. Potential Impacts for
Neurorehabilitation
From the rehabilitation point of view, the goal is to achieve
efficient motor control that should be as similar as possible to the
free task scenario, i.e., the T mode. Purely corrective strategies
(such as C mode), around the desired trajectory, modulate the
assistance without impacting the muscle recruitment strategy
but guaranteeing the completion of the task. Instead, we
noticed that in the W mode, which involved anti-gravity
compensation, the triceps contracted during the extension
phase. This implies agonist-antagonist coordination that is
entirely different from the natural one, and therefore, it could
potentially induce unnatural muscular synergies. From these
experimental trials, we observed that anti-gravity compensation
of the human arm could induce non-physiological muscular
activation, potentially leading to maladaptive plasticity. In
this view, a purely corrective approaches might be more
effective. However, further investigation is needed to confirm
this hypothesis, involving upper arm and forearm tests on the
target population.

Finally, the proposed R and H methods were able to motivate
and induce challenging exercises to the subject, training both
agonist and antagonist muscles. For this reason, the presented
approach could also be applied to the recovery from sports and
orthopedic injuries.We claim that the controller could be initially
employed to assist the motion during the early stages of the
physiotherapy and then—by switching modalities—to improve
the muscle mass recovery.

Overall, the controller and the developed hardware confirmed
suitability for implementing the training modalities needed for
effective physical therapy treatment. With these advancements,
we can conclude that the proposed compliant controller
might assist the subject along the upper-limb rehabilitation

treatment process, from stages when the patient is completely
hemiplegic toward the functional recovery of the limb. Future
studies will involve the application of this approach to post-
stroke patients to assess its efficacy toward motor recovery.
Although we developed a compliant joint for the elbow
training, future studies can involve the translation of the
proposed solution to multi-degrees-of-freedom applications.
Indeed, the joint-space control scheme can be replicated
for each joint of the robotic chain, and more sophisticated
centralized algorithms for arm weight compensation can
be implemented.

7. CONCLUSION

In this study, we presented and validated a human-robot
cooperative controller for upper-limb robot-mediated
neurorehabilitation. The design of the control framework
took inspiration from motor learning and neurophysiological
aspects, which suggest that good collaboration between the
impaired subject and the therapeutic device is preferred
to induce effective motor recovery in neurological
survivors. In this sense, we found strong evidence that the
proposed controller guaranteed dynamic transparency—
to promote users’ voluntary movements—and produced
variable assistance and resistance levels—to tune the
rehabilitation treatment according to the subject’s performance
and involvement.

We demonstrated through electromyographic monitoring
that a proper combination of stiffness, damping and weight
assistance could properly induce various levels of muscular
activation and the subject’s participation, namely promoting
different human-robot interaction modalities. We believe that
since a collaborative controller should provide the minimal
amount of assistance to complete the tasks, the presented
high-level modalities can be considered as different points
of a continuum, and we posit that they can be potentially
selectable according to the stage of motor recovery, involving
the subject in the completion of the rehabilitation treatment.
Our results suggest that the presented collaborative framework
is suitable for these purposes. Future studies will extend this
approach to multiple degrees of freedom robots and investigate
the optimal adaptation control law that makes the controller
learn and adapt to the subject’s performances in a therapist-like
manner. Finally, the efficacy of such a controller on neurological
motor recovery will be assessed on post-stroke patients in
future studies.
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Míriam Febrer-Nafría 1,2*, Benjamin J. Fregly 3 and Josep M. Font-Llagunes 1,2

1 Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering,
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de Déu, Esplugues de Llobregat, Spain, 3Department of Mechanical Engineering, Rice University, Houston, TX, United States

Gait restoration of individuals with spinal cord injury can be partially achieved using active

orthoses or exoskeletons. To improve the walking ability of each patient as much as

possible, it is important to personalize the parameters that define the device actuation.

This study investigates whether using an optimal control-based predictive simulation

approach to personalize pre-defined knee trajectory parameters for an active knee-

ankle-foot orthosis (KAFO) used by spinal cord injured (SCI) subjects could potentially

be an alternative to the current trial-and-error approach. We aimed to find the knee

angle trajectory that produced an improved orthosis-assisted gait pattern compared

to the one with passive support (locked knee). We collected experimental data from a

healthy subject assisted by crutches and KAFOs (with locked knee and with knee flexion

assistance) and from an SCI subject assisted by crutches and KAFOs (with locked knee).

First, we compared different cost functions and chose the one that produced results

closest to experimental locked knee walking for the healthy subject (angular coordinates

mean RMSE was 5.74◦). For this subject, we predicted crutch-orthosis-assisted

walking imposing a pre-defined knee angle trajectory for different maximum knee

flexion parameter values, and results were evaluated against experimental data using

that same pre-defined knee flexion trajectories in the real device. Finally, using the

selected cost function, gait cycles for different knee flexion assistance were predicted

for an SCI subject. We evaluated changes in four clinically relevant parameters: foot

clearance, stride length, cadence, and hip flexion ROM. Simulations for different values

of maximum knee flexion showed variations of these parameters that were consistent

with experimental data for the healthy subject (e.g., foot clearance increased/decreased

similarly in experimental and predicted motions) and were reasonable for the SCI subject

(e.g., maximum parameter values were found for moderate knee flexion). Although more

research is needed before this method can be applied to choose optimal active orthosis

controller parameters for specific subjects, these findings suggest that optimal control

prediction of crutch-orthosis-assisted walking using biomechanical models might be

used in place of the trial-and-error method to select the best maximum knee flexion

angle during gait for a specific SCI subject.

Keywords: biomechanics, direct collocation, optimal control, spinal cord injury, knee-ankle-foot orthosis,

exoskeleton, human motion prediction
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INTRODUCTION

Walking impairment after spinal cord injury leads to a decreased
quality of life, other serious health conditions (e.g., heart disease,
high blood pressure), and substantial health care costs. Gait
restoration can be partially achieved using active orthoses or
exoskeletons, together with some type of external support for
balance (e.g., crutches or a walker). In recent years, researchers
have developed an active knee-ankle-foot orthosis (KAFO) for
individuals with spinal cord injury that retain some hip mobility
(Font-Llagunes et al., 2020). This assistive device locks the
knee during the stance phase and imposes a pre-specified knee
angle trajectory during the swing phase. Allowing knee flexion
during swing, as opposed to a passive KAFO that locks the knee
throughout the gait cycle, improves the gait pattern by increasing
gait speed, stride length, and cadence while decreasing step width
and lateral displacement of the center of mass (Font-Llagunes
et al., 2020). In general, these modifications in gait patterns
result in increased balance, reduced compensatory strategies,
and decreased energy consumption (Michaud et al., 2019). To
improve the walking ability of each patient as much as possible,
it is important to personalize conveniently the parameters that
define the device actuation, which may be different for each
subject (Zhang et al., 2017; Cardona et al., 2020; Fricke et al.,
2020) and may lead to undesired walking patterns if they are not
correctly specified.

Exoskeleton controller parameters are usually manually
adjusted based on subjective information, e.g., asking users which
condition they prefer (MacLean and Ferris, 2019) or based on
physiotherapists’ visual assessment of basic gait parameters like
foot clearance (Koopman et al., 2013). Personalization of the
pre-specified orthosis knee motion parameter values for each
spinal cord-injured (SCI) subject is typically done by following
an experimental trial-and-error approach, which possesses
significant limitations: (1) it is time-consuming and cumbersome
for patients, (2) it is based on physiotherapist subjective intuition,
(3) it necessitates training for physiotherapists when they start
using this new device, and (4) it may lead to adverse events
like falls if parameter values are not correctly specified. Because
of these limitations, it is currently very difficult to select
experimentally an optimal set of knee motion parameter values
for a specific individual such that the assisted gait pattern is
improved as much as possible. Therefore, a more objective way
of evaluating different combinations of parameter values, which
may also reduce required patient testing time, is needed.

Computational methods to identify assistive device design
parameters or to tune their control parameters automatically
have been developed in previous studies. In Fricke et al.’s study
(Fricke et al., 2020), an algorithm to tune the assistance of a
robotic gait trainer automatically was compared to manually-
tuned assistance for 10 people with neurological disorders (six
strokes and four spinal cord injuries). The authors concluded
that automatic tuning of exoskeleton parameters is quicker
than manual tuning and presents good performance, although
clinical trials are needed to determine whether these apparent
advantages result in better clinical outcomes. In Zhang et al.’s
study (Zhang et al., 2017), a method for real-time identification

of exoskeleton control parameters that minimize the metabolic
energy cost of human walking was developed, and it was
found that optimized assistance patterns varied widely across
participants, demonstrating the importance of customization.
Other studies used musculoskeletal models to estimate the
user’s kinetic parameters to control in real-time an exoskeleton
(Cardona et al., 2020) or to simulate assisted human motion
for identifying design parameters of assistive devices (García-
Vallejo et al., 2016; Ong et al., 2016; Uchida et al., 2016).
Moreover, optimal control has recently been used to identify
the optimal spring characteristics of an ankle-foot orthosis that
minimizes muscle effort (Sreenivasa et al., 2017), to predict
subject-exoskeleton combined motion when lifting a box using
a lower back exoskeleton (Millard et al., 2017), and to simulate a
sit-to-stand transition using a lower limb exoskeleton (Serrancolí
et al., 2019). Finding the correct optimal control problem
formulation for the generation of new impaired or assisted
walking motions is a current challenge (Mombaur, 2016; Falisse
et al., 2019; De Groote and Falisse, 2021). In the study of
Meyer et al. (2016), stroke patient walking was predicted
at different speeds. In this work, in addition to minimizing
joint jerk, the cost function included various tracking terms
(upper body joint angles and lower body joint torques, muscle
activations, or synergy activations), following the assumption
that under different conditions the subject would try to find a
solution close to what he did in the nominal case. In Sauder
et al.’s study (Sauder et al., 2019), a personalized functional
electrical stimulation treatment for fast-speed treadmill training
was designed for an individual post-stroke. In that study,
the cost function included minimization of joint jerk and
minimization of inter-limb propulsive force asymmetry, which
was the targeted gait improvement parameter. Finally, Febrer-
Nafría et al. (2021) recently found that a multi-term cost function
combining minimization of joint jerk, joint torque change, joint
mechanical power, and angular momentum predicted four-point
crutch walking well without tracking experimental data. All
of these studies show that combining subject-specific models
with optimal control methods is a promising approach to
design patient-specific treatments, including the personalization
of active orthoses for SCI subjects.

This study investigates whether the use of a computational
approach to personalize pre-defined knee trajectory parameters
for an active KAFO could potentially be a better choice than
the current trial-and-error approach. This investigation does not
compare directly the simulation approach with manual tuning
but rather explores optimal control problem formulations that
allow different pre-defined assistive knee angle trajectories to be
simulated, thereby permitting identification of the best walking
pattern for a specific individual with SCI. This goal has been
pursued by using a new optimal control problem formulation
for predicting crutch-orthosis-assisted walking of an SCI subject
wearing the presented active orthoses, given as an initial guess
the subject’s gait without knee flexion-extension assistance (i.e.,
locked knee) and imposing a specific pre-defined knee angle
trajectory. In this way, the experimental trial-and-error process
of manually adjusting these knee motion parameters for each
patient could potentially be avoided with improvement being
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estimated quantitatively. Such improvement has been defined in
terms of change in clinically meaningful/relevant measurements,
such as foot clearance, stride length, cadence, and hip flexion
range of motion (ROM). In this work, the maximum knee flexion
angle parameter, which is usually the first one tuned in the
trial-and-error approach, has been investigated. Before applying
the simulation pipeline to a specific SCI subject, the simulation
pipeline was developed and evaluated using experimental data
collected from a healthy subject. The main reason for using
healthy subject data first was to enable a complete experimental
evaluation of the predictive simulation approach. While the
healthy subject could place each foot correctly on one force plate
while walking using active orthoses and instrumented crutches,
the SCI subject could not. First, an optimal control problem
formulation for predicting crutch-orthosis-assisted walking was
defined comparing different cost functions and evaluating them
against experimental data (locked knee case for the healthy
subject). Next, using the selected cost function, motions with
knee flexion assistance for two different sets of knee angle
trajectory parameter values were predicted, and changes in
clinical measurements with respect to predicted locked knee
motion were evaluated. Finally, using the selected cost function,
locked knee motion and different motions with knee flexion
assistance were predicted for an SCI subject. Given the subject’s
gait with passive supports, different knee trajectories (with four
different maximum knee flexion angle parameters) were tested
computationally. In this case, improvements in gait pattern were
quantified in terms of changes in clinical measurements with
respect to predicted locked knee motion. These results represent
a step forward in the computational personalization of pre-
defined knee angle trajectories for the control of an active KAFO
for SCI subjects. We consider that having a simulation tool
that allows testing of different pre-defined knee motions for
a specific SCI subject model, with the aim of finding a more
balanced and improved assisted gait pattern (with respect to the
standard locked knee motion), will overcome the limitations of
manual personalization of pre-specified knee motion parameter
values and will result in an improved assisted motion for each
SCI subject.

MATERIALS AND METHODS

Orthosis Description and Current
Personalization Methods
Orthosis Description and Function
The active KAFO used in our study is intended for patients
with SCI with some remaining motor function at the hip but
who cannot control their knee and ankle muscles. These patients
can walk using passive KAFOs (which avoid knee flexion and
ankle dorsiflexion), which are custom-tailored to the subject,
and crutches. However, the resulting gait is unnatural and
exhausting due to the compensatory strategies associated with
straight knee walking. The active KAFO provides knee flexion-
extension assistance during the swing phase and maintains the
knee fully extended during the stance phase, thanks to actuation
provided by a brushless direct current motor combined with a

FIGURE 1 | The active KAFO maintains the knee fully extended during the

stance phase and provides knee flexion-extension assistance during the swing

phase following a predefined knee flexion-extension trajectory. The parameters

defining the knee flexion-extension trajectory are the following: ka is the

maximum knee flexion, ks is the peak displacement parameter, kw is the peak

width parameter, and tc is the cycle duration.

harmonic drive transmission. In contrast to a passive KAFO,
allowing knee flexion during swing improves the gait pattern
by increasing balance, reducing compensatory strategies, and
decreasing energy consumption (Michaud et al., 2019; Font-
Llagunes et al., 2020). The active orthosis has a fixed ankle
joint that keeps the foot perpendicular to the shank, and the
length of the shank and the thigh links can be adjusted to fit
the anthropometry of the user. Regarding the orthosis controller,
inertial measurement unit (IMU) data are used to identify the
time instant when the knee flexion-extension cycle must be
triggered at swing phase initiation (stance-to-swing transition).
Then, a proportional–integral–derivative (PID) control with
feedforward velocity and acceleration is used to keep the knee in
full extension during the stance phase (straight leg, knee locked)
and perform a pre-defined knee flexion-extension trajectory after
detection of the stance-to-swing transition (Font-Llagunes et al.,
2020):

θ (t) =
ka

2

[

1− cos

(

2π

tc
t − ks sin

(

π

tc
t

)

− kw sin

(

2π

tc
t

))]

,

0 ≤ t ≤ tc (1)

where θ (t) is the pre-defined angle trajectory for each knee
during the swing phase, ka is the maximum knee flexion, ks is
the peak displacement parameter, kw is the peak width parameter,
and tc is the flexion-extension cycle duration (Figure 1). The
parameters defining the knee angle trajectory (ka, ks, kw and
tc) may be personalized to each subject so as to maximize their
walking ability.

The Current Procedure for Personalizing Knee Angle

Parameters
The current personalization method is based on manual tuning
of the parameters that define the knee angle trajectory (Equation
1). Usually, the starting point is based on a default set of
parameters that have worked for other patients. The patient walks
with this set of values, and stride length and stance time for
each leg are obtained from the device IMU measurements. In
addition to this feedback, the physiotherapist measures relevant
kinematic and spatiotemporal parameters that are usually used as
outcome measures in clinical studies of lower-limb exoskeletons
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(Rodríguez-Fernández et al., 2021). One of the most important
parameters is foot clearance, as the ankle of the orthosis is
fixed at 90◦. If there is not enough hip and knee flexion, the
toes can catch the ground during the swing phase, which may
produce a fall (Koopman et al., 2013; Begg et al., 2019; Di Natali
et al., 2019; Fricke et al., 2020). Stride length and cadence are
also important to indicate improvements in walking patterns
(Koopman et al., 2013; Rasouli and Reed, 2020; Rodríguez-
Fernández et al., 2021). Finally, hip flexion ROM is a good
indicator of foot clearance and stride length (Cardona et al.,
2020; Fricke et al., 2020; Rasouli and Reed, 2020; Rodríguez-
Fernández et al., 2021). Moreover, bilateral symmetry in hip
flexion is associated with bilateral symmetry in the gait pattern.
Based on all of these clinical observations and measurements,
some parameter values are modified in an iterative process
based on the physiotherapist’s experience. The first parameters
that are modified are maximum knee flexion ka, which is the
most critical one, and peak width kw. In some cases, especially
if the patient presents some spasticity, the peak displacement
parameter ks, which indicates flexion/extension duration ratio, is
also modified.

Development and Evaluation of the
Prediction Framework Using Healthy
Subject Data
In this work, experimental data were collected for two subjects,
one healthy and one with SCI, both assisted by a pair of active
KAFOs and a pair of forearm crutches. The simulation pipeline
was developed and evaluated using the experimental data of
the healthy subject and was later applied to predict SCI subject
motion with different knee angle trajectories. A summary of the
steps followed is provided below, and details regarding each step
for the healthy subject are explained in this subsection, and for
the SCI subject in the following subsection:

1) Collection of experimental data from the healthy subject
2) Computational model development for the healthy subject
3) Testing of different cost function formulations using healthy

subject data with locked knee angle to identify the best
formulation

4) Evaluation of the best cost function from step 3) using healthy
subject data with different knee angle trajectories

5) Collection of experimental data from the SCI subject
6) Computational model development for the SCI subject
7) Evaluation of the best cost function from step 3) using SCI

subject data with locked knee angle
8) Application of the best cost function from step 3) to predict

SCI subject motion with different knee angle trajectories

Experimental Data Collection
To find the most suitable problem formulation for predicting
crutch-orthosis-assisted walking, we collected experimental gait
data from a healthy subject walking with two active orthoses and
crutches. The subject was a female (age 29 years, mass 54 kg,
height 1.62m) and the gait data were collected at the UPC
Motion Analysis Laboratory in the Department of Mechanical
Engineering of the Barcelona School of Industrial Engineering

(ETSEIB) (Figure 2A). The reason for collecting experimental
data from a healthy subject first was that it was easier for
the subject to step correctly with one foot on each force
plate while using wired instrumented crutches, thus providing
a complete set of experimental data (synchronized marker
trajectory, force plate, and crutch measurements). Moreover,
orthosis kinematic performance is the same for a healthy subject
as for a patient with SCI, since the knee controller follows
a predefined flexion-extension angle and the IMUs detect the
stance-to-swing transition event the same way in both cases.
Three different trials were performed: one without knee flexion-
extension assistance (locked knee) and two with different levels of
maximum knee flexion during swing (35◦ and 45◦). The crutch
walking pattern used in all trials was a four-point alternating
pattern with the following crutch placement sequence within the
walking cycle: left crutch, right leg, right crutch, and left leg
(Figure 2B). Collected data included marker trajectories, ground
reactions (two force plates), and crutch forces (instrumented
crutches). Surface marker motion was recorded at 100Hz by
tracking 53 passive reflective markers using 16 optical infrared
cameras (OptiTrack V100:R2, NaturalPoint Inc., Corvallis, OR,
USA). Ground reaction forces and moments were measured at
the same sampling frequency by two force plates (AccuGait,
AMTI, Watertown, MA, USA) located on the floor at the
center of the capture workspace. Crutch-ground reaction forces
were obtained from two custom-made instrumented crutches
possessing 12 strain gauges each that sampled at 89Hz (Sardini
et al., 2015). Crutch data were interpolated to 100Hz to match
the sampling rate of the marker trajectory and force plate data.

Computational Model Development
A torque-driven model of the healthy subject with assistive
devices was developed by incorporating a pair of forearm
crutches and a pair of active orthoses into a currently available
full-body model (Rajagopal et al., 2016) in OpenSim (Delp et al.,
2007; Seth et al., 2018). The model possessed nq = 31 degrees
of freedom (DOF): six DOF between the pelvis and the ground
(i.e., absolute translation and rotation), three for each hip, one
for each knee, three for the lumbosacral joint, three for each
shoulder, two for each elbow, and two for each wrist. Each
DOF was associated with a model or joint coordinate qi (i =

1, . . . , nq) in the order shown above, which formed the nq-
dimensional vector of generalized coordinates q. The model
was scaled to the subject using the OpenSim Scale Tool, and a
static trial was collected for this purpose. Each forearm crutch
was incorporated into the model as a rigid body welded to
the corresponding hand segment. The geometry and mass of
each crutch were measured, and the crutch inertia tensor was
obtained from simple rigid-body models. The active orthoses
consisted of two segments (corresponding to thigh and shank-
foot) with dimensions and inertial properties taken from CAD
models of the real prototype. Each orthosis segment was attached
to the corresponding lower limb segment using a weld joint (i.e.,
no relative motion was permitted between bodies). The ankle,
subtalar and metatarsophalangeal joints were locked at 0◦ due
to the presence of the orthosis mechanical constraints. No joints
were defined between the orthosis links, i.e., the knee orthosis
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FIGURE 2 | (A) Healthy subject experimental data collection. She walked in the transverse direction with respect to the force plates and used instrumented crutches.

Three different trials were performed: one without knee flexion-extension assistance (locked knee), and two with different levels of maximum knee flexion during swing.

(B) The followed crutch walking pattern in all trials was a four-point alternating pattern, being the swing phases sequence within the walking cycle: left crutch, right leg,

right crutch, and left leg. (C) SCI subject experimental data collection. Only marker trajectories were collected for this subject. He walked with locked knees and

non-instrumented crutches.

joint was considered to be perfectly aligned with the subject’s
knee joint. Despite being a simplification, this approach can be
considered realistic as the orthoses were tightly attached to the
subject with Velcro straps using front support at the shank and
back support at the thigh and with a ratchet strap on each foot.

One representative gait cycle was selected for each condition
(locked knee, 35 and 45◦ of knee flexion) and used in all
subsequent model development and optimal control problem
formulation tasks. The gait cycle was selected to use all available
foot-ground reactions, which did not correspond to a complete
crutch-gait cycle. The cycle started at left crutch off (LCO), and
for the initial right leg stance phase, no force plate measurements
were available. The subject walked in a transverse direction with
respect to the force plates, which allowed clean placement of
each foot on each force plate. Unfortunately, the subject was not
able to place the crutches off the force plates at the same time
(Figure 2B). This fact necessitated the crutch-ground reaction
forces being subtracted from the force plate measurements
to calculate the foot-ground reactions. The OpenSim Inverse
Kinematics (IK) Tool was used to calculate joint coordinates
for the full-body model (henceforth referred to as “experimental

joint coordinates”). These joint coordinates and the measured
foot- and crutch-ground reactions served as inputs to the
OpenSim Inverse Dynamics (ID) Tool, which was used to obtain
the “experimental joint torques.”

To model foot- and crutch-ground interactions, we used
viscoelastic contact models whose parameter values were
calibrated using an optimal control tracking problem. The foot-
ground contact model consisted of 16 spring-damper units on
each foot. The normal force in each element was generated using
a linear spring with non-linear damping (Jackson et al., 2016),
and the tangential force in each element was calculated using
a simple continuous friction model (Jackson et al., 2016). The
crutch-ground contact model consisted of a sphere at the tip of
the crutch that could contact a plane representing the ground.
The normal force was obtained using a Hertzian elastic point
contact model with non-linear damping (Hunt and Crossley,
1975), and the tangential force model was the same as for
the foot-ground contact model. The parameters of the foot-
ground and crutch-ground contactmodels (i.e., spring stiffnesses,
non-linear damping coefficients, dynamic friction coefficients)
were calibrated by solving a direct collocation optimal control
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problem (Febrer-Nafría et al., 2021). The experimental locked
knee trial motion and forces (joint angles, joint torques, and
ground reactions) were tracked simultaneously while adjusting
contact model parameter values that were assumed to be the same
for both feet and both crutches.

Optimal Control Problem Formulations Comparison
Crutch-orthosis-assisted walking prediction problems were
formulated as direct collocation optimal control problems
(OCPs) using implicit skeletal dynamics (Van Den Bogert et al.,
2011; Meyer et al., 2016; Falisse et al., 2019; Sauder et al., 2019)
and were solved using the optimal control software GPOPS-II
(Rao et al., 2014). Joint coordinates, velocities, accelerations, and
torques were states in the problem, and joint jerk, joint torque
change, and ground reactions were included as controls (Febrer-
Nafría et al., 2021). Cycle duration, stride length, and relative
duration of foot swing, crutch swing, and multiple support were
considered free parameters in the optimization, and their values
were bounded according to measured values (mean experimental
value ± a specific tolerance). Initial guesses for all states and
controls were the experimental values for the locked knee trial,
as we considered that the prediction of assisted walking should
be close to this initial motion.

The skeletal equations of motion obtained from OpenSim
were included implicitly as algebraic path constraints (Van Den
Bogert et al., 2011). An Inverse Dynamics (ID) analysis was
performed at each iteration using the OpenSim C++ API
(version 3.3), and the system kinematic state was used to calculate
the generalized forces and torques (which included the six
residual loads acting on the pelvis). Path constraints limited the
residual loads to be within a specific tolerance (1N, 1Nm). The
velocity of some specific points (midpoint for feet and tip for
crutches) during the stance phase was bounded to avoid sliding.
Periodicity was imposed for joint angles, joint torques, and
normal contact forces. The symmetry between right and left foot-
crutch mediolateral distance was imposed at the initial and final
time. Mean speed for the pelvis anterior-posterior translation was
limited within a specified tolerance.

Different cost function formulations were investigated based
on published studies that predicted 3D full-body walking for
clinical applications (Meyer et al., 2016; Sauder et al., 2019;
Febrer-Nafría et al., 2021), considering only terms related to
joint-level mechanics. Cost function terms were divided into
three different groups: tracking terms (Jtrack) that were closely
reproduced, optimality terms (Jopt) that were minimized, and
regularization terms (Jreg) that were also minimized (Equation 2):

J =

∫ tf

t0

(Jtrack (x, u) + Jopt (x, u) + 0.01 Jreg(u)) dt (2)

where t0 and tf are the initial and final simulation times,
respectively, x is the vector of states, and u is the vector
of controls. Tracking terms included lumbar and hip flexion
joint torque and upper limb joint angles; optimality terms
included segment local angular momentum, joint mechanical
power, and knee motor torque; regularization terms included

TABLE 1 | Cost function terms considered in this work.

Tracking terms

(Jtrack )

Tracking of lumbar and hip

flexion joint torque

∑

i = {1,5,9 :11}

(

τexp,i − τi
)2

Tracking of upper limb joint

angles

∑nq
i = 18

(

qexp,i − qi
)2

Optimality terms

(Jopt )

Minimization of segment

local angular momentum

∑nb
i = 1 ‖Li‖

2

Minimization of joint

mechanical power

∑nq
i = 7

(

q̇iτi−6

)2

Minimization of knee motor

torque

∑

i = {4,8} τ
2
i

Regularization

terms (Jreg)

Minimization of sum of

squared joint jerk

∑nq
i = 1

...
q i

2

Minimization of sum of

squared joint torque change

∑nq−6

i = 1 τ̇ 2
i

Tracking terms included (1) the sum of the squared error of lumbar and hip flexion joint

torque, being τexp,i and τi the i
th component of the vector of experimental joint torques

τexp and of predicted joint torques τ , respectively; and (2) the sum of the squared error of

upper limb joint angles, being qexp,i and qi the i
th component of the vector of experimental

joint coordinates qexp and of predicted joint coordinates q, respectively. Optimality terms

included (1) the sum of the squared norms of the segment angular momenta, being nb the

number of rigid bodies in the model and Li the segment angular momentum at the center

of mass of the ith rigid body (or segment) of the model; (2) the sum of squared mechanical

powers, computed for each lumbar joint coordinate, being q̇i the ith component of the

vector of joint velocities q̇, and τ i−6 the (i − 6)th component of the vector of joint torques

τ ; and (3) the squared value of the two knee torques, being τi the i
th component of the

vector of joint torques τ . Regularization terms included (1) the sum of squared joint jerks,

being
...
q i the i

th component of the vector of joint jerks
...
q; and (2) the sum of squared joint

torque changes, being τ̇ i the i
th component of the vector of joint torque change τ̇ . To give

more importance to the tracking and optimality criteria, a weight of 0.01 was placed on

the regularization terms (minimization of joint jerk and minimization of torque change), for

all the different combinations.

joint jerk and joint torque change (Table 1). Different multi-
term cost functions were implemented using two or more of
these terms, and locked knee crutch-orthosis-assisted walking
was predicted for each one of them. All cost function terms were
scaled to be of a similar magnitude. To give more importance
to the tracking and optimality criteria, we placed a weight
of 0.01 on the regularization terms (minimization of joint
jerk and minimization of torque change) for all combinations.
Convergence and accuracy of simulation results predicted with
each cost function were compared. Convergence was evaluated
taking into account the number of iterations and computation
time required to find an optimal solution, while accuracy was
evaluated by computing the root mean square error (RMSE)
between predicted and experimental joint angles and ground
reactions. The cost function for which the best results were
obtained was chosen to be used for all other crutch-orthosis-
walking predictions generated in this study.

