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Editorial on the Research Topic

Metastable Dynamics of Neural Ensembles

A classical view of neural computation is that it can be characterized in terms of convergence to
fixed-point-type attractor states (representing for instance memory patterns in Hopfield, 1982) or
limit-cycle-like sequential transitions among states (mapping e.g., motor or syntactical sequences
in Elman, 1990). After over three decades, is this still a valid model of how brain dynamics
implements cognition? The idea that neuro-computational dynamics is mainly deterministically
driven by convergence to emergent stable states in a synaptic/network noisy background has been
lively debated, and recently challenged both empirically and by computational work. This question
touches on the very basics of our understanding of neural computation; and hence it is one of the
most exciting topics currently in systems and computational neuroscience.

This e-book comprises a comprehensive collection of recent theoretical and experimental
contributions addressing the question of stable versus transient neural population dynamics, and
its implications for the observed variability in neural activity, from diverse, complementary angles.

METASTABILITY IN MODELS

A connecting theme for the multiple contemporary views on metastability in the brain was
proposed first by Tognoli and Kelso. In their foundational approach, the authors discuss classical
and recent views on how information transfer between brain regions could be accomplished
through synchronization and collective neural responses. They frame these ideas in terms of the
coordination dynamics concept, potentially a key aspect for understandingmetastability in neuronal
populations.

Metastability and its possible functional role both within and outside of behavioral task contexts
is further addressed in four specific modeling approaches situated at different spatial scales,
ranging from macro/mesoscopic levels (Schwappach et al.; Stratton and Wiles; Aguilera et al.) to a
biophysically detailed level of neuronal systems description (Mazzucato et al.).

The balance between global segregation and integration at a macroscopic scale is theoretically
analyzed by Stratton andWiles. They propose a computational model focused on how the thalamo-
cortical loop may underlie long-range segregation between brain regions, producing metastable

5
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responses observed at large spatial scales. Metastability at
macroscopic levels could also stem from sensimotor interactions,
as suggested by Aguilera et al. These authors designed a new
theoretical framework and implemented it in an agent-based
model which interacts with the environment. According to this
model, metastability arises from the dynamics of sensori-motor
feedback interactions, beyond what would be expected from
considering brain activity just in isolation.

At mesoscopic scales, neural population models have been
constructed that produce metastability through attracting chains
of heteroclinic orbits, generating transient dynamics through
a sequence of saddle points along which one or several axes
are stable (the stable subspace). Following up on this theory,
Schwappach et al. demonstrate, using a novel neural field model,
how such heteroclinic subspaces can account for part of the
observed trial-to-trial variability at the mesoscopic level. Hence,
this variability may partly stem from sources other than neuronal
or synaptic noise.

At microscopic (biophysical) scales, using a clustered spiking
model (in which connectivity patterns are heterogeneous) which
exhibits metastable states, Mazzucato et al. show that variation in
neuronal ensemble activity may be confined to small subspaces of
the whole state space spanned by all the individual units’ firing-
rates. Moreover, the dimensionality of these subspaces is smaller
during stimulus-evoked activity than in the absence of a task.
This is in line with empirical studies which report the reduction
of neuronal variability upon stimulus presentation (Churchland
et al., 2010).

EMPIRICAL STUDIES

Metastability was also addressed in four studies which provide
novel analytical tools and empirical evidence. Tošić et al.
proposed a new data analysis technique to identify metastability
empirically, which was used to infermetastable states in local field
potentials evoked by visual stimuli in anesthetised ferrets.

Interestingly, visual scan paths (Wilkinson and Metta) reveal
complex dynamics which possibly reflects underlying metastable
neural activity. In Wilkinson and Metta, the authors proposed
a theoretical framework, termed the singularity hypothesis,
which relies on transient spiral waves which govern persistent
neural activity states underlying oculomotor postural control. In
general, motor control strategies may be represented in neuronal

activity patterns as a complex, distributed spatiotemporal code,
which may not be revealed by looking just at neuronal firing
rates within recorded ensembles. This is shown in Mao et al. who
study behaving rats performing a directional choice task, using
a nonlinear decoder to demonstrate how spatiotemporal activity
patterns in motor areas increasingly discriminate the animal’s
choices as learning progresses.

Finally, spatiotemporal patterns generated by synchronized
spontaneous activity in the idle brain are analyzed at different
spatial scales in two studies (Liu et al.; Yada et al.) which
further illustrate the rich diversity in methodological approaches
to the empirical identification of metastable and transient
dynamics. Specifically, Yada et al. propose that repeating
spatiotemporal patterns emerging during synchronized bursts of
activity in vitromay have their origin in specific sub-populations
that become sequentially active in a reproducible temporal
order. This result suggests an orchestrated activation of such
ensembles that depends on the global state of the network,
consistent with spontaneous transitions between metastable
states.

At a macroscopic level, Liu et al. develop a new method for
identifying co-activity patterns of fMRI responses which is robust
to non-stationarity. In this study, a novel type of cluster analysis
suggests a richer repertoire of co-activation states beyond the
resting-state networks identified previously, and hence perhaps
a more specialized functional organization.

In summary, this book provides a comprehensive collection
of current modeling and data analysis approaches related to
the metastable behavior of cortical ensembles. These studies
showcase recent efforts for designing a fundamental framework
that encompasses the multiple facets of metastability in neural
responses, beyond the original use of the concept in the context
of statistical mechanics. To conclude, the last chapter of the book
reflects on this plethora of approaches and connects them with
the question of the functional role of experimentally observed
trial-to-trial variability (Balaguer-Ballester), one of the most
intriguing topics currently in systems neuroscience (Moreno-
Bote, 2014).
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To further advance our understanding of the brain, new concepts and theories are needed.
In particular, the ability of the brain to create information flows must be reconciled with its
propensity for synchronization and mass action. The theoretical and empirical framework of
Coordination Dynamics, a key aspect of which is metastability, are presented as a starting
point to study the interplay of integrative and segregative tendencies that are expressed
in space and time during the normal course of brain and behavioral function. Some recent
shifts in perspective are emphasized, that may ultimately lead to a better understanding of
brain complexity.

Keywords: metastability, brain coordination dynamics, integration, segregation, functional connectivity

THEORIES OF THE BRAIN: A CONCISE HISTORY
How does the brain work? This nagging question is an habitué
from the top ten lists of enduring problems in Science’s grand
challenges. Grasp this paradox: how is one human brain—a
chef d’oeuvre of complexity honed by Nature—ever to reach
such a feast as to understand itself? Where one brain may fail
at this notorious philosophical riddle, may be a strong and
diversely-skilled army of brains may come closer. Understanding
of the local principles at play has emerged due to the com-
bined efforts of many scientists: neurons talk to their part-
ners by teasing them with charged particles of either excitatory
or inhibitory effect, as Nobel laureate Sir John Eccles demon-
strated (Eccles, 1966). Targeted release of ions was later shown
at sites that seem designed for the exchange of information:
typically the axonal termination of the emitting neuron fac-
ing the dendrites of a receiving partner (Hodgkin and Huxley,
1952). Many of those two-some neural interlocutors build into
a reticulum with remarkable emergent properties. A booming
network science followed, generalizing microscale principles on
a large-scale. David Rumelhart and James McClelland, Stephen
Grossberg and many others pursued this connectionist endeavor
(Grossberg, 1976; Rumelhart and McClelland, 1986). Putting
function first, they aimed to model specific aspects of human
cognition and behavior such as visual perception or language.
Yet others, such as Olaf Sporns have devoted much effort to
the neurobiological fidelity of their inquiries, conceiving behav-
ior as an emergent phenomenon from an appropriate connec-
tional design (Sporns et al., 2004). The latter may be probed
both with theoretical connectivity models where brain com-
plexity is carefully thought through (Sporns et al., 2000) along
with empirically-derived models that borrow their connectional

blueprints from images of “real” brains (Honey et al., 2010).
Though brief, this historical overture suggests that the brain has
demonstrable mechanisms for both point-to-point communica-
tion of information—most obviously at the microscale—as well
as emergent phenomena arising from network properties at the
meso- and macroscale.

NEURONAL RELAYS AND THE PROPAGATION OF
INFORMATION
The principle of synaptic transmission proved to be picture-
perfect for a theory of communication, boosted by the influ-
ential work published in 1948 by Claude Shannon (Shannon,
1948). Transfer of information became a principal tenet of brain
function, and theories went so far as to conceive of “centers”
(Charcot, 1878; see perspectives in Catani and ffytche, 2005)
as final destinations for information to be communicated (the
concept has now retreated, although it remains perniciously
present in neuroscientists’ conceptions of brain hierarchies1 (e.g.,
Meunier et al., 2010); an alternate view is that it is the journey,

1Clearly, the brain is not a diffuse web of randomly coupled dynamical
systems. It is a highly structured organ that has been crafted by evolution. The
outcome of phylogenesis, a slow timescale pattern-forming process (Bressler
and Tognoli, 2006) is the progressive emergence of functional specialization,
where some brain regions take on a more integrated role than others, a
phenomenon that has been named hierarchical organization (see Robert,
1999; Zilles et al., 2002 for anatomo-functional patterning, see also Honey
et al., 2007 for a related network perspective). The notion of hierarchy is
popular in neuroscience and may be relevant (see also Kelso and Tuller, 1981
for a discussion of heterarchical and coalitional forms of brain organization):
hierarchical systems induce a distinction between ascending and descending
connections that could contribute to symmetry breaking which may then lead
to directed coupling and information transfer (Tognoli and Kelso, 2014).
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but not an elusive final destination, that really matters). This
theory of information processing in the brain raises a question
that may not have received enough attention: can we readily
transpose findings from the smallest synaptic level—findings that
speak of only a pair of neurons—to larger spatial scales such as
neural areas or the whole brain? In all justice, countless emergent
phenomena were discovered through this extrapolation, both in
empirical and theoretical work (e.g., Sperry, 1969; Hopfield, 1982;
McLeod et al., 1998). But it remains an uneasy feeling that so
much of Brain Science is built upon the foundation of a pair
of neurons, outside the context of their networks, and with two
open-ended areas of darkness at either of their extremities that
must be thought of as the entire remainder of the organism’s brain
(and body).2

COLLECTIVE POWER OF NEURONAL SYNCHRONY
We will come back to information transmission later, but let
us now explore the matter of spatial scales. As humans tend to
agree, increased size makes up for smarter brains (disclosure:
both authors are human), and those bigger brains have room to
organize themselves at multiple levels, coalescing into functional
ensembles at several steps along the way up from neurons to
functional areas and to the entire brain (Kelso, 1995; Bressler
and Tognoli, 2006; Buzsáki, 2007; Kelso et al., 2013; Tognoli and
Kelso, 2013). At larger and more integrated levels of description,
other ordering phenomena were discovered that brain scientists
conceive in terms of information exchange. In the late 1980’s,
two groups of scientists, one with Reinhard Eckhorn (Eckhorn
et al., 1988) and another with Charles Gray and Wolf Singer
(Gray and Singer, 1989), discovered that perceptual integration

2Although much of neuroscience and its methodology focus on commu-
nication between pairs of neurons at the synaptic level, there is a long
tradition of trying to understand the brain in terms of self-organization and
dynamic coordination. For instance, Ross Ashby theorized on regulatory brain
systems, considered under an equilibrium (homeostatic) perspective (Ashby,
1962) and he contributed to developing Cybernetics (“steermanship” born
from control theory). From a more physical perspective, Arthur Iberall’s
Homeokinetics (formulated as Homeodynamics for biology) stressed the
persistent, marginally stable nature of open thermodynamic systems which
necessarily organize themselves as cyclic, physical action modes at all scales
(see Yates, 2008, for review; also Eigen and Schuster, 1979 for a more
formal but related approach). More recent years have seen the emergence of
Synergetics as a foundational mathematical framework for nonequilibrium
self-organization in physics, chemistry and biology (Haken, 1983). Syner-
getic self-organization is one of the cornerstones of Coordination Dynamics
which stresses adaptive, informationally meaningful, bidirectional couplings
on multiple levels (Kelso, 1995; Kelso and Haken, 1995; Kostrubiec et al.,
2012; Kelso et al., 2013). A key notion of Synergetics that overcomes simple
directional interactions between pairs of neurons is so-called circular or
reciprocal causality (see discussions in Kelso, 1995; Kelso and Engstrøm,
2006; Tognoli and Kelso, 2013). In a multiscale perspective, circular causality
manifests itself in terms of the micro and macroscopic states of a system
reciprocally affecting each other; such that the macroscopic (ensemble) behav-
ior enslaves the microscopic states, the ensemble average of which in turn
produces the macroscopic states. It is possible that the formalism called for
in this essay will rest upon outstanding developments along these lines. On
the other hand, since “macro” and “micro” are relative terms in neurobi-
ological dynamical systems where the timescales are not well-separated, a
more systematic level by level approach may be required (see Kelso et al.,
2013).

(or Gestalt) elicited transiently synchronous action potentials
amongst neurons that had shared-stakes in the sensory object
being viewed. Those neurons dealt with separate parts of the
visual field, and they generally disagreed on when to elicit their
action potentials in the regular course of their participation
in visual function. Somehow however, through the complex
labyrinth of the visual cortex and despite the fact that some
finite amount of time was required to get from any one to any
other of them (delays and frustrations manifested in their usual
asynchrony), they managed to coincide when they responded
to the same object. What we knew from those neurons is that
they “responded” strongly to orientation, fragments of contours
with sharp luminance gradients. Their synchrony it seems, was a
trace of their joint participation in the construction of something
bigger (the object) than what each of them was about (pieces
of contour). These discoveries resonated with earlier theorizing
regarding the organized behavior of neurons such as Donald
Hebb’s cell assemblies (Hebb, 1949) or Walter Freeman’s mass
action (Freeman, 1975). The findings by Eckhorn, Singer and
Gray launched a relentless quest for synchrony in all parts of
the brain and for numerous functions (von der Malsburg et al.,
2010), and took the form of several variants (the most basic being
coincidence of action potentials and phase-locking of neural
oscillations).

IRRECONCILABLES
Theories and dedicated experimental paradigms were built upon
both discoveries of synaptic transmission and neural synchroniza-
tion. And from each side, supporting evidence abounded (see pre-
viously mentioned references for evidence and reviews). In spite
of their prominence and ubiquity though, the theories carefully
avoided confrontation with each other, remaining mostly in the
separate territories of distinct research groups.3 One may note
already some difficulties in reconciling them. Let us follow the
two extreme views: perfect synchronization and perfect transfer.
If all neurons were completely synchronized, they would remain
in a changeless state of simultaneity. It is unclear how this system
could have flows of information from one place to another. On the
other end, if each neuron relayed information in a strict sense, the
system would lack basic simultaneity through which synchronous
phenomena could emerge. In their radical form it seems, the
theories of information exchange qua synaptic transfer or neural
synchrony are mutually exclusive.

CAN WE FIND DIRECTIONS IN THE BRAIN?
The tension is also visible in some empirical facts. Although
directed flows of information in the Shannonian spirit do most
certainly occur in neural networks, it is indeed quite challenging
to track information otherwise than in local or statistical sense
(by tracking, we mean to follow the path of information on
a brain map as one would follow any object in motion on a
symbolic representation of its spatial domain—see Figure 1). The

3There are few exceptions, for instance Fries’ (2005) theory of communication
through coherence that uses the phase of macroscopic patterns of coherence as
a scaffold for selective modulation of information transfer at the microscopic
level.
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FIGURE 1 | A teasing figure aimed at marking difference between
directionality in well-formed Shannonian systems (as in this
imaginary brain map) and in complex systems such as the brain.
In the latter, direction is less intuitive past immediate spatial and

temporal neighborhoods, and it can reverse across spatial scales of
observation (Tognoli and Kelso, 2013). The question is highly relevant
though, when one is concerned with where and how to effect changes
in the system.

brain network after all, is a web, as Francisco Varela et al. (2001)
emphasized, and one gets quickly lost with all the branchings,
loops and loops within loops (Edelman, 1993; Gallos et al., 2012);
structural features that “distribute” information (albeit unlike
a postmaster distributes mail). So it seems that transmission
principles do not scale well upward from simple “channels” of
synaptic interactions to the larger and more complex web of
evolved brains. Thus, it is without surprise that the brain betrays
an essential communicational etiquette: its parts do not behave
in a sequential—one-talks-at-a-time—manner (as opposed to the
humoristic illustration of Figure 1). It is also overwhelmingly
clear that “inputs” from the environment do not enter a silent
system. Brain parts constantly exchange information about their
current and past affairs, and what comes in at a given time works
more as a “perturbation” to an already established ballet, an
event that weaves itself within a broader scheme of coordinated
brain behavior rather than the sole commander of all things
present (Kelso, 1995). All of these nuances differentiate the brain
from a channel in which information is transferred from sender
to receiver. This situation creates mounting complications. The
quest for directional flows in the brain has proved difficult both
conceptually and methodologically, yet, it has not deterred efforts

toward understanding. Mathematical and empirical studies aimed
at resolving these questions are an active area pursued by many,
including our own colleagues (Bressler et al., 2007; Bressler and
Seth, 2011).

BRAIN ORGANIZATION: SYNCHRONIZATION OR
COORDINATION?
The second concept, synchrony, also bears its share of ambiguities.
The firm ground on which we stand is that the timing of neural
activity is not left to hazard (as if parts of the brain behaved
independently, and were totally oblivious of what the others
were doing). “When” one brain part behaves influences when
others do. And like social creatures, neurons also use the power
of their numbers to increase their impact, creating collective
structures that speak from a common voice. A generic name
for such behavior is coordination (Kelso, 1995). Synchrony is a
narrower concept, one of several ways for a system to coordinate
itself. Though synchrony has multiple meanings (and though
its study uses a variety of tools across the board), it is easy to
conceive and to model, perhaps explaining its systematic resort.
To be rigorous however, synchrony requires two important and
inter-related characteristics: first, that the underlying temporal
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order in which the system is embedded be frequency-locked, and
second, that attractors have emerged in the system’s coordination
dynamics (attractors are mathematical structures that entrap the
system’s coordination dynamics into persistent—hard to break—
states). How to examine if there are attractors in the system
from empirical data? We do know how to go from theoretical
descriptions of dynamics with- and without-attractors to their
phenomenology (using models to create data at will), but we
are not very successful at taking the return path: demonstrating
attractors or lack thereof from looking at data, at least for com-
plicated systems like the brain. The other criterion, frequency-
locking, is a little bit easier. And what the data say is that brain
parts exhibit tendencies toward frequency-locking without going
all the way to being perfectly identical. So it seems, we could
be dealing with synchronous tendencies rather than synchrony
(Kelso, 2008; Tognoli and Kelso, 2014). The difference may seem
subtle to some (and some might be tempted to brush it aside
as noise or measurement uncertainty), but mathematically and
conceptually, it is enormous: it speaks of two entirely different
species of dynamical systems, as said before, one with and the
other without attractors. We are turning the spotlight to this
distinction because we believe it to be paramount for progress in
understanding the brain.

The mathematical formalism of “generalized synchronization”
(Rulkov et al., 1995; see also Barreto et al., 2000) is apt to quan-
tify such regimes of coordination sans attractors. Generalized
synchronization assumes the existence of a functional mapping
between two dynamical processes, without imposing the strong
constraint of identical synchronization usually sought for in clas-
sical measures of coherence and correlation. The notion of gen-
eralized synchrony is set to grow in importance in the context of
a coordination dynamic between weakly coupled components—a
beneficial situation that enhances system complexity. The absence
of complexity is a nefarious situation that André Gide related to
tyranny.

AT THE CROSSROADS OF PROPAGATION AND
SYNCHRONIZATION
We hope that the previous exposé motivated the thought that
neural networks neither operate on perfect synchrony nor on
strict transfer, which is good news as each prevents expression of
important features of the other. What then is the link between
them? Some attempts at studying synchrony and transfer in
a common formalism have emerged, exceptions to their usual
avoidance of one another. One is the quest for quantifying direc-
tional coupling as discussed above. Another attempt is functional
(relatedly, effective) connectivity,4 a daring concept that Karl
Friston created on his way to developing theoretical and compu-
tational tools for the analysis of functional images of the brain
(Friston, 1994). Connectivity deals with ways for information to

4Karl Friston (1994) intended functional connectivity to expose temporal
correlations between neurophysiological events—a descriptive approach with-
out a priori specification that the originating structures would affect one
another—whereas effective connectivity is meant to address explicit influences
between brain parts (how much does A affect B, an estimation based on
a priori model of those areas’ relations, later reframed as causality).

go from one place to another. Ideally, we would be able to measure
the connection (the “traffic” between two sites) independently
from the state of those sites where said traffic imparts effect (as
one would measure how many cars travel on the road between
two cities). If independently measured, large scale connectivity
and local activity would be amenable to reveal their effect on
each other. Since we do not have adequate tools to measure
the flow of information in living fiber tracts at large though,
connectivity is not measured directly; rather it is inferred from
the way brain components behave. Interaction, it is postulated,
has to leave detectable traces in the behavior of its partici-
pants. Of course, contemporaneous theories have shaped the lens
through which scientists have tried to see this influence. To make
things practical, the assumption was often made that regions
exchanging information must be correlated or synchronized
(connectivity→correlation). Flipping things around for the oper-
ational goal of quantifying the unquantifiable information flow,
“how much regions were correlated” became the proxy for how
much they exchanged information (correlation→connectivity).
But with only this concept of synchronization under the scope,
we may see a mere fraction of the brain at work, the tip of
the iceberg. What if most coordinated behaviors in the brain
do not fall under our definition of correlation or synchrony?
Depending on the methods used, that would mean for instance
brain regions that are coordinated yet not temporally coincident;
or assemblies in which self-organization favors a fluid coordi-
nation regime sans-attractor (such as metastable tendencies, to
be discussed below) over rigid states of phase-locking. Can we
see dynamics in which no absolute “order” emerges in space
(synchronization) or in time (transfer), and still make sense of
it as a means for the brain to function? Those are the dark and
uncharted areas in the spatiotemporal organization of complex
systems—those for which we sorely lack concepts and methods
(Figure 2).

ENLARGING THE SCOPE: METASTABILITY
The set of questions above resonates with a recent shift in
perspective on brain function, from a primary focus on neu-
ral synchronization to the broader—and deeper—problem of
dynamic coordination. This shift was salient in the editorial
introduction to a special issue of Nature Review Neuroscience
in February 2010, where the word “coordination” occurred six
times in a short text of 250 words (From The Editors, 2010).
And this is a concept that is growing (Kelso, 1995, 2012;
Bressler and Kelso, 2001; Kelso and Tognoli, 2007; Werner,
2007; Rabinovich et al., 2008; Tognoli and Kelso, 2009, 2013,
2014; von der Malsburg et al., 2010; Farmer, 2011; Kelso et al.,
2013). Coordination includes synchronization as one possible
collective behavior, but it also considers many other ways for
components of the brain to interact. In particular, under certain
conditions partially synchronized behaviors arise. In them, the
parts exhibit simultaneous tendencies to temporarily couple and
to segregate as independent entities. Such metastable regimes,
we and others have shown, constitute a recipe for complexity
(Kelso, 1995, 2012; Friston, 1997; Freeman and Holmes, 2005;
Kelso and Tognoli, 2007; Werner, 2007; Rabinovich et al., 2008;
Tognoli and Kelso, 2009, 2013, 2014; Bhowmik and Shanahan,
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FIGURE 2 | A graph of spatiotemporal organization. The horizontal axis
quantifies the degree of order in space; order in time is on the vertical axis.
Examples of orderly phenomena are propagation and synchronization.
There are numerous hints that the brain is more efficient with less than
complete order in space and time. The dark area represents this region with
incomplete spatial and temporal order, for which concepts and tools are
sorely missing.

2013; Kelso et al., 2013). Why is metastable coordination dynam-
ics of high interest to understanding how the brain works?
First, it typically arises when the parts are no longer perfect
clones of one another (e.g., as in computational models built
from collections of identical neurons). When symmetry is bro-
ken and interacting parts are recognized in the diversity of
their intrinsic behavior, a more realistic picture of brain func-
tion emerges (indeed a trend toward studying more diverse
associations in the brain may explain the shift in perspective,
for instance the interactions between neurons and astrocytes,
see, e.g., Wade et al., 2013). Second, incomplete synchronization
is more adaptive than pure forms. A fundamental nonlinearity
in brain self-organization exists. Too much autonomy (parts
of the brain hardly ever affected by what others are doing)
prevents emergence, integration and mass action (Uhlhaas and
Singer, 2006). Yet, too much integration (for instance the whole
brain engaged in a giant common behavior, Cruikshank and
Connors, 2008) is inadequate too, because the respective parts
can no longer do what they are supposed to do in contribut-
ing to collective behavior. The parts then have no choice but
to behave exactly like each other and the richness of their
individual dispositions is lost to the ensemble. It is enough to
note—as many have—that excess synchronization is pathologi-
cal in the brain, for instance in epilepsy or Parkinson’s disease
(Uhlhaas and Singer, 2006; Hammond et al., 2007; Lehnertz
et al., 2009). As a result, the ideal place for a brain to exhibit
a rich set of meaningful behaviors is in-between integration

and segregation. This is where the “incomplete” synchroniza-
tion tendencies or metastable coordination comes into play
(Tononi et al., 1994; Kelso, 1995, 2012; Friston, 1997; Werner,
2007; Chialvo, 2010; Tognoli and Kelso, 2013, 2014). Elsewhere,
we have also speculated on the tremendous functional advan-
tages that metastability would confer to a system, including
speed, flexibility and resilience (Kelso and Tognoli, 2007; Kelso,
2012).

CREATING A NEW CONCEPTUAL FRAMEWORK
The gap between our current understanding of the brain and
the miracles of our mental life and behavioral achievements
(for example, consciousness and capacity for invention) remains
abysmal. Looking through the history of science, several
paradigms of brain function flourished and then dried up
following the ebbs and flows of scientific metaphors. The ultimate
model, the one that allows to forecast all matters of brain action
and to design an artificial counterpart of multiple functional
prowesses, remains out of sight. Two lines of thinking have
been much explored in recent times: information transfer and
synchronization. Their success owes much to the fact that they
are special cases and open to quantification. When examined
together though, they reveal some incompatibilities that seem
to require a relaxation of both principles: less stringent tem-
poral order and less complete spatial order. To advance our
understanding of the brain, Neuroscience must open up avenues
to study functional behavior in a broader sense. We face two
alternatives: to leave it all within the current framework, with
the approximate truth derived from current theories (the brain
“sort of transfers information”, and it operates with “near syn-
chrony”), or to face the issue head on with a different theoretical
mindset. In the latter case, a new phenomenology is up for
grasp. It will be difficult to conceptualize, and even more so to
observe, since it points toward a void in understanding. Modeling
approaches can lead the way, by informing which observables
we can expect to encounter in the coordinating living brain.
And tools will have to be revised or built to adapt to this new
world, tools that will say for instance, when “more synchrony”
is “too much synchrony” (astonishingly, this simple question is
not built into our current enquiries, despite obvious evidence
of the ills of excess synchrony). We note that Brain Science is
reaching a turning point that may make this renewal possible:
it shows many signs of its readiness to enlarge the scope on
brain function, not least of which is a recent outburst of interest
in segregation phenomena (Poulet and Petersen, 2008; Ecker
et al., 2010; Renart et al., 2010). A new paradigm would help to
integrate principles that seem contradictory in their radical form:
transfer and synchronization, as well as integration and segrega-
tion. Those pairs of concepts are reconciled under the dynam-
ical regime of metastability (Kelso, 1995; Kelso and Engstrøm,
2006; Kelso and Tognoli, 2007; Tognoli and Kelso, 2014). Parts
making-up the brain (for instance molecules, neurons, or brain
areas) have simultaneous tendencies for independence and coop-
eration. As a result, they engage in the double-duty of lend-
ing their help to the collective behavior undertaken by several
brain parts, and of performing their own independent behavior.
Under a metastable regime, information is continuously created,
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preserved and annihilated by spatiotemporally changing coali-
tions among parts and processes. This is a source of dynamic
complexity, and the likely origin of the human brain’s many
prowesses.
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Cortical activity exhibits persistent metastable dynamics. Assemblies of neurons

transiently couple (integrate) and decouple (segregate) at multiple spatiotemporal scales;

both integration and segregation are required to support metastability. Integration

of distant brain regions can be achieved through long range excitatory projections,

but the mechanism supporting long range segregation is not clear. We argue that

the thalamocortical matrix connections, which project diffusely from the thalamus to

the cortex and have long been thought to support cortical gain control, play an

equally-important role in cortical segregation. We present a computational model of

the diffuse thalamocortical loop, called the competitive cross-coupling (CXC) spiking

network. Simulations of the model show how different levels of tonic input from the

brainstem to the thalamus could control dynamical complexity in the cortex, directing

transitions between sleep, wakefulness and high attention or vigilance. The model also

explains how mutually-exclusive activity could arise across large portions of the cortex,

such as between the default-mode and task-positive networks. It is robust to noise but

does not require noise to autonomously generatemetastability. We conclude that the long

range segregation observed in brain activity and required for global metastable dynamics

could be provided by the thalamocortical matrix, and is strongly modulated by brainstem

input to the thalamus.

Keywords: thalamocortical matrix, autonomous metastable dynamics, cortical segregation, default mode

network, sleep, wakefulness, complexity, spiking networks

Introduction

In wakefulness and in rapid eye movement (REM) sleep, cortical activity exhibits persistent
ongoing complex dynamics (Breakspear et al., 2003; Honey et al., 2007). In this state, activity
shifts continuously throughout the cortex, and cortical regions couple (integrate) and decouple
(segregate) across multiple spatial and temporal scales (Sporns et al., 2000a; Varela et al., 2001;
Shanahan, 2008; Tognoli and Kelso, 2014). Each individual episode of integration and segregation
is transient, but a continuous superposition of such episodes through space and time results
in the observed persistent metastability of cortical dynamics (Tognoli and Kelso, 2014). This
dynamical complexity is hypothesized to support the brain’s flexibility and sophisticated processing
capabilities (Breakspear et al., 2003; Buzsáki and Draguhn, 2004; Fries, 2005; Tognoli and Kelso,
2014), including memory retrieval, planning and problem solving (Binder et al., 1999; Mazoyer
et al., 2001). During times when the brain is not actively processing sensory stimuli or task-related
events, and as such is in a state known as the “resting” or “default-mode” state, cortical activity is
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concentrated in a well-defined sub-network including regions
of frontal and association cortices (specifically the ventromedial
prefrontal cortex, posterior cingulate cortex, ventral precuneus,
and parts of the medial temporal and medial, lateral and inferior
parietal cortices) (Greicius et al., 2003; Uddin et al., 2008).
Activity of this default-mode network (DMN) is anticorrelated
with activity in much of the rest of the cortex—that is, activation
of the DMN and of those cortical centers used for sensory and
task-related processing is largely mutually exclusive (Greicius
et al., 2003; Uddin et al., 2008; Tomasi and Volkow, 2011).

Metastable cortical states, and the functions these dynamics
presumably underpin (Binder et al., 1999; Mazoyer et al., 2001;
Breakspear et al., 2003; Buzsáki and Draguhn, 2004; Fries, 2005;
Tognoli and Kelso, 2014), cannot exist without the myriad,
often overlooked, sub-cortical areas that provide the cortex
with controlling and modulatory input. Projections from the
pedunculopontine nucleus (PPN) and the laterodorsal tegmental
nuclei (LDT), parts of the brainstem network collectively known
as the ascending arousal system (AAS—but previously known
as the reticular activating system), enter the intralaminar nuclei
of the thalamus (IL) and thence on to the cortex through the
thalamocortical matrix connections. The AAS is thought to
modulate wake and sleep states as well as arousal and vigilance
levels (Moruzzi and Magoun, 1949; Reese et al., 1995; Jones,
2003). The IL matrix connections project diffusely and somewhat
non-specifically to large portions of the cortex, which in turn
project back to the IL through the thalamic reticular nucleus
(RN). Notably, these projections have opposing effects: whereas
the cortex excites the RN, the RN exerts an inhibitory influence
on the IL. Hence, rising global cortical activity increases RN
activation, which in turn inhibits the IL, reducing its input
to cortical activation and ultimately countering the activity
rise in the cortex. Similarly, a decrease in cortical activity can
cause an increase in thalamocortical input from the AAS. This
diffuse matrix thalamocortical loop can therefore potentially
dynamically control overall activity levels in the cortex (Steriade
and McCarley, 1990). Effectively, it implements a mechanism
similar to k-winner-take-all (WTA) across the entire cortex,
where the allowed activity level k is controlled by AAS input
to the IL. WTA networks are known to be able to implement
powerful computational functions (Maass, 2000).

Brain integration is served by long range excitatory
connections, but the paucity of long range inhibition in the
brain has meant that the mechanisms to support long range
segregation of brain activity are less obvious and are not well
understood. Long range inhibition has been discovered within
the visual cortex (McDonald and Burkhalter, 1993), between
the hippocampus and entorhinal cortex (Melzer et al., 2012),
and between the prefrontal cortex and nucleus accumbens (Lee
et al., 2014). However, currently these long range inhibitory
connections are known to exist only in or between a limited
number of specific structures; they certainly do not approach the
abundance of the long range excitatory projections forming the
large fiber tracts that criss-cross the brain. The mechanism by
which, for example, the DMN is segregated from other cortical
regions is unclear (Greicius et al., 2003; Uddin et al., 2008). The
contribution of the AAS, IL and RN to global cortical activation

control is widely suspected (Steriade and McCarley, 1990; Taylor
and Farrukh, 1996; Saper et al., 2001). In this paper we refine
this view and argue for the specific functions of long range
competition and segregation of cortical activity, and thereby the
support of cortical metastability. To demonstrate this potential
we present a computational model of the diffuse thalamocortical
loop, called the Complex Cross Coupling (CXC) spiking network
(see Figure 1). The CXC network includes input from the
AAS and RN to the IL, local and long range corticocortical
connections and local inhibitory interneurons. Simulations
demonstrate that the model requires no extrinsic noise to exhibit
its full range of dynamical states. We use the model to show how
different levels of input from the AAS to the IL could support
a range of dynamical states in the cortex, including states with
high dynamical complexity.

Methods

Neuron and Synapse Models
All simulations were conducted using the Parallel Circuit
Simulator (PCSIM) (Pecevski et al., 2009), a comprehensive
software package for the simulation of large neural networks.
Simulations used Euler integration with a time-step of 0.1ms.

The Complex Cross Coupling Spiking Network was
constructed using two types of Izhikevich model cortical
neurons (regular spiking, RS, and fast spiking, FS) (Izhikevich,
2003). These neurons provide for realistic neuron membrane
dynamics such as spike frequency adaptation, intrinsic bursting,
resonance and bistability, whilst being computationally tractable
for large network simulations (Izhikevich, 2004). The Izhikevich
model is defined by three equations over two variables, the
membrane potential v (nominally inmV) and the membrane
recovery variable q, which are updated as follows:

v′ = 0.04v2 + 5v+ 140− q+ I (1)

q′ = a(bv− q) (2)

if v ≥ 30 then

v ← g

q ← q+ h (3)

where I is the summed synaptic input current and a, b, g, and h
are neuron-specificmodel parameters. In this study, all excitatory
neurons were modeled as regular-spiking (RS) cells with the
parameters (a, b, g, h)= (0.02, 0.2,−65, 8) and inhibitory neurons
as fast spiking (FS) cells with (a, b, g, h) = (0.1, 0.2, −65, 2).
These dimensionless parameters are set as specified in Izhikevich
(2003) to obtain membrane dynamics (modeled by v) that closely
resemble the modeled classes of neuron (i.e., RS and FS cells). In
this study, pyramidal cells are modeled as regular spiking, and
inhibitory interneurons as fast spiking.

The synapses received presynaptic spikes that would initiate
postsynaptic currents that decayed with characteristic time
constants. Synapses were conductance-based, meaning they each
had a reversal potential Erev at which current flow ceased and
beyond which the direction of current flow reversed. Reversal
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FIGURE 1 | The complex cross coupling (CXC) spiking network

(not all connections shown). Filled circles are cortical principal cells

(pyramidal neurons). Open circles are inhibitory interneurons. Excitatory

cortical pyramidal neurons are innervated by diffuse thalamic

(intralaminar nuclei) projections (from shaded oval). The intralaminar

nuclei receive continuous steady, not time-varying, input current from

the AAS. Cortical neurons project back to the thalamic reticular nucleus

which inhibits the intralaminar nuclei, completing the diffuse

thalamocortical loop. Cortical neurons excite each other within a small

neighborhood radius, inhibit each other through local interneurons within

a larger inhibitory radius, and project a small number of random long

range excitatory synapses to other cortical neurons. RN, thalamic

reticular nucleus; IL, diffuse (intralaminar) thalamic nuclei; AAS,

ascending arousal system.

potential for excitatory and inhibitory synapses was 0mV and
−90mV respectively.

To implement short term synaptic dynamics (which was
applied to synapses between all excitatory neurons in one
experiment, the results of which are shown in Figure 5D), a
combination of synaptic depression and facilitation was used
(Markram et al., 1998). For synaptic depression, synaptic efficacy
was assumed to be a finite resource, of which a proportion p was
in use at any given time. Only an amount u of the currently-
available proportion of synaptic efficacy, (1 – p), was used at the
occurrence of each spike; p recovered back to zero with time
constant d (p was therefore bounded in [0,1)). The rate of change
of p for synapse i, ṗi, was given by:

ṗi = δ(t − ti)(1− p)iui −
pi

di
(4)

where δ is the Dirac delta function and ti was the time of the last
spike from the neuron that was presynaptic to synapse i. The
initial value of u for dynamic synapses was set to U, then for
synaptic facilitation u was increased on the occurrence of each
spike, recovering back to U with time constant f (u was therefore
bounded in [U,1)). The rate of change of u for synapse i, u̇i, was
given by:

u̇i = δ(t − ti)(1− ui)U +
(U − ui)

fi
(5)

The synaptic usage factor U was set to 0.15 with a recovery time
constant of f = 1000ms for all dynamic synapses. Total synaptic

current, Idynamic, for a postsynaptic neuron was given by the sum
of all the currents from its afferent synapses:

Idynamic =
∑

i

[

wi(1− pi)ui(v− Erev)
]

(6)

where wi was the total efficacy of synapse i and v was the
postsynaptic membrane potential.

The synaptic recovery time constant d was set to 50ms
for local excitatory-to-excitatory and 500ms for long-range
excitatory-to-excitatory connections. The difference was
motivated in part by the different recovery times for AMPA
and NMDA receptors. Long range connections in this model
were loosely associated with feedback connections within
the hierarchically-organized, massively recurrent cortical
connectome. These feedback connections may be NMDA-rich,
as against feedforward and local connections which may be
predominantly AMPA-based (Thiele, 2012). The time constants
used were longer than typically acknowledged for these receptor
types to compensate for the absence of other network influences
in the model, such as cholinergic neuromodulation, which are
known to enhance NMDAR function.

For static synapses (synapses of fixed efficacy, i.e., with no
short term synaptic dynamics), synaptic efficacy was assumed to
be an infinite (non-depleting) resource, so u was always 1 and the
rate of change of p for synapse i, ṗi, simplified to:

ṗi = δ(t − ti)−
pi

di
(7)
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Total synaptic current, Istatic, for a postsynaptic neuron was then:

Istatic =
∑

i

[

wi(1− pi)(v− Erev)
]

(8)

Static synapses were used in all simulations in this study except
for Figure 5D (for which dynamic synapses were used as above).
For static excitatory-to-excitatory synapses the synaptic recovery
time constant d was set to 50ms, for excitatory-to-inhibitory
5ms and for inhibitory-to-excitatory 40ms. No inhibitory-to-
inhibitory connections existed.

Network
The CXC network was devised for this study in order to
investigate the relationship between the diffuse thalamocortical
matrix loop and cortical dynamics, although precursor models
have been published (Stratton and Wiles, 2010a,b). The
CXC model is an abstraction of the essential computational
components of the complex thalamocortical connection
structure. It utilizes some of the known characteristics of
these regions (such as dense local and more sparse long-range
connections), while ignoring others (such as cortical layers). As
such, it is a general representation only, with no intended specific
spatial scale. Its purpose is to show that thalamocortical-like
connectivity between simple neuron-like elements can result in
non-trivial dynamics, and to point to some of the general neuron
and network properties that may be involved.

The network consisted of ne = 1000 regular-spiking (RS)
excitatory pyramidal neurons and ni = 250 fast-spiking
(FS) inhibitory interneurons connected linearly (i.e., in a
1-dimensional network) with directional synapses. Synaptic
efficacies were set such that several presynaptic spikes in
close succession were required to cause an output spike in a
postsynaptic neuron. Connection structure was set to be small
world-like, with dense local connectivity and sparse random long
range connections, similar to the cortex. Each RS neuron was
connected to each of its closest j neighbors with local excitatory
efficacy wn/j where wn = 2 (the end neurons connected circularly
to the opposite end of the neuron vector). Random long-range
connections of weight wr/k where wr = wn were then made
from each RS neuron to each other RS neuron with probability
k/ne, giving an average of k long-range connections per neuron.
In all simulations j = 4 and k = 10 (these numbers of
connections were smaller than in actual cortex due to the limited
size of the modeled network, and synaptic efficacies and currents
were therefore scaled up accordingly). Inhibitory FS neurons
were spread uniformly between the RS neurons. Each FS neuron
received excitatory input from and projected inhibitory output to
each of its closest l RS neurons with efficacywi/lwherewi = 1 and
l = 20.

The thalamic reticular (RN) and intralaminar (IL) nuclei were
each implemented as a single analog (non-spiking) neuron with
output equal to the sum of its input currents. These nuclei are
modeled as analog because their function is to balance cortical
activity, and while the brain uses spiking neurons in these nuclei,
we hypothesize that the summed action of many spikes from
many neurons results in this homeostatic balance, so for the CXC

model the analog representation is sufficient. RS neurons were
innervated by IL projections with synaptic efficacy of 0.4. The
IL received continuous steady (not time-varying) input current
from the AAS (IAAS) which ranged from 0 to 10 in different
experiments. This upper bound on IAAS was set to strongly
depolarize the connected neurons without causing them to reach
spiking threshold. Cortical neurons projected to the RN with
efficacy 1, with synaptic currents decaying with time constant d,
as above (Equation 7). The RN inhibited the IL with efficacy −1,
completing the diffuse thalamocortical loop. Network activity
was initiated by a single input pulse at time zero into a random
selection of ne/2 RS neurons. Conduction delays were set in a
uniform random distribution between 1 and 25ms for long range
connections and to 1ms for all other connections.

To test the sensitivity of the results to numerical factors,
additional test simulations were conducted with very high
temporal resolution (1µs time-steps) and larger scales (100,000
neurons in the network). Additionally, simulations of 10.000 s
duration were run to ensure that network dynamics neither
failed nor entered a short limit cycle attractor state. All these
simulations exhibited metastable network dynamics across their
entire spatiotemporal extents.

Analysis
Input current from the AAS to the IL (IAAS) was varied from 0 to
10 in steps of 0.01. For each input current level, a simulation was
conducted for 10 s of simulated time. Spike times and membrane
potentials of all neurons were recorded at each time-step of
0.1ms. The first 1 s of activity was deemed to be the network
settling period during which time the network activity would
transition from synchronous bursting (initiated by the input
pulse) to sustained activity (or to quiescence depending on the
input level). The neural activity for this first second was omitted
from further analysis. The remaining 9 s of the recordings were
used to calculate the mean firing rate, r, of the network (r =
T/ne/9, where T is the total number of spikes generated by all
RS neurons).

We estimated the local field potential (LFP) that would be
recorded from this network at any moment in time, lfp(t), by
summing the membrane potentials of all neurons:

lfp(t) =
∑

m

vm(t) (9)

where vm(t) was the membrane potential of neuron m at time t.
Due to the vertical alignment of cortical dendrites in real brains,
real dendritic potentials, when summed from many cortical
neurons, contribute to the LFP (Nunez and Srinivasan, 2006).
Neurons in this study were simulated as point entities with no
dendritic processes, so the neuron (soma) membrane potential
was the closest estimate of the dendritic potential. This process of
calculating the estimate of the LFP is similar to that used by Beim
Graben and Kurths (2008).

An indication of the complexity of the dynamical network
state was based on deviations of the interspike interval (ISI)
distribution from exponential tomulti-modal. Duringmetastable
dynamics, three modes (short, medium and long) were evident
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in the ISI distribution; these modes arose explicitly due to the
processes of active integration and segregation in the network.
Short ISIs were caused by bursty firing of a neuron, which
occurred when the neuron was receiving strong synaptic input
from neighboring neurons and from long range connections
from distant neurons, and hence indicated that the neuron was
being integrated into network activity. Long ISIs were caused by
long periods when a neuron did not fire, which occurred when
the neuron was receiving weak or no input from neighboring
neurons and from long range connections, and hence when the
neuron was segregated from network activity.

Spikes firing within the central ISI mode, midway between
the short and long modes, were simply following the dominant
oscillation frequency of the network, exhibiting neither enhanced
integration nor segregation from network activity. Small
integration and segregation peaks, when compared to the
central peak, therefore indicated that most spikes were
entrained to the dominant network oscillation and neuron
firing was predominantly periodic, whereas simultaneously-large
integration and segregation peaks indicated that the network was
in a complex metastable dynamical regime.

Finally, the network trapping time was calculated (Marwan
et al., 2002). Trapping time quantifies the amount of time a
network remains in a given state before transitioning to a new
state. The trapping time was determined by first constructing
a matrix S of states of the network spiking activity over 0.2 s
non-overlapping time windows. Within each time window j, the
number of times each RS neuron i emitted a spike was counted:

Si,j =
∣

∣{0.2(j− 1) ≤ ti < 0.2j}
∣

∣ for all i, j (10)

where ti is the set of spike times of neuron i and |{...}|denotes the
length of a set.

The correlation matrix of S was calculated and the resulting
matrix was thresholded at 0.5, yielding the state recurrence
matrix R:

R = H(corr(S)− 0.5) (11)

where H is the Heaviside step function. R is a symmetric
matrix that reveals, for all states j, which other states were
similar (i.e., which other states had a similar pattern of firing
neurons). Finally, the mean width of the super-threshold region
surrounding the main diagonal of R was determined (i.e., for
each 0.2 s window represented by an element on the main
diagonal of R, the width of the super-threshold region around
this element was measured perpendicular to the diagonal by
stepping outwards from the element until a sub-threshold
element, where H i, j = 0, was found; the mean of these widths
for all elements along the main diagonal of R is the trapping
time of the network). Trapping time is interpreted as follows: If
the network transitioned between states rapidly, then adjoining
state vectors of S had sub-threshold similarity and the diagonal
of the recurrence matrix R (the trapping time) was only one state
wide (i.e., each state was similar only to itself). However, if the
state transitions were slow, then adjoining state vectors of S had
super-threshold similarity and the width around the diagonal of
R was greater than one. Longer trapping times indicated that

the network state was evolving more slowly. Trapping times
approaching 10 s (the length of most simulations in this study)
indicated that the network dynamics were fixed in an attractor
state in which activity did not evolve at all.

Results

Autonomous (Self-sustained) Metastable
Dynamics
To establish the baseline complex dynamics supported by the
CXC network, constant input from the AAS was first set to the
baseline level of 1 and synaptic conductances were set to standard
values for the network (see Methods). No noise sources were
used within the network or in its input. The network exhibited
metastable dynamics (Figure 2) despite being deterministic. We
have previously investigated the network properties required for
a spiking network (a precursor to the CXC) to exhibit such
dynamics (Stratton and Wiles, 2010a,b)—these include small-
world or scale-free cortical connectivity, a mechanism of global
inhibition, and maintenance of dynamics in a critical (phase
transition) state. The parameters of the CXC network of the
current study were set to be in the critical region. Metastable
network dynamics were robust to moderate network parameter
changes, however significant modification of these parameters
resulted in either collapse of network dynamics into a limit
cycle resembling seizure or failure of activity to propagate
causing the total network activity to fall to zero. These two
states of seizure and quiescence are the low-complexity states
between which the activity in the CXC network rapidly, partially
and transiently switched to generate the metastability (Stratton
and Wiles, 2010b)1. The cortico-thalamo-cortical feedback from
the matrix connections played a homeostatic role, lowering
cortical input as activity levels increased and raising input
as activity levels decreased, ensuring that the network as a
whole remained within the critical region of phase space. In all
simulations, these autonomous, complex, non-periodic dynamics
lasted indefinitely.

Inspection of the firing of neural assemblies (groups of
neighboring neurons) in the spike raster plot shows that
they occurred approximately 0.05 s apart (Figure 2). This
oscillation period was determined by the interplay of the cortico-
thalamo-cortical feedback and the time constant of the local
synaptic inhibition. Despite the regular oscillation period, these
assemblies formed at unpredictable, apparently random times
and existed for unpredictable durations (Figure 2; also see
Stratton and Wiles, 2010b). Dynamic formation of assemblies
was unpredictable because it depended on three tightly coupled
factors: (1) which assemblies were currently firing, (2) the precise
pattern of random long-range connections from the currently
active assemblies, since this pattern would determine which of
the currently inactive neurons were receiving strongest synaptic
input, and (3) the past history of firing activities, since neurons

1While the subcortical structure of the CXC is more complicated than that

presented in this earlier paper, it fulfills the same function and the extra detail

has been included for biological fidelity. Parameter sensitivity is therefore not

significantly altered in the CXC.
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FIGURE 2 | A spike raster plot of CXC network activity shown at

different zoom levels reveals characteristics of complex network

dynamics. These include network-wide oscillations, groups of neighboring

neurons unpredictably forming transient oscillating assemblies, and ongoing

non-periodic activity. (A) Spiking activity of 200 neurons for 1 s. Each

horizontal group is an assembly of bursting neurons. Each neuron within an

assembly bursts at high frequency, with the bursts occurring every

0.05–0.1 s (10–20Hz) while the assembly is active. Assemblies are transient,

sometimes firing synchronously with other assemblies in the network and

sometimes asynchronously. Examples of both synchronous and

asynchronous firing can be seen. (B) The entire network shown for the full

60 s of simulation. The transient and unpredictable nature of assembly

formation and duration is evident. The time period shown in panel (A) is

boxed. Mean firing rate for all neurons was just 1.0Hz. (C) Spike raster plot

for one typical neuron over 60 s, showing random firing with burst activity

punctuating extended periods of quiescence. Most neurons had lengthy

periods of complete silence lasting 10 s or more despite having mean firing

rates around 1Hz and the network as a whole oscillating at 10–20Hz.

which had been recently active could still have been in a relative
refractory period, meaning other neurons could fire first even if
they were receiving weaker synaptic input. Thus, even though

the network dynamics were noiseless and deterministic, they
were unpredictable unless the entire network state (both static
and dynamic, i.e., the entire connectivity map, the complete
properties of every neuron and synapse, and the precise current
states of all membrane potentials and synaptic currents) was
known with absolute accuracy. In other words, the only way to
predict the ongoing activity would be to create an exact duplicate
of the network, and any inputs impinging upon it, and simulate
it in its entirety. (Interestingly, this inability to accurately predict
model dynamics for the CXC network applies equally to real
brains).

Integration and Segregation
For the network with baseline AAS input level (equal to 1, as in
Figures 2, 3A), LFP power was strongest at approximately 19Hz,
indicating the dominant oscillation frequency in this network
(Figure 3A center). The ISI distribution appeared monotonic on
a linear scale (Figure 3A right inset), but by exploiting the fact
that very small ISIs are excluded by the refractory period, we
plotted the ISIs on a log scale to give superior count resolution
for short ISIs (Figure 3A right). On a log scale several peaks
were apparent; the ISI distribution was clearly multi-modal. The
central mode, occurring at just below 0.1 s (–1 on the log scale),
was caused by the dominant 10–20Hz oscillations. This mode
could therefore be considered the “base mode” or default ISI of
this network. In this respect, spikes occurring 0.05–0.1 s apart

carried little information; these spike timings were predictable
based on the observed dominant oscillation frequency, and in an
information theoretic sense, the more predictable an event, the

less information it conveys (Shannon et al., 1949). Unexpected,
apparently random deviations from this base mode, however, can
carry much larger amounts of information. Interestingly, for this
network these deviations occurred in amanner suggestive of both
integration and segregation of network elements, as follows:

The mode with shortest ISI, occurring at less than 0.01 s (–
2.4 on the log scale), was caused when neurons integrated into
assemblies. When a neuron received synaptic input from its local
neighbors and from random long-range connections from other
active assemblies elsewhere in the network, it would fire at much
higher rates than baseline and become integrated by and into the
network activity.

Similarly, the mode with longest ISI in the ISI distribution
(Figure 3A, right), occurring at approximately 1 s (0 on the log
scale) and beyond, was caused by neurons firing less often than
expected given the network oscillation frequency, or equivalently,
neurons being excluded from firing. The majority of the principal
neurons in the network had lengthy periods of complete silence
lasting 10 s or more despite the network as a whole displaying
regular oscillations of much shorter periods.

Input Level from the Ascending Arousal System
Changed Dynamical State
When constant input from the AAS was increased, several
dynamical properties of the network were altered (see Figure 3B,
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FIGURE 3 | Varying AAS input induced very different dynamical states

in the CXC network. (A) With AAS input set to 1, complex dynamics

emerged despite the absence of noise in the system. The spike raster plot

for all the principal cells for 10 s of activity is shown (the first 1 s of network

settling time was excluded) (left). The Local field potential (LFP) showed a

(Continued)
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FIGURE 3 | Continued

dominant 19Hz oscillation (center). Firing rate variability was high; neural

activity occurred in combinations of strong bursts and long periods of

inactivity. The ISI distribution, shown as a probability density, was therefore

multi-modal (right), indicative of integration (bursts), and segregation

(extended periods of inactivity—see text). Displaying ISI with log time

enhances resolution for short ISIs (main panel, right; inset on right shows the

ISI distribution with linear time). Network parameters in this panel match

those shown in Figure 2 above. (B) Increasing AAS input levels resulted in

increased firing rate (left), higher dominant oscillation frequency (center) and a

decrease in the number of spikes in the high and low modes of the ISI

distribution (right) compared with the central mode, indicating that more

spikes were becoming entrained to the dominant oscillation as AAS input

increased. (C) Low but non-zero AAS input and no noise resulted in a very

different dynamical state characterized by all neurons being entrained to a

single low oscillation frequency (left). The LFP was characteristic of a

rectangular wave (similar to a square wave but with a shortened or

lengthened duty cycle) (center). Almost all ISIs were identical (right). (D) AAS

input and all synaptic conductances in the network were set to zero and

noise was added to induce random firing at 1Hz (left). Mean firing rate was

identical to that in (A) but the LFP was consistent with filtered noise,

attenuated slightly at higher frequencies by the neural membranes (center).

The ISI distribution was nominally exponential (inset, right) with the spike

refractory period excluding short ISIs (main panel, right).

with four times the AAS input). The network firing rate increased
as a direct result of the increased input allowing a greater
number of neuron assemblies to be simultaneously active. The
dominant network oscillation frequency also increased, due to
the stronger input causing faster depolarization of the neurons
after each oscillation cycle; the oscillation peak shifted from 19
to 26Hz (Figure 3B center). In the ISI distribution, more spikes
occurred in the central baseline mode and fewer in the outlying
short and long ISI modes (Figure 3B right). This change in
distribution indicated greater predictability of the spike train—
a greater proportion of spikes were being entrained to the overall
dominant network rhythm and fewer were exhibiting enhanced
integration with or segregation from this overall network activity.
The reason for the reduced segregation is straightforward—
with more neurons firing there are fewer opportunities for
neurons to be silent for extended periods. On the other hand,
the comparatively lower integration into assemblies is due to
stronger inhibition (which itself is due to the increased overall
activity in the network); each oscillation cycle is shorter, so fewer
spikes are generated by each neuron in each cycle before the
assembly is silenced by inhibition.

For some small but non-zero levels of input from the AAS,
the network entered a very different state (Figure 3C, AAS input
lowered to 0.75). The dominant oscillation frequency decreased
markedly and virtually all neurons were entrained to the global
oscillation. This state had a very low complexity, as can be seen
from the single large peak in the ISI distribution at the dominant
frequency. In this state, the spike times of all the neurons verged
on wholly predictable. It is not immediately evident why this state
arose. However, two observations may be relevant: (1) the state
was not strongly stable, with dynamics settling into either low
or high complexity regimes under initial conditions with very
small differences, and (2) the state was abolished by noise (see

Section Robustness to Noise, below). These observations suggest
that the network dynamics were bistable in this region of phase
space (a not-uncommon occurrence in non-linear dynamical
systems).

To establish a control condition with Poisson firing, which
reveals the differences in dynamics when network activity
is dependent on extrinsic noise rather than on the network
structure, AAS input and all synaptic conductances in the
network were set to zero efficacy and sufficient noise was added
to the neural membranes to induce random spiking activity
at 1Hz (Figure 3D, left). The LFP showed a power spectrum

characteristic of low-pass filtered noise; higher frequencies were
filtered by themembrane capacitance of each neuron (Figure 3D,
center). The ISI distribution took the expected exponential
shape curtailed by the spike refractory period. Poisson firing
highlights the contrasts in dynamics between random activity
and metastability, where the average firing rates were equal but
the higher order statistics were dissimilar.

With the extrinsic noise removed and synaptic conductances
reinstated (i.e., the network restored to standard baseline), AAS
input was then varied from 0 to 10 in steps of 0.01, themean firing
rate for each instance was recorded, and the network trapping
time was calculated (see Methods for details). Trapping time
quantified the amount of time the network tended to remain in a
given state before transitioning to a new state.

Mean firing rate increased linearly as AAS input was increased
(Figure 4, top), except for low input values where firing rate
was typically either zero or extremely high. The regions of
zero network firing were generally for very low AAS input
values near zero, while regions of very high firing rate occurred
for slightly higher input levels between 0.6 and 0.8. The
transformation between low and high firing rates was sudden,
with no intermediate states. The dynamics in the high firing
rate regions were as shown in Figure 3C—low complexity, global
entrainment, and slow oscillations around 5Hz. In these high
firing rate regions the trapping time was high (Figure 4, bottom),
signifying that the network state was not changing (marked as
point c in Figure 4).

With increasing AAS input to just above 0.8, network
dynamics again switched dramatically, in this instance to a
state of low trapping time (high complexity) and low firing
rate, as shown in Figure 3A (marked as point a in Figure 4).
Trapping time and firing rate increased with further rises in AAS
input (point b and beyond). The firing rate increase has been

explained above. The trapping time increase is related to, and
perhaps caused by, the increase in firing rate; specifically, by
the increase in the number of simultaneously-active assemblies.
When a greater number of assemblies are active at any given
time, there are fewer long-range connections that project to
currently-inactive assemblies. Only inactive assemblies have a
chance of switching to an active state and changing the overall
state of the network. The consequence is that, as firing rate
increases, there is decreasing probability of a change in state
at any given time, as reflected in the increasing trapping
time.
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FIGURE 4 | Changing input level from the AAS dramatically affected

network dynamics. Left panels—AAS input levels from 0 to 10. Right

panels—close-up on AAS input from 0 to 1. Cases a–c from Figure 3

are marked on the graph (top). Very low input levels below 0.6 usually

resulted in no network activity, with sporadic instances of complex

dynamics occurring for AAS input levels between 0.35 and 0.6 (see

close-up panels on right). At input levels between 0.6 and 0.8, global

entrainment at high firing rates but low oscillation frequencies emerged

abruptly, again with some sporadic interspersed instances of complex

dynamics. The sporadic large changes in firing rate and trapping time for

low AAS input levels (between 0.35 and 0.8) are characteristic of network

dynamics being bistable, with the random initial conditions for each

network instance controlling which of the stable states the network settled

into in each case. A small increment in AAS input could therefore result

in a large change in dynamics, as can be seen in the close-up panels on

the right. At AAS levels beyond 0.8, a sustained switch to complex

dynamics occurred (i.e., the bistability vanished). At high levels of AAS

input, firing rate and trapping time increased. Adding noise to the neural

membranes removed the bistability and caused complex dynamics to be

sustained for all levels of AAS input down to zero (dashed line, top right).

Connectivity Impacts Dynamics
In all of the above simulations, long range cortical connections
were set randomly with uniform probability. It is also possible
to base connection probability on distance between the cells,
so that cells that are nearer have a greater chance of having a
long range connection between them. Such a connection scheme
resulted in “waves” of activity propagating through the cortical
cells (Figure 5A). These waves arose due to the connections from
any active region in the network projecting most densely to
regions that were immediately adjacent. These adjacent regions,
receiving the strongest input, were the most likely to become
active next. As this process repeated, the result was a wave
of activity propagating through the network. However, since
the propagation was chaotic, the speed, number and even the
direction of the propagating waves could vary unexpectedly.
Alternatively, by dividing cortical neurons into two groups such
that intergroup long range connections were less likely than
intragroup, activity would unpredictably switch between the
groups (Figure 5B). The activity switch occurred for a similar
reason to the activity waves in Figure 5A, except that the
connection probability within each group was fixed and equal
between all neurons, causing all neurons within a group to have
equal chance to become active.

Reducing the radius of local inhibition resulted in variable
neuronal assembly sizes andmuch faster oscillations (Figure 5C).
Assembly sizes varied because the reduced radius of inhibition
was unable to contain the surrounding excitation, meaning

that adjacent assemblies could link together and form larger
super-assemblies. Oscillation frequency increased because local
inhibition could no longer provide a stabilizing effect on the
network dynamics; instead, local excitatory connections could
form tight recurrent loops limited in frequency only by axonal
conduction delays and membrane dynamics. Finally, increasing
local inhibition and excitation strength and adding short-term
plasticity (STP) to the excitatory synapses resulted in network
dynamics which would spontaneously and intrinsically enter
and exit seizure states (Figure 5D). STP seems to be involved
in the generation of seizure-like dynamics in the model, since
networks without STP do not exhibit these seizure states. Seizure
onset was caused by chance synchronous firing, during one
oscillation cycle, of a larger number of neurons than normal,
simultaneously facilitating a large number of synapses, which
pushed the network into a hyper-synchronous state that was
then perpetuated (often beyond the facilitation time constant)
by feedback through the thalamic matrix connections. Seizure
termination also seemed to occur by chance, with a spike from
a cell either not involved in the seizure or at a time not
synchronized with the seizure oscillations. Such a “wayward”
spike could sufficiently affect the timing of subsequent spikes
in the network to break the hyper-synchronicity. However,
a deeper understanding of the mechanism or mechanisms
involved in seizure onset and termination would require
further studies that are beyond the scope of the current
paper.
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FIGURE 5 | Modifications to the synaptic connection schemes

resulted in changes to the network dynamics. (A) Long range

connection probability based entirely on distance between neurons

resulted in propagating waves of activity. (B) Dividing the neurons into

two groups where neurons within a group were more likely to be

connected resulted in a dynamic switching of activity between groups.

(C) Reducing the radius of local inhibition to less than that of local

excitation resulted in the formation of variably-sized neuronal

assemblies and much faster oscillations. (D) If short-term synaptic

dynamics are modeled and excitation and inhibition strength increased,

a network that exhibits spontaneous entry to and exit from seizure

states can result.

In the version of the CXC network presented in this paper,
the pedunculopontine, reticular and intralaminar nuclei are each
modeled as unitary entities with no smaller components or
sub-nuclei. While this simplification is adequate to demonstrate
the functional involvement of these regions in long range
segregation of cortical activity and facilitation of complex
dynamics, in reality these nuclei are comprised of distinct
components with distinct connection patterns. In particular,
the “non-specific” matrix projections from the IL to the cortex
may in fact have specific synaptic targets (Groenewegen and
Berendse, 1994). This specificity has consequences for cortical
dynamics: rather than cortical regions competing uniformly for
activity, the competition (segregation) occurs in interconnected,

hierarchically-arranged overlapping pockets of varying sizes
across the entire cortex. With such a connection paradigm, total
cortical activity remains controlled at all times, but inter-regional
competition can vary in complex ways based on IL connection
patterns and precise patterns of cortical activity at any given time.
The result is that the repertoire of cortical dynamics is potentially
even richer than presented here.

The network is not limited to linear (1-dimensional) layouts;
2-dimensional, and greater, network arrangements work equally
as well (see online2 for details). Overall, this and the above

2For an animated example of 2-dimensional cortical dynamics in the CXC see

https://dl.dropboxusercontent.com/u/70159706/gtrajectory_out.avi.

Frontiers in Systems Neuroscience | www.frontiersin.org August 2015 | Volume 9 | Article 119 | 23

https://dl.dropboxusercontent.com/u/70159706/gtrajectory_out.avi
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Stratton and Wiles Global segregation of cortical activity

preliminary results (Figure 5) suggest a strong impact of network
connectivity on the ensuing neural dynamics that warrants
further investigation. Understanding how neural dynamics are
influenced by specific connection structures in the brain such
as the directed connections between regions at the macro
scale, intra-regional connectivity inside structures like the
hippocampus at the meso scale, and detailed neural circuitry at
the micro scale, is critical to understanding how these structures
perform their diverse functions.

Robustness to Noise
To test the robustness of the network dynamics to noise, sufficient
membrane noise was added to all principal cells to induce
random spiking at 0.1Hz in each cell; that is, spiking occurred
at 100Hz across the network of 1000 cells. (Note that this is a
very different experiment to that depicted in Figure 3D, where
the network was effectively disabled by setting synaptic efficacies
to zero prior to the injection of noise.) In the case of adding noise
to the functioning network, there was no significant change in
the mean firing rate, integration and segregation, or the trapping
time for most AAS input levels. However, for AAS input between
0 and 0.8, the transitions to low complexity states with high
mean firing rates and high trapping times did not occur; instead,
complex dynamics continued for all input levels down to zero
(Figure 4, dashed line in top right panel). This continuation of
complex dynamics was due to random spiking activity adding to
the total activity in the network, similar to sustained higher AAS
input, and holding the network in a metastable dynamical state.
Crucially, the network’s ability to maintain metastability and long
range segregation of activity was not compromised by noise.

Discussion

Segregation, Metastability, and the
Thalamocortical Matrix
The primary finding in the current study has been that the
AAS-IL-RN circuit may have the ability to globally segregate
cortical activity and maintain metastable cortical dynamics,
with no need for injected noise or input perturbations, and
that the global cortical state could be strongly modulated by
brainstem input to the thalamus. In the absence of long-
range inhibition, and the absence of long-range excitation onto
local inhibitory interneurons, the long-range competition and
network segregation observed in the CXC could only occur
through the lowering of excitation from the IL. Local and long-
range corticocortical connections in the CXC network were
not strong enough to sustain activity at low firing rates—a
depolarizing input from the IL was required to boost neural
membrane potentials sufficiently close to threshold so that a
small number of presynaptic spikes was capable of causing
a spike in the postsynaptic neuron. If total activity in the
CXC network increased, tonic depolarizing input from the IL
decreased, and neurons or assemblies that would have fired due
to convergent input from other active assemblies would then be
unable to fire. This is competition through effective inhibition
(inhibition that occurs via the withdrawal of tonic excitation),
controlled by the total amount of activity across the network.

Simultaneous, transient, unpredictable, recurring integration and
segregation of activity in the CXC network resulted in the
observed on-going metastability. Without these thalamocortical
matrix connections, sustained metastability at low firing rates,
long range competition, and global segregation of cortical activity
would not be possible.

