Research Topic

Intelligent solutions to small body missions

About this Research Topic

Motivated by a considerable scientific interest and a relatively easy accessibility, small celestial bodies represent the current frontier of space exploration. This interest is witnessed by the recent Hayabusa-2 mission and the ongoing OSIRIS-Rex mission. Many missions are also being planned, e.g. the DART mission from NASA and the HERA mission from ESA.

However, there are many new challenges for designing space missions to these small bodies. One is that the environment is highly unknown and not well characterized before the spacecraft’s arrival, due to the limited capability of ground observations. Another is landing on the surface of the low-gravity body. Therefore, autonomy is important for a successful and smart mission, and visual navigation is an essential technology to achieve mission autonomy. In addition, small spacecraft such as CubeSates and their formations have become popular in Earth missions due to their low cost and high flexibility. Their application to small body missions is promising, but also challenging, due to the irregular and weak gravity fields and the uncertain dynamical environments. In addition to the technological challenges, the mission is also expected to be designed with the maximum or optimum scientific return. All of these challenges provide a favorable ground for the development and application of the latest artificial intelligence methodologies in the design and control of new space missions, with the ultimate goal of having a higher degree of efficiency and autonomy on board.

The goal of this Research Topic is to collect original contributions that can address some of the above challenges for the design and control of future intelligent missions to small bodies. Applications of Artificial Intelligence (AI) methods to mission design and control, novel design of CubeSate formations, novel mission design for optimal scientific return, and mission autonomy are examples of the topics examined.

Potential submission topics include, but are not limited to, the following:
• AI and optimization methods in guidance, navigation and control (GNC)
• AI and optimization methods in trajectory design
• Novel design and smart solutions for formations
• Smart solutions for maximum scientific return
• Mission design enabled by novel systems
• Intelligent control online and offline algorithms for adaptation and learning
• Uncertainty treatment in mission design and control
• Limited memory and limited storage machine learning methods for on board computing
• Studies related to current small body missions

Please note: There is currently a 50% publishing discount in place for the journal - this is already reflected in the fees page of our website. This is in effect until June 2021, and any submissions before the 16th June 2021 will receive this discount automatically. Our institutional agreements and fee support department are also in place to assist authors who cannot afford the APC charges.


Keywords: small body missions, artificial intelligence, mission autonomy, science return, smart solution


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Motivated by a considerable scientific interest and a relatively easy accessibility, small celestial bodies represent the current frontier of space exploration. This interest is witnessed by the recent Hayabusa-2 mission and the ongoing OSIRIS-Rex mission. Many missions are also being planned, e.g. the DART mission from NASA and the HERA mission from ESA.

However, there are many new challenges for designing space missions to these small bodies. One is that the environment is highly unknown and not well characterized before the spacecraft’s arrival, due to the limited capability of ground observations. Another is landing on the surface of the low-gravity body. Therefore, autonomy is important for a successful and smart mission, and visual navigation is an essential technology to achieve mission autonomy. In addition, small spacecraft such as CubeSates and their formations have become popular in Earth missions due to their low cost and high flexibility. Their application to small body missions is promising, but also challenging, due to the irregular and weak gravity fields and the uncertain dynamical environments. In addition to the technological challenges, the mission is also expected to be designed with the maximum or optimum scientific return. All of these challenges provide a favorable ground for the development and application of the latest artificial intelligence methodologies in the design and control of new space missions, with the ultimate goal of having a higher degree of efficiency and autonomy on board.

The goal of this Research Topic is to collect original contributions that can address some of the above challenges for the design and control of future intelligent missions to small bodies. Applications of Artificial Intelligence (AI) methods to mission design and control, novel design of CubeSate formations, novel mission design for optimal scientific return, and mission autonomy are examples of the topics examined.

Potential submission topics include, but are not limited to, the following:
• AI and optimization methods in guidance, navigation and control (GNC)
• AI and optimization methods in trajectory design
• Novel design and smart solutions for formations
• Smart solutions for maximum scientific return
• Mission design enabled by novel systems
• Intelligent control online and offline algorithms for adaptation and learning
• Uncertainty treatment in mission design and control
• Limited memory and limited storage machine learning methods for on board computing
• Studies related to current small body missions

Please note: There is currently a 50% publishing discount in place for the journal - this is already reflected in the fees page of our website. This is in effect until June 2021, and any submissions before the 16th June 2021 will receive this discount automatically. Our institutional agreements and fee support department are also in place to assist authors who cannot afford the APC charges.


Keywords: small body missions, artificial intelligence, mission autonomy, science return, smart solution


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

09 October 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

09 October 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..