Evaluation of the Selected Cost Function
To assess the ability of this prediction framework to perform
virtual tests of pre-defined knee motion trajectories, we used
the previously chosen cost function to predict assisted motions
with knee flexion. In our simulations, we assumed that the IMU
sensors detected correctly the stance-to-swing transition event
and that the knee motor was capable of following the desired
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knee trajectory. Knee angle trajectory was defined according to
Equation 1 using as maximum knee flexion ka the exact value
that was reached in the experimental trials. To quantify the
performance of our simulation framework for testing virtually
pre-defined knee motion trajectories, we computed RMSEs
between predicted and experimental joint coordinates, joint
torques, and ground reactions. Moreover, the following clinical
measures that are usually used by physiotherapists in the trial-
and-error process of manual tuning of knee angle trajectory
parameters were computed: foot clearance, stride length, hip
flexion ROM, and cadence. Foot clearance was obtained by
computing the lowest vertical position of the toes’ body origin
in the OpenSim model during the swing phase for each foot.
Stride length was computed as the mean value between feet and
crutches stride length. Hip flexion ROM was computed as the
right and left hip flexion ROM over the whole gait cycle. These
clinical measures were evaluated by checking the improvements
in assisted motions (with knee flexion) compared to locked
knee motion.

Application of the Prediction Framework
Using SCI Subject Data
Once the crutch-orthosis-assisted walking prediction framework
was developed and evaluated for the healthy subject, we applied
it to test different pre-defined assistive knee angle trajectories
for an SCI subject. This subject was able to walk with orthoses
without knee flexion-extension assistance (locked knee) and non-
instrumented crutches. We hypothesized that the same cost
function would work for the SCI subject as for the healthy
subject (Falisse et al., 2019), both for locked knee and flexed
knee motions. We assumed that foot- and crutch-ground contact
model parameters were the same as for the healthy subject, as
the crutches and active orthoses used for both subjects were the
same, and foot support of the orthoses contacted directly with the
ground (i.e., the sole of the feet was the same for both subjects).

Experimental Data Collection
The subject selected for this study was a young adult male (40
years old, mass 72 kg, and height 1.72m) that suffered paraplegia
after a spinal hemangioma. He had an incomplete transverse
spinal cord syndrome below the 10th thoracic neurological
segment (T10), classified at level B in the ASIA Impairment Scale
(AIS). Sensory but not motor function was preserved below the
level of injury. During the experimental capture, it was difficult
for the patient to walk with the instrumented crutches (as they
included wires and electronic modules on each crutch) and to
place one foot cleanly on each force plate. For these reasons, the
experimental capture was done with non-instrumented crutches,
thus collecting only marker trajectories. One trial with locked
knees was recorded to be used as an initial guess for the different
prediction problems (Figure 2C).

Computational Model Development
A torque-driven model of the SCI subject with crutches and
active orthoses was developed following a similar approach as
for the healthy subject. To take into account the SCI subject
impairment, we limited hip joint torque production according to

the functional state of the subject. Following an approach similar
to Sreenivasa et al. (2017), we assumed that the SCI subject
used 80% of his hip motor capacity during the experimental
capture with passive orthoses and crutches. Another difference
with respect to the healthy subject model was that for the
SCI subject, the total torque acting at the knee corresponded
to the assistive motor torque since the subject’s knee muscles
were not functional. This torque was limited to ±34Nm, which
is the peak torque that the electric motor can provide. To
obtain the reference values for hip joint torques, we solved an
optimal tracking problem that tracked joint coordinates obtained
from IK while minimizing joint jerk. Ground reactions were
obtained from foot-ground and crutch-ground contact models
using the parameter values obtained for the healthy subject.
Hip joint torques were then limited assuming that the reference
values obtained from this tracking problem were 80% of the
maximum values.

Evaluation of the Selected Cost Function
To evaluate the convenience of using the same cost function
for predicting locked knee crutch-orthosis-assisted walking for
an SCI subject, we computed the RMSE between predicted and
experimental joint angles (obtained after IK analysis).

Knee Motion Strategy Testing
Knowing the subject’s gait with locked knees, we computationally
tested different knee angle trajectories, having all parameters
fixed and modifying the knee maximum flexion parameter ka.
This parameter is usually the one that is varied first in the
trial-and-error adaptation process. Four different motions were
predicted with the following levels of knee flexion: 20, 30, 40,
and 50◦. Joint torques and ground reactions obtained from the
locked knee tracking problem were used as the initial guess
for the predictive simulations. To evaluate the performance
of our simulation framework for testing virtually pre-defined
knee motion trajectories for an SCI subject, we computed foot
clearance, stride length, hip flexion ROM, and cadence, and we
compared these clinical measures among all predicted motions.
The maximum knee flexion value that produced the most
improved walking motion was selected as the best candidate for
this SCI subject.

RESULTS

Different cost functions for predicting locked knee crutch-
orthosis-assisted walking were explored, combining one or
more tracking, optimality, and regularization terms. Overall, we
found that minimizing join jerk helped the problem converge
more quickly and satisfied mesh error tolerance at the first
mesh iteration. We also found that minimizing lumbar joint
mechanical power, segment angular momentum (especially
torso), and motor torque helped the problem converge with
fewer iterations and lower joint angle errors. Moreover, we
found that having joint torque as a state and joint torque
change as a control worked better than having joint torque
as a control. Based on these results, we chose the following
cost function for predicting crutch-orthosis-assisted walking:

Frontiers in Neurorobotics | www.frontiersin.org 7 January 2022 | Volume 15 | Article 748148152

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Febrer-Nafría et al. Prediction of Active Knee-Ankle-Foot-Orthosis Motion

TABLE 2 | Convergence (number of iterations and computation time) and accuracy (mean RMSE for angular coordinates and ground reactions) for all predictive

simulations.

Subject Healthy SCI

Trial H0 H35 H45 S0 S20 S30 S40 S50

Convergence N iterations 322 759 582 153 125 197 990 414

Computation time 27min 2 h 26min 1 h 51min 13min 25min 40min 3 h 12min 1 h 23 min

Mean RMSE Angular coordinates [◦] Pelvis + torso 4.88 6.95 6.24 10.67 - - - -

Upper limbs 6.46 12.65 10.76 5.74 - - - -

Lower limbs 5.13 8.57 9.57 10.61 - - - -

All 5.74 10.26 9.45 8.19 - - - -

Ground reactions [N, Nm] Normal 55.40 90.71 53.84 - - - - -

Tangential 14.35 15.19 13.03 - - - - -

Moment 6.90 11.07 9.58 - - - - -

The name for each trial indicates the subject (“H” for healthy and “S” for SCI subject), followed by the maximum knee flexion angle in degrees. For the SCI subject, only errors in angular

coordinates for the locked knee case (S0) were computed, according to the available experimental data.

minimization of lumbar mechanical power, all segment angular
momentum, motor torque, joint jerk, and joint torque change.
Using this cost function, an optimal solution for the healthy
subject with locked knee was found in 27min, and mean
RMSE was 5.34◦ for joint angles, 55.40N for normal forces
(feet and crutches), and 14.35N for tangential forces (feet and
crutches) (Table 2). Overall, the lowest mean RMSEs for all
joint angles were found for the healthy subject with locked knee
motion (5.74◦), followed by the SCI subject with locked knee
motion (8.19◦), and finally the healthy subject with 45◦ knee
flexion (9.45◦) and 35◦ knee flexion (10.26◦) (Table 2). For the
healthy subject, higher errors were found for upper limb joint
angles, whereas for the SCI subject, errors were higher for the
lower limbs.

Two different crutch-orthosis-assisted gait cycles were
predicted for the healthy subject (with maximum knee flexion
values of 35 and 45◦, respectively), imposing the knee angle
trajectory from the collected experimental trials. We assumed
that the same cost function would work for predicting both
locked knee and flexed knee-assisted walking. The computation
time required to converge was higher than for the locked knee
case, up to 2 h 30min (Table 2). Mean RMSE for joint angles was
10.26◦ for 35◦ of predicted knee flexion motion and 9.45◦ for
45◦ of predicted knee flexion motion. In both cases, the lowest
mean RMSE was for pelvis and torso joint angles (<7◦) and the
highest was for upper limbs angles (10.7–12.6◦). Hip flexion
was predicted better than were hip adduction and hip rotation,
with predicted angle trajectories showing peaks at the same cycle
times as in the experimental data (Figure 3). Regarding ground
reaction forces, the mean RMSE for normal forces was higher
for 35◦ knee flexion motion (90.71N) compared to locked knee
motion but was similar for 45◦ knee flexion motion (53.84N)
(Table 2). Errors in tangential forces were comparable for locked
knee and both flexed knee motions (13–15N). In all cases,
predicted foot and crutch weight-bearing was consistent with the
experimental ground reaction forces (Figure 4).

Changes in foot clearance, stride length, and cadence were in
general well-predicted for the healthy subject. When comparing

flexed knee motions with respect to locked knee motions, foot
clearance increased for 35◦ and decreased for 45◦ in both
experimental and predictedmotions (Figure 5). Stride length and
cadence increased for both flexed knee motions, and stride length
was higher for 45◦ compared to 35◦ in both experimental and
predicted motions. Compared to locked knee motion, hip flexion
ROM also increased for flexed motions in experimental and
predicted motions. However, there was a difference between the
trend in predicted motions compared to experimental motions:
in the experimental motions, hip flexion ROM increased for 35
and 45◦ with respect to the locked knee case, but in the predicted
motions, it increased for 35◦ and decreased for 45◦.

In general, the locked knee predicted gait pattern for the SCI
subject had a lower ROM for each joint coordinate (Figure 3)
and less mediolateral movement (in the frontal plane) compared
to experimental measurements. Stride length and cadence were
comparable in experimental and predicted motions (0.51m
for both motions and 30.23 steps/min and 27.26 steps/min,
respectively). Foot clearance was higher, and symmetry improved
in the predicted motion (4.82 and 4.72 cm, for right and left
foot, respectively, compared to 3.60 and 1.50 cm), whereas hip
flexion ROMwas lower, and symmetry decreased in the predicted
motion (26 and 17◦, for right and left hip, respectively, compared
to 58 and 54◦). Regarding ground reactions, predicted normal
forces were higher for the right side (peak value of 0.75 body
weight (BW) for right foot and 0.34 BW for right crutch)
compared to the left side (peak value for 0.68 BW for left foot
and 0.16 BW for left crutch) (Figure 4).

Four additional crutch-orthosis-assisted gait cycles were
predicted for the SCI subject with maximum knee flexion angle
increasing from 20 to 50◦ in increments of 10◦. Optimal solutions
were found in a mean time of 1 h 20min, with a maximum
computation time of 3 h 12min (Table 2). In general, compared
with locked knee predicted motion, all four clinical measures
improved for predicted motions with knee flexion (Figure 5).
Maximum values of foot clearance (right: 5.56 cm, left: 6.16 cm)
were found for 30◦ of maximum knee flexion, maximum values
for stride length (0.54m), and hip flexion ROM (right: 40.09◦,
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FIGURE 3 | Predicted lower limbs joint coordinates (in red) for locked knee motion (0◦) for both subjects, and for two active knee flexion motions for the healthy

subject, compared to the experimental values (in dashed blue).

left: 26.31◦) were found for 40◦ of maximum knee flexion, and
maximum value for cadence was found for 50◦ knee flexion
(33.37 steps/min).

DISCUSSION

In this work, we developed an optimal control prediction
approach to test different pre-defined knee angle trajectories of
an active orthosis to assist the gait of SCI subjects. We compared
different cost functions and chose the one that produced results
closest to experimental locked knee crutch-orthosis-assisted
walking for a healthy subject. Having as an initial guess the
experimental motion for the locked knee case, we predicted
crutch-orthosis-assisted walking imposing knee flexion using
different maximum knee flexion parameters to define the knee
angle trajectory along the gait cycle. For the healthy subject, two
different maximum knee flexion angles were imposed for which
experimental walking data were available. For the SCI subject, no
experimental walking data for flexed knee motion were available,
and four different maximum knee flexion angles were imposed
in the simulations. We evaluated changes in four simulated
clinical measures that are usually considered by physiotherapists
to decide the best set of parameters for a specific patient (foot
clearance, stride length, cadence, and hip flexion ROM). These
changes were consistent with those observed in the experimental
motions for the healthy subject and were reasonable for the SCI

subject. These findings suggest that it may be beneficial to use
optimal control predictions of crutch-orthosis-assisted walking
in place of the current trial-and-error method to select the best
maximum knee flexion angle for a specific SCI subject.

Changes in the clinical measures were generally predicted
well for the healthy subject. For the healthy subject collected
motions, we found that having knee flexion-extension assistance
produced better results for stride length, hip flexion ROM, and
cadence, as all of these measures increased for both maximum
knee flexion angles (35 and 45◦) compared to the locked knee
case. These changes are related to improved assisted motion and
are linked, as having increased knee flexion is associated with
having increased hip flexion (Escalante et al., 1999), and generally
increased hip flexion is correlated with a longer stride length
(Schulz et al., 2008). For the predicted motions, having knee
flexion assistance also produced increased values for hip flexion
ROM, stride length, and cadence. In the case of stride length
and cadence, the trend observed in experimental measurements
was also observed in the predicted motions (higher values for
45◦ compared to 35◦). However, in the case of hip flexion ROM,
higher values were obtained for 45◦ in experimental motions and
35◦ in predicted motions. Thus, this trend in hip flexion was not
well-captured by the optimal control problem, though in both
experimental and predicted motions with knee flexion assistance,
hip flexion ROM was higher than in the locked knee case.
Moreover, the asymmetry between right and left hip flexion ROM
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FIGURE 4 | Predicted normal forces (in red) for locked knee motion (0◦) for both subjects, and two active knee flexion motions for the healthy subject, compared to

the experimental values (in dashed blue). For the SCI subject, no force plate measurements were available.

observed in the experimental motions (left hip flexion ROM was
higher than right hip flexion ROM) was also observed in the
predicted motions. Foot clearance with respect to the locked
knee case increased in the experimental motions for 35◦ but
decreased for 45◦. This trend was also observed in the predicted
motions, where left foot clearance increased for 35◦ (and right
foot clearance remained almost equal) and both feet clearance
decreased for 45◦.

Considering the four clinically relevant measures, our results
suggest that for this particular SCI subject, 30 or 40◦ of maximum
knee flexion may produce the best-assisted motion. Compared
to locked knee prediction, foot clearance generally increased for
knee flexion assistance. This outcome is desirable when using
lower limb exoskeletons, since straight knee gait and drop foot
gait reduce foot clearance (Koopman et al., 2013; Yeung et al.,
2018). For both legs, the best case was for 30◦, which produced
foot clearances of 5.56 and 6.16 cm (right and left, respectively)
compared to 4.82 and 4.72 cm (same order) in the locked knee
case. Stride length was in general slightly lower for flexed knee
motions compared to locked knee motion but slightly increased
for 40◦. Hip flexion ROM clearly increased for all flexed knee
motions. The highest values were obtained for 40◦ and the lowest

for 50◦. There was also asymmetry in hip flexion ROM, with
the right hip flexion ROM being higher, as was also observed
in the experimental motion. For 40◦, the highest values of hip
flexion ROM and stride length were obtained. Cadence increased
slightly for all flexed kneemotions, with the highest value of 33.37
steps/min occurring for 50◦ compared to 27.26 steps/min in the
locked knee predicted motion. These results are reasonable if we
relate them to knee kinematics during normal walking. In normal
gait, the knee flexion-extension cycle starts at a terminal stance
and ends at a terminal swing (Perry, 1992). During knee flexion,
the ankle dorsiflexes, which increases foot clearance, and during
knee extension, the ankle eccentrically plantar flexes as the cycle
enters terminal swing. In our simulations, it should be noted that
only the maximum knee flexion was modified for the different
predictions, meaning that the flexion-extension cycle had the
same allotted time to reach maximum knee flexion across all the
conditions. As a result, the knee flexion-extension motion was
faster for the 50◦ condition compared to the 30◦ condition and
may have impacted hip flexion, leading to a shorter stride length.
However, the increased speed of the knee flexion-extension cycle
may have created a momentum effect and therefore led to a
higher cadence.
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FIGURE 5 | Gait parameters (stride length, cadence, foot clearance, hip flexion ROM) for both subjects (healthy, SCI) and each different maximum knee flexion angle,

normalized to the locked knee (0◦) case. This normalization was done for each subject and case (experimental and/or predicted), and for right and left sides

independently. For the healthy subject, experimental and predicted values are shown. For the SCI subject, only predicted values are shown, as no data were collected

for the different maximum knee flexion conditions. Note that the maximum value in the y-axis is higher for hip flexion ROM than for the other parameters.

Evaluating the assisted motion and choosing the best set of
parameters for a specific subject, manually or computationally,
is not always straightforward. In this work, compared to locked
knee motion, we found for both subjects that clinical measures
improved for assisted motions with knee flexion until a certain
peak knee flexion was reached (around 35◦ for the healthy
subject and between 30 and 40◦ for the SCI subject), with
results worsening with higher knee flexion values. This trend
was observed both experimentally (for the healthy subject) and
computationally (for both subjects) and coincided with what
the authors have observed in different training sessions with
SCI subjects wearing the lower limb active orthosis. However, it
is not clear how these clinical measures should be interpreted,
e.g., if some of them improve while others do not for the same
set of parameters. Usually, exoskeleton parameters are manually
adjusted based on subjective evaluation, e.g., asking users which
condition they prefer (MacLean and Ferris, 2019) or based
on physiotherapists’ visual assessment on basic gait parameters
like foot clearance (Koopman et al., 2013). For our active
orthosis, some objective values are added to the physiotherapist’s
subjective evaluation, as the device provides real-time feedback
of stride length and weight-bearing time on each leg. However,
the evaluation is still done subjectively by the physiotherapist,
who decides how to tune the orthosis parameters manually based
on both subjective assessment and objective measurements.
Simulation (or automatic tuning) presents some advantages
compared to trial-and-error tuning: it is quicker (Fricke et al.,
2020), and many parameter sets can be virtually tested without
the risk of trying a combination that will not work and could
be harmful to the patient. Despite these advantages, there is no

clinical evidence to date that the automatic tuning of assisted
motions results in better clinical outcomes (Fricke et al., 2020). It
is difficult to develop a system that objectively takes into account
all of the factors that a physiotherapist evaluates whilst assisting a
patient to walk. It could be that for a specific parameter set, some
important clinical measures improve while others do not, and
one clinical parameter could be more critical for one patient than
for others. Before this method can be applied to choose optimal
knee control parameters for a specific subject, more research is
needed to understand better and define objectively the targeted
assisted gait pattern for the patient according to functional status.

Although trends in clinical measures were well-predicted for
the healthy subject, in some cases absolute predicted values
differed from experimental values. Cadence was well-predicted:
37 steps/min and 40 steps/min in locked and flexed kneemotions,
respectively, in both experimental and predicted results. For
foot clearance, a lower value was generally found for predicted
motions compared to experimental motions, with the highest
difference being 2.10 cm for the left leg with a 45◦ maximum
knee flexion angle. Stride length and hip flexion ROM were also
lower in predicted motions compared to experimental motions.
Stride length was 14 cm lower for predicted locked knee motion
compared to experimental conditions (0.51 vs. 0.37m) and 4–
5 cm lower for predicted flexed knee motions. Hip flexion ROM
was up to 12◦ lower in predicted vs. experimental conditions
for locked knee motion and up to 18◦ lower for flexed knee
motion. These reductions in stride length and hip flexion ROM
were mainly caused by lower joint angle ROMs in predicted
motions compared to experimental motions (Figure 3), which
also resulted in lower foot clearance.

Frontiers in Neurorobotics | www.frontiersin.org 11 January 2022 | Volume 15 | Article 748148156

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Febrer-Nafría et al. Prediction of Active Knee-Ankle-Foot-Orthosis Motion

Differences in joint angles and ground reaction forces between
predicted and experimental motions were lowest for the healthy
subject with locked knee condition (that is, for the case for which
the cost function was selected). This finding may indicate that
different cost functions should be used for locked/flexed knee
and healthy/SCI subjects, or, if healthy and pathological human
gaits emerge from similar control strategies (Falisse et al., 2019),
that the appropriate cost function has not yet been identified, and
other terms should be added that may play an important role
only for the SCI subject. Further research is needed to determine
the best cost function for predicting assisted walking of SCI
subjects. This effort will require the collection of a complete set
of experimental data (including marker trajectories and foot-
and crutch-ground reactions). Moreover, the best cost function
for simulating crutch walking may be different than the best
one for simulating normal walking. As far as the authors know,
there is only one study that predicts crutch-assisted walking
using a 3D full-body model (Febrer-Nafría et al., 2021). In the
SCI subject lower limbs, only the hip is actuated by muscles,
and the hip ROM was not well-predicted. This result may be
caused by the fact that hip motion was controlled by net torque
actuators instead of individual muscle-tendon units. Meyer et al.
(2016) found that predicting walking under new conditions
was more accurate if muscles rather than net torque actuators
were used to generate the motion, with muscles controlled by
synergies instead of individual muscle activations producing the
most accurate walking predictions. Therefore, we hypothesize
that including muscles in the model and controlling them by
synergies could improve the prediction results. However, for that
approach, it would be challenging to calibrate muscle-tendon
model parameter values for patients with SCI. Moreover, when
we tested whether adding more tracking terms might improve
the predicted motions (Meyer et al., 2016), we did not find a clear
improvement compared to cost functions without tracking terms.
Given our results, we believe that adding targeted tracking terms
could produce more subject-specific assisted motions following
a pattern closer to the one chosen initially by the patient with
a locked knee. Even though the cost function requires further
investigation, these results are promising as we have been able
to predict changes in crutch-orthosis-assisted walking motions
that are in good (for the healthy subject) or reasonable (for the
SCI subject) agreement with experimental trends. Our hypothesis
is that by finding a cost function that predicts the locked knee
condition better, we will be able to predict walking motions with
knee flexion assistance more reliably, and changes from locked to
flexed knee conditions will be maintained.

This work possesses several limitations. First of all, no training
or learning process was performed by the healthy subject, and
experimental data were collected before the subject was used
to walking with the active orthoses. Therefore, some clinical
measures could be different after such a training process.
Moreover, only two different levels of maximum knee flexion
were tested for the healthy subject, and the maximum value
was the only knee angle trajectory parameter varied. For the
clinical application, the assisted gait of a single SCI subject
was simulated, and only one of the parameters that define
the knee angle trajectory was explored. Although maximum

knee flexion is the most critical parameter, it would also be
interesting to predict how varying the other three parameters
would affect the predicted motion. In addition, we assumed
that the stance-to-swing transition event was perfectly detected
during the simulation. Gait event detection is done using IMUs
in the real device, and some threshold parameters need to be
adjusted as well. In future experiments, we will start with some
training sessions, and we will collect data for different values
of all parameters that define the knee angle trajectory and gait
event detection. In this way, we will be able to assess if some
parameters are more subject-dependent and others more general.
Another limitation was that we did not directly compare manual
tuning using a trial-and-error process with the computational or
simulation tuning. This comparison process would be complex,
as different aspects should be taken into account: (1) time and
effort of the physiotherapist to find these values, (2) time and
effort of the patient, (3) if different physiotherapists find different
values, and (4) if both methods produce similar results in terms
of the better-assisted motion. A benefit of using a computational
model would be to obtain a personalized default set of parameters
that could then be easily tuned in the clinic. This approach
would reduce fitting time and would be safer for the patient,
as there would be less risk of adverse events than when using
non-personalized parameters. An adverse event like a fall would
have a big impact on the patient’s health and confidence in the
technology. We hypothesize that in general, the set of parameters
provided by the model will work well for the patient, though
there will always be particular cases where the manual tuning of
this initial set of parameters will be needed. These cases include
patients who fatigue over the session or have changing levels of
spasticity or pain. These aspects are currently not considered in
the model, and therefore, it might be necessary to tune the initial
set of parameters to accommodate these issues. In future work,
how to include fatigue, spasticity, or pain in the model should be
investigated. Another potentially complicating factor is that the
cost function might vary with time. Regarding the active KAFO
modeling, in this work, the knee motor modeling was simplified.
We assumed that the knee flexion angle trajectory was followed
correctly, and that maximum knee flexion was reached. However,
we observed experimentally that maximum flexion was lower
than the targeted value. In future work, we will investigate how
to include actuator dynamics (Nguyen et al., 2020). Finally, we
considered the same knee flexion angle trajectory for both right
and left legs, but asymmetry was observed in the trials in both
healthy and SCI subjects. In the future, we will investigate if the
assisted knee flexion trajectory should be different for both legs
to achieve a more symmetric gait pattern.

In conclusion, this study explored the feasibility of using
a computational approach to personalize the pre-defined knee
trajectory parameters for an active KAFO for SCI subjects.
We developed an optimal control prediction approach to test
different pre-defined knee angle trajectories of an active orthosis
to assist the gait of SCI subjects. We checked if our optimal
control approach was capable of correctly predicting assisted
motions for different values of maximum knee flexion angle,
evaluating results against experimental data collected from a
healthy subject assisted by the active orthoses. While trends in
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clinical measures were well-predicted, absolute predicted values
differed from experimental values in some cases. We applied
the framework to predict assisted gaits of an SCI subject with
four different maximum knee flexion values. To the best of the
authors’ knowledge, no study in the literature has addressed how
to formulate optimal control problems to predict novel crutch-
orthosis-assisted walking motions using 3D full-body models.
Although more research is needed before this method can be
used to choose optimal knee control parameters for a specific
subject, our findings suggest that optimal control prediction
of crutch-orthosis-assisted walking using biomechanical models
might possess benefits over the current trial-and-error method
used to select the best maximum knee flexion angle for a specific
SCI subject. Having a simulation tool that allows different pre-
defined knee motions to be tested on a specific SCI subject
model, with the aim of finding a more balanced and improved
assisted gait pattern (with respect to the standard locked knee
motion), could overcome limitations of the current manual
personalization process and could yield an improved assisted
motion for each SCI subject.
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This study presents a new approach for an sEMG hand prosthesis based on a 3D

printed model with a fully embedded computer vision (CV) system in a hybrid version.

A modified 5-layer Smaller Visual Geometry Group (VGG) convolutional neural network

(CNN), running on a Raspberry Pi 3 microcomputer connected to a webcam, recognizes

the shape of daily use objects, and defines the pattern of the prosthetic grasp/gesture

among five classes: Palmar Neutral, Palmar Pronated, Tripod Pinch, Key Grasp, and

Index Finger Extension. Using the Myoware board and a finite state machine, the user’s

intention, depicted by a myoelectric signal, starts the process, photographing the object,

proceeding to the grasp/gesture classification, and commands the prosthetic motors

to execute the movements. Keras software was used as an application programming

interface and TensorFlow as numerical computing software. The proposed system

obtained 99% accuracy, 97% sensitivity, and 99% specificity, showing that the CV system

is a promising technology to assist the definition of the grasp pattern in prosthetic devices.

Keywords: hand prosthesis, computer vision, myoelectric signal, convolutional neural network, 3D printed

1. INTRODUCTION

The main function of the human hand and upper limb is to grasp and manipulate objects. Thus,
this loss affects the ability of the amputees to carry out activities of daily living, leading to a
significant impact on their independence and quality of life. Today there are some sophisticated
commercial robot hands available in the market, such as iLimb Ultra and iLimb Quantum by Össur
(2021b,a) and Bebionic Hand and Michelangelo Prosthetic Hand by Ottobock (2021a,b). However,
the need for affordable prosthetic devices has driven the development of 3D printing systems in
order to enable their use by a greater number of people. OpenBionics (2021) and InMoov (2021)
are open-source initiatives for the development of affordable, lightweight, andmodular myoelectric
prosthetic devices that can be easily reproduced with commercially available materials.

The simple structural design of DC or servo motor wired-driven mechanisms controlled by a
surface myoelectric signal (sEMG) became popular (Abarca et al., 2019; Ku et al., 2019; Sureshbabu
et al., 2019; Mohammadi et al., 2020; Wahit et al., 2020; Khan et al., 2021). The sEMG control can
be as simple as an on-off control scheme, proportional where movement velocity depends on the
muscle contraction intensity, and even by pattern recognition, which classifies the sEMG into grip
pattern classes, have also been used (Geethanjali, 2016). However, while in the former, the number
of possible grasp patterns is limited, the success of the latter in clinical applications depends on the
users’ ability to generate distinct commands in a reproducible manner, being difficult to amputees.
Users may get frustrated and stop using the prosthesis quickly (Scheme and Englehart, 2011; Jiang
et al., 2012; Palermo et al., 2017; Zhai et al., 2017).
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Computer vision (CV) can help the system to better
understand the visual world, simulating tasks in the same way
that human vision does. Algorithms that give a visual perception
to the system can, for example, identify the type of object to
be picked up and associate it with the appropriate grasp to
be performed.

Dosen et al. (2010) and Dosen and Popovic (2010) proposed
a simple scheme, using a web camera and an ultrasound distance
sensor. After processing grayscale images at a resolution of 320
× 240 pixels, using LabView 2009 running on a standard laptop
(dual-core 2 GHz Pentium), they extracted parameters such as
the lengths of the long and short axes and the orientation angle
of the long axis concerning the horizontal axis of the image plane.
Based on the object size and series of rules, one of four grasp types
was selected, being pinch, key grasp, palmar, or spherical.