The activity states observed in the CXC network have analogs
in real brains. The slow oscillations and global coupling seen at
lowAAS input levels in the CXC network are similar to the strong
delta oscillations and very low dynamical complexity observed
during deep (non-REM) sleep (Massimini et al., 2005; Murphy
et al., 2009). In mammals, AAS input levels, particularly input
from the pedunculopontine nucleus (PPN, or sometimes PPT
or PPTg) are significantly reduced during periods of non-REM
sleep (Moruzzi andMagoun, 1949; Reese et al., 1995; Jones, 2003),
with slow delta oscillations at 0.5–4Hz the predominant neural
activity signature of this state. The transition between sleep
and active cortical states is thought to be driven by cholinergic
neuromodulation. However, there is likely to be more than one
mechanism involved, and this result in the CXC network suggests
that the transition could be assisted by the lowering of AAS input;
supporting the switch from a state of high to low dynamical
complexity.

At slightly higher AAS input levels than those required to
generate sleep-like dynamics, the CXC network switches into a
low firing rate, high complexity state. This state is analogous to
awake states of low cortical arousal and metastability seen in
real brains at intermediate levels of PPN activity, and observed
during quiet relaxation (Stam et al., 1999). The characteristic
neural activity signature of this state is relatively slow alpha
oscillations (8–12Hz, just lower than the dominant oscillation
frequency observed in the CXC network) seen over large parts of
the cortex. Increasing AAS input beyond this level in the CXC
network resulted in increased firing rates, increased dominant
oscillation frequency and increased trapping time—the length of
time for which neural assemblies were stable—while decreasing
the dynamical complexity. The decrease in complexity arose
due to more spikes being entrained to the dominant oscillation
and fewer spikes exhibiting either integration into assemblies
or segregation from network activity. These states in the CXC
network may correspond to states of attention, arousal and
vigilance in real brains when AAS input is known to be maximal.

Default Mode Network
Free association and daydreaming tend to occur when the brain
is not actively processing sensory stimuli or task-related events,
and as such these states are correlated with activity in the default
mode network (Mason et al., 2007; Buckner et al., 2008; Christoff
et al., 2009). It follows that when the brain switches state from free
association to attention, activity tends to switch from the DMN
to other parts of the cortex. The regions of the cortex involved
in the DMN are more strongly connected to each other than
they are to the rest of the cortex (Buckner et al., 2008). We have
shown that when a similar connection strategy is employed in the
CXC network—dividing the cortical neurons into groups where
intergroup connections are less likely than intragroup—activity
dynamically and unpredictably switches between groups.
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In the CXC network, activity tends to concentrate in one
group at a time because the recurrent long range connections
required to sustain ongoing activity (Stratton and Wiles, 2010b)
are focused within groups. Switching between groups is driven
by a combination of the long range connections and the
input from the AAS; when several long range inputs to a
new group are activated simultaneously, perhaps coinciding
with a decrease in activity of the currently-active group due
to either habituation or random activity fluctuation, then
input from the AAS can be sufficient to ignite a larger
number of assemblies in the new group. Activity in the new
group then competes for persistence with the current group
through the segregation process mediated by the AAS and
the thalamic matrix connections, and if activity in the new
group is strong enough then it will dominate and an activity
switch occurs. This dynamic switching in the CXC network
provides a parsimonious explanation and inherent mechanism
for activity in the DMN and other cortical regions being
mutually exclusive despite the limited connectivity (especially
inhibitory connectivity) between them. In the brain, the timing
of switches in activity between the default mode and task-
positive networks is likely also influenced by task requirements
and external events in the perceived environment, rather than
being purely chaotic, but the segregation principle remains the
same.

Consequences for Brain Function
Sustained firing of neural assemblies has been proposed as
the neural substrate of working memory in the cortex (Wang,
1999; Pesaran et al., 2002; Jensen, 2006; Jensen et al., 2007).
In the CXC network, the state of higher firing rates, increased
trapping times and faster oscillations is analogous to a state
of increased vigilance, attention and working memory in the
cortex (Oken et al., 2006), driven by an increase of input
from the AAS (specifically the PPN). There is ample evidence
that increasing input from the AAS causes increasing cortical
activation in general (Jones, 2003), and that firing rate and
oscillation frequency also increase specifically for those neurons
representing attended stimuli (Fries et al., 2001). There is also
some evidence that increased vigilance does indeed reduce
spiking variability (meaning that complexity of spiking patterns
is also reduced) (Falkner et al., 2013). The converse state of low
firing rates, short trapping times and high complexity in the CXC
network is driven by lower AAS input levels and is associated
with slower oscillations. This state is analogous to fluid states
of mentation such as mind-wandering or daydreaming (Laufs
et al., 2003; Mason et al., 2007; Buckner et al., 2008; Christoff
et al., 2009) where working memory is not heavily utilized and
mental associations arise freely and apparently randomly due to
the increased variability of the neural dynamics.

The CXC network has a clear dichotomy between relaxed
free association and vigilant attention; these modes cannot
occur together because they are distinct dynamical states of the
thalamocortical system, driven by changing input levels from
the AAS. Dynamical states of low complexity are necessary for
stable maintenance of working memory, with the trade-off that

fewer potential states will be visited due to longer network
trapping times. Dynamical states of high complexity and short
trapping times are necessary for exploring more of the possible
state space combinations of neural representations, supporting
mind-wandering and free association, but are ineffective when
focussed attention and working memory are required. Based
on the model’s behavior, we conjecture that states of high
and low complexity are both useful but cannot co-occur, so
the brain switches between them as need and opportunity
arises.

Several predictions about neural dynamics can be made from
the model:

1. Overall cortical activity should increase approximately linearly
with increasing stimulation from the AAS. This correlation
could possibly be measured experimentally using fMRI.

2. Increasing AAS input should cause increased trapping time
in the cortex (i.e., longer activation of neural assemblies
and slower transitions between cortical states). This
relationship could be quantified using fMRI ormulti-electrode
electrophysiology recordings.

3. Increasing AAS input should also reduce the complexity
(increase the predictability) of dynamic cortical activity
patterns. Predictability can be quantified by calculating the
entropy of or the mutual information in recorded spike trains
(Dorval, 2008).

What can the CXC network tell us about computation in the
brain, rather than simply brain dynamics? To adequately address
this question requires consideration of both representation
(how does brain activity represent information?) and learning
(how does this information come to be in the brain?); these
are substantive and intricately connected topics which are the
focus of much research today. In its current form, the CXC
network offers mechanisms behind the intrinsic, autonomous
generation of metastability that seem to be required for complex
thought (Binder et al., 1999; Mazoyer et al., 2001; Breakspear
et al., 2003; Buzsáki and Draguhn, 2004; Fries, 2005; Tognoli
and Kelso, 2014) and for the stable maintenance of dynamic
neural assemblies required for working memory (Wang, 1999;
Pesaran et al., 2002; Jensen et al., 2007). These apparently
conflicting requirements are addressed through the control
exerted over network dynamics by the level of input from the
AAS to the thalamus. With these mechanisms in place, the
dynamics observed in the CXC can potentially inform existing
and perhaps even all-new theories of information transmission
and transformation in the brain. Likewise, theories of learning,
representation and mental processing can be tested in, and may
lead to refinements of, the CXC. Initial questions include:

• Can repeated activity sequences be embedded in the network
and spontaneously replayed—spontaneous sequence replay
has been seen in animals during sleep and decision-making.
• Can plasticity mechanisms bias network dynamics to

functionally integrate given cortical regions on demand
(based on specific internal or external triggers)—this would
help answer how the brain learns to functionally connect
brain regions for the propagation of information as required.
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Subsequent questionsmay address more complicated issues, such
as how complex representations can be constructed in dynamical
neural assemblies and utilized by the brain for purposeful
computation. The ultimate goal of this future research will be to
link the observed network dynamics with computational states in
the brain.While realization of this goal is clearly distant, studying
the CXC network will potentially lead in this direction.

Pathological Dynamics
Many brain disorders are associated with alterations to cortical
dynamics, the DMN and the AAS (Garcia-Rill, 1997; Schnitzler
and Gross, 2005; Uhlhaas and Singer, 2006; Buckner et al.,
2008; Fröhlich et al., 2008; Fox and Greicius, 2010; Zhang
and Raichle, 2010). We have demonstrated the dependence
of autonomously-generated metastable dynamics on network
connectivity in these regions. Because up to 99% of cortical
connections derive from the cortex (Braitenberg and Schüz,
1998) and only a small fraction of the brain’s energy consumption
is used for the processing of external events (Raichle and
Mintun, 2006; Zhang and Raichle, 2010), by far the majority
of cortical activity originates in and is driven by other cortical
activity. Changes in cortical structure driven by either learning or
disease may therefore affect ongoing dynamics in unpredictable
ways. Furthermore, these changes in dynamics may often lead
to further structural change, creating a recursive dependency
between dynamics and structure that could possibly lead to
pathological states, such as in epilepsy, sleep disturbance,
schizophrenia and many other brain disorders. By modeling
autonomous metastable activity in the AAS-IL-RN circuit, this
recursive chain of structural-dynamical co-dependence remains
intact, allowing the investigation of how this dependence may
lead to pathological states. Such studies are directions for future
research with the CXC model.

Advances in the CXC Model
The thalamocortical matrix loop modeled in the CXC network
is reminiscent of a winner-take-all (WTA) mechanism, however
it is more accurately described as implementing winnerless
competition (WLC). In WLC, a clear winning neuron or
neural assembly never emerges from the competition; instead,
each winner is immediately displaced by the next, resulting
in continuously-evolving complex dynamic activity patterns
(Akrami et al., 2012; Rabinovich et al., 2012). WLC can occur
in networks of neurons mutually connected with inhibitory
synapses, as observed in some simple animals during the
generation of unpredictable behavior (Levi et al., 2005). It
has also been shown analytically to occur in networks of
neurons connected with slow global inhibition (Ermentrout,
1992). One of the insights offered by the CXC model is how
the thalamocortical matrix can provide the necessary global
inhibition to implement WLC for the control of complex
dynamics across the cortex.

Random networks with balanced local excitation and
inhibition have previously been shown to exhibit chaotic
dynamics (Van Vreeswijk and Sompolinsky, 1996). Since then,
studies have shown that networks connected using small world
principles can also exhibit complex dynamics (Sporns et al.,

2000b; Sporns and Tononi, 2001; Roxin et al., 2004; Riecke et al.,
2007; Shanahan, 2008). However, for common topologies of these
networks, the regions of parameter space where metastability
was evident was small (Breakspear et al., 2003; Shanahan,
2008). More recently it has been shown that activity-dependent
synaptic depression (a short-term decrease of synaptic efficacy
based on postsynaptic activity) can massively enlarge the critical
region where metastability occurs (Levina et al., 2007), and
that the voltage-dependence of synaptic currents can stabilize
complex dynamics for long periods of time (Kumar et al., 2008).
Most recently, networks organized into hierarchical modules,
where intra-module connections are abundant and inter-module
connections are sparse, have been studied (Rubinov et al.,
2011; Wang et al., 2011). Unlike previous networks, these latest
networks (Kumar et al., 2008; Rubinov et al., 2011; Wang et al.,
2011) can exhibit irregular sustained activity at low firing rates.
For all of the above-mentioned networks, however, some or all of
these questions remain open:

• How can complex dynamics be sustained indefinitely?
• How can low average firing rates, as seen in cortex, be

obtained?
• Can dynamics be maintained without injection of extrinsic

noise?
• Can very long interspike intervals (tens of seconds) be

achieved?
• How can explicit segregation of activity (as against just a lack

of integration) be accomplished?

In the current study, we have shown how the thalamocortical
matrix connections control cortical dynamics and resolve
the above issues. Complex metastable dynamics in the CXC
network continue indefinitely with no need for injected
noise, at low firing rates and with very long ISIs occurring
frequently. Most importantly, the matrix connections can
cause explicit dynamic segregation of network activity through
withdrawal of tonic excitation—a process we have termed
effective inhibition. Effective inhibition leads to activity between
weakly-connected regions (such as the default mode and task
positive networks) being significantly anticorrelated rather than
simply uncorrelated. A mechanism by which effective inhibition
can arise globally across the cortex has not previously been
suggested.

Conclusion

The first and main result of this paper—that the global inhibition
required for winner-take-all dynamics can be implemented by
the diffuse thalamocortical loop—is not immediately obvious
from neurophysiological observation, since there is little large-
scale long-range inhibition within the loop. For this reason we
have termed the process ‘effective inhibition’. Secondly, we show
how changing tonic input levels from the ascending arousal
system to the thalamus can change the dynamical state in
the cortex (Section Input Level from the Reticular Activating
System Changed Dynamical State). This result explains previous
observations concerning how AAS input affects cortical activity
(such as state changes between sleep, wakefulness and vigilance)
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and makes several novel predictions (Section Consequences for
Brain Function). Thirdly, we show how cortical connectivity
affects the sustained dynamics (Section Connectivity Impacts
Dynamics). These sustained activity patterns can potentially
be understood in terms of WTA dynamics, and we have
demonstrated that the ‘effective inhibition’ paradigm, with its
fundamentally different mechanism, is capable of supporting
these patterns. When the network was structured into task-
positive and DMN cortical regions with dense local and sparse
long-range connections, we additionally showed how activity
could intrinsically alternate between the groups based on chaotic
dynamics with no extrinsic noise. We argue that such intrinsic
alternation provides a plausible explanation for the dynamical
segregation of the DMN from other cortical regions. We have
shown that the network is robust to noise, but importantly
does not require noise for the generation and maintenance of a
complex, ongoing brain state.

Previous studies have examined networks that exhibited
complex dynamics, but these networks were unable to achieve

long range segregation of activity. In contrast, the CXC network
achieves both segregation of activity and metastability through
the global control of the RN acting through IL. Without global
control, network activity reduces to numerous interconnected
pockets of activity that can mutually integrate due to activity
propagating through the long range connections, but cannot
mutually segregate.
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The hypothesis that brain organization is based on mechanisms of metastable

synchronization in neural assemblies has been popularized during the last decades

of neuroscientific research. Nevertheless, the role of body and environment for

understanding the functioning of metastable assemblies is frequently dismissed. The

main goal of this paper is to investigate the contribution of sensorimotor coupling to

neural and behavioral metastability using a minimal computational model of plastic neural

ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis

is that, under some conditions, themetastability of the system is not restricted to the brain

but extends to the system composed by the interaction of brain, body and environment.

We test this idea, comparing an agent in continuous interaction with its environment

in a task demanding behavioral flexibility with an equivalent model from the point of

view of “internalist neuroscience.” A statistical characterization of our model and tools

from information theory allow us to show how (1) the bidirectional coupling between

agent and environment brings the system closer to a regime of criticality and triggers the

emergence of additional metastable states which are not found in the brain in isolation

but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity

of the agent is fundamental to sustain open structures in the neural controller of the agent

flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor

metastable states, and (3) these extended metastable states emerge when the agent

generates an asymmetrical circular loop of causal interaction with its environment, in

which the agent responds to variability of the environment at fast timescales while acting

over the environment at slow timescales, suggesting the constitution of the agent as

an autonomous entity actively modulating its sensorimotor coupling with the world. We

conclude with a reflection about how our results contribute in a more general way to

current progress in neuroscientific research.

Keywords: neural assemblies, metastability, criticality, synaptic plasticity, embodied cognition, sensorimotor
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1. INTRODUCTION

Generally, neurodynamic approaches have focused in
understanding what kind of neural organization is necessary
to cope with the requirements of an external world. Assuming
that the brain is subject to demanding conditions from
its environment, the challenge is to explain what type of
neural computation or what form of organization of neural
spatiotemporal patterns might be capable of satisfying the
requirements for adaptive, conscious, cognitive activity. This
has led to progress in the definition of a framework able to
account for the brain’s ability to display a rich set of meaningful
behaviors. Nowadays, a popular view in neuroscience holds
that the human brain is structured into a large number of
areas in which information is highly segregated into local
clusters and, at the same time, functionally integrated (Damasio,
1989; Varela, 1995; Tononi and Edelman, 1998). One of the
most plausible mechanisms hypothesized to be behind this
equilibrium between integration and segregation is metastable
phase locking between neural assemblies over multiple frequency
bands. This mechanism has been proposed to explain how the
brain flexibly enters and exits coherent spatiotemporal patterns
of neural activity (Kelso, 1995; Varela et al., 2001; Le Van Quyen,
2011). Subsequently, the notion of metastable neural assemblies
as building blocks of brain organization has become relatively
widespread in large-scale neuroscience studies (e.g., Werner,
2007a; Buzsáki, 2010; Edelman et al., 2011; Ward, 2011).

Nevertheless, when analysing and modeling brain
organization, a crucial aspect of cognitive dynamics is frequently
neglected: the sensorimotor coordination that continuously
feeds back into brain dynamics (from saccadic eye movements
to proprioception; from perception to action; O’Regan and
Noë, 2001; Aguilera et al., 2013; Engel et al., 2013). Mental
processes such as perception, emotion or intention are not
limited to neural processes inside the brain, but produced
through a flexible integration of the dynamics of brain, body and
environment in a distributed manner. Hypotheses addressing
this issue propose that brain organization consists in a plastic
system of open loops developed in the process of life and
closed to full functional cycles in every interaction with the

environment (Fuchs, 2011), being the role of the central nervous
system to transform and diversify these loops. In addition, it
has been proposed that the behavior neural tissue in isolation
might be restricted to little more than exhibiting spontaneous
synchronization and other behaviors common to nonlinear
dynamical systems, and the brain may operate as a metastable
circuit breaker flexibly switching between different dynamic
fields of agent-environment engagement (Dotov, 2014).

Furthermore, enactive approaches to neurodynamics have
proposed that the formation and dissolution of neural assemblies
in the brainmust be embedded in sensorimotor regulatory cycles,
producing the emergence of global organism-environment
processes, which in turn affect their constituent elements
(Thompson and Varela, 2001; Varela and Thompson, 2003;
Di Paolo et al., 2016). One of the central contributions to this
issue has been the notion of an operational closure of the nervous
system (Varela, 1997; Di Paolo and Thompson, 2014), illustrated

in Figure 1. Operational closure implies a circular regulation
in which the coordinated activity of the neural system gives
rise to the emergence of neural ensembles (or “cell assemblies”;
Hebb, 1952), driving the behavior of the organism, which in turn
generates a sensory input into the neural system closing a double
regulatory loop. According to Francisco Varela,

The nervous system is organized by the operational closure of a

network of reciprocally related modular subnetworks giving rise

to ensembles of coherent activity such that: (i) they continuously

mediate invariant patterns of sensorymotor correlation of the

sensory and effector surfaces; (ii) give rise to a behavior for

the total organism as a mobile unit in space. The operational

closure of the nervous system then brings forth a specific

mode of coherence, which is embedded in the organism. This

coherence is a cognitive self: a unit of perception/motion in space,

sensorymotor invariances mediated through the interneuron

network (Varela, 1992, p.10).

Nevertheless, there are a lack of good models or precise
characterizations of the operational closure of the nervous
systems and the kind of interaction that takes place between
neural, bodily and sensorimotor cycles (Barandiaran, 2016).
Thus, it is far from clear how to characterize this sensorimotor
specific form of coherence and how is it constitutive of cognitive
activity. Clarifying this issue is of fundamental importance
for embodied neurodynamic views in order to propose solid
explanatory alternatives to internalist perspectives of brain
organization.

In the case of metastability in cognitive processes, we know
that metastable behavior is not restricted to the brain, but
also extends to behavioral patterns (Kelso, 1995; Kelso et al.,
1995). Nevertheless it is not clear what the relation is between
behavioral metastability and underlying neural metastability.
Consider, for example, the case of perceiving an ambiguous
image (e.g., an image perceived either as a face or as meaningless

FIGURE 1 | Organizational closure of the nervous system. Adapted from

Varela (1997).
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shapes, or a Necker cube which can be alternatively seen
as oriented in two different positions) in which perception
can alternatively and spontaneously switch from one mode to
another. If we take a look at the brain we can observe the
emergence of transient assemblies of neural synchronization
when one mode of perception arises (Rodriguez et al., 1999), and
at the same time if we were to analyse the switching of perceptive
patterns the subject is engaged in we can observe signatures of
metastable behavior (Kelso et al., 1995, Section 3). This raises
questions around whether long term behavioral metastability is
the product of a direct mapping of intrinsic metastable states
of the brain into behavior or, conversely, metastability of both
the brain and behavior is a product of the whole brain-body-
environment system coupled by sensorimotor processes (the
interaction of neural dynamics, retinal activation, patterns of
saccadic eye movements, etc.). These are difficult questions,
requiring comparison between processes taking place at different
scales (neurodynamic, sensorimotor, conductual, etc.) that pose
important experimental difficulties. In the past, evolutionary
robotics has been a highly productive tool for finding non-
intuitive solutions to complex problems and understanding
many-to-many relations between different scales of behavior
(Nolfi and Floreano, 2000; Harvey et al., 2005). In the same
tradition, in this paper we present an artificially evolved agent to
explore the relation between neural and behavioral metastability
in a simple bistable task. We choose a phototactic task1 in which
the agent alternatively develops a preference between two types
of light (e.g., two different colors) as an example of a simple task
involving metastable neural and behavioral dynamics.

Our hypothesis is that the slow modulation of synaptic
plasticity over the sensorimotor coupling increases and sustains
the metastability of neuro-behavioral integrated states in a
manner that cannot be reduced to the dynamics of the brain
in isolation, nor the brain receiving a structured input. These
integrated metastable states are associated with specific modes of
coherence in neural structures when they are engaged in bodily
and environmental processes, as the brain-body-environment
system becomes an operationally closed entity. The specificity
of these modes of coherence is hypothesized to be related to
the particularities of autonomous agency and the operational
closure of the nervous system, i.e., the characteristics that
allow us to describe an agent as an individual entity albeit
in continuous interaction with its environment: such as the
self-constitution of the agent as an entity or an asymmetrical
interaction with its world in which it actively modulates its own
sensorimotor coupling (see Barandiaran et al., 2009). Here, we
propose a minimalistic approach to address some of the difficult

1Phototaxis implies climbing a light gradient. This task has been chosen because

gradient climbing is a minimal task, which is widespread in nature. Many small

scale adaptive behavior occurs along chemical gradients, and the microscopic

world is full of gradients (like thermal gradients or light gradients but mostly

chemical gradients). The adaptive behavior of small animals (e.g., C. elegans)

and individual motile cells (e.g., bacteria but also animal cells migrating during

development) is mostly a gradient-related adaptive behavior. Navigating smell or

heat gradients are also stereotypical adaptive tasks for higher animals. Moreover

many instances of higher-level behavior can also be interpreted as abstract gradient

climbing (e.g., a human can move up a gradient of social popularity or economic

wealth involving complex strategic decisions).

questions arising from these ideas. We introduce a robotic model
equipped with just three oscillatory units and synaptic plasticity
in their connections. Because of its simplicity, this approach
allows us to tackle the problem with a system about which we
have complete knowledge and that is tractable using dynamical
systems techniques of analysis.

In the following sections we first introduce the robotic agent
and an artificial evolution process to obtain a model displaying
metastable behavioral patterns in a bistable phototactic task.
Then, we describe our methodology for analysing the role of
the sensorimotor loop in the generation of metastable behavioral
patterns, combining (1) the comparison of a situated agent
interacting directly with its environment and a passively-coupled
agent which is fed a signal identical to the one received by
the situated agent, but it cannot influence its environment,
and (2) a statistical description of the states of the agent and
the environment together with the use of different tools from
information theory to quantify the metastability in its behavior
and the interaction between different scales of description
of the robot (oscillatory activity, synaptic plasticity and
behavioral patterns). In this framework we perform experiments
showing that (1) the bidirectional coupling between agent and
environment brings the system closer to a regime of criticality
and triggers the emergence of additional metastable states, which
are not found in the brain in isolation but extended to the whole
system of sensorimotor interaction, (2) the synaptic plasticity
of the agent is key to sustain open structures in the neural
controller of the agent flexibly engaging and disengaging different
behavioral patterns that sustain sensorimotor metastable states,
and (3) this creates an asymmetrical circular loop of interaction
between agent and environment, in which the agent is able to
respond to variability of the environment at small timescales,
while acting over the environment at large timescales. We
conclude that metastability of neural dynamics can be extended
to sensorimotor metastable states and that, in our model, this
takes place when the agent establishes a specific circular relation
with its environment, suggesting that the extension of metastable
dynamics from the brain to interactive behavioral patterns is
connected with specific forms of engagement with the world
characteristic in autonomous agency.

2. METHODS

As we proposed above, our goal is to explore the relation between
metastability in brain dynamics and behavior in a robotic model
in order to test the hypothesis that some behavioral metastable
states cannot be reduced to brain dynamics alone and are instead
the product of an integration of brain, bodily and environmental
dynamics. In order to do this, we design a model with the ability
of presenting flexibility in both neural and behavioral patterns
(which will be evolved using a genetic algorithm in order to
reduce the constraints imposed onto the model) and we propose
a framework of analysis allowing us to characterize metastable
states and relations between components of the model, as well as
a comparison of the behavior of the brain with and without the
effect of the sensorimotor loop in equivalent conditions.
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2.1. Model of a Neurodynamic Controller
with Relational Homeostasis Embedded in
a Robotic Agent
We propose a model of homeostatic adaptation inspired by
previous work in evolutionary robotics (Iizuka and Di Paolo,
2007; Di Paolo and Iizuka, 2008), defining an adaptive mobile
agent controlled by a plastic oscillatory neural system. This
model is not intended to represent the activity of individual
neurons but, more generally, to capture the dynamics of neural
oscillations at a mesoscopic level, where integration mechanisms
are hypothesized to be based on phase synchronization processes
between neuronal groups (Varela et al., 2001), thus representing
large-scale synchronization of brain regions that are anatomically
far apart. Since the model is described in detail in Aguilera et al.
(2015), we provide here a brief description.

The agent incorporates a neural controller defined as a fully
connected Kuramoto network (Acebrón et al., 2005) with three
units defined as:

θ̇i = ωi + Ii +

N
∑

j=1

Kij · sin(θj − θi) (1)

where θi represents the phase of oscillator i, ωi is its natural
frequency (range [0, 5]), Kij is the coupling strength between
oscillators i and j, and Ii represents the sensory inputs. The
behavior of the neural controller is modulated by plastic
mechanisms preserving phase relational invariances of the
system, defined as:

δK̇ij = ηij · p(8i − 80
i ) · sin((θj − θi)− 80

i ) (2)

where δKij are the connection weights, ηij is the rate of plastic
change (range [0, 0.9]) of each connection, and 8 represents
the phase difference of oscillator i with respect to the sum of
the oscillators connected to it weighted by the strength of their
connections:

8i = 6 (

N
∑

j=1

Kij · e
i(θj−θi)) (3)

where 6 denotes the phase of a complex value and i is the
imaginary unit. 80

i (range [−π
2 , π

2 ]) stands for the preferred
phase relation of the oscillatory node. Finally, the function
p(x) determines the level of plastic change for all incoming
weights of a node, which is activated when the value of
8i is far from 80

i (Figure 2B). When plastic changes take
place, connection strengths change following a continuous non-
monotonic function Kij = α · F(δKij) (Figure 2C) designed to
explore the full configuration space2, where α is a constant (range
[0, 5]) that regulates the coupling strength.

In short, the model works under the assumption that large-
scale neural oscillatory components try to maintain a preferred
phase relation with respect to other oscillatory components by
means of plastically regulating the strength of their connectivity.
The model is designed to present the possibility of metastable
behavior at different states. Kuramoto oscillator networks can
display metastable states when the connection strengths are
below a critical point of complete synchronization. Also, we
defined the evolution of synaptic plasticity in such a way that the

2This continuous, non-monotonic change of synaptic strengths was introduced by

Iizuka and Di Paolo (2008) as a simple mechanism to avoid weight saturation of

Hebbian-like rules. This way, eschewing biological plausibility allows us to make

sure that the robots is able to explore its whole range of weight configurations.

A B

C

FIGURE 2 | The robotic agent with three plastic oscillatory units. (A) Schema of the agent, the environment, sensors and motors, and the neural controller. (B)

Plastic function p(8i − 80
i
), in which plasticity depends on the difference between the weighted phase relation 8i of the neural oscillator i with respect to other

oscillators and the preferred weighted phase relation 80
i
. (C) Mapping function F (δKij ) which transforms weight values δKij into the actual value of coupling strengths

between oscillators Kij . Reproduced from Aguilera et al. (2015).
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agent can potentially explore all different available possibilities of
engagement with the environment, and furthermore be able to
exploit forms of behavioral metastability.

The agent is modeled as a simulated wheeled robot with a
circular body of radius 4 and two diametrically opposed motors
(Figure 2A), driving the agent backwards and forwards. The
agent’s mass is assumed to be small enough for inertial resistance
to be negligible, thus its translational speed is calculated as the
vectorial average of the motor velocities, and the angular speed
as the difference of the motor velocities divided by the body
diameter. Motor outputs are calculated from the phase relation
83 of the effector oscillator, with a gain parameter of value 2:

Mr = 2 · sin (83 − 8r)
Ml = 2 · sin (83 − 8l)

(4)

where 8r and 8l (range [0, 2π]) are bias terms which map the
motor output into the actual motor activation.

The agent has two pairs of sensors (right and left) for each
of the different light sources A and B. Each sensor points to a
direction at π/3 radians from the forward direction. Light A
sensors are connected to oscillator 1 and light B sensors are
connected to oscillator 2. The effects of both the angle and the

distance on the sensor activation are represented by the following
function:

IDX =

{

sDX ·0.5·(1+cos(αDX))

1+ea·(dDX−b) , |αDX| ≤ π/2

0, |αDX| > π/2
(5)

whereX can represent either lightA or B,D stands for either right
or left sensor, αDX is the angle of sensor DX to light X, dDX is the
distance between sensor DX and light X, and a and b have the
arbitrary values of 0.03 and 100 respectively. The light intensity
received at each sensor is multiplied by a gain parameter sDX
(range [−8, 8]), feeding the resulting value to the corresponding
oscillator’s input Ii. A full schema of the robot is represented in
Figure 2A.

All parameter values (except where otherwise specified)
are fixed by a genetic algorithm within the indicated range.
A population of 20 agents is evolved using a rank-based
genetic algorithm with elitism. Each of the agent parameters
ωi, sDX, α, ηij,8r,8l and 80

i is encoded into a 5 bits string
representing real numbers uniformly distributed within the
specified range. For each generation, the best 4 agents (20% of
the population) pass to the next generation without change. For
the remaining slots, pairs of individuals are selected for crossover
with a probability proportional to their fitness value, and new
individuals are created mixing their genes (bit series) by adding a
mutation probability of 3% for each gene.

The agents are evolved for displaying a metastable behavior
in which the agent has to develop switching preferences toward
two different types of light. That is, there is an environment
with two types of light (e.g., two colors) and we want the agent
to develop a preference toward one of them (e.g., repeatedly
interacting with it) while being able to switch its preference to the
other light depending on its internal configuration. This behavior
is chosen because it demands the agent to present a robust

phototactic behavior while at the same time presenting flexibility
in the creation and dissolution of behavioral preferences. An
evaluation procedure is proposed for the genetic algorithm in
order to accomplish this objective, consisting in four different
tasks designed by Iizuka and Di Paolo (2007): a single light A,
a single light B, one light A and a blinking light B, one light B and
a blinking light A (blinking lights illuminate with a probability of
0.15 for each time step). The agent gains fitness by approaching
the non-blinking light. The objective of this configuration is to
create a “dummy” that encourages the agent to learn to ignore
one of the lights while approaching the other. Lights appear at a
random distance, [100, 150]. When two lights are present, they
appear, from the agent’s point of view, with a random separation
within the range [π/2, 3π/2]. The length of each trial is 125 s.

Each individual agent is tested for 12 independent runs (3 for
each of the 4 tasks) consisting of a series of trials where a light or a
pair of lights are presented to the agents for a fixed time. Synaptic
weights δKij are reset to initial random values before each run.
Each run consist of 8 trials in which the agent is presented with
one or two lights for a specified time. Only the last 3 trials of each
run are evaluated in order not to penalize slow plastic changes
and bootstrap evolution. All simulations are run with an Euler
step of 0.1.

Fitness for each trial is calculated in three terms,
Ftrial = (FD + Fp) · FH . FD = 1 − df /di, where df and
di respectively correspond to the final and initial distances to the
target light. Fp is equal to the proportion of time that the agent
spends within a distance of less than 4 times its body radius (i.e.,
a distance of 16) to the target light during a trial. FH represents
the mean level of homeostasis in the system, computing the
mean degree of homeostasis 1

3

∑

i(1− p(8i −80
i )) (i.e., 1 minus

the level of plasticity) for each oscillator. The genetic algorithm is
run for 500 generations, reaching a stable level of fitness around
0.45. The best performing agent from the last generation (which
is able to reach both lights ignoring the dummy) is selected. The
code simulating the behavior of the agent and the parameters
obtained from the genetic algorithm can be accessed from the
following repository https://github.com/IsaacLab/HNA-robotic-
model/tree/master/minimal-preference-task.

2.2. Conceptual Setup for Testing
Sensorimotor Integration: Situated vs.
Passively-Coupled Agents in An Open
Environment
In order to explore how the agent exploits internal and
sensorimotor metastability we simulate the agent in an open
environment (which was never experienced during training)
in which the agent can develop sustained preferences toward
the two types of light. In this case, the two lights are always
present with equal intensities, and a new pair of lights is
generated periodically after a given time (starting a new trial).
The best performing agent from the last generation of the genetic
algorithm agent is simulated in a virtual environment which
presents a series of pairs of lights, giving the agent a time of
1250 steps to choose and approach one of them. As analysed
elsewhere (Aguilera et al., 2015), the agent is able to develop
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stable preferences toward one of the lights, maintaining it for
several trials until the preference is changed. The switching
of preferences depends on the long-term interaction between
internal plastic mechanisms and the encountered configurations
of the environment. Different neural cell assemblies arise
connected with particular patterns of behavior of the agent, and
at slower timescales synaptic plasticity modulates the emergence
and dissolution of these behavioral patterns. A video of the
behavior of the agent (including plastic mechanisms) can be
found at https://vimeo.com/53847420.

Once defined the agent in which we want to explore the
emergence of metastable behavioral patterns, we propose a
sensorimotor null model to be compared with our model in order
to test the influence of the sensorimotor loop in the generation
of metastable states in the agent. To this end, we propose an
agent which maintains the structure of the received input but
presents a disrupted coordination with its environment. Thus, we
will compare:

1. A situated agent with normal sensorimotor interaction.
2. A passively-coupled agent, in which the input fed to the agent is

recorded from the behavior of the situated agent. Thus, in the
passively-coupled agent the received input is decoupled from
the activation of the motors but it maintains an structure as if
it was generated by real interaction.

With this comparison we can detect the effects that, despite being
the result of sensorimotor coordination, cannot be replicated
just by using an input with an adequate structure. This is a
subtle difference, but if genuine sensorimotor coordination is
constitutive of a cognitive process, the same process should not
take place when the agent is passively processing an input with
the rig as an input-structured process.

2.3. Discretization and Probability Density
Function of the System
In the experimental setup defined above, we will use information
theory tools in order to get a better understanding of how
the different elements of the neural controller and the agent’s
behavior interact, using a symbolic representation of the
system states. Understanding the coordination between neural
ensembles and sensorimotor activity is not trivial due to the
moderately high dimensionality of the system (9 dimensions
of the neural controller, plus the dimensions of body and
environment). Nevertheless, the system can be simplified by
reducing both the state of neural ensembles and synapse
configurations to discrete values representing the state of a
network, plus a binary variable representing the behavior of the
agent (reaching one light or the other).

To simplify the analysis, we are interested in a description of
the systemminimizing the number of symbols needed to describe
the states of the robot, while maintaining the properties of the
system. In this case, we find that a binary discretization is a
good choice for describing the system. In order to ascertain a
good discretization of the system, we test the validity of different
possible discretizations by comparing the dimensionality of
the original and discretized data through principal component

analysis on their covariance matrix. We use the following
definition of dimensionality (Abbott et al., 2009):

d =

(

N
∑

i=1

˜λi
2
)−1

(6)

where ˜λi are the normalized eigenvalues of the covariance
matrix expressing the fraction of the variance explained by
the corresponding principal component. We find that different
discretizations generally increase the dimensionality of the
system (due to the introduction of noise in the form of
discretization error). In Figure 3 we can observe how the
dimensionality of the discretized systems departs from the
original dimensionality depending on the number of bins
employed. Specifically, we find that the choice of a binary
description with just two bins is a particularly good description
of the covariances of the system, increasing the dimensionality
of the system by just 1.32% of the original dimensionality.
Therefore, for the rest of the paper we will employ a binary
description of the variables of the system as described below.

In previous work (Aguilera et al., 2015) we have determined
that the configuration of the oscillators in the assembly is the
relevant variable for generating one or other type of behavior.
Therefore, we define cell assemblies depending on the relative
phase of the oscillators with respect to the mean phase of the
Kuramoto network. We codify the state of the cell assembly with
a string of three bits 2:

2 = {21,22,23}, where 2i =

{

1, if sin (θi − θm) > 0

0, otherwise
(7)

where θm = 6 ( 13
∑

i
eiθi ) is the mean phase of the system at a

particular instant.
Analogously to cell assemblies of neurons, we may consider

a constellation of changing synaptic weights as an assembly

FIGURE 3 | Increment of dimensionality of the discretized system for

different bin choices. The dimensionality of the data generated by the

situated agent (the passively-coupled agent yields similar results) with

continuous (dashed line) or discrete (continuous line) values using different

numbers of equally spaced bins in the discretization. We observe how a binary

description (2 bins) is a good discretization of the system, presenting a small

increase in dimensionality only matched by discretizations with 7 or more bins.

A discretization with 3 bins is particularly unfit since it cannot capture the

covariance of small fluctuations around the central bin.
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of synapses or “synapsemble” (Buzsáki, 2010, p. 372). Synapse
assemblies have been hypothesized to be critical for building up
and dissolving cell assemblies and linking together sequences of
cell assemblies. To codify the activity of synapse assemblies, we
define each synapse as active or inactive if the value of the synapse
is higher3 than the mean value of the synaptic strengths Km,
where Km = 1

6
1
T

∑

t

∑

i,j
Ki,j(t). The state of the synaptic assembly

9 is codified with a string of 6 bits:

9 = {91,2, 92,1, 91,3, 93,1, 92,3, 93,2}, where

9i,j =

{

1, if Kij > 〈Km〉

0, otherwise
(8)

Similarly, for each trial we define a variable 3 which represents
the behavioral pattern of the agent (i.e., what light it reaches):

3 =

{

1, if df ,A < df ,B

0, otherwise
(9)

where df ,A and df ,B are the final distances to each type of light at
the end of the trial.

In summary, we define whether a particular cell or synapse
ensemble is active by using a set of binary variables s = {2,9,3}

which represent if a specific ensemble is active at a particular
moment of time and what behavioral pattern is being developed
by the agent. All possible relations between oscillators give rise
to 6 possible states for the cell assemblies, and all possible
activated synapses give rise to 64 possible combinations or
synapse assemblies, giving us a complete and discrete definition
of the system that we can use to apply information theory tools. In
order to do so 100 similar agents with random initial conditions
are simulated for the situated and passively-coupled cases for
1000 trials with a duration of 1250 steps, generating a time series
with 1.25 · 106 states. Sections 3.2 and 3.3 use one of these time
series to compute mutual information through time and transfer
entropy, although the other 99 series yield practically identical
results. The calculations in Section 3.1 require us to accurately
compute the whole probability density function of the system.
Thus, in order to avoid correlations in our sampling we compose
100 series of 106 states, consisting in 104 random states extracted
from each of the initial 100 time series. Each sample can provide
an estimation of the frequency of the 210 states of s, inferring the
probability density function of the system, which we compute as
P(s) = ns/nT , where ns is the number of occurrences of state s,
nT is the total length of the sample.

2.4. Information Theory Tools
Having defined these variables of the system in a discrete manner,
we can use information theory tools to determine the relation
between variables. In our model, we can use these measures to
quantify the relation between the state of different elements in
the neural controller of the agent, or between such components
and features of the environment surrounding the agent. The

3Km is an arbitrary threshold for capturing when weights are active and sufficiently

strong. Different values have been tested without altering the results.

information contained in a random variable is quantified in terms
of entropy, which is defined as:

H(X) = −
∑

x∈X

P(x)log(P(x)) (10)

where X is the set of states of the variable and P(X) its density
probability function.

A useful measure to compare two variables is the relative
entropy or Kullback-Leibler divergence between their statistical
distributions, which is a measure of the difference between two
probability distributions X and Y . It is defined as:

D(X;Y) =
∑

x∈X

∑

y∈Y

P(x)log
P(x)

P(y)
(11)

Given a pair of variables X,Y and their marginal distributions
the Kullback-Leibler divergence can be used to capture the
information shared between the variables, defined as theirmutual
information:

I(X;Y) = H(Y)−H(Y|X) =
∑

x∈X

∑

y∈Y

P(x, y) log
P(x, y)

P(x)P(y)
(12)

By definition, I(X;Y) = I(Y;X), thus mutual information
cannot describe relations of causality. Instead, transfer entropy
measures are typically employed to analyse causal relationships
between variables. The decrease of uncertainty in the state of a
variable derived from the past history of other variables is defined
as the transfer entropy between two variables:

TE(X → Y) = H(Yt+τ |Y
(d′)
t )−H(Yt+τ |Y

(d′)
t ,X

(d)
t ) =

=
∑

xt+τ ,xt∈X

∑

yt∈Y

P(xt+τ , x
(d)
t , y

(d′)
t )log

P(xt+τ , x
(d)
t , y

(d′)
t )P(x

(d)
t )

P(xt+τ , x
(d)
t )P(x

(d)
t , y

(d′)
t )

(13)

where X
(d)
t denotes the past history of x counted from time t and

length d (i.e., xt, xt−1, ..., xt−d).

3. RESULTS

In this section we present results comparing a situated and a
passively-coupled agent using a discrete description of the system
and information theory tools. We first show that when the
system is coupled to its environment it is brought closer to a
regime of criticality and that the number of metastable states
of the system is extended. These extended metastable states do
not arise from the brain nor the agent in isolation but from
the whole brain-body-environment system. We then use tools
of mutual information to observe how neural plasticity in the
agent in coordination is key for generating the structures that
sustain flexible and metastable behavioral patterns. Finally, we
use transfer entropy to characterize the loop of interactions
between oscillatory dynamics, synaptic plasticity and behavioral
patterns, describing the circular multiscale relation between the
agent’s neural controller and its behavioral dynamics necessary
for generating extended sensorimotor metastable states.
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3.1. Scale-free Statistical Distribution and
Mestastability
We start by analysing the properties of the statistical distribution
of the situated and passively-coupled agents. We compute
the probability density function P(s) for each agent, where
s = {2,9,3}, by sampling 100 simulations of identical agents
with random initial conditions during 1000 trials (1.25 · 106

steps). We generate 100 samples, each one composed of 104

random states s randomly sampled from each simulation run (106

states in total) and calculate the frequency of occurrence of each
state. The result from one randomly selected sample is shown
in Figures 4, 5, while in the text we provide the statistics of the
complete set of 100 samples.

An initial finding about the probability density function of the
agent is that it approximately follows the Zipf law (Figure 4A),
for states with a probability larger than 2 · 10−4. If the occurrence
of the states of the system s is ordered by their decreasing
frequency P(s), Zipf ’s law states that P(s) decays as the inverse of
their rank r(s) in the ordered sequence, making P(s) ∝ 1/r(s).
The occurrence of Zipf-like distributions is considered to be
a signature of criticality (Mora and Bialek, 2011), coinciding
with previous analysis of self-organized critical patterns in the
same robotic agent when it is coupled with its environment
(Aguilera et al., 2015). We observe that, while the situated
agent presents a pattern very close to Zipf ’s distribution, the
passively-coupled agent diverges more from a perfect scale-
free distribution (Figure 4B), especially in states with higher
probabilities. We can quantify this divergence by computing the
Kullback-Leibler divergence between the distribution of states of
the agent P(s) and Zipf ’s law distribution Psf (s) ∝ 1/r(s). As we
observe in Figure 4C the divergence from the Zipf distribution
in the passively-coupled agent is more than twice that of the
situated agent. Computing the average and standard deviation for
the 100 generated samples reveals that this result is repeated for
different agents, confirming that the Kullback-Leibler divergence
to a Zipf distribution is much larger in the passively-coupled
agent (µ = 0.381, σ = 8.44 · 10−4) than in the situated case
(µ = 0.141, σ = 5.46 · 10−4).

Criticality in the brain is generally associated with the
metastability of transiently formed neuronal assemblies (Werner,

2007b), although in general the exact relation between the
existence of metastable states and criticality is still not well
understood. The definition of a metastable state is a state whose
energy is lower than any of its adjacent states while not being
the state of minimum energy of the system. If we assume that
the probability of each state follows a Boltzmann distribution4,
metastable states will be those with higher probabilities than
those of their adjacent states. We define adjacency between two
states when they are separated by a single flip5 of an individual
variable 2i, 9i,j or 3. In short, we consider metastable states
as local peaks in the probability landscape. If we compute the
number of metastable states of the system s = {2,9,3}, we
observe that the situated agent presents 17 metastable states for
most of our data series (µ = 17.2, σ = 0.782)), while the
passively coupled agent presents typically over 13 metastable
states (µ = 13.1, σ = 0.902), indicating that the level of
metastability is boosted when the agent is in interaction with
its environment. However, if we only analyse the neural system
of the agent, i.e., the system s′ = {2,9}, we find that the
situated agent presents 13 metastable states (µ = 13, σ =

0) and the passively-coupled agent presents around 11 (µ =

11.0, σ = 0.243). Figure 5 portrays the number of metastable
states of one random sample.

These results show how the critical scaling and the repertoire
of metastable states of the agent is extended when it is coupled
with its environment. Moreover, metastable states generated
when coupled with the environment cannot be reduced to
metastable states in the “brain” of the agent (i.e., in s′ = {2,9})
but only appear when we analyse the distribution of the complete
system (s = {2,9,3}). These results suggest that, aside
from neural metastable states generated by oscillatory dynamics
and neural plasticity, sensorimotor metastable states can appear
from the coordination between behavioral patterns and internal

4The situated system can be considered an isolated system in thermodynamic

terms, whereas the passively-coupled system may be considered a closed system

exchanging energy but not matter with the situated system, thus making plausible

the assumption of thermal equilibrium and a Boltzmann distribution of states, and

therefore a direct mapping between probabilities and the energy of each state.
5Other definitions of metastability could be used, using an arbitrary number n

of flips. Nevertheless, in this particular case only n = 1 yields the existence of

mestastable states.

A B C

FIGURE 4 | Statistical distribution. (A,B) Ranked probability density function of the states s = {2,9, 3} for (A) the situated agent and (B) the passively coupled

agent (solid line), compared to the distribution of a Zipf-like distribution (dashed line). (C) Divergence between the probability density function of each type of agent

and a Zipf-like distribution. States with probability lower than 2 · 10−4 are dismissed from the plot and calculations.

Frontiers in Systems Neuroscience | www.frontiersin.org September 2016 | Volume 10 | Article 76 | 36

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Aguilera et al. Extended Neural Metastability

FIGURE 5 | Metastable states in the system. Count of metastable states

of the probability density function of neural and behavioral patterns P(s)

(s = {2,9, 3}), and of neural patterns alone P(s′) (s′ = {2,9}), for both the

situated and passively-coupled agents.

neural dynamics. Spin glass theory indicates that metastable
states emerge when some of the couplings between variables are
negative (Mezard et al., 1987), which can be translated to stating
that in our case agent-environment effective coupling presents
mechanisms of mutual inhibition between pairs of variables. The
appearance of metastable states only existing for the situated case
in the whole sensorimotor system suggests a complex regulation
between neural and sensorimotor processes, inviting us to take
a closer loop of how agent-environment relations take place in
order to increase the metastability of the system.

3.2. Mutual Information Flows
Typically, features such as criticality and metastability have
been linked to the idea of systems driven by interaction
dynamics between its components (Jensen, 1998; Van Orden
et al., 2003; Ihlen and Vereijken, 2010). We investigate what
type of interaction takes place in our agent between oscillatory
dynamics, neural plasticity and behavioral patterns to generate
neural and sensorimotor metastable states. We use information
theory tools to quantify the interactions between the components
of the system in the situated and passively-coupled agents,
simulated for 1000 trials with a duration of 1250 steps.
Although we only show the results of the time series of an
individual simulation (random sampling is not applicable if
we want to maintain temporal correlations), the differences
in the results analyzing different runs of the simulation were
negligible.

First, we analyse what information is shared by the emergent
cell assemblies 2, synapse assemblies 9 and behavioral patterns
of the agent 3 by measuring mutual information along the
time series of values of each variable. In Figure 6 we can
observe how the three variables share an important amount of

information. The entropy of 3 (which is the variable with the
lowest entropy) is 0.86, thus the shared entropy is in the same
order of magnitude in most cases. In the case of the situated
agent, we can observe in Figure 6 (left) that all variables share a
relevant amount of information. However, in Figure 6 (right) we
observe that the information shared between 9 and 3 decreases
dramatically, suggesting that most of the interaction between the
two variables is lost.

The information analysis above shows a static picture of
information flows on average, but it does not explain how
these flows unfold over time. To overcome this limitation, Beer
and Williams (2015) have proposed a framework combining
information flow and dynamical analyses, exploring how a
simulated model agent in a relational categorization task
integrates information at different moments of time about a cue
used for solving the task. Instead of analysing information as
an average of the dependences between variables along a time
series, they run the same task several times for different initial
conditions and compute information measures for each time
instant. Instead of using a series of temporal values of a variable,
they use a series of values of a variable on each instant along
different starting conditions. Similarly, we fold our time series
into 1000 time series (one for each simulated trial) in which e.g.,
2′

T(t) = 2(t + (T − 1)1250), where T is the trial number and
1250 is the duration of each trial. Consequently, for each value
of t we have 1000 values of 2′

T(t) we can use for computing
mutual information with other variables. For six consecutive
trials (i.e., t = 1, ..., tend = 6 · 1250) we compute the mutual
information between the neurodynamic variables of the agent
2′

T(t) and 9 ′
T(t) and the behavioral pattern at the end of the

sixth trial 3′
T(tend) (in order to observe how information about

future behavioral patterns is accumulated). Also, we compute
the joint mutual information that both 2′

T(t) and 9 ′
T(t) share

with 3′
T(tend).

In Figure 7 (left) we can observe the result for the situated
agent. We see how the mutual information I(2′

T(t);3
′
T(tend))

increases during the middle of the trial, fading out at the
beginning and the end. That is, the activation of specific neural
patterns when the robot is approaching a light contributes to
its repetition in future trials (i.e., contributing to the habit
of choosing that light). However, when the robot engages in
other behavior (e.g., exploring its surroundings, or stopping after
having reached a light) the habit is no longer being enacted and
the information about it vanishes from its oscillatory patterns.
Also, from one trial to the next the information at the peak
increases, being maximal at the sixth trial. We can interpret
this as a self-sustaining behavior of cell assemblies: when a cell
assembly emerges, it reinforces itself and has more probabilities
to reemerge in the next trial. Similarly, I(9 ′

T(t);3
′
T(tend))

steadily increases until a cell assembly is activated at the middle
of the sixth trial. Mutual information between 9 ′

T(t) and
3′

T(tend) is continuously accumulated and does not decrease,
thus we hypothesize that the configuration of the synapse
ensembles “stores” information about the behavior that the
agent will develop. Furthermore, when we analyse the joint
mutual information I(2′

T(t), 9
′
T(t);3

′
T(tend)), we observe that

it is always higher that the individual contributions. Moreover,
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FIGURE 6 | Mutual information. Values of mutual information between cell assemblies (2), synaptic assemblies (9) and behavioral patterns (3) for the situated

agent (left) and passively-coupled agent (right).

FIGURE 7 | Information flows. Mutual information at different instants between cell assemblies (2′
T
(t)), synaptic assemblies (9′

T
(t)) and the behavioral patter

displayed at the end of the sixth trial (3′
T
(tend )) for the situated agent (left) and passively-coupled agent (right).

it increases when I(2′
T(t);3

′
T(tend)) decreases at the transitions

between one trial and another. Also, I(2′
T(t), 9

′
T(t);3

′
T(tend))

decreases when at the middle of the trial a cell assembly is
activated, except in the last trial. This portrays an interesting
picture, where information flows back and forth between
the emergent cell assemblies and the collective cell-synapse
assemblies, until the sixth trial when an assembly emerges
producing behavior 3′

T(tend).
If we analyse the passively-coupled agent we observe a quite

different picture (Figure 7, right). Although I(2′
T(t);3

′
T(tend))

is quite similar in both cases (its values are slightly smaller
in the passively-coupled condition), I(9 ′

T(t);3
′
T(tend))

does not integrate any information. This suggests that even
when the input produced by behavior 3′

T(tend) is able
to influence the cell assemblies that emerge, coordination
between behavior and the stabilization of synapse assemblies
does not take place. Furthermore, the joint information
I(2′

T(t), 9
′
T(t);3

′
T(tend)) does not integrate much information

either, and the anticorrelation between I(2′
T(t);3

′
T(tend)) and

I(2′
T(t), 9

′
T(t);3

′
T(tend)) disappears. This suggests that the

passively-coupled agent does not capture the struggle between

information flows through individual and collective variables,
indicating that the important moments for generating the
behavior of the agent are not only synchronizing moments of
emergence of cell assemblies, but that most information is built
during instants of desynchronization corresponding to transition
from one assembly to the next.

These results show that synaptic plasticity, in coordination
with behavioral patterns, plays a fundamental role in the situated
agent, since it allows the agent to “store” information about future
behavioral patterns the agent will engage it. Interestingly, the
results in Figure 7 suggest that neural assemblies behind the
execution of a specific behavioral pattern reinforce the synaptic
circuits sustaining that pattern, which store information about
the repetition of that behavioral pattern. This resonates with
the idea of the brain as a plastic system of open loops (Fuchs,
2011) created during previous interactions with the environment
and functionally closed to full sensorimotor cycles in every new
coupling with the environment. Sensorimotor metastable states
could be precisely the transient closure of those loops, which in
turn imprint and reinforce onto the brain the synaptic structures
necessary to their reproduction.
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3.3. Transfer Entropy
The analysis above shows the information shared by variables
unfolding through time. As mutual information is a symmetric
index, it is not a good tool to characterize causal interactions
between parts of a system. Instead, we characterize directional
interactions by measuring transfer entropy between variables
using Equation 13, with d = d′ = 1 as the length of the
past history that we take into account6 and a logarithmically
distributed series of values of τ from 1 to 625, 000 steps (half the
length of the 1000 trials), with multiplicative intervals of 100.1.
In Figure 8 (left) we can observe a complex chart of information
flows for the situated agent:

• 2 − 9 transfer. We can observe transfer entropy from 2 to
9 taking place at small and medium values of τ , whereas at
larger values of τ the flow of the information is reversed. This
suggests a circular causal chain in which, at short timescales,
the structure of the current synaptic assembly determines the
cell assemblies that can emerge, but at long timescales it is
the self-sustainment of particular assemblies during different
trials that determines the stability of the possible synaptic
assemblies.

• 2 − 3 transfer. We observe that while there is an important
transfer entropy flow from 3 to 2 at fast and medium

6We tested different values of d and d′ up to 5 for a series of representative values

of τ with similar results, therefore we used d = d′ = 1 to reduce the computational

cost, since just varying the value of τ seems to be enough for capture the different

timescales of information flows.

timescales, the flow does not exist in the opposite direction
(Figure 8, middle-left), suggesting that the behavioral pattern
of the agent influences the cell assembly that emerges, but that
the current cell assembly that is active at a particular moment
of time is not decisive for the behavioral pattern that the agent
will deploy.

• 9 − 3 transfer. There is an important bidirectional exchange
of information between 9 and 3. This suggests that 9 is the
variable that determines the behavior that will be chosen by
the agent. Also, we can observe that TE3→9 and TE2→9

are very similar in value and shape (if we integrate the area
of the difference between TE3→9 and TE2→9 and divide
it by TE2→9 the result is 0.11, showing that both functions
coincide with almost 90% of accuracy). This is supported
by the fact that there is no functional dependency from 3

to 9 , since change in the weights δK̇ is only a function of
K and θ . As we can easily check, all the other information
flows present in Figure 8 correspond to actual functional
dependencies depicted by the equations defining the systems7.
This suggests (since 3 influences 2 and not otherwise), that
3 causally determines 2 which in turn influences 9 in their
circular mutual interaction8.

7Since θ̇ is a function of θ , K and sDX , and ṡDX is a function of θ , K and sDX . The

only functional dependency that presents no informational content is TE2→3
8It is worthy noting that in the experiments depicted in Figure 8, the variable 3 is

defined as the macroscopic behavior of the agent, whereas 2 and 9 are patterns

of low level variables of the agent. To test that this difference did not distort in any

way the result of our analysis, we repeated the analysis substituting 3 by a variable

FIGURE 8 | Transfer Entropy. Values of transfer entropy at different timescales among cell assemblies (2), synaptic assemblies (9) and behavioral patterns (3). Note

that the duration of a trial corresponds to a value of τ of 1250 steps.
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Putting together the transfer entropy flows above, we may
summarize them in the schema at Figure 9 (left). The behavior
of the agent 3 generates an input that determines the emergence
of cell assemblies 2 at fast timescales. A circular relation
between the emergent cell assemblies and their underlying
synapse ensembles 9 generates a particular behavior 3 which is
determined by the state of9 at longer timescales.We can observe
how the resulting schema is similar to the one proposed by
Varela (1997) and depicted in Figure 1, though adding interesting
information about the timescales of each dependency.

Moreover, for the passively-coupled agent, the information
flows from9 to3 and from9 to2 are disrupted and reduced in
comparison to other flows, whereas information flows from 3 to
2 and2 to99 are maintained or even increased. This disruption
of part of the transfer entropy flows dissolves the self-sustained
neurodynamic structures that generate a coordinated behavior
and reinforcing unidirectional influence from 3 to 2 and 2 to
9 , as we depict at Figure 9 (right).

These results strongly suggest that the generation of complex
and integrated neurodynamic structures is a product of a double
circular loop that strongly couples (1) neural oscillatory patterns
with the plastic synaptic structures sustaining them and (2) these
neurodynamic circular structures with the behavioral patterns
generating them. This double loop is constituted in a way that
creates a circular asymmetry between agent and environment, in
which the oscillatory dynamics of the agent present a sensitivity
of environmental parameters at shorter timescales, and its

S defined as a string of 4 bits (one for each sensor of the robot), in which each bit

was equal to one if the activity of its corresponding sensor is higher than its average

activation. The results of transfer entropy measures were strikingly similar to those

displayed in Figure 8, indicating that the series of sensory activation are strongly

correlated with particular behavioral macroscopic patterns of the agent. Since the

use of 3 simplifies other analyses performed in this paper, we have chosen to use

this variable instead of S.
9Flows from 2 to 9 are almost equivalent to flows from 3 to 9 , supporting our

suspicion that they represent the same information flow.

repeated activation generates the synaptic structures that are
able to engage and disengage different behavioral patterns of
the agent at longer timescales. The operational closure of the
nervous system implies a special circular relationship between
agent and environment, in which the agent individuates itself in
front of its environment as it is capable of being sensitive to small
fluctuations of its world while being able to act over it at longer
timescales as a coherent dynamical unit.

4. DISCUSSION

In this paper we have presented a neurodynamical model
of oscillatory activity with synaptic activity embedded in a
robotic agent in a behavioral preference task. The model is
based on a network of three Kuramoto oscillators with plastic

homeostatic mechanisms designed to maintain constant phase
relations among oscillators. Our goal was to explore metastability
in behavior and neural assemblies in a context of embodied,
adaptive activity, in which the agent is in continuous and
bidirectional interaction with an environment, a dimension
which is frequently neglected in the study of brain activity and
organization. The model was carefully designed for exploring
(1) the integration of transient assemblies underlying behavior
through nonlinear coupling neural clusters generating specific
conducts in the agent, and (2) the coordination between
sensorimotor and plastic neurodynamic structures into a self-
maintaining behavioral patterns. The integration of these two
levels of activity gives rise to metastable sensorimotor integrated
patterns which cannot be reduced to metastability of brain
dynamics alone, as behavioral preferences of the agent emerge
from the interaction between oscillator cell ensembles, ensembles
of synaptic weights and the agent’s sensorimotor coupling.
We present a methodological framework to analyse the role
of sensorimotor behavior in interaction with neural dynamics:
we compare a situated agent, normally interacting with its

FIGURE 9 | Operational closure. Simplified information flows among cell assemblies (2), synaptic assemblies (9) and the behavioral patterns (3) for the situated

(left) and passively-coupled (right) agents.
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environment, and a passively-coupled agent, receiving a sensory
input recorded from the situated agent but unable to influence its
environment in any way. Comparing a passively-coupled agent
and a situated agent in an open environment we have found three
different results shedding light on the relation between neural
and behavioral metastability.

These results are obtained first, through a statistical
description of the agent (in the form of a discrete characterization
of the states of the agent neural configurations and behavioral
patterns), depicting how the situated agent presents signatures of
criticality and additional metastable states that are not present
in the passively-coupled agent. Moreover, we show how those
additional metastable states do not appear in neural variables
alone, but in the combined space of neural and behavioral
patterns, indicating that metastable states in behavior are not
exclusively a direct mapping of neural metastable states. Instead,
we find the existence of sensorimotor metastable states that
extend the range of metastability of the agent’s “brain.”

Second, an analysis of the flow of mutual information
between different groups of variables of the agent shows
that in both the situated and passively-coupled models
neural ensembles of oscillatory components contain a lot of
information about the behavioral pattern being developed.
However, this information is lost after the neural ensemble
dissolves at the end of a trial, and only in the situated
case this information is stored instead through changes in
synaptic plasticity, generating the structures reinforcing future
appearances of that behavioral pattern. This suggests that
mechanisms of synaptic plasticity have a fundamental role in
coordinating neural and behavioral processes, sculpting the
sensorimotor structures sustaining extended metastable states.
While synapse assemblies have been hypothesized to have a
critical role for building up and dissolving metastable cell
assemblies in the brain as well as linking together sequences
of cell assemblies (Buzsáki, 2010, p.372), our results invite
us to rethink the role of synapse assemblies in a broader
sense, as fundamental elements that facilitate emergence and
dissolution of metastable modes of engagement with the
environment.

Finally, using transfer entropy we can depict the causal
influences at different timescales between different components
of the system. We observe how the situated agent generates
a closed network of interaction, circularly organized with
bidirectional interactions at different timescales. This network
takes the form of a double coupling loop of (1) a circular
causal dependence between the emergence of cell assemblies
and the synaptic neural structure that generates them, and (2) a
causal chain in which synaptic structures influence the behavior
displayed by the agent, which in turn triggers the emergence of
specific neural assemblies (Figure 9, left). If the sensorimotor
loop is disrupted (e.g., when the agent is passively-coupled, and
probably for more severe sensorimotor disruptions), this circular
closure disappears and autonomous organization of the agent
vanishes (Figure 9, right). This provides cues of what happens
in real-life examples of disruption of sensorimotor coordination.
For example, in Held and Hein’s experiment on visually-
guided behavior (Held and Hein, 1963), the “passive” kitten

fails to develop perceptual abilities. Similar situations can take
place in different physiological or pathophysiological conditions.
Examples of those are the problems faced by deafferented
subjects (i.e., without any proprioception) to develop behavioral
automatisms exclusively in the absence of sensory feedback;
needing to rely on visual feedback to perform simple tasks such
as holding an egg without breaking it, or when are unable to
maintain an upright posture in the dark (Cole and Paillard,
1995).

Interestingly, the schema of circular dependencies in the agent
resembles the idea of operational closure of the nervous system
proposed by Varela (1997) depicted in Figure 1. Moreover,
it describes a novel characteristic of closure since this loop
of closure creates a multiscale asymmetry between agent and
environment: the agent is sensitive to changes in the environment
at fast timescales, while it can influence the environment at
slow timescales (Figure 8, left). Although the agent’s oscillatory
dynamics are mostly driven by inputs from the environment at
fast timescales, it exerts an influence over the environment at the
slower timescales of synaptic plasticity by generating structured
behavioral habits (e.g., reaching repeatedly one of the lights)
which will influence future stimuli received by the agent. In
some sense, once the agent “sees” a light it is trapped in a
behavioral field and has to reach it, but it still has a degree
of autonomy in the sense that it can modulate its internal
connectivity to influence which lights it is going to be sensitive
to in the future. This allows us to identify the agent as a unit
which is affected by bottom-up causal flows of sensorimotor
stimuli and, at the same time, it is able to develop a downward
causation modulating its sensorimotor interaction. Breaking the
symmetry of the coupling between agent and environment has
been proposed as one of the fundamental aspects which can
constitute an agent as an autonomous entity able to regulate from
within its exchange with the world, constituting its identity as
a self-individuating system (Barandiaran et al., 2009). Previous
characterizations of agent-environment asymmetry have referred
only to the presence of a directionality in the flows of information
from agent to environment depicting a causal influence from
the former to the latter (see Seth, 2007; Bertschinger et al.,
2008). These contributions do not take into account a self-
referential operational closure of the system (Bertschinger et al.,
2008, p.14) and only quantify the degree of self-determination
of the system. In contrast, our approach captures agent-
environment asymmetry as a circular relation of causal influences
at different scales.

The type of analysis performed in ourmodel has typically been
unexplored by neuroscientists studying real life organisms, partly
due to the difficulty of recording whole-brain activity of freely
behaving animals. In general, recordings of neural activity have
been limited to either small brain regions or to immobilized or
anesthetized animals exhibiting limited behavior. Nonetheless,
during the last few years some promising results point to
the plausability of experiments involving the sensorimotor
engagement of whole-brain or large brain areas. For example, an
interesting technique for analysing brain and behavioral activity
of a head-restrained mouse interacting with a virtual reality
environment in a spherical treadmill (see Dombeck et al., 2007)

Frontiers in Systems Neuroscience | www.frontiersin.org September 2016 | Volume 10 | Article 76 | 41

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Aguilera et al. Extended Neural Metastability

has been developed. Furthermore, the first report of whole-brain
recording in freely behaving animals has been reported for
the nematode Caenorhabditis elegans during free locomotion
(Nguyen et al., 2016). These advances open-up an exciting path
for neuroscience, allowing an exploration of how interesting
properties of neural processes such as criticality andmetastability
are extended and amplified when they are embedded in ongoing
embodied sensorimotor loops. In such scenarios, minimal
models of brain-body-environment dynamical regulation in
adaptive behavior, such as the one presented here, offer a
conceptual basis for facing complex analysis in real animals
due to the low dimensionality of their dynamics. Even models
that have little connection with biological brains can provide
insights into how neural and sensorimotor dynamics may
interact (e.g., extending the range of metastable states, creating
asymmetrical loops of causal interaction, etc.), as well as
contribute to the development of conceptual methodological
tools for understanding the role of the different scales of the
system (e.g., the situated vs. passively-coupled comparison to
address the role of sensorimotor regulation in the nervous
system). Moreover, the availability of real data of brain-body-
environment interaction will provide the opportunity to advance

in the design of more accurate and realistic models, bringing us
closer to capturing fundamental aspects of adaptive behavior.
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Wepresent numerical simulations of metastable states in heterogeneous neural fields that

are connected along heteroclinic orbits. Such trajectories are possible representations of

transient neural activity as observed, for example, in the electroencephalogram. Based

on previous theoretical findings on learning algorithms for neural fields, we directly

construct synaptic weight kernels from Lotka-Volterra neural population dynamics

without supervised training approaches. We deliver a MATLAB neural field toolbox

validated by two examples of one- and two-dimensional neural fields. We demonstrate

trial-to-trial variability and distributed representations in our simulations which might

therefore be regarded as a proof-of-concept for more advanced neural field models of

metastable dynamics in neurophysiological data.