The InMoov hand was modified by Sidher and Shen (2017)
enabling the opposability of the thumb and the introduction of
two cameras and proximity sensors on the palm, allowing object
detection and automatic grasp definition. Two Raspberry Pi 3
(RPI3) were used to control the cameras, and the control of the
servos was achieved by an Arduino Mega, all controlled by a
Matlab algorithm running on a PC. However, in Sidher (2017)
tests weremade only with geometrical objects with a tripod grasp.

DeGol et al. (2016) proposed the inclusion of a CV based
on a convolutional neural network (CNN) with an architecture
based on the VGG-VeryDeep-16 in a prosthesis for the automatic
selection of the grasp to be performed into five classes: power
grasp, pinch, tripod pinch, tool, and key grasps. The system
achieved 93.2% accuracy running on an NVIDIA Tegra GPU for
image processing.

In Andrade et al. (2017), the image captured by an embedded
camera was processed on an external server through the
Inception-v3 and Tensorflow, and the suggested grasp returned
to the local processing unit, an RPI3. The user could accept
or cancel the result. If accepted, the resulting grasp pattern
went to the V-rep simulator system, which had 14 grasp pattern
possibilities: relaxed hand, active index finger, tool, abducted
thumb, index flexion, hook, key grasp, use with a computer
mouse, open palm, pinch, power, precision gripper opening,
precision gripper closing, and tripod pinch. The Myo armband
was used to trigger a state machine to take a picture, validate a
proposed grasp, ask for another grasp, or cancel an operation,
using “wave in,” “wave out,” and “fist” contractions.

Another study that also used a CV system with a two-layer
CNN to classify objects into their respective grasp patterns
was presented by Ghazaei et al. (2017). Over 500 objects from
Amsterdam and Newcastle Grasp Libraries were categorized into
four grasp classes, named: pinch, tripod, palmar wrist neutral,
and palmar wrist pronated. The classification accuracy in the
offline tests reached 75%. In a real-time experiment with a set of
the novel as well as seen but randomly-rotated objects, the system
achieved an overall score of 84%, implemented in MATLAB on a
Lenovo laptop with an Intel Core i7-4559U CPU (2.10 GHz).

A multimodal system was proposed by Shi et al. (2019)
combining eye tracking, CV, sEMG, and an Inertial Measurement
Unit (IMU) integrated into the HIT AID Hand prosthetic device.
The Kinect 2.0 (Microsoft, USA), a 3D Camera, collected color,

depth, and infrared scene images from the user’s perspective. The
selection of the target objects was through gazing (Eye-Tracking),
and the grasp pattern was defined among four based on a
convolutional network model. The user controls the prosthesis
in collaboration with both sEMG and IMU.

A more sophisticated system was proposed by Shi et al.
(2020) showing that depth data play an important role in
a grasp pattern definition. Adopting bimodal data scheme,
grayscale, and depth information, they improved in 12% the
classification accuracy using four types of grasp patterns, named
tripod, cylindrical, lateral, and spherical. A specific dataset
was built using Kinect 2.0 with objects of different sizes and
shapes. After alignment and filtering, color image with reduced
resolution, grayscale images, and depth images (all in 32 × 32)
were used as the inputs of the two channels of independent
convolutional networks, based on the Cifar-10 model, running
on a personal Laptop (Intel Core i5-3210M, 2.5 GHz, 64 bits,
Win10) and connected to a prosthetic device. sEMG control
was also provided, based on two finite state machines set up
to divide the hand control into coding and motion states. The
system accuracy was 93.9%, and the tripod grasp was the main
misclassification pattern.

As can be seen, image processing systems usually use
robust external computers (CPU), which make the application
unfeasible for daily living activities context. The best classification
rate was 93% achieved by both Shi et al. (2020) and DeGol et al.
(2016). The first used a 3D camera providing depth data and two
channels of independent convolutional networks based on the
Cifar-10 model for four classes (cylindrical, key grasp, spherical,
and tripod), while the latter used a 16-layer VGG-VeryDeep-16
convolution neural network for five classes (power grasp, pinch
grasp, tool grasp, 3-jaw chuck, and key grasp).

Within this context, a new intelligent hybrid prosthesis model
is proposed, commanded by a simple sEMG system aided by
a fully embedded CV system. A modified 5-layer SmallerVGG
convolutional neural network classifies objects regarding the
hand gestures used to interact with them without explicitly
identifying them. The system offers five modes: palmar grasp
with the wrist in a neutral position and with the wrist pronated,
tripod pinch, key grasp, and the index finger extension gesture.
This intelligent model facilitates and will speed up the process of
learning and using the prosthesis.

2. MATERIALS AND METHODS

2.1. System Design
The prosthesis prototype system (Figure 1) is composed of
a 3D printed model, an Arduino Nano board, a Myoware
sEMG system, a CV system, and an RPI3. The 3D model
was based on Buchanan’s Kwawu Arm 2.0 and printed
on lactic polyacid (PLA). The Arduino system commands
the start of image processing, opening, and closing of
the prosthesis using servo motors, based on the user’s
intention detected by the sEMG system and a finite state
machine. The CV system is responsible for capturing the
image of the object the user wants to grasp, and a CNN,

Frontiers in Neurorobotics | www.frontiersin.org 2 January 2022 | Volume 15 | Article 751282161

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Castro et al. Computer Vision-Based Hand Prosthesis

FIGURE 1 | Prosthesis prototype diagram system.

FIGURE 2 | 3D prosthesis prototype with the camera, laser point, and LEDs.
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running on the RPI3, classifies it according to the five hand
posture patterns.

The 3D prosthesis model was modified after being printed for
the camera, laser point, and LEDs installation. A USB camera,
APP-TECH model of 16 Megapixels, and a laser point indicator
were installed in the palm area, as shown in Figure 2. The laser
point indicates the object to be photographed and handled by the
user. LEDs on the back of the prosthesis prototype inform which
grasp class was proposed by the neural classifier.

2.2. Control System
The sEMG system is comprised of the Myoware Muscle Sensor
from Advancer Technologies. It is an Arduino-powered all-
in-one sEMG board with adjustable gain, providing the raw
and the envelope of the filtered and rectified signal. In this
application, the latter was used. The wearable design allows the
disposable electrode attachment directly to the board through
embedded electrode connectors. Adhesive disposable electrodes
fromMeditrace were used to capture sEMG signals. The Arduino
Nano board, which makes the analog/digital conversion, has
a sampling rate of 9,600 samples per second and 10 bits
of resolution.

The control system is expressed by a finite state machine,
which diagram can be seen in Figure 3. For each supra threshold
muscle contraction, the control system receives an input pulse. A
muscle contraction activates the laser point, so the user visually
confirms the object to be picked up, photographs it, and starts
the classification process by the CNN. The pattern chosen by
the neural network is displayed on the LEDs on the back of the
prosthesis. The user has two options: reject and restart the process
or accept and command the movement. In the latter, another
muscle contraction defines the object release, and the prosthesis
returns to its initial condition.

The total estimated time for this state machine to grasp the
object since rest is 1.4 s, excluding the time the user takes
to accept the suggested grasp pattern. The estimated time for
each sEMG pulse is 100 ms, the laser point takes 350 ms,
the classification time since camera activation was less than
250 ms, and the time for motor activation and movement was
approximately 600 ms.

A 5-layer VGG network (Rosebrock, 2018a,b), a modified
version of the VGG-16 (Simonyan and Zisserman, 2015), was
used. The input image with 96 × 96 pixels × 3 channels passes
through a 3 × 3 convolution filter, followed by a linear rectified
function (RELU) and a normalization function (BATCH). The
network’s first pooling layer uses a 3 × 3 matrix to reduce image
dimensionality to 32 × 32 pixels. In the consecutive layers, the
dimension of the convolution filters is changed from 32 to 64 and
finally from 64 to 128. In all intermediate layers, the DROPOUT
function is applied, which disconnects 25% of the layer’s neurons
to reduce overfitting. The final layer is fully connected through
the DENSE function that uses a linear rectifier activation function
and then goes through a SOFTMAX function to return the
value of the probability of classification of each class. Keras
software was used as an application programming interface and
TensorFlow as numerical computing software.

The training and validation phases were conducted on a Mac
mini 2012 computer (2.3 GHz, quad-core i7, 16 GB) and the final
CNN model run on the RPI3 (1.2 GHz, Quad-Core Boadcom
BCM2837, 1 GB, running with the Raspbian system) for the
final testing. The algorithm converts the images to grayscale and
resizes them to 96× 96 pixels. All images contain a single object,
black background, and were taken with ambient lighting.

2.3. Experiments
Three experiments were carried out using images from the
Newcastle Grasp Library (NGL) associated with the Amsterdam
Library of Object Images (ALOI), while the final tests were
carried out with a set of 24 objects (Figure 4) plus 14 keyboard
images, establishing a total of 182 images not presented in the
training/validation set. This set of images allowed comparisons
of experiment performance.

For experiment 1, the objective was to compare the
classification results of the modified 5-layer SmallerVGG
network with the experiment of Ghazaei et al. (2017).
The training/validation set had 7,632 images for the pinch
classification pattern, 11,810 images for the tripod pinch, 8,777
images for the palmar grasp with neutral wrist position (neutral),
and 11,304 images for the palmar grasp with pronated wrist
(pronated). The 182 images for the test phase had 42 images for
the pinch classification pattern, 42 for the tripod, 42 for neutral,
and 56 for the pronated.

Due to the experiment 1 results, changes were made to
the experiment 2 dataset, eliminating images of objects with
similar shapes from different classes, choosing only tripod pinch
(between the precision grasps), and adding the key grasp class.
The CNN training set had 6,900 images for the tripod pinch,
8,345 images for the neutral pattern, 8,280 images for the
pronated, and 2,188 images for the key grasp class. The tests were
performed with 70 images for the tripod pinch, 42 for neutral, 56
for pronated, and 14 for the key grasp.

For experiment 3, 8.354 images were added to the experiment
2 dataset, being 3,210 computer keyboard images, 2,808 musical
keyboard images, and 2,336 tablet images. Classifications from
these three new image classes result in the index finger extension
movement. The tests were performed with 182 images being 70
for the tripod pinch pattern, 42 for neutral, 42 for pronated, 14
for key grasp pattern, and 14 for index finger extension.

For the test phases mentioned before, a set of 24 objects, like
those used by Ghazaei et al. (2017) (Figure 4), plus 14 images
of keyboards and tablets were used, establishing a total of 182
images allowing for result comparisons. Just as Ghazaei et al.
(2017), seven images for each object with random angles of view
were presented to the classifier.

3. RESULTS

Table 1 shows the confusion matrix and Table 2 shows the
sensitivity, specificity, and accuracy values, for experiment 1. It
can be noted from Table 1 that pinch and pronated patterns
had an excellent result, with almost 100% of classification (41
from 42 and 51 from 56, respectively). On the other hand, a
huge misclassification (41 from 42 trials) appeared for the tripod
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FIGURE 3 | Finite state machine diagram.

FIGURE 4 | Objects used for comparison between experiments.

Frontiers in Neurorobotics | www.frontiersin.org 5 January 2022 | Volume 15 | Article 751282164

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Castro et al. Computer Vision-Based Hand Prosthesis

FIGURE 5 | Different tube positions allowing the use of different grasps, such as pronated palmar, tripod, pinch, and neutral palmar.

pattern that was classified as pinch, and a smaller one appeared
for the neutral pattern (11 from 42 trials) that was classified
as pronated. Following these results, Table 2 reflect the impact
of the right and wrong classifications for each pattern, showing
a high sensitivity, but lower specificity for pinch, a very low
sensitivity, but high specificity for tripod, a low sensitivity, but
high specificity for neutral, and high sensitivity and specificity
for pronated.

Table 3 shows the confusion matrix and Table 4 shows the
sensitivity, specificity, and accuracy values, for experiment 2. In
Table 3, it can be noted that all patterns had an excellent result,
with almost 100% of classification, resulting in high sensitivities,
specificities, and accuracies up to 96%.

Table 5 shows the confusion matrix and Table 6 shows the
sensitivity, specificity, and accuracy values, for experiment 3.
In this experiment, despite having one more class, the results
of Table 5 showed almost 100% of classification with very low
misclassifications, resulting in high sensitivities, specificities, and
accuracies up to 98%.

4. DISCUSSION

Defining the type of grasp to pick up objects is not as
easy as it may seem because there is no consensus. Even
with studies like Feix et al. (2016) and Abbasi et al. (2019),
which propose grasp taxonomies, the number of grasp patterns
is impractical in such type of system. Furthermore, it is
reasonable to pick up an object in different ways, whether
it is in the same position or if it is arranged in different
orientations, as shown in Figure 5. Thus, it is often a matter
of convention.

The proposed 5-layer SmallerVGG trained in experiment
1, with the same image dataset as Ghazaei et al. (2017),
achieved an accuracy of 84%, with new objects, as shown in
Table 2. The same result was reached by the original work
with new and seen images but randomly-rotated objects. The

misclassifications, shown in Table 1, resulted in a high sensitivity
but low specificity for pinch, a very low sensitivity but high
specificity for tripod, and a low sensitivity by but high specificity
for neutral (Table 2). Sensitivity is a measure of how well a
test can identify true positives, and specificity is a measure of
how well a test can identify true negatives. The overall result
for experiment 1 was sensitivity equal to 68% and specificity
equal to 89%, which will frustrate the user and make the system
non-functional. Since the classification feature was based on
object shapes, the explanation of these misclassifications was
the arrangement of objects with similar shapes in different
classes. Clear examples can be seen in Figures 6 and 7. Figure 6
shows objects with rectangular shape, and despite the possibility
of using both neutral and pronated palmar grasps to pick
them, as the system use the shape as a classification feature,
it is not reasonable to have them into different classes. The
same situation occurs for the balls with different sizes of
Figure 7.

In order to resolve this incompatibility and have a better
model, changes were made to the experiment 2 dataset,
eliminating images of objects with similar shapes of different
classes, choosing only tripod pinch between the precision
grasps, since it covers both types of objects, and adding
the key grasp class due to its importance, according to
Feix et al. (2016) and aiming to keep the same number
of classes. These modifications improved the accuracy to
98%, sensitivity to 96%, and specificity to 99% as shown in
Table 4, for experiment 2, proving the fragility of the original
image bank.

In experiment 3, the proposed 5-layer CNN trained with
the modified image bank added with the extension index class
obtained 99% of accuracy, 97% of sensitivity, and 99% of
specificity as shown in Table 6. It can be said that the proposed
CNN, trained for the neutral and pronated palmar grasps, tripod
pinch, and key grasp, recognizes patterns, while for the computer
and music keyboards, and tablet classes, the network recognize
objects. Evenwith only five convolutional layers, the SmallerVGG
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FIGURE 6 | Objects with similar shapes placed in different classes: first line neutral palmar, second and third lines pronated palmar.
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FIGURE 7 | Objects with similar shapes placed in different classes: pinch, tripod, and pronated palmar, respectively.

network showed high accuracy in classifying these patterns and
objects in a hybrid configuration.

Comparing the sensitivity and specificity values, experiments
2 and 3 showed greater effectiveness in classification
than experiment 1, due to the consistency of the image
dataset, presenting a smaller number of false-negative
and false-positive results, showing the importance of
the adequacy of the image set for the success of the

classification. These results contribute to user satisfaction
and system functionality.

Compared with other works in the literature that used a
CV system to define the grasp patterns for the prosthesis, the
proposed system with a 5-layer SmallerVGG CNN achieved an
accuracy higher than those proposed by DeGol et al. (2016) and
Shi et al. (2020) that presented accuracies of 93% with a bimodal
data scheme and a VGG-VeryDeep-16, respectively.
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TABLE 1 | Confusion matrix for experiment 1.

Pinch Tripod Neutral Pronated Total

Pinch 41 0 0 1 42

Tripod 41 1 0 0 42

Neutral 0 0 31 11 42

Pronated 3 2 0 51 56

Total 85 3 31 63 182

TABLE 2 | Performance metrics of experiment 1 [Se, sensitivity (%); Sp, specificity

(%); Acc, accuracy (%)].

Se Sp Acc

Pinch 98 69 75

Tripod 2 99 76

Neutral 74 100 94

Pronated 91 90 91

Total 68 89 84

TABLE 3 | Confusion matrix for experiment 2.

Tripod Neutral Pronated Key grasp Total

Tripod 68 0 0 2 70

Neutral 0 41 1 0 42

Pronated 0 0 54 2 56

Key grasp 3 0 0 11 14

Total 71 41 55 15 182

TABLE 4 | Performance metrics of experiment 2 [Se, sensitivity (%); Sp, specificity

(%); Acc, accuracy (%)].

Se Sp Acc

Tripod 97 97 97

Neutral 98 100 99

Pronated 96 99 98

Key grasp 79 98 96

Total 96 99 98

TABLE 5 | Confusion matrix for experiment 3.

Tripod Neutral Pronated Key grasp Index finger ext. Total

Tripod 68 0 0 2 0 70

Neutral 0 42 0 0 0 42

Pronated 0 0 41 0 1 42

Key grasp 1 0 0 12 1 14

Index finger ext. 0 0 0 0 14 14

Total 69 42 41 14 16 182

Using an RPI 3 microcomputer instead of a computer for
real-time analysis associated with a 3D printed model prosthesis
turned the project into a low-cost portable prototype. It is a

TABLE 6 | Performance metrics of experiment 3 [Se, sensitivity (%); Sp, specificity

(%); Acc, accuracy (%)].

Se Sp Acc

Tripod 97 99 98

Neutral 100 100 100

Pronated 98 100 99

Key grasp 86 99 98

Index finger extension 100 99 99

Total 97 99 99

full embedded control system, with higher accuracy than those
proposed by Dosen et al. (2010), Dosen and Popovic (2010),
Ghazaei et al. (2017), and Shi et al. (2020) in which the processing
was done in a separate unit as a standard PC.

Moreover, the proposed hand prosthesis prototype focused on
a more natural appearance, incorporating a discreet webcam in
the palm, unlike the proposals by DeGol et al. (2016), Ghazaei
et al. (2017), Dosen et al. (2010), and Dosen and Popovic (2010)
who used an external webcam. The Arduino Nano board used
to command the servos can be substituted, as the RPI3 can
perform this task. This change would reduce the internal wires
and cables and increase the space available inside the prosthesis
prototype body.

The Myoware sensor board has a gain adjustment of the
sEMG signal, and the software has a threshold adjustment, which
allows for the customization required for each user due to the
sEMG electrode positioning and physical conditions. Despite its
simplicity, it seems to be enough to the proposed application of
state machine trigger, instead of a more sophisticated one such as
Myo armband as used by Andrade et al. (2017) or Delsys Trigno
used by Ghazaei et al. (2017).

The total estimated time for the state machine to grasp the
object since rest is approximately 1.4 s, which is reasonable
for prosthetic control. However, the time taken for the user to
confirm the grasp pattern was not considered. The time for each
sEMG pulse was estimated at 100 ms, and it depends on the
user’s ability to fast contract above the selected threshold. The
laser point of 350 ms aims only to confirm the selected object to
be grasped. The classification time since camera activation was
approximately 250 ms, and the time for motor activation and
movement was approximately 600 ms.

Ghazaei et al. (2017) reported 150 ms for the average time
needed for pre-processing and classification in computer-based
real-time performance analysis, and 300 ms using a short
flexion contraction above a threshold. Sidher (2017) reported
classification times varying from 223ms to 1.963 s for geometrical
objects using RPI 3. Compared with the previous studied, the
proposed system control presents promising behavior.

On the other hand, the presented prototype did not intend
to be a final prosthesis proposal but a proof of concept of the
feasibility of a fully embedded hybrid system based on a hybrid
approach using sEMG and CV to overcome the limitations of the
strict sEMG control systems. Therefore, the experiments reported
in this study were related to the CV technical aspects.
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Some improvements could be performed, such as adding
new classes to the CV classification system or some common
gestures as a user choice option via the sEMGfinite statemachine.
Examples of the first are parallel extension, hook, and power grip,
and for the latter are point (index finger extension), ok sign, and
thumbs up.

Furthermore, the results were obtained in a controlled
environment, with fixed prototype distance and height related
to the object. These parameters could change the classification
accuracies due to the classifier model’s dependence on object
shape patterns. Adding distance sensors like Dosen et al.
(2010), Dosen and Popovic (2010), and Sidher (2017) did, seem
reasonable to overcome the problem of similar shape but different
size objects, as shown in Figure 7.

Therefore, the prosthesis’s functional performance evaluation
in a clinical trial is essential to guarantee its effectiveness. The
Southampton Hand Assessment Procedure (SHAP) is a well-
known, simple, and replicable protocol based on the assessment
of the effectiveness of the prosthetic device with a focus on
performing a set of tasks by the user (Light et al., 2002; Andres-
Esperanza et al., in press). Dosen et al. (2010) showed that
the average time to accomplish the “reach, pick up and place”
task with 13 healthy subjects decreases with training, reaching
approximately 10 s after 100 trials. Shi et al. (2020) reported
an average time of 6.4 s in an experimental protocol with four
healthy subjects performing a total of 320 trials, comparing
Vision-EMG and Coding-EMG control. Ghazaei et al. (2017)
reported an average time of 7s for two trans-radial amputee
volunteers to accomplish the “reach, pick up, and place” task.
However, this evaluation is not the focus of this study and will
be the subject of future investigation.

5. CONCLUSION

This study presented a hybrid 3D printed hand prosthesis
prototype based on an sEMG controlled finite state machine and
a fully embedded CV system. A modified 5-layer Smaller Visual
Geometry Group (VGG) CNN running on an RPi 3 connected
to a webcam recognizes the shape of daily use objects and defines
the grasp/gesture pattern for the prosthetic prototype. The sEMG
signal, representing the user’s intention, starts the process and
commands the prosthetic motors to movement execution.

The proposed system obtained 99% accuracy, 97% sensitivity,
and 99% specificity for grasping objects from neutral and
pronated palmar grasp, tripod pinch, key grasp, and index
finger extension gesture. Compared with other studies in
the literature that used a CV system for prosthetics, the
proposed system achieved a higher accuracy with a full
embedded system. Furthermore, it is a low-cost technology
with a reduced user training time, considering the simple use
of sEMG.

This study showed that the use of a vision system to
help define the pattern of grasping and manipulating
objects is a promising alternative and that studies in
this area should be performed. For the continuity
of this study, it is proposed the improvement of the
prosthesis for thumb movement; prosthetic functional
performance evaluation in clinical measurements to guarantee
its effectiveness.
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Wearable robotic exoskeletons (WREs) have been developed from orthoses as assistive

devices for gait reconstruction in patients with spinal cord injury. They can solve some

problems encountered with orthoses, such as difficulty in independent walking and

standing up and high energy consumption during walking. The Wearable Power-Assist

Locomotor (WPAL), a WRE, was developed based on a knee–ankle–foot orthosis with

a single medial hip joint. The WPAL has been updated seven times during the period

from the beginning of its development, in 2005, to 2020. The latest version, launched as

a commercialized model in 2016, is available for medical facilities. In this retrospective

study, which included updated results from previous reports, all data were extracted from

development research records from July 2007 to December 2020. The records were as

follows: patient characteristics [the number of participants, injury level, and the American

Spinal Injury Association Impairment Scale (AIS) score], the total number of WPAL trials

when aggregating the cases with all the versions or only the latest version of the WPAL,

and maximum walking performance (functional ambulation category [FAC], distance,

and time of continuous walking). Thirty-one patients participated in the development

research. The levels of spinal cord injury were cervical (C5–C8), upper thoracic (T3–T6),

lower thoracic (T7–T12), and lumbar (L1) in 10, 5, 15, and 1 of the patients, respectively.

The numbers of patients with AIS scores of A, B, C, and D were 20, 7, 4, and 0,

respectively. The total number of WPAL trials was 1,785, of which 1,009 were used the

latest version of the WPAL. Twenty of the patients achieved an FAC score of 4 after

an average of 9 (median 8, range 2–22) WPAL trials. The continuous walking distance

and time improved with the WPAL were compared to the orthosis. We confirmed that

the WPAL improves walking independence in people with a wide range of spinal cord

injuries, such as cervical spinal cord injuries. Further refinement of the WPAL will enable

its long-term use at home.

Keywords: wearable robotic exoskeleton, gait, paraplegia, tetraplegia, clinical experience
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INTRODUCTION

Traumatic spinal cord injury (SCI) is one of the most devastating
events that occur after various accidents. Long-term motor,
sensory, and autonomic dysfunction caused by traumatic SCI
have a tremendous effect on the daily life of patients and their
families. The incidence rates of traumatic SCI per 1 million
people per year were 14 cases in Austria (Majdan et al., 2016),
18 cases in Switzerland (Chamberlain et al., 2015), and 10 cases
in Denmark (Bjornshave Noe et al., 2015), representing almost
180,000 cases annually worldwide in 2014 (Lee et al., 2014).
Similarly, the annual incidence of SCI is approximately 54 cases
per 1 million people in the United States, which is approximately
17,900 new SCI cases in 2021 (NSCIS Center, 2021). In Japan,
the estimated incidence of traumatic SCI, excluding the grade
E in the Frankel scale, that is, defined as no neurological
deficit/complete recovery, was 49 cases per 1 million people
annually in 2010 (Miyakoshi et al., 2020).

The majority of patients with motor-complete SCI often
rely on a wheelchair as a mobility device in activities of daily
living because a wheelchair is energy efficient and enables
patients to safely perform their daily activities. However, long-
term inactivity due to wheelchair use results in various medical
problems [e.g., joint contraction (Kunkel et al., 1993), pressure
sores (Verschueren et al., 2011), osteoporosis (Varacallo et al.,
2021), and psychosocial problems as a result of a relatively low
eye level (Dijkers, 1999; Levins et al., 2004)]. For patients with
SCI, the opportunity to stand and walk occasionally is important
from both physical and psychosocial perspectives.

In the past few decades, various wearable robotic exoskeletons
(WREs) have been developed for stand and gait reconstruction
in patients with motor-complete SCI. They offer the opportunity
to walk in home and community environments by moving the
paretic legs of patients with partial or complete SCI in a reciprocal
stepping pattern (Fisahn et al., 2016; Miller et al., 2016; Palermo
et al., 2017; Tan et al., 2021). Arazpour et al. (2013) reported that
the gait, speed, and endurance of patients with SCI using WREs
are superior to those of patients using either reciprocating gait
or hip–knee–ankle–foot orthoses (Arazpour et al., 2013). The
oxygen consumption and heart rate during gait training with
WRE are slightly increased compared with that during sitting
and standing, and the load during gait training with WRE is less
than that with conventional orthoses (Asselin et al., 2015; Yatsuya
et al., 2018).

We have previously reported the effects of the Wearable
Power-Assist Locomotor (WPAL) on walking ability and gait
pattern in patients with various levels of SCI. The first
report shared the basic concept of WPAL development and a
comparison of walking performance between the WPAL and
the conventional Primewalk orthosis (Tanabe et al., 2013b).
The report showed that the WPAL has a lower physiological
cost index and involves less muscle activity in the upper limbs
during walking, compared with the Primewalk orthosis (Tanabe

Abbreviations: AIS, American Spinal Injury Association Impairment Scale; FAC,

functional ambulation category; SCI, spinal cord injury; WPAL, Wearable Power-

Assist Locomotor; WRE, wearable robotic exoskeletons.

et al., 2013b). We also reported gait pattern, the basic training
procedure, and gait performance of the WPAL in seven patients
with SCI at the thoracic level of injury (T6–T12) (Tanabe et al.,
2013a). In addition, we found that continuous walking time and
distance were prolonged with the WPAL compared with orthotic
walking in 12 patients with SCI (Hirano et al., 2015). The WPAL
significantly decreased the physiological cost index, heart rate,
andmodified Borg score during the 6-min walking test compared
with conventional knee–ankle–foot orthoses in six other patients
with SCI (Yatsuya et al., 2018). Recently, we have reported that the
WPAL improves walking ability more than conventional orthoses
in patients with cervical SCI (Fuse et al., 2019).

The objective of this study was to summarize all data that
include updated results from previous reports, about physical
characteristics, and walking abilities of patients with SCI, from
the development research records in clinical practice from July
2007 to December 2020. The present findings are potentially
useful for gait performance comparison with other robots, a
meta-analysis of the effects of WREs in patients with SCI, and
evidence-based selection of WREs for patients with SCI.

MATERIALS AND METHODS

Study Design and Participants
In this retrospective study, we included 31 patients with SCI in
our university from 2007 to 2020, regardless of being inpatients
or outpatients. The causes of spinal cord injury were traumatic
spinal cord injury in 24 patients, spinal cord infarction in 3
patients, encephalomyelitis in 1 patient, radiation myelitis in 1
patient, hemorrhage from the thoracic spinal cord cavernous
hemangioma in 1 patient, and acute thoracic spinal epidural
hematomas in 1 patient. The principal inclusion criteria for
participation were as follows: (1) patients with motor paralysis
[American Spinal Injury Association Impairment Scale (AIS)
classification A–C] who had a neurological level of injury from
C3 to L1; (2) a height of 155–180 cm; (3) a weight <80 kg; and
(4) sufficient upper limb muscle strength (to the extent that the
patient can transfer independently). All patients provided written
informed consent prior to study participation. This study was
performed in accordance with the principles of the Declaration of
Helsinki and conducted after receiving approval from the ethics
committee of our university (approval number: CR18-035).

The exclusion criteria were as follows: (1) progressive disease
(excluding disuse syndrome); (2) difficulty in communication
due to dementia or impaired consciousness; (3) high risk of
fracture of the lower limbs or spine (e.g., severe osteoporosis);
(4) uncontrolled hypertension (resting systolic blood pressure
>180 mmHg and diastolic blood pressure >120 mmHg); (5)
uncontrolled tachycardia (ventricular rate >120 beats per min);
and (6) limitation of movement due to impaired cardiac or
respiratory function (e.g., shortness of breath when using
a wheelchair).

Design of WPAL
A detailed basic design of the WPAL has been published
previously (Tanabe et al., 2013a,b, 2017). The main structures,
such as frames and motors, were placed between the lower
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limbs. The frame was connected by a single mechanical hip
joint medially under the perineum. The mechanical hip joint
had a sliding structure that curves anterior-posteriorly based on
the structure of Primewalk orthosis (Suzuki et al., 2005). The
sliding structure enables the virtual center of rotation of the
robotic hip joint to be closer to the physiological center of the
hip joint. Six motors were located in the hip, knee, and ankle
joints. The ranges of motion were as follows: hip, 40◦ (flexion
25◦-extension 15◦); knee, 120◦ (flexion 120◦-extension 0◦); and
ankle, 50◦ (dorsiflexion 35◦-plantar flexion 15◦). Each joint used
an individual custom-made brushless DC servomotor, which was
compact to fit between the legs (24V, 78W, peak torque of
4Nm, speed range from 0 to 1,000 deg/s). The weight of the
WPAL was approximately 13 kg; however, the patient did not
feel the weight because one foot was always on the ground. The
use of a customized walker with motor control circuitry and
batteries ensured safety and eliminated the need for the patients
to carry the device themselves. Two lever switches and two button
switches were installed on both handgrips of the walker to enable
the patients to operate it themselves. The WPAL could also be
put on and removed by the patient; a skilled patient could do this
within approximately 2 min.

Operating the WPAL
The WPAL is equipped with the following five modes: (1)
standing-up mode, (2) adjustment mode for the ankle joint
angle during standing, (3) walking mode, (4) sitting-down mode,
and (5) manipulation mode for the knee joint while putting
on or removing the WPAL. Each mode is selected by pressing
the button attached to the left grip of the walker. When the
WPAL user presses a button, only the indicator lamp for the
currently selected mode lights up on the control panel mounted
on the front bar of the walker to indicate the currently selected
mode. Figure 1 shows a state transition diagram for the WPAL
operation and control.

In the standing-up mode, pressing the button attached to the
right grip of the walker for 0.5 s will start the WPAL in motion
from the sitting position. The user stands up bymoving the body’s
center of gravity slightly forward and pushes the walker slightly
downward and backward using residual functions in accordance
with the movement of the WPAL. In the adjustment mode for
the ankle joint angle during standing, the user can adjust the
ankle joint angle for a stable standing posture by pulling the lever
attached below the grip of the walker. Pulling the lever on the left
side increases the dorsiflexion angle of the ankle joint, and pulling
the lever on the right side increases the plantar flexion angle of
the ankle joint. This function is necessary because each patient
with SCI has a different ankle joint angle for a stable standing
posture. In the walking mode, the WPAL motion is started by
pressing the button attached to the right grip of the walker for
0.5 s. In this mode, the user is able to select the first step of
walking (left or right). If the user selects the left side for the first
step, the user has to shift the center of gravity to the right side
to start walking smoothly. The WPAL moves both lower limbs
alternately and constantly. WPAL users have to move their center
of gravity laterally rhythmically with the WPAL motion using
residual upper limb and trunk muscles and move the walker

forward at the appropriate time in the gait cycle of the WPAL.
WPAL motion is stopped when the user pulls the levers on both
sides simultaneously for a few seconds. In the sitting-downmode,
the WPAL motion is started by pressing the right button for 0.5 s
in the standing position. The sitting-down motion of the WPAL
is caused first by plantar flexion of the ankle joint, followed by
flexion of the knee joint. The user needs to lean forward with
their trunk and maintain the posture until full flexion to the pre-
programmed angle of the knee joint of the WPAL for sitting in
the wheelchair. In the manipulation mode of the knee joint for
putting on and removing the WPAL, the user can manipulate
the knee joint of the WPAL by using the lever attached under
the grip of the walker. The user flexes the knee joint of the
WPAL by pulling the lever under the left grip. This action is used
when the user wants to put on the WPAL from a wheelchair.
In contrast, pulling the right lever extends the knee joint of the
WPAL. This action enables the user to remove the WPAL while
on the wheelchair after the sitting-down motion.

Gait Training Procedure
TheWPALmoves both lower limbs in a constant rhythm. WPAL
users need to shift their lateral weight rhythmically in accordance
with the WPAL motions. We have recommended five stages of
gait training to achieve independent walking with the WPAL and
a specialized wheeled walker (Tanabe et al., 2013a,b, 2017). In
the initial four stages of gait training, the exercises are performed
under the suspension system to prevent falls and reduce excessive
fear of falling. The harness of the suspension system is set to slack
without partially supporting the body weight. The first stage is
a stepping exercise in the parallel bars. Before walking with the
WPAL, the user learns to use the upper limbs and trunk muscles
to perform a lateral weight shift with appropriate timing while
keeping their center of gravity forward and backward, referring
to a beeping sound produced in time with the walking rhythm.
Subsequently, the user performs the same motions as the driving
WPAL. The second stage is walking in the parallel bars. The step
time is gradually shortened to approximately 1.5 s. The stride
length is gradually increased to approximately 200mm. The third
stage is a walking exercise on a treadmill with a slow speed
(approximately 0.1–0.3 km/h). Through continuous walking for
a long period, the WPAL user can learn stable and rhythmic
lateral weight shifts. The fourth stage is a walking exercise with
a specialized wheeled walker. The user operates the WPAL using
buttons or triggers installed on the grip of the walker. The final
stage is a walking exercise without suspension using a specialized
wheeled walker. Consensus decision-making is made between
a certified physical therapist and a rehabilitation physician as
to whether to proceed to the next stage. Patients also practice
standing up and sitting down and donning/doffing of the WPAL
during trials.

Data Collection and Analysis
The development history of the WPAL was obtained from
research records and interviews with members of the WPAL
development team (rehabilitation physician, physical therapist,
prosthetist and orthotist, and engineer). In the research records,
medical doctors or physical therapists in the team recorded, on
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FIGURE 1 | State transition diagram for the WPAL operation. WPAL, Wearable Power-Assist Locomotor.

a daily basis, the details of training, any troubles related to the
training as well as the robots, and all other necessary information,
such as the version of the robots. Interviews were conducted
to confirm the contents of the research records if needed. The
number of WPAL trials was calculated from the detailed trial
data from 2007 to 2020 in the development research records.
However, theWPAL trials included a few exceptional cases where
the trial did not contain gait training with the WPAL; instead,
the trial was used for fine-tuning the WPAL motion and three-
dimensional gait analysis with the WPAL and/or the orthosis
only. If the name of the patient was not recorded, we included
only the total number of WPAL trials. The number of WPAL
trials for each patient was calculated for those whose names
were listed in the detailed trial data. The number of WPAL
trials to reach a functional ambulation category (FAC) score
of 4 was also counted from the development research records.
The reasons for the discontinuation of the WPAL trials were
also collected from the development research records. Motor
function was assessed using the AIS score. The evaluation was
performed by a rehabilitation physician and the physical therapist
in charge, and the score was agreed upon by both parties.
Gait performance using the WPAL was measured in terms of
the maximum continuous walking distance and time. However,
the maximum run time of the WPAL is 120min owing to the
battery capacity. The Kolmogorov-Smirnov test was used to
evaluate the pattern of data distribution. Since the normality
of the data was not confirmed, the FAC score and maximal
continuous walking distance and time were compared between
the orthosis and WPAL using the Wilcoxon signed-rank test.
The FAC score was used for all patients with both orthotic and
WPAL records, and the maximum continuous walking distance
and time were used for patients who reached an FAC score of 4
only. Adverse events, such as falls, were recorded by a certified
physiotherapist who supervised the patient while walking with
the WPAL. The patients were divided into four groups according
to the level of injury: cervical (C5–C8), upper thoracic (T1–
T6), lower thoracic (T7–T12), and lumbar. If the SCI level of
the patient was different between the left and right sides, the
higher level was defined as the injury level. The practice was
performed for 1 or 1.5 h per day, i.e., preparatory exercises. All
statistical analyses were performed with SPSS version 25 (SPSS

Inc., Chicago, IL, USA). Any values of p < 0.05 were considered
statistically significant.

RESULTS

Development History of WPAL
The WPAL, developed in collaboration with Aska Corporation
and Tomei Brace Co. in 2005, is a walking-assist robot for people
with SCI, based on the design concept of a knee–ankle–foot
orthosis with a single medial hip joint (Primewalk) (Suzuki et al.,
2005) (Table 1 and Figure 2). From the Primewalk, which was
the basis of the WPAL, to the commercialized current model,
seven major updates were implemented to improve the design
and control system. The first version was a Primewalk with a
total of five motors attached one to the hip joint, two to both
knee joints, and two to both ankle joints. Six months later, a
hip joint motor was mounted on both sides for a total of six
motors in the second version. In 2007, the motors were newly
developed with the support of the New Energy and Industrial
Technology Development Organization in the third version. In
2008, the thigh and lower leg cuffs were made smaller and lighter.
The orthotic parts were improved so that the thigh and lower leg
cuffs were independent in the fourth version. When patients with
SCI used the WPAL to walk, the orthotic parts were first attached
to the thigh and lower leg cuffs; then, they were connected to the
robotic part by themselves. This connecting procedure between
the cuff and robotic part was the same as that in the current
system. The shape of the footplate was also improved. In 2010,
in the fifth version, the motor was improved by attaching a
cover. In 2011, we developed a universal cuff and improved the
positioning of the robot and the cuff fixation part in the sixth
version. In 2016, the seventh and current WPAL model began
commercialization for medical and social service organizations.
The touchscreen tablet PC for control and settings was placed in
front of the walker. Until August 2007, we used the direct current
(DC) brush motors manufactured by Maxon of Switzerland.
Then, we developed a new brushless servo motor that had two
advantages for our robot. First, the motor allows long-term use
because of better heat dissipation and lower friction. Second, it
can be installed between both the lower limbs. Consequently,
we introduced minor updates (mainly improvement in heat
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TABLE 1 | Development history of the Wearable Power-Assist Locomotor (WPAL).

Version 0 1 2 3

Date 4/1998 11/2005 3/2006 8/2007

Feature Primewalk • Base on primewalk

• Five commercially motors (1

hip, 2 knee, 2 ankle)

• Base on primewalk

• Six commercially motors (2

hip, 2 knee, 2 ankle)

• Development of specialized

motors

• Improvement of orthotics parts

Picture

Version 4 5 6 7

Time 1/2008 7/2010 12/2011 10/2016

Feature • Miniaturization of femoral and

lower leg cuff

• Change in the don/doff

method

• Improvement of foot shape

• Development of motor cover

and control box

• Improvement of servo motor

• New servo amplifier

• Development of universal cuff

• cuff mounting bracket

adjustment mechanism

• Adjustable leg length

• New design

• Improved casting module

• Improved motor

• New display unit

• Adoption of tablet

Picture

resistance) in the motor. The currently used dedicated motor can
never be damaged by heat.

Number of WPAL Trials
The SCI level was cervical (C5–C8) in 10 patients, upper
thoracic (T3–T6) in 5 patients, lower thoracic (T7–T12) in
15 patients, and lumbar (L1) in one patient. The proportions
of patients with AIS scores of A, B, C, and D were 20,
7, 4, and 0, respectively (Table 2). The total number of
WPAL trials was 1,785, of which 1,009 used the latest WPAL
version, and the names of the patients were not recorded
in the 88 development research records. Three falls due to
mechanical errors in the battery control system and the servo
motor system associated with lower limb spasticity in patients
with SCI were observed. No severe incidents, such as bone

fractures and skin injuries, that require unusual treatment
were observed.

The mean number of WPAL trials for each patient was 55
(range 2–252) from 2007 to 2020. For the latest WPAL version,
the mean number of WPAL trials for each patient was 51 (range
1–181). The person with the highest number of WPAL trials had
an injury at T12 (AIS, A) and had the longest continuous walking
distance and time. Themost frequent reasons for discontinuation
of WPAL gait training were social reasons unrelated to WPAL
trials (10 patients), such as job-hunting and being busy with
work, and discontinuation due to medical problems (5 patients).
Twenty patients reached an FAC score of 4. The mean number of
WPAL trials to reach an FAC score of 4 was 9 (median 8, range 2–
22) in all patients and 13 (median 13, range 8–17) in the cervical
group, 12 (median 12, range 8–16) in the upper thoracic group,
8 (median 8, range 2–22) in the lower thoracic group, and 6 in
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FIGURE 2 | The structure of the latest WPAL in detail. (A) The hip joint in frontal view, (B) the knee joint in frontal view, and (C) the ankle joint in frontal view. WPAL,

Wearable Power-Assist Locomotor.

the lumbar group. However, 2 patients were excluded from these
analyses due to missing data. The mean number of days taken
to achieve an FAC score of 4 under the WPAL usage condition
was 143 days (median 126, 16–555). Patients who reached an
FAC score of 4 continued the WPAL trials. The mean number
of continued WPAL trials was 66 (median 39, range 6–247). The
number of continuedWPAL trials varied among the patients due
to factors unrelated to the WPAL trials, such as work. The mean
duration following achievement of an FAC score of 4 was 1,221
days (median 763, 65–4,058) in December 2020.

Gait Performance
Table 3 and Figure 3 show the results of the gait performance in
terms of the FAC scores and continuous walking distance and
time when using the WPAL and the orthosis. Thirteen patients
had improved FAC scores using the WPAL compared with those
using the orthosis, whereas two patients had a decreased FAC
score using theWPAL compared with those using the orthosis. In
all patients using theWPAL, the continuous walking distance and
time ranged from 5.0 to 2375.0m (median 80m) and from 0.5 to
120.0min (median 10min), respectively. Contrarily, when using
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TABLE 2 | Patient characteristic and number of WPAL trials.

Level of injury

(R/L)

Age Sex AIS First year of

trial

Number of

WPAL trials

Frequency of WPAL

trials per month

Current

state

Reason for

discontinuation

Cervical

C5/C5 44 Male A 2018 3 3.0 End Pain of upper limb

C5/C6 36 Male B 2018 23 1.0 Ongoing –

C6/C6 72 Male B 2012 20 0.2 Ongoing –

C6/C6 30 Female B 2018 79 3.0 Ongoing –

C6/T10 33 Male A 2015 144 2.4 Ongoing –

C7/C7 28 Male A 2016 72 1.5 Ongoing –

C7/C7 51 Male B 2017 18 3.0 Ongoing –

C7/C7 44 Male C 2019 5 5.0 End Social reasons

T1/C7 60 Male B 2017 27 0.9 Ongoing –

T1/C8 23 Male B 2015 10 2.0 End Hypertension

Upper thoracic

T3/T3 36 Male A 2019 13 3.3 Ongoing –

T4/T4 63 Male A 2013 9 0.4 End Social reasons

T6/T6 60 Male A 2007 39 1.6 End Orthostatic

hypotension

T6/T6 61 Female A 2008 99 1.4 End Social reasons

T6/T6 43 Male A 2008 50 1.7 End Cellulitis

Lower thoracic

T7/T7 32 Male A 2016 118 2.0 Ongoing –

T7/T7 84 Male C 2018 18 6.0 Ongoing –

T8/T8 36 Male A 2015 50 0.4 Ongoing –

T8/T8 53 Male A 2011 15 5.0 End Social reasons

T9/T9 49 Male A 2008 43 1.4 End Pressure sore

T10/T10 20 Female B 2012 4 0.5 End Social reasons

T10/T10 22 Male A 2014 14 1.6 End Social reasons

T10/T10 64 Male A 2015 208 3.9 Ongoing –

T11/T11 54 Male A 2012 29 4.8 End Social reasons

T11/T11 51 Male C 2012 7 1.4 End Social reasons

T12/T12 42 Male A 2007 179 1.3 Ongoing –

T12/T12 33 Male A 2008 25 0.8 End Social reasons

T12/T12 40 Male A 2014 10 0.7 End Social reasons

T12/T12 26 Male A 2014 38 0.9 Ongoing –

T12/T12 40 Male A 2015 252 3.9 Ongoing –

Lumbar

L1/L1 35 Female C 2019 48 2.5 Ongoing –

WPAL, Wearable Power-Assist Locomotor.

the orthosis, the continuous walking distance and time ranged
from 3.5 to 879.0m (median 40m) and from 1.9 to 61.0min
(median 6min), respectively. For the 20 patients who achieved
an FAC score of 4 using the WPAL, the continuous walking
distance and time ranged from 20 to 2,375m (median 99m)
and from 3 to 120min (median 10min), respectively. For using
orthosis in the patients who achieved an FAC score of 4 using
the WPAL, the continuous walking distance and time ranged
from 9 to 879m (median 40m) and from 2 to 61min (median
6min), respectively. The FAC scores in the 26 patients in whom
measurements were made for both the orthosis and WPAL, and
the maximal continuous walking distance in eight patients who
achieved an FAC score of 4 using both devices was significantly

higher for the WPAL than for the orthosis (p = 0.005 and 0.012,
respectively). However, the difference in the maximal continuous
walking time in the eight patients who achieved an FAC score
of 4 was not statistically significant between the WPAL and the
orthosis (p= 0.091).

DISCUSSION

In this retrospective study that includes updated results from
previous reports, all data were extracted from development
research records from 2007 to 2020. The present findings confirm
that the WPAL improves walking ability in patients with a wide
range of SCIs compared with the orthosis, such as cervical SCI.

Frontiers in Neurorobotics | www.frontiersin.org 7 February 2022 | Volume 16 | Article 775724177

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Koyama et al. Wearable Power-Assist Locomotor

TABLE 3 | Gait performance.

Level of injury (R/L) Maximum FAC score Number of WPAL

trials to reach a

FAC score of 4

Consecutive walking distance (m) Consecutive walking time (min)

Orthosis WPAL Orthosis WPAL Orthosis WPAL

Cervical

C5/C5 1 2 – – – –

C5/C6 4 3 – 20.3 – 11.1

C6/C6 1 2 – – – –

C6/C6 3 3 3.5 50.4 2.7 18.2

C6/T10 3 4 Missing data 10.2 69.9 6.1 5.5

C7/C7 4 4 8 36.5 69.3 14.2 6.4

C7/C7 1 2 – – – –

C7/C7 – – – – – –

T1/C7 3 4 17 9.2 49.0 1.9 5.8

T1/C8 – – – – – –

Upper thoracic

T3/T3 – 4 13 – 154.1 – 14.5

T4/T4 2 3 – 5.0 – 0.5

T6/T6 2 4 16 20.0 30.0 5.0 4.5

T6/T6 2 4 10 40.0 80.0 5.0 9.5

T6/T6 4 4 8 40.0 80.0 8.0 8.0

Lower thoracic

T7/T7 4 4 8 21.9 163.8 7.5 5.5

T7/T7 1 2 – – – –

T8/T8 – 4 9 – 76.2 – 5.9

T8/T8 2 4 9 20.0 20.0 3.0 3.0

T9/T9 3 4 12 57.0 99.0 6.0 12.0

T10/T10 2 2 – – – –

T10/T10 4 4 2 110.0 185.0 6.0 10.0

T10/T10 4 4 5 131.0 1052.0 12.0 51.0

T11/T11 3 4 7 40.0 76.0 5.0 9.5

T11/T11 4 4 Missing data – – – –

T12/T12 4 4 22 107.0 1095.0 6.0 64.0

T12/T12 3 4 8 44.0 220.0 6.0 18.0

T12/T12 4 3 – – – –

T12/T12 4 4 5 186.0 1362.3 11.0 60.5

T12/T12 4 4 5 879.0 2375.0 61.0 120.0

Lumbar

L1/L1 – 4 6 – 123.9 – 7.3

For the first time, we summarized the development history
of the WPAL in this study. During this study period, the
WPAL was updated seven times. The main updates were related
to the safety and appearance of the device for the purpose
of improved usability. Contrarily, the medial-type hip joint
system without the trunk orthosis has not changed. Additionally,
the location and number of motors have not changed since
2006. We believe that the development history would be
helpful for devising a new gait-assisted robot (e.g., development
order and required period of development). To the best of
our knowledge, there is one report about the differences in
the updates of the robots. Guanziroli et al. compared two
different gait patterns using the RewalkTM (ReWalk Robotics
Ltd., Yokneam, Israel) between first- and second-generation

software control; the latter had better synchronization between
the hip and knee kinematics based on healthy kinematics and
kinetics profiles for improvement of the quality of the gait
pattern (Guanziroli et al., 2019). They reported an extension
of the 6-min walking test and an improvement in the 10-m
walking test.

The mean number of WPAL trials to reach an FAC score
of 4 using a rolling walker was 9 in all patients and 13 in
the cervical group, 12 in the upper thoracic group, 8 in the
lower thoracic group, and 6 in the lumbar group. Some studies
have reported the number of WRE trials required to walk with
a walking aid and physical assistance (Esquenazi et al., 2012;
Hartigan et al., 2015; Kozlowski et al., 2015; Guanziroli et al.,
2019; Tsai et al., 2021) (Table 4). Esquenazi et al. reported that
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FIGURE 3 | Comparisons of gait performance between the conventional orthosis and the WPAL. (A) Maximum FAC score, (B) continuous walking distance, and (C)

continuous walking time. Each box represents 25–75% percentile and whiskers represent 5–95 percentile. Asterisk indicates statistically significant differences (p <

0.05). FAC, functional ambulation category; WPAL, Wearable Power-Assist Locomotor.

TABLE 4 | Summary results of previous studies and the present study.

References Patients Level of injury Device The degree of gait

independence with the device

Number of gait training

using the devices

Esquenazi et al.

(2012)

12

(motor-complete)

T3-12 ReWalkTM Independent 24 (max)

Guanziroli et al.

(2019)

13

(motor-complete)

T4-L4 ReWalkTM Independent 22 (mean)

Tsai et al. (2021) 8

(motor-complete)

T1-11 ReWalkTM Independent 30 (median)

Kozlowski et al.

(2015)

7

(4 motor-complete)

(3 motor-incomplete)

C4-T10 Exso Minimal assistance

(6 patients)

Contact guard and

close supervision

(5 patients)

8 (median)

15 (median)

Hartigan et al.

(2015)

3

(motor-complete)

5

(4 motor-complete)

(1 motor-incomplete)

8

(7 motor-complete)

(1 motor-incomplete)

C5-7

T1-8

T9-L1

Indego Minimal/ moderate

(3 patients)

Supervision

(2 patients)

Minimal assistance

(3 patients)

Supervision

(6 patients)

Minimal assistance

(2 patients)

5

Present study 31

(motor-complete)

C5-L1 WPAL Independent

(20 patients)

9 (mean)*

*The mean number of WPAL trials to reach an FAC score of 4 using a rolling walker. WPAL, Wearable Power-Assist Locomotor; FAC, functional ambulation category.

all the 12 patients with a motor-complete SCI (T3–T12 injury
level) were able to walk independently without physical assistance
using the ReWalkTM system (ReWalk Robotics Ltd., Yokneam,
Israel) for at least 50–100m continuously, for a period of at
least 5–10min continuously, after up to 24 trials (Esquenazi
et al., 2012). Guanziroli et al. reported that 13 patients with
a motor-complete SCI (T4–L4 injury level) required a mean
of 22 trials to achieve independent walking using ReWalkTM

with crutches (Guanziroli et al., 2019). Tsai et al. reported
that eight patients with motor-complete SCIs (T1–T11 injury
level) required a median of 30 (range 7–90) trials to achieve
independent walking using ReWalkTM with crutches within a
median of 111 days (range 87–210 days) (Tsai et al., 2021).
Kozlowski et al. reported that 6 of 7 patients withmotor-complete

(4) or incomplete (3) SCIs (C4–T10 injury level) achieved
walking using the Exso system (Exso Bionics, Richmond, CA,
USA) with a front-wheeled walker or Lofstrand crutches and
minimal assistance in a median of 8 trials, and 5 of them achieved
walking with contact guard and close supervision assistance in
a median of 15 trials (Kozlowski et al., 2015). Hartigan et al.
reported three patients with motor-complete tetraplegia (C5–
C7 injury level) who were able to walk after 5 WRE trials
using a bilateral platform rolling walker with the minimal or
moderate assistance of one therapist (Hartigan et al., 2015). In
addition, six of the eight patients with motor-complete SCIs (T9–
L1 injury level) were able to walk with supervised assistance
using forearm crutches or a rolling walker (Hartigan et al., 2015).
Regarding the level of injury, the WPAL was able to achieve
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walking independence with a rolling walker within a relatively
small number of trials.

The maximum continuous walking time and distance
using the WPAL were 120min and 2,375m, respectively. The
maximum run time of WPAL is 120min owing to the battery
capacity. This result suggests that the WPAL has sufficient
walking performance for it to be utilized at home and in
the community. van Dijsseldonk et al. (2020) investigated the
number of WREs used in home and community environments
in 14 patients with SCIs at an injury level of T4 to L1 (van
Dijsseldonk et al., 2020). This previous study reported that
the estimated median active time is 46 (range 19–84) min,
during which the median estimated total distance covered is 243
(range 22–1,367) m, and the median estimated maximal distance
covered without rest is 120 (range 12–1,125) m (van Dijsseldonk
et al., 2020).

In the present study, 10 patients with cervical SCIs practiced
the WPAL gait. All patients with cervical SCIs who reached an
FAC score of 4 in the WPAL gait had longer continuous walking
distances; however, two patients had shorter continuous walking
time compared with those using an orthosis. The results of the
longer walking distance with shorter walking time for WPAL
than for orthosis suggests that WPAL walking requires a more
quick and constant lateral weight shift than orthotic walking.
A previous study reported that a patient is required to make
a quick and constantly lateral weight shift with WPAL motion
during the WPAL gait. This rhythmic lateral weight shift is
produced by the lateral force using the upper limbs (Tanabe
et al., 2017). Even with otherWREs, independent rhythmic lateral
weight shifts during walking are difficult for patients with cervical
SCIs. Many previous studies reported that other WREs require
assistance for walking in patients with cervical SCIs (Hartigan
et al., 2015; Kozlowski et al., 2015; Benson et al., 2016; Birch
et al., 2017). A previous study reported that two patients with
cervical SCIs (a motor-complete C8 and a motor-incomplete
C4) were able to walk over 100m using an Ekso powered
exoskeleton with supervision or minimal assistance (Kozlowski
et al., 2015). Benson et al. (2016) reported that one patient with
motor-incomplete C7 lesions, who could walk without using
an exoskeleton, was able to walk up to 91m in a 6-min walk
test using the ReWalkTM (Benson et al., 2016). Hartigan et al.
(2015) reported that patients with three motor-complete cervical
SCIs (one C5 and two C6 lesions) were able to walk an average
distance of 64m in a 6-min walk test using an Indego exoskeleton
(Parker Hannifin Corporation) and a bilateral platform rolling
walker with minimal or moderate assistance from one therapist
(Hartigan et al., 2015). Birch et al. (2017) reported that five
patients with cervical SCIs with motor-incomplete injury (three
C4 and two C6 lesions) were able to perform a timed up and
go test in a mean of 302 s (95% CI ± 49.6 s) with one assistant
for three patients and two assistants for two patients using the
REX robotic exoskeleton (Rex Bionics) (Birch et al., 2017). In
the present study, patients with C5–C6 lesions did not reach an
FAC score of 4 using the WPAL, on equality with using other
WREs. However, patients with C7 lesions, even with motor-
complete SCIs, reached an FAC score of 4 even in patients
with motor-complete because the WPAL has a high standing

stability, which is a structural characteristic similar to medial-
type orthoses (Saitoh et al., 1996; Tanabe et al., 2013b; Koyama
et al., 2016).

For using WPAL, the number of gait training to achieve
independent gait was tended to less than other robots. In
addition, WPAL tended to achieve independent gait in patients
with cervical SCI compared with other robots. However,
previous studies determined the number of gait training in
advance during study periods and reported the degree of gait
independence after completing total sessions of gait training.
In future studies, it is necessary to compare the number of
gait training to acquire independent walking with the gait-
assisted robot among different robots in the same patients
with SCI, rather than studies with a predetermined number of
gait training.

In this study, the number and frequency of WPAL trials
differed among patients. A previous study suggested that the
time required to learn to safely walk with WREs is affected
by the learning capacity, level of injury and completeness of
SCI, and the user’s strength and endurance levels (Kandilakis
and Sasso-Lance, 2021). In the future, we need to clarify the
rate of achievement of independent walking by configuring the
previous number and frequency of WPAL trials. Moreover, the
accumulation of clinical trials using WREs helps to elucidate
the optimal number of training sessions and the frequency
per week.

In this study, patients were able to continue the WPAL
trail even after reaching an FAC score of 4 if they wished. In
the future, the long-term effects of habitual walking using the
WPAL on physical functions should be examined. Prolonged
sitting in a wheelchair is associated with an increased risk
of all-cause mortality (Rezende et al., 2016). Patients with
SCIs commonly engage in less physical activity compared with
healthy adults (Haisma et al., 2006; van den Berg-Emons et al.,
2010). According to the physical activity guidelines, patients
with SCIs should engage in at least 30min of moderate- to
vigorous-intensity aerobic exercise three times per week for
cardiometabolic health benefits (Martin Ginis et al., 2018).
Some studies reported that walking with WREs has numerous
beneficial effects on pulmonary function (Xiang et al., 2021),
bladder function (Chun et al., 2020), and sitting balance (Tsai
et al., 2021). Habitual walking exercises using the WPAL three
times a week for a long time may provide health benefits for
patients with SCIs.