Keywords: neural fields, kernel construction, metastability, heteroclinic orbits, trial-to-trial variability, distributed

representations, sub-networks, sparsity

1. Introduction

Metastable states and transient dynamics between metastable states have received increasing
interest in the neuroscientific community in recent time. Beginning with Dietrich Lehmann’s
original idea to identify “atoms of thought” as metastable topographies, so-called brain microstates,
in spontaneous and event-related electroencephalograms (EEG) (Lehmann et al., 1987; Lehmann,
1989; Lehmann et al., 2009), experimentalists found accumulating evidence that metastability is
tentatively an important organization principle in neurodynamical systems. Mazor and Laurent
(2005), e.g., reported metastable states in the locust odor system (cf. Rabinovich et al., 2001, 2008a),
while Hudson et al. (2014) found metastability in the local field potentials of rats recovering from
anesthesia. For the analysis of human EEG, several segmentation techniques into metastable states
have recently been suggested by Hutt (2004), Allefeld et al. (2009), and beim Graben and Hutt
(2015).

From a theoretical perspective, metastable EEG topographies or components of the event-
related potential (ERP) have been identified with saddle-nodes in deterministic low-dimensional
systems by Hutt et al. (2000) and Hutt and Riedel (2003). Particularly, the discoveries of
winnerless competition (Rabinovich et al., 2001; Seliger et al., 2003) and heteroclinic orbits in
neural population dynamics (Afraimovich et al., 2004a,b; Rabinovich et al., 2008b) led to better
understanding of metastability and transient behavior in theoretical neuroscience. Winnerless
competition is ubiquitous in complex excitation-inhibition networks with strong asymmetries.
While symmetric connectivity usually leads to Hopfield-type attractor neural networks (Hopfield,
1982; Hertz et al., 1991) where transient dynamics is only observed for the motion from a basin
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of attraction toward an asymptotically stable fixed point
attractor, winnerless competition between neural Lotka-Volterra
populations (Fukai and Tanaka, 1997; Cowan, 2014) allows
for hierarchical transient computations, bifurcations, and the
resolution of sequential decision problems, as applied for
modeling speech processing (Kiebel et al., 2009), bird songs
(Yildiz and Kiebel, 2011), syntactic parsing (beim Graben
and Potthast, 2012), and, most recently, working memory
(Rabinovich et al., 2014a,b).

However, these phenomena have been investigated on the
rather abstract level of macroscopic neural populations so far,
without reference to the mesoscopic and microscopic levels
of spatially given nervous tissue and individual neurons. One
important approach to characterize the former, nervous tissue
at the mesoscopic scale, are neural fields, i.e., continuum
approximations of infinitely large neural networks (Coombes
et al., 2014). In a recent theoretical study, beim Graben and Hutt
(2014) investigated stationary states and heteroclinic dynamics
in neural fields with heterogeneous synaptic connectivity.
The present work applies this previous study to describe
experimentally observed transient neural activity as a proof-
of-concept of our theoretical approach. We propose a novel
hypothesis on the origin of trial-to-trial variability observed in
most experimental data, on episodic cell assembly dynamics and
on sparsely sampled neural representations.

Moreover, we disseminate our software implementation as a
MATLAB neural field toolbox to facilitate further research on this
intriguing field of computational neuroscience.

2. Materials and Methods

In this section we present some of the theoretical findings of
beim Graben and Hutt (2014) and indicate how they have been
implemented in our simulations.

2.1. Theoretical Background
An important representative of neural fields is given through the
Amari equation

∂u(x, t)

∂t
= −u(x, t)+

∫

�

w(x, y) f (u(y, t)) dy (1)

describing the evolution of neural activity u(x, t) at site x ∈

� ⊂ R
d and time t (Amari, 1977). Here, � is a d-dimensional

manifold, representing neural tissue. Moreover, w(x, y) is the
synaptic weight kernel, and f is a sigmoidal activation function,
usually chosen as f (u) = 1/(1 + exp(−β(u − θ))), with gain
β > 0, and threshold θ > 0. The time scale of the dynamics, often
characterized by a particular time constant is implicitly included
in the kernel w(x, y).

The neural field described by Equation (1) is called
homogeneous when the kernel is translation invariant: w(x, y) =
w(x − y). If the field is not homogeneous it is called
heterogeneous.

Stationary states, v(x), of the Amari equation which are
obtained from ∂u/∂t = 0 obey the nonlinear Hammerstein

integral equation

v(x) =

∫

�

w(x, y)f (v(y)) dy . (2)

By choosing a heterogeneous Pincherle-Goursat kernel (Veltz and
Faugeras, 2010)

w(x, y) = v(x)v(y) , (3)

and carrying out a linear stability analysis, beim Graben and
Hutt (2014) were able to prove that the stationary state v(x) is
either an asymptotically stable fixed point attractor, or a saddle
with a one-dimensional unstable manifold, i.e., a metastable
state. Since such saddles could be connected along their stable
and unstable directions, heterogeneous neural fields may exhibit
stable heteroclinic sequences (SHS: Afraimovich et al., 2004b;
Rabinovich et al., 2008b).

Let {vk(x)}, 1 ≤ k ≤ n be such a collection of metastable states
which we assume to be linearly independent. Then, this collection
possesses a biorthogonal system of adjoints {v+

k
(x)} obeying

∫

�

v+j (x)vk(x) dx = δjk . (4)

For the particular case of Lotka-Volterra neural populations,
described by activities ξk(t),

dξk

dt
= ξk



σk −

n
∑

j=1

ρkjξj



 (5)

with growth rates σk > 0, interaction weights ρkj > 0 and ρkk =

1 that are tuned according to the algorithm of Afraimovich et al.
(2004b) and Rabinovich et al. (2008b), the population amplitude

αk(t) =
ξk

σk
(6)

recruits its corresponding metastable state vk(x), leading to an
order parameter expansion

u(x, t) =

n
∑

k=1

αk(t)vk(x) (7)

of the neural field.
Under these assumptions, beim Graben and Potthast (2012)

and beim Graben and Hutt (2014) have explicitly constructed
the kernel w(x, y) through a power series expansion of the right-
hand-side of the Amari equation (Equation 1),

∂u(x, t)

∂t
= −u(x, t)+

∫

�

w1(x, y)u(y, t) dy (8)

+

∫

�

∫

�

w2(x, y, z)u(y, t)u(z, t) dy dz
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with Pincherle-Goursat kernels1.

w1(x, y) =
∑

k

(σk + 1)vk(x)v
+
k
(y) (9)

w2(x, y, z) = −
∑

kj

σjρkjvk(x)v
+
k
(y)v+j (z) . (10)

Interestingly, the kernel w1(x, y) describes a Hebbian synapse
between sites y and x whereas the three-point kernel w2(x, y, z)
further generalizes Hebbian learning to interactions between
three sites x, y, z of neural tissue.

2.2. Numerical Studies
For a numerical implementation of the theoretical results
above, we have to discretize time and space. Using MATLAB,
temporal discretization on the one hand is achieved through the
ordinary differential equation solver ode15s for stiff problems.
On the other hand, spatial discretization converts the kernels
w1 and w2 into tensors of rank two and three, respectively.
Consequently, the integrals in Equation (8) become contractions
over products of tensors and state vectors u(t). In order to
properly deal with tensor algebra, we use the Sandia Tensor
Toolbox2. Our neural field toolbox, thus obtained is available as
Supplementary Material. We evaluate our implementation in the
next subsections by means of two examples.

2.2.1. One-dimensional Neural Field

In our first simulation, we use a d = 1 dimensional neural field
where we choose n = 3 sine functions

vk(x) = sin kx (11)

as metastable states on the domain � = [0, 2π] discretized with
a spatial grid of Nx = 100 sites. According to the orthogonality
relations

∫

�

sin jx sin kx dx = πδjk (12)

we easily obtain the adjoint modes

v+
k
(x) =

1

π
sin kx . (13)

For the temporal dynamics we prepare the stable heteroclinic
contour solving (Equation 5) used by beim Graben and Hutt
(2015) with σ1 = 1, σ2 = 2, σ3 = 3. Metastable states vk(x)
and their population activities ξk(t) are shown in Figure 1.

We run simulations with one fixed initial condition and also
from an ensemble of 60 initial conditions randomly distributed in
the vicinity of the first saddle, where we add some small portion
of Gaussian observational noise (noise level σ = 0.005) in order
to demonstrate trial-to-trial variability and hence event-related
phase decoherence (Jung et al., 2001; Makeig et al., 2002).

1 There was a mistake in our previous reports (beim Graben and Potthast, 2012;

beim Graben and Hutt, 2014). Although the kernel construction has been correctly

derived, a minus sign was omitted in the final result for kernel w2(x, y, z). This is

corrected now.
2 http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html

2.2.2. Two-dimensional Neural Field

For our second demonstration, we assume a spatially distributed
response in a neural population to external stimuli triggering
a sequence of neural activity patterns. It is well-established
that sensory input features (Pasupathy and Connor, 2002)
at earlier stages of the object’s representation pathway and
memory (Rissman and Wagner, 2012) is encoded by distributed
cortical neural populations while objects are sparsely coded in
later stages of the representation pathway (Connor, 2005). Here
we consider a cortical neural population embedded in two-
dimensional space involving interleaved patterns. These patterns
are d = 2 dimensional gray scale bitmap images of the numbers3

1, 2, and 3 (see Figure 4 in Section 3.2). In the implementation,
these bitmaps are downsampled to a 20 × 20 grid and reshaped
into vectors with Nx = 400 elements. Adjoint patterns are
obtained as Moore-Penrose pseudoinverses (Hertz et al., 1991).

The temporal evolution of these patterns follows the same
heteroclinic contour as above. Here, the underlying working
assumption is the presence of interacting sub-networks, e.g.,
reflecting several distributed representations of signal features
or of pieces of working memory. The study predicts what one
expects to measure in single spatial locations while the neural
system encodes information in a spatially distributed population.

3. Results

The results of our simulation studies are presented in this section.

3.1. One-dimensional Neural Field
For the one-dimensional neural field we compare in Figure 2 the
prescribed spatiotemporal dynamics as resulting from the order
parameter expansion (Equation 7) with the solution of the Amari
(Equation 8).

Figure 2A shows the prescribed dynamics on a spatiotemporal
grid with time on the x-axis and space on the y-axis. The
instantaneous activations are therefore given by vertical slices.
Going from left to right, these slices first exhibit one wave crest
(in red at the bottom) and one wave trough (in blue at the top),
corresponding to metastable state v1(x). Around time t = 15 the
frequency doubles and metastable state v2(x) can be observed for
approximately seven ticks. The third metastable state met by the
trajectory around time t = 21 is the mode with tripled frequency.
It is only stable for five ticks and evolves thereafter into the first
mode again.

In contrast, Figure 2B depicts the numerical solution of the
Amari equation (Equation 8). Obviously, no deviation is visible.

In order to draw neurophysiologically relevant conclusions
from our toy model, we consider the metastable states of the
heteroclinic contour as “synthetic ERP components” (Barrès
et al., 2013)measured with “electrodes” at the particular sampling
points. Because ERPs are obtained from averaging spontaneous
EEG over ensembles of several trials that are time-locked to the
perception or processing of stimuli, we simulate 60 synthetic
ERP trials by randomly preparing initial conditions of the Amari
equation.

3Original images are taken from the webpage http://www.iconarchive.com/tag/

number-3 before modifications with respect to color and resolution.
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FIGURE 1 | Prescribed dynamics. (A) Three sinusoids as spatial patterns. (B) Stable heteroclinic contour resulting from winnerless competition in a Lotka-Volterra

system (Equation 5). Blue: k = 1, green: k = 2, red: k = 3.

FIGURE 2 | One-dimensional spatiotemporal dynamics. (A) Prescribed trajectory from order parameter ansatz (Equation 7). (B) Solution of the Amari

(Equation 8).

The results are displayed in Figure 3 for four “measurement
electrodes” at positions 3, 21, 47, and 88. Interestingly, our
algorithm exhibited numerical instabilities in five runs which
have been marked as “rejected” outliers and excluded from
presentation. The resulting 55 trials are shown as colored traces
in Figure 3. At simulation start all signals are nicely coherent, but
later substantial phase dispersions take place (Jung et al., 2001;
Makeig et al., 2002).

We also calculated the ERP averages from our simulation
shown as bold black traces in Figure 3. On the one hand,
the averaged ERP is much smoother than the noisy single
realizations which justifies averaging in our simulation. However,
the averaged ERP significantly decays in the course of time. This
is obviously due to the increasing phase decoherence (Jung et al.,
2001; Makeig et al., 2002).

3.2. Two-dimensional Neural Field
The numerical simulation of Equation (8) yields a
sequence of two-dimensional transient patterns which

is shown as a sampled sequence of snapshot maps in
Figure 4.

According to the different growth rates σk of the populations,
pattern “1” stays the longest period of time, pattern “2” is visible
for a shorter period of time and pattern “3” can be seen for
the shortest period of time. These modes represent interweaved
spatial networks reflecting intrinsically stored activity patterns.

Now assuming that measurement of neural activity takes place
at discrete spatial locations (color-coded points in Figure 4), one
observes different transient dynamics dependent on the spatial
location of the measurement point that is shown in Figure 5.
Considering the red-coded spatial location, one observes strong
activity in the time periods when pattern “1” is active, and well-
reduced activity in the time windows of active patterns “2” and
“3.” Conversely, the activity at the blue-coded location defined in
Figure 4 raises only if pattern “3” is active, otherwise its activity is
well-reduced. The green-coded spatial location shows negligible
activity in time periods when pattern “1” is active while activity is
increased during the emergence of patterns “2” and “3.”
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FIGURE 3 | Four selected “recording sites” for neural field simulation with 55 randomly prepared initial conditions (colored traces) and “grand

average” (bold black trace). (A) At position: 3, (B) position 21, (C) position 47, (D) position 88.

4. Discussion

In this paper, we presented a software implementation
(neural field toolbox) and numerical simulation results of
previously reported theoretical findings on metastable states
and heteroclinic dynamics in neural fields (beim Graben and
Potthast, 2012; beim Graben and Hutt, 2014). For the particular
case of Lotka-Volterra population dynamics and linearly
independent spatial modes, the synaptic weight kernel of the
Amari neural field equation (Amari, 1977) can be explicitly

constructed from the prescribed metastable states and their
evolution parameters as Pincherle-Goursat kernels. This is an

important finding as our kernel construction method is not a
standard training algorithm such as backpropagation (Igel et al.,

2001; beim Graben and Potthast, 2009). Yet it implements a
straightforward generalization of Hebbian learning algorithms
(beim Graben and Potthast, 2009; Potthast and beim Graben,
2009).

We validated our algorithm by means of two examples,
a one-dimensional neural field where metastable states are
three sinusoidal excitations over a line, and a two-dimensional

example where we have chosen three bitmap images as spatial

modes. The temporal dynamics was prescribed as a heteroclinic
contour connecting these three patterns in a closed loop. In
both simulations, the results were in exact agreement with the
prescribed trajectories.

Furthermore, we examined the issues of trial-to-trial
variability and distributed representations. In the first example
we created solutions for randomly prepared initial conditions,
thereby emulating phase resetting in event-related brain
potentials (ERP). We observed increasing phase decoherence in
the resulting ERP averages. Our model presents a theoretically
satisfying explanation for this ubiquitous experimental finding
(Jung et al., 2001; Makeig et al., 2002). Assuming that ERP
components are metastable states that are connected along
heteroclinic orbits (Hutt and Riedel, 2003; beim Graben and
Hutt, 2015), single ERP trials start from randomly distributed
initial conditions, sometimes closer and sometimes farther from
the respective metastable stable. These initial distances from
a metastable state result in acceleration and hence in velocity
differences in phase space, eventually leading to dispersion and
decoherence. Moreover, such a dependence on initial conditions
resembles previous experimental results by Pastalkova et al.
(2008) showing that identical experimental initial conditions
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FIGURE 4 | Two-dimensional spatiotemporal solution of model (Equation 8) considering spatial patterns of the numbers “1,” “2,” and “3” as spatial

modes v1(x), v2(x), and v3(x), respectively. The three color-coded points denote three spatial locations whose temporal evolution is shown in Figure 5.

FIGURE 5 | The time-dependent activity u(xl, t) at three spatial

locations xl, l = 1,2,3 defined in Figure 4. The upper gray-colored bars

denote the emergence time intervals of the corresponding patterns in

Figure 4. The color codes of the time series correspond to the respective

colors of the spatial locations in Figure 4.

in a motor task lead to identical sequences of cell assembly
activations, while different initial conditions yield different
sequences.

For the second example we considered the interaction
of three two-dimensional populations, cf. Figure 4. The
transient passage of the system at metastable attractors has
been shown experimentally in previous studies, such as in
middle-latent auditory evoked potentials (Hutt and Riedel,
2003) or in the population response of olfactory projection
neurons to odor stimuli (Mazor and Laurent, 2005). For
instance, the study of Mazor and Laurent (2005) also shows
nicely the responses of single neurons in the population
revealing different activity in different neurons: some neurons
respond to the external stimulus, others remain silent. Such a
distinction in response can easily be explained by an insufficient
spatial sub-sampling in the measurement and the presence
of spatially distributed patterns. However, just spatial sub-
sampling does not explain the fully distinct activity of different
neurons, such as different episode neurons found in the
hippocampus (Pastalkova et al., 2008). Here, different neurons
show distinct episodic temporal activities. The equivalent
temporal evolution is shown in our simulations in Figure 5,
where the units at different spatial locations exhibit different
temporal sequences of activation that are highly correlated
to the presence of the respective pattern representations.
This difference results from interacting populations or cell
assemblies.
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The latter line of argumentation raises the question whether
it may explain previous results on sparse neural representations
or even may contribute to the question on the existence of
“grandmother cells” (Connor, 2005; Quiroga et al., 2005). At a
first glance, the present work assumes the existence of interacting
spatially distributed sub-networks and supports their existence
by a qualitative comparison to previous experimental results by
Mazor and Laurent (2005) and Pastalkova et al. (2008). Our
assumption of interacting sub-networks does not rule out sparse
neural representations since our modeling approach does not
stipulate contiguous spatial patterns but also allows for sparse
patterns as well.

Metastable neural field dynamics as an ubiquitous
organization principle of the brain is also consistent with
findings from neuroanatomy and cognitive neuroscience.
Anatomically, neural circuits comprise convergent and divergent
pathways between populations (Kandel et al., 1991). Assuming
that a particular sub-network gets activated by percolation
along a convergent pathway and deactivated along a divergent
pathway subsequently entails a saddle-node picture in its
phase space description, hence a metastable attractor. In
cognitive neuroscience, mental representations are regarded
as intermediate results of cognitive computations in discrete
time. In order to embed these into continuous physical time,
they have to be considered connected through continuous
trajectories along their stable and unstable directions, i.e., as
metastable states, again (beim Graben and Potthast, 2009,
2012).

The present study is a first step toward metastability in
neural fields. We hope that our work encourages further
research on metastability in neural fields to describe transient
neural dynamics by interacting populations and contribute to
the description of neural information storage, being either
distributed or sparse.
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Supplemental Data
A GIF animation of the two-dimensional neural field simulation
is given as Supplementary Material. Moreover, we deliver a
MATLAB software neural field toolbox. This package essentially
comprises three routines: amarikernels, amarieq,
iniamari, and a main program, solveamari to be evoked
in the the following way: amarikernels is the training
program for the synaptic weights. It takes four arguments:
V_patterns, sigmarange, compbias, and contourflag and returns
two kernel tensors K1,K2. V_patterns is a matrix whose
columns are the metastable states in a spatial discretization,
their order corresponds to the desired heteroclinic sequence.
sigmarange is an interval of Lotka-Volterra grow rates σ

characterizing the time scale of the dynamics, while compbias
denotes the competition bias in the interaction matrix (ρ). The
last parameter, contourflag, is a binary flag deciding whether
the hereroclinic sequence is closed (1) or not (0). A closed
hereroclinic sequence is called hereroclinic contour. amarieq
defines the Amari equation (Equation 8) for the ODE solver.
It has four input arguments, t,V,K1,K2, where t is the time
span to be simulated, V is the actual field activity, and K1,K2
are the two synaptic weight kernels. iniamari prepares
an initial condition at the surface of the simplex spanned by

the metastable states V_patterns. The other arguments are
lead and remain, denoting the leading direction toward the
next saddle and its orthogonal projection on the remaining
modes. Finally, solveamari presents the code for our one-
dimensional neural field example, evoking the ODE solver in
line 48.
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The activity of ensembles of simultaneously recorded neurons can be represented as a

set of points in the space of firing rates. Even though the dimension of this space is equal

to the ensemble size, neural activity can be effectively localized on smaller subspaces.

The dimensionality of the neural space is an important determinant of the computational

tasks supported by the neural activity. Here, we investigate the dimensionality of

neural ensembles from the sensory cortex of alert rats during periods of ongoing

(inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with

ensemble size, and grows significantly faster during ongoing activity compared to evoked

activity. We explain these results using a spiking network model based on a clustered

architecture. The model captures the difference in growth rate between ongoing and

evoked activity and predicts a characteristic scaling with ensemble size that could be

tested in high-density multi-electrode recordings. Moreover, we present a simple theory

that predicts the existence of an upper bound on dimensionality. This upper bound

is inversely proportional to the amount of pair-wise correlations and, compared to a

homogeneous network without clusters, it is larger by a factor equal to the number of

clusters. The empirical estimation of such bounds depends on the number and duration

of trials and is well predicted by the theory. Together, these results provide a framework

to analyze neural dimensionality in alert animals, its behavior under stimulus presentation,

and its theoretical dependence on ensemble size, number of clusters, and correlations

in spiking network models.

Keywords: gustatory cortex, dimensionality, hidden markov models, ongoing activity, mean field theory, spiking

network model, metastable dynamics

INTRODUCTION

Understanding the dynamics of neural activity and how it is generated in cortical circuits is
a fundamental question in Neuroscience. The spiking activity of ensembles of simultaneously
recorded neurons can be represented in terms of sequences of firing rate vectors, as shown e.g.,
in frontal (Abeles et al., 1995; Seidemann et al., 1996; Durstewitz et al., 2010), gustatory (Jones
et al., 2007; Mazzucato et al., 2015), motor (Kemere et al., 2008), premotor and somatosensory
cortex (Ponce-Alvarez et al., 2012). The dimension of each firing rate vector is equal to the number
of ensemble neurons N and the collection of rate vectors across trials takes the form of a set
of points in the N-dimensional space of firing rates. Such points may not fill the whole space,
but be restricted to lie inside a lower-dimensional subspace (see Ganguli et al., 2008). Roughly,
dimensionality is the minimal number of dimensions necessary to provide an accurate description
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of the neural dynamics. If ensemble neurons are independent
of each other, neural activities at different times will scatter
around in the space of firing rate, filling a large portion of
the space. In this case, dimensionality will be maximal and
equal to the size of the ensemble N. At the other extreme, if
all neurons are strongly correlated, ensemble activity localizes
along a line. In this case, dimensionality is minimal and equal to
one. These simple examples suggest that dimensionality captures
information about the structure of a cortical circuit and the
functional relations among the simultaneously recorded neurons,
such as their firing rates correlation computed over timescales of
hundreds of milliseconds.

Different definitions of dimensionality have been introduced
for different tasks and across neural systems (Ganguli et al.,
2008; Churchland et al., 2010a; Abbott et al., 2011; Ganguli and
Sompolinsky, 2012; Cadieu et al., 2013; Rigotti et al., 2013; Gao
and Ganguli, 2015). Such measures of dimensionality can shed
light on the underlying neural computation; for example, they
can predict the onset of an error trial in a recall task (Rigotti et al.,
2013), or can allow the comparison of classification accuracy
between different brain areas (e.g., IT vs. V4) and synthetic
algorithms (Cadieu et al., 2013). Here, we investigate a measure
of dimensionality closely related to the firing rate correlations
of simultaneously recorded neurons (Abbott et al., 2011); such
correlations may provide a signature of feature-based attention
(Cohen and Maunsell, 2009) and other top-down cognitive
factors (Nienborg et al., 2012). We elucidate the dependence of
dimensionality on experimental parameters, such as ensemble
size and interval length, and we show that it varies across
experimental conditions. We address these issues by comparing
recordings of ensembles of neurons from the gustatory cortex
(GC) of alerts rats to a biologically plausible network model
based on neural clusters with recurrent connectivity. This model
captures neural activity in GC during periods of ongoing and
stimulus-evoked activity, explaining how the spatiotemporal
dynamics of ensemble activity is organized in sequences of
metastable states and how single-neuron firing rate distributions
are modulated by stimulus presentation (Mazzucato et al., 2015).
Here, we show that the same model expounds the observed
dependence of dimensionality on ensemble size and how such
dependence is reduced by the presentation of a stimulus. By
comparing the clustered network model with a homogeneous
network without clusters, we find that the clustered network has a
larger dimensionality that depends on the number of clusters and
the firing rate correlations among ensemble neurons. A simple
theory explains these results and allows extrapolating the scaling
of dimensionality to very large ensembles. Our theory shows
that recurrent networks with clustered connectivity provide a
substrate for high-dimensional neural representations, which
may lead to computational advantages.

METHODS

Experimental Procedures
Adult female Long Evans rats were used for this study (Samuelsen
et al., 2012; Mazzucato et al., 2015). Animals received ad lib.

access to food and water, unless otherwise mentioned. Movable
bundles of 16 microwires attached to a “mini-microdrive”
(Fontanini and Katz, 2006; Samuelsen et al., 2012) were
implanted in GC (AP 1.4, ML ± 5 from bregma, DV –4.5 from
dura). After electrode implantation, intra-oral cannulae (IOC)
were inserted bilaterally (Phillips and Norgren, 1970; Fontanini
and Katz, 2005). At the end of the surgery a positioning bolt
for restraint was cemented in the acrylic cap. Rats were given at
least 7 days for recovery before starting the behavioral procedures
outlined below. All experimental procedures were approved by
the Institutional Animal Care and Use Committee of Stony
BrookUniversity and complied with University, state, and federal
regulations on the care and use of laboratory animals. More
details can be found in Samuelsen et al. (2012).

Rats were habituated to being restrained and receiving fluids
through IOCs, and then trained to self-deliver water by pressing
a lever following a 75 dB auditory cue at a frequency of 4
KHz. The interval at which lever-pressing delivered water was
progressively increased to 40 ± 3 s (ITI). During experimental
sessions additional tastants were automatically delivered at
random times near the middle of the ITI, at random trials and
in the absence of the anticipatory cue. A computer-controlled,
pressurized, solenoid-based system delivered ∼40µl of fluids
(opening time ∼40ms) directly into the mouth through a
manifold of 4 polymide tubes slid into the IOC. The following
four tastants were delivered: 100mM NaCl, 100mM sucrose,
100mM citric acid, and 1mM quinine HCl. Water (∼50µl) was
delivered to rinse the mouth clean through a second IOC 5 s after
the delivery of each tastant. Each tastant was delivered for at least
6 trials in each condition. Upon termination of each recording
session the electrodes were lowered by at least 150µm so that a
new ensemble could be recorded.

Evoked activity periods were defined as the interval after
tastant delivery (time t = 0 in our figures) and before
water rinse (time t = 5 s). Only trials in which the tastants
were automatically delivered were considered for the analysis
of evoked activity, to minimize the effects of cue-related
expectations (Samuelsen et al., 2012). Ongoing activity periods
were defined as the 5 s-long intervals at the end of each inter-trial
period.

The behavioral state of the rat was monitored during the
experiment for signs of disengagement. Erratic lever pressing,
inconstant mouth movements and fluids dripping from the
mouth indicated disengagement and led to the termination of
the experiment. In addition, since disengagement from the task
is also reflected in the emergence of high power µ oscillations in
local field potentials, occurrences of such periods were removed
offline and not analyzed further (Fontanini and Katz, 2008).

Data Analysis
Single neuron action potentials were amplified, bandpass filtered
(at 300–8 KHz), digitized and recorded to a computer (Plexon,
Dallas, TX). Single units of at least 3:1 signal-to-noise ratio
were isolated using a template-matching algorithm, cluster
cutting techniques and examination of inter-spike interval
plots (Offline Sorter, Plexon, Dallas, TX). All data analyses
and model simulations were performed using custom software
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written in Matlab (Mathworks, Natick, MA, USA), Mathematica
(Wolfram Research, Champaign, IL), and C. Starting from a
pool of 299 single neurons in 37 sessions, neurons with peak
firing rate lower than 1Hz (defined as silent) were excluded
from further analysis, as well as neurons with a large peak
around the 6–10Hz in the spike power spectrum, which were
considered somatosensory (Katz et al., 2001; Samuelsen et al.,
2012; Horst and Laubach, 2013). Only ensembles with 3 or more
simultaneously recorded neurons were further analyzed (167
non-silent, non-somatosensory neurons from 27 ensembles). We
analyzed ongoing activity in the 5 s interval preceding either
the auditory cue or taste delivery, and evoked activity in the 5 s
interval following taste delivery in trials without anticipatory cue,
wherein significant taste-related information is present (Jezzini
et al., 2013).

Hidden Markov Model (HMM) Analysis
Here we briefly outline the procedure used in Mazzucato et al.
(2015), see this reference and (Jones et al., 2007; Escola et al.,
2011; Ponce-Alvarez et al., 2012) for further details. Under the
HMM, a system of N recorded neurons is assumed to be in one
of a predetermined number of hidden (or latent) states (Rabiner,
1989; Zucchini and MacDonald, 2009). Each statem is defined as
a vector of N firing rates νi (m) , i = 1, . . . , N, one for each
simultaneously recorded neuron. In each state, the neurons were
assumed to discharge as stationary Poisson processes (Poisson-
HMM). We matched the model to the data segmented in 1-ms
bins (see below). In such short bins, we found that typically at
most one spike was emitted across all simultaneously recorded
neurons. If more than one neuron fired an action potential in
a given bin, only one (randomly chosen) was kept for further
analysis (this only occurred in a handful of bins per trial; Escola
et al., 2011). We denote by yi (t) the spiking activity of the i-th
neuron in the interval [t, t + dt], yi (t) = 1 if the neuron emitted
a spike and yi (t) = 0 otherwise. Denoting with St the hidden
state of the ensemble at time t, the probability of having a spikes
from neuron i in a given statem in the interval [t, t+ dt] is given
by p

(

yi (t) = 1
∣

∣ St = m
)

= 1− eνi(m)dt .
The firing rates νi (m) completely define the states and are also

called “emission probabilities” in HMM parlance. The emission
and transition probabilities were found by maximization of the
log-likelihood of the data given the model via the expectation-
maximization (EM), or Baum-Welch, algorithm (Rabiner, 1989),
a procedure known as “training the HMM.” For each session and
type of activity (ongoing vs. evoked), ensemble spiking activity
from all trials was binned at 1ms intervals prior to training
assuming a fixed number of hidden states M (Jones et al., 2007;
Escola et al., 2011). For each given number of states M, the
Baum-Welch algorithm was run 5 times, each time with random
initial conditions for the transition and emission probabilities.
The range of hidden states M for the HMM analyses were
Mmin = 10 and Mmax = 20 for spontaneous activity, and
Mmin = 10 and Mmax = 40 for evoked activity. Such numbers
were based on extensive exploration of the parameter space
and previous studies (Jones et al., 2007; Miller and Katz, 2010;
Escola et al., 2011; Ponce-Alvarez et al., 2012; Mazzucato et al.,
2015). For evoked activity, each HMM was trained on all four

tastes simultaneously. Of the models thus obtained, the one with
largest total likelihood M∗ was taken as the best HMM match
to the data, and then used to estimate the probability of the
states given the model and the observations in each bin of each
trial (a procedure known as “decoding”). During decoding, only
those hidden states with probability exceeding 80% in at least
50 consecutive bins were retained (henceforth denoted simply
as “states”). State durations were approximately exponentially
distributed with median duration 0.60 s (95% CIs: 0.07–4.70)
during ongoing activity and 0.30 s (0.06–2.80) during evoked
activity (Mazzucato et al., 2015).

The firing rate fits νi (m) in each trial were obtained from the
analytical solution of the maximization step of the Baum-Welch
algorithm,

νi (m) = −
1

dt
ln

(

1−

∑T
t= 1 rm (t) yi(t)
∑T

t= 1 rm (t)

)

. (1)

Here, [yi(1), . . . , yi(T)] is the spike train of the i-th neuron in
the current trial, and T is the total duration of the trial. rm (t) =

P(St = m|y(1), . . . , y(T)) is the probability that the hidden state
St at time t ism, given the observations.

Dimensionality Measure
We defined the dimensionality of the neural activity as

d =
1

∑N
i=1
˜λ2
i

, (2)

where the˜λi are the principal eigenvalues expressed as fractions
of the total amount of variance explained, i.e.,˜λi = λi/ (

∑

j λj),

where λj are the eigenvalues of the covariance matrix of the firing
rates (see below).

The dimensionality can be computed exactly in some relevant
special cases. The calculation is simplified by the observation that
Equation (2) is equivalent to

d =

[

Tr
(

Cf

)]2

Tr(C2
f
)

,

where Cf is the true covariance matrix of the firing rate vectors,

Tr (A) ≡
∑N

i=1 Aii is the trace of matrix A, and Tr
(

A2
)

=
∑N

i,j=1 AijAji. We consider in the following only the case of firing

rates in equal bins, hence we can replace Cf with the covariance
matrix of the spike counts C in the definition of d:

d =
[Tr (C)]2

Tr(C2)
=

b2N
cN+aN

, (3)

where for later convenience we have introduced the notation

aN =

N
∑

i=1

C2
ii, bN =

N
∑

i=1

Cii, cN =

N
∑

i6=j

CijCji. (4)

Note that d does not depend on the distribution of firing rates,
but only on their covariance, up to a common scaling factor.
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Dimensionality in the case of uniform pair-wise

correlations
When all the pair-wise correlations rijare identical, rij = ρ for all
i 6= j,

rij =













1 ρ . . . ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1













(5)

we have Cij = ρ
√

σ 2
i σ 2

j for i 6= j, where σ 2
i = Cii is the spike

count variance. In this case, we find from Equation (4) that

aN =

N
∑

i=1

σ 4
i , bN =

N
∑

i=1

σ 2
i , cN = ρ2(b2N−aN). (6)

and the dimensionality, Equation (3), is given by

d =
1

ρ2+
(

1−ρ2
)

g(N)
, (7)

where

gN =
aN

b2N
=

∑N
i=1 σ 4

i
(

∑N
i=1 σ 2

i

)2
,

Note that since both aN and bN scale as N when N is large, in
general gN ∼ 1

N for large N.
If all spike counts have equal variance, σi = σ , we find exactly

gN = 1
N :

d =
1

ρ2+
(1−ρ2)

N

=
N

Nρ2+(1−ρ2)
, (8)

and the dependence of d on the variance drops out. Note that for
uncorrelated spike counts (ρ = 0) this formula gives d = N,
whereas for any finite correlation we find the upper bound d =

1/ρ2. For N > 1, the dimensionality is inversely related to the
amount of pair-wise correlation ρ.

Consider the case where spike counts have variances σ 2
i

drawn from a probability distribution with mean E
[

σ 2
i

]

= σ
2

and variance Var
[

σ 2
i

]

= δσ 4, and the pair-wise correlation
coefficients rij, for i 6= j, are drawn from a distribution with mean
E
[

rij
]

= ρ and variance Var
[

rij
]

= δρ2. In such a case one
can evaluate Equation (3) approximately by its Taylor expansion
around the mean values of the quantities in Equation (4). At
leading order in N one finds

E
[

d
]

≈
E
[

b2N
]

E [cN]+E [aN]
=

Nσ 4+δσ 4

(N − 1) σ 4(ρ2+δρ2)+ σ 4+δσ 4
,

(9)
where E[.] denotes expectation. To obtain this result we have used
the definitions in Equation (4), from which

E[aN] = N(σ 4+δσ 4), E[b2N] =N2σ 4+Nδσ 4,

E [cN] = (N2 − N)σ
4
(ρ2+δρ2), (10)

and the fact that, given a random vector Xi with mean µi

and covariance Cij, and a constant symmetric matrix Aij, the
expectation value of the quadratic form

∑

i,j XiAijXj is

E[
∑

i,j

XiAijXj] =
∑

ij

(AijCji+µiAijµj). (11)

In the case of uncorrelated spike counts (ρ = 0, δρ = 0),
dimensionality still depends linearly on the ensemble size N, but

with a smaller slope σ 4

σ 4+δσ 4 < 1 compared to the case of equal

variances (Equation 8 with ρ = 0).

Dimensionality in the Case of Neural Clusters
Given an ensemble of N neurons arranged in Q clusters
(motivated by the model network described later in section
“Spiking neuron model”), we created ensembles of uncorrelated
spike trains for N ≤ Q and correlated within each cluster for
N > Q. Thus, if N ≤ Q the correlation matrix is the N × N
identity matrix. If N > Q, the (Q+1)th neuron was added to
the first cluster, with correlation ρ with the other neuron of
the cluster, and uncorrelated to the neurons in the remaining
clusters. The (Q+2)th neuron was added to the second cluster,
with correlation ρ with the other neuron of the second cluster,
and uncorrelated to the neurons in the remaining clusters, and
so on. Similarly, the (2Q+p)th neuron (p ≤ Q) was added to the
p-th cluster, with pair-wise correlation ρ with the other neurons
of the same cluster, but no correlation with the neurons in the
remaining clusters; and so on. In general, for N = mQ + p

neurons (where m =

[

N
Q

]

−
≥ 1 is the largest integer smaller

than N
Q ), the procedure picked m + 1 neurons per cluster for

the first p cluster and m neurons per cluster for the remaining
Q− p clusters, with uniform pair-wise correlations ρ in the same
cluster while neurons from different clusters were uncorrelated.
The resulting correlation matrix r was block diagonal

r = diag
(

R1, . . . ,RQ
)

,

where each of the Q blocks contains the correlations of neurons
from the same cluster. Inside each block Ri, the off-diagonal
terms are equal to the uniform within-cluster correlation ρ:

Ri =













1 ρ . . . ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1













The first p blocks have size (m+ 1) × (m + 1) and the last
Q− p blocks have size m×m, so that (m+ 1) p+m

(

Q− p
)

=

N. The remaining elements of matrix r (representing pair-wise
correlations of neurons belonging to different clusters) were
all zero. Recalling that Cij = rijσiσj, one finds Tr (C) =

pbm+1 +
(

Q− p
)

bm andTr
(

C2
)

= ρ2[pb2m+1 +
(

Q− p
)

b2m] +
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(1 − ρ2)[pam+1 +
(

Q− p
)

am], where an and bn are defined in
Equation (6), from which one obtains

d =

{

b2N/aN , N ≤ Q
[pbm+1+(Q−p)bm]

2

ρ2[pb2m+1+(Q−p)b2m]+(1−ρ2)[pam+1+(Q−p)am]
, N > Q

(12)

In the approximation where all neurons have the same variance
this simplifies to

d =

{

N , N ≤ Q
N

1+mρ2[1−(Q−p)/N]
, N > Q. (13)

Recall that in the formulae abovem and p depend onN. For finite
ρ, Equation (13) predicts the bound d ≤ Q/ρ2 for any N > 1,
with this value reached asymptotically for large N. When single
neuron variances σ 2

i are drawn from a distribution with mean

E
[

σ 2
i

]

= σ
2
and variance Var

[

σ 2
i

]

= δσ 4, an expression for the
dimensionality can be obtained from Equation (12) at leading
order in the expectation values of the quantities in Equation (4)
(not shown), with a procedure similar to that used to obtain
Equation (9).

Pair-Wise Correlations
Given neuron i and neuron j’s spike trains, we computed the spike
count correlation coefficient rij

rij =
Sij

√

SiiSjj
,

where S is the sample covariance matrix of the spike counts
estimated as

Sij =
1

NbNT − 1

Nb,NT
∑

b,s=1

(

ni
(

b, s
)

− < ni >
) (

nj
(

b, s
)

− < nj >
)

,

(14)
where ni(b, s) is the spike count of neuron i in bin b and trial s.
The sum goes over all Nb bins and over all NT trials in a session,
whereas < ni > is the average across trials and bins for neuron
i. In the main text and figures we present results obtained with
a bin size of 200ms, but have performed the same analyses with
bin sizes varying from 10ms to 5 s (see Results for details).

Significance of the correlation was estimated as follows
(Renart et al., 2010): Nshuffle = 200 trial-shuffled correlation

coefficients r
′

ij were computed, then a p-value was determined

as the fraction of shuffled coefficients r
′

ij whose absolute value

exceeded the absolute value of the experimental correlation, p =

#
(
∣

∣

∣
r
′

ij

∣

∣

∣
>|rij|

)

Nshuffle
. For example, a correlation r was significant at p =

0.05 confidence level if no more than 10 shuffled correlation
coefficients out of 200 exceeded r.

The pair-wise correlations of firing rates vectors computed
in bins of fixed duration T were given by Equation (14) with
ni
(

b, s
)

replaced by ni
(

b, s
)

/T. Instead, correlations of firing
rates vectors inside hidden states (which have variable duration)
were estimated after replacing ni

(

b, s
)

in Equation (14) with
νi (m, s), the firing rate of neuron i in state m in trial s. For each
trial s, this quantity was computed according to Equation (1).

Estimation of Dimensionality
The eigenvalues λj in Equation (2) were found with a standard
Principal Component Analysis (PCA) of the set of all firing rate
vectors (Chapin and Nicolelis, 1999). The firing rate vectors were
obtained via the HMM analysis (see Equation 1); all data from
either ongoing or evoked activity were used. For the analysis of
Figure 3E, where the duration and number of trials were varied,
only the firing rate vectors of the HMM states present in the given
trial snippet were used (even if present for only a few ms). When
firing rate vectors in hidden states were not available (mainly, in
“shuffled” datasets and in asynchronous homogeneous networks,
see below for details), the firing rates were computed as spike
counts in T = 200 ms bins divided by T, ni

(

b, s
)

/T, where
ni
(

b, s
)

is as defined in Equation (14) (Figures 3F,G, 6E, 7D, 9A).
Dimensionality values were averaged across 20 simulated sessions
for each ensemble sizeN; in each session, 40 trials of 5 s duration,
resulting in NT = 1,000 bins, were used (using bin widths of 50–
500ms did not change the results). Note that for the purpose of
computing the dimensionality (Equation 3), it is equivalent to
use either the binned firing rate ni

(

b, s
)

/T or the spike count
ni
(

b, s
)

.
In our data, d roughly corresponded to the number of

principal components explaining between 80 and 90% of the
variance. However, note that all eigenvalues are retained in our
definition of dimensionality given in Equation (2) above.

Shuffled Datasets
The dimensionality of the data as a function of ensemble size N
was validated against surrogate datasets constructed by shuffling
neurons across different sessions while matching the empirical
distribution of ensemble sizes. Comparison analyses between
empirical and shuffled ensembles were trial-matched using the
minimal number of trials per condition across ensembles, and
then tested for significant difference with the Mann-Whitney test
on samples obtained from 20 bootstrapped ensembles. Neurons
whose firing rate variance exceeded the population average by
two standard deviations were excluded (8/167 of non-silent,
non-somatosensory neurons).

Dependence on the Number of Trials: Simulations

(Figures 7E, 8A)
The estimate of d from data depends on the number and duration
of the trials (Figure 3E and Equation 16 below). To investigate
this phenomenon in a simple numerical setting we generated
N × NT “nominal” firing rates, thought of as originating
from N neurons, each sampled NT times (trials). The single
firing rates were sampled according to a log-normal distribution
with equal means and covariance leading to Equation (7), i.e.,
Cij = ρσiσj(1− δij) + σ 2

i δij, with δij = 1 if i = j, and zero
otherwise (note that the actual distribution used is immaterial
since the dimensionality only depends on the covariance matrix,
see Equation 3). We considered the two cases of equal variance
for all ensemble neurons, σi = σ for all i (Figure 8A) or
variances σi sampled from a log-normal distribution (Figure 8A
and “+” in Figure 7E). The same N and NT as used for the
analysis of the model simulations in Figure 7D were used (where
the “trials” were NT bins of 200ms in 40 intervals of 5 second
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duration for each ensemble size N). The covariance of the data
thus generated was estimated according to Equation (14), based
on which the dimensionality Equation (3) was computed. The
estimated dimensionality depends onN andNT andwas averaged
across 100 values of d, each obtained as explained above. Note
that in this simplified setting increasing the duration of each trial
is equivalent to adding more trials, i.e., the effect of having a trial
400ms long producing 2 firing rates (one for each 200ms bin) is
equivalent to having two trials of 200ms duration. In the general
case, the effect of trial duration on d will depend on how trial
duration affects the variance and correlations of the firing rates.

Dependence on the Number of Trials: Theory
The dependence of dimensionality on the number of trials can
be computed analytically under the assumption that N ensemble
neurons generate spike counts ni, for i = 1, . . . ,N, distributed
according to a multivariate Gaussian. Since we are interested in
the spike-count covariance Equation (14), we can assume the
spike-count distribution to have zero mean and true covariance
Cij. The matrix M(NT ) = (NT − 1) · S(NT ), where S(NT ) is
the covariance matrix Equation (14) sampled from NT trials, is
distributed according to aWishart distributionWN

(

Cij,NT − 1
)

with NT − 1 degrees of freedom (Mardia et al., 1979). Since the
variance of the Wishart distribution,

Var
(

Mij

)

= (NT − 1)(C2
ij+CiiCjj),

is proportional to NT , we obtain the variance of the entries of the
sample covariance as

Var
(

S
(NT )
ij

)

=
C2
ij+CiiCjj

NT−1
, (15)

to be used in the estimator of d (from Equation 3)

d̂ =
[Tr (S)]2

Tr(S2)
=

̂b2N
ĉN+âN

,

where âN, ĉN, ̂b2N are given by Equation (4) with C replaced by
S. With a calculation similar to that used to obtain Equation (9),
to leading order in N and NT one finds

E[d̂] ≈
E[̂b2N]

E[ĉN]+E[âN]
,

with

E[âN] =N
(

σ 4+δσ 4
)

+
2Nσ 4

NT−1
,

E[̂b2N] =N2σ 4+Nδσ 4+
2Nσ 4

NT−1
,

E [ĉN] =
(

N2−N
)

(ρ2
+δρ2)σ 4+

(

N2−N
) 1+ρ2+δρ2

NT−1
σ 4,

where we also used Equations (10) and (11), withVar
[

σ 2
i

]

= δσ 4

and Var
[

rij
]

= δρ2, for i 6= j. In conclusion, one finds

E[d̂] =

(

N2+ 2N
NT−1

)

σ 4+Nδσ 4

(

N2−N
)

(

ρ2+δρ2+
1+ρ2+δρ2

NT−1

)

σ 4+N
(

1+ 2
NT−1

)

σ 4+Nδσ 4
.

(16)

Model Fitting
The dependence of the data’s dimensionality on ensemble size N
was fitted by a straight line via standard least-squares,

d = β1 · N+β0,

separately for ongoing and evoked activity (Figures 3B–D,
6B–D). Comparison between the dimensionality of evoked and

ongoing activity was carried out with a 2-way ANOVA with
condition (evoked vs. ongoing) and ensemble size (N) as factors.
Since d depends on the number and duration of the trials
used to estimate the covariance matrix (Figure 3E and Equation
16), we matched both the number of trials and trial length in
comparisons of ongoing and evoked dimensionality. If multiple
tastes were used, the evoked trials were eachmatched to a random
subset of an equal number of ongoing trials.

The dependence of dimensionality d on ensemble size N in
a surrogate dataset of Poisson spike trains with mean pairwise
correlation ρ (generated according to the algorithm described
in the next section) was modeled as Equation (16) with δρ2 =

αρ2 and δσ 4 = σ 4 = β (Figure 7D, dashed lines); NT

was fixed to 1000 (40 trials of 5 s each, segmented in 200ms
bins). The parameters α, β were tuned to fit all Poisson trains
simultaneously on datasets with N = 5, 10, . . . , 100 and
ρ = 0, 0.01, 0.05, 0.1, 0.2, with 20 ensembles for each value
(Figure 7D; only the fits for ρ = 0, 0.1, 0.2 are shown). A
standard non-linear least-squares procedure was used (Holland
and Welsch, 1977).

Generation of Correlated Poisson Spike
Trains
Ensembles of independent and correlated Poisson spike trains
were generated for the analysis of Figure 7. Ensembles of
independent stationary Poisson spike trains with given firing
rates νi were generated by producing their interspike intervals
according to an exponential distribution with parameter νi.
Stationary Poisson spike trains with fixed pairwise correlations
(but no temporal correlations) were generated according to the
method reported in Macke et al. (2009), that we briefly outline
below.

We split each trial into 1ms bins and consider the associated
binary random variable Xi (t) = 1 if the i-th neuron emitted a
spike in the t-th bin, and Xi (t) = 0 if no spike was emitted.
These samples were obtained by first drawing a sample from
an auxiliary N-dimensional Gaussian random variable U ∼

N (γ,3) and then thresholding it into 0 and 1: Xi = 1 if
Ui > 0, and Xi = 0 otherwise. Here, γ = {γ1, γ2, . . . , γN} is
the mean vector and 3 =

{

3ij

}

is the covariance matrix of the
N-dimensional Gaussian variable U . For appropriately chosen
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parameters γi and 3ij the method generates correlated spike
trains with the desired firing rates νi and pairwise spike count
correlation coefficients rij.

The prescription for γi and 3ij is most easily expressed as a
function of the desired probabilities µi of having a spike in a bin
of width dt, µi = P(Xi (t) = 1), and the pairwise covariance cij of
the random binary vectors Xi(t) and Xj(t), from which γi and 3ij

can be obtained by inverting the following relationships:

µi = 8(γi) ,

cii = 8(γi) 8 (−γi) ,

cij = 82

(

γi, γj,3ij

)

− 8(γi)8
(

γj
)

, i 6= j.

Here, 8(x) is the cumulative distribution of a univariate
Gaussian with mean 0 and variance 1 evaluated at x, and
82

(

x, y,3
)

is the cumulative distribution of a bivariate Gaussian
with means 0, variances 1 and covariance 3 evaluated at (x, y)
(note that the distributions 8 and 82 are unrelated to the N-
dimensional Gaussian U ∼ N (γ, 3)). Without loss of generality
we imposed unit variances for Ui, i.e., 3ii = 1.

We related the spike probabilities µi to the firing rates νi as
µi = 1 − e−νidt , with (1 − µi) being the probability of no spikes
in the same bin. When dt approaches zero, µi ≈ νidt and the
spike trains generated as vectors of binary random variables by
sampling U ∼ N (γ,3) will approximate Poisson spike trains
(dt = 1 ms bins were used). In order to have a fair comparison
with the data generated by the spiking network model (described
in the next section), the mean firing rates of the Poisson spike
trains were matched to the average firing rates obtained from the
simulated data.

Since γ and 3 were the same in all bins, values of Xi (t)
and Xi (s) were independent for t 6= s (i.e., the spike trains
had no temporal correlations). As a consequence, the random
binary vectors have the same pair-wise correlations as the spike
counts, and the cij are related to the desired rij by cij =

rij

√

µi (1− µi)µj

(

1− µj

)

, where µi (1− µi) is the variance of

Xi. See Macke et al. (2009) for further details.

Spiking Network Model
We modeled the data with a recurrent spiking network of N =

5000 randomly connected leaky integrate-and-fire (LIF) neurons,
of which 4000 excitatory (E) and 1000 inhibitory (I). Connection
probability pβα from neurons in population α ∈ E, I to neurons
in population β ∈ E, I were pEE = 0.2 and pEI = pIE = pII = 0.5;
a fraction f = 0.9 of excitatory neurons were arranged into
Q different clusters, with the remaining neurons belonging to
an unstructured (“background”) population (Amit and Brunel,
1997). Synaptic weights Jβα from neurons in population α ∈ E, I
to neurons in population β ∈ E, I scaled with N as Jβα =

jβα/
√
N, with jβα constants having the following values (units

ofmV): jEI = 3.18, jIE = 1.06, jII = 4.24, jEE = 1.77.
Within an excitatory cluster synaptic weights were potentiated,
i.e., they took average values of 〈J〉+ = J+jEE with J+ > 1, while
synaptic weights between units belonging to different clusters
were depressed to average values 〈J〉− = J−jEE, with J− = 1 −

γf (J+ − 1) < 1, with γ = 0.5. The latter relationship between

J+ and J− helps to maintain balance between overall potentiation
and depression in the network (Amit and Brunel, 1997).

Below spike threshold, the membrane potential V of each LIF
neuron evolved according to

τm
dV

dt
= −V+τm (Irec+Iext+Istim)

with a membrane time constant τm = 20 ms for excitatory and
10 ms for inhibitory units. The input current was the sum of
a recurrent input Irec, an external current Iext representing an
ongoing afferent input from other areas, and an external stimulus
Istim representing e.g., a delivered taste during evoked activity
only. In our units, a membrane capacitance of 1nF is set to 1.
A spike was said to be emitted when V crossed a threshold Vthr ,
after which V was reset to a potential Vreset = 0 for a refractory
period of τref = 5 ms. Spike thresholds were chosen so that,
in the unstructured network (i.e., with J+ = J− = 1), the E
and I populations had average firing rates of 3 and 5 spikes/s,
respectively (Amit and Brunel, 1997). The recurrent synaptic
input Iirec to unit i evolved according to the dynamical equation

τs
dIirec
dt

= −Iirec+

N
∑

j=1

Jij
∑

k

δ

(

t−t
j

k

)

,

where t
j

k
was the arrival time of k-th spike from the j-th pre-

synaptic unit, and τs was the synaptic time constant (3 and 2 ms
for E and I units, respectively), resulting in an exponential post-

synaptic current in response to a single spike,
Jij
τs
exp(−t/τs)2(t),

where 2(t) = 1 for t ≥ 0, and 2(t) = 0 otherwise.
The ongoing external current to a neuron in population α was
constant and given by Iext = Nextpα0Jα0νext, where Next =

nEN, pα0 = pEE, Jα0 =
jα0√
N

with jE0 = 0.3, jI0 = 0.1, and

νext = 7 spikes/s. During evoked activity, stimulus-selective
units received an additional input representing one of the four
incoming stimuli. The stimuli targeted combinations of neurons
as observed in the data. Specifically, the fractions of neurons
responsive to n = 1, 2, 3 or all 4 stimuli were 17% (27/162), 22%
(36/162), 26% (42/162), and 35% (57/162) (Jezzini et al., 2013;
Mazzucato et al., 2015). Each stimulus had constant amplitude
νstim ranging from 0 to 0.5 νext . In the following we measure the
stimulus amplitude as percentage of νext (e.g., “10%” corresponds
to νstim = 0.1 νext). The onset of each stimulus was always
t = 0, the time of taste delivery. The stimulus current to a unit in
population α was constant and given by Istim = Nextpα0Jα0νstim.

Mean Field Analysis of the Model
The stationary states of the spiking network model in the limit of
large N were found with a mean field analysis (Amit and Brunel,
1997; Brunel and Hakim, 1999; Fusi andMattia, 1999; Curti et al.,
2004; Mazzucato et al., 2015). Under typical conditions, each
neuron of the network receives a large number of small post-
synaptic currents (PSCs) per integration time constant. In such
a case, the dynamics of the network can be analyzed under the
diffusion approximation within the population density approach.
The network has α = 1, . . . ,Q + 2 sub-populations, where the
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first Q indices label the Q excitatory clusters, α = Q + 1 labels
the “background” units, and α = Q + 2 labels the homogeneous
inhibitory population. In the diffusion approximation (Tuckwell,
1988; Lánský and Sato, 1999; Richardson, 2004), the input to each
neuron is completely characterized by the infinitesimal mean
µα and variance σ 2

α of the post-synaptic potential (see Mazzucato
et al., 2015 for the expressions of the infinitesimal mean and
variance for all subpopulations).

Parameters were chosen so that the network with J+ =

J− = 1 (where all E → E synaptic weights are equal) would
operate in the balanced asynchronous regime (van Vreeswijk and
Sompolinsky, 1996, 1998; Renart et al., 2010), where incoming
contributions from excitatory and inhibitory inputs balance
out, neurons fire irregular spike trains with weak pair-wise
correlations.

The unstructured network has only one dynamical state, i.e.,
a stationary point of activity where all E and I neurons have
constant firing rate νE and νI , respectively. In the structured
network (where J+ > 1), the network undergoes continuous
transitions among a repertoire of states, as shown in the main
text. To avoid confusion between network activity states and
HMM states, we refer to the former as network “configurations”
instead of states. Admissible networks configurationsmust satisfy
the Q+ 2 self-consistent mean field equations (Amit and Brunel,
1997)

να = Fα

(

µα(
−→
ν ), σ 2

α (
−→
ν )
)

,

where −→
ν =

[

ν1, . . . , νQ, ν
bg
E , νI

]

is the firing rate vector and

Fα

(

µα, σ
2
α

)

is the current-to-rate response function of the LIF
neurons. For fast synaptic times, i.e., τs

τm
≪ 1, Fα

(

µα, σ
2
α

)

is well
approximated by (Brunel and Sergi, 1998; Fourcaud and Brunel,
2002)

Fα (µα, σα) =

(

τref+τm,α

√
π

∫ 2eff ,α

Heff ,α

eu
2 [

1+erf (u)
]

)−1

,

where

2eff ,α =
Vthr,α−µα

σα

+akα,

Heff ,α =
Vreset,α−µα

σα

+akα,

where kα =
√

τs,α/τm,α is the square root of the ratio of
synaptic time constant to membrane time constant, and a =
|ζ(1/2)|
√
2

∼ 1.03. This theoretical response function has been

fitted successfully to the firing rate of neocortical neurons in the
presence of in vivo-like fluctuations (Rauch et al., 2003; Giugliano
et al., 2004; La Camera et al., 2006, 2008).

The fixed points −→ν
∗
of the mean field equations were found

with Newton’s method (Press et al., 2007). The fixed points

can be either stable (attractors) or unstable depending on the
eigenvalues λα of the stability matrix

Sαβ =
1

τs,α

(

∂Fα

(

µα(
−→
ν ), σ 2

α (
−→
ν )
)

∂νβ

)

−

(

∂Fα

(

µα(
−→
ν ), σ 2

α (
−→
ν )
)

∂σ 2
α

∂σ 2
α

∂νβ

−δαβ

)

,

evaluated at the fixed point −→ν
∗
(Mascaro and Amit, 1999). If

all eigenvalues have negative real part, the fixed point is stable
(attractor). If at least one eigenvalue has positive real part, the
fixed point is unstable. Stability is meant with respect to an
approximate linearized dynamics of the mean and variance of the

input current:

τs,α
dmα

dt
= −mα+µα(

−→
ν )

τs,α

2

ds2α
dt

= −s2α+σ 2
α (
−→
ν )

να (t) = Fα

(

mα(
−→
ν ), s2α(

−→
ν )
)

,

where µα and σ 2
α are the stationary values for fixed −→

ν given
earlier. For fast synaptic dynamics in the asynchronous balanced
regime, these rate dynamics are in very good agreement with
simulations (La Camera et al., 2004—see Renart et al., 2004;
Giugliano et al., 2008 for more detailed discussions).

Metastable Configurations in the Network
Model
The stable configurations of a network with an infinite number
of neurons were obtained in the mean field approximation of the
previous section and are shown in Figure 4B for Q = 30 and a
range of values of the relative potentiation parameter J+. Above
the critical point J+ = 4.2, stable configurations characterized by
a finite number of active clusters emerge (gray lines; the number
of active clusters is reported next to each line). For a given J+,
the firing rate is the same in all active clusters and is inversely
proportional to the total number of active clusters. Stable patterns
of firing rates are also found in the inhibitory population (red
lines), in the inactive clusters (having low firing rates; gray dashed
lines), and in the unstructured excitatory population (dashed
blue lines). For a fixed value of J+, multiple stable configurations
coexist with different numbers of active clusters. For example, for
J+ = 5.3, configurations with up to 7 active clusters are stable,
each configuration with different firing rates. This generates
multistable firing rates in single neurons, i.e., the property, also
observed in the data, that single neurons can attain more than
2 firing rates across states (Mazzucato et al., 2015). Note that if
J+ ≤ 5.15 an alternative stable configuration of the network with
all clusters inactive (firing rates < 10 spikes/s) is also possible
(single brown line).
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Strictly speaking, the configurations in Figure 4B are stable
only in a network containing an infinite number of uncorrelated
neurons. In a finite network (or when neurons are strongly
correlated) these configurations can lose stability due to strong
fluctuations, which ignite transitions among the different
configurations. Full details are reported in Mazzucato et al.
(2015).

Model Simulations and Analysis of
Simulated Data
The dynamical equations of the LIF neurons were integrated
with the Euler algorithm with a time step of dt = 0.1 ms.
We simulated 20 different networks (referred to as “sessions”
in the following) during both ongoing and evoked activity. We
chose four different stimuli per session during evoked activity (to
mimic taste delivery). Trials were 5 s long. The HMM analyses
for Figures 2, 5 were performed on ensembles of randomly
selected excitatory neurons with the same procedure used for
the data (see previous section “Hidden Markov Model (HMM)
analysis”). The ensemble sizes were chosen so as to match the
empirical ensemble sizes (3–9 randomly selected neurons). For
the analysis of Figure 9A, ensembles of increasing size (from
5 to 100 neurons) were used from simulations with Q = 30
clusters. When the ensemble size was less than the number of
clusters (N ≤ Q), each neuron was selected randomly from a
different cluster; when ensemble size was larger than the number
of clusters, one neuron was added to each cluster until all clusters
were represented, and so on until allN neurons had been chosen.
To allow comparison with surrogate Poisson spike trains, the
dimensionality of the simulated data was computed from the
firing rate vectors in T = 200 ms bins as explained in section
“Dimensionality measure.” For control, the dimensionality was
also computed from the firing rate vectors in hidden states
obtained from an HMM analysis, obtaining qualitatively similar
results.

RESULTS

Dimensionality of the Neural Activity
We investigate the dimensionality of sequences of firing rate
vectors generated in the GC of alert rats during periods of
ongoing or evoked activity (seeMethods). To provide an intuitive
picture of the meaning of dimensionality adopted in this paper,
consider the firing rate vectors from N simultaneously recorded
neurons. These vectors can occupy, a priori, the entire N-
dimensional vector space minimally required to describe the
population activity of N independent neurons. However, the
sequence of firing rate vectors generated by the neural dynamics
may occupy a subspace that is spanned by a smaller number
m < N of coordinate axes. For example, the data obtained
by the ensemble of three simulated spike counts in Figure 1

mostly lie on a 2D space, the plane shaded in gray. Although 3
coordinates are still required to specify all data points, a reduced
representation of the data, such as that obtained from PCA,
would quantify the dimension of the relevant subspace as being
close to 2. To quantify this fact we use the following definition of

dimensionality (Abbott et al., 2011)

d =

(

N
∑

i=1

˜λ2
i

)−1

,

where N is the ensemble size and ˜λi are the normalized
eigenvalues of the covariance matrix, each expressing the
fraction of the variance explained by the corresponding principal
component (see Methods for details). According to this formula,
if the first n eigenvalues express each a fraction 1/n of the variance
while the remaining eigenvalues vanish, the dimensionality is d =

n. In less symmetric situations, d reflects roughly the dimension
of the linear subspace explaining most variance about all data
points. In the example of the data on the gray plane of Figure 1,
d = 1.8, which is close to 2, as expected. Similarly, data points
lying mostly along the blue and red straight lines in Figure 1 have
a dimensionality of 0.9, close to 1. In all cases, d > 0 and d ≤ N,
where N is the ensemble size.

The blue and red data points in Figure 1 were obtained
from a fictitious scenario where neuron 1 and neuron 2 were
selective to surrogate stimuli A and B, respectively, and are
meant to mimic two possible evoked responses. The subspace
containing responses to both stimuli A and B would have
a dimensionality dA+B = 1.7, similar to the dimensionality
of the data points distributed on the gray plane (meant
instead to represent spike counts during ongoing activity in
the same fictitious scenario). Thus, a dimensionality close to
2 could originate from different patterns of activity, such as
occupying a plane or two straight lines. Other and more complex
scenarios are, of course, possible. In general, the dimensionality

FIGURE 1 | Dimensionality of the neural representation. Pictorial

representation of the firing rate activity of an ensemble of N = 3 neurons. Each

dot represents a three-dimensional vector of ensemble firing rates in one trial.

Ensemble ongoing activity localizes around a plane (black dots cloud

surrounding the shaded black plane), yielding a dimensionality of d = 1.8.

Activity evoked by each of two different stimuli localizes around a line (red and

blue dots clouds and lines), yielding a dimensionality of d = 0.9 in both cases.
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will reflect existing functional relationships among ensemble
neurons (such as pair-wise correlations) as well as the response
properties of the same neurons to external stimuli. The pictorial
example of Figure 1 caricatures a stimulus-induced reduction
of dimensionality, as found in the activity of simultaneously
recorded neurons from the GC of alert rats, as we show next.

Dimensionality is Proportional to Ensemble
Size
We computed the dimensionality of the neural activity of
ensembles of 3–9 simultaneously recorded neurons in the
gustatory cortex of alert rats during the 5 s inter-trial period
preceding (ongoing activity) and following (evoked activity) the
delivery of a taste stimulus (said to occur at time t = 0;
see Methods). Ensemble activity in single trials during both
ongoing (Figure 2A) and evoked activity (Figure 2B) could
be characterized in terms of sequences of metastable states,
where each state is defined as a collection of firing rates across
simultaneously recorded neurons (Jones et al., 2007; Mazzucato
et al., 2015). Transitions between consecutive states were detected
via a HiddenMarkovModel (HMM) analysis, which provides the
probability that the network is in a certain state at every 1ms
bin (Figure 2, color-coded lines superimposed to raster plots).
The ensemble of spike trains was considered to be in a given
state if the posterior probability of being in that state exceeded
80% in at least 50 consecutive 1-ms bins (Figure 2, color-coded
shaded areas). Transitions among states were triggered by the
co-modulation of a variable number of ensemble neurons and
occurred at seemingly random times (Mazzucato et al., 2015).
For this reason, the dimensionality of the neural activity was
computed based on the firing rate vectors in each HMM state
(one firing rate vector per state per trial; see Methods for details).

The average dimensionality of ongoing activity across sessions
was dongoing = 2.6 ± 1.2 (mean±SD; range: [1.2, 5.0]; 27
sessions). An example of the eigenvalues for a representative
ensemble of eight neurons is shown in Figure 3A, where d =

4.42. The dimensionality of ongoing activity was approximately
linearly related to ensemble size (Figure 3B, linear regression,
r = 0.4, slope bongoing = 0.26 ± 0.12, p = 0.04). During
evoked activity dimensionality did not differ across stimuli (one-
way ANOVA, no significant difference across tastants, p > 0.8),
hence all evoked data points were combined for further analysis.
An example of the eigenvalue distribution of the ensemble in
Figure 2B is shown in Figure 3C, where devoked = 1.3 ∼ 1.7
across 4 different taste stimuli. Across all sessions, dimensionality
was overall smaller (devoked = 2.0 ± 0.6, mean±SD, range:
[1.1, 3.9]) and had a reduced slope as a function of N compared
to ongoing activity (Figure 3D, linear regression, r = 0.39, slope
bevoked = 0.13± 0.03, p < 10−4). However, since dimensionality
depends on the number and duration of the trials used for its
estimation (Figure 3E), a proper comparison requires matching
trial number and duration for each data point, as described next.

Stimulus-Induced Reduction of
Dimensionality
We matched the number and duration of the trials for each
data point and ran a two-way ANOVA with condition (ongoing

vs. evoked) and ensemble size as factors. Both the main
dimensionality [F(1, 202) = 11.93, p < 0.001] and the slope were
significantly smaller during evoked activity [test of interaction,
F(6, 202) = 5.09, p < 10−4]. There was also a significant effect
of ensemble size [F(6, 202) = 18.72, p < 10−14], confirming
the results obtained with the separate regression analyses. These
results suggest that stimuli induce a reduction of the effective
space visited by the firing rate vector during evoked activity.
This was confirmed by a paired sample analysis of the individual
dimensionalities across all 27 × 4=108 ensembles (27 ensemble
times 4 gustatory stimuli; p < 0.002, Wilcoxon signed-rank test).

Dimensionality is larger in Ensembles of
Independent Neurons
The dimensionality depends on the pair-wise correlations of
simultaneously recorded neurons. Shuffling neurons across
ensembles would destroy the correlations (beyond those expected
by chance), and would give a measure of how different the
dimensionality of our datasets would be compared to sets
of independent neurons. We measured the dimensionality of
surrogate datasets obtained by shuffling neurons across sessions;
because shuffling destroys the structure of the hidden states,
firing rates in bins of fixed duration (200ms) were used
to estimate the dimensionality (see Methods for details). As
expected, the slope of d vs. N was larger in the shuffled datasets
compared to the simultaneously recorded ensembles (not shown)
during both ongoing activity (bshuff = 0.67 ± 0.06 vs. bdata =

0.60 ± 0.01; mean ± SD, Mann-Whitney test, p < 0.001,
20 bootstraps), and evoked activity (bshuff = 0.36 ± 0.07 vs.
bdata = 0.29 ± 0.01; p < 0.001). Especially during ongoing
activity, this result was accompanied by a narrower distribution
of pair-wise correlations in the shuffled datasets compared
to the simultaneously recorded datasets (Figure 3G), and is
consistent with an inverse relationship between dimensionality
and pair-wise correlations (see Equation 9).

Time Course of Dimensionality as a
Function of Ensemble Size
Unlike ongoing activity, the dependence of dimensionality on
ensemble size (the slope of the linear regression of d vs. N) was
modulated during different epochs of the post-stimulus period
[Figure 3F, full lines; two-way ANOVA; main effect of time
F(4, 495) = 3.80, p < 0.005; interaction time x condition:
F(4, 495) = 4.76, p < 0.001]. In particular, the dependence of
d on the ensemble size N almost disappeared immediately after
stimulus presentation in the simultaneously recorded, but not in
the shuffled ensembles (trial-matched slope in the first evoked
second: bevoked = 0.07 ± 0.01 vs bshuff = 0.19 ± 0.07) and
converged to a stable value after approximately 1 second (slope
after the first second bevoked = 0.38± 0.01; compare with a stable
average slope during ongoing activity of bongoing = 0.57 ± 0.01,
Figure 3F).

Note that the dimensionality is larger when the firing rate is
computed in bins (as in Figure 3F) rather than in HMM states
(as in Figures 3B–D, where the slopes are about half than in
Figure 3F). The reason is that firing rates and correlations are
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FIGURE 2 | Ensemble neural activity is characterized by sequences of states. (A) Upper panels: Representative trials from one ensemble of nine

simultaneously recorded neurons during ongoing activity, segmented according to their ensemble states (HMM analysis, thin black vertical lines are action potentials;

states are color-coded; smooth colored lines represent the probability for each state; shaded colored areas indicate intervals where the probability of a state exceeds

80%). Lower panels: Average firing rates across simultaneously recorded neurons (states are color-coded as in the upper panels). In total, 6 hidden states were found

in this example session (only 5 states shown). X-axis for population rasters: time preceding the next event at (0 = stimulus delivery); Y-axis for population rasters: left,

ensemble neuron index, right, probability of HMM states; X-axis for average firing rates panels: firing rates (spks/s); Y-axis for firing rate panels: ensemble neuron

index. (B) Ensemble rasters and firing rates during evoked activity for four different tastes delivered at t = 0: sucrose, sodium chloride, citric acid, and quinine

(notations as in panel A). In total, eight hidden states were found in this session during evoked activity.

approximately constant during the same HMM state, whereas
they may change when estimated in bins of fixed duration that
include transitions among hidden states. These changes tend
to dilute the correlations resulting in higher dimensionality as
predicted e.g., by Equation (9). A comparison of the pair-wise
correlations of binned firing rates (Figure 3G) vs. those of firing
rates in HMM states (Figure 3H) confirmed this hypothesis.
Also, if the argument above is correct, one would expect a
dependence of dimensionality on (fixed) bin duration. We
computed the correlations and dimensionality of binned firing
rates for various bin durations and found that r increases and d
decreases for increasing bin durations (not shown). However, the
slope of d vs.N is always larger in ongoing than in evoked activity
regardless of bin size (ranging from 10ms to 5 s; not shown).
This confirms the generality of the results of Figures 3B–D,
which were obtained using firing rate vectors in hidden
states.

To summarize our main results so far, we found that
dimensionality depends on ensemble size during both ongoing
and evoked activity, and such dependence is significantly reduced
in the post-stimulus period. This suggests that while state
sequences during ongoing activity explore a large portion of
the available firing rate space, the presentation of a stimulus
initially collapses the state sequence along amore stereotyped and

lower-dimensional response (Katz et al., 2001; Jezzini et al., 2013).
During both ongoing and evoked activity, the dimensionality is
also different than expected by chance in a set of independent
neurons (shuffled datasets).

Clustered Spiking Network Model of
Dimensionality
To gain a mechanistic understanding of the different
dimensionality of ongoing and evoked activity, we have
analyzed a spiking network model with clustered connectivity
which has been shown to capture many essential features of the
data (Mazzucato et al., 2015). In particular, the model reproduces
the transitions among latent states in both ongoing and evoked
activity. The network (see Methods for details) comprises Q
clusters of excitatory neurons characterized by stronger synaptic
connections within each cluster and weaker connections between
neurons in different clusters. All neurons receive recurrent input
from a pool of inhibitory neurons that keeps the network in
a balanced regime of excitation and inhibition in the absence
of external stimulation (Figure 4A). In very large networks
(technically, in networks with an infinite number of neurons),
the stable configurations of the neural activity are characterized
by a finite number of active clusters whose firing rates depend
on the number clusters active at any given moment, as shown
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FIGURE 3 | Dependence of dimensionality on ensemble size (data). (A) Fraction of variance explained by each principal eigenvalue for an ensemble of 8

neurons during ongoing activity (corresponding to the filled dot in panel B) in the empirical dataset. The dashed vertical line represents the value of the dimensionality

for this ensemble (d = 4.4). X-axis, eigenvalue number; Y-axis, fraction of variance explained by each eigenvalue. (B) Dimensionality of neural activity across all

ensembles in the empirical dataset during ongoing activity (circles, linear regression fit, d = b ·N+ a, b = 0.26± 0.12, a = 1.07± 0.74, r = 0.4), estimated from HMM

firing rate fits on all ongoing trials in each session (varying from 73 to 129). X-axis: ensemble size; Y-axis: dimensionality. (C) Fraction of variance explained by each

principal eigenvalue for the ensemble in (A) during evoked activity. Principal eigenvalues for sucrose (S, orange), sodium chloride (N, yellow), citric acid (C, cyan), and

quinine (Q, blue) are presented (corresponding to the color-coded dots in panel D). X-axis, eigenvalue number; Y-axis, percentage of variance explained by each

eigenvalue. (D) Dimensionality of neural activity across all ensembles in the empirical dataset during evoked activity (notations as in panel B, linear regression:

d = b · N+ a, b = 0.13± 0.03, a = 1.27± 0.19, r = 0.39), estimated from HMM firing rate fits on evoked trials in each condition (varying from 7 to 11 trials across

sessions for each tastant). (E) The slope of the linear regression of dimensionality (d) vs. ensemble size (N) as a function of the length of the trial interval and the

number of trials used to estimate the dimensionality. X-axis, length of trial interval [s]; Y-axis, number of trials. (F) Time course of the trial-matched slopes of d vs. N,

evaluated with 200ms bins in consecutive 1 s intervals during ongoing (black curve, t < 0) and evoked periods (red curve, t > 0; error bars represent SD). A significant

time course is triggered by stimulus presentation (see Results for details). The slopes of the empirical dataset (thick curves) were smaller than the slope of the shuffled

dataset (dashed curves) during ongoing activity. X-axis, time from stimulus onset at t = 0 [s]; Y-axis, slope of d vs. N. (G) Distribution of pair-wise correlations in

simultaneously recorded ensembles (black and red histograms for ongoing and evoked activity, respectively) and shuffled ensembles (brown and pink dashed

histograms for ongoing and evoked activity, respectively) from 200ms bins. X-axis, correlation; Y-axis, frequency. (H) Distribution of pair-wise correlations from HMM

states during ongoing (black) and evoked activity (red) for all simultaneously recorded pairs of neurons. X-axis, correlation; Y-axis, frequency.

in Figure 4B (where Q = 30). In a finite network, however,
finite size effects ignite transitions among these configurations,
inducing network states (firing rate vectors) on randomly chosen
subsets of neurons that resemble the HMM states found in the
data (Figure 5; see Mazzucato et al., 2015 for details).

The dimensionality of the simulated sequences during
ongoing and evoked activity was computed as done for the
data, finding similar results. For the examples in Figure 5, we
found dongoing = 4.0 for ongoing activity (Figure 6A) between
devoked = 2.2 and devoked = 3.2 across tastes during evoked
activity (Figure 6C). Across all simulated sessions, we found an
average dongoing = 2.9 ± 0.9 (mean ± SD) for ongoing activity
and devoked = 2.4 ± 0.7 for evoked activity. The model captured
the essential properties of dimensionality observed in the data:
the dimensionality did not differ across different tastes (one-way
ANOVA, p > 0.2) and depended on ensemble size during both

ongoing (Figure 6B; slope = 0.36 ± 0.07, r = 0.77, p < 10−4)
and evoked periods (Figure 6D; slope = 0.12 ± 0.04, r =

0.29, p = 0.01). As for the data, the dependency on ensemble
size was smaller for evoked compared to ongoing activity. We
performed a trial-matched two-way ANOVA as done on the data
and found, also in the model, a main effect of condition [ongoing
vs. evoked: F(1, 146) = 22.1, p < 10−5], a main effect of ensemble
size [F(6, 146) = 14.1, p < 10−11], and a significant interaction
[F(6, 146) = 3.8, p = 0.001]. These results were accompanied by
patterns of correlations among themodel neurons (Figures 6E,F)
very similar to those found in the data (Figures 3G,H; see section
“Dimensionality is larger in the presence of clusters” for statistics
of correlation values). As in the data, narrower distributions
of correlations were found for binned firing rates (Figure 6E)
compared to firing rates in hidden states (Figure 6F; compare
with Figures 3G,H, respectively). Moreover, shuffling neurons
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FIGURE 4 | Recurrent network model. (A) Schematic recurrent network architecture. Triangles and squares represent excitatory and inhibitory LIF neurons

respectively. Darker disks indicate excitatory clusters with potentiated intra-cluster synaptic weights. (B) Mean field solution of the recurrent network. Firing rates of the

stable states for each subpopulation are shown as function of the intra-cluster synaptic potentiation parameter J+: firing rate activity in the active clusters (solid gray

lines), firing rate in the inactive clusters (dashed gray lines), activity of the background excitatory population (dashed blue lines), activity of the inhibitory population

(solid red lines). In each case, darker colors represent configurations with larger number of active clusters. Numbers denote how many clusters are active in each

stable configuration. Configurations with 1–8 active clusters are stable in the limit of infinite network size. A global configuration where all clusters are inactive (brown

line) becomes unstable at the value J+ = 5.15. The vertical green line represents the value of J+ = 5.3 chosen for the simulations. X-axis, intra-cluster potentiation

parameter J+ in units of JEE ; Y-axis, Firing rate (spks/s).

FIGURE 5 | Ensemble activity in the recurrent network model is characterized by sequences of states. Representative trials from one ensemble of nine

simultaneously recorded neurons sampled from the recurrent network, segmented according to their ensemble states (notations as in Figure 1). (A) ongoing activity.

(B) Ensemble activity evoked by four different stimuli, modeled as an increase in the external current to stimulus-selective clusters (see Methods for details).

across datasets reduced the correlations (Figure 6E, dashed),
resulting in a larger slope of d vs.N (not shown). Finally, d during
ongoing activity was always larger than during evoked activity
also when computed on binned firing rates (not shown), as found

in the data (see section “Dependence of dimensionality on bin
size”).

Since the model was not fine-tuned to find these results, the
different dimensionalities of ongoing and evoked activity, and
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FIGURE 6 | Dependence of dimensionality on ensemble size (model). (A) Fraction of variance explained by each principal eigenvalue for an ensemble of 9

neurons during ongoing activity (corresponding to the filled dot in panel B) in the model network of Figure 5 (notations as in Figure 3A). (B) Dimensionality of neural

activity across all ensembles in the model during ongoing activity (linear regression fit, d = b · N + a, b = 0.36± 0.07, a = 0.80± 0.43, r = 0.77), estimated from

HMM firing rate fits. X-axis, ensemble size; Y-axis, dimensionality. (C) Fraction of variance explained by each principal eigenvalue for the ensemble in panel A during

evoked activity. Principal eigenvalues for four tastes are presented (corresponding to the color-coded dots in panel D). X-axis, eigenvalue number; Y-axis, percentage

of variance explained by each eigenvalue. (D) Dimensionality of neural activity across all ensembles in the model during evoked activity (notations as in panel B, linear

regression: d = b · N+ a, b = 0.12± 0.04, a = 1.70± 0.26, r = 0.29). (E) Distribution of pair-wise correlations in simultaneously recorded ensembles from the

clustered network model (black and red histograms for ongoing and evoked activity, respectively) and in shuffled ensembles (brown and pink dashed histograms for

ongoing and evoked activity, respectively) from 200ms bins. X-axis, correlation; Y-axis, frequency. (F) Distribution of pair-wise correlations from HMM states during

ongoing (black) and evoked activity (red) for all simultaneously recorded pairs of neurons. X-axis, correlation; Y-axis, frequency.

their associated patterns of pair-wise correlations, are likely the
consequence of the organization in clusters and of the ensuing
dynamics during ongoing and evoked activity.

Scaling of Dimensionality with Ensemble
Size and Pair-Wise Correlations
The dependence of dimensionality on ensemble size observed
in the data (Figure 3B) and in the model (Figure 6B) raises the
question of whether or not the dimensionality would converge to
an upper bound as one increases the number of simultaneously
recorded neurons. In general, this question is important in
a number of settings, related e.g., to coding in motor cortex
(Ganguli et al., 2008; Gao and Ganguli, 2015), performance in
a discrimination task (Rigotti et al., 2013), or coding of visual
stimuli (Cadieu et al., 2013). We can attack this question aided
by the model of Figure 4, where we can study the effect of large
numbers of neurons, but also the impact on dimensionality of a

clustered network architecture compared to a homogeneous one,
at parity of correlations and ensemble size.

We consider first the case of a homogeneous network of
neurons having no clusters and low pair-wise correlations,
but having the same firing rates distributions (which were
approximately log-normal, Figure 7A) and the same mean pair-
wise correlations as found in the data (ρ ∼ 0.01 − 0.2).
This would require solving a homogeneous recurrent network
self-consistently for the desired firing rates and correlations. As
a proxy for this scenario, we generated 20 sessions of 40 Poisson
spike trains having exactly the desired properties (including the
case of independent neurons for which ρ = 0). Two examples
with ρ = 0 and ρ = 0.1, respectively, are shown in Figures 7B,C.
Since in the asynchronous homogeneous network there are no
transitions and hence no hidden states, the dimensionality was
estimated based on the rate vectors in bins of 200ms duration
(using bin widths of 50–500ms did not change the results; see
Methods for details).
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We found that the dimensionality grows linearly with
ensemble size in the absence of correlations, but is a concave
function of N in the presence of pair-wise correlations (circles
in Figure 7D). Thus, as expected, the presence of correlations
reduces the dimensionality and suggests the possibility of an
upper bound. A simple theoretical calculation mimicking this
scenario shows that d in this case converges indeed to an upper
bound that depends on the inverse of the square of the pair-wise
correlations. For example, in the case of uniform correlations (ρ)
and equal variances of the spike counts, Equation (8) of Methods,
d (N, ρ) = 1

ρ2+(1−ρ2)/N
, shows that d = N in the absence of

correlations, but d < 1/ρ2 in the presence of correlations. These
properties remain approximately true if the variances σ 2

i of the
firing rates are drawn from a distribution with mean E

[

σ 2
i

]

= σ 2

and variance Var
[

σ 2
i

]

= δσ 4. As Equation (9) shows, in such
a case dimensionality is reduced compared to the case of equal

variances, for example d ≈ σ 4

σ 4+δσ 4N < N for large N when

ρ = 0, δρ = 0.
The analytical results are shown in Figure 7E (full lines

correspond to Equation 8), together with their estimates (“+”)
based on 1000 data points (same number as trials in Figure 7D;
see Methods). The estimates are based on surrogate datasets

FIGURE 7 | Dimensionality and correlation. (A) Empirical single neuron firing rate distributions in the data (left) and in the model (right), for ongoing (black), and

evoked activity (red). The distributions are approximately lognormal. X-axis, Firing rate (spks/s); Y-axis, frequency. (B) Example of independent Poisson spike trains

with firing rates matched to the firing rates obtained in simulations of the spiking network model. (C) Example of correlated Poisson spike trains with firing rates

matched to the firing rates obtained in simulations of the spiking network model. Pair-wise correlations of ρ = 0.1 were used (see Methods). X-axis, time [s]; Y-axis,

neuron index. (D) Dimensionality as a function of ensemble size N in an ensemble of Poisson spike trains with spike count correlations ρ = 0, 0.1, 0.2 and firing rates

matched to the model simulations of Figure 6. Dashed lines represent the fit of Equation (16) to the data (with δρ2 = αρ2, σ4 = δσ4 = β), with best-fit parameters

(mean ± s.e.m.) α = 0.22± 10−5, β = 340± 8. Filled circles (from top to bottom): dimensionality of the data (raster plots) shown in (B,C) (shaded areas represent

SD). X-axis, ensemble size; Y-axis, dimensionality. (E) Theoretical prediction for the dependence of dimensionality on ensemble size N and firing rate correlation ρ for

the case of uniform correlation, Equation (8) (thick lines; green to cyan to blue shades represent increasing correlations). “+” are dimensionality estimates from

NT = 1,000 trials for each N (same NT as in panel D, each trial providing a firing rate value sampled from a log-normal distribution), in the case of log-normally

distributed firing rate variances σ2
i
with mean σ2 = 40 (spk/s)∧2 and standard deviation 0.5 σ2. Theoretical predictions from Equation (16) match the estimated values

in all cases (dashed black lines). X-axis, ensemble size N; Y-axis, dimensionality.
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with lognormal-distributed variances σ 2
i to mimic the empirical

distribution of variances found in GC (not shown).

Estimation Bias
Comparison of Figures 7D,E shows that the dimensionality of
the homogeneous network is underestimated compared to the
theoretical value given by Equation (8). This is due to a finite
number of trials and the presence of unequal variances with
spread δσ 4 (“+” in Figure 7E). As Figure 7E shows, taking
this into account will reduce the dimensionality to values
comparable to those of the homogeneous network of Figure 7D.
The dimensionality in that case is well predicted by Equation
(16) (broken lines in Figure 7E). The same Equation (16) was
fitted successfully to the data in Figure 7D (dashed) by tuning 2
parameters to account for the unknown variance and correlation
width of the firing rates (see Methods for details).

Empirically, estimates of the dimensionality Equation (2)
based on a finite number NT of trials tend to underestimate d
(Figure 3E). The approximate estimator Equation (16) confirms
that, for any ensemble size N, d is a monotonically increasing
function of the number of trials (Figure 8A). Note that this holds
for the mean value of the estimator (Equation 16) over many
datasets, not for single estimates, which could overestimate the
true d (not shown). Equation (16) also provides an excellent
description of dimensionality as a function of firing rates’
variance δσ 4 (Figure 8B) and pair-wise correlations width δρ2

(Figure 8C). In particular, the mean and the variance of the
pair-wise correlations have an interchangeable effect on d (see
Equation 16); they both decrease the dimensionality and so does
the firing rate variance δσ 4 (Figure 8B).

Scaling of Dimensionality in the Presence
of Clusters
We next compared the dimensionality of the homogeneous
network’s activity to that predicted by the clustered network
model of Figure 4. To allow comparison with the homogeneous
network, dimensionality was computed based on the spike counts
in 200ms bins rather than the HMM’s firing rate vectors as in
Figure 6 (see Methods for details).

We found that the dependence of d on N in the clustered
network depends on how the neurons are sampled. If the
sampling is completely random, so that any neuron has the same
probability of being added to the ensemble regardless of cluster
membership, a concave dependence on N will appear, much like
the case of the homogeneous network (Figure 9A, dashed lines).
However, if neurons are selected one from each cluster until all
clusters have been sampled once, then one neuron from each
cluster until all clusters have been sampled twice, and so on,
until all the neurons in the network have been sampled, then
the dependence of d on N shows an abrupt transition when
N = Q, i.e., when the number of sampled neurons reaches
the number of clusters in the network (Figure 9A, full lines;
see Figure 9B for raster plots with Q = 30 and N = 50). In
the following, we refer to this sampling procedure as “ordered
sampling,” as a reminder that neurons are selected randomly
from each cluster, but the clusters are selected in serial order.
For N ≤ Q, the dimensionality grows linearly with ensemble
size in both ongoing (slope 0.24 ± 0.01, r = 0.79, p <

10−10, black line) and evoked periods (slope 0.19 ± 0.01, r =

0.84, p < 10−10; red line), and was larger during ongoing than
evoked activity [trial-matched two-way ANOVA, main effect:

FIGURE 8 | Dimensionality estimation. (A) Dependence of dimensionality on the number of trials for variable ensemble size N, for fixed correlations ρ = 0.1 and

firing rates variances σ2
i
with mean σ2 and standard deviation δσ2 = 0.4 σ2. Dashed lines: theoretical prediction, Equation (16); dots: mean values from simulations of

20 surrogate datasets containing 10–1000 trials each (shaded areas: SD), with darker shades representing increasing number of trials. X-axis: ensemble size; Y-axis,

dimensionality. (B) Dependence of dimensionality on the spread δσ2 of the firing rates variances for fixed correlations ρ = 0.1 and firing rate variance with mean σ2.

Dashed lines: theoretical prediction, Equation (16); dots: mean values from simulations of 20 surrogate datasets containing 1000 trial each (shaded areas: SD), with

lighter shades representing increasing values of δσ2/σ2). X-axis, ensemble size; Y-axis, dimensionality. (C) Dependence of dimensionality on the width δρ =
√

Var(ρ) of

pair-wise firing rate correlations (with zero mean, ρ = 0), for firing rates variances σ2
i
with mean σ2 and standard deviation δσ2 = 0.4 σ2. Dashed lines: theoretical

prediction, Equation (16); dots: mean values from simulations of 20 surrogate datasets containing 1000 trials each (shaded areas: SD), with darker shades

representing increasing values of δρ. Inset: distribution of correlation coefficients used in the main figure. X-axis, ensemble size; Y-axis, dimensionality. In all panels,

σ2 = 40 (spk/s)∧2.
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FIGURE 9 | Dimensionality in a clustered network. (A) Trial-matched dimensionality as a function of ensemble size in the recurrent network model (ongoing and

evoked activity in black and red, respectively, with shaded areas representing s.e.m.). Filled lines represent ordered sampling, where ensembles to the left of the green

vertical line (N = Q = 30) contain at most one neuron per cluster, while to the right of the line they contain one or more neurons from all clusters (filled circles indicate

representative trials in panel B). Dashed lines represent random sampling of neurons, regardless of cluster membership. X-axis, ensemble size; Y-axis, dimensionality.

(B) Representative trial of an ensemble of 50 neurons sampled from the recurrent network in Figure 4 during ongoing activity (upper plot, in black) or evoked activity

(lower plot, in red) for the case of “ordered sampling” (full lines in panel A). Neurons are sorted according to their cluster membership (adjacent neuron pairs with

similar activity belong to the same cluster, for neurons #1 up to #40; the last 10 neurons are sampled from the remaining clusters). X-axis, time to stimulus

presentation at t = 0 (s); Y-axis, neuron index. (C) Average correlation matrix for 20 ensembles of N = 50 neurons from the clustered network model with Q = 30

clusters. For the first 40 neurons, adjacent pairs belong to the same cluster; the last 10 neurons (delimited by a dashed white square) belong to the remaining clusters

(neurons are ordered as in panel B). Thus, neurons 1, 3, 5, …, 39 (20 neurons) belong to the first 20 clusters; neurons 2, 4, 6, …, 40 (20 neurons) belong also the first

20 clusters; and neurons 41, 42, 43, …, 50 (10 neurons) belong to the remaining 10 clusters. X-axis, Y-axis: neuron index. (D) Plot of Equation (12) giving d vs. N and

ρ (uniform within-cluster correlations) for the sampling procedure of panel (B). X-axis, ensemble size N; Y-axis, dimensionality.

F(1, 948) = 168, p < 10−30; interaction: F(5, 948) = 4.1, p <

0.001].
These results are in keeping with the empirical and model

results based on the HMM analysis (Figures 3, 6). However, in
the case of ordered sampling, the dependence of dimensionality
on ensemble size tends to disappear for N ≥ Q both during

ongoing (slope 0.010 ± 0.003, r = 0.1, p < 0.001) and evoked
periods (slope 0.009± 0.002, r = 0.13, p < 10−4; Figure 9A, full
lines). The average dimensionality over the range 30 ≤ N ≤ 100
was significantly larger for ongoing, dongoing = 8.74 ± 0.06, than
for evoked activity, devoked = 7.15±0.04 [trial-matched two-way
ANOVA, main effect: F(1,2212) = 488, p < 10−30], confirming
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that dimensionality during ongoing is larger than during evoked
activity also in this case. The difference in dimensionality between
ongoing and evoked activity also holds in the case of random
sampling on the entire range of N values (Figure 9A, dashed
lines), confirming the generality of this finding.

Dimensionality is Larger in the Presence of
Clusters
Intuitively, the dimensionality saturates atN = Q in the clustered
network because additional neurons will be highly correlated
with already sampled ones. For N ≤ Q, each new neuron’s
activity adds an independent degree of freedom to the neural
dynamics and thus increases its dimensionality. For Q > N,
additional neurons are highly correlated with an existing neuron,
adding little or no additional contribution to d. Indeed, compared
to the low overall correlations found across all neuron pairs in
the data (and used as desiderata for the homogeneous network),
neurons belonging to the same model cluster had a much higher
correlation of ρ = 0.92 [0.56, 0.96] (median and [25, 75]-
percentile), while neurons belonging to different clusters had
negligible correlation (ρ ≈ 0, [−0.10, 0.06]). A negligible
median correlation was typical: for example, negligible was the
overall median correlation regardless of clustermembership (ρ ≈

0 [−0.109, 0.083]); and the empirical correlation both during
ongoing ([−0.047, 0.051] ,with rare maximal values of ρ ∼ 0.5),
and evoked activity ([−0.085, 0.113], with raremaximal values of
ρ ∼ 0.9). While we note the qualitative agreement of model and
empirical correlations, we emphasize that these numbers were
obtained using 200ms bins and that they were quite sensitive to
bin duration. In particular, the maximal correlations (regardless
of sign) were substantially reduced for smaller bin durations (not
shown).

Plugging these values into a correlation matrix reflecting the
clustered architecture and the “ordered” sampling procedure
used in Figure 9B, we obtained the matrix shown in Figure 9C,
where pairwise correlations depend on whether or not the
neurons belong to the same cluster (for the first 40 neurons,
adjacent pairs belong to the same cluster; the last 10 neurons
belong to the remaining clusters). It is natural to interpret
such correlation matrix as the noisy observation of a block-
diagonal matrix such that neurons in the same cluster have
uniform correlation while neurons from different clusters are
uncorrelated. For such a correlation matrix the dimensionality
can be evaluated exactly (see Equation 12 of Methods). In the
approximation where all neurons have the same variance, this
reduces to Equation (13), i.e.,

d(N, ρ) =

{

N , N ≤ Q

N
1+mρ2[1−(Q−p)/N],

, N > Q
,

where N = mQ + p. This formula is plotted in Figure 9D

for relevant values of ρ and N and it explains the origin of
the abrupt transition in dimensionality at Q = N. (The reasons
for a dimensionality lower than N for N ≤ Q in the data–see
Figure 9A–are, also in this case, the finite number of data points
(250) used for its estimation and the non-uniform distributions
of firing rate variances and correlations).

Note that the formula also predicts cusps in dimensionality
(which become local maxima for large ρ) whenever the ensemble
size is an exact multiple of the number of clusters. This is also
visible in the simulated data of Figure 9A, where local maxima
seem to appear at N = 30, 60, 90 with Q = 30 clusters. It is
also worth mentioning that, for low intra-cluster correlations, the
dependence on N predicted by Equation (13) becomes smoother
and the cusps harder to detect (not shown), suggesting that
the behavior of a clustered network with weak clusters tends
to converge to the behavior of a homogeneous asynchronous
network—therefore lacking sequences of hidden states. Thus,
the complexity of the network dynamics is reflected in how its
dimensionality scales with N, assuming that one may sample one
neuron per cluster (i.e., via “ordered sampling”).

Even though it is not clear how to perform ordered sampling
empirically (see Discussion), this result is nevertheless useful
since it represents an upper bound also in the case of random
sampling (see Figure 9A, dashed lines). Equation (13) predicts
that d ≤ Q/ρ2, with this value reached asymptotically for large
N. In the case of random sampling, growth to this bound is even
slower (Figure 9A). For comparison, in a homogeneous network
d ≤ 1/ρ2 from Equation (8), a bound that is smaller by a
factor of Q. Finally, homogeneous dimensionality is dominated
by clustered dimensionality also in the more realistic case of non-
uniform variances and correlations, where similar bounds are
found in both cases (see Methods for details).

DISCUSSION

In this paper we have investigated the dimensionality of
the neural activity in the gustatory cortex of alert rats.
Dimensionality was defined as a collective property of ensembles
of simultaneously recorded neurons that reflects the effective
space occupied by the ensemble activity during either ongoing
or evoked activity. If one represents ensemble activity in terms of
firing rate vectors, whose dimension is the number of ensemble
neurons N, then the collection of rate vectors across trials takes
the form of a set of points in the N-dimensional space of
firing rates. Roughly, dimensionality is the minimal number of
dimensions necessary to provide an accurate description of such
set of points, which may be localized on a lower-dimensional
subspace inside the whole firing rate space.

One of the main results of this paper is that the dimensionality
of evoked activity is smaller than that of ongoing activity,
i.e., stimulus presentation quenches dimensionality. More
specifically, the dimensionality is linearly related to the ensemble
size, with a significantly larger slope during ongoing activity
compared to evoked activity (compare Figures 3B,D). We
explained this phenomenon using a biologically plausible,
mechanistic spiking network model based on recurrent
connectivity with clustered architecture. The model was recently
introduced in Mazzucato et al. (2015) to account for the
observed dynamics of ensembles of GC neurons as sequences
of metastable states, where each state is defined as a vector
of firing rates across simultaneously recorded neurons. The
model captures the reduction in trial-to-trial variability and the
multiple firing rates attained by single neurons across different
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states observed in GC upon stimulus presentation. Here, the
same model was found to capture also the stimulus-induced
reduction of dimensionality. While the set of active clusters
during ongoing activity varies randomly, allowing the ensemble
dynamics to explore a large portion of firing rate space, the
evoked set of active clusters is limited mostly to the stimulus-
selective clusters only (see Mazzucato et al., 2015 for a detailed
analysis). The dynamics of cluster activation in the model thus
explains the more pronounced dependence of dimensionality
on ensemble size found during ongoing compared to
evoked activity.

We presented a simple theory of how dimensionality depends
on the number of simultaneously recorded neuronsN, their firing
rate correlations, their variance, and the number and duration
of recording trials. We found that dimensionality increases with
N and decreases with the amount of pair-wise correlations
among the neurons (e.g., Figure 8C). At parity of correlations,
dimensionality is maximal when all neurons have the same
firing rate variance, and it decreases as the distribution of count
variances becomes more heterogeneous (e.g., Figure 8B). The
estimation of dimensionality based on a finite dataset is an
increasing function of the number of trials (Figure 8A). Finally,
introducing clustered correlations in the theory, and sampling
one neuron per cluster as in Figure 9B, results in cusps at values
of N that are multiples of the number of clusters (Figure 9D),
in agreement with the predictions of the spiking network model
(Figure 9A, full lines).

Dimensionality Scaling with Ensemble Size
The increased dimensionality with sample size, especially during
ongoing activity, was found empirically in datasets with 3–9
neurons per ensemble, but could be extrapolated for larger N
in a spiking network model with homogeneous or clustered
architecture. In homogeneous networks with finite correlations
the dimensionality is predicted to increase sub-linearly with N
(Equation 8), whereas in the clustered network it may exhibit
cusps at multiple values of the number of clusters (Figure 9A),
and would saturate quickly to a value that depends on the
ratio of the number of clusters Q and the amount of pair-wise
correlations, d ≤ Q/ρ2. Testing this prediction requires the
ability to sample neurons one from each cluster, until all clusters
are sampled, and seems beyond the current recording techniques.
However, looking for natural groupings of neurons based on
response similarities could uncover spatial segregation of clusters
(Kiani et al., 2015) and could perhaps allow sampling neurons
according to this procedure. Moreover, the model predicts a
slower approach to a similar bound also in the case of random
sampling.

Dimensionality in a homogeneous network is instead
bounded by 1/ρ2, and hence it is a factor Q smaller than in the
clustered network. Dimensionality is maximal in a population
of independent neurons (ρ = 0), where it grows linearly with
N; however, neurons of recurrent networks have wide-ranging
correlations (see e.g., Figures 6E,F and its empirical counterpart,
Figures 3G,H). Since the presence of even low correlations can
dramatically reduce the dimensionality (see Figure 7D), the
neural activity in a clustered architecture can reach much higher

values at parity of correlations, representing an intermediate
case between a homogeneous network and a population of
independent neurons.

Evidence for the presence of spatial clusters has been recently
reported in the prefrontal cortex based on correlations analyses
(Kiani et al., 2015). An alternative possibility is that neural
clusters are not spatially but functionally arranged, and cluster
memberships vary with time and task complexity (Rickert et al.,
2009). Can our model provide indirect tools to help uncover
the presence of clusters? A closer look at Figures 6E,F reveal
a small peak at large correlations due to the contribution of
highly correlated neurons belonging to the same cluster. This
peak would be absent in a homogenous network and thus
is the signature of a clustered architecture. However, such
peak is populated by only small fraction (1/Q) of the total
number of neuron pairs, which hinders its empirical detection
(no peak at large correlations is clearly visible in our data,
see Figures 3G,H).

Dimensionality and Trial-to-Trial Variability
Cortical recordings from alert animals show that neurons
produce irregular spike trains with variable spike counts across
trials (Shadlen and Newsome, 1994; Fontanini and Katz, 2008;
Moreno-Bote, 2014). Despite many efforts, it remains a key issue
to establish whether variability is detrimental (Gur et al., 1997;
White et al., 2012) or useful (McDonnell and Ward, 2011) for
neural computation.

Trial-to-trial variability is reduced during preparatory activity
(Churchland et al., 2006), during the presentation of a stimulus
(Churchland, 2010b), or when stimuli are expected (Samuelsen
et al., 2012), a phenomenon that would not occur in a population
of independent or homogeneously connected neurons (Litwin-
Kumar and Doiron, 2012). Recent work has shown that the
stimulus-induced reduction of trial-to-trial variability can be due
to spike-frequency adaptation in balanced networks (Farkhooi
et al., 2013) or to slow dynamic fluctuations generated in a
recurrent spiking networks with clustered connectivity (Deco
and Hugues, 2012; Litwin-Kumar and Doiron, 2012; Mazzucato
et al., 2015). In clustered network models, slow fluctuations in
firing rates across neurons can ignite metastable sequences of
neural activity, closely resemblingmetastable sequences observed
experimentally (Abeles et al., 1995; Seidemann et al., 1996; Jones
et al., 2007; Kemere et al., 2008; Durstewitz et al., 2010; Ponce-
Alvarez et al., 2012; Mazzucato et al., 2015). The slow, metastable
dynamics of cluster activation produces high variability in the
spike count during ongoing activity. While cluster activations
occur at random times during ongoing activity periods, stimulus
presentation locks cluster activation at its onset, leading to a
decrease in trial-to-trial variability.

Similarly, a stimulus-induced reduction of dimensionality is
obtained in the same model. In this case, preferred cluster
activation due to stimulus onset generates an increase in pair-
wise correlations that reduce dimensionality. Note that the
two properties (trial-to-trial variability and dimensionality) are
conceptually distinct. An ensemble of Poisson spike trains can
be highly correlated (hence have low dimensionality), yet the
Fano Factor of each spike train will still be 1 (hence high),
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independently of the correlations among neurons. In a recurrent
network, however, dimensionality and trial-to-trial variability
may become intertwined and exhibit similar properties, such
as the stimulus-induced reduction observed in a model with
clustered connectivity. A deeper investigation of the link between
dimensionality and trial-to-trial variability in recurrent networks
is left for future studies.

Alternative Definitions of Dimensionality
Following (Abbott et al., 2011) we have defined dimensionality
(Equation 2) as the dimension of an effective linear subspace of
firing rate vectors containing the most variance of the neural
activity. It differs somewhat from the typical dimensionality
reduction based on PCA that retains only the number of
eigenvectors explaining a predefined amount of variance (see
Broome et al., 2006; Geffen et al., 2009), because Equation (2)
includes contribution from all eigenvalues. Moreover, we have
computed the firing rate correlations in bins of variable width
that match the duration of the HMM states. Although, our
main results do no depend on bin size (see Results’ section
“Time course of dimensionality as a function of ensemble size”),
the actual value of dimensionality decreases with increasing
bin duration. Thus, any choice of bin size (e.g., 200ms in
Figures 3F,G) remains somewhat arbitrary. A better method is to
use a variable bin size as dictated by the HMM analysis, as done
in Figures 3B–D. This method also prevents diluting correlations
among firing rates that would occur if one neuron were to change
state inside the current bin, because during a hidden state the
firing rates of the neurons are constant (by definition). Thus, this
provides a principled adaptive procedure for selecting the bin
size and eliminates the dependence of dimensionality on the bin
width used for the analysis.

Other definitions of neural dimensionality have been
proposed in the literature, which aim at capturing different
properties of the neural activity, typically during stimulus-evoked
activity. Ameasure of dimensionality related to ours, and referred
to as “complexity,” was introduced in Cadieu et al. (2013).
According to their definition, population firing rate vectors from
all evoked conditions were first decomposed along their kernel
Principal Components (Montavon et al., 2011). A linear classifier
was then trained on an increasing number of leading PCs in order
to perform a discrimination task, where the number of PCs used
was defined as the complexity of the representation. In general,
the classification accuracy improves with increasing complexity,
and it may saturate when all PCs containing relevant features are
used—with the remaining PCs representing noise or information
irrelevant to the task. Reaching high accuracy at low complexity
implies good generalization performance, i.e., the ability to
classify novel variations of a stimulus in the correct category.
Neural representations in monkey inferotemporal cortex (IT)
were found to require lower complexity than in area V4,
confirming IT’s premier role in classifying visual objects despite
large variations in shape, orientation and background (Cadieu
et al., 2013). Complexity relies on a supervised algorithm and is
an efficient tool to capture the generalization properties of evoked
representations (see DiCarlo et al., 2012) for its relevance to visual
object recognition).

A second definition of dimensionality, sometimes referred
to as “shattering dimensionality” in the Machine Learning
literature, has been used to assess the discrimination properties
of the neural representation (Rigotti et al., 2013). Given a set of p
firing rate vectors, one can split them into two classes (e.g., white
and black colorings) in 2p different ways, and train a classifier to
learn as many of those binary classification labels as possible. The
shattering dimensionality is then defined as (the logarithm of) the
largest number of binary classifications that can be implemented.
Thismeasure of dimensionality was found to drop significantly in
monkey prefrontal cortex during the error trials of a recall task,
and thus predicts the ability of the monkey to correctly perform
the task (Rigotti et al., 2013).

A flexible and informative neural representation is one that
achieves a large shattering dimensionality (good discrimination)
while keeping a low complexity (good generalization). Note
that both complexity and shattering dimensionality represent
measures of classification performance in task-related paradigms,
and their definition requires a set of evoked conditions to
be classified via a supervised learning algorithm. While both
definitions could be applied to neural activity in our stimulus-
evoked data, their interpretation is not readily extended to
periods of ongoing activity, as the latter is not associated
to desired targets in a way that can be learned by a
classification algorithm. Since our main aim was to compare the
dimensionality of ongoing and evoked activity, the unsupervised
approach of Abbott et al. (2011) and their notion of “effective”
dimensionality was better suited for our analysis. A related
definition of dimensionality has been used by Gao and Ganguli
(2015) to investigate neural representations of movements in
motor cortex.

Many measures of dimensionality used in the literature
(including ours and some of those discussed above) are based on
pair-wise correlations. However, neural activity is known to give
rise also to higher-order correlations (Martignon et al., 2000).
Given that the extent and relevance of higher-order correlations
is actively debated (Schneidman et al., 2006; Staude et al., 2010),
it would be useful to include them in measures of dimensionality.
This is left for a future study.

Ongoing Activity and Task Complexity
The relationship between ongoing and stimulus-evoked activity
has been linked to the functional connectivity of local cortical
circuits, and their mutual relationship has been the object of
both theoretical and experimental investigations, often with
contrasting conclusions (e.g., Arieli et al., 1996; Tsodyks et al.,
1999; Kenet et al., 2003; Luczak et al., 2009; Tkacik et al., 2010;
Berkes et al., 2011; Mazzucato et al., 2015). Here, we have focused
on the dimensionality of ongoing and evoked activity and have
shown that neural activity during ongoing periods occupies
a space of larger dimensionality compared to evoked activity.
Although, based on a different measure of dimensionality, recent
results on the relation between the dimensionality of evoked
activity and task complexity suggest that evoked dimensionality
is roughly equal to the number of task conditions (Rigotti et al.,
2013). It is natural to ask whether the dimensionality of ongoing
activity provides an estimate of the complexity of the hardest task
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that can be supported by the neural activity. Moreover, based on
the clustered network model, the presence of clusters imposes
an upper value d ≤ Q/ρ2 during ongoing activity, suggesting
that a discrimination task with up to ∝ Q different conditions
may be supported. The experience of taste consumption is
by itself multidimensional, including chemo- and oro-sensory
aspects (i.e., taste identity Jezzini et al., 2013, and concentration
Sadacca et al., 2012, texture, temperature, Yamamoto et al.,
1981, 1988) as well as psychological aspects (hedonic value Katz
et al., 2001; Grossman et al., 2008, anticipation Samuelsen et al.,
2012; Gardner and Fontanini, 2014, novelty Inberg et al., 2013;
Bermudez-Rattoni, 2014, and satiety effects de Araujo et al.,
2006). It is tempting to speculate that neural activity during
ongoing periods explores all these different dimensions, while
evoked activity is confined to the features of the particular taste
being delivered or attended in a specific context.

Establishing a precise experimental and theoretical link
between the number of clusters and task complexity is an
important question left for future studies.
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For decades, research in neuroscience has supported the hypothesis that brain dynamics

exhibits recurrent metastable states connected by transients, which together encode

fundamental neural information processing. To understand the system’s dynamics it

is important to detect such recurrence domains, but it is challenging to extract them

from experimental neuroscience datasets due to the large trial-to-trial variability. The

proposed methodology extracts recurrent metastable states in univariate time series

by transforming datasets into their time-frequency representations and computing

recurrence plots based on instantaneous spectral power values in various frequency

bands. Additionally, a new statistical inference analysis compares different trial recurrence

plots with corresponding surrogates to obtain statistically significant recurrent structures.

This combination of methods is validated by applying it to two artificial datasets. In a

final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the

methodology is able to reveal recurrence structures of neural responses with trial-to-trial

variability. Focusing on different frequency bands, the δ-band activity is much less

recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while

δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in

different frequency bands indicates diverse underlying information processing steps in

the brain.

Keywords: trial-to-trial variability, time-frequency analysis, local field potentials, recurrence plot analysis,

statistical inference, surrogate data, anesthesia, ferret

1. INTRODUCTION

Investigation of metastable states (MS) and transients of complex dynamical systems has become
increasingly important over the last decades. In this context, dynamical systems spend longer
time intervals in MSs than in transients between MSs. The large interest in studying such states
comes from the belief that a complex temporal behavior of systems may be decomposed into
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a simple sequence of alternating MSs and transients between
them. This reduced description is a model that captures
the essential dynamic elements of rather complex underlying
dynamics. Applications range from spin glasses (Larralde and
Leyvraz, 2005) to molecular configurations (Deuflhard and
Weber, 2005) and geoscientific applications (Froyland et al.,
2007). In neuroscience, the related concept of sequential
metastable attractors has received increasing attention in the last
years (Friston, 1997; Oullier and Kelso, 2006; Rabinovich et al.,
2008b; Yildiz and Kiebel, 2011; Hudson et al., 2014; Tognoli and
Kelso, 2014). Primarily, works are motivated by the experimental
observation of signal features showing alternations of dynamical
behavior at fast and slow time scales (Hutt and Riedel, 2003; Hutt,
2004; Mazor and Laurent, 2005; Allefeld et al., 2009).

Originally the concept of metastability refers to slow
relaxation dynamics in statistical physics (Larralde and Leyvraz,
2005; Tokman et al., 2011). In a much wider sense, this notion
is nowadays used for regions in the phase space of a dynamical
system with relatively large dwell that are connected by transients
(Friston, 1997; Rabinovich et al., 2008b; Tognoli and Kelso,
2014). Paradigmatic examples for those MSs are almost invariant
sets (Froyland, 2005) and recurrence domains (beim Graben and
Hutt, 2013), such as saddles connected by heteroclinic trajectories
(Rabinovich et al., 2008a) or the “wings” of the Lorenz attractor
(Lorenz, 1963). For this attractor in particular, it is attractive itself
and has two recurrence domains centered around two unstable
foci. Geometrically, these domains are spatially separated and the
system’s trajectory alternately approaches to and departs from
the foci. The system spends much longer time in the vicinity of
a focus compared to transient intervals between the two foci.
Therefore, one may refer to a Lorenz wing as to a MS: the system
remains for a longer time in one partition cell of the phase space
before it performs a rapid transition to another partition cell
of the phase space. A MS is thus identified with a recurrence
domain, while non-recurrent portions of a trajectory can be
compared with transients.

In neuroscience, metastability assumed increasing
experimental evidence over recent years. Lehmann et al.
(1987), Wackermann et al. (1993) observed sequences of
metastable electroencephalogram (EEG) topographies, which
they called brain microstates. Hutt and Riedel (2003), Hutt
(2004), beim Graben and Hutt (2015) argued that components of
the event-related brain potentials (ERPs) reflecting perceptional
and cognitive processes could be identified with metastable brain
states. Mazor and Laurent, for instance, reported sequences
of metastable states in a reconstructed activation space of the
locust’s neural odor circuit (Mazor and Laurent, 2005). Allefeld
et al. (2009) were able to detect metastable states in epileptic
EEG time series through spectral clustering methods, and most
recently, Hudson et al. (2014) revealed metastable transition
networks in the recovery from anesthesia. Consequently, to
understand underlying neural mechanisms much better, it
is necessary to develop advanced techniques to detect these
recurrence structures in experimental time series.

For the identification of metastability in time series, their
characteristic slow time scales must be separated from the fast
dynamics of phase space trajectories. The method known as

Perron clustering (Deuflhard and Weber, 2005), separates the
system’s phase states into partitions that can approximateMarkov
chain states (Deuflhard and Weber, 2005; Froyland, 2005;
Larralde and Leyvraz, 2005; Gaveau and Schulman, 2006; Allefeld
et al., 2009). Applying spectral clusteringmethods to the resulting
transition matrix yields the time scales of the process, while their
corresponding (left-)eigenvectors allow the unification of cells
into a partition of metastable states (Gaveau and Schulman, 2006;
Allefeld et al., 2009). Another approach byHutt and Riedel (2003)
utilizes the slowing-down of the system’s trajectory in the vicinity
of saddles by means of phase space clustering. Most recently,
beim Graben and Hutt suggested to combine recurrence plot
techniques and symbolic dynamics in order to partition a system’s
phase space into its recurrence domains (beim Graben and Hutt,
2013, 2015). The application of the latter method to experimental
event-related potentials has identified metastable attractors to so-
called ERP-components, known to reflect cognitive processing
stages in neural information processing.

Developing novel analysis tools for representation and
tracking of non-linear transient patterns faces numerous
challenges, such as reducing the signal dimensionality while
preserving the information significant for the detection task
or building methods robust to acquisition noise. Recurrence
analysis has been used for identifying transient patterns in
experimental EEG (Shalbaf et al., 2015), for classifying patients
based on EEG time series (McCarthy et al., 2014) and for
prediction of responses during anesthesia (Huang et al., 2006). A
key feature of recurrence analysis is to identify sequential states
in a multi-dimensional signal space, as shown in most previous
studies (beim Graben and Hutt, 2013, 2015). If the experimental
data under study is multi-dimensional, for instance a multi-
channel EEG recording, the data serves directly as the input
to the recurrence analysis. However, it is not valid to compute
recurrence plots in the case of univariate time series and hence
the data can not be analyzed directly. Therefore, it is necessary
to transform the univariate signal to a multivariate (multi-
dimensional) signal. Typically this is done by delay-embedding
techniques (Webber and Zbilut, 1994; Iwanski and Bradley, 1998)
inspired by Takens’ theorem (Takens, 1981). The corresponding
embedding dimension and delay time in these techniques are
chosen rather independent from the dynamic features of the data
since typically these are not known a priori.

In neuroscience, patterns occurring in certain frequency
bands play distinct roles in neural information processing
(Kandel et al., 2000; Schnitzler and Gross, 2005). We argue
that this additional knowledge can be taken into account and
the present work proposes a novel technique based on time-
frequency representations of univariate signals. Here, the signal
is transformed into its time-frequency representation of spectral
power which spans a new phase space in which the signal
trajectory evolves. Hence, one may call this transformation
spectral power embedding since the new phase space encodes
instantaneous power in certain frequency bands. The additional
advantage of this approach is that it permits to analyse the
recurrence structure of data in selected frequency bands. For
completeness, we mention that a signal is fully defined by its
instantaneous amplitude and phase.
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In this work we propose a new method for the detection
of metastable states in univariate neural signals. To obtain
statistically significant evidence of recurrence structures in
signals, we conduct a statistical test over the set of novel,
frequency-selective recurrence plots (RP). Below we describe
methodologies for building such frequency-selective RPs and
performing statistical inference tests. These tests indicate how
stable the recurrence plots are with respect to trial-to-trial
variability. This novel statistical evaluation is necessary in the
analysis of neurophysiological data, since trial-to-trial variability
is a well-known experimental finding in such signals. In our
work we analyse synthetic transient oscillations and one state
variable of the Lorenz attractor involving acquisition noise to
validate the methodology. Finally, the study of experimental
Local Field Potentials obtained in partially anesthetized ferrets
(Mustela putorius furo) during a visual stimulus experiment
allows to extract new insights into neural information processing.
For instance, we show that temporal recurrence occurs in the
α-frequency band but not in the δ-frequency band. This result
suggests that in the α-band the brain processes the information
step-wise (state by state) while no step-wise process is performed
in the δ-band.

2. MATERIALS AND METHODS

In this section we introduce the novel method for studying
temporal recurrences common in recurrence plots of different
trials. Section 2.1 introduces classical recurrence plots and
describes corresponding parameters. Then, we provide a novel
method to compute recurrence plots from their time-frequency
representations. In Section 2.2 we propose the statistical test
method that analyses the similarity of RPs and finds their
statistically significant parts. Finally, in Section 2.3 we describe
the datasets used in this work.

2.1. Recurrence Plots and Novel
Time-Frequency Representations
Recurrence is a fundamental property of dynamical systems
which characterizes the behavior of the system in phase
space (Poincaré, 1890). A recurrent signal instance is a moment
in time when the trajectory returns to a neigborhood of a location
in phase space it has already visited previously.

Deterministic dynamical systems are described by their
trajectory. A trajectory x(t) ∈ R

n, t ∈ R is sampled at times
t = i1t, i ∈ {1, 2, . . . ,N}, where1t is the sampling time interval
and N is the total number of samples. For notation simplicity, in
this paper we denote the signal sample x(i1t) by x(i). Then, a
recurrence plot (RP) is defined as the N × N matrix R, whose
elements ri,j take values ri,j = 1 when two trajectory samples lay
within the open ball B(ǫ) of radius ǫ

ri,j =

{

1, if d(x(i), x(j)) < ǫ,
0, otherwise,

(1)

where d(·, ·) is a distance function and i, j ∈ {1, . . . ,N}. Hence,
recurrence plots are two-dimensional binary matrices obtained
by distance based thresholding and its elements take values ri,j ∈

{0, 1}. In this work, pixels in RPs will be color-coded white for
values ri,j = 0 and black otherwise.

For an arbitrary chosen ǫ value we can not guarantee that
some of the significant dynamic features are not discarded
by thresholding. To minimize such a thresholding error, we
compute the optimal threshold value ǫ∗ which maximizes the
symbolic entropy for a given distance function, as proposed
in beim Graben and Hutt (2013). In more detail, under the
assumption that recurrence domains are uniformly distributed
for a given recurrence plot, the method constructs disjunct and
transitive symbolic recurrence plot matrices from multivariate
data. This method permits to identify MSs in a recurrence plot
and maps each state (and the transients between the states) to a
symbol. Consequently, onemaps the high-dimensional dynamics
of the system to a sequence of symbols. Let pk be the probability of
the occurrence of the state k, i.e., the number of the occurrences
of the symbol k divided by the total number of occurrences of all
symbols. Then maximizing the entropy

H(ǫ) = −
1

Sk,ǫ

Sk,ǫ
∑

k=1

pklog(pk), (2)

for a range of ǫ-values yields that value of ǫ for which
the distribution of occurrence probabilities {pk} approaches
uniformity, i.e., for which all states are equally probable. Here,
Sk,ǫ is the number of states for a given ǫ. Then the optimal value

ǫ∗ = argmax
ǫ

H(ǫ)

maximizes the entropy of the extracted symbolic sequence and
hence the recurrence structure of the data. This optimal value is
computed for each dataset separately.

After defining conventional RPs and computation of the
optimal parameter ǫ, the remaining part of this section focusses
on how to build frequency-selective recurrence plots. Many
biophysiological signals have characteristic frequency signatures.
For example, the human heart beats about sixty times per minute
in average, i.e., at the frequency of 1 Hz. Another example
are eye blinks that induce signal changes in the α-frequency
band (frequencies in the interval 8–12 Hz) in EEG recordings.
To take into account the distinct signatures of spectral bands
present in neural signals, we propose a novel concept for building
recurrence plots from time-frequency signal representations,
instead of building them directly from univariate data or
constructing them by employing delay-embedding techniques.
Such representations, in general adapted for non-stationary
signal analysis, give insights into frequency bands of importance
and provide additional flexibility to recurrence plot analysis that
is not present in time-domain, for e.g., the possibility to weight
the importance of some frequency bands. In the literature there
are several ways to choose values of the frequency bands. We
use the following frequency interval definitions: the δ-frequency
band denotes the interval [0.5 Hz; 4 Hz], the θ-frequency band
the interval [4 Hz; 8 Hz], α-band [8 Hz; 12 Hz], β-band [12 Hz;
20 Hz], and the γ -band denotes the interval [20 Hz; 40 Hz].

We build novel recurrence plots in three steps, as shown
in Figure 1: (i) we expand the set of T univariate trials
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Tošić et al. Statistical Frequency-Dependent Analysis of Trial-to-Trial Variability

FIGURE 1 | Building frequency-selective recurrence plots from T time series. Processing blocks are represented by arrows: (i) SSQ is a synchrosqueezing

transform block used to obtain time-frequency representations of signals; (ii) the MPS block computes mean values of the power spectrum for each of the chosen

frequency bands, which reduces the signal dimensionality; (iii) This signal is the basis for the recurrence analysis leading to recurrence plots {RPk}
T
k=1.

{x1, x2, . . . , xT} to their corresponding time-frequency domains;
(ii) we compute the mean power of the spectrum over certain
sets of frequencies. These mean power time series may be called
yj(t) ∈ R

S, j = 1, . . . ,T, where S is the number of frequency
bands; (iii) we compute recurrence plots by computing distances
between vectors y(i) and y(j), i, j ∈ {1, . . . ,N} as in Equation
(1). In the following paragraphs we describe these blocks in more
detail.

The first block in Figure 1 provides a time-frequency
representation of the signal. In classical spectrogram calculations,
the stronger (weaker) is the localization of signals in time, the
larger (smaller) are their localization windows in frequency. This
effect is called the uncertainty principle implied in the Fourier
transform. A synchrosqueezing (SSQ) transform overcomes this
deficiency by performing wavelet-based filtering and signal
power reassignment to the appropriate frequencies. In addition,
Meignen et al. (2012) and Auger et al. (2013) show that SSQ
is superior for processing neural signals when compared to
conventional spectral analysis methods, such as continuous
wavelet transform or spectrogram. Hence, we use the SSQ
transform defined in Section 2.1.1 as the processing block (i) in
Figure 1.

The second block in Figure 1 computes the mean value of
the power spectrum (MPS) for sets of frequencies, see Section
2.1.2 for details. This is one of the basic features for studying
neural signals. We assume that the dynamics of the neural system
encoded in frequencies is proportional to the power spectrum
in sets of frequencies. This analysis step provides multi-variate
time series whose dimension is equal to the resulting vector of
averaged frequency bands.

Finally, in the third processing block in the figure we compute
recurrence plots from the obtained time-frequency dataset as in
Equation (1). If we do not explicitly mention otherwise, we use

features from all the frequency bands to compute recurrence
plots. In the experimental ferret dataset, we additionally present
cases when recurrence plots are calculated from the single
frequency band features such as δ- or α-frequency bands, since
these bands play an important role in the loss of consciousness
under anesthesia.

To summarize, the proposed method for building recurrence
plots from time-frequency representations grasps band-related
features and allows flexibility in the analysis of particular
frequency bands, which is not possible in the classical RP analysis.
Our approach however requires additional computations of the
synchrosqueezing transform and mean power of the spectrum.

2.1.1. Synchrosqueezing Transform
For completeness of this work, in this section we provide
the mathematical definition of the synchrosqueezing transform
(Meignen et al., 2012; Auger et al., 2013), that we use as a
processing block in the proposed algorithm, see Figure 1. We
presume that input signals are composed of several components
with time-varying oscillatory characteristics. In other words, we
assume that signals f (t) can be well approximated with K signal
components, f (t) =

∑K
k=1 fk(t) + e(t), fk(t) = Ak(t)e

2π iφk(t),

where Ak(t) and φ
′

k
(t) = 1

2π
dφk(t)
dt

denote the amplitude and
the instantaneous frequency (IF) of each component and e(t)
represents a small error. We assume that the components fk have
slowly time-varying amplitudes Ak(t) and sufficiently smooth
IFs. These conditions assure that signal components are well
separated in frequencies and the complete definition is available
in Thakur et al. (2013), Def. II.1 (codes available online in Thakur,
2013).

Let a wavelet ψ(t) be a square integrable and normalized

function. Then, its scaled and time-shifted variants ψ( t−b
a )

represent a set of scaled bandpass filters. In the following,
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we denote the frequency of one signal component by ωk ≈

2π
dφk(t)
dt

. A Continuous wavelet transform (CWT) of the function
f at scale a and time shift b is defined by Wf (a, b) =

1√
a

∫ ∞

−∞
f (t)ψ( t−b

a )dt, which represents a convolution of scaled

and band-passed filters with the signal. The shifts of wavelet
function are driven by the scale value a. For example, for
the first signal component with frequency ω1, the value of
the wavelet coefficient Wf (a1, b) spreads around the scale

factor a1 =
ωψ
ω1

, where ωψ is the central wavelet frequency.
Therefore, the estimated IF in the neighborhood of this value
of the scale is equal to the frequency ω1. The synchrosqueezing
transform T(ωq, b) uses estimates of the instantaneous frequency
ωf (a, b), computed for each scale-time pair (a, b) by ωf (a, b) =

−iWf (a, b)
∂Wf (a,b)

∂b
to reallocate the energy of the wavelet

coefficients. Let 1ap (1ω) denote resolution steps in scale
(frequency). Then, this transform, defined by T(ωq, b) =
∑

ap:|ωf (ap,b)−ωq|≤1ω/2
Wf (ap, b)a

−3/21ap enhances frequency

localization of oscillating components of the signal and provides
more precise time-frequency representations of the signal. In
analogy to the spectrogram used in classical short-time Fourier
analysis, we plot values

S(ωq, b) = |T(ωq, b)|
2 (3)

for each pair (ωq, b) in time-frequency plots, see Figures 5A,E,
6A,C.

2.1.2. Mean power spectrum
For each frequency band with Q components, the mean power
spectrum value is defined by

MPS(t) =
1

Q

Q
∑

q=1

S(ωq, t), (4)

where S(ωq, t) is defined in Equation (3), ωq are frequencies of
one frequency band and t is time.

2.2. Statistical analysis
We study statistical properties of frequency-selective RPs
obtained from time-frequency trial representations. By virtue of
noise effects and an expected trial-to-trial variability, recurrence
plot structures are expected to vary from trial to trial. To
evaluate the recurrence plots statistically, we perform a statistical
inference analysis based on a classical chi-squared test (Yates,
1934). To this end, we construct surrogate recurrence plots and
employ an inference test.

Classically, surrogate sets of univariate signals (Schreiber
and Schmitz, 2000) preserve some of the important features of
the original time series, for example the spectrum magnitude,
while they replace the phase values by a random sequence
of values. The reasoning behind this randomization is that
time domain reshaping destroys non-stationarities, so the local
spectral components will vary while the global spectrum remains

the same. As a consequence, the mean and variance of the signal
do not change (Borgnat et al., 2010; Richard et al., 2010).

In this work, we build the surrogate dataset with the same
power spectrum as in the original data, where the information
component encoded in time is randomized, cf. Figure 2A. For
each time index of the signal we randomly select a novel index
value, such that all the index values are chosen exactly once
(permutations without repetition). Then, we rearrange the time-
frequency representation of trials according to the chosen index
values and compute recurrence plots of surrogates by repeating
steps (ii) and (iii) shown in Figure 1. This procedure is repeated
S times per trial. Figure 2A illustrates how to obtain the surrogate
set from T trials. Examples of an original RP and a corresponding
surrogate RP are provided in Figure 2B.

We compare pixel-related statistical measures between the
set of the original recurrence plots from different trials and
their surrogates to determine whether original RPs preserve the
common underlying signal dynamics in statistically significant
way. This comparison is illustrated in Figure 2C. In detail, we
denote the set of T recurrence plots obtained from the original
trial data by {RPk}

T
k=1

and its surrogate set by {SRPk}
S·T
k=1

. In our
simulations, there are T = 10 trials in total, where the number of
surrogates generated per trial is S = 100. The full set of surrogates
counts S ·T = 1000 surrogate RPs. At first, we perform pixel-wise
statistical analysis tests between the corresponding pixels of the

original and the surrogate recurrence plots. Let B̄ = {r
{k}
i,j }

T
k=1

be

the vector that consists of the set of pixels with same coordinates

in the original RPs and B̂ = {r
{k}
i,j }

S·T
k=1

is the corresponding

vector of pixel values for surrogates. Vectors B̄ and B̂ consist of
values from the set {0, 1}, since RP elements ri,j by definition take
binary values, cf. Equation (1). To perform a chi-square test for
categorical data, we build a two-by-two contingency table. For
explanation, this tables first row takes values from the original
RPs and the second row contains values from surrogate RP. The
first table column marks the number of values ri,j = 1 and the
second column the number of elements ri,j = 0. The elements
of this table (two rows and two columns) have the coordinates
(l,m), l,m ∈ {1, 2}. Then, the chi-square statistics for the pixel
(i, j), i, j ∈ {1, . . . ,N} is computed by

χ2(i, j) =
∑

l∈{1,2}

∑

m∈{1,2}

(f
(i,j)
o (l,m)− f

(i,j)
e (l,m))2

f
(i,j)
e (l,m)

.

Here, f
(i,j)
o (l,m) is the observed table value at the coordinate

(l,m) for the pixel (i, j) and f
(i,j)
e (l,m) is its expected frequency.

The latter value is computed as f
(i,j)
e (l,m) = nr(l)nc(m)/q, where

nr(l) is the total number of elements in the row l, nc(m) is the
number of elements in the columnm and q is the total number of
elements in the two-by-two table. The calculated chi-square value
is compared with the result in the chi-square table for predefined
values of the degree of freedom df = 1 and the significance
level αs = 0.05. If the calculated chi-square value is larger than
the value in the table, the hypothesis that signals share the same
distribution is rejected, see Yates (1934) for more details. In this
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FIGURE 2 | (A) Surrogate set construction: for each of T time-frequency signal representations used for computing the original set of RPs, one computes S surrogate

RPs. The resulting S surrogate recurrence plots have the same energy in time-frequency domain. In total, there are S · T surrogates. (B) Examples of the RP (top) and

the surrogate RP (bottom) for the transient oscillations dataset. (C) Illustration of the pixel-wise χ2 statistical test, more details in the text.

work, the outcomes of chi-square tests are visually represented as
matrices A = [ai,j], i, j ∈ {1, . . . ,N} whose elements take values

ai,j =







1, if distributions of trial and surrogate sets
are different,

0, otherwise.
(5)

In this work all the figures follow the same color code as for
illustrating recurrence plots, i.e., white pixels denote values ai,j =
0 and black pixels stand for ai,j = 1.

Since single elements in RPs are correlated to neighboring
elements caused by the underlying dynamics, the underlying
assumption of independent recurrence matrix elements does not
hold and corrections of the significance test should be applied,
such as the Bonferroni correction. To this end, in the examples
of artificial datasets, we have performed a t-test which is based on
the hypothesis that original and surrogate signals have the same
distribution of mean values. The statistics are computed based on
the pixels and their mean values in a 5× 5 neighborhood around
each pixel. In addition, we have applied a Bonferonni correction.

2.3. Datasets
To illustrate different analysis steps and to validate the power
of the proposed method, we first apply the proposed algorithm
to two artificial datasets. Then, the methodology is applied to
experimental datasets. Single trials of these datasets are illustrated
in Figure 3 and their origin is described in detail below. For
both artificial datasets, we model the tria-to-trial variability by
a temporal shift of the data in time combined with additive
measurement noise.