Long-term use in the community and its effects should be
examined. Another robot is already being used in daily life
situations (van Dijsseldonk et al., 2020). Further refinement of
the WPAL will enable its long-term use in homes. The common
prevent factor for long-term use is that a wheelchair is a very
safe and comfortable mobility device for daily transportation
in patients with SCI. Because the homes of wheelchair users
are remodeled to make them accessible for wheelchair users,
they can live without walking or standing. However, the robots
have the advantage when patients with SCI perform cooking,
washing, and cleaning (windows and shelves that cannot be
reached on the wheelchair). Kandilakis et al. reported that the
goal of robotic exoskeleton use is not to replace a wheelchair,
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but to create a supplemental means of mobility, exercise, or
activities of daily living (Kandilakis and Sasso-Lance, 2021).
We also believe that the alternate usage between robots and
wheelchairs is the goal in the near future. A beneficial point of
the WPAL is that it is possible to move using a wheelchair with
the WPAL attached to their lower limbs because the WPAL has
motors installed between both the lower limbs and no trunk
support orthosis.

Further important development points for all robots,
such as the WPAL, are the stair climbing, the lateral
movement in a standing position, the ease of transporting
the robots and the walking aids, the lightweight of
the robots, the ease of donning/doffing them, the easy
maintenance, high sound/waterproofing property, and
fall prevention or detection system. For these, it is
necessary to improve elemental technologies, such as the
motors and the materials used for the robots. Lastly,
we should examine whether the WPAL can improve or
recover motor function in patients with motor-incomplete
injury by partial motor assistance rather than complete
motor assistance.
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Manual wheelchair propulsion is known to be inefficient and causes upper extremity

pain, fatigue, and injury. Power-assisted wheelchairs can mitigate these effects through

motors that reduce users’ effort and load during propulsion. Among the different control

strategies proposed to govern the user-wheelchair interaction, impedance control-based

ones appear to be the most natural and effective. It can change the apparent dynamical

properties of the wheelchair, particularly mass and friction, and automatically compensate

for external disturbances such as terrain conditions. This study investigates the

advantages and disadvantages of this control strategy employing predictive simulations

of locomotion with power-assisted wheelchairs in different scenarios. The simulations

are generated using a biomechanically realistic model of the upper extremities and their

interaction with the power-assisted wheelchair by solving an optimal control problem.

Investigated scenarios include steady-state locomotion vs. a transient maneuver starting

from rest, movement on a ramp vs. a level surface, and different choices of reference

model parameters. The results reveal that the investigated impedance control-based

strategy can effectively reproduce the reference model and reduce the user’s effort, with

a more significant effect of inertia in the transient maneuver and of friction in steady-state

locomotion. However, the simulations also show that imposing a first-order, linear

reference model with constant parameters can produce disadvantageous locomotion

patterns, particularly in the recovery phase, leading to unnecessary energy dissipation

and consequent increase in energy consumption from the batteries. These observations

indicate there is room for improvement, for instance, by exploring energy regeneration in

the recovery phase or by switching referencemodel nature or parameters along the cycle.

To the best of our knowledge, this is the first investigation of impedance control-based

strategies for power-assisted wheelchairs using predictive simulations and a realistic,

nonlinear model of the user-wheelchair system.

Keywords: power-assisted wheelchairs, impedance control, optimal control, predictive simulations, assistive

technology
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1. INTRODUCTION

Wheelchair locomotion is common among people with physical
disabilities and can help them have a more independent
living. However, locomotion with manual, pushrim-propelled
wheelchairs is known to have low efficiency and to impose
significant and repetitive loads on the upper extremity, often
leading to muscle fatigue, pain and injuries (van derWoude et al.,
2001).

In order to mitigate these effects, wheelchairs with partial
motor assistance are drawing increasing interest, and studies
compare the performance of commercially available models in
different circumstances (Karmarkar et al., 2008). This type of
wheelchair is often referred to as PAPAW (Pushrim-Activated
Power AssistedWheelchairs). It has electric motors that assist the
person in manually propelling the wheelchair, thus enabling the
user to exercise while avoiding excessive muscle effort and upper
extremity loads and, consequently, reducing the risk of muscle
fatigue and joint injuries (Kloosterman et al., 2012). This type
of assistance is important in conditions where large torques are
required, such as on ramps or rough terrain (Kloosterman et al.,
2012). It can also be helpful on descents where the assistance
torque can act as a brake to ensure safer locomotion (Seki et al.,
2009).

There are different types of assistance strategies for a PAPAW.
The simplest are those based on feedforward control laws where
the motor torque is directly related to the torque applied by the
user on the pushrim. The most elementary version of this type
of assistance applies constant torque whenever the pushrim is
actuated by the user.

A frequently used feedforward strategy is the generation of
an assistance torque proportional to the torque applied by the
user (Guillon et al., 2015), but this torque amplification strategy
may compromise handling of the wheelchair due to possible
differences in the magnitudes of forces applied by the person’s
right and left arms on the pushrim (Heo et al., 2018). In order
to provide an effective shared control system, Cooper et al.
(2002) propose a proportional feedforward control during the
propulsion phase, a linear decay of assistance over time in the
recovery phase, and a regenerative braking in case the maximum
speed threshold is achieved.

The literature reports a series of other control strategies
for PAPAWs that range from reducing the effects of the
environment on the dynamics of wheelchairs to the assistance
in particular conditions and applications. Lee et al. (2016), for
instance, attempt to correct for the effects of gravity on ramps
by introducing inclination sensors and requiring additional
information such as user’s mass. Oonishi et al. (2010), in
turn, proposes the combined use of an electromyography-based
estimator of user intention and a disturbance torque estimator
to define the assistance torque. Assistance strategies are also
proposed for special maneuvers such as steps climbing (Seki et al.,
2006) and wheelie (Santos et al., 2016).

Among the various control strategies proposed for power-
assisted wheelchairs, a promising one is the impedance control
as it provides a natural interaction with the user by manipulation
of the apparent system properties, such as apparent mass

and friction. In fact, impedance control is a well-established
technique to control the relationship between the movement
kinematics and the force between robots and humans (Hogan,
1985) and is widely used in situations where the environment
influences the controlled dynamic system, such as in exoskeletons
(Li et al., 2017). Its application to power-assisted wheelchairs is
investigated in different studies (Oh and Hori, 2014; Shieh et al.,
2015; Lee et al., 2016).

The implementation of the impedance control strategy often
requires the adoption of a reference model for the wheelchair
system, which is almost invariably assumed as a linear first-order
model composed of a lumped mass and a viscous damping. It is,
indeed, a common practice to investigate and design assistance
strategies for power-assisted wheelchairs on the basis of such
simple mass-damper models (Chénier et al., 2014; Oh and Hori,
2014; Shieh et al., 2015; Lee et al., 2016; Heo et al., 2018). Such
first-order models, however, neglect the dynamics associated
with the cyclic motion of the arms and the biomechanics of
the upper extremity, which may lead to substantial inaccuracies
in representing the wheelchair-user system dynamics (Chénier
et al., 2014).

Assessing the performance of impedance control-based
strategies in different locomotion conditions, investigating the
potentially deleterious effects of using a simple mass-damper
model as a reference model, is an important step toward its
effective implementation in real power-assisted wheelchairs.
Considering this, the main objective of this study is to evaluate,
through predictive simulations of wheelchair locomotion at
different typical conditions, the performance of assistance
based on impedance control and the effects of considering in
the control law a first-order dynamics (mass/damper) as the
reference model. The proposed simulation framework is based
on a musculoskeletal model of the upper extremities and its
interaction with the power-assisted wheelchair, and the solution
of an optimal control problem. The effects of alterations in the
reference model parameters are predicted for steady-state and
transient locomotion on a level surface and on a ramp.

2. MATERIALS AND METHODS

The approach adopted here is similar to that in Ackermann
et al. (2014). A biomechanical model of the upper extremity
and its interaction with the wheelchair is used to represent the
two phases of the wheelchair locomotion cycle. An impedance
control strategy is implemented whose objective is that the
system dynamics seen by the user matches a reference, linear,
lumped-mass model subject to viscous damping. Different mass
and damping combinations are tested to investigate the effects
on system performance in terms of muscle and motor effort.
Simulations are generated by solving an optimal control problem
to predict the performance in four locomotion conditions
representing different activities of daily living, steady-state and
transient locomotion on level surfaces and ramps.

2.1. Wheelchair-User Model
A moving four-bar mechanism is adopted to model the
wheelchair-user system (Ackermann et al., 2014). Bilateral
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FIGURE 1 | Model of the wheelchair-user system composed of four rigid bodies representing arms (red), forearms (green), rear wheels (blue) and the remaining body

and wheelchair elements (gray/black). Coordinates are represented in figure (A), where α is the upper arm angle with respect to the direction of motion, β is the

forearm angle with respect to the direction of motion, θ is the rear wheel angular displacement, x is the forward displacement of the shoulder/wheelchair and η is the

ramp inclination angle. Lengths are represented in figure (B), where Y is the relative vertical and H is the relative horizontal distance between the center of the rear

wheels and the shoulder, A is the upper arm length, B is the forearm length, Rp is the pushrim radius, and Rw is the rear wheel radius.

symmetry is assumed, which is usual in daily wheelchair
locomotion, (Goosey-Tolfrey and Kirk, 2003; Soltau et al.,
2015). The user model represents an average individual, whose
total mass (70.0 kg) and height (1.70m) are consistent with
Brazilian male averages and with ranges reported in Gil-
Agudo et al. (2010). The model is formed by four rigid bodies
representing arms, forearms, rear wheels, and a fourth rigid body
encompassing the remaining segments of the body and elements
of the wheelchair, as illustrated in Figure 1.

The shoulder and elbow joints and the wheel axle are
considered ideal hinge joints. In the recovery phase, in which
the hand is not in contact with the pushrim and undergo
repositioning in preparation for the next propulsion phase,
the model has three degrees of freedom, and the generalized
coordinate vector is

q =





α

β

θ



 , (1)

where α and β are the angles between forearms and arms
concerning the direction of motion, respectively, and θ is the
angular displacement of the wheelchair’s rear wheels, as shown in
Figure 1. In the propulsion phase, the contact between the hands
and the pushrims is represented by a hinge joint that transforms
the mechanical system into a moving four-bar mechanism with a
single degree of freedom.

Applying the D’Alembert’s principle in a code implemented in
MATLAB, we derived the equations of motion in their minimal
form for the recovery phase as

M(q)q̈+ k(q, q̇) = ke(q) , (2)

TABLE 1 | Adopted model parameters.

Dimensions

User’s height 1.70 m

Upper arm length (A) 0.3162 m

Upper arm center of mass location 0.1379 m

Forearm length (B) 0.3400 m

Forearm center of mass location 0.1693 m

Pushrim radius (Rp) 0.2570 m

Rear wheel radius (Rw ) 0.2988 m

Rear-wheel/shoulder distance (H) 0.05 m

Rear-wheel/shoulder distance (Y ) 0.75 m

Inertia properties

User’s mass 70.0 kg

Upper arms mass 3.9200 kg

Upper arms moment of inertia 0.0406 kg m2

Forearms mass 3.0800 kg

Forearms moment of inertia 0.0416 kg m2

Rear wheels moment of inertia 0.1274 kg m2

Combined mass (Wheelchair+user) 72.5200 kg

whereM is the mass matrix, k is the vector of generalized Coriolis
and centrifugal forces and ke is the generalized force vector.

Length and inertia parameters are determined for a person
1.70 m in height with a total body mass of 70 kg, based
on anthropometric data in Winter (2009), see Table 1. As the
simulations do not involve turning, the only resistive force
considered was the rolling resistance (Sauret et al., 2012), adopted
as 20 N, corresponding to an approximate value reported in
van der Woude et al. (2001) for locomotion on a vinyl pavement.

In the propulsion phase, in which a hinge joint is formed
between the hands and the pushrims, the generalized coordinates
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α, β and θ are linked through the holonomic constraints

c(α,β , θ) =

[

A cosα + B cosβ − Rp cos θ −H
A sinα + B sinβ − Rp sin θ − Y

]

= 0 , (3)

where H and Y are the horizontal and vertical distances between
the shoulder and the center of the wheelchair’s rear wheels,
respectively, A is the upper arm length, B is the forearm length
and Rp is the pushrim radius, whose values are adopted as
indicated in Table 1.

Considering the constraints in Equation (3), the equations
of motion in the minimal form for the propulsion phase are
obtained from Equation (2) as

JTMJθ̈ + JTM
dJ

dt
θ̇ + JTk = JTke , (4)

where J is the Jacobian defined as

J(α,β , θ) =
∂q

∂θ
. (5)

Using ideal joint torque generators can lead to unrealistic joint
torque patterns, such as torque discontinuities between phases,
unrealistic torque magnitudes, and torque peaks when the elbow
is close to full extension, due to the large mechanical gain
in this configuration. For these reasons, it is important to
take the physiological, intrinsic musculoskeletal properties into
account.Muscle force-length and force-velocity relationships and
passive joint torques due to ligaments and connective tissue were
adopted from Brown (2018), that reports data obtained for an
elite wheelchair basketball athlete. According to this approach,
upper extremity joint torques in both, extension and flexion, are
functions of elbow and shoulder angles and angular velocities as

τi = fi(ai,α, α̇,β , β̇) , (6)

where ai ∈ [0, 1] represents equivalent, global muscle activations
for shoulder extensors (i = se), shoulder flexors (i = sf ), elbow
extensors (i = ee) and elbow flexors (i = ef ) that modulate the
corresponding active joint torques τi.

The muscle activation dynamic is modeled, as in He et al.
(1991), by a linear, first-order dynamic as

dai

dt
= (ui − ai)

(

ui

Ta
+

1− ui

Td

)

, (7)

where ui ∈ [0, 1] is the neural excitation corresponding to the
muscle activation ai, Ta is the activation time constant assumed
as 20 ms and Td is the deactivation time constant assumed as
40 ms. The adopted activation and deactivation time constants
are consistent with values reported in the literature, as in Brown
(2018).

2.2. Impedance Control
The assistance strategy considered is continuous and based on
the impedance control, which aims at imposing the dynamic
behavior between the force applied by the user and the wheelchair

velocity, i.e., the dynamics seen by the user. The chosen reference
dynamics are commonly used in the literature, corresponding to
a lumped mass and a resistive damping force. This dynamics is
the impedance control reference model, as

Mi
dvr

dt
+ Ci vr =

τp

Rw
, (8)

where Mi is the apparent mass, Ci is the apparent damping
coefficient, τp is the torque applied by the user, Rw is the
wheel radius and vr is the reference speed for the control loop,
with vr = Rw ωr .

The nominal parameters of this reference model, Mi and Ci,
are obtained based on a linear approximation of the four-bar
model in Figure 1. The parameters that best fit the response of
the nonlinear model for a startup simulation on level ground
in open loop are identified using the tfest MATLAB transfer
function estimator.

In order to indirectly impose the apparent impedance,
feedback control is employed to control the speed based on
the desired speed generated by the reference impedance. The
control strategy adopted is illustrated by the block diagram in
Figure 2, where G(s) is a PI controller that seeks to impose the
reference angular velocity ωr to the output angular velocity ω.
For this purpose, the controller is designed using the pole and
zero cancellation technique, resulting in a closed-loop system that
has similar behavior to the first-order system in Equation (8).
The time constant of this closed loop was adjusted to 0.02 s so
that its dynamics would be negligible compared to the other time
constants of the wheelchair-user system dynamics.

The reference angular velocity ωr is produced based on the
torque τp applied by the user to the pushrim and through the
first-order reference model that describes the desired mechanical
impedance in the sense that, if the speed control error is small,
so the relationship between ω and τp is apparently imposed in a
similar way to that of the reference impedance.

2.3. Predictive Simulation Approach
The predictive simulations are generated by solving an optimal
control problem, a formulation commonly used in studies on
human movement in activities such as walking (Ackermann
and van den Bogert, 2010; Sreenivasa et al., 2017), jumping
(Porsa et al., 2015), and also wheelchair locomotion (Brown and
McPhee, 2020).

The predictive simulations for all conditions and scenarios
consisted of searching optimal motion duration tf and time
series of the controls (equivalent neural excitations) and states
(equivalent muscle activations and generalized coordinates and
their time derivatives) that minimize a cost function quantifying
physiological muscle effort as

Wp =

∫ tf

0
(u2ee + u2ef + u2se + u2sf ) dt , (9)

where the subindices se refers to the shoulder extensors, sf to
the shoulder flexors, ee to the elbow extensors, and ef to the
elbow flexors.
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FIGURE 2 | Block diagram representing the impedance control loop, where the signal τp is the user torque, τd is the disturbance torque, τm is the motor torque, vr is

the reference rear wheel velocity generated by the reference model, ωr is the reference rear wheel angular velocity, and ω is the angular velocity of the wheelchair rear

wheels. The transfer function G(s) represents the velocity controller. The parameter Rw is the wheel radius, Mi is the desired apparent mass and Ci is the desired

apparent friction coefficient.

The performance of the control strategy in the different
conditions and reference model parameter combinations was
assessed in terms of user and motor effort. User effort
was quantified by Wp in Equation (9), which is the cost
function minimized to generate the predictive simulations of
unassisted and assisted locomotion. The motor effort, in turn, is
quantified by

Wm =

∫ tf

0
(τ 2m) dt . (10)

The constraints of the optimal control problem include the
dynamics in Equation (2) for the recovery phases, in Equation (4)
for the propulsion phases, and in Equation (7) for the activation
dynamics. In the assisted locomotion simulations, in which the
control loop in Figure 2 is active, the corresponding closed-loop
dynamics is included as well. Other constraints are: continuity
of all states between adjacent propulsion and recovery phases,
the imposition of an average speed of 0.9 m/s, and physiological
upper and lower bounds on neural excitations (ui ∈ [0, 1]),
muscle activations (ai ∈ [0, 1]) and generalized coordinates
and velocities.

In the steady state simulations, periodicity constraints are
added on initial and final states of one complete cycle to
ensure a periodic motion at a prescribed average speed,
with one propulsion phase and one recovery phase. There
are no periodicity constraints in the startup simulations, the
wheelchair starts from rest, with ω(t=0)=0, and a prescribed
total displacement of 1.6 m is added. The startup simulation is
composed of five phases in the following sequence: propulsion-
recovery-propulsion-recovery-propulsion.

All simulations are performed using the direct collocation
method and implemented in MATLAB. The time discretization
was performed using the pseudospectral Radau method (Garg
et al., 2009) where the derivative of the states are obtained
by deriving a Lagrange polynomial. The resulting nonlinear

optimization problem (NLP) is then solved using the IPOPT
software (Wächter and Biegler, 2005), using the linear solver
ma57 (HSL, 2013). In the startup simulations, 100 collocation
points divided in 10 polynomials of order 10 are used in the
propulsion phases and 144 collocation points divided in 12
polynomials of order 12 are used in the recovery phases to reduce
mesh errors. In the steady-state simulations, 5 polynomials of
order 20 in each phase are sufficient tominimizemesh errors. The
mesh is weighted using a Legendre-Gauss-Lobatto polynomial to
further reduce mesh errors, especially in the interface between
phases. The first and second derivatives of the constraints and
cost function are obtained through an automatic differentiation
class using the forward mode written in MATLAB.

2.4. Simulations
The transient locomotion, representing the frequent activities
of daily living where the wheelchair is accelerated from rest
(Koontz et al., 2009), is referred to as startup simulation and
is characterized by the sequence of phases propulsion-recovery-
propulsion-recovery-propulsion, starting from rest, covering a
predefined displacement, and at a given average speed. The
steady-state locomotion, in turn, is referred to as steady state,
represents locomotion over longer distances and is generated
for one complete, periodic propulsion cycle at a predefined
average speed.

The simulations are planned to investigate the effects of
imposing a first-order linear reference model in the impedance
control strategy and to assess the influence of changing the
reference model parameters,Mi and Ci, on user effort and energy
consumption by the motor. The simulations are performed to
cover a range of typical locomotion conditions, steady state vs.
transient (startup), on a level surface vs. on a ramp.

The average speed is constrained to 0.9 m/s in both, steady
state and startup simulations, while in the startup simulation a
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total displacement of 1.6 m is added as a constraint. For the
simulations on a ramp, an inclination of η = 3◦ is adopted.

First, reference simulations of unassisted locomotion (motors
turned off) are generated by solving the optimal control problem
in Section 2.3 in all conditions: steady state on a level surface
and on a ramp, and startup on a horizontal plane and on a
ramp. The predictive simulations for assisted locomotion, with
the impedance control loop in Figure 2, are generated using these
reference simulations as initial guesses. When the convergence
to a local minimum corresponding to clearly unrealistic patterns
occurs, identified, for instance, by an unnaturally large push angle
with an excessively posterior hand position on the pushrim in
the beginning of the propulsion phase, the optimization is rerun
with a different initial guess. This new initial guess corresponds
to a predictive simulation generated for the same locomotion
conditions and closest possible reference model parameters.

To investigate the impedance controller performance and its
impacts on the wheelchair-user interaction we have applied a
50% reduction in the dynamic parameters of the reference model.
This reduction represents a significant change in the parameters
and therefore in the impedance, but it still keeps the user as the
protagonist of the propulsion, who applies the largest part of
the torque necessary to characterize the movement. We found
through simulation that changes of 50% in the model parameters
are sufficient to analyze its effects, while the maximum torque
produced by the motor doesn’t increase excessively.

In the assisted locomotion simulations, four combinations
of the reference model mass and friction parameters are
tested: 100% Mi and 100% Ci (nominal model, M100 −

C100), 50% Mi and 100% Ci (M50 − C100), 100% Mi

and 50% Ci (M100 − C50), and 50% Mi and 50% Ci

(M50 − C50). The nominal simulation (M100 − C100) permits
investigating the effects of imposing first-order linear dynamics
in the impedance control loop and also to verify the
disturbance rejection capability of this approach without
changing overall system mass and friction properties. For
instance, in locomotion on ramps, it is expected that the
impedance control strategy provides the user the sensation of
locomotion on a level surface. The other model parameter
combinations allow for investigating the effects on locomotion
performance of reducing apparent system mass and/or friction
by 50%.

In summary, reference simulations are generated for
locomotion without assistance, i.e., with the control loop
turned off, for the four conditions, steady state and startup
locomotion on a level surface and on a ramp. For each of these
four locomotion conditions, four simulations of power-assisted
locomotion are generated for the referred combinations of
reference model parameters in the impedance control loop.
Therefore, the total number of generated predictive simulations
amounts to twenty.

3. RESULTS

The predicted patterns for the steady state simulation at 0.9m/s
(Figure 3A) show overall agreement with kinematic, kinetic

FIGURE 3 | Stick figures representing snapshots of the predicted kinematics

for unassisted locomotion on a level surface at an average speed of 0.9 m/s

for a complete cycle in the steady state simulation (A), for the first (B), and

second (C) complete cycles for the startup simulation.

and spatiotemporal data reported in the literature. Tables 2, 3
present a comparison of parameters of the predicted patterns
with data reported in Boninger et al. (2002) and Gil-Agudo
et al. (2010) for different groups. The predicted cadence of
1.07 s−1 is close to median values reported in Gil-Agudo et al.
(2010). Predicted push time (0.395 s) and recovery time (0.545 s)
are close to the reported in Gil-Agudo et al. (2010), leading
to a ratio push time/recovery time of 0.73, which is lower
than the reported in both papers, indicating a somewhat lower
predicted duty cycle. In the case of Boninger et al. (2002), this
difference can be attributed to the substantially larger reported
push angles compared to the predicted push angle of 64.8◦,
which is close to the ones reported in Gil-Agudo et al. (2010).
The push angle is influenced by factors such as adopted stroke
patterns, wheelchair adjusting or trunk mobility, which may
explain the differences in the reported push angles. The predicted
maximal pushrim tangential force of 38.1N agrees well with the
mean values reported in Boninger et al. (2002). The shoulder
maximal flexion (7.6N.m) and extension moments (3.97N.m)
agree well with the ones reported in Gil-Agudo et al. (2010).
For the elbow, the maximal flexion moment (3.72N.m) shows
good agreement, while the predicted maximal extension moment
(2.3N.m) is larger in magnitude than the reported in Gil-Agudo
et al. (2010), although not incompatible with expected patterns
considering the large overall variability of the data reported in
the literature.

The predicted wheelchair speed profile for the reference
simulation on a level surface for steady state locomotion (solid
black line in Figure 4A) shows the expected acceleration in
the propulsion phase, in which the system kinetic energy
increases due to positive work exerted by the hands on the
pushrim. In the recovery phase, starting at t = 0.395 s, the
center of mass of the whole user-wheelchair system decelerates
under the action of the rolling resistance force. However, the
wheelchair speed profile does show an acceleration in the
first half of the recovery phase, a behavior caused by the
dynamic effect associated with the backwards motion of the
upper limbs. The same effect occurs in the two recovery phases
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TABLE 2 | Comparison of kinematic, kinetic and spatiotemporal parameters of the steady state simulation at 0.9m/s to experimental data reported in Gil-Agudo et al.

(2010) for locomotion at 3 km/h ≈ 0.83m/s.

Predicted Gil-Agudo et al. (2010)

median (interquartile range)

G1 G2 G3 G4

Speed (m/s) 0.90 0.83 0.83 0.83 0.83

Max rim tangencial force (N) 38.1 - - - -

Cadence (1/s) 1.07 0.9 (0.3) 1.1 (0.4) 1.1 (0.4) 1.2 (0.3)

Push time (s) 0.395 0.6 (0.3) 0.5 (0.1) 0.4 (0.5) 0.4 (0.1)

Recovery time (s) 0.545 0.5 (0.1) 0.5 (0.1) 0.5 (0.2) 0.5 (0.2)

Push/Recovery 0.73 1.3 (0.5) 1.1 (0.4) 0.8 (0.2) 0.8 (0.2)

Push angle (◦) 64.8 62.5 (16.1) 58.6 (29.0) 64.5 (21.1) 57.5 (13.8)

Contact angle (◦) –110.1 –108.2 (18.5) –111.3 (20.6) –115.7 (17.5) –110.4 (17.5)

Release angle (◦) –45.3 –51.3 (14.2) –52.2 (16.1) –54.0 (16.4) -48.1 (13.4)

Max shoulder flex mom (N.m) 7.60 10.7 (4.6) 8.0 (3.2) 7.7 (4.8) 6.4 (4.6)

Max shoulder ext mom (N.m) 3.97 3.9 (4.5) 4.8 (2.3) 6.9 (2.5) 4.9 (2.6)

Max elbow flex mom (N.m) 3.72 4.6 (9.9) 4.9 (2.4) 6.0 (1.7) 4.6 (2.0)

Max elbow ext mom (N.m) 2.30 1.6 (1.3) 0.9 (1.0) 0.5 (0.9) 0.6 (0.9)

Data is reported as median (interquartile range). The fifty-one people ere grouped by their level of spinal cord injury (SCI): C6 tetraplegia (G1), C7 tetraplegia (G2), high paraplegia (G3),

and low paraplegia (G4). “-” represents data not reported in the paper.

TABLE 3 | Comparison of kinematic, kinetic and spatiotemporal parameters of the steady state simulation at 0.9m/s to experimental data reported in Boninger et al.

(2002) for locomotion at 0.9m/s.

Predicted Boninger et al. (2002)

mean (standard deviation)

ARC SC SLOP DLOP

Speed (m/s) 0.90 0.9 0.9 0.9 0.9

Max rim tangencial force (N) 38.1 45.8 (22.1) 38.3 (20.6) 47.0 (19.4) 65.8 (26.6)

Cadence (1/s) 1.07 1.13 (0.18) 0.88 (0.08) 1.03 (0.14) 0.81 (0.13)

Push time (s) 0.395 - - - -

Recovery time (s) 0.545 - - - -

Push/Recovery 0.73 1.12 (0.19) 1.21 (0.31) 1.03 (0.28) 0.78 (0.18)

Push angle (◦) 64.8 94.4 (24.1) 114.0 (13.7) 91.7 (13.8) 110.0 (13.0)

Contact angle (◦) -110.1 - - - -

Release angle (◦) -45.3 - - - -

Max shoulder flex mom (N.m) 7.60 - - - -

Max shoulder ext mom (N.m) 3.97 - - - -

Max elbow flex mom (N.m) 3.72 - - - -

Max elbow ext mom (N.m) 2.30 - - - -

Data is reported as mean (standard deviation). The thirty-eight individuals with paraplegia are grouped according to their selected stroke pattern in the recovery phase: semicircular

(SC), SLOP, DLOP, and arcing (ARC). “-” represents data not reported in the paper.

of the unassisted reference startup simulation for locomotion
on a level surface (Figures 3B,C, and solid black line in
Figure 5A).