2.3.1. Transient Oscillations
A modified Lotka-Volterra model with n = 3 interactive
elements (Rabinovich et al., 2008a,b)

dxi(t)

dt
= xi(t)



σi −

n
∑

j=1

ρi,jxj(t)



 , (6)

serves as an abstract model of event-related brain
potentials (beim Graben and Hutt, 2015). Here xi(t) ≥

0, i ∈ {1, 2, 3} is the activity rate of the element i, σn is the
growth rate of the n-th population and ρi define interactions
between elements. In our setup, σ1 = 1, σ2 = 1.2 and σ3 = 1.6,
ρii = 1, ρ12 = 1.33, ρ13 = 1.125, ρ21 = 0.7, ρ23 = 1.25,
ρ31 = 2.1, and ρ32 = 0.83. The output signal s(t) is a linear
superposition of transient oscillations with frequencies ν1 =

170Hz, ν2 =20Hz, ν3 =75 Hz, where at one time instance,
only one of these three components is dominant, see more details
below. We point out that these frequencies are chosen rather
arbitrarily for an optimal illustration. The activity rate xi defines
the amplitude of the component ai with frequency νi and the
output signal obeys

s(t) =

3
∑

i=1

ai(t) sin(2πνit)+ ξ (t) , ai(t) = e−(xi−σi)
2/2η2i ,(7)

with η1 = 0.5, η2 = 0.33, η3 = 0.4. By this construction, the
amplitudes ai increase and decrease in a certain time window
outside of which they almost vanish. These windows of the three
oscillation modes i = 1, 2, 3 do not overlap and the transitions
between them are rather rapid. The variable ξ (t) represents
measurement noise and its random values are i.i.d. Gaussian
noise with zero mean and variance 0.5. The sampling rate is 450
Hz. We generate 10 trials which are time-jittered by shifting the
trials by 1 sample to later instances, while each trial is subject
to additive noise different in each trial. A single trial is given in
Figure 3A.

2.3.2. Lorenz dataset
The Lorenz system (Lorenz, 1963) is a well-studied three-
dimensional differential equation system

dx

dt
= −σx+ σy ,

dy

dt
= ρx− y− xz ,

dz

dt
= −βz + xy
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FIGURE 3 | Illustration of the first trial in each of the three time series under study. (A) Transient oscillations (B) Lorenz attractor (C) Ferret dataset: trial from

the set session one is recorded at a granular layer electrode. The vertical solid lines denote the stimulus onsets and the set of dashed lines mark the stimulus offsets.

with σ = 10, ρ = 28, β = 8/3. Its solutions show non-
trivial transient dynamics and their wings represent metastable
states as explained above (cf. beim Graben and Hutt, 2013). We
study the univariate time series x(t), which is the solution of the
above given system of equations. This time series may represent a
macroscopic measured signal such as EEG recording (Skarda and
Freeman, 1987; Basar, 2006), capturing activity from different
metastable sources. The sampling rate is equal to 2100 Hz. We
generate ten signal trials time-jittered by shifting the signal by 1
sample to later instances and add i.i.d. zero mean Gaussian noise
with unity variance to the signals. One trial signal is illustrated in
Figure 3B.

2.3.3. Ferret Dataset
The experimental dataset under study in the present work are
Local Field Potential (LFP) measurements collected as described
in Sellers et al. (2013, 2015a,b). Briefly, female ferrets were
anesthetized, intubated, and underwent surgery to gain access
to primary visual cortex (V1, ∼3 mm anterior to lambda and 9
mm lateral to the midline). Anesthesia induction was achieved
with an intramuscular injection of ketamine (30 mg/kg) and
xylazine (1–2mg/kg), and anesthesia maintenance was achieved
with 1.0% isoflurane (10–11 cc, 50 bpm, 100% medical grade
oxygen), with continuous IV infusion of xylazine (1.5mg/kg/h
xylazine with 4.25mL/h 5% dextrose lactated ringer’s). Animals
were head-fixed in front of the presentation screen and a 32-
channel depth probe was acutely inserted into cortex (50 microns
contact spacing along the z-axis, NeuroNexus, Ann Arbor, MI)
and was positioned to cover all cortical layers. The reference

FIGURE 4 | Experimental paradigm of the ferret experiment. In the

original recording protocol (Sellers et al., 2013, 2015a,b), 10 visual stimuli are

interleaved by several types of different stimuli, represented by numbers in the

figure. Our dataset consists of the responses to sine-wave luminance gratings

only. Other types of stimuli are the black screen (intervals marked by {4,6,9}),

checkerboard noise for {2,7} or fox images stimuli. The latter set consists of

the weakly spatially filtered image of foxes in the intervals marked by {3,5} and

strongly spatially filtered image of foxes in the interval set {1,5, 10}.

electrode was located on the same shank (0.5mm above the top
recording site) and was positioned in 4% agar in saline above
the brain. The full-field visual stimulus was presented on a 52 ×
29 cm monitor with 120Hz refresh rate and full high-definition
resolution (1920 × 1080 pixels, GD235Hz, Acer Inc, New Taipei
City, Taiwan) at 47 cm distance from the animal. Each trial was
30 s long and consisted of three parts: (i) recording interval
[0− 10)s is a baseline (screen is black); (ii) ts ∈ [10− 20) s is the
presentation of the sine-wave luminance gratings; (iii) [20−30) s
is “post-baseline” (screen is again black). Visual stimuli were
interleaved with other types of stimuli (all in randomized order),
for instance with a black screen or with a strongly spatially filtered
image of foxes (foxes are natural enemies of ferrets), see Figure 4.
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The sine-wave luminance grating was presented at a rate of 1Hz
for 10 s (during each 1 s period, progressive frames transitioned
from black to white to black and all the screen pixels had the
same color for any given frame). In the subsequent analysis, we
consider a subset of recordings. The dataset under study starts 0.5
s before stimulus onset and lasts until 3 s at the end of the third
stimulus cycle. This stimulus is a black screen at t = 0, 2, and 3 s
with luminance maxima at t = 0.5, 1.5 s, and 2.5 s. A single trial
is illustrated in Figure 3C.

Electrophysiological recordings were conducted during
stimulus presentation. Unfiltered signals were first amplified
with MPA8I head-stages with gain 10 (Multichannel Systems,
Reutlingen, Germany), then further amplified with gain 500
(Model 3500, A-M Systems, Carlsborg, WA), digitized at 20 kHz
(Power 1401, Cambridge Electronic Design, Cambridge, UK),
downsampled to 1 kHz afterwards, and digitally stored using
Spike2 software (Cambridge Electronic Design). In total, 20 trials
across two sessions conducted on different days were analyzed,
the session sets of 10 trials are called session one and session two
in the following. Datasets are downsampled to the sampling rate
equal to 100Hz. All procedures were approved by the University
of North Carolina-Chapel Hill Institutional Animal Care and
Use Committee (UNC-CH IACUC) and exceed guidelines set
forth by the National Institutes of Health and U.S. Department
of Agriculture.

3. RESULTS

In this section, we first apply the proposed method to two
artificial datasets to verify if it reveals dynamics given the noisy
set of trials. After validation of the method, we apply it on the
experimental dataset (ferret dataset) and study whether it well
extracts the dynamics from the recorded trials.

To understand the results, we first shortly describe recurrence
plots for several simple test signals. As previously mentioned,
black pixels denote recurrence events and white ones its absence.
All recurrence plots have a black diagonal line, by definition
(see Equation 1). Signals without any recurrence have a white
square RP with a black diagonal line. Random noise signals
have a random distribution of black pixels in the plot, with the
exception of the black diagonal line. A simple periodic signal
has a recurrence plot that consists of the black diagonal line
and other black lines that are parallel to the diagonal, where the
distance between them will reveal the period of the signal. More
complex signals that have recurrent states may show different
structures in RPs, for example, checkerboard-like patterns. These
black colored fields, to which we refer as to recurrence domains,
may have different sizes and shapes. For two artificial datasets
we expect to observe repetitive black patterns that correspond to
repetitive states within signal components. For the experimental
dataset, we expect to observe recurrence patterns that are directed
by the onset of the visual stimulus.

3.1. Artificial datasets
We demonstrate our methodology in Figure 5, which shows
the analysis steps for the examples of transient oscillations
(Figures 5A–D) and the Lorenz attractor (Figures 5E–H).

The time-frequency representation of one transient oscillation
trial is shown in Figure 5A. As previously mentioned in
Section 2.3.1, the corresponding signal exhibits three periodic
components. We visually inspect the figure and observe high
power spectrum values around the following time windows: (i)
{(0, 11), (42, 54), (85, 97)}ms around ν1 = 170Hz (dark red
horizontal line segments); (ii) {(19, 26), (64, 72)}ms around ν2 =
20Hz (broad orange areas); (iii) {(24, 38), (74, 87)}ms around
ν3 = 75Hz (dark red horizontal line segments). Note that for
other trials these values may fluctuate because the frequency
and time window of the current active component vary due
to noise that models trial-to-trial variability. Figure 5B shows
recurrent blocks (in black) in a single trial which correspond well
to the dynamics observed in the data, cf. Figures 5A, 3A. For
explanation, these recurrence blocks correspond to MSs and the
white parts represent transients between them.

The time-frequency representation of one Lorenz attractor
trial is given in Figure 5E. The approximate time intervals during
which the system stays in each of the two wings are visually
inspected from the power spectrum values. For the wing in
time intervals {(0, 30), (90, 100)} ms, Figure 5E shows a peak at
∼30Hz corresponding to the oscillation frequency in the Lorenz
wing, see Figure 3B. The other wing is reached in the time
intervals {(40, 60), (65, 80)}ms in accordance to the power peak
at about 40Hz. Note that for other trials time intervals may
be different due to varying trials in the set. Figure 5F shows
recurrent blocks in a single trajectory. The recurrence blocks
repeat in the correct time windows and represent the different
wings, i.e., the MSs.

Time-frequency representations of single trials are the basis
for the recurrence analysis leading to recurrence plots given in
Figures 5B,F for the respective datasets. These plots show the
metastable dynamics of the transient oscillations and the Lorenz
trajectories in the corresponding time windows as recurrent
structures. The recurrent, i.e., repetitive, structure is visible in
the illustrated trial of the corresponding data. Now, considering
several trials these recurrent structures may vary due to the
trial-to-trial variability. Nevertheless, to study the recurrent
structure common to all trials, we employ the statistical inference
method and extract statistically significant areas of recurrence
plots, as shown in Figures 5C,D,G,H. The recurrent structure
is obvious in these plots, reflecting the underlying recurrence
structure in the artificial signals. In addition, these results
demonstrate that the methodology extracts recurrence structures
common in several trials, although the recurrent structure is
less obvious in single trials, Figures 5B,C. Figures 5D,H show
the multiple comparison-test results for both artificial datasets.
The white area increases and the black areas are more focussed
on the red squares, i.e., spurious recurrences (black dots) are
removed and and separated well from transient (white areas).
Hence the multiple-comparison test improves the statistical
inference.

We point out again, that the extraction of the recurrent
structure from the univariate data shown in Figure 5 is possible
only by the spectral power embedding, i.e., the transformation
of the univariate data into multivariate data. The subsequent
preliminary statistical inference allows to identify the recurrent
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FIGURE 5 | Illustration of time-frequency (A,E), optimal recurrence plot (B,F) for the trials of two artificial datasets shown in Figures 3A,B, statistically

significant recurrence plots (C,G) based on 10 trials and classical t-test results (D,H). Values plotted in black represent areas where the original and the

surrogate set differ significantly (rejected test). (A–D) Transient oscillations; (E–H) Lorenz attractor. The red boxes mark recurrent metastable states.

MSs which are common in all trials with a confidence of 0.95.
By virtue of the spectral power embedding, the method permits
to select certain frequency bands to study recurrence structure in
specific frequency bands. This new element renders the spectral
power embedding more flexible and hence superior to previous
embedding techniques, such as the delay embedding based on
Takens theorem. To illustrate this, the subsequent section shows
results from experimental data in different frequency bands.

3.2. Experimental Data
After studying artificially generated trials and verifying that the
proposed method extracts well the dynamics features given by
repetitive black structures, we now investigate whether such
structures can be found in the experimental data as well.

Figure 6 provides the time-frequency representations of
two single trials of the same session Figures 6A,C and the
corresponding recurrence plots Figures 6B,D. We observe a
high trial-to-trial variability between both trials. This can be
observed both in the time-frequency representations and the
resulting recurrence plots. For instance, Figure 6B shows a single
recurrent state in the data except in the time window during the
first stimulus at t ∈ [0.25 s; 1 s]. Hence the system remains close
to the resting state (t < 0) during the first stimulus. Conversely,
Figure 6D reveals that the baseline activity, i.e., activity before
stimulation in the time interval [−0.5 s; 0 s], recurres in the
interval [2.5 s; 3 s]. In addition, the activity at about t = 2 s
resembles the activity just after t = 2.5 s. These different findings
for two trials are surprising since the experimental presentation
of the visual stimulus is well-controlled and the stimulus is simple
enough to expect almost identical neural responses.

To reveal the recurrent structure that is common in all trials,
we now study the trial-to-trial variability of recurrence plots
and aim to reveal whether the signal trials preserve the same

dynamical behavior, cf. Figure 7. Applying the statistical method,
we investigate the similarities of the results obtained from ten
trials measured by a single granular sensor and from the set
of 10 averaged signal trials, where the average is taken over
eight granular layer sensors. This analysis is done for both ferret
datasets. Moreover, we detail the analysis considering particular
frequency bands which are of interest for anesthesia. To this
end, we compute recurrence plots using the values of the power
spectrum coefficients in the corresponding frequency bands as
illustrated in Figure 1.

Figure 7 shows the statistically significant parts of the
recurrence plots for the δ- and the α-frequency band and for
all frequencies (chi-square and t-test results). The figure reveals
that there is no statistically significant recurrent structure in
the δ frequency band in signals under study. Conversely, the
α-frequency band exhibits significant recurrent structures in
the single granular electrode in both datasets, cf. Figures 7A,B.
For instance, in session one the first response to the stimulus
at t = 0 s returns at t = 1 s. Results for all frequency
bands differ to results obtained in the α frequency band.
The differences are dependent on the experimental sessions
suggesting the presence of strong recurrences in bands different
to α and δ or strong noise artifacts. To gain further insights
into the dependence on frequency bands, we consider single
trials which represent spatial averages of time series from
adjacent granular layers. This average denoises the time series.
Figures 7C,D shows the corresponding results. Figures 7C,D
show results from data in both experimental sessions revealing
a similar recurrence structure now. Considering all frequency
bands yields recurrences similar to the one obtained in the α-
band. Specifically, the prominent cross-shaped structure located
at t = 0.5 s indicates a MS common to all data with t ≥ 0.5 s.
Additional recurrences occur in the time intervals [−0.5; 0],
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FIGURE 6 | Illustration of trial variability for the experimental dataset session one. (A,C) The logarithm values of the power spectrum for two trials measured

at an electrode in the granular layer; (B,D) the corresponding recurrence plots. Non-zero values of recurrence plots are encoded in black. Red boxes denote recurrent

metastable states.

[1.7; 2.2], and [2.7; 3.0]ms. These results are consistent in the
chi-square significance tests and the t-test involving corrections
for multiple comparison. At last, we mention the prominent
lack of recurrence in the baseline time interval observed in a
single electrode in session one, cf. Figure 7B. Since it does neither
occur in session one nor in the spatially averaged data shown in
Figures 7C,D, it appears to be spurious and is neglected.

The experimental paradigm includes visual presentations of
stimulus types in a randomized order. The previous paragraphs
show neurophysiological responses to the sine-wave stimulus
only. To gain further insight into the trial-to-trial variability
subject to various pre-stimuli, we have selected two subsets
of sine-wave trials that have two different preceding stimuli,
namely the “black screen” subset denoted by subset one and the
subset of “strongly spatially filtered version of foxes” denoted
by subset two. Subset one includes the trials {4, 6, 9}, while
subset two is composed of the trials {1, 5, 10} of datasets session
one and session two. The comparison of various pre-stimuli
data is done by the chi-squared difference measure based on
recurrence plots of both subsets. Figure 8 shows the statistically
significant recurrences that are common in stimulus responses
on both types of pre-stimuli. The diagonal lines are absent from
figures, which suggests that at each time instance two comparison
signals differ. Poor but visible recurrent structures in δ-band are
grouped into two distinct blocks which distinguish the activity
before the stimuli (around t = 0 s) and during the stimuli,
for t ∈ (1, 3) s. In α-band, the figure shows more prominent
recurrences, such as the patterns around t = 1.5 and 2.7 s.
We point out that recurrences within δ- and α-bands do not
overlap, except in the pre-stimuli period, for t ∈ {−0.5, 0} s.
Finally, considering all the frequency bands together does not

reveal significant similarities of two pre-stimuli. Results from
the chi-square test and the t-test involving multiple comparison
correction are similar. However, it is interesting to note that the t-
test reveals more significant common recurrences than obtained
with the naive chi-square test.

4. DISCUSSION

The present work introduces a new recurrence analysis
methodology for univariate time series. The first new element
is the transformation to a time-frequency representation leading
to a multivariate time series of spectral power. This new
technique generates a new high-dimensional phase space in
which the instantaneous power of the signal evolves. This high-
dimensional phase space is mandatory to apply recurrence
analysis. In addition, it permits to compute recurrence plots
for specific frequency bands. The second new element is the
statistical analysis of recurrence plots that takes into account
spurious recurrence structures and allows to suppress them. The
combination of the two methods permits to extract temporal
recurrence structures in data which may reflect underlying
transient dynamics in a certain range of frequencies that
would have been hidden in conventional methods. To our
best knowledge these two techniques have not been considered
before.

The first results for two artificial datasets illustrate the
methodology and indicate that method detects recurrences in a
variable dataset (noise-induced trial variability) by the statistical
analysis as seen in Figure 5. These results on artificial datasets
prove that the method reveals underlying recurrences in a set of
trials if they are present in these trials.
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FIGURE 7 | Statistically significant parts of recurrence plots for different ferret datasets. (A) Results from a dataset of session one that consists of 10 trial

recordings of the single granular sensor s10. (B) Same as in (A) for the dataset session two. (C) Results are calculated based on 10 averaged trials in dataset session

one, where each trial is averaged over 8 granular layer time series. (D) Same as in (C) for dataset session two. Red boxes indicate MSs, blue boxes in (B) indicate a

prominent lack of recurrence in the α−band.

The subsequent analysis of single Local Field Potentials
measured experimentally in ferret visual cortex reveals a high
trial-to-trial variability, cf. Figure 6. The trial-to-trial variability
is surprising due to the well-controlled experiment revealing
an intrinsic ongoing activity (Arieli et al., 1995). This result
demonstrates that it is mandatory to take into account recurrence
variability in several trials. This is done by the methodology
proposed. Detailed recurrence analysis of specific frequency
bands in Figure 7 reveals missing recurrences in the δ band
whereas α-activity exhibits statistically significant temporal
recurrence. This important finding reflects a fundamental
difference of the nature of δ- and α-activity which has been
shown in previous experimental studies on the neural origin
of both signal features (Alkire et al., 2000; Ching et al.,
2010; Hashemi et al., 2014). Our results suggest that the
brain may decode information processing steps in different
frequency bands. This might be of importance in previous
studies and may shed some new light on neural processes, such
as on metastable states in EEG during the emergence from
unconsciousness (Hudson et al., 2014) and metastable states in
bird songs (Yildiz and Kiebel, 2011).

The effects of pre-stimuli have been hypothesized (Van Rullen
et al., 2011; Lundqvist et al., 2013) and we have investigated
the effect of pre-stimuli. The performed analysis is based on
a rather small set of trials reflecting the responses to identical
stimuli. To have sufficiently large dataset for tests, we merged
trials coming from two recording sessions. We note that trials
coming from two sessions may not be independent, which may
introduce errors. We found negligible effects in the δ frequency
bands but differences in the temporal recurrence structure in
the α frequency band. This result indicates that α-activity is
more sensitive to pre-stimuli than δ-activity in the experimental
setup under study. This finding is in full line with previous
theoretical (Lundqvist et al., 2013) and experimental (Romei
et al., 2008) studies on the importance of phase and power of
prestimulus α-activity. In addition, we notice the absence of
the diagonal line and other strong recurrence patterns visible in
Figure 7. This may be the result of merging trials from different
sessions, which was necessary to obtain larger test set for the
analysis.

The present work shows that trial-to-trial variability in
neurophysiological data occurs in spite of well-controlled
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FIGURE 8 | Illustration of the influence of different visual pre-stimuli on resulting plots in experimental dataset. Statistically significant areas of recurrence

plots are obtained by (A) pixel-wise chi-square tests and (B) t-test between trials with pre-stimulus black screen and those whose pre-stimulus is fox image. The data

is taken from a single granular layer electrode in datasets session one and session two together. Both the pre-stimulus black screen and fox image have occurred

three times among the 10 trials in each dataset. Significantly different values are coded as white pixels, statistically similar values are coded as black pixels.

and simple response-driven experimental conditions and
demonstrate how to extract recurrent structures nevertheless.
The methodology proposed makes it necessary to choose
a well-adapted technique to transform the univariate times
series to a multivariate time frequency signal. In addition
to our current choice of a spectral reassignment technique,
we have employed a conventional wavelet technique using
complex Morlet mother wavelets and performed the same
recurrence analysis (results are not shown). It turns out that this
conventional method does not provide high-quality extraction
of transient recurrent structures, given by the reassignment
method. This may result from the worse time-frequency
resolution of conventional Morlet wavelets. Future work will
further investigate the best choice of multi-resolution time-
frequency methods. Moreover, the methodology considers
surrogate data generated by a temporal random shuffling of
data and hence destructing all temporal structure. Future work
may include the destruction of the recurrence structure by
phase randomization in certain frequency bands (Li et al.,
2010).

To conclude, in this work we propose a novel analysis method
for trial-to-trial variability of recurrence plots in univariate
time series applying a novel statistical analysis technique. This
extension of recurrence analysis by a statistical technique is
motivated by the fact that many physiological datasets have
a limited number of trials but posses the intrinsic recurrence

property of patterns of interest. Inspired by the fact that
particular physiological patterns very often occur in specific
frequency bands, we first build novel recurrence plots from a
time-frequency signal representation. A low dimensional time-
frequency signal that is built by the band median filter is
then used to obtain original trial recurrence plots. Next, we
use a chi-squared statistics to obtain statistically important
areas of recurrence plots. The work reveals a strong trial-to-
trial variability of recurrences in experimental data in spite of
the well-controlled experimental paradigm. Moreover, it turns
out that recurrences occur in the α-frequency band, whereas
activity in the δ-frequency band does not exhibit a temporal
recurrent structure indicating frequency-dependent metastable
states.

5. DATA SHARING

We provide the time-series of the transient oscillation dataset
and Lorenz dataset on the webpage of the corresponding author
(https://sites.google.com/site/tamtos/datasets).
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Animals learn to choose a proper action among alternatives to improve their odds of

success in food foraging and other activities critical for survival. Through trial-and-error,

they learn correct associations between their choices and external stimuli. While a neural

network that underlies such learning process has been identified at a high level, it is still

unclear how individual neurons and a neural ensemble adapt as learning progresses. In

this study, we monitored the activity of single units in the rat medial and lateral agranular

(AGm and AGl, respectively) areas as rats learned to make a left or right side lever press in

response to a left or right side light cue. We noticed that rat movement parameters during

the performance of the directional choice task quickly became stereotyped during the first

2–3 days or sessions. But learning the directional choice problem took weeks to occur.

Accompanying rats’ behavioral performance adaptation, we observed neural modulation

by directional choice in recorded single units. Our analysis shows that ensemble mean

firing rates in the cue-on period did not change significantly as learning progressed,

and the ensemble mean rate difference between left and right side choices did not

show a clear trend of change either. However, the spatiotemporal firing patterns of the

neural ensemble exhibited improved discriminability between the two directional choices

through learning. These results suggest a spatiotemporal neural coding scheme in a

motor cortical neural ensemble that may be responsible for and contributing to learning

the directional choice task.

Keywords: associative learning, action selection, agranular medial and lateral areas, plasticity, support vector

machines

Introduction

When selecting an action among alternatives in response to an external stimulus, an animal usu-
ally makes its choice according to consequences of the actions taken. Animals choose those actions
that have resulted in rewards in the past and thus, learning takes place by correctly associating
a stimulus with an appropriate response. A neural network that underlies the acquisition of this
stimulus-response association has largely been identified (Murray et al., 2000), and it points to
the prefrontal cortex (PFC) and the basal ganglia as two key nodes for solving an associative
learning task (Pasupathy and Miller, 2005). Within the frontal lobe, a rostro-caudal hierarchical
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organization supporting cognitive control functions such as
action selection has been hypothesized (for a review see Badre,
2008). Primate studies have shown that premotor regions are
also involved in learning and holding stimulus-response repre-
sentations under the influence of prefrontal regions through top-
down control (Koechlin et al., 2003; Boettiger and D’Esposito,
2005; Fluet et al., 2010). Additionally, the primary motor cortex
has been suggested for encoding information beyond movement
kinematics (Carpenter et al., 1999; Matsuzaka et al., 2007) such
as features of visual stimuli that are behaviorally relevant (Zach
et al., 2008; Eisenberg et al., 2011). Furthermore, the motor cortex
is highly plastic for learning sensory-motor associations (Sanes
and Donoghue, 2000). Putting it all together, the motor cortical
regions in the frontal cortex are implicated for learning which
action to select according to stimulus-response association.

Two types of adaptation could co-exist during sensorimotor
association learning: motor skill learning that improves the exe-
cution of motor responses and associative learning that links sen-
sory cues with specific response actions (Cohen and Nicolelis,
2004). Motor skill learning alone could induce neural plasticity
ranging from synaptic connections (Xu et al., 2009), changing
neural firing rates (Li et al., 2001; Kargo and Nitz, 2004; Rokni
et al., 2007), to the motor map (Kleim et al., 1998, 2004) in both
young and adult motor cortices. Therefore, motor skill learning
could become a confound factor when studying sensorimotor
association learning and should be treated with care. Aside from
well-studied motor skill learning, whether and how motor corti-
cal activity would adapt during associative learning is still unclear
and requires further investigation.

In a previous study (Cohen and Nicolelis, 2004), rats learned
to associate directional movements in response to either a high or
a low tone. Significant neuronal firing rate changes in the primary
motor cortex were observed on the first day when an animal’s
movement skill improved, but not in the following 2 days when
movement parameters were stable and associative learning domi-
nated. In some other studies where animals learned to respond to
external sensory cues with appropriate actions, learning-related
neural dynamics were evident in motor cortical neural ensemble
activity patterns (Laubach et al., 2000; Huber et al., 2012). Based
on these results we hypothesize that neural adaptation induced by
learning sensorimotor associations would be reflected in changes
in spatiotemporal neural firing patterns in motor cortical areas.
To test this hypothesis, we had rats learn to perform a directional
choice task. The goal of the task was to make a left or right side
lever press in response to a left or right side light cue, respec-
tively. Single units were recorded from rat’s medial agranular
(AGm) and lateral agranular (AGl) areas. Spatiotemporal neural
firing patterns were investigated using support vector machines.
Improved discriminability in neural patterns was observed as
learning progressed.

Materials and Methods

Animal Handling and Surgery
All procedures were in accordance with guidelines of theNational
Institutes of Health and approved by the institutional Animal

Care andUse Committee at Arizona State University. Rats (Long-
Evans, male) arrived at the age of about 2 weeks weighing around
50 grams and were handled daily by experimenters to get accus-
tomed to the environment. They started pre-training after reach-
ing 200 grams to master the motor skill of lever pressing, which
only involved pressing a single lever (no choice) in response to a
light cue above the lever. The pre-training apparatus was similar
to that used for recording to help familiarize rats with the record-
ing environment. After achieving a behavioral accuracy of 90% or
above for at least 3 consecutive days on the pre-training task, and
once their weight reached 400 grams, rats were implanted with a
chronic electrode array.

For electrode implant surgery, rats were anesthetized by an
intramuscular injection of KXA (10mg/ml ketamine, 2mg/ml
xylazine, and 0.1mg/ml acepromazine; 0.1ml/100g), shaved in
the incision area, and placed in a stereotaxic frame. A heated
water blanket was used to maintain rat’s body temperature at
around 35◦C. Rat’s heart rate and oxygen level were moni-
tored throughout surgery with a pulse oximeter. KXA updates
(0.05ml/100g) were administrated approximately every hour
during surgery after the initial shot. Craniotomy was performed
over the AGm and AGl areas of the left hemisphere of the rat
brain. A microwire array was centered at 2mm lateral and 3mm
rostral from the bregma (Figure 1C), and lowered about 1.8–
2.3mm underneath dura, aiming for layer V pyramidal neurons.
An acrylic head cap was formed to support the electrode array.
The head cap was fixed to the skull with three screws. A subcu-
taneous injection of 0.1ml meloxicam was given for pain relief
after surgery, and three more shots were given for the following 3
consecutive days. The rats had 7–10 days or as needed to recover
before they were food restricted for recording sessions.

Behavioral Task
Rats were freely moving in the recording chamber, and self-paced
to start a trial by pressing the retractable center ready lever. One
of the five cue lights (from left to right: LL, L, C, R, and RR)
would appear (Figure 1A) immediately upon ready LP. The left
and right response levers would extend 2 s after cue light onset
(Figure 1B). Pressing the left lever once would “move” the light
one position to the right and pressing the right lever would
“move” the light to the left. Once the light cue reached and then
remained at the center position for at least 1 s, the trial ended as a
success. Otherwise a trial was considered a failure if the light cue
ended up at any position other than the center. A feedback tone
was played immediately upon the end of a trial: a low frequency
tone of 1 kHz in case of a success and a high frequency tone of
12 kHz in case of a failure. A sugar pellet reward was delivered
0.5 s after the feedback tone for a successful trial. The inter-trial
interval was 8 s for successful trials and 15 s for failed trials. The
five cues were presented in a pseudo-random fashion with equal
probability of presence.

Recording Sessions
After rats recovered from surgery, daily recording sessions began,
each of which lasted about 60min. Rats were food restricted
during the recording period while the body mass was closely
monitored.
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FIGURE 1 | The behavioral task, trial timeline, and recording

sites. (A) The control panel setup. The rat was cued by an LED

light in one of five positions in any given trial, and could use the

left and right response lever to “move” light to the right and left

by one position, respectively. The goal was to reach the center

light by appropriate lever presses in order to receive a sugar pellet

reward. (B) The task timeline. The rat would self-start a trial by

pressing the center ready lever at his own will, and simultaneously

a light cue would turn on. Then there would be a 2 s cue-on

period, after which the two response levers would extend

simultaneously. The rat would choose and press one of the

response levers. A feedback tone would be played at trial end

indicating the outcome. (C) A 2 × 8 microwire array was

chronically implanted in the left hemisphere of the rat brain, aiming

for layer V AGm and AGl neurons. (D) Example single unit

recordings from rat A09 (top row) and rat K11 (bottom row). Left:

unsorted waveforms (black), spike waveforms used in neural analysis

(blue) and waveforms of another unit not used due to very low

firing rate (red). The 50 waveforms from each class were randomly

selected and plotted. Right: 3-D PCA projection of the waveforms.

The implanted electrodes were arranged in a 2 × 8 matrix,
with 500 or 375µm row separation, and 500µm electrode spac-
ing. The polyimide-isolated tungsten microwires were 50µm in
diameter and 5mm in length. The electrode tips were cut at a
sharp 60◦ angle (TDT Inc., FL). A total of 16 channels of raw
waveforms were recorded simultaneously using a RX5 Pentusa
Base Station or a RX7 Microstimulator Base Station (TDT Inc.,
FL). Neural signals picked up by electrodes were passed to a
unity gain preamplifier (bandpass 2.2Hz ∼ 7.5 kHz) through an
Omnetics or a ZIF-Clip headstage, and then sampled and stored
at 24.414 kHz by the base station.

Rat behavior while performing the task was monitored and
recorded using cameras (25 fps). Rat head position was deter-
mined offline by the implanted head cap as well as left and right
ear positions. The head position was tracked and extracted to
indicate rat movement trajectory, which was calculated for left
side and right side movements separately over recorded trials.
Variation in movement trajectory was obtained as the distance

between a given movement trajectory during a trial and the mean
trajectory in a single recording session.

Spike Sorting
Action potentials were detected and classified off-line using our
own M-Sorter software (Yuan et al., 2012), which is based on
the multiscale correlation of wavelet coefficients (MCWC) detec-
tion algorithm (Yang et al., 2011). The M-Sorter has been tested
and compared with two popular sorters: the Wave Clus and the
automatic mode of Offline Sorter by Plexon (T-Distribution EM
method). The M-Sorter consistently outperformed or was at least
comparable to the compared sorters (Yuan et al., 2012). One iso-
lated unit with highest firing rate was extracted from each of the
electrodes. Experimenters also inspected spike waveforms, inter
spike intervals, and other measures to ensure the quality of single
unit clusters (Figure 1D). According to the sites of implanted
electrodes, recorded neurons were in the AGm and AGl areas
of the rat frontal cortex (Paxinos and Watson, 2005) involving
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forelimb, neck, and vibrissae areas (Neafsey et al., 1986; Remple
et al., 2001). Intracortical microstimulation was also performed
to confirm implant electrode location.

For each rat, only those electrodes that consistently picked up
unit action potentials in all sessions were included in neural activ-
ity analysis. By doing so, we were able to analyze neural ensembles
of the same size over sessions tomake the results comparable. The
analyses in this study as described below were based on neural
ensembles. Therefore, we did not require tracking same neurons
over learning sessions (Laubach et al., 2000; Cohen and Nicolelis,
2004).

Firing Rate Modulation
In this study, L-L trials are used to denote those trials in which
rats reported left side choices by pressing the lever on the left
side in response to left side cues, and similarly we define R-R tri-
als. Single unit firing rates in single trials were calculated using a
100ms data window sliding at 20ms steps (50 bin/s) through the
cue-on task period (Figure 1B). The mean firing rate for a data
window (CO1, CO2, CO3, or CO) was the average of all binned
firing rates in the respective data window.

Let the ith neuron’s mean firing rate in session k for all
L-L and R-R trials be denoted as Mi

L(k) and Mi
R(k), respec-

tively. The ith neuron’s mean firing rate was then defined as
Mi(k)= 1

2 (M
i
L(k)+Mi

R(k)). The ith neuron’s firing rate differ-
ence between L-L and R-R trials in session k was calculated as
Di(k)= Mi

L(k)−Mi
R(k).

The ensemble mean firing rateM(k) of N isolated units in ses-
sion k was the average over all recorded trials of isolated units,
i.e.,M(k)= 1

N

∑N
i= 1 M

i(k).
The ensemblemean firing rate difference between L-L and R-R

trials was then the average of the absolute value of single unit rate
differences, i.e., D(k)= 1

N

∑N
i= 1

∣

∣Di(k)
∣

∣. As such, each recording
session corresponded with one measurement for the ensemble
mean rate and another measurement for the ensemble mean rate
difference.

In addition to firing rates, firing variability was also moni-
tored. First, we calculated the standard deviation of firing rate of
unit i in session k, SiL(k) and S

i
R(k), for L-L and R-R trials, respec-

tively. Then, the mean standard deviations, SL(k) and SR(k), were
calculated as the average across units, respectively.

To study how the ensemble mean firing rate and ensemble
mean rate difference would change during learning from session
to session, linear regressions were performed against normalized
session numbers (between 0 and 1). The sign of the regression
line slope was determined according to its confidence interval. A
positive slope corresponded with increased rate measures while a
negative slope with decreased rate measures. No change in rate
measures was associated with a regression line slope that was
not significantly different from zero. Similar linear regression
analysis was used to examine changes of other measurements as
described below.

In order to summarize results of multiple rats, the ensemble
mean firing rates of single sessions were Z-scored (zero mean and
standard deviation equal to one) over sessions for each rat. Then
Z-scored ensemble mean rates from all rats were pooled together
for linear regression analysis. Other measurements, including

ensemble mean rate difference, mean standard deviation of firing
rate, and SVM classification results as described below, were pro-
cessed in a similar manner when their trends over sessions were
explored by summarizing multiple rats’ data.

SVM Classification of Neural Representations
Wemodeled neural firing patterns of L-L and R-R trials by train-
ing linear kernel support vector machines (SVMs). The input to
the SVMs was spatiotemporal neural firing activity in the cue-on
task period of a single trial while the output of the SVMs was the
directional choice of left or right. All analyses were performed
using customized Matlab programs (Mathworks Inc., MA).

SVMs solve a binary classification problem by determining
a separating hyperplane with a maximized margin between two
classes (Burges, 1998). Once the separating hyperplane is found,
an SVM makes a classification decision for a given data sam-
ple x according to the value of the decision function: df (x)=
∑

i αiK(si, x)+b, where support vector si, weight αi and bias b
are determined in the training process automatically once input
and output data are presented for training, and the kernel func-
tion K is a dot product in case of a linear kernel. If df (x)≥ 0, x is
classified as an L-L trial, otherwise it is classified as an R-R trial.
The decision function value could be interpreted as the distance
from the sample point to the separating hyperplane. The greater
this distance the less ambiguous the final classification.

In our analysis, a 1500ms data window in the cue-on period
(CO: 300 to 1800ms after cue onset, Figure 1B) was used. This
window was divided into three non-overlapping 500ms time
bins. Spike counts in these bins formed one vector representa-
tion for each spike train of each unit. Spike count vectors of
simultaneously recorded units were then concatenated to form a
spike count vector representation of the recorded neural ensem-
ble (Figure 2). Thus, there was one ensemble vector or one data
sample for each trial, and SVMs were trained based on data sam-
ples from both classes (L-L and R-R trials) in each recording
session for each rat.

To obtain statistically representative results, a total of 100
SVM classifiers were trained and tested for each session. In each
of the 100 classifiers, a constant number of trials were randomly
chosen from both L-L and R-R classes. Specifically, 20% of the
randomly chosen trials from each class formed the test set, and
the remaining 80% formed the raw training set, which was further

FIGURE 2 | Data preparation for SVM decoding. Spike trains of all

simultaneously recorded single neurons from one task trial formed one data

sample where the spike counts in non-overlap bins (e.g., 500ms bins) were

concatenated to form a spike count vector. Two classes of data samples from

L-L and R-R trials composed the data set.
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processed as follows before training an SVM. First, five trials of
the same class were randomly selected from the raw training set,
each with a respective spike count vector. Then an average spike
count vector was obtained based on the five spike count vec-
tors, and was used as an input training data sample for the SVM
model. A test data sample simply was a single spike count vector
of a test trial. The SVM performance measure was based on aver-
aged test set classification accuracy from the 100 SVM classifiers.
This procedure was repeated for each recording session over the
entire directional choice learning process. SVM based classifica-
tion performance of L-L vs. R-R trials over multiple sessions were
then inspected using linear regression.

As a control, SVM classification analysis was also performed
using a 500ms time window around response lever press (LP,
−100 to 400ms around the press, Figure 1B). Data was pre-
pared in a similar way as described above and 100ms time bins
were used to compute spike counts. To make classification per-
formance comparable, three 500ms windows within the cue-on
period were selected (CO1, 500 to 1000ms after cue onset; CO2,
1000 to 1500ms; CO3, 1500 to 2000ms; Figure 1B). SVM classifi-
cation analysis was repeated in these data windows and compared
with that using data in LP.

Note that in our analysis, 100ms bin size was used for
500ms data window (CO1, CO2, CO3, and LP) based direction
predictions by SVM. But for SVM classification analyses where
the CO window (Figure 2) was involved, 500ms bins were used
to form spike count vectors.

Results

Behavioral Results
Male Long-Evans rats (n = 9) started learning the directional
choice task by trial and error from a naïve state. Behavioral accu-
racy in each recording session was monitored and calculated as
the number of correct trials over the total number of trials in that
session. Rats gradually improved the accuracy over sessions, from
30.8% (average, range from 14.1 to 47.3%) in session 1 to 76.0%
(average, range from 55.3 to 93.4%) in session 18 (rank-sum test,
p < 0.001; Figure 3A). Linear regressions of behavioral accu-
racies vs. session numbers revealed that seven rats significantly
improved their performance except rat A09 and I10. Actually
rat A09 didn’t learn the right side choices, and rat I10 strug-
gled with both left and right side choices. Among the seven rats,
one of them (J11) reached 75% accuracy, all the other six rats
went above 80%, and two rats (W09 and O10) even achieved over
90% accuracy. We therefore used data from the seven rats when
reporting results against normalized session numbers as learning
progressed. When results are based on data from all nine rats, it
will be specified accordingly.

Once the rat self-started a new trial (Figure 1B), he had 2 s

to choose from the two response levers prior to their extension.

Upon response lever extension, he could make a press of his
choice within 1 s. In this analysis, the response latency was calcu-

lated as the time from response lever extension to the first press

on the chosen lever. This latency decreased from 0.44 ± 0.16 s in

FIGURE 3 | Behavioral results. (A) Rats (n = 9) improved behavioral

accuracy to a level above 70% in 18 days on average. (B) The

response latency decreased mainly during the initial days and stayed

relatively stable afterwards. (C) Movement trajectory (head position)

during the cue onset period projected onto the front view of the

interface panel. Thin traces: trajectory records from single trials. Bold

curves: mean trajectory traces of left side and right side movements.

(D) Variation in movement trajectory (distance between the trajectory

trace of a single trial and the mean trajectory) decreased during initial

learning sessions.
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session 1 to 0.32 ± 0.14 s in session 4 (mean ± STD; ANOVA,
p < 10−5; Figure 3B; nine rats). After the first three learning ses-
sions the response latency became stabilized, and from the fourth
session onwards, the latency measurements over sessions were
not significantly different (linear regression slope at −0.0021
s/session, 99% confidence interval of [−0.0058 0.0016]). The
reduction in response latency is an indicator of improved act of
lever pressing.

During task performance, rats usually made quick movements
toward their chosen lever right after light cue onset and their
movements became stereotypical in a few sessions. Video analysis
of rat movement trajectory during the cue-on period (Figure 3C)
confirmed this observation. Typically, rats started moving in
their chosen direction shortly after cue onset. Their directional
movements were completed by about 1 s after cue onset and then
rats stayed in front of the response lever waiting for lever exten-
sion. To measure differences in rat directional movement from
trial to trial, variation in movement trajectory between a single-
trial trajectory and the mean trajectory of a session was calculated
for each session. As shown in Figure 3D, variations in movement
trajectory decreased during the first three sessions and remained
stable afterwards. Additional video analysis results of rats’ direc-
tional movement trajectory are available in Yuan et al. (2014).
These observations together with response latency results show
that motor skill learning occurred during the first few days and
therefore, it could be dissociated from the rest of the associative
learning process.

Firing Rate Modulation by Directional Choice
In this study, trials with correct first response lever press were
used in analysis and within those trials, we mainly focused on
the cue-on task period (Figure 1B). A total of 220 sessions were
recorded from nine rats. We included 190 sessions for analysis
and excluded the remaining 30 sessions because of inadequate
numbers of trials (less than 20 L-L or 20 R-R trials). Those ses-
sions mainly included the first few sessions of each rat when
behavioral accuracy was low and motor skill learning was pos-
sibly present. All together for this study, we had 11,060 L-L trials
and 10,717 R-R trials from the 190 sessions with 58 L-L trials and
56 R-R trials per session on average. Of the 190 recorded sessions
from nine rats, we collected 839 unit records (337 from AGl and
502 from AGm), 4.4 unit records per session on average, ranging
from 3 to 6 unit records in the ensemble. Here we consider an
isolated unit each day a unit record.

Single unit firing activities of L-L and R-R trials in each ses-
sion were first inspected by spike rasters and peri-event time his-
tograms (PETHs). Examples of single unit firing ratemodulations
by L-L and R-R trials are shown in Figure 4.

In the 500ms time window before cue onset, the averaged
(over all single units, nine rats, and sessions) single unit firing
rate difference between L-L and R-R trials was −0.02Hz, which
was not significantly different from zero (one-sample t-test, p >

0.89). If the same single unit firing rate differences between L-
L and R-R trials were evaluated in three cue-on sub-windows
(CO1, CO2, and CO3 in Figure 1B), they were 2.76, 3.12, and
2.17Hz, respectively, all of which were significantly greater than
zero (one-sample t-test, p < 10−5; Figure 5A).

We then evaluated time-resolved (100ms bins for every
20ms) single unit firing rates of L-L and R-R trials, and the fir-
ing rate difference between the two during the cue-on period
(Figure 5B). For the pool of single units, the averaged (over all
single units, nine rats, and sessions) time-resolved firing rate dif-
ference did not emerge from 0 until 400ms after cue onset (one-
sample t-test, p < 0.001), and it sustained through the rest of the
cue-on window. These results show that firing rate modulation of
single neurons was prominent in motor cortical areas during the
cue-on period.

To study how firing rate modulation at a population level var-
ied as learning progressed, we calculated the ensemble mean rate
and ensemble mean rate difference between L-L and R-R trials
(see Materials and Methods) session by session. The results from
using rat B11’s data are given in Figure 5C as an example where
the firing rates of a 1500ms cue-on window (CO, Figure 1B)
were used. To summarize results from all seven rats, we nor-
malized session numbers. According to Figure 5D, the Z-scored
ensemble mean firing rate did not change significantly through
the learning process (99% confidence interval of linear regression
slope: [–0.48 1.05]). When the learning process was divided into
three stages of equal numbers of sessions, the Z-scored ensemble
mean rates were −0.21 ± 1.08, 0.16 ± 0.85, and 0.00 ± 1.00Hz
(mean ± STD), which were not significantly different (ANOVA,
p > 0.1). The Z-scored ensemble mean rate difference between
L-L and R-R trials tended to increase slightly with a slope of 0.59
(Figure 5D), but its 99% confidence interval was [−0.16 1.34]
indicating it was not significantly different from zero. When cal-
culated in the three learning stages, the Z-scored ensemble mean
rate differences were −0.16 ± 1.09, −0.19 ± 0.83, and 0.32 ±

0.96Hz, respectively, showing higher rate differences between L-
L and R-R trials in the last stage compared with the previous two
stages (ANOVA, p < 0.05). But Figure 5D also shows that some
early session had large rate differences. When linear regression
was performed for individual rats, the slope was again not sig-
nificantly different from zero (t-test, p > 0.15). To summarize,
although ensemble mean rate difference tended to become larger
near the end of the recorded learning process, the trend was not
strongly observed.

The BC data window (Figure 1B) was analyzed in a similar
way to provide a control. The ensemble mean firing rate lev-
eled over sessions (slope of Z-scored rates: 0.04, 99% confidence
interval of slope: [−0.73 0.81]; Z-scored rates in the three stages
were:−0.16±1.06, 0.21± 0.77,−0.09±1.08, ANOVA p > 0.1).
The ensemble mean rate difference was relatively stable over ses-
sions as well (slope of Z-scored rate difference:−0.40, 99% inter-
val: [−1.17 0.36]; Z-scored rate difference in the three stages were:
0.17± 1.01,−0.04± 0.92, and−0.09± 1.01, ANOVA p > 0.4).

Additionally, the standard deviation of firing rate during the
CO data window remained relatively stable across learning ses-
sions. The linear regression slope of mean standard deviation for
L-L trials against normalized session number was 0.06, which
was not significantly different from zero given that the 99%
confidence interval of the slope was [−0.70 0.82] (Figure 5D,
red dotted line). Similarly for R-R trials, the linear regression
slope was 0.04 and its 99% confidence interval was [−0.72 0.80]
(Figure 5D, green dotted line).
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FIGURE 4 | Raster plots and peri-event time histograms of

example single units. Firing rate estimated in 100ms time bins sliding

down the time axis with a step size of 20ms. Red: L-L trials in which

the rat moved to the left response lever in response to left side cues.

Green: R-R trials with right side movements in response to right side

cues. (A) Example AGl units. (B) Example AGm units. Horizontal bars

(black) indicate time bins in which directional firing rate modulation was

significant (rank-sum test, p < 0.01).

To summarize, the ensemble mean firing rate of all simul-
taneously recorded single units over all trials did not change
significantly over sessions, and the ensemble mean firing rate dif-
ference between L-L and R-R trials did not show a clear trend
of change either. These findings suggest that ensemble mean rate
based measures are not adequate to explain improved behavioral
learning of the seven rats under study.

Spatiotemporal Firing Pattern Analysis by SVMs
As learning related behavioral adaptation could not be well-
explained by ensemble mean firing rate or ensemble rate dif-
ference between L-L and R-R trials in cue-on period, we then
inspected the neural data with increased spatiotemporal reso-
lution using SVMs. In the following, we first examined how
data preparation and SVM parameters may affect SVM model
performance.

Ensemble vs. Single Units
Ensemble spike count vectors were formed by concatenat-
ing spike counts (CO window, 500ms bins) of simultaneously
recorded single units. For each session, SVMs were trained
and tested using ensemble vectors [vector dimension was 3×
(number of single neurons)], and classification performance was
characterized by classification accuracy on the test data. On the

other hand, SVMs were built and tested using spike count vectors
of single units (three dimensional vectors). When comparing the
best classification performance using single unit data with that
using ensemble data (Figure 6A), the ensemble approach out-
performed the best single unit approach in 61.6% (117/190) of
tested sessions. The mean single trial decoding accuracy among
all sessions when using ensemble approach was 76.2%, which
was higher than the 74.2% accuracy of the best single units
(paired-sample t-test, p < 10−5).

Additionally, we examined the impact of the ensemble size on
decoding accuracy. Each of the nine rats had at least 3 units per
session. Specifically, one rat had 3 units per session, four rats had
4 units per session, three rats had 5 units per session, and one
rat had 6 units per session. As shown in Figure 6A insert, decod-
ing accuracy increased when larger ensembles were used, but the
speed of increase in decoding accuracy by using larger ensembles
slowed down as ensemble size increased.

Multiple vs. Single Time Bins
To explore SVM classification performance over time, the cue-
on period was divided into non-overlapping 100ms time bins
and SVMs were trained using data of spike counts in a single
time bin from all simultaneously recorded units. As shown in
Figure 6B, the classification accuracy (averaged over all sessions)
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FIGURE 5 | Firing rates and firing rate differences between L-L and

R-R trials. (A) Histograms of single unit (n = 839) firing rate differences

between L-L and R-R trials for nine rats in four 500ms time windows. BC:

500ms window before cue onset. CO1: 500 to 1000ms after cue. CO2:

1000 to 1500ms after cue. CO3: 1500 to 2000ms after cue. (B) Top:

averaged (over all units, nine rats, and sessions) single unit firing rates, Mi
L
(k)

for L-L trials, Mi
R
(k) for R-R trials, and Mi (k) for mean firing rate over L-L and

R-R trials. Bottom: mean ± STD of single unit firing rate difference, Di (k). (C)

Rat B11 as an example. Ensemble mean firing rate and rate difference

between L-L and R-R trials in CO data window (300 to 1800ms after cue

onset). Four panels from top to bottom: (1) behavioral accuracy; (2) ensemble

mean firing rate over sessions; (3) ensemble mean rate difference between

L-L and R-R trials over sessions; (4) averaged standard deviation of firing rate

over sessions for L-L (red) and R-R (green) trials. (D) Linear regression of

Z-scored ensemble mean firing rate (top) and ensemble mean firing rate

difference between L-L and R-R trials (middle) of seven rats in the CO data

window. Linear regression of averaged standard deviation (in Z-score) for L-L

(red) and R-R (green) trials of seven rats in the CO data window (bottom).

gradually increased after cue onset and then leveled off at around
60% (still above chance level of 50.02% accuracy when training
samples from both classes were randomly shuffled, one-sample
t-test, p < 10−5). This is consistent with our previous observa-
tion of sustained firing rate modulation between L-L and R-R
trials during cue-on period (Figure 5B). As a comparison, when
spike counts in 15 bins (100ms bin width) together (COwindow)
were used in SVM model for classification, the average decoding
accuracy was 73.01% over all sessions, which was significantly
higher than the decoding accuracy when single time bins were
used (paired-sample t-test, p < 10−5). Therefore, temporal firing
patterns or spike counts in multiple consecutive time bins were
expected to benefit SVM neural decoding.

Size of Time Bin
Then we tested how the size of a time bin may affect SVM clas-
sification. The same 1500ms (CO window) neural ensemble data
was used but spikes were counted in non-overlap time bins of
different sizes, ranging from 100 to 750ms. Best classification per-
formance was obtained using 500ms bins with a 76.18% decoding
accuracy (Figure 6C). Larger time bins (e.g., 750ms) resulted in
slightly lower classification accuracy (76.01% accuracy; paired-
sample t-test, p < 0.01) probably due to loss of temporal resolu-
tion. However, higher temporal resolutions did not help improve
classification accuracy either (paired-sample t-test, p < 0.01).
Given the above discussion, we used spike counts in 500ms bins
for analyses hereafter unless otherwise specified.
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FIGURE 6 | Decoding accuracy between L-L and R-R trials using

linear SVM classifiers with different data and classifier

configurations. (A) Classification performance using neural ensembles

vs. best single neurons. CO data window, 500ms time bins. Each

point represents one of the 190 sessions, and those above the

diagonal line indicate better classification performance using the

ensemble. Insert: decoding accuracy increased when larger ensembles

were used, but the speed of increase in decoding accuracy by

using larger ensembles slowed down as ensemble size increased. (B)

SVM classification accuracy using data of single 100ms time bins,

averaged over all sessions with chance level classification accuracy

(dashed line) obtained using shuffled training data. (C) Bin size

affected classification performance. (D) Histogram of single session

SVM classification performance (190 sessions). Averaged classification

accuracy (test data set) was 76.18% based on CO data window

with 500ms bins.

The histogram of classification performance in single ses-
sions is shown in Figure 6D, where spike counts in 500ms
non-overlapping bins during the 1500ms CO window of neural
ensembles were used for decoding. The mean classification accu-
racy tested with novel single trial data was 76.18% for all sessions
from all rats.

To gain additional insight into the firing patterns during
the CO window, SVM decoding analysis was also performed
between correct and error trials. Two classes of error trials were
considered here: R-L trials stand for those left side choices in
response to right side cues, and similarly we define L-R trials.
Only 11 out of all 190 sessions had at least 20 trials per class for
L-L vs. R-L analysis, and 18 sessions were included in R-R vs. L-
R analysis. The average decoding accuracy for L-L vs. R-L trials
across the 11 sessions was 53.74% which was slightly but signifi-
cantly higher than chance (t-test, p < 0.03), and the accuracy for
R-R vs. L-R decoding was 50.79% which was not significantly dif-
ferent from chance (t-test, p > 0.60). Specifically in L-L vs. R-L
analysis, decoding accuracy was higher than chance in 7 out of
the 11 sessions (mean accuracy was 57.05%), lower than chance
in one session (44.86% accuracy), and not different from chance
in the remaining three sessions (t-test, α = 0.001). For the 18
sessions included for R-R vs. L-R analysis, these numbers were
six sessions (58.58% accuracy), six sessions (44.38% accuracy),

and six sessions. Alongside these decoding results, it’s also worth
noticing rat behavioral accuracy data. The average behavioral
accuracy was 69.1% for the 11 sessions used for L-L vs. R-L decod-
ing, and the behavioral accuracy for the 18 sessions used for R-R
vs. L-R decoding was 59.9%. To summarize, when the same direc-
tional choice was made in both correct and error trials (e.g., left
side choices in both L-L and R-L trials), the neural patterns asso-
ciated with the two types of trials were largely similar, but there
still seemed to be some difference between the two. When the
rat was less clear about correct vs. wrong choices (low behavioral
accuracy), the neural activities were more similar for correct (R-
R) andwrong (L-R) trials. However, this analysis is not conclusive
due to limited data available (only 28 out of all 190 sessions were
eligible for this analysis).

Adaptation of Spatiotemporal Firing Patterns
with Learning
Before presenting evidence on neural adaptation as learning took
place, we first illustrate how SVMs can be used for this purpose.
Figure 7A is an example of how SVM classification took place
to separate L-L and R-R trials where in the figure, we showed
the first two principal components of the original spatiotemporal
neural ensemble data. As shown, training data samples of the two
classes formed distinct clusters and the SVM created an optimal
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separating line properly. This classifier was then used to predict
rat response of left or right side lever press given a novel single
trial neural data sample from the test data set (Figure 7B). The
classification accuracy on the test set and the averaged decision
function values (see Materials and Methods) of test samples from
both classes could be calculated.

Figure 7C shows histograms of decision function values of
test neural data samples from the 100 runs of randomly selected
test samples in two sessions (session 9 and 21) from rat B11
as an example. Decision function values from the two sessions
were significantly different between the two classes (ANOVA,
p < 10−5). But the distance between the mean decision function
values of the two classes (0.40 vs. 1.14) was larger in the later ses-
sion when SVM classification accuracy was also higher (53.08%
vs. 64.30%).

As classification accuracy increased over learning sessions, we
also see an increase in the distance measurements of decision
function values of the two classes provided by SVM (Figure 7D,
rat B11 as an example). Among the seven rats, linear regres-
sion of Z-scored classification accuracy (CO data window, 500ms
bins) against normalized session number had a positive slope
of 1.59 (Figure 7E), with the 99% confidence interval at [0.91
2.26]. If we divide learning sessions into three stages of equal
length, the average of the Z-scored classification accuracy gradu-
ally increased over the three stages at−0.52,−0.19, and 0.48 (1st
vs. 3rd stage: ANOVA, p < 0.001; Figure 7E). The Z-scored dis-
tance measurement between decision function values of the two
classes had a positive regression slope of 1.32 (99% confidence
interval at [0.62 2.02]), and increased significantly over the three
stages as well to reach their respective Z-scored distance mea-
surement of −0.44, −0.15, and 0.40 (1st vs. 3rd stage: ANOVA,
p < 0.001; Figure 7E). These results suggest enhanced discrim-
inability in spatiotemporal neural activity patterns between L-L
and R-R trials as learning progressed.

After examining neural activities in the cue-on period in rela-
tion to rat’s behavioral learning improvement, we attempted to
gain additional insight by investigating neural activity patterns
during the response lever press period as a control. A 500ms time
window (LP window, from −100 to 400ms) around response
lever press was used, and spike counts in 100ms non-overlapping
bins were used to build SVMs to decode L-L and R-R trial lever
presses. For this time window, Z-scored classification accuracy
exhibited a weak rising trend (Figure 7F, LP window), with the
slope of a linear regression at 0.55, which was not significantly
different from 0 since the 99% confidence interval of the slope
was [−0.23 1.34].

To compare with those results using the LP data window,
we repeated the analysis for the three cue-on period windows
(Figure 7F). For CO1, from 0.5 to 1.0 s after cue onset while
directional movement was being performed, improvement of Z-
scored classification accuracy was significant (slope: 0.98; 99%
confidence interval of slope: [0.25 1.71]). For CO2, from 1.0 to
1.5 s after cue onset when directional movements were mostly
completed, improvement of Z-scored classification accuracy was
significant as well (slope: 1.48; 99% confidence interval of slope:
[0.79 2.17]). An improvement of Z-scored classification accuracy
(slope: 1.12; 99% confidence interval of slope: [0.40 1.84]) was

also observed in CO3, from 1.5 to 2.0 s after cue onset which was
right before extension of response levers. When the regression
analysis was carried out on individual rats, regression slopes for
cue-on period data windows were significantly greater than zero
(t-test; CO1, p < 0.01; CO2, p < 0.005; CO3, p < 0.05), but not
significantly different from zero for LP (t-test, p > 0.39). When
classification accuracies were averaged for each of the three equal-
length learning stages, Z-scored classification accuracy increased
gradually over stages for each of the three cue-on period win-
dows (CO1: −0.76, −0.37, and 1.13; CO2: −0.86, −0.24, and
1.10; CO3: −1.05, 0.11, and 0.94; ANOVA, 1st vs. 3rd stage,
p < 0.05), but remained leveled during the last two stages for
LP window (−1.15, 0.67, and 0.48; ANOVA, 2nd vs. 3rd stage,
p > 0.9). Figure 7G illustrates the Z-scored classification accura-
cies in the three stages for the four data windows, and again con-
sistent increment over the three stages was found in cue-on data
windows but not in the LP window. Taken together, enhanced
discriminability of neural activity patterns over the entire learn-
ing process was mainly found during the cue-on period, but not
the LP period when rats actually pressed levers.

To further validate the results from SVM based decoding
analyses presented above, we used linear discriminant analysis
(LDA) as a second classification method. Similar results from
LDA classifiers were obtained as those reported in Figures 7E–G.

Regression analysis was also performed between classification
accuracy (CO data window, 500ms bins) and the percentage of
trials with correct directional choice in single sessions. Results of
the seven rats were plotted in Figure 8A individually. The lin-
ear regression slope was significantly greater than zero (t-test,
p < 0.05). Thus, decoding of directional choice using neural
activity did improve as rats made progress on the learning task.

To show that spatiotemporal patterns indeed facilitated the
observed improvement in directional choice decoding, the mean
firing rate of the neural ensemble over the whole CO data win-
dow (1500ms bin, 1-D data samples) was used for classification as
a comparison. Regression slope of classification accuracy against
the percentage of correct choice trials (i.e., L-L and R-R trials)
when using the 1-D data samples is −0.0071 (Figure 8B, black;
n = 7), which is not significantly different from zero (99% con-
fidence interval at [−0.0221 0.0078]). When spatiotemporal pat-
terns (CO data window, 500ms bins) were used for classification,
the regression slope is significantly steeper (ANCOVA, p < 0.05),
which is 0.0380 with 99% confidence interval at [0.0147 0.0612].
Therefore, neural adaptation associated with directional choice
learning is better described by spatiotemporal activity patterns
than a low resolution neural activity representation.

Discussion

Seven out of nine rats successfully learned to perform a direc-
tional choice task from a naïve state. Using trial-and-error, they
were able to associate a light cue with a same side lever press-
ing. Based on rat behavioral data, we observed that rat movement
trajectory and the act of lever press became stereotyped within
the first few days and therefore, the motor skill learning factor
could be excluded from our analysis of associative learning. In
this study, we focused on analyzing neural data from the seven
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FIGURE 7 | SVM decoding over learning sessions. The CO data window

with spike counts in 500ms time bins was used in all results except those in

(F) and (G) where 100ms bins were used. (A) An illustration of training data

samples, support vectors and separating plane (black line) in a 2-D PCA

projected space. Data of rat B11 in session 21 were used as an example. (B)

The original single trial data samples used to generate trial-averaged training

data and single-trial test data samples plotted in the same space as in (A).

(C) Histograms of decision function values of test data set for sessions 9 and

21 of rat B11. (D) An example of classification performance over sessions

using data of rat B11. Upper panel: Classification accuracy tended to

increase with learning. Lower panel: the distance between L-L and R-R data

sets in the SVM kernel space increased with learning. (E) Classification

accuracy and distance between the two classes in SVM kernel space

increased through the course of learning (seven rats). (F) The increased

decoding accuracy was significant in the three cue-on period data windows

(CO1, CO2, and CO3), but not in LP window around response lever press.

(G) Neural activity patterns of response lever press (LP) showed different

dynamics in terms of classification accuracies (Z-scored) in three stages of

the learning process compared with those in cue-on data windows (CO1,

CO2, and CO3).
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FIGURE 8 | SVM decoding performance vs. behavioral accuracy. (A)

Linear regression of Z-scored SVM decoding accuracy (CO data window,

500ms bins) against the percentage of correct choice trials (i.e., L-L and R-R

trials) for individual rats (n = 7). Increased decoding accuracy was observed

in six out of seven rats. (B) Decoding accuracy using spatiotemporal patterns

(blue; CO data window, 500ms bins) improved as behavioral performance

improved, but not so when ensemble mean firing rate over the entire CO

data window (1500ms bin) was used for decoding (black).

rats during the cue-on period when they made directional choice
decisions. Our results showed that the ensemble mean firing rate
over all L-L and R-R trials appeared level over learning sessions.
The ensemble mean rate difference between L-L and R-R trials
did not show a strong trend of change as task learning progressed
either (Figure 5). However, when using SVMs to decode direc-
tional choice from spatiotemporal neural activity patterns, there
was a clear upward trend of SVM decoding accuracy over learn-
ing sessions. Correspondingly, there was a clear upward trend in
discriminability of neural patterns between left side and right side
choices (Figure 7). These findings suggest that neural adaptation
in rat’s motor cortical areas during learning of the directional
choice task may lie in the spatiotemporal firing pattern of neural
ensembles.

Adaptation of Spatiotemporal Neural Activity
Pattern during Task Learning
SVM classifiers were constructed to discriminate neural activity
patterns associated with directional choices. During our analysis
using SVM, care was given to ensure compatibility when com-
paring results over learning sessions. First, the same linear kernel
SVM model was used for all analyses. Second, each and every
classifier was trained with the same numbers of trial samples and
tested with the same numbers of samples in the same session
(Figures 6–8). Third, we reported classification accuracy in each
session using an averaged result of 100 independent SVM clas-
sifiers with randomly selected training and test data samples. As
such, SVM classification performance over sessions as reported
in Figures 7, 8 should be characteristic of neural activity patterns
as they adapted with learning.

In this study, we treated single units recorded from the same
electrode in different sessions as independent unit records. Actu-
ally, our results reported in this study were based on neural
ensembles which consisted of all units recorded simultaneously
during one session from the same rat. Therefore, we did not
intentionally identify and track same neurons over recording ses-
sions. This approach was used before (Cohen andNicolelis, 2004)

and it is adopted in this study since all our results are based on
ensemble neural activity.

Motor skill learning is a possible confound when analyzing
neural activity in the cue-on period. However, we observed that
rats became accustomed to directional movement and response
lever press faster than the associative learning aspect of the task.
Rat’s directional movement became stereotyped quickly after the
first few sessions (Figure 3D and Yuan et al., 2014) and the
response latency of lever press decreased during the first three
sessions (Figure 3B). Therefore, initial motor skill learning could
not explain neural adaptation along an entire learning process
lasted for weeks.

There may be other confounding factors in addition to motor
skill learning during the first few learning sessions. Notice that
right after a press on the center ready lever, at which time the
directional cue was presented, there was a 2 s cue-on period. Rats
usually moved from the center position to the location of their
chosen response lever waiting for the extension of the response
levers at the end of the cue-on period. Conceivably during this
2 s window, a rat’s anticipation of lever extension and planning of
lever press could possibly induce neural modulation. However,
behavioral data showed that rats quickly became accustomed
to performing the task routine after the first few days as indi-
cated by their stereotypedmovement and stable response latency.
Therefore, they could quickly become habituated to the extension
of response levers as well as the planning of the routine act of
response lever press. From that, those potential confounding fac-
tors may be excluded from possible reasons for reported neural
adaptation.

Would the reported neural pattern adaptation be explained
by the repetition of directional movements? Our previous anal-
ysis showed that rat directional movement was mostly completed
within CO1 window (Yuan et al., 2014), and there was no obvi-
ous or systematic movement during CO2 and CO3 windows
(Figure 1B). Improved discriminability of neural patterns, how-
ever, was observed not only in CO1 but also in CO2 and CO3
windows (Figure 7F). Response lever press was another action
repeatedly performed by the rats during learning of the task.
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However, we did not observe significantly improved discrimi-
nation of neural patterns in the LP data window (Figure 7F).
As discussed above, these actions quickly became stereotypical
and turned into learned motor skills. Previous primate stud-
ies showed that mere repetition of familiar actions did not
induce systematic changes in motor cortical neural firing activ-
ity (Paz and Vaadia, 2004; Rokni et al., 2007). Taken together,
the observed firing pattern adaptation during cue-on period
was unlikely to be associated with repeated performance of task
related actions.

Reward based stimulus-response association learning is
another aspect that may affect neural modulation in the rat
frontal areas that we recorded from. Previous studies showed that
reward-related action selection is believed to be mediated by the
corticostriatal circuitry, linking prefrontal (PFC), premotor, sen-
sorimotor cortices, and the striatum (Balleine et al., 2007). As two
important nodes within this circuit of primates, Pasupathy and
Miller (2005) found rapid changes in striatum but slow adapta-
tion in PFC during an associative learning task, where the time
course of PFC activity had a significantly stronger correlation
with the gradual improvement in task performance. In accor-
dance with their findings, the adaptation we observed in rat’s
frontal areas also correlated with slow improvement of behavioral
performance. Given the above considerations, the observed neu-
ral adaptation during the cue-on period could be attributed to
learning the correct stimulus-response association.

In the rat brain, both AGm and AGl project to basal ganglia
(Reep et al., 1987; Cheatwood et al., 2003; Alloway et al., 2009),
and both areas receive inputs from basal ganglia through the
thalamus (Donoghue and Parham, 1983; Reep et al., 1984). Rat
AGm and AGl have connections with a variety of frontal cortical
areas as well (Reep et al., 1984, 1990; Hoover and Vertes, 2007).
Therefore, these rat motor cortical areas could be in the loop of
the reward-related decision making circuit. The neural pattern
adaptation in motor cortical ensembles reported here provides
neurophysiological evidence for a role of rat motor cortical areas
in learning stimulus-response associations, which could be medi-
ated by this neural circuit when rewarded directional choices
were learned.

Ensemble Mean Rate vs. Spatiotemporal Activity
Pattern
Despite the well-observed phenomenon of dynamic neural
modulation in single neurons, relatively uniform firing rates in
cortical ensembles have been reported in different brain areas
of both primates and rodents while animals performed differ-
ent tasks (Hoffman andMcNaughton, 2002; Carmena et al., 2003;
Costa et al., 2006; Pantoja et al., 2007). But that does not include
studies that involve learning tasks except a few. In an associative
learning task, Cohen and Nicolelis (2004) reported unchanged
rate difference over the recorded neural ensemble during the
early days, specifically day 2 and day 3. When monkeys were per-
forming a stimulus-response association learning task, firing rate
change in single units of motor cortical areas was reported (Mitz
et al., 1991; Chen andWise, 1995; Brasted andWise, 2004), but it
was less certain if and how firing rate of a neural ensemble would
change over learning. Here, we report a relatively stable ensemble

mean firing rate and ensemble mean rate difference between left
and right side choices over a period of about 20–30 sessions cov-
ering the entire time course of associative learning. Our results
may suggest a balanced increase and decrease in single unit fir-
ing rates, which may have contributed to a stable motor cortical
ensemble mean firing rate during associative learning. This result
is supportive of “the conservation of firing” principle proposed
by Nicolelis and Lebedev (2009).

To gain understanding of neural coding beyond ensemble
averaged firing rates, investigations of spatiotemporal activity
patterns at a fine resolution have brought up new insight on fun-
damental neural mechanisms in visual attention (Heinze et al.,
1994), odor representation (Laurent et al., 1996; Spors and Grin-
vald, 2002; Rennaker et al., 2007), auditory processing (Kayser
et al., 2009), vibrissa deflection coding (Petersen and Diamond,
2000), contextual encoding (Hyman et al., 2012), sequence learn-
ing (Ma et al., 2014), and rule learning (Durstewitz et al., 2010),
to name a few. In a reaction time study (Laubach et al., 2000)
using a rat model, the overall firing rates of the AGm and
AGl ensembles did not change significantly but prediction of
trial outcome of either correct or error based on spatiotem-
poral activity patterns improved over learning sessions. Our
results appear along similar lines. However, the two experimen-
tal protocols are different in a few aspects. The Laubach et al.
(2000) experiment used a single stimulus (vibrotactile or audi-
tory) and a lever release for rats to report their detection of
presence of sensory cue. In our experiment, alternative choices
were associated with distinct stimuli. Besides, Laubach et al.
(2000) compared lever release either instructed by a stimulus
(correct) or executed spontaneously without stimulus presence
(error), while we compared instructed left side and right side
choices (both were correct) under distinct cues. This may help
rule out confounding factors such as the occurrence of sensory
stimuli and prediction of rewards (Carandini and Churchland,
2013).

In the Cohen and Nicolelis (2004) study, prediction of left
and right side movements by M1 neural ensembles improved
from the first day to the next 2 days. Unfortunately, results in
the remaining 8 days as rats’ performance continued to improve
until reaching a plateau were not available. Here we monitored
neural activity patterns through the entire process of associa-
tive learning, and demonstrated improved discriminability of
spatiotemporal firing patterns in motor cortical ensembles.

Rat Motor Cortical Areas and Associative
Learning
The rat AGl area has been considered to correspond with pri-
mate primary motor (M1) cortex (Donoghue and Wise, 1982;
Donoghue and Parham, 1983). On the other hand, the rat AGm
area refers to the medial subdivision of the agranular field of the
frontal cortex which differs from the lateral subdivision (AGl)
on cytoarchitectonic grounds (Donoghue andWise, 1982). Other
terms referring to this area used in literature include medial
precentral area (PrCm, Krettek and Price, 1977), frontal corti-
cal area 2 (Fr2, Zilles, 1985), and secondary motor area (M2,
Paxinos and Watson, 2005; MOs, Swanson, 1998). Leaving the
inconsistent nomenclature aside, rat AGm was proposed to be
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homologous to premotor cortex, supplementary motor area, and
frontal and supplementary eye fields in primates (Donoghue and
Wise, 1982; Reep et al., 1987; Van Eden et al., 1992; Condé et al.,
1995; Sul et al., 2011). However, a clear rat AGm homology in
primates has yet to be proved convincingly. Nonetheless, previ-
ous neuropsychological studies showed that lesions of rat AGm
impaired both the retrieval (Passingham et al., 1988) and the
acquisition (Winocur and Eskes, 1998) of visuomotor condition-
ing, which suggest a role for AGm in stimulus-response associa-
tive learning. In line with these reports, we observed firing pattern
adaptation during associative learning within the motor corti-
cal neural ensembles, which consisted of AGm neurons and AGl
neurons.

It is worth mentioning that in most of the primate studies
on associative learning, the animals usually had acquired cer-
tain stimulus-response association through long and extensive
training. And then, animals would learn a novel pairing (Chen
and Wise, 1995; Brasted and Wise, 2004) and/or the reversed
pairing (Pasupathy and Miller, 2005; Histed et al., 2009) during
one complete recording session. Sometimes the animals would
learn a variant of the trained sensorimotor tasks (Mitz et al.,
1991; Li et al., 2001; Genovesio et al., 2014), which also could be
completed within one session. In these cases, the complete time
course of learning could take place in tens of minutes or a single
recording session. This may be too soon to result in long-lasting
synaptic changes, as suggested by Histed et al. (2009). In our
experiment, it took rats several weeks to master the directional

choice task. This may allow substantial neural adaptation to take
place, possibly through changes at the synaptic level.

Synaptic plasticity has long been hypothesized for being an
important neurochemical foundation of learning and memory
(Malenka and Bear, 2004; Gilson et al., 2010), and its necessity
has been well-supported (Martin et al., 2000). Rat motor cor-
tex is highly capable of functional and structural changes even
in adulthood. Reorganization of motor maps has been observed
in various experiments (Sanes et al., 1990, 1992; Lee et al., 2003),
including animals learning a motor skill (Nudo et al., 1996; Kleim
et al., 1998, 2004). Cortical synaptogenesis has been reported dur-
ing motor training (Jones et al., 1999; Kleim et al., 2004). And
recent studies demonstrated learning-induced dendritic spine
changes in rodents performing motor tasks (Xu et al., 2009; Yang
et al., 2009; Wang et al., 2011). While these changes were related
to learning of certain motor skill, whether learning stimulus-
response association would induce such changes in rat motor
areas is unclear. Given the lengthiness of the task, rats in our
experiment may have a chance to experience synaptic modifica-
tion during the learning process that lasted several weeks. Conse-
quently, an enhanced spatiotemporal neural representation may
become increasingly predictable of directional choice.
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Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the
eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations
in the persistent neural activity of neural integrators in the oculomotor brainstem, which
integrate sequences of transient saccadic velocity signals into a short term memory of
eye position. Despite intensive research and much progress, the precise mechanisms
by which oculomotor posture is maintained remain elusive. Drift exhibits a stochastic
statistical profile which has been modeled using random walk formalisms. Tremor is widely
dismissed as noise. Here we focus on the dynamical profile of fixational tremor, and argue
that tremor may be a signal which usefully reflects the workings of oculomotor postural
control. We identify signatures reminiscent of a certain flavor of transient neurodynamics;
toric traveling waves which rotate around a central phase singularity. Spiral waves play
an organizational role in dynamical systems at many scales throughout nature, though
their potential functional role in brain activity remains a matter of educated speculation.
Spiral waves have a repertoire of functionally interesting dynamical properties, including
persistence, which suggest that they could in theory contribute to persistent neural activity
in the oculomotor postural control system. Whilst speculative, the singularity hypothesis of
oculomotor postural control implies testable predictions, and could provide the beginnings
of an integrated dynamical framework for eye movements across scales.

Keywords: fixational eye movement, tremor, traveling waves, spiral wave, phase singularity, Lévy walk, persistent

neural activity, neural integrator

1. INTRODUCTION
During fixation the eye is not still. Three main classes of fixational
eye movement (henceforth FEM) have been identified (Martinez-
Conde et al., 2004). Microsaccades are very fast movements
which occur relatively infrequently. Drift is a slow, meander-
ing component which occupies most of fixation time. Tremor
is a fast, low amplitude aperiodic oscillation imposed on drift.
Microsaccades are in many ways much like saccades on a tiny
scale (Ko et al., 2010; Kagan and Hafed, 2013; Martinez-Conde
et al., 2013; Otero-Millan et al., 2013; Poletti et al., 2013),
though they may also be linked to the drift component (Engbert
and Mergenthaler, 2006; Engbert et al., 2011). FEM have clas-
sically been thought to counteract sensory adaptation. Recent
evidence suggests that FEM play a more sophisticated role, opti-
mizing visual flow for the response properties of retinal ganglion
cells (Rucci et al., 2007; Kuang et al., 2012) and relocating the
highest resolution parts of the retina with great precision (Ko
et al., 2010; Poletti et al., 2013). Some theories suggest that
FEM perform an active perceptual palpitation of the visual scene
which is fundamental to vision (Ahissar and Arieli, 2001, 2012;
O’Regan and Noë, 2001). Recently, very high resolution eye move-
ment data based on tracking tiny movements of ocular vein
structure in three dimensions has revealed more structure to FEM
than had previously been suspected (Li and Zhang, 2012; Zhang

and Li, 2012). These studies reported microsaccades which were
not straight and ballistic (as previously thought), but curving,
and even bent and jerky. Relatively little detailed information was
given, but it was reported that the drift-tremor combination took
a complex, curling trajectory. These high resolution data may
enable new insight into the underlying generative mechanisms of
fixational eye movements. Oculomotor postural control is medi-
ated by brainstem circuits (Aksay et al., 2000, 2007; Sparks, 2002)
and is strongly associated with persistent neural activity (Major
and Tank, 2004), which plays the role of integrating transient
stimulation from superior colliculus reflecting saccadic velocity
commands into persistent activity encoding the new eye position.
The neuroanatomy and functional circuitry of oculomotor pos-
tural control has been intensively studied (e.g., Aksay et al., 2000,
2001, 2003; Miri et al., 2011a,b; Fisher et al., 2013), but the precise
mechanisms underlying drift and tremor remain elusive.

Rotational waveforms (aka spiral waves, vortices, tori) are a
commonplace, universal dynamical form which play an orga-
nizing role in dynamical systems at all scales, from galaxies to
weather to evolution to organisms to organs to cells to pho-
tons (Toomre, 1969; Da-sheng, 1980; Boerlijst and Hogeweg,
1991; Gray and Jalife, 1996; Winfree, 2001; Molina-Terriza et al.,
2007; Schecter et al., 2008; Taniguchi et al., 2013). This general-
ity led Winfree (2001) to suggest toroidal temporal structure as
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a fundamental aspect of biological time, a notion for which the
reference provides many empirical examples. Spiral waves are a
canonical mode of pattern formation in dissipative systems oper-
ating far from equilibrium (Kuramoto and Koga, 1981; Cross and
Hohenberg, 1993). The brain, by necessity, is one such system
(e.g., Kelso, 1995; Ermentrout, 1998). Thus if toroidal wave-
forms (termed spiral waves in two dimensions, and scroll waves
in three dimensions) do not play an organizing role in normal
neurodynamics, then the brain must be considered something
of an exception to the rule, which would require explanation.
The suspected role of spiral waves in some pathological scenar-
ios such as epilepsy (Milton, 2012) and cardiac fibrillation (Gray
et al., 1998) suggests that the nervous system possesses mech-
anisms for actively suppressing turbulence and spatiotemporal
chaos (e.g., Schiff et al., 1994), but observations of spiral waves
in non-pathological settings (Jung et al., 1998; Huang et al., 2004,
2010) clarify that such suppression is not complete or universal.
Indeed, an active field of study in cardiac defibrillation is the sup-
pression of spatiotemporal chaos and turbulent neural activity by
the seeding of spiral waves (e.g., Zhang et al., 2002; Xiao-Ping
et al., 2011).

The current contribution hypothesizes a connection between
quasi-persistent spiral neurodynamics and persistent neural activ-
ity in the context of oculomotor postural control (Major and
Tank, 2004). Sections 2 and 3 respectively introduce the liter-
ature on spiral waves and fixational eye movements. Section 4
details our motivations in proposing the singularity hypothesis of
postural memory. Our purpose is not an exhaustive review, nor
to convince the reader that our hypothesis is necessarily correct,
but a targeted presentation of empirical evidence and functional
arguments which render the singularity hypothesis interesting,
plausible and worth testing. Section 5 offers some concluding
remarks. Predictions are presented in boxes in the main text.

2. TRANSIENT NEURODYNAMICS AND SPIRAL WAVES
The classical focus on attractor networks in systems neuroscience
(see for review Amit, 1992) is increasingly being enriched by
a modern synthesis which also stresses the importance of self-
organization and transient neural dynamics (Rabinovich et al.,
2001; Maass et al., 2002; Seliger et al., 2003; Durstewitz and
Deco, 2008; Friston et al., 2012; Milton, 2012), fractality in phys-
iology (Goldberger and West, 1987; West et al., 1994; Werner,
2010; West, 2010), self-organizing criticality (Bak et al., 1987;
Bak, 1996; Jung et al., 1998), chaotic itinerancy (Tsuda, 1991,
2001; Kaneko and Tsuda, 2003) and dynamic pattern formation
in non-equilibrium dissipative systems (Cross and Hohenberg,
1993).

Neural spiral waves are an intriguing class of quasi-persistent
transient neurodynamics, whose functional potential in brain
activity remains an open question. They have received extensive
theoretical attention in terms of their abstract properties in net-
works (e.g., Coombes, 2005; Kilpatrick and Bressloff, 2010b; Ma
et al., 2012b), but surprisingly little attention in terms of con-
crete cases linking their dynamics to perception and behavior. We
have conducted preliminary modeling studies employing spiral
waves for visual salience mapping (Wilkinson and Metta, 2011;
Wilkinson et al., 2011), and spiral neurodynamics have linked to

visual geometric hallucination (Bressloff et al., 2001; Kilpatrick
and Ermentrout, 2012a,b; Froese et al., 2013). At the motor end,
Heitmann, Breakspear and colleagues have developed physiologi-
cally explanatory models showing how traveling waves (including
spirals) can encode motor trajectories (Heitmann, 2013).

2.0.1. Spiral waves in nature, biology, and the brain
The multiscale ubiquity of spiral waves in nature and biol-
ogy (Toomre, 1969; Lechleiter et al., 1991; Winfree, 2001), and
their interesting dynamical properties (Boerlijst and Hogeweg,
1991; Biktashev and Holden, 1993, 1995; Langham and Barkley,
2013), have motivated many physical, chemical, and mathemati-
cal studies. Arthur Winfree pioneered computational and empiri-
cal investigations of toroidal dynamics in chemical and biological
systems (Winfree, 1967, 1972). Many biological dynamics exhibit
toroidal form (Winfree, 2001). The modern understanding of
pathological heart fibrillation (and de-fibrillation intervention)
is perhaps the most prominent medical application of this work
(e.g., Gray et al., 1998; Gray and Chattipakorn, 2005), though cel-
lular calcium dynamics is another important example (Lechleiter
et al., 1991). Spirals are reentrant waves which circle around a cen-
tral rotor known as a phase singularity (Winfree, 1991); a point of
maximally uncertain phase, surrounded by points of all phases.
The central rotor of a whirlpool or tornado provides a physical
example in three dimensions.

Propagating calcium waves in astrocyte networks are thought
to play an important role in regulating brain activity (Cornell-
Bell and Finkbeiner, 1991; Finkbeiner, 1992). Jung et al. (1998)
observed that Ca2+ spiral waves exhibiting scale-free distribu-
tions suggestive of self-organizing criticality (Bak et al., 1987)
are characteristic of healthy function, whilst epileptic events
are characterized by the breakdown of this scaling. In neu-
ral tissue, traveling waves have been observed widely in vari-
ous species in both sensory and motor cortices (see for review
Wu et al., 2008; Sato et al., 2012) via voltage sensitive dye
imaging (“VSDI”). VSDI is an invasive optical imaging method
which enables measurement of subthreshold changes in mem-
brane potential with high spatiotemporal resolution (Grinvald
and Hildesheim, 2004). Spiral dynamics are commonplace in
the dynamics of simulated excitable media including networks
of model neurons (Milton et al., 1993; Winfree, 2001; Chun-Ni
et al., 2010; Yu et al., 2010; Ma et al., 2012a), and have been
observed in mammalian (Huang et al., 2004, 2010) and reptil-
ian (Prechtl et al., 1997) cortex. Movies of cortical spiral waves
in the VSDI signal (from Huang et al., 2010) can be found
http://www9.georgetown.edu/faculty/wuj/propagationwave.html.

It has been suggested that spiral waves may play an organiz-
ing role in neural field interactions (Wu et al., 2008; Freeman,
2009; Huang et al., 2010). Short-lived spiral waves are frequently
observed in the healthy case (Huang et al., 2010), but the growth
of spiral wave formations of large duration and extent has been
linked to pathological conditions including heart fibrillation
(Gray et al., 1998) and epileptic seizure (Milton and Jung, 2003;
Viventi et al., 2011; Milton, 2012; Stacey, 2012). This is sugges-
tive that spiral waves are a part of normal function, whether
constitutive or epiphenomenal, but that their (potentially use-
ful) tendency to enslave surrounding dynamics (e.g., Savill et al.,
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1997; Yang and Yang, 2007; Huang et al., 2010) has to be carefully
controlled.

2.0.2. Dynamical behavior of spiral waves
The dynamical behavior of spiral waves can be complex and
is the subject of extensive research. A useful introduction with
video visualizations is given at Björn Sandstede’s website hosted
by the Department of Applied Mathematics at Brown University,
USA, http://www.dam.brown.edu/people/sandsted/research.
php?project=spirals. At the risk of oversimplifying, the behavior
of spiral singularities exhibits three basic components. Firstly,
the rotational orbit of the whole spiral wave will exhibit a
characteristic frequency and phase, and is reflected in a small, “on
the spot” circular rotation of the phase singularity at the spiral
tip. The current hypothesis proposes that this component may
correspond to the low frequency peak observed in tremor statis-
tics (Spauschus et al., 1999; Greschner et al., 2002), and could
explain new high resolution observations of curling trajectories
of drift and tremor (Li and Zhang, 2012; Zhang and Li, 2012).

This trajectory may be perturbed in various ways to take
on a locally more complex, globally drifting form. This is
known as spiral drift, and occurs in response to various forms
of symmetry breaking perturbations/gradients in the external
milieu (Biktashev and Holden, 1995; Wulff, 1996; Sandstede
et al., 1999; Biktashev, 2007). Figures 1–11 in the Scholarpedia
article Biktashev (2007) (http://www.scholarpedia.org/article/
Drift_of_spiral_waves), display images and animated movies
of the trajectory of spiral singularities under various forms of
symmetry breaking. Note the basic curling trajectory, whose
period is equal to that of the wave’s orbit. This spiral drift in
response to symmetry breaking perturbations in the excitability
of the medium is the neural correlate we hypothesize for the
well known slow component of fixational drift (Martinez-Conde
et al., 2004; Rolfs, 2009).

In addition to the above relatively slow components, fast, ape-
riodic oscillatory modulations of the basic curling trajectory can
result from instabilities at the phase singularity (Winfree, 1991).
The singularity is the point at which all surrounding signals can-
cel exactly, and so small fluctuations in the surround cause this
point of balance to jitter unpredictably. Gray et al. (1998); Bray
et al. (2001) tracked the spacetime trajectory of phase singulari-
ties in cardiac fibrillation data. Figure 1, from Bray et al. (2001)
depicts the evolution of a real cardiac phase singularity (white
tube inside black mesh) in detail over one cycle of the carrying
spiral wave. Figure 2, also from Bray et al. (2001) graphs longer
trajectories of the singularities of four interacting spirals. Note
the fast (80–90 Hz) aperiodic oscillation superimposed on the
basic curling trajectory, much faster than the period of the carrier
wave. Gray et al. (1998) reported similar spiral meander during
cardiac fibrillation. Though here in cardiac tissue, this instability
at the singularity is a universal feature of spiral waves (Winfree,
1991). The current proposal suggests this instability as the source
of the well known high frequency component of fixational tremor
(Martinez-Conde et al., 2004; Rolfs, 2009).

2.0.3. The functional role of neural traveling waves
Traveling waves are routinely observed throughout the brain (Wu
et al., 2008), and evidence is increasingly suggesting that they

play a functional role (Modolo et al., 2011; Sato et al., 2012;
Bahramisharif et al., 2013). Heitmann, Breakspear and colleagues
have produced a series of physiologically explanatory and plau-
sible models showing how traveling waves can encode motor
trajectories read out by dendritic spatial filters (Breakspear et al.,
2010; Heitmann et al., 2012, 2013). These are particularly interest-
ing in the current context. In these models, traveling waves encode
motor patterns defining movement, whilst synchrony constitutes
the resting state. The current model, in which spiral waves encode
for the active holding of posture, sits well in this framework,
because spirals, unlike other traveling waves, have and (almost)
hold a location in a specific sense (Biktasheva and Biktashev,
2003; Langham and Barkley, 2013). This makes them interest-
ing for the kind of active almost-stillness characterizing postural
control.

Spiral wave activity has been observed in the VSDI signal,
which primarily reflects the field dynamics of sub-threshold
membrane potentials (Grinvald and Hildesheim, 2004). These
waves can keep cells in a depolarized “ready” state for input, or
indeed polarize cells to effectively ignore input (Bahramisharif
et al., 2013). This implements a form of spatiotemporally struc-
tured gain control, widely agreed to be a fundamental aspect
of nervous function (Hillyard et al., 1998; Salinas and Thier,
2000; Salinas and Sejnowski, 2001; Rothman et al., 2009; Olsen
et al., 2012). Gain fields have been associated with attentional
selectivity at both the sensory and motor end (Aston-Jones and
Cohen, 2005; Saalmann and Kastner, 2009; Sara and Bouret,
2012).

On this view, fast, aperiodic spiral meander depolarizes a point
locus of local cells in the gamma band (peaking around 80–90 Hz)

FIGURE 1 | The evolution of a spiral wave over one rotational orbit.

Space is represented in the horizontal axes, and time (in milliseconds) on
the vertical axis. The black mesh encloses a thresholded area of reduced
variance (i.e., low amplitude) at the spiral center, as observed in cortex by
Huang et al. (2004, 2010). The white tube within the black mesh tracks the
evolution of the phase singularity at the spiral core. Note the fast (80–90 Hz)
oscillation of the singularity, which we hypothesize underlies the fast
component of fixational tremor. Reproduced from Figure 8B in Bray et al.
(2001), copyright John Wiley and Sons Publishing 2001.
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FIGURE 2 | The evolution of four interacting spiral singularities

in space (horizontal axes) over time (vertical axis). Time is
denoted in milliseconds. Note the fast (80–90 Hz) oscillation of the
singularities, which we hypothesize underlies the fast component

of fixational tremor. Graphs A–C are real trajectories from cardiac
data. Graph D is from a computational model. Reprinted from
Figure 4 in Bray et al. (2001), copyright John Wiley and Sons
Publishing 2001.

in a quasi-phaseless manner. The region outside the spiral center
is polarized and depolarized periodically by the spin of the spiral
arms, on a slower (5–25 Hz) scale dependent on the period of
the spiral orbit and the number of spiral arms. Examining the
relationship between local field potential and spike rates in the
temporal cortex, Zanos et al. (2012) found two populations of
cells with just these response characteristics. One population
responded at high frequencies in a phase invariant manner, the
other at lower frequencies in a phase dependent manner. The
(quasi)persistent, self-generating character of spiral waves is par-
ticularly interesting in the context of persistent neural responses
to transient stimuli. Huang et al. (2010) suggests that spiral waves
in visual cortex may be involved in maintaining persistent activity
from transient stimuli in the sensory context. A video of their
minimal computational model, in which a persistent spiral wave
is seeded by transient input, is http://www.jneurosci.org/content/
suppl/2004/11/03/24.44.9897.DC1/model-_spiraldrift.mpg. The
current hypothesis extends this idea to the context of persistent
activity in oculomotor postural control (Aksay et al., 2001; Major
and Tank, 2004).

3. FIXATIONAL EYE MOVEMENTS
Fixational eye movements can be quite different between species.
Martinez-Conde and Macknik (2008) review comparative stud-
ies of FEM in different species, concluding that tremor appears

to be the most phylogenetically conserved and fundamental
component, consistent with a basic role for spiral wave dynam-
ics in the generative process of FEM. Drift is also widespread,
whilst microsaccades appear linked to the existence of foveated
ocular architecture. Microsaccades are the most intensively
researched component of FEM in humans. These fast reloca-
tions of the fixation point appear to play a similar role and
manifest similar neural correlates as saccades more generally
(Ko et al., 2010; Hafed and Krauzlis, 2012; Kagan and Hafed,
2013; Martinez-Conde et al., 2013; Otero-Millan et al., 2013;
Poletti et al., 2013), but also show relations to drift (Engbert
and Mergenthaler, 2006; Chen and Hafed, 2013). Microsaccades
are relatively infrequent, occuring up to three times per sec-
ond at most and usually less frequently, in an irregular but
individually characteristic fashion (Engbert and Mergenthaler,
2006).

Most of fixation time (>90%) is occupied by a slow drift of
fixation (Martinez-Conde et al., 2004; Martinez-Conde, 2006;
Rolfs, 2009), as depicted in Figures 3, 4. Upon this is superim-
posed a fast (peaked around 80–90 Hz), low amplitude (approx.
one photoreceptor), aperiodic oscillation termed tremor. Tremor
is usually within the noise range of the recording equipment
(Martinez-Conde et al., 2004). As a result, less is known about
tremor than other components, and tremor is not resolved in
many FEM studies of drift and microsaccades.
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3.1. DYNAMICAL CHARACTERISTICS OF FIXATIONAL EYE
MOVEMENTS

3.1.1. Random walk modeling of FEM
On the basis of early studies (Cornsweet, 1956; Matin et al.,
1970; Findlay, 1971), FEM have been widely held to exhibit the
1/f spectrum of classical Brownian noise. Random walk analysis
examines the mean squared displacement of a diffusing “parti-
cle” (in this case the point of fixation) relative to time. In ideal

FIGURE 3 | Fixational eye movements and microsaccades, from Figure

1 in Engbert et al. (2011). Data were recorded from fixational eye
movements during a fixation of 2 s. Slow movements (blue) are highly
erratic, whereas microsaccades (red) are ballistic, small-amplitude epochs
with a more linear trajectory (compared with the slow background
motions). The sample trajectory was recorded with a sampling frequency of
500 Hz (for details see ref. 29 in Engbert et al., 2011). Reprinted from
Engbert et al. (2011), copyright PNAS 2011.

FIGURE 4 | FEM trajectories recorded with a new high resolution video

tracking technique. Zhang and Li, 2012

Brownian motion, this relation is linear in time. This character-
ization has been adopted in some recent models of how vision
may cope with (Pitkow et al., 2007; Burak et al., 2010), and indeed
exploit (Kuang et al., 2012), jitter of the retinal image due to FEM.

At the motor end, an important neural correlate of oculo-
motor postural control is persistent neural activity in brainstem
regions including the prepositus hypoglossi (“PH”) (Delgado-
Garcia et al., 1989) and medial vestibular nucleus (“MVN”)
(Serafin et al., 1991; du Lac and Lisberger, 1995). Persistent here
refers to sustained activity on timescales much longer than indi-
vidual neural spiking timescales, in response to a relatively brief
stimulation. Seung (1996) described a model of how persistent
neural activity could be maintained through positive feedback,
and showed how FEM drift-tremor could reflect a random walk
along the line attractor created by the positive feedback dynamics
in the motor memory of eye position. Seung suggested that vari-
ous sources of noise, such as the random fluctuations in the tonic
input from vestibular afferents, could be causing the random walk
behavior.

Persistent neural activity is associated with short term mem-
ory more generally (Major and Tank, 2004), and various potential
mechanisms for maintaining persistent activity have been investi-
gated (see for review Brody et al., 2003). Stability issues arising
from the positive feedback model were addressed in Koulakov
et al. (2002); Goldman et al. (2003). More recently, empirical evi-
dence contrary to the predictions of line attractor models (Aksay
et al., 2007; Miri et al., 2011a) has motivated the proposal of mod-
ifications of recurrant network models, and the development of
new models based on functionally feedforward networks and bal-
anced regimes of excitation and inhibition (Goldman, 2009; Lim
and Goldman, 2013). We address this topic in more detail in the
following section.

3.1.2. Self-avoiding random walk models
Recent work has shown that FEM exhibit non-trivial temporal
correlations whose description require fractional scaling expo-
nents, rather than the unitary scaling exponent of pure Brownian
motion. Engbert and Kliegl (2004); Mergenthaler and Engbert
(2007) applied random walk analysis to the statistics of fixational
eye movements at short (<40 ms) and long time (100–400 ms)
scales. The tremor component was not resolved in these stud-
ies. At short timescales, the fixation point drifts faster than
for normal diffusion/Brownian motion, with scaling exponents
in the range 1.3–1.5. This is termed a “persistent” Codling
et al. (2008) or “superdiffusive” Metzler and Klafter (2000) pro-
cess. On longer timescales, however, the distance of the fixation
point drifts slower than normal diffusion (termed subdiffu-
sive/antipersistent). We adopt “sub/superdiffusive” here to avoid
crossing terminology with that of persistent neural activity.

(Engbert et al., 2011) modeled this behavior in terms of a
self-avoiding random walk (“SARW”) in a potential. The poten-
tial accounts for the long term subdiffusivity, implementing a
tendency for “wandering back” to the center of the potential
well in the long term. The short term superdiffusivity is mod-
eled by giving the random walk a memory, and adding a term
such that the walk next visits the neighbor whose “previously
visited” activation is lowest, with ties resolved randomly. As a
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result, the walk tends to be structured by the initial direction
which is chosen (randomly), as the path backwards is in general
more visited. In this model, microsaccades are triggered by vis-
iting a site with a “visited” activation above a threshold. Roberts
et al. (2013) describe a similar self-avoiding random walk model,
though without the confining potential and the microsaccade
threshold, and with an imprecise continuous memory and rather
than a lattice representation. Importantly, this study showed that
both the superdiffusive drift in the FEM signal, and the self-
avoiding random walk approach, generalize to more ecologically
valid, dynamic viewing conditions (watching a film).

3.1.3. Recent findings may challenge some existing ideas
about FEM

Recently, Zhang and Li (2012) reported technical innovations
based on binocular video tracking of ocular vein structure, which
enable non-invasive, high resolution imaging of FEM in three
rotational degrees of freedom. Importantly, the optical imag-
ing approach avoids the interaction of mechanical measurement
devices with ocular tremor. The authors reported a previously
unsuspected level of structure at high resolution. See Figure 3 for
a FEM trajectory where tremor is not resolved. Figure 4 depicts
a FEM trajectory as measured by this new technique. These find-
ings are quite new and have not received much attention to date,
at least in terms of citations. They likely merit more attention,
because if they are reproducible, they offer a challenge to existing
conceptions of FEM in a number of ways.

Firstly, the microsaccadic trajectories recorded in these high
resolution data are not straight and ballistic, as is widely sup-
posed Martinez-Conde et al. (2004); Martinez-Conde (2006);
Rolfs (2009); Martinez-Conde et al. (2013). The microsaccadic
trajectories observed by Zhang and Li (2012) were often curved,
and could exhibit fine scale changes in both speed and direc-
tion. Secondly, and crucially to our argument here, Zhang and
Li (2012) reported that drift can take the form of a curled line at
a fine spatial scale wherein tremor is resolved. This observation
of a trajectory which is habitually self-crossing at a small spa-
tiotemporal scale is not predicted by self-avoiding random walk
models of drift generation, as the process should be self-avoiding
at small spatiotemporal scales. These findings are a significant
part of the motivation for the current hypothesis. Unfortunately,
however, we have as yet been unable to obtain the associated
time series data. Speculativeness notwithstanding, we believe that
the proposal of testable hypotheses is a positive way to motivate
the publicization of data and structure further empirical inves-
tigations in this area. Another high resolution non-contact FEM
measurement method which can resolve tremor has recently been
reported by Kenny et al. (2013a,b), so data of sufficient resolution
may soon become available from this group.

3.1.4. Tremor; a clue to the mechanisms of FEM, or “just noise”?
Tremor has often been dismissed as “noise,” but then so have
other aspects of FEM over the years. Whether tremor reflects
unrelated background noise or the workings of the neural mech-
anisms which maintain the dynamical posture of the eye remains
very much an open question. Spauschus et al. (1999) found strong
binocular coherence of tremor, and concluded that tremor reflects

the patterning of low-level drives to oculomotor neurons, rather
than motor noise. More recently, a sophisticated method was
employed by Thiel et al. (2008), who reported positive evidence
for binocular phase synchronization. They concluded that there
might be only one center in the brain that produces the fixational
movements in both eyes, or a close link between the two centers.
The loss or reduction of tremor in certain cases of brain pathology
(Michalik, 1987) and in coma (Shakhnovich and Thomas, 1977)
also gives reason to suspect a more important, and delicate, source
of tremor.

4. MOTIVATIONS FOR THE SPIRAL WAVE HYPOTHESIS OF
FEM DRIFT-TREMOR

4.1. STATISTICAL SIMILARITIES BETWEEN DRIFT-TREMOR
TRAJECTORIES AND SPIRAL DYNAMICS

Tremor contains a strong spectral peak around 80–90 Hz and
a less prominent, variable lower frequency component up to
around 25 Hz (Spauschus et al., 1999). A low amplitude (approx.
1 photoreceptor), slow (around 5 Hz), tremor-like ocular oscil-
lation has been recorded at very high resolution in the turtle
(Greschner et al., 2002), possibly corresponding to the slow
component of tremor in primates, though cross species compar-
isons must be made with caution (Martinez-Conde and Macknik,
2008). Greschner et al. (2002) reported this oscillation as periodic,
though the flat peak in the frequency spectrum around 5 Hz, and
the high variability visible in the inset example trajectories, may
be suggestive of quasi-periodicity (see their Figure 1A). Either
way, the regularity of this low frequency component is interest-
ing because it suggests a certain systematicity to the generative
mechanisms. Closer examination of human tremor is required
to establish whether an identifiable carrier wave exists at lower
frequencies, which is then heavily masked by the fast aperiodic
component of tremor. An underlying spiral wave neurodynamics
is consistent with both a periodic and a quasi-periodic form for
this carrier wave (Barkley et al., 1990; Broer et al., 1996), and pre-
dicts the accompanying high frequency aperiodic oscillation (see
Figures 1, 2).

See Figure 5, reprinted from Figure 7 in Huang et al. (2010),
for visual representations of spiral drift recorded in visual cor-
tex. Like FEM drift (Cornsweet, 1956; Matin et al., 1970; Findlay,
1971), spiral drift can exhibit Brownian statistical structure, due
to both external forcing/environmental gradients (Sendiña-Nadal
et al., 2000; Yuan et al., 2011) and intrinsic dynamics (Biktashev
and Holden, 1998). Such gradients could (but need not) reflect
the path memory and/or confining potentials in SARW models
(Engbert et al., 2011), and perhaps even visual context (Mensh
et al., 2004; Chan and Galiana, 2005). Like FEM drift, the veloc-
ity of spiral drift in neocortex is variable (Huang et al., 2010),
and was found to be higher in induced sleep-like states (see
Figure 5), consistent with recent observations that time-on-task
increases the speed of FEM drift, whilst reducing the peak velocity
of microsaccades (Di Stasi et al., 2013).

Prediction The singularity hypothesis predicts that, when the
small spatial scale of tremor is resolved, drift-tremor trajec-
tories will take a curling, self-crossing form reflecting the
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rotational orbit of a spiral wave. This might also be complex
due to interactions between similar systems controlling dif-
ferent degrees of freedom. The fast component of tremor will
manifest as an aperiodic modulation of this carrier wave. The
presence of a slow (10–20 Hz) rotational component, giving
the trajectory a habitually self-crossing form at small scales,
would distinguish the spiral wave model from self-avoiding
random walk models of FEM drift.

4.2. SPIRAL WAVES AND THE NEURODYNAMICS OF OCULOMOTOR
POSTURAL CONTROL

4.2.1. Persistent neural activity
Persistent neural activity (“PNA”) refers to localized “bumps” of
fast firing cells which persist over timescales much longer then
the timescales of the individual neurons comprising the bump.
PNA is an important neural correlate of working memory (Major
and Tank, 2004), and has been studied intensively in the context
of brainstem neural integrators which encode eye position dur-
ing oculomotor control (e.g., Aksay et al., 2001, 2007; de Dios
Navarro-López et al., 2004; Miri et al., 2011a). Fluctuations in
oculomotor PNA are thought to underly FEM drift and tremor,

FIGURE 5 | Behavior of spiral waves in mammalian visual cortex under

various conditions. From the original; Drifting of Spiral Phase Singularities.
(A) Trajectory of spiral phase singularity during a 12-cycle spiral waves in
cortical slices. (B) Trajectory of spiral phase singularity during an 11-cycle
spiral waves in vivo under Cch/bic application. Hexagon shows the field of
view and each color represents one cycle of spiral wave. (C) Trajectory of
spiral phase singularities during 2 spiral waves (red and cyan, each with 1.5
turn) during sleep-like states. (D) Comparison of drifting speed of spiral
phase singularity for slices and in vivo. Five examples from in vivo under
Cch/bic, in vivo during sleep-like states and slices, respectively, are shown
(mean + SD). Columns with stars on top are from the examples in (A,C).
The standard deviation is large because the drifting of spiral phase
singularity is not consistent and there are large variations from time to time.
The difference between in vivo and slices is statistically significant (Welch’s
test, p < 0.001, 25 t tests). The difference between in vivo (Cch/bic) and in
vivo (sleep-like) is also significant. Reprinted from Figure 7 in Huang et al.
(2010), copyright Elsevier 2010.

but the precise mechanisms responsible for their generation
remain a matter of considerable debate. Current models regarding
these mechanisms have been categorized on the basis of whether
they posit intrinsic unicellular mechanisms (e.g., Shen, 1989;
Loewenstein and Sompolinsky, 2003; Teramae and Fukai, 2005)
or network mechanisms (Cannon and Robinson, 1985; Seung,
1996; Seung et al., 2000; Goldman et al., 2003; Goldman, 2009).
Some role for network mechanisms is suggested by evidence of
correlated activity between cells in the oculomotor integrator net-
work (Aksay et al., 2003), and by the observed covariance of eye
position and the frequency and magnitude of the synaptic barrage
converging on integrator cells (Huang, 2009). These alternatives
are not necessarily mutually exclusive, and multiple mechanisms
may operate in the maintainance of PNA in the oculomotor
system and elsewhere in the brain (Major and Tank, 2004).

The vestibulo-oculomotor system exhibits fractional dynam-
ics (Anastasio, 1994), and complex time variation in PNA has
motivated arguments that a model with multiple timescales of
persistent firing may be required (Anastasio, 1998). Indeed, recent
evidence for multiple timescales of persistence in oculomotor
PNA (Miri et al., 2011a) suggests a higher dimensional attractor
dynamics than proposed by earlier line attractor models (Seung,
1996; Seung et al., 2000; Goldman et al., 2003), leading to the
development of new models with more complex dynamics (Miri
et al., 2011a; Fisher et al., 2013). (Goldman, 2009) describes a
functionally feed-forward architecture which reproduces some of
the time variation in PNA, showing that positive feedback is not
essential in principle, while Lim and Goldman (2013) presents a
model based on homeostatic mechanisms which maintain a care-
ful balance of excitation and inhibition. In human psychophysical
studies, Khojasteh et al. (2012) found that cross subject averag-
ing hides idiosyncratic nonlinear patterns. All this suggests that
considerable complexity inhabits the dynamics of PNA in the
oculomotor system (Durstewitz and Seamans, 2006).

The current hypothesis suggests an addition to the repertoire
of hypothesized mechanisms for PNA, which falls into the cat-
egory of network mechanisms, though is distinct from existing
network models in a number of ways. Unlike existing network
models, which concentrate on modeling neural behavior at the
level of firing rates and drift, we focus on the finer spatiotem-
poral scale of FEM tremor and subthreshold fluctuations in the
membrane potential of cells mediating oculomotor integration.
Rather than specific circuit design, persistence is based on the
transient self-organization of population activity into a reentrant,
(quasi)periodic spatiotemporal pattern. Spiral waves require a
predominance of excitatory, spatially distributed connections but
precise connectivity structure is not required; spirals can easily
emerge in randomly connected networks (Milton et al., 1993; Chu
et al., 1994; Yuan et al., 2011). This is not to say that specific cir-
cuitry is not important or present in the hVPNI; just that it is
not a requirement of the current model. The existence of spatially
organized, excitatory lateral connectivity is suggested by various
studies (Aksay et al., 2001, 2007; Miri et al., 2011a). Disinhibition
is crucial to the formation of spirals (and other traveling waves)
in cortical tissue (Huang et al., 2004, 2010). (Aksay et al., 2007)
identified that mutually inhibitory collateral interactions were not
necessary to local integrators within a certain range, suggesting
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that these mutually inhibitory interactions regulated local mech-
anisms rather than driving PNA directly. Such a situation could
relate to mutual modulation of the excitability required for the
emergence and propagation of traveling waves.

4.2.2. Functional properties of spiral waves
Certain features of spiral waves make them potentially interesting
as neurodynamical mediators of PNA. Indeed, spiral waves are
a form of neural activity which is persistent (e.g., Milton et al.,
1993; Chu et al., 1994), though they are not usually associated
with the term as used in the context of short term memory and
neural integrators. The combination of A, B, C and D below sug-
gests a mechanism capable of contributing to the maintenance of
localized persistent neural activity.

A. Spatiotemporally organized depolarization: Sub-threshold
traveling waves in the membrane potential field coordinate net-
work activity in space and time, by defining spatiotemporal
regimes of polarization-depolarization (Wu et al., 2008; Huang
et al., 2010; Bahramisharif et al., 2013). Cells in the vicinity of
the singularity can take arbitrarily differing phase, leading to an
almost phaseless depolarizing synaptic barrage in that vicinity.

B. Pseudo-locality: Spiral waves exhibit a duality which gives
them both a local, particle-like description (the singularity) and
a global wave-like description (the propagating spiral arms)
(Biktasheva and Biktashev, 2003). Though the wave is exten-
sive, its behavior is almost entirely based on what happens in the
neighborhood of the singularity.

C. Quasi-persistence: Spirals are reentrant waves, whose activ-
ity generates the conditions for their own persistence in time
(Winfree, 1991), subject to certain conditions (e.g., Ito and Glass,
1991; Fenton et al., 2002; Zhang et al., 2003; Chun-Ni et al., 2010;
Ma et al., 2010, 2012a). C combined with A and B, enables a spi-
ral wave to persistently depolarize a spatially localized region in the
neighborhood of the singularity.

D. Seedability: Spiral waves can be induced in an appropriate
medium by various methods (Aranson et al., 1994; Williams and
Holland, 1999; Leanhardt et al., 2002; Zhang et al., 2002; Xiao-
Ping et al., 2011; Yuan et al., 2011; Ma et al., 2012b).

The most effective and tunable method is probably to directly
impose an external forcing spiral, as in (Xiao-Ping et al., 2011),
or a spiral seed plus a periodic forcing current near the singu-
larity (Zhang et al., 2002). However, persistent spirals can also
be induced in networks of integrate-and fire neurons by a brief,
non-spiral periodic forcing (Milton et al., 1993; Chu et al., 1994;
Huang et al., 2004; Kilpatrick and Bressloff, 2010b; Yuan et al.,
2011) given some reasonable connectivity conditions (chiefly
spatiality and some kind of inhomogeneity/noise/perturbation
which breaks rotational symmetry).

D combined with A, B and C, provides a mechanism whereby
an afferent may seed a spatial pattern in an efferent, and then leave
that pattern to sustain itself with a certain amount of autonomy.
Durstewitz and Deco (2008); Friston et al. (2012) suggest that
brain activity is characterized by a high dimension chaotic back-
ground state, from which lower dimensional metastable states
transiently emerge. Figure 6, from (Zhang et al., 2002) nicely
visualizes the notion of how a spiral wave seeding might realize
such a transient dimensionality reduction in the context of the

FIGURE 6 | Examples of spiral seeding in a background of chaotic

turbulence. Seeding and growing spiral waves in a background of chaotic
turbulence. The extent of the spiral wave seeded was dependent on the
frequency of periodic forcing at the singularity. Too low, or too high,
frequency was less effective. The ratio of the frequency of the forcing
signal to that of the angular frequency of the spiral equalled (A) 0.6 (B) 0.8
(C) 1.0 (D) 1.2. Figure reprinted from Zhang et al. (2002). Copyright
American Physical Society 2002.

observed (Aksay et al., 2001) difference between a background
“off” state of the integrator, characterized by irregular firing at
low rates (the turbulent background), and an “on” state char-
acterized by driving input from the seeding of a spiral wave.
de Dios Navarro-López et al. (2004) induced PNA in an oculo-
motor integrator circuit with brief, cholinergic periodic forcings.
Oscillatory neurons observed in the guinea pig nucleus preposi-
tus hypoglossi (Idoux et al., 2006), a region deeply associated with
oculomotor integration (Delgado-Garcia et al., 1989; McCrea and
Horn, 2006), might exemplify a neural substrate for periodic
forcing inputs and the maintainance of traveling wave activ-
ity in the population. The persistent spiking of neurons in the
vicinity of the induced singularity will be facilitated due to con-
stant depolarization of the cellular membrane by high frequency
microstimulation without a strong phasic component, as cells
near the singularity may take arbitrarily different phase.

The bump of persistent firing activity in PNA has naturally
been associated with “bumps” in neural field models (e.g., Tegnér
et al., 2002; Owen et al., 2007; Kilpatrick and Ermentrout, 2013).
However, it has also been suggested that hVPNI neurons may
operate in a fluctuation dominated regime, in part because the
firing threshold of the cell increases with the membrane potential,
and in part because firing always occurs at the apex of membrane
potential fluctuations (Huang, 2009). In a fluctuation dominated
regime, firing rate is dependent less on mean membrane potential
than on fast fluctuations in the level of the depolarizing synaptic
barrage. On this view, at the level of subthreshold field dynamics
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fast microfluctuation (from a spiral wave) could be more effective
than a constant raise in stimulation (from a bump) in inducing
persistent firing. Thus spiral waves possess a unique repertoire of
functional properties which render them interesting in the con-
text of PNA. However, the presence or absence of a spiral wave
only yields a binary distinction between an “on” state and an “off”
state. Still missing is a mechanism for a graded temporal memory
capable of remembering multiple, arbitrary step changes.

4.2.3. Possible mechanisms for continuous temporal integration
Persistent neural activity is associated with neural integration
(Major and Tank, 2004), and has been intensively studied in the
anatomical context of oculomotor postural control, in particu-
lar the horizontal velocity to position integrator (“hVPNI”) (Aksay
et al., 2000). Here, a cell integrates (in the mathematical sense)
its inputs over time, providing the ability to hold, and externally
nudge, set points. An external nudge is reflected in a persis-
tent shift in average membrane potential, co-occuring with step
changes in firing rate and eye position (Aksay et al., 2001). How
might this graded integration functionality be implemented by a
spiral wave depolarization regime?

One possibility here is that spiral waves of different spatial
extent generate different levels of depolarizing input. Figure 6,
reprinted from Zhang et al. (2002) depicts how different inten-
sities of forcing current can generate different sizes of spiral wave,
from a pre-existing background of low level, chaotic turbulence.
Increasing the size of the spiral by adding energy could perhaps
encode up steps, but it is less obvious how a down step would be
implemented. Another possibility is inducing multiple spirals.

Functionally, however, modulation of the frequency of the
spiral’s rotational orbit could provide the most appropriate vari-
able for graded temporal integration. The excitability of the
medium has a strong determining effect on the frequency taken
by spirals and other traveling waves (Winfree, 1991). Modulation
of the strength of lateral connections might therefore provide
a mechanism to induce persistent changes in spiral frequency.
Calcium mediated presynaptic facilitation (Mongillo et al., 2008)
could provide a mechanism for strengthening lateral connectiv-
ity, and other modes of disinhibition could also be relevant (e.g.,
de Dios Navarro-López et al., 2004). Kilpatrick and Bressloff
(2010a,b) describe spirals in neural field models, in which spike
frequency adaptation modulates the frequency of network oscilla-
tions. Whatever the mechanism of frequency modulation, a faster
spiral would generate more action potentials per unit time in the
synaptic barrage converging on the cell from weak but numer-
ous lateral connections, maintaining membrane depolarization,
and the magnitude of these would be amplified by lateral synap-
tic facilitation. Both the magnitude and the arrival frequency
of depolarizing excitatory postsynaptic potentials converging on
active eye position coding cells varies systematically with eye
position Aksay et al. (2001); Huang (2009).

Secondary Prediction A spiral frequency based temporal inte-
grator is consistent with the close covariance of the arrival
frequency of action potentials with eye position (Huang,
2009), and would predict in addition that a spectral peak in

the slower range (around 10–20 Hz) of membrane potential
oscillations during PNA will vary systematically with eye posi-
tion in individual trial data (averaging might hide this effect).
Note that the frequency modulation approach to graded inte-
gration is a secondary hypothesis.

4.2.4. Subthreshold dynamics of the membrane potential during
PNA in an oculomotor integrator

Aksay et al. (2001) carried out in vivo intracellular recording
and perturbation of persistent activity in an oculomotor neural
integrator. They tracked the evolution of the cellular membrane
potential during step changes in persistent activity associated with
position control during fixation events. Their Figure 2 is reprinted
here as Figure 7. See also their Figure 1 for longer recording
period. Note the step like change in membrane potential that
accompanies the onset of persistent firing. Further step changes
are marked by brief (50–100 ms) overshoot/undershoot depend-
ing on direction of change, followed by a persistent change in the
mean membrane potential and firing rate. The membrane depo-
larization was found to be sufficient to explain the associated PNA
in a control experiment, suggesting an important role for network
mechanisms.

Up (down) steps in membrane potential are correlated with
increases (decreases) in both arrival frequency and magnitude of
excitatory postsynaptic potentials (“EPSPs”) (Aksay et al., 2001;
Huang, 2009). The membrane potential (Vis)and the firing rate
(Fintra) shows signs of an oscillation at around 15 Hz, perhaps
corresponding to the rotational orbit of a spiral wave and the
slow component of tremor. If the barrage of depolarizing EPSPs
are indeed originating from the slow rotational orbit and fast jit-
ter of a spiral wave, then under close examination one would
expect to see the leading edge of the spiral waveform reflected in
the EPSPs. Huang (2009) examined membrane potential fluctu-
ations during PNA in great detail. Whole-cell patch recordings
revealed the existence of many small (0.2–3 mV) excitatory post-
synaptic potentials lasting 5–10 ms, and manifesting a “peculiar”
sharp-attack, slow-decay form obscured in accompanying sharp
electrode recordings. See their section 5 and Figure 5.3, repro-
duced here as Figure 8. This waveform is typical of that generated
by the passing of the leading edge of a spiral wave, where the
phase gradient is very high (providing the sharp attack). See for
example the depictions from Qu et al. (1999) of action poten-
tials caused by cardiac spiral waves http://ajpheart.physiology.
org/content/ajpheart/276/1/H269/F8.large.jpg. Note though that
other possibilities exist. Based on similar waveforms observed in
Mauthner cells (Golding and Spruston, 1998; Korn and Faber,
2005), Huang (2009) suggests that mixed NMDA/AMPA conduc-
tances could underly the shape of these potentials.

Prediction At the network level, the singularity hypothesis pre-
dicts that spiral waves should be directly identifiable in the
VSDI signal at the site of PNA (at least in the anatomical
context of brainstem oculomotor integration), and that the
success (failure) to induce a spiral wave will distinguish success
(failure) to induce PNA. While it is possible in principle
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that the membrane potential dynamics just reviewed could
reflect a spiral wave which exists elsewhere, neurophysiolog-
ical evidence suggests that the mechanisms sustaining PNA in
the hVPNI are local (Aksay et al., 2007).

A standard test for whether an observation corresponds to a true
spiral wave is the existence of a phase singularity, with a local
amplitude reduction of field oscillations in the vicinity of the sin-
gularity (Winfree, 1991, 2001; Huang et al., 2010), caused by the
cancellation of signals from closely located nodes with opposing
phase near the singularity. See Figure 1A in Huang et al. (2010),
reprinted here as Figure 9 for neurophysiological recordings of
this phenomena. Small fluctations in the balance of this cancella-
tion result in an increase in high frequency fluctuations visible in
the VSDI signal in Figure 9 (and also visible as jitter of the sin-
gularity in our Figure 1), which could drive a cell effectively in a
fluctuation dominated regime (Huang, 2009).

We are not aware of VSDI studies of brainstem neural integra-
tors. Recent methodological advances may combine to provide
opportunities for imaging the spatiotemporal dynamics of sub-
threshold activity in the deep brainstem. Fiber optics offer a
means to image non-superficial regions (Flusberg et al., 2005).
Combining VSDI and laser scanning microstimulation offers a
fast method for anatomical and functional mapping (Xu et al.,
2010). Zebra fish larvae have recently been shown to provide an
in vivo preparation with high optical transparency (Miri et al.,
2011a; Fisher et al., 2013). Miri et al. (2011b) used two-photon
laser scanning microscopy (Stosiek et al., 2003) to simultaneously
image many cells in neural integrator circuits in the larval zebra
fish, and introduced a semi-automated approach for identifying
behavior measure (in this case eye movement) related cells in the
ensuing space-time series.

Combining this methodology with VSDI, which would pro-
vide access to subthreshold spatiotemporal dynamics associated
with PNA, could test directly whether spiral waves exist and if
so, whether they are spatially associated with active eye position
integrators and whether their rotational frequency (and/or spa-
tial extent) covaries systematically with eye position. Regardless
of whether these predictions are confirmed or denied, VSDI data
would likely to be of great utility in the general research effort on
the hVPNI.

4.3. SACCADES AND MICROSACCADES
The current contribution focuses on the dynamic maintainance
of oculomotor posture between microsaccades. Nonetheless
microsaccades, and indeed saccades in general, are naturally rel-
evant to the discussion as a whole. In this section, we briefly
address how a spiral wave model of drift-tremor might fit into
its saccadic context.

4.3.1. Scale free saccadic behaviors
Recent evidence points to a remarkable continuity in the statistics
of saccadic oculomotor control across scales including microsac-
cades (Otero-Millan et al., 2013). How might a spiral wave model
of fixational postural control fit into its containing context of fast
(micro and macro) saccadic gaze shifts? Is there a continuously

FIGURE 7 | From the original; Membrane potential changes during

transitions in fixation position. (A) Eye position, firing rate of an
intracellularly recorded neuron (Fintra), membrane potential (Vm), interspike
membrane potential (Vis), and injected current (Iinj) for on-direction steps
during intracellular recording. Solid lines at lower left indicate the average
value of Vis during separate fixations. (B) Changes during off-direction steps

(Continued)
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FIGURE 7 | Continued

of the ipsilateral eye. This segment is taken from the end of a
nasaltemporalnasal cycle that started with the transitions shown in (A). (C)

Rate and potential changes for a different neuron during an on-direction
step. The firing rate (Fextra) of a second extracellularly recorded position
neuron (Vextra) served as a surrogate for eye position. In this recording, the
fast afterhyperpolarization following action potentials was abolished by
substituting cesium for potassium in the electrode solution. From Aksay
et al. (2001), copyright Nature Publishing 2001.

FIGURE 8 | Shapes of action potentials recorded with whole-cell patch

measurements. Note the “peculiar” triangular form, typical of the leading
edge of a spiral waveform. From Huang (2009), copyright The Author.

FIGURE 9 | From the original; raw data traces from the EEG (blue) and

two optical detectors labeled on the left. Detector 2 (Optical spiral
center) is selected from the spiral center, showing large amplitude
reduction. Detector 3 is selected from a location that spiral center never
swept through, showing no amplitude reduction. From Huang et al. (2010),
copyright Elsevier 2010.

scaling control principle which could give rise to a visual scan path
with, from the bottom up;

A. microfixations characterized by spiral dynamics (drift-
tremor), which are interspersed with

B. relatively long, straight and fast flights (microsaccades), which
are organized into

C. clusters of microfixations (macrofixations), which are inter-
spersed with

D. relatively very long, straight, fast flights (macrosaccades),
which in turn cluster into

E. regions of dense exploration and short saccades, interspersed
by long saccades to new regions of interest?

The natural variability of human scanning patterns has been
modeled at the macro-saccadic level by the imposition of a
stochastic component comprising a Lévy walk (Klafter et al.,
1987) upon scanpaths in a deterministic salience landscape
(Brockmann and Geisel, 1999; Boccignone and Ferraro, 2012).
Another possibility is that the stochastic component reflects an
intrinsic probabilistic feature of the salience function, (e.g., Harel
et al., 2006), rather than an imposed randomization.

4.3.2. Lévy walks in rotational and turbulent flow
Theoretical work has revealed deep links between spiral waves,
turbulent flow, fractional Brownian motion, anomalous diffusion
and Lévy type trajectories (Shlesinger et al., 1987; Viecelli, 1990;
Metzler and Klafter, 2000). Solomon et al. (1993) observed Lévy
walks of tracer particles in a physical system of effectively two
dimensional rotating flow, and Solomon et al. (1994) examined
in more detail behavior in periodic, chaotic and turbulent condi-
tions. See our Figure 10 for a reprint of Figure 6 in Solomon et al.
(1994), depicting example trajectories. Long term trajectories
exhibited a pattern of long, relatively direct flights in predom-
inantly translational flow, interspersed with episodes where the
particle is caught up in a spiraling curve due to capture by a
vortex (“sticking”). Analysis of sticking times and flight statis-
tics indicated a Lévy walk trajectory evolving in continuous time.
Biomechanical constraints suggest that a truncated Lévy walk
Mantegna and Stanley (1994), where maximum step lengths are
finite, may be more appropriate to the biological case.

Similar dynamics in a more complex landscape consisting of
multiple clusters of vortices could conceivably result in a trajec-
tory resembling that of multiscale visual exploration. “Fixation”
periods consist of clusters of mini-fixations, each of which con-
sists of an episode of vortex sticking characterized by rotational
flow. Escaping a cluster results in a relatively long step to the next
cluster (i.e., a macrosaccade), followed by a sequential sampling
of the new cluster. The traveling wave accompanying saccadic
execution observed in the superior colliculus by Munoz et al.
(1991) might be a manifestation of relatively long flights between
vortex sticking visible in Figure 10. The curling trajectory of
drift-tremor during microfixation and the curving, interrupted
microsaccade trajectories reported by Zhang and Li (2012) are
reminiscent of the turbulent transport scenario just outlined,
though closer analysis of these data is required. Note how the
microsaccadic trajectories in Figure 4 do not always start their
trajectory in the direction of their final destination. They are
often curved and can have small scale variations in velocity.
Looking closely at the microsaccades depicted, one may observe
vertical motions exhibiting an oscillation which is damped in
one horizontal dimension and amplified in the other, sugges-
tive of transport in a potential field. Where they do travel in
straight lines, this is usually on the horizontal axis, suggestive of
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FIGURE 10 | From the original; Chaotic particle trajectories in a

time-periodic flow. (A–D) Depict different runs of the apparatus with
different numbers and locations of vortices. From the original; Chaotic
particle trajectories in a time-periodic flow. Long sticking events can be
seen in each case, and flights of length greater than one rotation about the
annulus can be seen in (C), (D). Hyperbolic fixed points, near which the
particle motion is particularly sensitive to transitions between flights and
sticking events, are evident in all the trajectories. The particle motion is
viewed from a reference frame that is co-rotating with the vortex chain, and
the beginning of each trajectory is marked by a circle, the end by a triangle.
From Solomon et al. (1994), copyright American Physical Society 1994.

a potential field. Overall the pattern is not ballistic, but is con-
sistent with the trajectory first escaping local vortex sticking in
an unpredictable direction, followed by a trajectory dominated
by translational flow with potential fields. Figure 11 depicts an
example of a trajectory in a model of anomalous transport in
magnetic field turbulence, taken from Chiaravalloti et al. (2006).
This provides an example, though from a different domain, of
how these dynamics could generate trajectories similar to the
FEM trajectories depicted in Figure 4. Adding a potential field
might further approximate the FEM trajectories in Figure 4.

4.4. TURBULENT TRANSPORT AND CHAOTIC ITINERANCY
Thus there is some potential for a continuous, deterministic
dynamical principle capable of generating the scale free, stochas-
tic profile of visual scanning trajectories. This speculative pro-
posed framework for multiscale visual exploration would imply a
widespread role for traveling waves and rotational flow in brain-
body hermeneutics, which may stretch the readers credulity at
this stage, but there is some existing context. Breakspear (2001);
Tyukin et al. (2009); Friston et al. (2012) examine traveling wave
processing and self-organized instability in perception, whilst
Heitmann (2013) explores traveling wave functionality in the
motor context. In addition to noting a potential contribution
to persistent neural activity in the sensory context, Huang et al.

FIGURE 11 | Particle trajectory in a model of two dimensional

magnetic turbulent flow. From Chiaravalloti et al. (2006), copyright the
Royal Swedish Academy of Sciences 2006. Reproduced by permission of
IOP publishing.

(2010) suggests that spiral waves, as a locally generated event, may
also help a local cortical circuit to quickly disengage from globally
synchronized rhythms. If traveling waves are playing functional
roles in brain activity, one role of rotational flow may be to
“hold the posture” of the central nervous system, while trans-
lational flow interconnects metastable postural transients. If so,
this should be reflected in fixational drift-tremor and saccades,
because the eye is part of the CNS. Breakspear et al. (2010) sug-
gest that traveling wave solutions may offer optimal solutions to
minimization of the free-energy in far from equilibrium initial
conditions. Free energy minimization may be a rather general
heuristic in nervous function (Friston, 2010). If the predictions
of the singularity hypothesis of FEM drift-tremor turn out to
be accurate, then the case for transient population dynamics as
optimizers of behavior would gain a considerable boost.

It is interesting to speculate that attention may be related to
nervous mechanisms of suppressing spiral waves. On this view,
the sequential visiting of spirals in a cluster would destabilize
the spirals and cause their breakup, resulting in a collateral effect
resembling inhibition of return. This kind of self-destabilizing,
itinerant trajectory would link action and perception into a com-
mon framework probably best described in terms of existing work
on (embodied) chaotic itinerancy (Tsuda, 1991, 2009; Kaneko,
1992; Kaneko and Tsuda, 2003; Ikegami, 2007). Transient dynam-
ics traversing a landscape of attractor ruins with riddled basins
(Milnor, 1985) (i.e., quasi-attractors whose basin of attraction
is riddled with repellent trajectories belonging to the basin of
another attractor) can perform perceptual (Breakspear, 2001;
Tyukin et al., 2009) and memory (Rabinovich et al., 2001) func-
tions. This raises the possibility that the transient dynamics of
embodied eye movements could play a rather sophisticated per-
ceptual role analagous in computational description to that of
neural sensory mechanisms (Tyukin et al., 2009), but at the
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embodied level where the perturbation structure of the world
constitutes the data set (Ikegami, 2007). Wilkinson et al. (2011)
give a simple computational example of how exploratory gaze
patterns structured by spiral waves can enact perception of a
global property of a social scene (co-orientation), as has been
observed in infants (Augusti et al., 2010; Handl et al., 2013).

5. CONCLUSION
Despite extensive study of oculomotor postural control, the gen-
erative mechanisms of fixational drift and tremor remain uncer-
tain. We have proposed the hypothesis that these components
reflect the drift and meander of spiral wave neurodynamics.
Whilst speculative, the singularity hypothesis offers a parsimo-
nious and predictive account of FEM. Though our motivations
are chiefly functional, the available psychophysical and neuro-
physiological evidence is largely consistent with, and occasionally
suggestive of, a contribution of rotational flow to the main-
tainence of persistent neural activity in the oculomotor system.
We have laid out an argument motivating our hypothesis in terms
of the existing literature, and made testable predictions which
could falsify it. Our hope is that these predictions will encour-
age other groups working in the fields of FEM and oculomotor
integration to consider looking for indicators of rotational flow
when analysing data, and perhaps even motivate neuroimaging
studies to examine the subthreshold spatiotemporal dynamics
associated with PNA. Should empirical studies and/or analysis
of existing data confirm the basic predictions of the concep-
tual model, future work should undertake detailed computational
modeling. Further testing and development may offer a determin-
istic account of the stochasticity and self-similarity manifest in eye
movement patterns across scales, based on the complex dynamics
of anomalous transport in rotating neural flow.

ACKNOWLEDGMENTS
This research was supported by the EU project RobotDoc under
25065 from the 7th Framework Programme, Marie Curie Action
ITN. We thank the reviewers for motivating significant improve-
ments in the paper.

REFERENCES
Ahissar, E., and Arieli, A. (2001). Figuring space by time. Neuron 32, 185–201. doi:

10.1016/S0896-6273(01)00466-4
Ahissar, E., and Arieli, A. (2012). Seeing via miniature eye movements:

a dynamic hypothesis for vision. Front. Comput. Neurosci. 6:89. doi:
10.3389/fncom.2012.00089

Aksay, E., Baker, R., Seung, H., and Tank, D. (2000). Anatomy and discharge prop-
erties of pre-motor neurons in the goldfish medulla that have eye-position
signals during fixations. J. Neurophysiol. 84, 1035–1049.

Aksay, E., Baker, R., Seung, H. S., and Tank, D. W. (2003). Correlated dis-
charge among cell pairs within the oculomotor horizontal velocity-to-position
integrator. J. Neurosci. 23, 10852–10858.