The predicted joint torque profiles for the reference unassisted
locomotion on a level surface (Figure 6 for steady state and
Figure 7 for startup) show that the largest torques are applied
by the shoulder in flexion during the propulsion phases, with
shoulder flexion activations achieving peaks of about 0.14
in steady state (Figure 8A) and 0.55 in startup (Figure 9A).
The activation profiles (Figures 8, 9) lead to similar joint
torque profiles (Figures 6, 7), modulated by the intrinsic

muscle properties. Note, for instance, that the elbow extension
torque peaks in Figure 6D, in the end of the propulsion
phase (t≈0.35 s) and in the beginning of the recovery phase
(t≈0.55 s), have similar magnitudes, in spite of the different
corresponding elbow activation peaks shown in Figure 8D. This
difference is due to the effect of the force-velocity relationship,
which reduces force generation capacity of the elbow extensor
muscles during the concentric contraction at larger rates
close to full elbow extension in the end of the propulsion
phase, leading to a larger necessary activation to generate the
same torque.
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FIGURE 4 | Predicted wheelchair speed profile (A), bilateral propulsion torque applied by the user (B), and bilateral torque applied by the motors on the rear wheels of

the wheelchair (C) for steady state locomotion on a level surface at an average speed of 0.9 m/s for the reference unassisted condition (Reference), and for the

assisted locomotion with 100% of reference model parameters Mi and Ci (M100 −C100), reduction of 50% in Mi (M50 −C100), reduction of 50% in Ci (M100 −C50), and

reduction of 50% in Mi and Ci (M50 − C50).

The identification of the first-order linear model used as
reference in the impedance control strategy resulted in a dynamic
friction parameter of Ci = 14.88 N.s/m and a mass parameter
of Mi = 92.50 kg, which is consistent with system overall
mass (wheelchair + user).

Note that the typical speed profile in the recovery phase of
the unassisted reference locomotion vanishes in the assisted
locomotion simulations, which are characterized mostly
by a monotonic speed decrease along the recovery phase
(Figures 4A, 5A). Since the reference model in the impedance
control loop in Figure 2 corresponds to a block of mass Mi

under the effect of a viscous damping Ci, the reference velocity
vr decreases exponentially in the recovery phase in which
τp = 0. In this condition, the control loop ends up suppressing
the wheelchair acceleration as the upper extremity is moved
backwards by applying a negative motor torque τm. This
behavior occurs particularly in the first half of the recovery
phase, as clearly shown in Figure 4C (from t ≈ 0.4 s to t ≈ 0.8 s)
and Figure 5C (from t ≈ 0.4 s to t ≈ 0.6 s and from t ≈ 1.1 s
to t ≈ 1.4 s). This explains to a great extent why motor effort
is far from null in the assisted, nominal simulations with 100%
of Mi and 100% of Ci (Wm for condition M100 − C100 in
Table 4).

The results for assisted steady state locomotion on a level
surface show that reducing the apparent coefficient of friction

(M100 − C50 and M50 − C50) is effective in decreasing
user’s wheel torque (Figure 4B) as well as shoulder and
elbow torques (Figure 6) and the corresponding activations
(Figure 8). This explains the reduction in user’s effort (Wp)
shown in Table 4 for these conditions. For example, the
maximum shoulder flexion torque changes from approximately
15N.m to 12N.m in the M50 − C50 condition and to
9N.m in the M100 − C50 condition (Figure 6A). A reduction
in apparent mass alone, on the contrary, has a relatively
small effect on the user’s propulsion torque profile (M50 −

C100 in Figure 4B). In fact, the M50 − C100 condition
leads to increases in both user and motor effort (Table 4),
reflecting larger shoulder flexion torque and activation compared
to the reference unassisted simulation (Figures 6A, 8A),
even in the presence of larger motor torque magnitudes
(Figure 4C). This shows that an isolated decrease in apparent
system mass in the investigated impedance control strategy
is detrimental to performance in steady state locomotion
on a level surface.

The scenario is different for the assisted startup locomotion
on a level surface. The reduction in apparent viscous
friction alone (M100 − C50) has little influence on user
propulsion torque profile (Figure 5B), joint torques (Figure 7)
and activations (Figure 9) compared to the unassisted
condition, leading to similar user’s effort Wp in Table 4.
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FIGURE 5 | Predicted wheelchair speed profile (A), bilateral propulsion torque applied by the user (B), and bilateral torque applied by the motors on the rear wheels of

the wheelchair (C) along the sequence of phases propulsion-recovery-propulsion-recovery-propulsion in the startup locomotion on a level surface at an average

speed of 0.9 m/s for the reference unassisted condition (Reference), and for the assisted locomotion with 100% of reference model parameters Mi and Ci

(M100 − C100), reduction of 50% in Mi (M50 − C100), reduction of 50% in Ci (M100 − C50), and reduction of 50% in Mi and Ci (M50 − C50).

The reduction in apparent mass, instead, cuts user propulsion
torque by half (M50 − C100 and M50 − C50 in Figure 5B),
substantially decreasing shoulder flexion and elbow extension
torques (Figures 7A,D) and the corresponding activations
(Figures 9A,D) in the propulsion phases. This is achieved
through the assistance provided by a larger motor torque in
the propulsion phases (Figure 5C, from t = 0 to t ≈ 0.4 s and
from t ≈ 0.8 s to t ≈ 1.05 s).

The user propulsion torque profiles for the four reference
model parameter combinations in assisted steady state
locomotion on a 3◦ ramp, depicted in Figure 10A, are much
lower than those for the reference simulation and similar to
those predicted for locomotion on a level surface, Figure 4B.
The same occurs for the assisted startup locomotion, as
shown in Figure 11A, compared to results for the reference
startup locomotion on a level surface in Figure 5B. The
predicted muscle activation profiles for shoulder and
elbow extensors and flexors for the assisted locomotion
on the ramp (Supplementary Figure S4 for steady state,
Supplementary Figure S7 for startup) are similar to those
predicted for locomotion on a level surface (Figure 8 for
steady state, Figure 9 for startup). Note that user effort values
Wp reported in Table 4 for the assisted locomotion on a
ramp for both, steady state and startup, are much lower than

those for the unassisted reference simulations of locomotion
on the ramp. This compensation of gravity in the assisted
locomotion on ramps is ensured by an offset of motor torque
profiles in steady state, Figure 10B compared to Figure 4C,
and in startup, Figure 11B compared to Figure 5C. This
motor action is associated to a substantial motor effort
Wm (Table 4) and consequent large energy consumption
from the batteries.

4. DISCUSSION

The predicted patterns for the reference steady state locomotion
at 0.9m/s shows overall agreement with data reported in
the literature (Boninger et al., 2002; Gil-Agudo et al., 2010),
with the isolated observed differences compatible with the
typical variability in reported wheelchair propulsion patterns
in the literature. This indicates that the employed model and
optimal control approach are able to generate realistic wheelchair
locomotion patterns.

The results for the assisted locomotion indicate that the
studied impedance control strategy can effectively impose the
reference dynamics, despite the nonlinear dynamic nature of
the wheelchair-user system. This provides a natural way of
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FIGURE 6 | Predicted bilateral shoulder flexion (A), shoulder extension (B), elbow flexion (C), and elbow extension (D) torque profiles along a complete cycle for

steady state locomotion on a level surface at an average speed of 0.9 m/s for the reference unassisted condition (Reference), and for the assisted locomotion with

100% of reference model parameters Mi and Ci (M100 − C100), reduction of 50% in Mi (M50 − C100), reduction of 50% in Ci (M100 − C50), and reduction of 50% in Mi

and Ci (M50 − C50).

adjusting assistance intensity by manipulation of mass and
damping parameters in the reference model and leads to
automatic compensation of external disturbances such as the
effect of gravity on slopes or changes in rolling resistance
force in different pavements or rough terrain. These constitute
highly desirable characteristics of the impedance control
strategy. In fact, the predicted profiles for locomotion on a
3◦ ramp show that the impedance control strategy effectively
rejects the disturbance due to the weight component in the
direction of motion, so that the required user joint torques,
muscle activation profiles and muscle effort are similar to
those observed during locomotion on a level surface. This
effectively gives to the user the impression of propelling the
wheelchair on a level surface during upwards locomotion
on a ramp.

Despite the benefits of the investigated control strategy, the
simulations also reveal that imposing a first-order reference
model in the impedance control loop might cause undesired
side effects. The commonly used reference model seems adequate
for a situation in which a caregiver pulls the wheelchair-user
system. However, when the user self-propels the wheelchair,
the dynamics of the movement becomes markedly nonlinear,

mainly in the recovery phase when the motion of the arms
changes the system dynamics in a way not captured by the
first-order impedance control reference model that has the
tangential force on the pushrim and the wheelchair wheel angular
speed as the only inputs. The result is that the impedance
control treats these system nonlinearities as disturbances and
tries to reject them. This rejection leads to unnecessary
energy dissipation and battery power consumption to produce
unnatural movement.

This waste of energy is evident in the predicted nominal
simulations with 100% of Mi and 100% of Ci. One would
expect this parameter configuration would lead to low control
effort, as the reference model approximates the dynamics
of the original user-wheelchair system. In spite of that,
Table 4 reports large motor effort for the condition M100 −

C100 during locomotion on a level surface. This effect is
associated to a great extent with large motor breaking torques
in the first half of the recovery phase to suppress the
forward acceleration of the wheelchair as arms are accelerated
backwards (Figures 4C, 5C).

Different strategies can mitigate these undesired effects.
One possibility is to turn off assistance in the recovery
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FIGURE 7 | Predicted bilateral shoulder flexion (A), shoulder extension (B), elbow flexion (C), and elbow extension (D) torque profiles along the sequence of phases

propulsion-recovery-propulsion-recovery-propulsion in the startup locomotion on a level surface at an average speed of 0.9 m/s for the reference unassisted condition

(Reference), and for the assisted locomotion with 100% of reference model parameters Mi and Ci (M100 − C100), reduction of 50% in Mi (M50 − C100), reduction of

50% in Ci (M100 − C50), and reduction of 50% in Mi and Ci (M50 − C50).

phase or impose different dynamics for each phase. Another
possible strategy is to formulate an impedance control with
a proportional-derivative control law based solely on the
measurement of the wheelchair velocity. This strategy dispenses
the measurement of pushrim tangential forces, but, since
it does not impose a reference dynamics, it does not
compensate for external disturbances such as slopes. A third
possible strategy is to use a reference model that can also
capture the nonlinear dynamics associated with the swinging
of the arms.

The opposing effects of mass and viscous damping parameters
on steady state vs. startup locomotion can be attributed to their
different nature. The startup locomotion represents transient
maneuvers, where inertial forces are more important due
to larger accelerations. In steady state locomotion, instead,
accelerations are lower and average speed is greater, leading
to the predominant effect of viscous damping over mass.
In daily wheelchair use, which encompasses transient as
well as steady-state locomotion, an isolated reduction in
Ci could lead to overall improvement in terms of user
effort, but only a concomitant reduction in both apparent
parameters, friction and mass, can lead to a substantial user

effort decrease in all investigated conditions, as indicated
in Table 4. Thus, the reduction in both parameters seems
to be the most indicated choice when adjusting assistance
intensity level.

The employed model in this study allowed for a realistic
investigation of wheelchair propulsion, while ensuring continuity
and computational efficiency, important features for solving
optimal control problems. The model appropriately represents
the two phases of the locomotion cycle, the primary dynamic
effects related to the motion of the upper limbs, and the
intrinsic muscle properties. Nevertheless, a set of limitations
must be mentioned. Adopting a muscle model formulated on
the joint level should be sufficient to characterize muscle system
capacity in assessing overall system performance, but it does
not consider individual muscles, which may be important in
studies concerned with joint loads and muscle coordination.
Assuming the shoulder joint fixed to the wheelchair dispenses
the use of complex and computationally costly trunk models
but neglects the possible forward projection of the trunk
during propulsion, better representing populations with a lower
trunk mobility. A 2D model represents appropriately the upper
limb dynamics and its interaction with the power-assisted
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FIGURE 8 | Predicted shoulder flexion (A), shoulder extension (B), elbow flexion (C) and elbow extension (D) activation profiles along a complete cycle for steady

state locomotion on a level surface at an average speed of 0.9 m/s for the reference unassisted condition (Reference), and for the assisted locomotion with 100% of

reference model parameters Mi and Ci (M100 − C100), reduction of 50% in Mi (M50 − C100), reduction of 50% in Ci (M100 − C50), and reduction of 50% in Mi and Ci

(M50 − C50).

wheelchair as they occur predominantly in the sagittal plane,
but do not represent, for instance, the relevant shoulder
abduction in the beginning of the propulsion phase. Finally,
the adoption of force-length and force-velocity relationships
from data obtained by Brown (2018) for an elite wheelchair
basketball athlete leads to a model with larger force capacity
than the average wheelchair user population, but this should
have limited impact on overall predicted patterns as the
simulations are submaximal, except for the reference startup
simulation on a ramp at the relatively large average speed of
0.9m/s, that reaches a peak shoulder flexion activation of nearly
0.9. These limitations will be addressed in future studies as
trunk and upper extremity models become more available and
computationally tractable.

5. CONCLUSION

This work investigates the benefits and drawbacks of
implementing an impedance control strategy in assisted
wheelchair locomotion, adopting a first-order linear
mass-damper model as reference dynamics, a recurrent
choice in the literature. A realistic physiological model

of the user’s musculoskeletal system and its interaction
with the power-assisted wheelchair was developed and
used in predictive simulations of steady-state locomotion
and of starting up from rest, representing common
transient maneuvers in activities of daily living. The
model allowed for taking the dynamic effects of arm
motion, the intrinsic muscle properties, and the varying
system dynamics in the propulsion and recovery phases
into account.

The results confirm the advantages of the studied impedance
control strategy, including automatic compensation of gravity
forces in inclined terrains and the possibility of naturally
adjusting assistance by manipulation of physical parameters
such as mass and damping. An important finding, however,
is that assuming a mass-damper model as reference in the
impedance control loop leads to unnecessary braking in the
recovery phase, since the natural forward motion of the
wheelchair as the arms retreat is suppressed by the control
loop as a disturbance, leading to waste of energy and
performance degradation. Proposed solutions to this behavior
include turning off motor assistance in the recovery phase,
switching reference models depending on the locomotion phase,

Frontiers in Neurorobotics | www.frontiersin.org 12 March 2022 | Volume 16 | Article 805835194

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Cuerva et al. Impedance Control in Assisted Wheelchairs

FIGURE 9 | Predicted shoulder flexion (A), shoulder extension (B), elbow flexion (C), and elbow extension (D) activation profiles along the sequence of phases

propulsion-recovery-propulsion-recovery-propulsion in the startup locomotion on a level surface at an average speed of 0.9 m/s for the reference unassisted condition

(Reference), and for the assisted locomotion with 100% of reference model parameters Mi and Ci (M100 − C100), reduction of 50% in Mi (M50 − C100), reduction of

50% in Ci (M100 − C50), and reduction of 50% in Mi and Ci (M50 − C50).

FIGURE 10 | Bilateral propulsion torque applied by the user (A) and bilateral torque applied by the motors on the rear wheels of the wheelchair (B) for steady state

locomotion on a 3◦ ramp at an average speed of 0.9 m/s for the reference unassisted condition (Reference), and for the assisted locomotion with 100% of reference

model parameters Mi and Ci (M100 − C100), reduction of 50% in Mi (M50 − C100), reduction of 50% in Ci (M100 − C50), and reduction of 50% in Mi and Ci (M50 − C50).

or incorporating the upper extremity nonlinear dynamics into
the impedance control reference model. These strategies will
be investigated in future studies using the developed predictive
simulation approach.

Regarding the effects of manipulating the reference model
parameters, the results reveal that reducing apparent mass
effectively decreases user effort in transient maneuvers but is
detrimental to performance in steady-state locomotion, where
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FIGURE 11 | Bilateral propulsion torque applied by the user (A) and bilateral torque applied by the motors on the rear wheels of the wheelchair (B) for startup

locomotion on a 3◦ ramp at an average speed of 0.9 m/s for the reference unassisted condition (Reference), and for the assisted locomotion with 100% of reference

model parameters Mi and Ci (M100 − C100), reduction of 50% in Mi (M50 − C100), reduction of 50% in Ci (M100 − C50), and reduction of 50% in Mi and Ci (M50 − C50).

TABLE 4 | Predicted user effort Wp (Equation 9) and motor effort Wm

(Equation 10) for all simulated conditions.

Condition Wp [10−1s] Wm [N2m2s]

Level/steady state

Reference 0.107 -

M100 − C100 0.079 48.92

M50 − C100 0.124 76.14

M100 − C50 0.035 46.46

M50 − C50 0.051 52.11

Ramp/steady state

Reference 0.733 -

M100 − C100 0.164 183.95

M50 − C100 0.237 155.12

M100 − C50 0.084 244.66

M50 − C50 0.116 213.63

Level/startup

Reference 2.00 -

M100 − C100 2.22 206.10

M50 − C100 1.57 380.02

M100 − C50 1.99 202.57

M50 − C50 1.30 339.92

Ramp/startup

Reference 4.39 -

M100 − C100 2.75 410.77

M50 − C100 2.05 611.11

M100 − C50 2.48 477.74

M50 − C50 1.71 687.29

inertial forces are less important. On the contrary, reducing the
damping parameter is advantageous in steady-state locomotion
but affects only marginally the performance in transient
maneuvers. A concomitant reduction in both parameters,
apparent damping andmass, is able to substantially decrease user

effort in all investigated conditions, constituting, therefore, the
most indicated strategy for daily wheelchair use.

We expect the reported findings as well as the proposed
simulation framework will provide guidance to the development
of better control strategies for power-assisted wheelchairs.
Future studies will employ more complete biomechanical
models of the upper limbs and incorporate braking and
locomotion in curves. Experimental studies with a prototype
of a power-assisted wheelchair are planned for validation
and testing.
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Assessment, Fudan University, Shanghai, China, 10 Key Laboratory of Public Health Safety of Ministry of Education, Fudan
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Objective: To evaluate the safety, walking efficiency, physiological cost, don and doff

time cost, and user satisfaction of Ai-robot.

Design: Prospective, multi-center, and cross-over trial.

Subjects: Paraplegic subjects (n = 40) with T6–L2 level spinal cord injury.

Methods: Subjects who could walk independently using Aiwalker, Ailegs, and hip knee

ankle foot orthosis (HKAFO) for 6min within 30 days of training underwent 10 sets of

tests. In each set, they completed three 6-min walk test (6MWT) sessions using the

three aids in random order.

Results: Skin lesions, pressure sores, and fractures, were themain adverse events, likely

due to a lack of experience in using exoskeleton systems. The average 6MWT distances

of the Aiwalker, Ailegs, and HKAFO groups were 134.20 ± 18.74, 79.71 ± 18.06, and

48.31 ± 19.87m, respectively. The average heart rate increases in the Aiwalker (4.21

± 8.20%) and Ailegs (41.81 ± 23.47%) groups were both significantly lower than that

in the HKAFO group (62.33 ± 28.32%) (both p < 0.001). The average donning/doffing

time costs for Ailegs and Aiwalker were significantly shorter than that of HKAFO (both

p < 0.001). Satisfaction was higher in the Ailegs and Aiwalker groups (both p < 0.001).
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Conclusion: Subjects with paraplegia below T6 level were able to ambulate safely and

efficiently with Ai-robot. The use of Ai-robot should be learned under the guidance of

experienced medical personnel.

Keywords: exoskeleton, spinal cord injury (SCI), paraplegia, walking aid, rehabilitation, orthosis

INTRODUCTION

Spinal cord injury (SCI) is a common cause of paralysis. The
worldwide annual incidence of SCI varied from 13.0 to 220.0
per million people depending upon the country (Kang et al.,
2017). Missing prevalence data for major populations persist
and the range of reported global prevalence was between 440
and 526 per million (Fitzharris et al., 2013; Lee et al., 2013;
New et al., 2015; Kang et al., 2017). Many people with SCI are
confined to a wheelchair for life, causing a heavy burden to
society and families. SCI can lead to limb paralysis and many
complications such as osteoporosis, fractures, spinal deformities,
muscle atrophy, cardiopulmonary dysfunction, obesity, and
metabolic disorders, etc. (Castro et al., 1999; Giangregorio and
McCartney, 2006; Shah et al., 2006; Liusuwan et al., 2007;
Widman et al., 2007; Dudley-Javoroski, 2008; Adriaansen et al.,
2012; Mulcahey et al., 2013; Lai et al., 2014; Sezer, 2015; Gee et al.,
2019, 2021).

The advent of exoskeletal robotic technology can benefit
the spinal cord injury population in three ways: (1) extensive
repetitions of walking can help them improve and regain their
walking ability, (2) the need for medical manual labor can
be reduced, making extensive walking training feasible and
even shortening the course of treatment, and (3) complications
can be reduced, such as reduced pain, spasticity, osteoporosis
and improved cardiorespiratory, lower urinary tract and bowel
function (Esquenazi et al., 2012; Kolakowsky-Hayner, 2013;
Benson et al., 2015; Stampacchia et al., 2016; Chun et al., 2019;
Jang et al., 2019; Alashram et al., 2021; Brinkemper et al., 2021;
Shackleton et al., 2021; Williams et al., 2021; Garnier-Villarreal
et al., 2022).

Good fixation and support of the trunk during walking is
required for subjects with poor upper limb and trunk function,
insufficient endurance, or cognitive impairment. However, the
existing stationary gait robots are often bulky and some are
equipped with a treadmill (Peshkin et al., 2005; Bessler et al.,
2020; Alashram et al., 2021; Calabrò et al., 2022). Patients mostly
need to be transferred specifically to a dedicated treatment room
to use the device, which cannot be used within the patient’s
ward, resulting in reduced accessibility. There are also devices
that attach a robot exoskeleton to a mobile frame suspended
in a sling with a high degree of freedom of trunk and pelvis
movement. If the user cannot maintain balance with the trunk
and lower extremities, the upper extremities are required to
effectively hold the frame, which may not be suitable for patients
with upper extremity paralysis and cognitive impairment (Bouri
et al., 2006; Fukuda et al., 2015). Few exoskeleton robots are
currently available to address these problems. For this reason,
a new powered exoskeleton called Ai-robot has been developed

(Figures 1B, 2A). It comes in two types, namely, Aiwalker
and Ailegs.

Aiwalker is characterized by its small size and ease of mobility,
allowing it to be moved directly to any ward or even bedside,
and may also be suitable for use at home. The subject can
transfer from the wheelchair to Aiwalker in a seated position
and then adjust to a standing position after securing the straps.
Walking exercises can be performed while suspended or on the
real ground while speed and stride length could also be modified
as needed. The subject sees the external environment as moving
and changing, which enriches the input of visual signals, adds
interest to the therapy and helps to improvemood.With the small
footprint of the device, the Aiwalker may have a wide range of
clinical applications, namely, patients with tetraplegia, cognitive
impairment, ataxia, and those who cannot easily leave the ward.
It may be suitable for home use for patients in the chronic phase,
helping to reduce complications.

The Ailegs does not have a support platform and is suitable
for patients with good upper limb and trunk function at the
advanced stage of gait training. It requires elbow crutches
to maintain balance when using it. The therapist can choose
the appropriate type for the patient to provide a tailor-made
treatment (Fukuda et al., 2015). Similar to other wearable
exoskeletons, subjects can also walk outdoors, turn around, go
through small obstacles such as speed bumps and go upstairs and
downstairs with the assistance of Ailegs (Lajeunesse et al., 2015;
Tefertiller et al., 2018).

The purpose of this first clinical research of Ai-robot was to
evaluate the safety, walking efficiency, physiological cost, don and
doff time cost, and user satisfaction.

MATERIALS AND METHODS

Design
A prospective, multi-center, cross-over clinical trial was designed
to assess the safety and effectiveness of two powered exoskeleton
devices used to assist paraplegic subjects in walking by comparing
them with a conventional hip knee ankle foot orthosis (HKAFO),
based on subject walking ability indicators.

The clinical trial was conducted in four hospitals in eastern,
northern, central, and southern China: The First Affiliated
Hospital with Nanjing Medical University, Chinese PLA General
Hospital, Affiliated Tongji Hospital with Tongji Medical College
of Huazhong University of Science and Technology, and
Shenzhen Second People’s Hospital. The protocol, informed
consent, case report form, and other implemented documents
were approved by the ethical committee of the First Affiliated
Hospital of Nanjing Medical University (No. 2017-MD-069).
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FIGURE 1 | (A) Drive control system of Ai-robot, (B) Ailegs, and (C) motor structure.

Registration was recorded at ClinicalTrials.gov (identifier:
NCT 03452059).

Each participant was clearly informed of the purpose of the
research and the potential benefits and risks of enrolling in the
research. Informed consent was obtained from all individual
participants included in the study.

Some subjects had previously walked with an HKAFO, but

none had previously walked or stood with a powered exoskeleton
walking aid. Subject eligibility criteria were as follows: (1)
age 18–60 years, body weight <80 kg, height 1.55–1.85m; (2)
confirmed by MRI/CT, International Standards for Neurological

Classification of Spinal Cord Injury (ISNCSCI): A–C (without
walking ability), injury level T6–L2; (3) muscle tone (modified
Ashworth Scale): ≤2; (4) passive range of motion (ROM) of the
bilateral hip and knee joints approximately normal, while the
bilateral ankle joint could be maintained in a neutral position; (5)
muscle strength of upper limbs and physical strength sufficient
to stabilize crutches during assisted walking; (6) muscle strength
of upper limbs and physical strength sufficient to transfer
independently between a wheelchair and Ailegs/Aiwalker device;
(7) able to understand and actively participate in the training
program, agreed and signed the informed consent form. Subjects
with any of the following criteria were excluded (1) unable to walk
due to severe joint ROM limitation; (2) unhealed spinal fractures
and unstable clinical condition, consultation with orthopedists or
other specialists if not fully confirmed; (3) skin injury or infection

in the robot contact skin area or lower extremities; (4) subject
showed poor compliance and was unable to complete the study in
accordance with the requirements; (5) severe chronic obstructive
pulmonary disease; (6) other contraindications or complications
that may affect walking training; (7) severe cognitive or visual
impairment; (8) unilateral neglect; (9) pregnant or lactating
women; (10) unstable angina, severe arrhythmia, or other
heart diseases.

Devices
Common Design of Ai-Robot
Ai-robot (Ai-Robotics Technology Co. LTD, Beijing, China) uses
a drive control system that provides closed-loop and coordinated
motion control of the two hips and two knee motors (Figure 1C)
simultaneously to achieve bionic gaits. The drive control system
includes a controller, a driver (drive circuit system), a brushless
DC motor, a harmonic gear drive, an information acquisition
unit (relative coding disk and absolute coding disk), and an
output shaft (Figure 1A). The controller is responsible for
outputting the motion gait and coordinating the synchronized
and coordinated motion among the four drives, while adjusting
the motion parameters of the drives in real-time according to the
state information such as the angular speed of themotor shaft and
the angular position of the output shaft during the movement of
the leg bars (Shuai, 2017). The rotation centers of the hip and
knee motors should be on the same horizontal axis as the user’s
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FIGURE 2 | (A) Aiwalker, (B) suspension apparatus, and (C) adjustable waist support apparatus for Aiwalker.

hip and knee joint rotation centers, respectively. The device is
connected to the wearer’s limb via straps on the waist, thigh, calf,
and foot.

Ai-robot provides sufficient power to assist walking without
the need for active exertion of the lower limbs. The power
is supplied by a 48V 18,650 lithium battery with 15 Ah max
capacity and 20A max discharge current. The service life of
Ai-robot is 8 years. The thigh and calf bars are designed
as a retractable structure, with convenient and precise length
adjustment for quick adaptation for users of different heights and
body shapes (Figure 3) (Shuai, 2019).

The angles of the hip and knee joints can also be optimally
adjusted to the needs of the user. The maximum angles are
hip flexion 33◦, hip extension 23◦ (Aiwalker)/0◦ (Ailegs), knee
flexion 53◦, knee extension 0◦. The duration of each gait cycle
can be adjusted between 2.45 and 5.25 s, as required. Its gait
training control strategy is shown in Figure 1A, which takes the
given bionic gait as the standard gait input to the drive control
system, establishes the lower limb dynamics and kinematics
model, calculates and controls the motion output, and drives the
user’s lower limb to perform the movement.

Type Design of Ai-Robot
Ailegs (frameless type of Ai-robot) weighs 25 kg and is made
primarily of titanium alloy, requiring a pair of elbow crutches

or walking aid for balance (Figure 4A). The waist structure
connecting the lower limb exoskeleton comprises two waist
connection frames and an adjustment unit. The waist structure
connecting the lower limb exoskeleton comprises two first waist
connection frames and an adjustment component unit. Each
of the two waist connectors is provided with a sliding section,
which is aligned with each other and connected to the adjustment
unit. By turning the adjusting unit, the two connectors can be
moved closer or further away from each other simultaneously,
thus, adjusting the width of the waist structure (Figure 5) (Shuai,
2020).

Aiwalker (frame type of Ai-robot) weighs 80 kg and is
mainly made of titanium alloy and stainless steel. It consists
of a similar structure of Ailegs and a mobile support platform

that provides stable trunk support. There are four wheels
under the platform to allow easy movement of the device
(Figure 4B). Its main features are waist fixation, lower limb
drive, and true overground ambulation. The waist support device
connected to the lower limb exoskeleton has an adjustable
distance between the two mobile connection sections, thus
being suitable for users with different waist widths (Figure 2C)
(Shuai, 2018a). The suspension system shown in Figure 2B is
capable of ensuring up and down movement of the human
gravity center in the vertical plane during body weight support
training or overground training. The suspension system includes
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FIGURE 3 | Retractable structure for Ai-robot leg bars.