Aksay, E., Gamkrelidze, G., Seung, H., Baker, R., and Tank, D. (2001). In vivo intra-
cellular recording and perturbation of persistent activity in a neural integrator.
Nat. Neurosci. 4, 184–193. doi: 10.1038/84023

Aksay, E., Olasagasti, I., Mensh, B. D., Baker, R., Goldman, M. S., and Tank, D. W.
(2007). Functional dissection of circuitry in a neural integrator. Nat. Neurosci.
10, 494–504. doi: 10.1038/nn1877

Amit, D. J. (1992). Modeling Brain Function: The World of Attractor Neural
Networks. Cambridge: Cambridge University Press.

Anastasio, T. J. (1994). The fractional-order dynamics of brainstem vestibulo-
oculomotor neurons. Biol. Cybern. 72, 69–79. doi: 10.1007/BF00206239

Anastasio, T. J. (1998). Nonuniformity in the linear network model of
the oculomotor integrator produces approximately fractional-order dynam-
ics and more realistic neuron behavior. Biol. Cybern. 79, 377–391. doi:
10.1007/s004220050487

Aranson, I., Levine, H., and Tsimring, L. (1994). Controlling spatiotemporal chaos.
Phys. Rev. Lett. 72:2561. doi: 10.1103/PhysRevLett.72.2561

Aston-Jones, G., and Cohen, J. D. (2005). An integrative theory of locus coeruleus-
norepinephrine function: adaptive gain and optimal performance. Annu. Rev.
Neurosci. 28, 403–450. doi: 10.1146/annurev.neuro.28.061604.135709

Augusti, E.-M., Melinder, A., and Gredebäck, G. (2010). Look who’s talking: pre-
verbal infants perception of face-to-face and back-to-back social interactions.
Front. Psychol. 1:161. doi: 10.3389/fpsyg.2010.00161

Bahramisharif, A., van Gerven, M. A., Aarnoutse, E. J., Mercier, M. R., Schwartz,
T. H., Foxe, J. J., et al. (2013). Propagating neocortical gamma bursts are
coordinated by traveling alpha waves. J. Neurosci. 33, 18849–18854. doi:
10.1523/JNEUROSCI.2455-13.2013

Bak, P. (1996). How nature works: the science of self-organized criticality. Nature
383, 772–773.

Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized criticality: an expla-
nation of 1/f noise. Phys. Rev. Lett. 59, 381–384. doi: 10.1103/PhysRevLett.
59.381

Barkley, D., Kness, M., and Tuckerman, L. S. (1990). Spiral-wave dynamics in a sim-
ple model of excitable media: the transition from simple to compound rotation.
Phys. Rev. A 42, 2489–2492. doi: 10.1103/PhysRevA.42.2489

Biktashev, V., and Holden, A. (1993). Resonant drift of an autowave vor-
tex in a bounded medium. Phys. Lett. A 181, 216–224. doi: 10.1016/0375-
9601(93)90642-D

Biktashev, V., and Holden, A. (1995). Resonant drift of autowave vortices in two
dimensions and the effects of boundaries and inhomogeneities. Chaos Solit.
Fract. 5, 575–622. doi: 10.1016/0960-0779(93)E0044-C

Biktashev, V., and Holden, A. (1998). Deterministic brownian motion in the
hypermeander of spiral waves. Physica D 116, 342–354. doi: 10.1016/S0167-
2789(97)00304-7

Biktashev, V. N. (2007). Drift of spiral waves. Scholarpedia 2:1836. doi: 10.4249/
scholarpedia.1836

Biktasheva, I., and Biktashev, V. (2003). Wave-particle dualism of spiral waves
dynamics. Phys. Rev. E 67:026221. doi: 10.1103/PhysRevE.67.026221

Boccignone, G., and Ferraro, M. (2012). Gaze shift behavior on video as composite
information foraging. Sig. Process. Image Commun. 28, 949–966. doi: 10.1016/j.
image.2012.07.002

Boerlijst, M. C., and Hogeweg, P. (1991). Spiral wave structure in pre-biotic
evolution: hypercycles stable against parasites. Physica D 48, 17–28. doi:
10.1016/0167-2789(91)90049-F

Bray, M.-A., Lin, S.-F., Aliev, R. R., Roth, B. J., and Wikswo, J. P. (2001).
Experimental and theoretical analysis of phase singularity dynamics in car-

diac tissue. J. Cardiovasc. Electrophysiol. 12, 716–722. doi: 10.1046/j.1540-
8167.2001.00716.x

Breakspear, M. (2001). Perception of odors by a nonlinear model of the olfactory
bulb. Int. J. Neural Syst. 11, 101–124. doi: 10.1142/S0129065701000564

Breakspear, M., Heitmann, S., and Daffertshofer, A. (2010). Generative
models of cortical oscillations: neurobiological implications of the
kuramoto model. Front. Hum. Neurosci. 4:190. doi: 10.3389/fnhum.2010.
00190

Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J., and Wiener, M. C.
(2001). Geometric visual hallucinations, euclidean symmetry and the func-
tional architecture of striate cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356,
299–330. doi: 10.1098/rstb.2000.0769

Brockmann, D., and Geisel, T. (1999). “Are human scanpaths levy flights?,” in
Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on
(Conf. Publ. No. 470), Vol. 1 (Edinburgh), 263–268.

Brody, C. D., Romo, R., and Kepecs, A. (2003). Basic mechanisms for graded
persistent activity: discrete attractors, continuous attractors, and dynamic rep-
resentations. Curr. Opin. Neurobiol. 13, 204–211. doi: 10.1016/S0959-4388(03)
00050-3

Broer, H. W., Huitema, G. B., and Sevryuk, M. B. (1996). Quasi-periodic motions in
families of dynamical systems: order amidst chaos. Berlin: Springer.

Burak, Y., Rokni, U., Meister, M., and Sompolinsky, H. (2010). Bayesian model of
dynamic image stabilization in the visual system. Proc. Natl. Acad. Sci. U.S.A.
107, 19525–19530. doi: 10.1073/pnas.1006076107

Frontiers in Systems Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 29 | 117

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Wilkinson and Metta Scaling and stochasticity in FEM

Cannon, S. C., and Robinson, D. A. (1985). An improved neural-network model for
the neural integrator of the oculomotor system: more realistic neuron behavior.
Biol. Cybern. 53, 93–108. doi: 10.1007/BF00337026

Chan, W., and Galiana, H. L. (2005). Integrator function in the oculomotor sys-
tem is dependent on sensory context. J. Neurophysiol. 93, 3709–3717. doi:
10.1152/jn.00814.2004

Chen, C.-Y., and Hafed, Z. M. (2013). Postmicrosaccadic enhancement of slow
eye movements. J. Neurosci. 33, 5375–5386. doi: 10.1523/JNEUROSCI.3703-
12.2013

Chiaravalloti, F., Milovanov, A. V., and Zimbardo, G. (2006). Self-similar trans-
port processes in a two-dimensional realization of multiscale magnetic field
turbulence. Phys. Scr. 2006:79. doi: 10.1088/0031-8949/2006/T122/012

Chu, P., Milton, J. G., and Cowan, J. D. (1994). Connectivity and the dynamics
of integrate-and-fire neural networks. Int. J. Bifurcat. Chaos 4, 237–237. doi:
10.1142/S0218127494000198

Chun-Ni, W., Jun, M., Jun, T., and Yan-Long, L. (2010). Instability and death of
spiral wave in a two-dimensional array of hindmarsh–rose neurons. Commun.
Theor. Phys. 53:382. doi: 10.1088/0253-6102/53/2/32

Codling, E. A., Plank, M. J., and Benhamou, S. (2008). Random walk models in
biology. J. R. Soc. Interface 5, 813–834. doi: 10.1098/rsif.2008.0014

Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biol.
Cybern. 93, 91–108. doi: 10.1007/s00422-005-0574-y

Cornell-Bell, A., and Finkbeiner, S. (1991). Ca2+ waves in astrocytes. Cell Calcium
12, 185–204. doi: 10.1016/0143-4160(91)90020-F

Cornsweet, T. N. (1956). Determination of the stimuli for involuntary drifts and
saccadic eye movements. JOSA 46, 987–988. doi: 10.1364/JOSA.46.000987

Cross, M. C., and Hohenberg, P. C. (1993). Pattern formation outside of equilib-
rium. Rev. Mod. Phys. 65:851. doi: 10.1103/RevModPhys.65.851

Da-sheng, L. S.-K. Y. (1980). The spiral structure of the tropical cyclone. Acta
Meteorologica Sin. 3.

de Dios Navarro-López, J., Alvarado, J. C., Márquez-Ruiz, J., Escudero, M.,
Delgado-García, J. M., and Yajeya, J. (2004). A cholinergic synaptically trig-
gered event participates in the generation of persistent activity necessary for eye
fixation. J. Neurosci. 24, 5109–5118. doi: 10.1523/JNEUROSCI.0235-04.2004

Delgado-Garcia, J., Vidal, P., Gomez, C., and Berthoz, A. (1989). A neurophys-
iological study of prepositus hypoglossi neurons projecting to oculomotor
and preoculomotor nuclei in the alert cat. Neuroscience 29, 291–307. doi:
10.1016/0306-4522(89)90058-4

Di Stasi, L. L., McCamy, M. B., Catena, A., Macknik, S. L., Cañas, J. J., and Martinez-
Conde, S. (2013). Microsaccade and drift dynamics reflect mental fatigue. Eur.
J. Neurosci. 38, 2389–2398. doi: 10.1111/ejn.12248

du Lac, S., and Lisberger, S. G. (1995). Cellular processing of temporal information
in medial vestibular nucleus neurons. J. Neurosci. 15, 8000–8010.

Durstewitz, D., and Deco, G. (2008). Computational significance of tran-
sient dynamics in cortical networks. Eur. J. Neurosci. 27, 217–227. doi:
10.1111/j.1460-9568.2007.05976.x

Durstewitz, D., and Seamans, J. (2006). Beyond bistability: biophysics and
temporal dynamics of working memory. Neuroscience 139, 119–133. doi:
10.1016/j.neuroscience.2005.06.094

Engbert, R., and Kliegl, R. (2004). Microsaccades keep the eyes’ balance
during fixation. Psychol. Sci. 15, 431–431. doi: 10.1111/j.0956-7976.2004.
00697.x

Engbert, R., and Mergenthaler, K. (2006). Microsaccades are triggered by
low retinal image slip. Proc. Natl. Acad. Sci. U.S.A. 103, 7192–7197. doi:
10.1073/pnas.0509557103

Engbert, R., Mergenthaler, K., Sinn, P., and Pikovsky, A. (2011). An integrated
model of fixational eye movements and microsaccades. Proc. Natl. Acad. Sci.
U.S.A. 108, E765–E770. doi: 10.1073/pnas.1102730108

Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming sys-
tems. Rep. prog. Phys. 61:353. doi: 10.1088/0034-4885/61/4/002

Fenton, F. H., Cherry, E. M., Hastings, H. M., and Evans, S. J. (2002). Multiple
mechanisms of spiral wave breakup in a model of cardiac electrical activity.
Chaos 12, 852–892. doi: 10.1063/1.1504242

Findlay, J. (1971). Frequency analysis of human involuntary eye movement.
Kybernetik 8, 207–214. doi: 10.1007/BF00288749

Finkbeiner, S. (1992). Calcium waves in astrocytes-filling in the gaps. Neuron 8,
1101–1108. doi: 10.1016/0896-6273(92)90131-V

Fisher, D., Olasagasti, I., Tank, D. W., Aksay, E. R., and Goldman, M. S.
(2013). A modeling framework for deriving the structural and functional

architecture of a short-term memory microcircuit. Neuron 79, 987–1000. doi:
10.1016/j.neuron.2013.06.041

Flusberg, B. A., Cocker, E. D., Piyawattanametha, W., Jung, J. C., Cheung, E. L.,
and Schnitzer, M. J. (2005). Fiber-optic fluorescence imaging. Nat. Methods 2,
941–950. doi: 10.1038/nmeth820

Freeman, W. J. (2009). Vortices in brain activity: their mechanism and significance
for perception. Neural Netw. 22, 491–501. doi: 10.1016/j.neunet.2009.06.050

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.
Neurosci. 11, 127–138. doi: 10.1038/nrn2787

Friston, K., Breakspear, M., and Deco, G. (2012). Perception and self-organized
instability. Front. Computat. Neurosci. 6:44. doi: 10.3389/fncom.2012.00044

Froese, T., Woodward, A., and Ikegami, T. (2013). Turing instabilities in biol-
ogy, culture, and consciousness? On the enactive origins of symbolic material
culture. Adapt. Behav. 21, 199–214. doi: 10.1177/1059712313483145

Goldberger, A. L., and West, B. J. (1987). Fractals in physiology and medicine. Yale
J. Biol. Med. 60, 421.

Golding, N. L., and Spruston, N. (1998). Dendritic sodium spikes are variable trig-
gers of axonal action potentials in hippocampal ca1 pyramidal neurons. Neuron
21, 1189–1200. doi: 10.1016/S0896-6273(00)80635-2

Goldman, M. S. (2009). Memory without feedback in a neural network. Neuron 61,
621–634. doi: 10.1016/j.neuron.2008.12.012

Goldman, M. S., Levine, J. H., Major, G., Tank, D. W., and Seung, H. (2003).
Robust persistent neural activity in a model integrator with multiple hysteretic
dendrites per neuron. Cereb. Cortex 13, 1185–1195. doi: 10.1093/cercor/bhg095

Gray, R. A., and Chattipakorn, N. (2005). Termination of spiral waves during car-
diac fibrillation via shock-induced phase resetting. Proc. Natl. Acad. Sci. U.S.A.
102, 4672–4677. doi: 10.1073/pnas.0407860102

Gray, R. A., and Jalife, J. (1996). Spiral waves and the heart. Int. J. Bifurcat. Chaos 6,
415–435. doi: 10.1142/S0218127496000163

Gray, R. A., Pertsov, A. M., and Jalife, J. (1998). Spatial and temporal organization
during cardiac fibrillation. Nature 392, 75–78. doi: 10.1038/32164

Greschner, M., Bongard, M., Rujan, P., and Ammermüller, J. (2002). Retinal
ganglion cell synchronization by fixational eye movements improves feature
estimation. Nat. Neurosci. 5, 341–347. doi: 10.1038/nn821

Grinvald, A., and Hildesheim, R. (2004). Vsdi: a new era in functional imaging of
cortical dynamics. Nat. Rev. Neurosci. 5, 874–885. doi: 10.1038/nrn1536

Hafed, Z. M., and Krauzlis, R. J. (2012). Similarity of superior colliculus involve-
ment in microsaccade and saccade generation. J. Neurophysiol. 107, 1904–1916.
doi: 10.1152/jn.01125.2011

Handl, A., Mahlberg, T., Norling, S., and Gredebäck, G. (2013). Facing still faces:
what visual cues affect infants observations of others? Infant Behav. Dev. 36,
583–586. doi: 10.1016/j.infbeh.2013.06.001

Harel, J., Koch, C., and Perona, P. (2006). Graph-based visual saliency. Adv. Neural
Inform. Process. Syst. 19, 545–552.

Heitmann, S. A. (2013). Principles of Encoding Motor Commands in Travelling Waves
of Neural Oscillations. PhD thesis, University of New South wales.

Heitmann, S., Boonstra, T., and Breakspear, M. (2013). A dendritic mechanism
for decoding traveling waves: principles and applications to motor cortex. PLoS
Comput. Biol. 9:e1003260. doi: 10.1371/journal.pcbi.1003260

Heitmann, S., Gong, P., and Breakspear, M. (2012). A computational role for bista-
bility and traveling waves in motor cortex. Front. Comput. Neurosci. 6:67. doi:
10.3389/fncom.2012.00067

Hillyard, S. A., Vogel, E. K., and Luck, S. J. (1998). Sensory gain control (ampli-
fication) as a mechanism of selective attention: electrophysiological and neu-
roimaging evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 1257–1270. doi:
10.1098/rstb.1998.0281

Huang, X., Troy, W. C., Yang, Q., Ma, H., Laing, C. R., Schiff, S. J., et al. (2004).
Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24, 9897–9902.
doi: 10.1523/JNEUROSCI.2705-04.2004

Huang, X., Xu, W., Liang, J., Takagaki, K., Gao, X., and Wu, J.-Y. (2010). Spiral wave
dynamics in neocortex. Neuron 68, 978–990. doi: 10.1016/j.neuron.2010.11.007

Huang, Z. (2009). Membrane potential fluctuations in a neural integrator. PhD
thesis, Princeton University.

Idoux, E., Serafin, M., Fort, P., Vidal, P.-P., Beraneck, M., Vibert, N., et al.
(2006). Oscillatory and intrinsic membrane properties of guinea pig nucleus
prepositus hypoglossi neurons in vitro. J. Neurophysiol. 96, 175–196. doi:
10.1152/jn.01355.2005

Ikegami, T. (2007). Simulating active perception and mental imagery with embod-
ied chaotic itinerancy. J. Conscious. Stud. 14, 111–125.

Frontiers in Systems Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 29 |

’

118

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Wilkinson and Metta Scaling and stochasticity in FEM

Ito, H., and Glass, L. (1991). Spiral breakup in a new model of discrete excitable
media. Phys. Rev. Lett. 66, 671. doi: 10.1103/PhysRevLett.66.671

Jung, P., Cornell-Bell, A., Madden, K. S., and Moss, F. (1998). Noise-induced spi-
ral waves in astrocyte syncytia show evidence of self-organized criticality. J.
Neurophysiol. 79, 1098–1101.

Kagan, I., and Hafed, Z. M. (2013). Active vision: microsaccades direct
the eye to where it matters most. Curr. Biol. 23, R712–R714. doi:
10.1016/j.cub.2013.07.038

Kaneko, K. (1992). Overview of coupled map lattices. Chaos 2, 279. doi:
10.1063/1.165869

Kaneko, K., and Tsuda, I. (2003). Chaotic itinerancy. Chaos 13, 926–936. doi:
10.1063/1.1607783

Kelso, J. (1995). Dynamic Patterns: The Self Organization of Brain and Behaviour.
Cambridge, MA: The MIT Press.

Kenny, E., Coakley, D., and Boyle, G. (2013a). Biospeckle in the human sclera and
impact on laser speckle correlation measurement of eye tremor. J. Biomed. Opt.
18, 097009–097009. doi: 10.1117/1.JBO.18.9.097009

Kenny, E., Coakley, D., and Boyle, G. (2013b). Ocular microtremor measure-
ment using laser-speckle metrology. J. Biomed. Opt. 18, 016010–016010. doi:
10.1117/1.JBO.18.1.016010

Khojasteh, E., Bockisch, C. J., Straumann, D., and Hegemann, S. C. (2012). “A
re-examination of the time constant of the oculomotor neural integrator in
human,” in Engineering in Medicine and Biology Society (EMBC), 2012 Annual
International Conference of the IEEE (Osaka), 4780–4783.

Kilpatrick, Z. P., and Bressloff, P. C. (2010a). Effects of synaptic depression and
adaptation on spatiotemporal dynamics of an excitatory neuronal network.
Physica D 239, 547–560. doi: 10.1016/j.physd.2009.06.003

Kilpatrick, Z. P., and Bressloff, P. C. (2010b). Spatially structured oscillations in
a two-dimensional excitatory neuronal network with synaptic depression. J.
Comput. Neurosci. 28, 193–209. doi: 10.1007/s10827-009-0199-6

Kilpatrick, Z. P., and Ermentrout, B. (2012a). Response of traveling waves to tran-
sient inputs in neural fields. Phys. Rev. E 85:021910. doi: 10.1103/PhysRevE.85.
021910

Kilpatrick, Z. P., and Ermentrout, B. (2013). Wandering bumps in stochastic neural
fields. SIAM J. Appl. Dyn. Syst. 12, 61–94. doi: 10.1137/120877106

Kilpatrick, Z. P., and Ermentrout, G. B. (2012b). Hallucinogen persisting percep-
tion disorder in neuronal networks with adaptation. J. Comput. Neurosci. 32,
25–53. doi: 10.1007/s10827-011-0335-y

Klafter, J., Blumen, A., and Shlesinger, M. F. (1987). Stochastic pathway to anoma-
lous diffusion. Phys. Rev. A 35:3081. doi: 10.1103/PhysRevA.35.3081

Ko, H.-K., Poletti, M., and Rucci, M. (2010). Microsaccades precisely relocate gaze
in a high visual acuity task. Nat. Neurosci. 13, 1549–1553. doi: 10.1038/nn.2663

Korn, H., and Faber, D. S. (2005). The mauthner cell half a century later:
a neurobiological model for decision-making? Neuron 47, 13–28. doi:
10.1016/j.neuron.2005.05.019

Koulakov, A. A., Raghavachari, S., Kepecs, A., and Lisman, J. E. (2002). Model for a
robust neural integrator. Nat. Neurosci. 5, 775–782. doi: 10.1038/nn893

Kuang, X., Poletti, M., Victor, J. D., and Rucci, M. (2012). Temporal encoding of
spatial information during active visual fixation. Curr. Biol. 22, 510–514. doi:
10.1016/j.cub.2012.01.050

Kuramoto, Y., and Koga, S. (1981). Turbulized rotating chemical waves. Prog. Theor.
Phys. 66, 1081–1085. doi: 10.1143/PTP.66.1081

Langham, J., and Barkley, D. (2013). Non-specular reflections in a macroscopic
system with wave-particle duality: Spiral waves in bounded media. Chaos 23,
013134–013134. doi: 10.1063/1.4793783

Leanhardt, A., Görlitz, A., Chikkatur, A., Kielpinski, D., Shin, Y., Pritchard, D.,
et al. (2002). Imprinting vortices in a bose-einstein condensate using topological
phases. Phys. Rev. Lett. 89:190403. doi: 10.1103/PhysRevLett.89.190403

Lechleiter, J., Girard, S., Peralta, E., and Clapham, D. (1991). Spiral calcium wave
propagation and annihilation in xenopus laevis oocytes. Science 252, 123–126.
doi: 10.1126/science.2011747

Li, J., and Zhang, X. (2012). “Using high-speed photography and image processing
for fixational eye movements measurement,” in Imaging Systems and Techniques
(IST), 2012 IEEE International Conference on (Manchester), 28–33.

Lim, S., and Goldman, M. S. (2013). Balanced cortical microcircuitry for main-
taining information in working memory. Nat. Neurosci. 16, 1306–1314. doi:
10.1038/nn.3492

Loewenstein, Y., and Sompolinsky, H. (2003). Temporal integration by calcium
dynamics in a model neuron. Nat. Neurosci. 6, 961–967. doi: 10.1038/nn1109

Ma, J., Huang, L., Tang, J., Ying, H.-P., and Jin, W.-Y. (2012a). Spiral wave death,
breakup induced by ion channel poisoning on regular hodgkin–huxley neu-
ronal networks. Commun. Nonlin. Sci. Numer. Simul. 17, 4281–4293. doi:
10.1016/j.cnsns.2012.03.009

Ma, J., Liu, Q., Ying, H., and Wu, Y. (2012b). Emergence of spiral wave induced
by defects block. Commun. Nonlin. Sci. Numer. Simul. 18, 1665–1675. doi:
10.1016/j.cnsns.2012.11.016

Ma, J., Tang, J., Zhang, A., and Jia, Y. (2010). Robustness and breakup of the spiral
wave in a two-dimensional lattice network of neurons. Sci. China Phys. Mech.
Astron. 53, 672–679. doi: 10.1007/s11433-010-0097-y

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without
stable states: a new framework for neural computation based on perturbations.
Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Major, G., and Tank, D. (2004). Persistent neural activity: prevalence and mecha-
nisms. Curr. Opin. Neurobiol. 14, 675–684. doi: 10.1016/j.conb.2004.10.017

Mantegna, R. N., and Stanley, H. E. (1994). Stochastic process with ultraslow con-
vergence to a gaussian: the truncated lévy flight. Phys. Rev. Lett. 73:2946. doi:
10.1103/PhysRevLett.73.2946

Matin, L., Matin, E., and Pearce, D. G. (1970). Eye movements in the dark during
the attempt to maintain a prior fixation position. Vis. Res. 10, 837–857. doi:
10.1016/0042-6989(70)90164-1

Martinez-Conde, S. (2006). Fixational eye movements in normal and pathological
vision. Prog. Brain Res. 154, 151–176. doi: 10.1016/S0079-6123(06)54008-7

Martinez-Conde, S., and Macknik, S. L. (2008). Fixational eye movements across
vertebrates: comparative dynamics, physiology, and perception. J. Vis. 8:28. doi:
10.1167/8.14.28

Martinez-Conde, S., Macknik, S. L., and Hubel, D. H. (2004). The role of fixa-
tional eye movements in visual perception. Nat. Rev. Neurosci. 5, 229–240. doi:
10.1038/nrn1348

Martinez-Conde, S., Otero-Millan, J., and Macknik, S. L. (2013). The impact of
microsaccades on vision: towards a unified theory of saccadic function. Nat.
Rev. Neurosci. 14, 83–96. doi: 10.1038/nrn3405

McCrea, R. A., and Horn, A. K. (2006). Nucleus prepositus. Prog. Brain Res. 151,
205–230. doi: 10.1016/S0079-6123(05)51007-0

Mensh, B., Aksay, E., Lee, D., Seung, H., and Tank, D. (2004). Spontaneous
eye movements in goldfish: oculomotor integrator performance, plastic-
ity, and dependence on visual feedback. Vis. Res. 44, 711–726. doi:
10.1016/j.visres.2003.10.015

Mergenthaler, K., and Engbert, R. (2007). Modeling the control of fixational eye
movements with neurophysiological delays. Phys. Rev. Lett. 98:138104. doi:
10.1103/PhysRevLett.98.138104

Metzler, R., and Klafter, J. (2000). The random walk’s guide to anomalous diffusion:
a fractional dynamics approach. Phys. Rep. 339, 1–77. doi: 10.1016/S0370-
1573(00)00070-3

Michalik, M. (1987). Spektralanalysen des okulären mikrotremors bei hirnstamm-
funktionsstörungen. EEG. EMG. Z. Elektroenzephalogr. Elektromyogr. Verwandte
Geb. 18, 20–26.

Milnor, J. (1985). On the concept of attractor. Commun. Math. Phys. 99, 177–195.
Milton, J., and Jung, P. (2003). Epilepsy as a Dynamic Disease. Berlin: Springer. doi:

10.1007/978-3-662-05048-4
Milton, J. G. (2012). Neuronal avalanches, epileptic quakes and other transient

forms of neurodynamics. Eur. J. Neurosci. 36, 2156–2163. doi: 10.1111/j.1460-
9568.2012.08102.x

Milton, J. G., Chu, P. H., and Cowan, J. D. (1993). Spiral waves in integrate-and-fire
neural networks. Adv. Neural Inform. Process. Syst. 5, 1001–1006.

Miri, A., Daie, K., Arrenberg, A. B., Baier, H., Aksay, E., and Tank, D. W. (2011a).
Spatial gradients and multidimensional dynamics in a neural integrator circuit.
Nat. Neurosci. 14, 1150–1159. doi: 10.1038/nn.2888

Miri, A., Daie, K., Burdine, R. D., Aksay, E., and Tank, D. W. (2011b). Regression-
based identification of behavior-encoding neurons during large-scale optical
imaging of neural activity at cellular resolution. J. Neurophysiol. 105, 964–980.
doi: 10.1152/jn.00702.2010

Modolo, J., Legros, A., Thomas, A. W., and Beuter, A. (2011). Model-driven ther-
apeutic treatment of neurological disorders: reshaping brain rhythms with
neuromodulation. Interface Focus 1, 61–74. doi: 10.1098/rsfs.2010.0509

Molina-Terriza, G., Torres, J. P., and Torner, L. (2007). Twisted photons. Nat. Phys.
3, 305–310. doi: 10.1038/nphys607

Mongillo, G., Barak, O., and Tsodyks, M. (2008). Synaptic theory of working
memory. Science 319, 1543–1546. doi: 10.1126/science.1150769

Frontiers in Systems Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 29 | 119

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Wilkinson and Metta Scaling and stochasticity in FEM

Munoz, D. P., Pelisson, D., and Guitton, D. (1991). Movement of neural activity on
the superior colliculus motor map during gaze shifts. Science 251, 1358–1360.
doi: 10.1126/science.2003221

Olsen, S. R., Bortone, D. S., Adesnik, H., and Scanziani, M. (2012). Gain
control by layer six in cortical circuits of vision. Nature 483, 47–52. doi:
10.1038/nature10835

O’Regan, J. K., and Noë, A. (2001). A sensorimotor account of vision and visual
consciousness. Behav. Brain Sci. 24, 939–972. doi: 10.1017/S0140525X01000115

Otero-Millan, J., Macknik, S. L., Langston, R. E., and Martinez-Conde, S. (2013).
An oculomotor continuum from exploration to fixation. Proc. Natl. Acad. Sci.
U.S.A. 110, 6175–6180. doi: 10.1073/pnas.1222715110

Owen, M., Laing, C., and Coombes, S. (2007). Bumps and rings in a two-
dimensional neural field: splitting and rotational instabilities. New J. Phys. 9:378.
doi: 10.1088/1367-2630/9/10/378

Pitkow, X., Sompolinsky, H., and Meister, M. (2007). A neural computation
for visual acuity in the presence of eye movements. PLoS Biol. 5:e331. doi:
10.1371/journal.pbio.0050331

Poletti, M., Listorti, C., and Rucci, M. (2013). Microscopic eye movements com-
pensate for nonhomogeneous vision within the fovea. Curr. Biol. 23, 1691–1695.
doi: 10.1016/j.cub.2013.07.007

Prechtl, J., Cohen, L., Pesaran, B., Mitra, P., and Kleinfeld, D. (1997). Visual stimuli
induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. U.S.A.
94, 7621–7626. doi: 10.1073/pnas.94.14.7621

Qu, Z., Weiss, J. N., and Garfinkel, A. (1999). Cardiac electrical restitution prop-
erties and stability of reentrant spiral waves: a simulation study. Am. J. Physiol.
Heart Circul. Physiol. 276, H269–H283.

Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H., and
Laurent, G. (2001). Dynamical encoding by networks of competing neu-
ron groups: winnerless competition. Phys. Rev. Lett. 87, 068102. doi:
10.1103/PhysRevLett.87.068102

Roberts, J. A., Wallis, G., and Breakspear, M. (2013). Fixational eye move-
ments during viewing of dynamic natural scenes. Front. Psychol. 4:797. doi:
10.3389/fpsyg.2013.00797

Rolfs, M. (2009). Microsaccades: small steps on a long way. Vision Res. 49,
2415–2441. doi: 10.1016/j.visres.2009.08.010

Rothman, J., Cathala, L., Steuber, V., and Silver, R. (2009). Synaptic
depression enables neuronal gain control. Nature 457, 1015–1018. doi:
10.1038/nature07604

Rucci, M., Iovin, R., Poletti, M., and Santini, F. (2007). Miniature eye movements
enhance fine spatial detail. Nature 447, 852–855. doi: 10.1038/nature05866

Saalmann, Y. B., and Kastner, S. (2009). Gain control in the visual thalamus
during perception and cognition. Curr. Opin. Neurobiol. 19, 408–414. doi:
10.1016/j.conb.2009.05.007

Salinas, E., and Sejnowski, T. J. (2001). Gain modulation in the central nervous
system: where behavior, neurophysiology, and computation meet. Neuroscientist
7, 430–440. doi: 10.1177/107385840100700512

Salinas, E., and Thier, P. (2000). Gain modulation: a major computational prin-
ciple of the central nervous system. Neuron 27, 15–21. doi: 10.1016/S0896-
6273(00)00004-0

Sandstede, B., Scheel, A., and Wulff, C. (1999). Bifurcations and dynamics of spiral
waves. J. Nonlin. Sci. 9, 439–478. doi: 10.1007/s003329900076

Sara, S. J., and Bouret, S. (2012). Orienting and reorienting: the locus
coeruleus mediates cognition through arousal. Neuron 76, 130–141. doi:
10.1016/j.neuron.2012.09.011

Sato, T. K., Nauhaus, I., and Carandini, M. (2012). Traveling waves in visual cortex.
Neuron 75, 218–229. doi: 10.1016/j.neuron.2012.06.029

Savill, N. J., Rohandi, P., and Hogeweg, P. (1997). Self-reinforcing spatial patterns
enslave evolution in a host-parasitoid system. J. theor. Biol. 188, 11–20. doi:
10.1006/jtbi.1997.0448

Schecter, D. A., Nicholls, M. E., Persing, J., Bedard A. J. Jr., and Pielke, Sr. R. A.
(2008). Infrasound emitted by tornado-like vortices: basic theory and a numer-
ical comparison to the acoustic radiation of a single-cell thunderstorm. J. Atmos.
Sci. 65, 685–713. doi: 10.1175/2007JAS2384.1

Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., and Ditto, W.
L. (1994). Controlling chaos in the brain. Nature 370, 615–620. doi: 10.1038/
370615a0

Seliger, P., Tsimring, L., and Rabinovich, M. (2003). Dynamics-based sequential
memory: winnerless competition of patterns. Phys. Rev. E Stat. Nonlin. Soft
Matter Phys. 67, 011905–011901. doi: 10.1103/PhysRevE.67.011905

Sendiña-Nadal, I., Alonso, S., Pérez-Muñuzuri, V., Gómez-Gesteira, M., Pérez-
Villar, V., Ramírez-Piscina, L., et al. (2000). Brownian motion of spiral waves
driven by spatiotemporal structured noise. Phys. Rev. Lett. 84:2734. doi:
10.1103/PhysRevLett.84.2734

Serafin, M., De Waele, C., Khateb, A., Vidal, P., and Mühlethaler, M. (1991).
Medial vestibular nucleus in the guinea-pig. Exp. Brain Res. 84, 426–433. doi:
10.1007/BF00231465

Seung, H. S. (1996). How the brain keeps the eyes still. Proc. Natl. Acad. Sci. U.S.A.
93, 13339–13344. doi: 10.1073/pnas.93.23.13339

Seung, H. S., Lee, D. D., Reis, B. Y., and Tank, D. W. (2000). Stability of the memory
of eye position in a recurrent network of conductance-based model neurons.
Neuron 26, 259–271. doi: 10.1016/S0896-6273(00)81155-1

Shakhnovich, A., and Thomas, J. (1977). Micro-tremor of the eyes of comatose
patients. Electroencephalogr. Clin. Neurophysiol. 42, 117–119. doi: 10.1016/0013-
4694(77)90156-0

Shen, L. (1989). Neural integration by short term potentiation. Biol. Cybern. 61,
319–325. doi: 10.1007/BF00203180

Shlesinger, M., West, B., and Klafter, J. (1987). Lévy dynamics of enhanced
diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100. doi:
10.1103/PhysRevLett.58.1100

Solomon, T., Weeks, E. R., and Swinney, H. L. (1993). Observation of anomalous
diffusion and lévy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 71,
3975. doi: 10.1103/PhysRevLett.71.3975

Solomon, T., Weeks, E. R., and Swinney, H. L. (1994). Chaotic advection in a two-
dimensional flow: Lévy flights and anomalous diffusion. Physica D 76, 70–84.
doi: 10.1016/0167-2789(94)90251-8

Sparks, D. L. (2002). The brainstem control of saccadic eye movements. Nat. Rev.
Neurosci. 3, 952–964. doi: 10.1038/nrn986

Spauschus, A., Marsden, J., Halliday, D. M., Rosenberg, J. R., and Brown, P. (1999).
The origin of ocular microtremor in man. Exp. Brain Res. 126, 556–562. doi:
10.1007/s002210050764

Stacey, W. (2012). Better resolution and fewer wires discover epileptic spiral waves.
Epilepsy Curr. 12:147. doi: 10.5698/1535-7511-12.4.147

Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A. (2003). In vivo two-
photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. U.S.A. 100,
7319–7324. doi: 10.1073/pnas.1232232100

Taniguchi, D., Ishihara, S., Oonuki, T., Honda-Kitahara, M., Kaneko, K., and Sawai,
S. (2013). Phase geometries of two-dimensional excitable waves govern self-
organized morphodynamics of amoeboid cells. Proc. Natl. Acad. Sci. U.S.A. 110,
5016–5021. doi: 10.1073/pnas.1218025110

Tegnér, J., Compte, A., and Wang, X.-J. (2002). The dynamical stability of reverber-
atory neural circuits. Biol. Cybern. 87, 471–481. doi: 10.1007/s00422-002-0363-9

Teramae, J.-N., and Fukai, T. (2005). A cellular mechanism for graded persistent
activity in a model neuron and its implications in working memory. J. Comput.
Neurosci. 18, 105–121. doi: 10.1007/s10827-005-5474-6

Thiel, M., Romano, M. C., Kurths, J., Rolfs, M., and Kliegl, R. (2008). Generating
surrogates from recurrences. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366,
545–557. doi: 10.1098/rsta.2007.2109

Toomre, A. (1969). Group velocity of spiral waves in galactic disks. Astrophys. J.
158, 899. doi: 10.1086/150250

Tsuda, I. (1991). Chaotic itinerancy as a dynamical basis of hermeneu-
tics in brain and mind. World Futures J. Gen. Evol. 32, 167–184. doi:
10.1080/02604027.1991.9972257

Tsuda, I. (2001). Toward an interpretation of dynamic neural activity in terms
of chaotic dynamical systems. Behav. Brain Sci. 24, 793–809. doi: 10.1017/
S0140525X01000097

Tsuda, I. (2009). Hypotheses on the functional roles of chaotic transitory dynamics.
Chaos 19, 015113–015113. doi: 10.1063/1.3076393

Tyukin, I., Tyukina, T., and van Leeuwen, C. (2009). Invariant template matching
in systems with spatiotemporal coding: a matter of instability. Neural Netw. 22,
425–449. doi: 10.1016/j.neunet.2009.01.014

Viecelli, J. (1990). Dynamics of two-dimensional turbulence. Phys. Fluids A Fluid
Dyn. 2:2036. doi: 10.1063/1.857678

Viventi, J., Kim, D.-H., Vigeland, L., Frechette, E. S., Blanco, J. A., Kim, Y.-S.,
et al. (2011). Flexible, foldable, actively multiplexed, high-density electrode
array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605. doi:
10.1038/nn.2973

Werner, G. (2010). Fractals in the nervous system: conceptual implications for
theoretical neuroscience. Front. Physiol. 1:15. doi: 10.3389/fphys.2010.00015

Frontiers in Systems Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 29 | 120

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Wilkinson and Metta Scaling and stochasticity in FEM

West, B. J. (2010). Fractal physiology and the fractional calculus: a perspective.
Front. Physiol. 1:12. doi: 10.3389/fphys.2010.00012

West, B. J., Bassingthwaighte, J. B., and Liebovitch, L. S. (1994). Fractal Physiology,
Vol. 2. Oxford: Oxford University Press.

Wilkinson, N., and Metta, G. (2011). A role for cortical spiral waves in
visual attention? Procedia Comput. Sci. 7, S1–S3. doi: 10.1016/j.procs.2012.
01.092

Wilkinson, N., Metta, G., and Gredeback, G. (2011). “Modelling the face-to-face
effect: sensory population dynamics and active vision can contribute to per-
ception of social context,” in Development and Learning (ICDL), 2011 IEEE
International Conference on, Vol. 2 (Frankfurt), 1–6.

Williams, J., and Holland, M. (1999). Preparing topological states of a bose–einstein
condensate. Nature 401, 568–572. doi: 10.1038/44095

Winfree, A. T. (1967). Biological rhythms and the behavior of populations of cou-
pled oscillators. J. Theor. Biol. 16, 15–42. doi: 10.1016/0022-5193(67)90051-3

Winfree, A. T. (1972). Spiral waves of chemical activity. Science 175, 634–636. doi:
10.1126/science.175.4022.634

Winfree, A. T. (1991). Varieties of spiral wave behavior: an experimental-
ists approach to the theory of excitable media. Chaos 1, 303–334. doi:
10.1063/1.165844

Winfree, A. T. (2001). The Geometry of Biological Time Vol. 12. New York, NY:
Springer. doi: 10.1007/978-1-4757-3484-3

Wu, J.-Y., Huang, X., and Zhang, C. (2008). Propagating waves of activity in
the neocortex: what they are, what they do. Neuroscientist 14, 487–502. doi:
10.1177/1073858408317066

Wulff, C. (1996). “Theory of Meandering and Drifting Spiral Waves in Reaction-
Diffusion Systems,” in Doctoral thesis. Berlin: Friei Universitat Berlin.

Xiao-Ping, Y., Jiang-Xing, C., Ye-Hua, Z., Qin, L., Lu-Lu, W., and Qian, S. (2011).
Spiral wave generation in a vortex electric field. Chin. Phys. Lett. 28:100505. doi:
10.1088/0256-307X/28/10/100505

Xu, X., Olivas, N. D., Levi, R., Ikrar, T., and Nenadic, Z. (2010). High
precision and fast functional mapping of cortical circuitry through a
novel combination of voltage sensitive dye imaging and laser scan-
ning photostimulation. J. Neurophysiol. 103, 2301–2312. doi: 10.1152/jn.
00992.2009

Yang, H., and Yang, J. (2007). Spiral waves in linearly coupled reaction-diffusion
systems. Phys. Rev. E 76:016206. doi: 10.1103/PhysRevE.76.016206

Yu, G., Ma, J., Jia, Y., and Tang, J. (2010). Dynamics of spiral wave in the
coupled hodgkin–huxley neurons. Int. J. Mod. Phys. B 24, 4555–4562. doi:
10.1142/S021797921005658X

Yuan, G., Xu, L., Xu, A., Wang, G., and Yang, S. (2011). Spiral waves in excitable
media due to noise and periodic forcing. Chaos Solit. Fract. 44, 728–738. doi:
10.1016/j.chaos.2011.06.013

Zanos, S., Zanos, T. P., Marmarelis, V. Z., Ojemann, G. A., and Fetz, E. E.
(2012). Relationships between spike-free local field potentials and spike
timing in human temporal cortex. J. Neurophysiol. 107, 1808–1821. doi:
10.1152/jn.00663.2011

Zhang, H., Hu, B., and Hu, G. (2003). Suppression of spiral waves and spatiotempo-
ral chaos by generating target waves in excitable media. Phys. Rev. E 68:026134.
doi: 10.1103/PhysRevE.68.026134

Zhang, H., Hu, B., Hu, G., Ouyang, Q., and Kurths, J. (2002). Turbulence
control by developing a spiral wave with a periodic signal injection
in the complex ginzburg-landau equation. Phys. Rev. E 66:046303. doi:
10.1103/PhysRevE.66.046303

Zhang, X., and Li, J. (2012). “A novel methodology for high accuracy fixational eye
movements detection,” in Proc. 4th International Conference on Bioinformatics
and Biomedical Technology (Singapore), 133–140.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 06 December 2013; accepted: 09 February 2014; published online: 26
February 2014.
Citation: Wilkinson NM and Metta G (2014) Capture of fixation by rotational
flow; a deterministic hypothesis regarding scaling and stochasticity in fixational eye
movements. Front. Syst. Neurosci. 8:29. doi: 10.3389/fnsys.2014.00029
This article was submitted to the journal Frontiers in Systems Neuroscience.
Copyright © 2014 Wilkinson and Metta. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Systems Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 29 | 121

http://dx.doi.org/10.3389/fnsys.2014.00029
http://dx.doi.org/10.3389/fnsys.2014.00029
http://dx.doi.org/10.3389/fnsys.2014.00029
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


ORIGINAL RESEARCH
published: 31 March 2016

doi: 10.3389/fnsys.2016.00028

Frontiers in Systems Neuroscience | www.frontiersin.org March 2016 | Volume 10 | Article 28 |

Edited by:

Ruben Moreno-Bote,

Universidad Pompeu Fabra, Spain

Reviewed by:

Artur Luczak,

University of Lethbridge, Canada

Victor De Lafuente,

Universidad Nacional Autónoma de

México, Mexico

*Correspondence:

Hirokazu Takahashi

takahashi@i.u-tokyo.ac.jp

Received: 27 January 2016

Accepted: 14 March 2016

Published: 31 March 2016

Citation:

Yada Y, Kanzaki R and Takahashi H

(2016) State-Dependent Propagation

of Neuronal Sub-Population in

Spontaneous Synchronized Bursts.

Front. Syst. Neurosci. 10:28.

doi: 10.3389/fnsys.2016.00028

State-Dependent Propagation of
Neuronal Sub-Population in
Spontaneous Synchronized Bursts
Yuichiro Yada 1, 2, 3, Ryohei Kanzaki 1, 2 and Hirokazu Takahashi 1, 2*

1 Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan, 2Department of

Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan,
3 Japan Society for the Promotion of Science, Tokyo, Japan

Repeating stable spatiotemporal patterns emerge in synchronized spontaneous activity

in neuronal networks. The repertoire of such patterns can serve as memory, or a

reservoir of information, in a neuronal network; moreover, the variety of patterns may

represent the network memory capacity. However, a neuronal substrate for producing

a repertoire of patterns in synchronization remains elusive. We herein hypothesize

that state-dependent propagation of a neuronal sub-population is the key mechanism.

By combining high-resolution measurement with a 4096-channel complementary

metal-oxide semiconductor (CMOS) microelectrode array (MEA) and dimensionality

reduction with non-negative matrix factorization (NMF), we investigated synchronized

bursts of dissociated rat cortical neurons at approximately 3 weeks in vitro. We found

that bursts had a repertoire of repeating spatiotemporal patterns, and different patterns

shared a partially similar sequence of sub-population, supporting the idea of sequential

structure of neuronal sub-populations during synchronized activity. We additionally found

that similar spatiotemporal patterns tended to appear successively and periodically,

suggesting a state-dependent fluctuation of propagation, which has been overlooked

in existing literature. Thus, such a state-dependent property within the sequential

sub-population structure is a plausible neural substrate for performing a repertoire of

stable patterns during synchronized activity.

Keywords: spontaneous synchronized burst, state-dependent activity, microelectrode array, dissociated culture,

metastable dynamics

INTRODUCTION

Repeating stable spatiotemporal patterns emerge in synchronized spontaneous activity in vivo (Lee
and Wilson, 2002; Ji and Wilson, 2007; Luczak et al., 2007; Villette et al., 2015), in vitro (Beggs and
Plenz, 2003, 2004; Ikegaya et al., 2004), and in dissociated cultures (Segev et al., 2004; van Pelt et al.,
2004; Eytan and Marom, 2006; Madhavan et al., 2007; Rolston et al., 2007; Schroeter et al., 2015).
The repertoire of such patterns can serve as memory, or a reservoir (Maass et al., 2002; Sussillo
and Abbott, 2009) of information, in a neuronal network; moreover, the variety of patterns may
represent the memory capacity in the network (Shew et al., 2011). Furthermore, spatiotemporal
patterns in spontaneous activity are often similar to those of evoked activity against external events

Abbreviations: BFM, Burst feature matrix; SPP, Sub-population pattern; SPAW, Sub-population activation weight.
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(Arieli et al., 1996; Tsodyks et al., 1999; Kenet et al., 2003; Luczak
et al., 2009), suggesting that the variety of spontaneous patterns
constrain the processing capacity of external inputs (Luczak
et al., 2009; Villette et al., 2015). Our present interest is therefore
the neural mechanism required to build a repertoire of stable
spatiotemporal patterns in synchronized spontaneous activities.

Both theoretical and experimental studies have demonstrated
that stable patterns emerge in a sequential structure of a neuronal
network, where each synaptic connection is unreliable, yet
synchronized activities of a particular sub-population reliably
elicit another sub-population activity (Abeles, 1991; Aertsen
et al., 1996; Diesmann et al., 1999; Ikegaya et al., 2004).
Nevertheless, the way in which the repertoire of patterns is built
in such a sequential structure remains elusive.

To address this problem, state-dependency of neuronal
activity is a plausible neural underpinning (Buonomano and
Maass, 2009). Recently, cortical spontaneous activities were
characterized as having multiple “metastable states” itinerating
in an activity dependent manner (Mazzucato et al., 2015).
A particular state should continue during a quiescent period
(Dranias et al., 2013, 2015; Ju et al., 2015) because cellular
and synaptic properties governing states are likely to last
without explicit spiking (Buonomano and Maass, 2009). Based
on these studies, we hypothesize that (i) stable spatiotemporal
patterns in synchronized spontaneous activity are generated
by sequential activation of sub-populations, and that (ii) these
patterns are generated in a state-dependent manner, whereby
multiple metastable states can be defined as a finite continuous
period.

In the present study, we test our hypotheses in dissociated
neuronal cultures. To date, spontaneous activities in neuronal
cultures have been well characterized with a microelectrode
array (MEA) (Beggs and Plenz, 2004; Eytan and Marom, 2006;
Madhavan et al., 2007). However, the spatial resolution of
conventional MEA is insufficient to capture the whole activity
in the neuronal network, potentially causing misestimation
of population properties (Gerhard et al., 2011; Ribeiro et al.,
2014). To overcome this technical pitfall, we use cutting-
edge complementary metal-oxide semiconductor (CMOS)
microelectrode arrays (MEAs) (Berdondini et al., 2009; Frey
et al., 2010; Obien et al., 2014; Müller et al., 2015), which
offer excellent spatiotemporal resolution for investigating
neuronal networks in vitro (Gandolfo et al., 2010; Bakkum
et al., 2013a; Panas et al., 2015). The CMOS MEA used in this
study can simultaneously measure neural activities from 4096
sites within 2.67 × 2.67mm2 at a sampling rate of 7 kHz. The
high-dimensional spatiotemporal activity patterns are then
characterized by non-negative matrix factorization (NMF) (Lee
and Seung, 1999; Leonard et al., 2015; Wei et al., 2015) in order
to visualize whether and how sub-populations are sequentially
activated in a state-dependent manner.

We demonstrate that cultured neurons obviously perform a
repertoire of multiple spatiotemporal patterns in spontaneous
synchronized activity, while different patterns share a partially
similar sequence of sub-populations. This supports the concept
that the network has invariant sequential structures of sub-
populations. Additionally, similar spatiotemporal patterns

appear consecutively, which suggests that pattern generation is
state-dependent. Our experimental results provide compelling
evidence that a repertoire of stable neural patterns is generated
in a state-dependent manner.

MATERIALS AND METHODS

Cell Culture
All experimental protocols were approved by the ethical
committee of the University of Tokyo and conducted in
accordance with the “Guiding Principles for the Care and Use
of Animals in the Field of Physiological Science” by the Japanese
Physiological Society. The cell culture procedure was based
on previous reports (Bakkum et al., 2013a) and was slightly
modified. Cortices were dissected from E18 Wistar rats and
dissociated by 0.25% trypsin-EDTA (Invitrogen) and trituration.
For cell adhesion, the electrode area of the high-density CMOS
MEA (3Brain, Biochip 4096S) was coated with a 20-ul drop
of 0.05% polyethylenimine (Sigma) and then a 20-ul drop of
0.02mg/ml laminin (Sigma). On the MEAs, 30,000–40,000 cells
were seeded with cell plating media: 850 ul of NeuroBasal
(Invitrogen) supplemented with 10% horse serum (HyClone),
2% B27 (Invitrogen), and 0.5mM GlutaMAX (Invitrogen). After
24 h, the media were replaced with cell growth media: 850 ul
of DMEM (Invitrogen) supplemented with 10% horse serum,
0.5mMGlutaMAX, and 10 ug of sodium pyruvate. Cultures were
maintained in an incubator at 37◦C and 5% CO2 humidified
atmosphere. Half the media were exchanged twice a week. For
avoidance of evaporation and infection, the well on the chip was
covered with a custom-made lid except for the period during the
medium exchange (Potter and DeMarse, 2001).

Recording with High-Density CMOS MEAs
Extracellular voltage was recorded using a commercialized high-
density CMOS MEA system (3Brain). Biochip 4096S (3Brain)
contains 4096 electrodes; the scale of the electrode is 21 × 21
um, and the distance of neighboring electrodes is also 21 um.
The electrodes are squarely located in the 2.67 × 2.67mm area.
Extracellular signals were simultaneously captured from the 4096
electrodes through the CMOS MEA interface, BioCAM4096
(3Brain), at a sampling rate of 7 kHz. They were recorded
using BrainWave (3Brain) computer software. Ten minutes
of spontaneous activities of five cultures at approximately 21
days in vitro (DIV) were recorded; their spontaneous activities
at approximately 10DIV were also recorded for comparison.
Recording was performed outside the incubator. The recording
space was shielded with a blackout curtain to avoid potential
effects of ambient light (Imfeld et al., 2008) and maintained at
35–36◦C atmosphere.

Spike Detection
Spikes were detected from recorded data by using a precise
spike timing detection (PTSD) algorithm (Maccione et al., 2009)
installed in BrainWave. The parameters for the PTSD algorithm
were as follows: standard deviation factor, 10.0; peak life-time
period, 2.0ms; refractory period, 1.0ms. The timing of each spike
was assigned to the timing of its negative peak. The median of
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the peak amplitude of detected spikes was calculated at each
electrode; spikes detected at electrodes with lower median peaks
than the threshold were excluded from the following process. The
threshold was the third quartile of the median peaks, which was
qualified by manual inspection. Spike sorting was not performed
in this experiment.

Burst Detection
Synchronized bursts (Kamioka et al., 1996) were detected from
recorded spontaneous activity by a slightly modified version of
the existing adaptive algorithm (Bakkum et al., 2013b). If Nspike

spikes occurred at all electrodes in total within less than T ms,
the period was defined as a burst. The threshold time, T, is
adaptively determined from the inter-spike interval (ISI) of each
culture. The distribution of ISI typically forms bimodal shapes;
an interval that takes the minima at the valley of the distribution
is chosen as T. Here, we set Nspike as 200 because the number
of recording channels was larger than the setup used in the
original paper. Additionally, post-hoc processing was conducted
for avoidance of burst fragmentation. The original method has
excellent sensitivity in detecting small sizes of bursts; however, it
separated a large burst into several small bursts in some cases.
Thus, if an interval between two consecutive bursts was less than
100ms, the two bursts were merged into a single burst.

Evaluation of Burst Peak Amplitude
Distributions
The maximum number of array-wide spikes in a 10-ms time bin
during a burst was defined as the peak amplitude of the burst.
Distribution of spontaneous burst peak amplitude was evaluated
to check diversity of bursts. The distribution of bursts in dense-
plated cultures showed fixed-peak-amplitude bursts or “super
bursts” at approximately 10DIV, while they showed bimodal
or long-tailed ones at approximately 20DIV (Wagenaar et al.,
2006b). Kurtosis of the distribution,

k =
E[(x− E[x])4]

E[(x− E[x])2]
2
− 3,

where x is the value obeying the distribution, and the chi-square
goodness-of-fit test for normal distribution, were used to evaluate
unimodality of the distributions.

Sub-Population Pattern Extraction by
Non-Negative Matrix Factorization (NMF)
The number of spikes occurred in 10-ms time bins were counted
at all electrodes and a 4096 × 60,000 matrix was obtained. The
matrix was defined as an observed matrix, Y . The width of
the bin was chosen on the basis of the time step used in the
previous report that observed multiple recursive spatiotemporal
patterns in synchronized bursts (Madhavan et al., 2007). It was
hypothesized that a part of the neurons in a network constitute
a co-active sub-population in the temporal resolution; the
sequential activation of such sub-neuronal populations generates
repeatable spatiotemporal activity of neurons as synchronized
bursts. In this model, the activities of sub-populations are

captured as reproducible spatial patterns; we refer to them as
sub-population patterns (SPPs).

It was assumed that each element of the observation matrix,
yi,t (i= 1, 2,. . ., 4096; t= 1, 2,. . ., 60000) , was sampled from
the Poisson process with parameter si,t, which indicates an
instantaneous firing rate,

p
(

yi,t
)

= Poisson
(

yi,t|si,t
)

.

It was additionally assumed that the firing rate of all 4096
electrodes at each bin was generated by a linear combination
of D pieces of SPPs, where D is the dimension of network
activity. Consequently, the instantaneous firing rate matrix, S
(4096×60,000 matrix), was represented as the product of an
SPP matrix, H (4096×D matrix), which contains an SPP at each
column, and a sub-population activation weight (SPAW) matrix,
W (D×60, 000 matrix), which contains the coefficients for linear
combination,

S = H×W.

Notably, the SPPs could have overlapping electrodes in this
model. The element of the observed matrix is the number of
spikes and is thus non-negative. We thus define elements of the
SPP matrix and SPAW matrix as also being non-negative. With
this assumption, the SPP and SPAWmatrices can be derived from
the observed matrix using NMF (Lee and Seung, 1999). NMF
with the generalized Kullback–Leibler divergence cost function
actually assumes the Poisson generative model described above.
Thus, we implemented the following optimization:

minimize DKL (Y|HW)

s.t.∀i,∀d,hi,d ≥ 0; ∀d,∀t,wd,t ≥ 0,

where generalized Kullback–Leibler divergence DKL between
matrices is:

DKL (A|B) =
∑

m,n

(

Am,nlog
Am,n

Bm,n
− Am,n + Bm,n

)

.

The algorithm proposed by Lee and Seung (2001) was adopted to
solve this problem. Open source MATLAB codes were used with
slight modification1. The number of SPPs, D, was empirically
determined to be 10 (d= 1, 2,. . ., 10). The initial values of the
matrix elements were randomly set, and the iteration loop was
implanted 500 times. The calculation was independently repeated
ten times. The result with the minimum cost function among all
trials was used for further analysis.

Burst Pattern Classification
Bursts were classified into several classes to identify multiple
recursive spatiotemporal patterns. In the present study, SPAWs
during a bursting period were used as a burst feature matrix
(BFM) to characterize the burst. First, however, time spans of
bursts were adjusted from detected burst periods to compare
spatiotemporal patterns. The initiation point of a burst was

1https://github.com/audiofilter/nmflib
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defined as the first bin where ten spikes or more were observed
in the whole network in a detected burst period.

All BFMs have the same length of time before the initiation
points (pre-initiation length) and the same length of time
after initiation pointsı (post-initiation length). Thus, the pre-
initiation length was determined to be 100ms to avoid inclusion
of previous bursts in a BFM. The post-initiation length was
adjusted depending on the cultures to include the burst with
the longest length from its initiation point. Then, BFMs were
classified by correlation-based hierarchical clustering with some
modifications from previous studies. Themaximumpeak of cross
correlation was defined as the similarity between BFM A and
BFM B to avoid the effects of the extraction of burst periods.

Corr(A,A) =

L
∑

l= 1

D
∑

d= 1

Ad,lAd,l

Similarity (A, B) = max
k

L
∑

l= 1

D
∑

d= 1

Ad,l

Corr (A,A)1/2

Bd,l−k

Corr (B,B)1/2

(

k = −L, L+ 1, . . .., 0, . . ., L−1, L
)

,

where L is the length of the BFMs, and zero is inserted into the

elements of BFMs if l − k< 0 or l− k > L. If BFM A and
BFM B are identical, Similarity (A,B)= 1. Similarities between
all pairs of the BFMs were calculated; the highest similar pair was
grouped. An averaged BFM of the group was then used as a new
BFM that represents the grouped bursts.

The above procedure was repeated until all BFMsweremerged
into one class group. Subsequently, the number of classes that
maximize the contrast function (Beggs and Plenz, 2004) was
determined as the optimal number of classes. However, if the
largest class occupied more than 90% of all bursts, the next peak
of the contrast function was selected as the number of the optimal
class because misdetected bursts could form a small fraction in
some cases.

Sub-Population Sequence Analysis
Sequences of sub-population activity between different classes of
bursts were compared. The comparison was conducted because
the sequences are assumed to be partially invariant regardless
of the classes of overall spatiotemporal patterns if there exists
stable sequential propagation between sub-populations. First, five
of the ten sub-populations with the largest peaks of SPAWs
in the averaged burst were selected. The other five small
SPAWs were excluded as burst-unrelated, or low contributing
sub-populations. Then, spatiotemporal patterns of bursts were
converted into a sequence of the timing when each sub-
population took the maximum SPAWs. One of the burst classes
with the largest summation of SPAWs was defined as a template
class. Moreover, the sub-population sequence calculated from
the averaged template-class bursts was defined as a template
sequence.

Here, partial similarity with respect to the template sequence
was evaluated for (i) sub-population sequences in template
classes, (ii) those in non-template classes, and (iii) randomized

sequences. The partial similarity was measured according to two
kinds of criteria, which were adopted with slight modification
from a previous study of memory replay in the hippocampus
(Lee and Wilson, 2002). The first criterion is the number
of times of permutation of a sub-population pair order to
perfectly match the template sequence. The proportion of sub-
population sequences that can match the template with the
same or less than N permutation was used as the index of
similarity, where N is a threshold value. The second criterion is
the reproducibility of the sub-population pair order (duplet) or
the sub-population trio order (triplet). A pair and a trio with
the highest order consistency in all synchronized bursts were
used as the duplet and triplet. The probability that the duplet
or triplet was replayed within sequences was used as the index
of similarity. Significance of partial similarity was statistically
tested according to the similarity indices of actual sub-population
sequences against those of randomized sequences. The number
of randomized sequences was identical to the number of total
(both the template class and non-template class) bursts. The
significance was evaluated by the Mann–Whitney U-test.

Sequence Randomization
In sub-population sequence analysis, as well as in burst class
consecutiveness analysis, randomized sequences were used to test
the statistical significance of actual data. Random real numbers
between [0 1] were sampled from the uniform distribution and
assigned to all elements of the sequence. The elements of the
sequence were then sorted according to the assigned numbers,
and this sorted sequence was compared with actual data.

Evaluation of Burst Class Consecutiveness
Consecutiveness in sequences of burst classes was evaluated by
probability of burst class transition. The probability that the
same burst class was generated successively in actual data was
compared with that of randomized burst-class sequences. One
hundred randomized sequences were generated against each
culture. The statistical significance of actual data was evaluated
for each data, thereby testing the null hypothesis that the median
of the probabilities in the randomized sequences is equal to the
probability of the actual sequence by the one-sample Wilcoxon
signed-rank test.

Evaluation of Periodical Similarity in Burst
Patterns
To evaluate the periodical appearance of spatiotemporal patterns
in synchronized bursts, Fisher’s g-statistic was used to test
the significance of periodicity (Wichert et al., 2003). Fisher’s
g-statistic is defined as:

g =
maxiI (ωi)

∑

[

Nsample/2
]

i= 1 I (ωi)

,

where I (ωi) is the periodogram of the signal to evaluate, Nsample

is the sample size of the signal, and ωi is a discrete frequency
of the signal, ωi = 2π i/Nsample

(

i =0, 1, 2, . . .,
[

Nsample/2
])

. The
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significance level of Fisher’s g-statistic was determined from the
distribution:

P(g >g∗) =

M
∑

m= 1

(−1)m−1
[

Nsample
2

]Cm(1−mg∗)([Nsample/2]−1)
,

where M is the largest integer less than 1/g∗. Mean burst
similarity according to (i) the difference of burst indices, and
(ii) the difference of burst appearance time, from which linear
components were subtracted, were used as I (ωi) in this study.
For avoiding misestimation from small samples, the differences
of burst indices with more than 20 pair samples and pairs of
bursts appeared within 400 s were used.

RESULTS

High-density CMOS MEAs captured spontaneous neuronal
activity from five cortical networks. Ten-minute recording was
performed in each culture in two developmental conditions:
in a developed period–−20.8 ± 2.2 (mean ± SD) DIV—and
in a juvenile period— 9.8 ± 0.8DIV—for comparison. The
number of available electrodes that detected action potentials
with amplitude larger than the threshold was typically around
1000 channels. Synchronized bursts of cortical neurons were
observed from the juvenile periods and stably persisted through
development (Kamioka et al., 1996). The bursts were detected
with the adaptive algorithm (Bakkum et al., 2013b); the average
number of detected bursts was 139 ± 68 (mean ± SD) in a
developed period, whereas it was 88± 54 in a juvenile period.

Consistent with a previous study (Wagenaar et al., 2006b),
juvenile cultures exhibited fixed-peak-amplitude bursts, while
developed cultures exhibited variable-peak-amplitude bursts.
Representative 30-s spontaneous activities of juvenile and
developed cultures are shown in Figures 1A–D. A juvenile
network shows homogeneous spatiotemporal spiking activity
(Figures 1A,B). In a developed one, however, bursts show

heterogeneous activity (Figures 1C,D). The distributions of burst
peak amplitude—themaximum number of array-wide spikes in a
10-ms time bin during a bursting period—show a single peak in a
juvenile culture (Figure 1E), but a bimodal shape in a developed
culture (Figure 1F). Figure 1G shows kurtosis of the burst-peak-
amplitude distributions. Kurtosis tends to drop and become apart
from zero with development, except one culture (Culture #3),
which was excluded from further analysis.

The chi-square goodness-of-fit test was performed for
testing whether the burst-peak-amplitude distributions
were represented with normal distribution. The developed-
period distributions disobeyed normal distribution (Culture
#1, p = 3.215×10−8, mean ± SD: 484.8 ± 225.1;
Culture #2, p = 4.656×10−10, mean ± SD: 250.7 ±

176.2; Culture #4, p= 0.005357, mean ± SD: 198.7 ± 88.1;
Culture #5, p = 3.775×10−16, mean ± SD: 1437 ± 631),
while juvenile-periods ones were characterized with normal
distributions (Culture #1, p= 0.7668, mean ± SD: 46.36 ± 6.92;
Culture #2, p= 0.5175, mean ± SD: 46.65 ± 7.34; Culture #4,
p= 0.9448, mean ± SD: 137.1 ± 41.5; Culture #5, p= 0.09618,
mean ± SD: 91.02 ± 18.23). These results demonstrate that
bursts in a developed period differ from those in a juvenile
period in terms of characteristic peak amplitude. We thus
hypothesize that the developed cultures recruit variable neuronal
sub-populations to produce different patterns.

Spontaneous spiking activity of the cultured neurons was
decomposed into SPPs and SPAWs. First, the frequency of
spikes occurring in 10-ms bins were calculated at each electrode.
Then, the NMF algorithm (Lee and Seung, 2001) decomposed a
4096-dimensional spike frequency matrix into ten SPPs, which
represented the spatial patterns of reproducibly co-activated
electrodes and ten-dimensional SPAWs. The number of spikes
detected at each electrode at each time bin was modeled as
generated by the Poisson process with a latent parameter, which
corresponded to a firing probability at the time. The Kullback–
Leibler divergence NMF hypothesizes that the latent parameters
of the Poisson process are a linear combination of the SPPs.

FIGURE 1 | Spontaneous spiking activities of cultured cortical neurons recorded on CMOS MEAs and distributions of burst peak amplitude. (A,B) A

representative raster plot (A) and the number of array-wide spikes (B) from 30 s of spontaneous activity recorded from a culture at 10DIV. (C,D) A raster plot (C) and

the number of array-wide spikes (D) from recorded data from a culture at 18DIV. (E) Histogram of burst peak amplitude (the maximum number of array-wide spikes in

10-ms bins during synchronized bursts) from the same recorded data shown in (A,B). (F) Histogram of burst peak amplitude from the same recorded data shown in

(C,D). (G) Kurtosis of the burst-peak-amplitude distribution from spontaneous activities at 9–11DIV and those at 18–24DIV.
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Non-monotonic repeating spatiotemporal patterns of
synchronized bursts were observed from dimension-reduced
activity obtained by NMF. The representative data in Figure 1A

are decomposed into the temporal pattern of SPAW (Figure 2A)
and SPPs (Figure 2B). The spatial distributions of co-activated
electrodes in the SPPs did not always localized; some sub-
populations had spatially localized activity patterns, while others
had rather dispersed distributions, as illustrated in Figure 2B.
Overall SPAW confirmed that synchronized burst patterns
were reproducible both spatially and temporally. This finding
is consistent with the previous study that demonstrated the
stability of synchronized burst patterns in dissociated cultures
(Eytan and Marom, 2006). However, the bursts in the first half
(before 15 s) and those in the second half in Figure 2A appear to
have different spatiotemporal patterns. For example, SPP #1 was
recruited in the second half, but not in the first. Nevertheless,

other SPPs seemed to be activated similarly in all synchronized
bursts.