FIGURE 4 | Trial devices. (A) Ailegs, (B) Aiwalker, and (C) HKAFO.

a suspension frame, pulley, cable, holder, spring, winch, etc. The
suspension structure will be locked when the lumbar support
device is suspended to a predetermined position. The movement
of the user’s lower limbs also drives the waist support device

up and down relative to the predetermined position (Shuai,
2018b). Aiwalker is designed to securely and stably fix the user’s
trunk and pelvis without requiring active effort to maintain
standing balance.
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FIGURE 5 | Adjustable waist apparatus for Ailegs.

HKAFO
Considering that SCI subjects with T6-L1 do not have
the ability to flex the hips, the effect of walking with
KAFO will be reduced. Therefore, HKAFO was chosen
as a control. A custom-made unpowered HKAFO for
each subject was produced by Beijing Sereborn Technology
Co. LTD (Figure 4C).

Experiment Protocol
This clinical trial was divided into the screening, trial, and data
analysis phases. Since it was the first clinical use of Ai-robot, the
therapist followed closely behind the subject during the Ailegs
and HKAFO assisted ambulation to ensure safety. When using
Aiwalker, the therapist walks behind the device and controls the
direction of walking.

Screening Phase
During the screening phase, in addition to meeting the inclusion
and exclusion criteria, subjects were assessed for their proficiency
in independent transfer between wheelchair and walking aids,
and ability to walk independently with Ailegs (with a pair of
elbow crutches) and HKAFO (with a pair of elbow crutches).
Only adaptive use was required for Aiwalker because it is a
passive walking aid. If the subject was unable to independently
walk with any of the three devices continuously for 6min (due

to lack of physical or trunk strength, postural hypotension, fear,
etc.), a screening failure was recorded. The screening period did
not exceed 30 days for each individual subject.

In total 49 participants signed informed consent forms, 40
were enrolled, and 9 failed the screening (2 were not exposed to
the devices and 7 were unable to achieve the expected level of
proficiency with the devices). As shown in Table 1, the mean age
of the participants was 38.1 ± 9.4 years and injury levels ranged
from T6 to L2.

Trial Phase
After the researchers judged that the subjects had mastered the
trial devices, the subjects entered the test phase. The experimental
period was 5 days, with one group of tests each half workday, and
a total of 10 sets of tests. In each group, subjects were assigned
to finish three 6-min walk tests (6MWTs) using Aiwalker, Ailegs,
and HKAFO, respectively, in a random order. The circular
walkway of a hospital hall (perimeter of ≥ 100m) was set up
as a test trail. Test trials were pre-marked on the ground. The
6MWTwith each device was conducted at least 30min apart, and
the next test was performed after confirming that the subject’s
heart rate, blood pressure, and breathing had normalized. Six
(15%) of the 40 subjects did not complete all 10 trial sets due
to cystoscopy, adverse events, or requests to withdraw from
the research.
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TABLE 1 | Demographic characteristics of participants.

Characteristic Value

Sex (n) Male (31), female (9)

Age (years), mean ± SD 38.1 ± 9.4

Height (cm), mean ± SD 169.8 ± 6.5

Weight (kg), mean ± SD 62.2 ± 7.8

Level of injury (n) T6–L2: T10 (15), T12 (8), T9 (5),

T8/T11/L1 (3 for each level), and

T6/T7/L2 (1 for each level)

Type of injury (n) Traumatic (33), Non-traumatic (7)

AIS classification (n) A (29), B (4), C (7)

Skin integrity (n) Intact (36), Broken but not affect use

of the devices (4)

Spasticity in lower limbs (n) Yes but not affect use of the devices

(10), No (30)

Arrhythmia (n) Normal or abnormal without clinical

significance (40)

HRrest (beats/minute),

mean ± SD

77.6 ± 8.3

Blood Pressure (mmHg),

mean ± SD

Systolic (118.0 ± 11.7), Diastolic

(74.7 ± 9.1)

AIS, American Spinal Cord Injury Association Impairment Scale; HRrest, heart rate rest.

Data Collection
Safety Indicator

Adverse Events
The following adverse medical events were monitored and their
relationship to the device used analyzed: incidence of falls, skin
damage, joint injury, fracture, and other adverse events.

Blood Pressure
Blood pressure was measured twice using a calibrated medical
electronic blood pressure monitor. The first upper limb
blood pressure measurement was taken in a sitting position
immediately before the beginning of the walking test. The second
blood pressure was taken from the same upper limb in the same
position 3min after the end of the walking test. Subjects removed
their walking aids and returned to the wheelchair after blood
pressure measurement.

Validity Indicator

Primary Validity Indicator
Six Minutes Walking Distance. The 6MWT was used to record
the maximum walking distance within 6min (Tappan et al.,
2012). A circular walkway with a circumference≥100mwas used
as a training and test trail, and the walking path was marked
on the ground in advance. Subjects were asked to walk as fast
as they could at a comfortable and self-determined speed. There
were ≥30min between tests, and heart rate, blood pressure, and
respiratory rate were also required to return to resting levels
before the next test.

Average Percentage Heart Rate Increase. A wireless single-
channel medical electrocardiogram (ECG) recorder (Wearable
ECGRecorder, Nanjing Xijian Information Technology Co., Ltd.,

China) was used to record the channel II ECG before and during
the total 6MWT. %HRI was calculated as follows:

%HRI =
HRwalk−HRbefore

HRbefore
× 100

where “HRwalk” was the average heart rate determined by ECG
between 120 and 330 s of the 6MWT (the steady phase) and
“HRbefore” was the heart rate determined by a 1-min ECG
recorded just before the start of a test, after sufficient rest, to
calculate the average heart rate in the resting state.

Secondary Validity Indicator
The Borg rating of Perceived Exertion Scale. Subjects were
evaluated using the Borg RPE scale after each walking test (Heath,
1998). Each participant was assessed 10 times, by self-rating how
tired they felt after walking with each of the three devices. RPE
scores ranged from 6 to 20, with 6 indicating no effort and no
fatigue at all, and 20 indicating maximum effort and exertion.

Time Cost of Donning and Doffing. Two dedicated medical staff
helped each subject to get into and take off the walking aids
without helping transfer. The donning period began at the point
the subject was ready to transfer from the wheelchair to the
walking aid and ended when they were ready to stand up with the
walking aid, including changing shoes for HKAFO. The doffing
period was defined as the time from the point the subject was
ready to take off the device until transfer back to the wheelchair,
including placing the feet back on the pedals.

Satisfaction Questionnaire. After each 6MWT, participants were
asked to rate their satisfaction levels regarding device comfort,
don and doff speeds, and stability during walking. Satisfaction
was rated on the following five-point scale: (1) very satisfied, (2)
satisfied, (3) fair, (4) dissatisfied, and (5) very dissatisfied. Data for
very satisfied and satisfied were used to calculate the percentage
of satisfaction.

Statistical Methods
Statistical Design and Evaluation Methods
The hypotheses of this study were that (1) the 6MWT distance
of both Ailegs and Aiwalker group was farther than the
HKAFO group and (2) the average %HRI of both Ailegs
and Aiwalker group were lower than the HKAFO group.
Two primary validity indicators were set in this study. The
hypotheses for both indicators need to be valid for the test group
(Ailegs and Aiwalker) to be considered superior to the control
group (HKAFO).

For the primary validity indicators, 10 consecutive groups
of data were collected considering that each study subject
was crossed over to the three orthoses. The mixed model
considered grouping (Ailegs, Aiwalker, and HKAFO groups),
order (ABC/ACB/BCA/BAC/CAB/CBA, 6 in total), time (5 days
in the morning and afternoon, 10 time points in total), and the
interaction of grouping and time. If the interaction test p > 0.1,
the interaction term was removed and the model was refitted.

The safety analysis will be performed separately for the three
groups (Ailegs, Aiwalker, and HKAFO).
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FIGURE 6 | Systolic and diastolic pressure changes. (A) Systolic pressure changes, (B) diastolic pressure changes. *adjusted p < 0.05; **adjusted p < 0.01.

Statistical Analysis
The number of subjects, average, standard deviation, minimum,
and maximum were calculated for continuous variables. A
number of examples and percentages were used to summarize
categorical variables. For continuous variables, differences
among the Ailegs, Aiwalker, and HKAFO groups were compared
using repeated measured analysis of variance, paired t-test, or
paired sign rank-sum test, according to the data distribution.
For categorical variables, differences among the Ailegs, Aiwalker,
and HKAFO groups were compared by paired chi-square test.
Data were used from the participants who had completed at least
one set of walking tests. Differences among the Ailegs, Aiwalker,
and HKAFO groups were compared using a mixed model, and
the confidence intervals of differences were calculated. Adjusted

p-values of multiple comparisons were performed using the
Benjamini–Hochberg procedure to control the false discovery
rate (FDR) at 0.05. All the statistical analyses were performed
using SAS9.3 (SAS Institute, Cary, NC, USA), and p < 0.05 was
considered statistically significant.

RESULTS

Safety Indicator
Adverse Events
There were no falls, increased pain, increased muscle tone,
fatigue, or cardiovascular episodes. A total of four adverse
events determined to be device-related occurred in four different
subjects, including two cases of mild skin abrasion (lumbosacral
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FIGURE 7 | Six-minute walk test distance. **adjusted p < 0.01.

region and left lumbar region), one case of bilateral heel pressure
sores, and one case of calcaneal sinus compression fracture.

Blood Pressure
As shown in Figure 6, systolic blood pressure increased to
varying degrees in the Ailegs (mean [SD] 4.89 [8.68] mmHg) and
HKAFO (mean [SD] 4.67 [11.41] mmHg) groups after exercise;
there was no significant difference between the two groups
(Ailegs vs. HKAFO, the difference in LS means: −0.22 [95%CI,
−1.58 to 1.14], adjusted p > 0.05, n = 40). In the Aiwalker
group (mean [SD] −1.20 [9.85] mmHg), systolic blood pressure
decreased slightly after exercise in 5 out of 10 tests; the difference
with the HKAFO group was significant (Aiwalker vs. HKAFO,
the difference in LS means: 5.87 [95%CI, 4.52–7.23], adjusted p
< 0.001, n= 40).

After exercise, diastolic blood pressure in the Ailegs group
(mean [SD] 4.22 [7.39] mmHg) was slightly higher than that
in the HKAFO group (mean [SD] 0.89 [8.29] mmHg), and the
difference was significant (Ailegs vs. HKAFO, the difference
in LS means: −3.33 [95%CI, −4.39 to −2.27], adjusted p
< 0.001, n = 40). Diastolic blood pressure decreased in the
Aiwalker group (mean [SD] −0.97 [7.25] mmHg) and increased
in the HKAFO group during most of the tests, and there
was a significant difference between the two groups (Aiwalker
vs. HKAFO difference in LS means: 1.86 [95%CI, 0.80–2.92],
adjusted p < 0.001, n= 40).

Validity Indicator
Primary Validity Indicator

Six Minutes Walking Distance
As shown in Figure 7, the mean (SD) 6MWT distance (m)
of subjects in the Ailegs group was significantly farther than
those in the HKAFO group (Ailegs 79.71[18.06] vs. HKAFO

48.31[19.87] m difference in LS means: 30.56 [95%CI, 28.42
to 32.70], adjusted p < 0.001, n = 40). Similarly, subjects
in the Aiwalker group achieved greater 6MWT distances than
those in the HKAFO group (Aiwalker 134.20[18.74] vs. HKAFO
48.31[19.87] m difference in LS means: 85.26 [95%CI, 82.94–
87.59], adjusted p < 0.001, n = 40). The mean (SD) distance for
the first 6MWTwith HKAFOwas 42.59 (19.22) m, and that of the
tenth 6MWT was 56.33 (21.49) m, showing a trend of increasing
speed. The mean distance of the first 6MWT using Ailegs was
76.04 (17.68) m, and the 10th was 82.84 (17.98) m, also showing
an improving trend. As the subjects were walking fully passively,
the 6MWT distance remained constant over the 10 tests in the
Aiwalker group.

Average %HRI
A slightly decreasing trend from test 1 to 10 of the %HRI in Ailegs
and HKAFO groups was exhibited (Figure 8). The %HRI (mean
± SD) of 4.21 ± 8.20 in the Aiwalker group and 41.81 ± 23.47
in the Ailegs group were significantly lower than 62.33 ± 28.32
in the HKAFO group (Aiwalker vs. HKAFO, the difference in LS
means: −58.7 [95%CI, −61.7 to −55.7], adjusted p < 0.001, n =

40; Ailegs vs. HKAFO, the difference in LSmeans:−22.2 [95%CI,
−25.0 to−19.4], adjusted p < 0.001, n= 40).

Secondary Validity Indicator

Borg RPE Scale Scores
The RPE scores of subjects were relatively stable, with little
variation. The mean (SD) scores were 10.07 (2.67), 7.71 (1.93),
and 14.74 (3.17) in the Ailegs, Aiwalker, and HKAFO groups,
respectively. The mean RPE scores for the Ailegs and Aiwalker
groups were significantly lower than that of the HKAFO group
(Ailegs vs. HKAFO, the difference in LS means: 4.68 [95%CI,
4.38–4.99], adjusted p < 0.001, n = 40; Aiwalker vs. HKAFO,
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FIGURE 8 | Percentage of increase in heart rate. **adjusted p < 0.01. %HRI = (HRwalk – HRbefore)/HRbefore × 100.

FIGURE 9 | The Borg rating of perceived exertion score. **adjusted p < 0.01.

the difference in LS means: 7.03 [95%CI, 6.73–7.33], adjusted
p < 0.001, n= 40; Figure 9).

Time Cost for Donning and Doffing
The mean time costs for donning and doffing both Ailegs and
Aiwalker were significantly shorter than that for HKAFO (n =

40, adjusted p < 0.001). In the 10 sets of tests, the time costs for
the three devices all showed a shortening trend, and the doffing
time cost was significantly shorter than that of donning. The time
costs (mean ± SD) for donning were 121.24 ± 38.23 s (Ailegs),

119.82± 33.99 s (Aiwalker), and 162.23± 49.43 s (HKAFO). The
mean time costs for doffing were 52.84 ± 21.77 s (Ailegs), 58.82
± 20.66 s (Aiwalker), and 83.28± 26.70 s (HKAFO) (Figure 10).

Satisfaction
The results of the survey regarding device comfort,
donning/doffing speed, and stability satisfaction all showed
similar trends, with little change over the 10 sets of tests.
The satisfaction of subjects was higher in both the Ailegs and
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FIGURE 10 | Time cost of donning and doffing. (A) Donning and (B) doffing. **adjusted p < 0.01.

Aiwalker groups than that in the HKAFO group (n = 40, all
adjusted p-values of the comparisons were <0.001; Figure 11).

DISCUSSION

This study evaluated the safety, walking efficiency, and usability
of a newly designed, easily mobile exoskeleton set that can be
used in different stages of the disease. The results showed that
the Ai-robot’s technology is safe, but requires progressive weight-
bearing on the lower extremities, with special attention to the skin
at the heel and lumbosacral region. The Ai-robot assisted walking
was more efficient, less physiological cost, faster in donning and
doffing speed, and more satisfying for the user than traditional
assistive walking devices.

We did not use ECG data from the entire 6MWT because
subjects may be nervous at the beginning of the walk and
the heart rate may be affected when they try to adapt to the
equipment. Also, as the subjects approach the end of the walk, the
heart rate may also be affected by emotion and the preparations
of staff for measurements at the end. Therefore, we removed the
ECG data from the first 2min and the last 30 s and used the
ECG data from the stable state in the middle segment to calculate
heart rates.

A calcaneal sinus compression fracture occurred as a severe
adverse event in this study. Due to loss of sensation in both
lower extremities, the specific time point at which the injury
occurred and the associated instrument could not be determined.
After adaptive training using the exoskeleton robots and before
training for HKAFO, the subject found that the skin temperature
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FIGURE 11 | Satisfaction survey.

of their left calf was higher than that of the right calf in
the late afternoon. Moreover, the left ankle was clearly bluish
with swelling when he was cleaning his body in the evening.
Compression fracture of the calcaneus sinus was confirmed by
computed tomography. The likely reason may be a lack of
experience with exoskeletons. The subject had not received lower
limb weight bearing training for the last 4 years. SCI population
has different degrees of osteoporosis below the injury level,
particularly in the lower femur and the upper tibia. The fracture
rate in the SCI population has been reported to be from 1% to
21% of subjects and may increase with time (Giangregorio and
McCartney, 2006). The causes of osteoporosis may be related to
factors such as nerve damage, loss of muscle loading, reduced
mechanical stimulation, and duration of paralysis (Giangregorio
and McCartney, 2006; Dudley-Javoroski, 2008; Johnston et al.,
2008; Groah et al., 2010). Weight bearing of both legs in the
upright position and weight bearing of one leg during walking
will greatly increase skeletal stress. The calcaneus sinus has the
lowest bone density in the calcaneus, and the occurrence of a
compressible fracture could be explained by this mechanism. In
this study, the researchers initially did not assess the weight-
bearing capacity of the subject’s lower extremities, nor did they
gradually increase the amount and duration of weight bearing
prior to adaptive training using the exoskeleton. The traditional
dual-energy x-ray bone density test is performed on the proximal
femur and lumbar spine and does not target the areas where
spinal cord injuries are most likely to result in decreased bone
density. Therefore, after this serious adverse event, two additional
inclusion criteria were added: to confirm that the subject had

the ability to bear weight in an upright position and to perform
knee and ankle x-rays to confirm whether the bone density
was severely reduced. Because of the inevitable decrease in
bone density in the spinal cord injury population, the subject’s
ability to tolerate upright weight bearing is more important
from our experience. Both lower limbs could tolerate the full
weight-bearing position for at least 30min before the use of the
exoskeleton is suggested from this study.

In this study, there was also a case of pressure sore at the back
of the heel. The reason was that the subject walked in shoes for the
first time after SCI, and the shoes were new. He had a complete
SCI with no lower limb sensory function. The shoe size was small
and the material was stiff. While healthy people feel discomfort
or pain in the heel when walking, people with SCI do not. The
risk of pressure ulcers was reported in a clinical trial of Ekso, an
exoskeleton-assisted walking device. The most common sites of
skin erythema caused by pressure were the anterior tibia, greater
trochanter of the femur, sacral region, abdomen, and dorsum of
the feet (Kolakowsky-Hayner, 2013). These findings should serve
as a reminder that skin color must be checked very carefully after
each use of an exoskeleton device, particularly during the initial
stages of use, due to lack of pain sensation.

Similar to the results of other studies, the 6MWTdistance after
wearing exoskeletons in this study was significantly higher than
that when using the traditional non-dynamic orthosis, HKAFO;
however, the walking distances in this research were shorter
than those recorded in other ones. A meta-analysis by Miller
et al. reported a summarized mean 6MWT distance of subjects
wearing powered exoskeleton of 98m (95%CI, 80–117m) (Miller
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et al., 2016). While Arazpour et al. showed that the mean 6MWT
distance was 120 ± 12.98m in the exoskeleton group and 90.20
± 10.63m in the HKAFO group (Arazpour et al., 2012). This
difference may be related to the duration of learning to use the
exoskeleton devices and HKAFO during the screening period.
The training period in our study included 4–6 training hours
per day but was relatively short (no longer than 1 week), while
training periods in other studies ranged widely from 1 to 24
weeks. Most experiments involved 60–120min of training per
session, three times a week (Esquenazi et al., 2012; Zeilig et al.,
2012; Fineberg et al., 2013; Kolakowsky-Hayner, 2013; Kressler
et al., 2014; Benson et al., 2015; Hartigan et al., 2015; Kozlowski
et al., 2015; Yang et al., 2015). If the training period was extended
in this research, subject walking distances may have increased.
However, the purpose of this study was to verify the safety
and feasibility of an exoskeleton walking aid, not the subject’s
improvement in walking speed and function.

Similar to other studies, this study also used mean %HRI
to evaluate the physiological cost during walking (Arazpour
et al., 2012). The physiological cost of walking with exoskeleton
devices was lower than that with HKAFO, due to their power
assist function.Walking distance with the exoskeleton was longer
than that with HKAFO, further indicating that walking with
an exoskeleton device consumed less energy. In a randomized
controlled research, the physiological cost index was reported
∼50% lower with a powered exoskeleton relative to HKAFO
(Arazpour et al., 2012). The RPE scores for the walking aids used
in this study were also consistent with the results of other studies,
with the exoskeleton group scoring 9–11 and the HKAFO group
14–15 (Arazpour et al., 2012; Kolakowsky-Hayner, 2013; Kressler
et al., 2014).

Although subjects did not show obvious changes in systolic
and diastolic blood pressure before and after walking with
Aiwalker and Ailegs, they did tend to have a slight decrease in
systolic and diastolic blood pressure after Aiwalker use. Most of
the subjects also stated that Aiwalker gave them a very stable
and safe feeling and that they could relax and enjoy walking,
whichmay explain the slight decrease in blood pressure. Research
indicated a slight increase in blood pressure after walking with
Rewalk, a comparable exoskeleton device, relative to before
walking. The mean pre-training blood pressure was 121/77 (SD
= 1.43/7.4) mmHg, while the mean post-training blood pressure
was 129/83 (SD = 4.09/7.4) mmHg. Faulkner et al. conducted a
pilot study on walking training assisted by an Ekso exoskeleton
robot for the SCI population (Faulkner et al., 2019). The results
showed that arterial wave reflection could be improved by a
mean reduction of 9% and the training led to favorable changes
in mean arterial pressure and central diastolic blood pressure,
with mean decreases of 5 and 7 mmHg, respectively. These data
suggest that exoskeleton robot-assisted walking training may be
beneficial to the vascular health of subjects with SCI; this warrants
further study.

The exoskeleton robotics industry is developing rapidly
worldwide. Both Ailegs and Aiwalker were able to facilitate
subjects walking on the real ground with a human-like gait.
However, currently, Ai-robot cannot be controlled by the user
to start, stop, sit down, stand up, etc. Further research is needed

on (1) user control of the exoskeleton device, (2) personalized
assistance provided by Ai-robot, and (3) the frequency and
duration of training with Ai-robot, including gait speed and angle
settings for each joint.

CONCLUSION

Subjects with paraplegia (below T6 level) were able to walk safely
and efficiently using the powered exoskeleton devices, Ailegs and
Aiwalker, for overground ambulation with lower physiological
cost. Satisfaction with Ailegs and Aiwalker was better than that
with the traditional walking aid, HKAFO. The use of Ai-robot
should be learned under the guidance of experienced medical
personnel. The soft tissue compression at the strapping area and
heel area needs to be checked after using the device. Subjects
with SCI who have not recently trained to stand or walk will
need to be weight-adapted before considering the use of an
exoskeleton robot.
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Human hand gesture recognition from surface electromyography (sEMG) signals is one

of the main paradigms for prosthetic and rehabilitation device control. The accuracy

of gesture recognition is correlated with the control mechanism. In this work, a new

classifier based on the Bayesian neural network, pattern recognition networks, and

layer recurrent network is presented. The online results obtained with this architecture

represent a promising solution for hand gesture recognition (98.7% accuracy) in sEMG

signal classification. For real time classification performance with rehabilitation devices,

a new simple and efficient interface is developed in which users can re-train the

classification algorithm with their own sEMG gesture data in a few minutes while enables

shape memory alloy-based rehabilitation device connection and control. The position of

reference for the rehabilitation device is generated by the algorithm based on the classifier,

which is capable of detecting user movement intention in real time. The main aim of this

study is to prove that the device control algorithm is adapted to the characteristics and

necessities of the user through the proposed classifier with high accuracy in hand gesture

recognition.

Keywords: sEMG, gestures recognition, neural networks, hand rehabilitation, shape memory alloy

1. INTRODUCTION

As a result of complex human evolution, the hand is one of the most versatile parts of our body
(Craig and Taylor, 1955). As well as giving us the ability to perform several tasks during our daily
life, it is also one of the key factors that differentiates humans from other species. Its 27 degrees of
freedom provide a mechanism able to manipulate nearly every kind of object.

According to different studies, a system placed in the brain takes the responsibility of hand
control (Hirzinger et al., 1998; Biagiotti et al., 2003; Yue et al., 2017). The control system structure
is complex and difficult to understand, which hinders the motor function recovery process after a
stroke, disease, or disorder.

With the aim to improve the rehabilitation techniques applied to the human hand, several
robotic solutions have been proposed over the past 20 years. The main benefit of robotic
rehabilitation is that it allows an active interaction between the patient and the rehabilitation
system, which is essential in the recovery process (Londoa et al., 2017).

Taking into consideration the interaction between the user and the rehabilitation system,
rehabilitation procedures can be classified into two groups:

• Physical interaction (PI): physical contact between the rehabilitation system and the user is
needed in order to apply several forces to the patient during the task performance;

• Emotional interaction (EI): the system encourages the user during the process in the absence of
physical contact.
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PI rehabilitation using robotic systems requires direct physical
contact between the robot and patient during the rehabilitation
process. External forces provided by the robot help or hinder
patient movement. Usually, the first steps of the rehabilitation
process are completed with robotic assistance, while in the
last stages, the user receives robotic opposition during the
rehabilitation tasks.

For instance, Pyk et al. (2008) proposed PITS, a glove-based
robotic system with different position sensing devices. In the
same way, the NJIT-RAVR structure is a ring gimbal with six
degrees of freedom for hand rehabilitation (Qiu et al., 2009). Both
systems perform similarly. A glove covers the hand of the patient
which, depending on the system, gives more or less freedom to
the user. For example, more freedom is given by PITS as its
glove is not linked to any structure, whereas the NJIT-RVAR
glove is placed in a ring gimbal with a limited number of degrees
of freedom. Also, virtual reality is used for displaying several
interactive tasks in the systems. Patients must perform the task in
contact with the robotic system which has a haptic master able to
capture hand movements and translate them into the computer
space. The complexity level of the task displayed is adapted to
each patient recovery phase.

Several advantages such as creating a safer environment with
nearly zero risk of injury, motivating the patient with different
interactive exercises, automation of the rehabilitation process,
adaptation of the device to different rehabilitation stages, and
quantifying the rehabilitation process making it objective are
characteristic of PI rehabilitation robotic devices.

EI rehabilitation focuses on different tasks completed in
collaboration with a robotic system using one of these three
methods: (1) imitation: robot movements are followed by the
user, (2) motivation: robot-user interaction using sounds or
visual effects encourages the user during the process, and (3)
imitation and motivation: combination of (1) and (2) (Maciejasz
et al., 2014). In this context, systems such as CosmoBot
(Wood et al., 2009) or Ursus (Calderita et al., 2014) are
prominent. The process is simple: the robot performs an action
that must be followed by the user. At the same time, the system
monitors the progress and status of the patient during the
recovery process.

Recently, several studies have proposed the use of
electroencephalogram (Zhang et al., 2021, 2022) or
electromyography (Ahsan et al., 2011; Asif et al., 2020;
Pamungkas and Simatupang, 2020) sensors in order to control
robotic rehabilitation procedures, because they are able to
detect the patient’s intention of motion. Electromyography
sensors measure the electrical signals originated in the muscles
for quantifying its activity. Information such as the activity
performed by the muscle or the effort needed to perform the
activity could be obtained by surface electromyography (sEMG)
analysis.

Specifically, the type of hand gesture performed by a person
could be identified using electromyography sensors (Binh et al.,
2005; Alsheakhali et al., 2011; Khan and Ibraheem, 2012). sEMG
data captured by electromyography sensors contain features that
could be extracted in order to train different neural network
architectures. Neural networks are used to predict the type of

hand gesture executed by the user. For example, Ahsan et al.
(2011) used a back-propagation algorithm to train a network
architecture for hand gesture classification using sEMG reaching
an 88.4% average success rate of identification. Asif et al. (2020)
achieved a 92% average classification accuracy for the same
issue using a convolutional neural network architecture. Another
possibility presented by Pamungkas and Simatupang (2020)
is the use of Bayesian neural network architecture for sEMG
classification, which was able to reach a 90.61% average accuracy.
All of these architectures could be combined in order to obtain
higher accuracy rates (He et al., 2018; Asif et al., 2020).

Hand gesture recognition using sEMG is useful not only for
rehabilitation issues (knowing the type of gesture is helpful for the
patient during the rehabilitation tasks and allows them to correct
the application of movement opposition), but also for building
artificial hands or robotic structures with the ability to imitate
human motions.

Another rehabilitation system which combines physical
contact with robotic devices and sEMG detection is AMADEO
(Londoa et al., 2017), a platform with five end-effectors where
the five fingers can be placed. Several exercises are displayed in a
screen while, at the same time, sEMG signals are recorded. sEMG
features are used to help the patient during the activity and to
evaluate the rehabilitation process.

Although several works address the topic of sEMG signals
for hand gesture identification, few works use these identified
gestures for hand rehabilitation devices and they usually focus
on the mixed gesture identification between the wrist movements
and the hand gesture. In this paper, we propose to identify

six hand gestures using only finger movements, which will

be implemented in a high-level control algorithm for hand

rehabilitation with an exo-glove.
Specifically, this study is focused on the implementation of

a PI rehabilitation system combined with an sEMG recognition

architecture for hand gesture identification. The goal is to

evaluate new classifier structures for sEMG recognition. A novel

hand gesture classifier for sEMG based on a neural network
architecture (a combination between the Bayesian neural
network, pattern recognition networks, and layer recurrent
network) is developed, which enables the generation of the
position of reference for PI rehabilitation devices according to
the specific patient movement intention. Results from this study
will ultimately provide insights on the feasibility of the neural
networks’ structures proposed for hand gesture recognition.