Spatiotemporal patterns of bursts were hierarchically
clustered according to similarity of BFM and classified into
several classes, as shown in the dendrogram in Figure 2C.
The similarity matrix of bursts in Figure 2D, where indices of
bursts are sorted according to the dendrogram in Figure 2C,
suggests that temporal activation patterns of sub-populations
in bursts are repeated. The number of classes was chosen to
maximize the contrast function (Figure 2E) (Beggs and Plenz,
2004). The horizontal dotted line across the dendrogram in
Figure 2C indicates the selected level of cut for the classes.
Mean trajectories of SPAWs for each class are then illustrated
in Figures 2F,G. Remarkably, temporal patterns of SPAWs in
different classes seemed to be partially similar; spatiotemporal
patterns in both classes were likely characterized as having

FIGURE 2 | Decomposition of high-dimensional neuronal activity and classification of synchronized burst patterns. (A) Low-dimensional activity of the

neuronal network represented with sub-population activation weights (SPAWs). The same period of Figures 1C,D is illustrated. (B) Sub-population patterns (SPPs) of

spontaneous activity of cultured cortical neurons obtained with NMF. The SPPs are shown as corresponding to recording electrodes configuration. (C) A dendrogram

represents a process of hierarchical grouping of BFMs. The dotted horizontal line indicates a selected level of the grouping. (D) A similarity matrix of sub-population

activation weights during synchronized bursts. (E) A contrast function for the dendrogram shown in (C). Asterisk indicates a maximum peak of the function. (F,G)

Mean SPAWs within classified burst classes.
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common sub-populations with partially identical temporal
orders. This suggests stable unidirectional propagation of sub-
population across different classes. Such a sequential structure
of neurons in spontaneous synchronized activity was suggested
in previous reports (Eytan and Marom, 2006; Ham et al., 2008;
Raichman and Ben-Jacob, 2008).

To evaluate partial similarity of spatiotemporal patterns
among different classes, the sequences of sub-populations
were compared. Figure 3A illustrates a schematic procedure
of the analysis. Five out of ten sub-populations were selected
according to the largest peaks of SPAWs in all averaged BFM
to exclude effects from burst-unrelated or burst-less-related sub
populations. Then, each burst was represented as a sequence
of selected sub-populations. The burst class with the largest
total SPAWs was defined as a template class; the sub-population

sequence of averaged bursts in the template class was defined as a
template sequence.

Figure 3B shows the probability that a sequence had partial
similarity with the template sequence in the mean of pair
permutation times. The threshold was set to two times here.
Obviously, sequences in the template class had a higher
probability of having partial similarity with the template
sequence compared with randomly generated sequences (p =

0.02857 < 0.05). However, sequences in the non-template
classes also showed higher probability than random sequences
(p = 0.02857 < 0.05), although the median probability
was slightly smaller than that of the template class. The
findings in the permutation analysis were reconfirmed in the
appearance probability of the same duplet/triplet order as shown
in Figures 3C,D (p = 0.02857 < 0.05 in all comparisons). Thus,

FIGURE 3 | Similarity in partial sequence of sub-population activation between synchronized burst classes. (A) Illustration of the procedure to evaluate

partial similarity between sub-population sequences of bursts. SPAWs during a burst were converted into a sequence of their peaks. Sub-population sequences of

bursts were compared with the template sequence. Permutation times for matching refers to the way in which many pair permutations are required to match the

template sequence. Duplet/triplet order matching indicates whether the order of two/three sub-populations matches the template sequence. (B) Probability that

permutation times for matching is two or less. (C,D) Probability that the duplet (C) or the triplet (D) order matched the template. The most reproduced duplet or triplet

was selected for analysis. The Mann–Whitney U-test. *p < 0.05.
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different spatiotemporal patterns in synchronized bursts were
likely to have partially similar sequences of sub-populations.

Next, temporal consecutiveness of these spatiotemporal
patterns was investigated. If spatiotemporal patterns in
synchronized bursts are an active representation of hidden
states of a network (Buonomano and Maass, 2009), temporally
neighboring bursts should exhibit similar patterns. Figure 4A
shows when each class of bursts appeared through recording,
clearly demonstrating that the same class of bursts appeared
consecutively. The probability of remaining in the same classes
of bursts was significantly higher in the experimental data than
in the simulation data with randomized orders of burst classes in
all the test dishes (Figures 4B,C; Culture #1: p= 1.578×10−30;
Culture #2: p= 9.466×10−30; Culture #4: 2.157×10−22; Culture
#5: p= 1.578×10−30). In other words, a network of cortical
neurons tends to maintain similar burst patterns for a certain
period.

The consecutiveness in spatiotemporal patterns was also
supported by the unsorted similarity matrix of bursts shown in
Figure 5A. Similar clusters along the diagonal in the similarity
matrix indicate that similar spatiotemporal patterns appeared
in succession. Figure 5B illustrates the relationship between
similarity of spatiotemporal patterns and the difference in
burst appearance indices. Interestingly, not only did neighbor
bursts share highly similar spatiotemporal patterns, but also
the similar pairs of bursts seemed to appear periodically.
From this observation, it was postulated that the combination
of consecutiveness and periodicity can account for the burst
similarity depending on the difference of burst appearance
indices.

After subtracting the linear regression line, normalized
autocorrelation of the similarity function (Figure 5B) was
computed to visualize periodicity; then, clear periodicity was
found in the autocorrelogram (Figure 5C). Fisher’s g-statistic
was calculated from the periodogram of the residual similarity
function to evaluate the significance level of the largest
component of the periodicity (Figure 5D; Wichert et al., 2003);
Figure 5D indicates that similarity fluctuation in Figure 5B

had 3 cycles, corresponding to 64.0 length of cycle. All
cultures showed significant (p < 0.001) periodicity (Culture
#1, p= 1.568×10−43; Culture #2, p = 1.222×10−5; Culture
#4, p= 2.270×10−3; Culture #5, p= 4.829×10−7), while the
length of the cycle varied between cultures (Culture #1, 64.0;
Culture #2, 27.7; Culture #4, 66.0; Culture #5, 38.6). The same
analysis was tested against the relationship between similarity of
spatiotemporal patterns and the difference in their appearance
time (Figures 5E–G). A mean interval of 64 bursts, i.e., a
length of the cycle in Figure 5B, corresponds to 195.1 (±26.0,
SD) s, which appeared as a peak in Figures 5E,F. All cultures
except one showed significant (p < 0.001) periodicity (Culture
#1, p= 3.492×10−8; Culture #2, p= 1.483×10−8; Culture #4,
p= 0.1338; Culture #5, p= 3.492×10−8). Frequency of the
similarity functions ranged between 0.01 and 0.02Hz (Culture #1,
0.01Hz; Culture #2, 0.175Hz; Culture #5, 0.01Hz).

Figure 5B indicates that spatiotemporal patterns may not
be homogeneous during a period of the same class bursts. To
address this possibility, similarity of bursts was quantified in
the first two bursts in a given period (Start-Start), in the burst
pairs at the start and end of a given period (Start-End), and in
the successive burst pair at the transition of the period (Class

FIGURE 4 | Evaluation of consecutiveness in appearance of burst spatiotemporal patterns classes. (A) (Top) Periods in which each class of bursts

appeared. (Bottom) Number of array-wide spikes through the whole recording. (B) Schematic illustration of the transition between multiple burst classes. The

probability of “remaining” was evaluated. (C) Probability that the same class of bursts appeared in succession. Randomized data was generated by randomly shuffling

original data. The red lines in randomized data indicate the median of the probabilities. The blue boxes are ranges from the 25th percentiles to the 75th percentiles.

The whiskers are the ranges of the all probabilities excluding outliers (the red crosses). One-sample Wilcoxon signed-rank test. ***p < 0.001.
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FIGURE 5 | Consecutive and periodic appearance of similar spatiotemporal patterns of bursts. (A) Similarity matrix of bursts. Bursts are listed in temporal

order. (B) Relationship between similarity and the difference of the burst indices in temporal order. The red line indicates mean similarity against the difference of burst

indices in temporal order. The error bars are SD. The thick black line is a linear regression line to the mean similarity. (C) Autocorrelation of the mean similarity that

subtracted the regression line shown in (B). (D) Periodogram of the mean similarity that subtracted the regression line. Asterisk indicates a maximum peak. The

significance level of the maximum peak was tested using Fisher’s g-statistic. (E–G), The same analysis as shown in (B–D), respectively, about relationship between

similarity and the difference of burst appearance time.

A-Class Ā) (Figure 6A). Consequently, the Start pair exhibited
slightly but significantly higher similarity than the Start-End pair
(p = 0.003), while both the Start pair and the Start-End
pair exhibited significantly higher similarity than the Class A-
Class Ā pair (p= 6.383×10−7, p = 3.858 × 10−6, respectively)
(Figure 6B). Thus, spatiotemporal patterns of the same burst
class gradually change with time, yet this within-class fluctuation
is much smaller than the abrupt change at the transition of the
burst classes.

Consequently, these results demonstrate that spatiotemporal
patterns of bursts were not stochastically generated; rather,
they were consecutively and periodically generated. Our results
support hypothetical ideas that spatiotemporal patterns of bursts
depend on hidden internal states of the network (Buonomano
and Maass, 2009), and that the internal states spontaneously
and recursively fluctuate between multiple “metastable” states
(Durstewitz and Deco, 2007; Mazzucato et al., 2015).

DISCUSSION

By combining high-resolutionmeasurement with a 4096-channel
CMOS MEA and dimensionality reduction with NMF, we
investigated synchronized bursts of dissociated cortical neurons
at approximately 3 weeks in vitro. We found that bursts had
a repertoire of repeating spatiotemporal patterns, and different

patterns shared a partially similar sequence of sub-population.
These findings support the idea of propagation of neuronal sub-
populations during synchronized activity (Figure 7A; Abeles,
1991; Ikegaya et al., 2004; Eytan andMarom, 2006). Furthermore,
we found that similar spatiotemporal patterns tended to
appear successively and periodically, suggesting state-dependent
fluctuation of propagation (Figure 7B), which is overlooked
in existing literature. Thus, such a state-dependent property
within the sequential structure is a plausible neural substrate for
performing a repertoire of stable patterns during synchronized
activity.

Methodological Significances
CMOS MEA is an emerging platform for capturing
electrophysiological activity of neuronal networks. It is
analogous to a movie with a spatial resolution at a cellular
level and temporal resolution at a single action potential
(Berdondini et al., 2009). Only a small population of neurons
exhibit high activity, which plausibly play crucial roles in the
network (Wohrer et al., 2013); overlooking these neurons may
lead to misinterpretation of results in our experiments. Thus,
to avoid such sampling bias, cellular-level spatial resolution is
required in the measurement (Panas et al., 2015). Furthermore,
because typical burst activities of our interests last only for a
few 100ms (Eytan and Marom, 2006), the temporal resolution
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FIGURE 6 | Variation of spatiotemporal patterns during a period of the same class burst. (A) Similarity of the first two bursts in a given period (Start-Start

pair), that of the burst pair at the start and end of a given period (Start-End pair) and that of the successive burst pair at the transition of the period (Class A-Class Ā

pair) were evaluated. (B) Similarity of Start-Start pair, Start-End pair and Class A-Class Ā pair. The red lines indicate the median of the similarities. The blue boxes are

ranges from the 25th percentiles to the 75th percentiles. The whiskers are the ranges of the all similarity excluding outliers (the red crosses). Wilcoxon signed-rank

test. **p < 0.01. ***p < 0.001.

FIGURE 7 | Schematic illustration of the hypothesis. (A) Stable spatiotemporal patterns observed in synchronized spontaneous activity are generated by

sequential activation of neuronal sub-population. (B) Such sequential activation of sub-population is state-dependent, whereby multiple metastable states can be

defined as a finite continuous period.

should be on the order of ms to appropriately characterize
the pattern in bursts. CMOS MEA is the only measurement
device available that meets both of these spatial and temporal
requirements.

The dimensions of CMOS MEA data are inherently much
higher than those of the functional SPPs (Baruchi and Ben-Jacob,
2004) of our interests. Appropriate dimensionality reduction
is therefore helpful in identifying functional patterns. In the
present study, we employed NMF to identify stably co-activated
neuronal sub-populations. Originally, NMF was developed to
extract characteristic parts, such as an eye, nose, andmouth, from

facial pictures (Lee and Seung, 1999). The practical advantages
of NMF are that there is no need for pre-processing (Peyrache
et al., 2009; Lopes-dos-Santos et al., 2013), and that non-negative
components extracted from the spiking activity patterns are
intuitively interpretable, just like the facial parts in facial pictures
(Lee and Seung, 1999).

Repeating Spatiotemporal Patterns in
Synchronized Spontaneous Activity
Consistent with the present results, previous studies showed that
cortical cultures have a repertoire of repeating spatiotemporal
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patterns (Segev et al., 2004; Madhavan et al., 2007; Rolston
et al., 2007). A bimodal burst-peak-amplitude distribution
and bimodal spatiotemporal patterns of bursts were typically
observed in our experiments. In terms of burst peak amplitude,
developed cultures (around 21DIV) exhibited a bimodal
distribution, whereas young cultures showed a uni-modal
distribution (Eytan and Marom, 2006; Wagenaar et al.,
2006b; Madhavan et al., 2007). Similarity-based clustering also
demonstrated that synchronized bursts could be classified into
a few patterns (Segev et al., 2004); i.e., small and large bursts
(Madhavan et al., 2007). Our results extend these findings in that
both large and small bursts share similar activation sequences of
sub-populations.

State-Dependency and Spatiotemporal
Patterns
Our results demonstrate the spontaneous itinerancy between
different classes of spatiotemporal activity, suggesting that
metastable states exist in innately isolated neuronal networks
in vitro. Some intermediate states may also exist because
similarity of burst patterns fluctuated continuously within a given
state. Similar spontaneous transitions between metastable states
were recently reported in the gustatory cortex in vivo (Mazzucato
et al., 2015). Cortical activities were also characterized as two
extreme states, i.e., desynchronized and synchronized states, with
continuum of intermediate states (Harris and Thiele, 2011).
These metastable states have a time scale of seconds or minutes.
Thus, they are different from previously described metastable
states in dissociated networks through development, which have
a time scale of weeks or months and transit only unidirectionally
(Pu et al., 2013).

A stable activity state of a neuronal network has been often
mentioned as an attractor (Cossart et al., 2003; Wagenaar
et al., 2006a). Classically, an attractor in the neural network
was postulated as a memory of specific information (Hopfield,
1982). The classical attractor networks, however, are biologically
implausible because the number of attractors is limited compared
to the capacity of information (Maass et al., 2002) because the
converging time into attractors (Maass et al., 2002; Rabinovich
et al., 2008) and the effect of spontaneous activity (Kurikawa and
Kaneko, 2015) are not consistent with experimental observation.
Therefore, according to recent studies, it is more biologically
plausible that transient metastable dynamics dominate neuronal
activity (Durstewitz and Deco, 2007; Rabinovich et al., 2008).

Usually, repeating spatiotemporal activity is apprehended
only as a visible sign of a metastable state (Haldeman and
Beggs, 2005; Mazzucato et al., 2015) during which cellular and
synaptic properties—e.g., the effect of short-term plasticity, slow
inhibitory post-synaptic potentials, NMDA channel kinetics,
etc.—are lasting, forming a so-called “hidden state” of neuronal
networks (Buonomano and Maass, 2009). Such hidden states
could account for consecutive appearances of similar bursts and
can be considered an internal memory of a neuronal network.
This internal memory is likely stronger than the short-term
memory of external events, which is easily broken by bursts;
i.e., internal memory (Dranias et al., 2013, 2015; Ju et al., 2015).

Inhibitory interneurons may significantly contribute to selection
of spatiotemporal patterns (Sasaki et al., 2014), depending on
such hidden states.

In addition, our results demonstrate that spontaneous bursts
may induce state transitions. Similarly, co-activation of some
neurons trigger a state transition in the gustatory cortex
(Mazzucato et al., 2015). These findings suggest that the hidden
states in a neuronal network dominate spatiotemporal patterns of
spontaneous activities, which in turn modulate the hidden states.
Such an interaction between the hidden states and spontaneous
bursts is a possible underlying mechanism of the metastable
activity in neuronal networks.

Sequential Propagation Structures during
Synchrony
Our results imply that multiple spatiotemporal patterns are
generated by a common stable propagation structure in the
network (Raichman and Ben-Jacob, 2008). Signal transmission
within such a stable structure might therefore depend on the
hidden states. This conceptual framework of sequential structure
is compatible with previous findings of a small group of “leader
neurons,” which activate at burst initiation, and hierarchical
structures in the dissociated neuronal networks (Eytan and
Marom, 2006; Ham et al., 2008). Our results are also consistent
with in vivo experiments in that activity bursts across states
have similar spatiotemporal patterns (Luczak et al., 2013). Taken
altogether, such a modified model of synfire chain with state-
dependent fluctuation can account for both stability (Eytan and
Marom, 2006; Panas et al., 2015) and multiple pattern generation
(Segev et al., 2004; Madhavan et al., 2007; Rolston et al., 2007) in
synchronized activities.

Existing models mostly overlooked state-dependent property
to account for the variety of spatiotemporal patterns in
the neuronal network. For example, a branching process is
one of the convincing models (Beggs and Plenz, 2003). It
demonstrates that cortical networks in vitro have metastable
states, and that the critical branching process maximizes the
number of metastable states (Haldeman and Beggs, 2005).
Fixed propagation probabilities between neurons are postulated
in these models, and spatiotemporal patterns are generated
stochastically. However, this model is inconsistent with our
finding that each spatiotemporal pattern does not randomly
emerge; instead, it is repeated in a temporally consecutive
manner. Further modeling with state-dependent properties
would be one of the future directions.

Spontaneous Spatiotemporal Patterns
In vivo
The repeating spatiotemporal patterns in spontaneous activities
have been observed not only in vitro (Beggs and Plenz,
2004; Ikegaya et al., 2004), but also in vivo (Luczak et al.,
2007). Neuronal networks may transmit information as
“neuronal packets” (Luczak et al., 2013, 2015), i.e., activity
of neuronal sub-population, generating such stable patterns,
which is consistent with our results. Memory replay in the
hippocampus is extensively studied as a possible mechanism
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of memory consolidation during sleep (Lee and Wilson, 2002)
and memory retrieval at awaking immobility (Takahashi,
2015; Villette et al., 2015). In the sensory cortex, Luczak
et al. found similarity between spontaneous patterns and
evoked ones. They hypothesized that a repertoire of evoked
responses is a fraction of a spontaneous repertoire (Luczak
et al., 2009). Spontaneous activity might be considered
a prior distribution of sensory inputs (Berkes et al.,
2011).

Nevertheless, in the network that experiences no external
inputs, we demonstrated that repeating spatiotemporal patterns
emerge in a state-dependent manner. Such network could have
similar functional structures during spontaneous activity and
stimulus-evoked activity (Pirino et al., 2015). Future extensive
studies in both experimental and theoretical approaches are

required to elucidate the functions and mechanisms of these
spontaneous properties.
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Recent fMRI studies have shown that analysis of the human brain’s spontaneous activity
may provide a powerful approach to reveal its functional organization. Dedicated methods
have been proposed to investigate co-variation of signals from different brain regions,
with the goal of revealing neuronal networks (NNs) that may serve specialized functions.
However, these analysis methods generally do not take into account a potential non-
stationary (variable) interaction between brain regions, and as a result have limited
effectiveness. To address this, we propose a novel analysis method that uses clustering
analysis to sort and selectively average fMRI activity time frames to produce a set of co-
activation patterns. Compared to the established networks extracted with conventional
analysis methods, these co-activation patterns demonstrate novel network features with
apparent relevance to the brain’s functional organization.

Keywords: resting-state network, non-stationary connectivity, network dynamics, clustering, dynamic

connectivity

INTRODUCTION
A growing body of neuroimaging research is reporting on the
phenomenon of spontaneous neural activity occurring during
rest, in the absence of overt behavior (Biswal et al., 1995; Arieli
et al., 1996; Leopold and Maier, 2012). Functional magnetic res-
onance imaging (fMRI) (Ogawa et al., 1992) studies of the nature
of this activity have revealed multiple spatial patterns of tempo-
rally correlated signal fluctuation that cover much of the brain,
and often align with the established systems that support spe-
cialized brain functions (Biswal et al., 1995; Cordes et al., 2000;
Hampson et al., 2002; Greicius et al., 2003; Fox et al., 2006).
Based on this, it has been hypothesized that these correlational
patterns of fMRI activity (often called “resting-state networks,”
or RSNs) (Fox and Raichle, 2007) indirectly result from spon-
taneous electrical activity in a number of distinct, large scale,
and function-specific neuronal networks (NNs). Interpretation of
RSNs in terms of the NNs supporting the major brain functions
is an important goal of current neuroimaging research (Fox and
Raichle, 2007; Biswal et al., 2010; Zhang and Raichle, 2010).

To tackle this challenging problem, a number of methods
have been applied to analyze resting-state fMRI signals, includ-
ing “seed”-based correlation analysis (Biswal et al., 1995; Fox
et al., 2006), clustering based on temporal characteristics (Cordes
et al., 2002; Mezer et al., 2009) and spatial or temporal indepen-
dent component analysis (ICA) (Kiviniemi et al., 2003; Beckmann
et al., 2005; Smith et al., 2012). These methods generally make
implicit or explicit assumptions about the source signals under-
lying spontaneous fMRI activity, including stationarity of inter-
regional interactions, and/or a statistical independence. The
extent to which these assumptions reflect the nature of NNs
determines how accurately they are represented by RSNs.

Recent studies have provided evidence that spontaneous brain
activity may be non-stationary (Chang and Glover, 2010; Allen
et al., 2012; Hutchison et al., 2012; Rack-Gomer and Liu, 2012),
and in fact may be dominated by brief instances of spontaneous
co-activation of brain regions (Tagliazucchi et al., 2012; Liu and
Duyn, 2013; Wu et al., 2013). This has inspired a novel analy-
sis approach that temporally decomposes conventional RSNs into
multiple co-activation patterns by selective averaging of single
fMRI time frames (Liu and Duyn, 2013). Here we extend this
approach and perform a comprehensive analysis of a publicly
accessible fMRI database to extract 30 spatial patterns of spon-
taneous activity (termed co-activation patterns or CAPs) that are
biologically plausible and show distinct differences from networks
extracted with conventional methods.

METHODS
ANALYSIS APPROACH
The proposed analysis approach is based on the notion that spon-
taneous activity may be dominated by brief activations and deac-
tivations involving many (possibly overlapping) brain regions. It
differs from point process analysis (PPA), which models activity
underlying fMRI signals as point processes and then examines the
conditional distribution of these processes given its occurrence at
a specific seed region (Tagliazucchi et al., 2012; Wu et al., 2013),
in that it is not specifically geared toward detecting neuronal-
avalanche type activity. Rather than selectively averaging time
points of activity increases in a seed region, the method proposed
here classifies and averages time points with similar spatial distri-
butions of activity using the k-means clustering algorithm. It thus
extends the seed-based approach presented in a previous study
(Liu and Duyn, 2013) to a data-driven, whole-brain analysis.
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Clustering is a procedure for classifying a set of objects into
different groups such that within group differences are smaller
than across group differences. An approach popular with fMRI
studies is the k-means clustering method, which has previously
been applied to classify brain voxels based either on their temporal
dynamics (Cordes et al., 2002; Mezer et al., 2009) or correlation
profiles (Anderson et al., 2010; Kelly et al., 2012). Here, in con-
trast, we apply k-means clustering to classify fMRI time points
(fMRI image volumes) based on their spatial similarity.

After reformatting fMRI brain volumes into a set of
m-dimensional vectors {t1, t2, . . . , tn} (where m = the number
of brain voxels, based on a brain mask created from the 152-brain
MNI template), k-means clustering is applied to partition the vec-
tors into k clusters R = {R1, R2, . . . , Rk} (Gluck and Myers, 1997)
such that the sum of within-cluster distances J (Equation 1) is
minimized:

J =
∑k

i = 1

∑

tj∈Ri
d
(

tj, µi
)

(1)

where µi is the mean of fMRI volumes in Ri, and d(•) repre-
sents the distance between two vectors, which we define here to
be 1 minus their Pearson’s correlation coefficient.

DATASET
The resting-state fMRI dataset used in this study was obtained
from the 1000 Functional Connectomes Project (FCP)
(http://www.nitrc.org/projects/fcon_1000/) (Biswal et al.,
2010). It includes data from studies performed independently
at three different sites (Baltimore, Berlin_Margulies, and
Cambridge_Buckner) with approval from their respective ethics
committees. Due to computational limitations, we focused our
analysis on data from 102 subjects (mean age: 24.4 ± 6.6, range:
18-44; sex: 64 females) selected from all 3 sites. Detailed infor-
mation regarding each dataset and the major MR acquisition
parameters can be found at the FCP website.

PRE-PROCESSING OF RESTING-STATE fMRI SIGNALS
FCP analysis scripts (version 1.1-beta, available at http://www.
nitrc.org/frs/shownotes.php?release_id=938) (Biswal et al.,
2010), which employs AFNI (Cox, 1996) and FSL (http://www.

fmrib.ox.ac.uk/fsl/) (Smith et al., 2004) software packages, were
used to pre-process the fMRI signals (with minor modifications,
described below). The typical pre-processing steps for the analysis
of resting state data were applied, including image coregistration
to correct for head motion, spatial smoothing with a Gaussian
kernel (FWHM = 4 mm), temporal filtering with a band-pass
filter (0.005–0.1 Hz), and the removal of linear and quadratic
temporal trends. Additionally, the time series of ROIs in the
white matter and cerebrospinal fluid (CSF), 6 affine motion
parameters, as well as the brain-averaged (global) signal, were
used as nuisance variables to be regressed out from the data.
Given that global signal regression (GSR) may introduce artificial
anti-correlation between regions (Fox et al., 2009; Murphy et al.,
2009; Saad et al., 2012) our analysis was also performed without
the GSR step (Figure S1).

The fMRI data was first co-registered to the high-resolution
anatomical (T1-weighted) images acquired from the same sub-
ject and then normalized to the 152-brain Montreal Neurological

Institute (MNI) normalized space. Here, as departure from
the original FCP scripts, the registration between the func-
tional and anatomical images was implemented using the
“align_epi_anat.py” program (Saad et al., 2009) in AFNI, which
was found to provide a better registration in the superior-inferior
direction. The pre-processed fMRI data were then resampled at
the 3 × 3 × 3 mm3 resolution of the MNI normalized brain space.
Finally, for each voxel, the fMRI signal was temporally normal-
ized by subtracting its mean and then dividing by its temporal
standard deviation (SD).

EXTRACTION OF CAPs
The clustering was applied to all 13382 fMRI volumes acquired
from all 102 participants. After clustering, the fMRI volumes (also
referred to as “time frames”) assigned to the same cluster were
simply averaged, resulting in k maps that we define as CAPs. These
CAPs were then normalized by the standard error (within clus-
ter and across fMRI volumes) to generate Z-statistic maps, which
quantify the degree of significance to which the CAP map val-
ues (for each voxel) deviate from zero. We also calculated three
quantities for each CAP based on its raw map: (1) the occurrence
rate, which was calculated by dividing the number of fMRI time
frames belonging to a given CAP by the total number of time
frames; (2) the within-cluster similarity, calculated as the aver-
age spatial correlation of all within-cluster volumes to their mean;
and (3) the polarity, calculated as the sum of the mean of positive
map values and that of negative map values, such that the result-
ing sign indicates whether the CAP is dominated by activation or
de-activation.

To suppress the contribution of measurement noise, only the
largest signal changes were considered for calculation of distances
for the clustering procedure. This was achieved by applying a
mask to the fMRI volumes that only admitted the 10% high-
est and 5% lowest signal values, and discarded regions with less
than 6 inter-connected (in 3D) voxels. This masking was only per-
formed for the clustering and not for the within-cluster averaging
procedure for calculation of the grand-average CAPs. Although
this masking procedure was not strictly required and did not
affect the general observations in this study, it was found to result
in slightly more specific CAP patterns (Figure S2).

The number of clusters k was set to 30 after comparing the
outcomes of setting k equal to 20, 30, and 40. Although these three
cases generated largely similar CAPs, clustering with k = 30 led to
a few distinct CAPs that were not found with k = 20, while k = 40
led to several CAPs that were nearly indistinguishable. Thus, the
choice of k = 30 was a compromise between extracting too many
and too few distinct CAPs base on what was afforded by the data.

OCCURRENCE RATE OF CAPs
For each fMRI session, the number of fMRI time frames belong-
ing to a specific CAP was divided by the total number of frames in
order to quantify the occurrence rate of the CAP in a subject (only
one session for each participant). A permutation test was applied
to determine whether the occurrence rates of the CAPs were sig-
nificantly different between male and female subjects. Specifically,
the 102 subjects were randomly assigned to two groups with size
of 38 and 64, respectively, without considering their gender, and
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the difference in CAP occurrence rate between the two groups was
recorded. This process was then repeated 50,000 times to build up
distributions of the between-group difference for each CAP. The
probabilities (p-values) of seeing differences between the male
and female groups were then calculated by comparing the actual
observations to these distributions, and a Bonferroni correction
was applied to correct for multiple comparisons.

Head motion was also quantified for the male and female
groups based on two metrics (mean translation, mean rotation)
calculated from the 6 affine motion parameters. The mean trans-
lation was defined as the average displacement between any two
consecutive volumes (defined as the root-mean-square of the
translation parameters), and the mean rotation was calculated in
similar way using the rotation parameters (Van Dijk et al., 2012).

CORRELATION MAPS
For comparison, seed-based correlation maps were calculated by
correlating fMRI signals from all brain voxels to those from four
seed regions (6 × 6 × 6 mm3 cubes) centered at the following
locations (with coordinates given in MNI space): posterior cingu-
late cortex [PCC, (0, −53, 26)], medical prefrontal cortex [mPFC,
(0, 52, -6)], left intraparietal cortex [IPS, (−24, −58, 52)], and
motor cortex [(−36, −25, 57)], respectively (Van Dijk et al.,
2010).

SPATIAL ICs AND TEMPORAL FUNCTIONAL MODES (TFMs)
As another methodological comparison, group-level spatial
ICA with temporal concatenation was implemented with the
MELODIC program in the FSL software (Beckmann et al., 2005).
The number of components to be extracted was specified as 30,
matching the number of the clusters specified for the clustering.
The CAPs were also compared to 21 TFMs derived previously by
temporal ICA (Smith et al., 2012), which are available at SumsDB
(http://sumsdb.wustl.edu/sums/directory.do?id=8288032&dir_na
me=TFM_PNAS).

For comparison, the CAPs and ICs/TFMs that have highest
spatial correlation to each other among their own category were
paired up and shown in Figure 6 and Figure S7.

RESULTS
ACTIVITY DISTRIBUTION AT SINGLE TIME FRAMES
Exemplary activity time frames (T1-T13) from a resting-state
fMRI scan are shown in Figure 1, together with a map derived
by temporally correlating signals across the brain with that from
a “seed” region in the PCC. While the correlation map highlights
the PCC, medial frontal cortex (MF), and bilateral parietal cor-
tices (LPC), all recognized as primary nodes of an RSN known as
the “default mode” network (DMN) (Greicius et al., 2003), single
time frames often show clearly deviating patterns. For example,
while T6, T11, T12, and T13 resemble DMN, T1 and T7 show co-
activations at the visual cortex; T3 and T9 have high signal level
specifically at the sensorimotor and insular cortex; T2, T4, T5, and
T8 cover different sub-sections of the intraparietal sulcus (IPS) as
well as some frontal areas, including the frontal eye fields (FEF);
at T10, no apparent co-activation pattern is seen. It is worth
noting that some of the patterns include strong co-activation at
small but very specific brain structures, e.g., the hippocampus

(HI) and posterior parahippocampal gyrus (PHG) in T11 and
the ventral lateral nucleus (VL) of the thalamus in T3 (white
arrows in Figure 1). Although some of these differences may be
manifestations of experimental noise, their spatial characteristics
(e.g., bilaterality and anatomical specificity) are suggestive of a
neuronal origin.

SPONTANEOUS CO-ACTIVATION PATTERNS (CAPs)
To characterize stable, recurring co-activation patterns in sponta-
neous activity, single fMRI time-frames (13382 frames total) were
clustered into 30 groups based on their spatial characteristics,
after which within-group averaging was performed to calculate
canonical CAPs (see Methods). These 30 CAPs were ranked by
their similarity values, defined as the average correlation between
each fMRI time frame within a group and their mean (Figure S3).
Many of these CAPs resembled RSNs extracted with conventional
analysis, suggesting network activity in the DMN, sensory regions
with or without DMN involvement (see examples in Figure S3).

In various brain regions, CAPs showed interesting differences
from RSNs (Figure 2). For example, DMN CAPs 1 and 15 selec-
tively involved the HI, CAP 7 selectively involved the posterior
PHG, and CAP 13 involved both. This distinct involvement of HI
and PHG in DMN is not observed with conventional analysis. In
addition, CAP 1 showed an asymmetric activation at the superior
portion of the left middle frontal gyrus (MFG) even though its
general pattern is fairly symmetric between hemispheres; CAP 7
has very specific activation along the superior frontal gyrus (SFG),
and its LPC components localize more posteriorly compared to
the others; and CAP 15 shows clear co-activations at the caudate
nucleus (CN). Moreover, co-activations at the PCC/Precuneus
regions in CAPs 7 and 13 appear to be patterned differently from
those in CAPs 1 and 15. All these DMN-related CAPs are also
associated with strong de-activations in a set of “task-positive”
regions (Fox et al., 2005), although to varying spatial extent.

A second group of CAPs showed de-activations in DMN-
related regions combined with strong co-activations in a set of
“task-positive” regions (Figure 3). Their patterns appeared more
distinct from one another as compared to the DMN-activated
CAPs. While CAPs 2 and 3 are both related to the visual sys-
tem, CAP 2 overlaps more on the high order visual area and
FEF. CAPs 4 and 6 looks almost identical in some axial slices,
but a close comparison reveals that CAP 4 covers the central
opercular cortex (CO), parietal operculum (PO), insular, tha-
lamus, and supplementary motor area (SMA), whereas CAP 6
involves more anterior regions, including the frontal operculum
(FO) and paracingulate gyrus (PCG). Moreover, even though all
these CAPs show activations in the IPS, they cover very differ-
ent sub-sections. There are also CAPs showing highly lateralized
patterns (Figure S4) or strong activation in the primary sensory
regions (Figure S5).

Several CAPs showed focal activity in thalamic and cerebel-
lar structures. For example, CAPs 2 and 3, both of which involve
higher order visual and visual association areas, include spatially
distinct thalamic nuclei, with the ones in CAP 2 located more
superior, medial, and anterior than those in CAP 3 (Figure 4A).
In both CAPs, this thalamic activity appears to occur within the
pulvinar. In contrast, CAP 26, whose activity shows a preference
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FIGURE 1 | Spontaneous activity at single fMRI time frames is

suggestive of varying network involvement. Sample frames (T1-T13) from
a representative fMRI scan show clear, distinct spatial patterns, some of
which (red points) resemble the DMN pattern demonstrated by the
PCC-based correlation map of this subject (right). The fMRI time course

represents signal from the PCC seed region (green square). Small structures
indicated by white arrows are the hippocampus (HI) and posterior
parahippocampal gyrus (PHG) in T11 and the ventral lateral nucleus (VL) in T3.
The color bar represents normalized BOLD signal for the sample frames and
correlation values for the seed-based correlation map.

FIGURE 2 | Comparison of CAPs with the DMN derived from

conventional analysis methods. CAPs 1,7,13,15 coarsely resemble
the DMN pattern, but differ in detail. For example, CAP 1, 3, and
15 show specific co-activations at the hippocampus (HI),
parahippocampal gyrus (PHG), and caudate nucleus (CN), respectively.

For comparison, the DMN was also derived from PCC-based
correlation (PCC-CorrMap, bottom left) and ICA (IC 14, having the
highest spatial correlation with the PCC-CorrMap, bottom right). Both
methods failed to extract multiple patterns of DMN seen in the
CAPs.
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FIGURE 3 | CAPs showing distinct co-activation in “task-positive”

regions (i.e., activated with common tasks) but consistent

de-activation in the “task-negative” areas (i.e., de-activated with

common tasks). Their patterns appeared more distinct from one
another as compared to the DMN-activated CAPs. While CAPs 2 and
3 are both related to the visual system, CAP 2 overlaps more on the
high order visual area and frontal eye fields (FEF). CAPs 4 and 6

looks almost identical in some axial slices, but a close inspection
reveals that CAP 4 covers the central opercular cortex (CO), parietal
operculum (PO), insular, thalamus, and supplementary motor area
(SMA), whereas CAP 6 involves more anterior regions, including the
frontal operculum (FO) and paracingulate gyrus (PCG). Moreover, even
though all these CAPs show activations in the IPS, they cover very
different sub-sections.

for primary visual cortex, includes bilateral focal structures that
are much more inferior, lateral, and anterior than the thalamic
structures seen in CAPs 2 and 3. We tentatively attribute these
focal structures to the lateral geniculate nuclei (LGN). In contrast
to the vision-related CAPs, thalamic nuclei in sensorimotor-
related CAPs tend to show activity opposite to the cortical regions.
Strong de-activations (or activations) are observed in the anterior
and medial dorsal nuclei (AN/MDN, big arrows in Figure 4B),
and in some regions surrounding posterior thalamus (small
arrows), when the sensorimotor cortex shows activation (resp.
de-activation) in CAP 19 (resp. CAP 8). These regions are much
less distinct (for the AN/MDN) or even absent (for the thalamus
surrounding areas) in maps derived by seed-based correlation
or ICA (note: the display thresholds for these latter maps were
adjusted, base on the whole brain, to include approximately the
same spatial extent of significantly negative regions). It should
also be noted that a pair of thalamic nuclei showing co-activation
with cortical regions could also be clearly seen in CAP 19 when
lowering the display threshold (Figure 4C). This pair of nuclei
is attributed to the ventral posterolateral nuclei (VPL), located
about 6 mm posterior to the ventral posteromedial nucleus (VL)
shown in CAP 23 (Figure 4C).

The 30 CAPs are available at our website (http://
amri.ninds.nih.gov/pub/xiao/CAPs_30_2mm.nii.gz).

OCCURRENCE RATE OF CAPs
An interesting aspect of the proposed analysis approach is that
it not only provides spatial maps of co-activating brain regions,
but also allows extraction of incidence rates of spatially distinct
co-activations, information that is not explicitly available with
conventional analysis methods. This incidence or occurrence rate
of CAPs may facilitate distinction between subject populations.
To illustrate this, we examined the possibility of distinguish-
ing between spontaneous brain activity in males (n = 38) and
females (n = 64) based on differences in occurrence rates of all 30
CAPs. For this purpose, the occurrence rate of a CAP was deter-
mined from the fraction of total volumes that were classified into
the CAP’s associated cluster.

CAP 23, which primarily covered sensorimotor areas corre-
sponding to head regions, was found to occur more frequently
(p < 0.01, Bonferroni corrected, permutation test) in the male
members than in the female members (Figure 5). However, the
males (mean motion: 0.048 ± 0.021 mm) had a little more (p =
0.038, 2-sample t-test) head motion than the females (mean
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FIGURE 4 | The involvement of thalamic nuclei in CAPs. (A) CAPs in
visual areas show co-activations in the LGN (CAP 26) and in different
subdivisions of the Pulvinar (CAPs 2-3) each with different involvement of
visual cortex. (B) CAPs in sensori-motor areas showing anti-phase activity at
the AN/MDN of the thalamus (big arrows) and some areas surrounding the
posterior thalamus (small arrows). The correlation map (CorrMap) seeded in

the motor cortex (green square) and IC 6 less clearly shows anti-phase
activity in these thalamic regions. Note: the display thresholds for CorrMap
and IC 6 were adjusted in order to display approximately the same number of
negative voxels as in CAP 19. (C) Sensorimotor-related CAPs also show
co-activations at the thalamic nuclei, including the VPL (CAP 19) and VL (CAP
23), which are separated by only a few millimeters.

motion: 0.040 ± 0.018 mm), which may have affected this result
(Van Dijk et al., 2012). To exclude this confounding factor, the
same comparison was repeated between 30 males and 39 females
whose mean motions exceeded 0.03 mm, which resulted in sub-
groups with insignificant difference in their mean motion (p =
0.25) (we were unable to generate subgroups with similar mem-
ber counts based on upper threshold for motion). These two sub-
groups continued to show a significant difference in occurrence
rates of CAP 23 (Figure S6).

COMPARISON TO OTHER DATA-DRIVEN APPROACHES
A more comprehensive comparison of CAPs with independent
components (ICs) derived from the same dataset is presented
in Figure S7 and Figures 6A,B. ICs typically cover a small but
specific set of brain areas with very high z-statistics. As a result
of the spatial independence criterion, there is little overlap of
the regions having high z statistics in different ICs (Figure S7),

resulting in a spatial correlation very close to zero (Figure 6A).
In contrast, several CAPs, particularly those related to DMN
or task-positive regions (Figure S3, CAPs 1,7,12,15, and CAPs
2,3,4,6,9, respectively), cover relatively large brain areas and show
substantial spatial correlations with one another (Figure 6A).
The CAPs in this category do not have clear correspondence to
the patterns seen in the 30 ICs. In contrast, the CAPs covering
small but specific regions, e.g., those related to primary sen-
sory systems, tended to more closely resemble ICs (Figure S7,
CAPs 16,19,23,26,29). Judging from their mutual spatial cross-
correlation, at least a third of the CAPs did not pair up with
any of the ICs (Figure 6A). Another noticeable difference between
CAPs and ICs is asymmetric tails observed for the distribution of
ICA map statistics (Figure 6B), which corresponds to the lack of
significantly negative values in the ICs (Figure S7).

Recently, temporal ICA was applied to the components gen-
erated from spatial ICA in order to generate a set of temporal
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functional modes (TFMs) (Smith et al., 2012). Similarity between
TFMs and CAPs may be expected, since temporal independence
between TFMs is, to some degree, similar to the exclusive relation

FIGURE 5 | Occurrence rates of the CAPs in males and females. Error
bars represent the standard error across participants. The asterisk and light
blue shadow indicates CAPs showing a significant difference in their
occurrence (p < 0.01 with Bonferroni correction, permutation test) between
these two groups.

of a time point to a specific CAP. To investigate this, we performed
a spatial similarity analysis comparing the 30 CAPs with 21 TFMs
derived in Smith et al. (2012). Although there were several CAP—
TFM pairs with high similarity (CAP 2 and TFM 8, CAP 12 and
TFM 19, and CAP 26 and TFM 2), most CAPs did not have a
matching TFM (Figures 6A,C).

DISCUSSION
In this report, we demonstrated a method to extract brain func-
tional information by identifying regions that spontaneously
co-activate during resting conditions. The method is based on
the notion that co-activation of functionally related brain regions
may not be a continual, stationary phenomenon (is implicitly
assumed in conventional analysis) but rather occur sporadically
over the course of a few seconds. The method also extends its
previous version of seed-based analysis targeting specific net-
works (Liu and Duyn, 2013) to a data-driven, whole-brain
approach.

By applying this approach to a large dataset of resting state
fMRI studies, we identified at least 30 reproducible, spatially dis-
tinct co-activation patterns (CAPs). These CAPs in some aspects
resemble canonical RSNs and TFMs extracted with ICA, but also

FIGURE 6 | Comparison between CAPs, ICs, and TFMs. (A) Spatial cross
correlation matrices indicating substantial differences between CAPs (middle)
on one hand and ICs and TFMs on the other (top and bottom, respectively).
Cross-modality correlations were sorted based on correlation strength. (B)

Distributions of map statistics (z-statistics) for CAPs (white), ICs (red), and
TFMs (blue). IC statistics show a very non-Gaussian distribution with a
elevated right tail, consistent with the independence assumption of ICA. (C)

A selection of best-matched CAPs and TFMs, based on spatial similarity.
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show distinct differences in various brain regions. These dif-
ferences are partly attributed to methodological differences, for
example the fact that the proposed method does not assume
statistical independence between CAPs, as is the case for RSNs
and TFMs extracted with ICA. Thus, the proposed method
may lead to an alternative interpretation of the NNs underlying
resting-state fMRI signals.

DISTINCT CO-ACTIVATION PATTERNS AND DYNAMIC FUNCTIONAL
CONNECTIVITY
A series of recent studies has attempted to reveal dynamic changes
in RSNs by examining the temporal variability in fMRI signal cor-
relations (Chang and Glover, 2010; Allen et al., 2012; Hutchison
et al., 2012; Rack-Gomer and Liu, 2012). Considerable variations
in RSN characteristics were found even over the duration of a
typical (several minute) resting scan, suggesting that the under-
lying NNs may dynamically assemble and disassemble over this
time window. Such temporal variations may pose significant chal-
lenges for correlational approaches for the extraction of RSNs, as
it may render them strongly dependent on the choice of analysis
window. For example, the PCC-seeded correlation map within a
16.1-s window (only 7 time points) including T11 shows a DMN
pattern with high correlations at the HI and the posterior PHG
(Figure S8) because they co-activated at T11 (Figure 1); their
functional connectivity to the PCC seed, however, nearly van-
ishes when the time window is shifted forward by 23 s to cover
T12 instead. Likewise, the thalamic nucleus seen in T3 is only
present in correlation maps seeded at the motor cortex for time
windows including T3 (Figure S8). This dependence on position
of the analysis window can be mitigated or avoided by increasing
the window duration, which leads to more stable, reproducible
RSN, but on the other hand can result in the loss of network
information contained in single time frames.

INFORMATION IN CAPs
Using the method proposed in this study, the analysis window was
effectively reduced to include only a single time point, and sen-
sitivity was subsequently improved through selectively averaging
the fMRI volumes with similar patterns. By averaging selectively
rather than continually (as implicitly occurs with correlation
analysis), one may extract finer detail regarding spontaneous co-
activations of multiple brain regions. For example, correlation
analysis with a seed in the PCC and a typical analysis window
of a few minutes generally reveals a functional connection with
HI and posterior PHG but little other information. In contrast,
the multiple DMN-related CAPs extracted with the proposed
method suggests that the two regions at times independently
connect to the PCC. A possible explanation for these regions’
differential involvement with DMN is their distinct roles in mem-
ory storage and retrieval (Gluck and Myers, 1997). Similarly, the
varying involvement of sensory regions with the DMN appar-
ent from CAPs (Figure 3) may signify that the brain may not be
simply organized into two anti-correlated NNs spanning “task-
positive” and “task-negative” regions, as concluded previously
from correlation analysis (Fox et al., 2005).

Many CAPs included small structures in the thalamus
and cerebellum that appeared to localize to specific anatomic

subregions. The vision-related CAPs included thalamic nuclei
that were well-separated and corresponded to established targets
of functional connections with specific regions of the visual cortex
that co-occurred in the CAPs. Similarly, the sensorimotor CAPs
corresponding to the head (CAP 23) and lower body (CAP 19)
regions showed specific co-activations at the VL and VPL, respec-
tively, despite their limited anatomical separation of only a few
millimeters. Anti-phase interaction was also observed between
thalamic nuclei and sensorimotor cortex in CAPs 8 and 19. The
AN/MDN in these CAPs has been shown to positively correlate
with the alpha-band (8-13 Hz) electroencephalography (EEG)
power, which is, in turn, negatively correlated with multiple sen-
sory regions, including the sensorimotor cortex (Liu et al., 2012).
These thalamic regions have non-specific connections to the cor-
tex and may participate in the process of alertness and arousal
(Van Der Werf et al., 2002). The second set of thalamic regions
showing negative correlation to the sensorimotor cortex was
around the LGN. Lowering the display threshold exposed mul-
tiple diffuse areas encompassing the posterior thalamus, which
we suspects to be the thalamic reticular nucleus (TRN), partly
because the anti-phase activity with sensorimotor cortex is, to
some extent, consistent with the established inhibitory influence
of TRN over other thalamic nuclei.

A few CAPs included isolated cortical structures that were dis-
tant from regions of major activity. For example, CAP 16, which
includes areas associated with peripheral vision, showed small
co-activation in the SMA, motor cortex, and medial IPS. This is
plausible considering the critical role of the medial IPS in visuo-
motor coordinate transformation (Grefkes et al., 2004). These
subtle aspects of CAPs are generally not captured with ICA or cor-
relation analysis, indicating potential advantages of the proposed
analysis approach.

Since hemodynamic response function (HRF) has been
demonstrated to vary spatially (Wu et al., 2013), a potential
concern is that different CAPs may actually represent the same
neuronal co-activation event at different hemodynamic delays.
This is, however, unlikely for the following two reasons. First,
the fact that CAPs, particularly those covering similar or close
cortical regions, show specific co-activations in distinct thalamic
and/or cerebellar structures and that many of these CAP pat-
terns are consistent with known organization of the brain argue
strongly against their origin being attributable to vascular effects
(e.g., hemodynamic delay differences between regions). Secondly,
the analysis of temporal precedence of CAPs failed to find any
pair of CAPs occurring in a specific order (Figure S9), which is
also inconsistent with the confounding effect of the HRF delays.
Conversely, co-activation in the same CAP does not guarantee the
exact synchronization of neural activity at corresponding regions.
Therefore, the “co-activation” in CAP refers to synchronization of
fMRI signals rather than that of the underlying neural activity.

We found both co-activation and co-deactivation CAPs for
some brain regions (e.g., CAP 8 and CAP 19), which are actu-
ally averages around fMRI signal peaks and troughs, respectively.
Although these two types of CAPs often show very similar spa-
tial patterns with reversed sign, a close inspection revealed that
the co-activation at the fMRI peaks is significantly more synchro-
nized than the co-deactivation at the troughs (Figure S10). The
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implication of this observation remains unclear, but the peaks and
troughs are clearly corresponding to distinct cortical states.

An attractive aspect of the proposed analysis is that it provides
a simple quantifiable measure of CAP occurrence rate that facil-
itates comparison between subject populations. As example of
this, we demonstrated that CAP 23, which overlaps the sensori-
motor cortex, occurs more frequently in males than in females.
Although far from providing a physiological explanation, this
finding is consistent with a previous study reporting sex differ-
ences in the fluctuation amplitude of resting-state fMRI signals
in similar brain regions (Biswal et al., 2010). We also make pub-
licly available the 30 CAPs derived in our study, which can be
directly used as templates for future studies intending to examine
and compare their occurrence rates in different groups or under
different conditions.

COMPARISON WITH CONVENTIONAL METHODS
As mentioned above, the extraction of CAPs based on single-time
frame analysis may allow one to better capture temporally local-
ized spontaneous co-activations as compared to conventional
correlation analysis. The method presented here resembles spa-
tial ICA in the sense that both are spatial-domain methods that
regard fMRI time frames as the basic units of analysis. However,
ICA assumes that the fMRI volumes comprise weighted combina-
tions of a set of statistically ICs, the best fit of which can be found
by maximizing the independence of the latter. The independence
assumption yields ICs that typically cover a relatively small extent
of the brain with very high statistical scores (Figure S7), because
such a pattern has high non-Gaussianity (Figure 6B), an impor-
tant factor underlying ICA based signal separation. At the same
time, independence maximization yields ICs with minimal pair-
wise spatial correlations, as shown in Figure 6A. Together, these
two features suggest that the ICs present a spatial parcellation of
the brain rather than distinct states of functional connectivity. In
addition, ICs may exhibit considerable pairwise temporal corre-
lation as exemplified by the often negative correlation observed
between the ICs covering task-positive and task-negative regions.

To overcome these limitations and gain more knowledge about
the brain’s spontaneous co-activations, temporal ICA has been
further applied to spatial ICs to recombine them into a set of
TFMs (Smith et al., 2012). The TFMs are perhaps more closely
related to the CAPs, since the concept of temporal independence
is similar to the exclusive presence of a given CAP at any given
time. However, a direct comparison between TFMs and CAPs
indicated substantial differences (Figure 6). This may not be sur-
prising, given the rather different methodology and assumptions
used to generate these network measures.

A practical advantage of the proposed method is that it
involves few assumptions and transformations of the data. The
classification procedure (clustering) does not perform any trans-
formation on the data, and the CAPs are simply averages of time
frames classified into groups based on spatial activity patterns.
Therefore, they are easy to interpret and reflect the underlying
brain activity in a rather direct way.

NEURAL ORIGIN OF CAPs
Since the co-activation patterns are clear even in single fMRI
volumes, they likely reflect large-scale neural activity occurring

within brief time periods. One candidate is large-scale neuronal
avalanching activity, defined as spontaneous activity initiating at
a specific location in the form of a brief burst, and taking with it,
like an avalanche, other connected regions that are near activation
threshold (Beggs and Plenz, 2003; Tagliazucchi et al., 2012). The
previous analysis on spatiotemporal dynamics of spontaneous
fMRI signals confirmed its scale-free property, consistent with
avalanche types of activity at smaller time-scales (Tagliazucchi
et al., 2012). However, it is also possible that other types of neu-
ronal activity underlie such brief co-activations of the brain. For
example, since the dataset we analyzed here was acquired during
wakefulness, it is possible that neural activity associated certain
conscious processes, e.g., mind wandering, may also contribute
to spontaneous co-activations of the brain. The analysis of fMRI
signals acquired under brain states with reduced consciousness
would help to partially clarify these issues. Nevertheless, uncov-
ering the precise neuronal origin and functional relevance of the
CAPs will likely require acquisition of electrophysiological data
concurrently acquired with the fMRI.

TECHNICAL LIMITATIONS
A challenge for clustering analysis is selection of k, i.e., the num-
ber of CAPs to be extracted from the data. The current value of
30 was chosen somewhat arbitrarily from a comparison of results
obtained with k = 20, 30, and 40. We have also attempted to select
k by evaluating the corresponding cluster structures with more
objective indices, including the Silhouette, Calinski-Harabasz,
Davies-Bouldin methods, which, however, yielded inconsistent
recommendations that also tend to underestimate the number of
CAPs present in the data. This may be due to the two following
reasons: first, the distance (dissimilarity) among the CAPs is likely
to have a very skewed distribution, with a portion of the CAPs
being much closer to one another than to the others (Figure 6A),
which increases the difficulty in finding a clear division. Secondly,
the noisy fMRI volumes mentioned above will further blur the
boundaries between different CAPs. Nevertheless, the CAPs in the
current dataset were found to be rather insensitive to this parame-
ter, as the majority of the CAPs shown for the case of k = 30 were
also observed in the cases of k = 20 and k = 40.

The computational load of the k-means clustering increases
quickly with the number of fMRI volumes (time points).
Therefore, the application of the proposed method to fMRI
datasets with very high sampling rate, e.g., those acquired with the
newly developed multi-band technique, would either be limited
to a relatively small population or have to require more computa-
tional resources and/or more efficient computational algorithms.
This could be a challenge for future studies attempting to uti-
lize the ultra-high temporal resolution of fMRI data for special
research purposes.
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The functional role of the observed neuronal variability (the disparity in neural responses across
multiple instances of the same experiment) is again receiving close attention in Computational
and Systems Neuroscience (e.g., Durstewitz et al., 2010; Moreno-Bote et al., 2011; Oram,
2011; Beck et al., 2012; Churchland and Abbott, 2012; Brunton et al., 2013; Masquelier,
2013; Mattia et al., 2013; Balaguer-Ballester et al., 2014; Renart and Machens, 2014; Bujan
et al., 2015; Lin et al., 2015; Pachitariu et al., 2015; Arandia-Romero et al., 2016; Doiron
et al., 2016; McDonnell et al., 2016). Special consideration is currently given to understanding
how spiking (Bujan et al., 2015; Deneve and Machens, 2016; Doiron et al., 2016; Hartmann
et al., 2016; Landau et al., 2016) and phenomenological (Goris et al., 2014; Lin et al., 2015;
Mochol et al., 2015; Arandia-Romero et al., 2016; Doiron et al., 2016) models account for
the wide range of classical and new phenomena associated with trial-to-trial uncorrelated
activity.

Specifically, it has often been proposed that a network state characterized by largely
asynchronous spike times whilst maintaining slow oscillations in the firing-rates, may represent
the default spontaneous cortical mode (e.g., Sanchez-Vives andMattia, 2014; Deneve andMachens,
2016; Sancristobal et al., 2016); and similar states could also underlie observed stimulus-driven
variability in rate (Litwin-Kumar and Doiron, 2012; Deneve and Machens, 2016; Hartmann et al.,
2016). However, the way in which such a computationally advantageous network state for neural
coding is achieved can differ substantially between modeling approaches; this challenge will be the
focus of this manuscript.

PREDICTABLE COMPONENTS OF NEURONAL VARIABILITY

The view that the intrinsic stochasticity of single cell activity is the major source of variability has
been questionedmultiple times over the last decades bymodeling (van Vreeswijk and Sompolinsky,
1996; Amit and Brunel, 1997; Shadlen and Newsome, 1998; Deneve et al., 2001; Stein et al., 2005;
Faisal et al., 2008; Renart et al., 2010; Rabinovich and Varona, 2011; Masquelier, 2013; Stiefel et al.,
2013; Rabinovich et al., 2014; Deneve and Machens, 2016; Hartmann et al., 2016) and empirical
studies (e.g., Bryant and Segundo, 1976; Mainen and Sejnowski, 1995; Britten et al., 1996; Stein
et al., 2005). It is well known that essentially deterministic networks of balanced excitation and
inhibition are able to generate a weakly correlated, often chaotic attractor state which presents
Poissonian statistical properties like the observed activity (van Vreeswijk and Sompolinsky, 1996;
Amit and Brunel, 1997; Shadlen and Newsome, 1998; Sussillo and Abbott, 2009; Litwin-Kumar and
Doiron, 2012). However, such a chaotic state is a non-mandatory modeling choice: recently, a range
of models has shown that part of the observed variability may also be explained by a different class
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of deterministic processes (Beck et al., 2012; Mattia et al., 2013;
Renart and Machens, 2014; Bujan et al., 2015; Abbott et al., 2016;
Deneve and Machens, 2016; Doiron et al., 2016; Gillary and
Niebur, 2016; Hartmann et al., 2016) such as the lack of specificity
in top-down processing of cognitively complex tasks (Beck et al.,
2012).

At the same time, empirical studies found mounting evidence
of deterministic patterns for some of the trial to trial variability.
For example, a range of indexes (Shadlen and Newsome, 1998;
Churchland and Abbott, 2012; Marcos et al., 2013) suggest
that variance is systematically reduced at the stimulus onset
(Churchland et al., 2010); and in general shows a predictable
trend during different events of the task (Churchland et al.,
2006, 2010; Churchland and Abbott, 2012; Ledberg et al., 2012;
Renart andMachens, 2014). Thus, there seems to be an increasing
consensus in that at least part of the trial to trial variability shows
a deterministic pattern which may play a functional role; and
hence cannot be simply neglected (Balaguer-Ballester et al., 2011,
2014; Masquelier, 2013; Ecker et al., 2014; Goris et al., 2014;
Renart andMachens, 2014; Lin et al., 2015; Schölvinck et al., 2015;
Arandia-Romero et al., 2016; Hartmann et al., 2016).

Nevertheless, despite such recent advances, the mapping
between the cognitive state and variability is still challenging.
For instance, on the one hand, correlated rate variability between
pairs of neurons is often reduced by top-down attentional
processes (e.g., Cohen and Maunsell, 2009; Mitchell et al., 2009;
Cohen and Kohn, 2011; Doiron et al., 2016). On the other hand,
the opposite can be observed when attention is highly variable
across trials (Roelfsema et al., 2004; Renart and Machens, 2014;
Ruff and Cohen, 2014); and such noise correlation analyses show
a variety of mixed results (Cohen and Kohn, 2011; Eyherabide
and Samengo, 2013; Moreno-Bote et al., 2014; Ruff and Cohen,
2014, 2016; Doiron et al., 2016).

Importantly, compelling evidence suggests that a substantial
portion of the spontaneous and evoked total and shared
variability is attributable to global fluctuations (Ecker et al., 2014,
2016; Goris et al., 2014; Mochol et al., 2015; Pachitariu et al.,
2015; Schölvinck et al., 2015; Arandia-Romero et al., 2016);
and this has direct implications in neural coding in visual (Lin
et al., 2015; Arandia-Romero et al., 2016; Ecker et al., 2016)
and in auditory areas (Mochol et al., 2015; Pachitariu et al.,
2015). For instance, high population activity in monkey V1
increases the information that a subset of neuronal ensembles
carry about stimulus orientation, only the ones that show a strong
multiplicative modulation. In contrast, the stimulus-decoding
information of such multiplicative ensembles plummets for
low global activity states; whilst information increases in the
group additively-modulated neurons in the population (Arandia-
Romero et al., 2016).

Global modulations could either stem from the default
up/down state of ongoing activity (Mochol et al., 2015) or
from fluctuations within a single state (Arandia-Romero et al.,
2016). When controlled for this global co-modulations, noise
correlations are often negligible (Renart et al., 2010), but not
always (Pachitariu et al., 2015; Arandia-Romero et al., 2016).
Moreover, stimulus-driven input statistics can also have a strong
contribution to the observed evoked variability in parallel to the

global network state (Oram, 2011; Bujan et al., 2015; Pachitariu
et al., 2015; Doiron et al., 2016; Landau et al., 2016) and explain
noise correlations dynamics (Bujan et al., 2015).

This complex variety of results has been recently analyzed
using a range of phenomenological and spiking models. These
recent modeling efforts aim to pin down when precisely during
the course of the trial (Moreno-Bote et al., 2014; Bujan et al.,
2015; Doiron et al., 2016) and in which specific network state
(Arandia-Romero et al., 2016) noise correlations are informative
or deleterious for neural coding (Ecker et al., 2014, 2016;
Moreno-Bote et al., 2014; Lin et al., 2015; Pachitariu et al., 2015;
Schölvinck et al., 2015; Arandia-Romero et al., 2016; Doiron et al.,
2016).

DIVERSITY OF THEORETICAL
APPROACHES

The consensus on the network origin of a substantial part of
cortical variability led to the development of a multitude of
models for explaining the underlying neuronal mechanisms of
the asynchronous state (e.g., Boerlin et al., 2013; Deco et al., 2014;
Ostojic, 2014; Barral and Reyes, 2016; Hartmann et al., 2016;
Rosenbaum et al., 2017). A linking theme in these approaches is
the crucial contribution of fast inhibition in recurrent networks;
which is negatively correlated with excitation and strong enough
to counterbalance it to different degrees (Renart et al., 2010;
Deneve and Machens, 2016).

FIGURE 1 | Three dimensions in models of neuronal variability. The

diamond shows an example of a spiking model with random connectivity and

a tight Excitation/Inhibition (E/I) balance as in Renart et al., 2010; the circle

represents a substantially different modeling choice such as in Hartmann et al.,

2016. A range of modeling approaches typically fall between these two

examples (triangles); such as semi-structured connectivity architectures which

modulate the E/I balanced dynamics in realistic networks (Litwin-Kumar and

Doiron, 2012; Landau et al., 2016).
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This scenario is currently the subject of a lively debate;
and a variety of processing architectures of spiking units have
been developed to explain the observed variability phenomena
from different perspectives. It has recently been proposed that a
much tighter synchronization between excitation and inhibition
than considered so far, at the spike level, has an even stronger
experimental support and would enable the network to operate
optimally by reducing the minimum coding error (Renart et al.,
2010; Boerlin et al., 2013; Abbott et al., 2016; Deneve and
Machens, 2016). The precise way in which the asynchronous state
is achieved however, is not unique. For example, connectivity
weights are specifically learnt in the design termed spike-coding
network (Boerlin et al., 2013; Schwemmer et al., 2015; Abbott
et al., 2016; Deneve and Machens, 2016); whilst connectivity
is clustered in Litwin-Kumar and Doiron (2012), shaped by
plasticity in Vogels et al. (2011) and Landau et al. (2016) and
much less structured in many other dense (Renart et al., 2010;
Abbott et al., 2016) or sparse (Ostojic, 2014) networks.

In contrast, other recent approaches rely on non-closely
balanced excitatory-inhibitory dynamics in networks of
simplified units. For instance, Hartmann et al. (2016) proposed
a fully deterministic approach to describe spontaneous and
stimulus evoked variability; consisting of an architecture
of schematic noise-free units. In this approach, excitatory
connectivity is specifically set by plasticity and homeostasis;
and is not necessarily balanced. In Deco et al. (2014), the
spontaneous state also stems from not necessarily tightly
balanced architectures, where elements are field equations
derived from spiking units with background input noise. In
this and related models, connectivity is also set; but in the latter
case local inhibition is regulated by a different homeostatic
control. In addition, it has been recently shown that most of
the evoked variability could be accounted for by essentially
feedforward architectures (Bujan et al., 2015; Doiron et al.,
2016).

Asymmetry and slightly unbalanced configurations are also
considered to promote the so called metastable state (Mattia
et al., 2013; Tognoli and Kelso, 2014a,b; Deco and Kringelbach,
2016), in which high dimensional ensembles flexibly re-organize,
synchronize and disengage, possibly by changing their role in
a high-dimensional setting (Lapish et al., 2015; Fusi et al.,
2016). Such state also exhibits advantageous computational
properties (Hellyer et al., 2015; Deco and Kringelbach, 2016).
In an instantiation of such ideas, essentially deterministic
structures of simplified units generate itinerancy through robust
transient states. These states enable the model to process
cognitive entities without the compelling need for attractors
(Rabinovich et al., 2008, 2014; Varona and Rabinovich, 2016).
Moreover, combinations of attractor-based and transient-based

computations could also underlie motor plans (Mattia et al.,
2013). Other state-dependent computational ingredients such

as neuromodulation could also play a major role in shaping
the observed variability (Mattia et al., 2013; Lapish et al., 2015;
Doiron et al., 2016).

FUTURE CHALLENGES FOR MODELS

This non-exhaustive summary of few recent examples suggests
the availability of a plethora of recurrent and feedforward
network models for understanding the source of variability
during cognitive processing and in the resting state. These
configurations often differ at least in the level of detail of the
computational units, in the connectivity structure and in the
degree of balance between excitation and inhibition (Figure 1).

This challenging scenario perhaps compels to the
development of novel approaches for probing the networks
in order to identify the suitable architecture or architectures for
each specific cognitive process and cortical area. However, the
question remains how to effectively dissect a recurrent network,
beyond the linearization of the network dynamics, in order
to investigate the components originating the asynchronous
state (Sussillo, 2014). Recently, Doiron et al. (2016) proposed
a framework to identify the physiological processes underlying
decorrelation in feedforward circuits by analysing state-
dependent correlations in different time windows. However,
applying this approach is more problematic in recurrent circuits
when coupling is not weak and is highly nonlinear; as is often
the case in models.

Hence, inferring which level of detail and architecture
are mostly probably responsible for the neuronal variability
phenomena is perhaps one of the major challenges for the
next years, which possibly requires the development of novel
theoretical tools for scrutinizing network behavior.
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