Compared to other state-of-the-art solutions, our approach’s
contribution is:

• The development of a novel neural network architecture based
on the Bayesian neural network, pattern recognition networks,
and layer recurrent network with 98.7% accuracy for hand
gesture recognition.

• The generation of a new algorithm to calculate the position
reference for the rehabilitation device according to the user
intention of movement.

• Previous contributions could be used in real time. They
were tested in a hand rehabilitation device actuated by shape
memory alloy (SMA) and developed by our research group.
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• A new user-friendly interface was developed for personalized
sEMG acquisition, neural network training and verification,
and control of the rehabilitation device.

This paper contains five sections. Section 2 presents the
methodology with a description of the sEMG data acquisition
and processing method, neural network architectures used for
gesture classification, and the rehabilitation system: actuator
characteristics and design, rehabilitation device, and the high-
level control algorithm. Preliminary experimental results are
covered in Section 3. Section 4 presents the discussion and
Section 5 proposes the conclusions and future works.

2. MATERIALS AND METHODS

2.1. Experimental Protocol
A gesture recognition algorithm is proposed with an individual
calibration of the neural networks carried out simultaneously,
with the objective of using this information in rehabilitation glove
control. For this reason, the experimental protocol consists of:

• The sEMG signal acquisition for a new database consisted of
250 samples per each proposed gesture. One sample represents
a 300 ms sEMG signal. In total, 1,500 samples were stored.

• The features were extracted from the sEMGwindows (this was
done during the acquisition process);

• The features for the 1,500 samples were used in the neural
network architecture training and offline evaluation process.

• A total of 100 new samples per gesture (in total 600 samples)
were acquired and in this case, storing of the output of the
proposed classifier architecture and the user gesture occurred
at the same time. With this information the confusion matrix
was built to evaluate the proposed architecture in the online
evaluation process.

• On the last step, the gesture recognition algorithm was
connected with the glove rehabilitation device, and the data
from sEMG, gesture, tendon positions, and reference were
stored.

2.2. Proposed Hand Gesture Identification
sEMG data are used for hand gesture identification. Considering
the hand movement on daily activities and the consecrated hand
rehabilitation movements, six hand gestures are proposed for the
identification:

• Relax, lack of user movement;
• Gripper (pinch), tap the thumb with the index finger;
• Thumb up, thumb extension;
• Grip, replication of object holding;
• Fist, close the hand;
• Open hand, finger extension;

The proposed classifier must be able to identify these gestures
regardless of the user’s hand: left or right, and based on this, must
generate the reference for the rehabilitation glove. Right hand
gestures are shown in Figure 1.

sEMG data are collected using the Thalmic Labs Myo Gesture
Control Armband (Huitzil-Velasco et al., 2017). The armband
features eight sEMG sensors with a stream rate of 200 Hz.

According to Merletti and Parker (2004), Konrad (2005) almost
all of the EMG signal power is located between 10 and 250 Hz,
and considering the Nyquist-Shannon sampling theorem, the
amplifier device band will need to be set to 500 Hz or higher. In
this case, a part of the signal will be lost, the armband frequency
being limited to 200 Hz. sEMG sensors are placed over the
forearm giving information of the activity of the arm muscle
groups responsible for hand and wrist movements. As a non-
invasive method, the accuracy of the sEMG acquisition process
depends on well-known factors such as electrode position, skin
factors, ambient noises, and movement noises.

Also, it is usually good practice to rectify sEMG a priori only
considering its absolute value. Note that this change can affect
other characteristics, like the frequency which will be doubled.

Another interesting process is sEMG filtering. It is a good
technique for noise reduction as unwanted harmonics are
removed. Several studies use upper cutoff frequency filters
(around 500 Hz). In general, notch filters with lower cutoff
frequencies between 10 and 500 Hz are common, although
it depends on the study and the limb analyzed. Butterworth
architecture filters are the most common. Balbinot and Favieiro
(2013) used a 60 Hz notch filter to remove the noise characteristic
of the power line (in Europe it would have been 50 Hz).

Another possibility is to normalize the sEMG amplitude as it
prevents noise variations with no influence on the classification
(Konrad, 2005).

After these previous steps: rectification, filtering, and
normalization, sEMG can be more easily interpreted and
classified. In this work only the rectification process was
implemented because the signals were filtered and normalized by
the Myo SDK (Tomaszewski, 2016).

The sEMG level for each gesture is presented in Figure 2A.
After the feature extraction process (Figure 2B), an average of
1,000 samples from one of each electrode is acquired for each
proposed gesture. The fist gesture can be easily distinguished
from the open hand gesture, however, other gestures like the
gripper and thumb up gestures are more similar. Moreover, when
the average of several signals is plotted on the graph (Figure 2A),
a certain signal segment for a short time can negatively influence
the classification.

Results demonstrate that sEMG signal segmentation and
feature extraction are needed. There are two main techniques
for signal segmentation: adjacent segmentation and overlapping
segmentation. The adjacent segmentation technique was selected.
In this approach, sEMG data are split into adjacent windows.
According to Oskoei and Hu (2007), a real-time classification is
considered when the length of the segment lasts less than 300 ms,
but the longer the segment, the more accurate the classification
of the gesture. For this reason, segments were fragmented into
windows with a fixed length of 300 ms. In each window, seven
time-domain features were calculated: (1) mean average value
(MAV), (2) root mean square (RMS), (3) variance (VAR), (4)
signal strength indicator (SSI), (5) zero-crossing (ZC), (6) wavelet
transform (WL), and (7) side scatter (SSC). These represent
56 values extracted from each window. Values 1–8 represent
the first feature MAV for each electrode (8 electrodes), from
9 to 16 represent the second feature RMS for each electrode,
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FIGURE 1 | Hand gestures performed during sEMG signal recording.

FIGURE 2 | Gesture according with the sEMG signal and features: (A) sEMG signals; (B) signals features.

and so on. Previous studies used these features for classification
(Phinyomark et al., 2012; Phinyomark and Scheme, 2018; Barioul
et al., 2019; Wu et al., 2020; Khushaba et al., 2022).

Features from 100 segments for each gesture were
extracted where the mean value is represented in Figure 2B.
Although the first features do not seem to be relevant, the
last features showed notable differences in the gesture
recognition. Similarly to sEMG, noticeable differences
could be observed when observing the fist and hand open
gestures; but the gripper and thumb up gestures could be
easily confused.

These characteristics will be used as an input for the proposed
classifier for gesture recognition. An overview of the proposed
rehabilitation system can be seen in Figure 3. After a minimal
set-up consisting in placing the armband over a forearm and its
calibration (steps 1 and 2 from Figure 3), the data acquisition
process, training the network architecture, and the validation
of gesture recognition are necessary (steps 3, 4, and 5). The
process continues with the control algorithm which generates
the tendon references according to the gesture recognition and
ends with glove rehabilitation device connection, and then the
rehabilitation therapy can begin (steps 6 and 7).
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FIGURE 3 | Overview of the proposed rehabilitation system.

2.3. Classifier Architecture
During the classification process, each hand gesture presented
in Section 2.2 was related with static position information
given by the sEMG features. The proposed classifier in this
work is based on three sub-architectures: a Bayesian neural
network (BNN) in parallel with an artificial neural network
(ANN) in which the results are connected in series with a
layer recurrent network (LRN). The final gesture classification
is the result of the LRN. The proposed architecture can be seen
in Figure 4. Each supervised architecture was configured and
trained as follow:

• ANN: A feedforward network with the ability to classify

different inputs according to target classes. The target data

for pattern recognition networks consist of arrays of all zero

values except for a 1 in element i, where i is the class it

represents. In this case, there is a 56-feature input array
whose target is represented by a 6-element vector, each one
for a specific gesture recognition. The proposed architecture
contains two layers; the first hidden layer of eight neurons
and the output layer with six neurons corresponding to the
six gestures. Weights and bias parameters of the neurons were
adjusted using the scaled conjugate gradient (Hestenes and
Stiefel, 1952) and its performance was evaluated with cross-
entropy. Like BNN, ANN was trained with 250 samples but in
this case the data were divided into 70% for training, 15% for
testing, and another 15% for validation. The data for validation
and testing were not used during the training process.

• BNN: A probabilistic classifier based on the naive Bayes
assumption (predictors are independent of one another within
each class) (Martinez-Arroyo and Sucar, 2006). The network,
built with the classification learner app in Matlab 2020b
(TheMatWorks, Inc., 2021), uses a kernel distribution because
the Gaussian distribution often results in error due to the
non-Gaussian distribution of the sEMG features. For offline
training, 250 samples were used from each hand motion and
a five-fold cross validation was employed during the training

process: each set of five samples was divided into four samples
for training and one sample for validation.

• LRN: This architecture presents two layers: a hidden layer with
10 neurons that receive information from the past by taking
into account the previous results for future predictions and a
output layer with 6 neurons; a vector of 6 positions, one for
each gesture. LRN input results from the output of the first two
networks combined in a 12-element array. LRN remembers
a past sample structure by using a feedforward network,
being capable of analyzing sequential data structures, such as
consecutive hand gestures. LRN is trained using 250 samples
using the Levenberg-Marquardt algorithm (Levenberg, 1944)
while its performance is tested with mean squared error.
LRN receives 12 inputs obtained from 6 inputs of the BNN
prediction over these 250 samples and another 6 inputs
produced by ANN over the same 250 samples. Similarly with
the ANN training process, the data were divided into 70% for
training, 15% for testing, and another 15% for validation.

2.4. User Interface
Though the armband device must be placed in a certain position
on the forearm, the possibility that the electrodes are placed over
the same muscle fiber in two different rehabilitation sessions
is very low. For this reason, a new personalized dataset was
created before each rehabilitation session from the user sEMG
(forearm muscles sEMG) data. During this process, features are
extracted from each sEMG segment and a file with the name of
the motion and the number of the sample is stored in a folder
called Dataset. Each sample contains a 56 × 1 double array,
from the seven features for each sEMG segment. For building
the neural network architecture, 56 × 600 feature samples were
collected for each motion, resulting in a database with 56× 3600
samples. Depending on each supervised architecture, the whole
dataset is split randomly into 70% for neural network training,
15% for validation, and another 15% for tests for the ANN and
LRN, and using the five-fold cross validation for BNN.
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FIGURE 4 | Proposed neural network architecture.

To automate and speed up this process, a user interface is
developed in Matlab 2020b (The MatWorks, Inc., 2021) as an
intuitive way of following the seven steps detailed in the pipeline
in Figure 5. The interface is shown in Figure 5.

After the armband is placed, the user is asked to perform each
gesture in order to create the personalized database. After that,
the button—network training—automatically trains the Bayesian
classifier. For gesture validation, the switch button is turned on
and the lamp of the recognized gesture is colored green while
the other lamps are red. The bottom switch buttons are used to
connect the rehabilitation device and start the therapy.

2.5. Rehabilitation System
Restoring the hand function after spinal cord injury (SCI),
cerebral vascular accident (CVA), or different musculoskeletal
disorders represents a challenging issue. Rehabilitation gives
the user the possibility to recover the ability to perform
daily life tasks. Recently, several exoskeleton devices have been
proposed for hand rehabilitation over the last years, but most
of them focused on soft and low-cost designs, offering a passive
rehabilitation without taking into account user movement
intention. The rehabilitation device used in this paper is an SMA-
actuated glove. It is a wearable device, with low weight and
noiseless performance due to the actuators’ characteristics.

2.5.1. SMA-Based Actuator

SMA is an alloy, commonly Ni-Ti, which has the property to
deform when it is cold and recover its pre-deformed shape
(“memory”) when heated. This process takes place between
the two transformation phases: martensite at low temperature
and austenite at high temperature. To achieve the necessary
transformation temperature, electrical energy is transformed
into thermal energy thanks to the Joule effect. Due to the

shape memory effect (SME), thermal energy is transformed in
mechanical work. The SMA-based actuator used in the proposed
rehabilitation device is based on Copaci et al. (2019a), and it is
composed by:

• Bowden cable: a metallic spiral covered with a nylon sheath.
It has the property of SMA wire force transmission, achieving
the flexibility property. Also, it helps in wire heat dissipation
in the cooling stage.

• Polytetrafluoroethylene (PTFE) tube. The isolator is placed
between the SMA wire and Bowden cable and is able to resist
more than 250◦C. It is considered as a solid lubricant because
it decreases the friction in the SMA wire.

• SMAwire. Flexinol wire from the Dynalloy company was used
(DYNALLOY, Inc., 2020). With a diameter of 0.51 mm, it
applies a force of approximately 34.91 N. The wire activation
temperature is 90◦C where an ∼4% displacement of the wire
length is reached.

According to the necessary finger tendon displacement (∼8 cm),
2 m of SMA wire is needed. Due to the actuator flexibility, it can
take on the human body shape and can possibly be used to guide
the user.

2.5.2. Glove Rehabilitation Device

The rehabilitation glove is presented in Figure 3. A strong but
comfortable mobility glove is used to withstand the strength
of the cables (tendons) without tearing and, at the same time,
allowing natural movements to the fingers. Twelve tendons were
guided/routed over the glove to generate the flexion/extension
movement in each finger contraction (five tendons for extension
and another five for flexion) and another two to help in the thumb
opposition movement.

Frontiers in Neurorobotics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 750482218

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Copaci et al. Gesture Classifier for Rehabilitation Glove

FIGURE 5 | User interface for the developed application.

Glove tendons are connected with SMA-based actuators
through a sensor box composed of six rails where a small
cylindrical piece, which connects the SMAwire with the tendons,
could be moved when the actuator is enabled. The same
piece is connected to a Bourns PTA Potentiometer, PTA6043-
2015DPB103 which is able to measure each tendon displacement.

In addition to the six position sensors, we used
electronic hardware of the glove rehabilitation device
including a microcontroller and a power circuit essential
in controlling the SMA-based actuators as feedback for the
controller loop.

The electronic power circuit for SMA wires is based on
MOSFET transistors which can be activated by pulse width
modulation (PWM) generated by the controller. MOSFET
transistors open and close the circuit with a power supply
for actuators. The control hardware architecture can manage
six different actuators; in this case each actuator was an
SMA wire. The whole architecture has been developed by our

research group.
The controller board is based on the STM32F407 Discovery

kit (STM, 2021), from STMicroelectronics, which is programmed

using Matlab/Simulink R© (Caballero et al., 2016). The board

manages signals from the sensors, executes the control actuator
algorithm, and generates the required PWM signals. The low-

level control used for this device is based on a bilinear
proportional integral derivative (BPID) controller, developed by

the research group presented in Villoslada et al. (2015), Copaci
et al. (2019b).

The identified hand gesture together with the sensors
positions signals from the rehabilitation device and generates
six reference signals building a representation of the user’s
movement intention for each finger (two references for the
thumb). In this way, an active reference is generated involving
the patient undergoing rehabilitation therapy, leading to a
faster recovery.

2.6. Reference Generation
According to the rehabilitation device structure, these six
references are duplicated with the opposite ones to provide the
inputs for the low-level control algorithm (six references for the
flexion actuators and six references for the extension actuators)
for the antagonistic movement. However, the current device only
presents a boxed sensor and it can only be tested in one of the
movements, for example the flexion movement.

The entry algorithm from the sEMG data is captured by
the glove tendon movements as can be seen schematically in
Figure 3.X(k) represents the reference generated by the high-level
algorithm, V(k) represents the control signal (PWM generated
by the microcontroller for the electronic power circuit), and Y(k)

represents the position of the actuator signals from the position
sensors.

The reference generation block from Figure 3 receives the
recognized gesture as input, a six-number array from 0 to 1,
where each number represents the probability of being the
gesture performed. The maximum value of the array represents
the gesture predicted. Apart from the gesture array, a six-position
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array is generated. In this case, the position represents the
maximum actuator reference reached according to the gesture.
Using this six-position array, the actual actuator positions,
the actual reference positions, and two adjustable increments
(six references in real time for the actuators) are generated.
Increments are used to change the reference speed and the finger
movement speed. A higher increment is required to move from
the current reference to the current position of the actuator, and a
slower one is required to generate a smoother reference when we
are close to the current position (used when the reference wants
to be followed, during the gesture performance).

3. RESULTS

3.1. Offline Classifier Results
The three architectures presented in Section 2.3 were offline-
evaluated with a database with 1,500 samples (250 features for
each gesture). The results obtained with each architecture are
detailed here.

For the ANN architecture, the samples were split into three
groups: 70, 15, and 15% for training, validation, and testing,
where the validation and test data were not used in network
training. After the network training, the confusion matrix of each
group was determined as shown in Figure 6.

In Figure 6, the diagonal cells (in blue) correspond to
observations/gestures that are correctly classified. The off-
diagonal cells correspond to incorrectly classified observations.
In the validation and test confusion matrix, as can be observed,
the gesture recognition is 99.1%, where the predicted percentage
or output corresponds to the rows and the target class
corresponds to the columns. The last row represents the
normalized row which summarizes the percentages of correctly
and incorrectly classified observations for each true class.
The last column, a normalized-column summary, displays the
percentages of correctly and incorrectly classified observations
for each predicted class. For example, in the confusion matrix
test (Figure 6), one fist gesture was classified as a grip gesture.
In this case, the predicted fist gestures were classified correctly
with 100% accuracy (last column, first row) but the predicted grip
gestures were classified correctly with only 97.7% accuracy (last
column, second row). In the last row, first column, 96.9%, of the
fist gestures were correctly classified for the true fist class.

The kernel naive Bayes classifier achieved 99.2% accuracy. The
confusion matrix is presented in Figure 7A where five samples
from the pinch gesture were classified as an open hand gesture,
five samples for the relax gesture were confused with the thumb
up gesture, and one sample of the grip and thumb up gestures
were classified as the relax gesture. Figure 7B presents the parallel
coordinate prediction where each sample is represented (correct
classified—continuous line and incorrect classified—dotted line).

With the results of the two architectures and the output target,
the LRN architecture was trained. Similar with the ANN case,
the data were split into three groups before the network training.
The best validation performance was obtained after 57 epochs of
training, with a value of 0.00144.

3.2. Online Classifier Results
For online validation, with the trained architectures, a new
dataset was stored containing the outputs of each architecture
and target gesture. According to these data, the confusion matrix
of each architecture was built. Only 100 samples of the training
database were used for the final three-network architecture
testing. The ANN and BNN classifier responses are represented
in the confusion arrays in Figure 8.

According to the results presented in Figure 8B, gesture
classification with BNN is more accurate with a 97.0% hit rate
compared with the ANN architecture which had a 93.3 % hit
rate (Figure 8A). Although the BNN architecture presents better
results in general, the ANN architecture for a specific gesture
presents a good classification, for example the classification
results of the pinch gesture. To reduce gesture confusion, a
combination of both architectures was proposed using another
neural network, LRN, which also takes into account the past
classification gesture. The online results of this LRN architecture
can be seen in Figure 9.

Results presented in Figure 9 show that the proposed hand
gestures can be classified with a precision of 98.7%. The three-
neural network architecture increases the final hit rate in
comparison with previous BNN or ANN approaches. The neural
network was tested with different users obtaining a percentage
between 92 and 99%.

The whole hand gesture classification process takes
approximately 0.12 s while sEMG window segmentation
lasts 0.3 s meaning the whole classification process takes less than
0.5 s. Time consumption depends on the computer components
measuring the times. We utilized an Intel (R) CORE (TM)
i7-5500U CPU @ 2.40 GHz and 16 GB RAM in Windows 10
64bits. A specific database for a new user and all neural network
training with 100 samples for each gesture (in an automated way
with the interface) requires 3–5 min, depending on each user
experience.

3.3. Gesture Recognition and Reference
Generation
Gesture recognition and reference generation evaluation
according to the user’s movement intention are performed using
a new healthy subject who has not tested the Myo Armband with
this algorithm before. The rehabilitation device is placed in a test
bench over the forearm, below the elbow, and the process starts
with data acquisition. Overall, 100 samples were recorded in the
database for each gesture. Neural networks were trained with
these data. Finally, the user must perform some gestures to test
the gesture recognition system. The system is connected to the
rehabilitation device.

Some gestures are recorded for 40 s. sEMG data from eight
sensors are presented in Figure 10. Signals are related to:

• from t = 0 s to t = 4.5 s, the hand is relaxed. Actuators are off
and there is free movement of the hand.

• from t = 4.5 s to t = 10.25 s, the fist gesture is performed.
The actuator step reference intention (movement intention
represented in Figure 11) for each finger is 60 mm, presenting
all the fingers in a flexion movement for closing the hand.
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FIGURE 6 | Confusions matrix of the pattern recognition network—offline. All confusion matrixes had an accuracy of 99.7%.

The reference intention is not the final reference which is
the actuator input. The input reference to the actuators is
composed by the intention reference helped by the increments.

• from t = 10.25 s to t = 16.76 s, the hand open gesture
is presented. In this case, the finger intention reference is 0
mm, so the rehabilitation device structure, which only presents
actuators for flexion, is left to free the hand and is opened by
the user.

• from t = 16.76 s to t = 20.18 s, the gripper gesture is shown, in
which the thumb flexion, thumb opposition, index finger, and
middle finger have a step reference intention of 40 mm while
the last two fingers (ring and pinky) have a reference intention
of 60 mm to simulate the gripper gesture position.

• from t = 20.18 s to t = 29.97 s, the user performs the grip
gesture. All the actuators have a step reference intention of 40
mm.

• from t = 29.97 s to t = 35.46 s, the thumb up gesture is found.
The thumb flexion and the opposition actuators have a step
reference intention of 0 mm while the rest of the fingers have a
step reference intention of 60 mm.

• from t = 35.46 s to t = 40 s, the hand relaxed gesture finishes
the test.

Neural networks can clearly identify each hand motion
achieving accuracy in each gesture recognition. According to
Figure 11, gestures are clearly identified except for a little
instability at t = 22 s. Also, the transition between gestures
could be identified as a different gesture. For example, at
t = 35 s, the user switches from the thumb up gesture
to the relax gesture, but in this transition, a grip gesture
was identified.

According to the movement intention (black signal in
Figure 11), the actuator reference (red signal) is generated. The
movement velocity (the slope) could be modified thanks to
the increments which can be personalized. The green signal
represents the actuator position, which is related to the finger
position. For example, the error between the reference and the
actuator position between t = 11 to t = 17 s is due to the actuator
behavior (the SMA-based actuator needs to be cold to expand).

4. ANALYSIS AND DISCUSSION

The proposed classifier achieved 98.7% precision with the gesture
classification, which is a promising result. In this work, according
to the final application (generating the rehabilitation glove
reference) only finger movements were considered due to the fact
that the rehabilitation device did not permit wrist movement.

It is difficult to compare the state-of-the-art methods with
our data acquisition and network training method. In this work
the process consists in acquiring data (600 samples), training the
proposed architecture, and after that, starting the rehabilitation
therapy. This personalizes the classifier for a specific user. This
approach has the disadvantage that the user spends 3-5 min
acquiring the data and training the classifier but offers good
accuracy in gesture classification. If the classifier is not retrained
for a new user, the accuracy of the classifier decreases depending
on different characteristics: how the armband is collocated,
muscles route, and so on. The literature does not personalize this
process using a dataset which contains samples from different
subjects. With this point of view, they do not spend time in the
training process with the user as the neural network is already
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FIGURE 7 | Naive Bayes offline classification results. (A) Confusion matrix of naive Bayes (accuracy 99.2%). (B) Parallel coordinate prediction of naive Bayes.

trained, which is more comfortable for the user. In contrast, the
classification results are poorer.

Compared with the literature (although gestures are different),
using the same device with feedforward neural networks, 90.1%
accuracy is achieved for the fist, wave-in, wave-out, open, and
pinch gestures by the system proposed by Benalcazar et al.
(2018). In our case, with the six gestures (relax, fist, grip, gripper,
open hand, and thumb up), the feedforward (pattern recognition
network) method achieved 93.3% accuracy online. In Ahsan et al.
(2011), they built a feedforward network with one hidden layer
(10 neurons with tangsig activation function) and one output
layer (4 neurons with purelin activation function) for left, right,

up, and down gestures, presenting 89.2% precision. Likewise, the
architecture proposed by Ahsan et al. (2011) was replicated and
has been tested with our dataset achieving 93.8% accuracy. Asif
et al. (2020) developed a convolutional neural network tested in
real time with 18 subjects for close hand, flex hand, extend hand,
and fine grip gestures, reaching 83.7± 13.5%, 71.2± 20.2%, 82.6
± 13.9%, and 74.6 ± 15% hit rates, respectively. This last case
could not be replicated as they used a deep learning architecture.

A well-known database, NinaPro Database 5 (Pizzolato et al.,
2017), was used to test this architecture. The sEMG features of
this dataset were acquired with two Myo Armbands, in total 16
channels. For this test only the first 8 channels corresponding
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FIGURE 8 | Confusion arrays of the two classifiers: (A) pattern recognition network; (B) Bayesian neural network.

FIGURE 9 | Online LRN confusion matrix (accuracy 98.7%).

to the first Myo armband were selected for more similarity with
this work. The presented results were obtained with only one
Myo armband. Before the test, the data were segmented, and
from each segment the 56 features were extracted. In parallel,
the target gesture was stored to be used for supervised training.
This database consists of 13 gestures, for this reason the proposed
architecture was modified according to this at 13 outputs. In
this case the accuracy result for the 13 gesture classification
was 58.5%. The confusion matrix of this dataset can be seen
in Figure 12. The biggest confusion was between the gestures

(gesture 2 to gesture 13) and the relaxed gesture. This can be
influenced by the target gesture data (a scalar value) which were
created for each 300 ms segment (60 samples). This target data
were set with the stimulus value from the dataset, the value of
the sample n = 31. In our case, when the database is created for
a new user, we store each gesture separately in parallel assigning
the target value.

Similar research with the NinaPro database obtained an
accuracy between 42.47 and 68.98% (Côté-Allard et al., 2019)
using deep learning algorithms. In this case, only one Myo
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FIGURE 10 | sEMG signals for the eight sensors for the gestures tested.

FIGURE 11 | Position response of the rehabilitation device.

armband was used and the sEMG signal was split into 260
ms segments, observing that the classifier accuracy grew with
the training repetition. In another work, the accuracy of the
classifier was between 81.9 and 90.1% (Wei et al., 2019), the
better score was obtained with the multi-view convolutional
neural network using both Myo armbands (16 channels)

and a maximum of 83.9% using only one Myo armband.
Accordingly, to these previous studies, the channel number
influences the classifier accuracy; more information presents
better results. Also, the deep learning algorithms present good
results, but the necessary time to train these algorithms was not
presented.
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FIGURE 12 | Confusion matrix with NinaPro dataset (58.5% accuracy).

To better understand all processes during neural network
training, a dataset with 56 features × 600 samples was used for
statistical analysis. Performance of the proposed neural network
(output vector of each gesture) was compared statistically using a
one-way analysis of variance (ANOVA), in Matlab 2020b. Results
were declared statistically significant if they were associated with
p < 0.05.

The precision, recall, and f-score of the LRN confusion matrix
presented in Figure 9 were calculated obtaining a score of 0.99
for precision, 1 for recall, and an F1 score of 0.994.

The proposed classifier presents 98.7% accuracy, but this
value can be influenced by the user characteristics and also
by the hardware and the method with which the signals were
stored. Combining different neural networks presents promising
results for gesture recognition, with a reasonable time to acquire
new data and retrain neural network architectures. According
to the results obtained with the NinaPro dataset, the deep
learning architecture presents 25.4% better results (a better result
with similar hardware of 83.9%). In our case, the proposed
architecture can be easily retrained with a personalized user
database (100 samples /gesture), where this number of samples
can be a limitation for the deep learning architectures. Also,
future works will include a test with different users where the
sEMG signal can be altered and where personalized classifiers can
be a good approach for a good classification.

A limitation of the proposed method is constraining the user
to acquire the data and retrain the algorithm at the beginning of
therapy for good results.

5. CONCLUSIONS

Neural networks are a promising alternative to identify hand
gestures depending on the sEMG signals. The proposed
architecture - composed by the probabilistic, Bayesian, and
temporal networks - offers a good accuracy for hand gesture
identification, with a hit rate precision of 98.7%, higher than the
previous results mentioned in the literature. Nevertheless,
state-of-the-art papers use different gestures which use
different muscle groups, so comparison between results is
not representative.

This work studied different architectures of shallow and deep
neural networks and the best result was reached when combining
a probabilistic network in parallel with a Bayesian network and
whose results fed a temporal network. To automatically train
these architectures, an application was developed which enables
sEMG data acquisition for the Myo Armband for a specific
user and trains the network’s architecture in less than 5 min,
guaranteeing a personalized good classification of gestures in
real time. Indeed, the application allows the connection with
a hand rehabilitation device. Opposite from other solutions,
the interface proposed accurately achieved the hand gesture
identification (six gestures created only by finger movement),
generating reference for the rehabilitation device and a direct
connection with it.

According to the hand gesture recognition, a high-level
algorithm was developed to generate the necessary reference
for the rehabilitation device of the actuators (thumb flexion,
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thumb opposition, index, middle, ring, and pinky fingers).
This algorithm generates the reference according to the user’s
intention of movement, motivating them to participate in the
rehabilitation therapy. In this way, rehabilitation therapy is
more effective.

In the future, the rehabilitation device presented in this
paper may be improved by adding the extension actuators and
connecting the movement of the actuators with each finger
position. The proposed algorithm was tested only on a few
healthy subjects and more tests need to be applied. Also, the
algorithm needs to be tested and validated by different subjects
with neural and muscle disorders.
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